

ibm.com/redbooks

WebSphere Commerce
V5.4 Developer’s
Handbook

Bill Moore
Peter Gothager

Michael Mattinson
Chiara Montecchio

Narayan Prasad
Carla Sofia Jesus Ribeiro

Thomas Tolborg

Understanding the development
process

Planning and using a
development environment

Customization examples

Front cover

WebSphere Commerce V5.4 Developer’s Handbook

July 2002

International Technical Support Organization

SG24-6190-00

© Copyright International Business Machines Corporation 2002. All rights reserved.. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (July 2002)

This edition applies to version 5.4 of WebSphere Commerce Business Edition and WebSphere
Commerce Professional Edition, for use with the Windows NT and 2000 operating systems.

This document created or updated on October 18, 2002.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. .xi
Comments welcome. xiii

Part 1. Store development basics . 1

Chapter 1. Introduction . 3
1.1 Overview . 4
1.2 Who should read this book . 6
1.3 Organization . 7

Chapter 2. Architecture and programming model 11
2.1 Store architecture overview. 12

2.1.1 Store assets . 12
2.1.2 WebSphere Commerce store architecture . 13

2.2 WebSphere Commerce application architecture. 14
2.2.1 WebSphere Commerce server subsystems 18
2.2.2 Data assets . 19

2.3 WebSphere Commerce runtime architecture . 24
2.3.1 WebSphere Commerce runtime components 24
2.3.2 Topology configuration samples . 31

2.4 WebSphere Commerce programming model . 39
2.4.1 The J2EE Programming Platform . 40
2.4.2 Model-view-controller design pattern . 40
2.4.3 Persistent Object Model Overview . 45

Chapter 3. Requirements and design . 49
3.1 Application development methodology . 50

3.1.1 Solution startup . 51
3.1.2 Solution outline . 51
3.1.3 Macro design. 53
3.1.4 Micro design . 54
3.1.5 Build cycle . 55
3.1.6 Deployment . 57
3.1.7 Solution Close . 57

3.2 Example store requirements . 57
© Copyright IBM Corp. 2002. All rights reserved. iii

3.2.1 General store requirements . 58
3.2.2 Quick order implementation . 61
3.2.3 Price display including tax. 62
3.2.4 Product creation via MQ . 63
3.2.5 Welcome page based on role . 64
3.2.6 Amount-based order approval. 65
3.2.7 Contract-based logon . 67
3.2.8 Product bundles . 68

Chapter 4. Planning and development . 71
4.1 Development overview . 72

4.1.1 WebSphere Commerce Studio V5.4 . 72
4.2 Planning WebSphere Commerce development . 76

4.2.1 Development initialization phase. 76
4.2.2 Team development . 77

4.3 Install the development environment. 79
4.3.1 Pre-installation requirements . 79
4.3.2 Install VisualAge for Java, Enterprise Edition 81
4.3.3 Install WebSphere Studio . 84
4.3.4 Install WebSphere Commerce Studio . 85
4.3.5 Install Application Assembly Tool . 88

4.4 Post-install configuration . 90
4.4.1 Configure VisualAge for Java, Enterprise Edition 90
4.4.2 Create a sample store in VisualAge for Java 95
4.4.3 Maintenance . 95

4.5 WebSphere Studio Application Developer . 96
4.5.1 Introduction . 97
4.5.2 Setup WebSphere Studio Application Developer 101
4.5.3 Setup WebSphere Test Environment . 113
4.5.4 The second installation . 120
4.5.5 Developing in WebSphere Studio Application Developer 123

Chapter 5. Creating a store . 131
5.1 Stores architecture overview . 132

5.1.1 Store assets and components. 132
5.1.2 Store design . 133

5.2 . Store development134
5.2.1 Creating a store based on sample stores . 134
5.2.2 Creating store by generating new assets. 166
5.2.3 Create store using a mixed approach. . 168

Chapter 6. Testing a store . 169
6.1 Testing strategy. 170
6.2 Test planning. 171
iv WebSphere Commerce V5.4 Developer’s Handbook

6.2.1 The test administrative plan . 171
6.2.2 Problem management. 171
6.2.3 Version control . 172

6.3 Test phases. 173
6.3.1 Static test . 173
6.3.2 Unit testing . 179
6.3.3 Functional test . 181
6.3.4 System test . 182

6.4 Test case design . 185
6.4.1 Test cases samples . 185

6.5 Test environment set-up . 191
6.5.1 Staging server and test data . 192

6.6 Problem determination . 194
6.6.1 Tracing . 195
6.6.2 Error handling . 197

Chapter 7. Packaging and deployment . 201
7.1 Overview . 202
7.2 Using WebSphere Studio and Store Services. 202
7.3 Using Ant to package and deploy a store . 203

7.3.1 Folder structure . 203
7.3.2 Using the sample Store Archives . 204
7.3.3 The Deployment Use Case . 205
7.3.4 Creating the Ant build files . 207
7.3.5 Conclusion . 213

Part 1. Customization examples . 215

Chapter 8. Examples overview . 217
8.1 Example stores . 218
8.2 Orders . 218

8.2.1 CICS order transaction . 218
8.2.2 Quick order function . 219

8.3 Shipping and taxes . 221
8.3.1 Shipping by weight . 221
8.3.2 Display prices with tax. 222
8.3.3 Discounts . 223

8.4 Messaging customization . 224
8.4.1 Inbound MQSeries - product creation . 224

8.5 B2B features . 226
8.5.1 Role-based display . 226
8.5.2 Amount-based order approval. 228
8.5.3 Contract-based shopping . 228

8.6 Product entry and display . 230
 Contents v

8.6.1 Product comparison . 230
8.6.2 Enabling bundles. 231
8.6.3 Display of multiple currencies . 231

Chapter 9. Orders . 233
9.1 CICS order transaction . 234

9.1.1 Functional requirements . 234
9.1.2 Use cases . 235
9.1.3 Design . 236
9.1.4 Pre-requisites . 238
9.1.5 Create the Task Command . 243
9.1.6 Register the command in WebSphere Commerce 255
9.1.7 Deploy the code . 255

9.2 Quick Order . 256
9.2.1 Quick order flow in the ToolTech store . 256
9.2.2 Design . 258

Chapter 10. Shipping and taxes . 259
10.1 Shipping by weight . 260

10.1.1 Example of shipping calculations by weight 260
10.1.2 Shipping database assets . 261
10.1.3 Adding shipping by weight charges. 263
10.1.4 Use case for order check out . 265

10.2 Prices including taxes . 270
10.2.1 Definition of tax types . 270
10.2.2 Tax database assets . 271
10.2.3 Implementation prices including taxes . 274

10.3 Discounts. 282
10.3.1 Discount types. 283
10.3.2 Discount assets . 283
10.3.3 Creating a discount in a sample store. 285

Chapter 11. Messaging customization . 291
11.1 Installing and configuring MQSeries . 292

11.1.1 Installing . 292
11.1.2 Configuring . 292

11.2 Enabling the MQ adapter in WebSphere Commerce 296
11.2.1 TransportAdapter . 296
11.2.2 Log level . 297

11.3 Enabling the MQ adapter in VisualAge for Java 297
11.3.1 TransportAdapter . 297

11.4 Functional requirements . 299
11.4.1 Use case . 299

11.5 Preparing for the MQProductCreate command. 300
vi WebSphere Commerce V5.4 Developer’s Handbook

11.5.1 Defining XML and DTD for the command 300
11.5.2 Registering the DTD in WebSphere Commerce 305
11.5.3 Creating mapping between the XML and the command 305
11.5.4 Registering the command in WebSphere Commerce. 308

11.6 Creating the commands . 309
11.6.1 Creating the MQProductCreateCmd interface 309
11.6.2 Creating the MQProductCreate command impl class 309
11.6.3 Creating the MQProductAttributesCmd interface 316
11.6.4 Creating the MQProductAttributesCmdImpl class. 316

11.7 Testing the MQProductCreate command . 320
11.7.1 Deploying the commands . 321
11.7.2 Modifying JSP files . 321

11.8 Final considerations . 323
11.8.1 The markfordelete attribute . 323
11.8.2 Inventory . 323
11.8.3 Performance . 323
11.8.4 SKUs and attributes . 324
11.8.5 Transactions . 324

Chapter 12. B2B features . 325
12.1 B2B features in WebSphere Commerce Business Edition V5.4 326

12.1.1 Access control . 326
12.2 Role-based display . 327
12.3 Order approval . 331
12.4 Contracts and trading agreements . 338
12.5 Message extensions . 345

12.5.1 cXML overview . 346
12.5.2 cXML in WebSphere Commerce Business Edition 347

Chapter 13. Product entry and display . 349
13.1 Product comparison . 350

13.1.1 Product Advisor . 350
13.1.2 Creating base search space . 350
13.1.3 Preparing a product comparison metaphor. 361
13.1.4 Testing product comparison . 366

13.2 Products and bundles . 367
13.2.1 Definition of products . 367
13.2.2 Creating new product with product manager 368
13.2.3 Testing the new product . 375
13.2.4 Definition of bundles . 377
13.2.5 Bundles in WebFashion . 377
13.2.6 Creating bundles . 378

13.3 Display of multiply currencies . 386
 Contents vii

13.3.1 Currencies types . 387
13.3.2 Dual display and counter values . 389
13.3.3 Implementation of dual display of currencies 390
13.3.4 Testing the dual display of currencies. 394

Chapter 14. Migration examples . 397
14.1 Migration Overview . 398
14.2 Migration considerations . 398

14.2.1 Infrastructure changes . 399
14.2.2 Architecture changes . 400
14.2.3 Database changes . 402
14.2.4 Additional considerations . 404

14.3 Migration example(s?) . 406

Appendix A. Sample level 1 “a.” appendix heading (yHead0Appendix) 407
Sample level 2 heading (yHead1Appendix), new page 408
Sample level 2 heading (yHead2Appendix) . 408

Sample level 3 heading (yHead3Appendix) . 408

Appendix B. Additional material . 409
Locating the Web material . 409
Using the Web material . 409

System requirements for downloading the Web material 410
How to use the Web material . 410

Abbreviations and acronyms . 411

Related publications . 415
IBM Redbooks . 415

Other resources . 415
Referenced Web sites . 416
How to get IBM Redbooks . 417

IBM Redbooks collections. 417

Index . 419
viii WebSphere Commerce V5.4 Developer’s Handbook

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
DB2®
DB2 Universal Database™
Encina®
IBM®
iSeries™
Metaphor®

MQSeries®
MVS™
OS/390®
Redbooks™
S/390®
SP™
TeamConnection®

Tivoli®
VisualAge®
WebSphere®
zSeries™
Redbooks(logo)™

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus® eSuite™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x WebSphere Commerce V5.4 Developer’s Handbook

Preface

This redbook details the new tools and techniques available to J2EE developers
using WebSphere Commerce V5.4 to customize e-commerce shopping sites.

It provides worked examples of customizations proceeding from realistic
requirements through to modification of store assets, including front end, data
and back end assets. Customization examples include both simple customization
and complex programming customizations.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Bill Moore is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively and teaches IBM classes on
WebSphere and related topics. Before joining the ITSO, Bill was a Senior AIM
Consultant at the IBM Transarc lab in Sydney, Australia. He has 17 years of
application development experience on a wide range of computing platforms and
using many different coding languages. He holds a Master of Arts degree in
English from the University of Waikato, in Hamilton, New Zealand. His current
areas of expertise include application development tools, object-oriented
programming and design, and e-business application development.

Peter Gothager is an IT Specialist in Business Innovation Services of IBM
Sweden. He has 4 years of experience in the e-business design and
development in both B2B and B2C facing projects. He holds a B.Sc. degree from
Chalmers University of Technology, Sweden. His current areas of expertise
include application e-business design and development using the IBM
WebSphere family of products.

Michael Mattinson is an IT Architect for IBM Global Services in the United
States. He has five years of experience in the architecture, deployment and
maintenance of e-business sites for various companies and four years of
experience with IBM's Web commerce applications. In his six years with IBM, he
has participated in many large IBM e-commerce initiatives. He holds a degree in
Computer Science and Mathematics from New York University. His areas of
expertise include e-business application architecture, e-commerce solutions and
Web infrastructure technologies.
© Copyright IBM Corp. 2002. All rights reserved. xi

Chiara Montecchio is a Software Engineer at the IBM Tivoli Lab in Roma, Italy.
She has 4 years of experience in product and application design, developing and
testing. She holds a degree in Physics from the University “La Sapienza“ of
Rome. Her areas of expertise include Web technologies, Java programming, and
implementation of e-commerce solutions with WebSphere Application Server
and WebSphere Commerce. She has written extensively on architecture and
programming model and on testing a store.

Narayan Prasad is a software enginner with IBM India. He has four years of
experience in e-business development.

Carla Sofia Jesus Ribeiro is an e-business integration consultant with IBM
Global Services in Mainz, Germany. She has two years of experience in
e-business field working on IBM e-business projects in Germany. Carla holds a
degree in Electrical Engineering from the University of Appliend Sciences of
Trier, Germany. Her areas of expertise includes WebSphere Commerce and
e-business.

Thomas Tolborg is an I/T Specialist with IBM Global Services, Business
Innovation Services in Aarhus, Denmark. His areas of expertise includes J2EE
and e-commerce. Thomas has worked with IBM e-commerce products since
Net.Commerce version 3. In the past year Thomas has been working on several
WebSphere Commerce V5.1 implementations.

.

Figure 0-1 The redbook team: Thomas Tolborg, Michael Mattinson, Peter Gothager,
Carla Sofia Jesus Ribeiro, Narayan Prasad. Absent: Chiara Montecchio (pictured below)
xii WebSphere Commerce V5.4 Developer’s Handbook

Figure 0-2 Chiara Montecchio

Thanks to the following people for their contributions to this project:

Daniel Dunn
Bob Fraser
Tim Fors
Craig Henkle
Mark Ho
Khalyl Khan
Eric Koeck
Carol Liang
Scott Ripley
IBM Canada

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.
 Preface xiii

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xiv WebSphere Commerce V5.4 Developer’s Handbook

Part 1 Store
development
basics

In this part we provide an overview of the process for planning, designing and
developing a site using WebSphere Commerce.

Part 1
© Copyright IBM Corp. 2002. All rights reserved.. All rights reserved. 1

2 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 1. Introduction

This IBM Redbook is designed for the developer who wants to extend the
functionality of WebSphere Commerce Business Edition Version 5.4. It will take
you from the design of a commerce site to the authoring of custom code. This
chapter provides a description of the redbook’s contents.

1

© Copyright IBM Corp. 2002. All rights reserved. 3

1.1 Overview
Now more than ever businesses are feeling pressure to show results from their
e-business presence. With the increased scrutiny on return on investment and
the bottom line, a company’s Web site must project the appropriate image to
customers, partners and the world at large. Nowhere is this more true than in the
commerce and procurement arena.

As recently as a couple of years ago, consumers were content with having basic
commerce abilities: browsing a catalog, selecting their chosen products and
paying securely using their credit card. Recently, though, e-commerce has grown
from buyers conducting these rudimentary transactions to a wholesale redesign
of the relationships between partners, suppliers and customers. Consumers and
businesses have come to have certain expectations of commerce sites; among
them a personalized experience, accommodation of cultural mores and
language, quick access to repeatable orders and access via pervasive devices
such as mobile phones and personal digital assistants. Companies must now
use technology to streamline their business models and increase efficiency
leading directly to lowered costs and closer, more rewarding customer
relationships.

WebSphere Commerce Business Edition Version 5.4 provides an enterprise
platform to meet the next generation commerce requirement. Built on a
component-based architecture, WebSphere Commerce supports open
standards allowing for more rapid application development, integration and
deployment and improved maintenance. It is written entirely in Java using
Enterprise JavaBeans, Java Servlets, JavaServer Pages resulting in an easily
extensible product. Some of the more noteworthy aspects of WebSphere
Commerce Business Edition are:

� The rich data and object models that support many different e-commerce data
structures and functions. The B2B model, in particular, is very
well-represented in WebSphere Commerce Business Edition Version 5.4.

� A messaging transport layer that supports both inbound and outbound
messages for notification and back-end integration.

� Support of multiple languages and currencies which extends a store’s reach
into the global market.

� Flexible and customizable access control based on a hierarchical policy and
user roles.

� Personalized recommendations based on analysis of shopper activities.

� Pervasive device support.
4 WebSphere Commerce V5.4 Developer’s Handbook

WebSphere Commerce Business Edition has a very strong focus on
business-to-business practices. The built-in B2B functionality includes:
contract-based pricing and purchasing, entitlement-based browsing, multiple
shipping addresses, buyer approval and Request for Quotation (RFQ) creation.
We examine and extend these aspects of the product in Chapter 12, “B2B
features” on page 325.

WebSphere Commerce also provides a suite of tools that can help store creators
and administrators manage their stores:

� The Commerce Suite Accelerator is used to manage the operation of an
online store. It provides an integration point for all functions available to the
WebSphere Commerce store administrator, including product management,
marketing and customer orders.

� The Administration Console sets up site and store features such as access
control, performance monitoring, messaging, payment systems and
personalization.

� Store Services allows store developers and administrators to create, edit and
publish stores.

� The Configuration Manager is used to create and manage WebSphere
Commerce instances.

The objective of this redbook is twofold: to present an outline of a WebSphere
Commerce Business Edition Version 5.4 development cycle and to provide
real-world examples of programming customization for commerce sites. We start
by reviewing the WebSphere Commerce Business Edition programming model
and proposing a best-practices approach to site planning and creation. Next, we
propose a testing methodology that can be used in an actual application setting
and explain store packaging in preparation for launch. Finally, we present a
series of customized solutions to possible customer requirements.

The examples show how to customize stores to add and alter functionality such
as order processing, taxation, shopping flow and messaging. They can serve as
templates for extending your own commerce solutions as they demonstrate how
to weave custom code into the powerful base functionality of WebSphere
Commerce.

While we review the use of WebSphere Commerce tools and programming
models, we do not cover the installation and configuration of the product or its
associated development tool suite. Information on these topics can be found at
the IBM WebSphere Commerce Business Edition Version 5.4 technical library
Web site:

http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html
 Chapter 1. Introduction 5

http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html

The documents at this site cover the entire spectrum of WebSphere Commerce,
from general introduction to specific low-level detail. Some of the useful materials
that can be found here are:

� IBM WebSphere Commerce Programmer’s Guide Version 5.4

� IBM WebSphere Commerce for Windows NT and Windows 2000 Installation
Guide for use with DB2 Universal Database Version 5.4

� IBM WebSphere Commerce Store Developer’s Guide Version 5.4

� IBM WebSphere Catalog Manager User’s Guide Version 5.4

� IBM WebSphere Commerce Database Schema

� What’s New in WebSphere Commerce Version 5.4

1.2 Who should read this book
There are several high-level roles defined for WebSphere Commerce activity.
They are:

Store architect A store architect must be able to take the merchant’s
business requirements and map them to WebSphere
Commerce function.

Store developer Store development is performed by several subgroups
including: web designers, who craft the look and feel of
the site; commerce designers, who extend WebSphere
Commerce Business Edition functionality using custom
code; and database developers, who produce optimized
SQL for business logic.

Store administrator Responsible for store functionality, the store administrator
configures commerce system items relating to
messaging, rules services, payment processing and
overall store information. Store administration can be
broken into several subgroups: marketing managers, who
manage sales, discounts and auctions; order clerks, who
process orders and payments; customer service
representatives, who assist shoppers; and merchants,
who are responsible for overall store function.

Catalog designer An expert on the product domain, the catalog designer
creates and manages the catalogs, pricing schemes and
shopping metaphors.
6 WebSphere Commerce V5.4 Developer’s Handbook

While all of these groups can realize some benefit from this redbook, it is
primarily designed for members of the first two: architects and developers. IT
architects and specialists in the Web design and programming disciplines will
find information about planning and creating commerce solutions using
WebSphere Commerce Business Edition Version 5.4 and extending its basic
functionality.

Architects will find the first part of the book useful as it is centered largely around
the concepts of solution design, planning and testing. Developers, on the other
hand, will likely focus on the customization examples in the second part of the
book. Refer to 1.3, “Organization” on page 7 for specific areas of interest.

1.3 Organization
This redbook is divided into two principal parts based on intended use. The first
part examines the components of store planning, creation, testing and packaging
and explains the parts that may be involved in each of those steps. The second
part of the book contains applicable programming examples that extend the
functionality of WebSphere Commerce.

Part 1, “Store development basics” on page 1 contains background and overview
information on basic store planning design and development. Testing and
deployment information are also included.

Chapter 2, “Architecture and programming model” on page 11 provides an
outline of the architecture and programming model of WebSphere Commerce
Business Edition Version 5.4. It contains information about the functionality of
each component included in WebSphere Commerce and how the components
interoperate. The programming model employed for the examples is also
described.

Chapter 3, “Requirements and design” on page 49 describes the early stages of
the development process used to create the examples shown later in the book.
We detail the requirements gathering and design processes that are part of the
methodology that is used by IBM and many IBM business partners in the
creation of e-business solutions.

Chapter 4, “Planning and development” on page 71 focuses on the development
environment setup. We outline the up-front work that is commonly required for a
WebSphere Commerce Business Edition Version 5.4 development effort and the
associated tool suite. Short descriptions of WebSphere Commerce Studio,
WebSphere Studio Application Developer and VisualAge for Java, Enterprise
Edition are included.
 Chapter 1. Introduction 7

In Chapter 5, “Creating a store” on page 131, we review the assets that comprise
a WebSphere Commerce site and the activities involved with creating and
launching one. This chapter defines a store archive (SAR) and examines the
steps necessary to create a sample store. Additionally, the use of Store Services
is reviewed.

Chapter 6, “Testing a store” on page 169 introduces a testing methodology that
can be utilized with an enterprise commerce site. Test planning and execution
are critical to the launch of a usable and reliable commerce solution. Here we
review the various stages of a valid testing strategy and the different types of
testing that can be performed in the course of a launch including:

� Unit testing

� Functional verification testing

� System integration testing

� Performance testing

� User acceptance testing

We also consider coding standards and best practices as well as the creation of
test cases and specific tools that might be used for testing.

The focus of Chapter 7, “Packaging and deployment” on page 201 is assembly,
management and deployment of a store on the WebSphere Commerce Business
Edition Version 5.4 platform. We present a practical example of packaging a
store and deploying. We also address a method for making incremental changes
to a store over its lifetime.

Part 1, “Customization examples” on page 215 presents examples extending the
WebSphere Commerce Business Edition functionality. The approach taken here
is to use real-world situations that are specific in their usage, but general in their
applicability. The goal is that the lessons learned from these examples can be
applied in many different situations.

Important: We document a way in which WebSphere Studio Application
Developer V4 can be used for development with WebSphere Commerce
Business Edition V5.4, but please remember that developing WebSphere
Commerce Business Edition applications with WebSphere Studio Application
Developer is not officially supported at this time.
8 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 8, “Examples overview” on page 217 is an introduction to the second
part of the book. In it we familiarize the reader with the sample stores in the
chapters that follow. A summary of the functionality of each of the examples is
provided as we explain how to work with them.

The first customization example is found in Chapter 9, “Orders” on page 233.
Order processing is among the most basic aspects of a commerce system. It is
also one of the most frequently altered as each site may have different
requirements. There are many disparate scenarios that may exist in a commerce
architecture. For example, a WebSphere Commerce deployment may be
required to interface with a legacy ordering environment, integrate with an
enterprise resource planning (ERP) system or process multiple repeating orders
simultaneously. In this chapter, we focus on a couple of customizations: quick
repeatable orders with an eye towards return customers and order integration
with a back-end legacy system.

Chapter 10, “Shipping and taxes” on page 259 examines the extension of the
built-in shipping and taxation functionality in WebSphere Commerce Business
Edition. These topics become increasingly important as a company extends its
reach into new markets. Globalization is adding new complications to tax
calculations and shipping considerations. The first thing we look at here is
customizing a store to build on the ability to ship by weight. We examine what is
involved with calculating and adding the proper shipping costs based on location
and range. We then turn our attention to taxation policies to explain the display of
products with tax calculated in the displayed price. Finally, we discuss various
aspects of discounts.

Chapter 11, “Messaging customization” on page 291 considers the inclusion of
IBM’s MQSeries product family in a commerce site architecture. In the example,
we focus on the implementation of an inbound message transaction. We show
how to process an external input to the WebSphere Commerce environment via
MQSeries resulting in updates to the database. Specifically, we examine the
creation of a product via an inbound MQSeries message.

Chapter 12, “B2B features” on page 325 concentrates on the
business-to-business shopping flow. B2B transactions is an area of online
commerce that has taken on a life of its own in recent years. As the number of
online vertical and horizontal partnerships continues to explode, the importance
of integrating as seamlessly as possible with these partners will only increase.
B2B is one of the strengths of WebSphere Commerce Business Edition Version
5.4, with many new and improved features supporting this model. In this chapter,
we look to extend the basic B2B functionality included with the product.
Specifically, we examine the improvement of the flow of a sample store to cater
 Chapter 1. Introduction 9

to corporate buyers. The chapter is centered upon the concepts of working with
contracts and catalog restrictions, role-based authentication and authorization
and cost-based management approval wherein a transaction over a certain
amount needs to be approved by another party prior to processing.

In Chapter 13, “Product entry and display” on page 349 we examine the basic
display of the online catalog. We extend the functionality of WebSphere
Commerce to improve the product comparison capability in such a way that
allows a user to more easily find similar items and compare their attributes. We
also present an approach to creating bundles of products as well as
simultaneously displaying products in a catalog in more than one currency.

Chapter 14, “Migration examples” on page 397 moves the discussion to things
that need to be considered in the case of a migration from an older WebSphere
Commerce platform. We discuss any required shifts in methodology and code
and examine the transition of old commands to new.
10 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 2. Architecture and
programming model

This chapter provides an overview of the WebSphere Commerce architecture
and programming model, with a summary of all the information you need in order
to be able to design and develop a store.

It includes the following sections:

� Store architecture overview, containing an overview of the components of an
online store, a brief description of the actual WebSphere Commerce store
architecture and some samples of store configurations.

� WebSphere Commerce application architecture, containing a description of
the application architecture from a business point of view, with a brief
summary of its customizable components, subsystems and site assets.

� Websphere Commerce run-time architecture, containing a description of the
components of the run-time architecture and some topology configuration
samples.

� Websphere Commerce programming model, containing an overview of the
J2EE architecture and programming framework, a brief description of the
model-view-controller design pattern implementation in the WebSphere
Commerce framework and an overview of the persistent object model.

2

© Copyright IBM Corp. 2002. All rights reserved. 11

Note that this chapter is intended to contain only summary and overview
information, and each section contains references to product documents, other
redbooks and Web sites for more details.

2.1 Store architecture overview
This chapter is an overview of the WebSphere Commerce store components and
architecture, with some samples of store configurations. For more details, refer
to IBM WebSphere Commerce Store Developer’s Guide Version 5.4.

2.1.1 Store assets
The components of an online store, also referred to as store assets, are:

� Store front. This is what your customers see in the browser. In the
WebSphere Commerce programming model, store fronts are implemented by
means of Web assets such as HTML and JavaServer files, style sheets,
images, graphics and in general multi medial files. Store developers can use
tools like WebSphere Commerce Studio and WebSphere Studio Application
Developer (for more information, refer to Chapter 4, “Planning and
development” on page 71).

� Back office. This is the business logic implementation and customized code
that your customers don’t see. In the WebSphere Commerce programming
model, back offices are implemented following the model-view-controller
design pattern and the EJB model (see 2.4.2, “Model-view-controller design
pattern” on page 40 and 2.4.3, “Persistent Object Model Overview” on
page 45). Store developers can use tools like VisualAge for Java and
WebSphere Studio Application Developer (for more information about
development tools, always refer to Chapter 4, “Planning and development” on
page 71).

� Store data. These are your store data assets, such are product catalogs and
orders. Store developers have the following option for developing and editing
them (for details, see 2.2.2, “Data assets” on page 19):

– Use Store Services, in order to publish the store or to change general
store settings as well as tax and shipping settings.

– Use command utilities of the WebSphere Commerce Loader package, in
order to load large amount of data into the WebSphere Commerce
database: such utilities can be used at the initial database loading, or in
order to propagate data changes, especially in case of schema changes
when they are the only option.

– Use WebSphere Commerce Accelerator, in order to edit data already in
the database.
12 WebSphere Commerce V5.4 Developer’s Handbook

– Use your database specific utilities to perform SQL queries.

Information about publishing store components can be found in Chapter 7,
“Packaging and deployment” on page 201.

2.1.2 WebSphere Commerce store architecture
In order to run your online store with WebSphere Commerce, you need following
components:

� WebSphere Commerce Server

� WebSphere Commerce instance

� store assets

The WebSphere Commerce Server contain one or more Web applications,
called WebSphere Commerce instances, each one connected to its own
database. An instance can hosts just one store, or multiple stores published in
different store directories, which can share the same data asset and use
independent store front and back office assets. Some possible configuration
samples are described in the following section.

Store configuration samples
The above described WebSphere Commerce components can be configured in
several ways. The following are some samples which are represented in
Figure 2-1 on page 14:

1. One server hosting an instance with a single store

2. One server hosting an instance with multiple stores which share the same
data assets but use independent store front and back office assets

3. One server hosting an instance with multiple stores which use a shared
catalog, but are independent for the other data assets, as well as for the store
front and back office assets

Attention: The number of stores is limited by the WebSphere Commerce
license that you have purchased. In the license agreement you can find
information about how to purchase additional entitlements.
 Chapter 2. Architecture and programming model 13

Figure 2-1 Store configuration samples

2.2 WebSphere Commerce application architecture
This section contains a description of the WebSphere Commerce application
architecture and an overview of the components that can be customized for a
store, including a description of the WebSphere Commerce server subsystems
and a summary of the store data assets.

Single store in
an instance

Multiple stores
in an instance

Multiple stores
in an instance,
owned by the
same owner

(conglomerate
stores)

Store 1
Web Assets

Store 1
Logic

Store 1
Web Assets

Store 1
Logic

Store 2
Web Assets

Store 2
Logic

Store 1
Web Assets

Store 1
Logic

Shared
Logic

Store 2
Web Assets

Store 2
Logic

Store 1 Assets

Store 1 Assets
Store 2 Assets

Shared Catalog
Store 1 Assets
Store 2 Assets

Store Front Back-Office Store Data
14 WebSphere Commerce V5.4 Developer’s Handbook

In the WebSphere Commerce manuals the application architecture is
represented as in Figure 2-2 on page 16 (a) (refer to IBM WebSphere Commerce
Fundamental Version 5.4 and IBM WebSphere Commerce Store Developer’s
Guide Version 5.4). However, in this redbook it is tried a slightly different
approach in order to achieve a more clear comprehension of the architectural
concepts and components (see in Figure 2-2 on page 16 (b)). It follows a
description of such concepts and components, with references to both the
diagrams and explanation of the reasons behind the changes. Moreover, in the
description is followed a top-down approach which seems more appropriate than
the bottom-up approach adopted by the product manuals, because it is more
consistent with the natural application development and run-time cycle.
 Chapter 2. Architecture and programming model 15

Figure 2-2 WebSphere Commerce application architecture (a) classical picture, (b)
modified picture.

� Business models. A WebSphere Commerce application is based on
e-commerce business models: the product provides sample stores for the
most common models, such as InFashion, WebFashion and NewFashion for
the business-to-consumer model, and ToolTech for the business-to-business

Controller

Business
Logic

Views

Business Data Entities

Database

Models

Business Processes

Controls and Views

Business Components

Database

Business Objects

A

B

16 WebSphere Commerce V5.4 Developer’s Handbook

model. In diagram B of Figure 2-2, models occupy the top of the pyramid: they
have been removed in diagram A of Figure 2-2 in order not to mix concepts of
application architecture with actual implemention components.

� Business processes. Business processes, which occupy the second layer in
diagram B are the workflow and site flow through which a store implements
the adopted model. They have also they have been removed in diagram A of
Figure 2-2 in order not to mix concepts of application architecture with actual
implemention components.Samples of business processes are the Catalog
Navigation and the User Registration processes, which can be applied to both
the business-to-consumer and business-to-business models.

Next we describe the components that implement the architecture of WebSphere
Commerce applications. These components are represented as layers of the
pyramid shown in diagram A of Figure 2-2. They are listed starting from the top of
the pyramid, so we can continue to follow the top-down approach already
adopted:

� Web Controller. This is the component that handles the received service
requests: for each request, it activates the appropriate business logic and
invokes the appropriate view to create and send the response, consulting the
WebSphere Commerce database registries. In diagram B of Figure 2-2 it is
included in the Control and Views section.

� Business Logic and Views: These share the same level in diagram B of the
Figure 2-2 pyramid because they interact with the same upper and lower
levels. For more details about their implementation model, see “2.4.2,
“Model-view-controller design pattern” on page 40”)

– Business logic is split into units implemented as commands. WebSphere
Commerce provides two types of business logic commands: controller and
task commands. Controller commands encapsulate all the logic necessary
to accomplish a single service request, such as OrderProcess for an order
processing request. They use task commands to perform single units of
work, such as payment processing in the previous example. Commands
are represented as the Business Objects layer in diagram B of Figure 2-2.

– Views are commands used to display in a browser the business logic
results by means of an appropriate JSP template. They are part of the
Controls and Views layer in diagram B of Figure 2-2.

� Business Data Entities. They contain the business data-centric logic.
WebSphere Commerce implements them as Enterprise JavaBeans (V1.0),
and provides access beans and data beans for an easier interaction with
them:

– Enterprise JavaBeans are the actual application interface to the database:
they contain the logic to retrieve and modify data stored in it.
 Chapter 2. Architecture and programming model 17

– Access beans provide commands with business data, hiding them the
complexity of their physical format. They rely on the related Enterprise
JavaBeans.

– Data beans are access beans extensions made with the purpose of
providing views with simple business data containers.

� Database. This is the physical storage of the e-commerce application data.
Typical tables of a WebSphere Commerce schema are:

– Product

– Order

– User

Customizable components
Based on the descriptions given in 2.2, “WebSphere Commerce application
architecture” on page 14, the following architecture components can be
customized in WebSphere Commerce applications:

� Business logic can be extended and modified by

– Adding new controller commands using new task commands

– Making existing controller commands invoke new task commands

– Extending already existing task commands.

� Views can be customized by adding new JavaServer Pages templates or
modifying the existing ones.

� Business data entities can be extended with new Enterprise JavaBeans and
their related databeans.

� Database. New tables can be added to the WebSphere Commerce database
schema. For an overview of the existing tables, see 2.2.2, “Data assets” on
page 19.

2.2.1 WebSphere Commerce server subsystems
WebSphere Commerce Server is organized into the following logical
subsystems, in such a way that the total customization required for an online
store can be divided into a set of independent customizations, concerning one or
more application components belonging to a subsystem:

� Catalog. It contains all the catalog business logic and data. It provides
capability to navigate it, as well as to create and categorize products and

Attention: Avoid modifying the existing tables in order to simplify migrations
to future releases.
18 WebSphere Commerce V5.4 Developer’s Handbook

associate them in any way, including stock keeping units (SKUs), packages,
bundles and merchandising associations. It also provides multicultural
support.

� Order. It contains business logic and data for the order processing and
management and any other related functions, such as taxation, inventory,
payment and fulfillment.

� Member. It contains business logic and data related to members of the
WebSphere Commerce system, such as users, group of users and
organizational entity. It provides capability for members registration and
profile management, as well as for authentication, access control and session
management.

� Trading. It contains business logic and data related to the negotiation of price
and quantity of product or set of products between buyers and sellers,
including auctions support. In the WebSphere Commerce Business Edition, it
provides also support for contracts and requests for quote (RFQs)

� Inventory. It contains business logic and data for real-time inventory
management, including shipping and receiving inventory, as well as receiving
inventory records both from vendors and, in case of returned items, from
customers.

� Marketing. It contains marketing business logic and data, providing the
capability to empower your store with marketing campaigns, product
recommendations, advertisement, electronic coupons, discounts, customer
profiling and collaborations.

For more information about WebSphere Commerce server subsystems, refer to
Chapter 3 in IBM WebSphere Commerce Store Developer’s Guide Version 5.4.

2.2.2 Data assets
The following sections contain a summary of the store data assets, represented
in the WebSphere Commerce information model as shown in Figure 2-3 on
page 20. More details about them can be found in IBM WebSphere Commerce
Store Developer’s Guide Version 5.4) and in the WebSphere Commerce Version
5.4 Online Help.
 Chapter 2. Architecture and programming model 19

Figure 2-3 WebSphere Commerce store data assets

Site level info
The Site level component in Figure 2-3 represents the basic level of store data,
which are stored into the database during the WebSphere Commerce Server
instance creation, based on information provided with XML bootstrap files. Such
data, that can be shared between multiple stores, includes:

� The default site administrator id, WCSADMIN.
� The default site organization
� The default organization to be used as store owner.
� The default URLs, commands and views.

Business
Policies

Campaigns

Prices

Catalogs

URL
Registry
Entries

View
Registry
Entries

Command
Registry
Entries

Supported
Languages

Contracts
Site Level

Information
Customers Sellers

Payment

Fulfillment

Inventory

Orders

Jurisdictions

Taxes

Discounts
Supported

Units of
Measure

Supported
Currencies

Shipping

Stores
20 WebSphere Commerce V5.4 Developer’s Handbook

� The default business policies
� Currency conversions and formats
� Device types and languages supported by the instance
� Message types and roles definitions (language-specific).

Stores
Core data is represented by the stores component in the middle of the diagram
shown in Figure 2-3: the arrows exiting from it point to assets that can be shared
between multiple stores, whereas the arrows entering into it come from
store-specific assets. The following is the minimum set of store core data:

� The store identifier

� The store address

� The store directory

� The default contract

� The contract database tables must contain:

– The store identifier

– The member identifier of the organization which owns the store

� The Web assets store directory, in the STORE table.

� The unique store nickname or identifier, in the STADDRESS table.

Configuration Data
The following configuration data, which can be set both at site and store level,
provides Web controller with run-time information about the appropriate
commands and views to be invoked in response of each possible service
request:

� URL registry entries, which map URL requests into command invocations.

� Command registry entries, which basically provide the command
implementation class.

� View registry entries, which map the view names returned by commands with
view commands and related JSP templates, based both on the store id and
on the requesting device type.

Managed data
The following is a list of managed data created by the sellers, with a read-only
access for customers (note that store-specific assets have been specified):

� Business policies
� Contracts
� Customers
 Chapter 2. Architecture and programming model 21

� Sellers
� Payment
� Fulfillment centers
� Jurisdictions (store-specific)
� Taxes (store-specific)
� Discounts (store-specific)
� Shipping (store-specific)
� Supported currencies (store-specific)
� Supported units of measure (store-specific)
� Supported languages (store-specific)
� Catalogs
� Prices
� Campaigns

Operational data
The following data can be created and changed, directly or indirectly, by
interacting with the site: such interactions can be performed both by customers
and by sellers (note that, in this last case, operational data resulting from a
particular type of interaction can be customers themselves):

� Customers
� Fulfillment
� Inventory (store-specific)
� Orders (store-specific)

Table 2-1 provides the list of tools which can be used to create and modify each
type of data asset. For more information, refer to the IBM WebSphere Commerce
Store Developer’s Guide Version 5.4) and the WebSphere Commerce Version
5.4 Online Help.

Table 2-1 Tools for data asset customizations

Tools for
customizing
data assets

Core data Configuratio
n data

Managed data Operational
data

WebSphere
Commerce
Loader package
(data are loaded
in form of an
XML file).

Applicable. Applicable. Applicable. In general,
not
applicable.
22 WebSphere Commerce V5.4 Developer’s Handbook

Store Services Store Services
automatically
build core data
when a new
store archive is
created.

Not
applicable

Only some of
the managed
data can be
creates and
edited through
the Store
Services. See
the
WebSphere
Commerce
Version 5.4
Online Help for
more details.

Not
applicable

WebSphere
Commerce
administration
console

The console
allows to
create the
organization
which has the
role of store
owner.

Not
applicable

Not applicable Not
applicable

WebSphere
Commerce
Accelerator

Not applicable Not
applicable

The
accelerator
allows to
create and edit
the following
data:
� Campaigns
� Contracts
� Fulfillment
� Discounts
� Catalog
� Prices

The
accelerator
allows to
create
operational
data for a
customer,
such as
orders, and
to manage
the inventory.

Organization
administration
console
(Business
Edition)

Not applicable Not
applicable

Not applicable The
organization
administratio
n console
allows you to
create and
approve
buyers.

Tools for
customizing
data assets

Core data Configuratio
n data

Managed data Operational
data
 Chapter 2. Architecture and programming model 23

2.3 WebSphere Commerce runtime architecture
This chapter describes how the WebSphere Commerce application architecture,
which has been presented in the previous section, behaves at run-time: it
contains a summary of the run-time components and explains how they interact
to accomplish a service request. Moreover, some configurations samples are
presented. More details on the server run-time components can be found in IBM
WebSphere Commerce Programmer’s Guide Version 5.4 and in the WebSphere
Commerce Version 5.4 Online Help.

2.3.1 WebSphere Commerce runtime components
The WebSphere Commerce server run-time is a framework based on the Java 2
Platform, Enterprise Edition (J2EE) architecture (for more details about J2EE,
refer to 2.4.1, “The J2EE Programming Platform” on page 40). Such framework
provides the capability to handle system and user requests, and to perform the
corresponding actions in order to fulfill them.

In the following, it will be given an overview of the characteristics of the server
run-time components and a description of their interactions, as represented in
Figure 2-4 on page 29:

� For http requests:

– Servlet engine. It is the component of the WebSphere Application Server
that handles http requests for WebSphere Commerce services: it receives
the request from the WebSphere Application Server component plugged
into the Web server, search into its pool of threads in order to find one to
be dedicated to the request execution, and dispatch the request to the
appropriate protocol listener.

� For non-http requests:

– Transports. For non-http request, transports handle inbound and outbound
messages of the assigned types, and dispatch them to the appropriate
listener based on the request protocol. They are components of the
messaging subsystem that can be configured through the WebSphere
Commerce administration console. The pre-defined transports in the
WebSphere Commerce sample stores are:

• E-mail sender

• File writer

• MQ Series
24 WebSphere Commerce V5.4 Developer’s Handbook

Note that the messaging subsystem uses a Common Connector
Framework (CCF) which allow to interact with the various transports
through a common interface. Using this common interface it is possible to
plug into the WebSphere Commerce messaging subsystem additional
transports, in order to interact with enterprise resources such as CICS(R)
and Encina(R) transactions. Samples about how to use the WebSphere
Commerce messaging subsystem and how to implement back-end
integration can be found respectively in Chapter 11, “Messaging
customization” on page 291 and Chapter 9, “Orders” on page 233. For
general information, refer to the WebSphere Commerce Version 5.4
Online Help or to the WebSphere Commerce V5.4 Handbook Architecture
and Integration Guide, SG24-6567.

� Protocol listeners. They receive inbound requests based on the protocols and
dispatch them to the adapter manager to find out the more appropriate
adapter for the type of the requesting device. The most common protocol
listeners are:

– Request servlet. It is a servlet configured through the instance_name.xml
file which handles incoming http requests.

– MQ Connector, also called MQ Listener. It is a connector which uses the
Common Connector Framework (CCF) and the Java Message Service
interfaces in order to retrieve MQ Series inbound messages.

� Instance_name.xml file. It is the configuration file for WebSphere Commerce
instances. The request servlet read it during its initialization, in order to find
information such as adapters which are supported by the instance and must
be initialized. Whenever possible, it should be modified using the
Configuration Manager, but in order to set parameters of some components it
must be directly edited (refer to the specific component’s documentation for
details).

� Adapter Manager. It receives requests from the protocol manager and
determines which among the available adapters is the most suitable one to
process them, based on the type of the requesting device.

� Adapters. These device-specific components enable WebSphere Commerce
with the capability to accept and fulfill service requests in XML format, coming
from different types of devices, such as:

– Standard internet browser.

– Pervasive computing (PvC) devices, for instance personal digital
assistants (PDAs) and cellular phones empowered with Internet browser:
these devices send requests using wireless protocols, such as WAP and
i-mode, which are converted into HTTP and HTTPS by a wireless protocol
gateway before accessing the Web server.
 Chapter 2. Architecture and programming model 25

– Back-end systems exchanging XML messages with WebSphere
Commerce via MQ Series.

– WebSphere Commerce scheduler requesting the execution of background
jobs: note that it does not require a protocol listener.

Adapter are responsible for the following tasks:

– Translate the message from the device-specific format into a WebSphere
Commerce common format (i.e. a CommandProperty object).

– Instruct the Web Controller with the device requirements about the way to
process the request.

– Provide device-specific session persistence.

– Determine the proper device format in which to generate the XML
response: note that for the same view returned by the command, it is
possible to specify into the View Registry different JSP templates for
different requesting device types.

– Sending the XML response message.

Adapters provided by WebSphere Commerce are:

– Http browser adapter, for the standard Internet browser.

– Http PvC adapter, which is an abstract adapter for pervasive computing
(PvC) devices. It has to be extended in order to support specific PvC
applications.

– Program adapter, for remote programs invoking WebSphere Commerce
commands by sending XML requests over the HTTP protocol.

Note that what is called the WebSphere Commerce MQ Series adapter, is
actually a combination of the JMS-MQ connector which retrieves MQ
messages and the program adapter which executes them.

– Scheduler adapter, for the WebSphere Commerce background jobs.

Note that the adapter framework can be customized and extended in the
following ways:

– Develop a specific PvC device adapter.

– Create both a new protocol listener and a new adapter which implements
the common DeviceFormatAdapter interface.

� Web controller. It’s an application container that provides services such as:

– session management, according to the session persistence established by
the adapter

– transaction control

– authentication and access control
26 WebSphere Commerce V5.4 Developer’s Handbook

– enforcing the programming model, by requiring for example that controller
commands always return view names.

The Web controller work flow is the following:

– Only for http request:

• Start the transaction using the UserTransaction interface

• Retrieve session data from the adapter

• Whenever necessary, redirect the user to a logon URL

• Whenever necessary, redirect the user to a HTTPS URL

• Search into the URL registry the command interface corresponding to
the request URL

– Execute the invoked controller command passing to it the command
context and the input properties received by the adapter.

– In case of transaction rollback exceptions for a retriable command, try to
execute it again.

– After the command execution, check that a view name has been returned
and look in the view registry for the view command to be invoked and, in
case of forward view command, for the JSP templates to be used.

– Save and commit session data.

– Commit or rollback the current transaction, depending on success or
failure cases.

� Commands. They are Java beans implementing the application business
logic. WebSphere Commerce support four types of commands:

– Controller command. It encapsulates the business logic necessary to fulfill
a particular service request (in general an URL request), such as an order
processing or an user registration. The controller command splits this logic
in several units of works, each one performed by invoking a different task
commands. Moreover, it is responsible to return to the Web controller a
view name when the request has been successfully completed, and an
error view name in case of exception.

– Task command. It is invoked by the controller command to perform a
single unit of work. It uses access beans to read and modify business
data.

– Data bean command. It is invoked by a JSP template in order to activate
and populate a data bean.

– View command. It handles the response to a client request in three
possible ways:

• Redirect view, to send the response using a redirect protocol.
 Chapter 2. Architecture and programming model 27

• Direct View, to send directly the response.

• Forward View, to forward the responsibility of the response to another
runtime component, such as a JSP template.

� JavaServer Pages (JSPs) templates. They are JSP compliant files (see the
following 2.4.2, “Model-view-controller design pattern” on page 40) which,
after being compiled, become servlet specialized for display purposes. They
are usually invoked by the Web controller after a command execution. They
can also be invoked directly from the browser, but only if the request URL
path includes the request servlet, which can perform the JSP execution in a
single transaction, otherwise the data bean manager will reject the request in
order to protect the JSP template (this is one of the possible access controls
to WebSphere Commerce resources). JSPs templates can use data beans to
retrieve business data, as described in the following items.

� Entity beans. They are Enterprise JavaBeans compliant objects (see the
following 2.4.3, “Persistent Object Model Overview” on page 45) which model
the WebSphere Commerce store data and contain the logic to retrieve and
modify them, providing features such as persistency and transaction
management. Moreover, they provide an interface to access the database
schema without a direct knowledge of the physical characteristics of its
tables. They can be customized either by extending existing entity beans or
by developing and deploying entirely new ones.

� Access beans and data beans. They are useful and simple interfaces which
hide the complexity of interacting with EJBs to task commands and
JavaServer Pages templates. In particular, data beans extend access beans
in order to be used as simple data containers by JSPs templates.
28 WebSphere Commerce V5.4 Developer’s Handbook

Figure 2-4 WebSphere Commerce run-time components.

Http request flow summary
This section explains step-by-step what happens when the WebSphere
Commerce server receives an http request from an Internet browser, as
represented in Figure 2-5:

Scheduler
Adapter

Browser
Adapter

PVC
Adapter

Program
Adapter

Registries

ViewCMDURL W eb Controller

Task
CMD

Task
CMD

Task
CMD

Access
Beans

Entity
Beans DB

View
Command

Controller
CommandData

bean

JSP Template

Databeans (Inheritance)

Adapters

Adapter Manager

HTTP Request
Servlet

MQ ConnectorInstance.xml

Protocol Listeners

Request

Transports

MQSeries

Common Connector Interface

W eb Server

W ebSphere Plug-In

Servlet Engine
Thread

Thread Request
 Chapter 2. Architecture and programming model 29

Figure 2-5 Http request flow in .

1. The client sends a request from a standard Internet browser using the Http
protocol.

2. The WebSphere Application Server plug-in, running into the Web server,
redirects the request to the WebSphere Commerce servlet engine.

5

WebSphere Commerce Node

WebSphere Application Server

WebSphere Commerce Server

7

4

6

8b

10

HTTP Request
Servlet

MQ
Connector

Thread

Thread

Adapter Manager

Scheduling
Adapter

3

Controller
Command

8a

Web Controller

Task
Command

Task
Command

Task
Command

Access
Bean

Entity
Bean

8c

9

8a
12

11

Web Server
+

WebSphere
Application

Server
Plugin 2

Web Browser
Client

1 Servlet Engine Protocol Listeners

Adapter

Framework

Browser
Adapter

Program
Adapter

PvC
Adapter

(Extends)

Store
Assets

Database
Server

URL
View

Command
Registrier

JSP Template

Data
Bean

View
Command

(Response)

12
30 WebSphere Commerce V5.4 Developer’s Handbook

3. The servlet engine gets a thread from its threads pool and dedicate it to the
request processing. It dispatches the request to the http protocol listener, that
is the request servlet.

4. The request servlet sends the request to the adapter manager to find out the
adapter the more appropriate for the requesting device type.

5. The adapter manager determines that the request came from an Internet
browser, and passes the request to the http browser adapter.

6. The http browser adapter dispatches the request to the Web controller.

7. The Web controller looks both into the URL registry, for mapping the request
URL with the command interface to be invoked, and into the command
registry, to find out the actual command implementation class (all these
information can be specified both at site and at store level).

8. Following the most common path, the store has assigned to a controller
command the responsibility to fulfill the request:

a. the Web controller invokes the controller command implementation class.

b. The controller command relies on a set of task commands in order to
perform single units of work

c. Each task commands can access business data through access beans,
which hide them the complexity of their related entity beans.

9. The controller command returns a view name to the Web controller, which
looks into the view registry for the view implementation command to invoke
(again (7) in the diagram). Keeping to follow the most common path, it finds a
forward view command with the name of the JSP template to use.

10.The Web controller invokes the view command passing to it the JSP template
name.

11.The view command forwards the responsibility to create the response to the
JSP template.

12.The JSP template retrieves business data using data beans, an extension of
entity beans.

13.The generated response is sent back to the browser.

2.3.2 Topology configuration samples
This sections explains the most common topology configuration issues, and
presents as samples some topology configurations which are described with
more details in WebSphere Commerce V5.4 Handbook Architecture and
Integration Guide, SG24-6567. For more information about how to select a
topology configuration, refer also to IBM WebSphere Commerce Fundamental
Version 5.4.
 Chapter 2. Architecture and programming model 31

General considerations
The architecture and configuration design of your e-commerce system must be
the result of the technical strategy which has been defined in order to fulfill the
business objectives and requirements of your store.

The most common focus areas for a technical strategy definition are:

� Scalability. Even if it is fundamental to make an estimation of what the number
of users, the connection rate and load will be before starting to design and
develop your Web site, it is usually difficult to be accurate at any degree in
predictions involving the Internet world: for this reason, it is important to
choose a configuration which allows your system to scale as the load of the
incoming service requests increases, ideally for any reached size, simply by
adding the appropriate number of resources or machines. The scalability of a
system can be implemented in two ways:

– Vertical scaling is implemented by adding resources such as processor,
memory and software applications, on a single machine or node, in order
to leverage all the available processing power.

– Horizontal scaling is implemented by distributing multiple processes
across multiple physical machines. It provides both increased throughput
and failover (i.e. availability).

The cloning mechanism can be used for both the scalability implementations:
it consists in creating multiple copies, identically configured, of an object, such
as an application server, both on a single machine (multiple Java Virtual
Machine processes) or on multiple physical machines. Moreover, it provides a
simplified system administration as well as the possibility to perform workload
management and to improve the system availability and reliability (see next
items).

� Performance. Workload management is a mechanism that significantly
improves the performance of your system by making each machine or server
share a portion of the overall load that is proportional to its processing power.
In this configuration it is fundamental to implement session management in
order to maintain a session state between HTTP client requests (remember
that HTTP is a stateless protocol that doesn’t implement session
management by itself). IBM Network Dispatcher is a separately orderable
product that empowers WebSphere Commerce with workload management
features. It manages Web servers grouped in a cluster by providing
scalability, configurable load balancing and failover among them. Note that
the client will appear to communicate always with a Web server, without
having knowledge that it is actually the Network Dispatcher that intercepts
and redirects requests. Network Dispatcher should normally run on a
dedicated machine, and it is also possible to distribute it across two
machines, in such a way to provide the system with dispatcher failover (for an
32 WebSphere Commerce V5.4 Developer’s Handbook

example of configuration including Network Dispatcher, see “3-tiers enterprise
configuration”).

� Availability and Reliability. Online stores always require an availability as high
as possible: in order to meet this requirement, single points of failure must be
avoided by providing the run- time architecture of a failover system, that is
hot-backup clones for each component.

� Security. Store assets and internal network of an e-commerce system must
be always protected by potential intrusions by providing both operating
system and network security. The level of protection to be applied to each
run-time application component depends on the confidential data stored into
the node and on the critical services provided by it. Each level of security can
be implemented by adding a new firewall which perform access control from a
less trusted network to a more trusted one. The most common types of
firewalls are:

– Screening routers, which are protocol firewalls usually used as a first layer
of protection from the internet.

– Application gateways, which are domain firewalls usually used as a further
layer of protection before accessing the internal network (intranet).
Machines behind such firewalls are not visible from the internet.

The network area between the internet and the intranet is called Demilitarized
Zone (DMZ): it is considered an high-risk zone, where it should be avoided to
store confidential data, because it is protected only by a protocol firewall from
the potential attacks coming from the internet. It contains one or more domain
firewalls, depending on the implemented level of security.

The definition of a technical strategy must include also considerations about the
project resources constrains, in order to define the more appropriate way to
implement the above listed requirements based on a realistic financial
investment.

The possible WebSphere Commerce configurations have the following
constraints:

� The Web server, WebSphere Commerce Server, and database server must
use the same operating system, even though they run on different physical
machines.

� All the Web servers involved in the architecture of your subsystem must be of
the same type (e.g. they must be all IBM HTTP Servers).

� WebSphere Commerce Analyzer or WebSphere Catalog Manager should
better run on dedicated machines, in order not to compete with WebSphere
Commerce server for system resources.
 Chapter 2. Architecture and programming model 33

The following sections are dedicated to present some samples of topology
configurations and to describe how scalability, performance, availability and
security requirements are met by each one.

Single-tier configuration
A single-tier configuration consists of a single machine where all the WebSphere
Commerce run-time components run. It is the most easy and less expensive
configuration to set-up and maintain: it is ideal for self-contained development
and test environments and can be used for small stores with moderate
transaction volumes. In all the other cases should be avoided, unless you’re
using an IBM zSeries or iSeries server which has its own implementation of the
scalability, performance and availability requirements.

Scalability. It is the only case where the system can be scaled only vertically, by
adding processors, physical disk space and memory to the single machine.

Performance. Only moderate loads are supported because application server
and database compete for the same system resources.

Availability. The whole system has a single point of failure.

Security. Only the protocol firewall can be implemented.

A sample of single-tier configuration is shown in Figure 2-6 on page 35.
34 WebSphere Commerce V5.4 Developer’s Handbook

Figure 2-6 WebSphere Commerce single-tier configuration.

2-tiers configuration
In a 2-tiers configuration the database server run on a different node, usually
behind a domain firewall. This configuration can be adopted by medium-to-large
store with transaction volumes higher than in the single-tier case: in fact, it gives
more possibilities by allowing a separate tuning and configuration of the Web and
database servers. Its limit is that WebSphere Commerce server must run on the
same node of either the Web server or the database server.

Scalability. Higher scalability can be reached by scaling separately the Web and
database servers: in particular, it can be adopted a multiple Web server
configuration consisting of multiple nodes with Web and WebSphere Commerce
servers all accessing to a common database.

Performance. A better tuning can be performed by configuring separately the
Web and database servers. In particular, in case of multiple Web server
configuration, a Network Dispatcher can be used in order to provide an effective
workload balancing.

Availability. An high availability strategy can be implemented by adopting a
multiple Web server configuration together with a database failover system.

80/443

Client

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

80/443
Internet

IBM HTTP Server V1.3.19
WebSphere Plug-In
WebSphere Application Server V4.02, AE
WebSphere Commerce V5.4
DB2 V7.2, EE Database Server
Operating System

Protocol Firewall
 Chapter 2. Architecture and programming model 35

Security. A domain firewall can be put in front of the database, and it can be
configured in order to allow access only to the WebSphere Commerce server, in
case it run on the same node as the Web server. In this last case, a further level
of security cannot be inserted between WebSphere Commerce server and the
Web server.

A sample of 2-tiers configuration is shown in Figure 2-7.

Figure 2-7 WebSphere Commerce 2-tier configuration

3-tiers configuration
In the 3-tiers configuration Web server, WebSphere Commerce and database
server run on different nodes. This configuration allows to implement a further
level of security, by setting up a demilitarized zone (DMZ) where only the Web
server run, and provides almost unlimited expansion possibilities. It is
recommended for large enterprises whose stores have high transaction volumes
and security issues.

Scalability. It is highly improved by the possibility to scale separately the Web
server, WebSphere Commerce server and database server components.

Client

80/443

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

80/443Internet

Database Server
Commerce

Application Server

Optional

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

IBM HTTP Server V1.3.19
WebSphere Plug-In
WebSphere Application Server V4.02, AE
WebSphere Commerce V5.4
DB2 V7.2, EE Client
Operating System

DB2 V7.2 EE
Database Server
Operating System

Domain FirewallProtocol Firewall
36 WebSphere Commerce V5.4 Developer’s Handbook

Performance. This configuration provides the highest degree of flexibility in
performance tuning by allowing to configure separately Web, WebSphere
Commerce and database servers. Moreover, it gives the possibility to implement
the most effective workload balancing by means of one or more Network
Dispatchers.

Availability. Single points of failure can be avoided at all by implementing both a
redundancy strategy of multiple and integrated Web and WebSphere Commerce
servers and a database failover configuration.

Security. In this configuration only Web servers must run in the DMZ and be
visible from the Internet, whereas WebSphere Commerce and database servers
can be protected by implementing one or more domain firewalls.

A sample of 3-tiers configuration is shown in Figure 2-8.

Figure 2-8 WebSphere Commerce 3-tier configuration

3-tiers enterprise configuration
A possible implementation of a 3-tier configuration for an enterprise is
represented in Figure 2-8.

80/443

Client

80/443Internet

Database ServerWeb Server

Optional

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

IBM HTTP
Server
V1.3.19

Plug In

IBM HTTP
Server V1.3.19
Operating System

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

Commerce Application
Server

WebSphere Application Server V4.02 AE
WebSphere Commerce V5.4
DB2 V7.2 Client
Operating System

DB2 V7.2 Server
Operating System

Domain FirewallProtocol Firewall
 Chapter 2. Architecture and programming model 37

Figure 2-9 WebSphere Commerce 3-tiers enterprise configuration

All the observations made for a general 3-tier configuration are applicable to this
case. In particular, note that:

� only the Network Dispatcher and Web server nodes are placed into the
demilitarized zone (DMZ) and are visible from the internet through the
classical HTTP and HTTPS doors (80 and 443 respectively).

� Single points of failures are avoided both by redundancy (the Web and
WebSphere Commerce server clones) and failover (the stand by clone for
Network Dispatcher and database server).

� The Network Dispatcher performs workload balancing of http requests
between the two Web servers.

� The WebSphere Commerce has been horizontally scaled with a clone
running on a different node.

80/443

80/443

Client

Internet

IBM HTTP
Server
V1.3.19

Web Server

Web Server

80/443

80/443

Commerce Application
Server

WebSphere Application Server V4.02 AE
WebSphere Commerce V5.4
DB2 V7.2 Client
Operating System

WebSphere Edge
Server: Network
Dispatcher V4.0
Operating System

Stand By

Plug In

IBM HTTP
Server V1.3.19
Operating System

IBM HTTP
Server V1.3.19
Operating System

Plug In

Stand By

Commerce Application
Server

WebSphere Application Server V4.02 AE
WebSphere Commerce V5.4
DB2 V7.2 Client
Operating System

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

Database Server

DB2 V7.2 Server
Operating System
38 WebSphere Commerce V5.4 Developer’s Handbook

2.4 WebSphere Commerce programming model
WebSphere Commerce instances run as Web applications hosted by
WebSphere Application Server, which provides them with an infrastructure and a
component model fully compliant with the Java 2 Platform, Enterprise Edition
(J2EE) standard.

After a brief overview of the Java 2 Platform, Enterprise Edition, the following
sections describe how the WebSphere Commerce programming model
leverages the J2EE compliant components and infrastructure provided by
WebSphere Application Server.

The high-level information contained in this chapter can be integrated by the
following

� Product manual:

– IBM WebSphere Commerce Programmer’s Guide Version 5.4

� Other redbooks:

– WebSphere Commerce Suite V5.1 Handbook, SG24-6167

– IBM WebSphere V4.0 Advanced Edition Handbook, SG24-6176

– WebSphere Version 4 Application Development Handbook, SG24-6134

� Articles:

– Possible approaches to follow when designing a J2EE e-commerce
solution are described in “Approaches for e-commerce architectures - A
conceptual guide for using J2EE in your design“, downloadable at the URL

http://www-106.ibm.com/developerworks/library/j-ecomm/index.html

– A step-by-step process to develop your first J2EE application is described
in the article “Developing and Testing a Complete "Hello World" J2EE
Application with WebSphere Studio Application Developer beta”,
downloadable at the URL

http://www7b.boulder.ibm.com/wsdd/techjournal/0110_wosnick/wosnic
k.html

� Useful Web sites to keep among the browser’s Favorites:

– The sun site http://java.sun.com/j2ee contains references to articles,
tutorials and the complete version of the Java 2 Platform, Enterprise
Edition specifications.

– The Java technologies section of the IBM developer works site,
http://www-106.ibm.com/developerworks/java/ provides articles,
forums and information specific for developers who works with IBM
products.
 Chapter 2. Architecture and programming model 39

http://www-106.ibm.com/developerworks/library/j-ecomm/index.html
http://www-106.ibm.com/developerworks/library/j-ecomm/index.html
http://www-106.ibm.com/developerworks/library/j-ecomm/index.html
http://www-106.ibm.com/developerworks/library/j-ecomm/index.html
http://www-106.ibm.com/developerworks/library/j-ecomm/index.html
http://www-106.ibm.com/developerworks/library/j-ecomm/index.html
http://www-106.ibm.com/developerworks/library/j-ecomm/index.html
http://www-106.ibm.com/developerworks/library/j-ecomm/index.html
http://www-106.ibm.com/developerworks/library/j-ecomm/index.html
http://java.sun.com/j2ee
http://java.sun.com/j2ee
http://java.sun.com/j2ee
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/java/

2.4.1 The J2EE Programming Platform
Java 2 Platform, Enterprise Edition (from here on, referred to as J2EE) is a set of
specifications integrated and coordinated in order to provide a development
platform for distributed and object oriented enterprise applications. Note that it
does provide a component model and a run-time infrastructure, but it doesn’t
specify an architecture for enterprise applications, leaving architects free to
design the best solution that meet their business requirements.

The main advantages that can be obtained by adopting the J2EE programming
platform are:

� Shorter development cycles. As an object-oriented language, Java allows to
distribute the business logic in self-contained and reusable components.
Moreover, developers can focus only on implementing the application specific
functions, by leveraging the infrastructure services provided by the so-called
J2EE “containers”.

� Maintainability. Self-contained and reusable objects make J2EE applications
much more easy to maintain.

� Portability. J2EE applications can run on several platforms, giving you, for
example, the possibility to have different development and production
environments.

� Connectivity. The J2EE technology provides applications with a powerful
infrastructure that allows enterprises to connect the already implemented
business logic of their back-end systems with Web browsers as well as
pervasive computing (PvC) devices, such as personal digital assistants
(PDAs) and cellular phones.

2.4.2 Model-view-controller design pattern
As already stated, one of the most important requirements for enterprise
applications in general, and for online stores in particular, is the ability to fulfill
service requests coming from different kinds of devices, each one characterized
by a different type of user interface: HTML pages for standard Web browser,
WML for pervasive computing (PvC) devices, and XML messages for business
suppliers.

The model-view-controller architecture provides J2EE applications with the
possibility to use always the same functions and data, independently by the final
user interface, by keeping separate business and presentation logic. This
separation, invented by Smalltalk and adopted by J2EE, makes supporting
multiple types of clients much more easy to implement, test and maintain.

In particular, the model-view-controller components are:
40 WebSphere Commerce V5.4 Developer’s Handbook

� The model. It contains all the business data and functions, but does not have
any knowledge about the clients requesting them. The architecture is
frequently improved by implementing a further subdivision of the model into:

– The domain model, consisting only of the business data and of the logic to
access them. In J2EE applications, the domain model is usually
implemented by Enterprise JavaBeans and data beans (see 2.4.3,
“Persistent Object Model Overview” on page 45).

– The application model, consisting of the business processes that
manipulate such data. Note that the application model knows what views
must be invoked by the controller in order to display the results of its
processes, but it doesn’t know anything about the type of the requesting
device. In J2EE applications, the application model is usually implemented
by Java beans which follow the command pattern (see the following
section “Command design pattern”).

� Views. They render data obtained by the model in the way the more suitable
to the requesting devices. In J2EE applications, views are often implemented
as JavaServer Pages templates producing output in HTML, WML or XML
format.

� Controllers. They handle the application work flow by mapping service
requests coming from user interfaces into actions to be performed by the
model: when the results are available, they invoke the appropriate view in
order to display them. In J2EE applications, controllers are usually
implemented as servlets.

Figure 2-10 on page 42, taken from the IBM WebSphere Commerce
Programmer’s Guide Version 5.4, represents how the model-view-controller
design pattern is implemented by the WebSphere Commerce architecture.
 Chapter 2. Architecture and programming model 41

Figure 2-10 WebSphere Commerce implementation of the MVC design pattern.

The model-view-controller design pattern is the most famous example of the
model-view-presenter programming model, described in “MVP:
Model-View-Presenter The Taligent Programming Model for C++ and Java“, an
article downloadable at the URL

ftp://www6.software.ibm.com/software/developer/library/mvp.pdf.

Command design pattern
As already described in 2.3.1, “WebSphere Commerce runtime components” on
page 24, service requests coming from different types of devices are translated
by adapters into a common format that can be understood and processed by
WebSphere Commerce commands. Moreover, the Web controller translates a
service request into an actual command invocation, based on the type of the
requesting device and on the addressed store id. Commands are objects that

Model

Controller
Command

Task
Command

Database

Task
Command

Task
Command Invokes

Data Retrieval
& Update

Entities

Data Retrieval
& Update

Data Retrieval
& Update

Controller

Web
Controller URL

Invokes

View
Command

 Forwards

JSP Template

Invokes

View

Data
Bean

 Data Retrieval
42 WebSphere Commerce V5.4 Developer’s Handbook

ftp://www6.software.ibm.com/software/developer/library/mvp.pdf
ftp://www6.software.ibm.com/software/developer/library/mvp.pdf
ftp://www6.software.ibm.com/software/developer/library/mvp.pdf
ftp://www6.software.ibm.com/software/developer/library/mvp.pdf

follow the Java bean naming conventions. They perform some piece of business
logic by leveraging the WebSphere Application Server command framework,
which is an implementation of the standard command design pattern
characterized by:

� Having both an interface and an implementation class for each command.

� Using a command factory in order to map the interface with the correct
implementation class to be invoked, based both on the default command
class name of the interface, and on the database command registries.

� Allowing clients to invoke commands only by using their interface and through
the following sequence of invocation steps:

– Set the command’s input properties

– Invoke an execute() method

– Retrieving output properties.

WebSphere Commerce supports four different types of commands:

� Controller commands. They encapsulate all the logic necessary to
accomplish a single service request, such as OrderProcess for an order
processing request. They invoke task commands to perform single units of
work, such as payment processing in the previous example, and control the
application logic flow in order to fulfill the whole request. Upon completion of
the flow, they return a view name to the Web controller, which is in charge to
determine the view implementation class for the particular store and
requesting device.

Controller commands are targetable, which means that they can be executed
on a different container, but only the local target is supported.

� Task commands. Each task command performs a single unit of work, and
usually access a single business data entity using an access bean wrapper
that hides it the complexity of interacting with Enterprise JavaBeans (see
2.4.3, “Persistent Object Model Overview” on page 45). Task commands are
not targetable, which means that they must be executed on the same
container as the invoking controller command.

� Data bean commands. They are invoked by JavaServer Pages templates
through the data bean manager in order to populate data beans. They are
targetable, but it is supported only the local target.

� View commands.They can be invoked either by a controller command
returning their interface name to the Web controller, or directly by a client.
They are of three different types:

– Redirect view command, which sends the view using redirect protocol.

– Direct view command, which sends the view directly to the client.
 Chapter 2. Architecture and programming model 43

– Forward view command, which forwards the view request to another Web
controller, usually a JavaServer Page template. They are targetable, but it
is supported only the local target.

The level of indirection in commands invocation that is provided by the
WebSphere Application Server command framework, brings to the following
consequences:

� The possibility of implementing an access control policy based on the
requesting user at command level.

� The flexibility to execute different command implementations for different
stores.

� The flexibility to execute different command implementations for different
types of requesting devices.

The command flows has been presented both in Figure 2-4 on page 29 and
Figure 2-10 on page 42.

Display design pattern
According to the display design patterns, view commands are implemented as
JavaServer Pages templates, that is they are developed in the JSP script
language which provides easily mechanism to access and display data without
the necessity of a particular programming skill. At run-time, JavaServer Pages
templates are compiled into servlets after the first invocation. They could be
implemented directly as servlets, but this way is not recommended because their
implementation would require a much higher level of programming skill.

Moreover, view commands should be invoked only by using their view name: as
usual, this level of indirection gives the possibility to invoke at run-time the
appropriate implementation. For example, different view implementations can be
invoked based on the locale, the type of the requesting device or any other
property into the request context.

JavaServer Pages templates use data beans, which are access bean extensions
that allow them to retrieve business data in a very simple way. In fact, they can
create and populate data beans by means of the data bean manager with a
single line of code, like the following:

com.ibm.commerce.beans.DataBeanManager.activate(DataBean,HTTPServletRequest)

Note that the above line of code is automatically created by WebSphere Studio
Page Designer and WebSphere Studio Application Developer whenever a new
data bean is insert in a JavaServer Page template.
44 WebSphere Commerce V5.4 Developer’s Handbook

After the activation, JavaServer Page templates can simply retrieve any property
they need from the data bean, and even get the property names in all the
languages supported by the WebSphere Commerce instance in case of
multicultural stores.

Data beans can retrieve data in two different ways:

� Smart data beans retrieves associated data only when they are actually
requested (lazy fetch): they provide better performance but they are more
complicated to develop.

� Command data beans rely on a command in order to retrieve all their data at
once: they are easier to implement but they can bring to higher performance
costs.

2.4.3 Persistent Object Model Overview
WebSphere Commerce implements its persistent object model with entity beans
compliant to the Enterprise JavaBeans specifications, V1.1.

Enterprise JavaBeans
Enterprise JavaBeans (EJBs) are standard wrappers of business data that are
provided by the EJB container with the following services:

� Persistency, in case of either entity EJB or of stateful session EJB (see in the
following).

� Distribution. They can be executed remotely by means of the Remote
interface.Moreover, they can be created and discovered by network
applications by means of their Home interface and their primary keys.

� Transaction management.

� Security implementation by means of access control mechanisms.

The main types of EJBs are:

� Entity EJBs persists until it is explicitly removed from its container by either
the client or the server. Based on the type of persistence management, they
can be

– Container-managed-persistence (CMP), if they rely on the container for
their persistency.

– Bean-managed-persistence (BMP), if they implement their own
persistency.

� Session EJBs persists only as long as either client or server maintains a
reference to them. They can be:
 Chapter 2. Architecture and programming model 45

– Stateless, when a single instance can handle requests from multiple
clients, receiving all the necessary input parameters with each requests.
This is the most scalable solution.

– Stateful, when and EJB instance maintains a state between invocations.
Note that this solution impacts the scalability of the whole system,
because it requires that a client is connected always with the server which
hosts the EJB that it references.

For more information about Enterprise JavaBeans, refer to the “EJB Tutorial”,
downloadable at the URL http://www.ejbtut.com

and to the article “What are Enterprise JavaBeans components?“, downloadable
at the URL
http://www-106.ibm.com/developerworks/library/what-are-ejbs/part1/inde.
html, which in three parts explains the goals of the EJB architecture,
the programming model, and how to deploy and use EJBs.

WebSphere Commerce EJBs
WebSphere Commerce uses mainly CMP entity beans, with some exceptions of
stateless session beans. Moreover, it provides CMP entity beans with an
extension to the standard which consists in the possibility of establishing
inheritance relationships between beans defined into the same container, called
EJB group.

WebSphere Commerce includes two type of EJB groups: the private EJBs are
used by the system and should not be extended or used by the application.On
the other hand, the public EJB groups can be both used and customized. They
are the following:

� WCSActrlEJBGroup
� WCSApproval
� WCSAuction
� WCSCatalog
� WCSCommon
� WCSContract
� WCSCoupon
� WCSFulfillment
� WCSInventory
� WCSMessageExtensions
� WCSOrder
� WCSOrderManagement
� WCSOrderStatus
� WCSPayment
� WCSPVCDevices
� WCSTaxation
46 WebSphere Commerce V5.4 Developer’s Handbook

http://www.ejbtut.com
http://www-106.ibm.com/developerworks/library/what-are-ejbs/part1/index
http://www-106.ibm.com/developerworks/library/what-are-ejbs/part1/index

� WCSUserTraffic
� WCSUser
� WCSUTF

The WebSphere Commerce persistence model is a framework that can be
extended by:

� Extending an existing public entity bean.
� Adding new entity beans to an existing public EJB group.
� Adding both new entity beans in a new EJB group.

Important: Some of the public EJB groups contain session beans:
customization of session beans should be avoided in order to simplify
migrations to future releases.
 Chapter 2. Architecture and programming model 47

48 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 3. Requirements and design

This chapter introduces a methodology that can be used for the development of
your WebSphere Commerce site and shows the application of that methodology
to the sample stores we create in the second part of this book. We examine the
need for crisp requirements gathering and apply the requirements to the design
phase of an engagement. Information about working directly with the customized
stores themselves can be found in Chapter 8, “Examples overview” on page 217.

3

© Copyright IBM Corp. 2002. All rights reserved. 49

3.1 Application development methodology
The application development methodology we introduce below is designed for
development efforts of medium to large complexity. This process can be used to
tailor WebSphere Commerce sites that require a fair degree of customization.

The custom development approach, shown in Figure 3-1, is a proven component
of the IBM Global Services Method, the preferred methodology for delivering
business solutions for IBM and its customers. The phase-based process is
designed to be repeatable over the lifetime of a solution and allows for
extensibility within each phase.

There are 7 phases in the process: solution startup, solution outline, macro
design, micro design, build cycle, deployment and solution close. Each phase is
comprised of a set of activities that lead to the completion of the phase. As you
can see from the diagram, the process becomes iterative during the release
portion of the development process, allowing for a high degree of flexibility and
change in your solutions, Let’s take a closer look at the individual phases and
their subcomponents.

Figure 3-1 Custom development engagement process
50 WebSphere Commerce V5.4 Developer’s Handbook

3.1.1 Solution startup
The first phase in the custom development engagement process is the solution
startup. Composed primarily of the tasks necessary to define and start an
engagement, this phase includes clarifying and agreeing upon the scope of work,
compiling detailed risk plans and create an overarching definition of the project.

Essentially a detailed project management exercise, this phase normally defines
the team participation and organization. It also sets clear objectives for the
solution and uses these objectives to create a finalized project plan. It serves to
point out how important it is to have a crisp definition of the project at the outset.
By having agreements set up at the beginning of a project, it is much simpler to
handle customer expectations and scope creep.

3.1.2 Solution outline
The next phase, solution outline, is where the complexity and scope of a solution
are determined. With a better understanding of the scope and complexity, the
effort can be managed more appropriately.

Client environment
The first step in defining the outline is to gain an understanding of the client
environment. The firmer your grasp on the customer’s business and
organization, the tighter a fit your solution will be. You should understand the
customer’s business processes, strategic goals and current architecture. This
should then be documented as well as time permits for the benefit of the solution
team.

Functional and non-functional requirements
The next step is to black box the solution and describe the requirements for it.
What should this system be required to do? What are its scope and usage
characteristics? Requirements gathering is a particularly important component of
the process as it serves as the first blueprint that the solution team will be using
to create the system.

It is here that functional and non-functional requirements are created as are use
cases which can be used later in the testing activities. Functional requirements
capture the intended behavior of the system. This behavior may be expressed as
services, tasks or functions the system will be required to perform. Some of the
functional requirements to consider for a commerce system are:

Audience To whom will the store cater? Is this to be a site for
consumers or businesses? How will the site be
accessed?
 Chapter 3. Requirements and design 51

Flow How will the shopper be directed?

Catalog What products or services will be sold?

Order How will orders be processed?

Language What languages will be supported?

Payment What types of payment will be supported? Will multiple
currencies be required?

Support How will customers be supported during and after their
experience?

Functional requirements are frequently described through the facility of use
cases. A use case defines a goal-oriented set of interactions between external
actors and the proposed system. It captures who does what with the system and
why they do it, normally without describing the system internals. Some of the use
cases we developed for the examples in the second part of this redbook can be
found in Section 3.2, “Example store requirements” on page 57.

Non-functional requirements can be seen as constraints on various attributes of
the functional requirements. They add a degree of clarification to the project by
defining the system within the bounds of the customer’s environment. We can
break non-functional aspects of a solution into nine major themes: performance,
security, scalability, data integrity, availability, mantainability, manageability,
environmental and system usability. Examples to consider for development of a
commerce site include:

� Response time and throughput requirements

� Data retention and integrity throughout the commerce environment

� Uptime requirements

� Portability

� Integration with existing client systems

� Existing technical standards

The functional and non-functional requirements should be compiled with and
agreed to by the client in order to avoid any problems during the delivery of the
solution. More information on requirements and use cases in store planning can
be found in IBM WebSphere Commerce Store Developer’s Guide Version 5.4
and IBM WebSphere Commerce Suite Fundamentals.
52 WebSphere Commerce V5.4 Developer’s Handbook

Application and architecture models
Following the initial requirements definition activity, the application and
architecture models should be outlined using the business requirements as input.
The application model is a high-level draft of the application which provides a feel
for the complexity of the commerce solution. It should show the major
components of the solution and their relationships. Similarly, the architecture
model is a high-level draft of the infrastructure needed to deploy the application.
Both of these tasks are iterative and their output will likely be altered and refined
during the course of the project.

Solution strategy
The solution strategy phase is where you assess the impact of the commerce
solution to the business and develop a strategy for approaching the development
and implementation of the solution. As in the outline of the application and
architecture models, the requirements are an important component of this
activity. The use cases should be grouped and ranked according to some set of
criteria agreed to by the customer. From this a refined project plan can be
devised that will serve as the outline for the remainder of the project.

Common considerations at this point in the project include the definition of:

Store usability design Determine shopping experience characteristics and site
design

Catalog management Establish roles and processes for maintaining the catalog
data

Deployment plans Define the change management process by which
application components are to be released

Store configuration Set basic rules for how stores are going to be configured
internally

Testing strategies Define the high-level approach and activities surrounding
the direction for testing the store

3.1.3 Macro design
As you can see from Figure 3-1, the release process, comprised of the micro
design, build cycle and deployment phases, is designed to be a repeatable
process. There are, however, things that span a number of releases; for
example, certain aspects of the user interface, the architecture model and
commerce test cases may remain static across several releases of the site.
 Chapter 3. Requirements and design 53

The macro design phase is centered around preparing for the work involved with
creating multiple releases. It addresses the architectural issues that are common
across releases. It is obviously better to spend the time doing this work once up
front rather than iterating through the same work for each release as this
approach saves both time and money.

Steps that may be taken in this phase include:

� Develop a system-wide infrastructure component model. The basic
infrastructure of a commerce site should not change greatly from release to
release. This task outlines the core hardware and network infrastructure that
will be used and how they interconnect. Should there be a change in an
exiting function or a new function added, it can be handled in the micro design
phase of a given release.

� Design the shopping flow. Working from the requirements gathered and
processed in earlier phases, the shopping flow of the site can now be
established and defined. This should be built on the work involving the type of
store you will be creating, how users will be accessing the store, the nature of
the goods or services that will be sold and what languages and currencies will
be supported. This is also where you would define a consistent image for the
site such that the user interface is consistent from release to release and
brand management is preserved.

� Ensure the development environment is properly equipped and running. The
tools that the development team needs to create the commerce site may
include WebSphere Commerce Studio, VisualAge for Java and WebSphere
Studio Application Developer. These tools, outlined in , need to be installed
and operational for the development team to use over the course of multiple
releases.

3.1.4 Micro design
Micro design is the first of three phases repeated for each release. Where
previous phases have a solution-wide scope independent of scope, the micro
design, build cycle and deployment phases drill down to the details of a specific
release.

In the micro design phase, a specific release of the commerce site is clearly
defined. This phase is essentially a refining of the solution based on all of the
work that has been performed up to this point.

The first activity to perform here is a gap analysis of the needs of the release
against the output from the macro design phase. This will point out any new
requirements specific to this release. Next, the developers take the information
gathered during the previous phases and apply it directly to a specific
54 WebSphere Commerce V5.4 Developer’s Handbook

implementation platform to create a physical application model. In our case, of
course, the implementation platform is the WebSphere Commerce programming
model. Information on the programming model can be found in Chapter 2,
“Architecture and programming model” on page 11.

Micro design involves not only honing the use cases into very specific shopping
flows and interfaces based on the needs of the release, but also describing the
internal operation of objects and building the commerce application database
schema.

3.1.5 Build cycle
The build cycle phase is where the solution is incrementally developed and
tested until the objectives are achieved. The build cycle is an iterative phase
within the release plan. With the number of releases and the number of build
cycles having been defined in earlier phases, each build is responsible for
reaching certain goals laid out in advance.

As shown in Figure 3-2, the core of the build cycle phase is the repeatable
programming cycle. It is here that each use case is implemented within the
WebSphere Commerce programming model such that it satisfies the
requirement. The user interface is built and the data model is actualized in the
data store.
 Chapter 3. Requirements and design 55

Figure 3-2 Build cycle process

Testing also forms a critical part of the build cycle phase. There are several
phases of testing that occur at different points. Bound up with the programming
cycle is a group of tests that can be performed by the development team: static
testing and unit testing. This testing should occur as each programming cycle
concludes. A separate testing team may also be engaged to perform a functional
test on each component to ensure that the requirements for the component have
been met. At the end of a series of programming cycles, when the build cycle has
neared it’s conclusion, the test team should perform a system test wherein they
integrate the various pieces of the application in order to test interoperability,
performance and usability. Detailed information on testing a commerce site can
be found in Chapter 6, “Testing a store” on page 169.
56 WebSphere Commerce V5.4 Developer’s Handbook

The nested iterative approach of the build cycle and the programming and testing
cycles within it allows for a high degree of focus and specialization for each
component of the commerce site. The final task in the build cycle phase is to plan
for deployment. The lessons learned during the build cycle play a large role here
as the plans originally developed in earlier phases are refined and the solution
takes the final step to deployment.

3.1.6 Deployment
As it’s name implies, the primary purpose of the deployment phase is to launch
the release of the system. A secondary goal is to prepare for the next release.

A round of user acceptance testing may be performed here while simultaneously
preparing the production environment. The production environment will conform
to the architectural standards established in the solution outline phase and
refined throughout the process.

Once all of the approvals have been obtained, the cutover to production can
occur. Following the deployment of the commerce site, a review of the release
should occur in order to start planning for follow-on releases.

3.1.7 Solution Close
The solution close phase is a formal closure to the entire project. Solution startup
and solution close are the bookends to every development effort and, just as
solution startup is largely an introduction to the project, solution close is
essentially a wrap-up. Activities include obtaining final customer signoff,
capturing the project results and documenting all lessons learned during the
engagement.

3.2 Example store requirements
The approach we take in this book is to display the customizable nature of
WebSphere Commerce Business Edition by extending several of the sample
stores provided with the product: InFashion, WebFashion and ToolTech. Each of
our examples, detailed in <INSERT X-REF TO PART 2>, starts with one of these
basic stores and alters it based on a set of requirements unique to each
example. In order to provide you with some actual examples of requirements
gathering as outlined above, a sampling of this activity is included here.
 Chapter 3. Requirements and design 57

Through the creation of use cases, non-functional requirements and sequence
diagrams, we begin to define the application model for some of our extended
stores. The requirements we describe here are based on the sample store use
cases that can be found in the online help files at:

http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html

3.2.1 General store requirements
There are, of course, many decisions to make that apply to almost all stores.
These decisions will lead to some general store requirements and should be
discussed and settled upon at the outset of the requirements gathering phase.
Examples of these basic considerations are outlined below.

� Store scope

a. Business type: business-to-consumer or business-to-business

• Business-to-consumer stores will require straightforward functionality,
an obvious and shopper-friendly shopping flow and, potentially,
personalization.

• Business-to-business stores will lead to requirements that include an
interface that is very quick, tailored product catalogs and interfaces
with systems outside of your company.

• Refinements within these models may lead to more specialized
requirements. For example, an auction model will require a bidding
flow that is not needed in other business-to-consumer models.

b. Globalization and localization

• Language support between and within countries
• Currency requirements
• Product definitions in light of local laws
• Taxation
• Look-and-feel customization

� Customers

a. Registered users

• Regular shopper
• Personalization requirements
• Discounts based on usage

b. Non-registered users

• Guest shopper usage
• Retention of one-time only shopper data

� Products
58 WebSphere Commerce V5.4 Developer’s Handbook

http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html
http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.

a. Definition and categorization

b. Pricing

• Sales
• Method of discounting
• Display

� Payment

a. Forms of payment accepted

• Credit card processing method
• Checking authorization

b. International payments

c. Shipping requirements

Following the definition of the site’s requirements, you can create a store flow
diagram to lead you through the development of the site. Use cases are
particularly useful here as you can utilize them to ensure completeness of the
flow diagram. Figure shows a simple flow diagram for the WebSphere
Commerce out-of-the-box InFashion sample store as shown in the online help.
 Chapter 3. Requirements and design 59

Figure 3-3 InFashion store flow diagram from WebSphere Commerce online help
60 WebSphere Commerce V5.4 Developer’s Handbook

3.2.2 Quick order implementation
The example which displays the quick order function, detailed in Chapter 9,
“Orders” on page 233, is an extension of the ToolTech store. It allows a shopper
to process orders that they often repeat without all of the associated processes
that normally accompany a shopping experience. This is particularly useful in a
business-to-business setting.

Functional requirements
The use case below defines the usage of the quick order function.

� Actor

– Customer

� Preconditions

– The customer has a valid account with the store.

– The customer knows the product information (the product SKU, for
example) for the products to be ordered.

� Main flow

a. A customer successfully logs in to the store.

b. The home page is returned to the customer, who clicks on Enter More
Items under the Quick Order heading.

c. The system returns the quick order page. The customer enters the product
number information and amounts for all of the products he or she wishes
to order.

d. The customer clicks Order.

e. If one or more of the product numbers cannot be found, the Exception
Flow occurs. Otherwise, the shopping cart is displayed with the customer’s
order information in it

� Exception flow

a. If one or more of the items the customer has entered in the quick order
page cannot be found, then a confirmation page will be returned. The
confirmation page lists the order and informs the customer of which
products could not be found.

b. The customer edits the items in place, correcting any mistakes or clicks
More Items which returns the use case to the Main Flow.

� Postconditions

– The customer has a shopping cart with the items ordered from the quick
order process.
 Chapter 3. Requirements and design 61

System sequence diagram
A system sequence diagram shows a high-level flow of information and
transactions between two entities. It is a helpful way to show the necessary
interactions between users and systems as it displays the information in an
easily readable form. A system sequence diagram can show multiple use cases
or a single use case. Figure 3-4 shows a simplified system sequence diagram for
the quick order function. The flow follows the customer from login to placing the
order in the shopping cart.

Figure 3-4 Quick order system sequence diagram

3.2.3 Price display including tax
In Chapter 10, “Shipping and taxes” on page 259, we show how to implement the
display of prices where tax is included.
62 WebSphere Commerce V5.4 Developer’s Handbook

Functional requirements
There are several use cases involved with altering the displayed price to include
taxes. As an example, one of these use cases is shown below. It addresses the
store administrator’s creation of a new tax category wherein taxes are included in
the displayed price.

� Actor

– Store administrator

� Preconditions

– A store has been set up and configured.

� Main flow

a. A store administrator logs into WebSphere Commerce Store Services,
selects the store to be operated upon and clicks Tax.

b. The administrator clicks Categories from the left side navigation bar. The
system displays the Tax categories page for the store.

c. The administrator types in the name of the new tax category he or she
wants to create, selects Sales tax, clicks the Include tax in display price
checkbox and click Add.

d. The system creates the new tax category which may be applied to a
section of the product catalog.

� Postconditions

– A tax category which includes the tax in the price of the product.

3.2.4 Product creation via MQ
This example, implemented in Chapter 11, “Messaging customization” on
page 291, examines the design of a method to create a product on a back-end
system and import that new product to the WebSphere Commerce system via
MQSeries.

Functional requirements
The use case below addresses the action of the store administrator creating a
new product.

� Actor

– Store Administrator

� Preconditions

– A store has been set up and configured.

� Main flow
 Chapter 3. Requirements and design 63

a. A store administrator creates a product on a back-end system. The
product is associated with a category and has a price and any required
attributes.

b. The back-end system will create an XML message describing the product
and place it on an MQSeries queue.

c. An MQSeries adapter in the WebSphere Commerce system will receive
the message from the queue, parse it and call MQProductCreate.

d. MQProductCreate will create the product in the commerce database. If the
product already exists, then the Alternate Flow occurs.

� Alternate flow

– If the product described in the XML message already exists in the system,
then the MQProductCreate command will update the attributes of the
product in the database with the information from the XML message.

� Postconditions

– A new product exists in the store.

Non-functional requirements
Non-functional requirements describe how the system will accomplish the tasks
defined in the functional requirements. They typically address items such as:
performance, reliability, extensibility, development standards and system
requirements. Some of the non-functional requirements for the above
requirement include:

� An inbound-only MQSeries channel will be set up on the WebSphere
Commerce system.

� A product will exist in the commerce system within 5 minutes of having been
created on the back-end system.

� The commerce system will not receive any confidential information regarding
the company in the creation of a product.

3.2.5 Welcome page based on role
This example uses the concept of roles in WebSphere Commerce to display a
tailored page for those users who are assigned specific roles. If a user has the
Buyer Approver or Buyer Administrator role, then he or she will be served a
welcome page with links to tasks that are specifically designed for them: RFQ
creation and order approval.

Functional requirements
The use case for the altered login flow is shown below.
64 WebSphere Commerce V5.4 Developer’s Handbook

� Actor

– Customer

� Preconditions

– The customer has previously registered with the store.

� Main flow

a. The system displays the logon page.

b. The customer selects a language and enters the userid and password in
the appropriate fields. If the customer has forgotten the password, he or
she can click Forgot Your Password? leading to the Alternate Flow.

c. The customer clicks Submit. The system checks the authorization
information. If the user has entered an incorrect userid or password, the
Exception Flow occurs.

d. The customer is transferred to the home page of the store. If the
customer’s roles include Buyer Approver or Buyer Administrator, the
customer will be presented with two extra links: one for RFQ creation and
one for order approval. Otherwise, these links do not appear.

� Alternate flow

a. The customer clicks on Forgot Your Password?

b. The system displays a screen where the customer enters the userid and
clicks Send My Password.

c. The system sends an e-mail containing the password for the account to
the e-mail address associated with the account.

� Exception flow

a. The customer enters an incorrect userid or password.

b. The system displays a screen informing the user of the error and the use
case starts from the beginning.

� Postconditions

– The customer is properly logged in to the system.

3.2.6 Amount-based order approval
In the use cases describing this example, a buyer will attempt to make a
purchase that is over an amount that has been previously set against the
contract. When that limit is met or exceeded, the purchase must be approved by
a second party.
 Chapter 3. Requirements and design 65

Functional Requirements
The first use case shown refers to the buyer.

� Actor

– Buyer

� Preconditions

– The buyer has finished shopping and has a contract number to use for the
purchase.

– The contract to be used has been set to require approval from another
source when the purchase amount is in excess of $250.

� Main flow

a. The buyer clicks Check out. The system returns a display of contract
numbers which the buyer is entitled to use.

b. The buyer selects a contract from the list and clicks Add to Order. If the
order is under $250, then the system processes the order.

c. If the system is over $250, the system puts the order into pending
approval state and the buyer is informed that the order is awaiting
approval.

� Alternate flow

– The buyer’s purchase exists in the system in the pending state.

The second example use case for this sample store, shown below, uses the
postcondition from the first use case as input and addresses the approver’s
action.

� Actor

– Approver

� Preconditions

– A buyer in the approver’s organization has attempted to make a purchase
over $250.

– The purchase exists in the system in the pending state.

� Main flow

a. The approver clicks on Order Approval to get a list of orders in the
pending approval state.

b. The approver reviews the order that the buyer has assembled and clicks
on Approve which causes the system to process the order.Alternate flow

� Postconditions

– The buyer’s order has been processed.
66 WebSphere Commerce V5.4 Developer’s Handbook

Use case diagram
From a use case description, we can create a diagram, a graphic representation
of the use case. The use case diagram shown in Figure 3-5 is for the approve
order in amount-based approval system use case.

Figure 3-5 Approve order in amount-based approval system use case diagram

3.2.7 Contract-based logon
In the out-of-the-box ToolTech sample provided with WebSphere Commerce
Business Edition Version 5.4, the flow is set up in such a way that the buyer
selects a contract to use as a payment method after he or she has finished
shopping. This example examines a scenario where the customer chooses a
contract at the beginning of the shopping experience and is shown only the
products and prices associated with that contract.

Functional requirements
The following use case addresses the requirement that a buyer choose a
contract at the beginning of a shopping experience.

� Actor

– Customer

� Precondition

– A customer who is registered with the store accesses the site using a
supported browser.

� Main flow

a. The customer accesses the store’s login page.
 Chapter 3. Requirements and design 67

b. The customer selects a language from the drop down menu and enters
the userid and password in the respective fields. If the customer has
forgotten the password, he or she can click Forgot Your Password?
leading to the Alternate Flow.

c. The customer clicks Submit. The system checks the authorization
information. If the user has entered an incorrect userid or password, the
Exception Flow occurs.

d. The system returns the home page of the store to the customer. From this
page the customer selects the contract to be used throughout the
shopping experience.

� Alternate flow

a. The customer clicks on Forgot Your Password?

b. The system displays a screen where the customer enters the userid and
clicks Send My Password.

c. The system sends an e-mail containing the password for the account to
the e-mail address associated with the account.

� Exception flow

a. The customer enters an incorrect userid or password.

b. The system displays a screen informing the user of the error and the use
case starts from the beginning.

� Postconditions

– A contract number is associated with the customer for the duration of the
shopping experience.

3.2.8 Product bundles
Store administrators can make the shopping experience faster and easier by
implementing bundles. A bundle is a collection of related catalog entries. When a
shopper adds a bundle to the shopping cart, the bundle is decomposed into its’
individual components. These components may individually be modified or
removed from the cart by the shopper. A powerful marketing tool, bundles are
helpful to the shopper because they make the shopper aware of available
associated products.

Functional requirements
In Chapter 10, “Shipping and taxes” on page 259, we look at the creation of
bundles. The following sample use case shows a user’s interaction with a bundle
in a store.

� Actor
68 WebSphere Commerce V5.4 Developer’s Handbook

– Customer

� Preconditions

– A bundle has been defined in the store.

� Main flow

a. The customer selects a bundle from the category page.

b. The system retrieves the bundle information and displays a page with
detailed information about each product in the bundle. The bundle page
includes the following information:

• Product name

• Brief product description

• Product price

• Product image

• Appropriate product attributes

c. Where necessary, the customer selects the desired attributes for each
product in the bundle. The customer then clicks Add to shopping cart.

d. The system displays the shopping cart with the individual components
listed. The customer can modify or remove the components as desired.

� Postconditions

– The customer has the desired items in the shopping cart.
 Chapter 3. Requirements and design 69

70 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 4. Planning and development

Setting up the development environment properly and efficiently together with
having an organized view of the structure of the development environment is a
good start for an e-commerce project. This chapter provides guidance for the
process of setting up the development environment, but also provides a short
description to the products necessary as well as some planning needed prior to
the set-up of the development environment.

The chapter is organized into the following sections:

� Development overview
� Planning WebSphere Commerce development
� Install the development environment
� Post-install configuration
� WebSphere Studio Application Developer

4

© Copyright IBM Corp. 2002. All rights reserved. 71

4.1 Development overview
Developing e-commerce solutions requires a variety of tools and there are many
tools for the developer to choose from. IBM provides WebSphere Commerce
Studio to help the developers achieve the expected results and this can be used
with WebSphere Commerce Business Edition as well with WebSphere
Commerce Professional Edition.

WebSphere Commerce Studio provides the main tools necessary to build a
WebSphere Commerce solution. WebSphere Commerce Studio is available in a
Business Developer Edition and a Professional Edition for Windows NT or
Windows 2000. The two editions contain the same products apart from the
edition of WebSphere Commerce chosen.

This section will provide a brief introduction to WebSphere Commerce Studio
and the components which it contains.

As an addition to the products that are included in WebSphere Commerce Studio
we do a brief introduction to WebSphere Studio Application Developer in 4.5,
“WebSphere Studio Application Developer” on page 96.

4.1.1 WebSphere Commerce Studio V5.4
The WebSphere Commerce Studio package provides you with the tools required
to develop front-end as well as back-end assets for your e-commerce
application. It is only available as a package for Windows NT and Windows 2000,
but the output can be published to any WebSphere Commerce server of your
choice.

The products that are included in the WebSphere Commerce Studio V5.4
package are:

� WebSphere Studio Application Developer

Important: WebSphere Commerce Studio is the officially supported
development environment for use WebSphere Commerce Business Edition
V5.4. At the time we wrote this redbook. WebSphere Studio Application
Developer V4 was not supported for development with WebSphere
Commerce Business Edition V5.4. We include instructions for configuring
WebSphere Studio Application Developer to work with WebSphere
Commerce Business Edition, but this integration has not been fully tested and
is not officially supported. Please remember that our instructions are for your
guidance only and we cannot guarantee that they will work in your
environment.
72 WebSphere Commerce V5.4 Developer’s Handbook

– Page Detailer V3.5
– Page Designer
– Applet Designer
– IBM Distributed Debugger
– Commerce Studio extensions

� VisualAge for Java, Enterprise Edition V4.0

� Blaze Advisor Builder V3.1.3

� Blaze Innovator Workbench V3.1.3

� XML Tools

� WebSphere Commerce Developer Edition V5.4

WebSphere Studio V4.0, Advanced Edition
WebSphere Studio V4.0, Advanced Edition, contains of a collection of tools that
are used and accessed through a common interface. WebSphere Studio enables
collaborative work in an easy to use fashion that increases the productivity and
decreases the start-up process of a teamwork environment. This section
provides a short introduction to the components included in WebSphere Studio.

For more detailed information, refer to

http://www.ibm.com/software/webservers/commerce/

Page Detailer v3.5
The Page Detailer is a tool used for analyzing the content being sent from the
Web server to the client browser. Its purpose it to make it easier for the developer
and designer to isolate problem areas that might be causing long response times
and to help validating that the information passed from the web server to the
client are meeting the requirements set on the e-commerce solution in terms of
total sizes of the pages presented on the client browser.

Page Detailer can help you improving the size of the content, the organization of
the content and the delivery of the content through providing statistics of
analyzed data being sent from the web server.

To get some tips on how to improve the performance of a web site, read the
technical article Improve Web Site Performance with WebSphere Studio Page
Detailer at

http://www7.software.ibm.com/vad.nsf/data/document4361
 Chapter 4. Planning and development 73

http://www-3.ibm.com/software/webservers/commerce/
http://www7.software.ibm.com/vad.nsf/data/document4361?OpenDocument&p=1&BCT=66&Footer=1

Page Designer
Page Designer is an advanced-function HTML editor integrated into WebSphere
Studio that provides you with the ability to create and maintain HTML pages as
well as JSP pages for your Web site. Page Designer includes two tools for
working with graphics: WebArt Designer and AnimatedGif Designer.

Applet Designer
The Applet Designer is a tool that will help you to create simple Java applets. It
uses visual composition to ease the process for the developer to combine
different JavaBeans into applets.

IBM Distributed Debugger
To help debug your applications, WebSphere Studio includes the IBM Distributed
Debugger. IBM Distributed Debugger offers the ability to debug Java objects
when they are actually running on WebSphere Application Server.

The debugger provides a graphical user interface in which you can issue
commands over the network to control the execution of the program running on
WebSphere Application Server on a different machine. You can set breakpoints
as in VisualAge for Java, step through your code and examine the value of
variables in the code.

To find more information about the IBM Distributed Debugger, go to the
WebSphere Developer Domain Library and search for IBM Distributed Debugger.

http://www7b.software.ibm.com/wsdd/library/

Commerce Studio extensions
The Commerce Studio edition of WebSphere Studio enhances the standard
environment with two additional features that are WebSphere Commerce
specific.

� You will have the ability to publish your store assets to the store archive file
(SAR file) and publish them onto the WebSphere Commerce server in one
step.

� You can import a store archive file and edit its contents in WebSphere Studio
and when done, you can export the content back to the store archive file.

VisualAge for Java, Enterprise Edition V4.0
WebSphere Studio is used for creating and maintaining front-end assets such as
HTML and JSP pages while VisualAge for Java, Enterprise Edition, is used to
create new business-logic in the form of commands and Enterprise JavaBeans
to use with your WebSphere Commerce solution.
74 WebSphere Commerce V5.4 Developer’s Handbook

http://www7b.software.ibm.com/wsdd/library/

VisualAge for Java includes tools for developing and debugging JSP templates.
You can use WebSphere Studio to develop the JSP templates and integration
with VisualAge for Java enables you to easily add content to the created JSP
templates.

VisualAge for Java includes a complete test environment named WebSphere
Test Environment, which enables you to run all the WebSphere Commerce
functions together with any code you might develop without needing to deploy
your code to a WebSphere Commerce Server.

At the VisualAge Developer Domain Library, you can find more information about
the VisualAge for Java product.

http://www7.software.ibm.com/vad.nsf/Data/Document2001?OpenDocument&SubMast=1

Blaze Advisor Builder V3.1.3
Blaze Advisor Builder is the development component used to create
personalization and business rules to tailor the content to be individualized. This
enables you to do up selling, cross selling and so on. Blaze Advisor Rule Engine
and Server then implement the rules created in a live environment.

Blaze Innovator Workbench V3.1.3
The Blaze Innovator Workbench is a tool to be used by developers to define
editable rule service components. These components are then implemented into
an administrative Web interface that will enable non-technical people to maintain
the rules in an easy and logical fashion.

XML tools
The XML tools package contains tooling for XML. It allows for creating,
transforming, and querying XML documents through the use of visual tools. The
version of the tools provided in the package are not intended for use in an
production environment, but are only provided as a preview of the final XML tools
bundle.

It contains the following tools:

� Visual DTD
� Visual XML Creation
� Visual XML Builder
� Visual XML Transformation
� Visual XML Query
 Chapter 4. Planning and development 75

http://www7.software.ibm.com/vad.nsf/Data/Document2001?OpenDocument&SubMast=1

WebSphere Commerce Developer Edition V5.4
The WebSphere Commerce Studio package includes a version of WebSphere
Commerce for Windows to be used for testing and development purposes only. If
you plan to put the site into production, you need to need to purchase a licensed
copy of WebSphere Commerce.

4.2 Planning WebSphere Commerce development
Prior to starting the development, a planning stage is necessary to get an
efficient and secure team environment to work in. This section will mention some
options available to you and your team. We discuss the following topics:

� Development initialization phase
� Team development

4.2.1 Development initialization phase
This phase of a development is very important and should not be taken lightly, as
it sets the ground for the development foundation. The initialization phase should
be used wisely to optimize the startup process of the project and to create
processes that are to be used later in the development cycle, such as test,
deployment, and packaging. Having a solid ground of routines, methods and
standards will make the development more efficient and understood by all
members in a team.

The team itself creates the processes and uses any standards set by the
organization they are working for. In the end, it is the team that makes the
decision so it is very important that the routines, methods and standards are
decided early in the development phase and commonly known by all team
members.

Things to consider in this phase include set coding standards, the way of setting
up the development environment, which tools to use, how to deploy and test and
so on.

Choosing your tools
WebSphere Commerce Studio V5.4 is ony available on Windows NT and
Windows 2000. However the outcome from the tools in WebSphere Commerce
Studio is applicable to any server running WebSphere Commerce. The options
for configuration of WebSphere Commerce Studio are a one-tier or a two-tier
setu as follows:

� Install WebSphere Commerce Studio and the database on the same
machine.
76 WebSphere Commerce V5.4 Developer’s Handbook

� Install WebSphere Commerce Studio on one machine and the database on a
remote machine.

The advantages of using a remote database in the WebSphere Commerce
Studio development environment are:

� As a team, you can share a database. This will minimize the database setup
as well as the database maintenance. Moreover the increased level of
integration this provides may mean that validation of the code the team
produces will be minimized. The team members can utilize their own
database for experimenting with set up and then use the remote database for
real data testing.

� It will provide better availability of system resources on the local machine to
other applications.

The disadvantage is that you are depending on access to the remote machine
where the database resides.

WebSphere Commerce Studio provides the ability to function with an Oracle
database or an IBM DB2 database. The development environment should use
the same components as the production environment, so the choice of the
development database should be based on the production requirement.

4.2.2 Team development
This section describes the options you have in choosing a system for sharing the
development code amongst a team. Developing code in a team is not as simple
working alone, as it involves a shared responsibility over the code that is being
produced, as well as group to the access to the code that is produced. Therefore
a good versioning control system, together with established routines for code
sharing, are needed to make the code maintenance easier.

WebSphere Studio
WebSphere Studio Advanced Edition supports a number of source configuration
management systems (SCM) which can be integrated with WebSphere Studio
using Microsoft’s Common Source Code Control (SCC) interface. This means
that the integration to the SCM system is very easy to do. If any of the supported
SCM systems clients is installed on the local machine, WebSphere Studio will
automatically recognize the application and no further integration is necessary.
WebSphere Studio currently supports Rational ClearCase, Merant PVCS , IBM
VisualAge TeamConnection and Microsofts Visual SourceSafe.
 Chapter 4. Planning and development 77

VisualAge for Java
VisualAge for Java, Enterprise Edition, ships with a repository server (EMSRV)
that manages concurrent access to a shared repository. Using EMSRV does not
require any source configuration management (SCM) tool as the repository
system is integrated into VisualAge for Java. As stated in the IBM VisualAge for
Java Online Help, VisualAge for Java, Enterprise Edition, is different to other
SCM systems in the following ways:

� Team developers do not reserve or check out program elements, so program
elements are always available to everyone on the team.

� There is no need to check in a program element after changing it. Incremental
changes are immediately saved in the shared repository.

� Anyone on the team can access and modify any program element for
development, testing, and debugging purposes, regardless of who owns the
program element. This facilitates code reuse and collaborative development.

� Change is managed at the object level rather than at the file level. This
facilitates parallel development of classes by more than one developer.

� Program element owners approve changes by releasing them into the team
baseline. There is an emphasis on roles and responsibilities assumed by the
team, rather than on file locking performed by the software.

As an alternative to the EMSRV repository server, VisualAge for Java V4.0
contains a source configuration management bridge to provide enhanced
integration to external SCM systems. It currently supports Rational ClearCase,
Merant PVCS , IBM VisualAge TeamConnection and Microsofts Visual
SourceSafe. The bridge works in the manner that when the of VisualAge for Java
is out of sync with the external SCM, the developer will receive a visual reminder
in VisualAge. Tooling is provided for updating the external SCM with the internal
repository of VisualAge for Java. When developing, the developer is still utilizing
the local repository of VisualAge for Java.

Depending on the size of the development team and the way the team is
developing a WebSphere Commerce application, one of the above choices may
be selected. The third alternative is to use local repositories only, that is every
developer is responsible for their own repository and the team uses a SCM
system without any integration with VisualAge for Java. In this case it is difficult
to keep track of changes and to have a common backup of the code produced,
so we do not recommend this set up.

Often existing conditions influence the deciision as to which SCM solution is
adopted. For example, if all other versioning of project related documentation
resides in an external SCM it is more likely that the code generated within
VisualAge for Java will be stored in the same system.
78 WebSphere Commerce V5.4 Developer’s Handbook

For more information on the VisualAge for Java version control support, refer to:

� The redbook VisualAge for Java Enterprise Version 2 Team
Support,SG24-5245

� The IBM VisualAge for Java Online Help. Select Topics -> Concepts ->
Team development.

Integration
WebSphere Studio V4.0 integrates closely with VisualAge for Java V4.0. It
provides the developer with quick navigation between the two products in the
following cases:

� When you update a file in one product, you can also update the copy in the
other product.

� When you use the wizards in WebSphere Studio to develop servlets or
JavaBeans, you can transfer the servlets or JavaBeans to VisualAge for Java
to extend them and maintain them.

� If you use VisualAge for Java to develop servlets or JavaBeans, you can
transfer them to WebSphere Studio to use in the JavaBean wizard or publish
to your Web sites.

If you will be utilizing the integration possibilities of these products and are using
a versioning control system, it is recommended that you will use the same
versioning system with VisualAge for Java.

4.3 Install the development environment
This section guides you through the manual procedure of installing WebSphere
Commerce Studio and Application Assembly Tool (AAT) that might be necessary
if your are developing back-office business logic like EJBs.

The installation process is organized in the following sections:

� Pre-installation requirements
� Install VisualAge for Java, Enterprise Edition
� Install WebSphere Studio
� Install WebSphere Commerce Studio
� Install Application Assembly Tool

4.3.1 Pre-installation requirements
This section summarizes the minimum hardware and software requirements
needed to set up a development environment for developing WebSphere
Commerce V5.4 components.
 Chapter 4. Planning and development 79

The installation process for a complete setup of WebSphere Commerce Studio is
quite time-consuming and hence it is important to get it right the first time.
Therefore we recommend that you carefully follow the installation instructions
and the first thing to review is that you will meet all pre-installation requirements.

Hardware
Ensure that you meet the following hardware requirements before you install
WebSphere Commerce Studio:

� A minimum of 512 MB of random access memory (RAM).

� A dedicated IBM-compatible personal computer with a Pentium III 733 MHz
processor.

� A local area network adapter that supports the TCP/IP protocol.

� Depending on which components of the WebSphere Commerce Studio you
choose to install, you will need the following amount of disk space on your
computer:

– To develop store-front assets you will need a total of 335 MB. The specific
components requires the following:

• 300 MB for WebSphere Studio
• 25 MB for Store Archive Tools
• 10 MB for Blaze Advisor and Blaze Innovator Workbench.

– To develop back-office business logic you will need a total of 2 GB. The
specific components requires the following:

• 1.2 GB for VisualAge for Java, Enterprise Edition
• 500 MB for IBM DB2 Universal Database
• 300 MB for WebSphere Commerce Development Environment

– 160 MB for IBM Distributed Debugger

– 15 MB for Applet Designer

– 10 MB for Page Detailer

Furthermore you will need an additional 50 MB on your C: drive. If the
partition is formatted with FAT partitioning and it is larger than 1 GB, you will
need 100 MB available on your C: drive.

Software
It is very important that you have met the following software requirements before
installing WebSphere Commerce Studio:

� Ensure that you have one of the following operating systems installed:

– Windows 2000 Server Edition, or Advanced Server Edition with Service
Pack 2 applied. You can find the required updates at the following URL:
80 WebSphere Commerce V5.4 Developer’s Handbook

http://www.microsoft.com/windows2000/downloads/servicepacks/

– Windows NT Server Version 4.0 with Service Pack 6a installed on your
WebSphere Commerce Studio machine. You can find the required
updates at the following URL:

http://www.microsoft.com/ntserver/nts/downloads/

– Microsoft Internet Explorer V5.5 with Service Pack 1 with the latest
security patches on all the machines you will use to access WebSphere
Commerce Studio. Internet Explorer can be downloaded at the following
URL:

http://www.microsoft.com/windows/ie/downloads/

– If you plan to install VisualAge for Java, Enterprise Edition, please review
the notes in “Considerations prior to installation” on page 82.

Other requirements
You have to be logged on to the machine with a Windows user ID that has
Administrator privileges to be able to install your applications. To achieve
maximum control of user IDs appointed to be used with the applications, create a
new dedicated administrator user to be used for this purpose.

Pre-installation advice
If you are running any antivirus software, change its startup type to Manual in the
Services window and then restart your machine prior to installing WebSphere
Commerce Studio. This will prominently speed up the installation process. Do
not forget to change back to Automatic startup type when the installation of
WebSphere Commerce Studio is complete.

4.3.2 Install VisualAge for Java, Enterprise Edition
This section provides detailed information on how to install VisualAge for Java,
Enterprise Edition, and how to verify that the installation has been successful.
The installation of VisualAge for Java is organized into three sections:

� Considerations prior to installation

Important: Other versions/editions of the software requirements described
above might work with WebSphere Commerce Studio but IBM does not
support them.

Tip: Do not use an administrator userid that is not being validated locally, but
at a domain, as this might cause problems when you have to change your
password.
 Chapter 4. Planning and development 81

http://www.microsoft.com/windows2000/downloads/servicepacks/
http://www.microsoft.com/windows/ie/downloads/
http://www.microsoft.com/ntserver/nts/downloads/

� Install VisualAge for Java
� Verify the installation

Considerations prior to installation
Before you start the installation of VisualAge for Java, Enterprise Edition, take
notice of the following:

� The total classpath in VisualAge for Java must be less than 437 characters.
After the installation, VisualAge for Java has taken the length of the
installation path. Hence use a short installation path. For example
c:\WCDev\VAJ.

� You must have at least 20 MB free on your Windows system drive, and your
environment variable TEMP or TMP must point to a valid temporary directory
with at least 6 MB free.

For further information refer to Installation and Migration Guide that comes with
the VisualAge for Java, Enterprise Edition CD1.

Install VisualAge for Java
To install VisualAge for Java, Enterprise Edition, complete the following steps:

1. Insert the IBM VisualAge for Java V4.0, Enterprise Edition CD 1 into the
CD-ROM drive.

2. Using Windows Explorer from the root of the CD, double-click Setup to start
the install.

3. When the IBM VisualAge for Java Install window appears, click Install
Products -> Install VisualAge for Java.

4. When the Choose Setup Language window appears, select your national
language from the drop-down menu (English United States is the default) and
click OK.

5. When the Welcome window appears, click Next.

6. When the Software License Agreement window appears, read the agreement
and if you agree to the terms, then select I accept the terms in the license
agreement, and then click Next.

Attention: VisualAge for Java, Enterprise Edition, cannot be installed next to
the installation of WebSphere Commerce Studio and function properly without
some manual configuration.

Tip: Verify which directory is currently in use for the TEMP and/or TMP
variable by opening a Command Prompt, enter SET and press Enter. All
system variables and its values will be listed.
82 WebSphere Commerce V5.4 Developer’s Handbook

7. When Setup Type window appears, select Custom by Scenario, and then
click Next.

8. When prompted for the selection options, select the check boxes shown in
Figure 4-1 and click Next.

Figure 4-1 Scenario Setup window

9. When the Edit Features window appears, click Change to alter the install
directory.

10.When the Change Current Destination Folder appears, enter the folder name:
c:\WCDev\VAJ. Click OK.

11.Click Next to proceed.

12.When the Location of the Repository window appears, select Local (default),
and then click Next.

13.When the Ready to Install the Program window appears, click Install. You
should see a window Installing VisualAge for Java for Windows with the
status indicator.

14.When the InstallShield Wizard Completed window appears, click Finish.

Verify the installation
Verify that the installation of VisualAge for Java was successful by completing
the following steps:
 Chapter 4. Planning and development 83

1. Start VisualAge for Java by clicking Start -> Programs -> IBM VisualAge for
Java for Windows V4.0 -> IBM VisualAge for Java.

2. The first time you start VisualAge for Java, you will be prompted for a network
name for the user called Administrator. Type your Windows user name as
network name.

3. If the workspace opens, the installation of VisualAge for Java, Enterprise
Edition, has successfully been installed.

4. Close VisualAge for Java.

4.3.3 Install WebSphere Studio
This section will guide you through a separate installation of WebSphere Studio
and is organized into the following sub-sections:

� Install WebSphere Studio
� Verify the installation

Install WebSphere Studio
1. Insert the WebSphere Commerce Studio, Version 5.4 CD into your CD-ROM

drive.

2. Using Windows Explorer, locate the WebSphereStudio4 directory and
double-click the Setup file to let the installation process commence.

3. When the Welcome window appears, read the instructions and when ready,
click Next.

4. When the Software License Agreement window appears, read the entire
License agreement and if you accept all terms of the License Agreement click
Yes to continue the installation process.

Attention: The prompt window may appear behind already opened other
applications. If that would occur, minimize all the other applications by using
the minimize button on the upper-right corner on each window. Do not use the
minimize button on the quick-launch bar (Windows 2000).

Tip: In VisualAge for Java, Enterprise Edition, the current workspace owner is
shown on the title bar of the workspace.

Attention: WebSphere Studio cannot be installed next to the installation of
WebSphere Commerce Studio and function properly without some manual
configuration.
84 WebSphere Commerce V5.4 Developer’s Handbook

5. When the Choose Destination Location window appears, you have the option
to change the destination folder of your installation. To keep all the
WebSphere Commerce development tools located under the same directory,
click Browse.

When the Choose Folder window appears enter c:\WCDev\Studio40 in the Path
text-field and click OK.

6. When the Setup window appears with a message The folder does not
exist, would you like to create it?, click Yes.

7. Click Next to proceed.

8. When the Select Components window appears, ensure that the IBM
WebSphere Studio V4.0 component is checked and click Next.

9. When the Select Program Folder window appears, accept the default folder
(IBM WebSphere), and click Next.

10.When the Start Copying Files window appears, review the current settings of
the installation and if you find them to be correct click Next.

11.When the Setup Complete window appears, select Yes, I want to restart my
computer, and then click Finish.

Verify the installation
To verify the installation of WebSphere Studio by completing the following steps:

1. Start the application by clicking Start -> Programs -> IBM WebSphere ->
Studio 4.0 -> IBM WebSphere Studio V4.0.

2. When the Welcome to IBM WebSphere Studio window appears, select
Create a new project using: and from the drop-down menu select Default
Template. Click OK.

3. When the New Project window appears, enter a bogus project name in the
Project Name text-field. For example TestProject. Click OK.

4. If the main workarea appears, WebSphere Studio has successfully been
installed. Close WebSphere Studio.

4.3.4 Install WebSphere Commerce Studio

This section will provide a step-by-step installation guide of WebSphere
Commerce Studio.

Tip: If you would like to group the development tools together in the
start-menu, add a backslash and the name of the sub-category of the new
folder. For example IBM WebSphere\Development Tools.
 Chapter 4. Planning and development 85

The installation of WebSphere Commerce Studio is organized into the following
sections:

� Installation requirements
� Install WebSphere Commerce Studio
� The next step

Installation requirements
Prior to installing WebSphere Commerce Studio, please ensure that the following
requirements are met:

� You are using a Windows userid that has Administrator privileges and the
name of the userid does not exceed 8 characters.

� If you plan to use an Oracle database, the database need to be installed prior
to installing WebSphere Commerce Studio. Please refer to Chapter 3,
Installing an Oracle Database, in IBM WebSphere Commerce Studio for
Windows NT and Windows 2000 Installation Guide Version 5.4.

� Ensure that the hardware and software requirements described in
Chapter 4.3.1, “Pre-installation requirements” on page 79 are met.

Install WebSphere Commerce Studio
To install WebSphere Commerce Studio, complete the following steps:

1. Insert the WebSphere Commerce Studio CD into your CD-ROM drive.

2. With the use of Windows Explorer go to the root directory of the CD and
double-click the Setup file to commence the installation.

3. When the Choose Setup Language window appears, click Next.

4. When the Welcome window appears, read the instructions and when done
click Next to continue.

5. When the License Agreement window appears, read the entire License
agreement and if you accept all terms of the License Agreement click Accept
to continue the installation process. If you click Decline, the installation
program will exit.

6. When the Select Components window appears, select the following:

– Develop Store Front Assets using WebSphere Studio.

– Develop Store Back-Office Logic using VisualAge for Java

In the Select Database drop-down list you select your choice of database to
be used in the development environment. Click Next to continue.
86 WebSphere Commerce V5.4 Developer’s Handbook

7. When the WebSphere Commerce Instance Information window appears,
leave the default text in the text boxes as in Figure 4-2 and check Include
Sample Store. Click Next to continue.

Figure 4-2 WebSphere Commerce Instance Information window

8. When the Database Information window appears, enter the Windows userid
used when installing the database in DB Admin User and DB User. If DB2
not yet reside on the system, enter the currently used administrator userid.
Provide the corresponding password for the user in DB Admin Password
and DB User Password. Click Next to continue.

9. When the Choose Destination window appears, you have the option to
override the default installation path for each product that is to be installed. To
keep all the development installations in the same parent directory, we

Note: If you want to use Oracle Database as your WebSphere Commerce
Studio database, you need to install the database prior to installing
WebSphere Commerce Studio.

Note: To be able to perform the tutorials in the IBM WebSphere Commerce
Programmer’s Guide, the sample store is necessary to be selected in the
WebSphere Commerce Studio installation.
 Chapter 4. Planning and development 87

change the destination folders to c:\WCDev\CommerceStudio and
c:\WCDev\CommerceServerDev. When done, click Next.

10.When the Select Program Folder window appears, accept the default folder
(IBM WebSphere Commerce Studio), and click Next.

11.When the Summary window appears, review the installation configuration
carefully and then click Next.

12.Depending on the software packages already installed on your system, you
are prompted to insert the appropriate CDs for WebSphere Commerce
Studio, DB2, VisualAge for Java, and WebSphere Commerce. Follow the
on-screen instructions.

13.If you already have WebSphere Studio installed, a dialog as shown in
Figure 4-3 will appear. Click Yes to add some registry settings to WebSphere
Studio.

Figure 4-3 Add registries to WebSphere Studio prompt

14.When the Setup Complete window appears, select Yes, I want to restart my
computer now and click Finish to restart your computer.

The next step
To finalize the installation of the WebSphere Commerce Studio refer to 4.4,
“Post-install configuration” on page 90.

4.3.5 Install Application Assembly Tool
The Application Assembly Tool (AAT) is a component that ships with the IBM
WebSphere Application Server V4.0. If you plan to develop back-office business
logic you will need to install the Application Assembly Tool to be able to deploy
your created Enterprise JavaBeans (EJBs) to your Enterprise Application.

This installation-guide assumes that WebSphere Application Server does not
reside on the machine prior to the installation.

Install AAT
Perform the following procedure to install the Application Assembly Tool:
88 WebSphere Commerce V5.4 Developer’s Handbook

1. Insert the IBM WebSphere Application Server V4.0 Advanced Edition CD into
the CD-ROM drive.

2. With the use of Windows Explorer, go to the root of the CD directory structure
and double-click on the Setup file.

3. When the Choose Language Setup window appears, select English and click
OK.

4. When the WebSphere Application Server 4.0 window appears, read the
instructions carefully and then click Next to continue.

5. When the Installation Options window appears, select Custom Installation
and click Next.

6. When the Choose Application Server Components window appears,
de-select all components but Application and Development Tools and IBM
JDK 1.3.0. Click Next to continue.

7. When the Product Directory window appears, you may modify the install path.
To accept the default, click Next.

8. When the Select Program Folder appears, click Next to accept the default
folders (IBM WebSphere\Application Server V4.0 AE).

9. When the Install Options Selected window appears, carefully review your
selections and if they are ok click Next to continue.

10.When the Setup Complete window appears, click Finish to complete the
installation.

Verify the installation of AAT
Verify the installation of AAT by completing the following steps:

1. Start AAT by clicking Start -> IBM WebSphere -> Application Server V4.0
AE -> Application Assembly Tool.

2. If the Welcome to Application Assembly Window Tool appears, the installation
was successful.

Note: If a JDK already is installed on the system, you can use that JDK by
clicking Other JDK and in the window that popup specify the location. The
installation program will alert you if the custom JDK does not meet the
minimum requirements.
 Chapter 4. Planning and development 89

4.4 Post-install configuration
This section will guide you through some post-configuration that is necessary
before starting to develop WebSphere Commerce components. You must have
installed WebSphere Commerce Studio prior to the post-configuration, refer to
4.3, “Install the development environment” on page 79.

To complete the post-install configuration, complete the instructions in the
following sections:

� Configure VisualAge for Java, Enterprise Edition
� Create a sample store in VisualAge for Java
� Maintenance

4.4.1 Configure VisualAge for Java, Enterprise Edition
This section will provide a checklist to the post-configuration to the installation of
VisualAge for Java, Enterprise Edition V4.0. The configuration of VisualAge for
Java is quite extensive and is very good described in Chapter 10, “Configuring
VisualAge for Java” in IBM WebSphere Commerce Studio for Windows NT and
Windows 2000. Thus will this section only provide a checklist and some
assistance to the instructions.

Import required files into VisualAge for Java
1. Apply the EJB-1.1-DeployedTool.zip fixpack.

2. Add features to VisualAge for Java.

3. Apply EJB-deletion-of-attributes e-fix. When done an asterisk will show next
to readonly - Prevent invalid deletion of EJB read-only attributes, as
in Figure 4-4.
90 WebSphere Commerce V5.4 Developer’s Handbook

Figure 4-4 Fix Manager

4. Restart VisualAge for Java.

5. Ensure that the Administrator is the workspace owner.

6. Create open edition of the IBM WebSphere Test Environment (WTE) project.

7. Apply IBM WebSphere Test Environment fix, PQ50519.jar.

8. Create open edition of IBM EJB Tools project.

9. Apply IBM EJB Tools fix, ivjfix35.jar. When you are versioning the IBM EJB
Tools project you will be prompted for a version name. Select the default and
click OK.

10.Import the WebSphere Commerce repository.

11.Change workspace owner to WCS Developer.

12.Save the workspace.

Configuring the EJB and PNS servers
1. Click the EJB tab in VisualAge for Java

2. Select all EJB groups whose names that start with WCS. And add them to the
Server Configuration.

Tip: In VisualAge for Java, Enterprise Edition, the current workspace owner is
shown on the title bar of the workspace.
 Chapter 4. Planning and development 91

3. Modify EJB server properties. It is very important that the Data Source name
is spelled correctly. If you are not sure, copy the name from the instance XML
file. If you followed the installation process described in this book, the XML file
is to be found at the following location:
c:\WCDev\CommerceServerDev\instances\VAJ_Demo\xml\VAJ_Demo.xml

4. Open the WebSphere Test Environment Control Center.

5. Modify PNS server settings and click Apply.

6. Start the PNS server

7. Wait until the Console window outputs Server open for business.

8. Create Datasource Configuration. See Figure 4-5 for reference. The
datasource will be added to the WebSphere Test Environment Control Center
Datasource list.

Figure 4-5 Add DataSource

Tip: If you know that you will not use some of the EJBs, it will shorten the
startup process if you do not add these to the server configuration.

Attention: WebSphere Application Server default setup is to use the same
bootstrap port as the WebSphere Test Environment. Make sure that you do
not have WebSphere Application Server running simultaneously as you will
start WebSphere Test Environment as a conflict will occur.
92 WebSphere Commerce V5.4 Developer’s Handbook

9. Restart the PNS server.

Start the EJB server
1. Start the EJB server

2. Wait until the Console window outputs Server open for business for the EJB
Server thread.

Configuring rules services
These steps are optional and only have to be completed if your WebSphere
Commerce instance is using rules services. However, it might be a good idea to
complete these steps now as you might come to implement rules services in the
future.

1. Open the WebSphere Commerce Development environment XML file. If you
followed the installation process described in this book, the XML file is to be
found at the following location:
c:\WCDev\CommerceServerDev\instances\VAJ_Demo\xml\VAJ_Demo.xml

2. Ensure that the RulesServices has all boolean variables set to false.

3. Create a new project named Rules Resources.

4. Import resources (not classes) to the Rules Resources project from the
following JAR files:

– c:\WCDev\CommerceServerDev\blaze\AdvSrv31\lib\AdvCommon.jar

– c:\WCDev\CommerceServerDev\blaze\AdvSrv31\lib\Advisor.jar

– c:\WCDev\CommerceServerDev\blaze\AdvSrv31\lib\AdvisorSrv.jar

– c:\WCDev\CommerceServerDev\blaze\AdvIrt31\lib\InnovatorRT.jar

Starting the servlet engine
1. Edit the classpath of the servlet engine.

2. Start the servlet engine.

Tip: Now all the parameters have been set for the WebSphere Test
Environment. Save the workspace to store the settings before proceeding.

Note: This might take 25 - 35 minutes depending on your system
specifications.

Tip: The workspace has now been modified and we recommend that you save
the workspace before proceeding.
 Chapter 4. Planning and development 93

3. Verify in the Console window that the servlet has started. The servlet thread
will output quite a lot of information and it will end with meassage likethose in
Example 4-1. If it does not look similar to Example 4-1, it will not work. Then
stop the servers in the following order: Servlet Engine, EJB Server and PNS
server, and restart them in then start them in opposite order as described
previously.

Example 4-1 Servlet Engine is started

Hostname bindings:
[hostname-binding]: hostname=localhost:8080----> servlethost=default_host
[hostname-binding]: hostname=127.0.0.1:8080----> servlethost=default_host
[hostname-binding]: hostname={Machine name}:8080----> servlethost=default_host
[hostname-binding]: hostname={Machine IP}:8080----> servlethost=default_host

Servlet Engine is started

Setup store
Chapter 10, “Configuring VisualAge for Java” in IBM WebSphere Commerce
Studio for Windows NT and Windows 2000 describes in detail how to access set
up sample stores in VisualAge for Java. The basic steps are:

1. Launch the WebSphere Commerce Administration Console by entereing the
URL:

http://localhost:8080/webapp/wcs/tools/servlet/ToolsLogon?XMLFile=admincons
ole.AdminConsoleLogon

Be sure to use a supported Web browser when starting the Administration
Console.

2. Log in using user wcsadmin with password wcsadmin.

3. Change the wcsadmin password.

4. Open the original browser window.

5. Publish the contract data. Enter the URL:

http://localhost:8080/wcs/contractPublish.html?storeId=10001

6. Access the sample store. Enter the URL:

http://localhost:8080/webapp/wcs/stores/servlet/StoreCatalogDisplay?storeId
=10001&catalogId=10001&langId=-1

Important: Do not open a new browser window, but use the original window.
This is important as the original browser window has the cookie of an
administrator.
94 WebSphere Commerce V5.4 Developer’s Handbook

4.4.2 Create a sample store in VisualAge for Java
If you forgot to select the check box that would include a sample store to
VisualAge for Java when installing WebSphere Commerce Studio, this section
will guide you through how to manually create a store. A pre-requisite is that you
know how to publish a store in Store Services, refer to Chapter 5, “Creating a
store” on page 131.

Follow these steps to create a store in VisualAge for Java:

1. Go to the following URL to access the Store Services:

http://localhost:8080/webapp/wcs/tools/servlet/ToolsLogon?XMLFile=devtools.
Logon

2. Enter Store Services using the wcsadmin userID and publish a store.

3. When published, you will need to modify the viewreg as well as the urlreg
tables hence https url calls are not runnable in the WebSphere Test
Environment.

4. As the WebSphere Test Environment does not support SSL, we need to
modify the URL and VIEW registrations in the database. Open an SQL
command line window and execute the following sql statements:

– update viewreg set https=0

– update urlreg set https=0

5. Open the WebSphere Test Environment Control Center and restart the
Servlet Engine.

6. Go to the store homepage, but change the port to 8080 and the protocol to
http.

4.4.3 Maintenance
To maintain VisualAge for Java to be functioning to its maximum potential, it is
important that you regularly defrag your hard drive where you keep the
installation of VisualAge for Java, Enterprise Edition. To do this, start the Defrag
application that is located by clicking Start -> Programs -> Accessories ->
System Tools -> Disk Defragmenter and choose to analyze the drive where the
components have been installed and, if necessary, defrag the volume.

Tip: If you do not know the URL-path to the store, it can be launched from
Store Services or enter the following URL:
http://localhost:8080/webapp/wcs/stores/servlet/Store folder/index.jsp where
Store folder is the folder specified when you created the SAR file.
 Chapter 4. Planning and development 95

http://localhost:8080/webapp/wcs/tools/servlet/ToolsLogon?XMLFile=devtools.Logo
http://localhost:8080/webapp/wcs/tools/servlet/ToolsLogon?XMLFile=devtools.Logo
http://localhost:8080/webapp/wcs/tools/servlet/ToolsLogon?XMLFile=devtools.Logon

It is also important to do backups of the repository and the workspace files every
now and then. To do a backup, choose the following files/folders:

� c:\WCDev\VAJ\ide\repository\ivj.dat file

� c:\WCDev\VAJ\ide\repository\ivj.dat.pr folder

� c:\WCDev\VAJ\ide\ide.icx file (the workspace)

4.5 WebSphere Studio Application Developer
This section will provide you with guidance on how to install and setup
WebSphere Studio Application Developer to be used for WebSphere Commerce
V5.4 development.

� Introduction
� Preparing for migration
� Setup WebSphere Studio Application Developer
� Setup WebSphere Test Environment
� The second installation
� Developing in WebSphere Studio Application Developer

Attention: Please remember that developing WebSphere Commerce
Business Edition V5.4 applications with WebSphere Studio Application
Developer V4 is not officially supported. These instructions worked for us in
our particular redbook environment and with the product versions we
describe, but they may not work in your environment. We recommend that you
carefully weigh the benefits and risks of developing with an unsupported
combination of tools before investing time and effort in attempting this setup.
We expect further changes to occur in this area and recommend that you
watch the official WebSphere Commerce support site at:

http://www-3.ibm.com/software/webservers/commerce/support.html

for any updates to the support status of developing with WebSphere Studio
Application Developer.

We expect that possible future support for WebSphere Studio Application
Developer may be implemented differently and with different product versions
and configurations and than those we describe in this section.
96 WebSphere Commerce V5.4 Developer’s Handbook

http://www-3.ibm.com/software/webservers/commerce/support.html

4.5.1 Introduction
WebSphere Studio Application Developer is one of the members of the
WebSphere Studio family of application development products from IBM. It is
optimized for J2EE application development and evolved from VisualAge for
Java, Enterprise Edition and WebSphere Studio Advanced Edition.

More and more development teams are using WebSphere Studio Application
Developer as a tool for developing front end assets as well as back-office logic.
This section will provide guidance in the migration work necessary to move from
a VisualAge for Java and WebSphere Studio development environment to using
WebSphere Studio Application Developer.

The advantagesof using WebSphere Studio Application Developer as a
development tool are:

� When the WebSphere Studio Application Developer environment has been
properly setup, it will enable you to test your applications at a fraction of the
time spent when testing in VisualAge for Java.

� WebSphere Studio Application Developer is a J2EE product and hence will
the development environment follows the structure of the production
environment. This will ease the deployment process.

To get a more detailed introduction to WebSphere Studio Application Developer,
refer to the redpaper An Introduction to IBM WebSphere Studio Application
Developer (REDP0414) or view the free online course WebSphere Studio
Application Developer - Presentations and labs at:

http://www7b.software.ibm.com/wsdd/library/presents/AppDevTraining.html

Installation references
To avoid confusion caused by constantly referring to the installation paths of our
development set up we list the installation directories we used in Table 4-1 so you
can easily adapt the instructions to follow your system setup.

Attention: If you specify another path to a folder or file than specified in the
installation or set up procedures of WebSphere Studio Application Developer
in this redbook, be sure to specify the path without whitespaces. Use 8.3 DOS
format in these path statements. At the command prompt, use dir /x to get the
folder name listed in a 8.3 DOS name.
 Chapter 4. Planning and development 97

http://www.software.ibm.com/wsdd/library/presents/AppDevTraining.html
http://www7b.software.ibm.com/wsdd/library/presents/AppDevTraining.html

The installation instructions will assume that you have installed the WebSphere
Commerce default instance named demo as well as the VAJ_Demo instance during
the WebSphere Commerce Studio installation. This is because it is easier to
refer to the different instances. You may of course name the instances to
whatever name you prefer as long as it will follow the naming conventions of an
instance name.

Table 4-1 Application paths

Preparing for migration
This section will assist you to assure that you meet the pre-requisites and help
you through the procedure of creating all necessary output for the WebSphere
Studio Application Developer setup. It contains the following sections:

� Prerequisites

� Export the enterprise application

� Export EJBs from VisualAge for Java

Prerequisites
To be able to migrate to WebSphere Studio Application Developer there are a
few pre-requisites that needs to be fulfilled.

� WebSphere Commerce Studio V5.4 must be installed on the development
machine. You can use either the Professional or Business Edition of
WebSphere Commerce Studio.

� VisualAge for Java, Enterprise Edition, must have been properly setup
accordingly to 4.4.1, “Configure VisualAge for Java, Enterprise Edition” on
page 90.

� The database used in the WebSphere Test Environment of VisualAge for
Java, must have the same schema as used by WebSphere Commerce. By
default, this will be true so the VAJ_Demo database uses the same schema
as the mall database.

� WebSphere Commerce must be installed.

� A WebSphere instance running within WebSphere Application Server must
have been created.

Application Path

WebSphere Studio Application Developer c:\WCDev\wsad

WebSphere Commerce Developer Edition c:\WCDev\CommerceServerDev
98 WebSphere Commerce V5.4 Developer’s Handbook

� Hardware requirements are the same as for WebSphere Commerce Studio,
but with an additional of 1 GB disk space added for the WebSphere Studio
Application Developer installation.

Export the enterprise application
This section will guide you in how to export the current enterprise application of
WebSphere Commerce. The export will produce an EAR file named
WC_Enterprise_App_instance.ear (instance is the name of the WebSphere
Commerce instance) and will later be used when setting up WebSphere Studio
Application Developer. Follow these steps to export the enterprise application:

1. Start WebSphere Application Server Administration Console by clicking Start
-> IBM WebSphere -> Application Server 4.0 -> Administrator’s Console.

2. When the WebSphere Advanced Administrative Console appears, expand
WebSphere Administrative Domain -> Enterprise Applications.

3. Right-click the WebSphere Commerce Enterprise Application - demo, and
select Export Application.

4. When the Export Application window appears, enter a directory to export the
application to. For example c:\temp.

5. Click OK.

Export EJBs from VisualAge for Java
To be able to get the public EJBs working in WebSphere Studio Application
Developer, you will need to export the EJBs from VisualAge for Java to get the
source-code into WebSphere Studio Application Developer at a later stage in the
migration process. To export the EJBs, complete the following steps:

1. Start VisualAge for Java by clicking Start -> Programs -> IBM VisualAge for
Java for Windows V4.0 -> IBM VisualAge for Java.

2. Go to the EJB page in VisualAge for Java.

3. Right-click on the WCSActrlEJBGroup, and click Export -> EJB 1.1 JAR.

4. Select a temporary folder to store the exported EJB and give it the name of
the EJB, for example c:\temp\EJBs\WCSActrlEjbGroup.jar.

5. Ensure that the .java check box is selected and the window should look
something like in Figure 4-6.

Note: The WebSphere Commerce installation and the WebSphere Commerce
Studio installation do not necessarily need to be installed on the same
machine.
 Chapter 4. Planning and development 99

Figure 4-6 Export EJB

6. Click Finish.

7. When VisualAge for Java is finished with the export of the EJB, repeat step
3-6 for all other public EJBs. These are:

– WCSActrlEJBGroup
– WCSApproval
– WCSAuction
– WCSCatalog
– WCSCommon
– WCSContract
– WCSCoupon
– WCSFullfillment
– WCSInventory
– WCSMessageExtensions
– WCSOrder
– WCSOrderManagement
– WCSOrderStatus
– WCSPayment
– WCSPVCDevices
– WCSTaxation
– WCSUser
100 WebSphere Commerce V5.4 Developer’s Handbook

– WCSUserTraffic
– WCSUTF

4.5.2 Setup WebSphere Studio Application Developer
This section will guide you through the process of setting up the development
environment in WebSphere Studio Application Developer. Please read the
instructions carefully. The following steps are:

� Install WebSphere Studio Application Developer
� Apply e-fixes
� Import the enterprise application
� Import public EJBs
� Verify EJB meta data
� Switch to the development instance
� Add Web aliases
� Browse to Store Services

Install WebSphere Studio Application Developer
To install WebSphere Studio Application Developer, complete the following
steps:

1. Insert the WebSphere Studio Application Developer V4.03 CD into your
CD-ROM drive.

2. When the IBM WebSphere Studio Application Developer welcome window
appears, click Next.

3. When the License Agreement window appears, read the license agreement
carefully and if you comply to the agreement click Next.

4. When the Destination Folder window appears, enter c:\WCDev\wsad and
click Next.

5. When the Primary User Role window appears, select J2EE Developer and
click Next to continue.

6. When the Select Version Control Interface window appears, select CVS and
click Next.

7. When the Ready to Install the Program window appears, click Install.

8. When the Installshield Wizard Complete window appears, the installation is
complete. Click Finish to close the window.

If any problems would arise, refer to the WebSphere Studio Application
Developer Installation Guide that comes with the installation CD.
 Chapter 4. Planning and development 101

Install plugins
We need to install some extra plugins for WebSphere Studio Application
Developer to work with WebSphere Commerce. The plugins are:

1. Zip creation plugin

The redbook additional material contains the file
com.ibm.sample.zip.creation(delta+prefix).zip.

Extract the contents of this zip file into <WSAD>\plugins.

2. WebSphere Commerce copyright plugin.

The redbook additional material contains the file
com.ibm.commerce.plugins.wcs.copyright_1.0.2.zip.

Extract the contents of this zip file into <WSAD>\plugins

Apply e-fixes
To get WebSphere Studio Application Developer to work properly for WebSphere
Commerce development, you need to apply some e-fixes to the installation. This
section will go through all the steps necessary to get the environment ready.

The fixes needed are:

1. WebSphere Application Server, Single Server Edition fixpack 3 available
from:

ftp://ftp.software.ibm.com/software/websphere/appserv/support/fixpacks/was4
0/fixpack3/Windows/was40_aes_ptf_3.zip

To install this fixpack:

a. Extract the contents of the zip file to a temporary directory

b. Run the install.bat command file.

c. When prompted to update the application server answer yes

d. When asked to enter the application server home specify the WebSphere
Studio Application Developer test environment JRE directory:
<WSAD>\plugins\com.ibm.etools.websphere.runtime

e. When asked to enter the application server JDK specify the WebSphere
Studio Application Developer server runtime directory:
<WSAD>\plugins\com.ibm.etools.server.jdk

f. When prompted to update the JDK answer yes

g. Answer no when asked whether to update the iPlanet Web server and the
also when asked to update the IBM Http Server

h. Answer yes to use the application server logs directory

i. Answer yes to place backups in the application server home directory
102 WebSphere Commerce V5.4 Developer’s Handbook

2. WebSphere Studio Application Developer V4.03 APAR JR17012 EJB editor
refresh problems available from:

http://www-1.ibm.com/support/manager.wss?rs=0&rt=0&org=SW&doc=4001301

To install this fix, extract the contents of the zip file to a temporary directory
and run the setup.exe

3. WebSphere Studio Application Developer V4.03 APAR JR17026 errors when
editing the source code of JSP files available from:

http://www-1.ibm.com/support/manager.wss?rs=0&rt=0&org=SW&doc=4001298

To install this fix, extract the contents of the zip file to a temporary directory
and run the setup.exe

4. WebSphere Studio Application Developer V4.03 APAR JR17027 numerous
fixes for EJB development available from:

http://www-1.ibm.com/support/manager.wss?rs=0&rt=0&org=SW&doc=4001297

To install this fix, extract the contents of the zip file to a temporary directory
and run the setup.exe

Enable the IBMJCE security provider
1. Edit the file <WSAD>jre\lib\security\java.security file and modify the list of

security providers to include IBMJCE. The provider list should be as in
Example 4-2

Example 4-2 Java security providers

security.provider.1=sun.security.provider.Sun
security.provider.2=com.ibm.crypto.provider.IBMJCA
security.provider.3=com.ibm.crypto.provider.IBMJCE

2. Edit the file
<WSAD>plugins\com.ibm.etools.server.jdk\jre\lib\security\java.security file
and modify the list of security providers to include IBMJCA. The provider list
should be as in Example 4-3.

Example 4-3 Java security providers for test server

security.provider.1=sun.security.provider.Sun
security.provider.2=com.ibm.crypto.provider.IBMJCE
security.provider.3=com.ibm.jsse.JSSEProvider
security.provider.4=com.ibm.crypto.provider.IBMJCA

Import the enterprise application
To import the enterprise application that you previously exported from the
WebSphere Application Server follow these steps:
 Chapter 4. Planning and development 103

http://www-1.ibm.com/support/manager.wss?rs=0&rt=0&org=SW&doc=4001301
http://www-1.ibm.com/support/manager.wss?rs=0&rt=0&org=SW&doc=4001298
http://www-1.ibm.com/support/manager.wss?rs=0&rt=0&org=SW&doc=4001297

1. Start WebSphere Studio Application Developer by clicking Start -> Programs
-> IBM WebSphere Studio Application Developer -> IBM WebSphere
Studio Application Developer.

2. From the main menu, select File -> Import.

3. When the Import wizard appears, select EAR file and click Next.

4. When the EAR Import window appears, click Browse and select the EAR file
named WC_Enterprise_App_demo.ear that you previously exported from the
WebSphere Application Server. The window should look like Figure 4-7.

Figure 4-7 EAR Import

5. Click Finish to start the import.

Import public EJBs
To import the public EJBs, which you previously exported from VisualAge for
Java, you need to do the following:

1. From the main menu in WebSphere Studio Application Developer, select
Windows -> Preference.
104 WebSphere Commerce V5.4 Developer’s Handbook

2. When the Preference window appear, select Workbench and uncheck
Perform build automatically on resource modification.

3. Click Apply and then click OK to close the window.

4. From the main menu in WebSphere Studio Application Developer, select File
-> Import.

5. When the Import wizard appears, select EJB JAR file and click Next.

6. When the EJB Import window appears, click Browse and select the
WCSActrlEJBGroup.jar file that you previously exported from VisualAge for
Java.

7. Select the corresponding EJB project to be the destination of the imported
files, select the Overwrite existing resources without warning check box.
The window will look like Figure 4-8.

Figure 4-8 EJB Import

8. Click Finish.

9. When the EJB name collision window appears, just click Yes to continue.

10.Repeat procedure 4-9 for all the public EJBs. These are the following:
 Chapter 4. Planning and development 105

– WCSActrlEJBGroup
– WCSApproval
– WCSAuction
– WCSCatalog
– WCSCommon
– WCSContract
– WCSCoupon
– WCSFullfillment
– WCSInventory
– WCSMessageExtensions
– WCSOrder
– WCSOrderManagement
– WCSOrderStatus
– WCSPayment
– WCSPVCDevices
– WCSTaxation
– WCSUser
– WCSUserTraffic

11.Open Windows Explorer and browse to the workspace directory of
WebSphere Studio Application Developer, currently
c:\WCDev\wsad\workspace.

12.Go through the EJB projects that you imported the public EJBs to and remove
all *.imported_classes.jar files. For example for WCSActrlEJBGroup-ejb
project, remove the WCSActrlEjbGroup-ejb.imported_classes.jar file.

Verify EJB meta data
This section will help you through the process of verifying the module
dependencies as well as the JNDI binding of the EJBs. Complete the following
steps to verify the meta data of each of the EJB projects:

1. Make sure that the J2EE perspective is selected in WebSphere Studio
Application Developer.

2. Expand the EJB Modules, and right-click on the first EJB module (project)
and select Open With -> EJB Extension Editor.

3. When the EJB Extension Editor opens, click on the Bindings page and
expand the module.

Tip: In WebSphere Studio Application Developer, the perspective currently in
use is shown on the title bar of the Workspace.
106 WebSphere Commerce V5.4 Developer’s Handbook

4. For each of the EJBs in the module, verify that the JNDI name does not
contains the prefix of the WebSphere Commerce Server instance. See
example in Figure 4-9.

Figure 4-9 EJB Extension Editor

5. Close the EJB Extension editor.

6. You will be prompted to save the changes made in the EJB Extension Editor.
Click Yes to continue.

7. Right-click the same module again and select Edit Module Dependencies.

8. When the Module Dependencies Dialog window appears, verify that
lib/wcsejbimpl.jar, lib/xml4j.jar and all other EJB modules have been selected.

9. Click Finish.

10.Right-click the same EJB module again and select Generate -> Deploy and
RMIC Code.

11.When the Generate Deploy and RMIC Code window appears, click Select all
and click Finish to complete.

12.Repeat the procedure for all the EJB modules.

Attention: The Module Dependencies Dialog displays the deployed EJB
settings. I.e. if you open the dialog again, the original settings will be
displayed.
 Chapter 4. Planning and development 107

Switch to the development instance
Currently is the environment setup to be using the demo instance (as the settings
were exported with the EAR file). This section will guide you through the changes
necessary to start using the VAJ_Demo instance instead.

1. Open the
c:\WCDev\CommerceServerDev\instances\VAJ_Demo\xml\VAJ_Demo.xml
file in a text-editor

2. Search for the names in the VAJ_Demo file and change the values to what
has been specified in Table 4-2.

Table 4-2 Changes in VAJ_Demo.xml

3. Save and close the file.

4. In WebSphere Studio Application Developer go to the J2EE perspective.

5. Go to the J2EE view. If it is not on the workbench, go to the main menu; click
Perspective -> Show View -> J2EE View.

6. Expand the Web Modules, right-click on the WCS Stores module and select
Open With -> Web.xml editor.

7. When the web.xml has opened, click on the Servlets tab.

8. Click Initialization.

Note: Do not confuse this with the naming of the instances. The changes
made will refer to the development instance, but it will keep the JNDI name of
the production environment.

Name Value

DatasourceName WebSphere Commerce DB2 DataSource
demo

StoresDocRoot C:\WCDev\wsad\workspace\wcstores

StoresPropertiesPath webApplication\WEB-INF\classes

StoresWebPath webApplication

Tip: When deploying a new store in Store Services, the store properties will
be in a subdirectory of the classes directory as specified in Table 4-2. When
rebuilding the webmodule, the classes directory will be emptied and created
from the source folder, hence copy the new subdirectory to the source folder.
108 WebSphere Commerce V5.4 Developer’s Handbook

9. When the Initialization Parameters window appears, modify the settings
according to the information in Table 4-3.

Table 4-3 WCS Stores Initialization parameters

10.When you are done with the changes, click OK.

11.On the main menu, select File -> Save web.xml to store the changes.

12.Close the web.xml window.

13.In the J2EE view, right-click on the WCS Tools module and select Open With
-> Web.xml editor.

14.When the web.xml has opened, click on the Servlets tab.

15.Click Initialization.

16.When the Initialization Parameters window appears, modify the settings
according to information in Table 4-4.

Table 4-4 WCS Tools Initialization parameters

17.When you are done with the changes, click OK.

18.On the main menu, select File -> Save web.xml to store the changes.

19.Close the web.xml window

Apply ivjfix
To get the environment properly set up, you need to add a fix that is to be loaded
into the servlet context of the WCS Store and WCS Tools modules. This is how
you go about adding the fix to WebSphere Studio Application Developer:

1. On the main menu, select File -> Import.

2. When the import wizard appears, select File system and click Next.

Initialization Parameter Value

configfile C:\WCDev\COMMER~1\INSTAN~1\VAJ_
Demo\xml\VAJ_Demo.xml

instancename VAJ_Demo

webpath /webapp/wcs/stores

Initialization Parameter Value

configfile C:\WCDev\COMMER~1\INSTAN~1\VAJ_
Demo\xml\VAJ_Demo.xml

instancename VAJ_Demo
 Chapter 4. Planning and development 109

3. When the File System window appears, click the first Browse button to
specify a directory and select c:\WCDev\CommerceServerDev\lib\. The lib
directory will appear in one of the list boxes.

4. Click on the lib folder.

5. A listing of files appears in one of the boxes. Select the check box of the
ivjfix.jar file.

6. Specify the destination of ivjfix.jar by clicking on the second Browse button
and select the WebSphere Commerce Enterprise Application - demo/lib
directory.

7. Click Finish.

8. Go to the J2EE perspective and go to the Navigator view. If you cannot find
the Navigator view in the perspective, on the main menu select Perspective
-> Show View -> Navigator.

9. Right-click the wcstores project and select Edit Module Dependencies.

10.Verify that the check box for lib/ivjfix.jar file is selected as a dependent JAR
for the module. Click Finish.

11.Right-click the wcstores project and select Properties.

12.Go to the Java Build Path page.

13.Click on the Order tab.

14.Scroll and select the ivjfix.jar in the list box.

15.Click on Up or Down button to change the order of the ivjfix.jar file to position
the file just above the line with the ivjeb35.jar file as in Figure 4-10.

Attention: Do not select the check box of the lib folder.
110 WebSphere Commerce V5.4 Developer’s Handbook

Figure 4-10 Position of the ivjfix.jar file

16.Click OK.

17.Repeat step 9 to 16 for the wctools project.

Add Web aliases
As Web aliases are not supported inside the WebSphere Test Environment of
WebSphere Studio Application Developer, you need to apply a workaround to
the wcstores as well to the wctools project. Follow these steps:

1. On the main menu of WebSphere Studio Application Developer, select File ->
New -> Web Project.

2. When the Define the Web Project window appear, enter wcstorealias as
project name, verify that WebSphere Commerce Enterprise Application -
demo is selected as Enterprise Application project name and click Finish.

3. On the main menu of WebSphere Studio Application Developer, select File ->
Import.
 Chapter 4. Planning and development 111

4. When the import wizard opens, select WAR file as a source to be imported.
Click Next.

5. When the Identify the WAR File and Import Options window appear, click
Browse to specify the location of the wcstorealias.war file that is provided
as additional material to this redbook.

6. Select the wcstorealias as the Web project.

7. Enter /wcsstore as the value for the Context Root.

8. Make sure that WebSphere Commerce Enterprise Application - demo is
selected as the Enterprise Application project name.

9. Click Next util the Define Java Build Settings window appears.

10.Click on the Libraries tab.

11.Ensure that you have the following in your build path:

– WAS_PLUGINDIR/lib/nls.jar

– WAS_PLUGINDIR/lib/utils.jar

– WAS_PLUGINDIR/lib/webcontainer.jar

– WAS_PLUGINDIR/lib/websphere.jar

12.Click Finish.

13.You will be prompted whether or not you want to overwrite the existing
web.xml file. Click Yes.

1. On the main menu of WebSphere Studio Application Developer, select File ->
New -> Web Project.

2. When the Define the Web Project window appear, enter wctoolsalias as
project name, verify that WebSphere Commerce Enterprise Application -
demo is selected as Enterprise Application project name and click Finish.

3. On the main menu of WebSphere Studio Application Developer, select File ->
Import.

Author Comment: wcstorealias.war is to be supplied with the redbook.

Note: If you do not have all these JARs, click Add Variable and specify the
Variable Name and Path extesion with the use of the Browse buttons.
112 WebSphere Commerce V5.4 Developer’s Handbook

4. When the import wizard opens, select WAR file as a source to be imported.
Click Next.

5. When the Identify the WAR File and Import Options window appear, click
Browse to specify the location of the wctoolsalias.war file that is provided as
additional material to this redbook.

6. Select the wctoolsalias as the Web project.

7. Enter /wcs as the value for the Context Root.

8. Make sure that WebSphere Commerce Enterprise Application - demo is
selected as the Enterprise Application project name.

9. Click Next util the Define Java Build Settings window appears.

10.Click on the Libraries tab.

11.Ensure that you have the following in your build path:

– WAS_PLUGINDIR/lib/nls.jar

– WAS_PLUGINDIR/lib/utils.jar

– WAS_PLUGINDIR/lib/webcontainer.jar

– WAS_PLUGINDIR/lib/websphere.jar

12.Click Finish.

13.You will be prompted whether or not you want to overwrite the existing
web.xml file. Click Yes.

4.5.3 Setup WebSphere Test Environment
To be able to test your code, you will need to setup an test-environment in
WebSphere Studio Application Developer. Complete the following steps to setup
the test environment.

� Create a server project

� Create an instance and configuration

� Associating the project to the server configuration

� Modify the server configuration

� Modify the server instance

Author Comment: wctoolsalias.war is to be supplied with the redbook.
 Chapter 4. Planning and development 113

� Start the server

� Define virtual host for the server instance

Create a server project
1. From the File menu, select New -> Project.

2. When the New Project window appears, select Server in the left list and
Server Project in the right list. Click Next.

3. When the Create New Server Project window appears, enter a project name,
for example WC Dev Server, and click Finish.

4. The server project is created and Server perspective will open.

Create an instance and configuration
To create a server instance and a server configuration, complete the following
steps:

1. In the Navigator view, right-click the server project that you just created, and
select New -> Server Instance and Configuration.

2. When the wizard opens enter for Server name Dev WTE, make sure that server
project created is the folder and select WebSphere Servers -> WebSphere
V4.0 Test Environment as server instance type. The window will look like
Figure 4-11.

Tip: Prior to start working in WebSphere Studio Application Developer, refer
to the technical article Optimizing Multi-Project Builds Using Dependent
Project JARs in WebSphere Studio Application Developer to get some
performance related advice.

http://www7b.software.ibm.com/wsdd/library/techarticles/0204_searle/searle.h
tml
114 WebSphere Commerce V5.4 Developer’s Handbook

http://www7b.software.ibm.com/wsdd/library/techarticles/0204_searle/searle.html

Figure 4-11 Create a New Server Instance and Configuration

3. Click Finish. The new server configuration folder and the new server instance
appear under the project folder in the Navigator view.

Associating the project to the server configuration
Once you have created a server configuration and instance, you will need to
associate the Enterprise Application with the server configuration:

1. If the Server Configuration view is not on the workbench, on the main menu
bar, click Perspective -> Show View -> Server Configuration.

2. Expand the Server Configurations folder and right-click on the server
configuration previously created, i.e. WCDev WTE, and select Add project ->
WebSphere Commerce Enterprise Application - demo.

3. The association is being made an you can now expand the server
configuration to find the Enterprise Application.
 Chapter 4. Planning and development 115

Modify the server configuration
To be able to run the WebSphere Commerce in WebSphere Studio Application
Developer you need to modify the server configuration. Follow these steps to
complete the server setup:

1. Go to the Servers view. If you cannot find it in the perspective, on the main
menu select Perspective -> Show View -> Servers.

2. Expand Server Configurations, right-click the server and select Open.

3. The server configuration opens. Click on the General tab.

4. Select APPLICATION as Module visibility and check Enable administration
client.

5. Click on the Web tab.

6. Make sure that the Enable session manager is not checked, Enabled URL
rewrite is checked and that Enable cookies is checked.

7. Click on the Data source tab.

8. Click Add on the button next to the list of datasources.

9. When the Add a Data Source window appears, enter the following
information:

– Name = WebSphere Commerce DB2 DataSource demo

– JNDI name = jdbc/WebSphere Commerce DB2 DataSource demo

– Database name = VAJ_Demo

– For Default user ID/password, enter the user ID and password you use to
access the VAJ_Demo database.

10.Click OK.

11.Click on the Ports tab.

12.Next to the HTTP transport list, click Add.

13.When the Add a HTTP Transport window appears, enter * as Host name and
80 as Port. Verify that Enable SSL is not checked and that External is
checked. Click OK.

14.Next to the HTTP transport list, click the Add.

15.When the Add a HTTP Transport window appears, enter * as Host name and
443 as Port. Verify that Enable SSL is checked and that External is checked.
Click OK. The server configuration should now look like Figure 4-12.

Important: Make sure to specify the database created at the setup of
WebSphere Commerce Studio installation.
116 WebSphere Commerce V5.4 Developer’s Handbook

Figure 4-12 Server ports settings

16.Close the window. You will be prompted to save the changes. Click Yes.

Modify the server instance
The JVM that is to run WebSphere Commerce in WebSphere Studio Application
Developer needs to get some system properties passed at start-time. Follow
these steps to configure your instance:

1. Go to the Servers view. If you cannot find it in the perspective, on the main
menu select Perspective -> Show View -> Servers.

2. Expand Server Instances, right-click the server and select Open.

3. Click on the Environment tab.

4. Click Add to add a new system property.

5. As Name enter com.ibm.wca.logging.configFile and as value enter
C:\WCDev\CommerceServerDev\xml\loader\WCALoggerConfig.xml.

6. Click OK.

Attention: Make sure that you enter the path to the CommerceServerDev
folder, and not to the CommerceServer folder.
 Chapter 4. Planning and development 117

7. Repeat step 4 to 6 until you have all names and values listed in the box as
specified in Table 4-5.

Table 4-5 System Properties

8. Click on the Paths tab.

9. Click on the Add Folder button next to the Class Path list box (not the
WebSphere specific class path list box).

10.Scroll to and expand the WebSphere Commerce Enterprise Application -
demo folder.

11.Select the properties folder.

12.Click OK. The properties folder will now be listed in the Class Path list box.

13.Close the window. You will be prompted to save the changes. Click Yes.

Start the server
To start the server instance, follow these steps:

1. Go to the Servers view. If you cannot find it in the perspective, on the main
menu select Perspective -> Show View -> Servers.

2. Right-click on the server instance and select Publish.

3. When the publishing is complete, close the popup window by clicking on OK.

4. Right-click on the server instance and select Start.

5. A Console view opens and you can follow the startup process of the instance.
It is ready when then final line in the console view reads

Define virtual host for the server instance
After the first time the server instance is started, it is necessary to define the
virtual hosts to be used for the Enterprise Application. Follow these steps:

Name Value

com.ibm.wca.logging.configFile C:\WCDev\CommerceServerDev\xml\loa
der\WCALoggerConfig.xml

javax.rmi.CORBA.UtilClass com.ibm.CORBA.iiop.Util

com.ibm.websphere.ejbcontainer.FbpkAl
waysReadOnly

true

com.ibm.ws.classloader.ejbDelegationMo
de

false

com.ibm.CORBA.iiop.noLocalCopies true
118 WebSphere Commerce V5.4 Developer’s Handbook

1. If the Server Configuration view is not on the workbench, on the main menu
bar, click Perspective -> Show View -> Server Configuration.

2. Expand Server Instances and right-click on your server instance and select
Run administrative client.

3. A browser window opens and soon you are prompted for a user ID. The user
ID is only for logging purposes and thus you might enter anything. Click
Submit.

4. Expand the Node tab until you see your server under Enterprise Applications.

5. Click on the Modify virtual host mapping link.

6. When the Application Installation Wizard appears, verify that default_host is
selected as Virtual Host Name for all Web modules. Click Next to continue.

7. To confirm the changes, click Finish.

8. Save the changes made by clicking Save on the toolbar and then click OK
when the Save Configuration page appears.

9. Close the window.

10.Go to the Servers view. If you cannot find it in the perspective, on the main
menu select Perspective -> Show View -> Servers.

11.Right-click on the server instance and select Stop.

12.Follow “Start the server” on page 118, to publish and start the server again to
make the virtual host settings effective.

Browse to Store Services
You are now ready to browse to the Store Services and create a new store.
Follow these steps to access and setup the store in WebSphere Studio
Application Developer:

1. Open a browser window and type the URL:

https://localhost/webapp/wcs/tools/servlet/ToolsLogon?XMLFile=devtools.Logo
n

2. After a few seconds, the logon page to the Store Services will appear. Enter
Store Services using the wcsadmin userID and publish a store.

Author Comment: Refer to another chapter below.
 Chapter 4. Planning and development 119

http://localhost:8080/webapp/wcs/tools/servlet/ToolsLogon?XMLFile=devtools.

Note that in comparison to the WebSphere Test Environment in VisualAge for
Java, you are able to do HTTPS requests due the e-fixes you applied and to the
set up you have just completed.

4.5.4 The second installation
The migration work from VisualAge for Java to WebSphere Studio Application
Developer involves a lot of work, and it is only necessary to be done once. This
section will provide a short description on how to setup a second WebSphere
Commerce development environment with WebSphere Studio Application
Developer.

Installation
The installation process of a second machine with WebSphere Commerce and
WebSphere Studio Application Developer comprise the following steps:

� Save the workspace

� Simulate a VisualAge for Java installation

� Install WebSphere Commerce Studio

� Install WebSphere Studio Application Developer

� Post-install set up

Save the workspace
We recommend that you copy the entire workspace from the original machine, as
it is the quickest and most efficient way to setup a second machine. By doing a
workspace copy, you will get a configured test server as well as the complete
enterprise application.

Prior to saving the workspace, remove the cached pages of the enterprise
application. These can be found at WebSphere Studio Application
Developer\workspace\.metadata\.plugins\com.ibm.etools.server.tools\tmpX\cach
e\localhost\Default
Server\WebSphere_Commerce_Enterprise_Application_-_demo\.

Simulate a VisualAge for Java installation
If you do not have VisualAge for Java installed on your system, and do not want
to have it installed, you need to do a simulation of an VisualAge for Java
installation to be able to install WebSphere Commerce Studio together with a
database.

Tip: Refer to , on how to create and publish a store.
120 WebSphere Commerce V5.4 Developer’s Handbook

Complete these steps to set up a simulated VisualAge for Java installation:

1. On the machine used for the migration work, use the Windows Registry Editor
to export the VisualAge for Java properties. These are found at: MY
COMPUTER - HKEY_LOCAL_MACHINE - SOFTWARE - IBM - VisualAge for
Java for Windows.

2. Copy the exported file onto the new machine and execute the file to import
the registry settings.

3. Create the VisualAge for Java directory on the new machine at the same
location as on the installed system. For example c:\WCDev\VAJ.

Install WebSphere Commerce Studio
Follow the instructions in “Install WebSphere Commerce Studio” on page 86,
with the following exceptions:

� When the Select Components window appears, only select Develop Store
Back-Office Logic using VisualAge for Java as a Development Type.

� Do not include a sample store with the installation.

� When you are to provide the Database information, you must provide the
same userid and password as is being used on the original machine.

Install WebSphere Studio Application Developer
Follow the installation instructions provided in “Install WebSphere Studio
Application Developer” on page 101 and apply the e-fixes as described in “Apply
e-fixes” on page 102.

Post-install set up
To finish the installation set up, complete the following steps:

1. Remove the fake VisualAge for Java folder and registry settings.

2. Move the saved workspace from the original machine to the installation
directory of WebSphere Studio Application Developer on the new machine.

3. Restart the machine.

Attention: Inaccurate changes to the Windows registry can cause your
computer to stop functioning properly. Do not do these steps if your do not
know exactly what you are doing.

Tip: The exported registry file contains the directory information. Search for a
parameter named Directory and you will find the installation directory of
VisualAge for Java.
 Chapter 4. Planning and development 121

Configuration
When the installation is complete, some verifications in WebSphere Studio
Application Developer are necessary. Follow these steps:

� Update Enterprise Application configuration

� Update Web module settings, VAJ_Demo.xml and Server Instance

� Update server configuration

Update Enterprise Application configuration
The Web modules path configuration needs to be updated in the Enterprise
Application configuration file, application.xml. Follow these steps:

1. Start WebSphere Studio Application Developer and go to the J2EE
perspective.

2. Expand the Enterprise Applications in the J2EE view and double-click on
WebSphere Commerce Suite.

3. If you installed WebSphere Studio Application Developer in a different
directory relative to the root drive in comparison to the original machine, you
will be prompted to auto correct the absolute path of the modules. Click Yes.

4. Save and close the application.xml file.

Update Web module settings, VAJ_Demo.xml and Server Instance
Follow the section “Switch to the development instance” on page 108, to get
instructions on how to verify that the information passed to Web modules, as
configuration parameters, are correct and how to configure the instance
configuration file, VAJ_Demo.xml, to enable the instance to be used with
WebSphere Studio Application Developer.

Verify that the path statement for the com.ibm.wca.logging.configFile system
property in the server instance configuration is correct. Refer to Table 4-5 on
page 118.

Update server configuration
You might need to update the server configuration. This is necessary if you
installed WebSphere Studio Application Developer in a different directory relative
to the root drive in comparison to the original machine. Follow these steps to
complete the update of the server configuration:

1. Go to the Server perspective in WebSphere Studio Application Developer.

2. Verify that you got a server instance as well as a server configuration in the
Server Configuration view. If you do not see the Server instance, do a
Refresh from Local on the Server project.

3. In the Server Configuration view, right-click the server and select Open.
122 WebSphere Commerce V5.4 Developer’s Handbook

4. If any changes to the server configuration are necessary, you will be
prompted to automatically have the paths updated. Click Yes.

5. Save and close the server configuration.

4.5.5 Developing in WebSphere Studio Application Developer
When developing commands and EJBs within the J2EE framework, you need to
store the code in a location reachable for the Enterprise Application. We have
found the easiest way to develop in WebSphere Studio Application Developer is
to use a temporary directory to keep the application code in and which path has
been added to the Application Servers classpath.

When the code is complete, we deploy the code as a JAR file and add it to the
Enterprise Application.

As a short introduction in developing WebSphere Commerce components in
WebSphere Studio Application Developer, we will in this section provide an
example on how to create and test a very simple command. This section will not
explain the coding done, as its intension is to provide guidance in how to create
the code in WebSphere Studio Application Developer and how to test it.

The tutorial is devided in the following sections:

� Create an example

� Configure the WebSphere Test Environment

� Test the command

Create an example
Follow these steps to create an easy example in WebSphere Studio Application
Developer:

1. Create a new Web project with the name WCDevelopment and in the Web
Project Wizard add it to the Enterprise Application as shown in Figure 4-13.
Click Finish.

The intension is that we will now use this created Web project for all
WebSphere Commerce development. A Web module has now been added to
the Enterprise Application, but if necessary it may be removed (and replaced)
from the Enterprise Application Editor.

Tip: The Enterprise Application editor is accessble from the J2EE view.
Right-click the Enterprise Application and select Open With -> Application
Editor.
 Chapter 4. Planning and development 123

Figure 4-13 Create a Web Project

2. In order for the command we are about to create to be compiled, the module
dependencies for the Web project needs to be updated. Right-click the project
folder and select Edit Module Dependencies.

3. The Module Dependencies Dialog appears, and we select all the available
dependent JAR files in the listing. Click Finish.

Of course you only need to add the dependant JAR files for your command,
but as we plan to use the same Web project for comming WebSphere
Commerce development we might as well add all to the project.

4. Go to java perspective and from the main menu select File -> Import.

5. When the Import wizard appears, select to import a ZIP file. Click Next to
continue.

6. Browse to the additional material of the redbook and select the
NewWsadContollerCmd.zip as the ZIP file to be imported. Refer to
Figure 4-14 for the other settings in the import guide. Click Finish.

The code is now being imported to the WCDevelopment project on the
workbench.
124 WebSphere Commerce V5.4 Developer’s Handbook

Figure 4-14 Import MyNewWsadContollerCmd

7. Now we will import the JSP page that is going to be the page called upon by
the controller command. From the main menu, select File -> Import.

8. When the Import wizard appers select to import a File system resource. Click
Next.

9. Set the import properties as shown in asdf to import the WsadSample.jsp file
to the webApplication directory of the wcstores project. Click Finish when
ready.

Author Comment: MyNewWsadControllerCmd.zip is additional material

Author Comment: The JSP file is additional mtrl
 Chapter 4. Planning and development 125

Figure 4-15 Import JSP file

10.To be able to test the command in WebSphere Test Environment we will have
to register the command in the URLREG table and the view it is calling in the
VIEWREG table. Run the following SQL statements to your VAJ_Demo
database to get them registered:

a. insert into URLREG (URL,STOREENT_ID,INTERFACENAME,HTTPS,
DESCRIPTION,AUTHENTICATED) values (’MyNewWsadControllerCmd’,0,
’com.ibm.commerce.wc54handbook.commands.MyNewWsadControllerCmd’,0
,null,null)

b. insert into VIEWREG (VIEWNAME,DEVICEFMT_ID,STOREENT_ID,
INTERFACENAME,CLASSNAME,PROPERTIES,DESCRIPTION,HTTPS,LASTUPDATE)
values (’WsadSampleViewTask’,-1,0,
’com.ibm.commerce.command.ForwardViewCommand’,
’com.ibm.commerce.command.HttpForwardViewCommandImpl’,
’docname=WsadSample.jsp’,null,0,null)

11.To be able to run this command, we need to specify its command level access
control. The policies have been specified in a file named
126 WebSphere Commerce V5.4 Developer’s Handbook

WsadSampleCmdACPolicy.xml and it is loaded by completing the following
steps:

a. Copy the XML file to c:\WCDev\CommerceServerDev\xml\policies\xml
directory.

a. Open a command prompt at where the WsadSampleCmdACPolicy.xml file
is located.

b. Issue the acpload command by executing the following statement:

c:\WCDev\CommerceServerDev\bin\acpload VAJ_Demo userID password
WsadSampleCmdACPolicy.xml

Configure the WebSphere Test Environment
In order for the new classes to be found, we need to modify the class path in the
test server instance configuration. Follow these steps to complete the
configuration:

1. Go to the Server perspective.

2. In the Server view, right-click the server instance and select Open.

3. Click on the Paths tab.

4. Click on Add Folder and select the /webApplication/WEB-INF/classes folder
of the WCDevelopment project to add the folder to the class path. The
configuration will look like Figure 4-16.

Tip: View the generated file messages.txt to verify that the load has been
successful. The last row should read: Number of records committed: 3.

Author Comment: WsadSampleCmdACPolicy.xml is additional mtrl
 Chapter 4. Planning and development 127

Figure 4-16 Add folder to class path

5. Close the configuration window, and when prompted click Yes to save the
changes.

Test the command
In order to test the command, follow these steps:

1. Make sure that the WCDevelopment project has been built. This can be done
by right-clicking the project folder and select build project.

2. Go to the Servers view in the Server perspective.

3. Right-click on the server and select Publish. When the publishing is
complete, click OK to close the window.

4. Right-click on the server and select Start. The start up procedure of the
application server commence.

5. When the console output reads Server Default Server open for
e-business, open a browser window and enter the following URL:

Note: This is only necessary if you have disabled the Auto-build option in the
Workbench preferencies.
128 WebSphere Commerce V5.4 Developer’s Handbook

http://localhost/webapp/wcs/stores/servlet/MyNewWsadControllerCmd

After a few seconds the browser displays a page as shown in Figure 4-17.

Figure 4-17 The command output
 Chapter 4. Planning and development 129

http://localhost/webapp/wcs/stores/servlet/MyNewWsadControllerCmd
http://localhost/webapp/wcs/stores/servlet/MyNewWsadControllerCmd

130 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 5. Creating a store

This chapter discusses store architecture in WebSphere Commerce Business
Edition, creating new stores by either modifying the sample stores,developing
new store assets or a combination of both. Details about packaging and
deployment of a store are discussed in Chapter 7, “Packaging and deployment”
on page 201.

5

© Copyright IBM Corp. 2002. All rights reserved. 131

5.1 Stores architecture overview
You need to have a good understanding of store architecture and the
components of a store, before deciding how to create a store. The following
sections provide an overview of store architecture, components and assets.

5.1.1 Store assets and components
A commerce store consist of the following assets:

� Web assets
� Business logic (Enterprise JavaBeans and commands)
� Store data

The Web assets of your store are the interface that users would be using to
interact with the store, this typically consists of JSPs HTMLs and images. Users
will be able to view catalog’s, place or review orders through this interface

Business logic for a stores operation is created as reusable components either in
the form of Enterprise JavaBeans or commands. These are often shared by all
the stores in a Commerce Server. Users may customize the existing business
logic to suit their business. Extending business logic and creating new business
logic is extensively discussed in IBM WebSphere Commerce Programmers
Guide Version 5.4,

Store data comprises data about catalogs,orders,shipping methods, fulfillment
centers, payment options, taxes and discounts, contracts and so on. Some of this
data may be shared among stores but not all data needs to be shared. Data from
all the stores of a single Commerce Server instance is stored in common
repository.

These assets are owned and maintained by various components of a Commerce
Server. The list of components that a store would contain are

� Commerce Server
� Commerce instance
� Store configuration

WebSphere Commerce Server provides the store with related functions to run a
commerce solution over the Web, the business logic and the store assets are
stored in the Web application server. This provides a default Web application
which can hold Web assets of a single or multiple stores. Users may also create
a different Web application to hold Web assets of a single or multiple stores.
132 WebSphere Commerce V5.4 Developer’s Handbook

A Commerce Server instance, is an enterprise application running on the
WebSphere Application Server, it may contain single or multiple stores.The
instance provides the store with the required business logic to process and
persist data. All the stores residing on a single commerce instance share the
same Enterprise JavaBeans and commands, and they also share a common
database.

5.1.2 Store design
Stores in WebSphere Commerce Business Edition follow the
model-view-controller based design. In the model-view-controller based design,
data is modeled in a class with has get and set methods to retrieve and set its
data attributes, in this case Java beans are used as models which wrap access
beans or the Enterprise JavaBeans. A controller is usually a servlet which, based
on the incoming request, invokes the appropriate business process and sends a
response back to the client in the form of a view. The client primarily interacts
with the view.

In a commerce site, the request servlet acts as a primary controller which parses
the client request and invokes the requested command using the Web controller.
When the requested command is a view command the user request is
forwarded/redirected to a different view. When the requested command is a
controller command it invokes the appropriate task commands based on the
business process and sends a response back to client.

The business logic of the commerce application is wrapped inside the task
commands, controller commands invoke the appropriate task command based
on the business process. Data in the database is manipulated via entity beans.
Commands do not directly interact with entity beans instead the use access
beans to interact. Databeans are created to model data that can be used in a
view.

For all commands there are post and pre commands defined in the Commerce
Server, and when you wish to modify the functionality of a command, it is best to
over ride these pre or post commands instead of overriding the task/contoller
commands. For example if you wish to modify the business logic registering a
user in the Commerce Server, you can either extend the
PreUserRegistrationAddCmd or the PostUserRegistrationAddCmd. When you
want to add functionality after the user is registered you extend the
PostUserRegistrationAddCmd, and when you want to add or modify functionality
before the user is registered in the system you can extend the
PreUserRegistrationAddCmd.
 Chapter 5. Creating a store 133

The steps to be followed to override the command and register the command are
described in detail in the IBM WebSphere Commerce Programmer’s Guide
Version 5.4.

5.2 Store development
WebSphere Commerce provides users with multiple options for creating a store

� Creating a store based on the sample stores shipped with the WebSphere
Commerce.

� Creating a store by developing new store assets,

� Creating a store using a combination of the above.

Chapter Chapter 4, “Planning and development” on page 71 provides more
details on the tool that vcan be used for creating stores.

5.2.1 Creating a store based on sample stores
WebSphere Commerce provides sample stores which showcase the capabilities
of the product, and these can be used to create custom stores by modifying the
store assets. The store models that are available for WebSphere Commerce
Business Edition V5.4 are:

� InFashion (B2C)
� NewFashion (B2C)
� ToolTech (B2B)
� WebAuction (B2C)
� WebFashion (B2C)

Each of these store models, showcase different business scenarios. For example
ToolTech showcases a business-to-business scenario, InFashion and
WebFashion showcase a business-to-consumer scenario. Based on their
business needs a user can select the best store and customize the store.

Sample stores are shipped in a store archive (SAR) format. These file format’s
can be directly published to the Commerce Server using Store Services. There is
also a command line option, available which can be used to publish stores on to
the Commerce Server.

The following are the components of a SAR file:

Note: Not all the sample stores listed above are shipped with the product. In
some cases they are available as downloads.
134 WebSphere Commerce V5.4 Developer’s Handbook

� Access control polices
� Business policies
� Catalog data
� Contracts
� Commands
� Tax and shipping
� Store data
� Web assets

In addition to this the SAR file contains deployment descriptors with information
about how the store should be installed.

Create organization and assign roles
An organization has to be created in the Commerce Server and assigned the role
of a seller. An organization can be created from the WebSphere Commerce
Administration Console. The procedure of creating an organization is:

1. Logon to Administration Console. and select Site in the Site/Store Selection
window.

2. Select Access Management -> Organizations.

3. Click New. Figure 5-1 will be displayed.

Note: To create a store archive that can be used as a sample with Store
Services, see the IBM WebSphere Commerce Store Developer’s Guide
Version 5.4
 Chapter 5. Creating a store 135

Figure 5-1 Create new organization

4. Enter Name of the organization in Short Name field.

5. Select Organization Type.

6. Click Next.

7. Provide address information.

8. Organization contact information is not mandatory.

9. Click Finish to complete the creation of the organization

10.Select the organization you have just created and click Roles.

11.Select the role which you want to assign and click Add.

12.Click OK when you are done.

Tip: Please make sure you add all the roles that this organization should
support. The users of this organization may not have roles assigned other
than the roles of the organization.
136 WebSphere Commerce V5.4 Developer’s Handbook

Create users and assign roles
In order to create a store in the Commerce Server, you need to have the following
users created, and appropriate roles assigned.

� Site Administrator (In case you are not using the default)
� Seller Administrator
� Store Administrator
� Store Developer

What follows is list of steps to create users in the WebSphere Commerce
Administration Console, and assign roles to users.

1. Log on to Administration Console and select Site in the Site/Store Selection
window.

2. In the Access Management menu, select Users

3. Click New. Figure 5-2 will be displayed

Figure 5-2 Create new user
 Chapter 5. Creating a store 137

4. Enter data in last name, logon id, password and password verify, fields.

5. Business profiles are non-mandatory fields, if required you may enter relevant
data into these fields.

6. Select the organization that the new user would belong to.

7. Enter address information

8. Enter contact information if required, it is not a mandatory.

9. Click Finish to complete user creation.

10.Select the user to whom you wish to assign roles, and click Roles

11.Select the organization that the user will play a role for, select the role, and
then click Add.

12.Click OK when complete.

Change store database assets
When you select a store model to customize, the archive already has some data
in the form of XML files in it. In most of the cases to modify the data you will have
to edit the XML manually

Some of the store data, can be edited by using Store Services for example, you
can modify shipping and tax information using Store Services, and edit the store
profile. Store data like product or catalog data can be either modified directly by
editing the XML before the store is published or can be modified after the store is
published by using the WebSphere Commerce Accelerator. You can create new
products and categories as well as associate products with categories.

When is store is published its data is loaded as in the order specified in the
sarinfo.XML. This follows a pre-defined order, so the order of the assets you wish
to create should follow the order specified in the XML. Make sure the parent table
assets precede the child table assets.

Please refer the IBM WebSphere Store Developers Guide to get more
information about creating store data assets. This manual discusses creating
assets by modifying existing assets and describes the tools that are available to
modify assets. It also details methods of packing assets.

Note: Details of how to create store assets are discussed in detail in IBM
WebSphere Commerce Store Developer’s Guide Version 5.4
138 WebSphere Commerce V5.4 Developer’s Handbook

Modifying Web assets
The store front which is primarily JSP, HTML, and image files is zipped and
bundled as a part of the SAR file. You can extract the Webapp.zip file using Store
Services or you can directly unzip it into a new folder and modify the JSPs as
dictated by business needs, and then repackage the JSPs and other store front
assets as Webapp.zip.

To modify Web assets, you can use WebSphere Studio, where you can import
the SAR file directly to the workspace and work on the Web assets. Please refer
to Chapter 4, “Planning and development” on page 71 for more information on
tooling.

A standard naming convention for JSPs is maintained across sample stores, but
in few cases the JSPs may have variation in the name’s used. There are few
JSPs that act as controllers in each subsystem to control the navigation between
JSPs.

For example the logon process in controlled by LogonForm.jsp as shown in
Example 5-1.

Example 5-1 LogonForm of ToolTech Sample Store

//Parameters may be encrypted. Use JSPHelper to get URL parameter instead of
request.getParameter().
JSPHelper jhelper = new JSPHelper(request);

String storeId = jhelper.getParameter("storeId");
String catalogId = jhelper.getParameter("catalogId");
String languageId = jhelper.getParameter("langId");

boolean isError = false;
String[] strArrayAuth = (String
[])request.getAttribute(ECConstants.EC_ERROR_CODE);
if (strArrayAuth != null) isError = true;
String userType = cmdcontext.getUser().getRegisterType().trim();

String incfile = null;

if (!userType.equalsIgnoreCase("G"))
{
// User is registered - show their User Account Profile
incfile = storeDir + "UserAccount.jsp";
}

else
{
// User is not registered - show Logon Page again
incfile = storeDir + "LogonDisplay.jsp";
}

 Chapter 5. Creating a store 139

%>

<jsp:include page="<%=incfile%>" flush="true"/>

Based on a predefined attribute the form decides which view needs to be
displayed. In the example shown above, if the customer is a guest shopper the
view is redirected to the logon page, and if the customer is a registered user the
view is redirected to home page.

There is a generic JSP called GetResource.jsp that is created in all the store
models to provide NLS support. It initializes the store properties files based on
the locale using information extracted from the command context.This JSP can
be reused, in case you wish to provide NLS. Example 5-2 shows the
GetResource.jsp used by the ToolTech sample store.

Example 5-2 GetResource.jsp of ToolTech store

CommandContext cmdcontext = (CommandContext)
request.getAttribute(ECConstants.EC_COMMANDCONTEXT);
Locale locale = cmdcontext.getLocale();

String storeDir = (String) request.getAttribute("storeDir");
String fileDir = (String) request.getAttribute("fileDir");
String includeDir = (String) request.getAttribute("includeDir");
String bundleDir = (String) request.getAttribute("bundleDir");
String storeName = "";

if (storeDir == null)
{

storeDir = sdb.getJspPath();
fileDir = sdb.getFilePath();
includeDir = storeDir + "include" + "/";
bundleDir = sdb.getDirectory();
storeName =

sdb.getDescription(cmdcontext.getLanguageId()).getDisplayName();
request.setAttribute("storeName", storeName);
request.setAttribute("storeDir", storeDir);
request.setAttribute("includeDir", includeDir);
request.setAttribute("fileDir", fileDir);
request.setAttribute("bundleDir", bundleDir);

}

140 WebSphere Commerce V5.4 Developer’s Handbook

ResourceBundle tooltechtext = (ResourceBundle)
request.getAttribute("ResourceText");

if (tooltechtext == null)
{

tooltechtext = ResourceBundle.getBundle(bundleDir + "/tooltechtext", locale
);

request.setAttribute("ResourceText", tooltechtext);
}
response.setContentType(tooltechtext.getString("ENCODESTATEMENT"));

%>

You can also add new JSPs according to business needs. Make sure you have
view commands created for the new JSPs and that you assign necessary access
to customers so that these JSP can be used. You may also extend controller or
task commands to override the business logic to suit your needs. Again care
must be taken when providing access rights.

Create business accounts
Business accounts are created to establish a relation between organizations and
stores in WebSphere Commerce Business Edition. Contracts are created for
business accounts and they determine the cost of products, payment method,
shipping methods, and approval process.

A business account has the following information:

� Customer

– Customer organization,

– Contact person for customer organization,

– Whether or not shoppers can use default contract of the store.

� Representative

Department Name and Representative of the store which this customer
organization is associated with.

� Purchase order

You can specify whether the customer belonging to this account can specify a
purchase order number while an order is placed, and you can also restrict the
customer’s spending by specifying an spending limit amount for each
purchase order number.

� Invoicing
 Chapter 5. Creating a store 141

If the customer receives an invoice for the order, you can specify the mode of
delivery.

� Credit line

You can specify whether or not this account has a credit line. If it has the
credit line you need to specify the account number, and billing address for the
credit line

Users can create a business account by either editing the store XML or after the
store is published, they can create a new business account using the
WebSphere Commerce Accelerator

The steps to create a business account for a given customer organization are as
follows:

1. Log on to WebSphere Commerce Accelerator and select Sales -> Accounts
as shown in Figure 5-3.

Figure 5-3 WebSphere Commerce Accelerator home page

2. Click New to create a new business account.
142 WebSphere Commerce V5.4 Developer’s Handbook

3. Enter customer organization information as shown in Figure 5-4. In order to
have a contact person for the customer organization this business account
belongs to, first create a user and assign necessary roles to the user.

Figure 5-4 Enter customer organization information

4. You may also specify whether you want to allow users from this customer
organization to shop using the default contract of the store.

5. Select the account representative of the store and the department of the store
as shown in Figure 5-5
 Chapter 5. Creating a store 143

Figure 5-5 Account representative

6. You may specify a purchase order number for this customer organization that
users need to enter while shopping. You may also give a constraint over the
order value if the purchase order number is used. You can have different
purchase order number created for different order values. See Figure 5-6 for
an example.
144 WebSphere Commerce V5.4 Developer’s Handbook

Figure 5-6 Purchase order

7. If the store provides an invoice tothe customer organization for every order
placed, then the business account should specify the mode of delivery. By
default there are three delivery modes available. These are shown in
Figure 5-7.
 Chapter 5. Creating a store 145

Figure 5-7 Invoicing

8. If the customer organization has a credit line, you can specify the credit line
number and the billing address. If you do not define a credit line, the contract
associated with this business account cannot have a payment option of credit
line. Other payment methods will have to be assigned to the contract. See
Figure 5-8 for an example.
146 WebSphere Commerce V5.4 Developer’s Handbook

Figure 5-8 Credit line

9. Enter remarks if you have any and click OK.

Once the business account has been created for a customer organization, you
will have to create contracts for this business account. Contracts can be created
by either modifying the XML file in the SAR or you can create a contracts using
the WebSphere Commerce Accelerator.
 Chapter 5. Creating a store 147

Create contract
Contracts enable customers associated with a particular business account to buy
products from a commerce site, for a specified price, under pre-defined
conditions. A business account can have one or more contracts, and each
contract may offer the same product at different prices and use different shipping
and payment methods.

Contracts are specific to a business account, a customer organization cannot
have any contracts without an business account.

A contract in a commerce site offers the following:

� Every contract in a Commerce Server has a unique identification and a period
for which the contract will be effective.

� It lists customer organizations that this contact will be applicable for and only
users from these customer organizations will be able to use the contract. A
contract always involves both a buyer and a seller organization.

� Terms and conditions, that actually determine what the price of a product or
item would be, and which also provide information about returns, refunds,
payment, shipping modes, and order approval.

� The contract has pointers to location where a detailed description of this
contract is available.

Contracts can be created when the store is published or after the store is
published. If you wish to create the contact before the store is published, extract
the contract.XML from the sample store that you wish to customize, and edit the
contract manually. To create a contract after the store is published use
WebSphere Commerce Accelerator. Please make sure you have a business
account created, before creating a contract for a customer organization.

The steps to create a contract using the WebSphere Commerce Accelerator are
as follows:

1. Log on to WebSphere Commerce Accelerator and select the commerce site
that you wish to work on, then select Sales-> Accounts. The page that is
displayed will have the list of business accounts that exist for this commerce
site. If you want to add a contract to a existing account, you just have to select
the business account and click New Contract, if you wish to list the available
contracts for a business account, select the business account and click
Contracts. Creating a business account is discussed in “Create business
accounts” on page 141.

Figure 5-9 shows the list of contracts in a sample store.
148 WebSphere Commerce V5.4 Developer’s Handbook

Figure 5-9 Contracts

2. Enter the contract general information like name, short description. You may
also set an expiry date for this contract,by unchecking the no expiry date
check box, and entering an expiry date. You may also set a date for the
contract to be effective. See Figure 5-10 for an example.
 Chapter 5. Creating a store 149

Figure 5-10 Contract profile

3. You can specify a price for a product in two ways, you can either specify
percentage pricing or a fixed pricing.

In percentage pricing you can either markup or markdown the price of
products in the entire catalog by some percentage. You can also limit the
price change to some specific categories or products.

Using fixed pricing, you can specify a fixed price for products that will be
purchased under this contract.

See Figure 5-11 for an example.
150 WebSphere Commerce V5.4 Developer’s Handbook

Figure 5-11 Pricing Information

4. You can specify the shipping providers that this contract supports and also
provide the charge type, and the shipping address as shown in Figure 5-12.
The default shipping address would be the address of the customer
organization.
 Chapter 5. Creating a store 151

Figure 5-12 Shipping details

5. You can also specify the payment methods that this contract supports. If the
business has a credit line then you can select credit line as a method of
payment. The other payment options are picked from Payment Manager. To
install and configure Payment Manager refer to IBM WebSphere Payment
Manager for Multiplications Installation Guide.

6. Click Add to add payment methods as shown in Figure 5-13.
152 WebSphere Commerce V5.4 Developer’s Handbook

Figure 5-13 Payment methods

7. To specify the return and refund policy, click Return and select the return
policy. You may also specify refund terms and conditions. A refund can be
made through a credit line or through the other payment methods.

8. You can provide pointers to a location where details about this contract are
available.

9. Once the contract is complete click OK.

10.To deploy a contract, select the contract that you have created and, click
Submit.

11.Once the contract is successfully deployed the status should read active.

You do not not have to restart the commerce instance for this contract to be in
use.

Tip: To refresh the registries of Commerce Server do not restart the instance
but, logon to the Administration Console, and select Configuration ->
Registry. Select the registries you want to refresh and click Refresh. If you
wish to refresh all the registries click Update All
 Chapter 5. Creating a store 153

Access control policies
The earlier versions ofWebSphere Commerce provided coarse grained access
control, where you could assign permissions for a user group. In contrast
WebSphere Commerce Business Edition V5.4 provides fine grained access
control. You can define which user groups can invoke which functions of a given
business object. For example, buyers can be given access to delete orders of
their own, and not the orders of other buyers at the same customer organization.
This access is provided at the instance level as opposed to the method level.

Access control policies are the rules that which determine users belonging to a
user group can perform actions in a commerce site. You can provide access to all
operations that can be performed on a commerce site. Access control is now
externalized in WebSphere Commerce Business Edition V5.4, so you may
customize access control policies without making any modifications to the code,
all that you will have to do, is modify XML files.

Access control in WebSphere Commerce Business Edition, has the following
components:

� Access group

A group of users who share common access to a set of business object.

� Action group

A set of actions that can be performed on business objects.

� Resource group

A set of resources that can be controlled by a common policy. They can be a
group of commands, views, or contracts and so on.

� RelationShip

In some cases you may have to create a relationship between resource
groups and user groups so that only user groups who are related to the
resource group can perform actions on it. For example a user who owns a
business object in commerce site is authorized to modify it, other users
belonging to the same access group, and having common rights on the
resource group may not be able to modify the business object.

Later in this chapter we discuss how to create access policies for the commands
or views that you have created for a commerce site.

Note: For details aboutaccess control policies, refer to the IBM
WebSphere Commerce Access Control Guide Version 5.4
154 WebSphere Commerce V5.4 Developer’s Handbook

To create access policies for your customized store, you can either use the
existing user groups or create new user groups and provide access to resources.
You can create policies by either editing the XML file, or by using the
Administration Console.

Create access group
1. Log on to Administration Console and select Access Management ->

Access Groups as shown in Figure 5-14.

Figure 5-14 Administration Console access management

2. A list of access groups that are currently active in the Commerce Server
instance is displayed as shown in Figure 5-15. You may either customize
existing access groups or create new access groups. Click on New to create
new access group.
 Chapter 5. Creating a store 155

Figure 5-15 Access group list

3. Enter the name of the access group you with to create in the name field. You
may also enter a description for this access group. Select the organization
this access group will belong to and click on Next.. See Figure 5-16.
156 WebSphere Commerce V5.4 Developer’s Handbook

Figure 5-16 Access group profile

4. You can have two kinds of access groups, implicit and explicit access groups.
An implicit access group is defined by a set of conditions, anyone who
complies to these set of conditions becomes a member of this access group.
You can either have simple implicit conditions like, members with a specific
role regardless of organization can be a part of this access group, or you may
create complex rules, like members can be a part of this group, if they have a
specific role in a specific organization.

You may also include members based on their registration status, all
members having a common registration status will become a part of the
access group.

When you select no criteria you will include all users of the commerce site in
this access group.

Figure 5-17 shows an example of access group criteria.
 Chapter 5. Creating a store 157

Figure 5-17 Access group criteria

5. Click Finish to complete creation of the access group.

Create action group
Action groups are a collection of actions that can be performed by an access
group in a commerce site. You can create new actions if required or use existing
actions, and later create action groups. The action names of view commands are
the same as the view name or command name. Since it execute action that is
performed on controller and task commands the action name for controller
commands is executecommand, and the command name is execute. For actions
pertaining to databeans the action name is displaydatabean and the command
name is displayed. Example 5-3 shows XML used to define actions.

Example 5-3 Action

<!-- Executre a View Command Resource-->
<Action Name="AddFeatureDialogView"

CommandName="AddFeatureDialogView">
</Action>
158 WebSphere Commerce V5.4 Developer’s Handbook

<Action Name="PASummaryDialogView"
CommandName="PASummaryDialogView">

</Action>

<Action Name="ProductComparerListView"
CommandName="ProductComparerListView">

</Action>

<!-- Execute a controller command resource -->
<Action Name="ExecuteCommand"

CommandName="Execute">
</Action>

<!-- Allows 'display' on databean resources -->
<Action Name="DisplayDatabean"

CommandName="Display">
</Action>

Example 5-4 shows the XML that defines action groups.

Example 5-4 Action group

<!-- Action group enabling execution of command-resources -->

<!-- Action Group for Controller Commands -->
<ActionGroup Name="ExecuteCommandActionGroup"

OwnerID="RootOrganization">
<ActionGroupAction Name="ExecuteCommand"/>

</ActionGroup>

<!-- Allows 'display' on databean resources -->
<ActionGroup Name="DisplayDatabeanActionGroup"

OwnerID="RootOrganization">
<ActionGroupAction Name="DisplayDatabean"/>

</ActionGroup>

<!-- Action Group for View Commands -->

<ActionGroup Name="PAWCBEViewsActionGroup"
OwnerID="RootOrganization">

<ActionGroupAction Name="PACategoryListView"/>
<ActionGroupAction Name="AddPEFeatureDialogView"/>
<ActionGroupAction Name="PASummaryDialogView"/>
<ActionGroupAction Name="ProductComparerListView"/>
<ActionGroupAction Name="ProductExplorerListView"/>
<ActionGroupAction Name="PADynamicListView"/>
<ActionGroupAction Name="PADialogNavigation"/>
 Chapter 5. Creating a store 159

</ActionGroup>

Once you define the list of actions that a member group can perform in the
commerce site, you can logically group a set of actions into an action group.
Every action group has a owner associated with it, the owner of the action group
is the parent organization as shown in Example 5-4.

Create resource group
A resource category is a collection of resources that need to be protected by
access control. You can associate existing resource categories to a resource
group through the Administration Console, or by using XML. If you wish to add
new resource categories you must use XML.

Resource categories can be any assets of the Commerce Server including
commands, auctions , members and so on. Each resource group has a owner
associated with it and the owner is usually the parent organization.

There are two kinds of resource groups, one is an implicit resource group and the
other is explicit resource group. Implicit resource groups define a set of
resources that have common attributes and values. For example for a given store
you may give access to all the items in the catalog. You can also create explicit
resource groups be creating resource categories and explicitly assigning
resource categories to resource groups. You have to define resource actions for
resource categories. These are the actions that can be performed on this
resource category. For view commands actions need not be defined, but for
databeans and controller commands you will have to specify actions. See
Example 5-5 for a sample XML definition of a resource category.

Example 5-5 Resource category

<ResourceCategory Name="com.ibm.commerce.command.ViewCommandResourceCategory"
ResourceBeanClass="com.ibm.commerce.command.ViewCommand">

</ResourceCategory>

<ResourceCategory
Name="com.ibm.commerce.pa.admin.builder.MetaphorFeatureDataBean"

ResourceBeanClass="com.ibm.commerce.pa.admin.builder.MetaphorFeatureDataBean">
<ResourceAction Name="DisplayDataBean"/>

</ResourceCategory>

<ResourceCategory
Name="com.ibm.commerce.pa.admin.builder.CreateMetaphorControllerCmd"

ResourceBeanClass="com.ibm.commerce.pa.admin.builder.CreateMetaphorControllerCm
d">
160 WebSphere Commerce V5.4 Developer’s Handbook

<ResourceAction Name="ExecuteCommand"/>
</ResourceCategory>

You can group resource categories that fall under a common classification into a
resource group. All resources have a owner associated with them and other
relationships can exist. See Example 5-6 for a sample XML definition of a
resource group

Example 5-6 Resource group

<!-- View Command Resource Group -->

<ResourceGroup Name="ViewCommandResourceGroup" OwnerID="RootOrganization">
<ResourceGroupResource

Name="com.ibm.commerce.command.ViewCommandResourceCategory"/>
</ResourceGroup>

<!-- DataBean Resource Group -->

<ResourceGroup Name="PAWCBEDataBeanResourceGroup"
OwnerID="RootOrganization">

<ResourceGroupResource
Name="com.ibm.commerce.pa.admin.builder.MetaphorFeatureDataBean"/>

<ResourceGroupResource
Name="com.ibm.commerce.pa.admin.builder.MetaphorFeatureListDataBean"/>

<ResourceGroupResource
Name="com.ibm.commerce.pa.admin.builder.PACategoryDataBean"/>

<ResourceGroupResource
Name="com.ibm.commerce.pa.admin.builder.PACategoryListDataBean"/>

<ResourceGroupResource
Name="com.ibm.commerce.pa.admin.builder.PASummaryDataBean"/>

<ResourceGroupResource
Name="com.ibm.commerce.pa.admin.builder.WidgetListDataBean"/>

<ResourceGroupResource
Name="com.ibm.commerce.pa.admin.builder.DefaultFeatureListDataBean"/>

</ResourceGroup>

<!-- Controller Command Resource Group -->

<ResourceGroup Name="PAWCBECommandResourceGroup"
OwnerID="RootOrganization">

<ResourceGroupResource
Name="com.ibm.commerce.pa.admin.builder.DeleteMetaphorControllerCmd"/>

<ResourceGroupResource
Name="com.ibm.commerce.pa.admin.builder.CreateMetaphorControllerCmd"/>
 Chapter 5. Creating a store 161

</ResourceGroup>

Create policy
A policy associates access groups with resource groups and specifies the
actions that can be performed by the access group on the resource. There are
two kinds of policies in Commerce Server,

� Standard pPolicy

A standard policy is usually owned by an organization and all members
directly descended from this organization will get access to resources. If the
owner of a policy is the root organization, this policy is applicable site wide.

� Template policy

Template policies do not have any fixed owners, the owners are dynamic.This
policy applies dynamically to the an organization unit which owns the
resource and to its parent organization entity.You can create policies for a
commerce site either by using Administration Console or by manually
modifying the XML file.

To create a policy using the Administration Console:

1. Log on to the Administration Console and select Access Management ->
Policies.

2. Click New Figure 5-18 will be displayed

3. Enter a unique name for your policy in the name field. You may also enter an
displayname and a description for the policy as shown in Figure 5-18.
162 WebSphere Commerce V5.4 Developer’s Handbook

Figure 5-18 New policy

4. To add the user group who will be governed by this policy, click Find. From
the list of users groups that are available in the Commerce Server, you can
select one user group per policy. Select the user group you wish to add and
click OK. See Figure 5-19 for an example.
 Chapter 5. Creating a store 163

Figure 5-19 Find user group

5. Select the resource group to be accessed, from the drop down list of available
resource groups.

6. Select the action group from the drop down list of available groups.

Note: If you wish to create more resource groups use the Administration
Console and select Access Management -> Resource Groups.

Note: If you wish to create more action groups use the Administration
Console and select Access Management -> Action Groups. New actions
cannot be created using the Administration Console. Instead you will have
to manually create or edit an XML file and upload the data into the
Commerce Server
164 WebSphere Commerce V5.4 Developer’s Handbook

7. Select the type of policy you wish to create and click OK when complete.

Upload access policy using a command line
Not all policy assets can be created using the graphical interface tools in the
Administration Console. For example, actions and resources cannot be created
using the interface, instead you may have to create a XML file and upload data
into the WebSphere Commerce database. Examples of how to create these XML
files were given in “Create action group” on page 158 and in “Create resource
group” on page 160. In this section we look at the methods of mass importing the
data from these XML files into the WebSphere Commerce database using
command line utilities. Command line utilities are provided to load the following
data to commerce repository:

� ACUGLOAD

This utility is used to load User Groups to the commerce repository, You can
create a new XML file or modify an existing user group XML file. Example 5-7
shows how to use ACUGLOAD.

Example 5-7 ACUGLOAD

<commerce dir>\bin\acugload <database name> <database user> <password>
<input XML filename>

Sample Usage

C:\WebSphere\CommerceServer\bin\acugload mall db2admin db2admin
ACUserGroups_en_US.XML

� ACPLOAD

This utility is used to import access control policies to the repository. As well
as importing access control policies, you can also use this utility to import
actions, action groups, resources and, resource groups. Example 5-8 shows
how to use ACPLOAD

Example 5-8 Policy load (ACPLOAD)

<commerce dir>\bin\acpload <database name> <database user> <password>
<input XML filename>

� ACPNLSLOAD

This utility is same as ACPLOAD, except that it also provides national
language support.
 Chapter 5. Creating a store 165

5.2.2 Creating store by generating new assets.
In 5.2.1, “Creating a store based on sample stores” on page 134 we discussed
how to create stores based on a store model. In this section we discuss creating
stores from scratch. The assets that need to be generated for creating a online
store in WebSphere Commerce are.

� Web assets (This include’s JSPs, HTMLs, images.)

� Store functional data assets

– Access control assets.
– Business assets. (Business account, Business policy)
– Catalog assets.
– Contract assets.
– Taxes, shipping and fulfillment assets.

� Store configuration data assets.

Web assets
To create Web assets you may use WebSphere Studio or WebSphere Studio
Application Developer. By using WebSphere Studio you can publish the files to
the server and test the files on the server. WebSphere Studio interoperates with
VisualAge for Java. You can create a new servlet in VisualAge for Java and
import it into WebSphere Studio. You can either follow the standard naming
conventions that the other store models use for JSPs of specific subsystems or
use different names. To control the page-to-page flow of JSPs create JSPs which
include or append different JSPs based on a flag or a predefined value for an
attribute. You can also create a view command for every single JSP in the store
and control the page-to-page flow by using these view commands. In this case a
single JSP will not be used to display different content

.JSPs access data from the database via databeans or through access beans. If
required you can extend the WebSphere Commerce databeasn or access beans
to suite business needs. Controller and task commands can also be extended. If
you wish to add new fields to the database you can extend the tables as long as
you take care to maintain the referential integrity of data. If you want to customize
entity beans do so by extending the entity bean. We do not recommend directly
changing existing entity beans.

To provide national language support(NLS), the store models implement this
feature in a single JSP which loads a property file based on the locale. This JSP
is used by rest of the JSPsin the store, to get the value of a property related to
the locale. By providing the national language support in individual JSP, we
ensure that all the other JSPs will not have to load the property file so that they
166 WebSphere Commerce V5.4 Developer’s Handbook

will not have to keep track of any changes of locale.The Web assets for a new
store are packaged intoa webapp.zip file and the properties files are packaged
into a properties.zip file. After the store is published these files are extracted to
the store directory under the wcsstores.war folder.

Store functional data assets
The data assets that needs to be generated for a new store are listed in “Store
functional data assets” on page 166. There are some tools available to modify
these data assets, but in some cases you will have to edit XML files to make
modiications to the data. For example, to modify tax and shipping assets you can
use the tools provided by Store Services. For modifying other assets like the
catalog you have to edit an XML file, before the store is published. If you want to
modify this asset after the store is published you can use the tools provided by
WebSphere Commerce Accelerator. Most of the data assets are language
specific, you need to generate assets to support all the languages the store
supports. The steps to create each of these assets are discussed in detail in the
IBM WebSphere Commerce Store Developer’s Guide Version 5.4.

Store configuration data assets
These are that list of assets which define configuration parameters of a store
such as the default language supported by the store, the fulfillment centers, store
type and so on. When data is loaded into the Commerce Server repository it is
loaded in the order specified in the sarinfo.xml file which is part of the SAR file.
This file acts as a descriptor for the store archive file. The data should be loaded
such that the parent table is populated before populating the child tables. For
more information on the order in which the data needs to be loaded refer to file
<WCS_DIR>\xml\sar\sarinfo.dtd

The file store-catalog.xml specifies the catalogs and catalog entries associated
with the store. You can have multiple catalogs hosted in a Commerce Server and
share the catalogs and catalog entities amongst stores. This store-catalog.xml
file also allows specification of category groups associated to a store. Store
default values are specifed in the store-defaults.xml file. defults include the
default shipping mode for the store . In order to calculate shipping charges by
weight of a product, the weight of each catalog entry has to be mentioned in the
CATENTSHIP table. To import this data you will have to create a
store-catalog-shipping.xml file. All catalog entries in a store will need an entry in
this file if shipping by weight needs to be enabled for your store.There are no
specific tools available to create these XML files, you can use any of the XML
editors that are currently available or use WebSphere Studio to create these
XML files.
 Chapter 5. Creating a store 167

5.2.3 Create store using a mixed approach.
In 5.2.1, “Creating a store based on sample stores” on page 134 and in 5.2.2,
“Creating store by generating new assets.” on page 166 we discussed how to
create a commerce site by customizing a sample store or by developing new
store assets. Each of these approaches has different advantages, but when a
customer wants to build store and the required assets are similar to the assets of
the store models it is easier to customize an existing sample store rather than
develop allnew store assets.

If the required store data assets of the proposed commerce site are similar to
those of the sample stores, but the page-to-page flow of the new store needs to
be changed then we suggest you reuse the sample store data, and then either
modify the Web assets of the sample store or create new Web assets.After that
you should package these assets to create a new store. There is mandatory data
that needs to be created for a store and this data can be reused from the store
models. Modifying the existing XML data file requires less effort than creating
new files.

To reduce the development effort associated with creating Web assets you can
reuse the code available in a store model. For example, to create an order
approval page, you might want to modify the look and feel of the ToolTech order
approval page and reuse the code. Each store model has some unique features
so you can consider reusing code from all the different models if it meets your
needs. For example ,if you have installed WebAuction model which showcases
the auctions features of you could reuse the code that is used to display products
or items in auctions.

This mixed approach of creating a store works best when you want to create a
store which has functions similar to those of an existing store model. You can
make changes in the look and feel of the model or alter the page to page flow of
the model, and still keep the existing functions intact. In most of the cases store
catalog data will not be the sam as that in the store model, but you can still use
the catalogs of the store models as a base and modify to catalog to suite your
business needs.
168 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 6. Testing a store

This chapter explains how to define a testing strategy for e-commerce
applications, and provides guidelines on how to perform complete and
exhaustive tests before deploying a store.

It includes the following sections:

� Testing strategy, containing a summary of what to keep in mind when defining
the testing objectives for e-commerce applications

� Test planning, describing the test phase administrative planning and
explaining the problem management and version control processes

� Test phases, containing an overview of the test process phases and a
description of the typical types of testing for each phase, with some
suggestions about useful test tools

� Test cases design, explaining how to design test cases and to generate
results reports

� Test environment set-up, describing how to set-up staging servers and test
data

� Problem determination, explaining how to use the logging and tracing
features in order to identify and solve problems, with some code examples.

Note that the code reviews for checking compliance to coding standards and best
practices are considered as part of the very first test phase.

6

© Copyright IBM Corp. 2002. All rights reserved. 169

6.1 Testing strategy
Testing is a fundamental process in developing high quality applications. Before
shipping an application, you need to test it in order to find out whether it meets
the original requirements and to verify its functionality and performance. Given
the fact that an exhaustive test is virtually impossible and economically not
feasible, it is crucial to identify some clear objectives and to derive from them a
testing strategy that optimizes resources and reduces development cycle time.

Test objectives are the focus areas that must be tested in order to assure that
applications goals are achieved, and they are based on business functions,
technical requirements and project risks. Testing strategy is a high-level
specification of the testing tasks that must be accomplished in order to achieve
such objectives.

Typical focus areas for e-commerce applications are the following:

� Usability. Easy to navigate stores can capture the attention of a wider range of
potential Web customers, including those Web navigators who are new to
e-commerce and online stores.

� Scalability and performance. The customer’s experience of an online store
will be crucial in determining their disposition to actually purchase the
displayed products. Any loading page time-out or failure will be quickly
discovered by potential customers, making them move to competitors sites.

� Security. All the online store members, such as service provider, customers
and business partners, must be sure that confidential information provided
during monetary transactions are protected against loss, corruption and
misuse by either deliberate or accidental actions.

� Systems integration. E-commerce applications are usually the result of the
cooperation and integration between several applications, residing on
different systems and implemented with different technologies.

� Short development cycles. Time to market is a crucial factor for an
e-commerce application and this often means short development cycles,
usually resulting in badly tested code with a low level of quality.

A possible testing strategy based on the focus areas, project risks, and
exposuresdetailed above, is the following:

� Testing usability must be an important part of the system test phase.

� Scalability and performance criteria has to be established at the application
design phase (see also 2.3.2, “Topology configuration samples” on page 31).
Adequate measurements must begin during the functional test phase and
continue for all the system test phase. The following sections of this chapter
contain suggestions about tools that monitor and stimulate Web sites.
170 WebSphere Commerce V5.4 Developer’s Handbook

� Attention to security issues must begin during the application design phase,
and security testing has to be a considerable part of the system test efforts.
Again, the following sections of this chapter contain suggestions about
security testing tools.

� The system test environment must have an hardware, software and network
configuration as similar as possible to the production environment. Moreover,
test cases must cover all the functionality involving system integration.

� Project risks and exposures derived by a short development cycle must be
addressed and minimized by finding out and setting up the correct level of
automation for the testing process, as well as by using test tools. The
following sections of this chapter contains some guidelines about test
automation and test tools.

6.2 Test planning
Test planning defines the process schedule, the team organization and the
resources required to set up the test environment, as well as the processes of
problem management and version control.

6.2.1 The test administrative plan
Developing a test administrative plan starts with the identification and sizing of
test phases according to the defined testing strategy (see the following 6.3, “Test
phases” on page 173 for details). For a realistic sizing, the testers skill and
experience with e-commerce applications and products must be taken into
consideration.

Moreover, for each test phase, entry and exit criteria must be defined, and
specific schedules must be developed according to such criteria and to the
functions delivery plan. Even if they are often affected by changes during the
development phase, test schedules play a key role in identifying and controlling
project risks and exposures.

A complete test administrative plan deals also with the test team organization,
assigning roles and responsibilities inside the team, and with hardware and
software requirements for test tools and for all the resources necessary to set up
a testing environment as similar as possible to the production environment.

6.2.2 Problem management
Problem management is the process by which problems, that is application
defects, are identified, tracked and kept under control in a development project.
 Chapter 6. Testing a store 171

The following is a list of all the possible statuses that a defect assumes during the
test phase:

� Open. A defect has been discovered during one or more test executions and
a description of the defect and of the circumstances on which it has occurred
is provided for the development team. Usually, a severity is assigned in order
to prioritize defect fixing.

� Working. The development team accepts the defect as a recognized problem
and works on it. The correctness of the severity assigned by the tester is
verified.

� Verifying. The development team has delivered a fix for the problem. The
tester who has opened the defect is invited to verify its resolution.

� Rejected. The development team doesn’t recognize the defect as a real
problem. Reasons for the rejection must be provided to the test team.

� Closed. A member of the test team, usually the tester who has opened the
defect, must close it whenever it is in the rejected or verifying status. If the
defect has been fixed, the tester is responsible to verify its resolution before
closing it.

Even though the optimum would be to adopt an automated system, often in fast
paced e-commerce projects a member of the test team is responsible for
manually storing and generating reports on defect status.

6.2.3 Version control
Development teams typically need coordinated and controlled multi-user access
to code and project resources: a version control mechanism applied to a
common persistent repository ensures the integration and quality of interim work
products.

VisualAge for Java can configure a common repository that can be synchronized
with the local workspace of each team member: its version control features
include resource locking and a powerful mechanism to visualize the differences
between different versions of the same resource, with the possibility to choose for
each difference what must be included in the new released version.For more
information about version control in VisualAge for Java, refer to the product
manuals.
172 WebSphere Commerce V5.4 Developer’s Handbook

The repository currently supported by WebSphere Studio Application Developer
is CVS (Concurrent Version System). It allows resource synchronization between
the developer workspace and the repository, but if conflicts arise between the
resource local version and the version stored in the repository, it is necessary to
perform a manual merge between the two versions. For more information about
CVS, refer to the WebSphere Studio Application Developer manuals, or look at
the CVS Web site http://www.cvshome.com.

6.3 Test phases
The testing process can be subdivided into different phases, in such a way that
the output of each phase is a milestone on the test plan representing a known
level of integration and quality of the developed application.

For e-commerce applications, the testing process typically goes through the
following phases:

� Static test
� Unit test
� Functional test
� System test

For each of these phases, the following sections explain objectives, input (entry
criteria) and outputs (exit criteria). Moreover, they identify which team members
must be involved in the test execution, and describe typical types of test
associated, whenever available, to useful test tools.

6.3.1 Static test
Static testing allows the test process to go through all the project phases: the
results are early defects and issue discoveries which carry to less expensive and
painful changes. It involves the test team in reviews for verification and validation
of project plans, requirements analysis and application design: it starts taking as
input drafts of the documents to be reviewed, and produces as output a
completed and verified versions of them.

Also code inspections can be considered as part of the static test phase: their
objective is to check for code compliance to standards and best practices
adopted by the project (see the following section “Programming best practices”
for some basic guidelines). Typically, inspections are carried out by developers
with the most experience in the team.
 Chapter 6. Testing a store 173

http://www.csvhome.com
http://www.csvhome.com

Coding standards and best practices
Defining coding standards and best practices has the main purpose of leading
the code developed by the team to a greater consistency: more consistent code
is also easier to develop, understand and maintain, with the result of reducing the
overall project time and cost.

First of all, some basic rules have to be kept in mind:

� Every person writing code for the product must follow the code conventions.

� No standard or best practice is perfect and applicable to all situations: it is
important to understand when to apply standards as well as when not to apply
them.

� All the deviations must be documented: when a standard or best practice is
not followed, reasons and potential implications must be explained.

Note that development tools such as VisualAge for Java and WebSphere Studio
Application Developer can enforce code standards compliance and make it more
automatic and easy to accomplish.

The Java conventions detailed in the following sections are:

� Naming conventions
� Documentation conventions
� Programming best practices

These sections are intended to be only a summary of the most common Java
conventions. More details can be found in The Elements of Java Style ,
Vermeulen, Ambler et al. Cambridge University Press, ISBN 0-521-77768-2. You
can also refer to the article Writing Robust Java Code, by Scott W Ambler, at the
Web site http://www.ambysoft.com/javaCodingStandards.pdf.

Naming conventions
The general guidelines to make a good name are:

1. Use meaningful and self-explanatory names (do not omit vowels!)

2. Use domain terminology, whenever available

3. Use mixed case to make names readable: use lower case in general, but
capitalize the first letter of any non-initial word and for class and interface
names, also of capitalize the first letter of the initial word)

4. Capitalize only the first letter in acronyms

5. Avoid long names (keep them <=15 characters)

6. Avoid names that are similar or differ only in case

Table 6-1 contains a summary of naming conventions per programming item.
174 WebSphere Commerce V5.4 Developer’s Handbook

http://www.ambysoft.com/javaCodingStandards.pdf
http://www.ambysoft.com/javaCodingStandards.pdf

Table 6-1 Naming conventions per programming item

Item Naming Convention Examples

Package Use single, lower case
word for package name
and concatenate it to the
reverse internet domain.
All new package names
should be agreed with the
rest of the team.

com.ibm.commerce.wc54
handbook.commands

Class Use meaningful names in
mixed cases style, with the
first letter capitalized.
Use plurals for classes that
group related attributes,
services or constants.

MapMakerResourceBoun
dle

Interface Use meaningful names in
mixed cases style, with the
first letter capitalized.
Do not use ‘I’ as the first
letter of the Interface.
Optionally, the ‘able’, ‘ible’,
or ‘or’ postfixes can be
used.

Runnable, Prompter,
Singleton

Exception Exception class names
must follow the class
names conventions,
adding ‘Exception’ as the
last word. Optionally, they
can start with an acronym
indicating the application
to which they belong (e.g.
EC for WebSphere
Commerce).

ECSystemException
 Chapter 6. Testing a store 175

Documentation conventions
The general guidelines for a well-documented code are:

1. Comments should contain all and only information that is relevant to reading
and understanding the code.

2. Comments must document what is being done and why

3. Comments must be kept as simple and short as possible

4. Avoid comments that are likely to get out of date as the code evolves

Method Use a name fully
descriptive of what the
method does, in mixed
cases style with the first
letter in lower case.
Try to start with an active
verb whenever possible.
Use the prefix ‘is’ for all
and only the methods
returning a boolean,
including the boolean
getters.

doProcessCategoryRelati
ons(),
isRetriable()

Argument/Parameter Use meaningful names in
mixed cases style, with the
first letter in lower case.
For method arguments, it
can be used the prefix ‘a’
or ‘an’.

customer, account
or
aCustomer, anAccount

Field Use nouns in mixed cases
style, with the first letter in
lower case.
Use plurals for collections.
For final static fields and
for fields in interfaces use
all uppercase letters with
the words separated by
underscores.
Avoid using single
character for trivial local
variable (such as ‘c’ for a
char), with the exception of
counters (‘i’, ‘j’, ‘k’).

accountNumber,
COMPONENT_EXTERN

Item Naming Convention Examples
176 WebSphere Commerce V5.4 Developer’s Handbook

5. Avoid decoration, such as comments enclosed in large boxes drawn with
asterisks or other characters

6. Write the documentation before writing the code: because you’re investing
time in writing documentation, and it is supposed to make your code easier to
understand, try to take advantage of it during the development phase.

Table 6-2 contains a summary of usage conventions per each type of Java
documentation.

Table 6-2 Usage conventions per Java documentation type

Programming best practices
Table 6-3 contains a summary of best practices in Java programming that are
commonly recognized as critical to the maintainability and enhanceability of the
code.

Table 6-3 Java programming best practices

Documentation type Usage Convention

Javadoc Use javadoc immediately before
declaration of all the interfaces, classes,
methods and fields to document their
purpose and description as well as their
declaration.

C-style comment Use C-style comments for all the source
files general information (a project
standard should be defined) and for
commenting out lines of code that are
temporarily not applicable.

Single line comment Use single line comments internally within
methods to document business logic,
sections of code and declarations of
temporary variables.

Target Best practices

Code Formatting Indent nested code by 4 spaces.
Do not use tabs.
Break up long lines.
Use blocks for all if, else, while and for
statements.
Put beginning brace at the end of the line
that starts the block.
 Chapter 6. Testing a store 177

Classes and Interfaces Minimize the public and protected
interfaces.
Define the public interface for a class
before beginning to code it.
Define small classes with a small number
of methods (<30)

Fields Fields should always declared private,
except for classes that are essentially data
structure.
Use always accessor member functions to
access fields.
Use final static fields or accessor member
functions (preferred) for numerical
constants.
Always initialize static fields.
Do not hide names: avoid using the same
names for local variable as for class fields.

Accessor member functions Whenever possible, make accessors
protected and not public.
Consider using lazy initialization for fields
in the database.
For collections, add class methods to
insert and remove items.

Methods Document methods both with javadoc and
internal comments and specify the order
of operations.
Define small methods, normally with less
than 30 statements.
Indent the code.
Only have one return statement per
method
Write short and single command lines.

Property files All property files must have an header with
a description of their content.
Each property entry must be preceded by
a comment including its purpose and the
list of possible values.

Target Best practices
178 WebSphere Commerce V5.4 Developer’s Handbook

JTest
JTest is a tool to automatically perform static code analysis: it allows to define
coding standards and metric thresholds for the size and complexity of the code,
both at single class and at entire project level. It monitors coding standard
compliance and metrics, signals all the violations and produces metrics reports.
For more information about JTest, look at the Web site
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

6.3.2 Unit testing
The purpose of unit testing is to verify the internal logic and behavior of each
single unit within a class. It is performed by developers throughout the whole
implementation phase and is based on design documents and products reports
about successes and failures occurred during the test cases execution.

Note that it is fundamental to continuously perform regression tests for the
duration of the unit test phase, in order to check that the new or updated
functions do not impact the already implemented ones. Test automation
becomes a key factor in minimizing the required cost of time and resources.

The following sections describe some useful tools for performing complete and
automated unit testing.

JUnit
JUnit is an open source testing framework for Java which is included in
WebSphere Studio Application Developer and can be very useful for unit testing.

For each class to be tested with this tool, you must create a test class that
inherits the JUnit framework functions from TestCase. Moreover, you must
implement each test case to be performed by means of this class as a method
containing an exit assertion to be verified. Based on the verification of such
assertions, JUnit produces reports with a list of all the successes and the failures
occurred during the test execution.

JUnit enables you also to create a collection of test cases by using the TestSuite
class: for each test class added to the suite, it automatically detects and run all
the test methods whose name starts with test: in fact, all the test methods
should follow the naming convention of starting with test and finishing with a
name fully descriptive of what the method tests. Otherwise, you can manually
add to the suite methods that for some reason don’t respect the naming
convention. The appropriate usage of TestSuite, for instance as a group of
 Chapter 6. Testing a store 179

http://www.parasoft.com/jsp/products
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

classes testing a particular package or macro-functionality, allows you to
automatically run and produce reports for all the tests necessary to verify that
both the new implemented functions work as designed and all the other functions
have not been impacted by them.

Details about JUnit can be found at the Web site http://www.junit.org,
whereas more information about how to install and configure JUnit in WebSphere
Studio Application Developer can be found into the product manuals. Note that
the provided JAR file contains also useful examples of test case classes.

JTest
JTest, a test tool already mentioned in 6.3.1, “Static test” on page 173, provides
support for junit test with the possibility to run both its own test classes and the
JUnit ones. You can find more information about JTest at the Web site
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest.

Unit testing for WebSphere Commerce applications
JUnit and JTest fit very well the requirements of a complete and automated unit
testing in case of self-contained objects, but they are usually avoided for testing
components of e-commerce applications which leverage services provided by
the run-time WebSphere Commerce infrastructure (e.g. commands). In fact, in
this last case it’s too much an effort to implement an unit test case which can
simulate such services. Moreover, it is not really significant to test the component
on an environment totally different from the one where it will actually have to run.

As a consequence, unit testing of e-commerce application components is usually
performed on the test environment provided by VisualAge for Java and
WebSphere Studio Application Developer, where the actual WebSphere
Commerce infrastructure can be imported. Besides, the integrated debugging
and tracing features are highly effective tools for problem determination. More
information about the WebSphere test environment can be found in Chapter 4,
“Planning and development” on page 71.

In any case, JUnit and JTest can be still used for unit testing utility classes
developed in order to provide services, such as complicated computations for
processes output data, which you may want to keep isolated from the
WebSphere Commerce infrastructure.

EJB unit testing
VisualAge for Java and WebSphere Studio Application Developer provide a
client test utility that allows you to perform unit testing on the Enterprise
JavaBeans by using an user-friendly graphic interface. For more information
about it, refer to the IBM WebSphere Commerce Programmer’s Guide Version
5.4.
180 WebSphere Commerce V5.4 Developer’s Handbook

http://www.junit.org
http://www.parasoft.com/jsp/products
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

6.3.3 Functional test
The functional test is performed by the test team with the purpose of verifying
that application requirements are met by fully and separately testing each
implemented function, either new or updated, in an environment independent
from the development one. It is based on requirements analysis and design
documents and produces test cases reports (see 6.4, “Test case design” on
page 185 for details). The application test plan should put particular stress in
testing new and complex customizations, such as back-end system integration,
rather than small modifications.

The following is a list of test guidelines for each customizable WebSphere
Commerce subsystem (for details about WebSphere Commerce subsystems,
refer to 2.2.1, “WebSphere Commerce server subsystems” on page 18):

� Catalog. Test the navigation across all the categories and the proper display
of the product details pages.

� Order. Test the complete order workflow. Test order cancellation and
modification after submission.

� Membership. Test all the member subsystem functions such as registration
forms and member approvals.

� Trading. Particular attention should be put in testing this core component of
the store. Test the different trading mechanisms such as auctions, RFQ, and
catalog based trading.

� Messaging. Test the correct integration with the chosen messaging system
(MQ, SMTP server or FTP).

� Marketing. Test the creation of marketing campaigns, electronic coupons,
discounts, collaboration, and so on.

Regression and test automation
Time constraints usually limit the functional regression testing to a significant
subset of test cases. Again, test automation is fundamental. The following is a list
of test tools for automated response analysis in order to verify whether the test
has passed (for more details, refer to the “Testing guidelines” chapter in
WebSphere Commerce V5.4 Handbook Architecture and Integration Guide,
SG24-6567):

� Segue Silktest allows to test your Web site using a wide sets of Web clients
combined with several operating system. More details can be found at the
Web site http://www.segue.com

� Mercury Interactive WinRunner can be used by any Windows application: it
allows to specify expected responses in several checkpoints, and to compare
 Chapter 6. Testing a store 181

http://www.segue.com

compare them with the actual ones.More details can be found at the Web site
http://www.mercuryinteractive.com/products/winrunner.

6.3.4 System test
System testing verifies that all components, cooperate properly to meet the
business requirements. It is performed by the test team in an environment as
similar as possible to the production one. It is based on requirements analysis
and design documents and produces test cases reports (see 6.4, “Test case
design” on page 185 for details).

Different types of test can be performed during the system test phase, according
to the focus areas identified in the testing strategy. The following sections
describe the most common types of test for e-commerce application.

System integration
As noted above, system integration test is very important for e-commerce
applications which are usually the result of the cooperation and integration
between several applications, residing on different systems and implemented
with different technologies. Even though testing back-end systems integration
starts during the functional test phase, usually only during the system test it is
possible to perform integration test in a production-like environment, including
network and systems configuration.

No automation tools are available for this type of test.

Scalability and performance
Scalability and performance are such a critical issue for e-commerce applications
that adequate measurements should start from the functional test phase, in order
to verify that the application design, architecture and implementation meet the
requirements. However, it is only during the system test phase that such
measurements become really indicative of what will happen in the actual
production environment.

Testing scalability and performance usually consists of stimulating high loads on
the server and of measuring both the end-user experienced response time and
the server resources usage.

The following is a list of available tools for performing each of the above test tasks
on WebSphere Commerce applications (for more details, refer to the “Testing
guidelines” chapter in WebSphere Commerce V5.4 Handbook Architecture and
Integration Guide, SG24-6567):

� Generating Web sites load
182 WebSphere Commerce V5.4 Developer’s Handbook

http://www.mercuryinteractive.com/products/winrunner

– Segue SilkPreview is shipped with WebSphere Commerce V5.4 and
allows to specify up to five different URLs to be requested accordingly to a
configured frequency.

– OpenSTA (Open System Testing Architecture) executes test cases scripts
making them run concurrently by a configured number of virtual users.

� Measuring WebSphere Commerce performance

– WebSphere Commerce Performance Monitor periodically monitors items
as commands, URLs and Views (JSP) for a WebSphere Commerce server
instance.

– WebSphere Resources Analyzer monitors both application resource (such
as EJBs, servlet session manager and Web application instance) and
WebSphere resources (such as Java Virtual Machine, database
connection pool, transaction manager and application server thread
pools).

– DB2 has internal monitoring tools, such as Snapshot Monitor, Event
Monitor, Explain facility, db2batch tool, CLI/ODBC/JDBC Trace Facility (for
details, refer to the redbook DB2 UDB V7.1 Performance Tuning Guide,
SG24-6012).

– JVM Profiler tools monitor garbage collection and memory leaks,
performance bottleneck and deadlocks, threads interaction and objects
relations. An example of such tools is Jinsight (for details, refer to the Web
site http://www.alphaworks.ibm.com/tech/jinsight).

� Testing the end-user experience of the online store

– Page Detailer, shipped with WebSphere Application Server, Advanced
Edition, monitors the overall response time for each page of the store, and
retrieves information about timing, size and identity for each item inside
the page (for details about Page Detailer, refer to the Web site

http://ibm.com/software/webservers/studio/doc/v35/pagedetailer/EN/HTML

For more information about Web design guidelines, refer to the article
Design for performance, that can be found at the WebSphere developer
domain Web site:

http://www7b.software.ibm.com/wsdd/library/techarticles/hvws/perform.html

Security
The purpose of testing e-commerce application security is to assure that
confidential information is protected against loss, corruption and misuse either by
deliberate or accidental actions.
 Chapter 6. Testing a store 183

http://www.alphaworks.ibm.com/tech/jinsight
http://www.ibm.com/software/webservers/studio/doc/v35/pagedetaile
http://www7b.software.ibm.com/wsdd/library/techarticles/hvws/perform.html
http://ibm.com/software/webservers/studio/doc/v35/pagedetailer/EN/HTML

The following is a list of tools to test security in WebSphere Commerce
applications, divided by security areas (for more details, refer to the “Testing
guidelines” chapter in the redbook WebSphere Commerce V5.4 Handbook
Architecture and Integration Guide, SG24-6567):

� In order to keep the operating system updated with the last security fix packs,
the WebTrends NetIQ Security Analyzer tool can be used for the Windows,
Sun Solaris and Red Hat Linux. More information can be found at the Web
site http://www.Webtrends.com/products/wsa

� In order to scan Web servers log files for Intrusion Detection and simulate
attacks that can cause a store Denial of Service, you can use as test tools:

– Tivoli Intrusion Manager (refer to the Web site
http://www.tivoli.com/products/index/intrusion_mgr/)

– Computer Associates eTrust Intrusion Detection (refer to the Web site
http://www3.ca.com/Solutions/Solution.asp?ID=271)

– Mercury Interactive ActiveTest SecureCheck (refer to the Web site
http://www-svca.mercuryinteractive.com/products/securecheck/)

� In order to check and delete WebSphere Commerce temporary files that may
contain potential security exposures, the WebSphere Commerce Security
Checker tool can be configured as a scheduled task, that by default run once
a month (for more details, refer to the “Security design guidelines” chapter in
the redbook WebSphere Commerce V5.4 Handbook Architecture and
Integration Guide, SG24-6567).

Usability
Usability is a key factor for a successful online store: easy to navigate stores can
capture the attention of a wider range of potential Web customers, including
those Web navigators completely new to e-commerce and online stores.

Usability tests must be designed by testers but they must be performed by
potential end users with different levels of expertise in using Web sites: testers
must prepare a list of the typical tasks that store customers can perform, and
users must try to perform such tasks reporting the required amount of time as
well as the errors made and the difficulties found (a deep analysis of Web
usability can be found in E-Commerce User Experience, Jakob Nielsen, Rolf
Molich et al. Nielsen Norman Group, ISBN: 0-9706072-0-2).

Regression
System test must be concluded with a final regression test performed when all
the functions are stabilized and the code is frozen.Time constraints usually limit
this last regression to a significant subset of test cases: it is very important to use
test tools, such as those listed above, in order to automate this test and to
optimize the cost of time and resources.
184 WebSphere Commerce V5.4 Developer’s Handbook

http://www.webtrends.com/products/wsa
http://www.tivoli.com/products/index/intrusion_mgr/
http://www.ca.com
http://www-svca.mercuryinteractive.com/products/securecheck/
http://www3.ca.com/Solutions/Solution.asp?ID=271

6.4 Test case design
Test case design must be focused on testing strategy, types of test and test tools.
Moreover, it must be based on requirements analysis and design documents. As
part of test planning, a test case document template should be produced,
containing the following sections:

� Objectives. This is a brief summary of the test case objectives, according to
the general testing strategy and test plan.

� Environment. This a description of the hardware, software and network
configuration adopted for the test execution.

� Input. This is the list of all the inputs necessary to run the test. For each input,
it must be specified also the actual value to be used, in order to enable testers
to repeat the test and compare the obtained results.

� Description. This is a step-by-step description of all the tasks to be performed
during the test execution.

� Test tools. This is a list of the test tools used to execute the test.

� Expected results. This is the definition, as precise as possible, of the results
expected by the test case execution.

� Actual results. This is the actual test case report, containing a description of
the obtained results, with references to defects and issues discovered during
the test case execution, each one associated to its current status (see 6.2.2,
“Problem management” on page 171 for details about defects statuses). A
test case can be considered successfully executed and completed if all its
defects have been closed.

Note that it is very important to design test cases both for normal and for error
conditions, in order to verify that they are handled by the system and that they
bring to expected results.

The next section contains some samples of test cases.

6.4.1 Test cases samples
This section contains some samples of system test cases, provided in form of
tables, which have been designed in order to test customizations implemented
for the store requirements described in this redbook.
 Chapter 6. Testing a store 185

Test CICS order transactions
Table 6-4 and Table 6-5 contain system test cases designed for the customized
code implementing CICS order transactions, respectively in normal and in error
conditions. For more information about the CICS order transaction
implementation, and for a complete explanation of the environment set-up and
the deploy of the customizations, refer to Chapter 9, “Orders” on page 233.

Table 6-4 Test case for CICS order transactions in normal conditions.

Test item Description

Objectives Test the order CICS transaction function in normal
conditions.

Environment The environment set-up include:
� WebSphere Commerce 5.4 server running on

W2000 and containing:
– an instance of the ToolTech store
– the ECI J2EE related classes
– a record in the STADDRESS table that looks

like:
• address1:

tcp://gunner.almaden.ibm.com
• memberid: -2002
• address2: SCSCPAA6
• address3: ECIPROGX
• business title: ToolTech
• nickname: CTG-PROP.

� CICS server running on zOS.
� CICS Transaction Gateway V4.0.1 running

on Windows 2000 Server (in the example the
gateway ip address is:
gunner.almaden.ibm.com). The CICS
Transaction Gateway set up enables access
to the CICS region (server) SCSCPAA6.

Input A product order. Note that the information sent to the
CICS server are the id and total price of the order.

Description 1. Enter the ToolTech store.
2. Go to the product details page.
3. Enter quantity=1 and add to the shopping cart.
4. Check out the order.
5. Click Order Now in the order summary page.
6. Look in the order confirmation page for the

order number.
186 WebSphere Commerce V5.4 Developer’s Handbook

Table 6-5 Test case for CICS order transactions in error conditions.

Test tools An Internet Explorer 5.5 browser

Expected results The CICS server sends back for acknowledgement the
following transaction information, which must be stored
both in the ORCOMMENT table and in the WebSphere
Commerce instance log file.

� Application Id = SCSCPAA6

� Date

� Time in hh:mm:ss format (check the presence of
both the colons!)

Actual results The test passed all the conditions:
� the ORCOMMENT table contains the following

record:
– ORCOMMENT_ID: 10002
– ORDERS_ID: 10257
– LASTUPDATE: 2002-05-10 11:40:59.062
– COMMENTS: SCSCPAA6 10/05/02 11:38:50

� the WebSphere Commerce instance log file
contains the following entry:

==============
TimeStamp: 2002-05-10 11:40:58.765
Thread ID: <Server Thread>
Class: DoCicsTransJ2EECmdImpl
Method: performExecute
Severity: 16
Message Text: CMN1519I Generic informational
message: "CICS Transaction information for
orderId=10257: CICS Trans response='SCSCPAA6
10/05/02 11:38:50 '".

Test item Description

Objectives Test the order CICS transaction function in error
conditions: simulate the CICS server down situation by
setting a wrong IP address into the STADDRESS table.

Environment The environment set-up is the same as in the previous
case (see Table 6-4). Only the value into the address1
column of the STOREADDRESS table must be changed
as follows:
address1: tcp://gunner.almaden.ibm.com1.

Test item Description
 Chapter 6. Testing a store 187

Input A product order. Note that the information sent to the
CICS server are the id and total price of the order.

Description 1. Enter the ToolTech store.
2. Go to the product details page.
3. Enter quantity=1 and add to the shopping cart.
4. Check out the order.
5. Click Order Now in the order summary page.
6. Look in the order confirmation page for the

order number.

Test tools An Internet Explorer 5.5 browser

Expected results The WebSphere Commerce cannot connect to the CICS
server, with the following results:
� the browser shows the generic error page

explaining that the store is experiencing some
problems (there is no need to make customers
aware that the CICS server is down).

� the ORCOMMENT table does not contain any
new record because no transaction has
occurred.

� the WebSphere Commerce instance log file
contains an entry explaining the occurred
problem.

Test item Description
188 WebSphere Commerce V5.4 Developer’s Handbook

Test loading products via MQSeries
Table 6-6 and Table 6-7 contain system test cases designed for loading products
via MQSeries, respectively in normal and in error conditions. For more
information about the implementation, and for a complete explanation of the
environment set-up and the deploy of the customized code, refer to Chapter 11,
“Messaging customization” on page 291.

Table 6-6 Test case for loading products via MQSeries in normal conditions.

Actual results The test passed the following conditions:
� the browser showed the generic error page.
� the ORCOMMENT table does not contain any

new record.
� the instance log file contains the following entry:
==============
TimeStamp: 2002-05-10 11:53:29.218
Thread ID: <Servlet.Engine.Transports:10>
Class: DoCicsTransJ2EECmdImpl
Method: doTransaction
Severity: 1
Message Text: CMN0409E The following error occurred
during processing: A Resource exception occurred
when trying to connect
to:{URL=tcp://gunner.almaden.ibm.com1,
PROG=ECIPROGX, REGION=SCSCPAA6}.
Exception: javax.resource.spi.CommException:
CTG9630E: IOException occurred in communication
with CICS.
[..... the Exception stack trace].

Test item Description

Objectives Test loading products via MQSeries in normal
conditions.

Environment The environment set-up include:
� WebSphere Commerce 5.4 server running on

W2000 and containing:
– an instance of the WebFashion store
– the MA88 Product Extension Pack

� MQSeries 5.2.1 server running on the same
W2000 machine as WebSphere Commerce.

Test item Description
 Chapter 6. Testing a store 189

Table 6-7 Test case for loading products via MQSeries in error conditions.

Input An XML message describing a product identified as
“MyProduct“ to be created in the "Outerwear"
subcategory of the "Men's" category (for details, refer
to 11.5.1, “Defining XML and DTD for the command” on
page 300).

Description 1. Put the XML content on the "wcs_inbound_ser"
queue via the MQSeries explorer.

2. Enter the WebFashion store.
3. Browse the "Outerwear" subcategory in the

"Men's" category.
4. Verify that the MyProduct is properly shown on

the page.

Test tools 1. An Internet Explorer 5.5 browser.
2. The MQSeries 5.2.1 client.

Expected results The product and its items are properly shown on the
web page with their attributes.

Actual results The test passed all the conditions.

Test item Description

Objectives Test loading products via MQSeries in the error
condition of an inbound XML message describing a
product to be created into a non-existing category.

Environment The environment set-up is the same as in the previous
case (see Table 6-6).

Input The same XML message as in the previous case (see
Table 6-6), but with the category identifier changed from
"Outerwear" to "Outerwaer", in the following way:
<categoryrelations>

<categoryrelation
categoryidentifier="Outerwaer"
catalogidentifier="WebFashion"
sequence="0"
action="create"/>

</categoryrelations>.

Test item Description
190 WebSphere Commerce V5.4 Developer’s Handbook

6.5 Test environment set-up
In order for the testing to be effective, we recommend that you set up a test
environment independent from both the development and the production
environments, but as similar as possible to production.

Moreover, after your store have been published and is working online, when the
maintenance phase is entered, then the test environment allows the site
administrator to perform verifications and measurements without affecting the
production system, and to test any necessary change of product catalogs or
shopping functions before publishing it into the online store.

Description 1. Put the XML content on the "wcs_inbound_ser"
queue via the MQSeries explorer.

2. Enter the WebFashion store.
3. Browse the "Outerwear" subcategory in the

"Men's" category.
4. Verify that the MyProduct is not shown on the

page.

Test tools 1. An Internet Explorer 5.5 browser.
2. The MQSeries 5.2.1 client.

Expected results � The product is not loaded.

� the WebSphere Commerce instance log file
contains an entry explaining the occurred
problem.

Actual results The test passed the following conditions:

� The product is not shown in the browser

� the instance log file contains the following entry:
==============

TimeStamp: 2002-05-20 17:29:57.781
Thread ID: <Thread-10>
Class: com.ibm.commerce.wc54handbook.com-
mands.MQProductCategoryRelationsCmdImpl
Method: getCatgroupId
Severity: 1
Message Text: CMN0409E The following error occurred during
processing: Error when retrieving catgroupId by
identifier Outerwaer and memnberId 7000000000000000001.

Test item Description
 Chapter 6. Testing a store 191

WebSphere Commerce provides support for setting up a test environment in
which a staging server works with a test data base: the following section
describes these components and explains how they are related to the
correspondending production components.

6.5.1 Staging server and test data
A WebSphere Commerce staging server is a WebSphere Commerce instance
that has the same configuration of the production instance, but runs on a
separate machine and is connected to a test data base.

Any WebSphere Commerce instance can be set up as a staging server, both
during and after installation: for more information, refer to the IBM WebSphere
Commerce for Windows NT and Windows 2000 Installation Guide for use with
DB2 Universal Database Version 5.4 and to the WebSphere Commerce Version
5.4 Online Help.

The test data base contains the same schema as the production database, but
includes an additional set of tables for publishing purposes and a set of triggers
to log all the changes performed on the database.

The WebSphere Commerce staging utilities allow site administrators to copy
their production databases to test databases and to propagate changes tested
on the staging environment into the production system, according to the
information flow shown in Figure 6-1 on page 193.
192 WebSphere Commerce V5.4 Developer’s Handbook

Figure 6-1 Staging server configuration and utilities.

The following sections contain a brief description of each of the WebSphere
Commerce stage utilities shown in the above diagram. For more information,
refer to the WebSphere Commerce Version 5.4 Online Help.

Stage Check utility
The Stage Check utility allows the site administrator to identify and correct any
potential conflict of unique indexes before propagating your changes to the
production database.

Moreover, you can customize and extend this utility by adding more tables, even
your customized tables, to its check list.

mystore.com

Web Server
WebSphere
Commerce

Production
Database

Stage
Check Utility

Stage
Copy Utility

Stage
Propagate Utility

staging.mystore.com

Web Server
WebSphere
Commerce

Staging
Database
 Chapter 6. Testing a store 193

Stage Copy utility
The Stage Copy utility copies data from the production to the staging database
allowing site administrators to specify as targets individual as well as site-related
and merchant-related tables.

Stage Propagate utility
The Stage Propagate utility performs the actual propagation of changed data
from the staging to the production database.

The STAGLOG table in the test database contains information about records to
be inserted, updated or removed in the production database: already propagated
changes are flagged as processed with a ‘1’ in the STGPROCESSED column.

Note that the Stage Propagate utility can only propagate changed data in the
production database: schema changes such as new indexes or tables must be
manually executed on it by means of the command utilities contained into the
WebSphere Commerce Loader package.

Moreover, any Web resources referenced by staging records, such as images,
HTML or JavaServer Pages files, must be manually copied from the staging to
the production system.

6.6 Problem determination
Problem determination is the very first step to solve problems which can occur
both in the development and in the maintenance phases of the store.

The WebSphere Commerce logging service supports site administrators by
storing information about the commerce server activity and by notifying them
whenever errors or abnormal conditions occur. It logs two types of information:

� Diagnostic data, which are stored in a log file for problem determination
purposes. Tracing is an example of diagnostic log.

� Activity data, which are stored in the WebSphere Commerce database to
record system events.

The logging service’s components are:

� ECTrace. It traces the run-time execution path of the store components. It is
used for problem determination purposes by the store development and
technical support teams.

� ECMessageLog. It writes into the log file diagnostic messages which help in
problem determination the development and technical support teams as well
as the site administrator
194 WebSphere Commerce V5.4 Developer’s Handbook

� UserTrafficEventListener. It stores into the WebSphere Commerce database
data about activities performed on the system to be used by the site or store
administrator.

Site administrators can configure logging by using the Log System panel of the
Configuration Manager or directly by editing the commerce instance XML
configuration file. For logging configurations that apply only to the instance
current life cycle, they can also use the WebSphere administrative console.

The logging service configurable parameters are:

� Trace and log file paths (they can have the same value if you want to merge
trace and log data into the same file)

� Trace and log maximum sizes (a new file is created every time one of these
maximum sizes is exceeded, so remember to set both to the same value, if
you want to have trace and log data always stored in the same file)

� Tracing and logging enablement (only error messages are logged by default).

� Filters by component to be applied to trace data

� Filters by severity to be applied to log data (possible values: error, warning,
status, debug, informational)

� Maximum size of the activity log’s cache

� Errors notification mechanism enablement and configuration.

Note that only the strictly necessary amount of data should be logged, in order
not to impact uselessly the system performance. For more information about
logging service components and configurations, refer to the WebSphere
Commerce Version 5.4 Online Help. Moreover, in order to perform a more
effective problem determination on your store, you must understand how to use
the error handling and tracing mechanism in your customized code. The following
sections provide some guidelines and samples. For more details see the IBM
WebSphere Commerce Programmer’s Guide Version 5.4.

6.6.1 Tracing
Tracing allows people of the development and technical support teams to debug
the store, that is to log the application data flow in order to understand the
executed path and determine which problems caused the experienced
malfunction.

As already noted, tracing can be filtered by component and must be enabled only
whenever it is necessary.
 Chapter 6. Testing a store 195

The WebSphere Commerce tracing service is performed by the ECTrace class in
the com.ibm.commerce.ras package.

In order to use tracing in your customized code, you have to:

1. Enable for tracing the EXTERN component, using the Configuration Manager

2. Set the trace entry point

3. Set trace point whenever necessary, specifying the text to be traced

4. Set the trace exit point

Example 6-1 shows as ECTrace has been used within the performExecute()
method of the MQProductCreateCmdImpl class, implemented for the customization
described in Chapter 11, “Messaging customization” on page 291.

Example 6-1 performExecute() method of the MQProductCreateCmdImpl class

public void performExecute() throws ECException {
String methodName = "performExecute";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
super.performExecute();

// call doProcess() for every product in the productVector
for (int j = 0; j < getProductVector().size(); j++) {

TypedProperty aProduct = (TypedProperty)getProductVector().elementAt(j);
setRequestPropertiesPerProduct(aProduct);
if (!doProcess(super.requestProperties))

throw new ECApplicationException(ECMessage._ERR_DO_PROCESS,
getClass().getName(), "performExecute");

cleanUp();
}
ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

}

Example 6-1 shows the trace information captured into the WebSphere
Commerce instance log file during the preceding performExecute() method
invocation.

Example 6-2 Trace information related to the performExecute() method execution.

==============
TimeStamp: 2002-05-06 12:27:48.796
Thread ID: <Thread-7>
Component: EXTERN
Class: com.ibm.commerce.wc54handbook.commands.MQProductCreateCmdImpl
Method: performExecute
Trace: ENTRY POINT

==============
196 WebSphere Commerce V5.4 Developer’s Handbook

TimeStamp: 2002-05-06 12:27:48.796
Thread ID: <Thread-7>
Component: EXTERN
Class: com.ibm.commerce.wc54handbook.commands.MQProductCreateCmdImpl
Method: setRequestPropertiesPerProduct
Trace: ENTRY POINT

==============
TimeStamp: 2002-05-06 12:27:48.796
Thread ID: <Thread-7>
Component: EXTERN
Class: com.ibm.commerce.wc54handbook.commands.MQProductCreateCmdImpl
Method: setRequestPropertiesPerProduct
Trace: EXIT POINT

==============
TimeStamp: 2002-05-06 12:27:56.703
Thread ID: <Scheduler default#1>
Component: ORDER
Class: com.ibm.commerce.payment.commands.PaySynchronizePMCmdImpl
Method: performExecute
Trace: ENTRY POINT

==============
============== Other trace information from other methods.==============
==============
TimeStamp: 2002-05-06 12:34:06.468
Thread ID: <Thread-7>
Component: EXTERN
Class: com.ibm.commerce.wc54handbook.commands.MQProductCreateCmdImpl
Method: doProcessAttributes
Trace: EXIT POINT

==============
TimeStamp: 2002-05-06 12:34:06.468
Thread ID: <Thread-7>
Component: EXTERN
Class: com.ibm.commerce.wc54handbook.commands.MQProductCreateCmdImpl
Method: performExecute
Trace: EXIT POINT

6.6.2 Error handling
In WebSphere Commerce error handling is tightly integrated with the logging
service so that whenever an exception is thrown, it is automatically logged.
 Chapter 6. Testing a store 197

Error handling can be performed by both JSPs and commands:

� JSPs can directly handle databean exceptions and take appropriate recovery
actions, or try rollbacks of current failed transactions using their own, or
application default, JSP error templates.

� For commands, WebSphere Commerce provides an easy-to-use and
multicultural stores supporting error handling framework that will be described
in the following.

Command exceptions are caught by the Web Controller: such exceptions can be
of two different types:

� ECApplicationException. It is thrown for user errors, typically invalid input
parameters. The command won’t be retried by the Web Controller.

� ECSystemException. It is thrown for configuration errors or runtime
exceptions. The Web Controller will retry a retriable command in case of
database deadlocks or rollbacks.

A command exception must contain the following information:

� Error view name. The Web Controller looks for it in the VIEWREG table and
invoke the associated error view command.

� Error message. It is an ECMessage object containing info such as exception
severity and type, as well as key and resource bundles to find the message
text (more details in section, “Messages” on page 200).

� Error parameters. Name-value pairs for parameters to be inserted into the
error message.

� Error data. Data that the JSP error template can get from the error data bean.

The following sections contain an explanation of the exception handling run-time
flow, as well an overview of the WebSphere Commerce messages and a very
high-level description of the basic steps to follow in order to develop a
customized exception handling logic. For more details, refer to IBM WebSphere
Commerce Programmer’s Guide Version 5.4.

Exception handling flow
This section contain a summary of the exception handling flow, represented in
Figure 6-2 on page 199.
198 WebSphere Commerce V5.4 Developer’s Handbook

Figure 6-2 The WebSphere Commerce exception handling flow.

1. The Web Controller invokes a controller command

2. The command throws an ECApplicationException or an ECSystemException
that is caught by its invoker.

3. The Web Controller gets from the exception the Error view name, in order to
find in the VIEWREG table which error view command must be invoked.
Moreover, it passes to the error view command as input properties (NVPs) the
other exception attributes, such as the ECMessage object, error parameters
and optional error data.

4. The view command invokes the associated JSP error template passing to it
the input properties (NVPs). The JSP template activates the databean
populating it with the input properties (NVPs).

5. The error databean invokes the message helper object passing to it the input
properties (NVPs).

Error.jsp

Error View
Command

Controller
Command

4. Name-value pairs (NVPs)

5. (error_code, NVPs)

7. message

Error
Data Bean

 6. Resource
Bundles

 1. execute()

 2. ECApplicationException
or

ECSystemException

 3. setInputProperties(NVPs)
 execute()

Web
Controller

Message Helper
 Chapter 6. Testing a store 199

6. The message helper uses the ECMessage object attributes to find out the
message text in the appropriate resource bundles and composes the
message using both the message text and the error parameters.

7. The message helper returns the message to the JSP template.

Messages
WebSphere Commerce stores the text of error messages in resource bundles,
usually implemented as properties file, in order to make their maintenance easier
and to support multilingual stores. For instance, the WebSphere Commerce
server messages are stored in the ecServerMessages_XX_XX file, where _XX_XX
indicates the locale (e.g. _en_us). The client locale is stored in the command
context: based on it, the Web Controller determines in which properties file must
be searched the required message.

WebSphere Commerce uses two types of messages:

� User messages are displayed in the browser as a result of invalid user input
or invalid application state. New user messages can be created using a
separate resource bundles.

� System messages are automatically stored in the message log as a result of
a system malfunctionality. They are predefined and cannot be customized.

In order to create a new message, you must:

1. Create a new resource bundles, usually implemented as a property file in the
/stores/lib directory, containing every new defined key-message text pair.

2. Create new class containing the ECMessage object declarations, one for
different message key. Besides the key, each object must have assigned a
severity (error | warning | status | debug | informational), the message type
(user | system) and the resource bundles.

3. Create a new class for the message keys declarations.

Exception handling in customized code
the following steps must be followed in order to develop a customized exception
handling logic:

1. Catch the Exception

2. Create the appropriate type of Exception, either ECApplicationException or
ECSystemException

3. Create a new customized message.
200 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 7. Packaging and deployment

The IBM WebSphere Commerce Store Developer’s Guide Version 5.4 goes into
great detail about most parts of the store assets needed to build a store archive.
However, there are some aspects of store creation and maintenance that need to
be examined even further.

7

© Copyright IBM Corp. 2002. All rights reserved. 201

7.1 Overview
The task of packaging and deploying a store is not just something that is done
when the development phase is over. During the development phase it is often
necessary to perform incremental builds of the store. Having an integration
server with a recent build of all the different parts of a new store, helps
developers and testers to test and monitor the progress of the development.

Since the WebSphere Test Environment on a development workstation runs very
slowly compared to a real WebSphere Application Server, testers will need a real
WebSphere Application Server on which to perform their test scenarios.

With that in mind it is important to establish a simple and repeatable packaging
and deployment procedure. We will be looking at different approaches to
packaging and deployment.

7.2 Using WebSphere Studio and Store Services
WebSphere Commerce comes packaged with WebSphere Studio. WebSphere
Studio can import a store archive and enable the developer to modify JSPs and
images and then repackage the store archive. But that is as far as WebSphere
Studio goes. It will not let you modify the store archive database assets or the
property files. This means that if you use WebSphere Studio to create your JSP
files, then you would still have to extract the contents of the SAR file to be able to
modify the property files and database assets.

Store Services has a new feature in Version 5.4 that allows you to download the
webapp.zip file from the published store. You can make your modifications and
upload the webapp.zip file again with the changes that you’ve made. Although
this is a nice feature, it will not allow you to modify the property files for
republishing.

Store Services will let you modify some of the database assets through the Web
interface but not all.

Thus WebSphere Studio and the editing features of Store Services are tools that
restricts the user to only a part of the store archive.
202 WebSphere Commerce V5.4 Developer’s Handbook

7.3 Using Ant to package and deploy a store
Due to the fact that not all assets created for a new store can be stored in the
SAR file and since the existing tools will not give us access to all parts of the
SAR file, it is necessary to set up a robust and repeatable build process that will
ensure that all the assets needed by a store will be deployed in one operation.

This is especially the case during the store development process. To be able to
code and test the store fast and efficiently, the development team needs to be
able to deploy and redeploy updated code often. This calls for an automated
build process.

When we are using the word build, we do not mean the actual compilation of the
java source code, but instead the building of the SAR file and the deployment of
the different kinds of site assets.

We have found that the build tool Ant will do the job of deploying and redeploying
all the assets needed by a store. Since Ant uses the General Public License, you
can download it free of charge on the following URL:

http://jakarta.apache.org/ant/index.html

For installation and configuration of Ant you should follow the online installation
guide on:

http://jakarta.apache.org/ant/manual/index.html

For the examples used in this chapter we used the Ant windows binary Version
1.4.1.

7.3.1 Folder structure
Whether you are developing your store based on an existing store archive or
creating your own from scratch, you will want to extract the contents of the store
archive to enable you to modify all of the assets including database assets,
JSPs, images and property files.

You must also create folders that contain the any customized code exported from
VisualAge for Java in JAR files.

Additionally if you have customized any site level data you should create a folder
containing the XML files for this purpose.

If you have created new database tables you should create a folder that contains
the SQL files with the DDL for the tables.
 Chapter 7. Packaging and deployment 203

http://jakarta.apache.org/ant/index.html.
http://jakarta.apache.org/ant/manual/index.html

In this chapter we create a src folder containing all the assets mentioned above.
In our case the src directory resides in the toplevel folder called project.

We have created a site and SAR folder in the folder hierarchy just below the src
folder. The SAR folder contains all the assets that constitute the store archive.
The site folder contains all the site level assets.

Figure 7-1 The folder structure

7.3.2 Using the sample Store Archives
If you have used one of the sample archives as a template for your store there
are some modifications you need to make.

In WebSphere Commerce version 5.4 when using the Store Services to create to
store you supply it with some information that it uses to customize the store
archive. They are:

� Store Directory

Store Services take whatever you write here and updates the store.xml file in
the store archive with that value. The value is inserted in the directory
attribute of the <store> tag and in the identifier attribute of the <storeent> tag

When you are not using Store Services to do the initial deployment of your
store, you will need to update these fields yourself.

� Store Owner

Store Services updates the contract.xml file with information on the store
owner when its doing the initial publishing of the store archive.
204 WebSphere Commerce V5.4 Developer’s Handbook

When you create your own store and are not using the Web-based Store
Services tool, you will need to update this file manually.

You should replace all occurrences of the entity &MEMBER_IDENTIFIER;
with the name of the owner organization. You should replace all occurrences
of the entity &STORE_IDENTIFIER; with the name of the store. This must be
the same name as the identifier attribute mentioned above.

When store services modifies the SAR files it also copies the files
DBLoadMacros.dtd into the SAR file. You need to copy the DBLoadMacros.dtd
from drive:\WebSphere\CommerceServer\xml\sar into your data folder.

Modify the DBLoadMacros.dtd so that the &MEMBER_ID; entity is equal to the id
of the owner organization of your store for example.: 7000000000000000001.

If you used a sample store archive it is advisable to modify the default names of
the different database entries. As an example if you used InFashion as a
template you should change the trading position name from InFashion to a name
you specify. Look through all the different database assets and make the
appropriate changes. Doing this will also familiarize you with what kinds of data
is contained in the different files.

7.3.3 The Deployment Use Case
The following use case describes what exactly it is that we wish to accomplish
with the packaging and deployment.

Prerequisites
WebSphere Commerce is installed and you have created an instance. The
WebSphere Application Server and HTTP server are started, and the
WebSphere Commerce Enterprise application is running.

The assets to be deployed are in place in a source folder as described above.
They are:

� Site Assets

– Commands, data beans and Enterprise JavaBeans packet in JAR files
– XML files containing for example new languages
– SQL files to create new database tables

� Store Assets

– JSP files and images
– Property files
– The SAR-INF folder
– The DATA folder containing XML files for the store
 Chapter 7. Packaging and deployment 205

Ant is installed and a build.xml file is customized to our needs.

Description
Executing Ant with the correct build.xml files will perform the following.

1. Execute the SQL files.

Use the DB2 command line tool to execute the SQL commands.

2. Execute the site level XML files.

Use the massload.cmd command to import the XML into the database.

3. Commands and data beans

Unjar and rejar the JAR files according to the IBM WebSphere Commerce
Programmer’s Guide Version 5.4

Copy the JAR files containing commands and data beans to:

drive:\WebSphere\AppServer\installedApps\WC_Enterprise_App_instanceN
ame.ear\wcstores.war\WEB-INF\lib

4. Enterprise JavaBeans

Since the process of deploying Enterprise JavaBeans includes the use of the
GUI tool Application Assembly Tool the deployment of Enterprise JavaBeans
cannot be completely automated with Ant.

Ant will take care of executing the edbdeploy tool to generate WebSphere
Application Server 4.0 deployed code for the Enterprise JavaBeans.

Ant will also take care of executing the modifyIsolationLevel command for the
Enterprise JavaBeans.

The user will have to manually export the current Enterprise Application and
export configuration information for the Enterprise Application.

The user will then use the Application Assembly Tool to add new entity beans
to the Enterprise Application archive.

And to finish off the user will manually remove the existing Enterprise
Application from WebSphere Application Server and import the new and
modified Enterprise Application with XMLConfig.

5. SAR file

a. Zip the JSP files and images into the webapp.zip file.

b. Zip the properties into the properties.zip file.

c. Zip the data and SAR-INF folders with the webapp.zip and properties.zip
files into the storename.sar file.

d. Copy the SAR file to:

drive:\WebSphere\COmmerceServer\instances\instanceName\sar
206 WebSphere Commerce V5.4 Developer’s Handbook

e. Execute publishstore.bat from the command line to publish the store.

Outcome
Assuming the entire process went along without errors, the outcome of this use
case will be that:

� New tables for customization have been created.

� Custom site level data has been imported into the database.

� Customized commands, databeans and Enterprise JavaBeans that are
needed for the store to work properly are deployed.

� The store assets have been packaged into a SAR file and published.

7.3.4 Creating the Ant build files
Ant needs to know what to do with all your site and store assets. Ant uses a build
file for this. We use that file to instruct Ant down to the smallest detail what it’s
supposed to do with each asset. Each build files has one project and in that
project are one or more targets that contain the tasks to be executed.

All the different properties that are needed to build the project are defined in a
separate file that we name project.properties. The property file is loaded in the
beginning of the build file. To refer to a property the following format is used:
${propertyName}. To make the deployment as flexible as possible we will create
a separate build file for the different targets

Example 7-1 build.xml

<?xml version="1.0" ?>
<project default="init">

<property file="project.properties" />
<target name="init">

<antcall ...
</target>
<target name="A">

<sometask />
...

</target>
</project>

Load custom tables
The first project that we will be making is, according to the use case, one that will
take care of executing the SQL files needed to create custom tables in the
database.
 Chapter 7. Packaging and deployment 207

We have written a small batch file called executeSQLFiles.bat that can be
executed manually from the command line. See Example 7-2. Since we want the
whole process to be executed automatically through Ant, we create a target in
Ant that contains a task that will execute the batch file with the appropriate
command line parameters. In this example the batch file is called loadtables.bat.
See Example 7-3. The command line parameters that we need are the name of
the database, database user name and database password. These parameters
are defined as properties.

Example 7-2 executeSQLFiles

<project default="executeSQLFiles">
<property file="project.properties" />
<target name="executeSQLFiles">

<exec executable="db2cmd.exe" dir="${ProjectDir}/src/site/sql">
<arg value="db2clp" />
<arg value="loadtables.bat" />
<arg value="${DataBase}" />
<arg value="${DBUserName}" />
<arg value="${DBPassword}" />

</exec>
</target>
</project>

Example 7-3 loadtables.bat

@echo off

db2 connect to %1 user %2 using %3
db2 -tvf tables.sql
db2 terminate

exit

Massload site XML
We need to write a target that takes care of massloading any site level data that
you have created. This target is similar to the previous target since it is also
merely executing a command.

Example 7-4 massloadSiteXML

<project default="massloadSiteXML">
<property file="project.properties" />
<target name="massloadSiteXML">

<exec executable="massload.cmd" dir="src/site/xml">
<arg value="-infile" />
<arg value="site_custom.xml" />
<arg value="-dbname" />
208 WebSphere Commerce V5.4 Developer’s Handbook

<arg value="${DataBase}" />
<arg value="-dbuser" />
<arg value="${DBUserName}" />
<arg value="-dbpwd" />
<arg value="${DBPassword}" />
<arg value="-method" />
<arg value="sqlimport" />
<arg value="-commitcount" />
<arg value="1000" />
<arg value="-maxerror" />
<arg value="1" />

</exec>
</target>
</project>

Rejar and deploy commands and databeans
This project contains a little more logic than the previous two. We are deploying
both CustomCommands and CustomDatabeans in the same project. The build
file make it possible to only have one of the two. It tests if the JAR files exists and
only executes the target if the corresponding file is there.

To rebuild the JAR files we use the Ant tasks unjar and jar. To deploy the JAR
files to the correct WebSphere Commerce directories we use the copy task. The
mkdir and delete tasks are also used.

The properties WAS_HOME, WCS_HOME, InstanceName,
CustomCommandsJar and CustomDatabeansJar should all be added to the
project.properties file.

Example 7-5 deployJars - carriage return in XML attributes is used for readability only.

<project default="init">
<property file="project.properties" />
<target name="init">

<available file="${ProjectDir}/src/site/jar/${CustomCommandsJar}"
property="CustomCommandsJar.present" />

<available file="${ProjectDir}/src/site/jar/${CustomDatabeansJar}"
property="CustomDatabeansJar.present" />

<antcall target="deployCommands"/>
<antcall target="deployDatabeans"/>

</target>
<target name="deployCommands" if="CustomCommandsJar.present">

<delete file="${ProjectDir}/dist/site/jar/${CustomCommandsJar}"/>
<mkdir dir="${ProjectDir}/dist/site/jar" />
<delete dir="${ProjectDir}/build/site/jar" />
<mkdir dir="${ProjectDir}/build/site/jar" />
<unjar src="${ProjectDir}/src/site/jar/${CustomCommandsJar}"
 Chapter 7. Packaging and deployment 209

dest="${ProjectDir}/build/site/jar" />
<jar jarfile="${ProjectDir}/dist/site/jar/${CustomCommandsJar}"

basedir="${ProjectDir}/build/site/jar" />
<copy file="${ProjectDir}/dist/site/jar/${CustomCommandsJar}"

todir="${WAS_HOME}/installedApps/
WC_Enterprise_App_${InstanceName}.ear/wcstores.war/WEB-INF/lib"
overwrite="yes"/>

</target>
<target name="deployDatabeans" if="CustomDatabeansJar.present">

<delete file="${ProjectDir}/dist/site/jar/${CustomDatabeansJar}"/>
<mkdir dir="${ProjectDir}/dist/site/jar" />
<delete dir="${ProjectDir}/build/site/jar" />
<mkdir dir="${ProjectDir}/build/site/jar" />
<unjar src="${ProjectDir}/src/site/jar/${CustomDatabeansJar}"

dest="${ProjectDir}/build/site/jar" />
<jar jarfile="${ProjectDir}/dist/site/jar/${CustomDatabeansJar}"

basedir="${ProjectDir}/build/site/jar" />
<copy file="${ProjectDir}/dist/site/jar/${CustomDatabeansJar}"

todir="${WAS_HOME}/installedApps/
WC_Enterprise_App_${InstanceName}.ear/wcstores.war/WEB-INF/lib"
overwrite="yes"/>

</target>
</project>

Deploy new Enterprise JavaBeans
This project only applies to new Enterprise JavaBeans and not modifications to
existion WebSphere Commerce Enterprise JavaBeans. We do not recommend
to modify the existing WebSphere Commerce Enterprise JavaBeans in any way.

The deployEJBs.bat in Example 7-6 will take care of some of the work needed to
be done to deploy custom made Enterprise JavaBeans.

Example 7-6 deployEJBs

<project default="deployEJBs">
<property file="project.properties" />
<target name="deployEJBs">

<mkdir dir="${ProjectDir}/build/site" />
<mkdir dir="${ProjectDir}/build/ejbjar" />
<delete dir="${ProjectDir}/build/ejbjar/DT_temp" />
<mkdir dir="${ProjectDir}/build/ejbjar/DT_temp" />
<delete file="${ProjectDir}/dist/site/ejbjar/CustomEJBDeployed.jar" />
<exec executable="ejbdeploy.bat" dir="${ProjectDir}/src/site/ejbjar">

<arg value="${ProjectDir}/src/site/ejbjar/CustomEJBDeployed.jar" />
<arg value="${ProjectDir}/build/site/ejbjar/DT_temp" />
<arg value="${ProjectDir}/dist/site/ejbjar/CustomEJBDeployed.jar" />
<arg value="-nowarn" />
<arg value="-keep" />
210 WebSphere Commerce V5.4 Developer’s Handbook

<arg value="-35" />
</exec>

<exec executable="modifyIsolationLevel.bat" dir="${WCS_HOME}/bin" >
<arg value="-jarFile" />
<arg value="${ProjectDir}/dist/site/ejbjar/CustomEJBDeployed.jar" />
<arg value="-logFile" />
<arg value="${WCS_HOME}/logs/modifyIsolationLevel.log" />
<arg value="-dbType" />
<arg value="DB2" />

</exec>
</target>
</project>

As described in the use case the user will now have to take over to finish the
process of deploying the new Enterprise JavaBeans. Due to the relatively long
process of deploying new Enterprise JavaBeans it is important to be very
thorough in the store design phase. This will enable to development team to build
and deploy if not all then most of the required Enterprise JavaBeans in the
beginning of the development process.

Building and deploying the Store archive.
Together with the Commands and Databeans target this target will probably be
executed more than once a day during the development process. Having a test
box with a recent update of the store is essential to the developers and testers.
The project manager will also be able to follow the development process more
closely.

deploySar.bat in Example 7-7 packs up the SAR file and executes the store
publishing utility.

Example 7-7 deploySAR

<project default="deploySAR">
<property file="project.properties" />
<target name="deploySAR">

Attention: Please refer to the readme file on the WebSphere Commerce
installation CD for information regarding exporting the EAR configuration
information from WebSphere Application Server.

Tip: If you are having problems with the web modules starting to load before
all the EJB modules have finished loading, you should use the Application
Assembly Tool to remove and read the war files from the EAR file.
 Chapter 7. Packaging and deployment 211

<delete dir="${ProjectDir}/build/sar" />
<mkdir dir="${ProjectDir}/build/sar"/>
<zip zipfile="${ProjectDir}/build/sar/webapp.zip"

basedir="${ProjectDir}/src/sar/webapp" update="false"
/>
<zip zipfile="${ProjectDir}/build/sar/properties.zip"

basedir="${ProjectDir}/src/sar/properties" update="false"
/>
<copy todir="${ProjectDir}/build/sar/data">

<fileset dir="${ProjectDir}/src/sar/data" />
</copy>
<copy todir="${ProjectDir}/build/sar/SAR-INF">

<fileset dir="${ProjectDir}/src/sar/SAR-INF" />
</copy>
<delete dir="${ProjectDir}/dist/sar" />
<mkdir dir="${ProjectDir}/dist/sar" />
<zip zipfile="${ProjectDir}/dist/sar/${StoreName}.sar"

basedir="${ProjectDir}/build/sar"
/>

<copy file="${ProjectDir}/dist/sar/${StoreName}.sar"
todir="${WCS_HOME}/instances/${InstanceName}/sar" overwrite="yes"

/>

<exec executable="publishstore.bat" dir="${ProjectDir}">
<arg value="${StoreName}.sar" />
<arg value="${HostName}" />
<arg value="${UserName}" />
<arg value="${Password}" />
<arg value="${SARPublishMode}" />
<arg value="${SARXML}" />
<arg value=""${WAS_HOME}/installedApps/

WC_Enterprise_App_${InstanceName}.ear/
wcstores.war=webapp.zip,${WAS_HOME}/installedApps/
WC_Enterprise_App_${InstanceName}.ear/wcstores.war/
WEB-INF/classes=properties.zip""

/>
</exec>

</target>
</project>

Line breaks inside attributes are used for display purposes only.

Important: When republishing an existing store archive, you must ensure that
the store directory is not locked by another process. When deploying the store
archive the publish utility must be able to rename the existing store archive to
create a backup before republishing.
212 WebSphere Commerce V5.4 Developer’s Handbook

7.3.5 Conclusion
Ant can be used in a number of ways to simplify repeating build processes. Not
only does Ant simplify the process but it also eliminates human error during
deployment. A lot of things can go wrong if the ones responsible for deployment
have to do everything manually while reading an installation guide. Ant will do the
same thing every time no more no less.

We have only showed some very simple features of Ant. But it can do so much
more. There is in fact a plugin that allows Ant to connect to a VisualAge for Java
repository. This would eliminate the process of having to export the code from
VisualAge for Java manually.

When the WebSphere Commerce store development moves to WebSphere
Studio Application Developer things will be even simpler.
 Chapter 7. Packaging and deployment 213

214 WebSphere Commerce V5.4 Developer’s Handbook

Part 1 Customization
examples

In this part we describe customization examples that extend the functionality of
WebSphere Commerce.

Part 1
© Copyright IBM Corp. 2002. All rights reserved.. All rights reserved. 215

216 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 8. Examples overview

This chapter serves as an outline of the second part of the redbook. We
introduce our sample stores, examine how they work and explain how to take
advantage of the extended functionality provided. To provide a simple user’s
guide, we walk you through the interfaces of the stores, pointing out the
customized features. This chapter is best used in conjunction with the chapters
that follow, referring to both, while working with the examples.

The approach we’ve taken is to extend the sample stores that are provided with
WebSphere Commerce Business Edition V5.4 with a focus on a particular area
of customization. This should put you on familiar footing with respect to usability
while showing you something new about the product. Information about the basic
functionality of the out-of-the-box samples stores can be found at:

http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html

8

© Copyright IBM Corp. 2002. All rights reserved. 217

http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general

8.1 Example stores
WebSphere Commerce provides developers with several out-of-the-box sample
stores on which they can base their own stores. These sample stores each
showcase various aspects of the WebSphere Commerce product.

The out-of-the-box samples that we use to create our stores in the example
chapters that follow are WebFashion and ToolTech. WebFashion employs the
business-to-consumer store model. It’s built-in features include discounts,
bundles and wish lists. ToolTech, on the other hand, is a business-to-business
store. It focuses on items such as contract-based purchasing, requisition lists
and request for quote (RFQ) creation. Detailed information about the stores and
how to install them can be found in the online help files for WebSphere
Commerce.

8.2 Orders
In this set of examples, found in Chapter 9, “Orders” on page 233, we focus on
how orders can be processed in WebSphere Commerce Business Edition.

Using the ToolTech sample store as a base, the first example shows an
implementation of an interface between the commerce system and a back-end
system. The store will pass an order to a CICS program simulating an order
being sent to a back-end system.

The second example in this chapter, also an extension of the ToolTech sample
store, features a detailed explanation of the quick order function. Quick order
exists as a built-in function in WebSphere Commerce Business Edition Version
5.4; we show by example how to use it in a store.

8.2.1 CICS order transaction
This example is centered around interaction with a back-end system. For the
purpose of this exercise, we are using a CICS system as our back-end. This
CICS program could represent an ERP or CRM system in the enterprise. In fact,
it is quite common for a business’s commerce system to have to interface with it’s
other resources. As companies work to incorporate the various functions of the
resources in their environments, integration becomes critically important.

CICS, or Customer Information Control System, is an online transaction
processing program that provides tools for building customer transaction
applications, traditionally on large enterprise mainframes. Using the CICS
application programming interface, developers can write programs that
218 WebSphere Commerce V5.4 Developer’s Handbook

communicate with users and read from or write to records in a database in a
transactional manner. CICS provides resource management leading to improved
load-balancing and highly scalable systems. CICS can also ensure that
transactions are completed and, if they are not, it can undo partly completed
transactions to maintain data integrity.

The CICS Transaction Gateway provides secure, flexible access from Web
applications to business-critical applications running on a CICS server on the
back-end using standard Internet protocols. We use the connectors provided by
CICS Transaction Gateway to facilitate the interface between the commerce
system and the CICS server.

In the example we show how to create a new command to process an order by
sending it to the CICS system via a CICS Transaction Gateway. This CICS
system can represent any application on a back-end system.

Implemented in such a way that it is invisible to the user, this command is called
when a user places an order. An order reference number and the total cost of the
order is packaged and sent to the CICS system via the CICS Transaction
Gateway.

The CICS application responds with a text message indicating the transaction’s
success or failure. The CICS response is stored in the database. This response
can be used to perform an action on the commerce system or notify the user of a
problem. A developer or administrator can confirm that the transaction
succeeded by checking WebSphere Commerce’s default message log or the
ORCOMMENT table in the database where the CICS transaction information is
stored.

8.2.2 Quick order function
Quick order is a very useful tool for a store which has a lot of repeat orders. It
provides an efficient way to add items to an order by allowing the customer to
input product identifiers and amounts and immediately adding those products to
the shopping cart.

In this example, we examine the implementation and operation of the built-in
quick order function of the ToolTech store. As a user browses the store, there is a
section on the left hand navigation bar labelled Quick Order. The Quick Order
section contains an Enter More Items link which leads to the quick order screen.
From this screen the user can input the product information (SKUs in this case)
and the amount they want to order. Clicking Order from this screen adds the
items directly to the shopping cart which is then displayed to the user. Figure 8-1
shows the quick order page.
 Chapter 8. Examples overview 219

Figure 8-1 Quick order Web page from ToolTech
220 WebSphere Commerce V5.4 Developer’s Handbook

8.3 Shipping and taxes
The set of examples in Chapter 10, “Shipping and taxes” on page 259are
centered around the processes surrounding shipping and taxation. These topics
figure prominently in a global business and a store needs to be aware of the
various standards in each country and know how to accommodate them.

We first examine the implementation of the built-in weight-based shipping
function, reviewing the associated tables, commands and files. Using the
InFashion sample store, we also consider the implementation of a product
display that includes taxes in the pricing. Finally, we again extend the InFashion
sample store to explore discounting prices.

8.3.1 Shipping by weight
In this example, we focus on how a store ships products. Three things must be
defined in the commerce database in order for a store to ship orders:

Shipping mode A combination of the company that ships the product to
the customer and the type of shipping that will be used
(e.g., overnight service, 2-day service, ground service)

Shipping arrangement The agreement between the store and a fulfillment center
outlining the conditions that will be applied for shipments
for the store, including such things as shipping zone
restrictions and shipping methods

Shipping charge The method for calculating the charge for shipping orders
to customers

There are several types of shipping charges: a flat fee for all orders, a flat fee for
each item in an order, a percentage of the cost of the order, a weight-based
charge or a quantity-based charge. For this example, we examine the
implementation of the weight-based charge.

Figure 8-2 shows the weight rates screen in Store Services for the ToolTech
sample store. You can see from this figure the various charges that are
associated with the weight ranges that have been configured for the store. Note
also that the shipping mode is displayed as each mode can have different
charges associated with it.
 Chapter 8. Examples overview 221

Figure 8-2 Shipping by weight settings in WebSphere Commerce Store Services

8.3.2 Display prices with tax
Tax laws and practices vary greatly from country to country and, often, from one
area to another within a country. With the rapid gloabalization the Internet has
enabled, awareness of many taxation customs has taken on increased
importance. This section looks at the practice of including taxes in the product
price that is displayed to customers.

We begin by explaining how taxes are calculated and applied. We also discuss
the assets associated with taxation in the WebSphere Commerce data model
and introduce tax-related WebSphere Commerce terms.

Extending the InFashion sample store, we implement the display of prices with
tax inclusive. The integration of the example presented can be seamless with the
appropriate price shown based on the store’s needs.
222 WebSphere Commerce V5.4 Developer’s Handbook

8.3.3 Discounts
Discounts are a frequently used marketing tool that may be used to make a
product more attractive to customers. In WebSphere Commerce, discounts may
be offered as percentages or fixed amounts and may apply to a single product or
an entire order. As in the brick-and-mortar world, discounts incent customers to
visit the store and purchase certain products.

An administrator can get very granular with the application of discounts in the
commerce system. WebSphere Commerce lets one control:

� Time period during which the discount is in effect
� User subset to which the discount pertains
� Scope of the product catalog ythe discount covers
� Method by which the discount is applied

A store can also apply discounts to a range of prices resulting in a graduated
discount scale. Figure 8-3 shows the definition of ranges through WebSphere
Commerce Accelerator.

Figure 8-3 Defining discount ranges in WebSphere Commerce Accelerator

The example, an extension of the InFashion sample store, shows the application
of a per product discount for the entire product catalog for registered users. A
customer browses the site as he or she normally would; no special customer
action is neceessary. The discount is applied to the order automatically and is
displayed to the customer in the order summary.
 Chapter 8. Examples overview 223

8.4 Messaging customization
MQSeries allows stores to connect disparate systems together resulting in a
more seamless integration of your WebSphere Commerce environment with any
other systems you may have. With over thirty five platforms currently supported
by MQSeries, you can connect Windows platforms to OS/390, iSeries to Solaris,
Linux to MVS and any of a number of other combinations. MQSeries assured
one-time delivery makes it a valuable tool for e-business.

8.4.1 Inbound MQSeries - product creation
Typically, there are two ways to create new products in WebSphere Commerce:
the MassLoader tool and WebSphere Commerce Accelerator. Our goal in
Chapter 11, “Messaging customization” on page 291 is to introduce a third
method: create the product on a back-end system and automatically push the
update to the WebSphere Commerce system using MQSeries.

In this example, an administrator creates a new product or modifies an existing
product on a back-end system. The back-end system creates a well-defined XML
file describing the product and it’s attributes and puts that file on an MQSeries
queue for delivery to the commerce system.

The MQ adapter on the WebSphere Commerce system receives the message
from the queue and parses the data. Using the product definition, WebSphere
Commerce creates or modifies the product in the store’s database by calling the
MQProductCreate command as shown in the example. Users are then
immediately able to see the new product or product changes as long as the
appropriate cache triggers are set.
224 WebSphere Commerce V5.4 Developer’s Handbook

Figure 8-4 Product created using MQProductCreate

Figure 8-4 shows the display of a newly created product that has been defined
using the MQProductCreate command. We use the WebFashion sample store to
show the implementation of this example, but, as with many of the other
examples we present, it is sufficiently abstract to be applied to any store.
 Chapter 8. Examples overview 225

8.5 B2B features
Business-to-business (B2B) transactions have received an enormous amount of
attention recently and with good reason. Web sites that support B2B transactions
can increase a company’s productivity while simultaneously driving down the
costs related with maintaining a partner relationship. B2B figures prominently in
WebSphere Commerce Business Edition Version 5.4 with components aimed
specifically at the needs of this market including:

� The ability to process orders using purchase order numbers included in the
order.

� Support of requisition lists to facilitate frequent, repeated orders.

� The restriction of catalog browsing based on contract terms.

� Login pages personalized to individual organizations.

� Support for creation of requests for quotation (RFQs).

The ToolTech sample store packaged with WebSphere Commerce Business
Edition highlights many B2B features. In this example, we extend the basic
functionality of the ToolTech store to enable the restriction of catalog viewing and
roles-based login. We also implement an amount-based approval method
wherein any transaction that is over a certain price will need to be approved by a
second party. In this way, we show a more natural, buyer-oriented flow for a B2B
site.

8.5.1 Role-based display
A role in WebSphere Commerce defines the type of access a user has and the
specific resources that user can modify. While the Site Administrator is the only
role that has the authority to create, assign or unassign roles to or from all users
and organizational entities, Buyer Administrators and Seller Administrators may
assign or unassign roles for the organizational entity to which they belong and to
organizational entities below that. Buyer Administrators and Seller Administrators
may also assign or unassign roles to users within those entities and to
themselves. A user may be assigned more than one role, but an organizational
entity must be assigned a given role in order for a user within that entity to be
assigned that role. Figure 8-5 shows a portion of the roles management section
of the WebSphere Commerce administration console.
226 WebSphere Commerce V5.4 Developer’s Handbook

Figure 8-5 Roles management screen in WebSphere Commerce

In our example, we extend the ToolTech sample store to show that the role
assigned to a user can be used to tailor pages. A user assigned to a specific role
can view one page while another user with a different role may view another
page altogether.
 Chapter 8. Examples overview 227

We present the method used to retrieve a user’s roles, then use that information
to display a home page that changes dependent upon what roles the user has. If
the user is a Buyer Approver or Buyer Administrator, he or she will be served a
page that is different from what other users see. There will be additional links on
the Buyer Approver and Buyer Administrator’s home page for tasks that are
specific to them.

This can be a powerful tool for personalization, as stores can easily and
dynamically cater to a multitude of different customers by creating roles as
necessary and targeting the users associated with those roles.

8.5.2 Amount-based order approval
In a business-to-business setting, it is often useful to have a person or group of
people in a purchasing company responsible for approving orders submitted by
the company’s buyers. To accommodate this, WebSphere Commerce Business
Edition allows store owners to quickly and easily enable this feature at a contract
level.

A price threshold can be established for a contract; in the case of our example,
that threshold is $250. When the threshold is met or exceeded, the order, upon
submission by a buyer, is placed into pending state.

A user who has been set up to provide order approval will be informed of the
order and take the appropriate action by either approving the order, which then
flows through the system as it normally would, or rejecting the order. If the order
is rejected, then some tailored post-processing may occur to inform the buyer
that the order has been rejected

The approval or rejection of orders in WebSphere Commerce is a seamless part
of the store. The approver logs into the store, proceeds to the approval page and
takes an action, either approving or rejecting the orders. The user tasked with
approval must exist in the commerce system; otherwise buyers may not be able
to submit orders that need to be approved.

8.5.3 Contract-based shopping
In WebSphere Commerce, a contract is defined as an agreement outlining the
terms and conditions that apply to a transaction. All customers shop under a
contract. Pricing is set at the contract level resulting in a situation wherein the
same product may be sold at different prices depending upon the contract being
used.
228 WebSphere Commerce V5.4 Developer’s Handbook

By default, WebSphere Commerce’s out-of-the-box business-to-business
sample store allows users to select a contract for each product as they shop. If a
user is entitled to use multiple contracts, he or she will see the prices associated
with each of the contracts. This flow is shown in Figure 8-6 where the user is
presented with three contracts that may be used.

Figure 8-6 Shopping with contracts

It may be desirable, however, to associate a particular order to a contract at the
beginning of the shopping flow to allow for a faster flow through the site. This is
the approach we examine in our example.
 Chapter 8. Examples overview 229

A user of the store is prompted for the contract to use as soon as he or she logs
in to the system. Everything the user purchases as a part of that order will be
associated with that contract.

Contract-based shopping also makes it easy to restrict a user’s view of the
product catalog. Items that cannot be purchased under a specific contract need
not be shown at all.

8.6 Product entry and display
This set of examples shows how to implement and extend WebSphere
Commerce functionality involving the display of the catalog. We examine the
product comparison function with a goal of customizing it so that it will return like
products from the catalog when prompted by the user. We review the
implementation of bundles by extending the WebFashion sample store. We also
enable the display of multiple currencies simultaneously.

8.6.1 Product comparison
Product comparison is one of a set of several shopping metaphors defined in
WebSphere Commerce. Shopping metaphors provide customers with several
ways to find the products they want. The shopping metaphors available in
WebSphere Commerce Business Edition Version 5.4 are:

� Product comparison
� Product exploration
� Sales assistance

A store administrator applies the shopping metaphor functions to the store by
using the Product Advisor utility. The Product Advisor helps to organize and
present the online product catalog along the lines of a given shopping metaphor.

The product comparison function allows users to quickly and easily compare and
contrast the features of a set of products side by side. In this example, we show
how to enable the product comparison metaphor and tailor the behavior and
display of the function.
230 WebSphere Commerce V5.4 Developer’s Handbook

8.6.2 Enabling bundles
Bundles are a marketing tool used by product and marketing managers to
provide a one-click purchasing ability for related items. A bundle can have many
items and must have at least one stock keeping unit (SKU). When a bundle is
selected for addition to a customer’s order, it is decomposed into it’s orderable
components. These components are then added to the order and their prices
aggregated to compute the total price.

Once the components are a part of the order, a customer may change the
number of each item that is being ordered or deselect specific items. The price is
recalculated based on what is added or removed as would normally occur.

As an example of a bundle, consider a computer sold at an online store. The
computer system may be bundled with a specific type of monitor, DVD player
and extra hard drives. Once these items are added to the customer’s cart, the
customer may remove the items he or she does not want. This method creates
the opportunity for a great amount of cross-selling.

This example uses the WebFashion sample store to walk through the process of
defining a new product via Product Manager and the creation of a bundle.We
review the assets associated with bundles and how they can be effectively used
as a marketing method.

8.6.3 Display of multiple currencies
Currency display, like shipping and taxation, is a topic that has become
increasingly important in recent years due to the explosion of globalization.
Stores need to be able to operate in all of the currencies that their audience is
most comfortable using or risk losing customers.

Displaying multiple currencies simultaneously may be useful in cases such as
the euro changeover. As countries continue the migration from an older currency
to the euro, many products are displayed using both methods to make the
transition easier on the customer.

In this example, the WebFashion store is altered to allow for the display of more
than one currency. We continue to use the example of the euro to highlight the
benefit that this brings to stores. The example can be extended to allow for
displaying a number of different currencies as the need arises.
 Chapter 8. Examples overview 231

232 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 9. Orders

This chapter provides an example on how to implement a CICS transaction call
within the processing of an order and it will provide some input on how to create
a quick order functionality in your e-commerce shop.

This chapter contains the following examples:

� CICS order transaction
� Quick Order

9

© Copyright IBM Corp. 2002. All rights reserved. 233

9.1 CICS order transaction
CICS (Customer Information Control System) is an application server that
handles online transaction processing and it is being used by many thousands of
organizations all over the world to take care of their transaction processing
needs. CICS will ensure the integrity of your data during the transaction, run
efficiently, access protected resources and then terminate when completed.

To get more information about the CICS transaction system, refer to:

http://www.ibm.com/cics

This order example will create a task command that will, upon order processing,
do a CICS transaction. The example is divided into the following sections:

� Functional requirements
� Use cases
� Design
� Pre-requisites
� Create the Task Command
� Register the command in WebSphere Commerce
� Deploy the code

9.1.1 Functional requirements
A brief description of the functional requirements is that we are required to
develop a module for passing specific order information to a back-end CICS
program, which resides on a S/390 server, when the order is being placed.

The following two sections explain the input to the CICS program, the output
from the CICS program and what the module is expected to accomplish. The
sections are based on information provided at the time the functionality was
requested.

Input to the CICS program
The input to the CICS program is to be a comma-separated list, containing the
order reference number and the total price of the order. For example
12345,312.54 where 12345 is the order reference number and 312.54 is the total
price of the order. The input to the CICS program is to be provided by the
External Call Interface (ECI).

An ECI call allows non-CICS applications to call a CICS program on a CICS
server. The information between the CICS program and the Java command is
exchanged by the means of a COMMAREA.
234 WebSphere Commerce V5.4 Developer’s Handbook

http://www.ibm.com/cics

The input to the CICS program is to be a 27 bytes input. Excess byte locations
are to contain the byte value 0 if the comma-separated list length is less that 27
bytes.

Output from the CICS program
The CICS program will acknowledge the input information by responding with the
application ID, the date and time of the transaction. A sufficient validation of the
response from the CICS program is to check that the response message
contains two colons.

The response message from the CICS program needs to be stored for future
reference.

9.1.2 Use cases
The system use cases of the CICS implementation are simple and are described
below.

Basic flow
This is the basic system flow of the CICS transaction:

1. The user adds items to the shopping cart and does a checkout to place the
order.

2. When the order is being placed, that is when the OrderProcess command is
being executed; the module creates the order message, passes it to the CICS
program, retrieves the response, validates it and saves it in the database and
in the log file.

3. The order complete page is displayed.

Exception flow
To be able to trace when and why CICS responds with invalid information, an
exception flow is necessary to explain the output of that scenario.

1. The user adds items to the shopping cart and does a checkout to place the
order.

2. When the order is being placed, that is when the OrderProcess command is
being executed, the module creates the order message, pass it to the CICS
program, retrieves the response, validates it and the validation fails. The
CICS response information is saved in the log file.

Note: A COMMAREA (communications area) is a memory area used to
transfer data between two programs.
 Chapter 9. Orders 235

3. A rollback occurs and an exception is thrown to a generic page.

9.1.3 Design
When composing the design of the solution, we need to review the input, the
tools we can use, and the requested output of the implementation. The task
command that we will develop needs to connect to a CICS server, send some
information and get an answer back from the server.

To be able to connect to the CICS server, we need to implement connectivity to
the CICS Transaction Gateway that provides the choice of three interfaces for
communication with CICS. The CICS Transaction Gateway software contains
client and server components that will allow a Java application to invoke services
in a CICS region and the interfaces options are:

� Common Connector Framework API
� The base classes of CICS Transaction Gateway
� J2EE Common Client Interface

The J2EE Common Client Interface has replaced the Common Connector
Framework as a strategic way of using a common standard to connect to
Enterprise Information Systems like CICS, hence we choose to use the J2EE
Common Client Interface. As the interface to the CICS program is ECI, we will
have to use the ECI resource adapter to do this. We could chose to use the base
classes of the CICS Transaction Gateway to implement the functionality, but they
require a very good understanding of CICS.

The CICS Transaction Gateway application will reside on a Windows 2000
Server and will act as a server daemon for the Java application (the task
command) and as a client daemon for the CICS program on the CICS server.

We decide to develop the application to run in a non-managed environment,
which means that the command will need to manage the connection to the server
and the transmittal of the transaction as well as security issues. We are choosing
a non-managed environment to be able to provide a more interesting example,
as it will have to discuss the communication process in more detail.

Refer to the redbook Java Connectors for CICS: Featuring the J2EE Connector
Architecture, SG24-6401, to get an extensive in-depth guidance to the options
available in implementing a CICS connection with Java.

Note: In a managed environment the command would access the CICS
resource adapter through an application server such as WebSphere
Application Server.
236 WebSphere Commerce V5.4 Developer’s Handbook

A summary of the transaction design is shown in Table 9-1.

Table 9-1 Transaction design

Properties
To be able to externalize the communication to the CICS Transaction Gateway
we need to store the communication properties in such a way that the
information unique and can easily be changed or updated. We decide to use the
STADDRESS table to keep the CICS Transaction Gateway properties as it
provides us with the necessary columns and is related to the owner of the shop
(MEMBER ID). We use the name CTG-PROP as a value in the NICKNAME
column to identify the correct information when doing a lookup to the table.

Another option is to utilize a property file to keep the configuration information. A
property file would, performance wise, be a more appropriate choice, as no
lookups to the database would be necessary. Nevertheless we chose in this
example to use the database as it does not require an additional file added to the
system.

We design a row in the STADDRESS table to keep the information as specified
in Table 9-2.

Table 9-2 Property settings

What Value

Interface to be used J2EE Common Client Interface - The ECI resource adapter

Managed environment No

Column Value

STADDRESS_ID The unique key in the STADDRESS table.

MEMBER_ID The owner ID for this entry, which is the
member ID of the shop.

ADDRESS1 The URL to the CICS Transaction
Gateway

ADDRESS2 The CICS region.

ADDRESS3 The service to be called on the CICS
server.

BUSINESSTITLE The title of the store

NICKNAME CTG-PROP
 Chapter 9. Orders 237

CICS transaction result
As a requirement, the response from the CICS transaction needs to be stored in
the database as well as being written to a log file. The information in the log file is
necessary to handle the possibility that the command fails after the CICS
transaction has been executed. The information in the log file would then still be
presenting the CICS transaction information but the information added to the
database would never be committed and consequently get lost. We will use the
default message log of WebSphere Commerce to output the transaction
information.

To store the CICS transaction information, we should use an order related table
and the ORCOMMENT table suits our purpose of storing a string of information.
The information will be stored as specified in Table 9-3.

Table 9-3 ORCOMMENT table

9.1.4 Pre-requisites
In order to be able to develop the task command and to test it, some
pre-requisites needs to be fulfilled which we cover in this section.

Knowledge
The reader needs basic understanding on what a CICS Transaction Gateway is
and how it works. Refer to the CICS Transaction Gateway documentation that
comes with the CICS Transaction Gateway installation CD.

Test environment
In order to be able to test the task command during development, we need a test
environment. In this redbook we used the following test environment:

� We had a Windows server running CICS Transaction Gateway V4.0.1. The
URL to the CICS Transaction Gateway was tcp://gunner.almaden.ibm.com
and the CICS Transaction Gateway listened on port 2006.

Column Value

ORCOMMENT_ID Generated unique key

ORDERS_ID The order reference of the related order to
the CICS transaction

COMMENTS The CICS transaction result

Note: Port 2006 is the default port of a CICS Transaction Gateway set up.
238 WebSphere Commerce V5.4 Developer’s Handbook

� We had a CICS program named ECIPROGX to call on an S/390 server, which
is identified by the CICS Transaction Gateway as the CICS server (region)
SCSCPAA6.

� The CICS program is the one that will be used in production and it does not
require a username and password.

Development environment
The instructions in this chapter will assume that you have a properly installed
WebSphere Commerce Studio environment with a WebSphere Commerce
configured version of VisualAge for Java, Enterprise Edition.

To be able to run the task command we develop, we need to configure VisualAge
for Java. To run a J2EE ECI CICS application in a non-managed environment, as
our task command will, we need to add the following JAR packages to the
runtime classpath:

� cicsj2ee.jar
� ctgclient.jar
� ccf2.jar
� connector.jar
� screenable.jar

If the Java application were to run outside a J2EE environment, we would have to
add the JTA Java extension from Sun to the classpath.

The JAR files can be found in a subdirectory called classes from the installation
of the CICS Transaction Gateway 4.0.1 and they are also supplied as additional
material to this redbook.

Set up VisualAge for Java
To set up VisualAge for Java, we will add the VisualAge for Java features which
contains the necessary files. Complete the following steps to set up VisualAge
for Java to enable development of the CICS transaction in the task command:

1. Exit VisualAge for Java.

Note: Installations of VisualAge for Java as well as WebSphere Application
Server already include the JTA Java extension.

If we were to keep the CICS Transaction Gateway on the same machine as
the Java application, we would have to add the ctgserver.jar file to the
classpath as well.
 Chapter 9. Orders 239

2. Run one of the following setup programs, as appropriate for your system,
from the VisualAge for Java Additional Features CD and follow the installation
steps:

– extras \BetaJ2EEConnectors\NT\Setup.exe

– extras \BetaJ2EEConnectors\W2000\Setup.exe

3. When the installation is completed, start VisualAge for Java.

4. Verify that the workspace owner is the Administrator. If the workspace owner
is not the Administrator, from the main menu of VisualAge for Java select
Workspace -> Change Workspace Owner. Select the Administrator and
click OK.

5. Delete any of the following projects that may exist in your workbench:

– Connector CICS

– IBM Common Connector Framework

– IBM Enterprise Access Builder Library

– IBM Enterprise Access Builder Samples

– IBM Enterprise Access Builder WebSphere Samples

– IBM Java Record Library

6. On the main menu in VisualAge for Java, select File -> Quick Start.

7. When the Quick Start window appears, select Features and Add Feature.
Click OK.

8. When the Selection Required window appears, select IBM Java Record
Library 3.5.3.5 and J2EE Connector Architecture 1.0 as shown in Figure 9-1.
Click Ok.
240 WebSphere Commerce V5.4 Developer’s Handbook

Figure 9-1 Add Features to VisualAge for Java options

9. When the projects are imported, we need to update the J2EE Connector
Architecture version from a Proposed Final Draft 2 to Version 1.0. Right-click
the J2EE Connector Architecture project on the workbench and select
Import.

10.The Import SmartGuide appears. Select to import a JAR file and click Next.

11.Click Browse and select the connector.jar file that is found in a subdirectory
called classes from the installation of the CICS Transaction Gateway 4.0.1.

Select all class files to be imported as well as resource files. Verify that the
files are to be imported into the J2EE Connector Architecture project and
make sure that the Create new/scratch editions of versioned
projects/packages option is checked. The window will look like Figure 9-2.
Click Finish.
 Chapter 9. Orders 241

Figure 9-2 Import connector.jar window

12.When all the files have been imported to the J2EE Connector Architecture, it
is a good idea to version the project.

13.Now we need to import the CICS Transaction Gateway related classes. From
the main menu of VisualAge for Java, select File -> Import.

14.Select to import a JAR file. Click Next.

15.From the same directory as we got the connector.jar file we select the
ctgclient.jar file.

Enter CICS Connector as the project name and set the remaining import
options as shown in Figure 9-2. Click Finish.

16.A window named Modify Palette will appear in which you can modify the bean
palette used by the Visual Composition Editor for visually composing
applications using Java Beans. We will not do any visual composing, so click
Cancel to complete the import.

17.Repeat step 13 to 16 to import the following JAR files to the CICS Connector
project:

– cicsj2ee.jar
242 WebSphere Commerce V5.4 Developer’s Handbook

– screenable.jar

18.Version the CICS Connector project.

19.Change the workspace owner to the WCS Developer.

9.1.5 Create the Task Command
When placing the order, the user is calling a URL command called
OrderProcess. This command will at the near end of its process call for a task
command named ExtOrderProcess. The ExtOrderProcess command is by
default calling a dummy implementation class that doesn’t do any logic and we
will replace this dummy implementation class with the one that we will create to
be able to perform the CICS transaction.

The instructions in this section will refer a lot to the additional material for this
chapter. The only method that we will discuss in detail is the method that does
the CICS transaction and all the other methods will only be discussed very
briefly.

The code discussed in this chapter can be obtained with the additional material
from this redbook. The source code is in the cicstrans_src.jar in the sg246190.zip
file. See Appendix B, “Additional material” on page 409 for details of how to
obtain the redbook material.

Create a class in VisualAge for Java named
com.ibm.commerce.wc54handbook.commands.DoCicsTransJ2EECmdImpl that
extends com.ibm.commerce.command.TaskCommandImpl and implements
com.ibm.commerce.order.commands.ExtOrderProcessCmd.

The implementation of the ExtOrderProcessCmd interface requires that you
implement a getter and setter method in the implementation class for the order
reference number. When we have created the class and the first necessary
methods and fields, the class will look something like Example 9-1.

Example 9-1 DoCicsTransJ2EECmdImpl class

public class DoCicsTransJ2EECmdImpl
 extends com.ibm.commerce.command.TaskCommandImpl
 implements com.ibm.commerce.order.commands.ExtOrderProcessCmd {

 public static final String COPYRIGHT =
 com.ibm.commerce.copyright.IBMCopyright.SHORT_COPYRIGHT;
 private java.lang.Long orderId;
 public static final String CLASSNAME = "DoCicsTransJ2EECmdImpl";

public Long getOrderRn() {
return orderId;
 Chapter 9. Orders 243

}

public void setOrderRn(Long param1) {
orderId=param1;

}
}

Main business logic of the command
The first thing to do when writing the task command is to write the
performExecute to get a good structure of the command. The method is based
on the functional requirements and thus is quite easy to implement when we
have the design already written for the command.

The necessary actions in the performExecute method are:

1. Get the CICS Transaction Gateway properties. We store the CICS
Transaction Gateway properties in a Hashtable object.

java.util.Hashtable ctgProp = null;
ctgProp = getCTGprop();

2. Get the order information that is to be sent to the CICS program and format
the information into the CICS input message specified format.

String orderData = null;
orderData = getOrderData();

3. Do the CICS transaction and get the result string. To do the transaction we
pass the CICS Transaction Gateway properties and the string of data to the
method.

String transRes = doTransaction(ctgProp, orderData);

4. Write the CICS program response to the WebSphere Commerce log file. The
message should contain the order reference and the response from the CICS
program.

ECMessageLog.out(
ECMessage._INF_GENERIC,
CLASSNAME,
methodName,
ECMessageHelper.generateMsgParms(

"CICS Transaction information for orderId="
+ getOrderRn()
+ ": CICS Trans response='"
+ transRes
+ "'"));

5. Validate the response from the CICS program.

validateResponse(transRes);
244 WebSphere Commerce V5.4 Developer’s Handbook

6. Store the CICS information in the database.

createOrComment(transRes);

The performExecute method needs to be updated with exception handling and
trace statements to ease troubleshooting. Modify the preformExecute method
after each of the methods it is calling has been created. The final
performExecute method will look something like Example 9-2.

Example 9-2 performExecute method

public void performExecute() throws com.ibm.commerce.exception.ECException {
 String methodName = "performExecute";
 ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

 //Call the performExecute of the superclass
 super.performExecute();

 /*===
 Get the CICS Transaction Gateway settings.
 ===*/
 java.util.Hashtable ctgProp = null;
 try {
 ctgProp = getCTGprop();

 } catch (javax.ejb.FinderException fe) {
 //Didn't find the row in the STADDRESS table
 throw new ECSystemException(
 ECMessage._ERR_FINDER_EXCEPTION,
 CLASSNAME,
 methodName,
 ECMessageHelper.generateMsgParms(
 "Could not find CTG-properties in STADDRESS table."));

 } catch (Exception e) {
 //Generic exception
 throw new ECSystemException(
 ECMessage._ERR_GENERIC,
 CLASSNAME,
 methodName,
 new Object[] { e.toString()},
 e);
 }

 ECTrace.trace(
 ECTraceIdentifiers.COMPONENT_EXTERN,
 CLASSNAME,
 methodName,
 "CTG properties=" + ctgProp.toString());
 Chapter 9. Orders 245

 /*===
 Get the order information.
 ===*/
 String orderData = null;
 try {
 orderData = getOrderData();
 } catch (Exception e) {
 throw new ECSystemException(
 ECMessage._ERR_GENERIC,
 CLASSNAME,
 methodName,
 ECMessageHelper.generateMsgParms(
 "Error occured when building the orderdata string"));
 }

 ECTrace.trace(
 ECTraceIdentifiers.COMPONENT_EXTERN,
 CLASSNAME,
 methodName,
 "Order data=" + orderData);

 /*===
 Do the transaction.
 ===*/
 String transRes = doTransaction(ctgProp, orderData);
 ECTrace.trace(
 ECTraceIdentifiers.COMPONENT_EXTERN,
 CLASSNAME,
 methodName,
 "CICS response information='" + transRes + "'");

 /* Store the CICS transaction information as a reference
 in the log-file, if a rollback would occur. */
 ECMessageLog.out(
 ECMessage._INF_GENERIC,
 CLASSNAME,
 methodName,
 ECMessageHelper.generateMsgParms(
 "CICS Transaction information for orderId="
 + getOrderRn()
 + ": CICS Trans response='"
 + transRes
 + "'"));

 /*===
 Validate returned information from CICS.
 ===*/
 validateResponse(transRes);
246 WebSphere Commerce V5.4 Developer’s Handbook

 ECTrace.trace(
 ECTraceIdentifiers.COMPONENT_EXTERN,
 CLASSNAME,
 methodName,
 "The response from CICS is valid");

 /*===
Create transaction response entry in db

 ===*/
 try {
 createOrComment(transRes);

 ECTrace.trace(
 ECTraceIdentifiers.COMPONENT_EXTERN,
 CLASSNAME,
 methodName,
 "A row in the ORCOMMENT table has been added "
 +"with the CICS response information");

 } catch (Exception e) {
 //The creation of the order comment failed. Output the errormessage.
 throw new ECSystemException(
 ECMessage._ERR_GENERIC,
 CLASSNAME,
 methodName,
 ECMessageHelper.generateMsgParms(
 "Error occurred when trying to create an order "
 +"comment in ORCOMMENT table for order "
 + getOrderRn()),
 e);
 }

 ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
}

Get the CICS Transaction Gateway properties
This method is to retrieve the CICS Transaction Gateway properties that we
decided in the design stage to keep stored in the STADDRESS table.

The information is found by using the findByMemberIdAndNickName method of
the StoreAddressAccessBean. At the design stage, we decided to use
CTG-PROP as a nickname for the store related information, the URL variable to
be stored in the Address1 column, the REGION variable to be stored in the
Address2 and the PROGRAM variable to be stored in the Address3 column.
Retrieving and storing the information will look something like in Example 9-3.
 Chapter 9. Orders 247

Example 9-3 getCTGprop method

private java.util.Hashtable getCTGprop()
 throws
 javax.ejb.FinderException,
 java.rmi.RemoteException,
 javax.naming.NamingException,
 javax.ejb.CreateException,
 ECSystemException {

 String methodName = "getCTGprop";
 ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

 //Get Store Address entry for NICKNAME='CTG-PROP'
 com.ibm.commerce.common.objects.StoreAddressAccessBean storeAddrAb = null;
 storeAddrAb =
 new com
 .ibm
 .commerce
 .common
 .objects
 .StoreAddressAccessBean()
 .findByMemberIdAndNickName(
 getCommandContext().getStore().getMemberIdInEJBType(),
 "CTG-PROP");

 //Get address1, address2, address3
 java.util.Hashtable stCTGprop = new java.util.Hashtable();

 stCTGprop.put("URL", new String(storeAddrAb.getAddress1()));
 stCTGprop.put("REGION", new String(storeAddrAb.getAddress2()));
 stCTGprop.put("PROG", new String(storeAddrAb.getAddress3()));

 ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
 return stCTGprop;
}

Create the CICS input data
The input data is based on the order reference number and the total price of the
order. This method will simply be using the OrderAccessBean to get the
calculated units, add them together and eventually format the information to be
sent to the CICS program into the specified format. For example 12345,312.54.

The order reference number we already have stored as a local variable from the
OrderProcess command and it is retrieved by using the getter method
getOrderRn.
248 WebSphere Commerce V5.4 Developer’s Handbook

The method will look like Example 9-4 when ready. Some trace statements have
been added to the example code.

Example 9-4 getOrderData method

private String getOrderData()
 throws
 javax.ejb.FinderException,
 java.rmi.RemoteException,
 javax.naming.NamingException,
 javax.ejb.CreateException {

 String methodName = "getOrderData";
 ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

 /* Get the order cost. I.e. Totalproduct + Totaltax +
 Totalshipping + TotalAdjustment */
 com.ibm.commerce.order.objects.OrderAccessBean orderAB =
 new com.ibm.commerce.order.objects.OrderAccessBean();

 orderAB.setInitKey_orderId(getOrderRn().toString());

 java.math.BigDecimal orderValue =
 orderAB
 .getTotalProductPriceInEJBType()
 .add(orderAB.getTotalTaxInEJBType())
 .add(orderAB.getTotalShippingChargeInEJBType())
 .add(orderAB.getTotalAdjustmentInEJBType());

 ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

 //Build and return the order data
 return getOrderRn().toString() + "," + orderValue.doubleValue();
}

Do the CICS transaction
The method for connecting and executing the program on the CICS server will be
using the J2EE Common Client Interface, as described in the design section. As
we are to utilize the ECI adapter, we will use the ECI resource adapter classes in
doing so.

These are the steps necessary to do the CICS transaction:

1. Specify the connection properties.

2. Create a connection to the CICS Transaction Gateway.

3. Create an CICS interaction specification that describes the call to be made to
the CICS server.
 Chapter 9. Orders 249

4. Format the input data.

5. Flow the call to the CICS program.

6. Return the result.

We create a method called doTransaction that takes the CICS Transaction
Gateway properties and the string of information to be passed to the CICS
application.

private String doTransaction(java.util.Hashtable ctgProp, String orderData)
 throws com.ibm.commerce.exception.ECSystemException {
}

Follow the following steps to complete the method:

1. As the code we are writing is to be executed in a non-managed environment,
we need to create an ECIManagedConnectionFactory object to keep all the
information relating connectivity to the CICS Transaction Gateway. Specify
the URL for the gateway daemon with the setConnectionURL method and the
CICS server name with the setServerName method.

ECIManagedConnectionFactory mcf = new ECIManagedConnectionFactory();
mcf.setConnectionURL((String) ctgProp.get("URL"));
mcf.setServerName((String) ctgProp.get("REGION"));

2. Create a ConnectionFactory object. Invoking the createConnectionFactory
method of the ECIManagedConnectionFactory object does this. Get the
Connection object from the ConnectionFactory object we just created. The
CICS program we will use does not require a user ID and password; if it did
we would have to create a ECIConnectionSpec object to allow the J2EE
component to pass other security credentials.

ConnectionFactory cxnf = (ConnectionFactory)
mcf.createConnectionFactory();

3. Create an Interaction object, to the CICS application by invoking the
createInteraction method from the Connection object.

Interaction ixn = cxn.createInteraction();

Note: As the CICS Transaction Gateway server listens on the default port, we
do not need to define it in the connection properties.

Note: The J2EE Common Connector Architecture standard implies the use of
JNDI for retrieving the ConnectionFactory object. For simplicity and to be able
to test the application in the WebSphere Test Environment, we create it in the
command.
250 WebSphere Commerce V5.4 Developer’s Handbook

4. Create a new ECIInteractionSpec object and specify the specifications of the
interaction by calling the setInteractionVerb method to set to sync and receive
mode and use the setFunctionName to specify the name of the application to
be called. The ECIInteraction class defines the specific properties of a call to
CICS and is required as a parameter to call the execute method.

ECIInteractionSpec ixnSpec = new ECIInteractionSpec();
ixnSpec.setInteractionVerb(ixnSpec.SYNC_SEND_RECEIVE);
ixnSpec.setFunctionName((String) ctgProp.get("PROG"));

5. Format the input that is to be sent to the CICS program. The input must be a
27 bytes input, thus we do a cast the string to a byte array with a length of 27
with the empty positions to contain the byte value 0. We do not need to
update the empty positions in the array as byte is a primitive variable and will
be instantiated with the value 0.

byte inputCommarea[] = new byte[27];
System.arraycopy(orderData.getBytes(),0,inputCommarea,0,
 orderData.getBytes().length);

6. Now we need to create a object that implements the
javax.resource.cci.Record and the javax.resource.cci.Streamable class. The
object will contain the data input to the CICS application and is required by
the execution method of the transaction. The object class does not yet exist
and we need to create it ourselves. We will create a class named
GenericRecord and how this is done is described well in chapter 5.1 in the
Java Connectors for CICS: Featuring the J2EE Connector Architecture
(SG24-6401-00) redbook and we will implement the same class in our
application.

7. Execute the application by calling the execute method of the Interaction
object. Pass the interaction specification and the GenericRecord object as
parameters. The record can be used to store the response from the CICS
transaction, hence it will be used both as a input and output parameter.

ixn.execute(ixnSpec, record, record);

8. Close the interaction and the connection to the server.

ixn.close();
cxn.close();

9. Get the response and format the response to a string and return it from the
method.

Tip: Refer to the CICS Transaction Gateway: Gateway Programming manual
for a more detailed description on the input to the CICS application. It is
available at

http://www-3.ibm.com/software/ts/cics/library/manuals/eindex40.htm
 Chapter 9. Orders 251

http://www-3.ibm.com/software/ts/cics/library/manuals/eindex40.htm
http://www-3.ibm.com/software/ts/cics/library/manuals/eindex40.htm

String resp = new String(record.getCommarea());
return resp;

The method will look something like Example 9-5 when complete with added
exception handling and trace statements. Add the following import statements to
the class:

import com.ibm.connector2.cics.ECIManagedConnectionFactory;
import com.ibm.connector2.cics.ECIInteractionSpec;
import javax.resource.cci.ConnectionFactory;
import javax.resource.cci.Connection;
import javax.resource.cci.Interaction;
import javax.resource.ResourceException;
import java.io.UnsupportedEncodingException;

Example 9-5 doTransaction method

private String doTransaction(java.util.Hashtable ctgProp, String orderData)
 throws com.ibm.commerce.exception.ECSystemException {

 String methodName = "doTransaction";
 ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

 //Declare the response string
 String resp = null;

 try {
 /* Create and set values for ECI managed connection factory */
 ECIManagedConnectionFactory mcf = new ECIManagedConnectionFactory();
 mcf.setConnectionURL((String) ctgProp.get("URL"));
 mcf.setServerName((String) ctgProp.get("REGION"));

 //Create a connection factory connection object
 ConnectionFactory cxnf =
 (ConnectionFactory) mcf.createConnectionFactory();
 Connection cxn = cxnf.getConnection();

 /* create an interaction with CICS to the program
 specified in the properties */
 Interaction ixn = cxn.createInteraction();
 ECIInteractionSpec ixnSpec = new ECIInteractionSpec();
 ixnSpec.setInteractionVerb(ixnSpec.SYNC_SEND_RECEIVE);
 ixnSpec.setFunctionName((String) ctgProp.get("PROG"));

 /* Create an input commarea from the orderData string
 with the length of 27 bytes.
 */
 byte inputCommarea[] = new byte[27];
 System.arraycopy(
 orderData.getBytes(),
252 WebSphere Commerce V5.4 Developer’s Handbook

 0,
 inputCommarea,
 0,
 orderData.getBytes().length);

 GenericRecord record = new GenericRecord(inputCommarea);

 //Finally execute and flow the request to CICS
 ixn.execute(ixnSpec, record, record);

 //Close the interaction and the connection
 ixn.close();
 cxn.close();

 //Set the return parameter with the response in a string format
 resp = new String(record.getCommarea());

 } catch (ResourceException re) {
 throw new ECSystemException(
 ECMessage._ERR_GENERIC,
 CLASSNAME,
 methodName,
 ECMessageHelper.generateMsgParms(
 "A Resource exception occurred when trying to connect to:" +
 ctgProp.toString()),
 re);
 } catch (Exception e) {
 throw new ECSystemException(
 ECMessage._ERR_GENERIC,
 CLASSNAME,
 methodName,
 ECMessageHelper.generateMsgParms(
 "Error occurred when executing the CICS transaction"),
 e);
 }

 //Return the response as the result of the method.
 ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
 return resp;
}

Validate the CICS response
The validation of the response from the CICS program is a very simple method to
implement. The functional requirement states that a CICS response is valid if it
contains two colons.
 Chapter 9. Orders 253

We create a method called validateResponse that takes response, iterates
through it and counts the number of colons. If the number of colons is not equal
to 2, we will throw an exception. The method will look something like
Example 9-6 when ready.

Example 9-6 validateResponse method

private void validateResponse(String transRes)
 throws com.ibm.commerce.exception.ECException {
 String methodName = "validateResponse";
 ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

 /* The CICS response is valid if it contains
 the time of the transaction.
 */

 int foundColon = 0;
 for (int i=0;i<transRes.length();i++)
 if (transRes.charAt(i)==':')
 foundColon++;

 if (foundColon != 2)
 throw new ECSystemException(
 ECMessage._ERR_GENERIC,
 CLASSNAME,
 methodName,
 ECMessageHelper.generateMsgParms("CICS transaction did not"+

 " respond with correct information"));

 ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
}

Update the order information
We will create a method called createOrComment that will add a row to the
ORCOMMENT table that will contain the response from the CICS program. We
create a new row by creating a new OrderCommentAccessBean object with the
order reference number and the string to be stored in the table.

The method will look like Example 9-7 when complete.

Example 9-7 createOrComment method

private void createOrComment(String transRes)
 throws
 java.rmi.RemoteException,
 javax.ejb.FinderException,
 javax.ejb.CreateException,
 javax.naming.NamingException {
254 WebSphere Commerce V5.4 Developer’s Handbook

 String methodName = "createOrComment";
 ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

 //Create an order comment
 com.ibm.commerce.tools.optools.order.objects.
 OrderCommentAccessBean orderComm =
 new com.ibm.commerce.tools.optools.order.objects.
 OrderCommentAccessBean(

 getOrderRn(), transRes);

 orderComm.commitCopyHelper();

 ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

}

9.1.6 Register the command in WebSphere Commerce
In order for the new implementation class to be called instead of the default
ExtOrderProcessCmdImpl class, we need to register the implementation class in
the CMDREG table.

Update the setting in the database by issuing the following SQL statement:

update cmdreg set classname =
'com.ibm.commerce.wc54handbook.commands.DoCicsTransJ2EECmdImpl' where
interfacename='com.ibm.commerce.order.commands.ExtOrderProcessCmd'

9.1.7 Deploy the code
In order to make the code executable in a production environment, we will have
to verify that the required classes are available in the Application Server
environment. As described in 9.1.4, “Pre-requisites” on page 238, the following
JAR files needs to be added to the classpath of the enterprise application:

� cicsj2ee.jar
� ctgclient.jar
� ccf2.jar
� connector.jar
� screenable.jar

To deploy the code that we have created, refer to Chapter 9 in WebSphere
Commerce Programmer’s Handbook Version 5.4.
 Chapter 9. Orders 255

9.2 Quick Order
The ToolTech sample store that comes with WebSphere Commerce Business
Edition includes a functionality that is commonly implemented in an e-commerce
solution. The functionality provides the ability for a user to easily add multiple
items to the shopping cart by supplying a list of Stock Keeping Units (SKUs)
together with the quantity of the corresponding item in a single request. We refer
to this as Quick Order functionality.

With the use of the OrderItemAdd command, this functionality is easy to
implement in a shop. It takes an indefinite number of SKU numbers and
quantities and if they are purchasable to the user the command adds them to the
shopping cart and redirects the user a defined URL passed to the command.

Below we provide a brief presentation on how the functionality is implemented in
the ToolTech shop together with some design issues.

9.2.1 Quick order flow in the ToolTech store
To get an overview of the logic of the Quick Order functionality, we have analyzed
the code in the ToolTech shop and it is summarized in Figure 9-3 together with a
brief description below. Refer to the documentation of the OrderItemAdd
command and view the QuickOrder.jsp and the CatalogItemAdd.jsp file to get
more detailed information on what is actually happening in the ToolTech shop.

Tip: Refer to the WebSphere Commerce documentation on the OrderItemAdd
command to get a detailed description of the command behavior and
dependencies.
256 WebSphere Commerce V5.4 Developer’s Handbook

Figure 9-3 The ToolTech flowchart of the quick order functionality

1. The user provides the items SKU numbers and the quantities on the Quick
Order page.

2. The user clicks Order to process the request. The ToolTech shop is using a
customized implementation of the OrderItemAdd command, and instead the
information is sent to a view called CatalogItemAdd.

3. The CatalogItemAdd view checks whether the user has more than one
pending order associated with his account.

a. If true, the CatalogItemAdd view calls the OrderItemMove command with
the parameter deleteIfEmpty=*. The OrderItemMove command will move
all the pending order items to the current order and delete the empty
orders.

b. The CatalogItemAdd view calls the OrderItemAdd command and if it is
successful it redirects to the provided URL, which is the shopping cart
page.

If any exception occurs during the processing within the CatalogItemAdd
view, the QuickOrderView is set as an error view and then called.

Exception

CatalogItemAdd

True

False

2

3

Shopping Cart Page
4

Pending
Orders?

OrderItemAdd

OrderItemMove

3a

3b

Quick Order Page
1

 Chapter 9. Orders 257

4. The shopping cart (OrderItemDisplay) page is displayed.

The CatalogItemAdd view further includes control of the errorpage to be shown if
an exception occurs. If the CatalogItemAdd view is called from the Quick Order
page, the request is redirected back to the Quick Order page and if the view is
being called from another page it is redirected to a created view called
CatalogItemAddErrorView and with the error message passed along.

9.2.2 Design
When we analyze the code that has been done for the Quick Order functionality
in the ToolTech shop, we notice that the main business logic of the functionality is
actually in a JSP page. The CatalogItemAdd view requested from the Quick
Order page, is a JSP page named CatalogItemAdd.jsp and it contains the main
code.

We do not recommend putting business logic in the presentation layer, as has
been done with the CatalogItemAdd implementation. It best to have a clean
separation between code and presentation, but the CatalogItemAdd.jsp does not
actually provide any presentation. The CatalogItemAdd view is a JSP page and
JSP pages are normally used for presentation purpose only.

To implement the same functionality, but in a command, create a command
wrapper. It would simply be a new command, but it will call other commands from
within the performExecute method and set the necessary error views if
necessary. Example 9-8 provides an example on how to call a command
internally from another command.

Example 9-8 Call a command

OrderItemAddCmd oiacmd = (OrderItemAddCmd)
CommandFactory.createCommand(OrderItemAddCmd.Name,

getCommandContext().getStoreId());
TypedProperty requestProperties = (TypedProperty)

getCommandContext().getRequestProperties().clone();

//Modify, if necessary the parameters
requestProperties.put("param1","value1");

oiacmd.setRequestProperties(requestProperties);
oiacmd.setCommandContext(getCommandContext());
oiacmd.execute();
258 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 10. Shipping and taxes

This chapter is primarily concerned with shipping and taxes. We will discuss the
how to implement shipping by weight in a store. We also explain the check out
process as implemented in the ToolTech sample store. We then discuss the
display of prices including taxes. The steps to implement this feature will be
described and details provided about the tables, commands, and so on that are
involved.Discounts will be also described in this chapter. We show how to create
a discount for the store and to display the discount in the store

10
© Copyright IBM Corp. 2002. All rights reserved. 259

10.1 Shipping by weight
Shipping is how a store handles the delivery of orders to customers. In most
cases, products are shipped from a fulfillment center, a separate agency that is
responsible for warehousing the store's goods. In order for a WebSphere
Commerce store to ship orders, the following must be defined in the database:

� Shipping mode
� Shipping arrangement
� Shipping charge

A shipping charge can be calculated in several possible ways. One of the typical
shipping charge is based on weight.

10.1.1 Example of shipping calculations by weight
A department store that has locations in every province, uses shipping by weight.
In this example there is only one shipping provider:

The department store assigns products a shipping category according to their
weight. Products fit into one of the following weight ranges:

� 0 to 5lbs
� 5 to 15lbs
� 15 to 25lbs
� 25 to 50lbs
� 50 to 100lbs
� More than 100 lbs

The shipping charge is based on the weight of the product. No other shipping
charges apply. Table 10-1 shows an example of weight based shipping charges.

Table 10-1 Shipping charges based on weight

In this example when a shopper buys a microwave oven, the shipping charge is
$8.00 calculated as $5.00 for 15 to 25lbs shipping times 1 microwave oven.

Jurisdic
tion

0 to 5
lbs

5 to 15
lbs

15 to 25
lbs

25 to 50
lbs

50 to
100
lbs

More
than
100 lbs

Cost
per
product

Cost
per item

United
States

4.00 4.00 8.00 8.00 15.00 25.00 0.00 0.00
260 WebSphere Commerce V5.4 Developer’s Handbook

10.1.2 Shipping database assets
ToolTech is the business-to-business (B2B) online hardware store provided with
WebSphere Commerce. One of the features included in the ToolTech sample
store is weight-based shipping.

The ToolTech store provides all the pages and features necessary for a
functioning B2B online store. ToolTech is packaged with WebSphere Commerce
as a store archive. To view the sample store create a new store archive based on
ToolTech using the Store Services tools, then publish the archive to the
WebSphere Commerce Server.

For more information about publishing a store archive refer to the WebSphere
Commerce Version 5.4 Online Help.

The ToolTech shipping database assets are stored in the following XML files:

� shipping.xml
� store-catalog-shipping.xml
� store-defaults.xml
� shipfulfill.xml

The ToolTech shipping assets are divided into:

� Jurisdictions
� Shipping modes
� Calculation codes
� Calculation rules
� Calculation scale
� Calculation range
� Calculation lookup
� Calculation combinations
� Shipping fulfillment

Jurisdictions
The shipping.xml file identifies jurisdictions for shipping.

Jurisdiction is defined in the JURST table. The Table JURSTGROUP assigns the
jurisdiction to a group and subclass. Jurisdiction and the group are assigned to
the same group in the table JUSTPREL.

Shipping modes
A shipping mode is a combination of a shipping carrier and its shipping service.
 Chapter 10. Shipping and taxes 261

Calculation codes
The calculation codes are necessary for the calculation of shipping charges,
sales tax, weight ranges, shipping tax and discounts. The shipping.xml contains
the calculation for shipping.

Field displaylevel contains the amount calculated and the source. Values are:

� 0 = Order Item
� 1 = Order
� 2 = Product
� 3 = Item
� 4 = Contract

Calculation rules
The CALRULE table stores the calculation rules for shipping, and shipping by
weight. The flag field contains the CalculationCodeQualifyMethod value of the
specific CalculationCode.

� 0 = the method will not be invoked
� 1 = the method will be invoked

Calculation scale
A calculation scale is the set of ranges that applies to the calculation. For
example shipping cost with a set of weight ranges:

� 0 and 5 kg costs $10.00

� 5 and 10 kg costs $15.00

The CALSCALE table stores the scale code for shipping and shipping by weight,
one per order and one per item.

Calculation range
The range for the scale codes is stored in the CALRANGE table:

� calmethod_id_10 = shipping per order

� calmethod_id_11 = shipping per item

Calculation lookup
Calculation lookup values are the values associated with the calculation scale.
For example, the calculation lookup values for a product with a set of weight
ranges from:

� 0 to 5 kg costs $10.00

� 5 to 10 kg costs $15.00
262 WebSphere Commerce V5.4 Developer’s Handbook

would be $10 to $15 . There is also one lookup value per currency for a given
CALRANGE ID. The CARLOOKUP table defines the lookup ID and value.

Calculation combinations
Calculation rules and the scale ranges are combined in the CRULESCALE and
calculation methods and rules are combined in the STENCALUSG table.

The field usageflag controls how the OrderPrepare command uses the
calculation:

� 1 = use - use this CalculationUsage.
� 2 = check - throw an ECApplicationException if this calculation does not

produce a value for an order item.

Shipping fulfillment
Shipping fulfillment assets associate a shipping jurisdiction group to the
calculation rules, and a fulfillment center to the ship mode, for the store. The
shipping fulfillment information is stored in the SHPJCRULE and SHPARRANGE
tables.l.

For more information about shipping database assets of the sample store refer to
the product documentation for ToolTech or to the WebSphere Commerce Version
5.4 Online Help, or to the IBM WebSphere Commerce Store Developer’s Guide
Version 5.4.

10.1.3 Adding shipping by weight charges
The sample stores, InFashion, WebFashion, WebAuction, and NewFashion do
not include shipping by weight charges. If you are creating your store using one
of these samples, you will have to edit some of the store database asset XML
files.

Changing shipping settings
Make the necessary changes of the shipping settings using the Shipping
notebook in Store Services. Follow this sequence:

1. Change shipping providers
2. Change provider display name
3. Change shipping zones
4. Change shipping categories
5. Change shipping rates
6. Change weight ranges
7. Change weight rates
 Chapter 10. Shipping and taxes 263

After changing the shipping settings the values will be updated the next time you
publish the store.

For more information about changing the shipping settings, refer to the IBM
WebSphere Commerce Version 5.4 Online Help.

Changing store database assets
The Shipping notebook does not edit all database fields related to shipping. For
more information, see “Changing store database assets” in the WebSphere
Commerce Version 5.4 Online Help.

To include shipping by weight charges in one of the sample stores you have to
localize the store archive file for your store (for example: mystore.sar).The
directory where SAR files are located is:

<WCS_DIR>\CommerceServer\instances\instancename\sar
1. Open the store archive file using a ZIP program.

2. Search for the store-catalog-shipping.xml and open the file

3. Add the ship by weight calculation code (0) to the file as shown in
Example 10-1:

Example 10-1 Shipping by weight calculation code

<catencalcd
calcode_id="@calcode_id_0"
catencalcd_id="@catencalcd_id_0"
store_id="@storeent_id_1"
/>

For more information about the CATENTCALCCD table refer to the IBM
WebSphere Commerce Version 5.4 Online Help.

4. Add the information shown in Example 10-2 for each catentry (products,
items, bundles and packages) in the catalog:

Example 10-2 Shipping by weight

<catentship
catentry_id="the product or item id"
noninalquantity="1.0"
quantitymultiple="1.0"
weight="the weight of the product or item"
weightmeasure="LBR"
quantitymeasure="C62"
/>
264 WebSphere Commerce V5.4 Developer’s Handbook

For more information about the CATENTSHIP table refer to the IBM
WebSphere Commerce Version 5.4 Online Help.

5. Save the file and ensure the updated file is in the store archive file.

6. If you want to add information after publishing the store, you can use the
Product Management Tools. These will only update the data in the database
and not alter the database assets in the SAR file. Details about how to use the
Product Management tools are described in the WebSphere Commerce
Version 5.4 Online Help.

For more information about creating and changing shipping assets refer to the
IBM WebSphere Commerce Store Developer’s Guide Version 5.4, Chapter 18.

Loading data
There is a simple way of loading data into WebSphere Commerce Server
database using the Loader package commands:

To load data into your WebSphere Commerce Server database, run the Load
command:

1. Create a working directory. For example:

C:\template\data

2. Make sure that the XML file is in a location is included in the same path:

That is place store-catalog-shipping.xml in C:\template\data\.

3. From a Window command prompt, enter the following command:

cd <WCS_DIR>\CommerceServer\bin

4. Be sure to back up the WebSphere Commerce Server database.

5. From the Windows command prompt, enter the following command:

massload -dbname mall -dbuser databaseuser -dbpwd databasepw -infile
“C:\template \data\store-catalog-shipping.xml” -method sqlimport

6. Check the database and the tables CATENTCALCD and CATENTSHIP

More information about loading data into the WebSphere Commerce Server
database refer to the IBM WebSphere Commerce Store Developer’s Guide
Version 5.4 and to the WebSphere Commerce Version 5.4 Online Help.

10.1.4 Use case for order check out
This section describes the use case and interactions when a shopper and order
decides to check out and order from the store. The use case is initialized by
clicking the Check Out button. The sequence that occurs as a result is:
 Chapter 10. Shipping and taxes 265

1. A bill address page is displayed. The customer has the choice to select one of
the addresses in their address book for the billing address or to create a new
address. If the customer clicks Create new address, a new address can be
added.

2. The system sets up the selected address as the billing address for the order.

3. The system displays the shipping address page. The customer can select an
existing address or to create a new address.The system sets up the selected
address as the shipping address of the order.

4. The customer select a shipping method. This process is handled in the
shipping.jsp.

The shipping JSP uses the following commands:

– AddShipModeView
– OrderItemDisplay

The shipping JSP uses the following beans:

– OrderBean
– OrderItemAccessBean
– ShipModeAccesBean

By clicking Check Out in the shopping cart page the customer moves through
a series of checkout pages.The OrderItemDisplay command decides which
page will be loaded. The command OrderItemDisplay returns the
OrderItemDisplay.jsp.

This OrderItemDisplay.jsp includes different JSP files based on the page
parameters. If a value for the page is shipmethod, the third page loaded in the
check out sequence will be the shipping method page (shipping.jsp).

The shipping method page includes a form where the customers can select
the shipping method. The action for the form is set to AddShipModeView. This
command is registered in the VIEWREG table to associate with
AddShipMode.jsp

5. The form with AddsShipModeView is submitted and the AddShipMode.jsp is
displayed.

The AddShipMode.jsp uses the following commands:

– OrderItemUpdate
– OrderPrepare

6. The shipping method is updated for the order item by the OrderItemUpdate
command.

7. The OrderPrepare command is called to preprocess the order. The
OrderSummary is displayed if the status parameter is set to P. In this case the
OrderDisplayPending.jsp is displayed.
266 WebSphere Commerce V5.4 Developer’s Handbook

The shipping.jsp displays the cost structure and approximate delivery time for
each shipping method. The information are stored in the SHPMODEDSC
table.

If you want to modify the shipping charges in the database, you have to
update the description in the SHPMODEDSC.

Commands
OrderItemDisplay

The OrderItemDisplay command lists all order items which are in pending status.
The parameters of the command are shown in Figure 10-1.

Figure 10-1 OrderItemDisplay

OrderItemUpdate

This command can add products and items into one or more orders into the order
list. It can also update OrderItems in an existing order. The parameters of this
command are shown in Figure 10-2.
 Chapter 10. Shipping and taxes 267

Figure 10-2 OrderItemUpdate

OrderPrepare

The command prepares an order by determining shipping charges for an order. If
an order reference number is not specified, all current pending orders will be
prepared for the current customer at the given store. The parameters of this
command are shown in Figure 10-3.
268 WebSphere Commerce V5.4 Developer’s Handbook

Figure 10-3 OrderPrepare

For more informations about commands, beans and tables refer to the
WebSphere Commerce Version 5.4 Online Help.
 Chapter 10. Shipping and taxes 269

10.2 Prices including taxes
Each type of tax used in your store should have its own category. Default tax
categories are set up for you. Sales tax is charged on the total amount of the
order. Shipping tax is charged on the shipping charges for the total order. If you
want to include the tax amount in the price that displays for the product you have
to make same changes to the store samples. If you do not want include tax
amount in price, the tax amount will display separately.

This chapter includes information about tax types, examples of tax calculations,
details about tax assets in one sample store, and information on changing tax
settings. We describe how to display tax as part of the display price in the
ProductDisplay.jsp.

10.2.1 Definition of tax types
A store typically collects two type of taxes: sales or use tax, and shipping tax.
Each tax category has one tax type. Although each tax category may only be of
one tax type, several different tax categories may belong to the same tax type.

The following tax calculations are based on sample scenarios. All examples are
hypothetical.

For this example imagine a department store located in Ontario, Canada, and
that the store has customers from other jurisdictions, where taxation laws may
vary. Table 10-2 outlines sample jurisdictions, the store's tax categories, and the
tax rates in percentages:

Table 10-2 tax example

Table 10-3 illustrates the tax codes:

Jurisdiction default shipping Federal tax State tax

USA,
California

0.00 0.00 6.00 8.00

USA, other 0.00 0.00 6.00 7.00

Canada ,
Ontario

0.00 0.00 7.00 8.00

Canada, other 0.00 0.00 7.00 7.00
270 WebSphere Commerce V5.4 Developer’s Handbook

Table 10-3 tax codes

A shopper from Ontario, Canada orders two pairs of women's jeans. Jeans fall
under the tax code clothing, which is composed of the default, federal and state
taxes. In the jurisdiction CANADA, Ontario, the values for these taxes are 0.00,
except for federal tax, which is 7 percent, and state tax, which is 8 percent. As a
result the total tax charge is $21.00: ($70.00 per pair of jeans * 7% federal tax * 2
pairs of jeans) + ($70.00 per pair of jeans * 8% state tax * 2 pair of jeans) =
$21.00.

10.2.2 Tax database assets
WebSphere Commerce samples stores keeps tax database assets in the
following XML files:

� taxfulfill.xml
� store-catalog-tax.xml
� store-defaults.xml
� tax.xml

The tax database assets are divided into the following sections:

� Jurisdictions
� Tax categories
� Calculation codes
� Calculation rules
� Calculation scale
� Calculation range
� Calculation lookup
� Calculation combinations
� Tax fulfillment

Jurisdiction and groups
Jurisdictions are geographical regions or zones representing a country or region,
province or territory, or zip code range, to which you sell goods. Jurisdictions are
grouped together to form jurisdiction groups.

WebSphere Commerce has two types of jurisdiction: shipping and tax
jurisdiction. The tax jurisdiction is divided into groups.

tax code default shipping federal state

clothings yes no yes yes
 Chapter 10. Shipping and taxes 271

The tax.xml file identifies jurisdictions. Jurisdictions are defined in the JURST
table, JURSTGROUP assigns the jurisdiction to a group and subclass, and
JURSTPREL assigns the jurisdiction and jurisdiction group to the same
subclass.

Tax categories
Each type of tax used in the sample store has it's own tax category such as state
or region, provincial, or federal. Each tax is classified as a sales tax or shipping
tax. The TAXCGRY table stores the tax categories as shown in Figure 10-4.

Figure 10-4 Tax type and category data model

Calculation codes
Calculation codes are used to calculate tax charges - this is how tax is calculated
for an order item. Tax calculated for an order item must use either a sales tax or a
shipping tax calculation code.

Only one tax calculation code of each tax type is supported for a catalog entry or
a group of catalog entries.

Sales tax is based on the net price and shipping tax is based on the shipping
charge.
272 WebSphere Commerce V5.4 Developer’s Handbook

The tax.xml file contains all the calculation codes for taxes. The CALCODE table
stores the calculation codes for taxes. The displaylevel field has a number
displaying what amount was calculated. The numbers that can be displayed are
shown below:

0 = Order Item
1 = Order
2 = Product
3 = Item
4 = Contract

Calculation rules
One calculation code has a set of calculation rules which define how the
calculation will be done. The CALRULE table stores the calculation rules for the
tax category. The flag field specifies whether the CalculationCodeQualifyMethod
value of the specific CalculationCode should be invoked. A tax calculation rule is
associated with a tax category, a jurisdiction group, and a fulfillment center. This
defines conditions for how the calculation rule is used. These relation ships are
shown in Figure 10-5.

Figure 10-5 Calculation rule - tax data model
 Chapter 10. Shipping and taxes 273

Tax fulfillment
Tax fulfillment assets associate a tax jurisdiction group to a fulfillment center and
a calculation rule to both. The tax fulfillment information is stored in the
TAXJCRULE table and can be seen in the taxfulfill.xml file:

The taxjcrule_id field generates a unique key for each association of jurisdictions,
fulfillment centers, and calculation rules.

For more informations about calculation scale, calculation range, calculation
lookup and calculation combinations refer to the IBM WebSphere Commerce
Store Developer’s Guide Version 5.4, chapter 19 or to the WebSphere
Commerce Version 5.4 Online Help.

10.2.3 Implementation prices including taxes

InFashion sample store
InFashion is one of the business-to-consumer online fashion stores provided with
WebSphere Commerce. The sample store is packaged with WebSphere
Commerce as a store archive, and as a result, no further installation is
necessary. All that is required to view the sample store is to create a new store
archive based on InFashion using the Store Services tools, then publish it to the
WebSphere Commerce Server.

In this section we describe the changes necessary to the InFashion sample store
in order display tax as part of the display price.

For more information about setting up the InFashion sample, see “Creating a
store archive using Store Services” in the WebSphere Commerce Version 5.4
Online Help.

Changing tax settings
To change the necessary tax settings you can use the tax notebook in Store
Services:

1. On the machine where WebSphere Commerce is installed, select the Start ->
Programs -> IBM WebSphere Commerce -> Store Services.

On the machine where WebSphere Commerce is installed, or on a client
machine on the same network as the WebSphere Commerce machine you
can also access Store Services using the following Web address in your
browser:

https://<hostname>:8000/storeservices

2. The Logon page is displayed in the browser. You must log in to the Store
Services with administration rights.
274 WebSphere Commerce V5.4 Developer’s Handbook

3. In the User name field, type your user name.

4. In the Password field, type your password.

5. From the Display language for your store field, select the preferred
language in which to work. See Figure 10-6.

Figure 10-6 Log in to Store Services

6. Click Log On.

7. The Store Archive list displays.

8. From the Store archive list select your sample Store (for example
Mystore.sar) and click Tax.

Changing tax jurisdiction
The sample store archives define the World tax jurisdiction, which cannot be
deleted using the tax notebook. If your specified country or region and state or
province combination do not match, the World jurisdiction is used instead. For
our example we still used the default values.
 Chapter 10. Shipping and taxes 275

Changing sales taxes
Default sales tax codes are set up for you. You can use this default sales tax
code, or you can delete it and create a new one.

The sample stores and the tax notebook only support a single sales tax code. To
add more tax codes to your stores, see details in the IBM WebSphere Commerce
Store Developer’s Guide Version 5.4.

To change the Sales taxes use the following steps:

1. From the left navigation frame of the tax notebook, click Sales Tax. To add a
code, do the following:

In the New sales tax code field, type the name of a sales tax code for
example:Tax Code 2

2. Click Add. The tax category displays in the Defined sales tax codes list
3. To set the default tax code, from the Define sales tax codes list, select the

code Tax Code 2, then click Set as Default. The default sales tax code is
applied to all products that are not currently assigned to a sales tax code. To
delete a code, in the Defined sales tax codes list, select the code, then click
Remove. If you wish to complete another task in the tax notebook, click the
appropriate page in the left navigation frame. Figure 10-7 shows the tax
notebook.
276 WebSphere Commerce V5.4 Developer’s Handbook

Figure 10-7 Changing sales tax code

Changing tax categories
The next step to create a new tax category. To do this:

1. Click Categories in the left navigation frame of the tax notebook.

2. In the New tax category field, type the name of the tax category.For example
enter:

VAT

Be careful when choosing the name of your tax category. You can remove the
category if it has not been assigned to any products, but you cannot change
the name of the tax category.

3. Select the tax type of the category. Each category must be either a sales tax
or a shipping tax type. Sales tax is charged on the total amount of the order.
Shipping tax is charged on the shipping charges for the total order.

Select Sales Tax.

4. Select Include tax as display price.

The tax amount will be included in the product display price. If this option is
not selected, the tax amount will display separately.
 Chapter 10. Shipping and taxes 277

5. Click Add. The tax category displays in the Defined tax categories list. See
Figure 10-8.

Figure 10-8 Changing tax category

Changing display names
After you define your tax category, you must define the name for each category
that will display to your customers. Refer to the WebSphere Commerce Version
5.4 Online Help for details on how to change the display names.

Changing rates
1. From the left navigation frame, click Rates.

2. The tax rates table contains a default tax, which has an initial value of 0.00. In
the column VAT type a tax rate. For example:

7.0000

Attention: To display tax as a display price on the JSP file, you have to make
some changes. The steps to change the ProductDisplay.jsp example are
described in this chapter.
278 WebSphere Commerce V5.4 Developer’s Handbook

Leave the value as zero for the shipping tax. The tax rate averages 7% of the
display price of the product.

3. Click OK to save your settings. See Figure 10-9

Figure 10-9 Changing tax rates

Changing category assignments
1. From the left navigation frame, click Category Assignment.

It also contains a default tax, GST and a default shipping tax.

2. Assign tax category VAT to the appropriate tax codes Tax Code 2, by
selecting the corresponding checkbox in the column VA. This is shown in
Figure 10-10

Figure 10-10 Changing category assignments
 Chapter 10. Shipping and taxes 279

Publish store database assets
After the changing of the tax settings you have to publish only the store database
assets. The steps are:

1. Back up your WebSphere Commerce database

2. Before republishing a store, delete the files from following directory:

<WCS_DIR>\CommerceServer\instances\instancename\cache\storeid\

In order to avoid problems, delete only the content under the storeid folder. In
the store development phase, you should disable caching. To do this, open
the Caching panel of the Configuration Manager, and ensure that Enable
Cache is deselected.

3. From the Store Archive list, select the store archive you wish to publish (for
example Mystore.sar)

4. Click Publish. The Publish Store Archive page displays.

5. Select only the check boxes for the Publish store database assets to update
the WebSphere Commerce database.

6. Click OK to publish the store database assets to the WebSphere Commerce
Server.

If you have problems to publishing the store database assets refer to the
WebSphere Commerce Version 5.4 Online Help, see Chapter “Troubleshooting
Publishing”.

Changing ProductDisplay.jsp
After publishing the store you have to change the JSP file where you want to
display prices including tax. We describe the changes to the ProductDisplay.jsp
from the sample store. The steps are:

1. Change to the following directory:

<drive>\WebSphere\AppServer\installedApps\WC_Enterprise_App_instance
_name.ear\wcstores.war\WEB-INF\classes\storedir

In our example the name of the instance Mystore.

2. Backup the ProductDisplay.jsp

3. Open the ProductDisplay.jsp and include the code shown in Example 10-3:

Example 10-3 Import packages in example JSP

<%@ page import="com.ibm.commerce.price.beans.*" %>
<%@ page import="java.math.*" %>
280 WebSphere Commerce V5.4 Developer’s Handbook

To include the tax in the display price of the product you have to get the
amount of the CalculationPrice and also the amount of the tax. The tax
amount must be added to the CalculationPrice and be formatted again.See
Example 10-4

Example 10-4 Get the amount of the calculationprice and the tax

<%
// Display tax as part of the display price

BigDecimal totalPriceWithTax =
product.getCalculatedContractPrice().getAmount().
add(product.getDisplayTaxes().getCategoryAmount());
FormattedMonetaryAmountDataBean formattedAmount = new
FormattedMonetaryAmountDataBean();
formattedAmount.setAmount(totalPriceWithTax);
com.ibm.commerce.beans.DataBeanManager.activate(formattedAmount,request);
%>

4. To display the price including taxes include the code shown in Example 10-5

Example 10-5 Total price with tax

Total Price with Tax :
<%=formattedAmount%>

5. To display the price without tax include the code shown in Example 10-6

Example 10-6 Price without tax

regularPrice
:<%=product.getCalculatedContractPrice()%>

6. Save the ProductDisplay.jsp and close the file.

7. You can launch your store by entering the following:

https://host_name/webapp/wcs/stores/store_directory/index.jsp

Or you can enter the following URL to display the ProductDisplay.jsp:

https:/local_name/webapp/wcs/stores/servlet/ProductDisplay?catalogId=catalo
g_id&storeId=store_id&productId=product_id&langId=-1

You will get the display shown in Figure 10-11 with both prices appearing.
 Chapter 10. Shipping and taxes 281

Figure 10-11 Prices with and without tax

8. If the ProductDisplay.jsp fails for any reason check the log files in the following
path:

<WCS_DIR>:\WebSphere\CommerceServer\instances\instance_name\logs\

The ecmsg.log file produces system files with names like

ecmsg_instance_name_2002.05.01_18.17.47.768.log

9. After checking to logs, correct any errors, and try to go to the ProductDisplay
page of you store again.

10.3 Discounts
Discounts allow you to offer customers price incentives to promote a
purchase.You are allowed to offer percentage discounts or fixed-amount
discounts.They can apply to specific products or to the total purchase.
282 WebSphere Commerce V5.4 Developer’s Handbook

Discounts can be either active, or inactive. They are set as active by default when
created, but can be deactivated at any time using the WebSphere Commerce
Accelerator. If you change a discount from active to inactive, you must propagate
the discount to the production server for the change to take effect.

The WebSphere Commerce Accelerator include a wizard to create discounts.
Once created, the discounts must be deployed to the production server. It is also
possible to create discounts with the Loader utility.

10.3.1 Discount types
In WebSphere Commerce they are different types of discounts. Using either a
simple discount or a multirange discount, you have four discount types:

� Percentage off total purchase
� Amount off total purchase
� Percentage per product
� Amount off per product

For more information about discount types refer to the section on discount types
in the WebSphere Commerce Version 5.4 Online Help.

10.3.2 Discount assets
The primary method of creating discounts is using the discount wizard in
WebSphere Commerce Accelerator.

Discounts can also be created by using XML files and then loaded by the Loader
package or published by Store Services. For more information on to create
discount assets refer to WebSphere Commerce Version 5.4 Online Help or to
IBM WebSphere Commerce Store Developer’s Guide Version 5.4.

Discount calculation code
Figure 10-12 shows the discount structure in the order model implemented by
WebSphere Commerce Server.
 Chapter 10. Shipping and taxes 283

Figure 10-12 Order object model

A discount calculation code indicates how the discount is calculated for order
items. Each row in the table CALCODE represents a calculation code. A
calculation code belongs to a store entity. More than one calculation code can be
defined in one store entity.

Discounts can be offered all the time or only for a defined time period. The
discount calculation code can also be associated with one or more member
groups and this is defined in the CALCODEMGP table. The usage of a
calculation code by members in a certain member group, is defined in the
CALRULEMGP table. It can also be attached to one or more catalog entries or to
a catalog group.

Catalog entries or catalog groups can have more then one discount calculation
code. If there is more than one calculation code for an order, the discount
calculations are performed in ascending sequence of their calculation code
sequence attributes.

Order items are grouped for calculation in one of four ways:

� Per trading agreement
� Per Product
� Per offer
� Per shipping address

For more information, see the WebSphere Commerce Version 5.4 Online Help
section on “Discount and discount codes”.

+definedCalculationCode

+customerGroup

RecognizedMemberGroup

CalculationCodeStoreEntity

Store

CalculationRule

MemberGroup

+customerGroup
284 WebSphere Commerce V5.4 Developer’s Handbook

10.3.3 Creating a discount in a sample store
In this section we show how to create a simple discount for a new customer
profile for registered users. The discount type is “Amount off per product”.

Creating a new customer profile
A customer profile incorporates registration information, demographics, address
information, customer culture, purchase history, and other miscellaneous
attributes which define a dynamic group of customers or accounts. Customer
profiles serve as targets for discounts.

Customer profiles are created and edited using the customer profile notebook in
the WebSphere Commerce Accelerator. To create a customer profile:

1. Log into WebSphere Commerce Accelerator.

2. Choose Marketing -> Customer Profiles.

3. Click New. The customer profile notebook is displayed.

4. Type a name into the customer profile text field and also provide a description.
For example:

IBMWCS54 - Testgroup

5. Set the registration status to Registered.

6. Click OK to save the profile.The customer profile is displayed in thecustomer
profile page, as shown in Figure 10-13.
 Chapter 10. Shipping and taxes 285

Figure 10-13 Creating a new customer profile

After you have created the customer profile, the new profile should appear in the
list of the customer profiles as shown in Figure 10-14.

Figure 10-14 Sample customer profile

All customers which fit in the profile can also be shown by selecting the profile
and clicking Customers.

Creating a new discount
In the first step you have created a new customer profile, now we create a new
discount for this group by taking the following steps:

1. Choose Merchandise -> Discounts.

2. Click New.
286 WebSphere Commerce V5.4 Developer’s Handbook

3. Fill in the name and the description in the discount general Information page.
For example:

Name :IBMWCS54Discount
Descripton: Discount of IBM

4. Select This discount is always in effect and click Next.

5. In the customer groups windows select Assign this discount to specific
customer profiles.

6. Now you are able to select the new customer profile IBMWCS54 by clicking
Add as shown in the Figure 10-15.

7. Click Next.

Figure 10-15 Customer groups

8. The discount type window appears. Select Amount off per product and click
Next.

9. On the simple display page enter the amount for you discount, for example:

5 USD.

10.Select Specify the minimum number of products necessary to qualify for
this discount.
 Chapter 10. Shipping and taxes 287

11.Fill in for the number of products that a customer must purchase to get the
discount. We selected All qualifying product must be the same to get the
discount only on the same products. Click Finish. You will get a message that
the discount has been successfully created.

Figure 10-16 Simple discounts

Activating a discount
Next we need to activate the discounts.

1. Choose Merchandise -> Discounts. The discounts window displays a list of
the currently defined discounts.

2. Select the check box to the left of the discount that you want to activate. Click
Activate. The discount will be activated on the production server. See
Figure 10-17

Figure 10-17 Activate a discount
288 WebSphere Commerce V5.4 Developer’s Handbook

Changing discount assignment for the products
To display the discount in the order summary page of the sample store we have
to add the discount to the product.The steps are:

1. Choose Merchandise -> Products. A list of products for the store is
displayed.

2. Open the change product notebook by selecting the check box to the left of
the product that you want to work with and click Change.

3. From the left navigation frame, click Discounts. The discounts page is
displayed.

4. To assign a discount to the product, select the IBMWCS54Discount from the
available discounts list, and click Add.

5. Click OK. You will get a message that the discount has been applied
successfully.

Display discount in the Order Summary page
1. Launch your store by entering the following:

https://host_name/webapp/wcs/stores/store_directory/index.jsp

2. Register as a user of the IBMWCS54 group.

3. Browse the catalog and add some products into the shopping cart. Make sure
to add some products including the new discount. Change the quantity from 1
to 2.

4. On the order summary page you will get a discount similar to that shown in
Figure 10-18.
 Chapter 10. Shipping and taxes 289

Figure 10-18 Order summary page with simple discount

The customer bought four striped sweatshirts which each cost $25. The total
price of this orde ritem without discount is $100. You will get a discount of $20 as
shown in Figure 10-18.

Table 10-4 shows how this simple discount is calculated.

Table 10-4 Simple discount

discount type rule calculation result

Amount off per
product

When 2 or more
striped shirts are
chosen, get $5 off
each shirt

[4 x ($25-$5)] $80
290 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 11. Messaging customization

In this chapter we look at how to customize the messaging subsystem. Due to
the fact that information on how to install and configure MQSeries is a little hard
to find in the online documentation, the first thing we present in this chapter is a
guide on how to get MQSeries to work with WebSphere Commerce and
VisualAge for Java. When that is done, we walk through a customization of the
messaging subsystem. This includes creating a new XML and DTD file. We map
the inbound XML to command objects. These command objects will be handled
by a controller command and several task commands that will perform the task of
updating the database with the information received in the inbound xml. Finally
we describe the steps needed to be able to test the commands.

11
© Copyright IBM Corp. 2002. All rights reserved. 291

11.1 Installing and configuring MQSeries
This section describes how to install MQSeries and perform some basic
configuration steps. We used MQSeries Version 5.2.1.

11.1.1 Installing
Install MQSeries choosing custom installation. In the examples in this chapter we
used <drive>\MQSeries as installation directory. Make sure that client has been
selected as part of the MQSeries install.

11.1.2 Configuring
Perform the following to configure MQSeries

Create a queue manager
1. Open the MQSeries Explorer and create a new queue manager by

right-clicking on the folder Queue Managers. We use the name QM.DEMO.
You can choose any name you like as long as you use it consistently. Specify
a dead letter queue as SYSTEM.DEAD.LETTER.QUEUE. See Figure 11-1

Figure 11-1 Creating MQSeries Queue manager step1

2. Click Next twice and check the Create Server Connection Channel
checkbox. See Figure 11-2
292 WebSphere Commerce V5.4 Developer’s Handbook

Figure 11-2 Creating MQSeries Queue manager step3

3. Click Next and check Create listener configured for TCP/IP. The default
port is 1414. See Figure 11-3

Figure 11-3 MQSeries listener

Define MQSeries queues
You need to define five different queues.

1. Right-click on the Queues folder under your queue manager and click New ->
Local Queue. In Queue Name specify wcs_inbound. Click Ok. See
Figure 11-4
 Chapter 11. Messaging customization 293

Figure 11-4 Define queues

Create the following five queues:

� wcs_inbound
� wcs_inbound_ser
� wcs_inbound_par
� wcs_outbound
� wcs_error

Change coded character set on queue manager
Follow the online documentation on how to change the coded character set to
UTF-8 on your queue manager. The details will be in
<drive>\WebSphere\CommerceServer\web\doc\en_US\tasks\tcvenmsg.htm

MQSeries MA88 product extension pack
Follow the details in the WebSphere Commerce online documentation to install
and configure the MA88 product extension pack. See

<drive>\WebSphere\CommerceServer\web\doc\en_US\tasks\tcvma88.htm

In the online documentation we used it wrongly points you to the
CommerceServer/bin directory. You should instead look for admin.config in the
AppServer/bin directory.
294 WebSphere Commerce V5.4 Developer’s Handbook

Follow the instructions in the online documentation on how to update the
WebSphere Application Server classpath variable. See

<drive>\WebSphere\CommerceServer\web\doc\en_US\tasks\tcvupwas.htm

Setup system classpaths and environment variables. See

<drive>\WebSphere\CommerceServer\web\doc\en_US\tasks\tcvcnfjms.htm

In addition to the files described in the WebSphere Commerce documentation
you should also add the file connector.jar to the CLASSPATH environment
variable.

Copy the files listed below from <drive>\MQSeries\java\lib to the
<drive>\WebSphere\AppServer\lib\ext directory:

� jms.jar
� connector.jar
� com.ibm.mq.jar
� com.ibm.mqjms.jar
� com.ibm.mqbind.jar
� jndi.jar
� jta.jar
� ldap.jar
� providerutil.jar

Configure JMS
The next step is to configure JMS using JMSAdmin. See the online
documentation

<drive>\WebSphere\CommerceServer\web\doc\en_US\tasks\tcvcnfjms2.htm

We create a file with the queue definitions. We do this since we add the
definitions both to WebSphere Application Server and to the WebSphere Test
Environment.

The file in Example 11-1 should be saved in <drive>\MQSeries\java\bin. It links
the JMS queues to MQSeries. If you have used other names for the queue
manager or queues you should change this file accordingly.

Example 11-1 setupJMS.mq

define qcf(JMSQueueConnectionFactory) qmanager(QM.DEMO)
alter qcf(JMSQueueConnectionFactory) ccsid(1208)
define q(JMSInboundQueue) queue(wcs_inbound)
define q(JMSSerialInboundQueue) queue(wcs_inbound_ser)
define q(JMSParallelInboundQueue) queue(wcs_inbound_par)
define q(JMSOutboundQueue) queue(wcs_outbound)
define q(JMSErrorQueue) queue(wcs_error)
 Chapter 11. Messaging customization 295

alter q(JMSOutboundQueue) targclient(MQ) qmanager(QM.DEMO)
alter q(JMSErrorQueue) targclient(MQ) qmanager(QM.DEMO)
end

To execute this configuration file you should enter the following command from
the <drive>\MQSeries\java\bin directory. You must have a name server running
though, so do not execute this command yet.

JMSAdmin -cfg JMSAdmin.config -t -v < setupJMS.mq

Stop and restart WebSphere Application Server.

11.2 Enabling the MQ adapter in WebSphere Commerce
You should have completed all the steps in 11.1, “Installing and configuring
MQSeries” on page 292 before performing these steps.

11.2.1 TransportAdapter
Launch the WebSphere Commerce Configuration and enable the
TransportAdapter component. See Figure 11-5

Figure 11-5 Enabling the TransportAdapter component
296 WebSphere Commerce V5.4 Developer’s Handbook

11.2.2 Log level
When developing commands for the messaging subsystem it is a good idea to
raise the loglevel for the messaging and transport components. This makes
debugging a lot easier.See Figure 11-6 for an example of how to do this using the
WebSphere Commerce Configuration Manager

Figure 11-6 Raising the loglevel.

11.3 Enabling the MQ adapter in VisualAge for Java
You should have completed all the steps in 11.1, “Installing and configuring
MQSeries” on page 292 before performing these steps.

11.3.1 TransportAdapter
You need to enable the TransportAdapter component in the instance that has
been created for VisualAge for Java. You can enable it directly in the XML file for
the instance. The file can be found in the following folder:
 Chapter 11. Messaging customization 297

drive:\WebSphere\CommerceServerDev\instances\VAJ_Instancename\xml\VAJ
_Instancename.xml

Look for the component TransportAdapter at change the attribute enable to true.

Importing the MA88 product extension
VisualAge for Java needs the MQSeries classes for Java for messaging to work
inside the WebSphere Test Environment.

For details on how to do this refer to the Web page at:

http://www-106.ibm.com/developerworks/ibm/library/it-farrell1/index.html

Look for the section Adding MQSeries libraries and resources to VisualAge for
Java.

If for some reason you cannot view the Web page, then follow these steps:

1. Create a new project. Call it any name you like, for example MA88

2. Import the following jar files into the project. They are all in the
<drive>\MQSeries\java\lib folder if you followed the installation instructions
above. Some of the imported packages will create open editions of existing
packages in the IBM WC Commerce Server 54 project.

– jms.jar
– connector.jar
– com.ibm.mq.jar
– com.ibm.mqjms.jar
– com.ibm.mqbind.jar

3. Import the following directories into the project

a. <drive>\MQSeries\java\lib - uncheck the .java box and in resources you
should select only the mqji.properties file.

b. <drive>\MQSeries\java\bin - uncheck the .java box and in resources you
should select only the JMSAdmin.config

Configure JMS
Ensure that the WebSphere Test Environment Persistent Name Server is running
and enter the following from the command line in the <drive>\MQSeries\java\bin
directory:

JMSAdmin -cfg JMSAdmin.config -t -v < setupJMS.mq

You created the setupJMS.mq file in section 11.1, “Installing and configuring
MQSeries” on page 292 above. If you look in the VisualAge for Java console for
the Persistent Name Server you will notice that it registers the queue names.
298 WebSphere Commerce V5.4 Developer’s Handbook

http://www-106.ibm.com/developerworks/ibm/library/it-farrell1/index.html

At this stage the Messaging Subsystem should be operational in the WebSphere
Test Environment.

11.4 Functional requirements
In WebSphere Commerce there are two ways in which to create new products or
make updates to existing products in a store. You can either load the product
data using the massloader utility or you can use the WebSphere Commerce
Accelerator.

For some companies it is essential to be able to administer their categories and
products in only one place - their back-end system. They need to know that when
a product is created in the back-end system the commerce site will reflect that
change within seconds.

We will create a third method for product creation that will use MQSeries.

11.4.1 Use case
The following is a description of what we want to accomplish.

Basic flow
1. A user on the back-end system will create a product with items and prices and

associate the product with a category.

2. Once created the back-end system will compose an XML message that it puts
on a MQ queue.

3. The WebSphere Commerce MQ adapter will get the message from the
queue, process the data and call the MQProductCreate command.

4. The MQProductCreate command will call the appropriate task commands
that will create the product in the WebSphere Commerce database.

5. Users will be able to see the product in the store.

Alternate flow 1
1. A user on the back-end system modifies an already existing product and

submits the change.

2. An XML message will be composed that contains only the XML elements that
have changed.

3. See steps 3 through 5 in “Basic flow” on page 299
 Chapter 11. Messaging customization 299

Exception flow
If an error occurs during the load then it will be logged, and an administrator will
be able to trace the error. Future versions of the command could implement an
optional E-mail notification functionality that will notify the back-end user with the
status of the import. However if the error is traced to an XML format that is not
well formed according to the DTD then such a notification would not be possible.

If you only want to be notified in case of an error, you can enable the built in
WebSphere Commerce error notification. The error notification feature can be
configured to send an E-mail to a predefined E-mail address whenever at error
occurs. This is a good feature although it would have been better if you could
configure it on the component level. If that was possible, you could have one
person receiving all E-mails for the messaging component and another person
receiving E-mail for other components.

11.5 Preparing for the MQProductCreate command
We recommend reading the Connectivity and Notification: Online Help that can
be downloaded from the WebSphere Commerce Technical Library:

http://www-4.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html

In it is a great deal of information on the messaging subsystem and although for
this chapter covers all aspects of customizing the messaging subsystem , it is still
a good idea to read up on connectivity and notification.

11.5.1 Defining XML and DTD for the command
In this section we define the DTD for the inbound message. We have listed a
sample XML file below the DTD. It is largely self explanatory. The only thing that
needs special attention are the attributes and attribute values. Both attributes
and attribute values are defined on the product. They are then related to items
afterwards. The multi language support in attributes is a little tricky. First you
create an attribute in the store default language, and then you create an attribute
in another language that references the attribute in the store default language.

The same thing is true for attribute values. You have to create reference values in
the store default language and then afterwards create values in other languages.

Tip: If you enable WebSphere Commerce error notification when developing
in VisualAge for Java, remember to add activation.jar and mail.jar to your
servlet engine’s extra classpath.
300 WebSphere Commerce V5.4 Developer’s Handbook

http://www-4.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html

For simplicity we have left out some less important attributes for example the
auxiliary descriptions on the product and item descriptions. The commands can
easily be modified to implement these attributes.

You should verify that your XML and DTD are well formed. There is a lot of
different tools out there to help you do that. One of them is Xmlspy which can be
found following this link:

http://www.xmlspy.com/

Example 11-2 shows the product creation DTD file we used.

Example 11-2 Create_WCS_Product.dtd

<!ELEMENT Create_WCS_Product (ControlArea, DataArea)>
<!ATTLIST Create_WCS_Product

version CDATA #FIXED "1.0"
>
<!ENTITY % defineNCCommonModule SYSTEM "NCCommon.mod">
%defineNCCommonModule;
<!ELEMENT ControlArea (Verb, Noun, Credentials?)>
<!ELEMENT Verb (#PCDATA)>
<!ATTLIST Verb

value CDATA #FIXED "Create"
>
<!ELEMENT Noun (#PCDATA)>
<!ATTLIST Noun

value CDATA #FIXED "WCS_Product"
>
<!ELEMENT Credentials (LogonId, Password)>
<!ELEMENT LogonId (#PCDATA)>
<!ELEMENT Password (#PCDATA)>
<!-- ===========================DataArea============================ -->
<!ELEMENT DataArea (product+)>
<!ELEMENT product (description, categoryrelations*, attributes*, items*)>
<!ATTLIST product

languageId CDATA #REQUIRED
ownerorganizationDN CDATA #REQUIRED
storeentidentifier CDATA #REQUIRED
markfordelete CDATA #REQUIRED
mfname CDATA #REQUIRED
mfpartnumber CDATA #REQUIRED
partnumber CDATA #REQUIRED

>

<!ELEMENT description EMPTY>
<!ATTLIST description

available CDATA #REQUIRED
published CDATA #REQUIRED
 Chapter 11. Messaging customization 301

http://www.xmlspy.com/

name CDATA #IMPLIED
shortdescription CDATA #IMPLIED
longdescription CDATA #IMPLIED
thumbnail CDATA #IMPLIED
fullimage CDATA #IMPLIED
keyword CDATA #IMPLIED
availabilitydate CDATA #IMPLIED

>
<!ELEMENT name (#PCDATA)>
<!ELEMENT published (#PCDATA)>
<!ELEMENT categoryrelations (categoryrelation+)>
<!ELEMENT categoryrelation EMPTY>
<!ATTLIST categoryrelation

action CDATA #REQUIRED
categoryidentifier CDATA #REQUIRED
catalogidentifier CDATA #REQUIRED
sequence CDATA #REQUIRED

>
<!ELEMENT attributes (attribute+)>
<!ELEMENT attribute (attrvalue+)>
<!ATTLIST attribute

referencename CDATA #IMPLIED
name CDATA #REQUIRED
sequence CDATA #IMPLIED
type CDATA #IMPLIED
action CDATA #IMPLIED

>
<!ELEMENT items (item+)>
<!ELEMENT item (description, attrvalues*)>
<!ATTLIST item

markfordelete CDATA #IMPLIED
mfpartnumber CDATA #IMPLIED
partnumber CDATA #REQUIRED

>
<!ELEMENT attrvalues (itemattrvalue+)>
<!ELEMENT attrvalue EMPTY>
<!ATTLIST attrvalue

referencevalue CDATA #REQUIRED
value CDATA #REQUIRED
sequence CDATA #IMPLIED
action CDATA #IMPLIED

>
<!ELEMENT itemattrvalue EMPTY>
<!ATTLIST itemattrvalue

referencevalue CDATA #REQUIRED
attributename CDATA #REQUIRED
302 WebSphere Commerce V5.4 Developer’s Handbook

>

The XML in Example 11-3 defines a product with a description, one or more
relations to existing categories, attributes with attribute values and items
belonging to the product with their descriptions and relations to attribute values.
Notice that no internal WebSphere Commerce generated ids are used. This
means that the backend system does not have to store the ids.

Example 11-3 Create_WCS_Product_en_US.xml

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE Create_WCS_Product SYSTEM "Create_WCS_Product.dtd">
<Create_WCS_Product>

<ControlArea>
<Verb value="Create" />
<Noun value="WCS_Product" />

</ControlArea>
<DataArea>

<product languageId="-1" ownerorganizationDN="MyOrganization"
storeentidentifier="webfashion" markfordelete="0" mfname="WebFashion Inc."
mfpartnumber="1234-123-400" partnumber="1234-123-400">

<description
available="0"
published="1 "
name="MyOwnProduct"
shortdescription="My Second Product"
longdescription="This is the long description of My Second

Product, and I can add more descriptive information for the product and just
load it through MQ "

thumbnail="images/1234-123-400_small.jpg"
fullimage="images/1234-123-400_big.jpg"
keyword=""
availabilitydate=""

/>
<categoryrelations>

<categoryrelation categoryidentifier="Outerwear"
catalogidentifier="WebFashion" sequence="0" action="create"/>

</categoryrelations>
<attributes>

<attribute type="STRING" name="Color" referencename="Color"
sequence="0">

<attrvalue referencevalue="Red" value="Red" sequence="0"/>
<attrvalue referencevalue="Blue" value="Blue" sequence="0"/>

</attribute>
<attribute type="STRING" name="Size" referencename="Size"

sequence="0">
<attrvalue referencevalue="S" value="S" sequence="0"/>
<attrvalue referencevalue="M" value="M" sequence="0"/>
 Chapter 11. Messaging customization 303

</attribute>
</attributes>
<items>

<item markfordelete="0" mfpartnumber="1234-123-400-sku1"
partnumber="1234-123-400-sku1">

<description
available="0"
published="1 "
name="MyOwnProduct sku1"
shortdescription="My Second Product sku1"
longdescription="This is the long description of My Second

Product sku1. "
thumbnail="images/1234-123-400_small.jpg"
fullimage="images/1234-123-400_big.jpg"
keyword=""
availabilitydate=""

/>
<attrvalues>

<itemattrvalue attributename="Color" referencevalue="Red"
/>

<itemattrvalue attributename="Size" referencevalue="S" />
</attrvalues>

</item>
<item markfordelete="0" mfpartnumber="1234-123-400-sku2"

partnumber="1234-123-400-sku2">
<description

available="0"
published="1 "
name="MyOwnProduct sku2"
shortdescription="My Second Product sku2"
longdescription="This is the long description of My Second

Product sku2. "
thumbnail="images/1234-123-400_small.jpg"
fullimage="images/1234-123-400_big.jpg"
keyword=""
availabilitydate=""

/>
<attrvalues>

<itemattrvalue attributename="Color" referencevalue="Blue"
/>

<itemattrvalue attributename="Size" referencevalue="S" />
</attrvalues>

</item>
</items>

</product>
</DataArea>

</Create_WCS_Product>
304 WebSphere Commerce V5.4 Developer’s Handbook

It is necessary to create an XML file for every language that you wish to support
in the store. The attributes called referencename and referencevalue should be
the same as the corresponding names and values in the XML file for the store
default language. And the attribute called attributename on the itemattrvalue
element should still point to the names of the attributes in the store default
language. There is a German language sample of the XML in Example 11-3 in
the additional material that can be downloaded for our redbook. See Appendix B,
“Additional material” on page 409 for details on downloading this material.

11.5.2 Registering the DTD in WebSphere Commerce
It is necessary to register the DTD in the list of known inbound message DTD
files. Otherwise WebSphere Commerce will not know what to do with the XML. It
needs to know which command to call. If you forget to register the DTD or if the
message is not well-formed you will get the following error message in the
ecmsg*.log:

Message Text: ERROR CMN8124E New inbound message command is not customized.

You can register the DTD in the Configuration Manager using Instance
Properties -> Messaging -> Inbound Message DTD Files.

Copy the DTD file to the following directory:

drive:\WebSphere\CommerceServer\xml\messaging

11.5.3 Creating mapping between the XML and the command
When the inbound XML file is taken off of the queue by the MQ listener it has to
go through a message mapper to determine what has to be done with the
message. By default WebSphere Commerce has two message mappers defined:
WCS.INTEGRATION for parsing XML and NC.LEGACY for parsing back-end
integration legacy messages. The message mapper has to verify and convert the
inbound message to a command property object so it can be used by a
WebSphere Commerce command. To verify the inbound message it uses the
DTD described in Example 11-2 on page 301, and to convert the XML it uses a
template XML file. For the built-in messages the file is called sys_template.xml
and for custom messages it is user_template.xml. This can be customized in the
Configuration Manager.

To convert the message to a command property object you must create a
template document in the user_template.xml file.

To get an idea of how to create the tags you can look for inspiration in the
sys_template.xml file or you can go to the following Web page to learn about the
XML Path Language (XPath):
 Chapter 11. Messaging customization 305

http://www.w3.org/TR/xpath

You should think object oriented when creating the tags. Consider if a tag in the
inbound message is a field or an object and if these fields or objects should be
put in a container for example a Vector. In this example <categoryrelation> is a
container object that holds attributes, therefore it should be defined as
XPathType=’Vector’ in the user_template.xml. See Example 11-4 for the user
templae we used.

Example 11-4 user_template.xml

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE ECTemplate SYSTEM 'ec_template.dtd' >
<ECTemplate>
<TemplateDocument>
<DocumentType version='1.0'>Create_WCS_Product</DocumentType>
<StartElement>Create_WCS_Product</StartElement>
<TemplateTagName>Create_WCS_ProductMap</TemplateTagName>
<CommandMapping>
<Command CommandName='MQProductCreate' />
</CommandMapping>
</TemplateDocument>
<TemplateTag name='Create_WCS_ProductMap'>

<!-- Execution Environment -->
<Tag XPath='ControlArea/Credentials/LogonId' Field='logonId'

FieldInfo='CONTROL' />
<Tag XPath='ControlArea/Credentials/Password' Field='logonPassword'

FieldInfo='CONTROL' />

<!-- Command Parameters -->
<Tag XPath='DataArea/product' Field='product' XPathType='VECTOR'/>
<Tag XPath='DataArea/product@languageId' Field='languageId' />
<Tag XPath='DataArea/product@ownerorganizationDN'

Field='ownerorganizationDN' />
<Tag XPath='DataArea/product@storeentidentifier' Field='storeentIdentifier'

/>
<Tag XPath='DataArea/product@markfordelete' Field='markForDelete' />
<Tag XPath='DataArea/product@mfname' Field='manufacturerName' />
<Tag XPath='DataArea/product@mfpartnumber' Field='manufacturerPartnumber'

/>
<Tag XPath='DataArea/product@partnumber' Field='partnumber' />

<Tag XPath='DataArea/product/description' Field='descriptionVector'

XPathType='VECTOR'/>
<Tag XPath='DataArea/product/description@available' Field='available' />
<Tag XPath='DataArea/product/description@published' Field='published' />
<Tag XPath='DataArea/product/description@name' Field='name' />
<Tag XPath='DataArea/product/description@shortdescription'

Field='shortdescription' />
306 WebSphere Commerce V5.4 Developer’s Handbook

http://www.w3.org/TR/xpath

<Tag XPath='DataArea/product/description@longdescription'
Field='longdescription' />

<Tag XPath='DataArea/product/description@thumbnail' Field='thumbnail' />
<Tag XPath='DataArea/product/description@fullimage' Field='fullimage' />
<Tag XPath='DataArea/product/description@keyword' Field='keyword' />
<Tag XPath='DataArea/product/description@availabilitydate'

Field='availabilitydate' />

<Tag XPath='DataArea/product/categoryrelations/categoryrelation'
Field='categoryrelationVector' XPathType='VECTOR'/>

<Tag
XPath='DataArea/product/categoryrelations/categoryrelation@categoryidentifier'
Field='categoryidentifier'/>

<Tag
XPath='DataArea/product/categoryrelations/categoryrelation@catalogidentifier'
Field='catalogidentifier'/>

<Tag XPath='DataArea/product/categoryrelations/categoryrelation@sequence'
Field='sequence'/>

<Tag XPath='DataArea/product/categoryrelations/categoryrelation@action'
Field='action'/>

<Tag XPath='DataArea/product/attributes/attribute' Field='attributeVector'
XPathType='VECTOR'/>

<Tag XPath='DataArea/product/attributes/attribute@name' Field='name'/>
<Tag XPath='DataArea/product/attributes/attribute@sequence'

Field='sequence'/>
<Tag XPath='DataArea/product/attributes/attribute@type' Field='type'/>
<Tag XPath='DataArea/product/attributes/attribute@referencename'

Field='reference'/>
<Tag XPath='DataArea/product/attributes/attribute/attrvalue'

Field='attrValueVector' XPathType='VECTOR'/>
<Tag XPath='DataArea/product/attributes/attribute/attrvalue@value'

Field='value'/>
<Tag XPath='DataArea/product/attributes/attribute/attrvalue@sequence'

Field='sequence'/>
<Tag XPath='DataArea/product/attributes/attribute/attrvalue@referencevalue'

Field='referencevalue'/>

<Tag XPath='DataArea/product/items/item' Field='itemVector'
XPathType='VECTOR'/>

<Tag XPath='DataArea/product/items/item@markfordelete'
Field='markForDelete'/>

<Tag XPath='DataArea/product/items/item@mfpartnumber'
Field='manufacturerPartnumber'/>

<Tag XPath='DataArea/product/items/item@partnumber' Field='partnumber'/>

<Tag XPath='DataArea/product/items/item/description'
Field='itemDescriptionVector' XPathType='VECTOR'/>
 Chapter 11. Messaging customization 307

<Tag XPath='DataArea/product/items/item/description@available'
Field='available' />

<Tag XPath='DataArea/product/items/item/description@published'
Field='published' />

<Tag XPath='DataArea/product/items/item/description@name' Field='name' />
<Tag XPath='DataArea/product/items/item/description@shortdescription'

Field='shortdescription' />
<Tag XPath='DataArea/product/items/item/description@longdescription'

Field='longdescription' />
<Tag XPath='DataArea/product/items/item/description@thumbnail'

Field='thumbnail' />
<Tag XPath='DataArea/product/items/item/description@fullimage'

Field='fullimage' />
<Tag XPath='DataArea/product/items/item/description@keyword'

Field='keyword' />
<Tag XPath='DataArea/product/items/item/description@availabilitydate'

Field='availabilitydate' />

<Tag XPath='DataArea/product/items/item/attrvalues/itemattrvalue'
Field='itemAttrValueVector' XPathType='VECTOR'/>

<Tag
XPath='DataArea/product/items/item/attrvalues/itemattrvalue@attributename'
Field='attributename' />

<Tag
XPath='DataArea/product/items/item/attrvalues/itemattrvalue@referencevalue'
Field='referencevalue' />

</TemplateTag>
</ECTemplate>

The user_temlate.xml file should placed in the following directory:

<drive>:\WebSphere\CommerceServer\xml\messaging

You will need to restart the application server before the changes to the template
will be recognized..

11.5.4 Registering the command in WebSphere Commerce
The commands needs to be registered in the URLREG and in the CMDREG
database tables, if you are not using the defaultCommandClassName in the
interface. In this example we will not register the command in CMDREG since the
command implementation will be defined in the interface. Example 11-5 shows
the SQL used to register our command.

Example 11-5 Register MQProductCreate in cmdreg
308 WebSphere Commerce V5.4 Developer’s Handbook

db2 insert into urlreg (url, storeent_id, interfacename,https, internal) values
('MQProductCreate', 0,
'com.ibm.commerce.wc54handbook.commands.MQProductCreateCmd', 0, 0)

11.6 Creating the commands
Now that everything has been setup it is time to write the actual commands.
From the use case we know what is supposed to be done.

We modularize the command into one controller command and five task
commands. They are:

� MQProductCreateCmd

– MQProductDescriptionsCmd
– MQProductCategoryRelationsCmd
– MQProductAttributesCmd
– MQProductAttributeValuesCmd
– MQProductItemsCmd

It makes sense to separate the logic into different commands since it enables us
to use small parts of the functionality in other appropriate places. It also adds to
the readability of the code.

We walk through the writing of the controller command and one of the task
commands in this chapter. The task commands do different things, but
structurally the are alike.

11.6.1 Creating the MQProductCreateCmd interface
We will create a simple interface for the command. We name it:

com.ibm.commerce.wc54handbook.commands.MQProductCreateCmd

The interface should extend:

com.ibm.commerce.command.ControllerCommand

Create a final static field defaultCommandClassName and set it to the full
classname of our implementation class.

String defaultCommandClassName =
"com.ibm.commerce.wc54handbook.commands.MQProductCreateCmdImpl";

11.6.2 Creating the MQProductCreate command impl class
This command will be a standard controller command that extends from:
 Chapter 11. Messaging customization 309

com.ibm.commerce.command.ControllerCommandImpl

and it should implement the interface we created above.

Setting the request properties
When the MQProductCreate command is invoked the first thing that happens is
that its setRequestProperties method is called. It takes a TypedProperty as an
argument. All the variables that we defined in the user_template.xml file are in
this typedproperty object. Contained in the typedproperty object are elements for
each <product> in the inbound xml. We create an instance variable called
productVector - its type should be java.util.Vector. We store the products in this
vector. Example 11-6 shows the Java code

Example 11-6 setRequestProperties

public void setRequestProperties(TypedProperty typedproperty)
throws com.ibm.commerce.exception.ECException {
String methodName = "setRequestProperties";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

super.requestProperties = typedproperty;
try {

setProductVector((Vector) super.requestProperties.get("product"));
} catch (Exception exception) {

setProductVector(null);
}
ECTrace.trace(

ECTraceIdentifiers.COMPONENT_EXTERN,
CLASSNAME,
methodName,
"Number of products in inbound XML = " + getProductVector().size());

ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
}

All tracing and logging information is sent to COMPONENT_EXTERN, so you
should enable that component in the Configuration Manager before testing the
command.

Tip: When debugging an MQ command be careful not to click stop. It will most
likely freeze your servlet engine. Always run the command to the end.
310 WebSphere Commerce V5.4 Developer’s Handbook

performExecute
The performExecute method is actually called before setRequestProperties but
since we call super.performExecute as the first thing in our performExecute,
setRequestProperties is called before any of the business logic in
performExecute is run. Example 11-7 shows the Java code.

Example 11-7 performExecute()

public void performExecute() throws ECException {
String methodName = "performExecute";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

super.performExecute();

// call doProcess() for every product in the productVector
for (int j = 0; j < getProductVector().size(); j++) {

TypedProperty aProduct =
(TypedProperty) getProductVector().elementAt(j);

setRequestPropertiesPerProduct(aProduct);
if (!doProcess(super.requestProperties))

throw new ECApplicationException(
ECMessage._ERR_DO_PROCESS,
getClass().getName(),
"performExecute");

cleanUp();
}
ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

}

setRequestPropretiesPerProduct
For each product we need to get the data it contains. We do that in this method.
We create Vectors for each of the sub elements the vectors will contain
TypedProperty objects for each instance of that sub element. Example 11-8
shows the Java code

Example 11-8 setRequestPropertiesPerProduct

private void setRequestPropertiesPerProduct(TypedProperty typedproperty) throws
com.ibm.commerce.exception.ECException {

String methodName = "setRequestPropertiesPerProduct";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

setLanguageId(typedproperty.getInteger("languageId", null));
setOwnerOrganizationDN(

typedproperty.getString("ownerorganizationDN", null));
setStoreentidentifier(typedproperty.getString("storeentIdentifier", null));
setPartnumber(typedproperty.getString("partnumber", null));
 Chapter 11. Messaging customization 311

setPublished(typedproperty.getInteger("published", null));
setMarkForDelete(typedproperty.getInteger("markForDelete", null));
setManufacturerName(typedproperty.getString("manufacturerName", ""));
setManufacturerPartnumber(

typedproperty.getString("manufacturerPartnumber", ""));
setDescriptionVector(

(Vector) typedproperty.get("descriptionVector", null));
setCategoryrelationVector(

(Vector) typedproperty.get("categoryrelationVector", null));
setAttributeVector((Vector) typedproperty.get("attributeVector", null));
setItemVector((Vector) typedproperty.get("itemVector", null));

ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
}

We work with the attribute values when we work with each item.

doProcess
The doProcess method reflects the conditions in the use case.

1. If it is a new product then all the elements must exist in the XML files and thus
in the typedproperty object for the product.

2. If the product exists then it should be possible only to update for example a
single description or update only categoryrelations. Thus we must check if the
different vectors contain anything.

Example 11-9 shows the Java code

Example 11-9 doProcess

public boolean doProcess(TypedProperty typedproperty) throws ECException {
String methodName = "doProcess";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
getCommandContext().setStoreId(getProductStoreId());

if (isNewProduct()) {
doCreateProduct();
doProcessDescription();
doProcessCategoryRelations();
doProcessAttributes();
doProcessItems();

} else {
doUpdateProduct();
if (getDescriptionVector() != null && getDescriptionVector().size() > 0)

doProcessDescription();
if (getCategoryrelationVector() != null

&& getCategoryrelationVector().size() > 0)
doProcessCategoryRelations();
312 WebSphere Commerce V5.4 Developer’s Handbook

if (getAttributeVector() != null && getAttributeVector().size() > 0)
doProcessAttributes();

if (getItemVector() != null && getItemVector().size() > 0)
doProcessItems();

}
ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
return true;

}

isNewProduct
We test if the product is new or existing in the following manner: Create an
instance of a CatalogEntryAccessBean and use its
findByMemberIdAndSKUNumber method. Handling a possible FinderException
and setting the status of a boolean. Its possible that we will use the newProduct
Boolean more than one place in our command for each product and we only
want to lookup the CatalogEntry once, so we check if newProduct is null before
doing anything else. Example 11-10 shows the Java code.

Example 11-10 isNewProduct

private boolean isNewProduct() throws ECApplicationException {
String methodName = "isNewProduct";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

if (newProduct == null) {
try {

CatalogEntryAccessBean catentryAB = new CatalogEntryAccessBean();
catentryAB.findByMemberIdAndSKUNumber(getProductOwner(),

getPartnumber());
} catch (javax.ejb.FinderException fe) {

newProduct = new Boolean(true);
return newProduct.booleanValue();

} catch (Exception e) {
throw new ECApplicationException(

ECMessage._ERR_GENERIC,
CLASSNAME,
methodName,
ECMessageHelper.generateMsgParms(

"Exception when looking for existing product: " +
getPartnumber()));

}
ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME,

methodName);
newProduct = new Boolean(false);}

return newProduct.booleanValue();
}

 Chapter 11. Messaging customization 313

doCreateProduct
Luckily we do not have to do all the work ourselves when creating a product.
WebSphere Commerce comes with a command that will do the job. This
command is what makes it possible to create products in WebSphere Commerce
Accelerator . The command is called CatalogEntryAddCmd and you can read
about it on the following page of the WebSphere Commerce Version 5.4 Online
Help:

<drive>\WebSphere\CommerceServer\web\doc\en_US\refs\rcacenad.htm

We check for null on the variables that are required and create a typedproperty
object that will work as request property for the CatalogEntryAddCmd.

We also need to set the storeId on the CommandContext. We create a method
called getProductStoreId for that purpose. Additionally we create a method called
getProductOwner. We will use that as the memberId on the product - the owner
of the product. Example 11-11 shows the Java code.

Example 11-11 doCreateProduct

private void doCreateProduct() throws ECException {
String methodName = "doCreateProduct";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

try {
TypedProperty catProp = new TypedProperty();
catProp.put("partnumber", getPartnumber());
catProp.put("catenttypeId", "ProductBean");
catProp.put("buyable", new Integer(0));
catProp.put("markForDelete", getMarkForDelete());
catProp.put("mfName", getManufacturerName());
catProp.put("mfPartnumber", getManufacturerPartnumber());
CatalogEntryAddCmd catalogentryadd = null;
catalogentryadd =

(CatalogEntryAddCmd) CommandFactory.createCommand(
"com.ibm.commerce.catalogmanagement.commands.CatalogEntryAddCmd",
getProductStoreId());

catalogentryadd.setCommandContext(getCommandContext());
catalogentryadd.setMemberId(getProductOwner());
catalogentryadd.setRequestProperties(catProp);
catalogentryadd.execute();
setProductId(catalogentryadd.getCatentryId());

} catch (ECException ece) {
if (ece.getThrowable() instanceof javax.ejb.DuplicateKeyException) {

throw new ECApplicationException(
ECMessage._ERR_GENERIC,
CLASSNAME,
methodName,
ECMessageHelper.generateMsgParms(
314 WebSphere Commerce V5.4 Developer’s Handbook

"Trying to create product that already exists - possible
MARKFORDELETE = 1."));

}
throw ece;

}
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

}

If the CatalogEntryAdd command throws an exception, we want to know if its a
DuplicateKeyException since that most likely means the product has
markfordelete=1, we wont be able to update a product that has markfordelete=1

The doUpdateProduct method works similar to the doCreateProduct except it
uses a different WebSphere Commerce command and it needs to be supplied
with the catalog entry reference number.

We now have either created or updated the actual product in the database. But
there is still a lot to do. The different task commands will all do a small part of the
job. We will focus on the doProcessAttributes() method. You will be able to
examine the rest of the task commands in the additional material that can be
downloaded for our redbook. See Appendix B, “Additional material” on page 409
for details on downloading this material.

doProcessAttributes
Creating attributes and attribute values for products in WebSphere Commerce
can be a troublesome task. You will get an idea of how complicated the attribute
model is, when you create products with attributes in the WebSphere Commerce
Accelerator.

We have isolated the handling of attributes in a task command called
MQProductAttributesCmd. Example 11-12 shows the Java code.

Example 11-12 doProcessAttributes

private void doProcessAttributes() throws ECException {
String methodName = "doProcessAttributes";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

MQProductAttributesCmd attributeCmd = null;
attributeCmd = (MQProductAttributesCmd) CommandFactory.createCommand

Tip: In addition to the markfordelete attribute, you could create a manual
override attribute that if set will delete the catalog entry at once instead of
having to wait for DB clean to get around to do it. This is helpful if you have
loaded a product by mistake.
 Chapter 11. Messaging customization 315

("com.ibm.commerce.wc54handbook.commands.MQProductAttributesCmd",
getCommandContext().getStoreId());

attributeCmd.setCommandContext(getCommandContext());
attributeCmd.setProductId(getProductId());
attributeCmd.setStoreDefaultLang(getStoreDefaultLanguageId());
attributeCmd.setLanguageId(getLanguageId());
attributeCmd.setAttributes(getAttributeVector());
attributeCmd.execute();

ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
}

11.6.3 Creating the MQProductAttributesCmd interface
This interface will be named:

com.ibm.commerce.wc54handbook.commands.MQProductCreateCmd

The interface should extend:

com.ibm.commerce.command.TaskCommand

Create a final static field defaultCommandClassName and set it to the full
classname of our implementation class.

String defaultCommandClassName =
"com.ibm.commerce.wc54handbook.commands.MQProductAttributesCmdImpl";

Methods
The interface will need the following methods:

� setAttributes(Vector)
� setLanguageId(Integer)
� setProductId(Long)
� setStoreDefaultLang(Integer)

11.6.4 Creating the MQProductAttributesCmdImpl class
As mentioned above the MQProductCreateCmd uses five different custom task
commands. We will go through only one of them here since they are all quite
similar. MQProductDescriptionCmd and MQProductCategoryRelationsCmd are
both very simple which is why we don’t walk through them here. You will be able
to look through them by downloading the additional material for our redbook. See
Appendix B, “Additional material” on page 409 for details on downloading this
material.
316 WebSphere Commerce V5.4 Developer’s Handbook

validateParameters
We want to make sure that all the required parameters have been set. So we
check for them and throw an ECApplicationException if they are
null.Example 11-13 shows the Java code.

Example 11-13 validateParameters

public void validateParameters()
throws com.ibm.commerce.exception.ECException {
String methodName = "validateParameters";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
super.validateParameters();

if (getProductId() == null) {
throw new ECApplicationException(

ECMessage._ERR_MISSING_PARMS,
CLASSNAME,
methodName,
ECMessageHelper.generateMsgParms("productId"));

}
if (getAttributes() == null) {

throw new ECApplicationException(
ECMessage._ERR_MISSING_PARMS,
CLASSNAME,
methodName,
ECMessageHelper.generateMsgParms("attributes"));

}
if (getStoreDefaultLang() == null) {

throw new ECApplicationException(
ECMessage._ERR_MISSING_PARMS,
CLASSNAME,
methodName,
ECMessageHelper.generateMsgParms("storeDefaultLang"));

}
if (getLanguageId() == null) {

throw new ECApplicationException(
ECMessage._ERR_MISSING_PARMS,
CLASSNAME,
methodName,
ECMessageHelper.generateMsgParms("languageId"));

}

ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
}

 Chapter 11. Messaging customization 317

performExecute
When the parameters have been validated its time to loop through the attributes
that have been supplied in a Vector with the setAttributes method. Each attribute
in the Vector is a TypedProperty object.Example 11-14 shows the Java code.

Example 11-14 performExecute

public void performExecute() throws com.ibm.commerce.exception.ECException {
String methodName = "performExecute";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
super.performExecute();

for (int j = 0; j < getAttributes().size(); j++) {
TypedProperty anAttribute = (TypedProperty)

getAttributes().elementAt(j);

validateAttribute(anAttribute);
ECTrace.trace(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME,

methodName, "Attribute validated.");

String name = anAttribute.getString("name");
String referencename = anAttribute.getString("reference", null);
String type = anAttribute.getString("type", null);
Vector attributeValues = (Vector) anAttribute.get("attrValueVector",

null);

if (isNewAttribute(name, getLanguageId()) &&
(getLanguageId().equals(getStoreDefaultLang()))) {

createAttribute(anAttribute);
} else {

updateAttribute(anAttribute);
}

if (attributeValues != null) {
MQProductAttributeValuesCmd attributeValuesCmd = null;
attributeValuesCmd = (MQProductAttributeValuesCmd)

CommandFactory.createCommand("com.ibm.commerce.wc54handbook.commands.MQProductA
ttributeValuesCmd", getCommandContext().getStoreId());

attributeValuesCmd.setCommandContext(getCommandContext());
attributeValuesCmd.setProductId(getProductId());
attributeValuesCmd.setStoreDefaultLang(getStoreDefaultLang());
attributeValuesCmd.setAttributeValues(attributeValues);
attributeValuesCmd.setAttributeId(getAttributeId());
attributeValuesCmd.setAttrType(type);
attributeValuesCmd.setLanguageId(getLanguageId());
attributeValuesCmd.execute();

}

}

318 WebSphere Commerce V5.4 Developer’s Handbook

ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
}

Three things take place in this method. We validate every attribute with the
method validateAttribute. See Example 11-15. We simply test if the parameters
that needs validation can be extracted from the TypedProperty object in the
correct type.

Now that the attribute has been validated we need to find out whether it is a new
or an existing attribute that we are about to load. We do that with a method called
isNewAttribute. See Example 11-16. It takes the name and the languageId of the
attribute and simply tries to get an instance of an AttributeAccessBean. A
FinderException tells us that it is not an existing attribute.

Example 11-15 validateAttribute

public void validateAttribute(
com.ibm.commerce.datatype.TypedProperty attribute)
throws ECException {
String methodName = "validateAttribute";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
try {

attribute.getString("name");
attribute.getDouble("sequence", new Double(0D));

} catch (ParameterNotFoundException pnfe) {
throw new ECApplicationException(

ECMessage._ERR_CMD_MISSING_PARAM,
CLASSNAME,
methodName,
ECMessageHelper.generateMsgParms(pnfe.getParamName()));

}
ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);

}

Example 11-16 isNewAttribute

private boolean isNewAttribute(String name, Integer languageId)
throws ECException {
String methodName = "isNewAttribute";
ECTrace.entry(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME, methodName);
try {

AttributeAccessBean attributeAB = new AttributeAccessBean();
attributeAB.findByNameAndCatalogEntryAndLanguage(

name,
getProductId(),
languageId);

ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME,
methodName);
 Chapter 11. Messaging customization 319

return false;
} catch (javax.ejb.FinderException fe) {

ECTrace.exit(ECTraceIdentifiers.COMPONENT_EXTERN, CLASSNAME,
methodName);

return true;
} catch (Exception e) {

throw new ECApplicationException(
ECMessage._ERR_GENERIC,
CLASSNAME,
methodName,
ECMessageHelper.generateMsgParms(

"Error checking attribute. Name: "
+ name
+ " LanguageId: "
+ languageId
+ " ProductId: "
+ getProductId()));

}
}

We now have a validated attribute and we know if its a new or existing attribute.
But even though isNewAttribute would return true, we would still have to call
updateAttribute if the attribute to be created is not in the store default language.
You do not create new attributes in other languages than the store default,
instead you update the attribute in the store default language with a new
languageId and it will automatically know that an attribute entry in the specific
language should be created. That is why we test if languageId and store default
languageId are equal. If they are equal, then we should use createAttribute if its a
new attribute, and if they are not equal then we should use updateAttribute.

createAttribute and updateAttribute
The two methods simply executes the corresponding WebSphere Commerce
commands for their purpose. Its important to be aware of when to use create and
when to use update for an attribute.

11.7 Testing the MQProductCreate command
We used the WebFashion store as the target of our product imports. Since we
have not implemented import of prices through our command you should be
aware of the following:

� If you want to complete a shopping flow with the product you will have to
import prices for the product and items manually, or create them in the
WebSphere Commerce Accelerator when the products have been loaded.
320 WebSphere Commerce V5.4 Developer’s Handbook

� If you do not want to complete a shopping flow but just want to see the
product displayed in CategoryDisplay you will have to modify two JSP files.
For instructions on how to do that read below in 11.7.2, “Modifying JSP files”
on page 321.

Make sure that you have disabled the WebSphere Commerce cache or enabled
cache triggers.

11.7.1 Deploying the commands
Export the commands from VisualAge for Java and follow the steps outlined in
the IBM WebSphere Commerce Programmer’s Guide Version 5.4 on what needs
to be done to the exported jar to complete the deployment.

The jar should be placed in the WEB-INF/lib directory in the stores webapp folder
for example:

<drive>\WebSphere\AppServer\installedApps\WC_Enterprise_App_demo.ear\wc
stores.war\WEB-INF\lib

11.7.2 Modifying JSP files
To be able to view the imported products in the catalog you have to modify some
of the JSP files in WebFashion

subcategory.jsp
In WebFashion product beans actually have prices which is a bit peculiar since a
product bean is only a template for a group of items. A product is in itself not a
fully resolved SKU. Since the product beans have prices in WebFashion they
have chosen to show the prices on the product list in CategoryDisplay. In order
for subcategory.jsp not to fail when it tries to get the price on the imported
product you need to write a try-catch around that section in the code as shown in
Example 11-17

Example 11-17 subcategory.jsp

for (int i = 0; i < products.length; ++i)
{

product = products[i];
try {
com.ibm.commerce.price.beans.PriceDataBean prodPrice =

product.getCalculatedContractPrice();
%>
<tr>

<td width="10"> </td>
<td align="left" valign="top" width="280" class="categoryspace">
 Chapter 11. Messaging customization 321

<a
href="ProductDisplay?catalogId=<%=catalogId%>&storeId=<%=storeId%>&productId=<%
=product.getProductID()%>&langId=<%=languageId%>&parent_category_rn=<%=parentCa
tegoryId%>">

<img src="<%=fileDir%><%=product.getDescription().getFullImage() %>"
alt="<%=product.getDescription().getShortDescription()%>" hspace="5" width="50"
height="50" border="0" align="left">

<%=product.getDescription().getShortDescription()%>

<%=prodPrice%>

</td>
</tr>
<%

} catch (Exception e) {
%>
<tr>

<td width="10"> </td>
<td align="left" valign="top" width="280" class="categoryspace">

<a
href="ProductDisplay?catalogId=<%=catalogId%>&storeId=<%=storeId%>&productId=<%
=product.getProductID()%>&langId=<%=languageId%>&parent_category_rn=<%=parentCa
tegoryId%>">

<img src="<%=fileDir%><%=product.getDescription().getFullImage() %>"
alt="<%=product.getDescription().getShortDescription()%>" hspace="5" width="50"
height="50" border="0" align="left">

<%=product.getDescription().getShortDescription()%>

#no price#

</td>
</tr>
<%
}

}

ProductDisplay.jsp
The ProductDisplay page also shows the price on the product bean, so you will
need to modify this page as well. Even under normal circumstances its a good
idea to handle exceptions in your JSP files. There is always the risk that a
product is missing a description or a price and if you do not handle exceptions
the page will not display correctly or will not display at all.

Remember that it is necessary for any possible exception to be thrown in your
try-catch before any HTML is printed. See Example 11-18.

Example 11-18 ProductDisplay.jsp

<%
try {

com.ibm.commerce.price.beans.PriceDataBean prodPrice =
product.getCalculatedContractPrice();
322 WebSphere Commerce V5.4 Developer’s Handbook

%>
<%=prodPrice%>

<%
} catch (Exception e) {

// do nothing.
}
%>

11.8 Final considerations
What we have done in this chapter is only the top of the iceberg when it comes to
the possibilities that lie in the messaging subsystem. The code made in this
chapter only supports import of products, items and categoryrelations. But it
could very easily be extended to support import of prices. Since the current
WebSphere Commerce price import facility only supports update of existing
prices it makes it relevant to support import of new prices along with the items.

11.8.1 The markfordelete attribute
Only use the markfordelete attribute if you really want to delete the entity from the
database. In most cases it should be sufficient to just set published=0 on its
description. However when using conventional massloading of the data you wont
be able to specify that you wish to remove a relation to a category. In that case
the only solution would be to delete the product and create it again.

11.8.2 Inventory
When we are creating products the WebSphere Commerce command
automatically creates an inventory entry for the products and items with at
quantity of 9999 units. You will be able to use the built-in message called
Update_WCS_ProductInventory. This message has a few disadvantages. It does
not support creation of new inventory entries, and you cannot specify the
fulfillment center by its name instead of the internal WebSphere Commerce
generated id.

11.8.3 Performance
We have not done performance tests on the MQProductCreate command. But all
things being equal when compared to the conventional massloader the
MQProductCreate command will affect both the application server and the
database whereas the massloader will only affect the backend.
 Chapter 11. Messaging customization 323

11.8.4 SKUs and attributes
If you create a new or delete an attribute on a product, then all of the items
associated with the product will be deleted. With MQProductCreate is does not
pose a direct problem since the items are recreated right after they have been
deleted - but if you have created any prices manually they will be deleted.

You should be very careful when specifying attributes for your products. They
should be created only the first time the product is loaded and then remain fixed.

We have not implemented for example auxdescription in the
MQProductDescriptionCmd, so if you want to use the aux fields then you should
perform the necessary changes to the command.

11.8.5 Transactions
The imports done with the MQProductCreate are performed in the same
transactions which means that should something go wrong somewhere in the
process it will roll everything back. With this in mind it could a good idea, even
though the MQProductCreate supports more that one product in the same file, to
send one message per product. This means that should something go wrong
with one product then all the rest will still be loaded.
324 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 12. B2B features

In this chapter we customize the ToolTech sample store to enable some
business-to-business scenarios, including:

� Allowing the customer to select a contract for the entire shopping experience,
as opposed to selecting a contract while adding items to the shopping cart.

� Role-based welcome or home page

� Request for order approval if the order exceeds a certain value

This chapter also covers the message extensions features available in
WebSphere Commerce Business Edition V5.4.

12
© Copyright IBM Corp. 2002. All rights reserved. 325

12.1 B2B features in WebSphere Commerce Business
Edition V5.4

WebSphere Commerce Business Edition is designed to provide additional
business-to-business features need to implemeneted a sophisticated
e-commerce site. This section details some of the main B2B features that are
available.

12.1.1 Access control
WebSphere Commerce Business Edition, has an improved access control
system that provides a hierarchical structure and a role based control. The
access control policies are fine grained so they can provide control over the
instance. Implementation of access control is externalized so if case you want to
customize access control, you will not have to make changes to the WebSphere
Commercecode.

Member system
You can create profiles for customers, create member groups, associate
customers to member groups, and specify access control policies for member
groups.You can specify discounts for organizations. The structure of
organizations is very hierarchical, so that you can have approvals at the
appropriate levels, and you can also inherit properties from ancestors.

Order system
WebSphere Commerce Business Edition allows customer to process orders at
the commerce site by providing purchase order numbers. Customized invoices
can be sent to different customer/buyer organizations in a commerce site.

Pricing is based on contracts and every customer organization has a contract
associated with it. The price at which the product will be supplied to customers
belonging to a buyer organization will depend on the contract. Payment methods
and shipping methods can also be controlled by contracts.

Customer’s may create requisition lists that can either be private or public. By
creating requisition list’s customers can create or place orders without browsing
through the catalog. You can also create recurring orders, specifying an order
frequency and payment method.

Orders can be split to two different order’s if the required inventory is not
available. The split order will be fulfilled once the inventory is available.
326 WebSphere Commerce V5.4 Developer’s Handbook

You can configure the commerce server to send e-mail notification when an order
status changes - this feature can be extended to send e-mail when a order is
awaiting approval.

Inventory system
The inventory system in the commerce server provides real times inventory
management solutions. It provides an interface to persist inventory information
received from vendors and the inventory received from the customers. It can
adjust inventory quantity, and ship and receive inventory.

Request for quote(RFQ)
WebSphere Commerce Business Edition allows buyer organizations to raise a
RFQ for large quantity purchases of specific items. Once a RFQ is posted the
seller organization can send a response by creating a RFQ response. An order
request can be directly created from a RFQ response. The process flow for RFQ
handling can be modified by changing XML files.

Search system
Basic and advanced search catalog features are available in WebSphere
Commerce Business Edition. The product advisor feature helps customers to
identify products by a drill down process.

12.2 Role-based display
Customers in WebSphere Commerce Business Edition, are assigned role’s and
perform actions based on their assigned roles. The list of actions that customers
can perform on a given resource is controlled by access control policies.

Roles are defined with respect to organizations.When a role is assigned to a
member this member plays specificy roles in a specific organization. A member
may not be assigned any roles which are not entitled for the organization. For
example, a member cannot have a buyer approver role, if the members’s
organization does not have this role. The list of roles that are available in the
commerce server are stored in the ROLE table. You can use the available roles
and assign roles to customers as well as create new role’s and assign them to
members. To create new role, use the Administration Console. The associations
of roles and members are maintained in the MBRROLE table.

The steps to assign roles to customers are discussed in Chapter 5, “Creating a
store” on page 131.
 Chapter 12. B2B features 327

In our role based sample, we create a welcome page, that displays a link to
Order Approval and to RFQ,if the logged in customer has a role of a buyer
approver or buyer administrator in the customer organization. The sample store
that we will be using to showcase this feature is ToolTech. For more details about
this sample store refer to the online help for ToolTech

The modified home page will contain a link to approve orders and a link to create
RFQs if the logged in customer is a buyer approver or a buyer administrator.
These links will not display if the user is just a buyer and does not have any
administration role in the buyer organization.

This feature is implemented in the ToolTech sample store by using the following
JSPs:

� LogonDisplay.jsp
� CatalogMainDisplay.jsp

To retrieve information about registered users from the commerce server, use the
UserRegistrationDataBean. This bean can be initialized by passing an instance
of the bean to the DataBeanManager along with the request object. The
DataBeanManager takes care of setting initialization parameters and invoking
the populate method of the bean instance.

The UserRegistrationDataBean has method getRoles() which returns an array of
type Integer containing the roles this customer performs with respect to the
parent organization.

On our modified home page page, we get the roles of the logged in user and
display the appropriate content based on the roles. Example 12-1 shows code
from CatalogMainDiplay.jsp

Example 12-1 Sample to retrieve user roles

UserRegistrationDataBean bnRegUser = new UserRegistrationDataBean();
com.ibm.commerce.beans.DataBeanManager.activate(bnRegUser, request);
Integer [] userRoles = bnRegUser.getRoles();

//Get User's Role and determine whether to display the Buyer Approver link
boolean bBuyerApprover = false;
boolean bBuyerBuySide = false;
boolean bBuyerAdmin = false;
for (int i=0; i < userRoles.length; i++) {

RoleDataBean dbRole = new RoleDataBean();

//Using setInitKey_RoleId here instead of setRokeId because the databean
//won't activate properly. setInitKey_RoleId is from RoleAccessBean. To

comply
328 WebSphere Commerce V5.4 Developer’s Handbook

//with models and access control, we do not use RoleAccessBean.
dbRole.setInitKey_RoleId (userRoles[i].toString());
DataBeanManager.activate(dbRole, request);
if (dbRole.getRoleId().equals ("-22")) {

System.out.println("bBuyerAprover");
bBuyerApprover = true;

}else if (dbRole.getRoleId().equals ("-24")) {
bBuyerBuySide = true;
System.out.println("bBuyerBuySide");

}else if (dbRole.getRoleId().equals ("-21")) {
bBuyerAdmin = true;
System.out.println("bBuyerAdmin");

}
}

In the code shown in Example 12-1 notice that on retrieval of user roles, we are
checking if the roles match any of the administrative privileges for the
organization. If the user has administrative authority, we set on a flag. Based in
the status of the flag the content displayed by the JSP is varied as shown in
Example 12-2

Example 12-2 Sample to dynamically change content based on role

<P>
<% if (bBuyerBuySide && (bBuyerApprover || bBuyerAdmin)) { %>
<hr width="580" noshade align="left">
<P>
<A CLASS="catalog" HREF="javascript:

ApprovalToolLink();"><%= tooltechtext.getString ("Home_Link1") %>

<% } %>
<P>

Figure 12-1 shows the ToolTech home page
 Chapter 12. B2B features 329

Figure 12-1 ToolTech home page

The content of the home page shown in Figure 12-1 is dynamically changed
based on the user role. If the user hase the appropriate roles the home page will
display a link to approve pending orders for the customer organization the buyer
belongs to and a link to create new RFQs. Figure 12-2 is a screen sample of
home page for a buyer with approver and admin roles.Figure 12-1 is the home
page for a buyer who has no administrative privileges in the buyer organization.
330 WebSphere Commerce V5.4 Developer’s Handbook

Figure 12-2 ToolTech home page for approvers.

Using similar techniques you can also dynamically change the content of the
view based on business profile of users. For example if the buyer belongs to a
customer organization that isonly interested in subsets of the store catalog, you
can customize the view accordingly. In addition to this you can also create
custom roles and change the display content accordingly.

12.3 Order approval
An order may beplaced for approval before processing based on terms and
conditions defined by contracts. When a product is added to the shopping cart
WebSphere Commerce Business Edition checks whether the terms and
conditions defined in the contract require order approval for products purchased
under this contract. If approval is required the order is put into approval pending
state other wise the order is placed for further processing. Only after an approver
from the buyer organization approves an order that is in approval pending state
can the order be placed for further processing.
 Chapter 12. B2B features 331

Details about how to create contracts have already been discussed in chapter
Chapter 5, “Creating a store” on page 131. To set up a contract that requires
order approval based on the order amount you can specify this while creating a
contract. You use the order approval section of the contract creation process as
shown in Figure 12-3. While specifying a minimum amount for order approval
make sure you mention it for all the currency formats the store is going to
support.

Figure 12-3 Terms and conditions of contract

To modify an existing contrac,t make a new version of the contract, make the
nessessary changes and then publish the contract. The existing contract is
modified and is set to active state.

To showcase this feature of contracts in WebSphere Commerce Business
Edition, we use ToolTech as our sample store model. We have created two
customers for buyer organization b, buyer1 and buyer2. buyer1 is an approver for
buyer organization b, and buyer 2 does not have any roles assigned. For the
steps to create users and assign role srefer to Chapter 5, “Creating a store” on
page 131. Figure 12-4 shows a a view of these users in the WebSphere
Commerce administration console.
332 WebSphere Commerce V5.4 Developer’s Handbook

Figure 12-4 Administration Console - user management)

When buyer2 places an order in the ToolTech store, with order value exceeding
$250, and using the contract ToolTech contract 6789 [10105] as shown in
Figure 12-5 on page 334, the order is placed in an awaiting approval state. The
contract that is used here is not the store default contract which is created while
publishing the store.
 Chapter 12. B2B features 333

Figure 12-5 Contracts In ToolTech store

After placing an order, the order status is set to pending approval state. An order
confirmation will not be displayed, but a status message will be displayed as
shown in Figure 12-6. This status message will not be displayed if there are no
approvers associated to the buyer organization..
334 WebSphere Commerce V5.4 Developer’s Handbook

Figure 12-6 Order confirm page shown approval pending status

To check order status select the Order Status link in the toolbar of the ToolTech
store. Figure 12-7 will be displayed.
 Chapter 12. B2B features 335

Figure 12-7 OrderStatus JSP

The order approval page is built based on the WebSphere Commerce tools
framework. For more information on customizing and building tools using the
framework refer to the WebSphere Commerce Tools FrameWork Programmer’s
Guide.

You can use the existing approval JSPs as is, or customize the JSPs to meet
your business needs. If you have published the ToolTech sample store, can find
the approval JSPs in
<WAS_DIR>\installedApps\WC_Enterprise_App_demo.ear\wcstores.war\tools

Note: Make sure you have assigned appropriate roles to organizations and to
users. If you have not assigned the correct roles you may not be able to test
the approval feature. By default, ToolTech does not assign any roles to users
or organizations. For instructions on ho to assign roles to members refer to
Chapter 5, “Creating a store” on page 131
336 WebSphere Commerce V5.4 Developer’s Handbook

When you log into to the ToolTech store as a buyer organization approver you will
see a link to the order approval JSP. Using te organization order approval page
as shown in Figure 12-8, you can update organizational details, assign roles to
users, and approve or reject orders.

Figure 12-8 OrderApproval Page

Tip: Make sure you have created a buyer approver oy buyer administrator,
other wise you may not be able to place an order for approval.
 Chapter 12. B2B features 337

12.4 Contracts and trading agreements
In WebSphere Commerce Business Edition the pricing of product items a is
based on contracts; the same item can be sold at different prices by having
multiply contracts. A contract cannot exist without having a business account. A
business account as associated with customer organizations. The procedure to
create business accounts and contracts is discussed in Chapter 5, “Creating a
store” on page 131

In the shopping flow that the default store models use, the list of eligible contracts
is shown in the item display page. In this section we customize the sample store
to modify the basic shopping flow so that the customer will be able to view the list
of contracts that she is eligible to use when the store home page is displayed.
The customer can choose a contract which will be the default contract for the
entire shopping experience.

The uses case of this scenario is as follows:

Preconditions:
Registered users log on to the system, by supplying their authentication
information.

Basic flow:
� The system displays the Logon page.

� The customer selects a shopping language and enters their user ID and
password in the User ID and password fields.

� The customer clicks Submit and the information is submitted.

� After log on is finished the customer is transferred to the home page of the
store. The home page displays the list of eligible contracts.

� The user can select a particular contract, and the selected contract will be set
as the default contract during the entire shopping experience.

Alternate flow:
� The customer forgets their password and would like to reset their password.

� The customer selects the Forgot Your Password? link.

� The system displays the forgot password page.

� The customer enters their User ID in the appropriate field.

� The customer clicks Send My Password and the information is submitted.

� The system sends the password to the customer's e-mail address.

� A confirmation message is displayed.
338 WebSphere Commerce V5.4 Developer’s Handbook

� The customer can transfer to the Log on page after they have received their
password.

Exception flow:
If any exception occurs the user is redirected to the generic error JSP and the
appropriate error message is displayed.

Contracts are associated with a business account which links to customer
organizations known to the commerce server. Users of a customer organization
will be able to use contracts associated to the business account of their customer
organization. The contracts can specify a list of items that a covered under the
contract, payment methods, shipping modes and other pricing information. To
create a contract please refer to Chapter 5, “Creating a store” on page 131. To
specify the list of items that can be purchased under a contract:

1. While creating a contract click Selection Constraints. You can either specify
categories and items to be included in the contract or you can specify the
categories and items to be excluded from the contract. This is shown in
Figure 12-9

Figure 12-9 Selection constraints for contracts.
 Chapter 12. B2B features 339

2. To select the list of categories or items you want to exclude or include in the
contract you can either do a find for the particular category or item, or you can
browse the store catalog and select the required items. In our example we
select to exclude masonry drill bits from the contract. Figure 12-10 shows the
browse functionality used to make our selections.

3. In the default contracts created with the ToolTech store, no restriction is
applied, so you may browse through the entire catalog. To restrict some items
we created a new contract. For details of creating a new contract refer to
Chapter 5, “Creating a store” on page 131.

Figure 12-10 Select category or item

� In order to restrict displaying categories and items which cannot be
purchased under a contract, you can either modify an existing contract or
create a new contract as we did in our example. When the user logs on to the
system and selects a contract to be the default contract for the entire
shopping experience, only the categories or items that can be purchased
under the contract will be displayed. As a consequence the user may not be
340 WebSphere Commerce V5.4 Developer’s Handbook

able to see all the categories and items listed in the catalog. The follwing
sections describe how to implement this functionality.

You can extract information about the logged in users contract entitlements from
the command context as shown in Example 12-3.

Example 12-3 Get eligible contracts from the command context.

String[] contractIds = null;
com.ibm.commerce.contract.objects.ContractAccessBean acBean = null;

try{
contractIds = cmdcontext.getEligibleTradingAgreementIds();
acBean = new com.ibm.commerce.contract.objects.ContractAccessBean();
for(int i=0 ; i < contractIds.length ; i++)
{

 acBean = new com.ibm.commerce.contract.objects.ContractAccessBean();
acBean.setInitKey_referenceNumber(contractIds[i]);

 acBean.refreshCopyHelper();
 }

}
catch(Exception e)

{
e.printStackTrace();

}

Using this technique we modified the ToolTech home page to display the list of
eligible contracts to the logged in user. We use the same code show in
Example 12-3 to extract information about eligible contracts. The user may select
a contract from the list displayed and this contract set is as the default contract for
the entire shopping experience. To make a contract as the default for session we
use the ContractSetInSession command. Using this command you can set one
or more contracts to be the default contracts for the session. As a result, in the
item display page the price of items displayed will be only for the default contracts
and not all eligible contracts.

Figure 12-11 is the modified home page of ToolTech store. A list of eligible
contracts for the user who is currently logged in is displayed, and the user can
select a particular contract and set it as the default contract. In our example we
only set a single default contact, but the example can be extended to have
multiple default contracts for the session. To make this change syou would have
to pass multiple contract ids instead of only one id.
 Chapter 12. B2B features 341

Figure 12-11 ToolTech home page with contracts list

After the user selects a contract to set as the default contract he user is
redirected to a page where details of the contract are displayed. The user can
change the default contract again by returning to the home page (using the
Home button on the navigation bar), and selecting a different contract from the
list.

The controller command that we used to set default contracts for the session is
ContractSetInSession. This command can take one or many contract ids and set
these contracts to be the default contracts for the session. Usage of this
command is show in Example 12-4.

Example 12-4 ContractSetInSession command usage

This example allows logged in user to shop with contract ids 10001 & 10002.

https://hostname/webapp/wcs/stores/servlet/ContractSetInSession?contractId=1000
1&contractId=10002
342 WebSphere Commerce V5.4 Developer’s Handbook

This command sets the default contracts for user into the session. The contract
ids specified in the command will be used if this command is sucessfully
executed and the other contracts that the user is eligible to use will be ignored.
On sucessful completion of this command the ContractListView is called. This
view command by default point to <store_dir>/tools/contract/ContractList.jsp.

Based on your business needs you can modify the view command to point to a
different JSP. To modify a view command you can either modify an existing view
command to point to different JSP or you can create a version of this view
command that is specific to your store. Example 12-5 on page 343 shows the
SQL you can use for creating a new version of ContractListView command.
Remember to change 10051 to the correct value for your STOREENT_ID.

Example 12-5 SQL to create view command used in this sample

INSERT INTO VIEWREG
(VIEWNAME,DEVICEFMT_ID,STOREENT_ID,INTERFACENAME,CLASSNAME,PROPERTIES,DESCRIPTI
ON,HTTPS,INTERNAL) VALUES
('ContractListView',-1,10051,'com.ibm.commerce.command.ForwardViewCommand'
,'com.ibm.commerce.command.HttpForwardViewCommandImpl','docname=ContractListDis
play.jsp','View For Listing Eligible Contracts',1,1);

The list of contracts that the user is eligible to use is displayed in the home page
using a modified version of CatalogMainDisplay.jsp. Refer to Example 12-3 on
page 341 for sample code to retrieve eligible contracts using the command
context.For our example we created a new JSPcalled ContractListDisplay.jsp and
associated this ContarctListView command for our store. This JSP will display
details of the contract which the user has chosen to be the default contract.

Once user has set a contract to be the default contract, the categories and items
that would be displayed to the user is controlled by the contract, that is the
categories or items excluded in the contract will not be displayed to the user. The
price displayed for the selected item will be the price as recommended in the
chosen session default contract. Prices that are available to the customer with
other eligible contracts are not displayed.

The contract we created for our example had selection criteria which excluded
masonry drill bits. Figure 12-12 shows that these items are not being displayed to
the logged in user.
 Chapter 12. B2B features 343

Figure 12-12 Masonry drill bits excluded.

Figure 12-13 shows these items being displayed to the logged in user when the
user has chosen other contracts.
344 WebSphere Commerce V5.4 Developer’s Handbook

Figure 12-13 Masonry drill bits displayed for alternate contracts.

12.5 Message extensions
Message extensions is functionality built on top of WebSphere Commerce to
provide extension points for integrating external buy-side systems. To achieve
this, changes where made to WebSphere Commerce schema, business logic
and the messaging system.

By using message extensions suppliers, can maintain an single catalog that can
be presented to customers using a Web browser to shop and canalso be
presented to customers using a procurement system such as Ariba Buyer. This
helps you integrate WebSphere Commerce with the back end systems like
supply chain management and order management. The aim is to reduce the
effort and cost of in order processing and fullfillment.

Message extensions provides:

� DUNS number support for buyer and seller organizations

� UNSPSC based classification for categories and products.
 Chapter 12. B2B features 345

� Contract based pricing for different buyer and seller organizations.

� Shopping cart can be sent to the buyer system for approval.

� Purchase order request can be received from an external system and
processed in WebSphere Commerce

� Buyers can check their order status from the buy-side systems, and status
responses can also be sent to buyer’s systems.

� Buyers can check for product availability before placing an order

The end to end flow in a sell- side extension is as follows:

1. An customer from the buyer organization logs into the procurement system
providing individual authentication information. A list of external catalogs from
sell-side systems are displayed.

2. The front-end system (procurment system), validates the user, and whether
he or she belongs to the organization. Once the user is validated, a request is
constructed and sent to the supplier system, with authentication and
organizational credentials.

3. The supplier system, which in this case is WebSphere Commerce, validates
the supplied credentials.Once she is sucessfully authorized, the buyer is
redirected to the URL which displays the suppliers catalog entries and
products.

4. Buyers browses through the catalog and create a shopping cart, once the
buyer submits the shopping cart, a response is sent back to buyer approver
who has to confirm whether this purchase order request can be approved for
further processing by the message extension system.

5. If the buyer approver edits the shopping cart the remote catalog punchout
session starts again.

6. After buyer approver approves the order, the order approval is sent back to
the message extension system, and propagated to WebSphere Commerce.

12.5.1 cXML overview
cXML allows parties in an e-commerce transaction such as buyers, suppliers,
service providers, retailers, distributors, and so on, to communicate with each
other using a standard language. To have a sucessful business-to-business
solution it is helps to have an open standard protocol which can improve
interoperability between systems. cXML is designed to meet this requirement of
the e-commerce industry, and also has been designed to support
business-to-business commerce.

Some of the cXML documents that commonly used by systems include:
346 WebSphere Commerce V5.4 Developer’s Handbook

� Catalog
� Punchout
� Purchase orders

Catalog cXMLs are files which describe the products offered by a supplier and
the price at which they are offered. In order to have a standard classification of
categories and products, suppliers may use UNSPSC based classification.
These catalogs can be used by buyers connecting to the suppliers view of
procurement applications.

A supplier can have a punchout site which can provide interactive catalogs on the
Internet. The punchout sites can communicate with a procurement system by
using cXML. When a buyer connects to a punchout site, a punchout session is
initiated and the buyer can view the supplier’s punchout site and shop. Once the
buyer finishes creating a purchase order request, the order information is
returned to the procurement system. This setup can also be chained, where a
market place receives a request from the procurement system and propagates
the request to supplier systems and the response is propagated back to the
procurement system.

12.5.2 cXML in WebSphere Commerce Business Edition
WebSphere Commerce uses cXML messages to integrate with the Ariba
procurement solution. Tthe list of cXML messages being used includes:

� PunchOutSetupRequest
� OrderRequest
� PunchOutSetupResponse
� PurchaseOrderMessage
� OrderResponse

New controller and task commands have been introduced in WebSphere
Commerce Business Edition V5.4 inorder to interact with procurement systems
and also to setup an punchout site. Table 12-1 relates the message extension
controller commands to the cXML messages they will be operating on.

Table 12-1 cXML - command mapping

Input Message
Name

Message
Extensions
Commands

Direction
In-Bound/Out-Bo
und

Response
Message Name

PunchOutSetupRe
quest

PunchOutSetup IN PunchOutSetupRe
sponse

OrderRequest BatchOrderReque
st

IN OrderResponse
 Chapter 12. B2B features 347

PutOutSetupResp
onse

PunchOutSetup OUT

PurchaseOrderMe
ssage

PrepareOrder OUT

OrderResponse BatchOrderReque
st

OUT

Input Message
Name

Message
Extensions
Commands

Direction
In-Bound/Out-Bo
und

Response
Message Name
348 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 13. Product entry and display

This chapter is describes product entry and display features and customization.
We detail product comparison features, and also describe how to create new
products and product bundles. We also describe how to display dual currencies
in a WebSphere Commerce site.

13
© Copyright IBM Corp. 2002. All rights reserved. 349

13.1 Product comparison
Product comparison allows user on an e-commerce site to compare data from a
set of products. Each product is represented as either a row or a column in the
table, and the values for the product's features are shown in the cells of the table.

To get the product comparison data, WebSphere Commerce Business Edition
can use the included Product Advisor tool.

13.1.1 Product Advisor
The Product Advisor is a tool used to create an online product catalog that
provides shoppers with different ways of finding the products they want. The
alternative methods of finding products are called shopping metaphors. The
Product Advisor can use the product comparison metaphor to compare similar
products side by side with the same attributes like color or size.

To get product information there are two search methods available for use with
the Product Advisor:

� Separate search space
� Base search space

The separate search space requires additional tables added to the database to
reformat existing product data. This enables optimized parametric searches,
which are focused on individual categories.

The base search space searchs the WebSphere Commerce database.

To use these search methods, you have to populate some additional attribute
metadata in the database.

The Product Advisor includes a command utility, named PAConfig, to help
automate the process of creating either search space.

13.1.2 Creating base search space
The search space consists of additional database tables that contain information
extracted from the following standard WebSphere Commerce tables:

� CATENTRY
� CATENTDESC
� CATGPENREL
� ATTRIBUTE
� ATTRVALUE
� LISTPRICE
350 WebSphere Commerce V5.4 Developer’s Handbook

For more informations about the tables refer to the WebSphere Commerce
Version 5.4 Online Help.

Attribute definitions in the search space XML file
Product Advisor supports all the attributes in the ATTRIBUTE table. To add
attributes to a search space using a XML file and the PAConfig utility, add the
following information:

� The <columnName> is the value in the NAME column in the ATTRIBUTE
table, for example Size for the English version.

� The <attrName> is the value from the NAME column for the language
identified. This value is case sensitive. For example, Talla for the Spanish
version.

� The Product Advisor also support attributes from other tables, such as
CATENTRY and CATENTDESC. To add attributes to a search space with a
XML file using the PAConfig utility add information such as that shown in
Table 13-1.

Table 13-1 Base search space

Note: Attributes shown in the Italic font in Table 13-1 are required for the search
space.

Follow these steps to create a base search for the Product Advisor:

1. Choose a category for which you want to enable a Product Advisor search, in
our example the category is the 10101.

2. Create an XML input file based on the sample XML file located in
<WCS_DIR>\CommerceServer\samples\pa\xml

Thesample XML file is called ss10003.xml for the category 10003.

3. Copy and rename the file, for example we created ss10101.xml.

Attribute <columnName> value <attrName> value

Catentry_id CATENTRY_ID CATENTRY_ID

SKU (part number) PARTNUMBER PARTNUMBER

Short description SHORTDESCRIPTION SHORTDESCRIPTION

Thumbnail THUMBNAIL THUMBNAIL

 XML Detail XMLDETAIL XMLDETAIL

Price LISTPRICE LISTPRICE or PRICE

Availability AVAILABLE AVAILABLE
 Chapter 13. Product entry and display 351

4. Define the attributes for the base search space. In our example the category
is 10001 from the WebFashion sample store. We use both languages
provided by the WebFashion sample, that is English and Spanish. The
attribues we defined are:

– Catentry_id
– part number
– short description
– thumbnail
– XML Detail
– Available
– Size

You can list all product attributes and their types for the category 10101 with
the sql-statement :

select distinct(attribute_id),language_id,attrtype_id,name
from attribute
where
catentry_id in(select catentry_id from catgpenrel where
catgroup_id=10101)
order by attribute_id

5. Change the category id and add the attributes into the ss10101.xml as shown
in the example 13-1:

Example 13-1 sample XML for search space

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalogBuilder SYSTEM "cbbatch.dtd">
<catalogBuilder>
 <delete_catalogBuilder CID="10101" />
 <category CID="10101">
 <attribute>
 <columnName>CATENTRY_ID</columnName>
 <length>8</length>
 <include>1</include>
 <type>com.ibm.commerce.pa.datatype.DsLong</type>
 <NLVdesc>
 <language>-1</language>
 <attrName>CATENTRY_ID</attrName>
 <description>Product Reference Number</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>

Attention: Check the attributes for the category. Ensure that you use the
same attributes for all products or items in the category.
352 WebSphere Commerce V5.4 Developer’s Handbook

 <NLVdesc>
 <language>-5</language>
 <attrName>CATENTRY_ID</attrName>
 <description>Product Reference Number</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 </attribute>
 <attribute>
 <columnName>PARTNUMBER</columnName>
 <length>64</length>
 <include>1</include>
 <type>com.ibm.commerce.pa.datatype.DsString</type>
 <NLVdesc>
 <language>-1</language>
 <attrName>PARTNUMBER</attrName>
 <description>Product Number/SKU</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 <NLVdesc>
 <language>-5</language>
 <attrName>PARTNUMBER</attrName>
 <description>Product Number/SKU</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 </attribute>
 <attribute>
 <columnName>SHORTDESCRIPTION</columnName>
 <length>254</length>
 <include>1</include>
 <type>com.ibm.commerce.pa.datatype.DsString</type>
 <NLVdesc>
 <language>-1</language>
 <attrName>SHORTDESCRIPTION</attrName>
 <description>Short Description</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 <NLVdesc>
 <language>-5</language>
 <attrName>SHORTDESCRIPTION</attrName>
 <description>Short Description</description>
 <scale>0</scale>
 Chapter 13. Product entry and display 353

 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 </attribute>
 <attribute>
 <columnName>THUMBNAIL</columnName>
 <length>254</length>
 <include>1</include>
 <type>com.ibm.commerce.pa.datatype.DsImage</type>
 <NLVdesc>
 <language>-1</language>
 <attrName>THUMBNAIL</attrName>
 <description>Thumbnail Image File</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 <NLVdesc>
 <language>-5</language>
 <attrName>THUMBNAIL</attrName>
 <description>Thumbnail Image File</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 </attribute>
 <attribute>
 <columnName>XMLDETAIL</columnName>
 <length>32700</length>
 <include>1</include>
 <type>com.ibm.commerce.pa.datatype.DsURLLink</type>
 <NLVdesc>
 <language>-1</language>
 <attrName>XMLDETAIL</attrName>
 <description>XML Detail</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 <NLVdesc>
 <language>-5</language>
 <attrName>XMLDETAIL</attrName>
 <description>XML Detail</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 </attribute>
 <attribute>
354 WebSphere Commerce V5.4 Developer’s Handbook

 <columnName>AVAILABLE</columnName>
 <length>4</length>
 <include>1</include>
 <type>com.ibm.commerce.pa.datatype.DsInteger</type>
 <NLVdesc>
 <language>-1</language>
 <attrName>AVAILABLE</attrName>
 <description>Availability</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 <NLVdesc>
 <language>-5</language>
 <attrName>AVAILABLE</attrName>
 <description>Availability</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 </attribute>
 <attribute>
 <columnName>SIZE</columnName>
 <length>254</length>
 <include>1</include>
 <type>com.ibm.commerce.pa.datatype.DsString</type>
 <NLVdesc>
 <language>-1</language>
 <attrName>Size</attrName>
 <description>Size</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 <NLVdesc>
 <language>-5</language>
 <attrName>Talla</attrName>
 <description>Talla</description>
 <scale>0</scale>
 <precision>0</precision>
 <unitOfMeasure></unitOfMeasure>
 </NLVdesc>
 </attribute>
 </category>
</catalogBuilder>

6. Be sure to back up the WebSphere Commerce Server database.

7. Save the file and copy it to the path <WCS_DIR>\CommerceServer\bin
 Chapter 13. Product entry and display 355

8. Localize the configuration file for your instance, for example this will be
demo.xml if you have created an instance using default values. The
configuration files will be found in
<WCS_DIR>\CommerceServer\instances\instance_name\xml\instance_nam
e.xml

9. Copy the configuration file of WebSphere Commerce instance into
<WCS_DIR>\CommerceServer\bin

10.From a Windows command prompt, enter :

cd <WCS_DIR>\CommerceServer\bin

11.Run PAConfig by enter ing the command:

paconfig XML_file configuration_file

See Example 13-2.

Example 13-2 paconfig for the example XML file

paconfig ss10101.xml demo.xml

12.Note that the message telling you that the import has completed does not
indicate success. Look at either the paconfig.log file, or the command line
output for error messages. The paconfig.log file can be found in
<WCS_DIR>\CommerceServer\logs. See Example 13-3

Example 13-3 paconfig.log of the example ss10101.xml

5/10/02 3:49:32 PM 1.1.16
5/10/02 3:49:32 PM buildDOMTree >>>>>
5/10/02 3:49:32 PM
5/10/02 3:49:32 PM
5/10/02 3:49:32 PM
5/10/02 3:49:32 PM ProductFamily for Category 10101
5/10/02 3:49:32 PM
5/10/02 3:49:32 PM Checking if the search space already exists for category
10101
5/10/02 3:49:32 PM the SQL is SELECT * FROM ICROOTCAT WHERE ROOTCATEGORYID =
10101
5/10/02 3:49:32 PM Passed check.
5/10/02 3:49:32 PM
5/10/02 3:49:32 PM
5/10/02 3:49:32 PM columnName = CATENTRY_ID
5/10/02 3:49:32 PM length = 8
5/10/02 3:49:32 PM include = 1
5/10/02 3:49:32 PM type = com.ibm.commerce.pa.datatype.DsLong
5/10/02 3:49:32 PM adding language -1
5/10/02 3:49:32 PM language = -1
5/10/02 3:49:32 PM attrName = CATENTRY_ID
5/10/02 3:49:32 PM description = Product Reference Number
356 WebSphere Commerce V5.4 Developer’s Handbook

5/10/02 3:49:32 PM scale = 0
5/10/02 3:49:32 PM precision = 0
5/10/02 3:49:32 PM
5/10/02 3:49:32 PM adding language -5
5/10/02 3:49:32 PM language = -5
5/10/02 3:49:32 PM attrName = CATENTRY_ID
5/10/02 3:49:32 PM description = Product Reference Number
5/10/02 3:49:33 PM scale = 0
5/10/02 3:49:33 PM precision = 0
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLFEAT insert successful **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLDESC insert CATENTRY_ID **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLDESC insert CATENTRY_ID **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM columnName = PARTNUMBER
5/10/02 3:49:33 PM length = 64
5/10/02 3:49:33 PM include = 1
5/10/02 3:49:33 PM type = com.ibm.commerce.pa.datatype.DsString
5/10/02 3:49:33 PM language = -1
5/10/02 3:49:33 PM attrName = PARTNUMBER
5/10/02 3:49:33 PM description = Product Number/SKU
5/10/02 3:49:33 PM scale = 0
5/10/02 3:49:33 PM precision = 0
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM language = -5
5/10/02 3:49:33 PM attrName = PARTNUMBER
5/10/02 3:49:33 PM description = Product Number/SKU
5/10/02 3:49:33 PM scale = 0
5/10/02 3:49:33 PM precision = 0
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLFEAT insert successful **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLDESC insert PARTNUMBER **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM
 Chapter 13. Product entry and display 357

5/10/02 3:49:33 PM ************ ICEXPLDESC insert PARTNUMBER **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM columnName = SHORTDESCRIPTION
5/10/02 3:49:33 PM length = 254
5/10/02 3:49:33 PM include = 1
5/10/02 3:49:33 PM type = com.ibm.commerce.pa.datatype.DsString
5/10/02 3:49:33 PM language = -1
5/10/02 3:49:33 PM attrName = SHORTDESCRIPTION
5/10/02 3:49:33 PM description = Short Description
5/10/02 3:49:33 PM scale = 0
5/10/02 3:49:33 PM precision = 0
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM language = -5
5/10/02 3:49:33 PM attrName = SHORTDESCRIPTION
5/10/02 3:49:33 PM description = Short Description
5/10/02 3:49:33 PM scale = 0
5/10/02 3:49:33 PM precision = 0
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLFEAT insert successful **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLDESC insert SHORTDESCRIPTION

5/10/02 3:49:33 PM
5/10/02 3:49:33 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:33 PM
5/10/02 3:49:33 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert SHORTDESCRIPTION

5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM columnName = THUMBNAIL
5/10/02 3:49:34 PM length = 254
5/10/02 3:49:34 PM include = 1
5/10/02 3:49:34 PM type = com.ibm.commerce.pa.datatype.DsImage
5/10/02 3:49:34 PM language = -1
5/10/02 3:49:34 PM attrName = THUMBNAIL
5/10/02 3:49:34 PM description = Thumbnail Image File
5/10/02 3:49:34 PM scale = 0
5/10/02 3:49:34 PM precision = 0
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM language = -5
5/10/02 3:49:34 PM attrName = THUMBNAIL
358 WebSphere Commerce V5.4 Developer’s Handbook

5/10/02 3:49:34 PM description = Thumbnail Image File
5/10/02 3:49:34 PM scale = 0
5/10/02 3:49:34 PM precision = 0
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLFEAT insert successful **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert THUMBNAIL **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert THUMBNAIL **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM columnName = XMLDETAIL
5/10/02 3:49:34 PM length = 32700
5/10/02 3:49:34 PM include = 1
5/10/02 3:49:34 PM type = com.ibm.commerce.pa.datatype.DsURLLink
5/10/02 3:49:34 PM language = -1
5/10/02 3:49:34 PM attrName = XMLDETAIL
5/10/02 3:49:34 PM description = XML Detail
5/10/02 3:49:34 PM scale = 0
5/10/02 3:49:34 PM precision = 0
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM language = -5
5/10/02 3:49:34 PM attrName = XMLDETAIL
5/10/02 3:49:34 PM description = XML Detail
5/10/02 3:49:34 PM scale = 0
5/10/02 3:49:34 PM precision = 0
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLFEAT insert successful **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert XMLDETAIL **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert XMLDETAIL **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM columnName = AVAILABLE
 Chapter 13. Product entry and display 359

5/10/02 3:49:34 PM length = 4
5/10/02 3:49:34 PM include = 1
5/10/02 3:49:34 PM type = com.ibm.commerce.pa.datatype.DsInteger
5/10/02 3:49:34 PM language = -1
5/10/02 3:49:34 PM attrName = AVAILABLE
5/10/02 3:49:34 PM description = Availability
5/10/02 3:49:34 PM scale = 0
5/10/02 3:49:34 PM precision = 0
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM language = -5
5/10/02 3:49:34 PM attrName = AVAILABLE
5/10/02 3:49:34 PM description = Availability
5/10/02 3:49:34 PM scale = 0
5/10/02 3:49:34 PM precision = 0
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLFEAT insert successful **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert AVAILABLE **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert AVAILABLE **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM columnName = SIZE
5/10/02 3:49:34 PM length = 254
5/10/02 3:49:34 PM include = 1
5/10/02 3:49:34 PM type = com.ibm.commerce.pa.datatype.DsString
5/10/02 3:49:34 PM language = -1
5/10/02 3:49:34 PM attrName = Size
5/10/02 3:49:34 PM description = Size
5/10/02 3:49:34 PM scale = 0
5/10/02 3:49:34 PM precision = 0
5/10/02 3:49:34 PM
5/10/02 3:49:34 PM language = -5
5/10/02 3:49:34 PM attrName = Talla
5/10/02 3:49:34 PM description = Talla
5/10/02 3:49:34 PM scale = 0
5/10/02 3:49:34 PM precision = 0
5/10/02 3:49:34 PM
5/10/02 3:49:35 PM
5/10/02 3:49:35 PM ************ ICEXPLFEAT insert successful **************
5/10/02 3:49:35 PM
5/10/02 3:49:35 PM
360 WebSphere Commerce V5.4 Developer’s Handbook

5/10/02 3:49:35 PM ************ ICEXPLDESC insert Size **************
5/10/02 3:49:35 PM
5/10/02 3:49:35 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:35 PM
5/10/02 3:49:35 PM
5/10/02 3:49:35 PM ************ ICEXPLDESC insert Talla **************
5/10/02 3:49:35 PM
5/10/02 3:49:35 PM ************ ICEXPLDESC insert successful **************
5/10/02 3:49:35 PM
5/10/02 3:49:35 PM ******* ICROOTCAT **********
5/10/02 3:49:35 PM Inserting into ICROOTCAT table.
5/10/02 3:49:35 PM Inserting into ICROOTCAT table successful.
5/10/02 3:49:35 PM
5/10/02 3:49:35 PM
5/10/02 3:49:35 PM ************** Finished for category 10101 *************

13.Check the tables ICEXPLFEAT, ICEXPLDESC, ICROOTCAT in the
WebSphere Commercedatabase.

13.1.3 Preparing a product comparison metaphor
Once you create the required search spaces, you have to create a XML file for
the product comparison metaphor and then import the XML file into the
WebSphere Commerce database using the PABatch command utility .

Before creating an XML input file, you must determine the following for the
catalog data:

� The store ID, for example 10101
� The category ID, for example 10101
� The features that correspond to the database column names, for example.

Size

Product Advisor provides a sample XML input file for use with the product advisor
command utility. The sample file metaphor.xml, which includes a product
comparison metaphor is located in
<WCS_DIR>\WebSphere\CommerceServer\samples\pa\xml

To create a new XML input file, do the following:

1. Copy the metaphor.xml file into the directory
<WCS_DIR>\CommerceServer\bin

2. Rename the file. In our example we used m10101.xml.

3. Change the store id (10101),and the category id (10101) as shown in
Example 13-4.
 Chapter 13. Product entry and display 361

<store SID="10101">
<category ID="10101">

4. To build a product comparison metaphor within a category you have to add
the following specific tags. These are also shown in Example 13-4.

<productComparer>
</productComparer>

5. Insert a template element between the metaphor begin and end tags to
specify the JSP page that the metaphor will be based on:

<template>/webapp/wcs/stores/servlet/pc51.jsp</template>

6. Add features to the sample file:

<feature>
<columnName>Size</columnName>
<order>1</order>
<display>1</display>
<sort>1</sort>
</feature>

7. The complete sample code added to the m10101.xml file for the product
comparison metaphor is shown in Example 13-4.

Example 13-4 sample metaphor XML input file - m10101.xml

<?xml version="1.0"?>
<!DOCTYPE builder SYSTEM "pabatch.dtd" >
<builder>

<store SID="10101">
<category ID="10101">

<productComparer>
<template>/webapp/wcs/stores/servlet/pc51.jsp</template>
<feature>

<columnName>Size</columnName>
<order>1</order>
<display>1</display>
<sort>1</sort>

</feature>
<feature>

<columnName>PARTNUMBER</columnName>
<order>8</order>
<display>2</display>
<sort>1</sort>

</feature>
<feature>

<columnName>THUMPNAIL</columnName>
<order>9</order>
<display>1</display>
<sort>1</sort>
362 WebSphere Commerce V5.4 Developer’s Handbook

</feature>
<feature>

<columnName>SHORTDESCRIPTION</columnName>
<order>10</order>
<display>1</display>
<sort>1</sort>

</feature>
</productComparer>

</category>
</store>

</builder>

8. From a Windows command prompt enter the command:

cd <WCS_DIR>\CommerceServer\bin

9. Enter the command:

PABatchXML XML_file configuration_file

See Example 13-5

Example 13-5 PABatchXML for the example XML file

PABatchXML m10101.xml demo.xml

10.After executing the PABatch command you should get message similar to
thoose shown in Example 13-6

Example 13-6 output in command window for PABatchXML

C:\Program Files\WebSphere\CommerceServer\bin>PABatchXML m10101.xml demo.xml

C:\Program
Files\WebSphere\CommerceServer\bin>C:\WebSphere\AppServer\java\bin\ja
va -classpath
/"C:\PROGRA~1\WEBSPH~1\COMMER~1/lib;C:\WebSphere\AppServer/classes
;C:\WebSphere\AppServer\java\jre\lib\ext;C:\PROGRA~1\WEBSPH~1\COMMER~1\lib\ibmj
c
efw.jar;C:\PROGRA~1\WEBSPH~1\COMMER~1\lib\ibmjceprovider.jar;C:\PROGRA~1\WEBSPH
~
1\COMMER~1\lib\local_policy.jar;C:\PROGRA~1\WEBSPH~1\COMMER~1\lib\US_export_pol
i
cy.jar;;;C:\WebSphere\AppServer/installedApps/WC_Enterprise_App_demo.ear/WCSCom
m
on-ejb.jar;C:\WebSphere\AppServer/installedApps/WC_Enterprise_App_demo.ear/WCSF
u

 Chapter 13. Product entry and display 363

lfillment-ejb.jar;;C:\WebSphere\AppServer/classes/ivjfix.jar;;C:\WebSphere\AppS
e
rver/installedApps/WC_Enterprise_App_demo.ear/lib/wcsmcruntime.jar;;C:\WebSpher
e
\AppServer/installedApps/WC_Enterprise_App_demo.ear/lib/wcsdatabean.jar;;C:\PRO
G
RA~1\WEBSPH~1\COMMER~1/lib/wcsruntime.jar;;C:\WebSphere\AppServer/installedApps
/
WC_Enterprise_App_demo.ear/lib/wcscatalog.jar;;C:\WebSphere\AppServer/installed
A
pps/WC_Enterprise_App_demo.ear/WCSServer-ejb.jar;;C:\WebSphere\AppServer/instal
l
edApps/WC_Enterprise_App_demo.ear/WCSMCProductAdvisor-ejb.jar;;C:\WebSphere\App
S
erver/installedApps/WC_Enterprise_App_demo.ear/WCSCatalog-ejb.jar;;C:\WebSphere
\
AppServer/installedApps/WC_Enterprise_App_demo.ear/lib/wcslogging.jar;;C:\WebSp
h
ere\AppServer/lib/j2ee.jar;;C:\WebSphere\AppServer/lib/ns.jar;;C:\WebSphere\App
S
erver/installedApps/WC_Enterprise_App_demo.ear/lib/wcssfc.jar;;C:\WebSphere\App
S
erver/installedApps/WC_Enterprise_App_demo.ear/properties;C:\PROGRA~1\WEBSPH~1\
C
OMMER~1/lib/sslite.zip;C:\Program Files\SQLLIB\java\db2java.zip;;C:\Program
File
s\SQLLIB\java\db2java.zip;C:\Program Files\SQLLIB\java\runtime.zip;C:\Program
Fi
les\SQLLIB\java\sqlj.zip;C:\Program Files\SQLLIB\bin;./"
-Dcom.ibm.CORBA.ConfigU
RL=file:/C:\WebSphere\AppServer/properties/sas.client.props
com.ibm.commerce.pa.
admin.PABatchXML -t C:\PROGRA~1\WEBSPH~1\COMMER~1\xml\tools\pa\pabatch.dtd -x
m1
0101.xml -c demo.xml -d 1
<<<<<---PABatchXML Started --->>>>>

+++++++++++++++++++++++++++++++++++++
Product Advisor Batch Utility
Licensed Materials - Property of IBM
5724-A18
(c) Copyright IBM Corp. 1998, 2001.
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
+++++++++++++++++++++++++++++++++++++
instance: demo
java.naming.provider.url: iiop://localhost:900
BuildMetaphors is initialized
buildDOMTree <<<<<
364 WebSphere Commerce V5.4 Developer’s Handbook

1.1.16
buildDOMTree >>>>>
processStoreBegin <<<
processStoreBegin: SID=10101
-------success in new store-----------SID=10101
processStoreBegin >>>
processCategoryBegin <<<
processCategoryBegin: ID=10101
verifyCategoryID <<<
verifyCategoryID >>>
verifyCategoryID <<<
verifyCategoryID >>>
-------success in set catID in new merchant-----------ID=10101
processCategoryBegin >>>
processPCBegin <<<
/webapp/wcs/stores/servlet/pc51.jsp
Size
1
1
1

PARTNUMBER
8
2
1

THUMPNAIL
9
1
1

SHORTDESCRIPTION
10
1
1

buildProductComparer <<<
LogConfiguration.loadConfiguration: no logging configuration found (Null XML
Nod
e). Standard output is used for logging error messages.
Metaphor add ok!
buildProductComparer >>>
processPCBegin >>>
processCategoryEnd <<<
processCategoryEnd 10101
processCategoryEnd >>>
processStoreEnd <<<
processStoreEnd -1
processStoreEnd >>>
 Chapter 13. Product entry and display 365

BuildMetaphors is completed
<<<<<---PABatchXML Finished!--->>>>>

For more information about creating Product Advisor input files refer to the
WebSphere Commerce Version 5.4 Online Help.

13.1.4 Testing product comparison
A product comparison sample JSP file is located in the directory
<WCS_DIR>\CommerceServer\samples\web\pa\pc51.jsp

To test the product comparison data we used this sample JSP file. The steps are:

1. Copy the sample JSP to the directory where the sample store is published.
For example:

<drive>\WebSphere\AppServer\installedApps\WC_Enterprise_App_instance
_name.ear\wcstores.war\WEB-INF\classes\storedir

2. Open the pc51.jsp and search the following code:

<jsp:setProperty property="orientation" name="pcTable"
value="VERTICAL"/>

3. Change the orientation property value to get a list in the horizontal position:

<jsp:setProperty property="orientation" name="pcTable"
value="HORIZONTAL"/>

4. Save the file and close it.

5. Launch to the following URL:

https:/local_name/webapp/wcs/stores/servlet/<store>7pc51.jsp?storeId=store_
id&categoryId=category_id&langId=-1

For our example we accessed the sample JSP with the following URL:

https:/local_name/webapp/wcs/stores/servlet/WebFashion/pc51.jsp?storeId=101
01&categoryId=10101&langId=-1

You will get a list of all products and items with the same attributes as shown
in Figure 13-1.
366 WebSphere Commerce V5.4 Developer’s Handbook

Figure 13-1 Product comparison sample JSP

You can sort the list by Size, Product Number and Short Description.

For more information about product comparison and the other Product Advisor
metaphors refer to the WebSphere Commerce Version 5.4 Online Help, the IBM
WebSphere Commerce Fundamental Version 5.4 or to the WebSphere
Commerce Accelerator Customization Guide Version 5.4.

13.2 Products and bundles
In this section we discuss product creatio and customization. We also describe
how to imlement and display product bundles.

13.2.1 Definition of products
Several types of catalog entries classify merchandise in the WebSphere
Commerce database. One of these types is the product.
 Chapter 13. Product entry and display 367

A product is a group of items that exhibit the same attributes. For example a
t-shirt.The attributes of this product are color and size, but a small t-shirt with
colors in orange and black is an item. However, items do not need to be related to
any product, and can exist independently in the catalog.

The relationship between products and items is in the CATENTREL table.

The product management tools in the WebSphere Commerce Accelerator allows
you to manage the products in your store's master catalog using various wizards
and notebooks.

In the WebSphere Commerce Accelerator using the product manager you can
create or set characteristics:

� The product code, which uniquely identifies the product.
� The product name and description.
� The merchandising options, such as indicating that a product displays to

customers, or that it is part of a special promotion.
� Thumbnail and full size images of the product.
� Tax specifications and shipping specifications.
� Discounts assigned to the product.

13.2.2 Creating new product with product manager
InFashion is a business-to-consumeronline fashion store provided with
WebSphere Commerce. The sample store is packaged with WebSphere
Commerce as a store archive, and as a result, no further installation is
necessary. All that is required to view the sample store is to create a new store
archive based on InFashion using the Store Services tools, then publish it to the
WebSphere Commerce Server.

In this section we create a new product for an existing category in the InFashion
store. If you want to create a new new product in other sample stores refer to the
WebSphere Commerce Version 5.4 Online Help.

For more information of creating stores from and existing store archive, see
“Creating a store archive using Store Services” in the WebSphere Commerce
Version 5.4 Online Help.

Create a new product
In the first step we create a new product with the WebSphere Commerce
Accelerator:

1. Choose Merchandise -> Products. A list of products for the store displays.

2. Click New. The general page is displayed.
368 WebSphere Commerce V5.4 Developer’s Handbook

3. Add the following details to the product. See Figure 13-2

� Product Code : 1234
� Name : Special t-shirt
� Display to customers: enabled

4. Select the For purchase check box to specify that customers can include the
product in their shopping carts and order the product

Figure 13-2 Create a new product

5. Click Next. Enter the following information in the description page:

� Short description: Special t-shirt
� Long description: Skater style, lightweight t-shirt, Crew neck, 80 % cotton, 20

% polyester, Machine-washable.

6. Click Next. In the category page select the appropriate parent category for
your product as shown in Figure 13-3. We placed our product in the shirt
category
 Chapter 13. Product entry and display 369

Figure 13-3 Select parent category for the product

7. Click Next.

In the images page in the full size image file and location field, type the full or
relative path to the image, including the image name. We used
images/mens_activewear_ultimate.gif

In the thumbnail image file and location field, type the full or relative path to
the image, including the image name. We used
images/mens_activewear_ultimate_sm.gif

This directory is where the store images are located on the WebSphere
Commerce machine. For our example we used images that are included in
the InFashion sample store.

8. Click Next. The manufacturer information page is displayed. Enter the
following information:

� Manufacturer Part Number: 1234
� Manufacturer Name: Infashion

9. Click Next. The discounts page displays. You can apply discounts to the
product.

10.Click Next. The sales tax page displays. Select a tax name from the available
taxes list, and click Add. If there is no tax available in the list a message
appears.

11.Click Next. The shipping tax page displays. Select the tax name from the
available taxes list, and click Add. If there is no shipping tax available in the
list a message appears.

12.Click Next. The shipping Ccategories page displays. Select a category name
from the available categories list, and click Add. A shipping category is
defined by a range in weight, size or amount. If no shipping category is
available, a message appears.
370 WebSphere Commerce V5.4 Developer’s Handbook

13.Click Next. The units of measure for shipping page displays. Supply values for
the following :

� Sold in Multiples of This Amount field:1.
� Number of Items per package field: 1
� Unit of Measure drop-down list: one

14.Click Next.The product fulfillment page displays. Accept the default values:

� Track inventory: enable checkbox
� Allow backup: enable checkbox
� Force backorder:disable checkbox
� Release separately: disable checkbox
� Returnable: enable checkbox
1. Creditable: enable checkbox
1. Smallest Amount that can be measured field: 1.

2. Click Next. The advanced page displays. We do not need to enter any
information for our example.

3. Click Finish. The changes will be saved.

Adding a price to a new product
The priceof a product can bes defined for one or more currencies. In our example
the currencies used are USD and EUR. You have to define prices for all
currencies. Use the WebSphere Commerce Accelerator:

1. Choose Merchandise -> Products. A list of products for the store is
displayed.

2. Select the check box to the left of the product 1234 and click Prices

3. Enter 29.00 for the USD price and 29.00 for EUR price. See Figure 13-4

4. To save the price click OK.
 Chapter 13. Product entry and display 371

Figure 13-4 Adding a new price

Adding new attributes and values
You have to add attributes such as color or size to the new product. These are
typical attributes for a shirt. Each combination of attributes and attribute values
equals a new SKU.

1. Choose Merchandise -> Products.

2. Select the check box to the left of the product 1234 and click Attributes.

3. Click New. The new attribute page displays.

4. Select the default language from the drop-down list: United States English

5. Enter the following information in the new attribute page:

� Insure that the attribute type Text is selected:
� Name : Size
� Description : Size
� In the value field type x-small, click Add.
� In the value field type small, click Add.
� In the value field type medium, click Add.
� In the value field type large, click Add.
� In the value field type x-large, click Add.
372 WebSphere Commerce V5.4 Developer’s Handbook

See Figure 13-5 for an example.

6. Click OK. You will get a message after creating the attribute

.

Figure 13-5 Adding attribute size to a new product

7. Create the second attribute . Click New. Enter the following information in the
new attribute page:

� Name : Color
� Description : Color
� In the value field type black/white, click Add.
� In the value field type green/navy, click Add.
� In the value field type orange/black, click Add.

See Figure 13-6 for an example.

8. Click OK. You will get a message after creating the attribute.
 Chapter 13. Product entry and display 373

Figure 13-6 Adding attribute color

Generate SKUs for the new product
After creating the attributes and the attribute values for the product you are
allowed to generated SKUs. To generate SKUs for a product, do the following:

1. Choose Merchandise -> Products. A list of products for the store displays.

2. Select the check box to the left of the product 1234 and click Generate SKUs

It takes a few minutes to create the SKUs. For the t-shirt, fifteen different
SKUs will be created .

3. After the SKUs have generated successfully, click SKUs to list the newly
created SKUs for your product. See Figure 13-7 for an example.
374 WebSphere Commerce V5.4 Developer’s Handbook

Figure 13-7 Created SKUs

13.2.3 Testing the new product
To show the new product in the sample store:

1. You can launch your store by entering the following URL:

https://<host_name>/webapp/wcs/stores/store_directory/index.jsp

2. Click the Men’s link on the top navigation bar and select the Shirts link. The
new product Special t-shirt appears on the categorie page with the new price
$ 29, as shown in Figure 13-8

As an alternative to navigating through the store you can go directly to catalog
display by entering a URL for the CatalogDisplay.jsp. The URL is:

https:/<hostname>/webapp/wcs/stores/servlet/CatalogDisplay?catalogId=catalo
g_id&storeId=store_id&category_Id=category_id&langId=-1

For our example the URL used was:

https:/<hostname>/webapp/wcs/stores/servlet/CatalogDisplay?catalogId=10001&
storeId=10001&category_Id=10005&langId=-1
 Chapter 13. Product entry and display 375

Figure 13-8 Catalog page with new product

3. Click on the Special t-shirt link and the product display page appears as
shown in Figure 13-9. You will see the new product with all the attribute values
for color and size.

As an alternative to navigating through the store you can go directly to
product display by entering a URL for the ProductDisplay.jsp. The URL is:

https:/<hostname>/webapp/wcs/stores/servlet/ProductDisplay?catalogId=catalo
g_id&storeId=store_id&product_Id=product_id&langId=-1

For our example the URL used was:

https:/<hostname>/webapp/wcs/stores/servlet/ProductDisplay?catalogId=10001&
storeId=10001&product_Id=10501&langId=-1
376 WebSphere Commerce V5.4 Developer’s Handbook

Figure 13-9 Product display page for the new product

13.2.4 Definition of bundles
A bundle is a collection of catalog entries that allows customers to buy multiple
items with a single click. For example, a bundle for a casual ensemble might be
composed of a shirt, pants and a belt.

A bundle is a grouping of items, or a combination of products, items, and fully
resolved packages. If you select a bundle which only contains items, the bundle
is decomposed into separate SKUs that are added individually to the shopping
cart. However, if you select a bundle which contains products, these products
need to be resolved into items through SKU resolution before they can be added
to a shopping cart. In either case, once a bundle is decomposed and its
component items are added to a shopping cart, you can modify or remove each
item. The total price of the bundle is the total price of all the bundle components.

13.2.5 Bundles in WebFashion
WebFashion is a business-to-consumer online fashion stores provided with
WebSphere Commerce. On of the features included in the WebFashion store is
bundles. A bundle typically includes:

� Description
 Chapter 13. Product entry and display 377

� List of components
� Price for each component
� Image
� List of attributes (for example color or size)
� Values for the attributes (for example, blue or small, large)

To create new bundles, you have to added new information to the catalog.xml
file. The catalog.xml file stores the catalog information for the sample stores in
WebSphere Commerce.

To use the WebFashion sample store for bundle customizations, first create a
new archive based on WebFashion using the Store Services tools.You can add
the bundle changes in the catalog.xml before publishing the store . If you have
already published the store you can use the loader package or the Store
Services to publish store database assets.

For more information how to create a store archive and publish the store
database assets refer to the WebSphere Commerce Version 5.4 Online Help.

13.2.6 Creating bundles
After you have created products and items for your catalog, you must create the
bundles. Begin creating bundles by adding information to the CATENTRY and
CATENTDESC tables. Then create the relationships between bundles and their
components to the CATENTREL table. Figure 13-10 shows the data model for
the WebSphere Commerce catalog

For example, we create a bundle which is composed of plain front cotton pants
and a classic belt. The name of the bundle is modern combination.
378 WebSphere Commerce V5.4 Developer’s Handbook

Figure 13-10 Catalog entry data model

To include new bundles in the sample store you have to localize the store archive
file for your store (for example: WebFashion.sar). SAR files are in the directory
<WCS_DIR>\CommerceServer\instances\instancename\sar. The steps to follow
are:

1. Create a new working directory. For example we used C:\test

1. Open the store archive file using a ZIP program and extract the files from the
store archive into the working directory. Remember to ask your ZIP utility to
create folder names.

2. Change to the C:\test\data directory

3. Search for the catalog.xml and edit the file. Figure 13-11 shows the three
versions of catalog.xml that are in the WebFashion store archive.
 Chapter 13. Product entry and display 379

Figure 13-11 catalog.xml in store archive

4. Add the information shown in Example 13-7 into the catalog.xml to create a
new base item.Base items represent a general family of products with a
common name and description.

Example 13-7 New base item

<baseitem
baseitem_id="@baseitem_id_5001"
member_id="&MEMBER_ID;"
markfordelete="0"
partnumber="webfashion_5001"
itemtype_id="ITEM"
quantitymeasure="C62"
quantitymultiple="1.0"
/>

The baseitem_id is the generated unique key.

The partnumber uniquely identifies the base item for the owner.

5. Add the information shown in Example 13-8 to create the relationship
between the item version and the base item in the WebSphere Commerce
database:

Example 13-8 Relationship of item version and base item

<itemversn
itemversn_id="@itemversn_id_5001"
baseitem_id="@baseitem_id_5001"
expirationdate="2010-01-01 00:00:00.000000"
versionname="version"
/>

The itemversn_id is a generated reference number which identifies the item
version.

The baseitem_id is the base item.

6. Add the distribution arrangements into the catalog.xml. A distribution
arrangement enables a store to sell its own inventory. See Example 13-9

Example 13-9 Distribution arragement

<distarrang
380 WebSphere Commerce V5.4 Developer’s Handbook

distarrang_id="@distarrang_id_5001"
wholesalestore_id="@storeent_id_1"
merchantstore_id="@storeent_id_1"
baseitem_id="@baseitem_id_5001"
pickingmethod="F"
startdate="2000-12-25 00:00:00.000000"
enddate="2010-01-01 00:00:00.000000"
/>

The distarrang_id is the reference number of the distribution arrangement.

The baseitem_id is the product covered by the distribution arrangement.

7. Add the information shown in Example 13-10 to the catalog.xml to get
information for the store items.

Example 13-10 New store item

<storeitem
baseitem_id="@baseitem_id_5001"
storeent_id="@storeent_id_1"
trackinventory="Y"
forcebackorder="N"
releaseseparately="N"
returnnotdesired="N"
backorderable="Y"
creditable="Y"
minqtyforsplit="0"
/>

The baseitem_id is the base item.

The storeent_id is the store or the store group.

8. Search for Bundle. The catalog.xml contains an example of a bundle. Add the
code shown in Example 13-11 to create a new catentry for the new bundle.

Example 13-11 New catentry

<!--Bundle2-->
<catentry
catentry_id="@product_id_5001"
baseitem_id="@baseitem_id_5001"
member_id="&MEMBER_ID;"
catenttype_id="BundleBean"
partnumber="item-sku-wf-5001"
mfpartnumber="item-sku-wf-5001"
mfname="webfashion"
markfordelete="0"
buyable="1"
 Chapter 13. Product entry and display 381

/>

Each time you create a bundle , the catentry_id, partnumber, and
mfpartnumber change to create different bundles. In our example for the new
bundle the values were:

catentry_id="@product_id_5002",
partnumber="item-sku-wf-5002",
mfpartnumber="item-sku-wf-5002"
catenttype_id="BundleBean" to identify the entry as a bundle

9. After creating a new catentry, define the relationship between a catalog group
and catalog entry by adding information to the CATGRPPENREL table as
shown in Example 13-12

Example 13-12 Relationship between catalog group and catentry

<catgpenrel
catgroup_id="@catgroup_id_11"
catalog_id="@catalog_id_1"
catentry_id="@product_id_5001"
sequence="0"
/>

The catgroup_id_11 is the men's fashions category

10.After creating the relationship between the catalog group and catentry, you
have to define the relationships of the bundle and it’s components, by adding
information to the CATENTREL table:

The product_id_1660 is for plain front cotton pants.

The product_id_102 is for the classic belt.

These are the components of the new bundle. Example 13-13 shows the XML
definition we used.

Example 13-13 relationship between catlog group and catentry

<catentrel
catentry_id_parent="@product_id_5001"
catreltype_id="BUNDLE_COMPONENT"
catentry_id_child="@product_id_1660"
sequence="1"
quantity="1"
/>

<catentrel
catentry_id_parent="@product_id_5001"
catreltype_id="BUNDLE_COMPONENT"
catentry_id_child="@product_id_102"
sequence="2"
382 WebSphere Commerce V5.4 Developer’s Handbook

quantity="1"
/>

11.Add the codeshown in Example 13-14 to the catalog.xml to get information
about the base item for the STORITMFFC table.

Example 13-14 Storitmffc definition

<storitmffc
baseitem_id="@baseitem_id_5001"
storeent_id="@storeent_id_1"
ffmcenter_id="@ffmcenter_id_1"
shippingoffset="86400"
/>

12.Save the modified catalog.xml file.

13.Next add the bundle description to the CATENDESC table in the
locale-specific catalog.xml file for example for the English language. Open in
the archive the catalog.xml unter the folder data\en_US.

Example 13-15 shows the code to add the description of the bundle

Example 13-15 Adding description of the bundle into the catalog

<!--Bundle-->
<catentdesc
catentry_id="@product_id_5001"
language_id="&en_US;"
name="Special Bundle"
shortdescription="Modern combination"
longdescription="This pant and belt combination is perfect for those casual
days at the office."
fullimage="images/mens_pants_grey.gif"
available="1"
published="1"
/>

14.Add the base item description to the same XML file as shown in
Example 13-16

Example 13-16 Adding base item description

<baseitmdsc
baseitem_id="@baseitem_id_5001"
language_id="&en_US;"
shortdescription="Special Bundle"
longdescription="This pant and belt combination is perfect for those casual
days at the office."
/>
 Chapter 13. Product entry and display 383

15.Save the file and close it. Repeat steps 13 and 14 for any second language
supported by your store. For example WebFashion supports Spanish.

16.Add catalog entries to the store-catalog relationship in the store-catalog.xml
as shown in Example 13-17

Example 13-17 Add catalog entries to the store-catalog relationship

<!--bundle-->
<storecent
storeent_id="@storeent_id_1"
catentry_id="@product_id_5000"
/>

The storeent_id is the reference number of the store entity in the database.

The catentry_id is the reference number of the catalog entry.

17.Save and close the file.

18.From your working directory packages the following files to build a new store
archive with a ZIP program.The name of the new store archive must be the
same as your original store archive, for example WebFashion.sar.

– data
– SAR-INF
– proporties.zip
– webapp.zip

19.Copy the store archive WebFashion.sar into the SAR directory replacing the
original SAR. The director used by SAR files is
<WCS_DIR>\CommerceServer\instances\instancename\sar

20.Publish only the store database assets with Store Services or use the Loader
package to import the XML files. For more informations how to load data into
the database refer to Chapters 27 and 28 in the IBM WebSphere Commerce
Store Developer’s Guide Version 5.4, or to the WebSphere Commerce
Version 5.4 Online Help.

Testing the new bundle
To show the bundle product in the sample store :

1. You can launch your store by entering the following URL:

https://<host_name>/webapp/wcs/stores/store_directory/index.jsp

2. Click the Men’s link on the top navigation bar. A new bundle is displayed as
shown in Figure 13-12.
384 WebSphere Commerce V5.4 Developer’s Handbook

Figure 13-12 New bundle

3. Click Special Bundle and you will get the details of the new bundle as shown
in Figure 13-13.
 Chapter 13. Product entry and display 385

Figure 13-13 Special bundle

13.3 Display of multiply currencies
For a site with multiple stores, you can use different currencies for each store, or
you can assign currencies to the store group. For each store you can define how
the currency is displayed.

Customers are allowed to select a shopping currency. All amounts on the store
pages are then displayed in the selected currency.

The stores in the WebSphere Commerce samples display prices in one currency,
but it is also possible to display the prices in two different currencies. The prices
for the items that they have added to the shopping cart and the total order price
are automatically converted, recalculated and displayed in both currencies as
shown in Figure 13-14.
386 WebSphere Commerce V5.4 Developer’s Handbook

Figure 13-14 Shopping cart with dual display of currencies (USD and EUR)

13.3.1 Currencies types
WebSphere Commerce stores support several different currency types. These
types include:

1. Default currency

Each store, or group of stores, has a default currency. The Store Services
tools in WebSphere Commerce allow you select a default currency and to add
supported currencies to the store. The default currency for a store is specified
in the STOREENT table. The SETCURR column contains the default
currency for a store which will be used by a customer that has not specified a
preferred currency. If it is NULL for a store, the default currency is obtained
from the store group. See also the STORELANG table.

2. Supported currencies

A store can have many supported currencies. A supported currency is one in
which payment is accepted.

Table 13-2 shows the ISO 4217 codes for each international currency
currently supported by WebSphere Commerce. The codes appear in the
SETCCURR column of the SETCURR database table.
 Chapter 13. Product entry and display 387

Table 13-2 Supported currencies in WebSphere Commerce

Country/Region Currency name ISO 4217 Code

Argentina Argentine peso ARP

Austria Austrian schilling ATS

Australia Australian dollar AUD

Belgium Belgian franc BEF

Brazil Brazilian real BRL

Canada Canadian dollar CAD

China Chinese yuan renminbi CNY

Euro-supported countries:

Austria
Belgium
Finland
France
Germany
Ireland
Italy
Luxembourg
Netherlands
Portugal
Spain

European euro currency EUR

European currency
unit-supported countries

European currency unit.
This unit is not the same as
the euro currency.

XEU

Finland Finnish marka FIM

France franc FRF

Germany Deutsche mark DEM

Hong Kong S.A.R. of
China

Hong Kong dollar HKD

Ireland Irish punt IEP

Italy Italian lira ITL

Japan Japanese yen JPY

Korea, Republic of (South
Korea)

South Korean won KRW
388 WebSphere Commerce V5.4 Developer’s Handbook

3. Shopping currency

The shopping currency is the currency in which customers pay for products in
the store. All monetary amounts on the store pages are displayed in this
currency.

If the customer's preferred currency is supported by the store, it then
becomes the shopping currency

If the preferred currency is not supported at all, the default currency for the
store or store group specified in the STOREENT table is used as the
shopping currency.

If the store does not have a default currency specified in the STOREENT table
for its store or store group, then the store's default currency for the customer's
language ID is used. The STORELANG table determines that setting.

13.3.2 Dual display and counter values
The dual display of a prices allows simultaneous display of an amount in the
shopping currency unit and in the another currency. You can enable the store
pages to display equivalent prices in currencies other than the shopping
currency. In our example we had USD as shopping currency and also displayed
prices in EUR.The display of an equivalent price is called the counter value.

Luxembourg Luxembourg franc LUF

Netherlands Dutch guilder NLG

Portugal Portuguese escudo PTE

Singapore Singapore dollar SGD

 South Africa South African rand ZAR

Spain Spanish peseta ESP

Switzerland Swiss franc CHF

Taiwan Taiwanese dollar TWD

 United Kingdom British pound GBP

United States United States dollar USD

Country/Region Currency name ISO 4217 Code
 Chapter 13. Product entry and display 389

In our example we set the counter value currency to the EUR. The counter
values are displayed in the store pages. They are specified in the CURCVLIST
table. The counter value currency is only valid, if there is a conversion in the
CURCONVERT table from the shopping currency to the counter value as shown
in Figure 13-15.

Figure 13-15 Currency data model

13.3.3 Implementation of dual display of currencies
WebFashion is a business-to-consumer online fashion store provided with
WebSphere Commerce. The sample store is packaged with WebSphere
Commerce as a store archive, and as a result, no further installation is
necessary. All that is required to view the sample store is to create a new store
archive based on WebFashion using the Store Services tools, then publish it to
the WebSphere Commerce Server.

We changed the WebFashion sample store to display two different currencies.

For more information, see “Creating a store archive using Store Services” in the
WebSphere Commerce Version 5.4 Online Help.

Enabling euro currency support
To enable the euro currency support in the sample store:
390 WebSphere Commerce V5.4 Developer’s Handbook

1. Ensure that the IBM WC Configuration Manager Server service has been
started. This service is listed in the Windows services panel.

2. Choose Start -> Programs -> IBM WebSphere Commerce ->
Configuration.

3. The configuration authentication window opens.

4. Enter a configuration manager user ID and password and click OK. The
default user ID is webadmin and the default password is webibm.

5. Expand the instance and click on Caching Subsystem. Go to the Advanced
tab and select the checkboxes for Session Dependent Caching as shown in
Figure 13-16. Click Apply

6. Close the Configuration Manager.

Figure 13-16 Configuration manager

Add supported currencies
After enabling the euro support you have to add supported currencies to the
database into the table CURLIST. Follow the next steps:

1. Run the SQL command in a db2 command window as shown in the
Example 13-19. In the SQL command the values are:

� store_entity_id is the store or store group ID.
 Chapter 13. Product entry and display 391

� currency is the 3 character ISO 4217 currency code representing the
supported currency. This code must appear in the SETCCURR column of the
SETCURR table.

Example 13-18 example for the storeid 10201 and currency EUR

insert into curlist (storeent_id,currstr)
values(10201,’EUR’)

The store_entity_id for our example is 10201 and the currency is EUR.

2. Refresh the Currency Manager Registry. Open the Administration Console
and log on as a site administrator.

3. Choose Configuration -> Registry

4. Select Currency Manager and click Refresh to reload the Registry window
and check on the status of components you are updating.When updating is
complete, the status column reads "Updated."

Enabling dual display of supported currencies
After adding supported currencies to the database you have to enabling the dual
display of the supported currencies by adding informations into the CURCVLIST
table.Each row of this table represents a CounterCurrencyPair. The primary use
of this information is for "dual display". Follow the next steps:

1. Run the SQL Command in the db2 command window as shown in the
example 13-20:

store_entity_id is the store or store group ID.

currency is the three character ISO 4217 currency code representing the
currency. This code must appear in the SETCCURR column of the SETCURR
table.

counter_value_currency

is the three character ISO 4217 currency code representing the counter value
currency. This code must appear in the SETCCURR column of the SETCURR
table.

display_sequence

is the number which indicates the presentation order of the counter value
currency. Counter value currencies are displayed in ascending order based
on the counter value display sequence specified in the DISPLAYSEQ column
in the CURCVLIST table.

insert into curcvlist
(storeent_id,currstr,countervaluecurr,displayseq)
392 WebSphere Commerce V5.4 Developer’s Handbook

values(store_entity_id,’currency’,’counter_value_currency’,diplayseq
)

Example 13-19 example for enabling dual display of supported
curencies

insert into curcvlist (storeent_id,currstr,countervaluecurr,displayseq)
values(10201,’USD’,’EUR’,0.0)

The store_entity_id for this example is 10201, currency USD and
countervalue_currency EUR.

2. Refresh the Currency Manger Registry. Open the Administration console and
log on as a Site Administrator.

3. From the Configuration menu, click Registry

4. Select Currency Manager and click Refresh to reload the Registry window
and check on the status of components you are updating.When updating is
complete, the status column reads "Updated."

5. Close the Administration console

6. Remove temporary pages from the cache.

Verify the currency conversion
To display the prices in the supported currency there must be a conversion rate
in the store. The convertion rate convert from the default currency (USD) into the
supported currency (EUR):

The convertion informations are located in the CURCONVERT table . Review in
the table if there exists a row for your store with a convertion rate. If not run the
SQL Command in the db2 command window as shown in the example 13-21:

store_entity_id is the store or store group ID.

tocurr is the 3 character ISO 4217 currency code representing the converted
currency. This code must appear in the SETCCURR column of the SETCURR
table.

conversion_factor is the conversion rate.

multiplyordivide whether to multiply ('M') or divide ('D').

bidirectional indicates whether the conversion is bi-directional ('Y') or
unidirectional ('N').

updateable whether the conversion rate can be changed ('Y') or not ('N').
 Chapter 13. Product entry and display 393

insert into curconvert
(storeent_id,fromcurr,tocurr,factor,multiplyordivide,bidirectional,u
pdatable,curconvert_id)

values(store_entity_id,’fromcurr’,’tocurr’,conversion_factor,’M’,’Y
’,’Y’,curconvert_id)

Example 13-20 example for the currency conversion

insert into curconvert
(storeent_id,fromcurr,tocurr,factor,multiplyordivide,bidirectional,updatabl
e,curconvert_id)
values(10201,’USD’,’EUR’,1.09804000000000000000,’M’,’Y’,’Y’,10201)

Verify shopping currency
The default currency for the store or store group specified in the STOREENT
table is used as the shopping currency. Check if there existis in the column
SETCC URR for your store a default currency. If there exists no default currency,
make an update for your store in this table and set the value of SETCCURR to
“USD”.

13.3.4 Testing the dual display of currencies
To show the dual display of the currencies in the sample store follow the next
steps:

1. You can launch your store by entering the following:

https://host_name/webapp/wcs/stores/store_directory/index.jsp

2. Click the Men’s link on the top navigation bar.Click on the categorie link Pant
and short. The categorie page is displayed with the shopping currency USD
and the counter currency EUR as shown in Figure 13- 17.
394 WebSphere Commerce V5.4 Developer’s Handbook

Figure 13-17 Categorie page with dual display

3. Click the Carpenter Shorts and you will get the details of the product with
dual display as shown in Figure 13-18.
 Chapter 13. Product entry and display 395

Figure 13-18 Product display page with dual display
396 WebSphere Commerce V5.4 Developer’s Handbook

Chapter 14. Migration examples

WebSphere Commerce Business Edition Version 5.4 introduces some changes
to the commerce environment from past releases. Store developers and
administrators need to be aware of these changes in order to effectively create
and deploy their stores. This chapter serves to outline some of the more
important updates to the product and it’s underlying infrastructure and to provide
an example of migration considerations.

14
© Copyright IBM Corp. 2002. All rights reserved. 397

14.1 Migration Overview
WebSphere Commerce Version 5.1 was a revolutionary change in IBM’s
commerce software. In a departure from past releases, WebSphere Commerce
Version 5.1 was based entirely on a Java programming model. The move to Java
brought with it all of the benefits of coding to an open industry standard.

While not nearly as drastic a change from the proceeding version as WebSphere
Commerce Version 5.1, the release of WebSphere Commerce Business Edition
Version 5.4 nonetheless introduces quite a few important updates. With an eye
toward end of service dates and improvements in the WebSphere Commerce
technology, this section highlights some of the more notable changes in the
product.

This chapter is not intended to be an exhaustive review of product changes from
WebSphere Commerce Version 5.1 to WebSphere Commerce Business Edition
Version 5.4. Rather, we have elected to describe the updates which we expect to
affect the largest number of implementations. For a complete review of product
updates, please view the documentation available at the IBM WebSphere
Commerce Business Edition Version 5.4 technical library at:

http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html

Of particular interest are the following:

� What’s New in IBM WebSphere Commerce, 5.4 Version 5.4

� Migration Guide: IBM WebSphere Commerce

� IBM WebSphere Commerce Studio for Windows NT and Windows 2000
Migration Guide Version 5.4

� WebSphere Commerce Database Schema

� WebSphere Commerce Version 5.4 Online Help

14.2 Migration considerations
In this section, we assemble and outline the WebSphere Commerce product
changes that will affect the largest segment of the user population. The updates
we review here fall into several high-level categories:

� Infrastructure changes

� Architecture changes

� Database changes
398 WebSphere Commerce V5.4 Developer’s Handbook

In addition, we examine some miscellaneous migration information that will
assist developers and administrators with the product transition.

14.2.1 Infrastructure changes
There are changes to the underlying infrastructure environment which must be
considered when migrating WebSphere Commerce. These include changes to
WebSphere Application Server, the Web server running the environment and the
database software.

WebSphere Application Server Version 4
The greatest platform difference for WebSphere Commerce Version 5.4 is the
use of WebSphere Application Server Version 4 as the underlying application
server engine. Earlier versions of WebSphere Commerce used WebSphere
Application Server Version 3.5 and along with the new release comes
compliance with the Sun’s Java 2 Platform, Enterprise Edition (J2EE)
specification. This causes several changes that must be accounted for in
development and deployment of stores.

The use of a J2EE-compliant application server platform requires some changes
in the way an application is packaged and deployed. Any code, commands and
EJBs that have been customized in WebSphere Commerce Version 5.1 need to
be redeployed to the level required for WebSphere Commerce Business Edition
Version 5.4. Detailed information on this process can be found in IBM
WebSphere Commerce Studio for Windows NT and Windows 2000 Migration
Guide Version 5.4.

J2EE specifies a distinct separation between the development of an application
and its administration. This leads to applications that are independent from the
environment on which they are deployed which allows for simpler movement of
code between environments as changes to the application code due to that
movement are often not necessary. Rather, the deployment parameters
associated with the applications change, a much easier undertaking.

An enterprise application in WebSphere Commerce Business Edition 5.4 can
contain many Web modules and EJB modules. Each individual module can be
installed on a separate application server or server group, including servers and
server groups on multiple nodes. Conversely, a single application server or
server group can have modules from many different applications on it. As you
can no doubt imagine, there are many different ways to deploy a J2EE
application.
 Chapter 14. Migration examples 399

Deployment of a new J2EE application is comprised of two steps: copying the
appropriate files (Java classes, JSPs, static HTML and images files, etc) into the
archive and creating the deployment descriptor files for the modules and the
application. During the WebSphere Commerce migration, all migrated Web
resources and enterprise beans are created in J2EE applications. Enterprise
applications defined in the WebSphere Commerce 5.1 instance are mapped to
J2EE applications with the same name and deployed under the default server;
any other Web resources and beans that are mapped but not a part of an
enterprise application are mapped into a default J2EE application. Web
applications are mapped to WAR files; enterprise beans are deployed as EJB 1.1
beans in JAR files. These are combined into a J2EE EAR file and deployed on
the new WebSphere Application Server platform.

Other infrastructure considerations
In addition to the upgrade to WebSphere Application Server Version 4 and, of
course, WebSphere Commerce Business Edition Version 5.4, a site will need to
upgrade the Web server running in the environment and, possibly, the database
software being used. The software on which WebSphere Commerce Business
Edition 5.4 is certified is updated regularly as new editions of the underlying
software is released. In order to find the most recent information in this regard,
please refer to:

http://www.ibm.com/software/webservers/commerce/wc_be/support.html

The above link to the IBM WebSphere Commerce Business Edition Version 5.4
support page also contains useful information about hardware requirements
relating to processor and memory requirements.

14.2.2 Architecture changes
There have been changes made to the architecture of the product between
WebSphere Commerce 5.1 and WebSphere Commerce Business Edition 5.4.
Some of them require alterations in the way stores are assembled and handled.

WebSphere Commerce catalog
WebSphere Commerce 5.4 requires catalog data to meet a certain structure and,
to that end, introduces the concept of a master catalog. The master catalog is a
central location to manage a store’s merchandise. It contains all of the products,
items, relationships and pricing for everything in the store. Every store is required
to have a master catalog.
400 WebSphere Commerce V5.4 Developer’s Handbook

WebSphere Commerce access control
Access control in WebSphere Commerce 5.1 was handled programmatically. In
an effort to increase the customizability of access control in the commerce
system, WebSphere Commerce Version 5.4 externalizes access control from the
business logic and implements a policy-based model. Hierarchical access
control is built into that methodology.

WebSphere Commerce member subsystem
In another departure from past release, every user and organizational entity in
WebSphere Commerce Business Edition Version 5.4 must have a parent
member which is another organizational entity; users and organizational entities
can use this implementation to form a membership hierarchy. Member groups,
notably, do not have parent members.

The default roles that are shipped in WebSphere Commerce 5.4 have changed a
bit from earlier versions. Some new roles have been added and some removed
as summarized in the following list:

� The Order Clerk role is not included as it is no longer required. The tasks
performed by this role have either been automated or can be performed by
other roles in WebSphere Commerce 5.4.

� The Customer role is not included in WebSphere Commerce Business Edition
Version 5.4. It has been replaced by the AllUsers member group. Just as in
WebSphere Commerce 5.1 the Customer access group is associated with a
subset of commands that all users can execute, an access control policy has
been set up to associate the subset of commands that can be executed by all
users with the AllUsers member group in WebSphere Commerce 5.4. During
data migration from WebSphere Commerce 5.1 to WebSphere Commerce
Business Edition 5.4, any user explicitly assigned to the Customer access
group in the former product will be explicitly assigned to the AllUsers member
group in the latter.

� The Merchant role in WebSphere Commerce Version 5.1 has been renamed
to Seller. The term Merchant is more closely associated with the
business-to-consumer model while Seller is more in line with
business-to-business.

� The Merchandising Manager role in WebSphere Commerce Version 5.1 has
been renamed to Product Manager. The term Merchandising Manager is
more closely associated with the business-to-consumer model while Product
Manager is more in line with business-to-business.
 Chapter 14. Migration examples 401

14.2.3 Database changes
WebSphere Commerce Business Edition Version 5.4 contains many changes to
the commerce database schema from earlier versions. In addition to alterations
to the schema, there are other items to be cognizant of concerning the database
during a migration from WebSphere Commerce Version 5.1 to WebSphere
Commerce Business Edition Version 5.4. In this section, we review some of the
more important changes in this area.

Commerce database schema
The commerce database schema has changed from WebSphere Commerce
Version 5.1 to WebSphere Commerce Business Edition Version 5.4. For a
complete list of the schema changes, please refer to the What’s New in IBM
WebSphere Commerce V5.4 and WebSphere Commerce Database Schema
documents available at:

http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html

As an important example of the database schema changes from prior versions,
the following tables are considered to be obsolete in WebSphere Commerce
Business Edition 5.4:

� CMPGNINTV
� CMPGNRV
� INTVMPE
� INTVSGMT
� MAFAMILY
� MATYPE
� MPE
� MPETYPE
� ONQUEUE
� ONLOG
� ONSLOG
� ORDERMSG
� SEGMENT
� ZIPCODE
� ACCCMDGRP
� ACCMBRGRP
� ACCCUSTEXEC

National language support
If a national language version of WebSphere Commerce 5.1 was used, make
sure that the LANGUAGE_ID for the default store is set correctly to the appropriate
language in the STORE table and the populatedb script prior to the migration.
402 WebSphere Commerce V5.4 Developer’s Handbook

Database constraints
Often, stores customize tables which contain foreign keys to the standard
WebSphere Commerce tables. During the data migration, the scripts may try to
drop these referential integrity constraints. Foreign keys, primary keys, indexes
and the like need to be dropped prior to migration in order to permit the script to
complete successfully. Make note of the constraints that are dropped as they will
need to be restored following the data migration.

Data premigration script
Before the commerce databases are migrated to the new WebSphere
Commerce Business Edition Version 5.4 schema, the database preparation
script must be run. This script will modify the access control tables so that they
may be migrated correctly. It will also examine the existing commerce databases
and generate a log about any item that does not have a parent product or any
member that does not have a parent in the organizational entity. The log will
reflect both mandatory and optional items that have been flagged by the script.
These items should be fixed prior to data migration.

Examples of mandatory database fixes are outlined below.

� The default values for the members IDs in the WebSphere Commerce
Version 5.1 database must be preserved for a successful database migration.
There member IDs (0 to -8) must correspond to the correct to the correct
member group (for instance, -7 must correspond to the Store Developer
member group).

� In the AUCTION table, there is a REFCODE field on which WebSphere Commerce
Version 5.1 did not enforce uniqueness. This field must be a unique index for
WebSphere Commerce 5.4.

� There are fields whose maximum length has changed from WebSphere
Commerce 5.1 to WebSphere Commerce 5.4. The lengths of these fields are
checked.

Examples of optional database fixes are outlined below. While optional fixes
need not be fixed immediately, it is recommended that these values be changed
as time permits.

� WebSphere Commerce Business Edition Version 5.4 requires that each item
have a parent product. If the store administrator does not create a parent
product for an item which is flagged in the report generated by the
premigration script, the database migration script will create one.
Alternatively, if an item is found to have more than one parent product, then
all parent products but one should be removed from the item.

� Any user assigned to the Customer access group (-2) in the WebSphere
Commerce 5.1 database will automatically be assigned to the AllUsers
 Chapter 14. Migration examples 403

member group in WebSphere Commerce 5.4. Similarly, if any user is
assigned to the default Order Clerk role (-5) in WebSphere Commerce 5.1,
the role will be migrated as a user-defined role; the Order Clerk role does not
exist as a default member group in WebSphere Commerce 5.4. If a store has
no need for the Order Clerk role, remove any users from it prior to migration.

� If a store has created custom discount data manually (outside of the
Merchandise menu in WebSphere Commerce Accelerator), the migration
script will bring the data into the new database, but the WebSphere
Commerce Business Edition 5.4 discount tool will be unable to see the
discount.

14.2.4 Additional considerations
There are many other important things to consider when migrating to WebSphere
Commerce Version 5.4. In this section, we review some of the more noteworthy
among those considerations.

If any of the store’s customized code used the com.ibm.util package in
WebSphere Commerce 5.1, the code will need to be rewritten to use the
equivalent class from the Java software developer’s kit that is shipped with
WebSphere Application Server Version 4 as the com.ibm.util package has been
removed from current releases of WebSphere Application Server.

The lengths of the following columns have been changed from previous versions
of WebSphere Commerce. Ensure that no data will be lost during migration by
checking to see that no data contained therein is longer than the new length

� MBRGRP.DESCRIPTION is now type VARCHAR and cannot exceed 512
characters.

� ORGENTITY.DESCRIPTION is also type VARCHAR with a limit of 512 characters,

� CONTRACT.NAME is now type VARCHAR and cannot exceed 200 characters.

It is recommended that all orders and order items have a status of C (indicating
that payment has been authorized) that have truly been completed and shipped
be changed to have a status of S (indicating that the order item has been
shipped) in order to work with orders and order items using the WebSphere
Commerce Accelerator tools.

The EntityAdmin and HTTPCommandContext commands from WebSphere
Commerce Version 5.1 have been depreciated in WebSphere Commerce
Version 5.4.
404 WebSphere Commerce V5.4 Developer’s Handbook

When migrating an instance, the WebSphere Commerce rules server is enabled
by default regardless of its status in the WebSphere Commerce Suite 5.2
environment. In order to disable the rules server in WebSphere Commerce
Business Edition Version 5.4 after the instance is migrated, change the enable
directive from true to false in the instance_name.xml file.

While it is recommended that a store not alter bootstrap files, it may be
necessary to do so at times. Any changes made to bootstrap values for the
default store in WebSphere Commerce Version 5.1 should be reapplied after the
migration to WebSphere Commerce Business Edition Version 5.4. During the
migration, the default bootstrap data is loaded; this process overwrites any
customizations a store may have made to the files. The bootstrap data for
non-default stores is left untouched and should not need to be altered after
migration.

The commerce system’s database schema must be migrated prior to the
migration of the WebSphere Commerce instance. Additionally, the script that
performs the database migration should only be run once on a database; do not
rerun the script on a database has already been migrated.

WebSphere Commerce Business Edition 5.4 requires that the distinguished
name column be populated in the ORGENTITY and USERS tables. Scripts are
provided to fill these tables appropriately.

Any store migrated from a WebSphere Commerce 5.1 system will not have an
index.jsp as it may have previously by default. In order to launch a store in this
way, an administrator needs to create an index.jsp file. There are also several
changes that need to be made to the store’s JSPs in order to make them work in
WebSphere Commerce Version 5.4. A tool, migrateJSP, is provided for this
operation, but it should not be run against a file more than once as syntax errors
may result.

SSL must be enabled on the Web server. Also, any customizations that were
made to the Web server configuration in the WebSphere Commerce 5.1
environment must be reapplied if necessary.

If an administrator wants to use the staging server in WebSphere Commerce
Business Edition 5.4, the Stage Copy utility needs to be run prior to the data
migration in order to keep the production and staging databases consistent.
Following the data migration, the staging server will need to be reconfigured.
 Chapter 14. Migration examples 405

14.3 Migration example(s?)
<Bill, if you are going to include an example or examples (please adjust the
title of the section based on the number of examples), please insert them
here; if there will not be any examples, please remove this section and edit
the opening page text of this chapter to remove the reference to them. I
would have written something to surround them, but I don’t know what the
topics are.>
406 WebSphere Commerce V5.4 Developer’s Handbook

Appendix A. Sample level 1 “a.” appendix
heading (yHead0Appendix)

This appendix provides/describes/discusses/contains ...

In this appendix we provide/describe/discuss ...

In this appendix:
In this appendix, the following are described:
This appendix provides/describes/discusses/contains the following:

� ...

� ...

� ...

� Sample level 2 appendix heading
(created by Special > Cross-Reference > Format: Head > Insert)

� Sample next level 2 appendix heading

A

© Copyright IBM Corp. 2002. All rights reserved. 407

Sample level 2 heading (yHead1Appendix), new page
Add text here (Body0).

Sample level 2 heading (yHead2Appendix)
Add text here (Body0).

Sample level 3 heading (yHead3Appendix)
Add text here (Body0).

Sample level 4 heading (yHead4Appendix)
Add text here (Body0).

Sample level 5 heading (yHead5Appendix)
Add text here (Body0).
408 WebSphere Commerce V5.4 Developer’s Handbook

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG24????

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24????.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
????????.zip ????Zipped Code Samples????

B

© Copyright IBM Corp. 2002. All rights reserved. 409

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

????????.zip ????Zipped HTML Documents????
????????.zip ????Zipped Presentations????

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: ????MB minimum????
Operating System: ????Windows/UNIX????
Processor: ???? or higher????
Memory: ????MB????

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
410 WebSphere Commerce V5.4 Developer’s Handbook

acronyms
NVP Name value pair

API Application Programming
interface

BMP bean-managed-persistence

CMP container-managed-persisten
ce

CTS Compatibility Test Suites

DoS Denial of Service

EAR Enterprise Application
Archive

EIS Enterprise Information
Systems

EJB Enterprise JavaBean

EJB-QL EJB Query Language

ENC Environment naming context

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IBM International Business
Machines Corporation

IIOP Internet Inter-ORB Protocol

ITSO International Technical
Support Organization

J2EE Java 2 Platform, Enterprise
Edition

J2SE Java 2 Platform, Standard
Edition

JAAS Java Authentication and
Authorization Service

JAF Java Activation Framework

JAXM Java API for XML Messaging

JAXP Java API for XML Processing

JCA J2EE Connector architecture

JDBC Java database connectivity

JDK Java Development Kit

Abbreviations and
© Copyright IBM Corp. 2002. All rights reserved.
JMS Java Message Service

JNDI Java Naming and Directory
Interface

JNLP Java Network Launching
Protocol

JSP JavaServer Pages

JTA Java Transaction API

JTS Java Transaction Service

LDAP Lightweight Directory Access
Protocol

RMI Remote method invocation

RMIC RMI Compiler

WLQL WebLogic Query Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

RFQ Request for quote

ERP Enterprise resource planning

CRM Customer relationship
management

B2C business-to-consumer

B2B business-to-business

CICS Customer Information Control
System

ECI External call interface

SKU Stock keeping unit

AAT Application assembly tool

SAR Store archive file

SCM Source configuration
management

RAM Random access memory

XPath XML Path Language
 411

412 WebSphere Commerce V5.4 Developer’s Handbook

 Abbreviations and acronyms 413

414 WebSphere Commerce V5.4 Developer’s Handbook

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 417.

� B2B e-commerce Using WebSphere Commerce Business Edition Patterns
for e-business Series,SG24-6180

� e-commerce Patterns for Building B2C Web Sites Using WebSphere
Commerce Suite V5.1,SG24-6180

� WebSphere Commerce Suite V5.1 Customization and Transition Guide,
SG24-6174

� WebSphere V3.5 Handbook, SG24-6161

� WebSphere Version 4 Application Development Handbook, SG24-6134

� IBM WebSphere V4.0 Advanced Edition Handbook, SG24-6176

� WebSphere Commerce Suite V5.1 Handbook, SG24-6167

� WebSphere Commerce V5.4 Handbook Architecture and Integration Guide,
SG24-6567

� DB2 UDB V7.1 Performance Tuning Guide, SG24-6012

� Java Connectors for CICS: Featuring the J2EE Connector Architecture,
SG24-6401

� VisualAge for Java Enterprise Version 2 Team Support,SG24-5245

Other resources
These publications are also relevant as further information sources:

� The Elements of Java Style, Vermeulen, Ambler et al. Cambridge University
Press, ISBN 0-521-77768-2

� E-Commerce User Experience, Jakob Nielsen, Rolf Molich et al. Nielsen
Norman Group, ISBN: 0-9706072-0-2

� ????full title???????, xxxx-xxxx
© Copyright IBM Corp. 2002. All rights reserved. 415

Referenced Web sites
These Web sites are also relevant as further information sources:

� Concurrent Versions System

http://www.cvshome.com

� Writing Robust Java Code

http://www.ambysoft.com/javaCodingStandards.pdf

� Jtest home page

http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

� Junit home page

http://www.junit.org

� Segue software

http://www.segue.com

� WinRunner test tool

http://www.mercuryinteractive.com/products/winrunner

� Jinsight page

http://www.alphaworks.ibm.com/tech/jinsight

� Page Detailer documentation

http://ibm.com/software/webservers/studio/doc/v35/pagedetailer/EN/HTML

� Design for performance

http://www7b.software.ibm.com/wsdd/library/techarticles/hvws/perform.html

� NetIQ’s Security Analyser

http://www.Webtrends.com/products/wsa

� Tivoli Intrusion Manager

http://www.tivoli.com/products/index/intrusion_mgr/

� Computer Associates eTrust Intrusion Detection

http://www3.ca.com/Solutions/Solution.asp?ID=271

� Mercury Interactive ActiveTest SecureCheck

http://www-svca.mercuryinteractive.com/products/securecheck/

� Apache Ant

http://jakarta.apache.org/ant/index.html

� Apache Ant manuals

http://jakarta.apache.org/ant/manual/index.html
416 WebSphere Commerce V5.4 Developer’s Handbook416 WebSphere Commerce V5.4 Developer’s Handbook

http://www.cvshome.com
http://www.ambysoft.com/javaCodingStandards.pdf
http://www.ambysoft.com/javaCodingStandards.pdf
http://www.ambysoft.com/javaCodingStandards.pdf
http://www.parasoft.com/jsp/products
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest
http://www.junit.org
http://www.segue.com
http://www.mercuryinteractive.com/products/winrunner
http://www.mercuryinteractive.com/products/winrunner
http://www.alphaworks.ibm.com/tech/jinsight
http://ibm.com/software/webservers/studio/doc/v35/pagedetailer/EN/HTML
http://www7b.software.ibm.com/wsdd/library/techarticles/hvws/perform.html
http://www.Webtrends.com/products/wsa
http://www.tivoli.com/products/index/intrusion_mgr/
http://www.tivoli.com/products/index/intrusion_mgr/
http://www3.ca.com/Solutions/Solution.asp?ID=271
http://www3.ca.com/Solutions/Solution.asp?ID=271
http://www-svca.mercuryinteractive.com/products/securecheck/
http://www-svca.mercuryinteractive.com/products/securecheck/
http://jakarta.apache.org/ant/index.html
http://jakarta.apache.org/ant/manual/index.html
http://www.ambysoft.com/javaCodingStandards.pdf
http://www.cvshome.com
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

� WebSphere Commerce Business Edition library

http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html

� CICS home page

http://www.ibm.com/cics

� CICS Transaction Gateway documentation

http://www-3.ibm.com/software/ts/cics/library/manuals/eindex40.htm

� WebSphere Commerce family page

http://www.ibm.com/software/webservers/commerce/

� Improve Web site perfomance with Page Detailer

http://www7.software.ibm.com/vad.nsf/data/document4361

� WebSphere Developer Domain search

http://www7b.software.ibm.com/wsdd/library/

� WebSphere Developer Domain library for VisualAge for Java

http://www7.software.ibm.com/vad.nsf/Data/Document2001

� Writing JMS programs using MQSeries and VisualAge for Java

http://www-106.ibm.com/developerworks/ibm/library/it-farrell1/index.html

� Xmlspy

http://www.xmlspy.com/

� XML Path Language

http://www.w3.org/TR/xpath

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
 Related publications 417

http://www-3.ibm.com/software/ts/cics/library/manuals/eindex40.htm
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/software/webservers/commerce/
http://www7b.software.ibm.com/wsdd/library/
http://www7.software.ibm.com/vad.nsf/Data/Document2001
http://www.xmlspy.com/
http://www.xmlspy.com/

418 WebSphere Commerce V5.4 Developer’s Handbook418 WebSphere Commerce V5.4 Developer’s Handbook

Index

R
Redbooks Web site 417

Contact us xiii
© Copyright IBM Corp. 2002. All rights reserved.
 419

420 WebSphere Commerce V5.4 Developer’s Handbook

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

W
ebSphere Com

m
erce V5.4 Developer’s Handbook

®

SG24-6190-00 ISBN 0738425478

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere Commerce
V5.4 Developer’s
Handbook

Understanding the
development
process

Planning and using a
development
environment

Customization
examples

This redbook details the new tools and techniques available to
J2EE developers using WebSphere Commerce V5.4 to
customize e-commerce shopping sites.
It provides worked examples of customizations proceeding
from realistic requirements through to modification of store
assets, including front end, data and back end assets.
Customization examples include both simple customization
and complex programming customizations

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Comments welcome

	Part 1 Store development basics
	Chapter 1. Introduction
	1.1 Overview
	1.2 Who should read this book
	1.3 Organization

	Chapter 2. Architecture and programming model
	2.1 Store architecture overview
	2.1.1 Store assets
	2.1.2 WebSphere Commerce store architecture

	2.2 WebSphere Commerce application architecture
	2.2.1 WebSphere Commerce server subsystems
	2.2.2 Data assets

	2.3 WebSphere Commerce runtime architecture
	2.3.1 WebSphere Commerce runtime components
	2.3.2 Topology configuration samples

	2.4 WebSphere Commerce programming model
	2.4.1 The J2EE Programming Platform
	2.4.2 Model-view-controller design pattern
	2.4.3 Persistent Object Model Overview

	Chapter 3. Requirements and design
	3.1 Application development methodology
	3.1.1 Solution startup
	3.1.2 Solution outline
	3.1.3 Macro design
	3.1.4 Micro design
	3.1.5 Build cycle
	3.1.6 Deployment
	3.1.7 Solution Close

	3.2 Example store requirements
	3.2.1 General store requirements
	3.2.2 Quick order implementation
	3.2.3 Price display including tax
	3.2.4 Product creation via MQ
	3.2.5 Welcome page based on role
	3.2.6 Amount-based order approval
	3.2.7 Contract-based logon
	3.2.8 Product bundles

	Chapter 4. Planning and development
	4.1 Development overview
	4.1.1 WebSphere Commerce Studio V5.4

	4.2 Planning WebSphere Commerce development
	4.2.1 Development initialization phase
	4.2.2 Team development

	4.3 Install the development environment
	4.3.1 Pre-installation requirements
	4.3.2 Install VisualAge for Java, Enterprise Edition
	4.3.3 Install WebSphere Studio
	4.3.4 Install WebSphere Commerce Studio
	4.3.5 Install Application Assembly Tool

	4.4 Post-install configuration
	4.4.1 Configure VisualAge for Java, Enterprise Edition
	4.4.2 Create a sample store in VisualAge for Java
	4.4.3 Maintenance

	4.5 WebSphere Studio Application Developer
	4.5.1 Introduction
	4.5.2 Setup WebSphere Studio Application Developer
	4.5.3 Setup WebSphere Test Environment
	4.5.4 The second installation
	4.5.5 Developing in WebSphere Studio Application Developer

	Chapter 5. Creating a store
	5.1 Stores architecture overview
	5.1.1 Store assets and components
	5.1.2 Store design

	5.2 Store development
	5.2.1 Creating a store based on sample stores
	5.2.2 Creating store by generating new assets.
	5.2.3 Create store using a mixed approach.

	Chapter 6. Testing a store
	6.1 Testing strategy
	6.2 Test planning
	6.2.1 The test administrative plan
	6.2.2 Problem management
	6.2.3 Version control

	6.3 Test phases
	6.3.1 Static test
	6.3.2 Unit testing
	6.3.3 Functional test
	6.3.4 System test

	6.4 Test case design
	6.4.1 Test cases samples

	6.5 Test environment set-up
	6.5.1 Staging server and test data

	6.6 Problem determination
	6.6.1 Tracing
	6.6.2 Error handling

	Chapter 7. Packaging and deployment
	7.1 Overview
	7.2 Using WebSphere Studio and Store Services
	7.3 Using Ant to package and deploy a store
	7.3.1 Folder structure
	7.3.2 Using the sample Store Archives
	7.3.3 The Deployment Use Case
	7.3.4 Creating the Ant build files
	7.3.5 Conclusion

	Part 1 Customization examples
	Chapter 8. Examples overview
	8.1 Example stores
	8.2 Orders
	8.2.1 CICS order transaction
	8.2.2 Quick order function

	8.3 Shipping and taxes
	8.3.1 Shipping by weight
	8.3.2 Display prices with tax
	8.3.3 Discounts

	8.4 Messaging customization
	8.4.1 Inbound MQSeries - product creation

	8.5 B2B features
	8.5.1 Role-based display
	8.5.2 Amount-based order approval
	8.5.3 Contract-based shopping

	8.6 Product entry and display
	8.6.1 Product comparison
	8.6.2 Enabling bundles
	8.6.3 Display of multiple currencies

	Chapter 9. Orders
	9.1 CICS order transaction
	9.1.1 Functional requirements
	9.1.2 Use cases
	9.1.3 Design
	9.1.4 Pre-requisites
	9.1.5 Create the Task Command
	9.1.6 Register the command in WebSphere Commerce
	9.1.7 Deploy the code

	9.2 Quick Order
	9.2.1 Quick order flow in the ToolTech store
	9.2.2 Design

	Chapter 10. Shipping and taxes
	10.1 Shipping by weight
	10.1.1 Example of shipping calculations by weight
	10.1.2 Shipping database assets
	10.1.3 Adding shipping by weight charges
	10.1.4 Use case for order check out

	10.2 Prices including taxes
	10.2.1 Definition of tax types
	10.2.2 Tax database assets
	10.2.3 Implementation prices including taxes

	10.3 Discounts
	10.3.1 Discount types
	10.3.2 Discount assets
	10.3.3 Creating a discount in a sample store

	Chapter 11. Messaging customization
	11.1 Installing and configuring MQSeries
	11.1.1 Installing
	11.1.2 Configuring

	11.2 Enabling the MQ adapter in WebSphere Commerce
	11.2.1 TransportAdapter
	11.2.2 Log level

	11.3 Enabling the MQ adapter in VisualAge for Java
	11.3.1 TransportAdapter

	11.4 Functional requirements
	11.4.1 Use case

	11.5 Preparing for the MQProductCreate command
	11.5.1 Defining XML and DTD for the command
	11.5.2 Registering the DTD in WebSphere Commerce
	11.5.3 Creating mapping between the XML and the command
	11.5.4 Registering the command in WebSphere Commerce

	11.6 Creating the commands
	11.6.1 Creating the MQProductCreateCmd interface
	11.6.2 Creating the MQProductCreate command impl class
	11.6.3 Creating the MQProductAttributesCmd interface
	11.6.4 Creating the MQProductAttributesCmdImpl class

	11.7 Testing the MQProductCreate command
	11.7.1 Deploying the commands
	11.7.2 Modifying JSP files

	11.8 Final considerations
	11.8.1 The markfordelete attribute
	11.8.2 Inventory
	11.8.3 Performance
	11.8.4 SKUs and attributes
	11.8.5 Transactions

	Chapter 12. B2B features
	12.1 B2B features in WebSphere Commerce Business Edition V5.4
	12.1.1 Access control

	12.2 Role-based display
	12.3 Order approval
	12.4 Contracts and trading agreements
	12.5 Message extensions
	12.5.1 cXML overview
	12.5.2 cXML in WebSphere Commerce Business Edition

	Chapter 13. Product entry and display
	13.1 Product comparison
	13.1.1 Product Advisor
	13.1.2 Creating base search space
	13.1.3 Preparing a product comparison metaphor
	13.1.4 Testing product comparison

	13.2 Products and bundles
	13.2.1 Definition of products
	13.2.2 Creating new product with product manager
	13.2.3 Testing the new product
	13.2.4 Definition of bundles
	13.2.5 Bundles in WebFashion
	13.2.6 Creating bundles

	13.3 Display of multiply currencies
	13.3.1 Currencies types
	13.3.2 Dual display and counter values
	13.3.3 Implementation of dual display of currencies
	13.3.4 Testing the dual display of currencies

	Chapter 14. Migration examples
	14.1 Migration Overview
	14.2 Migration considerations
	14.2.1 Infrastructure changes
	14.2.2 Architecture changes
	14.2.3 Database changes
	14.2.4 Additional considerations

	14.3 Migration example(s?)

	Appendix A. Sample level 1 “a.” appendix heading (yHead0Appendix)
	Sample level 2 heading (yHead1Appendix), new page
	Sample level 2 heading (yHead2Appendix)
	Sample level 3 heading (yHead3Appendix)

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

