
VisualAge Generator

Client/Server Communications Guide

Version 4.5

SH23-0261-01

���



Note

Before using this document, read the general information under “Notices” on page ix.

Third Edition (April 2001)

This edition applies to the following licensed programs:
v IBM VisualAge Generator Developer for OS/2 and Windows NT Version 4.5
v IBM VisualAge Generator Server for OS/2, AIX, Windows NT, HP-UX, and Solaris Version 4.5
v IBM VisualAge Generator Server for AS/400 Version 4 Release 4
v IBM VisualAge Generator Server for MVS, VSE, and VM Version 1.2

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments in any one of the following methods:

Electronically, using the online reader comment form at the address listed below. Be sure to include your entire
network address if you wish a reply.
v http://www.ibm.com/software/ad/visgen

By mail to the following address:

IBM Corporation, Attn: Information Development, Department G7IA Building 503, P.O. Box 12195, Research Triangle
Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Notices . . . . . . . . . . . . . ix

Trademarks . . . . . . . . . . . . xi
Terminology used in this document . . . . xiii

Terminology differences between Java and
Smalltalk . . . . . . . . . . . . xiv

About This Document . . . . . . . . xv
Who Should Use This Document . . . . . xv
Documentation provided with VisualAge
Generator . . . . . . . . . . . . . xv

Part 1. Client/Server Concepts . . . 1

Chapter 1. Introduction to Client/Server
Program Development . . . . . . . . 3
Paradigms for Defining Client/Server
Programs . . . . . . . . . . . . . 3
Client/Server Communication . . . . . . 4
Considerations for Defining Client/Server
Programs . . . . . . . . . . . . . 4
Client/Server Processing Terminology. . . . 6

Part 2. Client or Server
Configuration by Platform and
Protocol . . . . . . . . . . . . 7

Chapter 2. Introduction to Client/Server
Processing with Synchronous Calls . . . 9
Client Systems . . . . . . . . . . . 10
Server Systems . . . . . . . . . . . 10
Supported Middleware . . . . . . . . 10
Overview of Supported Environments . . . 11
Defining a Remote Program. . . . . . . 13
Defining the CALL Statement . . . . . . 13
Testing Client/Server Calls . . . . . . . 13

Considerations for Testing Java Clients . . 14
Generating Client/Server Programs . . . . 15
Identifying the Location of a Server Program 15
Controlling Data Format Conversion on a
CALL . . . . . . . . . . . . . . 16
Format Conversion for Multi-format
Parameters . . . . . . . . . . . . 17

Format Conversion for Portable Clients
and Servers . . . . . . . . . . . 17

Calling Server Programs from 4GL Java
Clients . . . . . . . . . . . . . . 17
Calling Server Programs from Java Applets 18
Calls between Server Programs and VAGen
Java Server Programs . . . . . . . . . 18

Local Calls to VAGen Java Server
Programs . . . . . . . . . . . . 19
Remote Calls from Java Server Programs 19
Remote Calls to Java Server Programs . . 20
Calling Java Web Transactions . . . . . 20

Committing Changes for Remote Called
Programs . . . . . . . . . . . . . 20
User Authentication . . . . . . . . . 21
Accessing DL/I Databases in Remote Called
Programs . . . . . . . . . . . . . 21
Communication Error Handling . . . . . 22

Communication Failures . . . . . . . 23
Errors in Generated Server Programs. . . 23

Single Server for Local and Remote Client
Programs . . . . . . . . . . . . . 24

Single CICS Server . . . . . . . . . 24
Single Servers for OS/2, AIX, OS/400, and
IMS . . . . . . . . . . . . . . 24

Calling Non-VisualAge Generator Server
Programs . . . . . . . . . . . . . 25

Chapter 3. AIX Platform . . . . . . . 27
How to use this chapter . . . . . . . . 27
Configuring an AIX Client . . . . . . . 29

Summary Table of Valid Servers and
Protocols . . . . . . . . . . . . 29
CICS Client Protocol . . . . . . . . 29
DCE Protocol . . . . . . . . . . 37
DIRECT Protocol . . . . . . . . . 41
IPC Protocol . . . . . . . . . . . 43
TCP/IP Protocol . . . . . . . . . 45

Configuring an AIX Server . . . . . . . 50
Summary Table of Valid Clients and
Protocols . . . . . . . . . . . . 50
DCE Protocol . . . . . . . . . . 50
DIRECT Protocol . . . . . . . . . 52
IPC Protocol . . . . . . . . . . . 53
TCP/IP Protocol . . . . . . . . . 54

© Copyright IBM Corp. 1980, 2001 iii



Chapter 4. CICS for AIX Platform . . . . 57
How to use this chapter . . . . . . . . 57
Configuring a CICS for AIX Client . . . . 59

Summary Table of Valid Servers and
Protocols . . . . . . . . . . . . 59
CICS DPL Protocol . . . . . . . . . 59

Configuring a CICS for AIX Server . . . . 66
Summary Table of Valid Clients and
Protocols . . . . . . . . . . . . 66
CICS Client Protocol . . . . . . . . 66
CICS DPL Protocol . . . . . . . . . 67

Chapter 5. OS/2 Platform . . . . . . . 69
How to use this chapter . . . . . . . . 69
Configuring an OS/2 Client. . . . . . . 71

Summary Table of Valid Servers and
Protocols . . . . . . . . . . . . 71
APPC/IMS Protocol . . . . . . . . 72
Client Access/400 Protocol . . . . . . 73
CICS Client Protocol . . . . . . . . 77
DCE Protocol . . . . . . . . . . 84
DIRECT Protocol . . . . . . . . . 89
IPC Protocol . . . . . . . . . . . 90
LU2 Protocol . . . . . . . . . . . 92
TCP/IP Protocol . . . . . . . . . 95

Configuring an OS/2 Server . . . . . . 100
Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 100
DCE Protocol . . . . . . . . . . 100
DIRECT Protocol . . . . . . . . . 101
IPC Protocol . . . . . . . . . . 101
TCP/IP Protocol . . . . . . . . . 102

Chapter 6. CICS for OS/2 Platform . . . 105
How to use this chapter . . . . . . . 105
Configuring a CICS for OS/2 Client . . . 107

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 107
CICS DPL Protocol . . . . . . . . 107

Configuring a CICS for OS/2 Server . . . 114
Summary Table of Valid Clients and
Protocols . . . . . . . . . . . . 114
CICS Client Protocol . . . . . . . . 114
CICS DPL Protocol . . . . . . . . 116

Chapter 7. OS/400 Platform . . . . . . 119
How to use this chapter. . . . . . . . 119
Configuring an OS/400 Client . . . . . 121

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 121

Configuring an OS/400 Server . . . . . 122
Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 122
Client Access/400 Protocol . . . . . . 122

Chapter 8. HP-UX Platform . . . . . . 125
How to use this chapter . . . . . . . 125
Configuring an HP-UX Client . . . . . . 127

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 127

Configuring an HP-UX Server . . . . . 128
Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 128
TCP/IP Protocol . . . . . . . . . 128

Chapter 9. IMS Platform . . . . . . . 131
How to use this chapter . . . . . . . 131
Configuring an IMS Client . . . . . . . 133

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 133

Configuring an IMS Server. . . . . . . 134
Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 134
APPC/IMS Protocol . . . . . . . . 134

Chapter 10. CICS for MVS/ESA Platform 137
How to use this chapter . . . . . . . 137
Configuring a CICS for MVS/ESA Client 139

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 139
CICS DPL Protocol . . . . . . . . 139

Configuring a CICS for MVS/ESA Server 146
Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 146
CICS Client Protocol . . . . . . . . 146
CICS DPL Protocol . . . . . . . . 150
LU2 Protocol . . . . . . . . . . 151

Chapter 11. Solaris Platform . . . . . 153
How to use this chapter . . . . . . . 153
Configuring a Solaris Client . . . . . . 155

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 155
CICS Client Protocol . . . . . . . . 155
DIRECT Protocol . . . . . . . . . 163
IPC Protocol . . . . . . . . . . 164
TCP/IP Protocol . . . . . . . . . 166

Configuring a Solaris Server . . . . . . 171
Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 171

iv VisualAge Generator: Client/Server Communications Guide



DIRECT Protocol . . . . . . . . . 171
IPC Protocol . . . . . . . . . . 172
TCP/IP Protocol . . . . . . . . . 174

Chapter 12. CICS for Solaris Platform . . 177
How to use this chapter . . . . . . . 177
Configuring a CICS for Solaris Client . . . 179

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 179
CICS DPL Protocol . . . . . . . . 179

Configuring a CICS for Solaris Server . . . 184
Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 184
CICS Client Protocol . . . . . . . . 185
CICS DPL Protocol . . . . . . . . 186

Chapter 13. VM/ESA Platform . . . . . 189
How to use this chapter . . . . . . . 189
Configuring a VM/ESA Client . . . . . 191

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 191

Configuring a VM/ESA Server . . . . . 192
Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 192
TCP/IP Protocol . . . . . . . . . 192

Chapter 14. CICS for VSE/ESA Platform 199
How to use this chapter . . . . . . . 199
Configuring a CICS for VSE/ESA Client . . 201

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 201
CICS DPL Protocol . . . . . . . . 201

Configuring a CICS for VSE/ESA Server . . 208
Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 208
CICS Client Protocol . . . . . . . . 208
CICS DPL Protocol . . . . . . . . 210

Chapter 15. Windows 95 and
Windows 98 Platform . . . . . . . . 213
How to use this chapter . . . . . . . 213
Configuring a Windows 95 and Windows 98
Client . . . . . . . . . . . . . . 215

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 215
APPC/IMS Protocol . . . . . . . . 216
Client Access/400 Protocol . . . . . . 218
CICS Client Protocol . . . . . . . . 220
DCE Protocol . . . . . . . . . . 227
TCP/IP Protocol . . . . . . . . . 231

Configuring a Windows 95 and Windows 98
Server. . . . . . . . . . . . . . 236

Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 236

Chapter 16. Windows NT Platform . . . 237
How to use this chapter . . . . . . . 237
Configuring a Windows NT Client . . . . 239

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 239
APPC/IMS Protocol . . . . . . . . 240
Client Access/400 Protocol . . . . . . 242
CICS Client Protocol . . . . . . . . 244
DCE Protocol . . . . . . . . . . 251
DIRECT Protocol . . . . . . . . . 255
IPC Protocol . . . . . . . . . . 257
TCP/IP Protocol . . . . . . . . . 259

Configuring a Windows NT Server . . . . 264
Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 264
DCE Protocol . . . . . . . . . . 264
DIRECT Protocol . . . . . . . . . 266
IPC Protocol . . . . . . . . . . 267
TCP/IP Protocol . . . . . . . . . 267

Chapter 17. CICS for Windows NT
Platform . . . . . . . . . . . . 273
How to use this chapter . . . . . . . 273
Configuring a CICS for Windows NT Client 275

Summary Table of Valid Servers and
Protocols. . . . . . . . . . . . 275
CICS DPL Protocol . . . . . . . . 275

Configuring a CICS for Windows NT Server 282
Summary Table of Valid Clients and
Protocols. . . . . . . . . . . . 282
CICS Client Protocol . . . . . . . . 282
CICS DPL Protocol . . . . . . . . 284

Part 3. Java Wrappers and
Enterprise Beans . . . . . . . 287

Chapter 18. VisualAge Generator
JavaBeans Wrappers and Enterprise
Beans . . . . . . . . . . . . . 289
VisualAge Generator Java Package . . . . 290

Supplemental Documentation . . . . . 290
Installing the com.ibm.vgj.cso Package for
V4.5 . . . . . . . . . . . . . 291
com.ibm.vgj.cso Package Classes . . . . 292

Contents v



Migrating Java Clients from Previous
Releases . . . . . . . . . . . . . 295

Regenerate JavaBeans Wrappers . . . . 295
Change References to the ibm.cso Package 295
Deprecated Classes . . . . . . . . 296
Conversion in Java Virtual Machine. . . 296
Specifying What to Load into Your Image
for Generation . . . . . . . . . . 296
Specifying Package Name for Generated
JavaBeans Wrappers . . . . . . . . 297
Starting a Remote Unit of Work for
Applets . . . . . . . . . . . . 297
Enhancements in VisualAge Generator
Developer on Java V4.5 . . . . . . . 297

Specifying a User ID and Password . . . . 298
Calling Server Programs as Session Beans 298

Requirements for Generating Session
Beans that Participate in EJS Transactions . 299
EJS Transaction Demarcation for
Generated Session Beans . . . . . . 300
EJS Container Usage of a Session Bean’s
Transaction Attribute for Transaction
Demarcation . . . . . . . . . . 301
Using the Transaction Attribute to Control
Transaction Demarcation . . . . . . 302
Implementing Client Controlled EJS
Transactions . . . . . . . . . . 303
VisualAge Generator Runtime Usage of
Linkage Attributes . . . . . . . . 304
Generation/Runtime Setup Examples . . 306
Deploying Generated Session Beans. . . 322
Invoking Generated Session Beans . . . 326

Java Package Examples . . . . . . . . 334
How to Call Server Wrappers from Java
Applications . . . . . . . . . . 334
How to Call Server Wrappers from
Applets . . . . . . . . . . . . 335
How to Run Applets From a Browser . . 337
How to Start the Session Manager on
your VisualAge Generator Java gateway . 338
Specifying Session Manager Options . . 339

Java Support for OS/390 Unix Systems . . 342
Linkage Table Entries for OS/390 Java
Support . . . . . . . . . . . . 342
MVS CICS Setup for EXCI . . . . . . 343
Graphical User Interfaces and OS/390 345
Starting the Session Manager Using JCL 346

Java Support for AS/400 Servers . . . . . 347
User Authentication . . . . . . . . 348

Linkage Table Entries for AS/400 Java
Support . . . . . . . . . . . . 348
Graphical User Interfaces and AS/400 349
Requirements for Client and AS/400
Server. . . . . . . . . . . . . 349

Deploying Java Classes . . . . . . . . 350
Deploying Classes Without Using Archive
Files . . . . . . . . . . . . . 350
Deploying Classes Using Archive Files 351

Applet Session Manager . . . . . . . 353
Monitoring Active Sessions . . . . . 353
Monitoring Called Programs . . . . . 354
Canceling Sessions . . . . . . . . 354
Tracing Sessions . . . . . . . . . 354
Tracing Server Programs . . . . . . 355
Adding a Program to the Called
Application List . . . . . . . . . 356
Setting Session Manager Parameters . . 356

Java Names . . . . . . . . . . . . 357
Data Type Mapping . . . . . . . . . 359
Data Format Conversion Considerations . . 360

Numeric Conversion Considerations . . 360
Character String Conversion
Considerations . . . . . . . . . . 360

Power Server API Tracing and Debugging
Environment Variables . . . . . . . . 360

Tracing Errors . . . . . . . . . . 360
Tracing Service Calls . . . . . . . . 361
Tracing Parameter Contents . . . . . 361

Exception Handling . . . . . . . . . 361
CSO7950E . . . . . . . . . . . 361
CSO7951E . . . . . . . . . . . 362
CSO7952E . . . . . . . . . . . 362
CSO7953E . . . . . . . . . . . 363
CSO7955E . . . . . . . . . . . 363
CSO7956E . . . . . . . . . . . 364
CSO7957E . . . . . . . . . . . 364

Part 4. Calling Server Programs
from Non-VisualAge Generator
Clients . . . . . . . . . . . . 365

Chapter 19. Using Interspace to Call
Server Programs from Visual Basic,
PowerBuilder, or ActiveX Clients . . . . 367
Defining the Server Program Interface . . . 368
Testing the Server Program . . . . . . 370
Building Visual Basic GUIs. . . . . . . 371

vi VisualAge Generator: Client/Server Communications Guide



Generating Visual Basic Functions that Call
the Server . . . . . . . . . . . . 371
Predefined Interspace Functions . . . . . 371
Developing A Visual Basic GUI for the
STFLIST Server Program . . . . . . . 372
Visual Basic Modules . . . . . . . . 372
Adding a Main Subroutine. . . . . . . 372
Coding the Visual Basic Forms . . . . . 373
Testing the Visual Basic Program. . . . . 374
Deploying The Visual Basic Application . . 374
Moving the Server Program to Other
Platforms . . . . . . . . . . . . 375
Using A Different GUI Development Tool 375
Generating the Server Program . . . . . 375
Building GUIs . . . . . . . . . . . 376
Preparing the Client Environment for Calling
the Server . . . . . . . . . . . . 376
Tracing and Debugging Server Calls . . . 376

Tracing Communication Errors . . . . 376
Tracing Service Calls . . . . . . . . 377
Tracing Parameter Contents . . . . . 377

Part 5. Distributed Logic Using
Asynchronous Processing . . . 379

Chapter 20. Implementing Client/Server
Processing Using the Message Queue
Interface . . . . . . . . . . . . 381

Chapter 21. Implementing Client/Server
Processing in CICS Using the CREATX
Service Routine . . . . . . . . . . 383
Defining a Remote Program . . . . . . 384
Defining the CALL CREATX Statement . . 384
Testing CREATX Calls . . . . . . . . 384
Generating Client/Server CREATX Calls . . 385
Identifying the Location of the Remote
Transaction . . . . . . . . . . . . 385
Converting Data Format on a Call CREATX 386
Using the EZECONV Service for Redefined
CREATX Records . . . . . . . . . . 386
Handling Link Failures . . . . . . . . 387
Committing Changes in Remote Transactions 387
Detecting Errors in Programs Started by
CREATX . . . . . . . . . . . . . 388

Part 6. Distributed Data . . . . . 389

Chapter 22. Accessing Remote Relational
Databases . . . . . . . . . . . . 391

Chapter 23. Accessing Distributed Files in
CICS . . . . . . . . . . . . . . 393
Defining Remote Files . . . . . . . . 393
Defining the I/O Process Options . . . . 393
Testing the I/O Process Options . . . . . 393
Generating I/O Process Options to Remote
Files . . . . . . . . . . . . . . 393
Identifying the Location of the Remote File 394
Converting Data Format when Accessing a
Remote File . . . . . . . . . . . . 395
Using the EZECONV Service for Redefined
Parameters . . . . . . . . . . . . 396
Maintaining Position in Remote Files . . . 396
Handling Link Failures . . . . . . . . 396
Committing Changes to Remote Files . . . 397
Handling Errors . . . . . . . . . . 397

Part 7. Appendixes . . . . . . . 399

Appendix A. Java properties . . . . . 401
Linkage properties . . . . . . . . . 401
Java server communication properties . . . 402

Appendix B. Linkage tables. . . . . . 405
Creating a linkage table . . . . . . . . 405
Specifying CALL linkage (CALLLINK). . . 406

Definitions for CALLLINK . . . . . . 408
Valid parameter formats and linkage
combinations by platform . . . . . . 419
Interfaces requiring a linkage table . . . 420
Specifying CREATX linkage (CRTXLINK) 422
Specifying DXFR linkage (DXFRLINK) 425
Interfaces requiring a linkage table . . . 427
Specifying File linkage (FILELINK) . . . 427
Sample linkage table entries . . . . . 430

Appendix C. Converting Between Client
and Server Data Formats . . . . . . 433
Conversion Algorithm . . . . . . . . 433
Avoiding Data Format Conversion Problems 434

Windows Clients and OS/2, AIX, HP-UX,
and Solaris Servers . . . . . . . . 434

Default Tables for Test and Run-time Data
Conversion . . . . . . . . . . . . 435
Default Tables for Generation . . . . . . 435

Contents vii



Conversion Table by Language and
Platform . . . . . . . . . . . . 436

Defining Custom Conversion Tables . . . 441
Defining Conversion Table Files for OS/2
and AIX Systems . . . . . . . . . 441
Defining Conversion Table Modules for
MVS, VSE, and Windows Systems . . . 442
Bi-Directional Languages Attribute
Conversion . . . . . . . . . . . 445
Using Conversion Tables with EZECONV 448
Using Conversion Tables on Calls to
Server Programs . . . . . . . . . 448

Appendix D. DBCS and Client/Server
Processing . . . . . . . . . . . 451
Check SO/SI Map Edit . . . . . . . . 451
Converting Variable Length Records with
MIX Items . . . . . . . . . . . . 451

Appendix E. VisualAge PowerServer APIs 453
Client Systems . . . . . . . . . . . 453
Server Systems. . . . . . . . . . . 453
Supported Middleware . . . . . . . . 454
Coding the Client Program . . . . . . 454
Data Type Descriptions . . . . . . . . 455
Structure Definitions . . . . . . . . . 455

CMCOD - Call Options Descriptor . . . 455
CMCOMP - Completion Status Descriptor 461
CMDESC - Parameter structure
description . . . . . . . . . . . 462

Call Descriptions . . . . . . . . . . 466

CMCALL — Call Remote Server Program 467
Parameters . . . . . . . . . . . 467
Usage . . . . . . . . . . . . . 468
CMCLOSE — Close Communications
Session . . . . . . . . . . . . 468
Parameters . . . . . . . . . . . 468
Usage . . . . . . . . . . . . . 469
CMCOMMIT — Commit Unit of Work 469
Parameters . . . . . . . . . . . 469
Usage . . . . . . . . . . . . . 469
CMGETERROR — Get Error String . . . 469
Parameters . . . . . . . . . . . 469
Usage . . . . . . . . . . . . . 470
CMINIT — Initialize Communications
Session . . . . . . . . . . . . 470
Parameters . . . . . . . . . . . 470
Usage . . . . . . . . . . . . . 471
CMROLLBK — Rollback Unit of Work 471
Parameters . . . . . . . . . . . 471
Usage . . . . . . . . . . . . . 471

Compiling and Linking the Client Program 472
OS/2 . . . . . . . . . . . . . 472
AIX . . . . . . . . . . . . . 472
Windows NT and Windows 95 . . . . 472

User Authentication . . . . . . . . . 472
Error Handling . . . . . . . . . . 473

Appendix F. Run-time configurations for
VisualAge Generator . . . . . . . . 475

487

viii VisualAge Generator: Client/Server Communications Guide



Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood
NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact the SWS
General Legal Counsel, IBM Corporation, Department TL3 Building 062, P. O.
Box 12195, Research Triangle Park, NC 27709-2195. Such information may be
available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM has made reasonable efforts to ensure the accuracy of the information
contained in this publication. If a softcopy of this publication is provided to
you with the product, you should consider the information contained in the
softcopy version the most recent and most accurate. However, this publication
is presented “as is” and IBM makes no warranties of any kind with respect to
the contents hereof, the products listed herein, or the completeness or
accuracy of this publication.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1980, 2001 ix



x VisualAge Generator: Client/Server Communications Guide



Trademarks

The following terms are trademarks of the IBM Corporation in the United
States or other countries or both:

AD/Cycle
AIX
AIX/6000
AS/400
CICS
CICS/ESA
CICS OS/2
CICS/MVS
CICS/VSE
CICS/6000
COBOL/370
COBOL/400
C Set + +
DB2
DB2/2
DB2/400
Distributed Relational Database Architecture
DRDA
IBM
IMS
IMS/ESA
Language Environment
MQSeries
MQ
MVS
MVS/ESA
OS/2
OS/390
OS/400
Operating System/2
OpenEdition
PS/2
Presentation Manager
RACF
RISC System/6000
S/390
SAA
SQL/DS
SQL/400

© Copyright IBM Corp. 1980, 2001 xi



VisualAge
VisualGen
Virtual Machine/Enterprise Systems Architecture
VM/ESA
VSE/ESA
VTAM

The following terms are trademarks of other companies:

Attachmate Attachmate Corporation

Borland Borland International, Inc.

HP Hewlett-Packard Company

HP-UX Hewlett-Packard Company

Intel Intel Corporation

Interspace Planetworks L.L.C.

NetWare Novell, Incorporated

Novell Novell, Inc.

PC-DCE/32 Gradient Technologies, Inc.

PIC Pacific Image Communications,
Incorporated

Planetworks Planetworks L.L.C.

PowerBuilder Sybase, Inc.

Tandem Tandem Computers Incorporated

VMS Digital Equipment Corporation

X/Open X/Open Company Limited

Microsoft, Windows, Windows NT, Windows 2000, the Windows logo, and
the Windows 95 logo the are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Solaris, Java, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be the trademarks or service
marks of others.

xii VisualAge Generator: Client/Server Communications Guide



Terminology used in this document

Unless otherwise noted in this publication, the following references apply:
v MVS CICS applies to Customer Information Control System/Enterprise

Systems Architecture (CICS/ESA) systems.
v CICS applies to CICS for VSE/ESA, CICS/ESA, CICS for OS/2, CICS for

AIX, CICS for Windows NT, and CICS for Solaris.
v CICS for Windows NT refers to IBM TXSeries for Windows NT Version 4.2.
v CICS for AIX refers to IBM TXSeries for AIX Version 4.2.
v CICS for Solaris refers to IBM WebSphere Enterprise Edition Version 3.0.
v IMS/VS applies to Information Management System/Enterprise System

Architecture (IMS/ESA) and IMS/ESA Transaction Manager systems.
v IMS applies to IMS/ESA and IMS/ESA Transaction Manager, and to

message processing program (MPP), IMS Fast Path (IFP), and batch
message processing (BMP) regions. IMS/VS is used to distinguish MPP and
IFP regions from the IMS BMP target environment.

v LE applies to the IBM Language Environment for MVS and VM.
v COBOL applies to any of the following types of COBOL:

– IBM VisualAge for COBOL for OS/2
– ILE COBOL/400
– IBM COBOL for VSE
– IBM COBOL for MVS and VM

v “Region” and “CICS region” correspond to the following:
– CICS for MVS/ESA region
– IMS region
– CICS for VSE/ESA partition
– CICS for OS/2 system
– CICS for AIX system
– CICS for Windows NT system
– CICS for Solaris system

v DB2/VSE refers to SQL/DS Version 3 Release 4 or later. Any references to
SQL/DS refer to DB2/VSE and SQL/DS on VM. In addition, any references
to SQL/400 refer to DB2/400.

v OS/2 CICS applies to CICS Operating System/2 (CICS for OS/2).
v Workstation applies to a personal computer, not an AIX workstation.
v The make process applies to the generic process not to specific make

commands, such as make, nmake, pmake, polymake.
v Unless otherwise noted, references to VM apply to Virtual

Machine/Enterprise Systems Architecture (VM/ESA) environments.
v References to VM batch apply to any batch facility running on VM.
v DB2/2 applies to DB2/2 Version 2.1 or later, and DB2 Universal Database

(UDB) for OS/2 Version 5.

Trademarks xiii



v DB2/6000 applies to DB2/6000 Version 2.1 or later, and DB2 Universal
Database (UDB) for AIX Version 5.

v Windows applies to Windows 95, Windows 98, Windows NT, and
Windows 2000.

v Unless a specific version of Windows NT is referenced, statements
regarding Windows NT also apply to Windows 2000.

Terminology differences between Java and Smalltalk
VisualAge Generator Developer can be installed as a feature of VisualAge for
Java or VisualAge Smalltalk. Where appropriate, the documentation uses
terminology that is specific to Java or Smalltalk. But where the information is
specific to VisualAge Generator and virtually the same for both environments,
the Java/Smalltalk term is used.

Table 1. Terminology differences between Java and Smalltalk

Java term Combined Java/Smalltalk
term

Smalltalk term

Project Project/Configuration map Configuration map

Package Package/Application Application

Workspace Workspace/Image Image

Beans palette Beans/Parts palette Parts palette

Bean Visual part or bean Visual part

Repository Repository/ENVY library ENVY library manager

Options Options/Preferences Preferences

xiv VisualAge Generator: Client/Server Communications Guide



About This Document

This document provides information for developing client/server systems,
and information for developing mixed systems made up of programs
developed using VisualAge Generator and programs developed using other
tools.

This document contains the following information:
v Distributing program logic using:

– Calls to remote procedures
– Message queuing

v Configuring client/server calls
v Accessing distributed data
v Transferring control between VisualAge Generator programs and programs

developed using other tools

Who Should Use This Document

This document is intended for program developers, system programmers, and
LAN administrators who design and develop programs for a client/server
environment.

Documentation provided with VisualAge Generator

VisualAge Generator documents are provided in one or more of the following
formats:
v Printed and separately ordered using the individual form number.
v Online book files (.pdf) on the product CD-ROM. Adobe Acrobat Reader is

used to view the manuals online and to print desired pages.
v HTML files (.htm) on the product CD-ROM and from the VisualAge

Generator web page (http://www.ibm.com/software/ad/visgen).

The following books are shipped with the VisualAge Generator Developer
CD. Updates are available from the VisualAge Generator Web page.
v VisualAge Generator Getting Started (GH23-0258-01) 1,2

v VisualAge Generator Installation Guide (GH23-0257-01) 1,2

v Introducing VisualAge Generator Templates (GH23-0272-01) 2,3

1. These documents are available as HTML files and PDF files on the product CD.

2. These documents are available in hardcopy format.

3. These documents are available as PDF files on the product CD.

© Copyright IBM Corp. 1980, 2001 xv



The following books are shipped in PDF and HTML formats on the VisualAge
Generator CD. Updates are available from the VisualAge Generator Web page.
Selected books are available in print as indicated.
v VisualAge Generator Client/Server Communications Guide (SH23-0261-01)1, 2

v VisualAge Generator Design Guide (SH23-0264-00) 1

v VisualAge Generator Generation Guide (SH23-0263-01) 1

v VisualAge Generator Messages and Problem Determination Guide
(GH23-0260-01) 1

v VisualAge Generator Programmer’s Reference (SH23-0262-01) 1

v VisualAge Generator Migration Guide (SH23-0267-00) 1

v VisualAge Generator Server Guide for Workstation Platforms (SH23-0266-01) 1,4

v VisualAge Generator System Development Guide (SG24-5467-00) 2

v VisualAge Generator User’s Guide (SH23-0268-01) 1, 2

v VisualAge Generator Web Transaction Development Guide (SH23-0281-00) 1

The following documents are available in printed form for VisualAge
Generator Server for AS/400 and VisualAge Generator Server for MVS, VSE,
and VM:
v VisualAge Generator Server Guide for AS/400 (SH23-0280-00) 2

v VisualAge Generator Server Guide for MVS, VSE, and VM (SH23-0256-00) 2

The following information is also available for VisualAge Generator:
v VisualAge Generator External Source Format Reference (SH23-0265-01)
v Migrating Cross System Product Applications to VisualAge Generator

(SH23-0244-01)
v VisualAge Generator Templates V4.5 Standard Functions—User’s Guide

(SH23-0269-01)2, 3

4. This document is included when you order the VisualAge Generator Server product CD.

xvi VisualAge Generator: Client/Server Communications Guide



Part 1. Client/Server Concepts

© Copyright IBM Corp. 1980, 2001 1



2 VisualAge Generator: Client/Server Communications Guide



Chapter 1. Introduction to Client/Server Program
Development

VisualAge Generator supports the development of programs for client/server
environments. These programs can be thought of as having three components:
v User interface
v Logic
v Data

In client/server environments, the user interface and data reside on different
computers. The user interface is on a client machine, and the data on a server
machine. The machines are connected by a communication link. The program
logic can reside either on the client machine, the server machine, or be
distributed across machines.

Paradigms for Defining Client/Server Programs

VisualAge Generator supports multiple paradigms for implementing
client/server programs. The paradigms follow:

Distributed user interface
User interface is on the client machine. Logic and data are on the
server machine.

VisualAge Generator only supports distributed user interface
indirectly (and only for character-based user interfaces) through CICS
transaction routing.

Distributed data
User interface and logic are on the client machine; at least some
program data resides on the server machine.

VisualAge Generator supports access to server data through the
following:
v DB2 Distributed Relational Database Architecture (DRDA) for

relational databases
v CICS Function Shipping for remote CICS files
v Workstation file servers for workstation files

Distributed logic
User interface is on the client machine and at least some program data
is on the server machine. Program logic is distributed between client
and server.

© Copyright IBM Corp. 1980, 2001 3



VisualAge Generator supports two paradigms for implementing the
program-to-program communication needed to distribute logic
between client and server. These paradigms follow:

Remote procedure call
The client calls the server passing data to the server and waits
for response data to be returned by the server.

Message queueing
Client and server programs communicate by putting messages
on queues and retrieving messages from queues. Client and
server can run in parallel or asynchronously.

Client/Server Communication

With VisualAge Generator programs, communication between client and
server are handled for the program by communication services provided with
VisualAge Generator or resource managers.

The communication services you use depends on the client/server paradigm
and the runtime environment for your programs. The available common
services are the following:
v VisualAge Generator communication support for remote procedure calls

from non-CICS clients
v CICS communication support for the following:

– Remote procedure calls from CICS clients
– CREATX for starting a remote transaction
– Function shipping for access to remote CICS files
– Transaction routing for distributed presentation of character-based user

interfaces
v MQSeries communication support for accessing remote message queues
v DB2 communication support for accessing distributed relational databases
v File servers for accessing distributed files

Considerations for Defining Client/Server Programs

When implementing a client/server program using VisualAge Generator, do
the following:
v Choose a client/server implementation paradigm suitable for your program

and runtime platforms.
v Choose the communication services appropriate to your runtime platforms

and paradigm. Understand how to specify the network configuration to the
common services (where servers are located in the network and what
communication protocols are to be used).

4 VisualAge Generator: Client/Server Communications Guide



v Understand how to specify to the VisualAge Generator test facility and
generator the communication services to be used for client/server functions
in generated programs. This information is defined in a generation input
file called a linkage table. For information on linkage tables, see
“Appendix B. Linkage tables” on page 405.

v Understand how your program will perform the following functions:
– Control data format conversion

Workstations and host systems store data in different formats. Character
data is represented in ASCII on the workstation and in EBCDIC on the
host system. The representation of numeric data also varies. To process
data correctly in the receiving system, the program must convert the
format of data passed between a host system and a workstation.
VisualAge Generator performs data conversion, when data is passed
between client and server, based on parameter or record data item
definition. Variable length records are converted only for the current
length of the record, in the number of occurrences item for variably
occurring records, or in the record length for variable length items. The
conversion table used for data conversion is specified by the CONTABLE
attribute in the linkage table.
Some communication protocols enable the program to control whether
conversion is performed at runtime based on the EZECONVT special
function word. Other communication protocols perform conversion only
when necessary.
Some VisualAge Generator environments also support the EZECONV
service, which can be called to convert data independently of any
client/server communication function.

– Select alternate server locations
Some communication services enable a program to dynamically select
server locations at runtime using the EZELOC special function word;
other communication services require a single server location to be
specified to the communication services.

– Handle communication link failures
Access to distributed data and calls to remote procedures fail if the
communication link to the remote system is not available. The client
program should be designed to notify the program user that the link was
not successful and to provide instructions on how to correct the
situation.

– Handle commit and rollback functions
The definition of a unit of work and its scope varies with the
client/server paradigm, runtime environment, and communication
protocol. In some situations, the client controls the unit of work.
Database changes made on the server are not committed or rolled back
until the client requests a commit or rollback. In other situations, the

Chapter 1. Introduction to Client/Server Program Development 5



server unit of work is an independent transaction. Server updates are
committed when server processing is complete unless the server program
already issued a commit or rollback.

Client/Server Processing Terminology

The following terms are used in describing VisualAge Generator client/server
processing:

VisualAge Generator Client Program
A VisualAge Generator program that initiates a request for a service,
through remote calls, to a VisualAge Generator called (server)
program.

VisualAge Generator Called (Server) Program
A VisualAge Generator program that provides requested services in
response to requests, made through remote calls, from VisualAge
Generator client programs.

Distributed
A program, function, or data for which the component programs are
distributed between two or more interconnected processors. The
processors are connected through a communication network.

Location
Location is the logical name of a system where processing occurs.

Local A local program is a server program or data that resides on the same
system as the client program that requests a service.

Remote
A remote program is a server program or data that resides on a
system other than the system where the client program requests a
service.

6 VisualAge Generator: Client/Server Communications Guide



Part 2. Client or Server Configuration by Platform and
Protocol

© Copyright IBM Corp. 1980, 2001 7



8 VisualAge Generator: Client/Server Communications Guide



Chapter 2. Introduction to Client/Server Processing with
Synchronous Calls

This chapter contains information that applies to all communication protocols
for developing client/server programs. For information on client/server calls
using specific protocols, refer to the chapter on configuring your platform.

Figure 1 shows an example of a client/server program using the CALL
statement. The client program calls a called batch program that runs on a
remote system. When the batch program finishes processing, it returns control
to the caller. The call is synchronous; the calling program waits for the remote
program to return before continuing.
A call to a server program on a remote system is defined the same way that a

call to a local program is defined. The server program is defined like a called
batch program; the CALL statement in the client program specifies the
arguments that are passed to the server on the call.

At generation, you must specify a CALLLINK tag in the generation linkage
table to indicate that the called program is a remote server program. The
linkage table also specifies the communication protocol that is used to call the
server program. Protocol selection can be bound into the client program at
generation, or it can be determined by reading the linkage table again at
runtime.

CICS for OS/2,
MVS/ESA,
VSE/ESA,

or OS/2

CICS for
CICS for

APPL
.
.
.

CALL

CICS for OS/2,
MVS/ESA,

or
VSE/ESA

CICS for

CICS for

APPL
Called
Batch

.

.

.

Figure 1. Client/Server Program Using a CALL Statement

© Copyright IBM Corp. 1980, 2001 9



VisualAge Generator supports a variety of client and server system
combinations via a number of communication protocol and middleware
combinations.

Client Systems

Client programs can be any of the following:
v VisualAge Generator GUI clients on OS/2 or Windows
v VisualAge Generator native C++ programs on OS/2, AIX, or Windows NT,

Solaris
v CICS programs
v VisualAge Generator client programs tested using the test facility
v Non-VisualAge Generator client programs that can be programmed to call

standard C linkage APIs

Note: Where GUI is specified for OS/2, only GUI clients developed with
VisualAge Generator on Smalltalk are supported.

Server Systems

You can generate server programs to run on any of the following
environments:
v CICS for MVS/ESA
v IMS
v CICS for VSE/ESA
v OS/400
v OS/2
v CICS for OS/2
v AIX
v CICS for AIX
v Windows NT (C++ and Java)
v CICS for Windows NT
v VM/ESA
v HP-UX
v Solaris
v CICS for Solaris

Supported Middleware

Client programs can call server programs via the following middleware:
v CICS Distributed Program Link (DPL) for CICS server programs
v CICS Client for CICS server programs
v Client Access/400 and Java Toolbox for AS/400 for OS/400 server

programs
v APPC/MVS for IMS server programs
v DCE RPC for C++ programs running on OS/2, AIX and Windows NT

10 VisualAge Generator: Client/Server Communications Guide



v TCP/IP for accessing programs on OS/2, Windows NT, AIX, HP-UX,
Solaris, and VM/ESA.

Overview of Supported Environments

Table 2 on page 12 lists the following information for each possible
client/server environment:
v Which client environments are supported
v Whether the client can control the unit of work
v Whether the server can control the unit of work
v Whether the server can be a non-VisualAge Generator program

Chapter 2. Introduction to Client/Server Processing with Synchronous Calls 11



Table 2. VisualAge Generator client/server combinations

Server
Platforms

Client Platforms

OS/2 (GUI,
C++, ITF)

Windows
95 and
Windows
98 (GUI)

Windows NT
and 2000 (GUI,
C++, ITF) AIX ( C++) CICS

Solaris
(C++)

AIX TCP/IP,
DCE

TCP/IP,
DCE

TCP/IP, DCE TCP/IP,
DCE, IPC,
DIRECT

N/A TCP/IP,
IPC,
DIRECT

CICS for AIX CICS Client CICS Client CICS Client CICS
Client

CICS DPL CICS Client

HP-UX TCP/IP TCP/IP TCP/IP TCP/IP N/A TCP/IP

IMS APPC/IMS APPC/IMS APPC/IMS N/A N/A N/A

CICS for
MVS/ESA

CICS Client,
LU2

CICS Client CICS Client CICS
Client

CICS DPL CICS Client

OS/2 TCP/IP,
DCE, IPC,
DIRECT

TCP/IP,
DCE

TCP/IP, DCE TCP/IP,
DCE

N/A TCP/IP

CICS for OS/2 CICS Client CICS Client CICS Client CICS
Client

CICS DPL CICS Client

OS/400 CA/400 CA/400, CA/400, Java400 N/A N/A N/A

Solaris TCP/IP TCP/IP TCP/IP TCP/IP N/A TCP/IP,
IPC,
DIRECT

CICS for
Solaris

CICS Client CICS Client CICS Client CICS
Client

CICS DPL CICS Client

VM/ESA TCP/IP TCP/IP TCP/IP TCP/IP N/A TCP/IP

CICS for
VSE/ESA

CICS Client CICS Client CICS Client CICS
Client

CICS DPL CICS Client

Windows NT
(C++)

TCP/IP,
DCE

TCP/IP,
DCE

TCP/IP, DCE,
IPC, DIRECT

TCP/IP,
DCE

N/A TCP/IP

Windows NT
(Java)

N/A N/A TCP/IP N/A N/A N/A

CICS for
Windows NT

CICS Client CICS Client CICS Client CICS
Client

CICS DPL CICS Client

Notes:
Client controlled unit of work is available for CICS Client, LU2, CA/400, and Java400.
N/A = Not available
APPC = Advanced Program-to-Program Communication.
All server environments support server controlled unit of work.
CICS as a Client Platform refers to the following platforms:
– CICS for AIX,CICS for MVS/ESA, CICS for MVS/ESA, CICS for OS/2, CICS for Windows NT,

CICS for VSE/ESA

12 VisualAge Generator: Client/Server Communications Guide



Defining a Remote Program

The remote program is defined as a called batch program. Define the data to
be passed to the called program in the called parameter list. The total number
of bytes in the data structures defined for the parameters must be less than or
equal to 32567.

Define the logic of the program to reestablish the position in files or databases
on each call to the program and to replace or release any records that were
read for update before returning to the client program.

Defining the CALL Statement

The syntax of a call to a remote program is the same as a call to a local
program.

Specify the data to be passed to the called program using the arguments on
the CALL statement. The length of each argument on the CALL statement
must be equal to the length of each corresponding parameter in the parameter
list specified for the called program.

Arguments that overlap in storage (the same argument is passed more than
once or there are multiple definitions of the same record) cannot be passed on
a remote call.

Refer to the VisualAge Generator help facility for the correct syntax for the
CALL statement.

Testing Client/Server Calls

When you use the VisualAge Generator test facility to test your client/server
programs, you have the following options:
v Test both client and server programs from the library.
v Test a client program with a generated server program by including an

entry for the server program in the linkage table specified on the VAGen -
Test Linkage preferences page.

v Test a server program in the library from a generated or packaged client
application.

If the client and server programs are in the library and an entry does not exist
in the linkage table for the server program, then the following occurs:
v Both programs run under the test facility.

Chapter 2. Introduction to Client/Server Processing with Synchronous Calls 13



v The logic of both client and server can be traced and monitored in the test
facility.

v Data format conversion is not done when the client calls the server, because
both programs are running on the same system.

v The contents of the EZELOC and EZECONVT special function words are
ignored.

v You must bypass any calls to the EZECONV special function word.

If a client program that is in the library calls a server program and an entry
exists in the linkage table for the server program, the test facility reads the
linkage table to determine how to call the program. If the server program
exists in the library you must select the program and add it to the drop-down
list of programs to bypass.

To call a server program that is in the library from a generated or packaged
client application, the server program that is to be called must be loaded in
the image. The client setup should be performed using the client setup
instructions for the communications protocol chosen for the call. The linkage
table entries for calling a server in the test facility are as follows:

applname=program name
remoteapptype=itf
linktype=remote

or
linktype=csocall

Any remotecomtype that is appropriate from the client system to the target
system where VisualAge Generator test facility resides can be used in
conjunction with the remoteapptype=itf linkage table entry. A value for the
contable attribute is necessary only if required by the client/server operating
systems.

If VisualAge Generator test facility is not already running at the time the call
is made from the generated or packaged client application, the test facility is
started automatically where possible. When the client calls the server
program, the test monitor displays an informational message (unless such
messages are being suppressed) indicating that the server program is a called
batch application and you must press OK to continue. At the end of the
application the passed data (as modified by the server program), is returned
to the client. Unpredictable results might occur if you attempt such a call
while multiple sessions of the product are running simultaneously.

Considerations for Testing Java Clients
Java conversion tables are not available for use with the VisualAge Generator
Test Facility. It is necessary to create two linkage tables, one to execute your
Java client applications inside the Test Facility and one to execute your Java
client applications outside of the Test Facility. When executing Java clients in

14 VisualAge Generator: Client/Server Communications Guide



the Test Facility, do not specify a Java conversion table as the value of the
CONTABLE attribute in the linkage table. For Java client execution in the Test
Facility, specify the conversion tables used for non-Java clients and servers as
listed in Table 56 on page 438.

Generating Client/Server Programs

When you generate programs that use client/server processing calls, identify
the called program as REMOTE in the linkage table on the linktype attribute,
and specify the name of the linkage table when generating both the client and
the server programs. The only exception is when you are generating C++
programs; the linkage table entry is only needed for client programs. C++
generated server programs can be called from either a local or remote client.

For example, if a program named CLIENT called a CICS program named
SERVER, you would create the following linkage table entry:
:calllink applname=server linktype=remote ...

Other client/server attributes that are specified on the calllink tag are:
v Program alias (externalname)
v Program library name (library)
v Client or server unit of work control (luwcontrol)
v Communication channel or transaction identifier (serverid)
v Data format conversion control (contable)
v Generation or runtime binding for options (remotebind)
v Parameter format (parmform)
v Protocol selection (remotecomtype)
v Server program type, VisualAge Generator, non-VisualAge Generator, or

ITF, where a server application residing in the Repository/ENVY library is
executed using VAGen Test Facility (remoteapptype).

v Server location (location)

For more information on the calllink attributes, see “Appendix B. Linkage
tables” on page 405.

Identifying the Location of a Server Program

To specify the location of a remote program, use the LOCATION attribute of
the CALLLINK tag. The meaning of the location value varies with the
communication protocol. See the chapter related to the protocol that you want
to use for specific information.

If the same server program resides on multiple server systems, you can code
the calling program to load the location into the EZELOC special function
word before the CALL. To have the EZELOC value honored by the generated
client program, code the location attribute as follows:

Chapter 2. Introduction to Client/Server Processing with Synchronous Calls 15



:calllink applname=server linktype=remote location=EZELOC ...

Controlling Data Format Conversion on a CALL

If the program is calling from a client to a server or from a server to a client,
and you want data conversion to be performed automatically on the call,
specify the contable attribute for the called program in the linkage table, as
shown in the following example:
:calllink applname=server linktype=remote contable=conversion_table_name ...

Automatic conversion is performed on the calling system. The program first
converts the parameters being sent to the called program from local to remote
format, and then converts the values returned from the called program from
remote to local format. Conversion is based on the data structure defined for
the parameters in the calling program. Use automatic conversion only if the
argument values match the structure definition.

To perform conversion using the default conversion table, specify contable=*.
The default conversion table performs ASCII to EBCIDIC character
conversion, as well as binary numeric conversion. To perform conversion for
code pages other than the current code page on your workstation, specify the
name of a conversion table that represents the desired code pages.
“Appendix C. Converting Between Client and Server Data Formats” on
page 433 includes a list of conversion tables provided with the product.

You can control conversion in the following ways:
v To set conversion off on the CALL, specify contable=NONE.

Note: If the CALL is from a Java GUI and no conversion is required, do not
specify the contable attribute.

v To control whether conversion is performed at runtime, specify
contable=EZECONVT and code the program to move the conversion table
name to EZECONVT before the CALL statement.
For example, if your program switches server locations using EZELOC, you
can set conversion off when the server is on another workstation, and you
can set conversion on when the server is on a host system. To set data
conversion off, code the program to move blanks to EZECONVT, and then
specify EZECONVT as the conversion table on the calllink tag. Move * or a
conversion table name to EZECONVT when you want to convert data.

Note: If the CALL is from a Java GUI do not specify Move *. See Table 55
on page 436 for valid conversion table names to specify on the Move

statement.

16 VisualAge Generator: Client/Server Communications Guide



“Appendix C. Converting Between Client and Server Data Formats” on
page 433 contains more information on data format conversion, including a
description of the conversion algorithms and a list of conversion tables
provided with the product.

Format Conversion for Multi-format Parameters

Do not use automatic conversion if the data structure of the argument can
vary from one call to another. Instead, use the EZECONV service routine with
redefined records to perform conversion when record formats vary. CALL
EZECONV with the redefined record definition that matches the current
content of the record buffer.

If a variable length record parameter is passed on a CALL statement and you
are using the EZECONV service routine instead of automatic conversion on
the CALL, define the record length item or number of occurrences item with
the data type of PACK so that the length item has the same format on the
host or the workstation. Both the calling and called program depend on the
item value being in the correct format for the system where the program is
running.

If you are converting data from AIX clients using EZECONV on an MVS or
VSE host system, define any binary data items as HEX items in the redefined
record to avoid incorrect reversal of the binary items. The host EZECONV
routine assumes the binary data is in Intel byte-reversed format.

Format Conversion for Portable Clients and Servers
If the server program can run on a workstation or a host or if the server
program must support both workstation and host clients, put the data
conversion support in the server program. Have the client pass a parameter
on the call indicating the type of system on which the client is running. Have
the server compare the client system to the host system and perform
conversion as required using EZECONV. Encode the system type in a HEX
data item because HEX item values remain unchanged during format
conversion.

Calling Server Programs from 4GL Java Clients

When defining the linkage table for a generated 4GL Java client, the
LINKTYPE and CONTABLE attributes of the CALLLINK tag must be
configured for Java clients. There are also special considerations for enabling
Java applets to call server programs.

CSOCALL is the only valid value for the LINKTYPE attribute. All calls to
server programs made by 4GL Java clients are executed through the Common
Services option for VisualAge Generator.

Chapter 2. Introduction to Client/Server Processing with Synchronous Calls 17



Valid values for the CONTABLE attribute are of the form CSOBXXXX. The
first three characters are a prefix. The ’B’ character is for the byte order of the
target system. Valid values for the ’B’ character are ’X’ for Unix systems (AIX,
HP-UX, Solaris, etc.), ’I’ for Intel systems, and ’E’ for EBCDIC systems. The
″XXXX″ string is for the code page of the target system. For more information
on conversion tables for Java clients, see Table 55 on page 436.

Calling Server Programs from Java Applets

Java security restrictions do not allow Applets loaded off of remote machines
to call server programs from the machine on which they are executing. To
enable Java Applets to call server programs, an RMI server called the
SessionManager has been provided to act as an interface to the Common
Services option. For information on configuring the SessionManager to enable
applets to call server applications, see “Chapter 18. VisualAge Generator
JavaBeans Wrappers and Enterprise Beans” on page 289.

For a generated 4GL Java Client applet to be able to contact the
SessionManager it must know the location of the SessionManager. Modify the
vgj.properties file on your web server so that the vgj.powerserver.location
property is set to the hostname of your webserver. For example, if your applet
is served to the browser from http://myserver.com/applets/myapplet, then
the vgj.powerserver.location property in vgj.properties should read:
vgj.powerserver.location=myserver.com

Note: If you created your own properties file or had one generated when you
generated the program, this property might be included in that file.

The SessionManager must be located on the machine that the applet was
downloaded from.

The vgj.properties file can be found in the Common Services install directory.
For AS/400, the vgj.properties file is located in /QVGEN/LIB if you have
VisualAge Generator Server for AS/400 installed.

Calls between Server Programs and VAGen Java Server Programs

In addition to clients, VAGen Java server programs can receive and make calls
to other server programs. They can make and receive local calls from other
VAGen Java server programs running on the same machine. They can also
receive remote calls from other Java and non-Java programs, make calls to
other remote servers and start local and remote Web transactions. For specific
examples of these types of calls, see the appropriate protocol section in
“Configuring a Windows NT Server” on page 264.

18 VisualAge Generator: Client/Server Communications Guide



Calls to server programs are specified in linkage tables either at generation
time or at runtime. Generation-time binds of remote calls must be fully
defined. If remotebind=RUNTIME is specified in the linkage table at
generation time, and you elect to have a properties file generated, default
properties will be set for you. (See “Configuring a Windows NT Server” on
page 264 for examples.)

Note: Generation of VAGen Java server programs is currently only supported
for the Windows NT environment.

Local Calls to VAGen Java Server Programs
A local call is one in which one Java program runs another inside the same
Java virtual machine (JVM). This is only possible between VAGen Java servers
running on the same machine. To make a local call, the linktype attribute
must be DYNAMIC, STATIC, CSOCALL, or unspecified.

If CSOCALL is used, the remotecomtype must be DIRECT and the
remoteapptype must be VGJAVA. In all cases the package attribute must
specify the called server’s package. If the package isn’t specified, the default is
the package of the current program, but only if the linkage options were
specified at generation. Resources, such as shared tables, database
connections, and Common Services resources, are shared between programs
unless the DIRECT protocol is used.

Conversion tables are ignored unless a Bidi conversion table is used with the
DIRECT protocol. Local calls can be made from Java GUIs and wrappers if
the linktype is CSOCALL, the remotecomtype is DIRECT, and the
remoteapptype is VGJAVA. The GUI or wrapper must have access to
vgjwgs.jar.

For a specific example on how to specify linkage for local calls between
VAGen Java servers, see “Sample linkage table entries” on page 430.

Remote Calls from Java Server Programs
A remote call is either a call between a Java and a non-Java server program or
two Java server programs running in different JVMs. The calling program and
the called program may or may not be on the same machine.

Java servers can use any middleware supported by the Common Services on
Windows NT. When a remote call is made with remotecomtype=TCPIP, the
serverid is required and it must be a port number. When
remotebind=RUNTIME is specified in the generation linkage table, linkage
tables are to be loaded at run time. If the linkage table is named LINK, the
program will look for a property named cso.linkagetable.LINK in its
properties file. If the property is defined, its value is the name of another

Chapter 2. Introduction to Client/Server Processing with Synchronous Calls 19



properties file, which contains the linkage information to be used. If the
property is not defined, the linkage information may be contained in the
program’s properties file.

For a specific example of this type of calls, see the appropriate protocol
section in “Configuring a Windows NT Server” on page 264.

Remote Calls to Java Server Programs
Remote VG Java servers can only be called using TCP/IP. The remoteapptype
should be VGJAVA. Only Bidi conversion tables are supported. TCPIP calls to
Java programs can use the package attribute from the linkage table. The
package name is passed along with the rest of the data on the call. If the
package is not specified and remotebind is GENERATION, the package of the
current program is used by default. remoteapptype=VGJAVA is not supported
in Smalltalk GUIs, C++ programs, or COBOL programs.

For a specific example of this type of calls, see the appropriate protocol
section in “Configuring a Windows NT Server” on page 264.

Calling Java Web Transactions
Like remote Java servers, Java Web transactions that are not on the same
machine as the gateway servlet can be run using the TCPIP protocol with
remoteapptype=VGJAVA. A conversion table is required when a Web
transaction is contacted using TCPIP. The character representing the byte
order should be ’J’, as in CSOJ1252. If a Java Web transaction is on the same
machine as the GatewayServlet, it may be called locally. In this case, the
DIRECT protocol can be used with remoteapptype=VGJAVA. javaProperty,
commtype, and remoteapptype are the only properties required for a DIRECT
call. Only Bidi data conversion tables are supported. The DIRECT protocol is
only available when the GatewayServlet is running on Windows NT.

For a specific examples of this type of calls, see the appropriate protocol
section in “Configuring a Windows NT Server” on page 264.

Committing Changes for Remote Called Programs

Use the luwcontrol attribute on the calllink tag to specify whether the client or
server program controls the unit of work.

With server-controlled unit of work, each server call is a separate unit of work
independent of the client’s unit of work. Commit (or roll back on abnormal
termination) occurs automatically on return from the server program.

20 VisualAge Generator: Client/Server Communications Guide



With client-controlled unit of work, server updates are not committed or
rolled back until the client program requests a commit or rollback. Include
EZECOMIT and EZEROLLB calls in the client program to request commits
and rollbacks.

Use server-controlled server unit of work whenever possible because it
provides the best performance and least serialization from locked resources.

If client-controlled unit of work is used, you should commit or roll back at the
earliest possible point to avoid lockout. At a minimum, always code the
program to commit or roll back before returning control to the user interface
to wait for the next user-initiated action. This ensures that data locks are not
held while the user is away from the workstation.

See Table 2 on page 12 for information on the environments that support client
or server controlled units of work.

User Authentication

The user of the client program must be identified and authenticated through
password checking. The authentication process varies with the communication
middleware being used and is described in the middleware-specific chapters.

When the requirement for a userid and password is detected, common
services will invoke a userid/password prompting DLL. The default prompt
for OS/2, Windows, AIX, and HP-UX is CSOUIDPW. CSOUIDPW reads the
environment variables CSOUID and CSOPWD to obtain the userid and
password. You can use the CSOPRMPT prompt DLL instead of the default
CSOUIDPW by setting the environment variable CSOUEXIT to CSOPRMPT
(that is, set CSOUEXIT=CSOPRMPT). CSOPRMPT is a GUI prompt panel.

Alternative prompting mechanisms can be written and used by setting the
CSOUEXIT environment variable to the name of the alternative prompting
DLL. For example, see the CSOPRMPT source code in the sample directory.

If you use the Java400 protocol to access an AS/400 server program, you must
program the Java GUI application to supply a user ID and password for user
authentication.

Accessing DL/I Databases in Remote Called Programs

Server programs running on IMS, CICS for MVS/ESA, or CICS for VSE/ESA
systems can access DL/I databases. The PSB for a server program remains
scheduled until the unit of work ends.

Chapter 2. Introduction to Client/Server Processing with Synchronous Calls 21



If you are generating the server program for IMS, always include EZEDLPSB
in the called parameter list for the server program and in the CALL statement
in the client program.

When generating for CICS systems, the following restrictions apply if more
than one call to a DL/I server call is issued in the same unit of work:
v All calls must go to the same location.
v EZEDLPSB must be included in the called parameter list and specified as

an argument on the call.

Communication Error Handling

If an error occurs on a call to a server program, the program behaves
differently depending on the type of error and whether the REPLY option was
coded on the CALL statement, as shown in Table 3:

Table 3. Error Handling for Remote Calls

Type of Error REPLY
Option
Specified

EZERT8 Setting Log or
Trace
Message
on Client
System

Log or
Trace
Message
on Server
System

Program
Ends With
Error
Message to
User

No error,
successful
completion

No Unchanged No No No

No error,
successful
completion

Yes 0 No No No

Communication
failure

Yes Middleware
dependent error
code

Yes No No

Communication
failure

No Unchanged Yes No Yes

Terminating
error in server

Yes Error code Yes Yes for
CICS

No

Terminating
error in server

No Unchanged Yes Yes for
CICS

Yes

You can obtain trace information for remote server calls from non-CICS client
programs by setting the CSOTROPT and CSOTROUT environment variables.

CSOTROUT
Specifies the trace file name. The default name is csotrace.out in your
current directory.

22 VisualAge Generator: Client/Server Communications Guide



CSOTROPT
Specifies the level of trace information collected.

CSOTROPT=1
Only errors are collected in the trace file. This is the default if
CSOTROPT is not set.

CSOTROPT=2
All traces are collected in the trace file

You can collect additional problem information for calls made using
VisualAge Generator client/server common services. Refer to the VisualAge
Generator Messages and Problem Determination Guide for additional information.

For CICS client programs, all error messages are written to the error message
transient data queue associated with the transaction.

Communication Failures
Communication failures are detected by the communication middleware and
can be caused by set-up failures or communication link problems. You can
handle errors on server calls in the program by specifying the REPLY option
on the CALL statement and testing the middleware-dependent return code in
EZERT8 following the call. This error handling should include issuing a
rollback for any updates that were made. If the REPLY option is omitted, the
client program ends with an error message on a communication failure, and a
rollback is automatically issued. In either case, the client program writes a
message describing the error to the log or trace file that is associated with the
client program.

If server-controlled unit of work is in effect (server commits on return), a
successful return indicates that the desired database or file updates have been
successfully made on the server system. If client-controlled unit of work is in
effect, a successful return from an EZECOMIT call indicates that server
updates were completed.

An unsuccessful return usually, but not always, implies that the updates were
not committed. Design client programs to validate whether a previously
requested update has completed successfully on a communication or commit
failure before attempting to do the update again.

Errors in Generated Server Programs
If VisualAge Generator Server, VisualAge Generator Server for AS/400, or
VisualAge Generator Server for MVS, VSE, and VM detects an error that
prevents a server program from completing, the messages describing the error
are logged on the server system according to the diagnostic control options in
effect on the server system. The server program returns an error code in the
communication buffer. The client program ends with a rollback request, a

Chapter 2. Introduction to Client/Server Processing with Synchronous Calls 23



message indicating the server program did not successfully complete, and the
time and date at which the error occurred.

The error return area is generated as an additional parameter for remote
server programs that are generated as CICS programs. The format of the
return area is shown in the following list. All fields are packed decimal and
have the same format on the host and workstation:

Bytes Description
1 Reserved–should always be binary zero
2–4 Return code
5–8 Error date (00YYMMDD)
9–12 Error time (00HHMMSS)

The client program sets the return area to binary zeros. The server does not
modify the area unless an error is detected that prevents the server program
from continuing. If that occurs, the server program writes messages describing
the error to the error log and stores a return code of 693, the error date, and
the error time stamp in the return area. The error date and time reported in
the message can be used to find the related messages in the server error log.

Single Server for Local and Remote Client Programs

Single CICS Server
If you want to generate a server program that accepts calls from client
programs running on either a local system or a remote system, generate the
server program, the local clients, and the remote clients with
linktype=REMOTE in the linkage table. Although the called program might
reside on the same system as the calling program, the client program uses the
remote call interface.

Single Servers for OS/2, AIX, OS/400, and IMS
If a non-CICS server program is generated as a remote program, the
generated program will accept calls from clients on both the local operating
system and on remote systems.

To use a local operating system call for a local client, generate the local client
with a linkage table that specifies linktype=DYNAMIC and
parmform=OSLINK instead of linktype=REMOTE. Continue to specify
linktype=REMOTE when you generate the server program or when you
generate a remote client program.

24 VisualAge Generator: Client/Server Communications Guide



Calling Non-VisualAge Generator Server Programs

The server program can be either a generated program or a non-VisualAge
Generator program developed with another tool. Specify
remoteapptype=NONVG on the calllink tag if the server program was not
generated using VisualAge Generator. Ensure that the definition of the
parameters in the server program matches the definition of the arguments
specified on the CALL statement. Ensure that the parameter format matches
the format specified on the parmform attribute on the calllink tag. Do not
include the extra error return parameter in the parameters defined in the
server program.

Chapter 2. Introduction to Client/Server Processing with Synchronous Calls 25



26 VisualAge Generator: Client/Server Communications Guide



Chapter 3. AIX Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 27



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: AIX Platform
Type of program to configure: Client program
Configuration section: Configuring an AIX client
Intended target platform: CICS for MVS/ESA
(i.e. a CICS for MVS/ESA server program)
Chosen protocol: CICS Client
Protocol section: CICS Client Protocol
Target platform section: Configuring an AIX Client for a
CICS for MVS/ESA Server

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

28 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring an AIX Client

Summary Table of Valid Servers and Protocols

Table 4. Valid Servers and Protocols for VisualAge Generator Clients on the AIX
Platform

Server Platforms Protocols for AIX Client Platform

AIX TCP/IP, DCE, IPC, DIRECT

CICS for AIX CICS Client

HP-UX TCP/IP

CICS for MVS/ESA CICS Client

OS/2 TCP/IP, DCE

CICS for OS/2 CICS Client

Solaris TCP/IP

CICS for Solaris CICS Client

VM/ESA TCP/IP

CICS for VSE/ESA CICS Client

Windows NT (C++) TCP/IP, DCE

Windows NT (Java) NA

CICS for Windows NT CICS Client

CICS Client Protocol

User Authentication
The user authentication exit (see “User Authentication” on page 21) provides
the user ID and the password specified on the ECI call. The program user
must be authorized to run the transaction associated with the server call.

Chapter 3. AIX Platform 29



The user exit can return NULLs for the userid and password. The default exit
returns the contents of the environment variables CSOUID and CSOPWD as
the userid and password. If nulls are specified on the ECI call, the CICS Client
determines the user ID and password in a system-dependent fashion. Refer to
the CICS Client documentation for your environment for further information.

Setting Up Communication Links
The communication link between the client and server systems must be
defined to the CICS server system and client products to allow an ECI call to
flow from a CICS Client product to server systems. CICS Client, the
communications software, is installed and configured on the client. Refer to
CICS CLIENT documentation. The CICS server environment must have a
″listener″ defined and requires other entries if remote programs are called.
Refer to CICS documentation for more information. Refer to the CICS
intercommunication documentation for your CICS systems and client products
for additional information.

Identifying the CICS Transaction for the Server
The CICS transaction name associated with the server program is specified in
the serverid linkage table attribute. If not specified, the default transaction is
the CICS-supplied mirror transaction, CPMI.

Controlling the Unit of Work

Extended Units of Work: Multiple synchronous calls to CICS servers can be
issued from the same client. You can use the extended unit of work feature of
ECI to include several calls to the same system within the same unit of work
by specifying luwcontrol=CLIENT in the linkage table for the server programs.
For CICS servers, the default value for LUWCONTROL is client unit of work.
The extended unit of work ends when the client program calls EZECOMIT or
EZEROLLB, which results in an ECI call to commit or roll back any extended
transactions that are currently active.

A separate ECI extended unit of work (CICS transaction) is started for each
unique serverid/location pair. Servers on the same system running under
the same SERVERID (transaction name) are part of the same CICS extended
transaction. A client EZECOMIT or ROLLBACK call ends all the extended
transactions currently in effect for the client.

The server cannot issue EZECOMIT or EZEROLLB calls if the client unit of
work was in effect for the server call.

Server Unit of Work: You can specify luwcontrol=SERVER in the linkage
table. With this specification, each server call is a separate unit of work. The
server program can issue commit or rollback requests as well.

Configuring an AIX Client

30 VisualAge Generator: Client/Server Communications Guide



Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable linkage table attribute and EZECONVT special function word. Code
is converted based on the structure of the arguments specified on the CALL
statement in the client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with CICS ECI. EZERT8 is set to the
decimal value of the client access service reason code. The reason code is the
same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Specifying Parameter Format
Parameter format (the parmform attribute on the calllink tag) can be specified
as COMMDATA (data values passed in the COMMAREA) or COMMPTR
(pointers passed in the COMMAREA).

Using COMMPTR Format: Use COMMPTR for calling COBOL subroutines
that were developed to use the non-VAGen parameter passing convention that
uses pointers in the CICS COMMAREA. When the pointer format is used, the
generated client program calls an intermediate catcher program (ELACSV,
provided with VisualAge Generator host services) via the ECI instead of
calling the server program directly. The catcher program receives the
parameter data from the client, builds a pointer list in the COMMAREA that
points to the individual parameters, and links to the server program. A
program processing table (PPT) must be defined for the ELACSV program on
the CICS server system.

COMMPTR format is only supported for MVS CICS, CICS for VSE/ESA, and
CICS OS/2 servers.

Using COMMDATA Format: Use COMMDATA for calling generated
programs and for calling COBOL subroutines where possible. COMMDATA
provides better performance in calling remote programs. With COMMDATA,
the server program is called directly without going through the catcher
program.

Configuring an AIX Client for a CICS for OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

Configuring an AIX Client

Chapter 3. AIX Platform 31



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

Configuring an AIX Client for a CICS for Windows NT Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring an AIX Client

32 VisualAge Generator: Client/Server Communications Guide



,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

Configuring an AIX Client for a CICS for AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

Configuring an AIX Client

Chapter 3. AIX Platform 33



,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

Configuring an AIX Client for a CICS for MVS/ESA Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:

Configuring an AIX Client

34 VisualAge Generator: Client/Server Communications Guide



v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=ELACNxxx

Note: Specifying the CONTABLE attribute requires the three character NLS
code appropriate to your language. See “Conversion Table by Language
and Platform” on page 436 for more on information on specifying the
CONTABLE attribute.

Configuring an AIX Client for a VSECICS Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table

Configuring an AIX Client

Chapter 3. AIX Platform 35



:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT
location=CICSTST contable=ELACNxxx

Note: Specifying the CONTABLE attribute requires the three character NLS
code appropriate to your language. See “Conversion Table by Language
and Platform” on page 436 for more on information on specifying the
CONTABLE attribute.

Configuring an AIX Client for a CICS for Solaris Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

Configuring an AIX Client

36 VisualAge Generator: Client/Server Communications Guide



DCE Protocol

Processing Flow for VisualAge Generator DCE Common Services Remote
Call
This section shows the processing flow for a VisualAge Generator DCE
common services remote call.
1. VisualAge Generator DCE Server is started using a configuration file

which specifies the DCE principal name that the server will obtain its DCE
authorizations from (equivalent to a DCE userid), the location and the
serverid name for binding information advertising, the Access Control List
(ACL) object for client authorization, and the server programs that the
server is authorized to process. The server programs are specified in one
of two different groups; those in which secure DCE (authenticated RPC)
communications are required and those which can be accessed via
unsecured (unauthenticated RPC) DCE communications.
The server obtains an object UUID for each program from the CDS object
/.:/Servers/VAGenerator/SERVERID/program. If the program object is
not defined, one will be created for it. The server uses the program object
UUIDs when it advertises its binding information.

2. VisualAge Generator DCE Server advertises each of the programs that it
services. The Cell Directory Services (CDS) location used for advertising
the binding information is
/.:/Servers/VAGenerator/SERVERID/LOCATION.

3. VisualAge Generator client retrieves the object UUID for the program from
/.:/Servers/VAGenerator/SERVERID/program-name. It then uses the
object UUID to request the binding information for a server which services
the program from the CDS location
/.:/Servers/VAGenerator/SERVERID/LOCATION. If there are multiple
server bindings that match the search criteria, DCE will randomly return
one of them.

4. VisualAge Generator client will setup for authenticated RPC, if
DCESECURE is specified in the linkage table.

5. VisualAge Generator client performs data conversion on passed
parameters as specified in the contable attribute of the client linkage table
(runtime or generation time as applicable).

6. VisualAge Generator client makes remote call to VisualAge Generator DCE
Server.

7. VisualAge Generator DCE Server checks if VisualAge Generator client is
authorized to use server program (via DCE CDS Access Control List) and
if the appropriate level of communication security is being used from the
client.

8. VisualAge Generator DCE Server checks if the server program requested is
one that it is authorized to process (via initial configuration file).

Configuring an AIX Client

Chapter 3. AIX Platform 37



9. VisualAge Generator DCE Server processes client request, closes Logical
Unit of Work, and returns data to client.

User Authentication and Authorization
User authentication is performed on the client via the DCE security server
using the client’s DCE login identifier. The VisualAge Generator DCE server
checks whether the client is authorized to call the DCE server using DCE ACL
security services. User authorization is performed via the DCE ACL security
services. The VisualAge Generator DCE server is told at startup time the DCE
object ACL to use for checking client authorization for running the called
server programs. There is only one ACL used per VisualAge Generator DCE
server; therefore, the authorization is at the VisualAge Generator DCE server
level and not the called program level. If a called program requires a special
ACL, then another VisualAge Generator DCE server will have to be created or
started. The test ACL attribute determines whether or not the client is
authorized to execute the server program (if the client has test privileges on
the ACL object, then the client is authorized to execute all server programs
provided by the server).

Controlling the Unit of Work
All calls via the DCE common services are server units of work. All resource
changes are committed when the server returns to the calling program.

Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable attribute for the server entry in the linkage table. Data is converted
based on the structure of the parameters specified on the server call in the
client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with VisualAge Generator DCE common
services. EZERT8 is set to the decimal value of the client access service reason
code. EZERT8 is only set when the REPLY option is coded on the call to the
remote server program. If a visual link is used to make the call from a GUI
program, the REPLY option is used on the call.

Any errors trapped by DCE are passed to the client program with a
corresponding CSO error message. The error message contains an insert with
the DCE mnemonic. A non-zero return code from the called program is
passed back to the client program with a corresponding CSO error message.
The error message contains an insert with the return code from the called
program. VisualAge Generator return codes are documented in the help for
the message.

All errors are traced to the CSO trace file on the client and server machines,
as applicable.

Configuring an AIX Client

38 VisualAge Generator: Client/Server Communications Guide



Configuring an AIX Client for an OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

,, :calllink applname=program name linktype= REMOTE ,

, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:
v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 contable=BINARY remotebind=RUNTIME serverid=Test

Configuring an AIX Client for a Windows NT Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

,, :calllink applname=program name linktype= REMOTE ,

, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

Configuring an AIX Client

Chapter 3. AIX Platform 39



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:
v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 contable=ELAWIxxx remotebind=RUNTIME serverid=Test

Note: Specifying the CONTABLE attribute requires the three character NLS
code appropriate to your language. See “Conversion Table by Language
and Platform” on page 436 for more on information on specifying the
CONTABLE attribute.

Configuring an AIX Client for an AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

,, :calllink applname=program name linktype= REMOTE ,

, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring an AIX Client

40 VisualAge Generator: Client/Server Communications Guide



,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:
v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 contable=ELAAXxxx remotebind=RUNTIME serverid=Test

Note: Specifying the CONTABLE attribute requires the three character NLS
code appropriate to your language. See “Conversion Table by Language
and Platform” on page 436 for more on information on specifying the
CONTABLE attribute.

DIRECT Protocol

Advantages of IPC and DIRECT Protocols
The protocols IPC and DIRECT provide a method for client programs to call
server programs where both reside on the same system. A local call from the
client program to the server program might be used, but there are advantages
to making this call remotely via the VisualAge Generator middleware in
certain cases. Futhermore, these advantages differ for the provided protocols,
IPC and DIRECT, and are described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when
calling server programs. When the IPC protocol is used, each call from a
different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Configuring an AIX Client

Chapter 3. AIX Platform 41



Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is
created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with IPC and DIRECT server calls.
EZERT8 is set to the decimal value of the client access service reason code.
The reason code is the same as the number portion of error message
CSOnnnna as listed in the VisualAge Generator Messages and Problem
Determination Guide document.

Configuring an AIX Client for an AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via DIRECT:

,, :calllink applname=program name linktype= CSOCALL remotecomtype= DIRECT ,/

While the specification of:

,, contable= conversion table name
’*’
EZECONVT
NONE
BINARY

,/

Configuring an AIX Client

42 VisualAge Generator: Client/Server Communications Guide



is permissible, data conversion is generally not necessary when the client and
server reside on the same system. All other linkage table entries are ignored
on a local (DIRECT) call.

Example Linkage Table
:calllink applname=ELACVP5 linktype=CSOCALL remotecomtype=DIRECT

IPC Protocol

Advantages of IPC and DIRECT Protocols
The protocols IPC and DIRECT provide a method for client programs to call
server programs where both reside on the same system. A local call from the
client program to the server program might be used, but there are advantages
to making this call remotely via the VisualAge Generator middleware in
certain cases. Futhermore, these advantages differ for the provided protocols,
IPC and DIRECT, and are described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when
calling server programs. When the IPC protocol is used, each call from a
different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is
created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Configuring an AIX Client

Chapter 3. AIX Platform 43



Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with IPC and DIRECT server calls.
EZERT8 is set to the decimal value of the client access service reason code.
The reason code is the same as the number portion of error message
CSOnnnna as listed in the VisualAge Generator Messages and Problem
Determination Guide document.

Configuring an AIX Client for an AIX server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via IPC:

,, :calllink applname=program name linktype= CSOCALL remotecomtype= IPC ,/

While the specification of:

,, contable= conversion table name
’*’
EZECONVT
NONE
BINARY

,/

is permissable, data conversion is generally not necessary when the client and
server reside on the same system. All other linkage table entries are ignored
on a local (IPC) call.

Example Linkage Table
:calllink applname=ELACVP5 linktype=CSOCALL remotecomtype=IPC

Configuring an AIX Client

44 VisualAge Generator: Client/Server Communications Guide



TCP/IP Protocol

Creating a TCP/IP Services File Entry
The client machine must have an entry for the TCP/IP Serverid added to its
TCP/IP services file. For Windows, AIX, HP-UX, and Solaris the TCP/IP
SERVICES file is used.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with TCPIP server calls. EZERT8 is set to
the decimal value of the client access service reason code. The reason code is
the same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Configuring an AIX Client for an OS/2 server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring an AIX Client

Chapter 3. AIX Platform 45



Configuring an AIX client for a Windows NT server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring an AIX Client for an AIX server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

Configuring an AIX Client

46 VisualAge Generator: Client/Server Communications Guide



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring an AIX client for an HP-UX server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

Configuring an AIX Client

Chapter 3. AIX Platform 47



,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring an AIX Client for a Solaris server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table

Configuring an AIX Client

48 VisualAge Generator: Client/Server Communications Guide



:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP
location=server1 remotebind=RUNTIME serverid=port1

Configuring an AIX Client for a VM/ESA server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring an AIX Client

Chapter 3. AIX Platform 49



Configuring an AIX Server

Summary Table of Valid Clients and Protocols

Table 5. Valid Clients and Protocols for VisualAge Generator Servers on the AIX
Platform

Server
Platform

Client Platforms

OS/2

Windows 95
and
Windows 98 Windows NTAIX Solaris

AIX TCP/IP,
DCE

TCP/IP,
DCE

TCP/IP,
DCE

TCP/IP,
DCE, IPC,
DIRECT

TCP/IP, IPC,
DIRECT

DCE Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)

Identifying the Server Location
The server location is determined by the bindings advertised in the DCE CDS
database. The bindings are found in the DCE CDS location object located at
/.:/Servers/VAGenerator/SERVERID/LOCATION. Identify the server
location to the client by specifying the location identifier in the location
linkage table attribute in the entry for the server program, or set the location
dynamically in the client program at runtime using EZELOC.

Linkage Table Attributes for Generating Server Programs
To generate native OS/2, AIX, or Windows NT server programs, no linkage
table entry is required. If the server program is going to make remote calls (it
is the second tier of a three tier client/server system) then a linkage table
needs to be provided at generation time just as if it was a client program.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 remotebind=GENERATION serverid=Test

DCE CDS Entries Required for VisualAge Generator DCE Servers
All VisualAge Generator DCE CDS entries are placed under the
/.:/Servers/VAGenerator directory. Each serverid must have a directory,
/.:/Servers/VAGenerator/serverid.

Configuring an AIX Server

50 VisualAge Generator: Client/Server Communications Guide



Note: It might be helpful to equate serverid with an application system and
location with a server or group of servers that process requests for the
application system.

Starting the DCE Server Program
The VisualAge Generator DCE server program, CSODCES, is started on the
remote host machine and listens for incoming DCE requests and processes
them. On AIX systems, the current userid must either be root or have access
to the DCE keytab file. CSODCES takes one optional parameter and one
required parameter at startup. The required parameter is the name of the
configuration file to be used in starting up the DCE server. The optional
parameter specifies the type of cleanup the server does when it is terminated.

csodces [-c | -d ] filename

The configuration file contains the following:
v The principal name to be used by the VisualAge Generator DCE server for

DCE access and authorization
v The advertising location and serverid names of the DCE server (specified in

the location and serverid attributes of the client’s linkage table)
v The DCE ACL object to be used for client authorization
v The called server programs that it will be processing requests for (specified

in the applname attribute of the client’s linkage table).

The programs are divided into those that require authorization checking
(SECURE PROGRAMS) and those that do not require authorization checking
(PUBLIC PROGRAMS). Authorization checking has an impact on server
performance, so only use authorization when required.

The following example shows the configuration file:
DCEprincipal=vgserve1
LOCATION=Server1
SERVERID=Test
DCEACLobject=/.:/Servers/VAGenerator/Test/Server1
SECURE PROGRAMS=
SECURE1
SECURE2
PUBLIC PROGRAMS=
ELACVP5
DTCALL2
MAXSIZE
PARMSRV
PRMSRV2

The cleanup parameter is used when there is more than one server using a
serverid/location pair as its advertising location. With the -c option, which is
the default, when the server terminates it will remove its entry from the RPC
mapping, DCE runtime, and DCE CDS. If there are multiple servers

Configuring an AIX Server

Chapter 3. AIX Platform 51



advertising at a serverid/location location and one of the servers removes its
entry, then all of the servers will lose their entries. To prevent all the servers
from losing their entries, use the -d parameter which will only remove the
entry from the RPC mapping when the server terminates. There should
always be one server which is started without the -d parameter to ensure that
all entries for the DCE servers are cleaned up after they are terminated. The
server that was started without the -d parameter should be terminated last.

DIRECT Protocol

List of Valid Clients
v AIX (C++)
v Solaris (C++)

Advantages of IPC and DIRECT Protocols
The protocols IPC and DIRECT provide a method for client programs to call
server programs where both reside on the same system. A local call from the
client program to the server program might be used, but there are advantages
to making this call remotely via the VisualAge Generator middleware in
certain cases. Futhermore, these advantages differ for the provided protocols,
IPC and DIRECT, and are described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when
calling server programs. When the IPC protocol is used, each call from a
different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is

Configuring an AIX Server

52 VisualAge Generator: Client/Server Communications Guide



created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Identifying a C++ Server Location
When using the IPC or DIRECT protocols, server programs are located using
the LIBPATH environment variable. You need to ensure that the server DLL
directory is specified in the LIBPATH.

IPC Protocol

List of Valid Clients
v AIX (C++)
v Solaris (C++)

Advantages of IPC and DIRECT Protocols
The protocols IPC and DIRECT provide a method for client programs to call
server programs where both reside on the same system. A local call from the
client program to the server program might be used, but there are advantages
to making this call remotely via the VisualAge Generator middleware in
certain cases. Futhermore, these advantages differ for the provided protocols,
IPC and DIRECT, and are described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when
calling server programs. When the IPC protocol is used, each call from a
different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Configuring an AIX Server

Chapter 3. AIX Platform 53



Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is
created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Identifying the Server Location
When using the IPC or DIRECT protocols, server programs are located using
the LIBPATH environment variable. You need to ensure that the server DLL
directory is specified in the LIBPATH.

TCP/IP Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris (C++)

Identifying a C++ Server Location
The TCP/IP support servers locate the server programs via the LIBPATH
environment variable, so you need to ensure that the server DLL directory is
specified in the LIBPATH.

Server Program Set Up and Operation
The server uses a configuration file for specifying the TCP/IP service name to
listen on. The configuration file is optional as there are predefined default
values that will be used.

Start the TCP/IP server by issuing the command:

CSOTCPS "config_filename"

Configuring an AIX Server

54 VisualAge Generator: Client/Server Communications Guide



The configuration file is located via the following search order:
1. File specified on the command line
2. The file named CSO.INI in the directory specified by the CSODIR

environment variable.
3. The file named CSO.INI in the current directory

The search ends when the first one of the above conditions is met. Once a file
is identified, the contents of the file are used if possible. If the file cannot be
opened for any reason, a warning message is printed on the console and the
default values are used. CSOTCPS will display the configuration filename and
values being used prior to starting to listen for incoming requests. The default
values are:

TCP/IP service name: VAGenerator

Where:

TCP/IP service name Specifies the service name that will be used to
look up the TCP/IP port number that
CSOTCPS will listen on for incoming requests.
This entry is case sensitive and must match an
entry in the TCP/IP services file. For
Windows NT, AIX, and HP-UX the TCP/IP
SERVICES file is used.

Sample TCP/IP Entries from CSO.INI File: The following TCP/IP entries
are located in the sample CSO.INI file. All entries must start in column 1.
Comments are allowed within the file by placing a semicolon (;) in column 1
of the comment line. You only need to specify an entry if you wish to
override the default value. If duplicate entries are specified in the file, the last
entry in the file is used (just like environment variables in the config.sys file).

tcp_service_name=VAGenerator

Configuring an AIX Server

Chapter 3. AIX Platform 55



Configuring an AIX Server

56 VisualAge Generator: Client/Server Communications Guide



Chapter 4. CICS for AIX Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 57



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: CICS for AIX Platform
Type of program to configure: Client program
Configuration section: Configuring a CICS for AIX client
Intended target platform: CICS for MVS/ESA
(i.e. a CICS for MVS/ESA server program)
Chosen protocol: CICS DPL
Protocol section: CICS DPL Protocol
Target platform section: Configuring a CICS for AIX Client for a
CICS for MVS/ESA Server

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

58 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring a CICS for AIX Client

Summary Table of Valid Servers and Protocols

Table 6. Valid Servers and Protocols for VisualAge Generator Clients on the CICS for AIX Platform

Server Platforms Protocols for CICS for AIX Platform

CICS for AIX CICS DPL

CICS for MVS/ESA CICS DPL

CICS for OS/2 CICS DPL

CICS for Solaris CICS DPL

CICS for VSE/ESA CICS DPL

CICS for Windows NT CICS DPL

CICS DPL Protocol

User Authentication
The user associated with the CICS client transaction must be authorized to
run the client transaction and the server transaction. The user ID and
password are identified by the CICS transaction manager on the client system.

Setting Up Communication Links
The communication link between the client and server systems must be
defined to the CICS systems to allow a distributed program link from one
system to the other. Refer to the CICS intercommunication manual for your
CICS systems for more information.

Controlling the Unit of Work
Use the luwcontrol linkage table attribute to indicate whether the server
updates are automatically committed on return or the client controls the unit
of work. If the client is controlling the unit of work, subsequent server calls

Chapter 4. CICS for AIX Platform 59



must go to the same system and transaction under client-controlled unit of
work until a commit or roll back is requested. The server cannot issue
EZECOMIT or EZEROLLB calls if client-controlled unit of work is specified.

Data Format Conversion
Code format conversion is performed on the server call as specified in the
contable linkage attribute table and in EZECONVT. Code is converted based
on the structure of the arguments that are specified on the CALL statement in
the client program.

Error Handling
The standard error handling procedures described below are supported with
CICS DPL. If the DPL is not successful for any reason, including
unavailability of the communication link, error information is returned with
CICS in the CICS EIB (EXEC interface block).

If the REPLY option is not specified on the CALL statement, the calling
program ends with error messages. If REPLY is specified, no messages are
written or logged, and EZERT8 is set to one of the following values:

Value Meaning

00000000 Successful call and return

00000204 Program name not valid

00000207 System identifier not valid

00000208 Link out of service

ffrrrrrr Other CICS error where ff is the hexadecimal
representation of EIBFN byte 0, and rrrrrr is
the hexadecimal representation of EIBRCODE
bytes 0–2.

Configuring a CICS for AIX Client for a CICS for OS/2 Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

Configuring a CICS for AIX Client

60 VisualAge Generator: Client/Server Communications Guide



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=BINARY LUWCONTROL=CLIENT

Configuring a CICS for AIX Client for a CICS for Windows NT Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring a CICS for AIX Client

Chapter 4. CICS for AIX Platform 61



,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=BINARY LUWCONTROL=CLIENT

Configuring a CICS for AIX Client for a CICS for AIX Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

Configuring a CICS for AIX Client

62 VisualAge Generator: Client/Server Communications Guide



,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=NONE LUWCONTROL=CLIENT

Configuring a CICS for AIX Client for a CICS for MVS/ESA Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Configuring a CICS for AIX Client

Chapter 4. CICS for AIX Platform 63



v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for AIX Client for a CICS for VSE/ESA Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for AIX Client

64 VisualAge Generator: Client/Server Communications Guide



Configuring a CICS for AIX Client for a CICS for Solaris Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=NONE LUWCONTROL=CLIENT

Configuring a CICS for AIX Client

Chapter 4. CICS for AIX Platform 65



Configuring a CICS for AIX Server

Summary Table of Valid Clients and Protocols

Table 7. Valid Clients and Protocols for VisualAge Generator Servers on the CICS for AIX Platform

Server
Platform

Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and Windows
98 (GUI)

Windows NT
(GUI, C++, ITF)

AIX
(C++) CICS

Solaris
(C++)

CICS for AIX CICS Client CICS Client CICS Client CICS
Client

CICS DPL CICS Client

Notes:
CICS as a Client Platform refers to:
– CICS for AIX
– CICS for MVS/ESA
– CICS for OS/2
– CICS for Windows NT
– CICS for VSE/ESA
– CICS for Solaris

CICS Client Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris (C++)

Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable
v externalname
v library
v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype

Configuring a CICS for AIX Server

66 VisualAge Generator: Client/Server Communications Guide



v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Server Program Set Up
The server program is generated and prepared as is any other CICS program
on the server system. The server transaction must be defined to CICS on the
server system. The default transaction name associated with a server program
is the CICS-supplied mirror transaction, CPMI.

Specifying Parameter Format
COMMDATA is the only valid parameter format (the parmform attribute on
the calllink tag) that you can specify.

CICS DPL Protocol

List of Valid Clients
v CICS for AIX
v CICS for MVS/ESA
v CICS for OS/2
v CICS for Windows NT
v CICS for VSE/ESA
v CICS for Solaris

Identifying the Server Location
You can specify the server location (CICS system identifier) on the location
linkage table attribute, or dynamically set the location in the client program at
runtime using EZELOC. If the location is not specified, the default location is
the system identifier associated with the server program in the CICS program
definition on the client system.

Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable
v externalname

Configuring a CICS for AIX Server

Chapter 4. CICS for AIX Platform 67



v library
v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Server Program Set Up
The server program is generated and prepared as is any other CICS program
on the server system. In addition, there must be a CICS program definition for
the server program on the CICS client system containing the following
information:
v Resident option = remote
v Remote system identifier
v Remote program name (optional)
v Remote transaction identifier (optional)

The server transaction must be defined to CICS on the server system. The
default transaction name associated with a server program is the
CICS-supplied mirror transaction, CPMI.

Configuring a CICS for AIX Server

68 VisualAge Generator: Client/Server Communications Guide



Chapter 5. OS/2 Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 69



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: OS/2 Platform
Type of program to configure: Client program
Configuration section: Configuring an OS/2 client
Intended target platform: CICS for MVS/ESA
(i.e. a CICS for MVS/ESA server program)
Chosen protocol: CICS Client
Protocol section: CICS Client Protocol
Target platform section: Configuring an OS/2 Client for a
CICS for MVS/ESA Server

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

70 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring an OS/2 Client

Summary Table of Valid Servers and Protocols

Table 8. Valid Servers and Protocols for VisualAge Generator Clients on the OS/2 Platform

Server Platforms Protocols for OS/2 Platform

AIX TCP/IP, DCE

CICS for AIX CICS Client

HP-UX TCP/IP

IMS APPC/IMS

CICS for MVS/ESA CICS Client, LU2

OS/2 TCP/IP, DCE, IPC, DIRECT

CICS for OS/2 CICS Client

OS/400 CA/400

Solaris TCP/IP

CICS for Solaris CICS Client

VM/ESA TCP/IP

CICS for VSE/ESA CICS Client

Windows NT TCP/IP, DCE

Windows NT (Java) N/A

CICS for Windows NT CICS Client

Chapter 5. OS/2 Platform 71



APPC/IMS Protocol

User Authentication
The user authentication exit provides the user ID and the password specified
when the APPC session is allocated. User authentication is described in “User
Authentication” on page 21. The program user must be authorized to run the
transaction associated with the server call (the transaction program name used
on the LU 6.2 connection). For further information, see ″Identifying the Server
Location″.

Setting Up Communication Links
The LU 6.2 communication link between the client and server systems must
be defined to the host server system and to the client products so that an LU
6.2 session can be allocated between the client and the APPC component of
IMS on the host system. Refer to the IMS and communications product
documentation for information on setting up the LU 6.2 connection between
the client and host systems.

Controlling the Unit of Work
Each server call is an independent unit of work. Any updates made by the
server are committed when the server returns to the client. Any EZECOMIT
calls issued by the server are ignored. Calling EZEROLLB or a terminating
error caught by Server for MVS, VSE, and VM both result in a DL/I ROLB
call being issued.

Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable linkage table attribute and EZECONVT special function word. Code
is converted based on the structure of the arguments specified on the CALL
statement in the client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with IMS server calls. EZERT8 is set to
the decimal value of the client access service reason code. The reason code is
the same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Configuring an OS/2 Client for an IMS Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
client programs that call the server program via APPC:

,,:calllink applname=program name linktype= REMOTE remotecomtype= APPCIMS location= EZELOC
system name

,

Configuring an OS/2 Client

72 VisualAge Generator: Client/Server Communications Guide



,
parmform= OSLINK luwcontrol= SERVER contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
GENERATION

remotebind= RUNTIME

,/

The following attributes are ignored:
v externalname
v library
v remoteapptype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=APPCIMS

location=IMSSIDE parmform=oslink luwcontrol=server contable=ELACNENU

Client Access/400 Protocol
This chapter contains information specific to implementing client/server calls
using Client Access/400 (CA/400). Be sure to read the general information in
“Chapter 2. Introduction to Client/Server Processing with Synchronous Calls”
on page 9 before reading this chapter.

User Authentication
If the server program accesses files or relational databases, the user identified
on the client must be authorized to run the server program and to access any
files or relational tables using dynamic SQL statements.

The connection will be made automatically on the first server call if it was not
started prior to the call. The connection function prompts for the user ID and
password. The OS/2 Communications Manager must be running before the
connection can be made.

Controlling the Unit of Work
Use the luwcontrol linkage table attribute to indicate whether server updates
are automatically committed on return or whether the client controls the unit
of work. All calls to the same OS/400 from the same client session run under
the same OS/400 job. If you mix server-controlled unit of work calls with
client-controlled unit of work calls, be aware that any commit or rollback,
client or server, issued under that job will commit or rollback all outstanding
updates in effect for that job.

Data Format Conversion
Code format conversion is performed on the call to the server program as
directed by the developer using the contable linkage table attribute and

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 73



EZECONVT. Code is converted based on the structure of the parameters
specified on the server call in the client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with Client Access/400. EZERT8 is set to
the decimal value of the client access service reason code. The reason code is
the same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Any error messages logged on the server are spooled to the OS/400 user ID
of the user signed on to Client Access/400 on the client system. The job log
will contain all messages logged since the job was started. The client access
job is a prestarted job used repeatedly by many users; therefore, the job log
may contain messages from other remote commands. Move to the bottom of
the job log to see the last set of error messages.

Configuring an OS/2 Client for an OS/400 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call OS/400 server programs via CA/400:

,, :calllink applname=program name contable= conversion table name
’*’
EZECONVT
NONE
BINARY

,

, linktype= REMOTE library=library name remotecomtype= CA400 ,

,
parmform= OSLINK applname

externalname=

,

,
location= EZELOC

system name
CLIENT

luwcontrol= SERVER

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,/

The following attributes are ignored:
v serverid

Configuring an OS/2 Client

74 VisualAge Generator: Client/Server Communications Guide



Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CA400
contable=ELACNENU library=ELACVP5 parmform=OSLINK location=SILVER6

Client Access/400 Set Up: Client programs use the Client Access/400 Remote
Command/Distributed Program Call APIs to call the generated server
program. Ensure that you have done the following before attempting to run
the VisualAge Generator client program:
v Install the appropriate Client Access/400 product on the OS/2client system
v Start the communication manager. Client Access/400 will then attempt to

start the communication link when the VisualAge Generator program issues
the remote command.

Your Client Access/400 set up determines whether LU 6.2 or TCP/IP is used
for communication.

For further information, refer to the following manual:
v Client Access/400 Optimized for OS/2 - Getting Started, SC41-3510.

Reducing the Amount of Memory Required by Client Access/400 Optimized
for OS/2: This section describes how to reduce the amount of memory
required by Client Access/400 Optimized for OS/2 and allows the Distributed
Program Call APIs to call the generated server. When the following
recommendations are applied, VisualAge Generator clients and Client
Access/400 run well on a 16MB, 33 MHz 486 system with OS/2.
1. Modify your config.sys file by completing the following steps:

a. Remove or REM out the following lines: (note the // are comments
describing the function of these lines they do not appear in config.sys)

- CALL=F:\CAOS2\PRPP2.EXE F:\CAOS2 // Update locked file processor
- RUN=F:\CAOS2\DMISL.EXE // DMI Service Layer
- IFS=F:\CAOS2\CWBBS.IFS // Network drive file system
- DEVICE=F:\CAOS2\CWBNPRDR.SYS // Network printer redirector
- IFS=F:\CAOS2\CWBNPFS.IFS // Network printer file system
- RUN=F:\CAOS2\CWBDAEMN.EXE // Network daemon
- IFS=F:\CAOS2\EHNSFL0.DLL // V2 network drive file system
- DEVICE=F:\CAOS2\EHNPCPDD.SYS // DOS/Windows comm support
- DEVICE=F:\CAOS2\EHNPCVDD.SYS // DOS/Windows comm support

It is highly recommended that you add the following statement:

SET RESTARTOBJECTS=STARTUPFOLDERSONLY

b. Reboot after modifying your config.sys.
2. Modify CASERV.CMD file located in the CAOS2 directory by completing

the following steps:

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 75



a. Remove or REM out the following lines: (note the // are comments
describing the function of these lines they do not appear in
CASERV.CMD)

- CWBLOG.EXE START // Service history logging
- STARTRTR.EXE /G // 16-bit router
- VDMSERV.EXE /Z // DOS/Windows box communication server
- CWBBSTRT.EXE // Network drives daemon
- DETACH CWBMGD.EXE // Client Management daemon

3. Stop CM Attach Manager by completing the following steps:
a. From the Client Access Folder, select the Client Access/400

Components folder; then select Communications Manager; then select
Subsystem Management.

b. From APPC attach Manager, select Service; then select Stop Normal
c. Deactivate links to other systems you do not need

4. The following changes are also possible:
v Remove any unnecessary device drivers from CONFIG.SYS
v Use LAPS or MPTS configuration to remove unneeded protocol stacks.

DPC only requires 802.2 for SNA connections.
v Remove DOS/Windows box device drivers from CONFIG.SYS, if DOS

or Windows support is not required. You can also remove this through
the OS/2 selective install feature. Also, you can set
PROTECTONLY=YES, which will return about 1M to OS/2 instead of
reserving it for DOS programs.

rem // DOS stuff not needed if PROTECTONLY=YES...
PROTECTONLY=YES
rem SHELL=D:\OS2\MDOS\COMMAND.COM D:\OS2\MDOS /P
rem FCBS=16,8
RMSIZE=0
rem DEVICE=D:\OS2\MDOS\VW32S.SYS
rem DEVICE=D:\OS2\MDOS\VWIN.SYS
rem DEVICE=D:\OS2\MDOS\VW32S.SYS
rem DEVICE=D:\OS2\MDOS\VVGA.SYS
rem DEVICE=D:\OS2\MDOS\VXGA.SYS

v Preallocate the SWAP file.
The initial size of the OS/2 swap file can be set in the CONFIG.SYS file.
It has a default of 2048. Depending on the amount of memory on your
system and the number of programs you normally run, the final size of
the swap file will be considerably larger. Setting the initial size so that it
is relatively close to the final setting prevents resizing the swap file.
Find the swap file entry in your CONFIG.SYS file
SWAPPATH=d:\OS2\SYSTEM 2048 2048 and change it to your final
setting.
For example:

Configuring an OS/2 Client

76 VisualAge Generator: Client/Server Communications Guide



SWAPPATH=d:\OS2\SYSTEM 2048 16048
v Minimize some OS/2 settings: (note the // are comments describing the

function of these lines they do not appear in config.sys)

IFS=D:\OS2\HPFS.IFS /CACHE:64 //minimize disk cache to 64K
BUFFERS=30 //minimize file buffers
rem DISKCACHE=D,LW //DISKCACHE is a FAT only setting
rem BASEDEV=IBM1FLPY.ADD //not needed on PS/2 micro channel PC

v Remove or REM Network protocols and device drivers that are not
needed.
For example:

rem // NetBios
rem DEVICE=D:\IBMCOM\PROTOCOL\NETBEUI.OS2
rem DEVICE=D:\IBMCOM\PROTOCOL\NETBIOS.OS2
rem // Lan Requester
rem DEVICE=D:\IBMLAN\NETPROG\RDRHELP.200
rem IFS=D:\IBMLAN\NETPROG\NETWKSTA.200 /I:D:\IBMLAN /N
rem RUN=D:\IBMLAN\NETPROG\LSDAEMON.EXE
rem // CID install
rem DEVICE=E:\ODDCS\SRVIFS.SYS
rem IFS=E:\ODDCS\SRVIFSC.IFS *
rem // TCP/IP
rem RUN=E:\TCPIP\BIN\CNTRL.EXE
rem IFS=E:\TCPIP\BIN\NFS200.IFS
rem DEVICE=E:\TCPIP\BIN\VDOSTCP.VDD
rem DEVICE=E:\TCPIP\BIN\VDOSTCP.SYS
rem RUN=E:\TCPIP\BIN\VDOSCTL.EXE
rem DEVICE=E:\TCPIP\BIN\SNACKETS.SYS
rem DEVICE=E:\TCPIP\BIN\SXIFNDIS.SYS

v Reboot after changes are applied to your config.sys file.

CICS Client Protocol

User Authentication
The user authentication exit (see “User Authentication” on page 21) provides
the user ID and the password specified on the ECI call. The program user
must be authorized to run the transaction associated with the server call.

The user exit can return NULLs for the userid and password. The default exit
returns the contents of the environment variables CSOUID and CSOPWD as
the userid and password. If nulls are specified on the ECI call, the CICS Client
determines the user ID and password in a system-dependent fashion. Refer to
the CICS Client documentation for your environment for further information.

Setting Up Communication Links
The communication link between the client and server systems must be
defined to the CICS server system and client products to allow an ECI call to
flow from a CICS Client product to server systems. CICS Client, the

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 77



communications software, is installed and configured on the client. Refer to
CICS CLIENT documentation. The CICS server environment must have a
″listener″ defined and requires other entries if remote programs are called.
Refer to CICS documentation for more information. Refer to the CICS
intercommunication documentation for your CICS systems and client products
for additional information.

Identifying the CICS Transaction for the Server
The CICS transaction name associated with the server program is specified in
the serverid linkage table attribute. If not specified, the default transaction is
the CICS-supplied mirror transaction, CPMI.

Controlling the Unit of Work

Extended Units of Work: Multiple synchronous calls to CICS servers can be
issued from the same client. You can use the extended unit of work feature of
ECI to include several calls to the same system within the same unit of work
by specifying luwcontrol=CLIENT in the linkage table for the server programs.
For CICS servers, the default value for LUWCONTROL is client unit of work.
The extended unit of work ends when the client program calls EZECOMIT or
EZEROLLB, which results in an ECI call to commit or roll back any extended
transactions that are currently active.

A separate ECI extended unit of work (CICS transaction) is started for each
unique serverid/location pair. Servers on the same system running under
the same SERVERID (transaction name) are part of the same CICS extended
transaction. A client EZECOMIT or ROLLBACK call ends all the extended
transactions currently in effect for the client.

The server cannot issue EZECOMIT or EZEROLLB calls if the client unit of
work was in effect for the server call.

Server Unit of Work: You can specify luwcontrol=SERVER in the linkage
table. With this specification, each server call is a separate unit of work. The
server program can issue commit or rollback requests as well.

Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable linkage table attribute and EZECONVT special function word. Code
is converted based on the structure of the arguments specified on the CALL
statement in the client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with CICS ECI. EZERT8 is set to the
decimal value of the client access service reason code. The reason code is the

Configuring an OS/2 Client

78 VisualAge Generator: Client/Server Communications Guide



same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Specifying Parameter Format
Parameter format (the parmform attribute on the calllink tag) can be specified
as COMMDATA (data values passed in the COMMAREA) or COMMPTR
(pointers passed in the COMMAREA).

Using COMMPTR Format: Use COMMPTR for calling COBOL subroutines
that were developed to use the non-VAGen parameter passing convention that
uses pointers in the CICS COMMAREA. When the pointer format is used, the
generated client program calls an intermediate catcher program (ELACSV,
provided with VisualAge Generator host services) via the ECI instead of
calling the server program directly. The catcher program receives the
parameter data from the client, builds a pointer list in the COMMAREA that
points to the individual parameters, and links to the server program. A
program processing table (PPT) must be defined for the ELACSV program on
the CICS server system.

COMMPTR format is only supported for MVS CICS, CICS for VSE/ESA, and
CICS OS/2 servers.

Using COMMDATA Format: Use COMMDATA for calling generated
programs and for calling COBOL subroutines where possible. COMMDATA
provides better performance in calling remote programs. With COMMDATA,
the server program is called directly without going through the catcher
program.

Configuring an OS/2 Client for a CICS for OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 79



,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST

Configuring an OS/2 Client for a CICS for Windows NT Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

Configuring an OS/2 Client

80 VisualAge Generator: Client/Server Communications Guide



,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST

Configuring an OS/2 Client for a CICS for AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 81



v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

Configuring an OS/2 Client for a CICS for MVS/ESA Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=ELACNENU

Configuring an OS/2 Client

82 VisualAge Generator: Client/Server Communications Guide



Configuring an OS/2 Client for a CICS for VSE/ESA Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=ELACNENU

Configuring an OS/2 Client for a CICS for Solaris Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 83



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

DCE Protocol

Processing Flow for VisualAge Generator DCE Common Services Remote
Call
This section shows the processing flow for a VisualAge Generator DCE
common services remote call.
1. VisualAge Generator DCE Server is started using a configuration file

which specifies the DCE principal name that the server will obtain its DCE
authorizations from (equivalent to a DCE userid), the location and the
serverid name for binding information advertising, the Access Control List
(ACL) object for client authorization, and the server programs that the
server is authorized to process. The server programs are specified in one
of two different groups; those in which secure DCE (authenticated RPC)
communications are required and those which can be accessed via
unsecured (unauthenticated RPC) DCE communications.
The server obtains an object UUID for each program from the CDS object
/.:/Servers/VAGenerator/SERVERID/program. If the program object is

Configuring an OS/2 Client

84 VisualAge Generator: Client/Server Communications Guide



not defined, one will be created for it. The server uses the program object
UUIDs when it advertises its binding information.

2. VisualAge Generator DCE Server advertises each of the programs that it
services. The Cell Directory Services (CDS) location used for advertising
the binding information is
/.:/Servers/VAGenerator/SERVERID/LOCATION.

3. VisualAge Generator client retrieves the object UUID for the program from
/.:/Servers/VAGenerator/SERVERID/program-name. It then uses the
object UUID to request the binding information for a server which services
the program from the CDS location
/.:/Servers/VAGenerator/SERVERID/LOCATION. If there are multiple
server bindings that match the search criteria, DCE will randomly return
one of them.

4. VisualAge Generator client will setup for authenticated RPC, if
DCESECURE is specified in the linkage table.

5. VisualAge Generator client performs data conversion on passed
parameters as specified in the contable attribute of the client linkage table
(runtime or generation time as applicable).

6. VisualAge Generator client makes remote call to VisualAge Generator DCE
Server.

7. VisualAge Generator DCE Server checks if VisualAge Generator client is
authorized to use server program (via DCE CDS Access Control List) and
if the appropriate level of communication security is being used from the
client.

8. VisualAge Generator DCE Server checks if the server program requested is
one that it is authorized to process (via initial configuration file).

9. VisualAge Generator DCE Server processes client request, closes Logical
Unit of Work, and returns data to client.

User Authentication and Authorization
User authentication is performed on the client via the DCE security server
using the client’s DCE login identifier. The VisualAge Generator DCE server
checks whether the client is authorized to call the DCE server using DCE ACL
security services. User authorization is performed via the DCE ACL security
services. The VisualAge Generator DCE server is told at startup time the DCE
object ACL to use for checking client authorization for running the called
server programs. There is only one ACL used per VisualAge Generator DCE
server; therefore, the authorization is at the VisualAge Generator DCE server
level and not the called program level. If a called program requires a special
ACL, then another VisualAge Generator DCE server will have to be created or
started. The test ACL attribute determines whether or not the client is
authorized to execute the server program (if the client has test privileges on
the ACL object, then the client is authorized to execute all server programs
provided by the server).

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 85



Controlling the Unit of Work
All calls via the DCE common services are server units of work. All resource
changes are committed when the server returns to the calling program.

Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable attribute for the server entry in the linkage table. Data is converted
based on the structure of the parameters specified on the server call in the
client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with VisualAge Generator DCE common
services. EZERT8 is set to the decimal value of the client access service reason
code. EZERT8 is only set when the REPLY option is coded on the call to the
remote server program. If a visual link is used to make the call from a GUI
program, the REPLY option is used on the call.

Any errors trapped by DCE are passed to the client program with a
corresponding CSO error message. The error message contains an insert with
the DCE mnemonic. A non-zero return code from the called program is
passed back to the client program with a corresponding CSO error message.
The error message contains an insert with the return code from the called
program. VisualAge Generator return codes are documented in the help for
the message.

All errors are traced to the CSO trace file on the client and server machines,
as applicable.

Configuring an OS/2 Client for an OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

,, :calllink applname=program name linktype= REMOTE ,

, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

Configuring an OS/2 Client

86 VisualAge Generator: Client/Server Communications Guide



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:
v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 remotebind=RUNTIME serverid=Test

Configuring an OS/2 Client for a Windows NT Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

,, :calllink applname=program name linktype= REMOTE ,

, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 87



v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 remotebind=RUNTIME serverid=Test

Configuring an OS/2 Client for an AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

,, :calllink applname=program name linktype= REMOTE ,

, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:
v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 contable=BINARY remotebind=RUNTIME serverid=Test

Configuring an OS/2 Client

88 VisualAge Generator: Client/Server Communications Guide



DIRECT Protocol

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with IPC and DIRECT server calls.
EZERT8 is set to the decimal value of the client access service reason code.
The reason code is the same as the number portion of error message
CSOnnnna as listed in the VisualAge Generator Messages and Problem
Determination Guide document.

Configuring an OS/2 Client for an OS/2 Server

Advantages of IPC and DIRECT Protocols: The protocols IPC and DIRECT
provide a method for client programs to call server programs where both
reside on the same system. A local call from the client program to the server
program might be used, but there are advantages to making this call remotely
via the VisualAge Generator middleware in certain cases. Futhermore, these
advantages differ for the provided protocols, IPC and DIRECT, and are
described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when
calling server programs. When the IPC protocol is used, each call from a
different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is
created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 89



Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via DIRECT:

,, :calllink applname=program name linktype= CSOCALL remotecomtype= DIRECT ,/

While the specification of:

,, contable= conversion table name
’*’
EZECONVT
NONE
BINARY

,/

is permissible, data conversion is generally not necessary when the client and
server reside on the same system. All other linkage table entries are ignored
on a local (DIRECT) call.

Example Linkage Table
:calllink applname=ELACVP5 linktype=CSOCALL remotecomtype=DIRECT

IPC Protocol

Advantages of IPC and DIRECT Protocols
The protocols IPC and DIRECT provide a method for client programs to call
server programs where both reside on the same system. A local call from the
client program to the server program might be used, but there are advantages
to making this call remotely via the VisualAge Generator middleware in
certain cases. Futhermore, these advantages differ for the provided protocols,
IPC and DIRECT, and are described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when
calling server programs. When the IPC protocol is used, each call from a

Configuring an OS/2 Client

90 VisualAge Generator: Client/Server Communications Guide



different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is
created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with IPC and DIRECT server calls.
EZERT8 is set to the decimal value of the client access service reason code.
The reason code is the same as the number portion of error message
CSOnnnna as listed in the VisualAge Generator Messages and Problem
Determination Guide document.

Configuring an OS/2 Client for an OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via IPC:

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 91



,, :calllink applname=program name linktype= CSOCALL remotecomtype= IPC ,/

While the specification of:

,, contable= conversion table name
’*’
EZECONVT
NONE
BINARY

,/

is permissable, data conversion is generally not necessary when the client and
server reside on the same system. All other linkage table entries are ignored
on a local (IPC) call.

Example Linkage Table
:calllink applname=ELACVP5 linktype=CSOCALL remotecomtype=IPC

LU2 Protocol

Customizing a Communication Client for LU2
LU 2 signing on and off of a CICS/ESA region is accomplished through the
use of two script files, MFLOGON.SCR and MFLOGOFF.SCR. These script
files emulate the commands a user would use to establish a LU 2 session,
signing on to a CICS region and then stopping the session. A 24x80 screen
size is required to use the VisualAge Generator LU 2 support.

MFLOGON.SCR
Establishes the session and optionally signs on to the region.

MFLOGOFF.SCR
Handles signing off and stopping the session.

The LU2_LOGON_SCRIPT and the LU2_LOGOFF_SCRIPT entries in the
CSO.INI file identify the directory where the MFLOGON.SCR and
MFLOGOFF.SCR script files are located.

Examples of the MFLOGON.SCR and MFLOGOFF.SCR script files are
provided in the samples directory.

The following example shows the LU 2 statements in the CSO.INI file that
identify the location of the logon and logoff scripts:

LU2_LOGON_SCRIPT=C:\CSODIR\MFLOGON.SCR
LU2_LOGOFF_SCRIPT=C:\CSODIR\MFLOGOFF.SCR

Configuring an OS/2 Client

92 VisualAge Generator: Client/Server Communications Guide



In the VisualAge Generator client/server communication script language,
every non-blank line must begin with a comment marker (//) or a script verb.
The script verbs are shown in Table 9:

Table 9. VisualAge Generator Client/Server Communication Script Verbs

Verb Description

CONNECTPS Establishes a connection between the client
program and one of the supplied session
IDs.
v Syntax: CONNECTPS

<a_list_of_session_IDs>;
v Return: 0 if successful, nonzero

otherwise

Example:

CONNECTPS a b c;

DISCONNECTPS Drops the connection between the client
program and the terminal.
v Syntax: DISCONNECTPS;
v Return: 0 if successful, nonzero

otherwise

Example:

DISCONNECTPS;

SEND Sends one or more keystrokes to the
current connect terminal session. The
following keystrokes are supported:
v CLEAR
v END
v ENTER
v HOME
v PA1 through PA3
v PF1 through PF24
v SPACE
v SYSREQ
v TAB
v Syntax: SEND

<one_or_more_keystokes>;
v Return: 0 if successful, nonzero

otherwise

Example:

SEND ENTER;

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 93



Table 9. VisualAge Generator Client/Server Communication Script Verbs (continued)

Verb Description

SETCURSOR Sets the cursor position.
v Syntax: SETCURSOR <row_number>

<column_number>;
v Return: None

Example:

SETCURSOR 24 1;

PAUSE Pauses for the number of seconds
specified.
v Syntax: PAUSE <number_of_seconds>;
v Return: None

Example:

PAUSE 3;

SEARCHPS Searches the host presentation space for
the specified string. The string search is
case sensitive.
v Syntax: SEARCHPS <a_string>;
v Return: 0 if the string is found on the

host screen, nonzero otherwise

Example:

SEARCHPS WELCOME TO CICS/ESA;

WRITE Copies text directly onto the host screen at
the current cursor position.
v Syntax: WRITE <a_strings>;
v Return: 0 if successful, nonzero

otherwise

Example:

WRITE CESN USERID=SYSAD,PS=SYSAD;

At run time, several of the script verbs return a value to the VisualAge
Generator client/server communication support services. When a script verb
returns a nonzero value, the following happens:
v VisualAge Generator client/server communication support stops

interpreting the script file.
v An error code is set for use by the client program.

Configuring an OS/2 Client

94 VisualAge Generator: Client/Server Communications Guide



Configuring an OS/2 Client for a CICS for MVS/ESA Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via LU 2:

,, :calllink applname=program name linktype= REMOTE parmform= COMMDATA ,

, remotecomtype= LU2
serverid= server identifier

,/

Example Linkage Table
:calllink applname=ELACVP5 parmform=COMMDATA linktype=REMOTE remotecomtype=LU2

location=CICSTST

TCP/IP Protocol

Creating a TCP/IP Services File Entry
The client machine must have an entry for the TCP/IP Serverid added to its
TCP/IP services file. On OS/2, the services file resides in the etc subdirectory
which can be located by issuing the command ″set etc″ (without the double
quotes).

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with TCPIP server calls. EZERT8 is set to
the decimal value of the client access service reason code. The reason code is
the same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Configuring an OS/2 Client for an OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 95



,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring an OS/2 Client for a Windows NTServer

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

Configuring an OS/2 Client

96 VisualAge Generator: Client/Server Communications Guide



The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring an OS/2 Client for an AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 contable=BINARY remotebind=RUNTIME serverid=port1

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 97



Configuring an OS/2 Client for an HP-UX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 contable=BINARY remotebind=RUNTIME serverid=port1

Configuring an OS/2 Client for a Solaris Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

Configuring an OS/2 Client

98 VisualAge Generator: Client/Server Communications Guide



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 contable=BINARY remotebind=RUNTIME serverid=port1

Configuring an OS/2 Client for a VM/ESA Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

Configuring an OS/2 Client

Chapter 5. OS/2 Platform 99



,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 contable=ELACNENU remotebind=RUNTIME serverid=port1

Configuring an OS/2 Server

Summary Table of Valid Clients and Protocols

Table 10. Valid Clients and Protocols for VisualAge Generator Servers on the OS/2 Platform

Server Platforms Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and Windows
98 (GUI)

Windows NT
(GUI, C++,
ITF) AIX ( C++) Solaris (C++)

OS/2 TCP/IP, DCE,
IPC, DIRECT

TCP/IP, DCE TCP/IP, DCE TCP/IP, DCE TCP/IP

DCE Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)

Identifying the Server Location
The server location is determined by the bindings advertised in the DCE CDS
database. The bindings are found in the DCE CDS location object located at
/.:/Servers/VAGenerator/SERVERID/LOCATION. Identify the server
location to the client by specifying the location identifier in the location
linkage table attribute in the entry for the server program, or set the location
dynamically in the client program at runtime using EZELOC.

Configuring an OS/2 Client

100 VisualAge Generator: Client/Server Communications Guide



Linkage Table Attributes for Generating Server Programs
To generate native OS/2, AIX, or Windows NT server programs, no linkage
table entry is required. If the server program is going to make remote calls (it
is the second tier of a three tier client/server system) then a linkage table
needs to be provided at generation time just as if it was a client program.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 remotebind=GENERATION serverid=Test

DCE CDS Entries Required for VisualAge Generator DCE Servers
All VisualAge Generator DCE CDS entries are placed under the
/.:/Servers/VAGenerator directory. Each serverid must have a directory,
/.:/Servers/VAGenerator/serverid.

Note: It might be helpful to equate serverid with an application system and
location with a server or group of servers that process requests for the
application system.

DIRECT Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)

Linkage Table Attributes for Generating Server Programs
To generate native OS/2 server programs no linkage table entry is required.

Identifying a C++ Server Location
When using the IPC or DIRECT protocols, server programs are located using
the LIBPATH environment variable. You need to ensure that the server DLL
directory is specified in the LIBPATH.

IPC Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)

Linkage Table Attributes for Generating Server Programs
To generate native OS/2 server programs no linkage table entry is required.

Identifying the Server Location
When using the IPC or DIRECT protocols, server programs are located using
the LIBPATH environment variable. You need to ensure that the server DLL
directory is specified in the LIBPATH.

Configuring an OS/2 Server

Chapter 5. OS/2 Platform 101



TCP/IP Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris (C++)

Linkage Table Attributes for Generating Server Programs
To generate native OS/2 server programs no linkage table entry is required.

Identifying a C++ Server Location
The TCP/IP support servers locate the server programs via the LIBPATH
environment variable, so you need to ensure that the server DLL directory is
specified in the LIBPATH.

C++ Server Program Set Up and Operation
The server uses a configuration file for specifying the TCP/IP service name to
listen on. The configuration file is optional as there are predefined default
values that will be used. The configuration file can also be used to modify a
″performance″ parameter, tcp_start_process.

Start the TCP/IP server by issuing the command:

CSOTCPS "config_filename"

The configuration file is located via the following search order:
1. File specified on the command line
2. The file named CSO.INI in the directory specified by the CSODIR

environment variable.
3. The file named CSO.INI in the current directory

The search ends when the first one of the above conditions is met. Once a file
is identified, the contents of the file are used if possible. If the file cannot be
opened for any reason, a warning message is printed on the console and the
default values are used. CSOTCPS will display the configuration filename and
values being used prior to starting to listen for incoming requests. The default
values are:

TCP/IP service name: VAGenerator
tcp_start_process: 4

Where:

TCP/IP service name Specifies the service name that will be used to
look up the TCP/IP port number that

Configuring an OS/2 Server

102 VisualAge Generator: Client/Server Communications Guide



CSOTCPS will listen on for incoming requests.
This entry is case sensitive and must match an
entry in the TCP/IP services file. For
Windows NT, AIX, and HP-UX the TCP/IP
SERVICES file is used.

tcp_start_process Specifies the number of server processes
which will be prestarted. This number must
be at least 1. Very lightly loaded systems
could get away with specifying a lower value
if you needed to minimize the number of
running processes. Heavily loaded systems
could see a moderate performance gain by
increasing this value.

Sample TCP/IP Entries from CSO.INI File: The following TCP/IP entries
are located in the sample CSO.INI file. All entries must start in column 1.
Comments are allowed within the file by placing a semicolon (;) in column 1
of the comment line. You only need to specify an entry if you wish to
override the default value. If duplicate entries are specified in the file, the last
entry in the file is used (just like environment variables in the config.sys file).

tcp_service_name=VAGenerator
tcp_start_process=2

Configuring an OS/2 Server

Chapter 5. OS/2 Platform 103



Configuring an OS/2 Server

104 VisualAge Generator: Client/Server Communications Guide



Chapter 6. CICS for OS/2 Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 105



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: CICS for OS/2 Platform
Type of program to configure: Client program
Configuration section: Configuring an CICS for OS/2 client
Intended target platform: CICS for MVS/ESA
(i.e. a CICS for MVS/ESA server program)
Chosen protocol: CICS DPL
Protocol section: CICS DPL Protocol
Target platform section: Configuring a CICS for OS/2 Client for a
CICS for MVS/ESA Server

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

106 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring a CICS for OS/2 Client

Summary Table of Valid Servers and Protocols

Table 11. Valid Servers and Protocols for VisualAge Generator Clients on the CICS for OS/2 Platform

Server Platforms Protocols for CICS for OS/2 Client Platform

CICS for AIX CICS DPL

CICS for MVS/ESA CICS DPL

CICS for OS/2 CICS DPL

CICS for Solaris CICS DPL

CICS for VSE/ESA CICS DPL

CICS for Windows NT CICS DPL

CICS DPL Protocol

User Authentication
The user associated with the CICS client transaction must be authorized to
run the client transaction and the server transaction. The user ID and
password are identified by the CICS transaction manager on the client system.

Setting Up Communication Links
The communication link between the client and server systems must be
defined to the CICS systems to allow a distributed program link from one
system to the other. Refer to the CICS intercommunication manual for your
CICS systems for more information.

Controlling the Unit of Work
Use the luwcontrol linkage table attribute to indicate whether the server
updates are automatically committed on return or the client controls the unit
of work. If the client is controlling the unit of work, subsequent server calls

Chapter 6. CICS for OS/2 Platform 107



must go to the same system and transaction under client-controlled unit of
work until a commit or roll back is requested. The server cannot issue
EZECOMIT or EZEROLLB calls if client-controlled unit of work is specified.

Data Format Conversion
Code format conversion is performed on the server call as specified in the
contable linkage attribute table and in EZECONVT. Code is converted based
on the structure of the arguments that are specified on the CALL statement in
the client program.

Error Handling
The standard error handling procedures described below are supported with
CICS DPL. If the DPL is not successful for any reason, including
unavailability of the communication link, error information is returned with
CICS in the CICS EIB (EXEC interface block).

If the REPLY option is not specified on the CALL statement, the calling
program ends with error messages. If REPLY is specified, no messages are
written or logged, and EZERT8 is set to one of the following values:

Value Meaning

00000000 Successful call and return

00000204 Program name not valid

00000207 System identifier not valid

00000208 Link out of service

ffrrrrrr Other CICS error where ff is the hexadecimal
representation of EIBFN byte 0, and rrrrrr is
the hexadecimal representation of EIBRCODE
bytes 0–2.

Configuring a CICS for OS/2 Client for a CICS for OS/2 Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

Configuring a CICS for OS/2 Client

108 VisualAge Generator: Client/Server Communications Guide



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 LUWCONTROL=CLIENT

Configuring a CICS for OS/2 Client for a CICS for Windows NT Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring a CICS for OS/2 Client

Chapter 6. CICS for OS/2 Platform 109



,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 LUWCONTROL=CLIENT

Configuring a CICS for OS/2 Client for a CICS for AIX Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

Configuring a CICS for OS/2 Client

110 VisualAge Generator: Client/Server Communications Guide



,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=BINARY LUWCONTROL=CLIENT

Configuring a CICS for OS/2 Client for a CICS for MVS/ESA Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Configuring a CICS for OS/2 Client

Chapter 6. CICS for OS/2 Platform 111



v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for OS/2 Client for a CICS for VSE/ESA Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for OS/2 Client

112 VisualAge Generator: Client/Server Communications Guide



Configuring a CICS for OS/2 Client for a CICS for Solaris Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=BINARY LUWCONTROL=CLIENT

Configuring a CICS for OS/2 Client

Chapter 6. CICS for OS/2 Platform 113



Configuring a CICS for OS/2 Server

Summary Table of Valid Clients and Protocols

Table 12. Valid Clients and Protocols for VisualAge Generator Servers on the CICS for OS/2 Platform

Server
Platforms

Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and Windows
98 (GUI)

Windows NT
(GUI, C++, ITF)

AIX
(C++) CICS

Solaris
(C++)

CICS for OS/2 CICS Client CICS Client CICS Client CICS
Client

CICS DPL CICS Client

Notes:
CICS as a Client Platform refers to:
– CICS for AIX
– CICS for MVS/ESA
– CICS for OS/2
– CICS for Windows NT
– CICS for VSE/ESA
– CICS for Solaris

CICS Client Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris (C++)

Identifying the Server Location
Specify the server location (system identifier) in the LOCATION linkage table
attribute. You can also set the location dynamically in the client program at
run time using EZELOC. If the server location is not specified, the default is
the first entry in the CICS Client initialization file.

Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable
v externalname

Configuring a CICS for OS/2 Server

114 VisualAge Generator: Client/Server Communications Guide



v library
v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Server Program Set Up
The server program is generated and prepared as is any other CICS program
on the server system. The server transaction must be defined to CICS on the
server system. The default transaction name associated with a server program
is the CICS-supplied mirror transaction, CPMI.

Specifying Parameter Format
Parameter format (the parmform attribute on the calllink tag) can be specified
as COMMDATA (data values passed in the COMMAREA) or COMMPTR
(pointers passed in the COMMAREA).

Using COMMPTR Format: Use COMMPTR for calling COBOL subroutines
that were developed to use the non-VAGen parameter passing convention that
uses pointers in the CICS COMMAREA. When the pointer format is used, the
generated client program calls an intermediate catcher program (ELACSV,
provided with VisualAge Generator host services) via the ECI instead of
calling the server program directly. The catcher program receives the
parameter data from the client, builds a pointer list in the COMMAREA that
points to the individual parameters, and links to the server program. A
program processing table (PPT) must be defined for the ELACSV program on
the CICS server system.

COMMPTR format is only supported for MVS CICS, CICS for VSE/ESA, and
CICS OS/2 servers.

Note: When calling COMMPTR programs in CICS for OS/2, you must
specify contable=NONE in the linkage table entry.

Using COMMDATA Format: Use COMMDATA for calling generated
programs and for calling COBOL subroutines where possible. COMMDATA

Configuring a CICS for OS/2 Server

Chapter 6. CICS for OS/2 Platform 115



provides better performance in calling remote programs. With COMMDATA,
the server program is called directly without going through the catcher
program.

CICS DPL Protocol

List of Valid Clients
v CICS for AIX
v CICS for MVS/ESA
v CICS for OS/2
v CICS for Windows NT
v CICS for VSE/ESA
v CICS for Solaris

Identifying the Server Location
You can specify the server location (CICS system identifier) on the location
linkage table attribute, or dynamically set the location in the client program at
runtime using EZELOC. If the location is not specified, the default location is
the system identifier associated with the server program in the CICS program
definition on the client system.

Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable
v externalname
v library
v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Configuring a CICS for OS/2 Server

116 VisualAge Generator: Client/Server Communications Guide



Server Program Set Up
The server program is generated and prepared as is any other CICS program
on the server system. In addition, there must be a CICS program definition for
the server program on the CICS client system containing the following
information:
v Resident option = remote
v Remote system identifier
v Remote program name (optional)
v Remote transaction identifier (optional)

The server transaction must be defined to CICS on the server system. The
default transaction name associated with a server program is the
CICS-supplied mirror transaction, CPMI.

Configuring a CICS for OS/2 Server

Chapter 6. CICS for OS/2 Platform 117



Configuring a CICS for OS/2 Server

118 VisualAge Generator: Client/Server Communications Guide



Chapter 7. OS/400 Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 119



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: OS/400 Platform
Type of program to configure: Server program
Configuration section: Configuring an OS/400 server
Intended target platform: OS/2 (i.e. an OS/2 client program)
Chosen protocol: Client Access/400
Protocol section: Client Access/400 Protocol

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

120 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring an OS/400 Client

Summary Table of Valid Servers and Protocols

Table 13. Valid Servers and Protocols for VisualAge Generator Clients on the OS/400 Platform

Server Platforms Protocols for OS/400 Client Platform

AIX N/A

CICS for AIX N/A

HP-UX N/A

IMS N/A

CICS for MVS/ESA N/A

OS/2 N/A

CICS for OS/2 N/A

OS/400 N/A

Solaris N/A

CICS for Solaris N/A

VM/ESA N/A

CICS for VSE/ESA N/A

Windows NT N/A

Windows NT (Java) N/A

CICS for Windows NT N/A

Notes:
N/A = Not available

Chapter 7. OS/400 Platform 121



Configuring an OS/400 Server

Summary Table of Valid Clients and Protocols

Table 14. Valid Clients and Protocols for VisualAge Generator Servers on the OS/400 Platform

Server Platform Client Platforms

OS/2 (GUI, C++, ITF)
Windows 95 and
Windows 98 (GUI)

Windows NT (GUI,
C++, ITF)

OS/400 CA/400 CA/400 CA/400

Client Access/400 Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)

Server Program Set Up

VisualAge Generator Server Programs: The server program is generated and
prepared like any other OS/400 program, with the following additions:
v The program must be in the QVGN activation group. This is done for you

during preparation unless you have modified the preparation templates.
v A runtime CL file is generated for the program, uploaded to the OS/400,

and compiled into the same library into which the server program resides
(DESTLIB generation option). The CL file name is applname_R (the
program name with an _R appended).
At run time, the client calls a catcher program, QVGNSRVR, instead of
calling the server program directly. The catcher program calls the CL file
before calling the server program. The CL file identifies the libraries that
contain the server program and data files. It also sets the commitment
control environment for the job if this is the first server call in the job. All
server calls from the same client program to the same AS/400 system are
included in the same job.
You can customize the template for the CL file by doing the following:
– Add any additional libraries required for database access or for

programs or programs that the server program calls.
– Modify the STRCMTCTL command to change the lock level (LCKLVL) or

add additional keywords to the command.

Leave the commit scope (CMTSCOPE) specified as *JOB in the CL file.

Non-VisualAge Generator Server Programs: A non-VisualAge Generator
server program is prepared like other OS/400 programs, with the following
additions:

Configuring an OS/400 Server

122 VisualAge Generator: Client/Server Communications Guide



v The program must be in the QVGN activation group. Following is an
example of how to do this:

CRTPGM PGM(MYLIBRARY/NONVGAPPL) +
MODULE(*PGM) +
ENTMOD(*FIRST) +
BNDDIR(MYLIBRARY/MYBNDDIR) +
ACTGRP(QVGN) +
USRPRF(*USER) +
AUT(*LIBCRTAUT) +
TEXT('Non-VisualAge Generator program')

v At run time, the client calls a catcher program, QVGNSRVR, instead of
calling the server program directly. If the server program is a
non-VisualAge Generator program, the catcher program calls the command
language file QVGNRNCL before calling the server program.
The sample directory that is shipped with VisualAge Generator Developer
contains a sample file, QVGNRNCL.CLR. The sample file sets the job
commitment control environment if this is the first server program or
program call in the job.
Ensure that a copy of QVGNRNCL is copied to the AS/400 and compiled
into each library that contains a non-VisualAge Generator program called
by a VisualAge Generator client program.
You can customize the CL file by doing the following:
– Add additional libraries required for file or database access or for

programs or programs that the server programs call.
– Modify the STRCMTCTL command to change the lock level (LCKLVL) or

add additional keywords to the command.

Leave the commit scope (CMTSCOPE) specified as *JOB in the CL file.

Configuring an OS/400 Server

Chapter 7. OS/400 Platform 123



Configuring an OS/400 Server

124 VisualAge Generator: Client/Server Communications Guide



Chapter 8. HP-UX Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 125



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: HP-UX Platform
Type of program to configure: Server program
Configuration section: Configuring an HP-UX server
Intended target platform: OS/2 (i.e. an OS/2 client program)
Chosen protocol: TCP/IP
Protocol section: TCP/IP Protocol

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

126 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring an HP-UX Client

Summary Table of Valid Servers and Protocols

Table 15. Valid Servers and Protocols for VisualAge Generator Clients on the HP-UX Platform

Server Platforms Protocols for HP-UX Client Platform

AIX N/A

CICS for AIX N/A

HP-UX N/A

IMS N/A

CICS for MVS/ESA N/A

OS/2 N/A

CICS for OS/2 N/A

OS/400 N/A

Solaris N/A

CICS for Solaris N/A

VM/ESA N/A

CICS for VSE/ESA N/A

Windows NT (C++) N/A

Windows NT (Java) N/A

CICS for Windows NT N/A

Notes:
N/A = Not available

Chapter 8. HP-UX Platform 127



Configuring an HP-UX Server

Summary Table of Valid Clients and Protocols

Table 16. Valid Clients and Protocols for VisualAge Generator Servers on the HP-UX Platform

Server Platform Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and Windows
98 (GUI)

Windows NT
(GUI, C++,
ITF) AIX ( C++) Solaris (C++)

HP-UX TCP/IP TCP/IP TCP/IP TCP/IP TCP/IP

TCP/IP Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris (C++)

Identifying a C++ Server Location
The TCP/IP support servers locate the server programs via the LIBPATH
environment variable, so you need to ensure that the server DLL directory is
specified in the LIBPATH.

Linkage Table Attributes for Generating Server Programs
A linkage table is not required for HP-UX server programs.

Server Program Set Up and Operation
The server uses a configuration file for specifying the TCP/IP service name to
listen on. The configuration file is optional as there are predefined default
values that will be used.

Start the TCP/IP server by issuing the command:

CSOTCPS "config_filename"

The configuration file is located via the following search order:
1. File specified on the command line
2. The file named CSO.INI in the directory specified by the CSODIR

environment variable.
3. The file named CSO.INI in the current directory

The search ends when the first one of the above conditions is met. Once a file
is identified, the contents of the file are used if possible. If the file cannot be
opened for any reason, a warning message is printed on the console and the

Configuring an HP-UX Server

128 VisualAge Generator: Client/Server Communications Guide



default values are used. CSOTCPS will display the configuration filename and
values being used prior to starting to listen for incoming requests. The default
values are:

TCP/IP service name: VAGenerator

Where:

TCP/IP service name Specifies the service name that will be used to
look up the TCP/IP port number that
CSOTCPS will listen on for incoming requests.
This entry is case sensitive and must match an
entry in the TCP/IP services file. For
Windows NT, AIX, and HP-UX the TCP/IP
SERVICES file is used.

Sample TCP/IP Entries from CSO.INI File: The following TCP/IP entries
are located in the sample CSO.INI file. All entries must start in column 1.
Comments are allowed within the file by placing a semicolon (;) in column 1
of the comment line. You only need to specify an entry if you wish to
override the default value. If duplicate entries are specified in the file, the last
entry in the file is used (just like environment variables in the config.sys file).

tcp_service_name=VAGenerator

Configuring an HP-UX Server

Chapter 8. HP-UX Platform 129



Configuring an HP-UX Server

130 VisualAge Generator: Client/Server Communications Guide



Chapter 9. IMS Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 131



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: IMS Platform
Type of program to configure: Server program
Configuration section: Configuring an IMS server
Intended target platform: OS/2 (i.e. an OS/2 client program)
Chosen protocol: APPC/IMS
Protocol section: APPC/IMS Protocol

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

132 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring an IMS Client

Summary Table of Valid Servers and Protocols

Table 17. Valid Servers and Protocols for VisualAge Generator Clients on the IMS Platform

Server Platforms Protocols for IMS Client Platform

AIX N/A

CICS for AIX N/A

HP-UX N/A

IMS N/A

CICS for MVS/ESA N/A

OS/2 N/A

CICS for OS/2 N/A

OS/400 N/A

Solaris N/A

CICS for Solaris N/A

VM/ESA N/A

CICS for VSE/ESA N/A

Windows NT (C++) N/A

Windows NT (Java) N/A

CICS for Windows NT N/A

Notes:
N/A = Not available

Note: The IMS platform does not support IMS clients.

Chapter 9. IMS Platform 133



Configuring an IMS Server

Summary Table of Valid Clients and Protocols

Table 18. Valid Clients and Protocols for VisualAge Generator Servers on the IMS Platform

Server Platforms Client Platforms

OS/2 (GUI, C++, ITF)
Windows 95 and
Windows 98 (GUI)

Windows NT (GUI,
C++, ITF)

IMS APPC/IMS APPC/IMS APPC/IMS

APPC/IMS Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)

Identifying the Server Location
Use CPIC side information on the client to specify the following information
so that the client can allocate the APPC session:
v Partner LU alias
v Transaction program name
v Mode name

The partner LU alias must be the APPC LU name of the IMS Transaction
Manager that you want to run the server program. The server program is
defined to MVS/APPC.

The following is an example of the command needed to add a transaction
program name to APPC/MVS. In this example, tpname must match the
transaction program name in the CPIC side profile on the client.

TPADD TPSCHED_EXIT(DFSTPPE0)
TPNAME(tpname)
SYSTEM
ACTIVE(YES)
TPSCHED_DELIMITER(##)
TRANCODE=trancode
#

Specify the side information identifier in the location linkage table attribute
for the server program, or set the location dynamically in the client program
at run time using EZELOC.

Linkage Table Attributes for Generating IMS Server Programs
No linkage table entry is required when generating the server program. If an
entry specifying:

Configuring an IMS Server

134 VisualAge Generator: Client/Server Communications Guide



,, linktype= REMOTE remotecomtype= APPCIMS ,/

is included, the program is generated like a program with:

,, linktype= DYNAMIC parmform= OSLINK ,/

Server Program Set Up and Operation
The server program is generated and prepared as a called batch program on
the server system.

A server transaction must be defined to the IMS system. The transaction is
defined as an asynchronous Message Processing Program (MPP). The
following IMS system definition parameters are required for the definition:

APPLCTN PGMTYPE=TP,PSB=ims-psb-name
TRANSACT CODE=trancode,MODE=SNGL,EDIT=ULC

Note: Data will be folded to uppercase characters if the statement EDIT=ULC
is omitted from the transaction definition.

A catcher program, ELAISVN, provided with VisualAge Generator Server for
MVS, VSE, and VM is the first program called for the transaction. The catcher
program must be relinked with an alias that is the same as the IMS PSB name
associated with the transaction. An example of the JCL used to relink
ELAISVN follows.

//L EXEC ELARLINK
//L.SYSLMOD DD DISP=SHR,DSN=load-library-name
//L.SYSIN DD *
INCLUDE SELALMD(ELAISVN)
ENTRY ELAISVN
ALIAS ims-psb-name
NAME load-module-name(R)
/*

Up to 64 aliases can be associated with one load module. Include ALIAS cards
for all aliases whenever you relink to add additional aliases.

The client program communicates with APPC so that the call parameters are
written as a message to the IMS message queue associated with the
transaction. The catcher program reads the messages from the queue and calls
the server program. When the server program returns, the catcher program
writes the modified parameters back to the output message queue from which
APPC returns them to the client program.

Configuring an IMS Server

Chapter 9. IMS Platform 135



Configuring an IMS Server

136 VisualAge Generator: Client/Server Communications Guide



Chapter 10. CICS for MVS/ESA Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 137



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: CICS for MVS/ESA Platform
Type of program to configure: Client program
Configuration section: Configuring a CICS for MVS/ESA client
Intended target platform: CICS for AIX (i.e. a CICS for AIX server program)
Chosen protocol: CICS DPL
Protocol section: CICS DPL Protocol
Target platform section: Configuring a CICS for MVS/ESA Client for a
CICS for AIX Server

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

138 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring a CICS for MVS/ESA Client

Summary Table of Valid Servers and Protocols

Table 19. Valid Servers and Protocols for VisualAge Generator Clients on the CICS for MVS/ESA
Platform

Server Platforms Protocols for CICS for MVS/ESA Client
Platform

CICS for AIX CICS DPL

CICS for MVS/ESA CICS DPL

CICS for OS/2 CICS DPL

CICS for Solaris CICS DPL

CICS for VSE/ESA CICS DPL

CICS for Windows NT CICS DPL

CICS DPL Protocol

User Authentication
The user associated with the CICS client transaction must be authorized to
run the client transaction and the server transaction. The user ID and
password are identified by the CICS transaction manager on the client system.

Setting Up Communication Links
The communication link between the client and server systems must be
defined to the CICS systems to allow a distributed program link from one
system to the other. Refer to the CICS intercommunication manual for your
CICS systems for more information.

Chapter 10. CICS for MVS/ESA Platform 139



Controlling the Unit of Work
Use the luwcontrol linkage table attribute to indicate whether the server
updates are automatically committed on return or the client controls the unit
of work. If the client is controlling the unit of work, subsequent server calls
must go to the same system and transaction under client-controlled unit of
work until a commit or roll back is requested. The server cannot issue
EZECOMIT or EZEROLLB calls if client-controlled unit of work is specified.

Data Format Conversion
Code format conversion is performed on the server call as specified in the
contable linkage attribute table and in EZECONVT. Code is converted based
on the structure of the arguments that are specified on the CALL statement in
the client program.

Error Handling
The standard error handling procedures described below are supported with
CICS DPL. If the DPL is not successful for any reason, including
unavailability of the communication link, error information is returned with
CICS in the CICS EIB (EXEC interface block).

If the REPLY option is not specified on the CALL statement, the calling
program ends with error messages. If REPLY is specified, no messages are
written or logged, and EZERT8 is set to one of the following values:

Value Meaning

00000000 Successful call and return

00000204 Program name not valid

00000207 System identifier not valid

00000208 Link out of service

ffrrrrrr Other CICS error where ff is the hexadecimal
representation of EIBFN byte 0, and rrrrrr is
the hexadecimal representation of EIBRCODE
bytes 0–2.

Configuring a CICS for MVS/ESA Client for a CICS for OS/2 Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

Configuring a CICS for MVS/ESA Client

140 VisualAge Generator: Client/Server Communications Guide



,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for MVS/ESA Client for a CICS for Windows NT
Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

Configuring a CICS for MVS/ESA Client

Chapter 10. CICS for MVS/ESA Platform 141



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CPMI contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for MVS/ESA Client for a CICS for AIX Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring a CICS for MVS/ESA Client

142 VisualAge Generator: Client/Server Communications Guide



,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for MVS/ESA Client for a CICS for MVS/ESA Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

Configuring a CICS for MVS/ESA Client

Chapter 10. CICS for MVS/ESA Platform 143



,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 LUWCONTROL=CLIENT

Configuring a CICS for MVS/ESA Client for a CICS for VSE/ESA Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Configuring a CICS for MVS/ESA Client

144 VisualAge Generator: Client/Server Communications Guide



v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 LUWCONTROL=CLIENT

Configuring a CICS for MVS/ESA Client for a CICS for Solaris Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for MVS/ESA Client

Chapter 10. CICS for MVS/ESA Platform 145



Configuring a CICS for MVS/ESA Server

Summary Table of Valid Clients and Protocols

Table 20. Valid Clients and Protocols for VisualAge Generator Servers on the CICS for MVS/ESA
Platform

Server
Platforms

Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and Windows
98 (GUI)

Windows NT
(GUI, C++, ITF)

AIX
(C++) CICS

Solaris
(C++)

CICS for
MVS/ESA

CICS Client,
LU2

CICS Client CICS Client CICS
Client

CICS DPL CICS Client

Notes:
Client controlled unit of work is available for CICS Client, LU2, and CA/400.
N/A = Not available
APPC = Advanced Program-to-Program Communication.
All server environments support server controlled unit of work.
CICS as a Client Platform refers to:
– CICS for AIX
– CICS for MVS/ESA
– CICS for OS/2
– CICS for Windows NT
– CICS for VSE/ESA
– CICS for Solaris

CICS Client Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris (C++)

Identifying the Server Location
Specify the server location (system identifier) in the LOCATION linkage table
attribute. You can also set the location dynamically in the client program at
run time using EZELOC. If the server location is not specified, the default is
the first entry in the CICS Client initialization file.

Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

Configuring a CICS for MVS/ESA Server

146 VisualAge Generator: Client/Server Communications Guide



,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable
v externalname
v library
v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Customizing CICS for MVS/ESA for Called VAGen Server Programs
Calling a CICS for MVS/ESA server program that is specified remote in the
linkage tables requires that the called server program be defined to
CICS/ESA. Either the batch program DFHCSDUP utility or the resource
definition online (RDO) CEDA DEFINE PROGRAM command can be used to
define the VAGen server program to MVS CICS.

Example
CEDA DEFINE PROGRAM(applname)
GROUP(cscgroup) LANGUAGE(COBOL)

The CICS supplied mirror transaction DFHMIRS, normally invoked by the
CPMI transaction, uses the data passed to it by the client to:
1. Determine which server program should be given control
2. Build the COMMAREA
3. Link to the defined VAGen server program via CICS LINK

CPMI is the CICS supplied default transaction code to invoke the CICS mirror
program DFHMIRS. CPMI must be defined with specified values if used for
calling VAGen server applications.

It is recommended that you copy the CICS supplied CPMI definitions to a
new group to make the changes, then edit the CPMI transaction to:
1. Make the twasize 1024

Configuring a CICS for MVS/ESA Server

Chapter 10. CICS for MVS/ESA Platform 147



2. Make the profile DFHCICSA (CICS default would be DFHCICST (T for
terminal))

3. Ensure that the program pointed to remains DFHMIRS

As CPMI is the default transaction name associated with a VAG CICS server
program, the linkage table used does not need to specify serverid=CPMI
although it is advisable to use caution when relying on defaults.

If CPMI is not used, then define a transaction code of your choice using the
above entries.

Example
PROGRAM(DFHMIRS) TWASIZE(1024)
PROFILE(DFHCICSA)

Relating the CICS Application to a DB2 Plan: A DB2 authorization ID and
a DB2 plan are required if a CICS application accesses DB2. The DSNRCT
macro in the CICS resource control table (RCT) relates a CICS transaction with
the DB2 plan name used by the application and a DB2 authorization ID.

The CPMI transaction can be used or additional transactions invoking the
mirror program can be specified. Copy the CPMI definitions to ensure these
additional transactions have the correct specifications.

For VAGen, the transaction code invoking the mirror program and identified
in the RCT corresponds to the serverid field in the linkage table entry for the
server application.

The following example is a DSNCRCT macro which relates the transaction
code CPMI with the DB2 plan DBSERVE. The signed-on user ID is the
authorization ID.

Example
DSNCRCT TYPE=ENTRY,
PLAN=DBSERVE,
AUTH=(USERID,*,*),
THRDM=1,
THRDA=1,
TXID=(CPMI,cpmi)

In the case where an additional or alternate transaction code is defined such
as:
DEFINE TRANSACTION(ABCD) GROUP(CICSGROUP)
PROGRAM(DFHMIRS) TWASIZE(1024)
PROFILE(DFHCICSA)

then the RCT entry would be:

Configuring a CICS for MVS/ESA Server

148 VisualAge Generator: Client/Server Communications Guide



DSNCRCT TYPE=ENTRY,
PLAN=DBSERVE,
AUTH=(USERID,*,*),
THRDM=1,
THRDA=1,
TXID=(ABCD,abcd)

The transaction invoking DFHMRIS and identified in the RCT is used for the
serverid field in the linkage table entry for the server application.

Providing Security for CICS Application Programs: You need to consider
the issue of security with application programs. A client program is allowed
to invoke the mirror program if any of the following is true:
v Resource access control facility (RACF) security is not used
v The transaction for the mirror program (either CPMI or the alternate

transaction ID) does not have a RACF profile
v The transaction for the mirror program (either CPMI or the alternate

transaction ID) has a RACF profile with universal access of read

If RACF security is used to control access to application programs, certain
CICS and RACF administration activities are required:
v Set the XTRAN parameter in the system initialization table (SIT) to YES
v Create a profile in RACF class TCICSTRN for each unique mirror

transaction
v Provide read access to the RACF profile for the mirror transaction for the

following:
– The CICS system default user ID(DFLTUSER)
– Any user ID used as ″Securityname″ for a LU 6.2 connection
– Any user ID forwarded from a client program

LU 6.2 Security: For LU 6.2 connections, if RACF is active the connections
must be defined with ″ATtachsec″ set to ″Verify″ in order to have the user ID
and password verified at transaction attachment. The authentication exit for
the client obtains a user ID and password and forwards them to the CICS for
MVS/ESA system for verification. The mirror transaction is initiated and the
application program is invoked if the user ID and password are verified and
the user ID had read access to the profile for the transaction. Otherwise, an
error is returned to the client.

Specifying Parameter Format
Parameter format (the parmform attribute on the calllink tag) can be specified
as COMMDATA (data values passed in the COMMAREA) or COMMPTR
(pointers passed in the COMMAREA).

Using COMMPTR Format: Use COMMPTR for calling COBOL subroutines
that were developed to use the non-VAGen parameter passing convention that

Configuring a CICS for MVS/ESA Server

Chapter 10. CICS for MVS/ESA Platform 149



uses pointers in the CICS COMMAREA. When the pointer format is used, the
generated client program calls an intermediate catcher program (ELACSV,
provided with VisualAge Generator host services) via the ECI instead of
calling the server program directly. The catcher program receives the
parameter data from the client, builds a pointer list in the COMMAREA that
points to the individual parameters, and links to the server program. A
program processing table (PPT) must be defined for the ELACSV program on
the CICS server system.

COMMPTR format is only supported for MVS CICS, CICS for VSE/ESA, and
CICS OS/2 servers.

Using COMMDATA Format: Use COMMDATA for calling generated
programs and for calling COBOL subroutines where possible. COMMDATA
provides better performance in calling remote programs. With COMMDATA,
the server program is called directly without going through the catcher
program.

CICS DPL Protocol

List of Valid Clients
v CICS for AIX
v CICS for MVS/ESA
v CICS for OS/2
v CICS for Windows NT
v CICS for VSE/ESA
v CICS for Solaris

Identifying the Server Location
You can specify the server location (CICS system identifier) on the location
linkage table attribute, or dynamically set the location in the client program at
runtime using EZELOC. If the location is not specified, the default location is
the system identifier associated with the server program in the CICS program
definition on the client system.

Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable
v externalname
v library

Configuring a CICS for MVS/ESA Server

150 VisualAge Generator: Client/Server Communications Guide



v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Server Program Set Up
The server program is generated and prepared as is any other CICS program
on the server system. In addition, there must be a CICS program definition for
the server program on the CICS client system containing the following
information:
v Resident option = remote
v Remote system identifier
v Remote program name (optional)
v Remote transaction identifier (optional)

The server transaction must be defined to CICS on the server system. The
default transaction name associated with a server program is the
CICS-supplied mirror transaction, CPMI.

LU2 Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)

Linkage Table Attributes for Generating Server Programs
New section...

Example
:calllink applname=ELACVP5 parmform=COMMDATA linktype=REMOTE remotecomtype=LU2

location=CICSTST

Customizing an MVS CICS Communication Server for LU2
The following customizations must be completed before any service calls are
requested by a GUI or native C++ program.

Defining Programs to MVS CICS for LU2: The VisualAge Generator
program specified as REMOTE in the linkage table must be defined to MVS
CICS before it can be accessed by a GUI or native C++ client program. The

Configuring a CICS for MVS/ESA Server

Chapter 10. CICS for MVS/ESA Platform 151



VisualAge Generator client/server communication program, ELACLU2,
shipped with VisualAge Generator MVS Host Services PTF UQ09122 or
VisualAge Generator Server for MVS, VSE, and VM Version 1.2 is defined to
MVS CICS during installation. It should be defined with a transaction ID of
your choice and with a transaction work area (TWA) size of 1024. On MVS
CICS, the ELACLU2 program uses the data passed to it by the client to
determine which server program should be given control, builds the
COMMAREA, and links to the VisualAge Generator server program. Because
the ELACLU2 program links to the generated server program, the VisualAge
Generator server program name must be defined to MVS CICS. Either the
batch DFHCSDUP utility or the resource definition online (RDO) CEDA
DEFINE PROGRAM command can be used to define the VisualAge Generator
server program to MVS CICS.

The following example shows the DFHCSDUP command for defining a
VisualAge Generator remote server program to MVS CICS:

DEFINE PROGRAM(applname) GROUP(cscgroup) LANGUAGE(COBOL)

Defining Programs to MVS CICS for LU2: A DB2 authorization ID and a
DB2 plan are required if a VisualAge Generator remote server program
accesses DB2 tables. The DSNCRCT macro in the CICS resource control table
(RCT) relates a CICS transaction code with the DB2 plan name used by the
program and a DB2 authorization ID. The transaction code identified in the
RCT is used for the Server ID field in the communication client’s linkage table
entry for the server program. You need to define an alternate transaction code
for the VisualAge Generator client/server communication program ELACLU2
to create a unique transaction code that matches the transaction name in the
linkage table.

The following example shows how to define an alternate transaction for the
communication program ELACLU2. The alternate transaction name must have
a transaction work area (TWA) size of 1024 bytes.

DEFINE TRANSACTION(DBSV) GROUP(cscgroup) PROGRAM(ELACLU2)
TWASIZE(1024)

The following example shows a sample DSNCRCT macro which relates the
alternate code (DBSV in this example) with the DB2 plan DBSERVE. The
signed-on user ID is the authorization ID.

DSNCRCT TYPE=ENTRY, C
PLAN=DBSERVE, C
AUTH=(USERID,*,*), C
THRDM=1, C
THRDA=1, C
TXID=(DBSV,dbsv)

Configuring a CICS for MVS/ESA Server

152 VisualAge Generator: Client/Server Communications Guide



Chapter 11. Solaris Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 153



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: Solaris Platform
Type of program to configure: Server program
Configuration section: Configuring a Solaris server
Intended target platform: OS/2 (i.e. an OS/2 client program)
Chosen protocol: TCP/IP
Protocol section: TCP/IP Protocol

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

154 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring a Solaris Client

Summary Table of Valid Servers and Protocols

Table 21. Valid Servers and Protocols for VisualAge Generator Clients on the Solaris Platform

Server Platforms Protocols for Solaris Client Platform

AIX TCP/IP

CICS for AIX CICS Client

HP-UX TCP/IP

CICS for MVS/ESA CICS Client

OS/2 TCP/IP

CICS for OS/2 CICS Client

Solaris TCP/IP, IPC, DIRECT

CICS for Solaris CICS Client

VM/ESA TCP/IP

CICS for VSE/ESA CICS Client

Windows NT TCP/IP

Windows NT (Java) N/A

CICS for Windows NT CICS Client

CICS Client Protocol

User Authentication
The user authentication exit (see “User Authentication” on page 21) provides
the user ID and the password specified on the ECI call. The program user
must be authorized to run the transaction associated with the server call.

Chapter 11. Solaris Platform 155



The user exit can return NULLs for the userid and password. The default exit
returns the contents of the environment variables CSOUID and CSOPWD as
the userid and password. If nulls are specified on the ECI call, the CICS Client
determines the user ID and password in a system-dependent fashion. Refer to
the CICS Client documentation for your environment for further information.

Setting Up Communication Links
The communication link between the client and server systems must be
defined to the CICS server system and client products to allow an ECI call to
flow from a CICS Client product to server systems. CICS Client, the
communications software, is installed and configured on the client. Refer to
CICS CLIENT documentation. The CICS server environment must have a
″listener″ defined and requires other entries if remote programs are called.
Refer to CICS documentation for more information. Refer to the CICS
intercommunication documentation for your CICS systems and client products
for additional information.

Identifying the CICS Transaction for the Server
The CICS transaction name associated with the server program is specified in
the serverid linkage table attribute. If not specified, the default transaction is
the CICS-supplied mirror transaction, CPMI.

Controlling the Unit of Work

Extended Units of Work: Multiple synchronous calls to CICS servers can be
issued from the same client. You can use the extended unit of work feature of
ECI to include several calls to the same system within the same unit of work
by specifying luwcontrol=CLIENT in the linkage table for the server programs.
For CICS servers, the default value for LUWCONTROL is client unit of work.
The extended unit of work ends when the client program calls EZECOMIT or
EZEROLLB, which results in an ECI call to commit or roll back any extended
transactions that are currently active.

A separate ECI extended unit of work (CICS transaction) is started for each
unique serverid/location pair. Servers on the same system running under
the same SERVERID (transaction name) are part of the same CICS extended
transaction. A client EZECOMIT or ROLLBACK call ends all the extended
transactions currently in effect for the client.

The server cannot issue EZECOMIT or EZEROLLB calls if the client unit of
work was in effect for the server call.

Server Unit of Work: You can specify luwcontrol=SERVER in the linkage
table. With this specification, each server call is a separate unit of work. The
server program can issue commit or rollback requests as well.

Configuring a Solaris Client

156 VisualAge Generator: Client/Server Communications Guide



Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable linkage table attribute and EZECONVT special function word. Code
is converted based on the structure of the arguments specified on the CALL
statement in the client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with CICS ECI. EZERT8 is set to the
decimal value of the client access service reason code. The reason code is the
same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Specifying Parameter Format
Parameter format (the parmform attribute on the calllink tag) can be specified
as COMMDATA (data values passed in the COMMAREA) or COMMPTR
(pointers passed in the COMMAREA).

Using COMMPTR Format: Use COMMPTR for calling COBOL subroutines
that were developed to use the non-VAGen parameter passing convention that
uses pointers in the CICS COMMAREA. When the pointer format is used, the
generated client program calls an intermediate catcher program (ELACSV,
provided with VisualAge Generator host services) via the ECI instead of
calling the server program directly. The catcher program receives the
parameter data from the client, builds a pointer list in the COMMAREA that
points to the individual parameters, and links to the server program. A
program processing table (PPT) must be defined for the ELACSV program on
the CICS server system.

COMMPTR format is only supported for MVS CICS, CICS for VSE/ESA, and
CICS OS/2 servers.

Using COMMDATA Format: Use COMMDATA for calling generated
programs and for calling COBOL subroutines where possible. COMMDATA
provides better performance in calling remote programs. With COMMDATA,
the server program is called directly without going through the catcher
program.

Configuring a Solaris Client for a CICS for OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

Configuring a Solaris Client

Chapter 11. Solaris Platform 157



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

Configuring a Solaris Client for a CICS for Windows NT Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring a Solaris Client

158 VisualAge Generator: Client/Server Communications Guide



,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

Configuring a Solaris Client for a CICS for AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

Configuring a Solaris Client

Chapter 11. Solaris Platform 159



,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

Configuring a Solaris Client for a CICS for MVS/ESA Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:

Configuring a Solaris Client

160 VisualAge Generator: Client/Server Communications Guide



v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=ELACNxxx

Note: Specifying the CONTABLE attribute requires the three character NLS
code appropriate to your language. See “Conversion Table by Language
and Platform” on page 436 for more on information on specifying the
CONTABLE attribute.

Configuring a Solaris Client for a VSECICS Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table

Configuring a Solaris Client

Chapter 11. Solaris Platform 161



:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT
location=CICSTST contable=ELACNxxx

Note: Specifying the CONTABLE attribute requires the three character NLS
code appropriate to your language. See “Conversion Table by Language
and Platform” on page 436 for more on information on specifying the
CONTABLE attribute.

Configuring a Solaris Client for a CICS for Solaris Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

Configuring a Solaris Client

162 VisualAge Generator: Client/Server Communications Guide



DIRECT Protocol

Advantages of IPC and DIRECT Protocols
The protocols IPC and DIRECT provide a method for client programs to call
server programs where both reside on the same system. A local call from the
client program to the server program might be used, but there are advantages
to making this call remotely via the VisualAge Generator middleware in
certain cases. Futhermore, these advantages differ for the provided protocols,
IPC and DIRECT, and are described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when
calling server programs. When the IPC protocol is used, each call from a
different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is
created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Configuring a Solaris Client

Chapter 11. Solaris Platform 163



Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with IPC and DIRECT server calls.
EZERT8 is set to the decimal value of the client access service reason code.
The reason code is the same as the number portion of error message
CSOnnnna as listed in the VisualAge Generator Messages and Problem
Determination Guide document.

Configuring a Solaris Client for an AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via DIRECT:

,, :calllink applname=program name linktype= CSOCALL remotecomtype= DIRECT ,/

While the specification of:

,, contable= conversion table name
’*’
EZECONVT
NONE
BINARY

,/

is permissible, data conversion is generally not necessary when the client and
server reside on the same system. All other linkage table entries are ignored
on a local (DIRECT) call.

Example Linkage Table
:calllink applname=ELACVP5 linktype=CSOCALL remotecomtype=DIRECT

IPC Protocol

Advantages of IPC and DIRECT Protocols
The protocols IPC and DIRECT provide a method for client programs to call
server programs where both reside on the same system. A local call from the
client program to the server program might be used, but there are advantages
to making this call remotely via the VisualAge Generator middleware in
certain cases. Futhermore, these advantages differ for the provided protocols,
IPC and DIRECT, and are described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when

Configuring a Solaris Client

164 VisualAge Generator: Client/Server Communications Guide



calling server programs. When the IPC protocol is used, each call from a
different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is
created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with IPC and DIRECT server calls.
EZERT8 is set to the decimal value of the client access service reason code.
The reason code is the same as the number portion of error message
CSOnnnna as listed in the VisualAge Generator Messages and Problem
Determination Guide document.

Configuring a Solaris Client for an AIX server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via IPC:

Configuring a Solaris Client

Chapter 11. Solaris Platform 165



,, :calllink applname=program name linktype= CSOCALL remotecomtype= IPC ,/

While the specification of:

,, contable= conversion table name
’*’
EZECONVT
NONE
BINARY

,/

is permissable, data conversion is generally not necessary when the client and
server reside on the same system. All other linkage table entries are ignored
on a local (IPC) call.

Example Linkage Table
:calllink applname=ELACVP5 linktype=CSOCALL remotecomtype=IPC

TCP/IP Protocol

Creating a TCP/IP Services File Entry
The client machine must have an entry for the TCP/IP Serverid added to its
TCP/IP services file. For Windows, AIX, HP-UX, and Solaris the TCP/IP
SERVICES file is used.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with TCPIP server calls. EZERT8 is set to
the decimal value of the client access service reason code. The reason code is
the same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Configuring a Solaris Client for an OS/2 server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

Configuring a Solaris Client

166 VisualAge Generator: Client/Server Communications Guide



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring a Solaris client for a Windows NT server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

Configuring a Solaris Client

Chapter 11. Solaris Platform 167



,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring a Solaris Client for an AIX server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table

Configuring a Solaris Client

168 VisualAge Generator: Client/Server Communications Guide



:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP
location=server1 remotebind=RUNTIME serverid=port1

Configuring a Solaris client for an HP-UX server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring a Solaris Client for a Solaris server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

Configuring a Solaris Client

Chapter 11. Solaris Platform 169



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring a Solaris Client for a VM/ESA server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

Configuring a Solaris Client

170 VisualAge Generator: Client/Server Communications Guide



,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring a Solaris Server

Summary Table of Valid Clients and Protocols

Table 22. Valid Clients and Protocols for VisualAge Generator Servers on the Solaris Platform

Server Platform Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and Windows
98 (GUI)

Windows NT
(GUI, C++,
ITF) AIX ( C++) Solaris (C++)

Solaris TCP/IP TCP/IP TCP/IP TCP/IP TCP/IP, IPC,
DIRECT

DIRECT Protocol

List of Valid Clients
v Solaris (C++)

Advantages of IPC and DIRECT Protocols
The protocols IPC and DIRECT provide a method for client programs to call
server programs where both reside on the same system. A local call from the
client program to the server program might be used, but there are advantages
to making this call remotely via the VisualAge Generator middleware in
certain cases. Futhermore, these advantages differ for the provided protocols,
IPC and DIRECT, and are described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when
calling server programs. When the IPC protocol is used, each call from a

Configuring a Solaris Client

Chapter 11. Solaris Platform 171



different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is
created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Identifying a C++ Server Location
When using the IPC or DIRECT protocols, server programs are located using
the LIBPATH environment variable. You need to ensure that the server DLL
directory is specified in the LIBPATH.

IPC Protocol

List of Valid Clients
v Solaris (C++)

Advantages of IPC and DIRECT Protocols
The protocols IPC and DIRECT provide a method for client programs to call
server programs where both reside on the same system. A local call from the
client program to the server program might be used, but there are advantages
to making this call remotely via the VisualAge Generator middleware in

Configuring a Solaris Server

172 VisualAge Generator: Client/Server Communications Guide



certain cases. Futhermore, these advantages differ for the provided protocols,
IPC and DIRECT, and are described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when
calling server programs. When the IPC protocol is used, each call from a
different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is
created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Identifying the Server Location
When using the IPC or DIRECT protocols, server programs are located using
the LIBPATH environment variable. You need to ensure that the server DLL
directory is specified in the LIBPATH.

Configuring a Solaris Server

Chapter 11. Solaris Platform 173



TCP/IP Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris (C++)

Identifying a C++ Server Location
The TCP/IP support servers locate the server programs via the LIBPATH
environment variable, so you need to ensure that the server DLL directory is
specified in the LIBPATH.

Server Program Set Up and Operation
The server uses a configuration file for specifying the TCP/IP service name to
listen on. The configuration file is optional as there are predefined default
values that will be used.

Start the TCP/IP server by issuing the command:

CSOTCPS "config_filename"

The configuration file is located via the following search order:
1. File specified on the command line
2. The file named CSO.INI in the directory specified by the CSODIR

environment variable.
3. The file named CSO.INI in the current directory

The search ends when the first one of the above conditions is met. Once a file
is identified, the contents of the file are used if possible. If the file cannot be
opened for any reason, a warning message is printed on the console and the
default values are used. CSOTCPS will display the configuration filename and
values being used prior to starting to listen for incoming requests. The default
values are:

TCP/IP service name: VAGenerator

Where:

TCP/IP service name Specifies the service name that will be used to
look up the TCP/IP port number that
CSOTCPS will listen on for incoming requests.
This entry is case sensitive and must match an
entry in the TCP/IP services file. For
Windows NT, AIX, and HP-UX the TCP/IP
SERVICES file is used.

Configuring a Solaris Server

174 VisualAge Generator: Client/Server Communications Guide



Sample TCP/IP Entries from CSO.INI File: The following TCP/IP entries
are located in the sample CSO.INI file. All entries must start in column 1.
Comments are allowed within the file by placing a semicolon (;) in column 1
of the comment line. You only need to specify an entry if you wish to
override the default value. If duplicate entries are specified in the file, the last
entry in the file is used (just like environment variables in the config.sys file).

tcp_service_name=VAGenerator

Configuring a Solaris Server

Chapter 11. Solaris Platform 175



Configuring a Solaris Server

176 VisualAge Generator: Client/Server Communications Guide



Chapter 12. CICS for Solaris Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 177



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: CICS for Solaris Platform
Type of program to configure: Client program
Configuration section: Configuring a CICS for Solaris client
Intended target platform: CICS for MVS/ESA (i.e. a CICS for MVS/ESA server program)
Chosen protocol: CICS DPL
Protocol section: CICS DPL Protocol
Target platform section: Configuring a CICS for Solaris Client for a
CICS for MVS/ESA Server

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

178 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring a CICS for Solaris Client

Summary Table of Valid Servers and Protocols

Table 23. Valid Servers and Protocols for VisualAge Generator Clients on the CICS for Solaris Platform

Server Platforms Protocols for CICS for Solaris Platform

CICS for AIX CICS DPL

CICS for MVS/ESA CICS DPL

CICS for OS/2 CICS DPL

CICS for Solaris CICS DPL

CICS for VSE/ESA CICS DPL

CICS for Windows NT CICS DPL

CICS DPL Protocol

User Authentication
The user associated with the CICS client transaction must be authorized to
run the client transaction and the server transaction. The user ID and
password are identified by the CICS transaction manager on the client system.

Setting Up Communication Links
The communication link between the client and server systems must be
defined to the CICS systems to allow a distributed program link from one
system to the other. Refer to the CICS intercommunication manual for your
CICS systems for more information.

Controlling the Unit of Work
Use the luwcontrol linkage table attribute to indicate whether the server
updates are automatically committed on return or the client controls the unit
of work. If the client is controlling the unit of work, subsequent server calls

Chapter 12. CICS for Solaris Platform 179



must go to the same system and transaction under client-controlled unit of
work until a commit or roll back is requested. The server cannot issue
EZECOMIT or EZEROLLB calls if client-controlled unit of work is specified.

Data Format Conversion
Code format conversion is performed on the server call as specified in the
contable linkage attribute table and in EZECONVT. Code is converted based
on the structure of the arguments that are specified on the CALL statement in
the client program.

Error Handling
The standard error handling procedures described below are supported with
CICS DPL. If the DPL is not successful for any reason, including
unavailability of the communication link, error information is returned with
CICS in the CICS EIB (EXEC interface block).

If the REPLY option is not specified on the CALL statement, the calling
program ends with error messages. If REPLY is specified, no messages are
written or logged, and EZERT8 is set to one of the following values:

Value Meaning

00000000 Successful call and return

00000204 Program name not valid

00000207 System identifier not valid

00000208 Link out of service

ffrrrrrr Other CICS error where ff is the hexadecimal
representation of EIBFN byte 0, and rrrrrr is
the hexadecimal representation of EIBRCODE
bytes 0–2.

Configuring a CICS for Solaris Client for a CICS for OS/2 Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

Configuring a CICS for Solaris Client

180 VisualAge Generator: Client/Server Communications Guide



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Configuring a CICS for Solaris Client for a CICS for Windows NT Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring a CICS for Solaris Client

Chapter 12. CICS for Solaris Platform 181



,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Configuring a CICS for Solaris Client for a CICS for AIX Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname

Configuring a CICS for Solaris Client

182 VisualAge Generator: Client/Server Communications Guide



v library
v remotecomtype

Configuring a CICS for Solaris Client for a CICS for MVS/ESA Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Configuring a CICS for Solaris Client for a CICS for VSE/ESA Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

Configuring a CICS for Solaris Client

Chapter 12. CICS for Solaris Platform 183



,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Configuring a CICS for Solaris Server

Summary Table of Valid Clients and Protocols

Table 24. Valid Clients and Protocols for VisualAge Generator Servers on the CICS for Solaris Platform

Server
Platform

Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and
Windows 98
(GUI)

Windows NT
(GUI, C++,
ITF) AIX ( C++) CICS

Solaris
(C++)

CICS for
Solaris

CICS Client CICS Client CICS Client CICS Client CICS DPL CICS
Client

Notes:
CICS as a Client Platform refers to:
– CICS for AIX
– CICS for MVS/ESA
– CICS for OS/2
– CICS for Windows NT
– CICS for VSE/ESA
– CICS for Solaris

Configuring a CICS for Solaris Client

184 VisualAge Generator: Client/Server Communications Guide



CICS Client Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris (C++)

Identifying the Server Location
Specify the server location (system identifier) in the LOCATION linkage table
attribute. You can also set the location dynamically in the client program at
run time using EZELOC. If the server location is not specified, the default is
the first entry in the CICS Client initialization file.

Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable
v externalname
v library
v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Server Program Set Up
The server program is generated and prepared as is any other CICS program
on the server system. The server transaction must be defined to CICS on the

Configuring a CICS for Solaris Server

Chapter 12. CICS for Solaris Platform 185



server system. The default transaction name associated with a server program
is the CICS-supplied mirror transaction, CPMI.

Specifying Parameter Format
Parameter format (the parmform attribute on the calllink tag) can be specified
as COMMDATA (data values passed in the COMMAREA) or COMMPTR
(pointers passed in the COMMAREA).

Using COMMPTR Format: Use COMMPTR for calling COBOL subroutines
that were developed to use the non-VAGen parameter passing convention that
uses pointers in the CICS COMMAREA. When the pointer format is used, the
generated client program calls an intermediate catcher program (ELACSV,
provided with VisualAge Generator host services) via the ECI instead of
calling the server program directly. The catcher program receives the
parameter data from the client, builds a pointer list in the COMMAREA that
points to the individual parameters, and links to the server program. A
program processing table (PPT) must be defined for the ELACSV program on
the CICS server system.

COMMPTR format is only supported for MVS CICS, CICS for VSE/ESA, and
CICS OS/2 servers.

Using COMMDATA Format: Use COMMDATA for calling generated
programs and for calling COBOL subroutines where possible. COMMDATA
provides better performance in calling remote programs. With COMMDATA,
the server program is called directly without going through the catcher
program.

CICS DPL Protocol

List of Valid Clients
v CICS for AIX
v CICS for MVS/ESA
v CICS for OS/2
v CICS for Windows NT
v CICS for VSE/ESA
v CICS for Solaris

Identifying the Server Location
You can specify the server location (CICS system identifier) on the location
linkage table attribute, or dynamically set the location in the client program at
runtime using EZELOC. If the location is not specified, the default location is
the system identifier associated with the server program in the CICS program
definition on the client system.

Configuring a CICS for Solaris Server

186 VisualAge Generator: Client/Server Communications Guide



Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable
v externalname
v library
v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Server Program Set Up
The server program is generated and prepared as is any other CICS program
on the server system. In addition, there must be a CICS program definition for
the server program on the CICS client system containing the following
information:
v Resident option = remote
v Remote system identifier
v Remote program name (optional)
v Remote transaction identifier (optional)

The server transaction must be defined to CICS on the server system. The
default transaction name associated with a server program is the
CICS-supplied mirror transaction, CPMI.

Configuring a CICS for Solaris Server

Chapter 12. CICS for Solaris Platform 187



Configuring a CICS for Solaris Server

188 VisualAge Generator: Client/Server Communications Guide



Chapter 13. VM/ESA Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 189



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: VM/ESA Platform
Type of program to configure: Server program
Configuration section: Configuring a VM/ESA server
Intended target platform: OS/2 (i.e. an OS/2 client program)
Chosen protocol: DCE
Protocol section: DCE Protocol

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

190 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring a VM/ESA Client

Summary Table of Valid Servers and Protocols

Table 25. Valid Servers and Protocols for VisualAge Generator Clients on the VM/ESA Platform

Server Platforms Protocols for VM/ESA Client Platform

AIX N/A

CICS for AIX N/A

HP-UX N/A

IMS N/A

CICS for MVS/ESA N/A

OS/2 N/A

CICS for OS/2 N/A

OS/400 N/A

Solaris N/A

CICS for Solaris N/A

VM/ESA N/A

CICS for VSE/ESA N/A

Windows NT N/A

CICS for Windows NT N/A

Notes:
N/A = Not available

Note: The VM/ESA platform does not support VM/ESA clients.

Chapter 13. VM/ESA Platform 191



Configuring a VM/ESA Server

Summary Table of Valid Clients and Protocols

Table 26. Valid Clients and Protocols for VisualAge Generator Servers on the VM/ESA Platform

Server Platform Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and Windows
98 (GUI)

Windows NT
(GUI, C++,
ITF) AIX ( C++) Solaris (C++)

VM/ESA TCP/IP TCP/IP TCP/IP TCP/IP TCP/IP

TCP/IP Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris (C++)

Identifying a C++ Server Location
The TCP/IP support servers locate the server programs via the LIBPATH
environment variable, so you need to ensure that the server DLL directory is
specified in the LIBPATH.

Linkage Table Attributes for Generating Server Programs
A linkage table is not required for VM/ESA server programs. If you want to
use a linkage table, you can use a linkage table for generating a client for
VM/ESA as shown in the following example.

Example
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP location=server1

remotebind=RUNTIME serverid=port1 contable=ELACNENU

Server Program Set Up and Operation
The VisualAge Generator Common Services TCP/IP server for VM is set up
uniquely for the VM/CMS environment. Each ″server″ consists of at least one
dispatcher virtual machine (DVM) and one or more application server virtual
machines (AVMs).

The dispatcher virtual machine (DVM) must run as a disconnected service
machine running the CSOTCPS MODULE (started by executing the CSODVM
EXEC). The main function of the DVM is to listen for client calls and to
dispatch incoming requests to an active application server virtual machine

Configuring a VM/ESA Server

192 VisualAge Generator: Client/Server Communications Guide



(AVM). A startup list on the dispatcher virtual machine identifies the
application server virtual machines to which incoming requests may be
dispatched.

One or more AVMs must run as disconnected service machines running the
CSOTCPW MODULE (started by executing the CSOAVM EXEC). The
application server virtual machine accepts each client call passed to it by the
DVM, executes the server application, and returns results to the client directly.
Each AVM therefore needs access to the load library containing the generated
server applications. An AVM accepts client calls from only one DVM
identified by userid when the AVM is started.

The VisualAge Generator Common Services TCP/IP server for VM is
designed to use the TCP/IP socket function of the underlying VM/ESA
system. VM/ESA V2R2 or later is required. When setting up the DVM and
AVM(s), ensure that the ″TCP/IP for VM″ product disk (often TCPMAINT
592) is not linked or accessible.

You need to set authority levels for DVM and AVM userids. For DVM userids:
v Set autolog authority for AVM userids
v Set IUCV ANY for communication with AVM userids
v Define a TCP/IP port in ETC SERVICES

For AVM userids, set IUCV ANY for communication with the DVM userid.

You can use your own naming convention for DVM and AVM userids. An
example id for a DVM is CSOSERV. Example userids for AVMs associated
with CSOSERV are CSOTCP1, CSOTCP2 and CSOTCP3.

Setting up the DVM on VM: Choose one or more virtual machines that will
be dedicated to running CSOTCPS to listen for incoming client calls and
dispatch the calls to AVMs. Large installations expecting high call volume
may choose to run multiple DVMs but in most cases a single DVM is
sufficient. If more than one dispatcher virtual machine is to be used, ensure
that the TCP/IP Service Name specified in the configuration file or, by
default, ″VAGenerator″ is unique for each. This service name must also be
defined in the ETC SERVICES file for your VM system.

The DVM requires a startup list and optionally a configuration file. The
contents of the startup list and configuration file are described below.

The file identifier for the startup list may be set in the configuration file or, by
default, is set to ″CSOSTART LIST *″. This file is required because it identifies
to the DVM the names of the AVMs to which it can dispatch incoming
requests. A minimum of one AVM in the startup list is required.

Configuring a VM/ESA Server

Chapter 13. VM/ESA Platform 193



The file identifier for the configuration file may be set when customizing
CSODVM EXEC as described below. The default file identifier for the
configuration file is ″CSO INI *″. This file is optional as there are predefined
defaults that will be used when no configuration file is provided or when the
provided configuration file cannot be opened.

The DVM is started by executing the CSODVM EXEC with no parameters:
CSODVM

The CSODVM EXEC requires the following customization:
1. Autologging of AVMs may optionally be done in the CSODVM EXEC. If

you choose to do so, be sure that the dispatcher virtual machine has the
proper VM authority to autolog the AVMs.

2. The environment variable, CSOTROPT, is set here to control tracing level.
By default, the CSODVM EXEC sets CSOTROPT=1 which traces errors
only. For more tracing, CSOTROPT may be set to 2.

3. The environment variable, CSONLS, is set here to control national
language used for messages. By default, the CSODVM EXEC sets
CSONLS=ENU which produces English-only messages. The other valid
settings for CSONLS are: CHS, DES, DEU, ENP, ESP, JPN, KOR, and PTB.

4. CSODVM EXEC must link to VM minidisks containing the LE runtime
code and the VisualAge Generator product. The link information must be
modified to use the correct link locations specific to your VM system. Do
NOT link to any disk containing the TCP/IP for VM product (TCPMAINT
592).

5. CSOTCPS MODULE is invoked by CSODVM EXEC. The module
optionally accepts as parameters the ″filename filetype filemode″ of the
configuration file. If not specified, the default is ″CSO INI *″.

When CSODVM EXEC is executed, the server will display the configuration
values being used prior to starting to listen for incoming requests. The default
values are:

TCP/IP Service Name: VAGenerator
TCP/IP Startup List: CSOSTART LIST *

TCP/IP Service Name
″vmtcp_service_name=″ is the tag in the configuration file used to
specify the TCP/IP Service Name.

This is the service name that will be used to look up the TCP/IP port
number that CSOTCPS will listen on for incoming requests. This entry
is case sensitive and must match an entry in the TCP/IP ″ETC
SERVICES″ file.

TCP/IP Startup List
″vmtcp_startup_list=″ is the tag in the configuration file used to
specify the file identifier for the TCP/IP startup list.

Configuring a VM/ESA Server

194 VisualAge Generator: Client/Server Communications Guide



The startup list identifies the AVMs that will accept incoming requests
from this DVM. Optionally, it may contain control information to
restrict requests from specific client IP addresses to one or more
specific AVMs.

The AVMs provide a similar capability of restricting applications by
the IP address of the requesting client. Refer to the discussion of
setting up the AVMs below for details.

Because each of these control mechanisms relies on restriction by
client IP address, they are designed to provide some measure of
control but should be considered only as secure as the client IP
address itself.

Contents and Format of the Configuration File: The configuration file entries
must start in column 1. Comments are allowed within the file by placing a
semicolon (;) in column 1 of the comment line. You only need to specify an
entry if you wish to override the default value. If duplicate entries are
specified in the file, the last entry in the file is used.

vmtcp_service_name=VAGenerator
vmtcp_startup_list=CSOSTART LIST *

Contents and Format of the Startup List: The startup file entries must start in
column 1. Comments are allowed by placing a semicolon (;) in column 1 of
the comment line. You may also use ″in-line″ comments placed to the right
side only, as shown in the example below.

The startup list is used to identify all AVMs that will accept requests from this
DVM. The AVMs will communicate with the DVM and will be used to service
the requests that arrive from clients. Any AVMs that may be used should be
specified here although there is a small performance penalty for including any
that may not actually be started. The DVM will not be able to communicate
with any AVMs that do not appear in the startup list. A minimum of one
AVM must be specified. AVMs are identified in the startup list by use of the
tag :AVM in columns 1-4 and followed, on the same line, by the userid of the
AVM.

Optionally, incoming client requests may be restricted by client IP address to
run on specific AVMs. Each client IP address which is to be restricted as such
must be identified in the startup list. The identification of restricted client IP
addresses is done by use of the tag :IP in columns 1-3 and followed, on the
same line, by the client IP address in dotted decimal format. If a particular
client IP address does not appear in the list, it may run on any available AVM.
All non-comment lines following the :IP tagged line are presumed to be the
userids of the AVMs that can accept incoming requests originating from that
client IP address. Note that if an :IP tag line appears where no AVMs are
named following it, it is ignored and requests from that client IP address can

Configuring a VM/ESA Server

Chapter 13. VM/ESA Platform 195



run on any AVM. Any invalid client IP addresses specified on an :IP tag are
ignored as well. If a particular client IP address appears on more than one :IP
tagged line, only the last occurrence is used.
; Sample Startup List
; Three AVMs are identified: CSOTCP1, CSOTCP2, and CSOTCP3
;
:AVM CSOTCP1
:AVM CSOTCP2
:AVM CSOTCP3 * In-line comments to the right are OK!
;
; Client IP address for Mary is restricted to only 1 AVM
;
:IP 9.35.135.03 * Follow by only 1 AVM she is restricted to

CSOTCP2 * In-line comments here are ok too.
;
; Client IP address for Joe is restricted to either of
; two AVMs: CSOTCP1 or CSOTCP3.
;
:IP 9.35.143.02

CSOTCP1
CSOTCP3

Setting up AVMs on VM: An AVM is started by running the CSOAVM
EXEC. Optionally, a control file named CSOAVM CONTROL may be used to
restrict access to applications by IP address of the requesting client. If the
control file named CSOAVM CONTROL exists and can be opened
successfully, any application controls specified within are used. If the file does
not exist or cannot be opened, no application controls will be active. This
control mechanism is designed to provide some measure of security but can
be considered only as secure as the client IP address itself.

An application load library containing the generated server applications must
be accessible to each AVM. Server applications must be generated for target
system VMCMS. The CSOAVM EXEC contains a GLOBAL LOADLIB
command which must be customized to include the name of your application
load library that is to be used by the AVM.

Format of the control file, CSOAVM CONTROL, is described below.

The CSOAVM EXEC requires the following customization:
1. The environment variable, CSOTROPT, is set here to control tracing level.

By default, the CSOAVM EXEC sets CSOTROPT=1 which traces errors
only. For more tracing, CSOTROPT may be set to 2.

2. The environment variable, CSO_DUMP_DATA, is set here to control
dumping of argument data before and after the call. By default,
CSO_DUMP_DATA=0, thus dumping of argument data is suppressed.

3. The environment variable, CSONLS, is set here to control national
language used for messages. By default, the CSOAVM EXEC sets

Configuring a VM/ESA Server

196 VisualAge Generator: Client/Server Communications Guide



CSONLS=ENU which produces English-only messages. The other valid
settings for CSONLS are: CHS, DES, DEU, ENP, ESP, JPN, KOR, and PTB.

4. CSOAVM EXEC must link to VM minidisks containing the LE runtime
code and the VisualAge Generator product. The link information must be
modified to use the correct link locations specific to your VM system. Do
NOT link to any disk containing the TCP/IP for VM product (TCPMAINT
592).

5. CSOAVM EXEC must run ELASETUP.
6. CSOAVM EXEC must be issue GLOBAL LOADLIB for the load libraries

needed by the VisualAge Generator product and by your application.
7. CSOTCPW MODULE is invoked by CSOAVM EXEC. The format for

invocation is:
CSOTCPW [[dvm_userid] this_avm_userid]

Where dvm_userid defaults to ″CSOTCPS″ and this_avm_userid defaults
to ″UNKNOWN″. The sample exec provided queries the userid of the
AVM & places the value as the 2nd parameter thus avoiding hard-coding
of AVM userid on the call. If your DVM userid is not CSOTCPS, be sure to
specify the correct DVM userid as the first parameter.

Contents and Format of the CSOAVM Control File: Control file entries must
start in column 1. Comments are allowed by placing a semicolon (;) in column
1 of the comment line. You may also use ″in-line″ comments placed to the
right side only, as shown in the example below.

Controlled applications are identified by a :APPL tag beginning in column 1
and immediately followed, on the same line, by the application name.
Applications may be restricted by client IP address of the incoming client
requests. Any application which is not restricted in this file may be run by
any incoming client request. To restrict an application, include an :APPL tag
immediately followed, on the same line, by the application name. All
non-comment lines following the :APPL tag are presumed to be client IP
addresses that are permitted to run that application. Note that if an :APPL tag
appears with no client IP addresses that follow it before the next :APPL tag or
before end-of-file, that application is not restricted. Further, if an application
appears more than once in the file, only the last occurrence is used.
; Sample CSOAVM CONTROL file.
; Application PAYROLL is restricted to a single client IP
;
:APPL PAYROLL * Follow by only Mary's client ip address

9.35.135.03 * In-line comments here are ok too.
;
; Only two IP client addresses may run the QUERY application
; Note that no other applications are restricted. They may be
; run by any client ip address.
;

Configuring a VM/ESA Server

Chapter 13. VM/ESA Platform 197



:APPL QUERY
9.35.135.03
9.35.143.02 * Mary and Joe can run the QUERY application

In summary, the required files for the DVM are:
v CSOTCPS MODULE
v CSODVM EXEC
v CSOxxx JAVAMSG - one per language
v startup file - ″CSOSTART LIST″ by default of name specified in

configuration file

The optional file for the DVM is the configuration file - ″CSO INI″ by default
or name specified in CSODVM EXEC

The required files for the AVM are:
v CSOTCPW MODULE
v CSOAVM EXEC
v CSOxxx JAVAMSG - one per language

The optional file for the AVM is CSOAVM CONTROL

Configuring a VM/ESA Server

198 VisualAge Generator: Client/Server Communications Guide



Chapter 14. CICS for VSE/ESA Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 199



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: CICS for VSE/ESA Platform
Type of program to configure: Client program
Configuration section: Configuring an CICS for VSE/ESA client
Intended target platform: CICS for MVS/ESA (i.e. a CICS for MVS/ESA server program)
Chosen protocol: CICS DPL
Protocol section: CICS DPL Protocol
Target platform section: Configuring a CICS for VSE/ESA Client for a
CICS for MVS/ESA Server

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

200 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring a CICS for VSE/ESA Client

Summary Table of Valid Servers and Protocols

Table 27. Valid Servers and Protocols for VisualAge Generator Clients on the CICS for VSE/ESA
Platform

Server Platforms Protocols for CICS for VSE/ESA Client
Platform

CICS for AIX CICS DPL

CICS for MVS/ESA CICS DPL

CICS for OS/2 CICS DPL

CICS for Solaris CICS DPL

CICS for VSE/ESA CICS DPL

CICS for Windows NT CICS DPL

CICS DPL Protocol

User Authentication
The user associated with the CICS client transaction must be authorized to
run the client transaction and the server transaction. The user ID and
password are identified by the CICS transaction manager on the client system.

Setting Up Communication Links
The communication link between the client and server systems must be
defined to the CICS systems to allow a distributed program link from one
system to the other. Refer to the CICS intercommunication manual for your
CICS systems for more information.

Chapter 14. CICS for VSE/ESA Platform 201



Controlling the Unit of Work
Use the luwcontrol linkage table attribute to indicate whether the server
updates are automatically committed on return or the client controls the unit
of work. If the client is controlling the unit of work, subsequent server calls
must go to the same system and transaction under client-controlled unit of
work until a commit or roll back is requested. The server cannot issue
EZECOMIT or EZEROLLB calls if client-controlled unit of work is specified.

Data Format Conversion
Code format conversion is performed on the server call as specified in the
contable linkage attribute table and in EZECONVT. Code is converted based
on the structure of the arguments that are specified on the CALL statement in
the client program.

Error Handling
The standard error handling procedures described below are supported with
CICS DPL. If the DPL is not successful for any reason, including
unavailability of the communication link, error information is returned with
CICS in the CICS EIB (EXEC interface block).

If the REPLY option is not specified on the CALL statement, the calling
program ends with error messages. If REPLY is specified, no messages are
written or logged, and EZERT8 is set to one of the following values:

Value Meaning

00000000 Successful call and return

00000204 Program name not valid

00000207 System identifier not valid

00000208 Link out of service

ffrrrrrr Other CICS error where ff is the hexadecimal
representation of EIBFN byte 0, and rrrrrr is
the hexadecimal representation of EIBRCODE
bytes 0–2.

Configuring a CICS for VSE/ESA Client for a CICS for OS/2 Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

Configuring a CICS for VSE/ESA Client

202 VisualAge Generator: Client/Server Communications Guide



,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for VSE/ESA Client for a CICS for Windows NT
Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

Configuring a CICS for VSE/ESA Client

Chapter 14. CICS for VSE/ESA Platform 203



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for VSE/ESA Client for a CICS for AIX Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring a CICS for VSE/ESA Client

204 VisualAge Generator: Client/Server Communications Guide



,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for VSE/ESA Client for a CICS for MVS/ESA Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

Configuring a CICS for VSE/ESA Client

Chapter 14. CICS for VSE/ESA Platform 205



,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for VSE/ESA Client for a CICS for VSE/ESAServer

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Configuring a CICS for VSE/ESA Client

206 VisualAge Generator: Client/Server Communications Guide



v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for VSE/ESA Client for a CICS for Solaris Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for VSE/ESA Client

Chapter 14. CICS for VSE/ESA Platform 207



Configuring a CICS for VSE/ESA Server

Summary Table of Valid Clients and Protocols

Table 28. Valid Clients and Protocols for VisualAge Generator Servers on the CICS for VSE/ESA
Platform

Server
Platform

Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and Windows
98 (GUI)

Windows NT
(GUI, C++, ITF)

AIX
(C++) CICS

Solaris
(C++)

CICS for
VSE/ESA

CICS Client CICS Client CICS Client CICS
Client

CICS DPL CICS Client

Notes:
CICS as a Client Platform refers to:
– CICS for AIX
– CICS for MVS/ESA
– CICS for OS/2
– CICS for Windows NT
– CICS for VSE/ESA
– CICS for Solaris

CICS Client Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris (C++)

Identifying the Server Location
Specify the server location (system identifier) in the LOCATION linkage table
attribute. You can also set the location dynamically in the client program at
run time using EZELOC. If the server location is not specified, the default is
the first entry in the CICS Client initialization file.

Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable

Configuring a CICS for VSE/ESA Server

208 VisualAge Generator: Client/Server Communications Guide



v externalname
v library
v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Server Program Set Up
The server program is generated and prepared as is any other CICS program
on the server system. The server transaction must be defined to CICS on the
server system. The default transaction name associated with a server program
is the CICS-supplied mirror transaction, CPMI.

Specifying Parameter Format
Parameter format (the parmform attribute on the calllink tag) can be specified
as COMMDATA (data values passed in the COMMAREA) or COMMPTR
(pointers passed in the COMMAREA).

Using COMMPTR Format: Use COMMPTR for calling COBOL subroutines
that were developed to use the non-VAGen parameter passing convention that
uses pointers in the CICS COMMAREA. When the pointer format is used, the
generated client program calls an intermediate catcher program (ELACSV,
provided with VisualAge Generator host services) via the ECI instead of
calling the server program directly. The catcher program receives the
parameter data from the client, builds a pointer list in the COMMAREA that
points to the individual parameters, and links to the server program. A
program processing table (PPT) must be defined for the ELACSV program on
the CICS server system.

COMMPTR format is only supported for MVS CICS, CICS for VSE/ESA, and
CICS OS/2 servers.

Using COMMDATA Format: Use COMMDATA for calling generated
programs and for calling COBOL subroutines where possible. COMMDATA
provides better performance in calling remote programs. With COMMDATA,
the server program is called directly without going through the catcher
program.

Configuring a CICS for VSE/ESA Server

Chapter 14. CICS for VSE/ESA Platform 209



CICS DPL Protocol

List of Valid Clients
v CICS for AIX
v CICS for MVS/ESA
v CICS for OS/2
v CICS for Windows NT
v CICS for VSE/ESA
v CICS for Solaris

Identifying the Server Location
You can specify the server location (CICS system identifier) on the location
linkage table attribute, or dynamically set the location in the client program at
runtime using EZELOC. If the location is not specified, the default location is
the system identifier associated with the server program in the CICS program
definition on the client system.

Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable
v externalname
v library
v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Configuring a CICS for VSE/ESA Server

210 VisualAge Generator: Client/Server Communications Guide



Server Program Set Up
The server program is generated and prepared as is any other CICS program
on the server system. In addition, there must be a CICS program definition for
the server program on the CICS client system containing the following
information:
v Resident option = remote
v Remote system identifier
v Remote program name (optional)
v Remote transaction identifier (optional)

The server transaction must be defined to CICS on the server system. The
default transaction name associated with a server program is the
CICS-supplied mirror transaction, CPMI.

Configuring a CICS for VSE/ESA Server

Chapter 14. CICS for VSE/ESA Platform 211



Configuring a CICS for VSE/ESA Server

212 VisualAge Generator: Client/Server Communications Guide



Chapter 15. Windows 95 and Windows 98 Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 213



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: Windows 95 and Windows 98 Platform
Type of program to configure: Client program
Configuration section: Configuring a Windows 95 and Windows 98 client
Intended target platform: CICS for MVS/ESA (i.e. a CICS for MVS/ESA server program)
Chosen protocol: CICS Client
Protocol section: CICS Client Protocol
Target platform section: Configuring a Windows 95 and Windows 98 Client
for a CICS for MVS/ESA Server

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

214 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring a Windows 95 and Windows 98 Client

Summary Table of Valid Servers and Protocols

Table 29. Valid Servers and Protocols for VisualAge Generator Clients on the Windows 95 and
Windows 98 Platform

Server Platforms Protocols for Windows 95 and Windows 98
(GUI) Client Platform

AIX TCP/IP, DCE

CICS for AIX CICS Client

HP-UX TCP/IP

IMS APPC/IMS

CICS for MVS/ESA CICS Client

OS/2 TCP/IP, DCE

CICS for OS/2 CICS Client

OS/400 CA/400

Solaris TCP/IP

CICS for Solaris CICS Client

VM/ESA TCP/IP

CICS for VSE/ESA CICS Client

Windows NT TCP/IP, DCE

CICS for Windows NT CICS Client

Chapter 15. Windows 95 and Windows 98 Platform 215



APPC/IMS Protocol

User Authentication
The user authentication exit provides the user ID and the password specified
when the APPC session is allocated. User authentication is described in “User
Authentication” on page 21. The program user must be authorized to run the
transaction associated with the server call (the transaction program name used
on the LU 6.2 connection). For further information, see ″Identifying the Server
Location″.

Setting Up Communication Links
The LU 6.2 communication link between the client and server systems must
be defined to the host server system and to the client products so that an LU
6.2 session can be allocated between the client and the APPC component of
IMS on the host system. Refer to the IMS and communications product
documentation for information on setting up the LU 6.2 connection between
the client and host systems.

Identifying the Server Location
Use CPIC side information on the client to specify the following information
so that the client can allocate the APPC session:
v Partner LU alias
v Transaction program name
v Mode name

The partner LU alias must be the APPC LU name of the IMS Transaction
Manager that you want to run the server program. The server program is
defined to MVS/APPC.

The following is an example of the command needed to add a transaction
program name to APPC/MVS. In this example, tpname must match the
transaction program name in the CPIC side profile on the client.

TPADD TPSCHED_EXIT(DFSTPPE0)
TPNAME(tpname)
SYSTEM
ACTIVE(YES)
TPSCHED_DELIMITER(##)
TRANCODE=trancode
#

Specify the side information identifier in the location linkage table attribute
for the server program, or set the location dynamically in the client program
at run time using EZELOC.

Controlling the Unit of Work
Each server call is an independent unit of work. Any updates made by the
server are committed when the server returns to the client. Any EZECOMIT

Configuring a Windows 95 and Windows 98 Client

216 VisualAge Generator: Client/Server Communications Guide



calls issued by the server are ignored. Calling EZEROLLB or a terminating
error caught by Server for MVS, VSE, and VM both result in a DL/I ROLB
call being issued.

Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable linkage table attribute and EZECONVT special function word. Code
is converted based on the structure of the arguments specified on the CALL
statement in the client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with IMS server calls. EZERT8 is set to
the decimal value of the client access service reason code. The reason code is
the same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Configuring a Windows 95 and Windows 98 Client for an IMS Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
client programs that call the server program via APPC:

,,:calllink applname=program name linktype= REMOTE remotecomtype= APPCIMS location= EZELOC
system name

,

,
parmform= OSLINK luwcontrol= SERVER contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
GENERATION

remotebind= RUNTIME

,/

The following attributes are ignored:
v externalname
v library
v remoteapptype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=APPCIMS

location=IMSSIDE parmform=oslink luwcontrol=server contable=ELACNENU

Configuring a Windows 95 and Windows 98 Client

Chapter 15. Windows 95 and Windows 98 Platform 217



Client Access/400 Protocol

User Authentication
If the server program accesses files or relational databases, the user identified
on the client must be authorized to run the server program and to access any
files or relational tables using dynamic SQL statements.

The program user must start the AS/400 Connection function in the Client
Access/400 folder before starting the client program. The connection function
prompts for the user ID and password.

Controlling the Unit of Work
Use the luwcontrol linkage table attribute to indicate whether server updates
are automatically committed on return or whether the client controls the unit
of work. All calls to the same OS/400 from the same client session run under
the same OS/400 job. If you mix server-controlled unit of work calls with
client-controlled unit of work calls, be aware that any commit or rollback,
client or server, issued under that job will commit or rollback all outstanding
updates in effect for that job.

If you are running Windows GUI clients to call OS/400 servers, a commit or
rollback will commit or rollback all outstanding updates for both GUI clients
even if you have specified client-controlled unit of work. This is currently due
to the behavior of the Client Access/400 product on Windows.

Data Format Conversion
Code format conversion is performed on the call to the server program as
directed by the developer using the contable linkage table attribute and
EZECONVT. Code is converted based on the structure of the parameters
specified on the server call in the client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with Client Access/400. EZERT8 is set to
the decimal value of the client access service reason code. The reason code is
the same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Any error messages logged on the server are spooled to the OS/400 user ID
of the user signed on to Client Access/400 on the client system. The job log
will contain all messages logged since the job was started. The client access
job is a prestarted job used repeatedly by many users; therefore, the job log
may contain messages from other remote commands. Move to the bottom of
the job log to see the last set of error messages.

Configuring a Windows 95 and Windows 98 Client

218 VisualAge Generator: Client/Server Communications Guide



Configuring a Windows 95 and Windows 98 Client for an OS/400 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call OS/400 server programs via CA/400:

,, :calllink applname=program name contable= conversion table name
’*’
EZECONVT
NONE
BINARY

,

, linktype= REMOTE library=library name remotecomtype= CA400 ,

,
parmform= OSLINK applname

externalname=

,

,
location= EZELOC

system name
CLIENT

luwcontrol= SERVER

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,/

The following attributes are ignored:
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CA400
contable=ELACNENU library=ELACVP5 parmform=OSLINK location=SILVER6

Client Access/400 Set Up: Client programs use the Client Access/400 Remote
Command/Distributed Program Call APIs to call the generated server
program. Ensure that you have done the following before attempting to run
the VisualAge Generator client program:
v Install the appropriate Client Access/400 product on the Windows client

system
v Establish the communication link between Client Access/400 and the

OS/400 server system. Client Access/400 will then attempt to start the
communication link when the VisualAge Generator program issues the
remote command.

Configuring a Windows 95 and Windows 98 Client

Chapter 15. Windows 95 and Windows 98 Platform 219



Your Client Access/400 set up determines whether LU 6.2 or TCP/IP is used
for communication.

For further information, refer to the following manual:
v Client Access/400 Optimized for OS/2 - Getting Started, SC41-3510.

CICS Client Protocol

User Authentication
The user authentication exit (see “User Authentication” on page 21) provides
the user ID and the password specified on the ECI call. The program user
must be authorized to run the transaction associated with the server call.

The user exit can return NULLs for the userid and password. The default exit
returns the contents of the environment variables CSOUID and CSOPWD as
the userid and password. If nulls are specified on the ECI call, the CICS Client
determines the user ID and password in a system-dependent fashion. Refer to
the CICS Client documentation for your environment for further information.

Setting Up Communication Links
The communication link between the client and server systems must be
defined to the CICS server system and client products to allow an ECI call to
flow from a CICS Client product to server systems. CICS Client, the
communications software, is installed and configured on the client. Refer to
CICS CLIENT documentation. The CICS server environment must have a
″listener″ defined and requires other entries if remote programs are called.
Refer to CICS documentation for more information. Refer to the CICS
intercommunication documentation for your CICS systems and client products
for additional information.

Identifying the CICS Transaction for the Server
The CICS transaction name associated with the server program is specified in
the serverid linkage table attribute. If not specified, the default transaction is
the CICS-supplied mirror transaction, CPMI.

Controlling the Unit of Work

Extended Units of Work: Multiple synchronous calls to CICS servers can be
issued from the same client. You can use the extended unit of work feature of
ECI to include several calls to the same system within the same unit of work
by specifying luwcontrol=CLIENT in the linkage table for the server programs.
For CICS servers, the default value for LUWCONTROL is client unit of work.
The extended unit of work ends when the client program calls EZECOMIT or
EZEROLLB, which results in an ECI call to commit or roll back any extended
transactions that are currently active.

Configuring a Windows 95 and Windows 98 Client

220 VisualAge Generator: Client/Server Communications Guide



A separate ECI extended unit of work (CICS transaction) is started for each
unique serverid/location pair. Servers on the same system running under
the same SERVERID (transaction name) are part of the same CICS extended
transaction. A client EZECOMIT or ROLLBACK call ends all the extended
transactions currently in effect for the client.

The server cannot issue EZECOMIT or EZEROLLB calls if the client unit of
work was in effect for the server call.

Server Unit of Work: You can specify luwcontrol=SERVER in the linkage
table. With this specification, each server call is a separate unit of work. The
server program can issue commit or rollback requests as well.

Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable linkage table attribute and EZECONVT special function word. Code
is converted based on the structure of the arguments specified on the CALL
statement in the client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with CICS ECI. EZERT8 is set to the
decimal value of the client access service reason code. The reason code is the
same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Specifying Parameter Format
Parameter format (the parmform attribute on the calllink tag) can be specified
as COMMDATA (data values passed in the COMMAREA) or COMMPTR
(pointers passed in the COMMAREA).

Using COMMPTR Format: Use COMMPTR for calling COBOL subroutines
that were developed to use the non-VAGen parameter passing convention that
uses pointers in the CICS COMMAREA. When the pointer format is used, the
generated client program calls an intermediate catcher program (ELACSV,
provided with VisualAge Generator host services) via the ECI instead of
calling the server program directly. The catcher program receives the
parameter data from the client, builds a pointer list in the COMMAREA that
points to the individual parameters, and links to the server program. A
program processing table (PPT) must be defined for the ELACSV program on
the CICS server system.

COMMPTR format is only supported for MVS CICS, CICS for VSE/ESA, and
CICS OS/2 servers.

Using COMMDATA Format: Use COMMDATA for calling generated
programs and for calling COBOL subroutines where possible. COMMDATA

Configuring a Windows 95 and Windows 98 Client

Chapter 15. Windows 95 and Windows 98 Platform 221



provides better performance in calling remote programs. With COMMDATA,
the server program is called directly without going through the catcher
program.

Configuring a Windows 95 and Windows 98 Client for a CICS for AIX
Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

Configuring a Windows 95 and Windows 98 Client for a CICS for OS/2
Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

Configuring a Windows 95 and Windows 98 Client

222 VisualAge Generator: Client/Server Communications Guide



,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST

Configuring a Windows 95 and Windows 98 Client for a CICS for
Windows NT Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

Configuring a Windows 95 and Windows 98 Client

Chapter 15. Windows 95 and Windows 98 Platform 223



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST

Configuring a Windows 95 and Windows 98 Client for an MVS CICS
Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring a Windows 95 and Windows 98 Client

224 VisualAge Generator: Client/Server Communications Guide



,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=ELACNENU

Configuring a Windows 95 and Windows 98 Client for a VSECICS Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

Configuring a Windows 95 and Windows 98 Client

Chapter 15. Windows 95 and Windows 98 Platform 225



,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=ELACNENU

Configuring a Windows 95 and Windows 98 Client for a CICS for Solaris
Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:

Configuring a Windows 95 and Windows 98 Client

226 VisualAge Generator: Client/Server Communications Guide



v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST

DCE Protocol

Processing Flow for VisualAge Generator DCE Common Services Remote
Call
This section shows the processing flow for a VisualAge Generator DCE
common services remote call.
1. VisualAge Generator DCE Server is started using a configuration file

which specifies the DCE principal name that the server will obtain its DCE
authorizations from (equivalent to a DCE userid), the location and the
serverid name for binding information advertising, the Access Control List
(ACL) object for client authorization, and the server programs that the
server is authorized to process. The server programs are specified in one
of two different groups; those in which secure DCE (authenticated RPC)
communications are required and those which can be accessed via
unsecured (unauthenticated RPC) DCE communications.
The server obtains an object UUID for each program from the CDS object
/.:/Servers/VAGenerator/SERVERID/program. If the program object is
not defined, one will be created for it. The server uses the program object
UUIDs when it advertises its binding information.

2. VisualAge Generator DCE Server advertises each of the programs that it
services. The Cell Directory Services (CDS) location used for advertising
the binding information is
/.:/Servers/VAGenerator/SERVERID/LOCATION.

3. VisualAge Generator client retrieves the object UUID for the program from
/.:/Servers/VAGenerator/SERVERID/program-name. It then uses the
object UUID to request the binding information for a server which services
the program from the CDS location
/.:/Servers/VAGenerator/SERVERID/LOCATION. If there are multiple
server bindings that match the search criteria, DCE will randomly return
one of them.

4. VisualAge Generator client will setup for authenticated RPC, if
DCESECURE is specified in the linkage table.

5. VisualAge Generator client performs data conversion on passed
parameters as specified in the contable attribute of the client linkage table
(runtime or generation time as applicable).

6. VisualAge Generator client makes remote call to VisualAge Generator DCE
Server.

Configuring a Windows 95 and Windows 98 Client

Chapter 15. Windows 95 and Windows 98 Platform 227



7. VisualAge Generator DCE Server checks if VisualAge Generator client is
authorized to use server program (via DCE CDS Access Control List) and
if the appropriate level of communication security is being used from the
client.

8. VisualAge Generator DCE Server checks if the server program requested is
one that it is authorized to process (via initial configuration file).

9. VisualAge Generator DCE Server processes client request, closes Logical
Unit of Work, and returns data to client.

User Authentication and Authorization
User authentication is performed on the client via the DCE security server
using the client’s DCE login identifier. The VisualAge Generator DCE server
checks whether the client is authorized to call the DCE server using DCE ACL
security services. User authorization is performed via the DCE ACL security
services. The VisualAge Generator DCE server is told at startup time the DCE
object ACL to use for checking client authorization for running the called
server programs. There is only one ACL used per VisualAge Generator DCE
server; therefore, the authorization is at the VisualAge Generator DCE server
level and not the called program level. If a called program requires a special
ACL, then another VisualAge Generator DCE server will have to be created or
started. The test ACL attribute determines whether or not the client is
authorized to execute the server program (if the client has test privileges on
the ACL object, then the client is authorized to execute all server programs
provided by the server).

Controlling the Unit of Work
All calls via the DCE common services are server units of work. All resource
changes are committed when the server returns to the calling program.

Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable attribute for the server entry in the linkage table. Data is converted
based on the structure of the parameters specified on the server call in the
client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with VisualAge Generator DCE common
services. EZERT8 is set to the decimal value of the client access service reason
code. EZERT8 is only set when the REPLY option is coded on the call to the
remote server program. If a visual link is used to make the call from a GUI
program, the REPLY option is used on the call.

Any errors trapped by DCE are passed to the client program with a
corresponding CSO error message. The error message contains an insert with
the DCE mnemonic. A non-zero return code from the called program is

Configuring a Windows 95 and Windows 98 Client

228 VisualAge Generator: Client/Server Communications Guide



passed back to the client program with a corresponding CSO error message.
The error message contains an insert with the return code from the called
program. VisualAge Generator return codes are documented in the help for
the message.

All errors are traced to the CSO trace file on the client and server machines,
as applicable.

Configuring a Windows 95 and Windows 98 Client for an OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

,, :calllink applname=program name linktype= REMOTE ,

, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:
v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 remotebind=RUNTIME serverid=Test

Configuring a Windows 95 and Windows 98 Client

Chapter 15. Windows 95 and Windows 98 Platform 229



Configuring a Windows 95 and Windows 98 Client for a Windows NT
Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

,, :calllink applname=program name linktype= REMOTE ,

, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:
v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 remotebind=RUNTIME serverid=Test

Configuring a Windows 95 and Windows 98 Client for an AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

,, :calllink applname=program name linktype= REMOTE ,

Configuring a Windows 95 and Windows 98 Client

230 VisualAge Generator: Client/Server Communications Guide



, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:
v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 contable=BINARY remotebind=RUNTIME serverid=Test

TCP/IP Protocol

Creating a TCP/IP Services File Entry
The client machine must have an entry for the TCP/IP Serverid added to its
TCP/IP services file. For Windows, AIX, HP-UX, and Solaris the TCP/IP
SERVICES file is used.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with TCPIP server calls. EZERT8 is set to
the decimal value of the client access service reason code. The reason code is
the same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Configuring an Windows 95 and Windows 98 Client for an OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

Configuring a Windows 95 and Windows 98 Client

Chapter 15. Windows 95 and Windows 98 Platform 231



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring an Windows 95 and Windows 98 Client for a
Windows NTServer

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

Configuring a Windows 95 and Windows 98 Client

232 VisualAge Generator: Client/Server Communications Guide



,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring an Windows 95 and Windows 98 Client for an AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table

Configuring a Windows 95 and Windows 98 Client

Chapter 15. Windows 95 and Windows 98 Platform 233



:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP
location=server1 contable=BINARY remotebind=RUNTIME serverid=port1

Configuring an Windows 95 and Windows 98 Client for an HP-UX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 contable=BINARY remotebind=RUNTIME serverid=port1

Configuring an Windows 95 and Windows 98 Client for a Solaris Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

Configuring a Windows 95 and Windows 98 Client

234 VisualAge Generator: Client/Server Communications Guide



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 contable=BINARY remotebind=RUNTIME serverid=port1

Configuring an Windows 95 and Windows 98 Client for a VM/ESA Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

Configuring a Windows 95 and Windows 98 Client

Chapter 15. Windows 95 and Windows 98 Platform 235



,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 contable=ELACNENU remotebind=RUNTIME serverid=port1

Configuring a Windows 95 and Windows 98 Server

Summary Table of Valid Clients and Protocols

Table 30. Valid Clients and Protocols for VisualAge Generator Servers on the Windows 95 and
Windows 98 Platform

Server
Platforms

Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and Windows
98 (GUI)

Windows NT
(GUI, C++, ITF)

AIX
(C++) CICS

Solaris
(C++)

Windows 95
and
Windows 98

N/A N/A N/A N/A N/A N/A

Notes:
N/A = Not available
CICS as a Client Platform refers to:
– CICS for AIX
– CICS for MVS/ESA
– CICS for OS/2
– CICS for Windows NT
– CICS for VSE/ESA
– CICS for Solaris

Configuring a Windows 95 and Windows 98 Client

236 VisualAge Generator: Client/Server Communications Guide



Chapter 16. Windows NT Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 237



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: Windows NT Platform
Type of program to configure: Client program
Configuration section: Configuring a Windows NT client
Intended target platform: CICS for MVS/ESA (i.e. a CICS for MVS/ESA server program)
Chosen protocol: CICS Client
Protocol section: CICS Client Protocol
Target platform section: Configuring a Windows NT Client for a
CICS for MVS/ESA Server

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

238 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring a Windows NT Client

Summary Table of Valid Servers and Protocols

Table 31. Valid Servers and Protocols for VisualAge Generator Clients on the Windows NT Platform

Server Platforms Protocols for Windows NT (GUI, C++, ITF)
Client Platform

AIX TCP/IP, DCE

CICS for AIX CICS Client

HP-UX TCP/IP

IMS APPC/IMS

CICS for MVS/ESA CICS Client

OS/2 TCP/IP, DCE

CICS for OS/2 CICS Client

OS/400 CA/400

Solaris TCP/IP

CICS for Solaris CICS Client

VM/ESA TCP/IP

CICS for VSE/ESA CICS Client

Windows NT (C++) TCP/IP, DCE, IPC, DIRECT

Windows NT (Java) TCP/IP, DIRECT

CICS for Windows NT CICS Client

Chapter 16. Windows NT Platform 239



APPC/IMS Protocol

User Authentication
The user authentication exit provides the user ID and the password specified
when the APPC session is allocated. User authentication is described in “User
Authentication” on page 21. The program user must be authorized to run the
transaction associated with the server call (the transaction program name used
on the LU 6.2 connection). For further information, see ″Identifying the Server
Location″.

Setting Up Communication Links
The LU 6.2 communication link between the client and server systems must
be defined to the host server system and to the client products so that an LU
6.2 session can be allocated between the client and the APPC component of
IMS on the host system. Refer to the IMS and communications product
documentation for information on setting up the LU 6.2 connection between
the client and host systems.

Identifying the Server Location
Use CPIC side information on the client to specify the following information
so that the client can allocate the APPC session:
v Partner LU alias
v Transaction program name
v Mode name

The partner LU alias must be the APPC LU name of the IMS Transaction
Manager that you want to run the server program. The server program is
defined to MVS/APPC.

The following is an example of the command needed to add a transaction
program name to APPC/MVS. In this example, tpname must match the
transaction program name in the CPIC side profile on the client.

TPADD TPSCHED_EXIT(DFSTPPE0)
TPNAME(tpname)
SYSTEM
ACTIVE(YES)
TPSCHED_DELIMITER(##)
TRANCODE=trancode
#

Specify the side information identifier in the location linkage table attribute
for the server program, or set the location dynamically in the client program
at run time using EZELOC.

Controlling the Unit of Work
Each server call is an independent unit of work. Any updates made by the
server are committed when the server returns to the client. Any EZECOMIT

Configuring a Windows NT Client

240 VisualAge Generator: Client/Server Communications Guide



calls issued by the server are ignored. Calling EZEROLLB or a terminating
error caught by Server for MVS, VSE, and VM both result in a DL/I ROLB
call being issued.

Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable linkage table attribute and EZECONVT special function word. Code
is converted based on the structure of the arguments specified on the CALL
statement in the client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with IMS server calls. EZERT8 is set to
the decimal value of the client access service reason code. The reason code is
the same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Configuring a Windows NT Client for an IMS Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
client programs that call the server program via APPC:

,,:calllink applname=program name linktype= REMOTE remotecomtype= APPCIMS location= EZELOC
system name

,

,
parmform= OSLINK luwcontrol= SERVER contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
GENERATION

remotebind= RUNTIME

,/

The following attributes are ignored:
v externalname
v library
v remoteapptype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=APPCIMS

location=IMSSIDE parmform=oslink luwcontrol=server contable=ELACNENU

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 241



Client Access/400 Protocol
This chapter contains information specific to implementing client/server calls
using Client Access/400 (CA/400). Be sure to read the general information in
“Chapter 2. Introduction to Client/Server Processing with Synchronous Calls”
on page 9 before reading this chapter.

User Authentication
If the server program accesses files or relational databases, the user identified
on the client must be authorized to run the server program and to access any
files or relational tables using dynamic SQL statements.

The program user must start the AS/400 Connection function in the Client
Access/400 folder before starting the client program. The connection function
prompts for the user ID and password.

Controlling the Unit of Work
Use the luwcontrol linkage table attribute to indicate whether server updates
are automatically committed on return or whether the client controls the unit
of work. All calls to the same OS/400 from the same client session run under
the same OS/400 job. If you mix server-controlled unit of work calls with
client-controlled unit of work calls, be aware that any commit or rollback,
client or server, issued under that job will commit or rollback all outstanding
updates in effect for that job.

If you are running Windows GUI clients to call OS/400 servers, a commit or
rollback will commit or rollback all outstanding updates for both GUI clients
even if you have specified client-controlled unit of work. This is currently due
to the behavior of the Client Access/400 product on Windows.

Data Format Conversion
Code format conversion is performed on the call to the server program as
directed by the developer using the contable linkage table attribute and
EZECONVT. Code is converted based on the structure of the parameters
specified on the server call in the client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with Client Access/400. EZERT8 is set to
the decimal value of the client access service reason code. The reason code is
the same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Any error messages logged on the server are spooled to the OS/400 user ID
of the user signed on to Client Access/400 on the client system. The job log
will contain all messages logged since the job was started. The client access
job is a prestarted job used repeatedly by many users; therefore, the job log

Configuring a Windows NT Client

242 VisualAge Generator: Client/Server Communications Guide



may contain messages from other remote commands. Move to the bottom of
the job log to see the last set of error messages.

Configuring a Windows NT Client for an OS/400 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call OS/400 server programs via CA/400:

,, :calllink applname=program name contable= conversion table name
’*’
EZECONVT
NONE
BINARY

,

, linktype= REMOTE library=library name remotecomtype= CA400 ,

,
parmform= OSLINK applname

externalname=

,

,
location= EZELOC

system name
CLIENT

luwcontrol= SERVER

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,/

The following attributes are ignored:
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CA400
contable=ELACNENU library=ELACVP5 parmform=OSLINK location=SILVER6

Client Access/400 Set Up: Client programs use the Client Access/400 Remote
Command/Distributed Program Call APIs to call the generated server
program. Ensure that you have done the following before attempting to run
the VisualAge Generator client program:
v Install the appropriate Client Access/400 product on the Windows client

system

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 243



v Establish the communication link between Client Access/400 and the
OS/400 server system. Client Access/400 will then attempt to start the
communication link when the VisualAge Generator program issues the
remote command.

Your Client Access/400 set up determines whether LU 6.2 or TCP/IP is used
for communication.

For further information, refer to the following manual:
v Client Access/400 Optimized for OS/2 - Getting Started, SC41-3510.

CICS Client Protocol

User Authentication
The user authentication exit (see “User Authentication” on page 21) provides
the user ID and the password specified on the ECI call. The program user
must be authorized to run the transaction associated with the server call.

The user exit can return NULLs for the userid and password. The default exit
returns the contents of the environment variables CSOUID and CSOPWD as
the userid and password. If nulls are specified on the ECI call, the CICS Client
determines the user ID and password in a system-dependent fashion. Refer to
the CICS Client documentation for your environment for further information.

Setting Up Communication Links
The communication link between the client and server systems must be
defined to the CICS server system and client products to allow an ECI call to
flow from a CICS Client product to server systems. CICS Client, the
communications software, is installed and configured on the client. Refer to
CICS CLIENT documentation. The CICS server environment must have a
″listener″ defined and requires other entries if remote programs are called.
Refer to CICS documentation for more information. Refer to the CICS
intercommunication documentation for your CICS systems and client products
for additional information.

Identifying the CICS Transaction for the Server
The CICS transaction name associated with the server program is specified in
the serverid linkage table attribute. If not specified, the default transaction is
the CICS-supplied mirror transaction, CPMI.

Controlling the Unit of Work

Extended Units of Work: Multiple synchronous calls to CICS servers can be
issued from the same client. You can use the extended unit of work feature of
ECI to include several calls to the same system within the same unit of work
by specifying luwcontrol=CLIENT in the linkage table for the server programs.
For CICS servers, the default value for LUWCONTROL is client unit of work.

Configuring a Windows NT Client

244 VisualAge Generator: Client/Server Communications Guide



The extended unit of work ends when the client program calls EZECOMIT or
EZEROLLB, which results in an ECI call to commit or roll back any extended
transactions that are currently active.

A separate ECI extended unit of work (CICS transaction) is started for each
unique serverid/location pair. Servers on the same system running under
the same SERVERID (transaction name) are part of the same CICS extended
transaction. A client EZECOMIT or ROLLBACK call ends all the extended
transactions currently in effect for the client.

The server cannot issue EZECOMIT or EZEROLLB calls if the client unit of
work was in effect for the server call.

Server Unit of Work: You can specify luwcontrol=SERVER in the linkage
table. With this specification, each server call is a separate unit of work. The
server program can issue commit or rollback requests as well.

Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable linkage table attribute and EZECONVT special function word. Code
is converted based on the structure of the arguments specified on the CALL
statement in the client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with CICS ECI. EZERT8 is set to the
decimal value of the client access service reason code. The reason code is the
same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Specifying Parameter Format
Parameter format (the parmform attribute on the calllink tag) can be specified
as COMMDATA (data values passed in the COMMAREA) or COMMPTR
(pointers passed in the COMMAREA).

Using COMMPTR Format: Use COMMPTR for calling COBOL subroutines
that were developed to use the non-VAGen parameter passing convention that
uses pointers in the CICS COMMAREA. When the pointer format is used, the
generated client program calls an intermediate catcher program (ELACSV,
provided with VisualAge Generator host services) via the ECI instead of
calling the server program directly. The catcher program receives the
parameter data from the client, builds a pointer list in the COMMAREA that
points to the individual parameters, and links to the server program. A
program processing table (PPT) must be defined for the ELACSV program on
the CICS server system.

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 245



COMMPTR format is only supported for MVS CICS, CICS for VSE/ESA, and
CICS OS/2 servers.

Using COMMDATA Format: Use COMMDATA for calling generated
programs and for calling COBOL subroutines where possible. COMMDATA
provides better performance in calling remote programs. With COMMDATA,
the server program is called directly without going through the catcher
program.

Configuring a Windows NT Client for a CICS for AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

Configuring a Windows NT Client

246 VisualAge Generator: Client/Server Communications Guide



Configuring a Windows NT Client for a CICS for OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST

Configuring a Windows NT Client for a CICS for Windows NT Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 247



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST

Configuring a Windows NT Client for an CICS for MVS/ESA Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring a Windows NT Client

248 VisualAge Generator: Client/Server Communications Guide



,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=ELACNENU

Configuring a Windows NT Client for a VSECICS Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 249



,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=ELACNENU

Configuring a Windows NT Client for a CICS for Solaris Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call CICS transactions via the CICS ECI:

,, :calllink applname=program name linktype= REMOTE remotecomtype= CICSCLIENT ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
parmform= OSLINK

COMMDATA
CICSOSLINK

,

,
remoteapptype= VG

NONVG
ITF

GENERATION
remotebind= RUNTIME

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname

Configuring a Windows NT Client

250 VisualAge Generator: Client/Server Communications Guide



v library

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=CICSCLIENT

location=CICSTST contable=BINARY

DCE Protocol

Processing Flow for VisualAge Generator DCE Common Services Remote
Call
This section shows the processing flow for a VisualAge Generator DCE
common services remote call.
1. VisualAge Generator DCE Server is started using a configuration file

which specifies the DCE principal name that the server will obtain its DCE
authorizations from (equivalent to a DCE userid), the location and the
serverid name for binding information advertising, the Access Control List
(ACL) object for client authorization, and the server programs that the
server is authorized to process. The server programs are specified in one
of two different groups; those in which secure DCE (authenticated RPC)
communications are required and those which can be accessed via
unsecured (unauthenticated RPC) DCE communications.
The server obtains an object UUID for each program from the CDS object
/.:/Servers/VAGenerator/SERVERID/program. If the program object is
not defined, one will be created for it. The server uses the program object
UUIDs when it advertises its binding information.

2. VisualAge Generator DCE Server advertises each of the programs that it
services. The Cell Directory Services (CDS) location used for advertising
the binding information is
/.:/Servers/VAGenerator/SERVERID/LOCATION.

3. VisualAge Generator client retrieves the object UUID for the program from
/.:/Servers/VAGenerator/SERVERID/program-name. It then uses the
object UUID to request the binding information for a server which services
the program from the CDS location
/.:/Servers/VAGenerator/SERVERID/LOCATION. If there are multiple
server bindings that match the search criteria, DCE will randomly return
one of them.

4. VisualAge Generator client will setup for authenticated RPC, if
DCESECURE is specified in the linkage table.

5. VisualAge Generator client performs data conversion on passed
parameters as specified in the contable attribute of the client linkage table
(runtime or generation time as applicable).

6. VisualAge Generator client makes remote call to VisualAge Generator DCE
Server.

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 251



7. VisualAge Generator DCE Server checks if VisualAge Generator client is
authorized to use server program (via DCE CDS Access Control List) and
if the appropriate level of communication security is being used from the
client.

8. VisualAge Generator DCE Server checks if the server program requested is
one that it is authorized to process (via initial configuration file).

9. VisualAge Generator DCE Server processes client request, closes Logical
Unit of Work, and returns data to client.

User Authentication and Authorization
User authentication is performed on the client via the DCE security server
using the client’s DCE login identifier. The VisualAge Generator DCE server
checks whether the client is authorized to call the DCE server using DCE ACL
security services. User authorization is performed via the DCE ACL security
services. The VisualAge Generator DCE server is told at startup time the DCE
object ACL to use for checking client authorization for running the called
server programs. There is only one ACL used per VisualAge Generator DCE
server; therefore, the authorization is at the VisualAge Generator DCE server
level and not the called program level. If a called program requires a special
ACL, then another VisualAge Generator DCE server will have to be created or
started. The test ACL attribute determines whether or not the client is
authorized to execute the server program (if the client has test privileges on
the ACL object, then the client is authorized to execute all server programs
provided by the server).

Controlling the Unit of Work
All calls via the DCE common services are server units of work. All resource
changes are committed when the server returns to the calling program.

Data Format Conversion
Code format conversion is performed on the server call as specified on the
contable attribute for the server entry in the linkage table. Data is converted
based on the structure of the parameters specified on the server call in the
client program.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with VisualAge Generator DCE common
services. EZERT8 is set to the decimal value of the client access service reason
code. EZERT8 is only set when the REPLY option is coded on the call to the
remote server program. If a visual link is used to make the call from a GUI
program, the REPLY option is used on the call.

Any errors trapped by DCE are passed to the client program with a
corresponding CSO error message. The error message contains an insert with
the DCE mnemonic. A non-zero return code from the called program is

Configuring a Windows NT Client

252 VisualAge Generator: Client/Server Communications Guide



passed back to the client program with a corresponding CSO error message.
The error message contains an insert with the return code from the called
program. VisualAge Generator return codes are documented in the help for
the message.

All errors are traced to the CSO trace file on the client and server machines,
as applicable.

Configuring a Windows NT Client for an OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

,, :calllink applname=program name linktype= REMOTE ,

, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:
v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 remotebind=RUNTIME serverid=Test

Configuring a Windows NT Client for a Windows NT Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 253



,, :calllink applname=program name linktype= REMOTE ,

, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:
v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 remotebind=RUNTIME serverid=Test

Configuring a Windows NT Client for an AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes when you generate or test client programs that
call server programs via the DCE common services:

,, :calllink applname=program name linktype= REMOTE ,

, remotecomtype= DCE
DCESECURE parmform= COMMDATA

,

Configuring a Windows NT Client

254 VisualAge Generator: Client/Server Communications Guide



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
GENERATION

remotebind= RUNTIME
serverid= server identifier

,/

The following attributes are ignored:
v remoteapptype
v externalname
v library
v luwcontrol

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 contable=BINARY remotebind=RUNTIME serverid=Test

DIRECT Protocol

Advantages of IPC and DIRECT Protocols
The protocols IPC and DIRECT provide a method for client programs to call
server programs where both reside on the same system. A local call from the
client program to the server program might be used, but there are advantages
to making this call remotely via the VisualAge Generator middleware in
certain cases. Futhermore, these advantages differ for the provided protocols,
IPC and DIRECT, and are described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when
calling server programs. When the IPC protocol is used, each call from a
different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 255



Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is
created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with IPC and DIRECT server calls.
EZERT8 is set to the decimal value of the client access service reason code.
The reason code is the same as the number portion of error message
CSOnnnna as listed in the VisualAge Generator Messages and Problem
Determination Guide document.

Configuring a Windows NT Client for an Windows NT Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via DIRECT:

,, :calllink applname=program name linktype= CSOCALL remotecomtype= DIRECT ,/

While the specification of:

,, contable= conversion table name
’*’
EZECONVT
NONE
BINARY

,/

Configuring a Windows NT Client

256 VisualAge Generator: Client/Server Communications Guide



is permissible, data conversion is generally not necessary when the client and
server reside on the same system. All other linkage table entries are ignored
on a local (DIRECT) call.

Example Linkage Table
:calllink applname=ELACVP5 linktype=CSOCALL remotecomtype=DIRECT

IPC Protocol

Advantages of IPC and DIRECT Protocols
The protocols IPC and DIRECT provide a method for client programs to call
server programs where both reside on the same system. A local call from the
client program to the server program might be used, but there are advantages
to making this call remotely via the VisualAge Generator middleware in
certain cases. Futhermore, these advantages differ for the provided protocols,
IPC and DIRECT, and are described below.

Calls to local C++ applications for database access from Smalltalk GUI
applications where the GUI application might run in the same session with
other unrelated GUI applications that require database access: GUI
applications begin VisualAge Generator communications sessions when
calling server programs. When the IPC protocol is used, each call from a
different GUI would be made under a different process, each of which can
have its own database connection and unit of work. This would not be
possible if the client program used a local call to access the server program.

If two GUI applications need to be in the same unit of work, start the second
GUI from the first and define the second GUI with the VAGen
inheritsCommSession attribute set to true in the AbtAppBldrPart or
AbtAppBldrView class. This way, local servers called by both GUI
applications will share the same communications session, database connection,
and unit of work.

Calls to generated C++ application from Java clients where the C++
application is to run on a web server: Multiple calls might arrive
simultaneously, thus the need for multiple, independent server-controlled
units of work provided by the IPC protocol.

When using the DIRECT protocol, the call is similar to a local call directly
from a client program to a server program except that the VisualAge
Generator middleware performs the call. Because no separate process is
created, the DIRECT protocol provides improved performance over the IPC
protocol. The following are scenarios for using the DIRECT protocol:

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 257



Calls to a server program running under the control of VisualAge Generator
test facility from Java, VisualBasic, or PowerBuilder, where the client and
server resides on the same system.

Calls to a server program running under the control of Component Broker,
which maintains the database connection itself. In such an environment, the
server program should not run under a separate process so that the database
connection cannot be inadvertently closed when the process ends.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with IPC and DIRECT server calls.
EZERT8 is set to the decimal value of the client access service reason code.
The reason code is the same as the number portion of error message
CSOnnnna as listed in the VisualAge Generator Messages and Problem
Determination Guide document.

Configuring a Windows NT Client for an Windows NT Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via IPC:

,, :calllink applname=program name linktype= CSOCALL remotecomtype= IPC ,/

While the specification of:

,, contable= conversion table name
’*’
EZECONVT
NONE
BINARY

,/

is permissable, data conversion is generally not necessary when the client and
server reside on the same system. All other linkage table entries are ignored
on a local (IPC) call.

Example Linkage Table
:calllink applname=ELACVP5 linktype=CSOCALL remotecomtype=IPC

Configuring a Windows NT Client

258 VisualAge Generator: Client/Server Communications Guide



TCP/IP Protocol

Creating a TCP/IP Services File Entry
The client machine must have an entry for the TCP/IP Serverid added to its
TCP/IP services file. For Windows, AIX, HP-UX, and Solaris the TCP/IP
SERVICES file is used.

Error Handling
The standard error handling procedures described in “Communication Error
Handling” on page 22 are supported with TCPIP server calls. EZERT8 is set to
the decimal value of the client access service reason code. The reason code is
the same as the number portion of error message CSOnnnna as listed in the
VisualAge Generator Messages and Problem Determination Guide document.

Configuring a Windows NT Client for an OS/2 Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 259



Configuring a Windows NT Client for a Windows NT Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 remotebind=RUNTIME serverid=port1

Configuring a Windows NT Client for an AIX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

Configuring a Windows NT Client

260 VisualAge Generator: Client/Server Communications Guide



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 contable=BINARY remotebind=RUNTIME serverid=port1

Configuring a Windows NT Client for an HP-UX Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 261



,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 contable=BINARY remotebind=RUNTIME serverid=port1

Configuring a Windows NT Client for a Solaris Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table

Configuring a Windows NT Client

262 VisualAge Generator: Client/Server Communications Guide



:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP
location=server1 contable=BINARY remotebind=RUNTIME serverid=port1

Configuring a Windows NT Client for a VM/ESA Server

Linkage Table Attributes for Generating Client Programs: Specify the
following calllink attributes for the server program when you generate or test
clients that call the server program via TCPIP:

,, :calllink applname=program name linktype= REMOTE remotecomtype= TCPIP ,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

,

,
location= system name_tcpip_hostname

,

,
serverid= tcpip_server identifier

,/

The entries specified for location and serverid are case sensitive.

The contable attribute must be specified for certain language and platform
combinations. Refer to “Conversion Table by Language and Platform” on page
436 to help you determine if a conversion table is necessary, and which table
should be specified.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=TCPIP

location=server1 contable=ELACNENU remotebind=RUNTIME serverid=port1

Configuring a Windows NT Client

Chapter 16. Windows NT Platform 263



Configuring a Windows NT Server

Summary Table of Valid Clients and Protocols

Table 32. Valid Clients and Protocols for VisualAge Generator Servers on the Windows NT Platform

Server Platform Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and Windows
98 (GUI)

Windows NT
(GUI, C++,
ITF)

Windows NT
(Java GUI,
Java server) AIX ( C++)

Windows NT
(C++)

TCP/IP, DCE TCP/IP, DCE TCP/IP, DCE,
IPC, DIRECT

TCP/IP, DCE,
IPC, DIRECT

TCP/IP, DCE

Windows NT
(Java)

TCP/IP,
DIRECT

DCE Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris

Identifying the Server Location
The server location is determined by the bindings advertised in the DCE CDS
database. The bindings are found in the DCE CDS location object located at
/.:/Servers/VAGenerator/SERVERID/LOCATION. Identify the server
location to the client by specifying the location identifier in the location
linkage table attribute in the entry for the server program, or set the location
dynamically in the client program at runtime using EZELOC.

Linkage Table Attributes for Generating Server Programs
To generate native OS/2, AIX, or Windows NT server programs, no linkage
table entry is required. If the server program is going to make remote calls (it
is the second tier of a three tier client/server system) then a linkage table
needs to be provided at generation time just as if it was a client program.

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE remotecomtype=DCE

location=Server1 remotebind=GENERATION serverid=Test

DCE CDS Entries Required for VisualAge Generator DCE Servers
All VisualAge Generator DCE CDS entries are placed under the
/.:/Servers/VAGenerator directory. Each serverid must have a directory,
/.:/Servers/VAGenerator/serverid.

Configuring a Windows NT Server

264 VisualAge Generator: Client/Server Communications Guide



Note: It might be helpful to equate serverid with an application system and
location with a server or group of servers that process requests for the
application system.

Starting the DCE Server Program
The VisualAge Generator DCE server program, CSODCES, is started on the
remote host machine and listens for incoming DCE requests and processes
them. On AIX systems, the current userid must either be root or have access
to the DCE keytab file. CSODCES takes one optional parameter and one
required parameter at startup. The required parameter is the name of the
configuration file to be used in starting up the DCE server. The optional
parameter specifies the type of cleanup the server does when it is terminated.

csodces [-c | -d ] filename

The configuration file contains the following:
v The principal name to be used by the VisualAge Generator DCE server for

DCE access and authorization
v The advertising location and serverid names of the DCE server (specified in

the location and serverid attributes of the client’s linkage table)
v The DCE ACL object to be used for client authorization
v The called server programs that it will be processing requests for (specified

in the applname attribute of the client’s linkage table).

The programs are divided into those that require authorization checking
(SECURE PROGRAMS) and those that do not require authorization checking
(PUBLIC PROGRAMS). Authorization checking has an impact on server
performance, so only use authorization when required.

The following example shows the configuration file:
DCEprincipal=vgserve1
LOCATION=Server1
SERVERID=Test
DCEACLobject=/.:/Servers/VAGenerator/Test/Server1
SECURE PROGRAMS=
SECURE1
SECURE2
PUBLIC PROGRAMS=
ELACVP5
DTCALL2
MAXSIZE
PARMSRV
PRMSRV2

The cleanup parameter is used when there is more than one server using a
serverid/location pair as its advertising location. With the -c option, which is
the default, when the server terminates it will remove its entry from the RPC
mapping, DCE runtime, and DCE CDS. If there are multiple servers

Configuring a Windows NT Server

Chapter 16. Windows NT Platform 265



advertising at a serverid/location location and one of the servers removes its
entry, then all of the servers will lose their entries. To prevent all the servers
from losing their entries, use the -d parameter which will only remove the
entry from the RPC mapping when the server terminates. There should
always be one server which is started without the -d parameter to ensure that
all entries for the DCE servers are cleaned up after they are terminated. The
server that was started without the -d parameter should be terminated last.

DIRECT Protocol

List of Valid Clients
v Windows NT (GUI, C++, ITF, Java)

Identifying a C++ Server Location
When using the IPC or DIRECT protocols, server programs are located using
the LIBPATH environment variable. You need to ensure that the server DLL
directory is specified in the LIBPATH.

Identifying a Java Server Location
When you use the DIRECT protocol, Java server programs are located using
the CLASSPATH environment variable. This variable also contains the path to
the properties files associated with the server program.

Java Server Program Example Linkage
VisualAge Generator Java server programs can call other VAGen server
programs locally or remotely. Settings for calls between server programs can
be specified in a VAGen Linkage Table and generated into a properties file.
The properties file, used by the Java server program at run time, can also be
created manually. If the linkage table is accessed at runtime, some defaults
from the properties file may be assumed. For additional information, see
“Calls between Server Programs and VAGen Java Server Programs” on
page 18.

VAGen Java Server Program Calling a C++ Server Program in a DLL on the
Same System: The following examples illustrate how linkage from a VAGen
Java server program to a VAGen C++ server program in a DLL on the same
system is specified in the linkage table for a generation-time bind or a
run-time bind. Note that the properties file used during a run-time bind
contains several default properties not specified in the linkage table entry.

:calllink applname=SERVER linktype=CSOCALL remotecomtype=DIRECT contable=CSOI1252

Figure 2. Linkage Table Entry — Generation-time Bind

Configuring a Windows NT Server

266 VisualAge Generator: Client/Server Communications Guide



Figure 3 shows an example of a linkage table entry for a run-time bind.
Figure 4 shows the properties as they would appear in the Java properties file.

VAGen Java Server Program Starting a Java Web Transaction on the Same
System: The following examples illustrate how linkage from a VAGen Java
server program to a local Java web transaction is specified. The package of the
bean and the web transaction is my.pkg.

Note: These properties are entered in the GatewayServlet’s properties file.
They are not the same as the linkage table properties used by Java
servers.

Figure 5 shows the properties as they would appear in the Java properties file.

IPC Protocol

List of Valid Clients
v Windows NT (GUI, C++, ITF)

Identifying the Server Location
When using the IPC or DIRECT protocols, server programs are located using
the LIBPATH environment variable. You need to ensure that the server DLL
directory is specified in the LIBPATH.

TCP/IP Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF, Java)
v AIX (C++)

:calllink applname=SERVER linktype=CSOCALL remotebind=RUNTIME

Figure 3. Linkage Table Entry — Run-time Bind

cso.serverLinkage.SERVER.remotecomtype=DIRECT
cso.serverLinkage.SERVER.contable=CSOI1252

Figure 4. Java Properties File Entry

serverLinkage.SERVER.commtype=DIRECT
serverLinkage.SERVER.javaProperty=my.pkg
serverLinkage.SERVER.remoteapptype=VGJAVA

Figure 5. GatewayServlet Properties File Entry

Configuring a Windows NT Server

Chapter 16. Windows NT Platform 267



Identifying a C++ Server Location
The TCP/IP support servers locate the server programs via the LIBPATH
environment variable, so you need to ensure that the server DLL directory is
specified in the LIBPATH.

Identifying a Java Server Location
When you use TCP/IP, Java server programs are located using the
CLASSPATH environment variable. This variable also contains the path to the
properties files associated with the server program.

Java Server Program Example Linkage
VisualAge Generator Java server programs can call other VAGen server
programs locally or remotely. Settings for calls between server programs can
be specified in a VAGen Linkage Table and generated into a properties file.
The properties file, used by the Java server program at run time, can also be
created manually. If the linkage table is accessed at runtime, some defaults
from the properties file may be assumed. For additional information, see
“Calls between Server Programs and VAGen Java Server Programs” on
page 18.

VAGen Java Server Program Calling a Remote Java Server Program: The
following examples illustrate how linkages between remote Java server
programs are specified in the linkage table for a generation-time bind or a
run-time bind. Only required properties are shown Note that the properties
file used during a run-time bind contains several default properties not
specified in the linkage table entry.

Figure 6 shows an example of a linkage table entry for a generation-time bind.

Note: Linkage table entries should be on one line.

Figure 7 shows an example of a linkage table entry for a run-time bind of a
Java server calling another Java server remotely over TCPIP. The remote
server is on a machine called ntjserv, at port 9876. The called server’s package
is my.pkg. Figure 8 on page 269 shows the properties as they would appear in
the Java properties file.

:calllink applname=SERVER linktype=CSOCALL remotecomtype=TCPIP location=ntjserv
serverid=9876 package='my.pkg' remoteapptype=VGJAVA

Figure 6. Linkage Table Entry — Generation-time Bind

:calllink applname=SERVER linktype=CSOCALL remotebind=RUNTIME

Figure 7. Linkage Table Entry — Run-time Bind

Configuring a Windows NT Server

268 VisualAge Generator: Client/Server Communications Guide



VAGen Java Server Program Calling a Remote C++ Server Program on
AIX: The following examples illustrate how linkages between remote VAGen
Java and C++ server programs are specified in the linkage table for a
generation-time bind or a run-time bind. Note that the properties file used
during a run-time bind contains several default properties not specified in the
linkage table entry.

Figure 9 shows an example of a linkage table entry for a generation-time bind
of a Java server calling a C++ server on AIX remotely over TCPIP. The remote
server is on a machine called ntjserv, at port 9876.

Figure 10 shows an example of a linkage table entry for a run-time bind.
Figure 11 shows the properties as they would appear in the Java properties
file.

VAGen Java Server Program Starting a Remote Java Web Transaction: The
following example illustrates how linkage from a VAGen Java server program
to a remote Java web transaction is specified. The Web transaction in these
examples is on a machine called ntjserv, at port 9876, and is using codepage
1252 (Windows NT English). The package of the bean and the web transaction
is my.pkg.

cso.serverLinkage.SERVER.remotecomtype=TCPIP
cso.serverLinkage.SERVER.location=ntjserv
cso.serverLinkage.SERVER.serverid=9876
cso.serverLinkage.SERVER.package=my.pkg
cso.serverLinkage.SERVER.remoteapptype=VGJAVA

Figure 8. Java Properties File Entry

:calllink applname=SERVER linktype=CSOCALL remotecomtype=TCPIP contable=CSOX850 location=ntjserv serverid=9876

Figure 9. Linkage Table Entry — Generation-time Bind

:calllink applname=SERVER linktype=CSOCALL remotebind=RUNTIME

Figure 10. Linkage Table Entry — Run-time Bind

cso.serverLinkage.SERVER.remotecomtype=TCPIP
cso.serverLinkage.SERVER.contable=CSOX850
cso.serverLinkage.SERVER.location=ntjserv
cso.serverLinkage.SERVER.serverid=9876

Figure 11. Java Properties File Entry

Configuring a Windows NT Server

Chapter 16. Windows NT Platform 269



Note: These properties are entered in the GatewayServlet’s properties file.
They are not the same as the linkage table properties used by Java
servers.

Figure 12 shows the properties as they would appear in the GatewayServlet
properties file.

C++ Server Program Set Up and Operation
The server uses a configuration file for specifying the TCP/IP service name to
listen on. The configuration file is optional as there are predefined default
values that will be used. The configuration file can also be used to modify a
″performance″ parameter, tcp_start_process.

Start the TCP/IP server by issuing the command:

CSOTCPS "config_filename"

The configuration file is located via the following search order:
1. File specified on the command line
2. The file named CSO.INI in the directory specified by the CSODIR

environment variable.
3. The file named CSO.INI in the current directory

The search ends when the first one of the above conditions is met. Once a file
is identified, the contents of the file are used if possible. If the file cannot be
opened for any reason, a warning message is printed on the console and the
default values are used. CSOTCPS will display the configuration filename and
values being used prior to starting to listen for incoming requests. The default
values are:

TCP/IP service name: VAGenerator
tcp_start_process: 4

Where:

TCP/IP service name Specifies the service name that will be used to
look up the TCP/IP port number that
CSOTCPS will listen on for incoming requests.

serverLinkage.SERVER.commtype=TCPIP
serverLinkage.SERVER.contable=CSOJ1252
serverLinkage.SERVER.location=ntjserv
serverLinkage.SERVER.serverid=9876
serverLinkage.SERVER.javaProperty=my.pkg
serverLinkage.SERVER.remoteapptype=VGJAVA

Figure 12. GatewayServlet Properties File Entry

Configuring a Windows NT Server

270 VisualAge Generator: Client/Server Communications Guide



This entry is case sensitive and must match an
entry in the TCP/IP services file. For
Windows NT, AIX, and HP-UX the TCP/IP
SERVICES file is used.

tcp_start_process Specifies the number of server processes
which will be prestarted. This number must
be at least 1. Very lightly loaded systems
could get away with specifying a lower value
if you needed to minimize the number of
running processes. Heavily loaded systems
could see a moderate performance gain by
increasing this value.

Sample TCP/IP Entries from CSO.INI File: The following TCP/IP entries
are located in the sample CSO.INI file. All entries must start in column 1.
Comments are allowed within the file by placing a semicolon (;) in column 1
of the comment line. You only need to specify an entry if you wish to
override the default value. If duplicate entries are specified in the file, the last
entry in the file is used (just like environment variables in the config.sys file).

tcp_service_name=VAGenerator
tcp_start_process=2

Java Server Program Set Up and Operation
To make remote calls using TCP/IP, the Java server program must have access
to a default properties file. The path to that properties file can be specified on
the command line or you can use the default path:
.\tcpiplistener.properties.

To start the TCP/IP server, from a command line, run the following
command:
java CSOTcpipListener

Where:

java Is the command used to start the JVM.

CSOTcpipListener
Is a Java program that handles TCP/IP calls.

For more information about using the listener properties or linkage properties,
see “Appendix A. Java properties” on page 401. For more information on
using other Java properties, see the VisualAge Generator Generation Guide.

Configuring a Windows NT Server

Chapter 16. Windows NT Platform 271



Configuring a Windows NT Server

272 VisualAge Generator: Client/Server Communications Guide



Chapter 17. CICS for Windows NT Platform

How to use this chapter

This chapter contains platform and protocol information necessary to
configure a client program or a server program. The chapter is divided into
configuration sections: client programs and server programs. Each
configuration section is organized by protocol. Each protocol section contains
information organized by target platforms.

Use the following method to locate the information you need:
1. Verify that this chapter is appropriate to your runtime environment.

Ensure that the runtime environment of your program matches the
platform on which this chapter is based. Turn to the appropriate chapter if
the runtime environment of your program does not match the platform
named in the title of this chapter.

2. Determine which type of program you want to configure: client program
or server program.

3. Determine which configuration section in the chapter is appropriate for
your program.

4. Find the intended target platform of the program you are configuring in
the Summary Table of Valid Clients and Protocols or Summary Table of
Valid Servers and Protocols.
If you are configuring a client program, find the target platform of the
intended server program in the column of valid platforms.
If you are configuring a server program, find the target platform of the
intended client program in the row of valid platforms.

5. Chose a protocol based on the information in the table.
If you are configuring a client program, find the cell in the table where the
row of the intended target platform intersects the column of the client
platform. Select a protocol from the list of available protocols for this
client/server combination.
If you are configuring a client program, find the cell in the table where the
column of the intended target platform intersects the row of the server
platform. Select a protocol from the list of available protocols for this
client/server combination.

6. Determine the name of the appropriate protocol section within the
configuration section.

© Copyright IBM Corp. 1980, 2001 273



Turn to the part of the configuration section indicated by the protocol
name. Here you will find information common to all target platforms valid
for this protocol.

7. Determine the name of the appropriate target platform section within the
protocol section.
You will find platform specific information for the chosen protocol in the
section named for your intended target platform.

Example
Chapter: CICS for Windows NT Platform
Type of program to configure: Client program
Configuration section: Configuring a CICS for Windows NT client
Intended target platform: CICS for MVS/ESA (i.e. a CICS for MVS/ESA server program)
Chosen protocol: CICS DPL
Protocol section: CICS DPL Protocol
Target platform section: Configuring a CICS for Windows NT Client for a
CICS for MVS/ESA Server

You will encounter syntax diagrams in this chapter. The diagrams are used to
show programming syntax as follows:

,, :RequiredTerm RequiredTerm=RequiredValue RequiredTerm= OptionalValue
OptionalValue

,

,
DefaultValue

OptionalTerm= OptionalValue
OptionalTerm=RequiredValue

,

,
OptionalTerm= OptionalValue

OptionalValue

,/

RequiredTerm A required term is a term that must be
specified. Required terms are depicted in
syntax diagrams on the same line as the term
preceding it. There are no paths depicted
directly around required terms.

RequiredValue A required value is a value that must be
specified for a term. A required value is
shown in italics in syntax diagrams on the
same line as the term preceding it. There are
no paths depicted directly around required
values.

OptionalTerm An optional term is a term that can be

274 VisualAge Generator: Client/Server Communications Guide



specified. An optional term is depicted in
syntax diagrams in an alternate path from the
preceding term.

OptionalValue An optional value is a value that can be
specified for a term. An optional value is
shown in italics in syntax diagrams in an
alternate path from the preceding term along
with other optional values or a default value.

DefaultValue A default value is the value that is specified
by default for a term. A default value is
shown in italics in syntax diagrams in an
alternate path above other optional values.

Configuring a CICS for Windows NT Client

Summary Table of Valid Servers and Protocols

Table 33. Valid Servers and Protocols for VisualAge Generator Clients on the CICS for Windows NT
Platform

Server Platforms Protocols for CICS for Windows NT Client
Platform

CICS for AIX CICS DPL

CICS for MVS/ESA CICS DPL

CICS for OS/2 CICS DPL

CICS for Solaris CICS DPL

CICS for VSE/ESA CICS DPL

CICS for Windows NT CICS DPL

CICS DPL Protocol

User Authentication
The user associated with the CICS client transaction must be authorized to
run the client transaction and the server transaction. The user ID and
password are identified by the CICS transaction manager on the client system.

Setting Up Communication Links
The communication link between the client and server systems must be
defined to the CICS systems to allow a distributed program link from one
system to the other. Refer to the CICS intercommunication manual for your
CICS systems for more information.

Chapter 17. CICS for Windows NT Platform 275



Controlling the Unit of Work
Use the luwcontrol linkage table attribute to indicate whether the server
updates are automatically committed on return or the client controls the unit
of work. If the client is controlling the unit of work, subsequent server calls
must go to the same system and transaction under client-controlled unit of
work until a commit or roll back is requested. The server cannot issue
EZECOMIT or EZEROLLB calls if client-controlled unit of work is specified.

Data Format Conversion
Code format conversion is performed on the server call as specified in the
contable linkage attribute table and in EZECONVT. Code is converted based
on the structure of the arguments that are specified on the CALL statement in
the client program.

Error Handling
The standard error handling procedures described below are supported with
CICS DPL. If the DPL is not successful for any reason, including
unavailability of the communication link, error information is returned with
CICS in the CICS EIB (EXEC interface block).

If the REPLY option is not specified on the CALL statement, the calling
program ends with error messages. If REPLY is specified, no messages are
written or logged, and EZERT8 is set to one of the following values:

Value Meaning

00000000 Successful call and return

00000204 Program name not valid

00000207 System identifier not valid

00000208 Link out of service

ffrrrrrr Other CICS error where ff is the hexadecimal
representation of EIBFN byte 0, and rrrrrr is
the hexadecimal representation of EIBRCODE
bytes 0–2.

Configuring a CICS for Windows NT Client for a CICS for OS/2 Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

Configuring a CICS for Windows NT Client

276 VisualAge Generator: Client/Server Communications Guide



,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 LUWCONTROL=CLIENT

Configuring a CICS for Windows NT Client for a CICS for Windows NT
Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

Configuring a CICS for Windows NT Client

Chapter 17. CICS for Windows NT Platform 277



,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 LUWCONTROL=CLIENT

Configuring a CICS for Windows NT Client for a CICS for AIX Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

Configuring a CICS for Windows NT Client

278 VisualAge Generator: Client/Server Communications Guide



,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=BINARY LUWCONTROL=CLIENT

Configuring a CICS for Windows NT Client for a CICS for MVS/ESA
Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

Configuring a CICS for Windows NT Client

Chapter 17. CICS for Windows NT Platform 279



,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for Windows NT Client for a CICS for VSE/ESAServer

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library

Configuring a CICS for Windows NT Client

280 VisualAge Generator: Client/Server Communications Guide



v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for Windows NT Client for a CICS for Solaris Server

Linkage Table Attributes for Generating CICS Client Programs: Specify the
following calllink attributes for the server program when you generate CICS
client programs that call the server via CICS DPL:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,

,
GENERATION

remotebind= RUNTIME

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
CLIENT

luwcontrol= SERVER
remoteapptype= VG

NONVG
ITF

,

,
serverid= server identifier

,/

The following attributes are ignored:
v externalname
v library
v remotecomtype

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA location=CICS1

serverid=CSO7 contable=ELACNENU LUWCONTROL=CLIENT

Configuring a CICS for Windows NT Client

Chapter 17. CICS for Windows NT Platform 281



Configuring a CICS for Windows NT Server

Summary Table of Valid Clients and Protocols

Table 34. Valid Clients and Protocols for VisualAge Generator Servers on the CICS for Windows NT
Platform

Server
Platform

Client Platforms

OS/2 (GUI,
C++, ITF)

Windows 95
and Windows
98 (GUI)

Windows NT
(GUI, C++, ITF)

AIX
(C++) CICS

Solaris
(C++)

CICS for
Windows NT

CICS Client CICS Client CICS Client CICS
Client

CICS DPL CICS Client

Notes:
CICS as a Client Platform refers to:
– CICS for AIX
– CICS for MVS/ESA
– CICS for OS/2
– CICS for Windows NT
– CICS for VSE/ESA
– CICS for Solaris

CICS Client Protocol

List of Valid Clients
v OS/2 (GUI, C++, ITF)
v Windows 95 and Windows 98 (GUI)
v Windows NT (GUI, C++, ITF)
v AIX (C++)
v Solaris (C++)

Identifying the Server Location
Specify the server location (system identifier) in the LOCATION linkage table
attribute. You can also set the location dynamically in the client program at
run time using EZELOC. If the server location is not specified, the default is
the first entry in the CICS Client initialization file.

Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable

Configuring a CICS for Windows NT Server

282 VisualAge Generator: Client/Server Communications Guide



v externalname
v library
v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Server Program Set Up
The server program is generated and prepared as is any other CICS program
on the server system. The server transaction must be defined to CICS on the
server system. The default transaction name associated with a server program
is the CICS-supplied mirror transaction, CPMI.

Specifying Parameter Format
Parameter format (the parmform attribute on the calllink tag) can be specified
as COMMDATA (data values passed in the COMMAREA) or COMMPTR
(pointers passed in the COMMAREA).

Using COMMPTR Format: Use COMMPTR for calling COBOL subroutines
that were developed to use the non-VAGen parameter passing convention that
uses pointers in the CICS COMMAREA. When the pointer format is used, the
generated client program calls an intermediate catcher program (ELACSV,
provided with VisualAge Generator host services) via the ECI instead of
calling the server program directly. The catcher program receives the
parameter data from the client, builds a pointer list in the COMMAREA that
points to the individual parameters, and links to the server program. A
program processing table (PPT) must be defined for the ELACSV program on
the CICS server system.

COMMPTR format is only supported for MVS CICS, CICS for VSE/ESA, and
CICS OS/2 servers.

Using COMMDATA Format: Use COMMDATA for calling generated
programs and for calling COBOL subroutines where possible. COMMDATA
provides better performance in calling remote programs. With COMMDATA,
the server program is called directly without going through the catcher
program.

Configuring a CICS for Windows NT Server

Chapter 17. CICS for Windows NT Platform 283



CICS DPL Protocol

List of Valid Clients
v CICS for AIX
v CICS for MVS/ESA
v CICS for OS/2
v CICS for Windows NT
v CICS for VSE/ESA
v CICS for Solaris

Identifying the Server Location
You can specify the server location (CICS system identifier) on the location
linkage table attribute, or dynamically set the location in the client program at
runtime using EZELOC. If the location is not specified, the default location is
the system identifier associated with the server program in the CICS program
definition on the client system.

Linkage Table Attributes for Generating CICS Server Programs
Specify the following calllink attributes when you generate CICS server
programs:

,, :calllink applname=program name linktype= REMOTE
parmform= COMMDATA

,/

The following attributes are ignored:
v contable
v externalname
v library
v location
v luwcontrol
v remoteapptype
v remotebind
v remotecomtype
v serverid

Example Linkage Table
:calllink applname=ELACVP5 linktype=REMOTE parmform=COMMDATA

Considerations for Defining the Server Program
If the remote program performs printing, it must move the print destination
into EZEDESTP.

Configuring a CICS for Windows NT Server

284 VisualAge Generator: Client/Server Communications Guide



Server Program Set Up
The server program is generated and prepared as is any other CICS program
on the server system. In addition, there must be a CICS program definition for
the server program on the CICS client system containing the following
information:
v Resident option = remote
v Remote system identifier
v Remote program name (optional)
v Remote transaction identifier (optional)

The server transaction must be defined to CICS on the server system. The
default transaction name associated with a server program is the
CICS-supplied mirror transaction, CPMI.

Configuring a CICS for Windows NT Server

Chapter 17. CICS for Windows NT Platform 285



Configuring a CICS for Windows NT Server

286 VisualAge Generator: Client/Server Communications Guide



Part 3. Java Wrappers and Enterprise Beans

© Copyright IBM Corp. 1980, 2001 287



288 VisualAge Generator: Client/Server Communications Guide



Chapter 18. VisualAge Generator JavaBeans Wrappers and
Enterprise Beans

VisualAge Generator generates JavaBeans wrapper classes for calling server
(remote called batch) programs via VisualAge Generator PowerServer
middleware.

The generated classes represent the following:
v Server programs
v Record parameters
v Rows in substructured record arrays

The JavaBeans wrappers perform the following functions on the server call for
the developers:
v Data marshalling and format conversion on server calls between the

following:
– Objects and record structures
– Unicode and ASCII or EBCDIC code pages
– Floating point and decimal or packed decimal numbers

v Extended unit of work control for calls to CICS or OS/400 servers.

The classes can be used by Java developers in building Java applications,
applets, servlets, and JavaServer Pages (JSP). When used in Java applications,
the server wrapper calls the VisualAge Generator PowerServer API from the
system on which the application is running. When used in Java servlets, and
JSPs, the server wrapper calls the VisualAge Generator PowerServer API from
the system on which a web application server starts the servlet or JSP.

When used in Java applets, the wrapper runs within a Java-enabled browser
and uses Java Remote Method Invocation (RMI) to request that the
PowerServer API be called from a VisualAge Generator Java gateway. You
must start a CSOSessionManager class on the VisualAge Generator Java
gateway to listen for RMI requests. See “How to Start the Session Manager on
your VisualAge Generator Java gateway” on page 338 for more details.

VisualAge Generator run-time support includes Java classes for server, record,
and record array superclasses, plus classes for managing unit of work and
PowerServer linkage control. The Java support is shipped with the OS/2,
Windows, AIX, MVS, and AS/400 run-time products, supporting Java
applications and web servers running on these systems.

© Copyright IBM Corp. 1980, 2001 289



VisualAge Generator Java Package

A Java package named ″com.ibm.vgj.cso″ is shipped with VisualAge
Generator Common Services for OS/2, Windows, and AIX. The package is
also shipped with VisualAge Generator Server for MVS. The classes in the
package are used with the generated beans to communicate with VisualAge
Generator server programs.

Supplemental Documentation
In case you need to generate Java wrappers for your server programs and
send the output to Java developers who do not have VisualAge Generator
Developer on Java or VisualAge Generator Developer on Smalltalk, HTML
formatted documentation on how to use Java wrappers is provided in a file
shipped with VisualAge Generator Common Services. This documentation
also contains sample output from generating the server program STAFFMN.
See figure .... for the ESF specification for the STAFFMN program.

Documentation on the V4.5 Java Wrapper support is included in the Common
Services component of the product for Windows NT, OS/2 and AIX. The
documentation is shipped as a dataset containing compressed HTML files.
The name of this file and the mechanism for uncompressing it is dependent
on the system on which the Common Services component is installed.

Uncompressing the Supplemental Documentation File on Windows NT
On Windows NT the documentation is contained in a self-extracting file
named javawin.exe. This file is placed in the exe directory relative to the root
directory where Common Services is installed. The default for this directory is
C:\IBMVAGEN\VGCSO45\EXE. To uncompress the HTML files:
1. Create a directory, such as c:\wrapdoc, and change to that directory.
2. Run the executable javawin.exe from the c:\wrapdoc directory to expand

the html files into c:\wrapdoc. (After installing the Common Services
component, javawin.exe should be in your path.)

Uncompressing the Supplemental Documentation File on OS/2
On OS/2 the documentation is contained in a self-extracting file named
javaos2.exe. This file is placed in the exe directory relative to the root
directory where Common Services is installed. The default for this directory is
C:\VGCSO45. To uncompress the HTML files:
1. Create a directory, such as c:\wrapdoc, and change to that directory.
2. Run the executable javaos2.exe from the c:\wrapdoc directory to expand

the HTML files into c:\wrapdoc. (After installing the Common Services
component, this executable should be in your path).

290 VisualAge Generator: Client/Server Communications Guide



Uncompressing the Supplemental Documentation File on AIX
On AIX the documentation is contained in tar file csojavadoc.tar. This file is
installed in the root directory where VisualAge Generator Server on AIX is
installed. The default for this directory is /usr/lpp/vgwgs45. To uncompress
the HTML files:
1. Create a directory, such as /home/username/wrapdoc, and change to that

directory.
2. From the new directory, run the command tar -xvf

/usr/lpp/vgwgs45/csojavadoc.tar to expand the HTML documentation
files into the new directory.

After expanding the compressed documentation file, use a web browser to
browse file csojava.html. For example, on Windows NT specify a URL of
file:///c:/wrapdoc/csojava.html.

Installing the com.ibm.vgj.cso Package for V4.5
For VisualAge Generator Common Services V4.5 or later, for VisualAge
Generator Server for MVS V1.2 or later, and for VisualAge Generator Server
for AS/400 V4R5 or later, the com.ibm.vgj.cso class files are compressed into
file hpt.jar. Except for OS/390 and AS/400 platforms, this file is placed in the
directory where VisualAge Generator Common Services V4.5 is installed. If
you install the Java support for OS/390 as part of the installation of
VisualAge Generator Server for MVS, hpt.jar is placed in the directory
specified for that optional install.

For VisualAge Generator Server for AS/400, in addition to hpt.jar, you need to
include jt400.jar in CLASSPATH for a non-GUI Java application or when you
are starting the CSO Session Manager. Jt400.jar is located in the
/QIBM/ProdData/HTTP/Public/jt400/lib directory.

To make the com.ibm.vgj.cso package accessible to Java, make sure the Java
CLASSPATH environment variable where the Common Services code runs
includes the hpt.jar file. For example, if you installed Common Services in the
directory C:\HPTCSOW on a Windows machine, then specify:
set CLASSPATH=...;C:\IBMVAGEN\VGCSO45\hpt.jar;...

For AIX, if the Java support was installed in directory /usr/lpp/vgwgs45,
then specify:
export CLASSPATH=...:/usr/lpp/vgwgs45/hpt.jar:...

For OS/390, if the Java support was installed in directory /usr/lpp/vgwgs45,
then specify the following:
export CLASSPATH=...:/usr/lpp/vgwgs/hpt.jar:

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 291



For AS/400, if environment variable CLASSPATH is not set, run the following
command:
ADDENVVAR ENVVAR('CLASSPATH') VALUE('/QIBM/ProdData/HTTP/Public/jt400/lib/jt400.jar:/QVGEN/LIB/hpt.jar')

If CLASSPATH is set, run the following command:
CHGENVVAR ENVVAR('CLASSPATH') VALUE('...:/QVGEN/LIB/hpt.jar')

where ... is the previous value of CLASSPATH.

com.ibm.vgj.cso Package Classes
The com.ibm.vgj.cso package includes the following class definitions:

com.ibm.vgj.cso.CSOPowerServer
CSOPowerServer is the interface implemented by all classes providing
support for calling the Power Server API, whether locally or remotely.
Classes implementing this interface establish a communication session
with the VisualAge Generator PowerServer API for the purpose of
calling VisualAge Generator server programs as well as committing or
rolling back extended units of work.

The class is intended for use only by other classes of the
com.ibm.vgj.cso package.

com.ibm.vgj.cso.CSORemotePowerServerProxy
CSORemotePowerServerProxy establishes a communication session
between a Java applet and the VisualAge Generator PowerServer API.

See com.ibm.vgj.cso.CSORemotePowerServerProxy.html in the package
directory where you installed the supplemental documentation for
class API documentation. See “Supplemental Documentation” on
page 290 for more information.

com.ibm.vgj.cso.CSOLocalPowerServerProxy
CSOLocalPowerServerProxy establishes a communication session
between a Java application, servlet, or JSP and the VisualAge
Generator PowerServer API.

See com.ibm.vgj.cso.CSOLocalPowerServerProxy.html in the package
directory where you installed the supplemental documentation for
class API documentation. See “Supplemental Documentation” on
page 290 for more information.

com.ibm.vgj.cso.CSORemotePowerServerImpl
CSORemotePowerServerImpl is a Java server application running on
your VisualAge Generator Java gateway that acts as a gateway to the
PowerServer API for applets. This Java application is started when
you start the CSOSessionManager class on the VisualAge Generator
Java gateway. The CSOSessionManager class registers the
CSORemotePowerServerImpl class with the RMI Registry. See “How

292 VisualAge Generator: Client/Server Communications Guide



to Start the Session Manager on your VisualAge Generator Java
gateway” on page 338 for more details.

The methods of this class are not used directly by Java clients using
generated JavaBeans wrappers.

com.ibm.vgj.cso.CSOException
CSOException is an exception class thrown by wrapper classes when
any kind of error occured when accessing the Power Server API.

See com.ibm.vgj.cso.CSOException.html in the package directory
where you installed the supplemental documentation for class API
documentation. See “Supplemental Documentation” on page 290 for
more information.

com.ibm.vgj.cso.CSOCallOptions
CSOCallOptions object contains linkage attributes used to control the
PowerServer API. An instance of this class is contained in the
callOptions variable of each generated server program wrapper.

If REMOTEBIND=GENERATION is specified in the generation-time
linkage table, information from the linkage table is stored in the
callOptions variable. No linkage table is read at run time.

If REMOTEBIND=RUNTIME is specified in the generation-time
linkage table, only the linkage table name is stored in the callOptions
variable. Linkage parameters used to locate and call the server
program are determined by the linkage table found at run time. On a
VisualAge Generator Java gateway, the linkage table is read only once
to find the linkage parameters for a server program unless the
CSOSessionManager is restarted on the gateway. Subsequent calls to
the server program, regardless of client, use the linkage parameters
previously found.

The callOptions variable may also be used to set the user ID and
password to be passed to the Power Server API.

Java clients using generated JavaBeans wrappers may use methods to
get and set user ID and password - getUserId(), setUserId(String),
getPassword(), and setPassword(String). These are the only methods of
the CSOCallOptions class that should be used directly by Java clients.

This user ID and password is only used to access server platforms like
CICS and IMS. It is not used for database access.

See com.ibm.vgj.cso.CSOCallOptions.html in the package directory
where you installed the supplemental documentation for class API
documentation. See “Supplemental Documentation” on page 290 for
more information.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 293



com.ibm.vgj.cso.CSOServerProgram
CSOServerProgram is the super class for generated server wrappers.
Its methods are intended only for use by generated beans to marshal
parameter data from and back to Java objects when the server
program is called.

com.ibm.vgj.cso.CSORecord
CSORecord is the super class for generated record wrappers. A record
wrapper class is generated for each record parameter in a server
program’s called parameter list. Marshalling methods in the class
should be used only by generated beans.

com.ibm.vgj.cso.CSORecordArrayRow
CSORecordArrayRow is the super class for wrappers generated to
represent a single row in a multiply occurring substructure in a record
parameter. Marshalling methods in the class should be used only by
generated beans.

com.ibm.vgj.cso.CSOEZEDLPSB
CSOEZEDLPSB is a subclass of Record, and is used in a generated
server wrapper for a server program that accesses an IMS database. A
server program that accesses an IMS database must be passed the EZE
word, EZEDLPSB, which contains the name of the PSB to be used
when accessing the IMS database, as well as some internal data. The
CSOEZEDLPSB class correctly passes all data required for EZEDLPSB
functionality, and provides methods to get and set the PSB name.

See com.ibm.vgj.cso.CSOEZEDLPSB.html in the package directory
where you installed the supplemental documentation for class API
documentation. See “Supplemental Documentation” on page 290 for
more information.

com.ibm.vgj.cso.UnitOfWork
UnitOfWork is an interface implemented by AppletUnitOfWork and
ApplicationUnitOfWork. UnitOfWork establishes a communication
session with the VisualAge Generator PowerServer API for the
purpose of calling VisualAge Generator server programs plus
committing or rolling back extended units of work. This class was
deprecated in V4.5, and the CSOPowerServer interface should be used
instead. The interface may be deleted in a future release.

See com.ibm.vgj.cso.UnitOfWork.html in the package directory where
you installed the supplemental documentation for class API
documentation. See “Supplemental Documentation” on page 290 for
more information.

com.ibm.vgj.cso.AppletUnitOfWork
AppletUnitOfWork establishes a communication session between a

294 VisualAge Generator: Client/Server Communications Guide



Java applet and the VisualAge Generator PowerServer API. This class
was deprecated in V4.5, and the CSORemotePowerServerProxy class
should be used instead.

See com.ibm.vgj.cso.AppletUnitOfWork.html in the package directory
where you installed the supplemental documentation for class API
documentation. See “Supplemental Documentation” on page 290 for
more information.

com.ibm.vgj.cso.ApplicationUnitOfWork
ApplicationUnitOfWork establishes a communication session between
a Java application, servlet, or JSP and the VisualAge Generator
PowerServer API. This class was deprecated in V4.5, and the
CSOLocalPowerServerProxy class should be used instead.

See com.ibm.vgj.cso.ApplicationUnitOfWork.html in the package
directory where you installed the supplemental documentation for
class API documentation. See “Supplemental Documentation” on
page 290 for more information.

Migrating Java Clients from Previous Releases

The classes used to access server programs from a Java client were enhanced
in VisualAge Generator version 4.0 so that they could be used by both
generated wrappers and by VisualAge Generator GUIs developed in the
VisualAge for Java visual composition editor. Some new capabilities were also
added for record wrapper generation. As a result, if you have developed Java
clients using generated JavaBeans wrappers in V3.0 or V3.1 of VisualAge
Generator, there are a few steps you must take to migrate those Java clients to
use the JavaBeans wrapper support in V4.5. No migration is necessary when
you move from version 4.0 to version 4.5.

Regenerate JavaBeans Wrappers
Any JavaBeans wrappers that you use in your Java clients to call server
programs must be regenerated using VisualAge Generator Developer on Java.
The new JavaBeans wrappers will then access the new V4.5 run-time classes
used to call a server program.

Change References to the ibm.cso Package
In order to meet standard naming conventions for Java packages, the name of
the package containing JavaBeans wrapper support classes was changed from
ibm.cso to com.ibm.vgj.cso. As a result, you must change this package name
whenever you imported the ibm.cso package or you fully qualified the class
type when you declared a variable using one of the classes of the ibm.cso
package. If you regenerate the JavaBeans wrappers used by your Java clients,
the ibm.cso package references from within the wrappers will reference the
new package name. However, explicit references to the ibm.cso package by
your Java clients must be changed ″manually″.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 295



It is very likely that the only ibm.cso classes that were referenced explicitly by
your Java clients are the ibm.cso.UnitOfWork,
ibm.cso.ApplicationUnitOfWork, and ibm.cso.AppletUnitOfWork classes. You
can use the features of VisualAge for Java to find references to these classes.

Deprecated Classes
While the UnitOfWork classes continue to function as they did in previous
releases, they have been deprecated, and may be removed in a future release.
The new classes that provide equivalent function are:

Table 35. Deprecated and replacement classes

Deprecated Class Replacement Class

ibm.cso.UnitOfWork com.ibm.vgj.cso.CSOPowerServer

ibm.cso.ApplicationUnitOfWork com.ibm.vgj.cso.CSOLocalPowerServerProxy

ibm.cso.AppletUnitOfWork com.ibm.vgj.cso.CSORemotePowerServerProxy

ibm.cso.UnitOfWorkServerImpl com.ibm.vgj.cso.CSORemotePowerServerImpl

If your Java client is an applet, you used the AppletUnitOfWork(Applet) or
the AppletUnitOfWork(Applet, String) constructor to create an instance of the
AppletUnitOfWork class, and you want to change to use the
CSORemotePowerServerProxy class, you can no longer just pass your applet
to the CSORemotePowerServerProxy constructor. Instead use the
CSORemotePowerServerProxy(String) constructor as follows:
CSORemotePowerServerProxy(this.getCodeBase().getHost());

where this is a reference to your applet. See “How to Call Server Wrappers
from Applets” on page 335 for a complete example.

Conversion in Java Virtual Machine
The conversion features of the Java run-time library are used to perform the
conversion between Java Unicode and the server program code page. The
conversion table names specified in the linkage table are used to determine
the correct Java run-time conversion to use, so the contable attribute is
required in the linkage table.

There is a change in the conversion table name for English and Portuguese
EBCDIC hosts due to the Java run-time conversion. All uses of the CSOE37
conversion table in linkage tables should be changed to CSOE037.

Specifying What to Load into Your Image for Generation
When using batch generation in previous versions of VisualAge Generator, the
/CONFIGMAPNAME and /CONFIGMAPVERSION generation options were
used to indicate what had to be loaded into the image to be sure all
referenced classes are available. JavaBeans wrapper generation is available

296 VisualAge Generator: Client/Server Communications Guide



only in VisualAge Generator Developer on Java. For generation in VisualAge
Generator Developer on Java, you need to specify the /PROJECT generation
option instead. See the VisualAge Generator Generation Guide for details on
invoking batch generation.

Specifying Package Name for Generated JavaBeans Wrappers
In previous releases the package name given to generated JavaBeans wrappers
was set to the server name appended with the character ″P″. This forced you
to place wrappers generated for each server program into their own package.
When the same record parameter was used by several programs, you either
had to keep multiple copies of the record wrapper, or you had to modify
generated wrappers to change package names. The restriction on package
name has been removed. You must now specify the /PACKAGENAME
generation option when generating JavaBeans wrappers to specify the package
where the wrappers are to be placed. If you can place all generated wrappers
for a subsystem into the same package, you can avoid keeping multiple copies
of record wrappers and modifying wrappers to change package names.

Starting a Remote Unit of Work for Applets
In previous releases you started a Java application which registered the
ibm.cso.UnitOfWorkServerImpl class with the Remote Method Invocation
registry in order to respond to Power Server requests made by an applet. You
could specify some run-time arguments when starting the application. The
ibm.cso.UnitOfWorkServerImpl class started a Session Manager that allowed
you to perform adminstrative functions to monitor applet run-time activity.

In V4.5, you start the com.ibm.vgj.cso.CSOSessionManager class with run-time
arguments specified using a different syntax. The Session Manager registers
the com.ibm.vgj.cso.CSORemotePowerServerImpl class with the Remote
Method Invocation registry to respond to Power Server requests made by
applets. See “How to Start the Session Manager on your VisualAge Generator
Java gateway” on page 338 for details on starting the Session Manager and on
specifying run-time arguments.

Enhancements in VisualAge Generator Developer on Java V4.5
In V4.5 several enhancements were made to improve wrapper generation. You
may want to make changes to your Java clients to take advantage of these
enhancements.
v Filler data items defined in record parameters are now allowed. Java

variables are generated into the record and record array row wrappers with
generated names. No access methods are generated for the filler data items,
but data in their positions is maintained (sent/returned) on calls to server
programs.

v All record types may now be passed as parameters. If a record parameter is
an SQL record, additional get/set methods are generated for data items to

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 297



allow you to query and set their null indicators. See the VisualAge
Generator Generation Guide for details.

Specifying a User ID and Password

You can pass a user ID and password from your Java client using the
setUserId and setPassWord methods of the CSOCallOptions class. If you do
this, the Java client must prompt for the user ID and password values. Each
server program wrapper contains an instance of the CSOCallOptions class in
variable callOptions. To set user ID and password for server program wrapper
instance staffmn, for example, code the following:
staffmn.callOptions.setUserId("USERID") ;
staffmn.callOptions.setPassWord("PASSWORD") ;

This user ID and this password are only used to access server platforms like
CICS and IMS. They are not used for database access.

You can also pass a user ID and password from your Java client using the
HptCommSession part. This part contains two additional properties, password
and userID, which can be set statically in the program or during program
execution. To use this method, first drop a VAGenCommSession part onto
your Java free-form surface. If you want to set this value automatically in the
code, you need to update the password and userID properties in the
HptCommSession part. If you want to receive the value during run time, take
the following actions:
1. Code a prompt for the user to enter those values.
2. Connect these values to the HptCommSession part properties, user ID to

user ID property, and password to password property.
3. Connect the VAGenCommSession part (this) to the VAGenCommSession of

the bean.

For more information on using VAGenCommSession part, refer to User’s
Guide.

Calling Server Programs as Session Beans

Beginning with V4.0 of VisualAge Generator for Java you were able to
generate a session bean that calls a COBOL or C++ server program. The
session bean support available in VisualAge Generator prior to V4.5 allowed
you to access a server program through a session bean deployed on an
Enterprise Java Server (EJS). However, the server program did not do two
things:
v Run in the same EJS process as the session bean that called the server

program. The server program was called through VisualAge Generator

298 VisualAge Generator: Client/Server Communications Guide



Common Services middleware, and did not even have to be executed on
the same machine as the session bean.

v Obtain its database connections from an EJS container. Thus, database
updates could not be coordinated by the EJS transaction services.

As a result, server programs called through session beans prior to V4.5 could
not truly participate in EJS transactions. Each call of a server program started
a new EJS transaction, but any database updates were managed by CICS, IMS,
or database manager transactions as far as commits and rollbacks were
concerned.

The previous capability for calling a server program as a session bean is still
available, but with the addition of Java server generation in V4.5, a server
program generated in the Java language can fully participate in EJS
transactions.

Requirements for Generating Session Beans that Participate in EJS
Transactions

In order for a server program to participate in an EJS transaction, the
following things must be true.
v The server program must be generated in the Java language rather than

COBOL or C++.
v Either:

– A session bean must be generated to invoke the server program in an
EJS process.
In this case the EJBGROUP generation option must be specified when
generating the session bean, and the server program’s linkage table entry
in the linkage table used to generate the session bean must specify the
following attributes.
- LINKTYPE=SESSIONEJB
- REMOTEAPPTYPE=VGJAVA
- REMOTECOMTYPE=DIRECT

In addition, if session bean A (as opposed to a servlet) invokes server
program B as a session bean, then the linkage table entry for program B
within the linkage table used to generate server program A must include
the following specifications.
- LINKTYPE=SESSIONEJB
- REMOTEAPPTYPE=VGJAVA
- REMOTECOMTYPE=DIRECT

See “Generation/Runtime Setup Examples” on page 306 for more
information on linkage table attributes.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 299



– The server program is not generated as a session bean, but is one of a
chain of called Java server programs (not called as session beans) where
the first program of the chain is called from a Java server program
session bean that participates in an EJS transaction. Each program of the
call chain must be invoked with the linkage attribute
LINKTYPE=DYNAMIC or LINKTYPE=STATIC

v The only I/O to be controlled by the EJS transaction are updates to SQL
databases. File I/O is not controlled by EJS transactions. See
“Generation/Runtime Setup Examples” on page 306 for more information
on linkage table attributes when using session beans.

EJS Transaction Demarcation for Generated Session Beans
The session beans generated by VisualAge Generator do not perform their
own transaction demarcation. (They do not support a transaction attribute of
TX_BEAN_MANAGED in EJB terminology.) Instead, they depend on either
the container in which they are deployed, or the client invoking them, to start
any EJS transaction in which they are to participate. This has implications for
how you must design server programs in order to control when commits and
rollbacks are triggered.

Because a generated session bean does not start or end its own transactions,
commits and rollbacks can only be performed outside the boundary of a call
to the session bean. Thus, commits and rollbacks of database updates made
by generated session beans are performed only at the return from a call. If the
client invoking the session bean starts the EJS transaction in which the session
bean is running, then the client controls when the transaction is ended. If the
transaction is started by an EJS container’s invocation of a session bean
method, then the container ends the transaction when the method ends. (For
this discussion, throwing an exception due to a system problem is one way in
which a method may be ended.) In either case the session bean can force a
rollback to occur when the transaction is ended.

This means that calls to EZECOMIT cannot force an intermediate commit of
updates during a call. Calls to EZEROLLB simply mark the current
transaction for rollback. Once a call to EZEROLLB is made, there is no use in
performing additional I/O to relational databases because those updates,
along with any previous updates made during the call, will be rolled back. A
call to EZECOMIT from within a generated session bean, or from a chain of
called Java server programs running in the same process as a generated
session bean, is essentially a no-op. It does not cause a commit of previous
updates, and it does not cause any cursor resetting. Similarly, the only
function performed by EZEROLLB is to mark the current EJS transaction to
eventually force a rollback when the transaction ends.

Because commits and rollbacks can only be performed at call boundaries, it is
necessary to structure programs so that only database updates that belong to

300 VisualAge Generator: Client/Server Communications Guide



one transaction can be performed within a call. In order to make an update to
a database and have that update committed regardless of what happens in
further processing, you must exit the server program. You can make updates
to more than one database within a call, but all updates made within a call
are either committed or rolled back together, regardless of the database in
which the updates were made.

EJS Container Usage of a Session Bean’s Transaction Attribute for
Transaction Demarcation

One of the deployment attributes that you can specify in a session bean’s
deployment descriptor is the transaction attribute. This attribute is used to
specify whether or not the methods of the session bean are to participate in an
EJS transaction and, if so, whether an existing transaction is to be inherited or
a new transaction is to be started when a method is invoked. The following
values may be specified for generated session beans:

TX_REQUIRED
Specifies that if a current transaction context exists, methods are
invoked in that transaction context. If no transaction context exists, the
container starts a new transaction before making a method call and
attempts to commit the transaction when the method has completed.
The container performs the commit protocol before the method result
is sent to the invoker. If the session bean invokes a method of another
session bean, the invoking session bean’s transaction context is passed
to the invoked session bean.

This is the default transaction attribute value for generated session
beans.

TX_REQUIRES_NEW
Specifies that the container always starts a new transaction before
making a method call and attempts to commit the transaction when
the method has completed. If there is an existing transaction context,
that transaction context is suspended before the new transaction is
started, and resumed when the new transaction has completed. The
container performs the commit protocol before the method result is
sent to the invoker. If the session bean invokes a method of another
session bean, the invoking session bean’s transaction context is passed
to the invoked session bean.

TX_MANDATORY
Specifies that the session bean must always be called with an existing
transaction context. Otherwise, the container throws the
TransactionRequired exception. The container does not perform any
commit processing before returning. If the session bean invokes a
method of another session bean, the invoking session bean’s
transaction context is passed to the invoked session bean.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 301



TX_SUPPORTS
Specifies that the session bean uses an existing transaction context, if
any. If there is no existing transaction context, methods are invoked
without transaction scope. If the session bean invokes a method of
another session bean, the invoking session bean’s transaction context,
if any, is passed to the invoked session bean.

TX_NOT_SUPPORTED
Specifies that session bean methods are invoked without a transaction
scope. If there is an existing transaction context, that transaction is
suspended before the container invokes a method and is resumed on
completion of the method. If the session bean invokes a method of
another session bean, the invoking session bean’s transaction context,
if any, is not passed to the invoked session bean.

Using the Transaction Attribute to Control Transaction Demarcation
Previous sections discussed how you must structure your server programs so
that no EZECOMIT calls are necessary within the server program to control
commit processing. This section discusses how to specify transaction attributes
so that transaction contexts extend across a chain of server program calls.

Suppose you are designing a simple order/entry application where one server
program performs all updates to an ORDER table and a second server
program performs all updates to an ORDER_ITEM table. When an order is
received, the order has to be processed so that both the ORDER table is
updated with the new order, and the ORDER_ITEM table is updated with all
line items of the order. The ORDER table update may not be committed
without the ORDER_ITEM table updates being committed, and vice versa.

To force this behavior you can define a third program that controls processing
of the order. It receives all the data associated with the order, calls the
program that makes the ORDER table update, then calls the program that
makes the ORDER_ITEM table updates. The control program would be
deployed with a transaction attribute of TX_REQUIRES_NEW. The ORDER
and the ORDER_ITEM programs would be deployed with a transaction
attribute of TX_REQUIRED. Then the processing of both the ORDER and the
ORDER_ITEM program calls would be performed within the transaction
context of the control program. When the call to the control program
completes, the updates would be committed or rolled back depending on
whether any of the three programs called EZEROLLB, and whether an
exception was thrown due to some system problem. It does not matter
whether the control program makes one call to the ORDER program and one
call to the ORDER_ITEM program, or whether the control program makes one
call to the ORDER program and a call to the ORDER_ITEM program for each
item of the order. The transaction does not end until the control program
ends.

302 VisualAge Generator: Client/Server Communications Guide



Alternatively, the function of the control program could be moved back to the
client servlet. The servlet can start an EJS transaction, then call the session
bean that updates the ORDER table, followed by a call to the session bean
that updates the ORDER_ITEM table. The servlet would have to issue a
commit or rollback based on return information from the two session beans to
end the transaction. You might deploy the ORDER and ORDER_ITEM session
beans with a transaction attribute of TX_MANDATORY if they would always
be invoked by a client servlet that starts the EJS transaction. This
servlet-controlled transaction design would not usually be the preferred
design because:
v Two calls across the network are required instead of one
v Code has to be developed in the client servlet to manage an EJS transaction.

The EJS container already provides the necessary function.

However, there are situations where it is necessary to have EJS transactions
controlled from the client. See section ″Implementing Client Controlled EJS
Transactions″ for details on how servlets can start their own EJS transactions,
called user transactions in the EJB specification.

Now let’s change the requirements for the programs processing orders.
Suppose an order is for a new customer. Then we want the customer
information to be added to a CUSTOMER table, regardless of whether the
order can be processed successfully or not. A session bean can be written to
handle updates/inserts to the CUSTOMER table, and given a transaction
attribute of TX_REQUIRES_NEW. The control program can be changed to first
call the CUSTOMER session bean to handle customer information. When this
call is made a new transaction will be started by the EJS container before
invoking the CUSTOMER session bean’s call method, and the transaction will
be completed by the container on return from the call method. While the
CUSTOMER session bean is processing, the transaction context of the control
program is suspended. The transaction context of the control program is
resumed on return from the CUSTOMER session bean. If CUSTOMER
processing is successful, the control program calls the ORDER session bean
and the ORDER_ITEM session bean as above. The updates made during these
calls are committed or rolled back together when the control program ends.

Implementing Client Controlled EJS Transactions
Figure 13 on page 304 provides code snippets of an EJB client creating a
reference to a UserTransaction object and then using that object to begin a
transaction and attempt to commit the transaction. Consult WebSphere
documentation, for example, ″Writing Enterprise Beans in Websphere″, for
more detail on User Transactions.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 303



VisualAge Generator Runtime Usage of Linkage Attributes
If a session bean is to call a server program that is not a session bean, and the
called server program is to participate in the session bean’s EJS transaction,
then the session bean’s generation linkage table entry for the called server
program must specify the following:
v LINKTYPE=DYNAMIC or LINKTYPE=STATIC
v REMOTEAPPTYPE=VAJAVA
v PACKAGENAME=’<server program package name>’

In this case, no linkage parameters are searched for at run time.

Otherwise, no database updates made by the server program will be
controlled by the session bean’s EJS transaction. If the linkage table used at
generation time specifies REMOTEBIND=GENERATION for a called server
program’s entry, and a valid REMOTECOMTYPE is specified, the generation
linkage table’s linkage attributes are used at run time. If the linkage table used
at generation time specifies REMOTEBIND=RUNTIME and does not specify
LINKTYPE=DYNAMIC or LINKTYPE=STATIC for a called server program’s
entry, you must supply a run-time linkage table or a property file specifying
how to call the server program. When the calling program is a Java server
program, the VisualAge Generator runtime searches for property files and
run-time linkage tables in the following manner:
1. Search for file <prgName>.properties in the CLASSPATH, <where

prgName> is the name of the called program. If an entry for the called
program is not found,

2. Search for file vgj.properties in the CLASSPATH. If an entry for the called
program is not found,

...
import javax.transaction.*;
import javax.naming.*;
...
// Use JNDI name jta/usertransaction to locate the UserTransaction object
Context initialContext = new InitialContext();
UserTransaction tranContext = (UserTransaction)initialContext.lookup("jta/usertransaction");
// Set the transaction timeout to 30 seconds
tranContext.setTransactionTimeout(30);
...
// Begin a transaction
tranContext.begin();
...
// Prepare parameters and call session bean
...
// Try to commit the transaction. If the session bean called EZEROLLB,
// The commit will fail and a rollback will be performed.
// An alternative is for the session been to set a return value, and
// based on that return value, the client can invoke either commit() or rollback()
tranContext.commit();

Figure 13. Managing Transactions in an EJB Client

304 VisualAge Generator: Client/Server Communications Guide



3. If the LINKAGE generation option was specified at generation time,
a. If the LINKAGE generation option specifies a fully qualified dataset

name, that dataset is read. Otherwise,
b. Search for the specified linkage table in directories in a platform

dependent order:

For Windows platforms

1) Search the current directory.
2) Search directories specified by the PATH environment

variable.

For the OS/2 platform

1) Search the current directory.
2) Search directories specified by the DPATH environment

variable.

For UNIX-based platforms (including OS/390 USS)
Search directories specified by the DPATH environment
variable.

4. If no LINKAGE generation option was specified, or the linkage table
specified was not found in step 3, the CSOLINKTBL environment variable
is read. (When the call is being made in an application server environment
like WebSphere, the CSOLINKTBL environment must be set so that it is
available in that environment. For example, if WebSphere is running as a
service on a Windows NT system, the CSOLINKTBL must be set as a
system environment rather than a user environment variable. An
application server may have its own way of making environment variables
available to EJBs.) If a value is specified for CSOLINKTBL:
a. If the CSOLINKTBL value is a fully qualified dataset name, that

dataset is read.
b. If the CSOLINKTBL value is not a fully qualified dataset name, the

specified dataset is searched for in a directory as described in steps 3.a
and 3.b.

5. If no linkage table entry is found by either step 3 or step 4, the call will
fail.

The VisualAge Generator runtime searches for run-time linkage tables as
described in steps 3 through 5 for Java server programs. See the appendix on
Java properties files in the VisualAge Generator Generation Guide for more detail
on specifying linkage parameters within property files, and how property files
can be generated from linkage tables. See the VisualAge Generator Client/Server
Communications Guide for more detail on specifying linkage parameters within
linkage table files.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 305



Generation/Runtime Setup Examples
There are many configurations possible for systems containing combinations
of servlets, C++ or COBOL server programs, Java server programs, Java server
programs as session beans, and C++ or COBOL server programs as session
beans. This section describes some possible configurations and the generation
options, linkage table attributes, and properties necessary to make them work
in a run-time environment. In the following scenarios, the PACKAGE linkage
attribute is shown to be ’my.pkg’. This value should be replaced by an actual
package name.

Scenario 1
In this scenario a servlet calls COBOL server program PGMA as a session
bean. The server program is run in an MVS CICS environment. Because the
server program is not a Java server program and is not called by a Java server
program, updates made by the server program are not controlled by an EJS
transaction. If program PGMA were to call other server programs, database
updates by those server programs would also not be controlled by an EJS
transaction.

306 VisualAge Generator: Client/Server Communications Guide



Ta
bl

e
36

.
S

ce
na

rio
1

P
ro

gr
am

L
an

gu
ag

e
G

en
er

at
io

n
O

p
ti

on
s

L
in

k
ag

e
Ta

b
le

A
tt

ri
b

u
te

E
JB

?
Tr

an
sa

ct
io

n
A

tt
ri

b
u

te
U

p
d

at
es

in
an

E
JS

Tr
an

s.

PG
M

A
C

O
B

O
L

E
JB

G
R

O
U

P=
M

Y
G

R
O

U
P

L
IN

K
T

Y
PE

=
SE

SS
IO

N
E

JB
R

E
M

O
T

E
C

O
M

T
Y

PE
=

C
IC

SC
L

IE
N

T
C

O
N

TA
B

L
E

=
C

SO
E

04
7

Y
T

X
_R

E
Q

U
IR

E
S_

N
E

W
(a

ny
sh

ou
ld

w
or

k
si

nc
e

no
up

d
at

es
m

ad
e

in
an

E
JS

Tr
an

sa
ct

io
n)

N
o

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 307



Scenario 2
In this scenario a servlet calls Java server program PGMA as a session bean
using a REMOTECOMTYPE of DIRECT. Because the server program is a Java
server program that is called using a REMOTECOMTYPE of DIRECT, updates
made by the server program are controlled by an EJS transaction. The
conversion table CSOJ1252 indicates that the program PGMA uses a Java byte
order (the ″J″ in CSOJ1252), and is running on a machine using code page
1252 (English).

308 VisualAge Generator: Client/Server Communications Guide



Ta
bl

e
37

.
S

ce
na

rio
2

P
ro

gr
am

L
an

gu
ag

e
G

en
er

at
io

n
O

p
ti

on
s

L
in

k
ag

e
Ta

b
le

A
tt

ri
b

u
te

E
JB

?
Tr

an
sa

ct
io

n
A

tt
ri

b
u

te
U

p
d

at
es

in
an

E
JS

Tr
an

s.

PG
M

A
Ja

va
E

JB
G

R
O

U
P=

M
Y

G
R

O
U

P
L

IN
K

T
Y

PE
=

SE
SS

IO
N

E
JB

R
E

M
O

T
E

C
O

M
T

Y
PE

=
D

IR
E

C
T

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

Y
T

X
_R

E
Q

U
IR

E
S_

N
E

W
Ye

s

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 309



Scenario 3
In this scenario a servlet calls Java server program PGMA as a session bean
using a REMOTECOMTYPE of DIRECT. Program PGMA calls Java server
program PGMB as a session bean using a REMOTECOMTYPE of DIRECT.
Java server program B calls Java server program PGMC as a session bean
using a REMOTECOMTYPE of DIRECT. Because all three programs are Java
server programs called as session beans using a REMOTECOMTYPE of
DIRECT, updates made by any of the three server programs are controlled by
an EJS transaction. Because the transaction attribute for session beans PGMB
and PGMC is TX_REQUIRED, updates by all three session beans are
controlled by the same transaction.

310 VisualAge Generator: Client/Server Communications Guide



Ta
bl

e
38

.
S

ce
na

rio
3

P
ro

gr
am

L
an

gu
ag

e
G

en
er

at
io

n
O

p
ti

on
s

L
in

k
ag

e
Ta

b
le

A
tt

ri
b

u
te

E
JB

?
Tr

an
sa

ct
io

n
A

tt
ri

b
u

te
U

p
d

at
es

in
an

E
JS

Tr
an

s.

PG
M

A
Ja

va
E

JB
G

R
O

U
P=

M
Y

G
R

O
U

P
L

IN
K

T
Y

PE
=

SE
SS

IO
N

E
JB

R
E

M
O

T
E

C
O

M
T

Y
PE

=
D

IR
E

C
T

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

Y
T

X
_R

E
Q

U
IR

E
S_

N
E

W
Ye

s

PG
M

B
Ja

va
E

JB
G

R
O

U
P=

M
Y

G
R

O
U

P
L

IN
K

T
Y

PE
=

SE
SS

IO
N

E
JB

R
E

M
O

T
E

C
O

M
T

Y
PE

=
D

IR
E

C
T

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

Y
T

X
_R

E
Q

U
IR

E
S

Ye
s

In
he

ri
ts

fr
om

A

PG
M

C
Ja

va
E

JB
G

R
O

U
P=

M
Y

G
R

O
U

P
L

IN
K

T
Y

PE
=

SE
SS

IO
N

E
JB

R
E

M
O

T
E

C
O

M
T

Y
PE

=
D

IR
E

C
T

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

Y
T

X
_R

E
Q

U
IR

E
S

Ye
s

In
he

ri
ts

fr
om

A

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 311



Scenario 4
In this scenario a servlet calls Java server program PGMA as a session bean
using a REMOTECOMTYPE of DIRECT. Program PGMA calls Java server
program PGMB as a session bean using a REMOTECOMTYPE of DIRECT.
Session bean PGMB runs on a different EJS server (at least a different name
server resolves its location) so the PROVIDERURL linkage option is specified.
Program PGMB runs in its own transaction since transaction attribute
TX_REQUIRES_NEW is specified. Java server program PGMA also calls Java
server program PGMC as a session bean using a REMOTECOMTYPE of
DIRECT. Because program PGMC is a Java server program called as a session
bean using a REMOTECOMTYPE of DIRECT, and session bean PGMC has a
transaction attribute of TX_REQUIRED, updates made by server programs
PGMA and PGMC are controlled by the same EJS transaction.

Note: Even though session bean PGMB’s JNDI name is resolved by a different
name server than session bean PGMA and may be deployed in a
container of a different EJS, if session bean PGMB’s transaction attribute
were TX_REQUIRED instead of TX_REQUIRES_NEW it would inherit
session bean PGMA’s transaction. In order for this configuration to be
successful, it is necessary for the JDBC driver used by the data sources
of all three session beans to support distributed transactions. In J2EE
terminology, the JDBC drivers must support the Java Transaction API
(JTA). The DB2 V6.1 JDBC driver after FixPack 1 does support JTA. If
you need to use other database managers in a distributed transaction
environment, you will have to ensure that the databases manager’s
JDBC driver supports distributed transactions using JTA.

312 VisualAge Generator: Client/Server Communications Guide



Ta
bl

e
39

.
S

ce
na

rio
4

P
ro

gr
am

L
an

gu
ag

e
G

en
er

at
io

n
O

p
ti

on
s

L
in

k
ag

e
Ta

b
le

A
tt

ri
b

u
te

E
JB

?
Tr

an
sa

ct
io

n
A

tt
ri

b
u

te
U

p
d

at
es

in
an

E
JS

Tr
an

s.

PG
M

A
Ja

va
E

JB
G

R
O

U
P=

M
Y

G
R

O
U

P
L

IN
K

T
Y

PE
=

SE
SS

IO
N

E
JB

R
E

M
O

T
E

C
O

M
T

Y
PE

=
D

IR
E

C
T

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

Y
T

X
_R

E
Q

U
IR

E
S_

N
E

W
Ye

s

PG
M

B
Ja

va
E

JB
G

R
O

U
P=

M
Y

G
R

O
U

P
L

IN
K

T
Y

PE
=

SE
SS

IO
N

E
JB

R
E

M
O

T
E

C
O

M
T

Y
PE

=
D

IR
E

C
T

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PR
O

V
ID

E
R

U
R

L
=

SE
R

V
E

R
2

PA
C

K
A

G
E

=
’m

y.
pk

g’

Y
T

X
_R

E
Q

U
IR

E
S_

N
E

W
Ye

s
In

it
s

ow
n

tr
an

sa
ct

io
n

PG
M

C
Ja

va
E

JB
G

R
O

U
P=

M
Y

G
R

O
U

P
L

IN
K

T
Y

PE
=

SE
SS

IO
N

E
JB

R
E

M
O

T
E

C
O

M
T

Y
PE

=
D

IR
E

C
T

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

Y
T

X
_R

E
Q

U
IR

E
S

Ye
s

In
he

ri
ts

fr
om

A

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 313



Scenario 5
In this scenario a servlet calls Java server program PGMA as a session bean
using a REMOTECOMTYPE of DIRECT. Program PGMA calls Java server
program PGMB, but not as a session bean, using a LINKTYPE of DYNAMIC.
Program PGMB calls C++ server program PGMC, but not as a session bean,
using a LINKTYPE of DYNAMIC. While server programs PGMB and PGMC
are not called as session beans (LINKTYPE is not SESSIONEJB) they do form
a chain of called Java server programs with LINKTYPE=DYNAMIC. This
causes programs PGMB and PGMC to run in the same process as session
bean PGMA. As a result, programs PGMB and PGMC run in the same
VisualAge Generator run unit as session bean PGMA, they obtain any
database connections from the EJS container, and their updates are controlled
by session bean PGMA’s transaction. Note that the conversion table
specification for dynamic calls is different from the specification for session
bean (and remote) calls. For dynamic calls to Java server programs specify
CONTABLE=CSOJAVA.

314 VisualAge Generator: Client/Server Communications Guide



Ta
bl

e
40

.
S

ce
na

rio
5

P
ro

gr
am

L
an

gu
ag

e
G

en
er

at
io

n
O

p
ti

on
s

L
in

k
ag

e
Ta

b
le

A
tt

ri
b

u
te

E
JB

?
Tr

an
sa

ct
io

n
A

tt
ri

b
u

te
U

p
d

at
es

in
an

E
JS

Tr
an

s.

PG
M

A
Ja

va
E

JB
G

R
O

U
P=

M
Y

G
R

O
U

P
L

IN
K

T
Y

PE
=

SE
SS

IO
N

E
JB

R
E

M
O

T
E

C
O

M
T

Y
PE

=
D

IR
E

C
T

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

Y
T

X
_R

E
Q

U
IR

E
S_

N
E

W
Ye

s

PG
M

B
Ja

va
L

IN
K

T
Y

PE
=

D
Y

N
A

M
IC

C
O

N
TA

B
L

E
=

C
SO

JA
V

A
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

N
N

/
A

Ye
s

R
un

in
A

’s
ru

n
un

it

PG
M

C
Ja

va
L

IN
K

T
Y

PE
=

D
Y

N
A

M
IC

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

N
N

/
A

Ye
s

R
un

in
A

’s
ru

n
un

it

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 315



Scenario 6
This scenario is the same as “Scenario 5” on page 314 except that server
program PGMC is a C++ server program called with LINKTYPE = CSOCALL
and REMOTECOMMTYPE=TCPIP. The updates for server program PGMB are
controlled by session bean PGMA’s transaction because server program PGMB
runs in session bean PGMA’s run unit. Server program PGMC is not a Java
server program. It has its own run unit, and its database updates are not
controlled by session bean PGMA’s transaction.

316 VisualAge Generator: Client/Server Communications Guide



Ta
bl

e
41

.
S

ce
na

rio
6

P
ro

gr
am

L
an

gu
ag

e
G

en
er

at
io

n
O

p
ti

on
s

L
in

k
ag

e
Ta

b
le

A
tt

ri
b

u
te

E
JB

?
Tr

an
sa

ct
io

n
A

tt
ri

b
u

te
U

p
d

at
es

in
an

E
JS

Tr
an

s.

PG
M

A
Ja

va
E

JB
G

R
O

U
P=

M
Y

G
R

O
U

P
L

IN
K

T
Y

PE
=

SE
SS

IO
N

E
JB

R
E

M
O

T
E

C
O

M
T

Y
PE

=
D

IR
E

C
T

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

Y
T

X
_R

E
Q

U
IR

E
S_

N
E

W
Ye

s

PG
M

B
Ja

va
L

IN
K

T
Y

PE
=

D
Y

N
A

M
IC

C
O

N
TA

B
L

E
=

C
SO

JA
V

A
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

N
N

/
A

Ye
s

R
un

in
A

’s
ru

n
un

it

PG
M

C
C

+
+

L
IN

K
T

Y
PE

=
C

SO
C

A
L

L
R

E
M

O
T

E
C

O
M

T
Y

PE
=

T
C

PI
P

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G

N
N

/
A

N
o

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 317



Scenario 7
In this scenario a servlet calls Java server program PGMA as a session bean
using a REMOTECOMTYPE of DIRECT. Program PGMA calls Java server
program PGMB, but not as a session bean, and using a LINKTYPE of
CSOCALL. Because program PGMB is not called with
LINKTYPE=SESSIONEJB or LINKTYPE=DYNAMIC, it does not run in session
bean PGMA’s run unit. Therefore, it does not participate in an EJS transaction.

318 VisualAge Generator: Client/Server Communications Guide



Ta
bl

e
42

.
S

ce
na

rio
7

P
ro

gr
am

L
an

gu
ag

e
G

en
er

at
io

n
O

p
ti

on
s

L
in

k
ag

e
Ta

b
le

A
tt

ri
b

u
te

E
JB

?
Tr

an
sa

ct
io

n
A

tt
ri

b
u

te
U

p
d

at
es

in
an

E
JS

Tr
an

s.

PG
M

A
Ja

va
E

JB
G

R
O

U
P=

M
Y

G
R

O
U

P
L

IN
K

T
Y

PE
=

SE
SS

IO
N

E
JB

R
E

M
O

T
E

C
O

M
T

Y
PE

=
D

IR
E

C
T

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

Y
T

X
_R

E
Q

U
IR

E
S_

N
E

W
Ye

s

PG
M

B
Ja

va
L

IN
K

T
Y

PE
=

C
SO

C
A

L
L

R
E

M
O

T
E

C
O

M
T

Y
PE

=
D

IR
E

C
T

C
O

N
TA

B
L

E
=

C
SO

J1
25

2
R

E
M

O
T

E
A

PP
T

Y
PE

=
V

G
JA

V
A

PA
C

K
A

G
E

=
’m

y.
pk

g’

N
N

/
A

N
o

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 319



Configuring Data Sources in WebSphere Advanced Edition V3.5
Session beans generated by VisualAge for Java try to obtain connections from
a data source of the EJS container in which the session bean is deployed
rather than obtaining the connection directly from a database manager. When
you configure a data source within a container, the container can maintain a
connection pool so that connections are not automatically released when an
EJB indicates it is through with the connection. This makes connecting and
disconnecting to databases more efficient. When a connection is obtained from
a data source, the container is able to get the information necessary to become
the transaction co-ordinator for the connection.

You should reference WebSphere Advanced Edition documentation for
detailed information on data sources, connections, and connection pools. The
following procedure is provided to help you get started in configuring a data
source for use by generated session beans in WebSphere Advanced Edition
V3.5. WebSphere may make changes to their Administrative Console user
interface, so if you encounter problems refer back to the WebSphere
documentation to resolve the problems. The following procedure configures a
data source, sampledb, to access the DB/2 sample database.
1. Select View->Type
2. Right-click on JDBCDrivers
3. Select Create
4. On the ″Create a JDBCDriver″ dialog
5. Enter DB2AppDriver in the Name field. (Or choose your own driver

name.)
6. From the Implementation class dropdown select

COM.ibm.db2.jdbc.app.DB2Driver
7. Leave the URL prefix as jdbc:db2
8. Leave JTA enabled as false unless you have to implement distributed

transactions (which are inherently slow). DB2 5.2 does not provided a
JTA enabled driver. DB2 6.1 FixPack 1 or later does.

9. Click Create to create the JDBC Driver definition
10. Back on the Type panel, right-click on DataSources and select Create
11. On the ″Create a DataSource″ dialog
12. Enter the data source name sampledb. This will result in a Java Naming

and Directory Interface (JNDI) name of jdbc/sampledb being created in
the EJS name server. It is this JNDI name that you have to use as the
database server name when specifying a default database name for a
session bean, or when mapping a symbolic name to a database server
name for use in EZECONCT calls. See section ″Configuring the Java
Server Runtime to Access EJS Data Sources″ for more detail.

320 VisualAge Generator: Client/Server Communications Guide



13. Enter sample as the database name. Together with the URL prefix in the
JDBC driver configuration, this enables a database URL of
jdbc:db2:sample

14. Enter DB2AppDriver (the JDBC driver created above) in the Driver field
15. You can click on the Advanced tab to see what connection pool

parameters can be set. See WebSphere documentation on how to use
these parameters.

16. Click on Create to create the data source definition

Configuring the Java Server Runtime to Access EJS Data Sources
The VisualAge Generator runtime tries to load property files for a Java server
program to gather run-time options for the program. In order for the runtime
to find a property file, the file must be included in a directory or in a jar file
in the CLASSPATH that is active when the runtime is started. The runtime
first looks for a property file named vgj.properties and extracts properties
from that property file if found. Then the runtime looks for a property file
named <programName>.properties, where programName is the name of the
program being invoked. For example, if the program ORDER is being
invoked, the runtime will look for file ORDER.properties. (Case is important
in property file names.) If a value for a property is specified in
<programName>.properties, that value will override the value for the same
property specified in vgj.properties.

The following properties may be specified in either the vgj.properties or the
<programName>.properties file to provide information used to connect to EJS
data sources when a Java server program is invoked as a session bean:

vgj.jdbc.default.database
Specifies the JNDI name of the EJS data source to be used as the
default data source.

For example, if a data source of sampledb was defined in WebSphere,
the JNDI name of the data source is jdbc/sampledb

vgj.jdbc.default.user.id
Specifies the user ID to use when connecting to the default database

vgj.jdbc.default.user.password
Specifies the password to use when connecting to the default database

If your session bean uses EZECONCT to connect to and disconnect from a
database rather than using a default database, one of the parameters for the
EZECONCT call is the name of a database server. When the server program is
running as a session bean, the JNDI name of the data source must be specified
for this parameter. You can specify the actual JNDI name (for example,

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 321



jdbc/sampledb) or you can specify a symbolic name that a property maps to a
data source JNDI name. If you want to map a symbolic name to a data source
JNDI name, specify property

vgj.jdbc.database.<symbolicName> = <dataSourceJNDIName>

For example, if you want EZECONCT to map a symbolic name of SAMPLE to
data source sampledb, in your properties file code

vgj.jdbc.database.SAMPLE = jdbc/sampledb

Modifying Deployment Descriptors
After you generate a session bean, you may need to modify its deployment
descriptor attributes so that the desired transaction behavior, database locking,
and security are applied at deployment.

To edit the deployment descriptor in VA for Java:
v Select the EJB page of the workbench
v Expand the EJB group containing the session bean
v Right-click on the session bean and select Properties
v Select the Bean page of the Properties dialog.

You can get VisualAge for Java help for this dialog by expanding Help
Tasks ″Developing EJB Components″ then ″Setting Descriptor Properties
and Generating Deployed Classes″.

v If necessary, select the Transaction Attribute required to get the desired
transaction demarcation

v If necessary, select the Isolation Level requried to get the desired database
locking.
See the WebSphere documentation for a description of each of the Isolation
Level selections.

v If necessary, select the Run-as Mode to get the desired security checking.
See the WebSphere documentation for a description of each of the Run-As
Mode selections.

Never change the JNDI name for the bean because the VisualAge Generator
middleware depends on the generated JNDI name. Also, never change the
State Management Attribute from STATEFUL.

Deploying Generated Session Beans
After you have generated a session bean to call a server program, you must
use VisualAge for Java to generate the code necessary to deploy the session
bean in an enterprise server. New classes are generated that allow client code
that you develop to communicate with the session bean using RMI-IIOP, a
CORBA interface for distributed object communication. VisualAge for Java

322 VisualAge Generator: Client/Server Communications Guide



provides support for testing your deployed code in a WebSphere test
environment. Once you have generated and tested the deployment code, you
must export that code and install it in a container of your enterprise server.

Generating Deployed Code for a Generated Session Bean
VisualAge for Java generates deployment code that sends each parameter of
the home and remote interfaces of the session bean between the client and the
session bean. The new classes generated for a parameter are placed in the
same package as the parameter. Because the CSOParameter class of the
com.ibm.vgj.cso package is passed on a remote interface method of the
generated session beans, VisualAge for Java updates that package when
generating deployed code. To allow VisualAge for Java to make updates, you
must be sure you have created an open edition of the com.ibm.vgj.cso
package (in the IBM VisualAge Generator Runtime project) before generating
deployed code for the session bean. Once you have an open edition of the
com.ibm.vgj.cso package, to generate deployed code:
1. On the Enterprise Beans panel (top left) of the EJB page of the

Workbench, expand the EJB Group into which you generated your session
bean

2. Right mouse button click on the generated session bean, and select
Generate from the context menu, then select Deployed Code. The
necessary deployed classes are then generated.

Testing a Generated Session Bean
VisualAge for Java can generate a test client class that allows you to test your
generated session bean. To run this test client you must manually supply test
data for the parameters you need to pass to the server program. If you have
simple parameters you may want to take advantage of this feature. For more
complex parameters, it is probably more efficient to write your own client. See
VisualAge for Java Help for details on generating and calling a test client. You
can find the information on testing clients by expanding the ″Tasks″, ″Using
the EJB Development Environment″, and ″Testing enterprise beans″ Help
topics. These VisualAge for Java Help topics also describe how to start your
own client applications in a WebSphere test environment.

Exporting a Session Bean for Deployment
Before you can use your generated session bean in a production environment,
you must export the session bean generated by VisualAge Generator and the
enterprise server side deployed code generated by VisualAge for Java into a
Java archive (JAR) file. You must also export your client code and client side
deployed code generated by VisualAge for Java. VisualAge for Java provides
facilities for exporting the required classes into server side and client side JAR
files. See VisualAge for Java Help for details on exporting code into these JAR
files. You can find the information on exporting code by expanding the
″Tasks″, ″Developing EJB Components″, and ″Exporting and Deploying Code″
Help topics.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 323



Exporting Deployed Code for Session Beans: When you export your session
bean to a Deployed JAR or an EJB JAR file you will get a SmartGuide that lets
you further qualify what classes are to be placed in the JAR file. If you are
deploying your generated session beans into WebSphere Advanced Edition,
you should click on the ″Select referenced types and resources″ pushbutton to
include the classes referenced by the session bean.

You may get warning messages about inner classes (class names with a $ in
their name) and about not being able to find the class CSOAS400Driver (if
you did not load the IBM Enterprise Toolkit for AS400). You can ignore these
warning messages.

Exporting Client Code Using a Session Bean: When you export your client
code to a client JAR file you will get a SmartGuide that lets you further
qualify what classes are to be placed in the JAR file. By default, VisualAge for
Java selects all classes it generated which have to be included in the classpath
where any client that uses the session bean is run. If you want to add your
client code to this JAR file, instead of creating a separate directory or JAR file
that you would add to the classpath used when running your client, you may
do so using the following steps:
1. Click on the Details push button to the right of the .class checkbox in the

initial SmartGuide window.
2. In the Projects pane of the .class export dialog, select the project

containing your client code.
3. In the Types pane, select the classes required to run the client, including

the wrappers used to invoke your session bean.
4. If your client code spans more than one project, you must repeat the

previous two steps for each project that includes client code
5. Click on the OK push button.

Exporting Java Server Programs Called By a Session Bean
If the session bean you are deploying calls one or more Java server programs,
you have to get the class files and property files for the generated Java server
programs into a directory or jar file that is included in the session bean
container’s application server. This may have already been accomplished by
sending the generation outputs to the application server machine (using the
JAVADESTHOST and JAVADESTDIR generation options) and compiling them
there. If you imported the classes into VisualAge for Java in order to test them
in the WebSphere Test Environment, you can export them into a directory or
jar file.

Because names of generated wrappers for server programs and of Java server
programs themselves differ only by case, you will have to place the wrappers
and server programs in different jar files or directories on Windows systems.

324 VisualAge Generator: Client/Server Communications Guide



VisualAge for Java recognizes the differences in the classes, but will not
export both a Java server program and its wrapper to the same jar file or
directory.

Deploying Session Beans in WebSphere Advanced Edition
Before you are able to run your client code and your session beans, you must
deploy the exported JAR files in your application server. The procedure for
deploying the exported JAR files depends on the application server you are
using. Following is a sequence of steps that you can use to deploy your
exported JAR files in WebSphere Advanced Edition:
1. Move your exported client and session bean JAR files to a node where

your WebSphere Admin Server is installed.
2. On the WebSphere Advanced Administrative Console Topology view,

create an application server and a container in which you will deploy your
session beans. See the WebSphere Administrator Help for more
information. If you are only deploying session beans generated by
VisualAge Generator, you can ignore topics concerning entity beans. When
you install WebSphere Advanced Edition, an application server named
″Default Server″ with a container called ″Default Container″ is created on
an application server node. The Default Server entry also has a web
application server called ″servletEngine″ to handle requests for servlets.

3. Select the application server where you want to deploy your session beans
and your client code, then select the General tab.

4. WebSphere requires that classes defining native methods need to be
loaded by the system class loader rather than any of the WebSphere class
loaders. Classes in the hpt.jar file of the Common Services component are
referenced by generated wrappers and by generated session beans. To
cause the system loader to load classes accessing native methods, add a
-classpath environment variable to the ″Command line arguments:″ entry
field. Include the Common Services hpt.jar file and your client JAR file in
the value for the -classpath environment variable. For example, on
Windows NT,
-classpath C:\IBMVAGEN\VGCSO45\hpt.jar;C:\MyProject\myClient.jar

This causes the files or directories specified in the -classpath variable to be
prefixed to the classpaths used by WebSphere class loaders.

If your session bean is calling a Java server you will also need to include
in the application server CLASSPATH the Java Server Runtime jar file,
vgjwgs.jar and the .class files prepared from the server’s generation
output, and any property file needed to get linkage attributes to call the
Java server. Assuming that the EJB container in which you deploy the
session bean is defined in the same application server as the Web Server in
which your client servlet was deployed, your classpath specification may
be something like:

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 325



-classpath C:\IBMVAGen\VGCSO45\hpt.jar;C:\IBMVAGen\VGWGS45\vgjwgs.jar;
C:\MyProject\myClient.jar;C:\MyProject\myServer.jar;

If your EJB container and your web server are not configured within the
same application server, then you will have to place all your client classes
in the CLASSPATH of the application server that contains your web
server; and place all your Java server classes in the CLASSPATH of the
application server that contains the EJB container in which you deploy
your session bean. The client application server CLASSPATH would be
something like:
-classpath C:\IBMVAGen\VGCSO45\hpt.jar;C:\MyProject\myClient.jar;

The EJB container sever application CLASSPATH would be something like:
-classpath C:\IBMVAGen\VGCSO45\hpt.jar;C:\MyProject\myServer.jar;

In these CLASSPATH examples, it is assumed that any property files
required for the client to call a server program are included in myClient.jar
and that any property files required for the session bean, and any local
server programs it calls, are included in myServer.jar.

5. Click on the Apply push button.
6. Select the container in which the session beans are to be deployed and

right mouse button click to bring up the container context menu.
7. Select Create, then Enterprise Bean to bring up a dialog in which you

specify where to find the enterprise bean.
8. Click on the Browse push button to bring up a file selection dialog on the

node on which your application server resides. Navigate to the exported
session bean JAR file.

If you want to create enterprise beans individually, double click on your
session bean JAR file, and a list of session bean deployment descriptors is
displayed. Double click on the deployment descriptor file, and the session
bean associated with the deployment descriptor will be deployed in the
selected container.

If you exported an EJB Group, or just exported more than one session bean,
you can deploy them all at once in the selected container. Just select the
session bean JAR file, then click on the Select pushbutton. Then select Yes on
the resulting confirmation message.

Invoking Generated Session Beans
Enterprise beans are typically called from servlets (or from beans used by the
servlet) or from other enterprise beans. Using RMI in a Java application, you
can invoke the remote interface methods of an enterprise bean deployed in a
WebSphere AE or WebSphere EE enterprise server. However, this is not a

326 VisualAge Generator: Client/Server Communications Guide



preferred practice and will not be discussed here. The WebSphere enterprise
Java server does not support invoking enterprise beans from applets.

There are two kinds of servlets that you can develop: stateless and stateful
servlets. Stateless servlets do not save any data from one request to the next.
Since stateless servlets are loaded once and reused by all clients making
requests of that servlet, their code must be reentrant. Stateful servlets create a
component called session data. A servlet that requests session data is not
reused between clients. The servlet is reused by all requests from the same
client, but is not shared between clients. When a stateful servlet receives a
request, it generally asks for its session data. If it exists, saved information is
retrieved. Otherwise, a new session data object is initialized. (Another option
is that servlets save their state in a database and retrieve it based on some
input key.)

In the context of invoking session beans generated by VisualAge Generator,
there are essentially three places in the servlet code where you need to insert
code referencing the session bean or VisualAge Generator support classes
associated with the Common Services component of VisualAge Generator. The
actual code necessary to perform the required function in each of these places
depends on whether you use a generated program wrapper to call the session
bean or whether you call the remote interfaces of the session bean directly.
There are also some differences depending on whether you are developing a
stateless or a stateful servlet.

init method
In the init method of the servlet you need to locate the session bean.

doGet or doPost method
In these methods you:
v Retrieve information from input parameters, session data, or both
v Set up parameters to be passed to the session bean
v Invoke the call method of the session bean
v Retrieve returned parameters
v Output the response HTML. A good practice is to invoke a JSP to

output the response HTML

destroy method
In the destroy method of the servlet you need to tell the enterprise
Java server that you are through with the session bean.

Invoking a Session Bean Using a Generated Program Wrapper
When you generate a session bean, wrappers are also generated for the server
program and for its parameters. You can use a program wrapper to easily
locate and call a generated session bean.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 327



v In the init method of the servlet, create an instance of the
CSOLocalPowerServerProxy class to set up for calling the Power Server API
of the Generator. When you generate the program wrapper with a linkage
table specifying that the server program is to be invoked from a generated
session bean, the server program wrapper knows that it must tell the
CSOLocal PowerServerProxy class to locate the session bean for the
program, and that it must implement the calls using the remote interface of
the session bean.
If you are developing a stateful servlet, you may also want to create an
instance of the server program wrapper, and ask the server program
wrapper for each of its record parameter wrappers.

v In the doGet or doPost methods, you use the set() methods of the record
parameters to set their values, then invoke the execute() method of the
server program wrapper.
If you are developing a stateless servlet and did not create an instance of
the program wrapper in the init method, you would do that first.
Remember that instance variables declared at the class level are shared
between clients for stateless servlets. You would not want to share your
server program data with another client.
Parameter updates are placed in the record parameter wrappers. You can
use the get() methods of the record wrappers to access their data.

v In the destroy method, call the close() method of the
CSOLocalPowerServerProxy class you created in the init method. A good
practice is to set the pointer to the CSOLocalPowerServer Proxy instance to
null so that garbage collection can remove the instance from memory. If you
also created an instance of the server program wrapper, you should set the
reference to that instance to null.

Invoking a Session Bean Without Using a Generated Program Wrapper
If you want to use the elementary methodology for locating and calling
session beans, you have to write more complicated code:
v In the init method of the servlet, you must locate the session bean using

Java Naming and Directory Interface (JNDI) classes. Then you must get a
reference to the remote interface of the session bean. See the ″Writing
Enterprise Beans″ manual shipped with WebSphere AE for details on how
to do this.

v In the doGet or doPost methods, you
– Create an instance of each record parameter wrapper and use the set()

methods of the record parameters to set their values,
– Invoke the call() method of the remote interface of the session bean,

assigning the return value to an array of Objects with an element for
each parameter.

– Retrieve updated parameters from the object array returned by the call()
method of the session bean.

328 VisualAge Generator: Client/Server Communications Guide



Objects are passed by value when calling enterprise bean remote
interface methods. This means that updates to the parameters are made
to copies of the input objects. Updates have to be made in a return
value. Because generated session beans may make updates to each input
parameter, and you can only return one object, the return value of the
call() method of a generated session bean is an array containing an
element for each input parameter. On return from the call() method you
must assign the elements of the return array to their proper variables of
your servlet.

– Since session beans may be removed or deactivated by the enterprise
Java server due to timeouts, the reference to the session bean you
obtained in the init() method of your servlet may become invalid. See the
″Writing Enterprise Beans″ manual for details on how to code your
servlet to adjust to this situation.

v In the destroy method,
– Call the close() method of the session bean to close the communications

session created by the session bean to call the server program. (Note that
the server program may reside on a different machine than the one
where the session bean is deployed.)

– Call the remove() method of the session bean to tell the enterprise Java
server that you are through with the session bean.

– A good practice is to set your reference to the remote interface of the
session bean to null.

Examples of Calling a Server Program In a Servlet Using a Session Bean
The following example shows the external source file specification of the
interface for a simple server program that receives one record parameter. The
record parameter contains one data item of type CHA. This program reverses
the order of the characters of the data item.
:EZEE 440 10/29/99 12:10:27
:program name = ELACVP5

date = '05/28/1999' time = '17:11:03' type = CALLBATCH
pfequate = N implicit = Y
execmode = NONSEGMENTED

:callparm name = ALLSTR
type = RECORD

:eprogram.
:record name = ALLSTR

date = '05/28/1999' time = '17:11:12'
org = WORKSTOR
usage = SHARED

:recditem name = STRSTUFF
level = 10 occurs = 00001
usage = SHARED

:erecord.
:item name = STRSTUFF

date = '05/28/1999' time = '17:11:06' type = CHA

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 329



bytes = 00007 decimals = 00 evensql = N
:mapedits fillchar = 'N'

inputreq = N justify = LEF
:eitem.

Example of Calling a Session Bean Using a Program Wrapper: The
following example is a stateless servlet that calls the generated session bean
for server program ELACVP5 using a server program wrapper to make the
call.
package reversi.ejbs;
// EJB imports
import java.rmi.RemoteException;
// VA Generator Common Services imports
import com.ibm.vgj.cso.*;
// general Java imports
import java.util.*;
import java.text.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ReversiEJBWrapServlet extends HttpServlet
{

private CSOLocalPowerServerProxy powerServer = null;

// Constructor
public ReversiEJBWrapServlet ()
{

super();
}
/** Close the wrapper for server program ELACVP5.
* This will close the communications session to the server program.
*/
public void destroy()
{

if (powerServer != null) // If created power server
{

try
{

powerServer.close();
powerServer = null;

}
catch (Exception e)
{

System.out.println("Received exception in close: " + e.getMessage());
}

}
}

/**
* Call session bean generated for server program ELACVP5 to reverse an input string
*/
public void doGet(HttpServletRequest req, HttpServletResponse res) throws IOException
{

PrintWriter htmlOut = res.getWriter(); // HTML output stream
Elacvp5 serverPgm = new Elacvp5(powerServer); // Wrapper for Server Program
Allstr record = serverPgm.getAllstr(); // Input/Output Parameter
String inputString = null;

try
{

// Read input parameter from request object.
inputString = req.getParameter("InputString");
if (inputString == null)

330 VisualAge Generator: Client/Server Communications Guide



inputString = "1234567"; // Default input
record.setStrstuff(inputString);
// Call the server program using its wrapper
serverPgm.execute();
// Format output of server program. Should do this in a JSP
htmlOut.println("Input string was <b>" + inputString + "</b>.

Output string is <b>" + record.getStrstuff() + "</b>.");
}
catch (CSOException e)
{

// Error in server program, or in communcation with server
htmlOut.println("CSO exception: " + e.getMessage());
System.out.println("Received CSO exception in call: " + e.getMessage());

}
catch (Exception e)
{

htmlOut.println("General exception " + e.getMessage());
e.printStackTrace();

}
}
/**
* Create an instance of a power server that will use the VA Generator
* Power Server API to communicate between the application server
* and the server program.
*
* If the wrapper was generated with a linkage table entry indicating that
* the server program is to be called from a session bean, the session bean
* will be located, and the remote interface of the session bean will be used
* to invoke the Power Server API from the enterprise bean server.

* Otherwise, the Power Server API will be invoked from the Web application
* server where this servlet is running.
*/
public void init(ServletConfig servletConfig) throws ServletException
{

super.init(servletConfig);
try
{

powerServer = new CSOLocalPowerServerProxy();
}
catch (CSOException e)
{

// Error setting up for communications with the Power Server API
System.out.println("Received CSO exception: " + e.getMessage() );

}
}
}

Example of Calling a Session Bean Without Using a Program Wrapper: The
following example is a stateless servlet that calls the generated session bean
for server program ELACVP5 without using a server program wrapper to
make the call.
package reversi.ejbs;
// EJB imports
import java.rmi.RemoteException;
import java.rmi.NoSuchObjectException;
// VA Generator Common Services imports
import com.ibm.vgj.cso.*;
// general Java imports
import java.util.*;
import java.text.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ReversiEJBNoWrapServlet extends HttpServlet

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 331



{
private Elacvp5EJB sessionBean; // Object implementing session bean's

// remote interface
/** Defaut constructor.
*/
public ReversiEJBNoWrapServlet ()
{
super();

}
/**
* Close the communications session establised by the session bean in order to call
* the server program. Then remove the session bean from the its home.
*/
public void destroy()
{
if (sessionBean != null) // If successfully got reference to the session bean
{
try
{
/* Close communications session between session bean server and */
/* server program machine */
sessionBean.close();
sessionBean.remove(); // Remove the session bean from its home
sessionBean = null;

}
catch (Exception e)
{
System.out.println("Trying to close, received exception: " + e.getMessage());

}
}

}
/**
* Call the session bean to reverse an input string.
*/
public void doGet(HttpServletRequest req, HttpServletResponse res) throws IOException
{
PrintWriter out = res.getWriter(); // HTML output stream
Allstr record = new Allstr(); // Input Parameter wrapper
Object[] outputParms = null; // Output of session bean
boolean goodRef = false; // Assume lost reference to session bean
String inputString = null; // String to reverse
// Read input parameter from request object.
inputString = req.getParameter("InputString");
if (inputString == null)
inputString = "1234567"; // Default input

// Set data item in input record wrapper
record.setStrstuff(inputString);

// Call the server program through the session bean. If the session bean
// reference previously obtained has timed out, a NoSuchObjectException
// will be thrown, a new session bean will be obtained, and this block
// of code will be repeated.
do
{
// Call the server program using a generated session bean
try
{
outputParms = sessionBean.call(record);
record = (Allstr) outputParms[0];
// Format output of server program. Should do in JSP
out.println("Input string was " + inputString +

". Output string is " + record.getStrstuff() + ".");
goodRef = true; // Found session bean, so fall through to exit

}
catch (NoSuchObjectException e)
{
// Reference to session bean is no longer valid
try
{
sessionBean = locateSessionBean();
goodRef = false; // so repeat call attempt

}
catch (CSOException ecso)
{
// Error in server program, or in communcation with server
out.println("CSO exception: " + ecso.getMessage());
System.out.println("Received CSO exception: " + ecso.getMessage());

goodRef = true; // so fall through to exit
}

332 VisualAge Generator: Client/Server Communications Guide



}
catch (CSOException e)
{
// Error in server program, or in communcation with server
out.println("CSO exception: " + e.getMessage());
System.out.println("Received CSO exception: " + e.getMessage());
goodRef = true; // so fall through to exit

}
catch (Exception e)
{
out.println("General exception " + e.getMessage());
e.printStackTrace();
goodRef = true; // so fall through to exit

}
} while (!goodRef); // So try again if session bean reference no longer valid

}
/**
* Obtain a reference to the session bean used to call the server program so
* that its remote iterface can be used.
*/
public void init(ServletConfig servletConfig) throws ServletException
{
super.init(servletConfig);
try
{
sessionBean = locateSessionBean();

}
catch (CSOException e)
{
// Error setting up for communications with the Power Server API
System.out.println("Received CSO exception: " + e.getMessage());

}
}
/**
* Locate the remote interface of the session bean generated for a server program.
*
* @return koch.test.reversi.ejbs.Elacvp5EJB - remote interface for session bean
* generated for server program ELACVP5
*/
public Elacvp5EJB locateSessionBean() throws CSOException
{
String namingFactory = null; // Naming factory to use to get initial context
String beanJNDIName = null; // JNDI name for session bean
Elacvp5EJBHome beanHome; // Narrowed home interface implementation class
Elacvp5EJB beanRemoteInterface; // Object implementing session bean's remote interface

try
{
// Get the initial naming context for resolving session bean location
java.util.Properties properties = new java.util.Properties();
/* If do not want to use a name server on the enterprise bean server, listening on port 900,

set the PROVIDER_URL property to "iiop://hostname:port/"

providerURL = "iiop://myhost:myport/"; // URL for the name server
properties.put( javax.naming.Context.PROVIDER_URL, providerURL );

*/

/* A different naming factory is required for ComponentBroker */
namingFactory = "com.ibm.ejs.ns.jndi.CNInitialContextFactory"; // Naming factory for WebSphere AE
properties.put( javax.naming.Context.INITIAL_CONTEXT_FACTORY, namingFactory );

/* Get an initial contect to use to fine session bean home */
javax.naming.InitialContext initContext = new javax.naming.InitialContext( properties );

// Locate the server program's session bean home
try
{
beanJNDIName = "Elacvp5EJB"; // JNDI name for the generated session bean
// Get un-narrowed implementation of the home interface
Object ejbHome = initContext.lookup(beanJNDIName);
/* Get the narrowed object implementing the session bean's home interface */
beanHome = (Elacvp5EJBHome)javax.rmi.PortableRemoteObject.narrow((org.omg.CORBA.Object)

ejbHome, Elacvp5EJBHome.class);
}
catch ( javax.naming.NamingException e )
{
// Error looking up home interface of session bean
throw new CSOException(e);

}
catch (Exception e )

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 333



{
// Error looking up home interface of session bean
throw new CSOException(e);

}
}
catch ( Exception e )
{
// Could not get initial context from JNDI name server
throw new CSOException(e);

}
try
{
beanRemoteInterface = beanHome.create();

}
catch ( Exception e )
{
// Could not get session bean's remote interface
throw new CSOException(e);

}
return (beanRemoteInterface);

}
}

Java Package Examples

How to Call Server Wrappers from Java Applications
A CSOLocalPowerServerProxy establishes a communication session with the
VisualAge Generator PowerServer API for the purpose of calling VisualAge
Generator server programs via the PowerServer API.

To call a server program named STAFFMN from a Java application, generate a
JavaBeans wrapper class for the server program using VisualAge Generator
(the Java class name will be Staffmn). For this example assume the generation
option /PACKAGENAME=StaffPkg was specified. Then code the following in
the Java application:

import com.ibm.vgj.cso.*;
import StaffPkg.*; // Needed only if Java application not in package StaffPkg

.

.
// Initialization
CSOLocalPowerServerProxy powerServer = new CSOLocalPowerServerProxy();
Staffmn staffmn = new Staffmn(powerServer);
StaffMaint staffMaint = staffmn.getStaffMaint();

.

.
// Processing. Many calls may be made without closing the PowerServer
try
{

.

.
staffmn.execute();

.

.
// Commit (use only if linkage table specifies client unit of work)
powerServer.commit();

.

.

334 VisualAge Generator: Client/Server Communications Guide



}
catch (CSOException error)
{

// Rollback (use only if linkage table specifies client unit of work)
try
{

powerServer.rollback();
}
catch (CSOException rbError)
{}
String explanation = error.getMessage(); // Use to display error message

.

.
}
.
.
// Explicitly close the PowerServer unit of work when the application
// ends. Do not rely on garbage collection, which may leave the
// session hanging for a long period of time.
//
if (powerServer != null)
{

try
{

powerServer.close();
powerServer = null; // So garbage collection can delete unit of work

}
catch (CSOException error)
{

String explanation = error.getMessage();
.
.

}
}

Multiple server programs can be called from the same PowerServer instance.

See com.ibm.vgj.cso.CSOLocalPowerServerProxy.html for more information.

How to Call Server Wrappers from Applets
A CSORemotePowerServerProxy establishes communication with a
CSORemotePowerServerImpl object on a VisualAge Generator Java gateway
using the Java 1.1 Remote Method Interface (RMI) for the purpose of calling
VisualAge Generator server programs.

To call a server program named STAFFMN from an applet, generate a Java
wrapper class for the applet using VisualAge Generator (the Java class name
will be Staffmn). Then code the following in the applet:

import com.ibm.vgj.cso.*;
import StaffPkg.*; // Needed only if applet not in package StaffPkg

.

.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 335



public void init()
{

// Initialization
try
{

// Establish communication with PowerServer on machine from
// which the applet was loaded
CSORemotePowerServerProxy powerServer =

new CSORemotePowerServerProxy(this.getCodeBase().getHost());
}
catch (CSOException error)
{

String explanation = error.getMessage();
.
.

}
Staffmn staffmn = new Staffmn(powerServer);
// Get the server program's record parameter
StaffMaint staffMaint = staffmn.getStaffMaint();

.

.
}
public void actionPerformed(ActionEvent event)
{

.

.
// Handle action requiring server call
try
{

// Processing
.
. // Use set methods to set data items
.

staffmn.execute();
.
.

// Commit (use only if linkage table specifies client unit of work)
powerServer.commit();

.

.
}
catch (CSOException error)
{

// Rollback (use only if linkage table specifies client unit of work)
try
{

powerServer.rollback();
}
catch (CSOException rbError) // Catch error on rollback
{}
String explanation = error.getMessage(); // Use to display error message

.

.
}
.

336 VisualAge Generator: Client/Server Communications Guide



. // Use get methods to retrieve data item values

.

// Handle action to terminate applet
//
// Explicitly close the PowerServer unit of work when the applet is
// destroyed. You may also want to close the unit of work when the
// applet is hidden and create a new one if made visible again. If
// using a client unit of work, you would need to be sure there is
// no outstanding work before closing. Do not rely on
// garbage collection, which may leave the session hanging for a
// long period of time.
//
if (powerServer != null)
{

try
{

powerServer.close();
powerServer = null; // So garbage collection can delete unit of work

}
catch (CSOException error)
{

String explanation = error.getMessage();
.
.

}
}

}

Multiple server programs can be called from the same remote power server.

See com.ibm.vgj.cso.CSORemotePowerServerProxy.html for more information.

How to Run Applets From a Browser
To run an applet, you need to reference the applet in an HTML file you
download from your Web browser. Here is the text of a minimal HTML file
(named Staffmn.html) for running an applet:
<APPLET code="StaffmnApplet.class" width=400 height=400>
</APPLET>

Note: Your browser must be capable of running Java 1.1 applets, including
Remote Method Invocation (RMI), to work with VisualAge Generator
wrapper classes.

To run your applet from a Java SDK applet viewer, enter the following
command:
appletviewer http://hostname/hostalias/Staffmn.html

Where hostname is the network identifier of your VisualAge Generator Java
gateway system and hostalias is the alias by which the directory on which
Staffmn.html resides is known to the VisualAge Generator Java gateway.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 337



For OS/2 the command to start the applet viewer in your Java SDK may be
applet instead of appletviewer.

How to Start the Session Manager on your VisualAge Generator Java
gateway

If you are using a browser or a Java applet viewer to download an applet
from a VisualAge Generator Java gateway, the Session Manager must first be
started on the VisualAge Generator Java gateway machine. To start the
Session Manager, your VisualAge Generator Java gateway system must be at
Java Version 1.1 or higher.

When the Session Manager is started, it registers a RemotePowerServer with
the Java Remote Method Invocation registry for the purpose of calling the
PowerServer API on behalf of Java applets. The Remote Method Invocation
registry must be started before starting the Session Manager.

To start the JAVA Remote Method Invocation registry on OS/2 or
Windows NT host systems, enter the following:
start rmiregistry

To start the JAVA Remote Method Invocation registry on AIX or OS/390 host
systems, use the following background command:
rmiregistry &

On OS/400, you need to start the QVGNSBS subsystem if it has not been
started on the AS/400 machine. To do so, enter the following command:
STRSBS SBSD(QVGNSBS)

To start the Java Remote Method Invocation registry on AS/400 host systems,
use the following background command:
SBMJOB CMD(QSH CMD('rmiregistry')) +
JOB(VGNRMI) +
JOBD(QPGMR) +
JOBQ(*LIBL/QVGNSBSQ) +
CPYENVVAR(*YES)

Make sure that your CLASSPATH environment variable is set properly and
includes both hpt.jar and jt400.jar.

To start the Session Manager on OS/2 or Windows NT for handling calls from
applets to VisualAge Generator server programs, enter the following
command:
java com.ibm.vgj.cso.CSOSessionManager options

See “Specifying Session Manager Options” on page 339 for details on how to
set session manager options from the command line.

338 VisualAge Generator: Client/Server Communications Guide



To start the Session Manager on AIX or OS/390 for handling calls from
applets to VisualAge Generator server programs, enter the following
command:
java com.ibm.vgj.cso.CSOSessionManager options &

To start the Session Manager on AS/400 for handling calls from applets to
VisualAge Generator server programs, enter the following command:
SBMJOB CMD(RUNJVA CLASS(CSOSessionManager) PARM('--nogui') CHKPATH(*IGNORE)) +

JOB(VGNSMGR) +
JOBD(QPGMR) +
JOBQ(*LIBL/QVGNSBSQ) +
CPYENVVAR(*YES)

As an alternative, you can enter the following command:
CALL PGM(QVGEN/QVGNSMGR)

This is a CL program that sets up the rmiregistry if it is not started already,
and runs CSOSessionManager with −−nogui specified.

Specifying Session Manager Options
Session manager options may be obtained:
1. From default values.
2. From a Java properties file named sessionmanager.properties that is

searched for in the CLASSPATH in effect when the session manager is
started. This properties file is placed into the directory where the Common
Services component is installed (default is C:\IBMVAGEN\VGCSO45). Its
option values are the default values, but can be changed by a system
administrator.

3. From command line arguments specified when starting the session
manager.

4. From the session manager administrative user interface.

Options are overriden in the sequence they occur in this list. For example, a
command line argument specification for an option overrides a properties file
specification for that same option.

Session manager options may be specified for the following:
v Whether or not an administrative GUI is to be displayed on the VisualAge

Generator Java gateway (except on OS/400)
v How long client sessions can remain inactive before their resources are

freed, including their connection to server program machines.
v What gets traced and where the trace output is sent.
v What gets logged and the name of a log file.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 339



The following table describes the options that may be specified, the syntax for
command line specification of the option, the property name to be used for
the option in a properties file, the valid values, and the default value.
Property files use (property name, property value) pairs to define options. For
the sessionmanager.properties file, all property names in the table below must
be prefixed by cso.sessionmanager.. For example, to indicate that inactive
sessions are to be closed after 30 minutes, specify a property name of
cso.sessionmanager.SessionCheckInterval and a property value of 30.

Table 43. Session Manager options

Option Function Argument Name Property Name
(Prefixed with
cso.sessionmanager.)

Value Domain Default Value

Indicator of
whether to display
GUI

--gui, --nogui Gui TRUE, FALSE in
properties file (No value
for command line
arguments. Implied by
--gui and --nogui)

TRUE (--gui)

Maximum time
session may be
inactive, in
minutes

--checkInterval SessionCheckInterval 0<Integer<1441 1440 (one day)

Trace level --traceLevel trace.Level
0 Trace nothing

1 Trace errors

2 Trace requests
to Gateway

4 Trace
parameters
before and after
call

8 Trace call
options

Sum of any above
For example, 15
(8+4+2+1)
means trace all

0

340 VisualAge Generator: Client/Server Communications Guide



Table 43. Session Manager options (continued)

Option Function Argument Name Property Name
(Prefixed with
cso.sessionmanager.)

Value Domain Default Value

Trace output type --traceType trace.Type
STDOUT

Write output to
STDOUT

STDERR
Write output to
STDERR

FILE Write output to
a file specified
by trace
specification

WINDOW
Write output to
a window that
is opened to
trace session or
program
activity

Trace output
details:

v Name of file if
trace type is
FILE

v Not applicable
otherwise

--traceSpec trace.Spec valid file name or URL null string

Log level --logLevel log.Level
0 Log nothing

1 Log errors

2 Log requests to
Gateway

4 Log parameters
before and after
call

8 Log call options

Sum of any above
Trace all used
in sum. For
example, 15
(8+4+2+1)
means trace all

0

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 341



Table 43. Session Manager options (continued)

Option Function Argument Name Property Name
(Prefixed with
cso.sessionmanager.)

Value Domain Default Value

Log output type Not applicable.

Always FILE

log.Type
FILE Write output to

a file specified
by log
specification

FILE

Name of log file --logSpec log.Spec valid file name CSOJava.log

Java Support for OS/390 Unix Systems

VisualAge Generator JavaBeans wrapper support allows you to use a web
browser to access a Java applet residing on an OS/390 Unix Systems
VisualAge Generator Java gateway. The applet uses generated JavaBeans
wrappers that call the Power Server API to invoke a CICS transaction. This is
a two-tiered solution to access an MVS CICS server program rather than
requiring a gateway between the web browser and the MVS CICS system.
Because the External CICS Interface (EXCI) is the only communications
protocol provided by the Power Server API on OS/390 Unix Systems, the
OS/390 VisualAge Generator Java gateway cannot be used as a middle tier in
a three-tier system other than accessing various MVS CICS regions.

Linkage Table Entries for OS/390 Java Support
There are no differences to the way a Java applet for OS/390 interfaces with
the generated wrappers. There are also no differences in the process of
generating the JavaBeans wrappers for a server program. There is, however,
an enhancement to the linkage table REMOTECOMTYPE parameter to
provide support for OS/390.

To successfully invoke a server program using the VA Generator Java support
for OS/390, the linkage table used to specify linkage parameters must specify:
v LINKTYPE=REMOTE
v REMOTECOMTYPE=EXCI

EXCI is a new value for REMOTECOMTYPE that is valid only for Java
support for OS/390. When specified, it causes the Power Server APIs to
access MVS CICS using the External CICS Interface.

v CONTABLE=CSOExxxx
where xxxx is the conversion table suffix for the language installed where
the server program is to execute. See Table 55 on page 436 for valid
conversion table names.

v LOCATION=cicsRegion

342 VisualAge Generator: Client/Server Communications Guide



where cicsRegion is the CICS region where the server program is to run.
v SERVERID=transactionID

where transactionID is the ID of the transaction used to invoke the server
program. The transaction definition must specify the mirror program
DFHMIRS as the initial program, and the profile DFHCICSA. (This is an
EXCI restriction.)

v LUWCONTROL=SERVER

Extended (client) unit of work is not yet supported by the EXCI.

MVS CICS Setup for EXCI
Details on usage of the External CICS Interface can be found in the CICS for
MVS/ESA External CICS Interface (SC33-1390) and the CICS Internet and
External Interfaces Guide (SC33-1944) documents. These documents provide
information on defining connections and sessions, security considerations and
setup, and return codes.

Defining Connections and Sessions for EXCI
In order to use the Java support on OS/390 Unix Systems, you must define
CICS connections and sessions for the CICS group installed to run the
transactions requested from Java. In MVS CICS 4.1, the External CICS
Interface allows only 25 simultaneous requests per connection. In order to
handle more than 25 simultaneous requests, the EXCI communications driver
will use up to 100 connections with predefined names. You must define a
connection and session for each multiple of 25 simultaneous requests that are
to be handled. For each connection you must define a CICS connection as
follows:

For each connection, you must define a CICS connection as follows:
v Netname = ELA000xx

where xx is a two digit number between 00 and 99. This name is also used
in EXCI security checks.

v Access method = IRC
v Protocol = EXCI
v Connection type = SPECIFIC

For each connection you must define a CICS session as follows:
v Connection = connectionName

where connectionName is the name of the connection for which the session
is being defined.

v Protocol = EXCI
v Send count = blank

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 343



Once the group that contains these connections is installed, you must ensure
that the interregion communication (IRC) is open. If IRC is not opened during
CICS initialization, set it to open using the CEMT SET IRC OPEN command.

External CICS Interface Security
The External CICS Interface provides very little security checking. The main
security checking must be performed in the Web server that services html
requests. Lotus Domino Go Server is one product that enables you to provide
security checks for accessing html pages.

There is no password support in the EXCI. However there are some security
checks made based on the connection name used to invoke the EXCI, and,
optionally, on a user ID, depending on whether the CICS system being used is
configured to do security checking.

The External CICS Interface does provide security checking for the following:
v Logon Security

– The Netname attribute of a connection used to invoke the EXCI
(ELA000xx for the OS/390 Java support) must be defined as a user
profile to RACF.

– The Netname attribute of a connection used to invoke the EXCI must be
authorized to its own DFHAPL.net_name RACF FACILITY class profile,
with UPDATE authority.

– The Netname attribute of a connection used to invoke the EXCI must be
authorized to the DFHAPPL.location RACF FACILITY class profile of the
target CICS server region (the value of the location attribute for the
server program’s linkage table entry) with READ authority.

v Link Security
The connections used by the EXCI must be authorized to the following
CICS resource profiles:
– The profile for the mirror transaction specified in the serverId attribute

of the server program’s linkage table entry.
– The profile for all the resources accessed by the server program.
– The CICS command profiles for any SPI commands issued by the CICS

server program.
v User Security

If a user ID is passed using the setUserId method of the
CSOClientCallOptions class, and the CICS server region specified user
security checking is to be performed (using ATTACHSEC(IDENTIFY)), the
user ID passed must be authorized to the resources described for link
security, in addition to the authorization for link security.

344 VisualAge Generator: Client/Server Communications Guide



Graphical User Interfaces and OS/390
In order to implement a GUI on OS/390 Unix Systems, you have to use a
distributed display to an XWindows server through TCP/IP. Implementing a
GUI requires that you:
1. Authorize the OS/390 Unix Systems machine to use the XWindows server.

This can be done on the XWindows server with the following command:
xhost +OS390_Server_Address

2. Set the DISPLAY environment variable on the OS390 Unix Systems session
to direct the display to an XWindows server port. For example,
export DISPLAY=9.37.200.100:0

where 9.37.200.100 is the IP address of the XWindows server, and 0 is the
port of the monitor on which the GUI is to be displayed.

In order to use the VisualAge Generator Java support to run a Java GUI
application calling a server program on OS/390 Unix Systems, you must
direct the GUI to an XWINDOWS server.

The GUI of a Java applet runs on the Java client, not on the OS/390 gateway.
However, the Session Manager by default displays an administrative user
interface. On OS/390, to use this function you must direct the OS/390
VisualAge Generator Java gateway display to an XWindows server as
described above. Because you may not want to require an XWindows server, a
command line argument, --nogui, allows you to start the RemotePowerServer
on OS/390 without an administrative user interface. For example, to avoid
using the Session Manager administrative user interface, you would start the
Session Manager with the following command:
java com.ibm.vgj.cso.CSOSessionManager --nogui &

If you do not direct output to an XWindows server, then the capabilities of the
session manager administrative user interface are lost. Sesssion manager
options are taken from the session manager properties file and/or command
line arguments, and cannot be changed without stopping the Session Manager
and restarting it with new options.

To stop the Session Manager in OS/390 Unix Systems, you can use the Unix
″kill″ command to end the Session Manager’s process. Occasionally you may
need to start a new OpenEdition shell without exiting the session in which
you started the RemotePowerServer. To do this enter subcommand mode by
pressing the escape key and entering ″open″ to start a new shell process. To
return to the previous session, enter the ″exit″ or ″PrevSess″ command. To get
out of subcommand mode in the original session, enter the ″return″
command.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 345



Starting the Session Manager Using JCL
Instead of starting the RMI registry and the Session Manager from the shell
command line, you can start them through JCL that invokes the BPXBATCH
program shipped with OS/390 Unix Systems. The BPXBATCH program is
documented in manual SC28-1892, OS/390 OpenEdition Command Reference.
The time parameter on the job card and the exec statement may allow you to
avoid time constraints imposed by your system when starting processes from
the command line.

To use the BPXBATCH program to start the RMI registry and the Session
Manager, you have to:
v Create a file used to set environment variables required by the

RemotePowerServer.
v Develop JCL to execute the BPXBATCH program with the proper file

allocations.

Setting Environment Variables for BPXBATCH
BPXBATCH uses an input file to set environment variables that would be set
from your .profile dataset when starting processes from the Open Edition
shell command line. This file must be allocated to ddname STDENV. An
example of such a file follows:
HOME=/u/myuserid
PATH=$PATH:$HOME:/usr/lpp/java/J1.1/bin
LIBPATH=/u/myuserid/ServerPrograms:/usr/lpp/vgwgs:$LIBPATH
STEPLIB=CICS.CICS410.SDFHEXCI:$STEPLIB
DPATH=/u/myuserid/ServerPrograms:/usr/lpp/vgwgs:$DPATH
CLASSPATH=/u/myuserid/public:/usr/lpp/vgwgs/hpt.jar
CSOLINKTBL=/u/myuserid/ServerPrograms/LINKSMVS.LKG
export PATH LIBPATH DPATH CLASSPATH STEPLIB CSOLINKTBL HOME

Shell Script for Starting Servers from BPXBATCH
You can have BPXBATCH execute a shell script by allocating the shell script
file to ddname STDIN. BPXBATCH can execute a shell script to start the RMI
server and the Session Manager. Both servers can be started as background
jobs that remain running after the job itself ends. An example of a shell script
follows:
echo HOME=$HOME
echo PATH=$PATH
echo DPATH=$DPATH
echo CLASSPATH=$CLASSPATH
echo LIBPATH=$LIBPATH
echo STEPLIB=$STEPLIB
echo CSOLINKTBL=$CSOLINKTBL
cd /u/myuserid/public
echo Current directory is $(pwd)
nohup rmiregistry &

346 VisualAge Generator: Client/Server Communications Guide



sleep 2
nohup java com.ibm.vgj.cso.CSOSessionManager --nogui &
echo Processes after start Session Manager
ps -ef

In this example the environment variable settings are ″echoed″ to record their
values. (This is not required.) The output is sent to the file allocated by
ddname STDOUT. The ″sleep 2″ command waits 2 seconds to allow the RMI
registry to completely start before the Session Manager gets started. The ″ps
-ef″ command records the process id’s of the server processes in case you
need to cancel them using the ″kill″ command.

The statement starting the Session Manager uses the --nogui option because
there is no graphical display available in the batch environment. Options are
taken from command line arguments and/or the session manager properties
file. If you do not want the job used to start the servers to end, remove the
″nohup″ from the beginning and the ″&″ from the end of the statement
starting the Session Manager.

JCL for Starting Servers from BPXBATCH
The JCL to start the RMI server and the Session Manager allocates the shell
script to ddname STDIN, the file setting environment variables to STDENV,
the file for standard output to ddname STDOUT, and the file for standard
error to ddname STDERR. Following is an example of ″pseudo-JCL″ used to
invoke BPXBATCH to start the RMI server and the Session Manager.
//jobname JOB (,,,,),user,TIME=1440,NOTIFY=user,MSGCLASS=T
//*===============================================================*

//* JCL To start the RMI and VAGen Java Gateway Session Manager *
//*===============================================================*

// EXEC PGM=BPXBATCH,TIME=1440
//STEPLIB DD DSN=CICS.CICS410.SDFHEXCI,DISP=SHR
//STDENV DD PATH='/u/user/BPXBATCH.env',PATHOPTS=ORDONLY
//STDIN DD PATH='/u/user/public/stpwrsrv.scr',PATHOPTS=ORDONLY
//STDOUT DD PATH='/u/user/javastd.out',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU
//STDERR DD PATH='/u/user/javastd.err',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

Java Support for AS/400 Servers

VisualAge Generator supprts JavaBeans wrappers. This lets you use a Web
broswer to access a Java applet residing on an AS/400 VisualAge Generator
Java gateway. The applet uses a generated JavaBeans wrapper that calls the
Power Server API to invoke an AS/400 Server program. The server program
can reside on the same machine as the gateway or on a remote AS/400
machine. This provides a two-tiered solution to access a remote AS/400 server

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 347



program rather than requiring a separate gateway between the Web browser
and the AS/400 system where the server program resides.

Because the Java400 protocol is the only communications protocol provided
by the Power Server API on AS/400, the AS/400 VisualAge Generator Java
gateway cannot be used as a middle tier in a three-tiered configuration to
access a remote server other than an AS/400 server.

User Authentication
If the server program accesses files or a relational database, the user identified
on the client must be authorized to run the server program and to access any
files or relational tables using dynamic SQL statements.

You must code the Java GUI application to supply a user ID and password for
user authentication to the remote AS/400 machine. You can either supply
these values statically within the Java GUI application or code a prompt to
ask the user for this information at run time. On the first server call a
connection that uses these values will be made. This connection to the remote
AS/400 machine will remain until the end of application execution. As long as
the Java GUI application runs, any additional calls to that same remote
AS/400 machine will use the user ID and password values supplied when the
client first connected to the AS/400 server.

Linkage Table Entries for AS/400 Java Support
Java applets for AS/400 interface with generated wrappers no differently than
Java applets for other hosts do. The process for generating JavaBeans
wrappers for a server program is also no different for the AS/400. However,
only the Java400 protocol is available to connect to an AS/400 server a Java
applet that resides on an AS/400 Web server.

To invoke a server program using VisualAge Generator Java support for
AS/400, the linkage table that specifies linkage parameters must contain the
following values:

LINKTYPE=CSOCALL

REMOTECOMTYPE=Java400
Java400 is a new protocol for REMOTECOMTYPE that is valid only for a
Java client application to access an AS/400 machine. This uses the AS/400
Toolbox for Java to communicate to the remote AS/400 machine.

CONTABLE=CSOxxxx
where xxxx is the conversion table suffix for the language installed where
the server program is to run. For valid conversion table names, see
Table 55 on page 436.

348 VisualAge Generator: Client/Server Communications Guide



LOCATION=as400_name
as400_name is the name of the AS/400 machine where the server program
is located and to be run.

LIBRARY=library
library is the name of the library where the server program is located.

LUWCONTROL=type
type is SERVER or CLIENT.

You can also supply this information in the linkage information properties of
VAGenProgramPart on the free-form surface.

If your applet was generated with the callink attribute of remotebind set to
RUNTIME or a protocol property under linkageInfo set to Runtime Bind, you
need to update the vgj.properties file that the applet uses. Specify the linkage
information for the program to be called. Java400 is the only allowed
remotecomtype value for the Java applet. For example:
cso.serverLinkage.MYPROGRM.remotecomtype=Java400

For more information about the vgj.properties file, see the Java server
information in the VisualAge Generator Generation Guide.

Graphical User Interfaces and AS/400
Java GUI applications cannot run directly on the AS/400 JVM, because no
local graphic display capability exists on AS/400. This means that
CSOSessionManager can be invoked only with the −−nogui option when
running on an AS/400 computer. Thus, the features of the Session Manager
administrative GUI are not available on the AS/400.

Generated Java applets can reside on the AS/400 and be retrieved and
executed by the client browser.

Requirements for Client and AS/400 Server
In order to use the Java400 protocol in your Java GUI application, you must
include the AS/400 ToolBox for Java (jt400.jar) in your CLASSPATH
environment variable in addition to the VisualAge Generator Java run-time jar
files. AS/400 Toolbox for Java is available from the following sources:
v Use ftp from a remote AS/400 machine with V4R2 or higher. It should

reside at /QIBM/ProdData/HTTP/Public/jt400/lib/jt400.jar. When you are
using ftp to get this file, make sure you are retrieving it as a binary file.

v Download it from: http://www.as400.ibm.com/toolbox/downloads.htm.

In order to use this feature, your AS/400 server machine (the machine at
where your server program resides) must have VisualAge Generator Server
for AS/400 installed. In addition to this, your ITF machine must meet the

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 349



requirements for AS/400 Toolbox for Java: AS/400 Host Services at the right
level of PTF and TCP/IP Connectivity Utilities for AS/400.

For more information, see the AS/400 Toolbox for Java programming
information at the AS/400 Web site under “Setting up AS/400 Toolbox for
Java.” The URLs for viewing or downloading the information are as follows:
http://www.as400.ibm.com/toolbox/index.htm
http://www.as400.ibm.com/toolbox/downloads.htm

No additional setup is necessary on the AS/400 server machine.

Deploying Java Classes

Once you have developed and compiled your Java applet and your generated
JavaBeans wrappers, and have developed an html file that browsers will use
to download your applet, you must deploy them in your run-time
environment. Because all browsers do not have the same capabilities for
downloading classes, the setup required on the VisualAge Generator Java
gateway depends on which browsers have to be supported.

For security reasons Java restricts unsigned applets to accessing classes only
from subdirectories of a ″codebase″ directory specified in your html file. The
default codebase is the directory containing the html file. You can specify a
different codebase using the CODEBASE attribute of the <applet> tag in your
html file.

Deploying Classes Without Using Archive Files
Java class definitions generally contain a package statement that defines the
Java package to which the class belongs. (Class names must be unique within
a package.) Generated wrappers for programs are assigned the package
specified by the /PACKAGENAME generation option. A package name
consists of groups of characters separated by periods. When the classes of the
package are deployed, and Java archive files are not used, the classes of the
package must be contained in the last subdirectory of a chain of subdirectories
whose names match the groups of characters in the package name. This chain
of subdirectories must be relative to the codebase directory specified in the
html file. Because the developed classes access classes in the com.ibm.vgj.cso
and the com.ibm.vgj.util packages, the classes of these packages must reside
in subdirectories /com/ibm/vgj/cso and com/ibm/vgj/util respectively,
relative to the codebase directory. The codebase directory must also be in the
CLASSPATH environment variable when starting the RMI registry and the
Session Manager.

For example, suppose you are deploying the classes for the Staffmn example,
and you are letting the codebase default in the html file accessed. If

350 VisualAge Generator: Client/Server Communications Guide



v Your VisualAge Generator Java gateway is on an OS/2 or Windows
machine

v the codebase directory is c:\codebase and
v the html file is Staffmn.html

then you should have a directory/file structure like the following:
v c:\codebase

– Staffmn.html
– StaffPkg (assuming /PACKAGENAME=StaffPkg was specified)

- wrapper class files generated and compiled for the StaffPkg package
- any classes implementing the GUI invoking the Staffmn server

program if you assigned them to the StaffPkg package. If you did not
assign these classes to the StaffPkg package, then you must have
subdirectories relative to c:\codebase for the package you did assign
them to.

– com
- vgj

v cso subdirectory
– class files for the com.ibm.vgj.cso package

v util subdirectory
– class files for the com.ibm.vgj.util package

You can extract the classes of the com.ibm.vgj packages into the directories
above by:
1. Changing to the c:\codebase directory
2. Running the Java command:

jar xvf c:\IBMVAGEN\VGCSO\hpt.jar

assuming VisualAge Generator Common Services are installed in
c:\IBMVAGEN\VGCSO. There are other packages included in hpt.jar than
those needed for JavaBeans wrappers. You can delete subdirectories added
except for the com.ibm.vgj.cso and the com.ibm.vgj.util packages. If you
are also deploying 4GL Java GUIs using the same method of deployment,
you cannot remove any packages. The other packages would be required
for the 4GL GUIs.

This example shows the simplest way to deploy your developed classes and
the com.ibm.vgj packages so that your applet can be downloaded without
being signed. All browsers should support this technique of deployment.

Deploying Classes Using Archive Files
If the browsers expected to be used to download your applet support
downloading Java archive (.jar) files, you can compress all classes (and any

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 351



other accessed resources, like image files) into a jar file. This allows all
required files to be compressed and downloaded with one request, reducing
network traffic. To tell a browser that your applet and its associated classes
reside in a jar file, use the ARCHIVE attribute of the <applet> tag of your
html file.

For example, suppose you copy hpt.jar to a base directory used as the
codebase for all your applets, say c:\codebase. Then you could use the export
function of VisualAge for Java to create a jar file for the package containing
your applet and the generated wrappers in directory c:\codebase.

To make your browser download your classes and the com.ibm.vgj.cso and
com.ibm.vgj.util packages specify
CODEBASE=codebase URL
Where codebase URL is a URL that maps to the c:\codebase directory.

and specify
ARCHIVE="hpt.jar,staffmn.jar"

as attributes of the tag in your html file.

All jar files to be downloaded must reside in the codebase specified in your
applet’s html file (or defaulted to the directory containing the html file), or in
a subdirectory of the codebase directory.

Some browsers throw a security manager exception if more than one jar file is
specified on the ARCHIVE attribute. If your browser does this, you have to
compress both the com.ibm.vgj.cso and the com.ibm.vgj.util package classes
and your developed classes into one jar file. You can extract the classes of the
com.ibm.vgj.cso and the com.ibm.vgj.util package into subdirectories relative
to some temporary directory as described in section “Deploying Classes
Without Using Archive Files” on page 350, then compress all classes needed
into one jar file by switching to the temporary directory and using a
command like the following:

jar cvf staffmn.jar StaffPkg\*.class com\ibm\vgj\cso\*.class com\ibm\vgj\util\*.class

If you are also deploying 4GL Java GUIs using the same method of
deployment, you cannot remove any packages. The other packages would be
required for the 4GL GUIs.

352 VisualAge Generator: Client/Server Communications Guide



Applet Session Manager

When you start a Session Manager as described in How to Start a Session
Manager on Your VisualAge Generator Java gateway, a Session Manager
administrative GUI is started that lets you manage sessions started by Java
clients sending requests to the RemotePowerServer. The Session Manager
administrative GUI is not available for AS/400.

The Session Manager administrative GUI displays a list of all active sessions
and a list of server programs that have been called. Users may add additional
server program names to the list if they want special tracing to occur for a
server program even if the server program has not been called yet.

From the administrative GUI you may also perform the following tasks:
v Change session manager options
v Display details about a selected session
v Display statistics about a selected server program
v Cancel sessions with rollback of work in progress
v Enable tracing a session’s activity
v Enable tracing calls to a server program

Monitoring Active Sessions
The session manager displays a list of active sessions in its Sessions pane.
Each entry in the list displays:
v The session ID for the session. This can be used to correlate with

information in session traces.
v The date/time the session was last active.
v The current status of the session.

You can display statistics for an active session by selecting the active session
in the session list, clicking on the Sessions drop-down menu, then clicking on
the Details menu item. Statistics shown are :
v Session ID.
v Time session was last active.
v Current status of the session. Possible status values are:

between calls
No Power Server request is active.

active call
A call to a server program is in progress.

active commit
A call to commit is in progress.

active rollback
A call to rollback is in progress.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 353



closing
A call to close is in progress.

closed The session has been closed.
v Add Number of commits and rollbacks to the Session View details.
v Number server program, commit, and rollback calls.

Monitoring Called Programs
The session manager displays a list of programs that have been called since
the session manager was started in its Called Applications pane.

You can display statistics for a server program by selecting the server
program in the Called Applications list, clicking on the Called Applications
menu, then clicking on the Details menu item. Statistics shown are :
v The date/time when the server program was first called after the session

manager was started.
v The date/time when the server program was last called.
v The session ID of the last session from which the server program was

called.
v The number of calls made to the server program.
v The average response time for all calls, from the perspective of the Java

gateway.
v A list of sessions that currently have active calls to the server program.

Canceling Sessions
Sessions can be canceled, with a rollback of work in progress, as a result of
the following:
v Being inactive for a specified amount of time

When you start the Session Manager you may specify the amount of time a
session may be inactive before it is canceled. This time may be changed
using the Settings window.

v Explicit action against a selected session in the Sessions list.
You may cancel an active session in the session list by selecting the session,
clicking on the Session menu, then clicking on the Delete menu item.

v You may cancel all active sessions in the session list by clicking on the
Session drop-down menu, then clicking on the Flush Sessions menu item.

v Clicking on the Delete button on the details view for a session.

Tracing Sessions
You may start a trace for a session by opening a session details view for the
session, clicking on the Session drop-down menu, then clicking on the Trace
menu item. This causes a Trace Options dialog to be opened where you can
specify what trace entries you want, and where you want trace output to be
placed.

354 VisualAge Generator: Client/Server Communications Guide



Where trace entries are to be placed is initially set as shown in the Settings
window. You can change where the trace output is to be placed by clicking on
the Trace Type drop down list symbol, then selecting the desired output type.

If you choose to have the trace output written to a file, an entry field is added
where you must provide the file name.

If you choose to have the trace data written to a window, a trace window is
opened where trace entries are displayed. At any time you can clear the trace
window by clicking on the Clear button. You can save the trace data to a file
by clicking on the Save as button, then specifying the file name on the
resulting file dialog.

A session trace window remains open even after a session is closed in case
you need to get back to the trace details. To close the trace window use the
Close menu item of the system icon.

The Trace Options window is initialized with the types of trace data to be
written set just as in the Settings window. You can change which types of
trace data are to be written by checking the desired Trace Options check
boxes.

See “Specifying Session Manager Options” on page 339 for details about trace
options.

Once you finish specifying the desired trace options, click on the Accept
button to cause them to take effect.

Tracing Server Programs
You may start a trace for a server program by opening a Called Application
details view for the program, clicking on the Called Application drop-down
menu, then clicking on the Trace menu item. This causes a Trace Options
dialog to be opened where you can specify what trace entries you want, and
where you want trace output to be placed.

Where trace entries are to be placed is initially set as shown in the Settings
window. You can change where the trace output is to be placed by clicking on
the Trace Type drop down list symbol, then selecting the desired output type.

If you choose to have the trace output written to a file, an entry field is added
where you must provide the file name.

If you choose to have the trace data written to a window, a trace window is
opened where trace entries are displayed. At any time you can clear the trace

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 355



window by clicking on the Clear button. You can save the trace data to a file
by clicking on the Save as button, then specifying the file name on the
resulting file dialog.

A program trace window remains open even when no active sessions are
open that use the program in case you need to get back to the trace details. To
close the program trace window use the Close menu item of the system icon.

The Trace Options window is initialized with the types of trace data to be
written set just as in the Settings window. You can change which types of
trace data are to be written by checking the desired Trace Options check
boxes.

See “Specifying Session Manager Options” on page 339 for details about trace
options.

Once you finish specifying the desired trace options, click on the Accept
button to cause them to take effect.

Adding a Program to the Called Application List
The first time a server program is called, an entry for that program is added
to the Called Application list. However, if you need to get trace information
for the first call to a server program, you have to explicitly add the server
program to the Called Application list before the first call. To do this:
1. Select the New menu item from the Called Application drop-down menu.
2. On the resulting dialog enter the name of the server program you want

added to the list.
3. Click on the OK button.

Once the server program is in the Called Application list, you can select it and
set tracing options for it as described in “Tracing Server Programs” on
page 355.

Setting Session Manager Parameters
See “Specifying Session Manager Options” on page 339 for a description of all
session manager options, and for details on how initial values are determined.
The following session manager options may be changed using the Settings
window:
v Inactive session timeout interval
v Where trace output is to be written
v The kind of data to trace
v The kind of data to log
v Log file name

To open the Settings window, from the Session Manager main window, click
on the File drop-down menu, then click on the Settings menu item.

356 VisualAge Generator: Client/Server Communications Guide



Timeout Interval
The inactive session timeout interval controls how often the session manager
checks for inactive sessions. If a session has not had any activity since the
previous check for inactive sessions, the session is canceled with a rollback of
any work in progress.

Trace Options
Use the Trace Options check boxes to select the kind of trace data you want
written. The trace data selected from the Settings window will be written for
all interaction with the Power Server, not just for a particular session or server
program. To restrict trace data to a particular session or a particular server
program, see Trace Sessions or Trace Server Programs, respectively.

The possible choices are:

Trace Errors
Adds a trace entry when an error occurs for a Power Server request.

Trace Requests
Adds a trace entry when each Power Server request is received, and
an entry when the request completes.

Trace Parameters
Adds a trace entry containing the data item values for each parameter
passed on each call to a server program. Values for each parameter
are written as a hex string in the code page of the target system. If the
parameter is a record, there is one hex string containing the values of
all the record’s data items.

Trace Call Options
Adds trace entries containing the values of each call option for each
call to a server program.

Log Options
Use the Log Options check boxes to specify the types of trace entries that are
to be written to a log file. The possible types of trace entries are the same as
for Trace Options.

Information is written to the file specified in the Log Filename entry field.
Default log file name is CSOJava.log in the directory where the Session
Manager is started.

Java Names

The names of classes, methods, and objects in the generated class definitions
are derived from VisualAge Generator member names according to the
following algorithm:
v Convert VisualAge Generator name to lowercase.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 357



v Delete any dashes (-) or underscores (_) and change the character that
follows the dash or underscore to uppercase.

v When the converted name is used as a class name or within a method
name, translate the first character back to uppercase.

v Package name for generated objects is the value specified in the
/PACKAGENAME generation option. The specified package must exist
when generation is requested.

The following names are not supported by JavaBeans wrapper class
generation:
v DBCS names
v Names that are Java reserved words. For example ″CLASS″.

The following table shows an example of the derivation of JavaBeans wrapper
names from VisualAge Generator member names.

Table 44. Derivation of Java names from VisualAge Generator names

VisualAge
Generator
Part Type

Server (called
batch) program
name

Record name
for record
parameter

Level-77 item
parameter

Name of
sub-structured,
multiply
occurring item
in record

Low level item in
record or record
array

VAGen Part
Name

STAFFMN STAFF
-MAINT

BUTTON-
PRESSED

STAFF-DATA
in
STAFF-MAINT

ROWS-FETCHED

Java Class
Name

Staffmn StaffMaint NA StaffMaint
_StaffData

NA

Java Object
Name

staffmn staffMaint buttonPressed staffData rowsFetched

Java
Package
Name

StaffPkg (from
/PACKAGENAME)

StaffPkg
(from
/PACKAGENAME)

NA StaffPkg (from
/PACKAGENAME)

NA

Java Get
Method
Name

NA getStaffMaint getButtonPressed getStaffData getRowsFetched

Java Put
Method
Name

NA setStaffMaint setButtonPressed setStaffData setRowsFetched

358 VisualAge Generator: Client/Server Communications Guide



Data Type Mapping

The following table shows the Java data types derived from VisualAge
Generator data item definitions.

Table 45. Derivation of Java data types from VisualAge Generator item definitions

VisualAge
Generator
Data Type

Length in
chars or
digits

Length in
bytes Decimals

Java Data
Type

Maximum
precision in
Java

CHA 1-32767 1-32767 NA String NA

MIX 1-32767 1-32767 NA String NA

DBCS 1-16383 1-32767 NA String NA

UNICODE 1-16383 1-32767 NA String NA

HEX 2-75534 1-32767 NA Byte[] NA

BIN 1-4 2 0 Short 4

BIN 5-9 4 0 Int 9

BIN 10-18 8 0 Long 18

BIN 1-4 2 >0 Float 4

BIN 5-9 4 >0 Double 15

BIN 10-18 8 >0 Double 15

NUM,
NUMC

1-4 1-4 0 Short 4

NUM,
NUMC

5-9 5-9 0 Int 9

NUM,
NUMC

10-18 10-18 0 Long 18

NUM,
NUMC

1-6 1-6 >0 Float 6

NUM,
NUMC

7-18 7-18 >0 Double 15

PACK, PACF 1-3 1-2 0 Short 4

PACK, PACF 4-9 3-5 0 Int 9

PACK, PACF 10-18 6-10 0 Long 18

PACK, PACF 1-5 1-3 >0 Float 6

PACK, PACF 7-18 4-10 >0 Double 15

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 359



Data Format Conversion Considerations

Numeric Conversion Considerations
v VisualAge Generator to Java:

– 16-18 digit numbers with decimal places are precise to a maximum of 15
digits.

v Java to VisualAge Generator:
– Java floating point numbers that have more precision than the

corresponding VisualAge Generator item are rounded when converted to
VisualAge Generator numbers.

– If a Java number is greater than the maximum for the corresponding
VisualAge Generator data item, an exception is raised. The exception
may be a java.lang.ArithmeticException or an
com.ibm.vgj.cso.CSOException, message CSOE7953, depending on
whether the error is detected during marshalling or numeric format
conversion.
The calling method must ensure that numeric values are within the
range that can be processed by the VisualAge Generator server program.

Character String Conversion Considerations
v VisualAge Generator to Java:

– Trailing blanks are truncated when a VisualAge Generator character item
is converted to a Java character string.

v Java to VisualAge Generator
– Java Unicode characters that do not have a corresponding character in

the target code page are mapped to the SUB character for the code page.
No exception is raised.

– Java strings are padded with blanks if shorter than the VisualAge
Generator data item, and truncated to VisualAge Generator item length,
if longer than the VisualAge Generator data item. No exception is raised.

Power Server API Tracing and Debugging Environment Variables

To enable tracing in the Power Server API (rather than just from the Java
wrapper support) when called from Java applications, set CSO environment
variables from the window in which the application is started. To enable
tracing in the Power Server API when called from Java applets, set CSO
environment variables from the window in which the Session Manager is
started. To enable tracing in the Power Server API when called from servlets
or JSPs, set CSO environment variables so that they are picked up by your
web application server.

Tracing Errors
To trace only errors, use the following:

360 VisualAge Generator: Client/Server Communications Guide



SET CSOTROPT=1
SET CSOTROUT=trace_file_name

The default trace file name is CSOTRACE.OUT in the directory from which
the Session Manager or Java application was started.

Tracing Service Calls
To trace all service calls to the PowerServer API, use the following:
SET CSOTROPT=2
SET CSOTROUT=trace_file_name

The default trace file name is CSOTRACE.OUT in the directory from which
the Session Manager or Java application was started.

Tracing Parameter Contents
To trace contents of parameters before and after server calls, use the following
command:
SET CSO_DUMP_DATA=ALL

to trace calls to all programs. Parameter contents are written to file
CSODUMP.OUT in the directory from which the Session Manager, web
application server, or the Java application was started.

Exception Handling

The server wrapper raises a CSOException when an error is encountered on a
call. The catching routine can retrieve the VisualAge Generator middleware
CSO error message by calling the CSOException.getMessage() method.

ErrorMessages

CSO7950E
CSO7950E Parameter descriptions and parameters for call to application %1
are incompatible.

Explanation: You are using a generated JavaBeans wrapper class to call a
VisualAge Generator application. The wrapper class has the same name as the
application. The parameter description generated for the class definition does
not match the parameters being passed. This can happen for one of the
following reasons:
v Class definitions for the server or record parameters were modified after

they were generated.
v An array variable in a record parameter object was reassigned with a

different array size.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 361



v The record parameter class was generated separately from the server class
after the record definition had changed. This can happen if the same record
is used as a parameter in one or more applications.

User Response: Regenerate the server application to rebuild the server and
record classes. Recompile the generated Java classes. Ensure that classes
calling the server do not reassign array variables with a different size.

CSO7951E
CSO7951E The parameter description for a call to application %1 is invalid.
Parameter number is %2. Invalid item description length is %3. Parameter
offset is %4.

Explanation: You are using a generated JavaBeans wrapper class to call a
VisualAge Generator application. The wrapper class has the same name as the
application. During parameter format conversion, the end of the data was
reached before all data items where converted, indicating the generated
parameter description is invalid. This can happen for one of the following
reasons:
v Class definitions for the server or record parameters were modified after

they were generated.
v An array variable in a record parameter object was reassigned with a

different array size.
v The record parameter class was generated separately from the server class

after the record definition had changed. This can happen if the same record
is used as a parameter in one or more applications.

User Response: Regenerate the server application to rebuild the server and
record classes. Recompile the generated Java classes. Ensure classes that call
the server do not reassign array variables with a different size.

CSO7952E
CSO7952E Unknown item type in a parameter description for a call to
application %1. Parameter number is %2. Invalid item description length is
%3. Parameter offset is %4.

Explanation: You are using a generated JavaBeans wrapper class to call a
VisualAge Generator application. The wrapper class has the same name as the
application. An unknown item type was encountered in the parameter
description for the server application.

This can happen for one of the following reasons:
v Class definitions for the server or record parameters were modified after

they were generated.

362 VisualAge Generator: Client/Server Communications Guide



v An array variable in a record parameter object was reassigned with a
different array size.

v The record parameter class was generated separately from the server class
after the record definition had changed. This can happen if the same record
is used as a parameter in one or more applications.

User Response: Regenerate the server application to rebuild the server and
record classes. Recompile the generated Java classes. Ensure classes that call
the server do not reassign array variables with a different size.

CSO7953E
CSO7953E Numeric overflow occurred when converting a Java parameter to
server data format on a call to application %1. Parameter number is %2.
Item type is %3. Item length in bytes is %4. The number of decimal places
is %5. Item offset in parameter is %6.

Explanation: You are using a generated JavaBeans wrapper class to call a
VisualAge Generator application. The wrapper class has the same name as the
application. A number being passed to the server is greater than the largest
number that can be stored in the VisualAge Generator data item associated
with the parameter. The parameter offset is the hexadecimal offset of the
server data item in the parameter structure as defined to the server.

User Response: The client developer must modify the client to check that
value being passed is within the range that is acceptable to the server.

CSO7955E
CSO7955E %1, %2

Explanation:The application or applet you are running uses a generated
JavaBeans wrapper class to call a VisualAge Generator application. An
unexpected Java exception was caught while attempting to call the server.

The message text consists of the name of the Java exception followed by the
Java message thrown with the exception.

Possible causes include the following:
v The generated wrapper classes were modified after they were generated.
v Overflow occurred when a floating point parameter or variable contained a

value larger than the corresponding server data item can contain.
v VisualAge Generator conversion tables for Java (files with extension .JCT)

are not in a directory accessible to the Java application or VisualAge
Generator unit of work server for applets.

User Response: Use the Java error description in problem analysis.

Chapter 18. VisualAge Generator JavaBeans Wrappers and Enterprise Beans 363



If overflow is the problem, modify the client code to ensure that the values
being sent to the server are within the range that is acceptable to the server.

CSO7956E
CSO7956E Server unit of work for applet was canceled.

Explanation: You are using an applet that calls generated VisualAge
Generator server applications. A VisualAge Generator PowerServer session
was started to handle communications between the applet and the server
systems. The session was canceled and session resources released because the
applet was inactive (did not make any calls to servers) for an extended period
of time.

User Response: The applet should be coded to close the server unit of work if
the applet user does not make any service requests within a reasonable time.

CSO7957E
CSO7957E Conversion table name %1 is invalid for Java character
conversion.

Explanation: You are using a generated JavaBeans wrapper class to call a
VisualAge Generator application and specified a conversion table that is not
valid for use in converting Java character strings to server format.

The name you specify for a Java conversion table must have the format
CSOpcccc where p identifies the server environment type (I = Intel for OS/2
and Windows, X = Unix for AIX and other Unix environments, and E =
EBCDIC for MVS, VM, VSE, and OS/400), and cccc is the one- to four-digit
code page number for the character set in use on the server environment.

User Response: Specify the conversion table name in the correct format.

364 VisualAge Generator: Client/Server Communications Guide



Part 4. Calling Server Programs from Non-VisualAge
Generator Clients

© Copyright IBM Corp. 1980, 2001 365



366 VisualAge Generator: Client/Server Communications Guide



Chapter 19. Using Interspace to Call Server Programs from
Visual Basic, PowerBuilder, or ActiveX Clients

VisualAge Generator and Interspace by Planetworks have teamed up to
provide an exciting and powerful new offering for enterprise customers.
Using the Interspace development framework and middleware, developers
can create Visual Basic or PowerBuilder GUIs that call robust, scalable,
VisualAge Generator transaction server programs to access enterprise data.

In this chapter, we describe how to build a Visual Basic client for the
VisualAge Generator sample server program STFLIST using Interspace.
Included in the Samples directory is a self-extracting file, VBSAMP.exe,
containing the sample files that were created using these instructions. To run
the executable version of the STAFF project, STFPROJ.exe, you need to have
installed VisualBasic version 5.0 or greater and VisualAge Interspace.

Sample files are:

STFLIST.cat
Service and service interface defined by Interspace

STFLIST.esf
STFLIST service code ESF file generated by Interspace

STFAPP.esf
STFAPP ESF file modified from STFLIST example

STFLIST.bas
STFLIST wrapper for Visual Basic program generated by Interspace

STFLISTM.bas
A Visual Basic program to initialize the project

STFPROJ.vbp
Visual Basic project properties

STFLOGIN
A Visual Basic userid/password authentication form

STFGUI
A Visual Basic GUI form

© Copyright IBM Corp. 1980, 2001 367



Defining the Server Program Interface

Developing an Interspace-enabled client begins with the Interspace Service
Interface Painter. This tool is used to define the data passed between the client
and server, to perform test calls to the server, and to generate the objects that
call the server program. We used the Interspace Painter to define a service
interface for the sample program, STFLIST, which is shipped with VisualAge
Generator Developer.

The steps we followed were:
1. Define the fields used in the service interface.

Fields are equivalent to VisualAge Generator data items. The fields we
defined are located in the STFLIST.cat file.
Note that numbers were defined using type short or integer for integers or
decimal for numbers with decimal places.

2. Define the service and service interface. The service is the equivalent of a
VisualAge Generator server (remote called batch) program. The service
interface is defined as a set of request data flowing to the server, and reply
data returned from the server.

3. In Interspace 5.1, you must define the request data and reply data exactly
the same for calling VisualAge Generator servers. If repeating data is
defined in the interface, the equivalent of an array in VisualAge Generator,
you must also define and use Interspace control fields. These fields should
be defined only to the request header and should be defined as the first
three fields in the request header. The following example illustrates how
these Interspace control fields are defined to the Request Header:

368 VisualAge Generator: Client/Server Communications Guide



Notice that the Interspace control fields are not included in the reply
header.

4. Use the Generate function from the Service Interface Painter to generate
External Source Format for the program and parameter record member for
VisualAge Generator. Interspace uses the term service code to refer to the
ESF file. You can see the generated service code in file STFLIST.ESF.

Figure 14. Exapmle of the Request Header definition

Chapter 19. Using Interspace to Call Server Programs from Visual Basic, PowerBuilder, or ActiveX Clients 369



5. Import the external source format file into the VisualAge Generator library
and code the remainder of the server program using VisualAge Generator
Developer. We took most of the code from the existing STFLIST sample
program and reworked it to work with the Interspace generated parameter
record. The modified source code is in file STFAPP.ESF.

Testing the Server Program

After you define the service interface for the VisualAge Generator server
program server program, you can test the service using the Interspace Service
Tester. To simulate the interaction with the server program before a GUI client
program has been defined using the Interspace Service Tester:
1. Setup the PowerServer environment so that the VisualAge Generator test

facility is started when the Interspace Service Tester calls the server
program. When both Interspace Service Tester and VisualAge Generator
test facility are on the same Windows NT system, use the following
linkage table entry to point to the test facility as the test server:

:CALLLINK APPLNAME=* LINKTYPE=REMOTE REMOTECOMTYPE=IPC
REMOTEAPPTYPE=ITF CONTABLE=PICTURE

CONTABLE (the conversion table name) must always be specified for
Interspace clients, because numbers must be translated from Interspace
format to VisualAge Generator format. Specify the conversion table name
as PICTURE whenever your client and server have the same code page.

Figure 15. Exapmle of ESF generation for the sample server program

370 VisualAge Generator: Client/Server Communications Guide



2. Ensure that PowerServer points to the linkage table file by setting
environment variable CSOLINKTBL to the file name. For example,

SET CSOLINKTBL=c:\vag\staff.lnk
3. Start the test session on Interspace, by selecting View All from the

Services menu to open the Services window. Select the service name to be
tested and select Test from Services menu. An interactive Interspace
Service Tester displays where data values can be entered into the
appropriate fields and executed to start the service middleware.

Building Visual Basic GUIs

After the service interface and server program were tested to our satisfaction,
we followed the following steps to build the Visual Basic GUI:
1. Generate the Visual Basic wrapper module for the STFLIST service
2. Copy STFLIST module in a Visual Basic project
3. Add modules to the project
4. Build the forms for the GUI
5. Test the Visual Basic program

Generating Visual Basic Functions that Call the Server

Interspace uses the service definitions and the service call template to generate
the appropriate Visual Basic structures and functions. The generated code
contains functions that invoke Interspace functions for moving data back and
forth between Visual Basic structures and middleware communication buffers.
The generated code is written to a Visual Basic file with a .BAS extension and
a filename equal to the service name.

The vbsync.tpl template should be used when generating the service for a
VisualAge Generator called server program, since these are synchronous calls.
The generator generates several Visual Basic structures and functions that
include the name of the service.

Predefined Interspace Functions

The most important function of these generated functions is called
receive_<service>_sync, where <service> is the service name. This function
invokes other predefined and generated functions to interface with the
Interspace middleware services. These predefined and generated functions
make up what is called the GUI-Enabling Layer (GEL), which is the top layer.
These predefined functions are contained in DCIGEL.BAS. The Distributed
Processing Layer (DPL), the middle layer, contains functions that provide
additional middleware services. These functions are contained in dcidpl.dll
and are declared in DCIDPL.BAS.

Chapter 19. Using Interspace to Call Server Programs from Visual Basic, PowerBuilder, or ActiveX Clients 371



Developing A Visual Basic GUI for the STFLIST Server Program

Before a Visual Basic GUI can call a VisualAge Generator server program
using the Interspace function, the Interspace environment must be initialized.
The function dcifx_init(), which initializes the environment, along with other
predefined functions, are contained in DCIGEL.BAS, as mentioned above.
When terminating the GUI, the Interspace environment should be cleaned up
by using the dcifx_exit() function. The sample code shows you where these
functions and other Interspace functions should be coded in your Visual Basic
application:
Public STFLISTrequestdata As FLIST_request_data
Public STFLISTreplydata As STFLIST_reply_data
Public STFLISTrequestmsg As STFLIST_request_msg
Public STFLISTreplymsg As STFLIST_reply_msg

Public pword$ 'user password
Public user$ 'user name

Public retcode% 'global error code
Public NumofButtons% 'used for the dcifx_show_error

Public Const DistributedEnvironment = "VISGEN" 'environment you are
'connecting to

Public Const AppToConnectTo = "STFLIST" 'the app
'connecting to

Public Const Title = "Interspace Reported Error" 'used for the
'dcifx_show_error

Public Sub Main()
STFGUI.Show
stfLogIn.Show 1

End Sub

Visual Basic Modules

The steps for developing a Visual Basic application are as follows:
1. Add the modules (DCIGEL.BAS and DCIDPL.BAS) containing the

predefined Interspace functions to the Visual Basic project.
2. For each service (server program) that will be called by the GUI, add the

module that was generated from Interspace to the Visual Basic project. For
our example, the generated module, STFLIST.BAS, was added to the
Visual Basic project.

Adding a Main Subroutine

We created another Visual Basic module called STFLISTM.BAS to keep from
modifying the Interspace-generated modules in the event that the service
interface changes and the service has to be regenerated. In the STFLISTM.BAS
module, we defined a Main subroutine for our Visual Basic GUI and

372 VisualAge Generator: Client/Server Communications Guide



additional variables. The script for the Main subroutine is the first code to be
executed and is used to control the initial flow of the GUI.

Included in the additional variables section is a copy of all the service
interface parameters for each service call. These are the actual parameters that
should be used when making the function calls. The naming convention we
adopted for naming the variables was to remove the underscore from the
original name. For instance, STFLIST_request_data was defined with the name
STFLISTrequestdata.

Coding the Visual Basic Forms

The Visual Basic GUI created for our server program contains two forms: a
login form (STFLOGIN.frm) and the main form (STFGUI.frm), which controls
the interaction with user.

The function, dcifx_init(), which initializes the Interspace environment, is
included in the login form (STFLOGIN.frm).
Private Sub getListCmd_Click()
'Initialization section
Dim stfname As String * 15
Dim STFListEntry As String * 50

'Use STARTING_ID entered by the user
STFLISTrequestmsg.header.starting_id = starting_id.Text

'Allocate space in memory for the following arrays
ReDim STFLISTrequestmsg.data(1) 'very important
ReDim STFLISTreplymsg.data(1) 'very important

getListCmd.Enabled = False 'Disable until successful server call

'The parameters are messages:
'1.STFLISTrequestmsg - data flowing to the server program
'2.STFLISTreplymsg - data being returned from the server program
' In VB terms: A user defined type. These two were defined in the
' STFLIST.BAS file.
' Their definition is based on the repository file for this service.
' The STFLIST.BAS file was generated using the Interspace painter.

retcode = receive_STFLIST_sync(STFLISTrequestmsg, STFLISTreplymsg)

'You always use error handling with an Interspace enabled application
' The dcifx_show_error provides information about the error.

If retcode <> 0 Then 'zero is Interspace success value
If retcode = -1 Then
Call dcifx_show_error(NumofButtons, Title) 'Displays Interspace
'provided error msg
retcode = 0
End If

Chapter 19. Using Interspace to Call Server Programs from Visual Basic, PowerBuilder, or ActiveX Clients 373



End If

getListCmd.Enabled = True 'Call to server was successful
stfListBox.Clear 'Clear the list box before populating again

Select Case STFLISTreplymsg.row_count 'using this user defined type to
'see how many rows were returned by the service

Case Is > 0 'At least one row was returned
For i = 1 To STFLISTreplymsg.row_count 'Number of rows read from the

'database
stfname = Format(STFLISTreplymsg.data(i).NAME_WS, "@@@@@@@@@@@@@@@")
STFListEntry =

Format(Str(STFLISTreplymsg.data(i).STAFFIDX_WS), "@@@@@") +
"| " + stfname +
"| " + Format(Str(STFLISTreplymsg.data(i).SALARY_WS), "@@@@@") + "| " +

Format(Str(STFLISTreplymsg.data(i).COMM_WS), "@@@@@") + "|"
stfListBox.AddItem STFListEntry, (i - 1)
Next i

Case Is = 0 'No entries found
End Select

End Sub

Testing the Visual Basic Program

Visual Basic provides robust test facilities for running and debugging the
Visual Basic program. Use these facilities to set breakpoints and watch points
as you are testing and debugging your program.

You have flexibility in how you test your client and server programs together.
You can test the Visual Basic program calling the server program in the
VisualAge Generator Test Facility. If you are satisfied with the server program,
generate the server program, and test it with Visual Basic calling the
generated server program. Once the complete client/server application has
been thoroughly tested, the Visual Basic program can be compiled into an
executable (EXE).

Deploying The Visual Basic Application

After an executable has been created for your Visual Basic application and is
ready to be distributed to the end users, it is important that all the necessary
files are distributed with the executable and that the middleware runtime
components are properly installed on each machine. When distributing the
Interspace-enabled Visual Basic application for VisualAge Generator
middleware, ensure that all the files in the Interspace runtime subdirectory
(x:\ispace\runtime) are distributed to the client machine. This directory
should contain the Interspace runtime DLL, DCIDPL.DLL, and the DIL DLL
for VisualAge Generator, VGENDIL.DLL.

374 VisualAge Generator: Client/Server Communications Guide



In addition, you need to distribute the latest version of the Visual Basic
runtime DLL. Currently, these DLLs are vb40016.dll and vb40032.dll,
depending on whether your application is 16 or 32 bit. If your application
uses any OCX objects, you also need to distribute the runtime DLLs for these
objects.

The runtime DLLs for Interspace, Visual Basic, and OCX (if it is used) should
be located in a directory that is defined in the DOS Path of the client machine.
In addition, the Interspace control file, ISPACE.INI, and the repository file
containing the service definitions should be copied to the same location.

To complete the setup, you need to install and properly configure VisualAge
Generator runtime services and the underlying middleware (CICS Client,
Client Access/400, and so on). Refer to the product installation guide for
information on the installation and configuration of these products.

You also need a runtime linkage table on the client to specify the location of
the server to the PowerServer middleware.

Moving the Server Program to Other Platforms

Our example put the server program on an MVS CICS system. To put the
server program on any of the other VisualAge Generator server platforms (for
example, IMS, VSE CICS, OS/400, or AIX), regenerate the server program for
the new environment and modify the linkage table on the client system to
point to the new server. No change is required in the server application code
or to the GUI client program.

Using A Different GUI Development Tool

The same server program can be used with PowerBuilder, Java, and ActiveX
clients. Use Interspace to generate PowerBuilder DataWindow objects, Java
classes, or ActiveX controls that encapsulate the call to the server program,
then use the appropriate GUI development tool for the type of object
generated. No change is required to the server program.

Generating the Server Program

Once the server program has been verified using the test facility, use
VisualAge Generator to generate the server program as a remote called batch
application for any of the server environments that are callable from the client
system.

When you generate, specify the following options in the generation linkage
table specified for the server program:

:CALLLINK APPLNAME=* LINKTYPE=REMOTE PARMFORM=COMMDATA.

Chapter 19. Using Interspace to Call Server Programs from Visual Basic, PowerBuilder, or ActiveX Clients 375



Building GUIs

Use Service Interface Painter to generate GUI objects for the Visual Basic,
PowerBuilder, or ActiveX environments. Select a synchronous template when
generating the client objects, since all the calls to VisualAge Generator servers
are synchronous. Use an interactive development environment appropriate for
the type of generated object to build the GUI client programs that call the
server program.

Preparing the Client Environment for Calling the Server

When you have created the client executables, you need to complete the client
setup by doing the following:
v Install the Interspace runtime component, VisualAge Generator runtime

services, and the underlying middleware (CICS Client, Client Access/400,
etc.) on the client systems. Refer to the product installation guide for
information on the installation and configuration of these products.

v Create a runtime linkage table on the client to specify the location of the
server to the PowerServer middleware. For example, the following is an
example of a linkage table entry for calling an MVS CICS server
application:

:CALLLINK APPLNAME=STAFF* LINKTYPE=REMOTE REMOTECOMTYPE=CICSCLIENT
LOCATION=CARMVS1 CONTABLE=ELACNENU

CONTABLE (the conversion table name) must always be specified for
Interspace clients, because numbers must be translated from Interspace
number format to VisualAge Generator number format. Specify the
conversion table name as PICTURE whenever your client and server have
the same code page. Otherwise, specify the conversion table name
(ELACNENU, as in the example, for Windows to MVS conversion) just as
you would for a VisualAge Generator client running on the same platform
as the Interspace client.

v Ensure that PowerServer points to the linkage table file by setting
environment variable CSOLINKTBL to the file name. For example,

SET CSOLINKTBL=c:\vag\staff.lnk

Tracing and Debugging Server Calls

To trace server calls from the Interspace DIL, set CSO trace options from the
window in which the application is started. Tracing is done within the
PowerServer middleware.

Tracing Communication Errors
To trace errors, use the following:

SET CSOTROPT=1
SET CSOTROUT=trace_file_name

376 VisualAge Generator: Client/Server Communications Guide



The default trace file name is CSOTRACE.OUT in the directory where the
GUI client is running.

Tracing Service Calls
To trace all service calls to the PowerServer API, use the following:

SET CSORROPT=2
SET CSOTROUT=trace_file_name

The default trace file name is CSOTRACE.OUT in the directory where the
GUI client is running.

Tracing Parameter Contents
To trace contents of parameters before and after server calls, use one of the
following examples:

To trace calls to a specific program, use the following:
SET CSO_DUMP_DATA=server_program_name

To trace calls to all programs, use the following:
SET CSO_DUMP_DATA=ALL

Parameter contents are written to file CSODUMP.OUT in the directory where
the GUI client is running.

Chapter 19. Using Interspace to Call Server Programs from Visual Basic, PowerBuilder, or ActiveX Clients 377



378 VisualAge Generator: Client/Server Communications Guide



Part 5. Distributed Logic Using Asynchronous
Processing

© Copyright IBM Corp. 1980, 2001 379



380 VisualAge Generator: Client/Server Communications Guide



Chapter 20. Implementing Client/Server Processing Using
the Message Queue Interface

Message queueing provides an alternative to implementing program
communication as a remote procedure call from client to server. With message
queueing, programs communicate by writing to and reading messages from
queues.

The following are benefits of message queueing:
v Communicating programs can run in parallel.
v Communicating programs do not need to be running concurrently.
v Intermittent communication link failures do not prevent messages from

being delivered.

For more information on message queueing and the design of message
queueing programs, refer to the VisualAge Generator User’s
Guide(SH23-0268-01).

© Copyright IBM Corp. 1980, 2001 381



382 VisualAge Generator: Client/Server Communications Guide



Chapter 21. Implementing Client/Server Processing in CICS
Using the CREATX Service Routine

In CICS client programs, you can use the CREATX service routine to start a
transaction on a remote system to process a message passed to the transaction.
The message is the data portion of the CREATX parameter record. The
message data is moved into the working storage area of the started program
when the transaction starts.

A CALL CREATX is an asynchronous remote procedure in which the
requesting program initiates the request and does not wait for the remote
program to complete the request before continuing processing. The remote
transaction runs independently of the local transaction and is not associated
with any terminal.

Use CREATX when the remote program might take a long time to complete.
In this way, the local program can continue with other processing while
waiting for the remote program to complete processing. If required, the
remote program can return information to the caller by storing information in
a remote file accessible to the program that issued the CREATX. The remote
program can also start another remote transaction on the system from which
the original CREATX was issued.

If the initial program completes its other work before the remote program has
updated the response file, the initial program can use the EZEWAIT function
to suspend processing for a specified time period. Design your program to
return to the program user with an appropriate response if the remote
program cannot complete processing in a reasonable time period.

Figure 16 on page 384 shows an overview of a client/server program using the
CREATX service routine. After the transaction is started by the CALL
CREATX statement, the programs communicate through a distributed file. The
remote program stores its response in a distributed file accessible by the
original program. “Chapter 23. Accessing Distributed Files in CICS” on
page 393 contains information on remote files.

Note: Non-CICS programs cannot use CREATX to start a remote call.

© Copyright IBM Corp. 1980, 2001 383



Defining a Remote Program

Define the remote program as a main batch program. The working storage
record defines the structure of the information received by the program when
it is started.

If the remote program performs printing, it must move the print destination
into EZEDESTP.

Defining the CALL CREATX Statement

The syntax of the CALL CREATX statement for a remote CREATX is the same
as that for a local CREATX. However, the parameters PRID and RECIP,
specified on the CREATX service routine, are ignored for remote programs.

The record passed on the CREATX call defines the structure of the
information passed to the remote program. The information in the record
following the length and transaction name in the first 10 bytes is passed to the
remote program. The program can set the length field in the CREATX record
to control the amount of information passed to the remote program.

Testing CREATX Calls

The two programs are tested separately. The test facility does not emulate the
CREATX service; instead, it treats the CREATX service call as a call to a
program named CREATX.

To emulate CREATX processing, you can write your own CREATX program
that writes the CREATX record to a file.

CICS for OS/2,
MVS/ESA,
VSE/ESA,

or CICS/6000

CICS for
CICS for

APPL
.
EZEWAIT
.
.
INQUIRY

CREATX
Start a Transaction

APPL
Main
Batch
.
.
ADD

CICS for OS/2,
MVS/ESA,
VSE/ESA,

or CICS/6000

CICS for
CICS for

File
(Optional)

Figure 16. Client/Server Program Using CREATX Service Routine

384 VisualAge Generator: Client/Server Communications Guide



When you finish testing the initial program, you can run a second program to
read the CREATX record from the file. You then use the XFER statement to
pass control to the program to be started using the CREATX record (without
the first 10 bytes) as the passed XFER working storage record.

Format conversion is not performed when running in the test facility, and the
contents of EZELOC and EZECONVT are ignored on CREATX calls. Calls to
EZEWAIT are also ignored, except for validating the parameters on the call.
Calls to EZECONV should be bypassed when running on the test facility.

Generating Client/Server CREATX Calls

When you generate programs that use CREATX calls, use the linkage table to
identify the CREATX records being passed to a remote transaction. The
transaction name itself is identified in the record at run time. For example, if
program CLIENT is to issue a CREATX passing record REMDATA, specify the
following in the linkage table:
:crtxlink recdname=remdata linktype=remote ...

The linkage table is required only when you are generating the program
issuing the CREATX service routine. Specify the target system according to
which the program being generated is to run (OS2CICS, MVSCICS, or
VSECICS).

Identifying the Location of the Remote Transaction

If you want the location of the remote transaction to be obtained from the
transaction entry at run time, specify the following in the linkage table entry
for the CREATX record:
:crtxlink recdname=remdata linktype=remote location=cics ...

There must be a CICS transaction or PCT entry for the remote transaction
defined on the CICS system from which the CREATX is issued. Specify the
remote system identifier and the remote transaction code (the name that the
transaction is known by on the remote system) in the local transaction entry.
The transaction must also be defined on each system that the transaction can
be created.

If the CICS system identifier (SYSID) value for the location of the remote
transaction is loaded by the calling program into EZELOC prior to the CALL
CREATX statement, specify the following in the linkage table for the remote
transaction:
:crtxlink recdname=remdata linktype=remote location=EZELOC ...

Chapter 21. Implementing Client/Server Processing in CICS Using the CREATX Service Routine 385



Define the calling program to load the location into EZELOC at run time if
you want to start the same remote transaction installed on different CICS
systems. The value in EZELOC must be the SYSID for one of the remote
systems defined to the local CICS system.

For more information on linkage tables, see “Appendix B. Linkage tables” on
page 405.

Converting Data Format on a Call CREATX

If your program is starting a transaction from a mainframe (or from a
workstation) and you want data conversion to be performed automatically on
a CALL CREATX, specify the CONTABLE keyword in the entry for the
CREATX record in the linkage table, as shown in the following example:
:crtxlink recdname=remdata linktype=remote contable=conversion_table_name ...

Data is automatically converted on the calling system before issuing the CICS
START command. Conversion is performed based on the data structure
defined for the CREATX record. Use automatic conversion only if the record
values match the structure definition.

If you want your remote transaction to run on computers that support
different code pages, specify EZECONVT instead of a conversion table name
in the CRTXLINK entry and have your program move the appropriate
conversion table name into EZECONVT before issuing the CALL CREATX.

There are times you might want to control automatic conversion. For example,
when your program sets the remote location using EZELOC, you can set
conversion off when the remote transaction is on another workstation and
then set conversion on when the remote transaction is on a mainframe. To do
this, specify EZECONVT as the conversion table in the crtxlink entry. If you
do not want the conversion to be performed, move blanks to EZECONVT
prior to the CALL CREATX statement. If you do want the conversion to be
performed, move a conversion table name to EZECONVT.

The “Appendix C. Converting Between Client and Server Data Formats” on
page 433 section contains more information on data format conversion,
including a description of the conversion algorithms and a list of conversion
tables provided with the product.

Using the EZECONV Service for Redefined CREATX Records

If you do not want automatic conversion performed at the time of the CALL
CREATX statement, omit the contable keyword from the crtxlink entry. Do not
use automatic conversion if the data structure of the argument can vary from
one CREATX statement to another. The program can use the EZECONV

386 VisualAge Generator: Client/Server Communications Guide



service with record redefinitions to perform conversion when record formats
vary. When you use a redefined record as the target record of a call to
EZECONV, the redefined record is treated as a fixed length record.

If you are using EZECONV instead of automatic conversion on the CREATX,
define the data structure for the CREATX record so that the first 10 bytes of
the record (the length and transaction name) are not converted. The length
and transaction name must be in local system format at the time the CREATX
is processed.

Handling Link Failures

The remote CALL CREATX is generated as a CICS START request to a remote
transaction. If the START is unsuccessful for any reason, including when the
communication link is not available, CICS returns with error information in
the CICS EIB. If the REPLY option is specified on the CALL CREATX
statement, the program moves one of the following values into EZERT8:

Value Meaning
00000000

Successful CREATX
00000203

Transaction identifier not valid
00000207

System identifier not valid
00000208

Link out of service
ffrrrrrr

Other CICS error where ff is the hexadecimal representation of EIBFN
byte 0 and rrrrrr is the hexadecimal representation of EIBRCODE
bytes 0–2.

If the REPLY option is not defined on the CALL CREATX, the calling program
ends with error messages.

Committing Changes in Remote Transactions

The transaction started using CALL CREATX is a separate logical unit of
work. Any resources updated by the remote transaction are committed
independently of the program that issued the CALL CREATX statement.

Chapter 21. Implementing Client/Server Processing in CICS Using the CREATX Service Routine 387



Detecting Errors in Programs Started by CREATX

If runtime services detects an error while the started program is running, the
messages describing the error are logged according to the diagnostic control
options in effect on the remote system. The starting program is not notified of
the error. The starting program should therefore be designed to handle the
condition when no response is returned from the started program within a
specified time period.

388 VisualAge Generator: Client/Server Communications Guide



Part 6. Distributed Data

© Copyright IBM Corp. 1980, 2001 389



390 VisualAge Generator: Client/Server Communications Guide



Chapter 22. Accessing Remote Relational Databases

IBM’s DB2 database managers implement the Distributed Relational Database
Architecture (DRDA) and provide client database access products that allow
your programs to access remote databases in the same way they access local
databases.

The local database manager or client access product handles communications
to the remote database manager and data format conversion in a manner that
is transparent to the program developer. Communication failures are
communicated to the program using SQL return codes. The remote database
updates are included in the program’s unit of work and are committed or
rolled back in conjunction with the other recoverable resources controlled by
the program.

Call the VisualAge Generator EZECONCT service routine during program
runtime to dynamically change the current database connection, specifying
whether a local or remote database is desired. The default database connection
is dependent on the VisualAge Generator program runtime target
environment. Refer to the specific target environment runtime manual for the
database connection information. The default database can be a remote
database. EZECONCT does not support distributed logical units of work, so
prior to changing a database connection, the current unit of work must be
committed or rolled back.

For more information on developing relational database programs, refer to the
developing SQL programs section in the VisualAge Generator Design Guide
document.

© Copyright IBM Corp. 1980, 2001 391



392 VisualAge Generator: Client/Server Communications Guide



Chapter 23. Accessing Distributed Files in CICS

In client CICS programs, you can access CICS VSAM files and transient data
queues at remote locations. File I/O process options provide synchronous
access of a remote file. To access remote files, you use I/O process options.
The following I/O process options are supported:
v INQUIRY
v SCAN
v SCANBACK
v ADD
v REPLACE
v UPDATE
v DELETE

Note: Non-CICS programs cannot access remote files.

Defining Remote Files

To use remote files, define a serial, relative, or indexed record whose record
structure matches the file record structure. The record structure for the file
controls how the record data format is converted during automatic data
conversion. Use variable length record files wherever appropriate to insure
that only the information required is passed on the communication link when
a record is accessed.

Defining the I/O Process Options

The syntax for defining process options for remote files is the same as for
local files.

Testing the I/O Process Options

When running under the test facility all file I/O operations are performed as
local operations. Format conversion is not performed and the contents of
EZELOC and EZECONVT are ignored. Calls to EZECONV should be
bypassed when running process options under the test facility.

Generating I/O Process Options to Remote Files

When you generate programs that use CICS distributed I/O function calls,
identify the file name associated with a record as a remote file in the linkage
table. For example, if program CLIENT uses record CREDIT in file HCFILE,
create the following linkage table entry:

© Copyright IBM Corp. 1980, 2001 393



:filelink filename=hcfile linktype=remote ...

Specify the linkage table when generating the program that accesses the file.
Specify the target system according to where the program being generated is
to run (OS2CICS for OS/2, MVSCICS for MVS, VSECICS for VSE, or AIX6000
for CICS for AIX).

Identifying the Location of the Remote File

If you want the location of the remote file to be obtained from the file entry or
DCT entry at run time, specify the following in the linkage table entry for the
file:
:filelink filename=hcfile linktype=remote location=cics ...

For a VSAM file, there must be a CICS file or FCT entry for the remote file
defined on the CICS system from which the program is running. Specify the
remote system identifier and the remote file name (the name the file is known
by on the remote system) in the local file entry. The file must also be defined
on the system where the file is located.

For a TRANSIENT file, there must be a CICS destination control table (DCT)
entry for the remote file defined on the CICS system from which the program
is running. Specify the facility type as remote (R), the remote system identifier,
and the remote destination name (the name that the destination is known by
on the remote system) in the DCT entry. The file must also be defined with a
DCT entry on the system where the file is located.

If the SYSID value for the location of the remote file is loaded by the program
into EZELOC prior to the I/O process option, specify the following in the
linkage table for the remote file:
:filelink filename=hcfile linktype=remote location=ezeloc ...

Define the program to load the location into EZELOC at run time, if you want
to access the same file installed on different CICS systems (for example, each
site has a local parts file that controls the parts inventory at that site). The
value in EZELOC must be the system identifier for one of the remote systems
defined to local CICS system.

For more information on linkages tables, see “Appendix B. Linkage tables” on
page 405.

394 VisualAge Generator: Client/Server Communications Guide



Converting Data Format when Accessing a Remote File

If your program uses a mainframe file from the workstation, or a workstation
file from a mainframe and you want data conversion to be performed
automatically on the I/O process option, specify the CONTABLE keyword in
the entry for the file in the linkage table, as shown in the following example:
:filelink filename=HCFILE linktype=REMOTE contable=conversion_table_name ...

Each I/O operation performed by the program automatically converts the
data.
v Conversion occurs before the I/O operation when converting from local to

remote format for records written to the remote file and for keys used to
read the remote file.

v Conversion occurs after the I/O operation when converting from remote to
local format for records read from the remote file.

v Conversion is performed based on the data structure defined for the file
record structure. Use automatic conversion only if the file record structure
matches the structure of each record in the file.

If you want your program to run on computers that support different code
pages, specify EZECONVT instead of a conversion table name in the
FILELINK entry and have your program move the appropriate conversion
table name into EZECONVT before issuing the I/O process option.

There are times you might want to control automatic conversion. For example,
when your program specifies a remote location using EZELOC, you can set
conversion off when the file is on another workstation and then set
conversion on when the file is on a mainframe.

To do this:
v Specify EZECONVT as the conversion table in the FILELINK entry.
v When you do not want conversion performed, move blanks to EZECONVT

in your program before an I/O process option.
v When you want conversion performed, move a conversion table name to

EZECONVT before an I/O process option.

See “Appendix C. Converting Between Client and Server Data Formats” on
page 433 for more information on data format conversion, including a
description of the conversion algorithms and a list of conversion tables
provided with the product.

Chapter 23. Accessing Distributed Files in CICS 395



Using the EZECONV Service for Redefined Parameters

If you never want automatic conversion performed at the time of the I/O
process option, omit the CONTABLE keyword from the FILELINK entry. Do
not use automatic conversion if the data structure of the record can vary from
one I/O process option to another, as is the case when the file contains
redefined records.

The program can use the EZECONV service with the record redefinitions to
perform conversion when record formats vary. When using EZECONV with
files, remember to convert the record before the process option on write
requests and after the process option on read requests. For indexed records,
you must also convert the record key item before a read request is issued.
When you use a redefined record as the target record of a call to EZECONV,
the redefined record is treated as a fixed length record.

If the record is variable length and you are using EZECONV instead of
automatic conversion on the file I/O request, the record length or number of
occurrences item must be in local format at the time of the I/O operation. To
ensure this, either define the record length item or number of occurrences
item with the data type of PACK so that the length item has the same format
on the host or the workstation, or define the record length outside of the
record structure.

Maintaining Position in Remote Files

Have your program issue a SET record SCAN to reset file position prior to
any SCAN process if the following conditions are true:
v A remote file is located on a system where the file key has a different

format.
v You have specified that the generated program perform automatic data

format conversion.
v The previous process for the same file was not a SCAN.

Do this even when CICS is performing key conversion for the file.

Handling Link Failures

The remote I/O process option is generated as a CICS distributed file I/O
request. If the I/O request does not complete successfully for any reason,
including when the communication link is not available, CICS returns with
error information in the EIB. If you specify an error routine and EZEFEC is set
to 1 when the process option runs and the /SYSCODES (system return codes
in EZERT8) COBOL generation option was specified, the program moves the
EIB information to EZERT8 as follows and continues running following an
I/O error:

396 VisualAge Generator: Client/Server Communications Guide



Bytes Description
0–1 Hexadecimal representation of EIBFN byte 0
2–7 Hexadecimal representation of EIBRCODE bytes 0–2.

If the I/O operation ends with a SYSIDERR (problem accessing the remote
file), one of the following values is moved to the first 6 characters of EZERT8:

Value Meaning
06D004

Name not that of system entry
06D008

Link out of service
06D00C

Name unknown to CICS.

If an error routine is not specified or EZEFEC is not set to 1 when an I/O
error occurs, the program ends with error messages.

You should not use an error routine with EZEFEC set to 1 and the
/NOSYSCODES generation option.

Committing Changes to Remote Files

EZECOMIT and EZEROLLB requests result in CICS SYNCPOINT requests
from the generated COBOL program. If the remote files are defined as CICS
recoverable resources, CICS honors the SYNCPOINT request for the remote
files as well as local files. Links involving CICS OS/2 or CICS for AIX systems
incorporate synchronization level 1 (one phase commit) support; links
involving only MVS CICS or VSE CICS systems use synchronization level 2
(two-phase commit) support.

Handling Errors

Error handling for remote files works in the same way as error handling for
local files.

Chapter 23. Accessing Distributed Files in CICS 397



398 VisualAge Generator: Client/Server Communications Guide



Part 7. Appendixes

© Copyright IBM Corp. 1980, 2001 399



400 VisualAge Generator: Client/Server Communications Guide



Appendix A. Java properties

The following sections list the Java properties that are applicable to
client/server setup. For a more comprehensive list of properties that are used
with VisualAge Generator programs, see the VisualAge Generator Generation
Guide.

Linkage properties

Linkage properties are optional controls that define relationships between
programs. These properties, taken from generation options and linkage table
parts, specify the type of linkage to be used for calls from one program to
another. This list summarizes the properties and gives examples of their uses.

cso.linkagetable.<linktable>
Specifies the name of the linkage table part. This property is used to
support run-time binding of linkage tables. The value assigned to the
property is the name of the properties file that contains the table’s
linkage information. In a generated properties file, this value comes
from the Linkage table (/LINKAGE) generation option.

In the properties file, the properties file that contains linkage
information is specified as follows:
cso.linkagetable.LINKTABLE=linkage1.properties

cso.application.<applname>
Specifies that programs with names that match <applname> belong to
the same server group. If <applname> ends in an asterisk (wild card),
it may be used to specify several programs that use the same naming
convention. The value of the property is the name of the server group.
In a generated properties file, this value comes from the applname
attribute as specified in the linkage table.

In the properties file, the programs using the same naming convention
can be designated as a server group using as follows:
cso.application.J*=JAVASERVERS

cso.serverLinkage.<group>.<attribute>
Specifies a server group and a named linkage attribute (package,
bitmode, remotecomtype, etc.) to apply to it. The value is the attribute
setting. In a generated properties file, this value comes from the
attribute setting in the linkage table.

© Copyright IBM Corp. 1980, 2001 401



In the properties file, the programs belonging to a named server
group can have the value of an attribute applied to them at runtime
as follows:
serverLinkage.SERVER.remotecomtype=TCPIP

Java server communication properties

If the program you are setting up is a Java server program that uses TCP/IP
you will need to start the following service:

CSOTcpipListener
A Java program that handles TCP/IP calls. You start this program
using the command:
java CSOTcpipListener

If you do not specify a path to the properties file for the TCP/IP listener, the
Java virtual machine (JVM) looks for the default properties file
tcpiplistener.properties in your current directory.

If the program you are setting up or developing is a Web transaction, running
your program requires that the TCP/IP listener service be running. The
following service must also be running:

CSOUiListener
A Java program used to start Web transactions. You start this program
using the command:
java CSOUiListener

Each of these services requires a properties file. You can specify the fully
qualified path to these properties files on the command line as follows:
java CSOUiListener c:\java\csoul.properties

If you do not specify a path to the properties file for the UI listener, the Java
virtual machine (JVM) looks for the default properties file
uilistener.properties in your current directory.

Properties files for both services are structured the same way and use the
same properties. In the following summary, <listener> can be either uilistener
or tcpiplistener.

<listener>.port
Specifies the number of the port on which the program will listen for
connections.

In the properties file, the port number is specified as follows:
tcpiplistener.port=9876

402 VisualAge Generator: Client/Server Communications Guide



<listener>.java.command
Specifies whether server programs started by the listener are to run in
the same JVM as the listener. If the value of this property is NONE or
if the property is not defined, all of the server programs run in the
same JVM with separate threads. If a command is specified as the
value of this property, each server runs in a separate JVM, as shown
in the following example:
tcpiplistener.java.command=java

<listener>.trace.flag
Specifies that operations of the listener should be written to a file. The
default value of this property is 0, so no trace file is created. If you
specify any other value, the trace is written to a file called
<listener>.out. To specify a different name, see <listener>.trace.file.

In the properties file, the writing of a trace file is specified as follows:
tcpiplistener.trace.flag=1

<listener>.trace.file
Specifies that operations of the listener should be written to a file with
a specific name. The default value of this property is <listener>.out.

In the properties file, the file name and location to which the trace
should be written is specified as follows:
tcpiplistener.trace.file=c:\\temp\\uitrace.txt

Appendix A. Java properties 403



404 VisualAge Generator: Client/Server Communications Guide



Appendix B. Linkage tables

A linkage table is an optional control file used during generation, test, and by
the client run-time environments. The entries in the table control the following
functions:

CALLLINK Specifies linkage conventions to be used for calling a program.

CRTXLINK Specifies whether a CICS CREATX service call starts a local or
remote CICS transaction.

DXFRLINK Specifies linkage conventions to be used for implementing a
DXFR transfer between host programs.

FILELINK Specifies whether a CICS file is to be accessed as a local or
remote file.

The file name for the linkage table file used during test is specified on the test
facility general preferences window. The file used during generation is
specified using the /LINKAGE generation option.

Creating a linkage table

Use a standard editor or the Repository/ENVY library to create a linkage
table. In this file or part, you can enter data in uppercase or lowercase. The
syntax of the file is validated when the file is used by test or generation.

The entries in the linkage table file are coded using a tag language. Valid tags
are CALLLINK, CRTXLINK, DXFRLINK, and FILELINK. Each tag has
attributes that enable you to modify the tag. You can enter attributes for a tag
in any order.

Tags and attributes can appear on separate lines or you can have multiple
entries per line. The same attribute cannot be specified more than once for a
tag.

Comments begin with the characters /* and end with the characters */.

If the program or file name specified in a linkage table entry ends with an
asterisk, the entry applies to all programs or files whose name begins with the
characters preceding the asterisk. For example, consider a program name
specified as:
:calllink applname=myapl* ...

© Copyright IBM Corp. 1980, 2001 405



This table entry is used for any call to a program and for any called program
that has MYAPL as the first 5 characters of the program name.

If multiple entries are valid for a name, the first table entry that matches the
name is used. For example, consider a program name specified as:
:calllink
applname=* ...

This entry applies to all called programs. You can use an entry like this
following all other :calllink entries to override the default linkage options for
all :calllink entries.

Specifying an asterisk is not allowed for program names on the :dxfrlink
statement.

Specifying CALL linkage (CALLLINK)

The calllink tag specifies the type of linkage to be used for a call from one
program to another. The tag affects how test facility and client run times call
an external program and how the generator generates both the called and
calling programs.

Note: In a GUI program, a call can be defined by coding a CALL statement or
by drawing an event-to-action connection from an event to the execute
action of a callable function object that represents the called (target)
program. The linkage table description for CALL statements from GUI
programs applies to both types of calls. If the linkage information is
specified in the properties of the event-to-action connection, then the
linkage information from the properties is used instead of the linkage
table.

The following diagram shows the attributes you can specify for the calllink
tag:

,, :calllink applname=program name
32

bitmode= 16

,

406 VisualAge Generator: Client/Server Communications Guide



,
library=library name linktype= DYNAMIC

STATIC
CICSLINK
REMOTE
CSOCALL
SESSIONEJB

,

,
externalname=applname parmform= OSLINK

COMMPTR
COMMDATA
CICSOSLINK

,

,
remotecomtype= APPCIMS

CA400
CICSCLIENT
DCE
DCESECURE
DIRECT
EXCI
IPC
JAVA400
LU2
TCPIP

remoteapptype= VG
NONVG
ITF
VGJAVA

,

,
contable= conversion table name

’*’
EZECONVT
NONE
BINARY

location= EZELOC
system name

,

,
serverid= server identifier CLIENT

luwcontrol= SERVER

,

,
GENERATION

remotebind= RUNTIME
INTEL

binform= HOST
providerURL=URL

,

,
package=packagename .

,/

Appendix B. Linkage tables 407



Definitions for CALLLINK

applname
Specifies the name of the called program as specified on the CALL
statement in the calling program.

You can use an asterisk (*) as a global substitution character in the
program name parameter; however, it is only valid as the last or only
character.

bitmode
Specifies whether a called DLL program runs in 16- or 32-bit mode.

This option is effective only for DLL programs
(LINKTYPE=DYNAMIC PARMFORM=OSLINK) called from GUI
programs.

The default is 32-bit mode.

Calls from C++ programs are always done in 32-bit mode. Test facility
dynamically determines whether a DLL uses 16- or 32-bit mode prior
to making the call.

library
Specifies the name of the library that contains the called program.

This option is effective only for programs (linktype=DYNAMIC
parmform=OSLINK) called from GUI or C++ programs or the test
facility, or for remote calls to OS/400 servers.

The meaning of the name depends on the called program
environment as shown in Table 46:

Table 46. Linktype for Called Program Environment

Linktype
Called Program
Environment Library Type

DYNAMIC OS/2, Windows DLL

DYNAMIC AIX, HP-UX, Solaris Shared library

REMOTE OS/400 OS/400 program library

CSOCALL OS/400 (with Java400
protocol)

OS/400 program library

CSOCALL,
remotecomtype=DIRECT

OS/2, Windows DLL

CSOCALL,
remotecomtype=DIRECT

AIX, HP-UX, Solaris Shared library

The default value is the program name.

408 VisualAge Generator: Client/Server Communications Guide



Note: In prior releases, the keyword was DLLNAME instead of the
system independent term LIBRARY. For compatibility,
DLLNAME is treated as a synonym for LIBRARY.

linktype
Specifies the type of linkage being generated.

DYNAMIC
For generated COBOL program calls, specifies that a dynamic
COBOL call is to be performed.

For calls from GUI, C++ or programs or the test facility,
specifies that a standard C call to a DLL is to be performed. A
run-time error occurs if the DLL specified in the applname
attribute cannot be loaded. A search for an executable (CMD
or EXE file) is not done. If the applname attribute specified is
not a valid DLL name because it contains an asterisk (*),
specify the library attribute to limit the search to DLLs only.

For calls from Java server programs, a call to a local Java
server program is to be performed.

This value is the default value for non-CICS environments.

STATIC
For generated COBOL programs call, specifies that a static
COBOL call is to be performed

For calls from C++ programs, Java programs, or the test
facility, treated like linktype=DYNAMIC.

This value is required for calls to PL/I programs in non-CICS
host environments.

CICSLINK
For calls from CICS programs, specifies that an EXEC CICS
command is to be performed.

This value is the default value for programs generated for
CICS environments and is valid only for CICS environments.
This value is required for calls to PL/I programs in the CICS
environment.

CSOCALL and REMOTE
Specifies that the program is a remote or local program and
the call is routed through the VisualAge Generator
middleware.

The remote program (LINKTYPE=REMOTE) and the csocall
program (LINKTYPE=CSOCALL) are equivalent for all

Appendix B. Linkage tables 409



platforms except Java GUIs. CSOCALL may be used instead
of REMOTE wherever REMOTE is valid. Java GUIs can only
specify CSOCALL.

CSOCALL and REMOTE are valid only for calls to server
programs from CICS, GUI, C++ or Java programs, or from the
test facility. CSOCALL and REMOTE are typically used when
the called program runs on a different system, thus utilizing
the middleware to provide the necessary communications and
any data conversion between the different systems. If the
client and server reside on the same system, the middleware
provides a variety of benefits such as the ability to call a
VisualAge Generator server program residing in the
Repository/ENVY library, the capability of each call to be an
independent server-controlled unit of work, or increased
control at run time via the linkage table.

If the caller is a CICS program, a CICS distributed program
link statement is performed with actual data being passed in
the CICS COMMAREA control block.

If the caller is a GUI, C++, or Java program, or the test facility,
the protocol used is determined by the REMOTECOMTYPE
attribute.

SESSIONEJB
Specifies that the program is to be invoked from a session
bean generated for the program. The generated session bean
must be deployed on an enterprise Java server, and the name
server used to locate the session bean must either reside on
the same machine as the enterprise Java server, or the
PROVIDERURL attribute must be used to identify where the
name server resides. In order for a client to make a call to a
server program through a session bean, the client must be
generated using a linkage table whose entry for the server
program contains the LINKTYPE=SESSIONEJB attribute. You
cannot wait until run time to specify this attribute in a
run-time linkage table. LINKTYPE=SESSIONEJB is only
applicable for Java clients calling server programs.

When LINKTYPE=SESSIONEJB is specified, middleware Java
classes locate the session bean and invoke its call method. The
session bean then calls the server program just as if
LINKTYPE=CSOCALL had been specified. If
REMOTEBIND=RUNTIME is specified, the session bean
attempts to locate the linkage table on the machine where it is

410 VisualAge Generator: Client/Server Communications Guide



deployed to obtain information about where the server
program resides and on what protocol to use to pass data to
the program.

externalname
The name of the program that is called. The name must be equal to
the APPLNAME in all cases except for DYNAMIC or STATIC calls
from C++ programs and for remote calls to OS/400 servers. The
EXTERNALNAME value can be more than 8 characters long in these
cases.

The default value is the APPLNAME.

parmform
Specifies the format in which parameters are passed on the call.

For remote programs (linktype=REMOTE or linktype=CSOCALL),
parameter format is determined by the run-time protocol. The format
is OSLINK for OS/400 servers accessed using CA/400 and for IMS
servers. Otherwise, the format is COMMDATA for remote programs.
Either COMMDATA or COMMPTR can be specified for calls to
non-VisualAge Generator CICS programs.

OSLINK
Specifies that the program parameters are passed using
standard parameter passing conventions.

If a DLL or load module is being called, parameters are
passed by reference. If a CMD or EXE is being called, the
parameters are moved to the command line buffer separated
by blanks.

When OSLINK is specified for CICS environments, the called
program must not contain any CICS commands and the called
program cannot be a generated COBOL program.

COMMPTR
Specifies that the program parameters are passed using a
pointer list in the COMMAREA consisting of one 4-byte
pointer for each parameter.

In MVS CICS and VSE CICS systems, the high-order bit of the
last pointer to set to 1.

For CICS OS/2, CONTABLE=NONE is required when
COMMPTR is used.

This value is valid only in CICS environments. This value is
the default value for CICS environments for the DYNAMIC,
STATIC, and CICSLINK link types.

Appendix B. Linkage tables 411



COMMDATA
Specifies that the parameters are passed in a single buffer. In
CICS programs the buffer is in the COMMAREA

Each parameter value is moved to the buffer adjoining the
previous value without regard for boundary alignment. If
variable length records are passed, space is reserved for the
maximum length defined for the record. If a variable length
record with a record length item is passed, the item must be
defined within the variable length record structure.

The called program returns the parameter values in the
COMMAREA in the same order in which it received them.
The calling program moves the returned parameter values in
the COMMAREA back to the original parameters.

The EZEDLPSB and EZEDLPCB parameters receive special
handling. When EZEDLPSB is passed, the 12-byte PSB
structure (PSB name plus user interface block (UIB) pointer) is
moved to the buffer. If EZEDLPCB is passed, a four-byte
pointer to the PCB is moved to the buffer.

The COMMDATA value is valid for calls to CICS and remote
programs.

CICSOSLINK
Specifies that the parameters are passed by reference using
standard COBOL parameter passing conventions. The CICS
EIB and COMMAREA are always passed as the first two
parameters followed by the program parameters.

This value is valid only in CICS environments and only with
a link type of STATIC or DYNAMIC. For MVS environments,
DYNAMIC linkage can only be used with CICS Version 3 or
later systems.

remotecomtype
Specifies the communication protocol for use by GUI clients, C++
programs, Java programs, or the test facility for calls to remote
programs.

APPCIMS LU 6.2 connection to IMS message processing region

CA400 Client Access/400

CICSCLIENT CICS Client ECI

DCE Unauthenticated Distributed Computing Environment
(DCE) Remote Procedure Call (RPC). Use only if in
the server program is not designated as a secure
program.

412 VisualAge Generator: Client/Server Communications Guide



DCESECURE Authenticated DCE RPC call. The server checks
whether the client’s active DCE login identifier is
authorized to run the server program. There is extra
overhead associated with performing authenticated
RPC calls so DCESECURE should not be used unless
it is necessary. Valid only for OS/2, Windows NT, and
AIX platforms.

DIRECT VisualAge Generator middleware using a direct local
call for client and server programs residing on the
same system. The advantages of using this protocol
are documented along with the client configuration
information where the protocol is supported. For
example, see “Advantages of IPC and DIRECT
Protocols” on page 41.

EXCI Extended CICS Interface is used to start MVS CICS
transactions from generated Java wrappers. Use this
value only when calling server programs from Java
applets or Java applications. For details on starting
MVS CICS transactions from Java wrappers, see “Java
Support for OS/390 Unix Systems” on page 342.

IPC VisualAge Generator VisualAge Generator middleware
using inter-process communications for client and
server programs residing on the same system. The
advantages of using this protocol are documented
along with the client configuration information where
the protocol is supported. For example, see
“Advantages of IPC and DIRECT Protocols” on
page 43.

Java400 Protocol to connect to remote AS/400 servers by using
AS/400 Toolbox for Java. Use this value only when
calling a server program from a Java applet or Java
GUI applications. For more information, see “Java
Support for AS/400 Servers” on page 347.

LU2 VisualAge Generator middleware using the LU2
protocol

TCPIP VisualAge Generator middleware using the TCP/IP
protocol

remoteapptype
Specifies whether a remote called program is a generated VisualAge
Generator program, a program developed using another program
development tool, or a VisualAge Generator program residing in the
Repository/ENVY library.

Appendix B. Linkage tables 413



VG The remote procedure is a generated VisualAge
Generator program. An additional parameter is passed
to allow the server to notify the client program if the
server program ends abnormally.

VGJAVA The remote procedure is a generated VisualAge
Generator Java program.

NONVG The remote procedure is a program developed using a
tool other than VisualAge Generator. Only the
parameters specified on the call statement are passed.

ITF The remote procedure is a VisualAge Generator
program residing in the Repository/ENVY library that
will run under the control of the test facility.

contable
Specifies the name of the conversion table used to perform automatic
data conversion on a remote CALL statement from a client to a
remote server program. Anytime that you are coming from a Java
client or your client and server platforms are different, you will need
to specify a conversion table. For additional information, see
“Conversion Table by Language and Platform” on page 436.

The attribute is supported if the linkage type is specified as REMOTE
or CSOCALL for CICS programs, or REMOTE, CSOCALL or
CICSLINK for clients running under the test facility.

conversion table name
Conversion is performed on the client using the conversion
table specified.

EZECONVT
Conversion is performed on the client using the conversion
table name in the EZECONVT special function word at run
time. If EZECONVT contains blanks, no conversion is
performed.

NONE
No conversion is performed. This is the default value if
VisualAge Generator communication middleware is not used.

CONTABLE=NONE is required for calls to CICS OS/2 if
PARMFORM=COMMPTR.

Some conversion table names have special meaning:

* Conversion is performed on the client using the default
conversion table. The default conversion table performs ASCII
to EBCIDIC character conversion, as well as binary numeric

414 VisualAge Generator: Client/Server Communications Guide



conversion. For additional information, see “Conversion Table
by Language and Platform” on page 436.

On OS/2, AIX, HP-UX, and Windows systems the default
conversion table is the conversion table specified in the
environment variable EZERCVT. The default conversion table
used is based on the generation system, the target run-time
environment, and the locale (country/language) specified at
generation time. For additional information on the conversion
tables shipped with VisualAge Generator, see “Conversion
Table by Language and Platform” on page 436. If EZERNLS is
not specified, the default code is ENU.

On MVS or VSE systems, the default conversion table is
ELAxxxxx where xxxxx is the code specified when the calling
program was generated (TARGNLS generation option).

BINARY
Only binary fields are converted. The byte order in the binary
field is reversed.

This table is used with OS/2 and Windows clients
communicating with AIX, Solaris, and HP-UX servers, and
vice versa, when both the client and the server are running
under the same code page.

The default value is NONE.

location
Specifies how the location (system identifier) of a remote program is
determined at run time.

This attribute value is used only if the linkage type is specified as
REMOTE or CSOCALL.

EZELOC
Specifies that the system identifier for the remote program is
obtained from the EZELOC special function word when a call
is done to the program.

system name
The system identifier for the system on which the server
program resides. The meaning of the system identifier varies
with the protocol. The following table describes the meaning
of the identifier by protocol and the default value if location is
not specified.

Appendix B. Linkage tables 415



Protocol Meaning of location Default value

APPCIMS CPIC side information identifier.
The side information specifies:
v Partner LU Alias
v Transaction Program Name
v Mode Name

No default

CA/400 AS/400 system identifier The managing OS/400 system

CICS DPL CICS system identifier System identifier defined for
applname in the CICS tables.

CICSCLIENT CICS system identifier First system identifier specified
in the CICS client initialization
file.

DCE,
DCESECURE

Location where the server
advertises in the DCE CDS
database. The location is
specified in the configuration file
used when the VisualAge
Generator DCE server program is
started.

No default

Java400 AS/400 system identifier The managing OS/400 system

TCPIP TCP/IP hostname No default

serverid
Protocol dependent channel or transaction identifier associated with
the server or VisualAge Generator communication middleware
gateway

Values are as follows:

server identifier
The server identifier name to be used for this call. The
meaning of the name varies with the communication protocol
as shown in the following table:

Protocol Meaning of Server Identifier

CICSCLIENT Name of CICS transaction for the server. If client unit of work is
specified, all programs called in the same unit of work must
have the same server identifier. The default is the CICS server
system mirror transaction. For DB2 server applications on CICS
for MVS/ESA, an RCT entry is needed. The RCT is used for the
serverid.

DCE, DCESECURE Serverid name advertised by the server in the DCE CDS
database. The serverid is specified in the configuration file used
when the VisualAge Generator DCE server program is started.

416 VisualAge Generator: Client/Server Communications Guide



Protocol Meaning of Server Identifier

TCPIP Service name as defined in the TCP/IP services file.

If the call is from a Java program (GUI or server), the serverid
is the port number of the remote program’s listener.

The serverid is ignored for protocols not listed in the table.

luwcontrol
Specifies whether client or server controls unit of work:

CLIENT Unit of work is under client control. Server updates
are not committed or rolled back until the client
requests commit or rollback. Server programs cannot
call EZECOMIT or EZEROLLB. This is the default
value, unless client controlled unit of work is not
supported in the server environment.

SERVER Server unit of work is independent of the client’s unit
of work. Commit (or rollback on abnormal
termination) are automatically issued when the server
returns. Server programs can call EZECOMIT or
EZEROLLB.

Table 2 on page 12 shows the environments that support client- and
server-controlled units of work.

remotebind
Specifies when linkage options used for a call to a remote program are
determined. Values are as follows:

GENERATION
Linkage used for the call statement is determined by the
linkage table specified at generation. This is the default value.

RUNTIME
The linkage table is read at run time. Specified values in the
run-time linkage table override the values specified at
generation. Generation values are used if omitted from the
run-time table.

Common client access looks for the linkage table on the
current DPATH (OS/2, AIX) or PATH (Windows) search path.
The linkage table name is the same as the linkage table file
name specified at generation. If this table cannot be found,
common client access looks for the file named in the
environment variable CSOLINKTBL.

Appendix B. Linkage tables 417



The generated program always passes EZECONVT and
EZELOC contents to common client access in case the
run-time values for CONTABLE and LOCATION require
them. The program always notifies common client access of
commits and rollbacks in case client controlled unit of work is
requested at run time.

The remotebind option is supported for generated C++, Java, and GUI
programs.

binform
This option is supported only for the test facility. The preprocessor
step does not pass this information to the generation process.

The value specifies in what format the user passes binary fields.

HOST Specifies that the user passes binary fields in host format.

INTEL
Specifies that the user passes binary fields in Intel format. The
default is Intel.

providerURL
This property specifies the host name and port of the name server
used by a Java client to locate a session bean that calls a server
program.

URL The property value must have the following format:
iiop://hostname:port, where hostname is the IP address or host
name of the machine on which the name server runs and port
is the port number on which the name server listens.

This attribute is applicable only if linktype=SESSIONEJB is also
specified, and if the client is a Java client. Since most URLs contain
periods, and may contain a port number preceded by a colon, the
URL specified should be enclosed in double quotes.

For example, the property value
"iiop://bankserver.mybank.com:9019" directs an EJB client to look for
a name server on the host named bankserver.mybank.com listening on
port 9019. The property value "iiop://bankserver.mybank.com"
directs an EJB client to look for a name server on the host named
bankserver.mybank.com at port number 900. The property value
"iiop:///" directs an EJB client to look for a name server on the local
host listening on port 900. If not specified, this property defaults to
the local host and port number 900, which is the same as specifying
"iiop:///".

418 VisualAge Generator: Client/Server Communications Guide



package
This property specifies the called program’s package. The value is
case sensitive. Specification of this property is required for run-time
binding. If the package property is not specified, the default behavior
is to use the package of the calling program.

This property is only applicable for calls to a Java program.

Valid parameter formats and linkage combinations by platform
The following tables show the linkage and run-time parameter formats valid
for each type of run-time platform. The default format for the platform is
marked in the table.

Table 47. Valid Parameters and Linkages for CICS Programs

Link Type COMMPTR COMMDATA OSLINK CICSOSLINK

DYNAMIC Valid Valid Valid Valid

STATIC Valid Valid Valid Valid

CICSLINK Default Valid

REMOTE Valid

CSOCALL Valid

Table 48. Valid Parameters and Linkages for Non-CICS Host Programs

Link Type COMMPTR COMMDATA OSLINK CICSOSLINK

DYNAMIC Default

STATIC Valid

CICSLINK

REMOTE

CSOCALL

Table 49. Valid Parameters and Linkages for GUI programs

Link Type COMMPTR COMMDATA OSLINK CICSOSLINK

DYNAMIC Valid

STATIC Valid

CICSLINK

REMOTE Valid Valid

CSOCALL Valid Valid

Note: Default linkage for GUI programs is to call the program as a CMD or EXE file,
passing parameter data in the command buffer separated by blanks. Modifications to
the parameters by the called program are not returned to the caller.

Appendix B. Linkage tables 419



Table 50. Valid Parameters and Linkages for C++ Programs

Link Type COMMPTR COMMDATA OSLINK CICSOSLINK

DYNAMIC Default

STATIC Valid

CICSLINK

REMOTE Valid Valid

CSOCALL Valid Valid

Table 51. Valid Parameters and Linkages for Test Facility Calls to External Programs

Link Type COMMPTR COMMDATA OSLINK CICSOSLINK

DYNAMIC Valid

STATIC Valid

CICSLINK Default for
non-GUI
programs

Valid

REMOTE Valid Valid

CSOCALL Valid Valid

Note: Default linkage for test facility is determined at test time based on the
following factors in the order listed:

v If the called program is defined in the library, the test facility interpretively executes
the program out of the library

v Otherwise the program is called as a CMD or EXE file, passing parameter data in
the command buffer separated by blanks. Modifications to the parameters by the
called program are not returned to the caller.

Interfaces requiring a linkage table
A linkage table entry is not required for a called program if the default
linkages for the run-time environment are acceptable. Table 52

Table 52. Nonstandard Linkages Supported by CALL

Function Environment Statement

Call to a PL/I program MVS/VSE/VM Non-CICS :calllink
applname=program-name
linktype=static

Call to a COBOL program
or program that calls a
PL/I program

MVS/VSE/VM Non-CICS :calllink
applname=program-name
linktype=static

Static COBOL calls CICS, MVS/VSE/VM
Non-CICS

:calllink
applname=program-name
linktype=static ...

420 VisualAge Generator: Client/Server Communications Guide



Table 52. Nonstandard Linkages Supported by CALL (continued)

Function Environment Statement

Dynamic COBOL calls CICS :calllink
applname=program-name
linktype=dynamic ...

Pass parameter values
instead of pointers in the
COMMAREA

CICS :calllink
applname=program-name
parmform=COMMDATA ...

Call to a DLL in 16-bit
mode

CICS for OS/2 :calllink
applname=program-name
linktype=dynamic

Call to a DLL in 16-bit
mode

GUI program or test facility :calllink
applname=program-name
linktype=dynamic
bitmode=16
library=value...

Call to a DLL (OS/2 or
Windows) in 32-bit mode

GUI or C++ programs, or
test facility

:calllink
applname=program-name
linktype=dynamic
library=value...

Call to a shared library
(AIX, HP-UX, Solaris) in
32-bit mode

C++ programs :calllink
applname=program-name
linktype=dynamic
library=value...

Call to a DLL with a
program name longer than
eight characters

C++ program :calllink
applname=program-name
linktype=dynamic
[externalname=entry-point name]...

Call a CICS for OS/2
program

Test facility :calllink
applname=program-name
linktype=cicslink
parmform=commptr
[binform=value]

Call a CICS server program
on a remote system

CICS :calllink
applname=program-name
linktype=remote
[contable=value]
[location=value]
[luwcontrol=value]
[serverid=value]

Appendix B. Linkage tables 421



Table 52. Nonstandard Linkages Supported by CALL (continued)

Function Environment Statement

Call a server program on a
remote system

GUI program, OS/2, AIX,
Windows NT, or Test
facility

:calllink
applname=program-name
linktype=remote
[externalname=value]
[library=value]
[luwcontrol=value]
[remoteapptype=value]
[remotecomtype=value]
[serverid=value]

Call a non-VisualAge
Generator MVS or VSE
CICS program

Test facility :calllink
applname=program-name
linktype=cicslink
parmform=commdata
contable=value

Call any program from a
Java client

Needed when calls are
made from one platform to
another. It is recommended
in all cases.

contable=CSOpxxxx

Specifying CREATX linkage (CRTXLINK)
The CRTXLINK tag specifies the type of linkage being generated for CALL
CREATX in the CICS environment. Specify the CRTXLINK tag only if the
created transaction is to be started on a remote CICS system. The defaults are
acceptable for transactions started on the same system.

For Java programs, CREATX linkage must be specified if the calling program
uses CREATX to start a program in a different package.

The following diagram shows the attributes you can specify for the
CRTXLINK tag:

,, :crtxlink recdname=record name
LOCAL

linktype= REMOTE

,

,
package= packagename contable= conversion table name

*
EZECONVT
BINARY

,

422 VisualAge Generator: Client/Server Communications Guide



,
CICS

location= EZELOC
.

,/

Definitions for CRTXLINK

recdname
Specifies the name of the CREATX record on the CALL CREATX
statement for the linkage being defined.

You can use an asterisk (*) as a global substitution character in the
record name parameter; however, it is only valid as the last or only
character.

linktype
Specifies the type of linkage being generated.

LOCAL Specifies that the transaction being created is on the
same system as the program containing the CREATX
statement.

This value is the default value.

REMOTE Specifies that the transaction being created might be
on a different system than the program containing the
CREATX statement.

package
Specifies the name of the package that contains the program to be run.
The default is the package of the program that contains the CALL
CREATX statement.

This property is only valid for Java programs.

contable
Specifies the name of the conversion table used to perform automatic
data conversion on a remote CREATX statement.

This attribute value is used only if the linkage type is specified as
REMOTE.

Data conversion is specified as follows:
v If the CONTABLE attribute is not specified, data conversion is not

performed automatically by the program when the record is used in
a CREATX statement. In this case, the program must perform any
required conversion either by using explicit calls to the EZECONV
special function word or by defining a conversion template for the
operation to CICS.

v If the CONTABLE attribute is specified, you can specify the
following values:

Appendix B. Linkage tables 423



conversion table name
Conversion is performed on the client using the conversion
table specified.

EZECONVT
Conversion is performed on the client using the conversion
table name in the EZECONVT special function word at run
time. If EZECONVT contains blanks, no conversion is
performed.

Some conversion table names have special meaning:

* Conversion is performed on the client using the default
conversion table.

On OS/2, AIX, and Windows systems the default is the
conversion table specified in environment variable
EZERCVT. If EZERCVT is not specified, the default is
conversion table ELAxxxxx (OS/2 or AIX) or ELACWxxx
(Windows) where xxxxx or xxx is the code specified in
environment variable EZERNLS. If EZERNLS is not
specified, the default national language code is ENU.

On MVS or VSE systems, the default conversion table is
ELAxxxxx where xxxxx is the code specified when the
calling program was generated (TARGNLS generation
option).

BINARY
Only binary fields are converted. The byte order in the
binary field is reversed.

This table is used with OS/2 and Windows clients
communicating with AIX servers, and vice versa, when
both the client and the server are running under the same
code page.

Refer to the system and program guide for CICS for OS/2 for
information on defining a conversion template to CICS.

location
Specifies how the location (CICS system identifier) of a remote
transaction is defined.

This attribute value is used only if the linkage type is specified as
REMOTE.

CICS Specifies that the location for the remote transaction named in
the CREATX record at run time is defined in the program
control table (PCT)

424 VisualAge Generator: Client/Server Communications Guide



EZELOC
Specifies that the location for the remote transaction is
obtained from the EZELOC special function word when the
CREATX operation is performed.

The location is passed to CICS using the SYSID keyword on
the EXEC CICS command.

Specifying DXFR linkage (DXFRLINK)
The DXFRLINK tag specifies the type of linkage to be generated when a main
program uses a DXFR statement to pass control to other programs.

The following diagram shows the attributes you can specify for the
DXFRLINK tag:

,, :dxfrlink fromappl=from-application name toappl=to-application name ,

,
DYNAMIC

linktype= STATIC
NONCSP

. ,/

Note: The DXFRLINK tag is supported for host and CICS for OS/2 programs.

Definitions for DXFRLINK

fromappl
Specifies the name of the program that transfers control using a DXFR
statement.

For non-host programs, this is the first main program in the run unit;
the program is not necessarily the program that contains the DXFR
statement.

For CICS programs, the from program is always the program that
contains the DXFR statement.

The DXFRLINK tag does not support using the asterisk (*) for global
character substitution.

toappl Specifies the VisualAge Generator program or non-VisualAge
Generator program that is the target of a DXFR statement.

For non-CICS host programs, the to program includes all programs
started by a DXFR statement from the initial main program, and all
programs that the transferred-to programs transfer to using a DXFR
statement. This also includes non-VisualAge Generator programs
being transferred to with a DXFR statement.

Appendix B. Linkage tables 425



For CICS programs, the to program is the name of the non-VisualAge
Generator program being transferred-to.

If the EZEAPP special function word is specified as the target
program on the DXFR statement, do not specify EZEAPP as the to
program on the DXFRLINK linkage table entry. Instead, specify the
name of the program that will be in EZEAPP when the from program
runs.

For example, in the MVS/TSO environment, Program A transfers
program control to program B using a DXFR statement. Program B, in
turn, transfers control to program C using a DXFR statement. Program
C transfers control (using a DXFR statement) to the program specified
by the EZEAPP special function word, where EZEAPP is set to
program D or program E. You would have to specify the following
programs in the linkage table:
fromappl=A toappl=B
fromappl=A toappl=C
fromappl=A toappl=D
fromappl=A toappl=E

For CICS environments, with the same set of programs, a linkage
table is not required. However, if D is a non-VisualAge Generator
program, the linkage table required for CICS is as follows:
fromappl=C toappl=D linktype=noncsp

linktype
Specifies the type of linkage being generated.

DYNAMIC
For non-CICS host programs, specifies that a dynamic COBOL
call is to be generated in the initial main program for a DXFR
operation to a generated program

For CICS programs, an XCTL is used to implement the DXFR
statement. The target program is assumed to be a generated
program, and run-unit status information is passed to the
target program in addition to the DXFR parameter record.

This is the default value.

STATIC
For non-CICS host programs, specifies that a static COBOL
call is to be generated in the main program for a DXFR
operation to a non-CICS generated program

For CICS programs, this option is treated the same as the
DYNAMIC option.

426 VisualAge Generator: Client/Server Communications Guide



For non-CICS environments, this value is required for target
programs that call PL/I programs or that call programs that
call PL/I programs.

NONCSP
For MVS, VM, and CICS programs, specifies that an XCTL is
to be used to implement the DXFR statement.

DXFR to a non-VisualAge Generator program is not
supported in the VSE batch environment.

All resources allocated by Server for MVS, VSE, and VM or
VisualAge Generator Server are released.

The NONCSP value is required for DXFR statements to
non-VisualAge Generator programs. The NONCSP value can
be specified either as an option on the DXFR statement or in
the linkage table.

This value is the only value that is valid for CICS programs.

Interfaces requiring a linkage table
A linkage table entry is not required for generation of a DXFR between
programs if the default linkages for the run-time environment are acceptable.
Table 53 statements, and which linkage table tags and keywords are needed to
control each linkage.

Table 53. Nonstandard Linkages Supported For DXFR

Function Environment Statement

Transfer using a DXFR to a
generated program that calls a
PL/I program

MVS/VSE/VM Non-CICS :dxfrlink
fromappl=fromhyphen.program-name
toappl=to-program-name
linktype=static

Transfer using a DXFR statement
to a non-VisualAge Generator
program, where the NONCSP
option was not specified on the
DXFR statement

CICS, MVS, and VM programs :dxfrlink
fromappl=from-program-name
toappl=to-program-name
linktype=noncsp

Specifying File linkage (FILELINK)
The FILELINK tag specifies the type of file access generated for
CICS-managed VSAM files and transient data queues. Specify the FILELINK
tag only if a file is remote; the default file access is acceptable for local files.

Linkage table file entries are accessed only for files specified as CICS VSAM
files and transient data queues. Other types of files are always accessed as
local files.

Appendix B. Linkage tables 427



The following diagram shows the attributes you can specify for the FILELINK
tag:

,, :filelink filename=file name
LOCAL

linktype= REMOTE

,

,
contable= conversion table name

*
EZECONVT
BINARY

CICS
location= EZELOC

.
,/

Definitions for FILELINK

filename
Specifies the VisualAge Generator file name for the file access being
defined.

You can use an asterisk (*) as a global substitution character in the file
name parameter; however, it is only valid as the last or only character.

linktype
Specifies the type of linkage being generated.

LOCAL Specifies that the file resides on the same system as
the program.

This is the default value.

REMOTE Specifies that the file might reside on a different
system than the program.

This value is valid only for CICS-managed VSAM files
and transient data queues.

contable
Specifies the name of the conversion table used to perform automatic
data conversion for remote file input/output access.

This attribute value is used only if the linkage type is specified as
REMOTE.

Data conversion is specified as follows:
v If the CONTABLE attribute is not specified, data conversion is not

performed automatically by the program for the file input/output.
In this case, the program must perform any required conversion
either by using explicit calls to the EZECONV special function
word or by defining a conversion template for the operation to
CICS.

428 VisualAge Generator: Client/Server Communications Guide



v If the CONTABLE attribute is specified, you can specify the
following values:

conversion table name
Conversion is performed on the client using the conversion
table specified.

EZECONVT
Conversion is performed on the client using the conversion
table name in the EZECONVT special function word at run
time. If EZECONVT contains blanks, no conversion is
performed. EZECONVT is not supported in calls from GUI
client programs.

Some conversion table names have special meaning:

* Conversion is performed on the client using the default
conversion table.

On OS/2, AIX, and Windows systems the default is the
conversion table specified in environment variable
EZERCVT. If EZERCVT is not specified, the default is
conversion table ELAxxxxx (OS/2 or AIX) or ELACWxxx
(Windows) where xxxxx or xxx is the code specified in
environment variable EZERNLS. If EZERNLS is not
specified, the default national language code is ENU.

On MVS or VSE systems, the default conversion table is
ELAxxxxx where xxxxx is the code specified when the
calling program was generated (/TARGNLS generation
option).

BINARY
Only binary fields are converted. The byte order in the
binary field is reversed.

This table is used with OS/2 and Windows clients
communicating with AIX servers, and vice versa, when
both the client and the server are running under the same
code page.

Refer to the system and program guide for CICS for OS/2 for
information on defining a conversion template to CICS.

location
Specifies how the location (CICS system identifier) of a remote file is
defined.

This attribute is ignored if the linkage type is not REMOTE.

Appendix B. Linkage tables 429



CICS Specifies that the location for a remote file is defined in the
CICS file control table (FCT) or destination control table
(DCT).

EZELOC
Specifies that the location for the remote file is obtained from
the EZELOC special function word when an input or output
operation is performed to the file.

The location is passed to CICS using the SYSID keyword on
the EXEC CICS command.

Sample linkage table entries
The following are examples of linkage table entries:
v APP1 is an existing non-VisualAge Generator CICS COBOL program

expecting data to be passed in the COMMAREA:
:calllink applname=app1 parmform=commdata linktype=cicslink.

v APP2 is an MVS/TSO or VM CMS program that uses a DXFR statement to
transfer control to APP3, which uses a DXFR statement to return control to
APP2. Because APP2 is the initial program, it must be identified as the
FROMAPPL. Because APP3 is never an initial program in a run unit, it does
not have to be identified as a FROMAPPL. Both APP2 and APP3 call PL/I
programs. All the PL/I program names begin with the string P1.
:calllink applname=p1* linktype=static parmform=oslink.
:dxfrlink fromappl=app2 toappl=app3 linktype=static.

A DXFRLINK linkage table entry is not required for the DXFR back to
APP2 because a DXFR back to the initial program is handled in the internal
logic flow of the initial program.

v The installation chooses CICSOSLINK as the default linkage for CICS
VisualAge Generator programs. The non-VisualAge Generator program
named NCPGM does not contain any CICS functions and expects
conventional COBOL linkage to be used.
:calllink applname=ncpgm linktype=dynamic parmform=oslink.
:calllink applname=* linktype=dynamic parmform=cicsoslink.

v This linkage table entry would be used in a call from a Java GUI client to
server program APP1 that is installed on CICS Region NRACICS2 using
conversion table CSOE037.
:calllink applname=APP1 linktype=CSOCALL remotecomtype=CICSCLIENT
location=NRACICS2 contable=CSOE037.

The following example is a linkage table entry for local calls between two
VAGen Java server programs.
:calllink applname=SERVER package='my.pkg' linktype=DYNAMIC

430 VisualAge Generator: Client/Server Communications Guide



Note: This linkage must be supplied at generation time. The called server
(SERVER) program’s package name must be quoted because it contains
a dot. If no linktype is specified, the value DYNAMIC is used by
default.

Appendix B. Linkage tables 431



432 VisualAge Generator: Client/Server Communications Guide



Appendix C. Converting Between Client and Server Data
Formats

Because of the differences in character and numeric data formats between
environments, your program might have to convert data as it is passed
between client and servers. In VisualAge Generator programs, you can
convert data based on the data item definition of the parameters or record
structures as defined to the program.

The type of conversion required is defined using a VisualAge Generator
conversion table. The developer specifies whether to do conversion and which
conversion table to use for a client/server interaction in the linkage table.

Implementation of conversion tables varies with the environment. On OS/400
systems, VisualAge Generator uses system provided conversion functions for
code page conversion. The conversion table consists of a single record file
which identifies the code page and system type for both the local client and
server systems. On OS/2, AIX, HP-UX, Solaris, Windows, MVS, and VSE
systems, the conversion tables are load modules that contain code page
translation tables which VisualAge Generator uses to perform character data
conversion.

VisualAge Generator provides conversion tables for many national languages.
You can define additional conversion tables to support other languages or
other code pages.

Specify automatic conversion on a client/server function only when the
structure of the information being passed always matches the data item
structure of the argument or record as defined in the server program. Do not
specify automatic conversion in the linkage table if an argument or file record
can have multiple definitions (for example, if redefined records are required
for a file). Instead use the EZECONV special function word with record
redefinitions to convert the data.

For more information on linkage tables, see “Appendix B. Linkage tables” on
page 405.

Conversion Algorithm

Data format conversion is performed on the lowest level items (items with no
substructure) in an argument or record definition.

© Copyright IBM Corp. 1980, 2001 433



Character (CHA, DBCS, or MIX) data is translated using code page conversion
tables.

On EBCDIC-to-ASCII conversion for MIX data, the conversion routine deletes
shift-out/shift-in (SO/SI) characters and inserts an equivalent number of
blanks at the end of the item. On ASCII-to-EBCDIC data conversion, the
conversion routine inserts SO/SI characters around DBCS strings and
truncates the value at the last valid character that can fit in the field. If the
MIX field is in a variable length record and the current record end is in the
MIX field, the record length is adjusted to reflect the insertion or deletion of
SO/SI characters. The record length indicates where the current record ends.

For binary (BIN) items, the conversion routine reverses the byte order of the
item if either the client or server system uses Intel binary format and the other
system does not.

For NUM and NUMC items, the conversion routine converts all but the last
byte using the CHA algorithm. The sign half -byte (the first half byte of the
last byte in the field) is converted as shown in Table 54:

Table 54. Data Conversion for NUM and NUMC Items

EBCDIC Sign - NUM EBCDIC Sign - NUMC ASCII Sign

X‘F‘ X‘C‘ X‘3‘

X‘D‘ X‘D‘ X‘7‘

No conversion is performed for PACK, PACF, HEX, Unicode and filler items.

Avoiding Data Format Conversion Problems

Windows Clients and OS/2, AIX, HP-UX, and Solaris Servers
Windows systems use different ASCII code pages than OS/2 , AIX, HP-UX,
and Solaris systems, so ASCII-to-ASCII code page conversion must be used
when going from a Windows client to an OS/2 or AIX server. Use the
conversion tables shown in Table 57 on page 439 to perform the proper
conversion for the national languages shown in the table. Define a custom
conversion table for code pages not supported with default tables.

434 VisualAge Generator: Client/Server Communications Guide



Default Tables for Test and Run-time Data Conversion

You can indicate to VisualAge Generator the data format conversion required
by specifying a conversion table name in the linkage table entry associated
with the function requiring code conversion, in the EZECONVT special
function word, or on an EZECONV service call. The conversion table indicates
the code pages and binary data formats in use on the local and remote
systems.

Note: Java GUI clients require a different set of conversion table names than
other clients. See Table 55 on page 436 for additional information.
Default conversion tables are not available for Java GUI clients.

If a default conversion table is selected (conversion table name specified as *),
the default table name is determined as in the following way:
v On host systems (MVS and VSE), the default conversion table is

EZECNxxx, where xxx is the national language associated with the
generated program.

v On workstations, the default conversion table is determined in the
following way:
– The contents of the EZERCVT environment variable is the default table

name, if set.
– If EZERCVT is not set, then the default conversion table name is

ELACNxxx, where xxx is the value of the EZERNLS environment
variable. The default value for EZERNLS is ENU.

Note: Default conversion tables perform both ASCII/EBCDIC character
conversion and binary data conversion.

To perform conversion for code pages other than the default conversion table,
specify the name of a conversion table representing the alternate code pages.

The language conversion tables provided with the product are listed below.
The code page numbers are those specified in the Character Data Representation
Architecture Reference and Registry, SC09-2190. The registry identifies the coded
character sets supported by the conversion tables.

Default Tables for Generation

VisualAge Generator converts character strings to run-time system format in
generated objects that contain mixed character and binary data. Objects that
require this conversion are:
v Map group format modules
v Tables

Appendix C. Converting Between Client and Server Data Formats 435



The default conversion table used is based on the generation system (OS/2 or
Windows NT), the target run-time environment, and the locale (the location
selected in your system setup) specified when the generator is running. The
default tables are specified in the file hptrules.nls in the \nls subdirectory. You
might modify this file to change the default conversion tables used in your
installation.

Conversion Table by Language and Platform
Java applications use Unicode 16-bit character encoding at run time. Java
specific conversion tables support conversion of the Unicode text to the
appropriate ASCII or EBCDIC code page used on the server program system.

Table 55 lists the conversion tables shipped with VisualAge for Java and
identifies the code pages used with the conversion tables for Java programs.
The table applies to VCE parts that have 4GL parts on the free form surface,
Java parts produced when generating a UI record or Web application, clients
using Java wrappers, and all Java clients that are calling server programs.
Select the appropriate conversion table based on the system on which the
VisualAge Generator server program is running.

Table 55. Conversion table names by language and server system

Language AIX Server
OS/2
Server

Windows
Server

MVS,
VSE, or
OS/400
Server

Arabic CSOX1046 CSOI864 CSOI1256 CSOE420

Chinese, simplified CSOX1381 CSOI1381 CSOI1381 CSOE935

Chinese, traditional CSOX950 CSOI950 CSOI950 CSOE937

Cyrillic CSOX866 CSOI866 CSOI1251 CSOE1025

Danish CSOX850 CSOI850 CSOI850 CSOE277

Eastern European CSOX852 CSOI852 CSOI1250 CSOE870

English (UK) CSOX850 CSOI437 CSOI1252 CSOE285

English (US) CSOX850 CSOI437 CSOI1252 CSOE037

French CSOX850 CSOI850 CSOI1252 CSOE297

German CSOX850 CSOI850 CSOI1252 CSOE273

Greek CSOX813 CSOI869 CSOI1253 CSOE875

Hebrew CSOX856 CSOI862 CSOI1255 CSOE424

436 VisualAge Generator: Client/Server Communications Guide



Table 55. Conversion table names by language and server system (continued)

Language AIX Server
OS/2
Server

Windows
Server

MVS,
VSE, or
OS/400
Server

Japanese CSOX942 CSOI942 CSOI942 CSOE930
(Katakana
SBCS),
CSOE939
(Latin
SBCS)

Korean CSOX949 CSOI949 CSOI949 CSOE933

Portuguese CSOX850 CSOI850 CSOI1252 CSOE037

Spanish CSOX850 CSOI850 CSOI1252 CSOE284

Swedish CSOX850 CSOI850 CSOI1252 CSOE278

Swiss German CSOX850 CSOI850 CSOI1252 CSOE500

Turkish CSOX920 CSOI857 CSOI1254 CSOE1026

The conversion table names have the format CSOsxxxx, where:
v s = server system type

I Intel (OS/2, Windows NT, Windows 95)

X Unix workstation (AIX)

E EBCDIC (MVS, VSE, VM, OS/400)
v xxxx = server codepage number

Do NOT specify contable=″*″ in linkage tables entries used when calling
server programs from Java. If you do not specify the contable attribute in the
linkage table entry for a server program called from Java, the default
conversion tables used are CSOI437 for OS/2, CSOI1252 for Windows,
CSOX850 for UNIX platforms, and CSOE037 for EBCDIC platforms.

Table 56 on page 438 lists the conversion tables shipped with VisualAge
Generator common services and identifies the code pages used with the
conversion tables for COBOL and C++ programs:

Note: In the column headers, the ″local system″ is the system on which the
operation requiring code point conversion (client calling server, an
EZECONV call, generation, or file migration) is being performed.

Appendix C. Converting Between Client and Server Data Formats 437



Table 56. Conversion Table by Language and Platform

Language

Local
system:
Any ASCII,
remote
system:
EBCDIC

Local
system:
Windows,
remote
system:
OS/2

Local
system:
Windows,
remote
system:
AIX,
HP-UX or
Solaris

Local
system:
OS/2,
remote
system:
AIX,
HP-UX or
Solaris

Local
system:
OS/2,
remote
system:
Windows

Local
system:
AIX,
HP-UX or
Solaris,
remote
system:
OS/2

Arabic ELACNARA ELAO2ARA ELAAXARA ELAAXARA ELAWIARA ELAO2ARA

Brazilian Portuguese ELACNPTB ELAO2850 ELAAX850 BINARY ELAWI850 BINARY

Chinese, Simplified
(IBM GB)

ELACNCHS None BINARY BINARY None BINARY

Chinese, Simplified
(IBM GBK - OS/2 and
AIX or HP-UX only)

ELACNGBK Not
supported

Not
supported

BINARY Not
supported

BINARY

Chinese, Traditional ELACNCHT None BINARY BINARY None BINARY

Danish ELACNDKN ELAO2850 ELAAX850 BINARY ELAWI850 BINARY

Eastern European,
Latin-2

ELACN870 ELAO2852 ELAAX912 ELAAX912 ELAWI852 ELAO2852

English, USA ELACNENU ELAO2437 ELAAX437 BINARY ELAWI437 BINARY

English, United
Kingdom

ELACN285 ELAO2850 ELAAX850 BINARY ELAWI850 BINARY

Finnish ELACNENU ELAO2850 ELAAX850 BINARY ELAWI850 BINARY

French ELACNFRA ELAO2850 ELAAX850 BINARY ELAWI850 BINARY

German ELACNDEU ELAO2850 ELAAX850 BINARY ELAWI850 BINARY

Greek ELACNGRE ELAO2GRE ELAAXGRE ELAAXGRE ELAWIGRE ELAO2GRE

Hebrew ELACNHEB ELAO2HEB ELAAXHEB ELAAXHEB ELAWIHEB ELAO2HEB

Italian ELACNITA ELAO2850 ELAAX850 BINARY ELAWI850 BINARY

Korean ELACNKOR None BINARY BINARY None BINARY

Japanese, Katakana
SBCS

ELACNJPN None BINARY BINARY None BINARY

Japanese, Latin SBCS ELACNJPL None BINARY BINARY None BINARY

Norwegian ELACNDKN ELAO2850 ELAAX850 BINARY ELAWI850 BINARY

Russian ELACNCYR ELAO2CYR ELAAXCYR ELAAXCYR ELAWICYR ELAO2CYR

Spanish ELACNESP ELAO2850 ELAAX850 BINARY ELAWI850 BINARY

Swedish ELACNSWE ELAO2850 ELAAX850 BINARY ELAWI850 BINARY

Swiss German ELACNDES ELAO2850 ELAAX850 BINARY ELAWI850 BINARY

438 VisualAge Generator: Client/Server Communications Guide



Table 56. Conversion Table by Language and Platform (continued)

Language

Local
system:
Any ASCII,
remote
system:
EBCDIC

Local
system:
Windows,
remote
system:
OS/2

Local
system:
Windows,
remote
system:
AIX,
HP-UX or
Solaris

Local
system:
OS/2,
remote
system:
AIX,
HP-UX or
Solaris

Local
system:
OS/2,
remote
system:
Windows

Local
system:
AIX,
HP-UX or
Solaris,
remote
system:
OS/2

Turkish ELACNTUR ELAO2TUR ELAAXTUR ELAAXTUR ELAWITUR ELAO2TUR

SBCS Languages Code Page by Platform
Table 57 lists the conversion tables shipped with VisualAge Generator
common services and identify the code pages for SBCS languages:

Table 57. SBCS Languages Code Page by Platform

Language
EBCDIC
Code Page

Windows
Code Page

OS/2 Code
Page

AIX or
HP-UX

Code Page

Arabic 420 1256 864 1089

Brazilian 037 1252 850 850

Danish 277 1252 850 850

Eastern European,
Latin-2

870 1250 852 912

English, United
Kingdom

285 1252 850 850

English, USA 037 1252 437 437

French 297 1252 850 850

Finnish 298 1252 850 850

German 273 1252 850 850

Greek 875 1253 869 813

Hebrew 424 1255 862 856

Italian 280 1252 850 850

Norwegian 277 1252 850 850

Russian 1025 1251 866 915

Spanish 284 1252 850 850

Swedish 278 1252 850 850

Swiss German 500 1252 850 850

Appendix C. Converting Between Client and Server Data Formats 439



Table 57. SBCS Languages Code Page by Platform (continued)

Language
EBCDIC
Code Page

Windows
Code Page

OS/2 Code
Page

AIX or
HP-UX

Code Page

Turkish 1026 1254 857 920

Note:
These are the code pages used by the conversion tables listed in Table 56
on page 438.

DBCS Languages Code Page by Platform
Table 58 lists the conversion tables shipped with VisualAge Generator
communication services and identify the code pages for DBCS languages:

Table 58. DBCS Languages Code Page by Platform

Language ASCII CCSID

ASCII
SBCS

Code Page

ASCII
DBCS Code

Page
EBCDIC
CCSID

EBCDIC
SBCS Code

Page

ASCII
DBCS

Code Page

Chinese,
Simplified (IBM
GB)

1381 1115 1380 935 836 837

Chinese,
Simplified (IBM
GBK)

1386 1114 1385 935 836 837

Chinese,
Traditional (IBM
BIG-5)

950 1114 947 937 037 835

Japanese,
Katakana SBCS,
on OS/2 and AIX
or HP-UX
systems

942 1041 301 930 290 300

Japanese, Latin
SBCS, on OS/2
and AIX or
HP-UX systems

942 1041 301 939 1027 300

Japanese,
Katakana SBCS,
on Windows
systems

932 897 301 930 290 300

Japanese, Latin
SBCS, on
Windows systems

932 897 301 939 1027 300

Korean 949 1088 951 933 833 834

440 VisualAge Generator: Client/Server Communications Guide



Table 58. DBCS Languages Code Page by Platform (continued)

Language ASCII CCSID

ASCII
SBCS

Code Page

ASCII
DBCS Code

Page
EBCDIC
CCSID

EBCDIC
SBCS Code

Page

ASCII
DBCS

Code Page

Note:
These are the code pages used by the conversion table in Table 56 on page 438.

Defining Custom Conversion Tables

You can define your own code page conversion tables for languages not
directly supported by VisualAge Generator.

Defining Conversion Table Files for OS/2 and AIX Systems
On OS/2 or AIX systems, the conversion table is a file with a single record.
The file extension of OS/2 and AIX is CTB. The file identifies the
characteristics of the local and remote systems, including the code pages used
on the systems. Modify the appropriate fields as required.

Use the HPTBLDCF command to create the conversion table file.

To create a file for a single-byte language, enter the following:
HPTBLDCF tname lt rt lsbcscp rsbcscp

To create a file for a double-byte language, enter the following:
HPTBLDCF tname lt rt lsbcscp rsbcscp ldbcscp rdbcscp

The command’s parameters mean the following:
tname Output file name: tname.CTB
lt Local system type:

AI ASCII Intel (Windows, OS/2)
AX ASCII Unix (AIX or HP-UX)

rt Remote system type:
AI ASCII Intel (Windows, OS/2)
AX ASCII Unix (AIX or HP-UX)
E EBCDIC (MVS, VSE, OS/400)

lsbcscp
Local system single-byte code page number in decimal

rsbcscp
Remote system single-byte code page number in decimal

ldbcscp
Local system double-byte code page number in decimal

rdbcsdb
Remote system double-byte code page number in decimal

Appendix C. Converting Between Client and Server Data Formats 441



Specify only the first five parameters if creating conversion tables for a
single-byte language.

An example of the command used for creating the English conversion table is
the following:
HPTBLDCF ELACNENU AI E 437 37

An example of the command used for creating the Japanese conversion table
is the following:
HPTBLDCF ELACNJPN AI E 1041 290 301 300

Defining Conversion Table Modules for MVS, VSE, and Windows Systems
Use the HPTBLDCA utility to convert conversion table source to assembler
source files for MVS and VSE systems. Use the HPTBLDCC utility to convert
conversion table source to C source files for Windows systems.

SBCS Conversion Table Source Format
Specify the source for a single-byte conversion table as a 256-byte binary file
with the file extension SBC. The conversion table is used as a translation table
at run time. The code point for each character to be converted is used as an
index into the table and is converted to the code point found at that position
in the table.

Two files are required, one for conversion from the local code page to the
remote code page, and the other for conversion from the remote code page to
the local code page.

DBCS Conversion Table Source Format
Specify the source for a double-byte conversion table as a file with extension
DBC. The file consists of fixed length records of 9 characters. Each record’s
format is as follows:

Bytes Description
1–4 Hexadecimal representation of code point of character to be converted
5 Blank
6–9 Hexadecimal representation of output code that the character is

converted to

One record is required for each valid double-byte code point in the source
code page. The records should be ordered in ascending hexadecimal sequence.

An example of records from a DBCS table is as follows:
8FA1 D541
8FA2 D542
8FA3 D543
8FA4 D544

442 VisualAge Generator: Client/Server Communications Guide



Two files are required, one for conversion from the local code pages to the
remote code pages, and the other for conversion from the remote code pages
to the local code pages.

Using the Build Conversion Table Utility
To convert the source files to assembler format, make the directory containing
the sources files the current directory. Then to create conversion tables for a
single-byte language, enter the following:
HPTBLDCA tname lt rt lsbcs rsbcs
HPTBLDCC tname lt rt lsbcs rsbcs

To create a conversion table for a language that uses mixed single- and
double-byte characters, enter the following command:
HPTBLDCA tname lt rt lsbcs rsbcs lsbcs rdbcs ltorsub rtolsub svx evx
HPTBLDCC tname lt rt lsbcs rsbcs lsbcs rdbcs ltorsub rtolsub svx evx

The command’s parameters mean the following:
tname Output file name. For HPTBLDCA, the output file is an MVS or VSE

assembler source with the name tname.370. For HPTBLDCC, the
output file is a windows compatible C file with the name tname.C.

lt Local (client) system type:
AI ASCII Intel (Windows, OS/2)
AX ASCII Unix (AIX or HP-UX)

st Remote (server) system type:
AI ASCII Intel (Windows, OS/2)
AX ASCII Unix (AIX or HP-UX)
E EBCDIC (MVS, VSE, OS/400)

lsbcs Input file name: local-to-remote single-byte conversion table. File
extension is assumed to be SBC.

rsbcs Input file name: remote-to-local single-byte conversion table. File
extension is assumed to be SBC.

ldbcs Input file name: local-to-remote double-byte conversion table. File
extension is assumed to be DBC.

rdbcs Input file name: remote-to-local double-byte conversion table. File
extension is assumed to be DBC.

ltorsub
Four-character hexadecimal representation of double-byte substitution
character for local-to-remote conversion. Any double-byte code points
not represented in the table are transformed to this character.

rtolsub
Four-character hexadecimal representation of double-byte substitution
character for remote-to-local conversion. Any double-byte code points
not represented in the table are transformed to this character.

svx evx
In ASCII code pages, code points for single-byte characters and the
first byte of double-byte characters are mutually exclusive. Within a

Appendix C. Converting Between Client and Server Data Formats 443



code page, ranges of byte values are reserved for the first byte of
DBCS code points. ″svx″ and ″evx″ are two-character hexadecimal
representations of the start value and end value for a range of code
points. Up to three ranges can be specified on the command.

Specify only the first five parameters if creating conversion tables for a
single-byte language.

An example of the command used for creating the English conversion table
for MVS or VSE is shown below. Note that the MVS or VSE system is
designated as the server (remote) system and the workstation is designated as
the client (local) system, even when you are building a table for use on the
MVS or VSE system.
HPTBLDCA ELACNENU AI E 437T037 037T437

An example of the command used for creating the Japanese conversion table
for windows is the following:
HPTBLDCC ELACNJPN AI E 1041T290 290T1041 301T300 300T301 FEFE FCFC 81 9F E0 FC

Installing the Conversion Table on MVS or VSE
To install the MVS or VSE conversion table, upload the .370 file to the MVS or
VSE system and assemble and link the file into a library accessible to host
run-time services.

For MVS systems, the following parts in the Server for MVS, VSE, and VM
sample library can be used to assemble and link the conversion table:

ELACVPLK
Sample procedure for assembling and link-editing a conversion table

ELACVJLK
Sample job that runs procedure ELACVPLK

For VSE systems, the following part in the Server for MVS, VSE, and VM
library can be used to assemble and link the conversion table:

ELACVJLK
Sample job for assembling and linking the conversion table

Installing the Conversion Table on Windows
Once the C file is created, transfer the file to a Windows system and, using
Borland’s C++ compiler, use the Borland project file to create a 32-bit DLL. Or,
use your C++ compiler command for creating a 32-bit DLL.

The DLL contains a single function, CONVEP, which returns a pointer to the
conversion table information defined in the program.

444 VisualAge Generator: Client/Server Communications Guide



The conversion table is now ready for use by generated GUI client programs
on Windows.

Bi-Directional Languages Attribute Conversion
Arabic and Hebrew are bi-directional (BIDI) languages in which national
language characters are displayed right to left and Latin characters are
displayed left to right. BIDI language attributes describe the way in which
different types of characters (national language, Latin, numeric, and special
characters) are stored and displayed in character string variables.

VisualAge Generator supports conversion of BIDI character strings from one
attribute specification to another. This conversion is supported on Windows,
OS/2 and AIX systems. BIDI attribute conversion can be performed in
conjunction with or independently of code-page character conversion or
numeric item data format conversion. You can convert the character strings in
a record using an EZECONV special function call from the test facility and
generated C++ programs), or you can request that character string parameters
be converted on client/server calls to remote server programs from test
facility, GUI clients, and generated C++ programs.

VisualAge Generator Developer does the following when requesting BIDI
attribute conversion:
v Defines a conversion table that contains source and target BIDI attribute

specifications in addition to code page and system type information.
v Specifies the conversion table name on the EZECONV call or on the

CONTABLE option for the generation linkage table entry that defines how
a server program is called.

Defining Conversion Tables for Bi-Directional Attributes
To build a conversion table with BIDI attribute specifications, use the
HPTBLDBF.EXE utility. Use the following command to create a conversion
table:
HPTBLDBF tname ct st csbcscp ssbcscp cbidi sbidi

where:
tname Output file name with a file extension is CTB.
ct Client (source) system type:

AI ASCII Intel (Windows and OS/2)
AX ASCII AIX or HP-UX
E EBCDIC

st Server (target) system type:
AI ASCII Intel (Windows and OS/2)
AX ASCII AIX or HP-UX
E EBCDIC

csbcscp
Client (source) system code page number (1- to 4-digit number)

Appendix C. Converting Between Client and Server Data Formats 445



ssbcscp
Server (target) system code page number (1- to 4-digit number)

cbidi Client (source) BIDI attributes (8-digit hexadecimal number)

A description of each digit in the BIDI attribute string (starting from
the left) follows:

Digits Description

1 Text manipulation. This attribute does not affect BIDI string
conversion. Set the value to 8.

2 Text type
0 Visual
1 Implicit

3 Window orientation. This attribute does not affect BIDI string
conversion.
0 Left to right
1 Right to left

4 Text orientation
0 Left to right
1 Right to left
2 Contextual

5 Numerals
0 Nominal
1 Pass through
2 National
3 Contextual

6 Symmetric swapping (ON = 1 OFF = 0)
0 Off
1 On

7-8 Character shape
00 Display shaped
01 Save shaped
10 Nominal
11 Initial
12 Middle
13 Final
14 Isolated

sbidi Server (target) BIDI attributes (8-digit hexadecimal number)

See the previous option, cbidi, for a description of each digit in the
BIDI attribute string.

446 VisualAge Generator: Client/Server Communications Guide



The system types control the conversion of the numeric item format. The code
page numbers control code page translation for character items when a
conversion is performed. The BIDI attributes control BIDI attribute conversion
for character items.

The following command builds a conversion table that supports Arabic
ASCII-to-EBCDIC conversion with BIDI attribute conversion for an OS/2
client calling an MVS server:
HPTBLDBF CNAE1ARA AI E 864 420 81110000 80110000

The following command builds a conversion table that supports BIDI attribute
conversion on OS/2. Code page and numeric items conversions are not
performed because the same system type and code page is specified for both
source and target systems.
HPTBLDBF CNAA1ARA AI AI 864 864 81110000 80112000

BIDI Attribute Conversion Utility for ESF Files Downloaded From the Host
BIDI attribute conversion cannot be performed on an ESF file by a file transfer
program because the file transfer program cannot separate the BIDI constant
strings in the ESF file from the rest of the ESF information. Use the following
process to perform BIDI attribute conversion on an ESF file that is being
moved from a CSP 4.1 system to VisualAge Generator Developer:
1. Download the ESF file. Use PCOMM or the file transfer program to

perform EBCDIC to ASCII code page translation, but do not perform BIDI
attribute conversion in this step. Table 59 lists the source and target code
pages based on language and system.

Table 59. Source and Target Code Pages for EBCDIC to ASCII translation

Language
VisualAge Generator
Developer System Host Code Page ASCII Code Page

Arabic Windows NT 420 864

Arabic OS/2 420 864

Hebrew Windows NT 424 1255

Hebrew OS/2 424 862

2. Define a BIDI conversion table specifying the host BIDI attributes as the
server attributes and the developer system BIDIB attributes as the client
attributes. Specify source and target code pages for the conversion table
based on language and system as shown in Table 60 on page 448.

Appendix C. Converting Between Client and Server Data Formats 447



Table 60. Client/Server Source and Target Code Pages

Language
VisualAge Generator
Developer System Client Code Page Server Code Page

Arabic Windows NT 1256 864

Arabic OS/2 864 864

Hebrew Windows NT 1255 1255

Hebrew OS/2 862 862

3. Use the HPTCNESF utility to perform BIDI attribute conversion by
entering:
HPTCNESF input-esf-file-name output-esf-file-name conversion-table-name

For example, if the downloaded ESF file is csp1.esf and the conversion
table is CNHEBESF, enter:
HPTCNESF CSP1.ESF CSP1OUT.ESF CNHEBESF

4. Import the output ESF file (CSP1OUT.ESF in the previous example) into a
VisualAge Generator application or package.

Using Conversion Tables with EZECONV
The following example illustrates how to code the EZECONV special function
in a program:
MOVE "CNAA1ARA" TO CONVTAB;
CALL EZECONV MYRECORD,'L',CONVTAB;

EZECONV converts the data items in record MYRECORD from local (client)
format to remote (server) format as specified in conversion table
CNAA1ARA.CTB. To convert in the opposite direction, specify ’R’ instead of
’L’ on the EZECONV call.

Using Conversion Tables on Calls to Server Programs
The following example illustrates a call to program MYSERVER as coded in a
client program. Two parameter records are passed on the call.
CALL MYSERVER MYRECORD1, MYRECORD2

A linkage table entry for MYSERVER indicates to test, generation, and
VisualAge Generator Server that MYSERVER is a remote server program. The
CONTABLE option on the entry specifies the conversion table to use to
convert the data in the parameter records on the call. The data is converted
from local (client) to remote (server) format before the server is called, and
again from remote to local format after the server returns.

The following linkage table entry example specifies that MYSERVER is a
remote program called using the CICS client ECI middleware. Parameter
conversion is done as specified in conversion table CNAE1ARA.

448 VisualAge Generator: Client/Server Communications Guide



:calllink applname=MYSERVER linktype=REMOTE remotecomtype=CICSCLIENT
contable=CNAE1ARA.

Appendix C. Converting Between Client and Server Data Formats 449



450 VisualAge Generator: Client/Server Communications Guide



Appendix D. DBCS and Client/Server Processing

Considerations for programs containing DBCS data are described in this
section.

Check SO/SI Map Edit

MIX (mixed single and double byte) data values require fewer bytes for
storage on all workstation systems because the ASCII DBCS format does not
use shift-in/shift-out escape characters for delimiting DBCS data.

If your client/server program design permits mixed data entry on a
workstation that it then stores in a file or database on the mainframe, use the
Check SO/SI Space map item edit to ensure that the mixed values entered on
a workstation can be converted to the EBCDIC SO/SI format for mixed data
and still fit in a field of the same length. Values that do not fit are truncated at
a valid DBCS character boundary on conversion.

For more DBCS considerations, refer to VisualAge Generator Design Guide

Converting Variable Length Records with MIX Items

SO/SI escape characters are deleted from MIX items on EBCDIC-to-ASCII
format conversion and inserted in MIX items on ASCII-to-EBCDIC conversion.
If a variable length record that contains MIX items is being converted, and the
current record end as indicated by the record length lies within a MIX item,
the record length is adjusted on conversion to reflect the insertion or deletion
of SO/SI characters.

© Copyright IBM Corp. 1980, 2001 451



452 VisualAge Generator: Client/Server Communications Guide



Appendix E. VisualAge PowerServer APIs

This section contains information that applies to using VisualAge PowerServer
application programming interfaces to call VisualAge Generator server
programs from client programs developed using other tools. You should be
familiar with the following chapters before reading the API information:
v Chapter 2. Introduction to Client/Server Processing with Synchronous Calls
v Appendix B. Linkage tables
v Appendix C. Converting Between Client and Server Data Formats

For more information on calling servers using specific communications
protocols, refer to the chapter on configuring your platform.

The VisualAge PowerServer APIs provide a common C interface for
performing the following functions:
v Initializing a communications session
v Calling a server program on a remote system
v Committing or rolling back a unit of work that is controlled by the client

system
v Ending the communications session
v Retrieving an error message when a function indicates it has not completed

successfully

Client Systems

Client programs can call the APIs on any of the following systems:
v OS/2 Warp Version 4.0 or later
v AIX Version 4.1.3 or later
v Windows 95 (WIN32 interface only)
v Windows NT 4.0 or later

Note: VisualAge Generator Developer, VisualAge Generator Server, or
VisualAge Generator Common Services must be installed on the client
system.

Server Systems

Client programs can use the APIs to call servers running in any of the
following environments:
v CICS for MVS/ESA
v AIX

© Copyright IBM Corp. 1980, 2001 453



v CICS for AIX
v CICS for OS/2
v CICS for Solaris
v CICS for VSE/ESA
v CICS for Windows NT
v HP-UX
v IMS
v OS/2
v OS/400
v Solaris
v VM/ESA
v Windows NT

Note: The installation of VisualAge Generator Server or VisualAge Generator
Server for MVS, VSE, and VM might be required on the server system.

Supported Middleware

Client programs can call server programs via the following middleware:
v CICS Client for CICS server programs
v Client Access/400 for OS/400 server programs
v APPC/MVS for IMS server programs
v DCE RPC for C++ programs running on OS/2, AIX and Windows NT.
v TCP/IP for C++ programs running on OS/2, AIX and Windows NT,

HP-UX, Solaris and VM/ESA.
v LU2 for COBOL programs running on CICS for MVS/ESA.

Note: The middleware options available vary by client and server platform
combinations. See Table 2 on page 12 for additional information.

Coding the Client Program

File cso2api.h in the \include subdirectory for VisualAge Generator
Developer and VisualAge Generator Server contains the data item, data
structure, and function prototype definitions for the VisualAge PowerServer
APIs.

A client program must establish a communications session using the CMINIT
function before calling any other functions.

The data declarations for the data passed to the server program on the
CMCALL function must be compatible with the parameters defined to the
server program, The length of each parameter must be the same for both the
client and the server programs.

454 VisualAge Generator: Client/Server Communications Guide



Data Type Descriptions

VisualAge PowerServer calls use both elementary and structure data types.

The elementary data types are:
CMCHAR

Single byte character
CMCHAR4

String of four characters
CMEMSG

70-character array containing null terminated string
CMNAME

Character array containing null terminated string
CMMSG

Null terminated string
CMPARM

Argument passed to server program
CMSHORT

Short integer
CMLONG

Long integer
CMCC

Long integer

The structure data types are:
CMCOD

Call options descriptor
CMCVOD

Conversion options descriptor
CMCOMP

Completion status descriptor
CMDESC

Parameter structure descriptor

Structure Definitions

This section describes the structure definitions.

CMCOD - Call Options Descriptor
The call options descriptor specifies options that control how a remote
program is called.

Fields in the descriptor structure are:

CMCHAR4
StrucId

Structure identifier.

Appendix E. VisualAge PowerServer APIs 455



The value must be:

CMCOD_STRUC_ID = ″COD″

CMLONG
Version

Structure version number

The value must be:

CMCVOD_VERSION_1 = 1

CMLONG
Protocol

The communications protocol used to communicate with the client
program. Valid values are:

CMST_RUNTIME_BIND = 0
The communications protocol is read from the linkage table at
runtime. In addition, the following option values are read
from the linkage table and any corresponding option specified
on the CMCALL is ignored:

LuwType
AppType
Parmform
ConversionTable
Location
Serverid
Library

CMST_ECI_C2 = 7
CICS OS/2 External Call Interface

CMST_ECI_CM = 8
CICS Client External Call Interface

CMST_CA400 = 9
Client Access/400

CMST_APPC_IMS = 11
LU 6.2 connection to IMS message processing region

CMST_DCE = 13
Distributed Computing Environment Remote Procedure Call
(DCE RPC), no authorization checking

CMST_DCE_SECURE = 14
Distributed Computing Environment Remote Procedure Call
(DCE RPC) with authorization checking

456 VisualAge Generator: Client/Server Communications Guide



CMST_PACBASE = 15
PACKBASE

CMST_TCPIP = 19
TCP/IP

CMST_LU2 = 20
LU2

CMLONG
LuwType

Logical unit of work type. Values are:

CMLUW_CLIENT = 0
Unit of work is under client control.

Server updates are not committed or rolled back until the
client requests commit or rollback using the CMCOMMIT or
CMROLLBK services. Server programs cannot request commit
or rollback.

Environments which do not support client controlled unit of
work will ignore this value. See Table 2 on page 12 for the
environments which support client controlled unit of work.
For those environments which do not support client controlled
unit of work, server unit of work will be used.

CMLUW_SERVER = 1
Server unit of work is independent of the client’s unit of
work. Commit (or rollback on abnormal termination) are
automatically issued when the server returns. Server programs
can request rollback.

CMLONG
AppType

Remote program type

CMLUW_VG = 0
The called program is a generated VisualAge Generator
program which was generated with a linktype of remote. An
additional parameter is automatically passed to the server to
allow the server to return an error code to the middleware if
the server program ends abnormally.

CMLUW_NONVG = 1
The called program was developed using a tool other than
VisualAge Generator. Only the parameters passed on the
CMCALL service are passed to the called program.

Appendix E. VisualAge PowerServer APIs 457



CMLONG
Parmform

Parameter format

This option is supported only when calling via CICS Client ECI. It is
ignored for all other types of middleware.

CMPF_COMMPTR = 0
The server program expects to be called using the CSP/AE
parameter passing convention that uses pointers in the
COMMAREA. Use only with MVS CICS, VSE CICS, or CICS
OS/2 server programs that were generated or coded to use
this parameter passing convention.

CMPF_COMMDATA = 1
The server program expects to receive the parameter values in
the CICS COMMAREA. The parameter values passed to
CMCALL are moved into a single buffer, each value adjoining
the previous value without regard for boundary alignment.
On return from the remote call, the values returned in the
output buffer are moved back to the corresponding
parameters passed to the CMCALL.

CMNAME
ConversionTable[9]

Conversion table name

Specifies the name of the conversion table used to perform automatic
data conversion on the call to the remote program. The name is a
9-byte character array containing a null-terminated character string.

Some names have a special meaning:

* (asterisk)
Conversion is performed on the client using the default
conversion table. You must enclose the asterisk in single
quotes.

On OS/2, AIX, and Windows systems the default is the
conversion table specified in environment variable EZERCVT.
If EZERCVT is not specified, the default is conversion table
ELACNxxx, where xxx is the national language code specified
in environment variable EZERNLS. If EZERNLS is not
specified, the default national language code is ENU.

Note: The default conversion tables assume that the server
platform is MVS, VSE, OS/400, or VM.

458 VisualAge Generator: Client/Server Communications Guide



BINARY
Only binary fields are converted. The byte order in the binary
field is reversed.

This table is used with OS/2 and Windows clients
communicating with AIX, HP-UX, and Solaris servers; and
vice versa, when both the client and the server are running
under the same code page.

NONE
No conversion is performed.

Refer to Appendix C. Converting Between Client and Server Data
Formats in the VisualAge Generator Client/Server Communications Guide
manual for more information on conversion and conversion tables.

CMNAME
Location[20]

Protocol dependent server system name. The name is a 20-byte
character array containing a null-terminated character string.

The following table shows the meaning of the identifier by protocol
and the default value if a name is not specified (null string).

Protocol Meaning of location Default value

TCPIP TCP/IP hostname of server No default

CICSCLIENT CICS system identifier First system identifier specified
in the CICS client initialization
file

DCE,
DCESECURE

Location where the server
advertises in the DCE CDS
database. The location is
specified in the configuration file
used when the VisualAge
Generator DCE server program is
started.

No default

APPCIMS CPIC side information identifier.
The side information specifies:
v Partner LU Alias
v Transaction Program Name
v Mode Name

No default

CA/400 AS/400 system identifier The managing OS/400 system

The value is ignored for other protocols.

CMNAME
ServerId[20]

Appendix E. VisualAge PowerServer APIs 459



Protocol dependent server channel or transaction name. The name is a
20-byte character array containing a null-terminated character string.

The following table shows the meaning of the identifier by protocol
and the default value if a name is not specified (null string).

Protocol Meaning of Server Identifier

TCP/IP Name of TCP/IP service port as defined in the etc\services file.

CICSCLIENT Name of CICS transaction for the server. If client unit of work is
specified, all programs called in the same unit of work must
have the same server identifier. The default is the CICS server
system mirror transaction.

DCE, DCESECURE Serverid name advertised by the server in the DCE CDS
database. The serverid is specified in the configuration file used
when the VisualAge Generator DCE server program is started.

The value is ignored for other protocols.

CMNAME
LinkageTableName[80]

Linkage table file name identifying the linkage table to be used if
runtime bind is specified for the Protocol parameter.

If not specified (null string) or not found, the linkage table file name
is obtained from environment variable CSOLINKTBL.

If the name is not fully qualified, the CMCALL service uses the
current DPATH search path to find the file.

CMNAME
Library[20]

OS/400 program library name. The name is a 20-byte character array
containing a null-terminated character string.

This value is used only with the Client Access/400 protocol. It
specifies the name of the OS/400 library that contains the called
program. The default value is the program name if the array contains
a null string.

CMNAME
ExtName[40]

The name of the program that is called. The EXTERNALNAME value
can be more than 8 characters long.

This value is used only with the Client Access/400 protocol. The
default value is the APPLNAME.

460 VisualAge Generator: Client/Server Communications Guide



CMCOMP - Completion Status Descriptor
The completion status descriptor returns status information that indicates
whether a service call completed successfully or not, and describes the reasons
for unsuccessful completions.

Fields in the descriptor structure are:

CMCC
CompCode

Completion code. Possible values are:

CMCC_OK = 0
Successful completion.

CMCC_WARN = 4
Warning (partial completion).

Reason code and message inserts give additional information.

CMCC_ERROR = 8
Call failed.

Reason code and message inserts give additional information.

CMCC_12BYTE_ERROR = 12
Host or work group services detected a terminating error in
the called program.

CMCC_SECURITY = 16
The user is not authorized to call the remote program.

Reason code and message inserts give additional information.

CMLONG
Reason

The reason code gives further information on reasons for failing
completion codes. Each four digit reason code is associated with error
message number CSOxxxxE (xxxx is the reason code). Refer to the
description in the VisualAge Generator Messages and Problem
Determination Guide manual. The message description describes the
error associated with a reason code.

CMLONG
EmsgCount

Error insert count. The number of message inserts that follow in the
error insert array.

CMEMSG
Emsg[10]

Appendix E. VisualAge PowerServer APIs 461



Error insert array. Each array element contains a message insert for
the error message associated with the reason code. Each message
insert is a null terminated string with a max length of 72 characters
(including the null terminator).

Note: The reason code, insert count, and insert array are set only if the
completion code is not OK.

CMDESC - Parameter structure description
The parameter descriptor is a variable length structure that defines the format
of the parameter data. The descriptor is used in moving the parameter data to
the transmission buffer and in converting the data format of the parameter
from the client format to server format or vice versa.

The description is sequence of substructures. There are four types of
substructures:
CMPARMLEN

Parameter Length Descriptor
CMITEM

Parameter Item Descriptor
CMOCCURS

Occurring Structure Descriptor
CMPARMEND

Parameter Descriptor End Marker

CMPARMLEN - Parameter Length Descriptor
The length of the parameter value. This is the length of data moved to the
transmission buffer. CMPARMLEN must be the first substructure in the
parameter descriptor.

Fields in the descriptor structure are:

CMCHAR
ParmLengthIndicator

CONV_MAX_LENGTH = 0xF3

CMLONG
ParmLength

Length of parameter in bytes

CMITEM - Parameter Item Descriptor
An item descriptor defines the type and length of a field within the
parameter. There must be one item descriptor for each low level item in the
parameter structure definition

Fields in the descriptor structure are:

462 VisualAge Generator: Client/Server Communications Guide



CMCHAR
ParmItemIndicator

The item indicator indicates item type. The type indicates what format
conversion should be used on the item. Item types correspond to
VisualAge Generator item definition types and can have the following
values:

DATA_BIN = 0x01

DATA_CHA = 0x02

DATA_DBCS = 0x03

DATA_HEX = 0x04

DATA_MIX = 0x05

DATA_NUM = 0x06

DATA_NUMC = 0x07

DATA_PACK = 0x08

DATA_PACKF = 0x09

DATA_PSB = 0x0A

Contiguous files of type DATA_CHA can be described with a single
item descriptor.

Contiguous fields of these types can be defined with a single item
descriptor, except for DATA_PSB. DATA_PSB requires an item
descriptor defined as a 12 byte array of nulls.

All other item types require an item descriptor for each elementary
item in the parameter structure.

No conversion is performed for the following item types:
DATA_NO_CONV
DATA_HEX
DATA_PACK
DATA_PACKF

CMSHORT
ItemLength

Length of item in bytes

CMOCCURS - Occurring Structure Descriptor
If the parameter structure includes a multiply occurring structure (an array)
then this structure must immediately precede the sequence of item descriptors

Appendix E. VisualAge PowerServer APIs 463



that represent the elementary fields that make up the array. The descriptor
identifies the number of occurrences plus the number of item descriptors
represented within each occurrence.

Fields in the descriptor structure are:

CMCHAR
OccurrencesIndicator

OCC_STR = 0xFD

CMSHORT
OccurringItems

Number of item descriptors in the occurring structure

CMSHORT
Dimension

Number of occurrences in the occurring structure

CMPARMEND - Parameter Descriptor End Marker
A marker for the end of the parameter description.

Fields in the descriptor structure are:

CMCHAR
ParmEndIndicator

END_DESC = 0xFF

Example - Parameter and Descriptor Definitions in C
The following example shows examples of how to code parameters and
parameter descriptors for a simple, single item parameter, a simple structure,
and a complex structure which includes a multiply occurring array.

The structures in the example must be compiled to insure that the items in the
structure are aligned on byte boundaries. You can compile the example with
compiler option /Sp1 for IBM VisualAge C++.

#include "cso2api.h"

typedef struct
{
CMCHAR parmLengthIndicator;
CMLONG parmLength;
}
CMPARMLEN ;

typedef struct
{

464 VisualAge Generator: Client/Server Communications Guide



CMCHAR itemIndicator;
CMSHORT itemLength;
}
CMITEM ;

typedef struct
{
CMCHAR occursIndicator;
CMSHORT occursItemCount;
CMSHORT occursDimension;
}
CMOCCURS ;

typedef struct
{
CMCHAR parmEndIndicator;
}
CMPARMEND ;

/* Example 1 - Simple parameter and descriptor definition */

char key[6]; /* Parameter definition */

struct {
CMPARMLEN parmlen ;
CMITEM keyDesc ;
CMPARMEND parmend ;
} keyDescriptor = {
{CONV_MAX_LENGTH, sizeof(key)},
{DATA_CHA,sizeof(key)},
END_DESC
} ; /* Parameter descriptor */

/* Example 2 - Simple structure parameter and descriptor definition */

typedef struct {
char name[10];
long number;
} PART ;

PART part ; /* Parameter definition */

struct {
CMPARMLEN parmlen ;
CMITEM nameDesc ;
CMITEM numberDesc ;
CMPARMEND parmend ;
} partDescriptor = {
{CONV_MAX_LENGTH, sizeof(part)},
{DATA_CHA,sizeof(part.name)},
{DATA_BIN,sizeof(part.number)},
END_DESC
} ; /* Parameter descriptor */

Appendix E. VisualAge PowerServer APIs 465



/* Example 3 - Complex structure parameter and descriptor definition */

typedef struct {
char cName[10];
long cNumber;
PART cPart[5];
} COMPONENT ;

COMPONENT component ; /* Parameter definition */

struct {
CMPARMLEN parmlen ;
CMITEM cNameDesc ;
CMITEM cNumberDesc ;
CMOCCURS cPartOccurs;
CMITEM nameDesc ;
CMITEM numberDesc ;
CMPARMEND parmend ;
} componentDescriptor = {
{CONV_MAX_LENGTH, sizeof(component)},
{DATA_CHA,sizeof(component.cName)},
{DATA_BIN,sizeof(component.cNumber)},
{OCC_STR,2,5},
{DATA_CHA,sizeof(component.cPart[0].name)},
{DATA_BIN,sizeof(component.cPart[0].number)},
END_DESC
} ; /* Parameter descriptor */

/* Parameter Pointer Array */

CMPARM *paData[3] =
{
(char*)key,
(char*)&part,
(char*)&component
} ;

/* Descriptor Pointer Array */

CMDESC *paDesc[3] =
{
(char*)&keyDescriptor,
(char*)&partDescriptor,
(char*)&componentDescriptor
} ;

Call Descriptions

This section describes VisualAge PowerServer API functions:

CMCALL
Call Remote Server Program

466 VisualAge Generator: Client/Server Communications Guide



CMCLOSE
Close Communications Session

CMCOMMIT
Commit Unit of Work

CMGETERROR
Get Error String

CMINIT
Initialize Communications Session

CMROLLBK
Rollback Unit of Work

CMCALL — Call Remote Server Program
The CMCALL call makes a call to a remote server program.
CMCC CMCALL ( CMLONG Hconn,

CMNAME *Applname,
CMLONG ParmCount,
CMPARM **Parameter,
CMDESC **Description,
CMCOD *Cmcod,
CMCOMP *Cmcomp)

Parameters

Hconn (CMLONG) — input
This connection handle represents the connection to the VisualAge
PowerServer communications session. The handle was returned by a
previous CMINIT call.

Applname (CMNAME *) — input
This server program name parameter specifies the name of the server
program that is being called. This name is used to determine which
linkage table CALLLINK entry will be used for routing the remote
call.

The name is a null-terminated character string with a maximum
length of eight characters plus the null terminator.

ParmCount (CMLONG) — input
This parameter specifies the number of parameters that are being
passed on the remote call to the server program.

Parameter (CMPARM **) — input
This parameter is an array of pointers, one pointer to each parameter
to be passed to the server program.

Description (CMDESC **) — input
This parameter is an array of pointers, one pointer for each parameter
to be passed to the server program. The pointer points to the

Appendix E. VisualAge PowerServer APIs 467



parameter descriptor that describes the format of the parameter data.
The description is used in moving the parameter data to the
communications buffer, and in converting the data between client and
server system format. See “CMDESC - Parameter structure
description” on page 462 for a description of the Description
parameter.

Cmcod (CMCOD *) — input
This call descriptor structure is used to describe the options for the
remote call. All of the attributes that can be specified in the linkage
table can be specified in this structure instead. See “CMCOD - Call
Options Descriptor” on page 455 for a description of the CMCOD
structure.

Cmcomp (CMCOMP *) — output
This completion code structure is used to pass back a completion
code, error reason code, and message insert information. See
“CMCOMP - Completion Status Descriptor” on page 461 for a
description of the CMCOMP structure.

Usage
v There is a limit of 32567 bytes of parameter data that can be passed on any

CMCALL.
v If a linkage table name is specified in the CMCOD structure and the all of

the call descriptor options are not specified in the CMCOD structure, the
VisualAge PowerServer code will search the DPATH (for OS/2 and AIX) or
PATH (for Windows) for the linkage table specified in the CMCOD
structure. If no linkage table is specified in the CMCOD structure or it can
not be found in the DPATH, then the CSOLINKTBL environment variable
will be used to locate the linkage table to be used.

CMCLOSE — Close Communications Session
The CMCLOSE call terminates a VisualAge PowerServer communications
session.
CMCC CMCLOSE ( CMLONG Hconn,

CMCOMP *Cmcomp)

Parameters

Hconn (CMLONG) — input
This connection handle represents the connection to the VisualAge
PowerServer communications session. The handle was returned by a
previous CMINIT call.

Cmcomp (CMCOMP *) — output
This completion code structure is used to pass back a completion
code, error reason code, and message insert information. See
“CMCOMP - Completion Status Descriptor” on page 461 for a
description of the CMCOMP structure.

468 VisualAge Generator: Client/Server Communications Guide



Usage
v A usage count is kept for each of the communications sessions. The usage

count decrements on each CMCLOSE call. When the usage count reaches 0,
the communications session is closed and the communications session
handle is not longer valid.

CMCOMMIT — Commit Unit of Work
The CMCOMMIT call propagates a commit to the server platforms, as
appropriate.
CMCC CMCOMMIT ( CMLONG Hconn,

CMCOMP *Cmcomp)

Parameters

Hconn (CMLONG) — input
This connection handle represents the connection to the VisualAge
PowerServer communications session. The handle was returned by a
previous CMINIT call.

Cmcomp (CMCOMP *) — output
Completion code structure.

This structure is used to pass back a completion code, error reason
code, and message insert information. See “CMCOMP - Completion
Status Descriptor” on page 461 for a description of the CMCOMP
structure.

Usage
CMCOMMIT will only have an affect when an CMCALL has been made via
the CICS Client, CICS for OS/2 ECI, or Client Access/400 middleware
products and client unit of work was specified. In all other cases, an
CMCOMMIT call results in an immediate return with no action taken.

CMGETERROR — Get Error String
The CMGETERROR call returns the VisualAge PowerServer communications
error string.
CMCC CMGETERROR ( CMCOMP *Cmcomp,

CMLONG *CmErrorStringLen,
CMMSG *CmErrorString)

Parameters

Cmcomp (CMCOMP *) — input
This completion code structure was returned from a prior VisualAge
PowerServer call. It contains the error reason code and message insert
information that will be used to build the error string returned from
the CMGETERROR call.

CmErrorStringLen (CMLONG *) — input/output
Maximum length of error string.

Appendix E. VisualAge PowerServer APIs 469



CmErrorString (CMMSG *) — output
VisualAge PowerServer error string. CmErrorString is a pointer to a
null terminated string.

Usage
When the maximum length of an error string (CmErrorStringLen) is less than
the length of the returned formatted error string, the following occurs:
1. CMErrorString buffer holds a truncated formatted error string.
2. CmErrorStringLen is updated to a length value that can hold the entire

formatted error string.
3. A CMCC value of 4 is returned.

You can either use the truncated formatted error string returned from the API
call, thereby ignoring the CMCC value of 4; or you can allocate a larger
CmErrorString buffer based on the updated value of CmErrorStringLen and
call the API again.

CMINIT — Initialize Communications Session
The CMINIT call starts a VisualAge PowerServer communications session.
CMINIT provides a communications session handle that is used by the
program on subsequent VisualAge PowerServer communications calls.
CMCC CMINIT ( CMLONG *Hconn,

CMCOMP *Cmcomp,
void *winHandle,
CMLONG *forceNewHandle)

Parameters

Hconn (CMLONG *) — output
This connection handle represents the connection to the VisualAge
PowerServer communications session. It must be specified on all
subsequent VisualAge PowerServer calls issued by the program. It
ceases to be valid when the CMCLOSE call is issued, or when the
process that initialized the handle terminates.

Cmcomp (CMCOMP *) — output
This completion code structure is used to pass back a completion
code, error reason code, and message insert information. See
“CMCOMP - Completion Status Descriptor” on page 461 for a
description of the CMCOMP structure.

winHandle (void *) — input
This window handle parameter is not used and should be set to
NULL.

forceNewHandle (CMLONG *) — input
This option controls the action of CMINIT. The forceNewHandle
parameter controls the assignment of the connection handle. Valid
values for this parameter are:

470 VisualAge Generator: Client/Server Communications Guide



TRUE Always return a handle to a new communications session.

FALSE
return a handle to an existing communications session if one
already exists in the current process.
existing session | forceNewHandle | CMINIT action
-----------------+----------------+------------------------------

No | --- | return handle to new session
| |

Yes | TRUE | return handle to new session
| |

Yes | FALSE | return handle to existing
| | session

Usage
v If an CMINIT call is made with forceNewHandle set to FALSE and there

are two or more existing communications sessions in the current process,
there is no guarantee as to which of the existing communications sessions
will be returned from the call.

v A usage count is kept for each of the communications sessions. The usage
count increments by one each time that the session is returned on an
CMINIT call. There should be a corresponding CMCLOSE call for each
CMINIT call made.

v Memory allocated during the CMINIT call is freed when the
communications session is closed. Failure to call CMCLOSE will result in
memory leaks in your program.

CMROLLBK — Rollback Unit of Work
The CMROLLBK call propagates a rollback to the server platforms, as
appropriate.
CMCC CMROLLBK ( CMLONG Hconn,

CMCOMP *Cmcomp)

Parameters

Hconn (CMLONG) — input
This connection handle represents the connection to the VisualAge
PowerServer communications session. The handle was returned by a
previous CMINIT call.

Cmcomp (CMCOMP *) — output
This completion code structure is used to pass back a completion
code, error reason code, and message insert information. See
“CMCOMP - Completion Status Descriptor” on page 461 for a
description of the CMCOMP structure.

Usage
CMROLLBK will only have an affect when an CMCALL has been made via
the CICS Client, CICS for OS/2 ECI, or Client Access/400 middleware

Appendix E. VisualAge PowerServer APIs 471



products and client unit of work was specified. In all other cases, an
CMROLLBK call results in an immediate return with no action taken.

Compiling and Linking the Client Program

This section describes compiling and linking client programs.

OS/2
You must use a 32-bit compiler. These compile and link options have been
tested using the IBM VisualAge C++ V3.0 compiler.

Compile options:
/D__OS2__

Link libraries:
cso40api.lib

AIX
These compile and link options have been tested using the IBM C Set ++ for
AIX V3.1 compiler.

Compile options:
/D_AIX

Link libraries:
libcso40api.a

Windows NT and Windows 95
These compile and link options have been tested using Microsoft Visual C++
V4.0 compiler.

Compile options:
/D_Windows
/D_WINDOWS
/DCSOWIN32

Link libraries:
cso40api.lib

User Authentication

VisualAge PowerServer APIs use the same user authentication procedures as
VisualAge Generator client/server programs. See “User Authentication” on
page 21 for more information.

472 VisualAge Generator: Client/Server Communications Guide



Error Handling

VisualAge PowerServer APIs return an error description in structure
CMCOMP if a function call does not complete successfully. Function
CMGETERROR can be called to turn the error description into an error
message.

Additional trace information for VisualAge PowerServer API calls by setting
the following environment variables:

CSODIR
Specifies the directory where the CSO.INI file is located. By default,
this location is the root directory where VisualAge Generator
Common Services is installed for OS/2 or Windows environments, or
the root directory where VisualAge Generator Server is installed for
AIX, HP-UX, and Solaris environments.

CSO_DUMP_CONV
The CSO_DUMP_CONV environment variable is available for
debugging VisualAge Generator programs and should only be set
upon instruction from VisualAge Generator Support. When
CSO_DUMP_CONV=1, trace entries are produced that document the
parameters being passed and their values prior to and after the
middleware support converts the data. The conversion table used is
also documented in the trace. This information is written to the file
CSODUMP.OUT.

CSO_DUMP_DATA
The CSO_DUMP_DATA environment variable is available for
debugging VisualAge Generator programs and should only be set
upon instruction from VisualAge Generator Support. When
CSO_DUMP_DATA=1, trace entries are produced that document the
linkage table parameters used for the server call, the parameters being
passed, and the values of these parameters. The descriptor and value
information is documented prior to and after the call to the server.
This information is written to the file CSODUMP.OUT.

CSOTIMEOUT
Specifies the length of time in seconds after which a time-out error
occurs if the server does not respond to the client. The default value is
30.

CSOTROPT
Specifies the level of trace information collected.

CSOTROPT=1
Only errors are collected in the trace file. This is the default if
CSOTROPT is not set.

Appendix E. VisualAge PowerServer APIs 473



CSOTROPT=2
All traces are collected in the trace file

CSOTROUT
Specifies the trace file name. The default name is csotrace.out in your
current directory.

474 VisualAge Generator: Client/Server Communications Guide



Appendix F. Run-time configurations for VisualAge
Generator

The following tables describe run-time configurations supported by VisualAge
Generator:
v VisualAge Generator GUI/TUI to Server
v Java Applet/Servlet to Server
v Enterprise Java Beans
v Websphere rapid application development (UI Record)
v Usage and Platform Matrix
v From/To Protocol Matrix

You can use the tables in this section to determine available platforms and
protocol for a VisualAge Generator two or three tier system configuration
based on the client usage you select. For example, suppose you want to
configure the following system:
v A Java GUI Application client running on the Windows 98 platform
v A second tier server running on the CICS for Windows NT platform
v A third tier server running on the CICS for MVS/ESA platform

You can:
1. In Table 61 on page 476, find Java GUI Application in the client Usage

column.
2. In Table 65 on page 483, in the Java GUI Application column, confirm that

Windows 98 is a supported platform for a Java GUI Application.
3. In Table 66 on page 484, in the From column, find the client platform,

Windows 98.
4. In Table 66 on page 484, in the To column, find the 2nd tier server, CICS

for Windows NT.
5. In Table 66 on page 484, confirm that there is a supported protocol from

Windows 98 to CICS for Windows NT. CICS CLIENT is the supported
protocol from Windows 98 to CICS for Windows NT.

6. In Table 66 on page 484, in the From column, find the 2nd tier server, CICS
for Windows NT.

7. In Table 66 on page 484, in the To column, find the 3rd tier server, CICS for
MVS/ESA.

8. In Table 66 on page 484, confirm that there is a supported protocol from
CICS for Windows NT to CICS for MVS/ESA. CICS DPL is the supported
protocol from Windows 98 to CICS for Windows NT.

© Copyright IBM Corp. 1980, 2001 475



Table 61. VisualAge Generator GUI/TUI to Server

C
li

en
t

C
om

m
u

n
ic

at
io

n
s

S
ec

on
d

T
ie

r
S

er
ve

r

C
om

m
u

n
ic

at
io

n
s

T
h

ir
d

T
ie

r
S

er
ve

r

Usage Required
Software

See Table 65
on page 483

to determine
the
platforms
that are
supported
for your
client usage.

See Table 66
on page 484

for the
protocol
options
available
from your
client to
your 2nd
tier server.

Platform Required
Software

See Table 66
on page 484

for the
protocol
options
available
from your
2nd tier
server to
your 3rd tier
server.

Platform Required
Software

ST GUI CSO Windows
NT,
Windows
2000

WGS Windows
NT,
Windows
2000

WGS

Java GUI
Application

CSO1or
WGS1

OS/2 WGS OS/2 WGS

C++ TUI WGS AIX WGS AIX WGS

COBOL
TUI

WGS2 or
HS

Solaris WGS Solaris WGS

ITF Developer HP/UX WGS HP/UX WGS

VM/ESA HS VM/ESA HS

IMS HS IMS HS

AS/400 HS400 AS/400 HS400

CICS for
Windows
NT

WGS CICS for
Windows
NT

WGS

CICS for
OS/2

WGS CICS for
OS/2

WGS

CICS for
AIX

WGS CICS for
AIX

WGS

CICS for
Solaris

WGS CICS for
Solaris

WGS

CICS for
MVS/ESA

HS CICS for
MVS/ESA

HS

CICS for
VSE/ESA

HS CICS for
VSE/ESA

HS

476 VisualAge Generator: Client/Server Communications Guide



Table 61. VisualAge Generator GUI/TUI to Server (continued)

C
li

en
t

C
om

m
u

n
ic

at
io

n
s

S
ec

on
d

T
ie

r
S

er
ve

r

C
om

m
u

n
ic

at
io

n
s

T
h

ir
d

T
ie

r
S

er
ve

r

Notes:
CSO = VisualAge Generator Common Services (CSO code ships with VisualAge Generator
Developer and can be redistributed on the Windows and OS/2 platforms)
Developer = VisualAge Generator Developer
HS = VisualAge Generator Server for MVS, VSE, and VM
HS400 = VisualAge Generator Host Server for AS/400
WGS = VisualAge Generator Server for OS/2, Windows NT, AIX, HP-UX, and Solaris

1 CSO for Windows and OS/2, WGS for AIX
2 WGS for CICS for OS/2

Programs generated for the following platforms are not available as clients or 2nd tier of a 3 tier
configuration:

AS/400
HP/UX
IMS
VM/ESA

Appendix F. Run-time configurations for VisualAge Generator 477



Table 62. Java Applet/Servlet to Server
C

li
en

t

C
om

m
u

n
ic

at
io

n
s

W
eb

S
er

ve
r

C
om

m
u

n
ic

at
io

n
s

V
is

u
al

A
ge

G
en

er
at

or
S

er
ve

r

Web Browser
downloading
a Java applet
on any
platform

RMI Platform Required
Software

See Table 66 on
page 484 for
the protocol
options
available from
your 2nd tier
server to your
3rd tier server.

Platform Required
Software

Web Browser
accessing a
Java servlet
URL on any
platform

HTTP Windows
NT,
Windows
2000

CSO Windows
NT,
Windows
2000

WGS

OS/21 CSO OS/2 WGS

AIX WGS AIX WGS

Solaris WGS Solaris WGS

AS/400 HS400 HP/UX WGS

OS/390 Unix
System

HS VM/ESA HS

IMS HS

AS/400 HS400

CICS for
Windows NT

WGS

CICS for
OS/2

WGS

CICS for AIX WGS

CICS for
Solaris

WGS

CICS for
MVS/ESA

HS

CICS for
VSE/ESA

HS

478 VisualAge Generator: Client/Server Communications Guide



Table 62. Java Applet/Servlet to Server (continued)

C
li

en
t

C
om

m
u

n
ic

at
io

n
s

W
eb

S
er

ve
r

C
om

m
u

n
ic

at
io

n
s

V
is

u
al

A
ge

G
en

er
at

or
S

er
ve

r

Notes:
CSO = VisualAge Generator Common Services (CSO code ships with VisualAge Generator
Developer and can be redistributed on the Windows and OS/2 platforms)
HS = VisualAge Generator Server for MVS, VSE, and VM
HS400 = VisualAge Generator Host Server for AS/400
WGS = VisualAge Generator Server for OS/2, Windows NT, AIX, HP-UX, and Solaris

1 Not valid for Java servlet

For the following scenario, the ″Client″ is the Web Server where the EJB call is
being made, not the browser running the Applet.

Appendix F. Run-time configurations for VisualAge Generator 479



Table 63. Enterprise Java Beans

W
eb

S
er

ve
r

C
om

m
u

n
ic

at
io

n
s

E
n

te
rp

ri
se

Ja
va

S
er

ve
r

C
om

m
u

n
ic

at
io

n
s

V
is

u
al

A
ge

G
en

er
at

or
S

er
ve

r

Usage Required
Software

Enterprise Java
Server (EJS)
Communications

Note: Actual
protocol used
varies depending
on the EJS used.
Websphere is
currently using
IIOP.

Platform Required
Software

See Table 66
on page 484

for the
protocol
options
available
from your
2nd tier
server to
your 3rd tier
server.

Platform Required
Software

Java servlet
accessed
from a
browser

WGS*,
HS*,
CSO*, or
HS400

Windows
NT,
Windows
2000

CSO Windows
NT,
Windows
2000

WGS

OS/2 CSO OS/2 WGS

AIX WGS AIX WGS

Solaris WGS Solaris WGS

AS/400 HS400 HP/UX WGS

OS/390
Unix
System

HS VM/ESA HS

IMS HS

AS/400 HS400

CICS for
Windows
NT

WGS

CICS for
OS/2

WGS

CICS for
AIX

WGS

CICS for
Solaris

WGS

CICS for
MVS/ESA

HS

CICS for
VSE/ESA

HS

480 VisualAge Generator: Client/Server Communications Guide



Table 63. Enterprise Java Beans (continued)

W
eb

S
er

ve
r

C
om

m
u

n
ic

at
io

n
s

E
n

te
rp

ri
se

Ja
va

S
er

ve
r

C
om

m
u

n
ic

at
io

n
s

V
is

u
al

A
ge

G
en

er
at

or
S

er
ve

r

Notes:
CSO = VisualAge Generator Common Services (CSO code ships with VisualAge Generator
Developer and can be redistributed on the Windows and OS/2 platforms)
HS = VisualAge Generator Server for MVS, VSE, and VM
HS400 = VisualAge Generator Host Server for AS/400
WGS = VisualAge Generator Server for OS/2, Windows NT, AIX, HP-UX, and Solaris

* WGS for AIX, HS for OS/390 Unix System, and CSO for Windows and OS/2.

Appendix F. Run-time configurations for VisualAge Generator 481



Table 64. Websphere rapid application development (UI Record)
C

li
en

t

C
om

m
u

n
ic

at
io

n
s

W
eb

S
er

ve
r

C
om

m
u

n
ic

at
io

n
s

V
is

u
al

A
ge

G
en

er
at

or
S

er
ve

r

Web Browser
on any
platform

HTTP Platform Required
Software

TCP/IP to
non-CICS
platforms.

AS/400
Toolbox for
Java to
AS/400.

CICS
Transaction
Gateway
(CTG) to CICS
platforms.

Platform Required
Software

Windows
NT,
Windows
2000

WGS Windows
NT,
Windows
2000

WGS

AIX WGS OS/2 WGS

Solaris WGS AIX WGS

AS/400 HS400 Solaris WGS

OS/390 Unix
System

HS HP/UX WGS

IMS/VS HS

AS/400 HS400

CICS for
Windows NT

WGS

CICS for AIX WGS

CICS for
Solaris

WGS

CICS for
MVS/ESA

HS

CICS for
VSE/ESA

HS

Notes:
HS = VisualAge Generator Server for MVS, VSE, and VM
HS400 = VisualAge Generator Host Server for AS/400
WGS = VisualAge Generator Server for OS/2, Windows NT, AIX, HP-UX, and Solaris

You can use the following table to determine the platforms that are supported
for your client usage. For example, if your client usage is a Java GUI
Application, the supported platforms shown in the following table are:
Windows 95, Windows 98, Windows NT, Windows 2000, OS/2, AIX, and
Solaris.

482 VisualAge Generator: Client/Server Communications Guide



Table 65. Usage and Platform Matrix

Platform

Usage

S
T

G
U

I

Ja
va

G
U

I
A

p
p

li
ca

ti
on

C
+

+
T

U
I

IT
F

C
O

B
O

L
T

U
I

Ja
va

S
er

vl
et

A
p

p
le

t
W

eb
S

er
ve

r

E
n

te
rp

ri
se

Ja
va

S
er

ve
r

W
eb

Tr
an

sa
ct

io
n

G
at

ew
ay

Windows 95 x x

Windows 98 x x

Windows NT x x x x x x x x

Windows 2000 x x x x x x x x

OS/2 x x x x x

AIX x x x x x x

Solaris x x x x x

HP/UX x

VM/ESA x

IMS x

AS/400 x x x x x

CICS for Windows
NT

x

CICS for OS/2 x

CICS for AIX x

CICS for SOLARIS x

CICS for MVS/ESA x

CICS for VSE/ESA x

OS/390 Unix x x x x

SCO OpenServer x

Notes:
x = Supported
blank = Not available

You can use the following table to determine the protocol options available
from your client or 2nd tier server to your 2nd or 3rd tier server. For example,
if your client is a Java GUI Application running on Windows 98 and your 2nd
tier server is CICS for Windows NT, the available protocol shown in the
following table is CICS CLIENT.

Appendix F. Run-time configurations for VisualAge Generator 483



Table 66. From/To Protocol Matrix

From To

W
in

d
ow

s
N

T

C
IC

S
fo

r
W

in
d

ow
s

N
T

O
S

/2

C
IC

S
fo

r
O

S
/2

A
IX

C
IC

S
fo

r
A

IX

S
ol

ar
is

C
IC

S
fo

r
S

ol
ar

is

H
P

/U
X

V
M

/E
S

A

IM
S

A
S

/4
00

se
rv

er
p

ro
gr

am
(C

O
B

O
L

)

C
IC

S
fo

r
M

V
S

/E
S

A

C
IC

S
fo

r
V

S
E

/E
S

A

Windows 95*,
Windows 98* T,D CC T,D CC T,D CC T CC T T A CA, ATJ CC CC

Windows NT,
Windows 2000 T,D CC T,D CC T,D CC T CC T T A CA, ATJ CC CC

OS/2 T,D CC T,D CC T,D CC T CC T T A CA, ATJ CC, L CC

AIX T,D CC T,D CC T,D CC T CC T T ATJ CC CC

Solaris T CC T CC T CC T CC T T ATJ CC CC

HP-UX

VM/ESA

IMS

AS/400 ATJ

CICS** CD CD CD CD CD CD

OS/390 UNIX CE

SCO OpenServer T CC T CC T CC T CC T T CC CC

Web transaction
gateway*** T CTG T CTG T CTG T CTG T T ITOC ATJ CTG CTG

Note:
blank = not available
A = APPC
ATJ = AS/400 Toolbox for Java. It is valid only when the related client is a Java Application, a Java
servlet, an applet Web server, an enterprise Java server, or a Web transaction gateway.
CA = Client Access/400
CC = CICS client
CD = CICS DPL
CE = CICS EXCI
D = DCE
L = LU2
T = TCP/IP
CTG = CICS Transaction Gateway
ITOC = IMS TCP/IP OTMA Connection (IMS TOC).
* Platform support for clients only
** CICS for Windows NT, CICS for OS/2, CICS for AIX, CICS for Solaris, and CICS for MVS/ESA
*** On Windows NT, Windows 2000, OS/2, AIX, SOLARIS, VSE/ESA, AS/400, and OS/390 Unix
System.

484 VisualAge Generator: Client/Server Communications Guide



Appendix F. Run-time configurations for VisualAge Generator 485



486 VisualAge Generator: Client/Server Communications Guide



Special Characters
<listener>.java.command

java properties 403
<listener>.port

java properties 402
<listener>.trace.flag

java properties 403

Numerics
4GL Java clients

calling server programs 17

A
adding a main subroutine 372
AIX, server 24
algorithm, conversion 433
appcims

with calllink tag 412
applet session manager

Canceling sessions 354
monitoring active sessions 353
monitoring called programs 354
overview 353
setting session manager

parameters 356
tracing server programs 355
tracing sessions 354

applets
running applets from a

browser 337
starting a remote unit of

work 297
Applname 467
applname attribute

on calllink tag 408
ASCII data format 433
asynchronous remote

procedure 383
attribute conversion, bi-directional

languages 445
authentication, user 21
automatic data format conversion,

when accessing a remote file 395

B
bi-directional attributes

conversion utility 447
defining conversion tables 445

bi-directional languages attribute
conversion 445

binary
with calllink tag 415
with crtxlink tag 424
with filelink tag 429

binform attribute
on calllink tag 418

bitmode attribute
on calllink tag 408

BPXBATCH
JCL for Starting Servers 347
Setting Environment

Variables 346
Shell Script for Starting

Servers 346
build conversion table utility 443

C
ca400

with calllink tag 412
call

OS/400 servers via OS/400
Client Access 73, 218, 242

CALL 9
call IMS servers

by way of APPCIMS
protocol 134

call linkage 406
call linkage (CALLLINK) 406
call statement, non-VisualAge

Generator program 25
calling

server programs from Visual
Basic, PowerBuilder, or ActiveX
Clients via Interspace 367

CALLLINK definition 408
calllink tag

binform attribute
host 418
INTEL 418

contable attribute
binary 415
conversion table name 414
EZECONVT 414
none 414

linktype attribute
cicslink 409
csocall 409

calllink tag (continued)
linktype attribute (continued)

dynamic 409
remote 409
sessionejb 410
static 409

location attribute
EZELOC 415
system name 415

luwcontrol attribute
client 417
server 417

parmform attribute
cicsoslink 412
commdata 412
commptr 411
oslink 411

providerURL attribute
URL 418

remoteapptype attribute
ITF 414
NONVG 414
VG 414
VGJAVA 414

remotebind attribute
generation 417
runtime 417

remotecomtype attribute
appcims 412
ca400 412
cicsclient 412
dce 412
dcesecure 413
direct 413
exci 413
ipc 413
Java400 413
lu2 413
tcpip 413

serverid attribute
server identifier 416

cics
with crtxlink tag 424
with filelink tag 430

CICS
communication links set up 30,

77, 156, 220, 244
parameter format and linkage

combinations 419

© Copyright IBM Corp. 1980, 2001 487



CICS (continued)
printer destination 68, 116, 151,

187, 210, 284
transaction name 30, 78, 156,

220, 244
CICS client

user authentication 29, 77, 155,
220, 244

CICS Client ECI, server
location 114, 146, 185, 208, 282

CICS client ECI, user
authentication 29, 77, 155, 220,
244

CICS DPL
communication links 59, 107,

139, 179, 201, 275
error handling 60, 108, 140, 180,

202, 276
server program set up 68, 117,

151, 187, 211, 285
unit of work 59, 107, 140, 179,

202, 276
user authentication 59, 107, 139,

179, 201, 275
CICS ECI

error handling 31, 78, 157, 221,
245

user authentication 29, 77, 155,
220, 244

CICS server, linkage table
attributes 67, 116, 150, 187, 210,
284

CICS server, single 24
CICS server program set up 67,

115, 185, 209, 283
CICS table entries, for the remote

transaction 385
cicsclient

with calllink tag 412
cicslink

with calllink tag 409
cicsoslink

with calllink tag 412
client

with calllink tag 417
Client Access/400

error handling 74, 218, 242
set up 75, 219, 243
user authentication 73, 218, 242

client program 6
client program, linkage table

attributes 72, 217, 241
client/server calls, generating 15
client/server CREATX calls,

generating 385

client/server programs
CALL statement 9, 13

commit points 20
converting 16
defining a remote

program 13
DL/I 21
generating 15
handling link failures 22
remote location 15
testing 13

converting data format 433
code 439
default conversion tables 435

CREATX service routine 384,
385, 386

coding 384
errors 388
issuing commit points 387
link 387
remote location 385
testing 384

custom conversion 441
defining 3
distributed programs 6
file I/O 393

committing changes 397
converting data format 395
handling errors 397
link failures 396
remote file location 394

local 6
location 6
program flow diagram 9, 384
remote 6
using 383

CMCALL 467
CMCLOSE 468
Cmcod 468
CMCOMMIT 469
Cmcomp 468, 469, 470, 471
CmErrorString 470
CmErrorStringLen 469
CMGETERROR 469
CMINIT 470
CMROLLBK 471
code conversion in Java Virtual

Machine 296
code page, conversion table by

language and platform 437
code page conversion table

DBCS 440
SBCS 439

coding
CALL statement 13

coding (continued)
client/server programs, CREATX

service routine 384
com.ibm.vgj.cso package

classes 292
installing 291

commdata
with calllink tag 412

COMMDATA format 31, 79, 115,
150, 157, 186, 209, 221, 246, 283

commit point
remote called programs 20
remote transactions 387

committing changes
remote called programs 20
remote files 397
remote transactions 387

commptr
with calllink tag 411

COMMPTR format 31, 79, 115, 149,
157, 186, 209, 221, 245, 283

communication links
set up, for CICS 59, 107, 139,

179, 201, 275
set up for CICS 30, 77, 156, 220,

244
set up for IMS 72, 216, 240

communication script verbs 93
configurations

run-time 475
contable attribute

on calllink tag 414
on crtxlink tag 423
on filelink tag 428

conversion
algorithm 433

conversion table
customizing 441
default 435
preparing 441

conversion table, code page, by
language and platform 437

conversion table name
with calllink tag 414
with crtxlink tag 424
with filelink tag 429

conversion table utility 443
conversion tables (CONTABLE

option) 436
conversion tables, using on calls to

server programs 448
conversion tables, using with

EZECONV 448
converting between client and server

data formats 433

488 VisualAge Generator: Client/Server Communications Guide



converting data format 386
ASCII and EBCDIC data

formats 433
client/server programs 433
code page conversion tables,

SBCS 439
coding a custom conversion

table 441
conversion algorithm 433
default conversion tables 435
on a call 16
on a call CREATX 386
when accessing a remote

file 395
converting data format, code page

conversion tables, DBCS 440
cooperative programs

coding 441
custom conversion table for 441

creating linkage table entries 405
CREATX linkage (CRTXLINK) 422
CREATX service routine 383, 384
crtxlink tag

contable attribute
binary 424
conversion table name 424
EZECONVT 424

linktype attribute
local 423
remote 423

location attribute
cics 424
EZELOC 425

cso.application.<applname>
java properties 401

CSO_DUMP_CONV 473
CSO_DUMP_DATA 473
cso.serverLinkage.<group>.<attribute>

java properties 401
csocall

with calllink tag 409
CSOPRMPT 21
CSOTcpipListener 271, 402
CSOTCPS 54, 102, 128, 174, 270
CSOTIMEOUT 473
CSOTROPT 473
CSOTROUT 474
CSOUEXIT 21
CSOUiListener 402
custom conversion table,

coding 441
customization

for the LU 2 protocol 92

D
data

configuring for Java 321
configuring for WebSphere 320

data file conversion, procedure 433
data format 16, 433

ASCII 433
EBCDIC 433

data format conversion
algorithm 433
automatic procedure 433
character strings 360
CICS 31, 78, 157, 221, 245
CICS DPL 60, 108, 140, 180, 202,

276
IMS 72, 217, 241
numerics 360
on a CALL 16
on a CREATX 386
OS/400 73, 218, 242
when accessing a remote

file 395
data formats, converting between

client and server 433
database, remote relational 391
databases, DL/I 21
DBCS and client/server

processing 451
check SO/SI map edit 451
converting variable length

records with mix items 451
dce

with calllink tag 412
dcesecure

with calllink tag 413
default conversion tables 435
default tables for generation 435
defining

a client/server program 3
a remote program 13, 384
CALL CREATX 384
remote files 393
the I/O process options 393

defining conversion tables for
bi-directional attributes 445

definitions for CALLLINK 408
deployment descriptors

modifying 322
destroy method 327
direct

with calllink tag 413
DIRECT and IPC protocols

error handling 42, 44, 89, 91,
164, 165, 256, 258

distributed function 6

DL/I databases 21
doGet or doPost method 327
DXFR linkage (DXFRLINK) 425
dxfrlink tag

linktype attribute
dynamic 426
noncsp 427
static 426

dynamic
with calllink tag 409
with dxfrlink tag 426

E
EBCDIC data format 433
enterprise beans 289
environment variable

CSO_DUMP_CONV 473
CSO_DUMP_DATA 473
CSOTIMEOUT 473
CSOTROPT 473
CSOTROUT 474

error
handling for remote files 397
in programs started by

CREATX 388
error handling 22

CICS DPL 60, 108, 140, 180, 202,
276

CICS ECI 31, 78, 157, 221, 245
Client Access/400 74, 218, 242
IMS 72, 217, 241
TCPIP 45, 95, 166, 231, 259

error handling for remote files 397
error messages

CSO7950E 361
CSO7951E 362
CSO7952E 362
CSO7953E 363
CSO7955E 363
CSO7956E 364
CSO7957E 364

exception handling 361
exci

with calllink tag 413
EXCI

defining connections and
sessions 343

security 344
externalname attribute

on calllink tag 411
EZECOMIT 397
EZECOMIT service routine 20
EZECONV, using conversion tables

with 448

489



EZECONV for redefined CREATX
records 386

EZECONV for redefined
parameters 17, 396

EZECONVT
with calllink tag 414
with crtxlink tag 424
with filelink tag 429

EZELOC
with calllink tag 415
with crtxlink tag 425
with filelink tag 430

EZEROLLB 20, 397
EZERT8 387, 396
EZERT8 special function word 22

F
failures

I/O request 396
START 387

file I/O, client/server
processing 393

file linkage 427
FILE linkage (FILELINK) 427
filelink tag

contable attribute
binary 429
conversion table name 429
EZECONVT 429

linktype attribute
local 428
remote 428

location attribute
cics 430
EZELOC 430

filename attribute
on filelink tag 428

forceNewHandle 470
fromappl attribute

on dxfrlink tag 425

G
generating 385

client/server calls 15
client/server CREATX calls 385
server program 24

generating I/O process options to
remote files 393

generation
with calllink tag 417

generation, default tables for 435
GUI development tools 375
GUIs

building with Interspace 376

H
Hconn 467, 468, 469, 470, 471
host

with calllink tag 418

I
I/O process options

defining 393
testing 393
to remote files, generating 393

ibm.cso package
changing references 295

image
specifying what to load 296

implementing client/server
processing using file I/O 393

IMS
catcher program ELAISVN 135
client program, linkage table

attributes 72, 217, 241
communication links set up 72,

216, 240
data format conversion 72, 217,

241
error handling 72, 217, 241
server 24
server location 134, 216, 240
server program, linkage table

attributes 134
server program set up 135
unit of work 72, 216, 240
user authentication 72, 216, 240

IMS servers
calling by way of APPCIMS

protocol 134
init method 327
INTEL

with calllink tag 418
interfaces requiring a linkage

table 420, 427
interfaces using CALL or DXFR

statements on a single
system 420, 427

Interspace
building GUIs 376
calling server programs 367
defining the server program 368
generating the server

program 375
moving the server program to

other platforms 375
preparing the client environment

for calling the server 376
testing the server program 370

Interspace (continued)
tracing and debugging server

calls 376
tracing communication

errors 376
tracing parameter contents 377
tracing service calls 377

ipc
with calllink tag 413

IPC and DIRECT protocols
advantages 41, 43, 52, 53, 89, 90,

163, 164, 171, 172, 255, 257
error handling 42, 44, 89, 91,

164, 165, 256, 258
ITF

with calllink tag 414

J
Java

data format conversion 360
data types 359
names 357

Java applets
calling server programs 18

Java classes
deploying 350
deprecated 296

Java clients
considerations for testing 14
migrating 295

Java package 290
examples 334

java properties
<listener>.java.command 403
<listener>.port 402
<listener>.trace.file 403
<listener>.trace.flag 403
applname 401
cso.application.<applname> 401
cso.linkagetable.<linktable> 401
cso.serverLinkage.<group>.<attribute> 401
CSOTcpipListener 271, 402
CSOUiListener 402
linkage table 401
server group 401

Java server programs
calling 18

Java servers
calling Java Web transactions 20
calling server programs 18
local call 19
remote calls from 19
remote calls to 20

Java400
with calllink tag 413

490 VisualAge Generator: Client/Server Communications Guide



JavaBeans wrappers 289
calling server wrappers

from applets 335
from Java applications 334

enhancements 297
generated

specifying package name 297
generating

specifying a user ID and
password 298

specifying what to load into
your image 296

regenerating 295

L
library attribute

on calllink tag 408
link failures 22, 387, 396
linkage

table entries
creating 405
sample 430

table entry format 405
tables 405

linkage table
cso.linkagetable.<linktable> 401
java properties 401

linkage table attributes
CICS server 67, 116, 150, 187,

210, 284
client program, IMS 72, 217, 241
for OS/400 Client Access 74,

219, 243
server program, IMS 134

linkage table options
conversion tables

(CONTABLE) 436
linktype attribute

on calllink tag 409
on crtxlink tag 423
on dxfrlink tag 426
on filelink tag 428

local
with crtxlink tag 423
with filelink tag 428

location
of a remote program 15
of processing 6
of the remote file 394
remote transaction 385

location attribute
on calllink tag 415
on crtxlink tag 424
on filelink tag 429

LU 2
protocol 92
protocol, customizations 92

lu2
with calllink tag 413

luwcontrol attribute
on calllink tag 417

M
message queue support 381
message queueing 381
MFLOGOFF.SCR script file 92
MFLOGON.SCR script file 92
MVS CICS, LU 2

customization 151
DSNCRCT 152
ELACLU2 152

N
noncsp

with dxfrlink tag 427
none

with calllink tag 414
NONVG

with calllink tag 414

O
OS/2, server 24
OS/390 Java Support

Graphical User Interfaces 345
linkage table entries 342
MVS CICS setup for EXCI 343
overview 342
Starting the Session Manager

Using JCL 346
OS/400

data format conversion 73, 218,
242

server 24
server program 122
unit of work 73, 218, 242

OS/400 Client Access 73, 218, 242
OS/400 Client Access, linkage table

attributes 74, 219, 243
OS/400 servers, call via OS/400

Client Access 73, 218, 242
oslink

with calllink tag 411

P
package attribute

on crtxlink tag 423
page conversion tables

DBCS 440
SBCS 439

parameter format, CICS 31, 79, 115,
149, 157, 186, 209, 221, 245, 283

parameters
format and linkage combinations

for CICS 419
ParmCount 467
parmform attribute

on calllink tag 411
passing

arguments on a remote call 13
password

specifying 298
Power Server API

tracing and debugging
environment variables 360

PowerServer APIs 453
predefined Interspace functions 371
preparing the client environment for

calling the server via
Interspace 376

printer destination, CICS 68, 116,
151, 187, 210, 284

program flow diagram, using 9,
384

program name
java properties 401

protocol
customizations for the LU 2

communication client 92
providerURL attribute

on calllink tag 418

R
recdname attribute

on crtxlink tag 423
redefined parameters

EZECONV 17, 396
for CICS 17

relational database, remote 391
remote

with calllink tag 409
with crtxlink tag 423
with filelink tag 428

remote files
defining 393
location 394
maintaining position 396

remote location 6
remote program

defining 384
location 15

remote relational databases 391
remote transaction

CICS table entries 385
location 385

491



remoteapptype attribute
on calllink tag 413

remotebind attribute
on calllink tag 417

remotecomtype attribute
on calllink tag 412

REPLY option 22, 387
run-time configurations 475
runtime

with calllink tag 417

S
sample

linkage table entries 430
script file

MFLOGOFF.SCR 92
MFLOGON.SCR 92

script verb
CONNECTPS 93
DISCONNECTPS 93
SEND 93
SETCURSOR 94
WAIT 94
WAITSTRING 94
WRITE 94

server
CICS single 24
non-VisualAge Generator

program 25
program 24
single AIX 24
single IMS 24
single OS/2 24
single OS/400 24
with calllink tag 417

server group
java properties 401

server identifier
with calllink tag 416

server location
CICS Client ECI 114, 146, 185,

208, 282
for CICS 67, 116, 150, 186, 210,

284
IMS 134, 216, 240

server program
CICS 67, 115, 147, 185, 209, 283
Java 268
Java properties 268
linkage

Java 268
linkage table attributes 134
non-VisualAge Generator 122
set up, for CICS DPL 68, 117,

151, 187, 211, 285

server program (continued)
set up for CICS 67, 115, 185,

209, 283
set up for IMS 135
set up for OS/400 122
VisualAge Generator 122

server programs
calling from Visual Basic,

PowerBuilder, or ActiveX
Clients via Interspace 367

server set up
TCPIP 102, 270

server set up, TCPIP 54, 128, 174
serverid attribute

on calllink tag 416
service routine

CALL CREATX 384
client/server programs

CREATX 384, 385, 386
CREATX, issuing commit

points 387
CREATX, remote

location 385
CREATX, testing 384

CREATX 383, 384
service routine,client/server

programs, CREATX, link 387
session bean examples

calling a server program in a
servlet 329

calling a session bean
with a program wrapper 330
without a program

wrapper 331
session beans 298

calling as server 298
deploying 322
deploying in a WebSphere

Advanced Edition 325
EJS container usage 301
EJS transaction demarcation 300
EJS transactions 303
exporting client code 324
exporting deployed code 324
exporting for deployment 323
generating deployed code 323
generation requirements 299
generation/run-time

examples 305
invoking 326
invoking with a generated

program wrapper 327
invoking without a generated

program wrapper 328
linkage attributes 304

session beans 298 (continued)
testing 323
transaction attribute 302

session manager parameters
setting log options 357
setting timeout interval 357
setting trace options 357

sessionejb
with calllink tag 410

static
with calllink tag 409
with dxfrlink tag 426

synchronous program 9
system name

with calllink tag 415

T
tcpip

with calllink tag 413
TCPIP

error handling 45, 95, 166, 231,
259

server set up 102, 270
TCPIP, server set up 54, 128, 174
testing client/server calls 13
testing CREATX calls 384
testing the I/O process options 393
toappl attribute

on dxfrlink tag 425
tracing and debugging server calls

using Interspace 376
tracing communication errors using

Interspace 376
tracing environment variables

errors 360
parameter content 361
service calls 361

tracing parameter contents using
Interspace 377

tracing service calls using
Interspace 377

trademarks xi

U
unit of work

CICS
extended 30, 78, 156, 220,

244
server 30, 78, 156, 221, 245

CICS client 30, 78, 156, 220, 244
CICS DPL 59, 107, 140, 179, 202,

276
IMS 72, 216, 240
OS/400 73, 218, 242

492 VisualAge Generator: Client/Server Communications Guide



URL
with calllink tag 418

user authentication 21
CICS client 29, 77, 155, 220, 244
CICS DPL 59, 107, 139, 179, 201,

275
CICS ECI 29, 77, 155, 220, 244
Client Access/400 73, 218, 242
IMS 72, 216, 240

user ID
specifying 298

V
valid parameter format and link type

for external calls from the test
facility 420

for GUI programs 419
for non-CICS programs 419

VG
with calllink tag 414

Visual Basic application
deploying 374

Visual Basic forms
coding 373

Visual Basic functions
generating functions that call the

server 371
Visual Basic GUIs

building 371
developing for the STFLIST

server program 372
Visual Basic modules 372
Visual Basic program

testing 374
VisualAge Generator Java gateway

specifying Session Manager
options 339

starting the Session
Manager 338

W
Web transaction

CSOTcpipListener 271, 402
CSOUiListener 402

winHandle 470

493



494 VisualAge Generator: Client/Server Communications Guide



Readers’ Comments — We’d Like to Hear from You

VisualAge Generator
Client/Server Communications Guide
Version 4.5

Publication No. SH23-0261-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.



Readers’ Comments — We’d Like to Hear from You
SH23-0261-01

SH23-0261-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg 062
P.O. Box 12195
Research Triangle Park, NC
27709-2195

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_





����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH23-0261-01


	Contents
	Notices
	Trademarks
	Terminology used in this document
	Terminology differences between Java and Smalltalk


	About This Document
	Who Should Use This Document
	Documentation provided with VisualAge Generator

	Part 1. Client/Server Concepts
	Chapter 1. Introduction to Client/Server ProgramDevelopment
	Paradigms for Defining Client/Server Programs
	Client/Server Communication
	Considerations for Defining Client/Server Programs
	Client/Server Processing Terminology

	Part 2. Client or Server Configuration by Platform andProtocol
	Chapter 2. Introduction to Client/Server Processing withSynchronous Calls
	Client Systems
	Server Systems
	Supported Middleware
	Overview of Supported Environments
	Defining a Remote Program
	Defining the CALL Statement
	Testing Client/Server Calls
	Considerations for Testing Java Clients

	Generating Client/Server Programs
	Identifying the Location of a Server Program
	Controlling Data Format Conversion on a CALL
	Format Conversion for Multi-format Parameters
	Format Conversion for Portable Clients and Servers

	Calling Server Programs from 4GL Java Clients
	Calling Server Programs from Java Applets
	Calls between Server Programs and VAGen Java Server Programs
	Local Calls to VAGen Java Server Programs
	Remote Calls from Java Server Programs
	Remote Calls to Java Server Programs
	Calling Java Web Transactions

	Committing Changes for Remote Called Programs
	User Authentication
	Accessing DL/I Databases in Remote Called Programs
	Communication Error Handling
	Communication Failures
	Errors in Generated Server Programs

	Single Server for Local and Remote Client Programs
	Single CICS Server
	Single Servers for OS/2, AIX, OS/400, and IMS

	Calling Non-VisualAge Generator Server Programs

	Chapter 3. AIX Platform
	How to use this chapter
	Configuring an AIX Client
	Summary Table of Valid Servers and Protocols
	CICS Client Protocol
	User Authentication
	Setting Up Communication Links
	Identifying the CICS Transaction for the Server
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Specifying Parameter Format
	Configuring an AIX Client for a CICS for OS/2 Server
	Configuring an AIX Client for a CICS for Windows NT Server
	Configuring an AIX Client for a CICS for AIX Server
	Configuring an AIX Client for a CICS for MVS/ESA Server
	Configuring an AIX Client for a VSECICS Server
	Configuring an AIX Client for a CICS for Solaris Server

	DCE Protocol
	Processing Flow for VisualAge Generator DCE Common Services RemoteCall
	User Authentication and Authorization
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring an AIX Client for an OS/2 Server
	Configuring an AIX Client for a Windows NT Server
	Configuring an AIX Client for an AIX Server

	DIRECT Protocol
	Advantages of IPC and DIRECT Protocols
	Error Handling
	Configuring an AIX Client for an AIX Server

	IPC Protocol
	Advantages of IPC and DIRECT Protocols
	Error Handling
	Configuring an AIX Client for an AIX server

	TCP/IP Protocol
	Creating a TCP/IP Services File Entry
	Error Handling
	Configuring an AIX Client for an OS/2 server
	Configuring an AIX client for a Windows NT server
	Configuring an AIX Client for an AIX server
	Configuring an AIX client for an HP-UX server
	Configuring an AIX Client for a Solaris server
	Configuring an AIX Client for a VM/ESA server


	Configuring an AIX Server
	Summary Table of Valid Clients and Protocols
	DCE Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating Server Programs
	DCE CDS Entries Required for VisualAge Generator DCE Servers
	Starting the DCE Server Program

	DIRECT Protocol
	List of Valid Clients
	Advantages of IPC and DIRECT Protocols
	Identifying a C++ Server Location

	IPC Protocol
	List of Valid Clients
	Advantages of IPC and DIRECT Protocols
	Identifying the Server Location

	TCP/IP Protocol
	List of Valid Clients
	Identifying a C++ Server Location
	Server Program Set Up and Operation



	Chapter 4. CICS for AIX Platform
	How to use this chapter
	Configuring a CICS for AIX Client
	Summary Table of Valid Servers and Protocols
	CICS DPL Protocol
	User Authentication
	Setting Up Communication Links
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a CICS for AIX Client for a CICS for OS/2 Server
	Configuring a CICS for AIX Client for a CICS for Windows NT Server
	Configuring a CICS for AIX Client for a CICS for AIX Server
	Configuring a CICS for AIX Client for a CICS for MVS/ESA Server
	Configuring a CICS for AIX Client for a CICS for VSE/ESA Server
	Configuring a CICS for AIX Client for a CICS for Solaris Server


	Configuring a CICS for AIX Server
	Summary Table of Valid Clients and Protocols
	CICS Client Protocol
	List of Valid Clients
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Server Program Set Up
	Specifying Parameter Format

	CICS DPL Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Server Program Set Up



	Chapter 5. OS/2 Platform
	How to use this chapter
	Configuring an OS/2 Client
	Summary Table of Valid Servers and Protocols
	APPC/IMS Protocol
	User Authentication
	Setting Up Communication Links
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring an OS/2 Client for an IMS Server

	Client Access/400 Protocol
	User Authentication
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring an OS/2 Client for an OS/400 Server

	CICS Client Protocol
	User Authentication
	Setting Up Communication Links
	Identifying the CICS Transaction for the Server
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Specifying Parameter Format
	Configuring an OS/2 Client for a CICS for OS/2 Server
	Configuring an OS/2 Client for a CICS for Windows NT Server
	Configuring an OS/2 Client for a CICS for AIX Server
	Configuring an OS/2 Client for a CICS for MVS/ESA Server
	Configuring an OS/2 Client for a CICS for VSE/ESA Server
	Configuring an OS/2 Client for a CICS for Solaris Server

	DCE Protocol
	Processing Flow for VisualAge Generator DCE Common Services RemoteCall
	User Authentication and Authorization
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring an OS/2 Client for an OS/2 Server
	Configuring an OS/2 Client for a Windows NT Server
	Configuring an OS/2 Client for an AIX Server

	DIRECT Protocol
	Error Handling
	Configuring an OS/2 Client for an OS/2 Server

	IPC Protocol
	Advantages of IPC and DIRECT Protocols
	Error Handling
	Configuring an OS/2 Client for an OS/2 Server

	LU2 Protocol
	Customizing a Communication Client for LU2
	Configuring an OS/2 Client for a CICS for MVS/ESA Server

	TCP/IP Protocol
	Creating a TCP/IP Services File Entry
	Error Handling
	Configuring an OS/2 Client for an OS/2 Server
	Configuring an OS/2 Client for a Windows NTServer
	Configuring an OS/2 Client for an AIX Server
	Configuring an OS/2 Client for an HP-UX Server
	Configuring an OS/2 Client for a Solaris Server
	Configuring an OS/2 Client for a VM/ESA Server


	Configuring an OS/2 Server
	Summary Table of Valid Clients and Protocols
	DCE Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating Server Programs
	DCE CDS Entries Required for VisualAge Generator DCE Servers

	DIRECT Protocol
	List of Valid Clients
	Linkage Table Attributes for Generating Server Programs
	Identifying a C++ Server Location

	IPC Protocol
	List of Valid Clients
	Linkage Table Attributes for Generating Server Programs
	Identifying the Server Location

	TCP/IP Protocol
	List of Valid Clients
	Linkage Table Attributes for Generating Server Programs
	Identifying a C++ Server Location
	C++ Server Program Set Up and Operation



	Chapter 6. CICS for OS/2 Platform
	How to use this chapter
	Configuring a CICS for OS/2 Client
	Summary Table of Valid Servers and Protocols
	CICS DPL Protocol
	User Authentication
	Setting Up Communication Links
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a CICS for OS/2 Client for a CICS for OS/2 Server
	Configuring a CICS for OS/2 Client for a CICS for Windows NT Server
	Configuring a CICS for OS/2 Client for a CICS for AIX Server
	Configuring a CICS for OS/2 Client for a CICS for MVS/ESA Server
	Configuring a CICS for OS/2 Client for a CICS for VSE/ESA Server
	Configuring a CICS for OS/2 Client for a CICS for Solaris Server


	Configuring a CICS for OS/2 Server
	Summary Table of Valid Clients and Protocols
	CICS Client Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Server Program Set Up
	Specifying Parameter Format

	CICS DPL Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Server Program Set Up



	Chapter 7. OS/400 Platform
	How to use this chapter
	Configuring an OS/400 Client
	Summary Table of Valid Servers and Protocols

	Configuring an OS/400 Server
	Summary Table of Valid Clients and Protocols
	Client Access/400 Protocol
	List of Valid Clients
	Server Program Set Up



	Chapter 8. HP-UX Platform
	How to use this chapter
	Configuring an HP-UX Client
	Summary Table of Valid Servers and Protocols

	Configuring an HP-UX Server
	Summary Table of Valid Clients and Protocols
	TCP/IP Protocol
	List of Valid Clients
	Identifying a C++ Server Location
	Linkage Table Attributes for Generating Server Programs
	Server Program Set Up and Operation



	Chapter 9. IMS Platform
	How to use this chapter
	Configuring an IMS Client
	Summary Table of Valid Servers and Protocols

	Configuring an IMS Server
	Summary Table of Valid Clients and Protocols
	APPC/IMS Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating IMS Server Programs
	Server Program Set Up and Operation



	Chapter 10. CICS for MVS/ESA Platform
	How to use this chapter
	Configuring a CICS for MVS/ESA Client
	Summary Table of Valid Servers and Protocols
	CICS DPL Protocol
	User Authentication
	Setting Up Communication Links
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a CICS for MVS/ESA Client for a CICS for OS/2 Server
	Configuring a CICS for MVS/ESA Client for a CICS for Windows NTServer
	Configuring a CICS for MVS/ESA Client for a CICS for AIX Server
	Configuring a CICS for MVS/ESA Client for a CICS for MVS/ESA Server
	Configuring a CICS for MVS/ESA Client for a CICS for VSE/ESA Server
	Configuring a CICS for MVS/ESA Client for a CICS for Solaris Server


	Configuring a CICS for MVS/ESA Server
	Summary Table of Valid Clients and Protocols
	CICS Client Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Customizing CICS for MVS/ESA for Called VAGen Server Programs
	Specifying Parameter Format

	CICS DPL Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Server Program Set Up

	LU2 Protocol
	List of Valid Clients
	Linkage Table Attributes for Generating Server Programs
	Customizing an MVS CICS Communication Server for LU2



	Chapter 11. Solaris Platform
	How to use this chapter
	Configuring a Solaris Client
	Summary Table of Valid Servers and Protocols
	CICS Client Protocol
	User Authentication
	Setting Up Communication Links
	Identifying the CICS Transaction for the Server
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Specifying Parameter Format
	Configuring a Solaris Client for a CICS for OS/2 Server
	Configuring a Solaris Client for a CICS for Windows NT Server
	Configuring a Solaris Client for a CICS for AIX Server
	Configuring a Solaris Client for a CICS for MVS/ESA Server
	Configuring a Solaris Client for a VSECICS Server
	Configuring a Solaris Client for a CICS for Solaris Server

	DIRECT Protocol
	Advantages of IPC and DIRECT Protocols
	Error Handling
	Configuring a Solaris Client for an AIX Server

	IPC Protocol
	Advantages of IPC and DIRECT Protocols
	Error Handling
	Configuring a Solaris Client for an AIX server

	TCP/IP Protocol
	Creating a TCP/IP Services File Entry
	Error Handling
	Configuring a Solaris Client for an OS/2 server
	Configuring a Solaris client for a Windows NT server
	Configuring a Solaris Client for an AIX server
	Configuring a Solaris client for an HP-UX server
	Configuring a Solaris Client for a Solaris server
	Configuring a Solaris Client for a VM/ESA server


	Configuring a Solaris Server
	Summary Table of Valid Clients and Protocols
	DIRECT Protocol
	List of Valid Clients
	Advantages of IPC and DIRECT Protocols
	Identifying a C++ Server Location

	IPC Protocol
	List of Valid Clients
	Advantages of IPC and DIRECT Protocols
	Identifying the Server Location

	TCP/IP Protocol
	List of Valid Clients
	Identifying a C++ Server Location
	Server Program Set Up and Operation



	Chapter 12. CICS for Solaris Platform
	How to use this chapter
	Configuring a CICS for Solaris Client
	Summary Table of Valid Servers and Protocols
	CICS DPL Protocol
	User Authentication
	Setting Up Communication Links
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a CICS for Solaris Client for a CICS for OS/2 Server
	Configuring a CICS for Solaris Client for a CICS for Windows NT Server
	Configuring a CICS for Solaris Client for a CICS for AIX Server
	Configuring a CICS for Solaris Client for a CICS for MVS/ESA Server
	Configuring a CICS for Solaris Client for a CICS for VSE/ESA Server


	Configuring a CICS for Solaris Server
	Summary Table of Valid Clients and Protocols
	CICS Client Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Server Program Set Up
	Specifying Parameter Format

	CICS DPL Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Server Program Set Up



	Chapter 13. VM/ESA Platform
	How to use this chapter
	Configuring a VM/ESA Client
	Summary Table of Valid Servers and Protocols

	Configuring a VM/ESA Server
	Summary Table of Valid Clients and Protocols
	TCP/IP Protocol
	List of Valid Clients
	Identifying a C++ Server Location
	Linkage Table Attributes for Generating Server Programs
	Server Program Set Up and Operation



	Chapter 14. CICS for VSE/ESA Platform
	How to use this chapter
	Configuring a CICS for VSE/ESA Client
	Summary Table of Valid Servers and Protocols
	CICS DPL Protocol
	User Authentication
	Setting Up Communication Links
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a CICS for VSE/ESA Client for a CICS for OS/2 Server
	Configuring a CICS for VSE/ESA Client for a CICS for Windows NTServer
	Configuring a CICS for VSE/ESA Client for a CICS for AIX Server
	Configuring a CICS for VSE/ESA Client for a CICS for MVS/ESA Server
	Configuring a CICS for VSE/ESA Client for a CICS for VSE/ESAServer
	Configuring a CICS for VSE/ESA Client for a CICS for Solaris Server


	Configuring a CICS for VSE/ESA Server
	Summary Table of Valid Clients and Protocols
	CICS Client Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Server Program Set Up
	Specifying Parameter Format

	CICS DPL Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Server Program Set Up



	Chapter 15. Windows 95 and Windows 98 Platform
	How to use this chapter
	Configuring a Windows 95 and Windows 98 Client
	Summary Table of Valid Servers and Protocols
	APPC/IMS Protocol
	User Authentication
	Setting Up Communication Links
	Identifying the Server Location
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a Windows 95 and Windows 98 Client for an IMS Server

	Client Access/400 Protocol
	User Authentication
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a Windows 95 and Windows 98 Client for an OS/400 Server

	CICS Client Protocol
	User Authentication
	Setting Up Communication Links
	Identifying the CICS Transaction for the Server
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Specifying Parameter Format
	Configuring a Windows 95 and Windows 98 Client for a CICS for AIXServer
	Configuring a Windows 95 and Windows 98 Client for a CICS for OS/2Server
	Configuring a Windows 95 and Windows 98 Client for a CICS forWindows NT Server
	Configuring a Windows 95 and Windows 98 Client for an MVS CICSServer
	Configuring a Windows 95 and Windows 98 Client for a VSECICS Server
	Configuring a Windows 95 and Windows 98 Client for a CICS for SolarisServer

	DCE Protocol
	Processing Flow for VisualAge Generator DCE Common Services RemoteCall
	User Authentication and Authorization
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a Windows 95 and Windows 98 Client for an OS/2 Server
	Configuring a Windows 95 and Windows 98 Client for a Windows NTServer
	Configuring a Windows 95 and Windows 98 Client for an AIX Server

	TCP/IP Protocol
	Creating a TCP/IP Services File Entry
	Error Handling
	Configuring an Windows 95 and Windows 98 Client for an OS/2 Server
	Configuring an Windows 95 and Windows 98 Client for aWindows NTServer
	Configuring an Windows 95 and Windows 98 Client for an AIX Server
	Configuring an Windows 95 and Windows 98 Client for an HP-UX Server
	Configuring an Windows 95 and Windows 98 Client for a Solaris Server
	Configuring an Windows 95 and Windows 98 Client for a VM/ESA Server


	Configuring a Windows 95 and Windows 98 Server
	Summary Table of Valid Clients and Protocols


	Chapter 16. Windows NT Platform
	How to use this chapter
	Configuring a Windows NT Client
	Summary Table of Valid Servers and Protocols
	APPC/IMS Protocol
	User Authentication
	Setting Up Communication Links
	Identifying the Server Location
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a Windows NT Client for an IMS Server

	Client Access/400 Protocol
	User Authentication
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a Windows NT Client for an OS/400 Server

	CICS Client Protocol
	User Authentication
	Setting Up Communication Links
	Identifying the CICS Transaction for the Server
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Specifying Parameter Format
	Configuring a Windows NT Client for a CICS for AIX Server
	Configuring a Windows NT Client for a CICS for OS/2 Server
	Configuring a Windows NT Client for a CICS for Windows NT Server
	Configuring a Windows NT Client for an CICS for MVS/ESA Server
	Configuring a Windows NT Client for a VSECICS Server
	Configuring a Windows NT Client for a CICS for Solaris Server

	DCE Protocol
	Processing Flow for VisualAge Generator DCE Common Services RemoteCall
	User Authentication and Authorization
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a Windows NT Client for an OS/2 Server
	Configuring a Windows NT Client for a Windows NT Server
	Configuring a Windows NT Client for an AIX Server

	DIRECT Protocol
	Advantages of IPC and DIRECT Protocols
	Error Handling
	Configuring a Windows NT Client for an Windows NT Server

	IPC Protocol
	Advantages of IPC and DIRECT Protocols
	Error Handling
	Configuring a Windows NT Client for an Windows NT Server

	TCP/IP Protocol
	Creating a TCP/IP Services File Entry
	Error Handling
	Configuring a Windows NT Client for an OS/2 Server
	Configuring a Windows NT Client for a Windows NT Server
	Configuring a Windows NT Client for an AIX Server
	Configuring a Windows NT Client for an HP-UX Server
	Configuring a Windows NT Client for a Solaris Server
	Configuring a Windows NT Client for a VM/ESA Server


	Configuring a Windows NT Server
	Summary Table of Valid Clients and Protocols
	DCE Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating Server Programs
	DCE CDS Entries Required for VisualAge Generator DCE Servers
	Starting the DCE Server Program

	DIRECT Protocol
	List of Valid Clients
	Identifying a C++ Server Location
	Identifying a Java Server Location
	Java Server Program Example Linkage

	IPC Protocol
	List of Valid Clients
	Identifying the Server Location

	TCP/IP Protocol
	List of Valid Clients
	Identifying a C++ Server Location
	Identifying a Java Server Location
	Java Server Program Example Linkage
	C++ Server Program Set Up and Operation
	Java Server Program Set Up and Operation



	Chapter 17. CICS for Windows NT Platform
	How to use this chapter
	Configuring a CICS for Windows NT Client
	Summary Table of Valid Servers and Protocols
	CICS DPL Protocol
	User Authentication
	Setting Up Communication Links
	Controlling the Unit of Work
	Data Format Conversion
	Error Handling
	Configuring a CICS for Windows NT Client for a CICS for OS/2 Server
	Configuring a CICS for Windows NT Client for a CICS for Windows NTServer
	Configuring a CICS for Windows NT Client for a CICS for AIX Server
	Configuring a CICS for Windows NT Client for a CICS for MVS/ESAServer
	Configuring a CICS for Windows NT Client for a CICS for VSE/ESAServer
	Configuring a CICS for Windows NT Client for a CICS for Solaris Server


	Configuring a CICS for Windows NT Server
	Summary Table of Valid Clients and Protocols
	CICS Client Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Server Program Set Up
	Specifying Parameter Format

	CICS DPL Protocol
	List of Valid Clients
	Identifying the Server Location
	Linkage Table Attributes for Generating CICS Server Programs
	Considerations for Defining the Server Program
	Server Program Set Up



	Part 3. Java Wrappers and Enterprise Beans
	Chapter 18. VisualAge Generator JavaBeans Wrappers andEnterprise Beans
	VisualAge Generator Java Package
	Supplemental Documentation
	Uncompressing the Supplemental Documentation File on Windows NT
	Uncompressing the Supplemental Documentation File on OS/2
	Uncompressing the Supplemental Documentation File on AIX

	Installing the com.ibm.vgj.cso Package for V4.5
	com.ibm.vgj.cso Package Classes

	Migrating Java Clients from Previous Releases
	Regenerate JavaBeans Wrappers
	Change References to the ibm.cso Package
	Deprecated Classes
	Conversion in Java Virtual Machine
	Specifying What to Load into Your Image for Generation
	Specifying Package Name for Generated JavaBeans Wrappers
	Starting a Remote Unit of Work for Applets
	Enhancements in VisualAge Generator Developer on Java V4.5

	Specifying a User ID and Password
	Calling Server Programs as Session Beans
	Requirements for Generating Session Beans that Participate in EJSTransactions
	EJS Transaction Demarcation for Generated Session Beans
	EJS Container Usage of a Session Bean's Transaction Attribute forTransaction Demarcation
	Using the Transaction Attribute to Control Transaction Demarcation
	Implementing Client Controlled EJS Transactions
	VisualAge Generator Runtime Usage of Linkage Attributes
	Generation/Runtime Setup Examples
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5
	Scenario 6
	Scenario 7
	Configuring Data Sources in WebSphere Advanced Edition V3.5
	Configuring the Java Server Runtime to Access EJS Data Sources
	Modifying Deployment Descriptors

	Deploying Generated Session Beans
	Generating Deployed Code for a Generated Session Bean
	Testing a Generated Session Bean
	Exporting a Session Bean for Deployment
	Exporting Java Server Programs Called By a Session Bean
	Deploying Session Beans in WebSphere Advanced Edition

	Invoking Generated Session Beans
	Invoking a Session Bean Using a Generated Program Wrapper
	Invoking a Session Bean Without Using a Generated Program Wrapper
	Examples of Calling a Server Program In a Servlet Using a Session Bean


	Java Package Examples
	How to Call Server Wrappers from Java Applications
	How to Call Server Wrappers from Applets
	How to Run Applets From a Browser
	How to Start the Session Manager on your VisualAge Generator Javagateway
	Specifying Session Manager Options

	Java Support for OS/390 Unix Systems
	Linkage Table Entries for OS/390 Java Support
	MVS CICS Setup for EXCI
	Defining Connections and Sessions for EXCI
	External CICS Interface Security

	Graphical User Interfaces and OS/390
	Starting the Session Manager Using JCL
	Setting Environment Variables for BPXBATCH
	Shell Script for Starting Servers from BPXBATCH
	JCL for Starting Servers from BPXBATCH


	Java Support for AS/400 Servers
	User Authentication
	Linkage Table Entries for AS/400 Java Support
	Graphical User Interfaces and AS/400
	Requirements for Client and AS/400 Server

	Deploying Java Classes
	Deploying Classes Without Using Archive Files
	Deploying Classes Using Archive Files

	Applet Session Manager
	Monitoring Active Sessions
	Monitoring Called Programs
	Canceling Sessions
	Tracing Sessions
	Tracing Server Programs
	Adding a Program to the Called Application List
	Setting Session Manager Parameters
	Timeout Interval
	Trace Options
	Log Options


	Java Names
	Data Type Mapping
	Data Format Conversion Considerations
	Numeric Conversion Considerations
	Character String Conversion Considerations

	Power Server API Tracing and Debugging Environment Variables
	Tracing Errors
	Tracing Service Calls
	Tracing Parameter Contents

	Exception Handling
	CSO7950E
	CSO7951E
	CSO7952E
	CSO7953E
	CSO7955E
	CSO7956E
	CSO7957E


	Part 4. Calling Server Programs from Non-VisualAgeGenerator Clients
	Chapter 19. Using Interspace to Call Server Programs fromVisual Basic, PowerBuilder, or ActiveX Clients
	Defining the Server Program Interface
	Testing the Server Program
	Building Visual Basic GUIs
	Generating Visual Basic Functions that Call the Server
	Predefined Interspace Functions
	Developing A Visual Basic GUI for the STFLIST Server Program
	Visual Basic Modules
	Adding a Main Subroutine
	Coding the Visual Basic Forms
	Testing the Visual Basic Program
	Deploying The Visual Basic Application
	Moving the Server Program to Other Platforms
	Using A Different GUI Development Tool
	Generating the Server Program
	Building GUIs
	Preparing the Client Environment for Calling the Server
	Tracing and Debugging Server Calls
	Tracing Communication Errors
	Tracing Service Calls
	Tracing Parameter Contents


	Part 5. Distributed Logic Using AsynchronousProcessing
	Chapter 20. Implementing Client/Server Processing Usingthe Message Queue Interface
	Chapter 21. Implementing Client/Server Processing in CICSUsing the CREATX Service Routine
	Defining a Remote Program
	Defining the CALL CREATX Statement
	Testing CREATX Calls
	Generating Client/Server CREATX Calls
	Identifying the Location of the Remote Transaction
	Converting Data Format on a Call CREATX
	Using the EZECONV Service for Redefined CREATX Records
	Handling Link Failures
	Committing Changes in Remote Transactions
	Detecting Errors in Programs Started by CREATX

	Part 6. Distributed Data
	Chapter 22. Accessing Remote Relational Databases
	Chapter 23. Accessing Distributed Files in CICS
	Defining Remote Files
	Defining the I/O Process Options
	Testing the I/O Process Options
	Generating I/O Process Options to Remote Files
	Identifying the Location of the Remote File
	Converting Data Format when Accessing a Remote File
	Using the EZECONV Service for Redefined Parameters
	Maintaining Position in Remote Files
	Handling Link Failures
	Committing Changes to Remote Files
	Handling Errors

	Part 7. Appendixes
	Appendix A. Java properties
	Linkage properties
	Java server communication properties

	Appendix B. Linkage tables
	Creating a linkage table
	Specifying CALL linkage (CALLLINK)
	Definitions for CALLLINK
	Valid parameter formats and linkage combinations by platform
	Interfaces requiring a linkage table
	Specifying CREATX linkage (CRTXLINK)
	Definitions for CRTXLINK

	Specifying DXFR linkage (DXFRLINK)
	Definitions for DXFRLINK

	Interfaces requiring a linkage table
	Specifying File linkage (FILELINK)
	Definitions for FILELINK

	Sample linkage table entries


	Appendix C. Converting Between Client and Server DataFormats
	Conversion Algorithm
	Avoiding Data Format Conversion Problems
	Windows Clients and OS/2, AIX, HP-UX, and Solaris Servers

	Default Tables for Test and Run-time Data Conversion
	Default Tables for Generation
	Conversion Table by Language and Platform
	SBCS Languages Code Page by Platform
	DBCS Languages Code Page by Platform


	Defining Custom Conversion Tables
	Defining Conversion Table Files for OS/2 and AIX Systems
	Defining Conversion Table Modules for MVS, VSE, and Windows Systems
	SBCS Conversion Table Source Format
	DBCS Conversion Table Source Format
	Using the Build Conversion Table Utility
	Installing the Conversion Table on MVS or VSE
	Installing the Conversion Table on Windows

	Bi-Directional Languages Attribute Conversion
	Defining Conversion Tables for Bi-Directional Attributes
	BIDI Attribute Conversion Utility for ESF Files Downloaded From the Host

	Using Conversion Tables with EZECONV
	Using Conversion Tables on Calls to Server Programs


	Appendix D. DBCS and Client/Server Processing
	Check SO/SI Map Edit
	Converting Variable Length Records with MIX Items

	Appendix E. VisualAge PowerServer APIs
	Client Systems
	Server Systems
	Supported Middleware
	Coding the Client Program
	Data Type Descriptions
	Structure Definitions
	CMCOD - Call Options Descriptor
	CMCOMP - Completion Status Descriptor
	CMDESC - Parameter structure description
	CMPARMLEN - Parameter Length Descriptor
	CMITEM - Parameter Item Descriptor
	CMOCCURS - Occurring Structure Descriptor
	CMPARMEND - Parameter Descriptor End Marker
	Example - Parameter and Descriptor Definitions in C


	Call Descriptions
	CMCALL — Call Remote Server Program
	Parameters
	Usage
	CMCLOSE — Close Communications Session
	Parameters
	Usage
	CMCOMMIT — Commit Unit of Work
	Parameters
	Usage
	CMGETERROR — Get Error String
	Parameters
	Usage
	CMINIT — Initialize Communications Session
	Parameters
	Usage
	CMROLLBK — Rollback Unit of Work
	Parameters
	Usage

	Compiling and Linking the Client Program
	OS/2
	Compile options:
	Link libraries:

	AIX
	Compile options:
	Link libraries:

	Windows NT and Windows 95
	Compile options:
	Link libraries:


	User Authentication
	Error Handling

	Appendix F. Run-time configurations for VisualAgeGenerator
	 
	Readers’ Comments — We'd Like to Hear from You

