

IBM FlowMark IBM

Application Integration Guide
Version 2 Release 3

 SH12-6267-01

IBM FlowMark IBM

Application Integration Guide
Version 2 Release 3

 SH12-6267-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”

on page ix.

Second Edition, December 1996

This is a major revision of, and obsoletes, SH12-6267-00.

This edition applies to Version 2 Release 3 of IBM FlowMark (5697-216) and to all subsequent releases and

modifications until otherwise indicated in new editions or technical newsletters.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not

stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you

may address your comments to the following address:

IBM Deutschland Entwicklung GmbH

Information Development, Dept. 0446

 Postfach 1380

 71003 Boeblingen

 Germany

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way

it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is

subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix

Trademarks and service marks . ix

About this book . xi

Who should read this book . xi

How this book is organized . xi

Conventions used in this book . xii

Chapter 1. Integration overview . 1

Integration concepts . 1

About Service Broker Manager . 2

About service brokers . 2

About services and service functions . 4

About service requesters . 4

How these pieces fit together . 5

Chapter 2. Using the Service Broker Manager for OS/2 7

Service Broker Manager modes . 7

Starting Service Broker Manager . 8

Stopping Service Broker Manager . 9

Defining the Service Broker Manager resources 10

Displaying brokers . 10

Displaying different views of brokers . 10

Changing the details view . 12

Refreshing the display of brokers . 12

Viewing the monitor . 13

Managing brokers . 15

Displaying settings for a broker . 16

Registering a new broker . 16

Deleting a broker . 20

Loading and unloading a broker . 20

Starting and stopping a broker . 21

Displaying services for a broker . 22

Displaying different views of services . 23

Refreshing the display of services . 24

Managing broker services . 25

Displaying settings for a service . 26

Registering a new service . 26

Deleting a service . 29

Loading and unloading a service . 30

Starting and stopping a service . 30

Dynamic start of services . 31

Chapter 3. FlowMark service broker . 33

FlowMark service broker library . 33

 Copyright IBM Corp. 1996 iii

FlowMark requester . 34

Using the FlowMark requester . 34

FlowMark service functions . 35

Starting a process instance . 36

Suspending a running process instance . 37

Resuming a suspended process instance 37

Terminating a running process instance . 38

Restarting a process instance . 39

Changing the status of an activity . 39

Sample service requester calling function FMRequest() 40

FlowMark service broker demo . 42

Chapter 4. FlowMark—Lotus Notes interface 43

Lotus Notes service broker library . 43

Lotus Notes broker . 44

Lotus Notes requester . 44

Using the Lotus Notes requester . 44

Lotus Notes service functions . 45

Type mapping . 50

Chapter 5. FlowMark—VisualAge integration 51

Installing the VisualAge source code . 51

VisualAge parts for the service broker . 51

VisualAge parts for the FlowMark C language API 52

VisualAge broker programming examples 53

Service broker library . 55

Developing VisualAge applications for FlowMark 56

Registering a VisualAge application . 56

Requirements for VisualAge applications . 58

Accessing the FlowMark C container API . 60

Accessing the FlowMark C process API . 62

Testing your VisualAge application . 63

Parts provided with the package . 64

Function Data . 64

FmBrokerTemplate . 66

FmBrokerWindow . 67

FmFunctionData . 68

Current Activity . 68

Input Container . 73

Output Container . 75

FlowMark Session . 78

FlowMark Activity . 79

FlowMark Process . 82

FmApiLibrary . 86

FmError . 88

FmContainer . 89

FmInputContainer . 90

FmOutputContainer . 91

iv Application Integration Guide

FmContainerItem . 92

FmStartDataItem . 93

FmExmApiBegin . 94

FmExmApiTypeInfo . 95

FmExmApiStructureData . 96

FmMaintainProcess . 97

FmDisplayActivity . 98

FmMaintainContainer . 99

FmMaintainData . 100

Chapter 6. Creating your own service brokers 101

Designing service brokers and services . 101

C language conventions . 101

Implementing a service broker . 102

Implementation . 102

Description of functions . 103

Using the C language service broker API . 110

Implementing a service . 116

Implementation . 116

Description of functions . 118

Implementing a service requester . 125

Using the C language service requester API 126

Using the REXX language service requester API 136

Using the standard service requester . 144

Using the standard external controller . 145

Debugging service brokers and services . 145

Sample files . 146

Sample service broker DLL (SAMPBROK.C) 146

Sample service DLL (SAMPSERV.C) . 148

Sample C language service requester (SAMPREQ.C) 150

Sample REXX language service requester (EXMP3SRX.CMD) 152

Chapter 7. The Service Broker Manager for Windows 155

About the Service Broker Manager for Windows 155

Starting the Service Broker Manager for Windows 156

Implementing a service broker on Windows . 157

Broker_GetDllVersion function . 158

Broker_GetVersion . 158

Broker_Init . 159

Broker_Exit . 160

Broker_Logon . 161

Broker_Logoff . 162

LibMain (for Windows 3.1) . 163

Building the service broker DLL . 164

Implementing a service on Windows . 165

Service_CheckBroker . 167

Service_Init . 168

Service_Exit . 169

 Contents v

Service_Start . 169

Service_Stop . 170

LibMain (for Windows 3.1) . 171

Implementing a service function . 172

Building the service DLL . 176

Implementing a service requester . 177

Calling a service function . 177

Sample service requester for Windows 3.1 179

Using the standard service requester on Windows 3.1 180

Using the FlowMark requester . 180

Chapter 8. Building block for MQSeries support 181

Restrictions . 181

MQSeries definitions . 181

Customizing the MQSeries definitions . 182

Setting up FlowMark . 186

Preparing the sample processes . 186

Using the sample processes . 186

Sample scenarios . 187

Starting FlowMark for MVS/ESA from FlowMark on OS/2 or AIX 188

Controlling FlowMark for MVS/ESA from FlowMark on OS/2 or AIX 190

Starting FlowMark on OS/2 or AIX from FlowMark for MVS/ESA 191

Controlling FlowMark on OS/2 or AIX from FlowMark for MVS/ESA 193

Starting FlowMark on OS/2 or AIX from FlowMark on OS/2 or AIX 194

Controlling FlowMark on OS/2 or AIX from FlowMark on OS/2 or AIX 196

General considerations . 197

Unique process-instance ID . 197

Process tracking and alert events . 197

Predefined data structures . 197

Sample FDL . 198

Sample MQSeries definitions . 198

EXMP2ASD . 198

EXMP2ASD return data . 199

EXMP2ASD message handling . 200

EXMP2ASP . 200

EXMP2ASP return data . 200

EXMP2ARM . 200

EXMP2ARM return data . 201

EXMP2ARM message handling . 201

EXMP2ARV . 201

EXMP2ARV return data . 202

EXMP2ARV message handling . 202

EXMP2ASV . 202

EXMP2ASV return data . 203

EXMP2ASV message handling . 203

Chapter 9. Building block for AS/400 support 205

MQSeries definitions for AS/400 support . 205

vi Application Integration Guide

Customizing the MQSeries definitions for AS/400 access 206

Customizing the MQSeries definitions for controlling FlowMark processes from

the AS/400 . 211

Accessing AS/400 applications from FlowMark processes 211

Sample scenario for AS/400 access . 213

General considerations . 215

EXMP24SD . 215

EXMP24RC . 216

FlowMark Program Access . 217

Controlling FlowMark processes from AS/400 applications 218

EXMP24SV . 219

Send FlowMark request (SNDFLMRQS) . 220

Appendix A. Ways to integrate FlowMark and Lotus Notes 223

Overview . 223

FlowMark service broker . 223

Lotus Notes service broker . 223

Runtime client for Lotus Notes . 224

Tips for selecting the appropriate component 224

Scenario 1: Two organizations, one using FlowMark, the other Lotus Notes . 224

Scenario 2: Two organizations using FlowMark and Lotus Notes 225

Scenario 3: One organization using FlowMark and Lotus Notes 225

Appendix B. Migrating from a previous version of the Service Broker

Manager . 227

Migrating the Service Broker Manager on OS/2 227

Migrating the Service Broker Manager on Windows 3.1 228

Glossary . 231

Bibliography . 237

FlowMark publications . 237

Related publications . 237

Index . 239

 Contents vii

viii Application Integration Guide

 Notices

References in this publication to IBM products, programs, or services do not imply that

IBM intends to make these available in all countries in which IBM operates. Any

reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Subject to IBM’s valid

intellectual property or other legally protectable rights, any functionally equivalent

product, program, or service may be used instead of the IBM product, program, or

service. The evaluation and verification of operation in conjunction with other products,

except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this

document. The furnishing of this document does not give you any license to these

patents. You can send license inquiries, in writing, to the IBM Director of Licensing,

IBM Corporation, 500 Columbus Avenue, Thornwood NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs and

other programs (including this one) and (ii) the mutual use of the information which has

been exchanged, should contact IBM Deutschland Informationssysteme GmbH,

Department 3982, Pascalstrasse 100, 70569 Stuttgart, Germany. Such information

may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

Trademarks and service marks

The following terms are trademarks of the IBM Corporation in the United States or other

countries or both:

PC Direct is a trademark of Ziff Communications Company and is used by IBM

Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed

exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

AIX AS/400

C Set ++ DB2

FlowMark IBM

MQ MQSeries

MVS MVS/ESA

OS/2 OS/400

Presentation Manager VisualAge

VisualInfo

 Copyright IBM Corp. 1996 ix

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks

of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a double

asterisk (**), may be trademarks or service marks of others.

x Application Integration Guide

About this book

This book describes how you can use the Service Broker Manager and the service

brokers to integrate specific software products with IBM FlowMark. It also contains

information about the MQSeries-support building block and the building block for

AS/400 support.

Who should read this book

This book is for programmers and modelers who build solutions involving several

different products by using the integration capabilities of FlowMark.

It is assumed that readers are familiar with AIX, OS/2, OS/400, Windows 3.1, and with

the concepts of workflow management systems and FlowMark.

To perform the tasks described in Chapter 6, “Creating your own service brokers” on

page 101 and in the sections about implementing service brokers and services in

Chapter 7, “The Service Broker Manager for Windows” on page 155, programming

knowledge is required.

To perform the tasks described in Chapter 8, “Building block for MQSeries support” on

page 181 and Chapter 9, “Building block for AS/400 support” on page 205, you need

to have a good knowledge of MQSeries in general. You also need to understand the

MQSeries product for the specific platforms you will be using, and the communications

for those platforms.

How this book is organized

This book contains the following chapters:

� Chapter 1, “Integration overview” on page 1 describes service broker concepts

and considerations.

� Chapter 2, “Using the Service Broker Manager for OS/2” on page 7 describes how

to use the Service Broker Manager, service brokers, and services under OS/2.

� Chapter 3, “FlowMark service broker” on page 33 describes the functions that are

included in the FlowMark service broker.

� Chapter 4, “FlowMark—Lotus Notes interface” on page 43 describes how to

control FlowMark processes from Lotus Notes and how to retrieve data stored in a

FlowMark container, use the data to fill in a Lotus Notes form, and then store the

form in a Lotus Notes database.

� Chapter 5, “FlowMark—VisualAge integration” on page 51 describes how to

integrate VisualAge applications with FlowMark.

� Chapter 6, “Creating your own service brokers” on page 101 describes how to

design and implement own OS/2 service brokers and services.

 Copyright IBM Corp. 1996 xi

� Chapter 7, “The Service Broker Manager for Windows” on page 155 describes

how to use the Service Broker Manager and how to implement your own service

brokers under Windows 3.1.

� Chapter 8, “Building block for MQSeries support” on page 181 describes how to

start and control a FlowMark process remotely.

� Chapter 9, “Building block for AS/400 support” on page 205 describes how to use

this building block to access AS/400 applications from FlowMark processes and to

control FlowMark processes from AS/400 applications.

� Appendix A, “Ways to integrate FlowMark and Lotus Notes” on page 223 gives

some guidance on selecting the appropriate way to integrate Lotus Notes with

FlowMark.

� Appendix B, “Migrating from a previous version of the Service Broker Manager” on

page 227 describes the steps necessary for migration.

The back of the book includes a glossary that defines terms as they are used in this

book, and a bibliography.

Conventions used in this book

The following typographical conventions are used throughout this book:

Element Examples

Book titles are shown in italics. Installation and Maintenance

Buttons, fields, and menu choices in the

graphical interface are shown in boldface.

Path and file name, Audit trail

File and path names that are case-sensitive

are shown in their appropriate case, otherwise

they are shown in capitals.

Profile, /usr/lpp/exm, CONFIG.SYS,

D:\EXM\API

Program and message variables are shown in

italics.

filename, linenumber

Names of variables whose values you are to

supply are shown in an italic font.

... and passes myprog as a parameter.

Commands and text you are to enter are

shown in boldface. Commands that are

case-sensitive are shown in their appropriate

case.

Enter install to start the installation program.

Field text, sample code, event names, and

data structures are shown in a monospace

font.

Include the protocol definition, for example,

COMPROTOCOL = O3NETTCP.

xii Application Integration Guide

You interpret the syntax diagrams by following the arrows from left to right. The

conventions are:

►►─ ──┬ ┬─A─ ───────────────────►◄
 ├ ┤─B─
 └ ┘─C─

A set of alternatives, one of which you must code.

►►─ ──┬ ┬─── ───────────────────►◄
 ├ ┤─A─
 ├ ┤─B─
 └ ┘─C─

A set of alternatives, any or none of which you may code.

 ┌ ┐─A─
►►─ ──┼ ┼─── ───────────────────►◄
 ├ ┤─B─
 └ ┘─C─

Items shown on branches above the main path are default

values.

 ┌ ┐─,─
►►──(─ ───▼ ┴─A─ ─)──────────────►◄

Repeatable operand. The separator is shown on the branch

above the path.

►►──┤ A Fragment ├───────────►◄

A Fragment:

├─ ── KEYWORD=value ────────────┤

Syntax diagrams can be broken into fragments. A fragment is

indicated by vertical bars with the name of the fragment

between the bars.

Items whose literal value

varies (shown in italics)

Replace with the appropriate literal value.

Keywords, separators,

operators, and delimiters

Code exactly as shown.

 About this book xiii

xiv Application Integration Guide

 Chapter 1. Integration overview

This chapter explains the various concepts for integrating software products with the

IBM FlowMark workflow manager.

 Integration concepts

FlowMark is an open workflow manager that enables you to use the application that is

most appropriate for your business solution. To provide the flow control for applications

through tools and people, it is essential to integrate the tools with FlowMark.

FlowMark includes several integration facilities:

� A programming interface—C, C++, REXX, and COBOL for OS/2, C and REXX for

AIX, and C, C++, and VisualBasic for Windows 3.1 and Windows NT—to control

processes and to access data containers

� An interface for exporting a process definition into a text file and importing a

process definition from a text file

� Program registration capabilities that enable the invocation of executable files

� The service broker concept

Companion products can be integrated with FlowMark in the following ways:

� The service broker concept is designed to allow users of workflow systems or other

applications to work with multiple tools in multiple interactions without the need to

reload the tool each time or perform multiple logons to server sessions. The aim is

to allow all required sessions and tools to be available during the work session

without the users needing to be aware of the application execution or logic.

For each application that you want to make available via the service broker

concept, set up the following dynamic link libraries (DLLs):

– Service broker DLL managing the connection to the application

– Service DLL providing service functions

Furthermore, you can implement a customized service requester to call service

functions of these service DLLs, if they expect a special input or output format.

� The building block concept provides the possibility to write separate programs for

integration that use published interfaces of both the product and FlowMark.

� The MQSeries support is documented in this book together with some scenarios.

The Service Broker Manager and the FlowMark service broker are available for the

OS/2 and Windows 3.1 platforms. The Lotus Notes service broker is available for the

OS/2 and Windows 3.1 platforms. The VisualAge service broker is available for the

OS/2 platform.

 Copyright IBM Corp. 1996 1

A service broker for VisualInfo is part of the VisualInfo product. Sample code to

communicate via DDE and MQSeries is available on request. Contact your IBM

representative.

In the future, IBM will develop code for other applications to allow rapid integration with

FlowMark processes.

About Service Broker Manager

The Service Broker Manager controls the operation of service broker sessions. This

includes the interaction between the service requester and services, between the

service broker and services, and also the initialization of the service brokers and

services.

The Service Broker Manager needs to be installed on any system on which a FlowMark

activity calls a service function provided by a service broker and its services.

About service brokers

The service broker establishes and maintains a logon session with the base product

(for example, Lotus Notes).

To minimize the number of simultaneous connections to the server, connections are

established by a service broker (also referred to as broker, for example, the Lotus

Notes broker). When the service broker is started, it establishes the connection to the

server of the base product (depending on the implementation, the service broker might

prompt you for logon information before the connection is established), and keeps the

connection open as long as the service broker is running. If the service broker is

stopped, it automatically logs off and removes the connection.

The service broker can share this connection with several services via a shared

structure that is accessible from all registered services of this particular service broker.

Whenever a service function is called, it can use the existing connection and does not

need to log on again.

Often, service functions for a base product are coded by more than one person. Some

standard functions can be useful in a wide range of situations, while others are specific

to a certain environment. Enhancements and extensions to existing service functions

might come from various sources. For these reasons, it is not recommended to put all

service functions for a base product into one service. Instead the Service Broker

Manager can simultaneously manage a number of services for a service broker.

However, these different services can be administrated separately.

Service functions of the same service can be executed in parallel. The administrator

can assign threads to the whole Service Broker Manager (for example, global threads),

to a service broker, or to a single service. Service functions are then executed inside

these threads.

2 Application Integration Guide

When a service function is to be executed, the Service Broker Manager provides the

thread to be used in the following order:

1. A thread assigned to the service

2. A thread assigned to the service broker

3. A global thread

Note: As memory requirements for service functions might differ significantly, the

administrator also has to specify the stack size for these service threads.

If all threads are in use, the service function is queued until the next thread is freed. If

no thread becomes available within a certain period of time (this period is defined with

the TimeOut parameter in the respective API function call), the service function is

stopped by the Service Broker Manager.

The service broker concept together with the flexible use of service threads allows not

only concurrent invocations of the same function, but also synchronization. If access to

a resource (for example, a scanner or a 3270 emulation) must be serialized, it could be

managed by a service broker with a single thread assigned. Such a service broker is

referred to as a synchronized service broker. Simultaneous access to a synchronized

service broker and its services is then prevented by the Service Broker Manager and

access attempts by requesters are queued.

Multiple instances of a service broker can be registered under different logical names

(for example, if you want to support different versions of the base product).

 Chapter 1. Integration overview 3

About services and service functions

A service interfaces to the integrated product. A service function receives the user data

from the Service Broker Manager and calls the appropriate product APIs to perform the

work. The results are returned via the Service Broker Manager to the service requester

and then back to the user application.

In the context of the service broker concept, a service function is a subroutine that

provides a certain functionality. In the case of a Lotus Notes service function this might

be to create a document or to read a document. Several related service functions (for

example, all Lotus Notes service functions) can be stored within one service.

This functionality can be attached directly to a FlowMark activity or linked to an

application. In both cases the code is loaded whenever the service is invoked.

Moreover, this service function might need a connection to the server of the base

product (for example, an image server). This means that, whenever FlowMark directly

invokes a service function, the user is prompted for logon information and a new

connection to the server is established. To avoid this, service functions are not directly

attached to FlowMark, they are invoked by a service requester (see “Implementing a

service requester” on page 125), and make use of an open connection managed by a

service broker.

Multiple instances of a service can be registered under different logical names.

About service requesters

A service requester is the interface to the user application. The user application calls

the service requester APIs to request the product to perform some work. The service

requester formats the user data and issues a request to the Service Broker Manager

function which forwards the request to the appropriate service function.

Service functions are not attached directly to FlowMark activities or other applications;

they are invoked by a service requester (also referred to as requester, for example, the

FlowMark requester). Consequently, a communication mechanism must exist between

service requesters and the Service Broker Manager. However, the actual

implementation is hidden from service requesters by means of the service requester

API and might be changed in future implementations.

4 Application Integration Guide

How these pieces fit together

Figure 1 shows how FlowMark can be integrated with other applications using the

service broker concept.

Figure 1. Using the service broker concept to integrate FlowMark with other applications

 Chapter 1. Integration overview 5

6 Application Integration Guide

Chapter 2. Using the Service Broker Manager for OS/2

This chapter explains the different modes in which the Service Broker Manager for

OS/2 can be used and how to use the Service Broker Manager, service brokers, and

service DLLs.

Service Broker Manager modes

The information that you see in the Service Broker Manager windows and the tasks you

can perform is controlled by the level of authorization that you have.

If you have installed the User Profile Management version, the level of authorization is

assigned to you by your administrator using the OS/2 User Profile Management facility.

If you have installed the User version, you can work in user mode.

If you have installed the Administration version, you can work in administrator mode.

User mode

If you have user authorization, you can:

� Display service broker and service details

� Control the display format and refresh options

� Start and stop service brokers and services

You cannot work with the administrative functions of Service Broker

Manager.

Administrator mode

If you have administrator authorization, you can:

� Display all levels of information

� Control the display format and refresh options

� Start and stop service brokers and services

� Load and unload service brokers and services

� Add and delete service brokers and services

 Copyright IBM Corp. 1996 7

Starting Service Broker Manager

To access the Service Broker Manager to work with or display service broker and

service details:

1. Double-click on the Service Broker Manager folder icon to display the open folder.

2. Double-click on the Service Broker Manager program icon to start the Service

Broker Manager.

Depending on your installation, you have one of these program icons in the Service

Broker Manager folder:

� Service Broker Manager User Profile Management

� Service Broker Manager User

� Service Broker Manager Administration

The scope of functions that are available to you depends on which version you have

installed:

� User Profile Management version

If you have a Service Broker Manager User Profile Management program icon, you

have to log on to User Profile Management as soon as Service Broker Manager is

started. Depending on the user ID with which you log on, you are granted user or

administrator authorization.

If you have already logged on to your local system, for example from another OS/2

session, the Service Broker Manager window is displayed, containing details of all

brokers that are currently registered.

If you have not previously logged on, a logon panel is displayed first. Type your

user ID and password in the fields, and select OK or press Enter to log on. The

default user ID and password are userid and password.

When the logon is complete, the Service Broker Manager window is displayed.

8 Application Integration Guide

 � User version

If you have a Service Broker Manager User program icon, user authorization is

granted to you when you start Service Broker Manager. Double-click on the icon

to start Service Broker Manager. The Service Broker Manager window is

displayed.

 � Administration version

If you have a Service Broker Manager Administration program icon, administrator

authorization is granted to you when you start Service Broker Manager.

Double-click on the icon to start Service Broker Manager. The Service Broker

Manager window is displayed.

Note: If no brokers are currently registered to the Service Broker Manager (for

example, the first time you start the Service Broker Manager if you did not

install the supplied brokers), a message is displayed, which indicates that a new

profile is created.

The message refers to the profile (INI file) that contains details of all registered

brokers. Because you have no registered brokers, the profile does not yet exist.

As soon as the first broker is registered, the profile is created and placed in the

working directory. The working directory is the directory from which you start

Service Broker Manager. If you start Service Broker Manager from the Service

Broker Manager folder on the desktop, the working directory is the \BIN

subdirectory of the directory where FlowMark is installed.

Select OK to remove the message and continue.

Stopping Service Broker Manager

Service Broker Manager can be stopped at any time. However, all currently running

service brokers and services are then stopped immediately. This can cause problems

for applications using the active service brokers and services (for example, data loss).

To stop Service Broker Manager, do the following:

1. Select Close from the window menu of the Service Broker Manager window.

A message box is displayed asking if you really want to quit Service Broker

Manager.

2. Select Yes to stop Service Broker Manager or No to cancel and return to Service

Broker Manager.

If you selected Yes, the current settings for the Service Broker Manager are

automatically saved. These settings are used when Service Broker Manager is

started the next time.

 Chapter 2. Using the Service Broker Manager for OS/2 9

Defining the Service Broker Manager resources

To view or set details of resource requirements for the service brokers, use the Setup

page of the Settings notebook.

In the Resources field, you can view or set the resources that are allocated for the

Service Broker Manager. These resources can be used by all service brokers.

In the Stack size field, you can view or specify the stack size for the broker threads.

The stack size has to be larger than 8 KB (where KB equals 1 024 bytes) and only

multiples of 4 KB are allowed. If the stack size is lower than 8 KB, no thread can be

started. The default stack size is 16 KB. The stack size depends on the number of

variables that are coded in automatic storage.

In the Threads field, you can view or set the number of threads that are used for the

registered service brokers. This can be any number between 1 and 20. The default

value is 1.

If you select the check box Enforce for all brokers, all service brokers have to use

these resources. If this check box is not selected, you can define own resources for

the service brokers and make these resources available to the services.

 Displaying brokers

All registered brokers are automatically displayed in the Service Broker Manager

window when the application is started.

The number of threads currently defined (the sum of all threads configured for all

brokers) and the number of threads currently active (summed up for all currently

running brokers) are displayed in the status line at the bottom of the Service Broker

Manager window. By default, the brokers are shown in a details view and are

refreshed automatically every three seconds. The following sections describe how you

can change the display and refresh options for the Service Broker Manager window.

Displaying different views of brokers
These are the types of display you can select for broker details in the Service Broker

Manager window:

� Details view (this is the default)

 � Tree view

To change the display of brokers, select Details or Tree as appropriate from the View

menu in the Service Broker Manager window.

10 Application Integration Guide

 Details
Displays a list of brokers and the following information for each:

Broker The name of the service broker

Threads The total number of service threads for this broker’s services

Active The number of active threads

Status The current status of the broker. This can be one of the following:

� Not loaded (Stopped in user mode)

� Loaded (Pending in user mode)

 � Running

 � Disabled

From the details view you can:

� Double-click mouse button 1 on a service broker to display its service DLLs in a

separate window

� Click mouse button 2 on a broker to display a pop-up menu for that broker

 Tree
Displays an icon for each broker. The Tree view can be expanded to show an icon for

each available service DLL. There are different types of icons:

Service broker icon

Indicates the name of the broker and its status:

Not loaded (Stopped in user mode)

Loaded (Pending in user mode)

 Running

 Disabled

If a plus (+) sign appears next to the service broker icon, this indicates that

services exist for that broker.

Services icon

One icon for each service registered to each broker. The icon indicates

the name of the service and its status.

 Chapter 2. Using the Service Broker Manager for OS/2 11

From the Tree view you can:

� Click mouse button 1 on a plus sign to display service icons for that broker

� Click mouse button 2 on a broker or service icon to display a pop-up menu for that

broker or service

� Double-click mouse button 1 on a broker icon to display that broker’s services in a

separate window

� Double-click mouse button 1 on a services icon to display that service’s settings

Changing the details view
You can change the details view in the Service Broker Manager by selecting or

deselecting columns to be displayed.

To define which columns are displayed, do the following:

1. Select Settings from the Manager menu to display the Settings notebook for the

Service Broker Manager.

2. Select the View page of the Settings notebook.

3. Select the columns you want to be displayed in the details view by clicking on the

item in the list box. The broker names are always displayed in the details view.

You can include in the display also the number of defined threads (select Threads),

active threads (select Active), or the status of the brokers (select Status). The list

box allows multiple selections, so you can select a combination of the columns.

The default is to display all columns.

Refreshing the display of brokers
You can refresh broker details in the Service Broker Manager either automatically at a

specified interval or manually.

Use the following choices of the View menu to select the refresh setting you require:

Refresh Select Refresh (option checked) to activate the automatic refresh

facility. The window is refreshed automatically at the interval specified

on the View page of the Service Broker Manager Settings notebook.

When you start Service Broker Manager, automatic refresh is set on

by default, and the refresh interval is three seconds.

Deselect Refresh (option not checked) to deactivate the automatic

refresh facility. The window is not refreshed again until you either

restart automatic refresh or select Refresh now.

Refresh now Use this option to immediately refresh the status of all brokers in the

Service Broker Manager window.

12 Application Integration Guide

Defining the refresh interval
To define the interval at which the Service Broker Manager window is automatically

refreshed when Refresh is selected, do the following:

1. Select Settings from the Manager menu to display the Settings notebook for the

Service Broker Manager.

2. Select the View page of the Settings notebook.

3. Use the radio buttons to define either that the Service Broker Manager window is

to be automatically refreshed at the interval shown, or that the window is not to be

refreshed until Refresh now is selected (Initiated by user radio button).

The value you specify for the refresh interval must be a number of seconds in the

range 0 (never refreshed) to 999. The default is to refresh every three seconds.

Viewing the monitor
You can use the Service Broker Manager monitor facility to see the messages

produced by the brokers and services you are using.

Use the following choices of the Monitor menu to work with the monitor:

Show

Select Show (option checked on the left side) to activate the monitor. The

Service Broker Manager window is split into two panes. The upper pane

still displays the brokers while the lower pane displays the messages

produced by Service Broker Manager and registered brokers and services

(see Figure 2).

Figure 2. Service Broker Manager monitor

The messages are displayed at the level of detail specified on the Monitor

page of the Service Broker Manager Settings notebook. All messages that

have occurred since Service Broker Manager has been started are

displayed, even if the monitor has previously been switched off. The font

selected in the Settings notebook is used.

 Chapter 2. Using the Service Broker Manager for OS/2 13

Each message is displayed on a separate line of the monitor, starting at

the top of the pane. Date and time when the message occurred are

displayed together with the message text.

You can size the message monitor window. Use the horizontal and vertical

scroll bars to see the complete message text if necessary.

Deselect Show (option not checked on the left side) to deactivate the

message monitor.

By default, the message monitor is not activated when you start Service

Broker Manager.

Copy

Use this option to copy the content of the message monitor to the

clipboard. You can open an editor window and use the paste option of the

editor to paste the contents of the clipboard into the editor and save it as a

file.

Erase

Use this option to delete all messages currently displayed from the

message monitor window.

Defining the detail level for messages
You can change the level of detail for the messages displayed in the message monitor

as well as the font that is used to display the messages.

To define these settings, do the following:

1. Select Settings from the Manager menu to display the Settings notebook for the

Service Broker Manager.

2. Select the Monitor page of the Settings notebook.

3. Use the radio buttons to define the level of detail at which you want the messages

to be displayed in the monitor. Select:

� Minimum to display error messages only

� Medium to display error messages and general status information

� Maximum to display error messages, status information, and problem

determination messages

As soon as you confirm the changes made in the Service Broker Manager Settings

notebook by pressing the OK button, the Service Broker Manager messages

occurring from that moment on are displayed according to the selected detail level.

Note: Messages issued by brokers do not necessarily comply with the message

format of the Service Broker Manager. In this case, all messages are displayed

despite the detail level you specified.

14 Application Integration Guide

4. You can change the font to be used for displayed messages by clicking on the

Change font... button. A font window is displayed where you can choose from

different fonts and font sizes:

� Select the font you want by selecting its name from the Name list.

� Define the font size by selecting one of the predefined sizes from the Size list.

The available font sizes depend on the selected font.

� Select the style you want to be used from the Style list.

� Use the check boxes in the Emphasis group to define if the messages should

be displayed outlined, stroked out, or underlined. Some of these options can

be deactivated depending on the selected font.

� A sample of the font currently selected is displayed in the Sample box.

� Press OK to set a font for the message monitor, choose Cancel to cancel the

font selection.

A sample of the currently selected font is displayed in a window in the Settings

notebook left to the Change font... button. The default OS/2 system font is used

as default font.

 Managing brokers

You can manage and register service brokers from the Service Broker Manager, using

the choices from the Selected menu of the Service Broker Manager window:

Open→ Open a window containing services registered to a selected broker.

Settings Display the properties of a selected broker.

Create another→ Register a new broker or service.

Note: This option is available in administrator mode only.

Delete Delete a selected broker.

Note: This option is available in administrator mode only.

Load Load a selected broker.

Note: This option is available in administrator mode only.

Start Start a selected broker.

Stop Stop a selected broker that is currently running.

Unload Unload a selected broker that is currently loaded or running.

Note: This option is available in administrator mode only.

You can also select these actions from a pop-up menu. Select a broker and click

mouse button 2 once to display this menu.

The actions are described in the following sections.

 Chapter 2. Using the Service Broker Manager for OS/2 15

Displaying settings for a broker
To display the settings for a specific broker:

1. Select this broker from the list in the Service Broker Manager window.

2. Select Settings from the Selected menu or pop-up menu to open the Settings

notebook for this broker.

This notebook, and details of each option, are described in “Registering a new

broker.”

Note that you cannot change the logical name for an existing broker.

Registering a new broker
You can either register a new broker by interactively entering all details required or by

using an already existing broker profile. Details of how to register brokers and services

are described in the following sections.

Registering a new broker interactively
To register a new broker interactively:

1. Select Create another→Broker from the Selected menu or pop-up menu of the

Service Broker Manager window. This choice is the default choice for the Create

another→ menu option. A blank Settings notebook is displayed, as shown in

Figure 3.

Figure 3. Broker registration notebook

2. Type the appropriate details for your broker on each page and select OK to

register the broker. Or, select Cancel to cancel the registration.

16 Application Integration Guide

On the Broker page you can specify the following:

Broker Logical name of the broker. This is the name that appears in the Details

and Tree view of the broker.

Broker DLL Name of the dynamic link library (without extension) containing the

broker functionality (for example, logon, logoff, versioning). By default, it

is assumed that this is the same name as the logical name, so you do

not need to type the name again.

If the DLL name is different from the logical name, deselect Same as

broker and type the DLL name (without the .DLL extension) or the fully

qualified path and name. For example, assuming the working directory

is D:\EXM\BIN either of the following would be valid:

EXMP3FBR
D:\EXM\DLL\EXMP3FBR.DLL
..\DLL\EXMP3FBR

Note: If you specify the DLL name without extension and path, the path

where the DLL is located must be included in the LIBPATH in your

CONFIG.SYS file.

Profile The name of the profile used to store details of all services that are

registered for this broker. By default, it is assumed that this is the same

name as the logical name, so you do not need to type the name again.

If the profile name is different from the logical name, deselect the Same

as broker and type the profile name (without the .INI extension) or the

fully qualified path and name.

For example, to register a broker DLL called EXMP3FBR.DLL, with the same logical

name and a profile FM.INI, you would specify the values shown in Figure 4.

Figure 4. Example of broker registration

 Chapter 2. Using the Service Broker Manager for OS/2 17

On the Setup page, you can specify the following:

Separate resources

If required, select the check box Separate resources to specify that this

broker needs separate resources (that is, other resources than those

provided by the Service Broker Manager). This selection enables the

Resources to be filled in.

Note: You can specify separate resources only if the resource setup of

the Service Broker Manager is not enforced for all brokers.

Resources

Stack size The stack size provided for the service threads. The stack

size has to be larger than 8 KB and only multiples of 4 KB are

allowed. If the stack size is lower than 8 KB, no thread can be

started. The default stack size is 16 KB. The stack size

depends on the number of variables that are coded in

automatic storage.

Threads The number of threads that are used for service requests for

this service. This can be any number from 1 to 20; the default

value is 2.

Select Enforce for all services to make sure that all services are using

the resources specified in the broker settings. If this check box is not

marked, services can define their own resources. The default is that the

resources are enforced for all services.

See Figure 5 for an example of a resource configuration.

Figure 5. Example of broker resource settings

18 Application Integration Guide

Startup

Not loaded Broker is not loaded when Service Broker Manager is

started.

This is the default value.

Loaded Broker is loaded but not started when Service Broker

Manager is started.

Running Broker is loaded and started when Service Broker Manager

is started.

On the View page, you can specify the following:

Refresh

Select Refresh to activate the automatic refresh facility. The window is

refreshed automatically at the interval specified in the settings for this

window.

By default, automatic refresh is set on and the refresh interval is three

seconds.

Deselect Refresh to deactivate the automatic refresh facility. The window

is not refreshed until you either restart automatic refresh or request an

immediate refresh.

Changing the details view

The details view can be modified in the same way as for the Service

Broker Manager window. See “Changing the details view” on page 12 for

details.

Registering a new broker from file
To register a new broker from file:

1. Select Create another→Broker from file from the Selected menu or pop-up

menu of the Service Broker Manager window. A file selection box is displayed.

2. Select the profile (*.INI) containing the definitions for the new broker you want to

register. The broker is automatically registered together with the services defined

in the profile.

 Chapter 2. Using the Service Broker Manager for OS/2 19

Deleting a broker
To delete a broker from the Service Broker Manager:

1. Select the respective broker from the list in the Service Broker Manager window.

2. Select Delete from the Selected or pop-up menu.

You are prompted to confirm the deletion, as shown in Figure 6.

Figure 6. Delete broker confirmation window

3. Select Yes if you want to delete the broker or No to cancel. If you press Enter, the

deletion is canceled.

Note: You cannot delete a broker while it is running.

Loading and unloading a broker
Once a broker has been registered, you can load it or unload it as required.

To load a broker with the status Not loaded:

1. Select the broker from the list in the Service Broker Manager window.

2. Select Load from the Selected or pop-up menu. The status of the broker is

changed to Loaded.

To unload a broker with the status Loaded or Running:

1. Select the respective broker from the list in the Service Broker Manager window.

2. Select Unload from the Selected or pop-up menu. The status of the broker is

changed to Not loaded.

20 Application Integration Guide

Starting and stopping a broker
Once a broker has been registered, you can start it whenever its status is shown as

Loaded (Stopped in user mode) or Not loaded in administrator mode (Pending in user

mode). When the broker is no longer required, you can stop it from running.

To start a broker that has the status Loaded (Stopped) or Not loaded (Pending):

1. Select the broker you want to start from the list in the Service Broker Manager

window.

2. Select Start from the Selected or pop-up menu. The status of the broker is

changed to Running.

If you are in user mode, the status of the broker is Pending until it has been loaded

and the start process has been completed.

If the start of a broker is not successful, its status is changed to pending if you are in

user mode; in administrator mode, the broker remains loaded. In this case, do one of

the following:

� Correct the problem that occurred when you started the broker and select Start

from the Selected or pop-up menu. The status of the broker is changed to

Running.

� In user mode, select Stop from the Selected menu to stop the broker. The status

of the broker is changed to Stopped.

� In administrator mode, select Unload from the Selected menu to unload the

broker. The status of the broker is changed to Unloaded.

To stop a broker that has the status Running:

1. Select the respective broker from the list in the Service Broker Manager window.

2. Select Stop from the Selected or pop-up menu. The status of the broker is

changed to Loaded in administrator mode or to Stopped in user mode.

3. If you are in administrator mode, you can, if required, now unload the broker.

If a running broker is stopped abnormally and cannot be restarted, it is disabled. The

status of the broker is changed from Running to Disabled. You have to restart Service

Broker Manager to be able to restart a disabled broker.

You can use the message monitor to determine the problem that causes a broker to

become pending or disabled. Refer to “Viewing the monitor” on page 13 for details on

how to use the message monitor.

 Chapter 2. Using the Service Broker Manager for OS/2 21

Displaying services for a broker

For every registered broker, several broker services can be registered. These services

are the components that make the actual API calls to base products in the service

broker concept (see Chapter 6, “Creating your own service brokers” on page 101 for

details).

To display the services that are currently registered to a broker, you can do one of the

following:

� Double-click on the broker name in the Service Broker Manager window.

� Select the broker and select Open→Details View or Open→Icon View from the

Selected or pop-up menus.

� Click on the plus sign to the left of the broker icon, if you are working in Tree view.

Details of all services for the selected broker are displayed in a window titled with the

broker name. An example is shown in Figure 7.

Figure 7. Broker details window

The figure shows the details view of this window. This is the default. You can change

the display and refresh choices for this window, if required, as described in “Displaying

different views of brokers” on page 10 and “Refreshing the display of brokers” on

page 12.

22 Application Integration Guide

Displaying different views of services
To change the display of services for a selected broker, select Details or Tree as

appropriate from the View menu in the Service Broker window.

Details Displays a list of services and the following information for each:

Service The name of the service

Threads The number of threads waiting for service requests to this service

(idle threads)

Active The number of active threads

Status The status of each service. This can be:

� Not loaded or Loaded in administrator mode

� Stopped in user mode

 � Running

 � Disabled

From the details view, you can:

� Click mouse button 2 on a service to display a pop-up menu for that

service

� Double-click mouse button 1 on a service to display that service’s

settings

Tree Displays an icon for each registered service that shows its status:

Not loaded (Stopped in user mode)

Loaded (Pending in user mode)

 Running

 Disabled

From the Tree view, you can:

� Click mouse button 2 on a service icon to display a pop-up menu for that service

� Double-click mouse button 1 on a service icon to display that service’s settings

 Chapter 2. Using the Service Broker Manager for OS/2 23

Refreshing the display of services
You can select to refresh the contents of a broker window either automatically at a

specified interval or manually.

Use the following choices of the View menu of the broker window to select the refresh

option you want:

Refresh Select Refresh to activate the automatic refresh facility. The

window is refreshed automatically at the interval specified in the

settings for this window.

By default, automatic refresh is set on and the refresh interval is

three seconds.

Deselect Refresh to deactivate the automatic refresh facility. The

window is not refreshed until you either restart automatic refresh or

request an immediate refresh using Refresh now.

Refresh now Use this function to refresh immediately the status of all services in

the window.

To define the interval at which a broker window is automatically refreshed when

Refresh is selected for that window, do the following:

1. In the Service Broker Manager window, select the respective broker. Then, select

Settings from the Selected menu.

Or, display the broker window by double-clicking on the broker and then select

Settings from the Broker menu.

In either case, the Settings notebook for the selected broker is displayed.

2. Select the View tab to display the current settings. An example is shown Figure 8

on page 25.

24 Application Integration Guide

Figure 8. Service Broker Settings notebook

3. Use the radio buttons to define either that the service details are to be

automatically refreshed, at the interval shown in the box, or that the window is not

to be refreshed until Refresh now is selected (Initiated by user radio button).

The value you specify for the refresh interval must be a number of seconds in the

range 0 (never refreshed) to 999. The default is to refresh every three seconds.

Managing broker services

Use the choices of the Selected menu in the broker window to work with services:

Settings Display the properties of a registered broker service.

Note: This option is available in administrator mode only.

Create another→ Register a new service to this broker.

Note: This option is available in administrator mode only.

Delete Delete a service from this broker.

Note: This option is available in administrator mode only.

Load Load a registered service.

Note: This option is available in administrator mode only.

Start Start a service.

Stop Stop a service that is currently running.

Unload Unload a broker service that is currently loaded or running.

Note: This option is available in administrator mode only.

Each of these choices is described in detail in the following sections.

 Chapter 2. Using the Service Broker Manager for OS/2 25

Displaying settings for a service
To display the settings for a specific service:

1. Select the service from the list in the broker window.

2. Select Settings from the Selected or pop-up menu to open the Settings notebook

for this service.

This notebook, and details of each option, are described in “Registering a new

service.” Note that you cannot change the logical name for an existing service.

Registering a new service
To register a new broker service, do the following:

� From the Broker window:

1. Display the service details for the broker to which you want to add the service

(as described in “Displaying services for a broker” on page 22).

2. Select Create another from the Selected or pop-up menu.

� From the Service Broker Manager window:

1. Select the broker for which you want to register a new service from the

Service Broker Manager window.

2. Select Create another→Service from the Selected menu or pop-up menu.

A blank Settings notebook is displayed, as shown in Figure 9.

Figure 9. Service registration notebook

Type appropriate details for your service on each page as described in the following

and select OK to register the service to this broker. Select Cancel to cancel the

registration.

26 Application Integration Guide

On the Service page, you can specify the following:

Service The logical name of the service. This is the name that appears in the

Details and Tree view of the broker window.

Service DLL

The name of the dynamic link library (without extension) containing the

product-specific functions that are provided by the service. By default, this

is the same name as the logical name, so you do not need to type the

name again.

If the DLL name is different from the logical name, deselect Same as

service and type the DLL name (without the .DLL extension) or the fully

qualified path and name. For example, either of the following would be

valid, assuming the working directory is D:\EXM\BIN:

D:\EXM\DLL\EXMP3FFM.DLL
..\DLL\EXMP3FFM.DLL

If you do not know the exact name of the service DLL, select Same as

service and click on the find button. A file selection box is displayed

where you can select the appropriate service DLL file. Press OK in the file

selection box to make your selection effective or choose Cancel to cancel

your selection.

For example, to register a service DLL called EXMP3FFM.DLL with the same logical

name and six threads waiting for service requests, you would specify the values shown

in Figure 10 and Figure 11 on page 29.

Figure 10. Example of service registration

 Chapter 2. Using the Service Broker Manager for OS/2 27

On the Setup page, you can specify the following:

Startup of service

Not loaded The service is not loaded automatically when the broker is

started.

This is the default value.

Loaded The service is loaded automatically but not started when the

broker is started.

Running The service is loaded and started when the broker is

started.

Separate resources

Select Separate resources to specify that this service needs separate

resources (that is, other resources than those provided by the Service

Broker Manager). This selection activates the Resources fields.

Note: You can specify separate resources only if the resource setup of

the service broker is not enforced for all services.

Resources

Stack size The stack size provided for the service threads. The

stack size has to be larger than 8 KB and only multiples

of 4 KB are allowed. If the stack size is lower than 8 KB,

no thread can be started. The default stack size is 16

KB. The stack size depends on the number of variables

that are coded in automatic storage.

Threads The number of threads that are used for service requests

for this service. This can be any number from 1 to 20;

the default value is 2.

Note: To synchronize access to a service (for example,

for a host logon service that can accept only one logon at

a time), set the value of Threads to 1. Requests are then

queued and access the service one at a time.

28 Application Integration Guide

For an example of service resource settings see Figure 11.

Figure 11. Example of service resource settings

Note: If you want to register a service that does not require a dedicated broker, you

can register this service to the standard broker EXMP3CST. For example, if

you do not have to log on to a base application or if you want to implement all

the logic in the service DLL.

The EXMP3CST broker is a broker without an underlying base application. It

contains only the mandatory broker functions for the Service Broker Manager.

If you want to use the standard broker, you have to:

1. Register the standard broker EXMP3CST (DLL name EXMP3CST.DLL)

which is part of Service Broker Manager installation—see “Registering a

new broker” on page 16 for information about how to register a broker.

2. Display the service details for the broker EXMP3CST (as described in

“Registering a new broker” on page 16).

3. Select Create another from the Selected or pop-up menu of the

EXMP3CST broker window.

4. Register the new service as described previously in this section.

Deleting a service
To delete a service from a broker:

1. Select the respective service from the list in the broker window.

2. Select Delete from the Selected or pop-up menu.

 Chapter 2. Using the Service Broker Manager for OS/2 29

You are prompted to confirm the deletion, as shown in Figure 12.

Figure 12. Delete Object(s) confirmation window

3. Select Yes if you want to delete the service or No to cancel. If you press Enter,

the deletion is canceled.

Note: You cannot delete a service while it is running.

Loading and unloading a service
Once a service has been registered, you can load or unload it as required. To load a

service that has the status Not loaded, follow these steps:

1. Select the respective service from the list in the broker window.

2. Select Load from the Selected or pop-up menu. The status of the service is

changed to Loaded.

To unload a service with the status Loaded or Running, do the following:

1. Select the respective service from the list in the broker window.

2. Select Unload from the Selected or pop-up menu. The status of the service is

changed to Not loaded.

Starting and stopping a service
Once a service has been registered, you can start it whenever its status is Loaded or

Not loaded. When the service is no longer required, you can stop it.

To start a service that has the status Loaded or Not loaded in administrator mode or

Stopped in user mode:

1. Select the service from the list in the broker window.

2. Select Start from the Selected or pop-up menu. The status of the service is

changed to Running.

If you are in user mode, the status of the service is Pending until it has been

loaded and the start process has been completed.

30 Application Integration Guide

If the start of a service was not successful, its status is changed to Pending if you are

in user mode. In administrator mode, the service remains loaded. In this case, you

can do one of the following:

� Correct the problem that occurred when you started the service and select Start

from the Selected or pop-up menu. The status of the service is changed to

Running.

� In user mode, select Stop from the Selected menu to stop the service. The status

of the service is changed to Stopped.

� In administrator mode, select Unload from the Selected menu to unload the

service. The status of the service is changed to Unloaded.

To stop a service that has the status Running, do the following:

1. Select the respective service from the list in the broker window.

2. Select Stop from the Selected or pop-up menu. The status of the service is

changed to Loaded in administrator mode and to Stopped in user mode.

3. If you are in administrator mode, you can now unload the service, if required, as

described in “Loading and unloading a service” on page 30.

If a running service is stopped abnormally and cannot be restarted, it is disabled. The

status of the service is changed from Running to Disabled. You have to restart Service

Broker Manager to be able to restart a disabled service.

You can use the message monitor to determine the problem that caused a service to

become pending or disabled. Refer to “Viewing the monitor” on page 13 for details on

how to use the message monitor.

Dynamic start of services

If a service is requested which has not been started yet, it is started dynamically by

Service Broker Manager. If the broker to which the service is registered has not been

started yet, the broker itself is started and afterwards the requested service is activated.

Services and brokers can also be started and stopped dynamically by using the service

requester API functions (C, REXX) or the program EXMP3UCT.EXE.

The service requester API functions are described in “Implementing a service” on

page 116. For more information about the program EXMP3UCT.EXE refer to “Using

the standard external controller” on page 145.

 Chapter 2. Using the Service Broker Manager for OS/2 31

32 Application Integration Guide

Chapter 3. FlowMark service broker

This chapter describes the interface code for the FlowMark service broker that enables

you to manipulate FlowMark processes. The interface code is provided for OS/2 and

for Windows 3.1.

This component consists of:

� A FlowMark service broker library

� A service library to manipulate FlowMark processes

� A C header file defining the structure for the session data:

– EXMP3FBR.H for OS/2

– EXMW3FBR.H for Windows

� An FDL (FlowMark definition language) file containing a demo process

� A REXX program to manipulate the FlowMark demo process

You can find information about when to use this broker in Appendix A, “Ways to

integrate FlowMark and Lotus Notes” on page 223.

FlowMark service broker library

The following table shows the DLLs for the different components:

Note: The provided library can only be used if a FlowMark Runtime client is installed

on your workstation.

 OS/2 Windows 3.1

FlowMark service broker EXMP3FBR.DLL EXMW3FBR.DLL

FlowMark service EXMP3FFM.DLL EXMW3FSE.DLL

FlowMark requester EXMP3FRQ.DLL EXMW3FRQ.DLL

 Copyright IBM Corp. 1996 33

 FlowMark requester

You can use the FlowMark requester to invoke service functions from a FlowMark

program activity and also to pass FlowMark container data to services and retrieve data

from services (see Figure 13).

Figure 13. Service broker concept for FlowMark

Using the FlowMark requester
1. Register the service broker DLL as a broker within the Service Broker Manager.

2. Register the service DLL as a service within the Service Broker Manager.

3. On the OS/2 or Windows page of the FlowMark Program Settings notebook,

specify:

� In the field Path and file name, the requester DLL

� In the field Entry point, one of the following functions:

Request

This function passes parameters to function. No return parameter

is expected.

Specify as command-line parameters in the FlowMark program

registration:

broker service function parameters

Where:

broker Is the name of the FlowMark broker registered in

Service Broker Manager

service Is the FlowMark service registered to the broker

function Is the name of the service function to be invoked

parameters Is the input parameter required by the function

Refer to “FlowMark service functions” on page 35 for information

about the standard service functions and the parameters expected

by these functions.

34 Application Integration Guide

FMRequest

This function passes the FlowMark session ID to function. This

requester function can only be used to invoke service functions

specifically designed to work with FlowMark container data. The

FlowMark session ID which can be used to access FlowMark

container data using the FlowMark Container API functions is

passed to the invoked service function as the first parameter in

the list of parameters.

Specify as command-line parameters in the FlowMark program

registration:

broker service function parameters

RequestString

This function passes parameters to function. The service function

has to return a string that is stored in variable name.

Specify as command-line parameters in the FlowMark program

registration:

broker service function parameters variable_name

Where variable_name represents the name of a variable in the

data structure that is specified as output data structure of the

program definition in FlowMark.

Note: Under Windows, enclose the command line parameters in quotes:

"broker service function parameters [variable_name]"

FlowMark service functions

The FlowMark service broker provides six standard service functions, which are

described in the following sections (for further information you can also refer to

Chapter 6, “Creating your own service brokers” on page 101). The feedback of these

service functions depends on the entry point you specified in the FlowMark program

settings.

All parameters described in the following sections are general text strings that are

constructed as follows:

� If the first character of the string is not a single quote ('), the parameter is defined

by all characters up to the first blank (ASCII code 32) or the end of string character

(ASCII code 0). No further restrictions are placed on the kind of characters in the

string.

� If the first character of the string is a single quote ('), the parameter consists of all

characters up to the next single quote or the end of string character. All other

characters in the parameter are valid. To specify a single quote in between the

string type two consecutive single quotes ('').

 Chapter 3. FlowMark service broker 35

Note: Although every character can be specified in a parameter (and can be read by

the FlowMark service broker) this does not mean that all these characters are allowed

in the FlowMark API functions (for detailed information refer to Chapter 6, “Creating

your own service brokers” on page 101) Also, the maximal length of the parameter

string depends on the respective FlowMark API function.

Starting a process instance
The function StartProcess creates a process instance from an existing process template

and then starts the resulting process instance. It can also transfer initial values for data

items defined by the data structure of the input container.

The syntax is:

 ┌ ┐───
►►──StartProcess──TemplateName──InstanceName─ ───▼ ┴┬ ┬───────────────────────────────────── ───────────►◄
 └ ┘ ─MemberDataName:MemberDataType=Value─

The parameters are:

TemplateName

Specifies the name of an existing process template.

InstanceName

Specifies a name for the process instance.

MemberDataName

Specifies the fully qualified data item to be set (spaces between the

MemberDataName, MemberDataType or Value are optional).

Note: If the MemberDataName is defined without single quotes

notation, then a colon (:) is also a delimiter.

MemberDataType

Specifies the data type and must be one of the following:

� S or s for String

� L or l for Long

� F or f for Float

Note: If the MemberDataType is defined without single quotes

notation, then an equal sign (=) is also a delimiter.

Value

Specifies a value appropriate to the MemberDataType.

Example:

StartProcess 'FlowMark Template1' 'Heinrich IV' Pi:F=3.14159 'abc & d':L=123456

This starts the process FlowMark Template1 giving it the instance name Heinrich IV
and passes the float value 3.14159 to the data container member Pi.

36 Application Integration Guide

Suspending a running process instance
The function SuspendProcess suspends a running process instance.

The syntax is:

►►─ ─SuspendProcess──InstanceName─ ──┬ ┬────── ──────────────────────────────────►◄
 └ ┘─Mode─

The parameters are:

InstanceName

Specifies the name of the process instance to be suspended.

Mode

If defined it must be one of the following (not case-sensitive):

CURRENT Suspends only the specified process instance.

ALL Suspends the specified process instance and all its

subprocesses.

QUERY Returns the name of the top-level process. The process

instance is not suspended.

Note: The default value for Mode is CURRENT.

Example:

SuspendProcess 'Heinrich IV' 'all'

This suspends the process instance Heinrich IV and all its subprocesses.

SuspendProcess Hamlet

This suspends the process instance Heinrich IV only.

Resuming a suspended process instance
The function ResumeProcess resumes a process instance that has been suspended.

The process instance continues from where it was suspended.

The syntax is:

►►─ ─ResumeProcess──InstanceName─ ──┬ ┬────── ───────────────────────────────────►◄
 └ ┘─Mode─

 Chapter 3. FlowMark service broker 37

The parameters are:

InstanceName

Specifies the name of the process instance to be resumed.

Mode

If defined it must be one of the following (not case-sensitive):

CURRENT Resumes only the specified process instance.

ALL Resumes the specified process instance and all its

subprocesses.

QUERY Returns the name of the top-level process. The process

instance is not resumed.

Note: The default value for Mode is CURRENT.

Example:

ResumeProcess 'Oberon & Miranda' current

This resumes the process instance Oberon & Miranda.

Terminating a running process instance
The function TerminateProcess terminates a process instance that is running or has

been suspended. Only a top-level process can be specified.

The syntax is:

►►─ ─TerminateProcess──InstanceName─ ──┬ ┬────── ────────────────────────────────►◄
 └ ┘─Mode─

The parameters are:

InstanceName

Specifies the name of the process instance to be terminated.

Mode

If defined, it must be one of the following (not case-sensitive):

ALL Terminates the process instance and all its

subprocesses.

QUERY Returns the name of the top-level process. The process

instance is not terminated.

Note: The default value for Mode is ALL.

Example:

TerminateProcess Hamlet

This terminates the process instance Heinrich IV and all its subprocesses.

38 Application Integration Guide

Restarting a process instance
The function RestartProcess restarts a finished or terminated process instance. Only a

top-level process can be specified. The process instance starts from the beginning.

The contents of the input container of the process instance as used for the first

execution are used for the restart.

The syntax is:

►►─ ─RestartProcess──InstanceName─ ──┬ ┬────── ──────────────────────────────────►◄
 └ ┘─Mode─

The parameters are:

InstanceName

Specifies the name of the process instance to be restarted.

Mode

If defined, it must be one of the following (not case-sensitive):

ALL Restarts the specified process instance.

QUERY Returns the name of the top-level process. The process

instance is not restarted.

Note: The default value for Mode is ALL.

Example:

RestartProcess 'So long & thanx for the fish' all

This restarts the process instance So long & thanx for the fish and all its

subprocesses.

Changing the status of an activity
The function ChangeActivityState changes the status of an activity. It is possible to

start or finish a ready activity, or to restart or finish a running activity.

The syntax is:

►►──ChangeActivityState──InstanceName──QualifiedActivityName──Mode───────────►◄

The parameters are:

InstanceName

Specifies the name of the ready or running process instance.

QualifiedActivityName

Specifies the fully qualified name of the activity whose status is to be

changed.

 Chapter 3. FlowMark service broker 39

Mode

Must be one of the following (not case-sensitive):

START Starts the specified activity. The activity has to be in the

ready status.

RESTART Forces a restart of the specified activity. The activity

has to be in the running status.

FINISH Forces the specified activity to finish. The activity has to

be in either the ready or running status.

Example:

ChangeActivityState Dornroeschen sleep RESTART

This restarts the activity sleep in the process instance Dornroeschen.

Sample service requester calling function FMRequest()

If you want to use FlowMark service functions, such as StartProcess, in your

application, you can write your own FlowMark service requester. The following

example shows how to do that with the function FMRequest().

FMRequest has these parameters:

� The session ID, which you must retrieve with a call to ExmcGetSessionID()

� A parameter string with the following sequence:

 1. pszBroker

This must be EXMP3FBR (OS/2), EXMW3FBR (Windows 3.1), or EXMB3FBR

(Windows NT).

 2. pszService

This must be EXMP3FFM (OS/2), EXMW3FSE (Windows 3.1), or EXMB3FSE

(Windows NT).

 3. pszFunction

This must be a FlowMark service function, such as StartProcess or

SuspendProcess.

 4. pszInArea

This specifies the input for the function, for example, FlowMark Template1
Heinrich IV.

40 Application Integration Guide

Example for Windows 3.1

VOID CallFMRequester()
{

 char pszSessionID[EXMPJ_SESS_BUF_LEN];
 char pszActivityString[ACTIVITY_LENGTH];
 char pszmsgbuf[256];
 unsigned ulCurrentLength;
 RETURNCODE rc;

char FAR \ pszBroker = "EXMW3FBR";
char FAR \ pszService = "EXMW3FSE";
char FAR \ pszFunction = "StartProcess";
char FAR \ pInAreaPtr = "FlowMark Template1";

 /\\/
/\ Fill the activity string in the sequence: \/
/\ 1) Broker \/
/\ 2) Service \/
/\ 3) Function \/
/\ 4) Inarea \/

 /\\/
strcpy (pszActivityString, pszBroker);
strcat (pszActivityString, " ");
strcat (pszActivityString, pszService);
strcat (pszActivityString, " ");
strcat (pszActivityString, pszFunction);
strcat (pszActivityString, " ");
strcat (pszActivityString, pInAreaPtr);

 /\\/
/\ Get FM's session ID and call FMRequest to handle \/
/\ the request. \/

 /\\/
rc = ExmcGetSessionID(pszSessionID);
if (rc == EXMPJ_OK)

 {
apiRc = FMRequest(pszSessionID, pszActivityString);

 }

 return;

 }

 Chapter 3. FlowMark service broker 41

FlowMark service broker demo

The FlowMark service broker demo is available for OS/2 and consists of two files:

EXMP3SRX.FDL

The FDL file containing the Sample FlowMark process. Import this

file into a FlowMark database.

EXMP3SFM.CMD

A REXX program that allows the user to start, suspend, resume,

terminate, and restart the sample process defined in

EXMP3SRX.FDL. Moreover, the activity contained in this process

can be started, restarted, and finished.

Start the demo by entering exmp3sfm at an OS/2 command prompt. The procedure

lets you select one of the following activities:

 � Start instance

 � Suspend instance

 � Resume instance

 � Terminate instance

 � Start activity

 � Restart activity

 � Finish activity

Each activity calls the corresponding FlowMark service function and passes a return

code back to the procedure.

42 Application Integration Guide

Chapter 4. FlowMark—Lotus Notes interface

This chapter describes how FlowMark can be integrated with Lotus Notes. It describes

the Lotus Notes broker and the FlowMark requester for the Lotus Notes services.

Figure 14 shows the service broker concept for the FlowMark—Lotus Notes interface.

Figure 14. Service broker concept for FlowMark—Lotus Notes

Note: You must use the Lotus Notes requester to work with the Lotus Notes broker.

You can find information about when to use this broker in Appendix A, “Ways to

integrate FlowMark and Lotus Notes” on page 223.

Lotus Notes service broker library

The following table shows the DLLs for the different components:

Note: The provided library can only be used if a FlowMark Runtime client and a Lotus

Notes client are installed on your workstation.

 OS/2 Windows

Lotus Notes service broker EXMP3LBR.DLL EXMW3LBR.DLL

Lotus Notes service EXMP3LSE.DLL EXMW3LSE.DLL

Lotus Notes requester EXMP3LRQ.DLL EXMW3LRQ.DLL

 Copyright IBM Corp. 1996 43

Lotus Notes broker

The Lotus Notes broker enables a logon to a Lotus Notes database. The names of the

database and the server are passed to the Lotus Notes service broker via the

FlowMark input container (see DBOpen function on page 46). Within one process, you

can work with several databases sequentially.

Important for OS/2: When you register a Lotus Notes broker within the Service

Broker Manager, enter the following information in the Settings notebook:

� Separate resources enabled

� Enforce for all services enabled

� Threads #: 1

When the Lotus Notes broker is started, it accesses your mail server on your Lotus

Notes server, so that the Lotus Notes logon panel is displayed. If no mail server is

found, an informational message is written to the log file and processing continues.

If a server name is provided via FlowMark input container with the DBOpen function

call, the Lotus Notes logon panel is displayed.

Note: The Lotus Notes server and database are not opened until the DBOpen function

is called. Therefore, always define the DBOpen function call as the first activity in your

process.

Lotus Notes requester

The Lotus Notes requester makes it possible to call the Lotus Notes service functions

directly from a FlowMark process.

Using the Lotus Notes requester
1. Register the service broker DLL as a broker within the Service Broker Manager.

2. Register the service DLL as a service of the Lotus Notes broker within the Service

Broker Manager.

3. On the OS/2 or Windows page of the FlowMark Program Settings notebook,

specify:

� The requester DLL in the field Path and file name

� The entry point, Request, in the field Entry point

Specify as Command line parameters:

broker service function parameters

44 Application Integration Guide

Where:

broker Is the name of the Lotus Notes broker registered in Service Broker

Manager

service Is the name of the Lotus Notes service registered to the Lotus Notes

broker

function Is the name of the service function (described in “Lotus Notes

service functions”) to be invoked

parameters Are the input parameters required by the function

Note: Under Windows, enclose the command line parameters in quotes:

"broker service function parameters"

You can find more information about registering programs in FlowMark in the

Modeling Workflow manual.

Lotus Notes service functions

The following Lotus Notes service functions are available for FlowMark (the functions

are described in alphabetical order):

Create

Creates a new note (in the database that was opened before by the

DBOpen function) and returns the ID of this note (document). Furthermore,

the values of the variables in the FlowMark input container are read and

then inserted into items (with the same name as the FlowMark variables) in

the new note.

This function requires the following variables:

NoteID

Represents the name of the FlowMark variable in the output

container to which the returned ID is written. This container variable

must be of type long.

This variable can also be used as command line parameter.

Form

Represents the name of the FlowMark variable in the input container.

The value of this variable specifies a Form defined in the Lotus

Notes database and is checked against the Form definitions in the

already opened Lotus Notes database. If the Form name is not

found, an error message is written to the log file.

This container variable must be of type string and must be specified

exactly as shown (case-sensitive).

 Chapter 4. FlowMark—Lotus Notes interface 45

CreateEncryptable

CreateEncryptable works like the Create function with the addition that the

created items have an encryption flag set. Later on these items can be

encrypted with the Encrypt function.

This function requires the following variables:

NoteID

Represents the name of the FlowMark variable in the output

container to which the returned ID is written. This container variable

must be of type long.

This variable can also be used as command line parameter.

Form

Represents the name of the FlowMark variable in the input container.

The value of this variable specifies a Form defined in the Lotus

Notes database and is checked against the Form definitions in the

already opened Lotus Notes database. If the Form name is not

found, an error message is written to the log file.

This container variable must be of type string and must be specified

exactly as shown (case-sensitive).

DBClose

Closes a Lotus Notes database that has been opened with the DBOpen

function.

DBOpen

Opens a database on a Lotus Notes server. This function must be used

before any other service function (for example, Create or Delete) can be

executed.

This function requires the following variables:

SBLN_Server_Name

Represents the name of the FlowMark variable in the input container

that contains the name of the Lotus Notes server in the FlowMark

input container. If a local database is used, set the value of this

variable to LOCAL. This container variable must be of type string.

SBLN_Path_Name

Represents the name of the FlowMark variable in the input container

that contains the path for the Lotus Notes database that is located on

the specified Lotus Notes server. The path specifies the directory

where the database is located, if it is a subdirectory of the Lotus

Notes data directory, and the name of the database.

For example, if the Lotus Notes data directory is D:\NOTES\DATA, the

name of the database to be opened is HELP.NSF, and the database is

located in the directory D:\NOTES\DATA\DOC, the variable must be set

to DOC\HELP.NSF.

This container variable must be of type string.

46 Application Integration Guide

Decrypt

Decrypts the note with the given note ID.

This function requires the following variable:

NoteID

Represents the name of the FlowMark variable in the input container

that specifies the note ID. This container variable must be of type

long.

This variable can also be used as command line parameter.

Delete

Deletes the note with the given note ID.

This function requires the following variables:

NoteID

Represents the name of the FlowMark variable in the input container

that contains the note ID. This container variable must be of type

long.

This variable can also be used as command line parameter.

Encrypt

Encrypts the note with the given note ID. That means that all items which

are encryption enabled (with CreateEncryptable or UpdateEncryptable) are

sealed with the user’s public key.

This function requires the following variables:

NoteID

Represents the name of the FlowMark variable in the input container

that contains the note ID. This container variable must be of type

long.

This variable can also be used as command line parameter.

Read

Reads the note with the given note ID. The values of the items in the

specified document are then set into the variables of the FlowMark output

container (these variables must have the same name as the items which

have to be read).

This function requires the following variables:

NoteID

Represents the name of the FlowMark variable in the input container

that contains the note ID. This container variable must be of type

long.

This variable can also be used as command line parameter.

 Chapter 4. FlowMark—Lotus Notes interface 47

SearchDoc SelectionFormula ViewName NoteID

Searches for information that is stored in the Lotus Notes database. The

search is based on formulas as they are used in Lotus Notes Views such

as SelectionFormula.

This function requires the following variables:

SelectionFormula

Represents the name of the FlowMark variable in the input container

that contains the search formula.

This container variable must be of type string.

ViewName

Represents the name of the FlowMark variable in the input container

that contains the name of a Lotus Notes View in the Lotus Notes

database.

This container variable must be of type string.

The specified View is used as a template for the selection dialog to

display the document contents in a structured way.

If no document is found or the number of documents found is greater

than 256, an error message is displayed and you can make the

selection formula more specific.

If one document is found, the note ID of that document is written into

the variable NoteID and is passed to a FlowMark output container.

If the number of documents found is from 2 to 256, the selection

dialog is displayed. The selection dialog shows the contents of one

document per line. Select one of the documents shown. The note

ID of the selected document is written into the variable NoteID and is

passed to a FlowMark output container.

NoteID

Represents the name of the FlowMark variable in the output

container to which the returned ID is written. This container variable

must be of type long.

This note ID can be used as input for other requester functions.

Sign

Signs the note with the given note ID. The note is signed with the user ID

of the Lotus Notes client on the workstation.

This function requires the following variable:

NoteID

Represents the name of the FlowMark variable in the input container

that contains the note ID. This container variable must be of type

long.

This variable can also be used as command line parameter.

48 Application Integration Guide

SignedOrEncrypted

Checks if the note with the given note ID is signed or encrypted and writes

the return value into the variable Result.

This function requires the following variables:

NoteID

Represents the name of the FlowMark variable in the input container

that contains the note ID. This container variable must be of type

long.

This variable can also be used as command line parameter.

Result

Represents the name of the FlowMark variable in the output

container to which the return value is written.

Possible return values are:

0 Not signed and not encrypted

1 Signed and not encrypted

2 Not signed and encrypted

3 Signed and encrypted

This container variable must be of type string.

Unsign

Unsigns the note with the given note ID. Only the original signer can

unsign the note.

This function requires the following variable:

NoteID

Represents the name of the FlowMark variable in the input container

that contains the note ID. This container variable must be of type

long.

This variable can also be used as command line parameter.

Update

Updates the note with the given note ID. The values from the variables in

the FlowMark input container are read and then inserted into items (with

the same name like the FlowMark variables) in the note.

This function requires the following variable:

NoteID

Represents the name of the FlowMark variable in the input container

that contains the note ID. This container variable must be of type

long.

This variable can also be used as command line parameter.

Note: The FlowMark variable NoteID is not mapped into the note.

 Chapter 4. FlowMark—Lotus Notes interface 49

UpdateEncryptable

UpdateEncryptable works like the Update function with the addition that the

updated items have an encryption flag set. Later on, these items can be

encrypted with the Encrypt function.

This function requires the following variable:

NoteID

Represents the name of the FlowMark variable in the input container

that contains the note ID. This container variable must be of type

long.

This variable can also be used as command line parameter.

 Type mapping
In the service functions, the following type mappings are valid:

FlowMark --> Lotus Notes Lotus Notes --> FlowMark

 String --> Text Text --> String
 String[] --> Textlist Textlist --> String[]
 Float --> Number Number --> Float/Long/String
 Long --> Number Timedate --> String

It is possible to enforce an explicit type mapping from FlowMark to Lotus Notes with the

following technique:

If the name of a FlowMark container variable of type string starts with a character

defined below (not case-sensitive) followed by two underscores (_), these conversions

are made:

 D__ --> Timedate
 N__ --> Number
 T__ --> Text
 L__ --> Textlist (first element)
 A__ --> Textlist (append element)

For an example for type mapping, refer to the sample FDL file for Lotus Notes

(EXMP3SLN.FDL) that is provided with the product. The samples are located in the

subdirectory \SAMPLES\LNOTES of the Service Broker Manager directory.

50 Application Integration Guide

 Chapter 5. FlowMark—VisualAge integration

This chapter describes the interface code that enables you to integrate VisualAge

applications with FlowMark. This interface code is also known as the service broker for

VisualAge. It is available for OS/2.

The service broker for VisualAge consists of:

� A service broker library for VisualAge applications compliant with the Service

Broker Manager architecture (see “Service broker library” on page 55)

� VisualAge parts that provide the broker functionality to a VisualAge application (see

“VisualAge parts for the service broker”)

� VisualAge parts that enable VisualAge applications to use the FlowMark API (see

“VisualAge parts for the FlowMark C language API” on page 52)

� Programming examples (see “VisualAge broker programming examples” on

page 53)

Installing the VisualAge source code
The VisualAge code is copied to the appropriate VisualAge directories during

installation.

To make this code available in VisualAge, you must load it into the VisualAge library

using the Load Features command from the System Transcript window. The name of

the installable feature for the FlowMark interface code is FlowMark Base.

Loading this feature adds the following applications to your image:

 � FmApiBase

 � FmEditApiBase

 � FmServiceBroker

 � FmEditServiceBroker

 � FmArchivalCode

VisualAge parts for the service broker
Several VisualAge parts are provided with this package that enable you to build

VisualAge applications that interact with the Service Broker Manager.

These parts are provided in application FmServiceBroker. In addition, a related edit

application named FmEditServiceBroker is provided, containing the code required to

use these parts in the composition editor.

 Copyright IBM Corp. 1996 51

The provided parts can be split into these groups:

� Parts that are to be used in the composition editor (see “Function Data” on

page 64)

� Template parts to be used to inherit from when creating new parts (see

“FmBrokerTemplate” on page 66)

� Support parts that are used internally to provide the service broker functionality

(see “FmBrokerWindow” on page 67 and “FmFunctionData” on page 68)

These parts are described in “Parts provided with the package” on page 64.

VisualAge parts for the FlowMark C language API
VisualAge parts provided with this package enable you to use the FlowMark C

language API from VisualAge applications.

These parts are provided in application FmApiBase. In addition, a related edit

application named FmEditApiBase is provided, containing the code required to use

these parts in the composition editor.

The provided parts can be split into these groups:

� Parts that are to be used in the composition editor:

– Current Activity (see “Current Activity” on page 68)

– Input Container (see “Input Container” on page 73)

– Output Container (see “Output Container” on page 75)

– FlowMark Session (see “FlowMark Session” on page 78)

– FlowMark Activity (see “FlowMark Activity” on page 79)

– FlowMark Process (see “FlowMark Process” on page 82)

� Support parts that are used internally to access the FlowMark C language API:

– FmApiLibrary (see “FmApiLibrary” on page 86)

– FmError (see “FmError” on page 88)

– FmContainer (see “FmContainer” on page 89)

– FmInputContainer (see “FmInputContainer” on page 90)

– FmOutputContainer (see “FmOutputContainer” on page 91)

– FmContainerItem (see “FmContainerItem” on page 92)

– FmStartDataItem (see “FmStartDataItem” on page 93)

– FmExmApiBegin (see “FmExmApiBegin” on page 94)

– FmExmApiTypeInfo (see “FmExmApiTypeInfo” on page 95)

– FmExmApiStructureData (see “FmExmApiStructureData” on page 96)

For most applications, the public interface of the parts available in the FlowMark

category in the composition editor should be sufficient to interface with FlowMark.

52 Application Integration Guide

There may be special requirements, however, that make it necessary to use the

provided support classes directly to interface with FlowMark or even to extend their

functionality or to create new parts from them.

Keep in mind that you must not change any of these classes to keep the parts in the

FlowMark category consistent. If you need to change anything, you should create your

own subclasses and implement the changed functionality there.

VisualAge broker programming examples
Programming examples are distributed to demonstrate the usage of the provided code

when creating a VisualAge application integrated with FlowMark.

Installing the programming examples
Note: Before you install the programming examples, make sure that you have installed

the FlowMark—VisualAge interface code (see “Installing the VisualAge source code” on

page 51).

Installation of the programming examples consists of several steps:

1. Install the VisualAge example code.

The VisualAge example code provided with this package is copied to the

appropriate VisualAge directories.

To make this code available in VisualAge, you must load it into the VisualAge

library via the Load Feature command from the System Transcript window. The

name of the installable feature for the programming examples is FlowMark

Samples.

Loading this feature adds the following applications to your image:

 � FmBrokerSamples

 � FmSamplesArchivalCode

2. Create the VisualAge runtime image.

To run the FlowMark example process provided with this package, you need to

create a VisualAge runtime image that contains the example application. To create

this image, do the following:

a. In the VisualAge organizer, select application FmBrokerSamples and then

invoke menu item Make executable.

b. When prompted for the initial view to be displayed, select <None>.

c. Store the runtime image as file EXMP3VSM.IMG in the EXM\BIN directory.

Besides the views that implement the activities contained in the example process,

the example application contains an additional view, FmMaintainProcess, which

can be used to create and start instances of the FlowMark example process. This

function can be run outside of FlowMark. You can start it from within VisualAge by

issuing the command FmMaintainProcess newPart openWidget, or you can

create another runtime image and select this view as the initial view to be opened.

 Chapter 5. FlowMark—VisualAge integration 53

3. Install the FlowMark example process.

To install the FlowMark example process, log on to a FlowMark Buildtime client,

double-click on the Import icon, and select file EXMP3VSM.FDL from the

\EXM\SBM\SAMPLES\VISAGE directory. This creates the example process

VisualAge Sample in your Buildtime Processes folder. Translate this process with

option Replace template to create a Runtime template with the same name.

4. Register the example application in the Service Broker Manager.

To register the example application in the Service Broker Manager, open the

Service Broker Manager, select Create another broker from file, and select file

EXMP3VSM.INI from the \EXM\SBM\SAMPLES\VISAGE directory. This creates

the broker and service definitions required for the example application.

FlowMark example process
A FlowMark example process that is provided with this package makes use of the

VisualAge example classes.

When you install file EXMP3VSM.FDL, the following items are added to your FlowMark

database:

� Process VisualAge Sample

� Program VisualAge Display Activity

� Program VisualAge Maintain Container

� Program VisualAge Maintain Data

� Data structure VisualAge Sample

Process VisualAge Sample consists of the activities Maintain Container and Check

Container (performed by tool VisualAge Maintain Container) and Maintain Data

(performed by tool VisualAge Maintain Data). All three activities have VisualAge

Display Activity as a support tool.

The process and the contained activities use VisualAge Sample as data structure.

When you start the process, you are prompted for input data. Then, activities Maintain

Container and Maintain Data are put on your work list. Both activities display the input

container (which contains the data values that you entered when starting the process),

and allow you to set values for the output container.

When you have finished both activities, Check Container appears on your work list.

When you open the activity and select radio button Input, you can see that the input

container of this activity contains the values that you entered in the output container of

the previous activities (in fact, the values that you entered in the activity that you

performed last).

Invoke support tool Display Activity while you are working on any of the activities. This

results in a window showing some general information on the activity.

54 Application Integration Guide

VisualAge example code
Four visual parts contained in application FmBrokerSamples show you how to use the

interface code to build VisualAge applications integrated with FlowMark.

One part, FmMaintainProcess (see “FmMaintainProcess” on page 97), shows how to

use the FlowMark process API. The other parts show how to create views that interact

with the service broker and access the FlowMark container API. These parts have

been developed according to the rules stated in service broker requirements:

� FmDisplayActivity (see “FmDisplayActivity” on page 98)

� FmMaintainContainer (see “FmMaintainContainer” on page 99)

� FmMaintainData (see “FmMaintainData” on page 100)

Service broker library
A dynamic link library, EXMP3VBR.DLL, is used both as service broker library and as

service library for VisualAge applications in the Service Broker Manager.

Besides the standard functions required by the Service Broker Manager, this library

contains a service function, InvokeClass, which is used to open a specific view in the

brokered VisualAge applications.

 InvokeClass
Service function InvokeClass is used to open a specific view in an active VisualAge

application. The parameters for this function are:

sessionId class [parameterString]

Where:

sessionId Is the identifier of the FlowMark session that the view is started

from.

class Is the name of the class that implements the view to be

opened.

parameterString Is an optional parameter string that is to be passed to the

opened view.

 Chapter 5. FlowMark—VisualAge integration 55

Notes:

1. If you want to invoke this service function from a FlowMark activity, use the

FlowMark requester library provided with the Service Broker Manager called

EXMP3FRQ.DLL. In this case, the sessionId parameter is inserted automatically

by the requester. See “Registering a VisualAge application” for details on how to

specify the FlowMark program registration.

2. If you want to invoke this service function from outside of FlowMark, use the

standard service requester, EXMP3FFR.EXE. In this case, you have to specify a

dummy argument in place of the sessionId parameter.

The following sample command invokes view AnyView in the VisualAge application

myapp:

exmp3ffr myapp myapp InvokeClass "0 AnyView"

Where myapp myapp are the logical names of the service broker and the service.

Note: Views that are opened this way do not have access to the FlowMark container

API and can access the FlowMark process API only if they establish a new FlowMark

session.

Developing VisualAge applications for FlowMark

The following sections describe what you need to consider when developing VisualAge

applications for FlowMark.

Registering a VisualAge application
To integrate your VisualAge application with FlowMark using the Service Broker

Manager architecture, several definitions are required both in FlowMark and in the

Service Broker Manager.

Service Broker Manager definitions
In the Service Broker Manager, a service broker has to be created for every VisualAge

image that you want to run with the Service Broker Manager. The name under which

you register each service broker must match the name of the image file that contains

your VisualAge application, without the extension IMG. This is required to allow the

service broker DLL to load the correct image when it receives a start request from the

Service Broker Manager.

The service broker issues the following command to load a VisualAge application:

exmp3vnd.exe -ibroker-name.img

The DLL name for the service broker library is EXMP3VBR.DLL and must be the same

for each instance of the VisualAge service broker.

56 Application Integration Guide

Notes:

1. All VisualAge images that are to be loaded by the service broker must reside in the

working directory of the Service Broker Manager.

2. The service broker uses file EXMP3VND.EXE as a startup executable file for all

VisualAge applications. This file is a copy of the file NODIALOG.EXE provided

with VisualAge. If you want a product logo screen to be displayed at application

startup, you can either replace this file with a copy of file ABT.EXE, or you can

create your own startup executable, as described in the VisualAge documentation.

For each VisualAge service broker you have defined, you must also define the service

library. The name you use for the service definition is not significant. The DLL name

for the service library is also EXMP3VBR.DLL.

 FlowMark definitions
If you register a program that intends to invoke a function via VisualAge service broker,

you have to specify:

Field name Value

Path and file name EXMP3FRQ.DLL (standard requester)

Entry point FMRequest, used as entry point in EXMP3FRQ.DLL

Command-line parameters broker service InvokeClass class-name parameters

Where:

broker Is the logical name you used when

defining the service broker library.

service Is the logical name you used when

defining the service library.

class-name Is the name of the application class in

your VisualAge image that provides the

desired function.

parameters Is an optional parameter string that is to

be passed to the function.

 Chapter 5. FlowMark—VisualAge integration 57

Requirements for VisualAge applications
To make use of the Service Broker Manager architecture and the VisualAge service

broker, a VisualAge application has to meet the following requirements:

1. Start the service broker at application startup:

When the VisualAge image is loaded, the service broker must be started. This is

done automatically by the runtimeStartUp method of the application

FmServiceBroker. Thus, when you package your application, you need not select

any particular view to be initially displayed.

Note: If you plan to create a reduced runtime image from your application, you

have to provide a packagerIncludeClasses method for each of your applications

included in the image that returns an array of all view classes contained in the

application. This is necessary to prevent VisualAge from removing these classes

from the image (your view classes are not referenced in the image, since they are

invoked dynamically from FlowMark).

In the provided sample application, a class method is provided for

FmBrokerSamples containing the following:

packagerIncludeClasses
^Array with: FmDisplayActivity with: FmMaintainContainer

 with: FmMaintainData

2. Split the application into separately accessible function parts:

Each functional part of the application that is to be accessible via a service broker

request must be represented by an application class. Each of these classes must

implement an openOn: method accepting an instance of class FmFunctionData as

argument. This object can be used by the application to obtain the FlowMark

session identifier and the invocation parameters for the function and to set the

return code of the function.

When the application function ends, it must send message signal to the function

data object to indicate the end of the function to the service broker.

When you implement your application classes as visual parts in VisualAge, you can

meet these requirements by:

� Defining an openOn event that has one parameter of type FmFunctionData. Do

this as follows:

a. In the public interface editor, select Event.

b. Specify openOn as event name and select Add.

c. Click mouse button 2 on Parameters and their types.

d. As name, you can enter any name, for example, functionData. Enter

FmFunctionData as class.

58 Application Integration Guide

� Implementing an openOn: method that just signals event openOn with the

received input parameter. Do this as follows:

a. In the script editor, select New Method Template from Methods.

 b. Specify:

openOn: name
self signalEvent: #openOn with name

Where name is the parameter name for the openOn event.

c. From File, select Save Part.

� Including a Function Data part from the FlowMark category in the composition

editor.

� Connecting the openOn event of your application to the initialize action of the

Function Data part and to the openWidget action of your window part.

To connect the event to the initialize action, do the following:

a. In the composition editor, point to the free-form surface and click mouse

button 2.

b. From the popup menu, select Connect then More.

c. Select event openOn.

d. Click mouse button 2 on Function Data.

 e. Select Initialize.

To connect the event to the openWidget action, do the following:

a. Place a Current Activity on the desktop.

b. Click mouse button 2 on Current Activity.

 c. Select Connect.

d. Select Initialized and connect it with Window.

 e. Select openWidget.

� Connecting the closedWidget event of your window part to the signal action of

the Function Data part.

Part FmBrokerTemplate in application FmServiceBroker is provided as a template

that contains all of the described elements.

Note: When designing and coding a VisualAge application that uses the Service

Broker Manager, consider the following:

� The Service Broker Manager creates multiple threads for each service

broker. Thus, it is possible that more than one of your application functions

is invoked at the same time or even that one function is simultaneously

invoked twice. Thus, be careful when using global or class variables.

� From a FlowMark point of view, your application is invoked via an entry

point in a DLL. Therefore, you have to provide the FlowMark session

identifier whenever you issue a FlowMark API call.

 Chapter 5. FlowMark—VisualAge integration 59

Accessing the FlowMark C container API
The provided VisualAge parts for the FlowMark C language API enable you to make full

use of the FlowMark C container API from VisualAge applications. The use of these

parts varies strongly, depending on whether you already know the data structure of the

FlowMark activity when you build your VisualAge application.

Accessing the container when you know the structure
To access the FlowMark container, include the following parts from the FlowMark

category in the composition editor view of your application: current activity, input

container, and output container. The steps are these:

 1. Initialization

a. To initialize the Current Activity part, do one of the following:

� Connect event sessionId of a Function Data part to the initForSession

action of the Current Activity part if your application uses the VisualAge

service broker.

� Connect event aboutToOpenWidget of your window part to the

initContainers action of the Current Activity if your application does not

use the VisualAge service broker.

b. To initialize the container parts, connect the inputContainer and

outputContainer events of the Current Activity part to the setContainer action

of the corresponding container parts.

c. To display meaningful error messages in case of error conditions returned by

the FlowMark C language API, you can create the following connections:

� Event initError of part Current Activity to action displayInitError of part

Current Activity

� Event getError of part Input Container to action displayGetError of part

Current Activity

� Event setError of part Output Container to action displaySetError of part

Current Activity

2. Accessing the FlowMark data

Open the Settings view for your container parts, and define the data structure of

the corresponding FlowMark container. You need not define all data structure

members that exist in the FlowMark container if you plan to use only a subset.

To get access to the data structure members in a FlowMark container, do the

following:

a. In FlowMark, export the FDL.

b. In VisualAge, click mouse button 2 on the icon for the input or output

container.

c. Select Open Settings.

 d. Select Import.

60 Application Integration Guide

When you define the data structure, the public interface of the container parts is

dynamically changed to include attributes for all data items that you specify. Use

these attributes to access and update the data in the FlowMark container.

If you want to update data in the FlowMark output container, do not forget to

connect the setItems action of the part Output Container.

Accessing the container when you do not know the structure
If you do not know the data structure of the FlowMark container when you build your

activity, you cannot use the Input Container and Output Container parts, as described in

“Accessing the container when you know the structure” on page 60. However, you can

still use the full FlowMark C container API.

To access the FlowMark container, include a Current Activity part from the FlowMark

category in the composition editor. The steps are:

 1. Initialization

a. To initialize the Current Activity part, do one of the following:

� Connect event sessionId of a Function Data part to the initForSession

action of the Current Activity part if your application uses the VisualAge

service broker.

� Connect event aboutToOpenWidget of your window part to the

initContainers action of the Current Activity if your application does not

use the VisualAge service broker.

b. To display meaningful messages to the user in case of error conditions

returned by the FlowMark API, you should draw the following connections

within the Current Activity part:

� Event initError to action displayInitError

� Event getError to action displayGetError

� Event setError to action displaySetError

Note: Part FmBrokerTemplate is provided as a template that contains all of the

described elements.

2. Accessing the FlowMark data

You can use the Current Activity part for the following tasks:

To get the value of a data item from FlowMark, draw a connector to action

getContaineritem. You must specify the name of the data item that is to be

gotten as a parameter to the connector. The result of the connection is the

value of the data item and may be connected, for example, to a text field in a

window part.

 Chapter 5. FlowMark—VisualAge integration 61

� Update data in the FlowMark output container

To update the value of a data item in FlowMark, draw a connector to action

setContainerItem. You must specify the name of the data item to be updated,

and the new value for it, as parameters to the connector.

To copy the value of a data item from the input container to the output

container, you can use actions copyContainerItem and copyItemToNewName.

� Query the structure of the FlowMark container

Several actions are provided to obtain information about the structure of the

FlowMark containers:

– The actions inputMembers and outputMembers return a collection

containing the names of all data structure members.

– The actions inputItems and outputItems return a collection containing the

names of all data items.

– The actions typeOfInputItem and typeOfOutputItem return the type of a

data structure member or a data item.

– The actions cardinalityOfInputItem and cardinalityOfOutputItem return the

cardinality of a data structure member.

Accessing the FlowMark C process API
The provided VisualAge parts for the FlowMark API allow you to make full use of the

FlowMark process API from VisualAge applications.

To access the FlowMark process API, you first need to establish a FlowMark process

control session. This can be achieved by including a FlowMark Session part from the

FlowMark category in the composition editor.

There are different methods for using this part, depending on the type of your

application:

� If your application is invoked via the VisualAge service broker, start the process

control session by connecting event sessionId of a Function Data part to the

startForSessionId action of the FlowMark Session part.

� If your application is invoked by FlowMark as a stand-alone program, without the

VisualAge service broker, connect the aboutToOpenWidget event of your application

to the startForSessionId action of the FlowMark Session part.

� If your application is not invoked by FlowMark, you have to start an external

process-control session, which includes a logon to FlowMark. You can achieve

this by either of the following methods:

– Using action startExternal of the FlowMark Session part, which prompts the

user for the required logon values before starting the process-control session.

– Using action startExternalWith of the FlowMark Session part, and providing the

required logon values in form of an FmExmApiBegin structure as parameter, if

your application already has the logon parameters for FlowMark.

62 Application Integration Guide

To display meaningful messages to the user in case of error conditions returned by the

FlowMark C language API, you should draw the following connections within the

FlowMark Session part:

� Event startError to action displayStartError

� Event closeError to action displayCloseError

Now that your FlowMark Session represents a FlowMark process control session, you

can add FlowMark Process parts to perform process control functions.

For each FlowMark Process part that you include in your application, connect the

setHandle action to the started event of the FlowMark Session.

You can specify the name of the FlowMark process that is to be manipulated either in

the Settings view of the FlowMark Process part (if you already know the name when

you build the application), or by drawing connections to the processName attribute of

the part, if the name is to be dynamically set at run time.

If you want to use the FlowMark Process part to start a new process instance in

FlowMark, you also have to specify a template name and, optionally, the input data for

the process.

The template name can be entered either in the Settings view or via connections to the

templateName attribute. The input data for the process can be set either in the

Settings view or via connections to the addItemValue or addDataItem actions.

You can use the FlowMark Process part to start new processes or to suspend, resume,

terminate, or restart existing processes.

To display meaningful messages to the user in case of error conditions returned by the

FlowMark C language API, you should draw the following connection within each

FlowMark Process part:

� Event processError to action displayError

Testing your VisualAge application
To be able to test the views of your application that are to be invoked by the Service

Broker Manager without having to generate a runtime image, use the following

procedure (if your view is not invoked from a FlowMark activity, you need to perform

steps 5 on page 64 and 6 on page 64 only):

1. Define and translate a FlowMark process that invokes your view (see “Registering

a VisualAge application” on page 56 for details on how to register your view to

FlowMark).

2. Start FlowMark runtime.

3. From the FlowMark worklist, start the activity that invokes the view you want to

test. However, do not start the Service Broker Manager.

 Chapter 5. FlowMark—VisualAge integration 63

4. This results in a message box indicating that the requested service is not available.

Near the bottom of that message box, you see a heading Input: followed by some

text (actually, the FlowMark session identifier, the name of the view to be invoked,

and maybe some input parameters that are to be passed to your view). Do not

close the message box.

5. Enter the following code in some VisualAge window:

| data |
data := FmFunctionData session: sessionId parms: parmString hab: 0.
ViewName new openOn: data.
[data wait.
CwMessagePrompter message: 'Return code is ',
data returnCode printString] fork

Replace sessionId with the FlowMark session identifier from the message box

(specify '0' if your view is not to be invoked from FlowMark). For parmString,

specify the string of parameters you want to pass to your view, or String new if

your view does not require any input parameters. Finally, replace ViewName with

the name of the VisualAge class that implements your view.

6. Execute the code. This should give you the following result:

� Display your view with full access to the FlowMark data container.

� When you close the view, display a message box with the return code of your

function on it.

Note: If you do not get a message box after you close your view, the end of

your function is not correctly signaled. This would result in hanging activities

in FlowMark if you execute the function in a runtime image. See

“Requirements for VisualAge applications” on page 58 to find out how to

signal the end of your function.

7. Close the message box that was displayed when you started the FlowMark activity

from the worklist. If you want your activity to remain on the worklist to be able to

repeat your test, and this is not automatically achieved by an exit condition (for

example, _RC = 0), you should force restart of the activity from the FlowMark

worklist before you close the message box.

Parts provided with the package

The following sections describe the parts that are provided with the package.

 Function Data
Select Function Data to add a part that can be used as communication medium

between the VisualAge service broker and the application functions invoked by it.

You can use this part to access the input parameters passed to your application

function by FlowMark and to set the return code of your function that is to be passed

back to FlowMark.

64 Application Integration Guide

You must place a Function Data on the free-form surface outside the bounds of parts

from the Canvas category, such as Window and Form parts.

Public interface:

� Actions (see “Function Data—Actions”)

� Events (see “Function Data—Events”)

Class name: FmBrokerData

Category: FlowMark

 Function Data—Actions
initialize functionData

Initializes the part with the FmFunctionData object passed as parameter

functionData. This action has to be invoked before any other action of the

receiver is invoked. You can connect this action to the openOn event of your

visual part if you derived or copied that part from FmBrokerTemplate.

Calling this action signals events sessionId, parmString, and returnCode.

signal

Signals the end of the function and returns control back to FlowMark. The return

code passed to FlowMark is the one that has been set by the last invocation of

action setReturnCode, or 0 if no other return code has been set.

Typically, this action is connected to the closedWidget event of your function’s

main window.

signalWithCode returnCode

Signals the end of the function and returns control back to FlowMark. The return

code passed back to FlowMark is the integer value specified by parameter

returnCode.

Typically, this action is connected to events that indicate an error condition like

the initError event of part FlowMark Activity.

setReturnCode returnCode

Sets the return code that is passed back to FlowMark when action signal is

invoked to the integer value specified by parameter returnCode.

 Function Data—Events
sessionId session

The part has been initialized. Parameter session has class String and contains

the FlowMark session identifier for the invoked function.

You can connect this event to the initForSession action of part FlowMark Activity.

parmString parameters

The part has been initialized. Parameter parameters has class String and

contains the command line parameters that are passed as input to the function

by FlowMark.

 Chapter 5. FlowMark—VisualAge integration 65

returnCode returnCode

The return code that is to be passed back to FlowMark when action signal is

invoked has been modified. Parameter returnCode has class Integer and

contains the new return value.

 FmBrokerTemplate
Part FmBrokerTemplate is provided as a template that you can use when building

visual parts that are to be invoked as application functions by FlowMark.

You can use this part by:

� Specifying it as super class to inherit from when creating a new visual part

� Copying it to a new part

� Viewing it to find out which elements you need to include in your new part

The following functionality is provided by this template:

� Open the part via a service function request from the VisualAge service broker.

� Initialize the connection to FlowMark to be able to access the container data.

� Open the application window.

� Return control to FlowMark when the application window is closed.

� Display message boxes in case of non-zero return codes from the FlowMark API.

This functionality is achieved by the following elements:

� Instance method openOn: functionData

Signals event openOn with functionData as parameter. This method is invoked by

the VisualAge service broker whenever it receives a function request for a class.

� Event openOn functionData

Indicates that the application function has been opened. The parameter

functionData has class FmFunctionData.

� The required subparts and connections in the composition editor

Subparts:

A Function Data used to communicate with the VisualAge service broker

A Current Activity used to access the FlowMark data container

66 Application Integration Guide

Connections:

Source Event Target Action

FmBrokerTemplate openOn Function Data initialize

Function Data sessionId Current Activity initForSession

Current Activity initialized Window openWidget

Window closedWidget Function Data signal

Current Activity initError Function Data signalWithCode

Current Activity initError Current Activity displayInitError

Current Activity getError Current Activity displayGetError

Current Activity setError Current Activity displaySetError

 FmBrokerWindow
Part FmBrokerWindow is a visual part that displays a control window showing

information about the VisualAge service broker.

This part must be used as the initial view to be opened when creating VisualAge

applications for use with the Service Broker Manager.

When this part is opened, it:

� Opens the service broker control window

� Establishes communication with the Service Broker Manager

� Waits for function requests from the Service Broker Manager

For each function request, this part:

� Accesses the shared memory area established by the service broker to retrieve the

invocation parameters

� Extracts the FlowMark session identifier and the name of the class that is to be

invoked from the parameter string

� Checks whether such a class exists in the image and whether it implements an

openOn: method

� Creates an instance of class FmFunctionData initialized with all data concerning

the function request

� Creates a new instance of the requested class and sends message openOn: with

the FmFunctionData as parameter

� Waits for the application function to finish

� Signals the end of the application function and the return code to FlowMark

Note: This part is opened automatically when a VisualAge service broker is started

from the Service Broker Manager and is closed when the service broker is stopped in

the Service Broker Manager. You should not manually close this window except in

cases where the Service Broker Manager has abnormally ended for some reason.

 Chapter 5. FlowMark—VisualAge integration 67

 FmFunctionData
Class FmFunctionData implements the communication protocol between the VisualAge

service broker and the application functions invoked by it.

An instance of this class is created whenever a service function request is received

from the Service Broker Manager and is passed as argument on the openOn: message

that is sent to the class implementing the requested function.

Objects of this class are used as parameter for the initialize action of part Function

Data.

Your application should not directly use this class but rather interface with it via the

public interface of the Function Data part.

 Current Activity
Select Current Activity to add a part that can be used to access the FlowMark

container data from your application.

You can use this part to query the structure of the input and output container of the

activity in FlowMark that your application is started from, to query data from the input

container, and to update data in the output container.

You must place a Current Activity on the free-form surface outside the bounds of parts

from the Canvas category, such as Window and Form parts.

Public interface:

� Actions (see “Current Activity—Actions”)

� Events (see “Current Activity—Events” on page 72)

Class name: FmCurrentActivity

Category: FlowMark

 Current Activity—Actions
initForSession sessionId

Initializes the part by establishing the connection to FlowMark and querying the

structure of the FlowMark data containers. Parameter sessionId has class String

and must contain the session identifier assigned to your application by FlowMark.

The part has to be initialized either with this action or with initContainers before

any other action is invoked. You can connect initForSession to the sessionId
event of a Function Data part to make sure that this part is initialized as soon as

the Function Data is initialized.

Calling this action signals events initialized (together with inputContainer and

outputContainer) or initError, depending on the success of the operation.

68 Application Integration Guide

getContainerItem item

Gets the value for a data item from FlowMark. Parameter item has class String

and contains the name of the data item that is to be retrieved.

The result of the action is the value of the data item and has class Integer,

String, or Float. If an error occurs, event getError is signaled, and the result of

the action is the default value for the type of the data item, or an integer 0 if the

data item does not exist in the FlowMark data container.

setContainerItem item, value

Updates the value of a data item in the FlowMark output container. Parameter

item has class String and contains the name of the data item that is to be set.

Parameter value has class Integer, String, or Float, depending on the type of the

data item in FlowMark, and contains the new value for the data item.

If an error occurs, event setError is signaled.

getOutputItem item

Gets the previously set value for a data item from the output container.

Parameter item has class String and contains the name of the data item that is to

be retrieved.

The result of the action is the value of the data item and has class Integer,

String, or Float. If the data item has not been set yet, the default value for the

data item is returned.

If the data item does not exist in the output container, event getError is signaled,

and the result of the action is an integer 0.

copyContainerItem item

Copies the value of a data item from the FlowMark input container to the

FlowMark output container. Parameter item has class String and contains the

name of the data item that is to be copied.

If an error occurs, event getError or setError is signaled.

copyItemToNewName inputItem, outputItem

Copies the value of a data item from the FlowMark input container to a different

data item in the FlowMark output container. Parameter inputItem has class

String and contains the name of the data item that is to be copied. Parameter

outputItem has class String and contains the name of the data item in the output

container that is to receive the value.

If an error occurs, event getError or setError is signaled.

copyMatchingItems

Copies the values of all data items from the input container to the data items in

the output container that have identical names.

If an error occurs, event getError or setError is signaled.

 Chapter 5. FlowMark—VisualAge integration 69

initContainers

Initializes the part by establishing the connection to FlowMark and querying the

structure of the FlowMark data containers.

The part has to be initialized with either this action, or with initForSession, before

any other action is invoked. If your application uses the Service Broker Manager

architecture, you must use initForSession to initialize this part. Action

initContainers is useful only for applications that are to be invoked directly from

FlowMark activities.

Calling this action signals events initialized (together with inputContainer and

outputContainer) or initError, depending on the success of the operation.

displayInitError error

Displays a message box describing an error that has occurred when attempting

to connect to FlowMark and obtain the structure of the data containers.

Parameter error has class FmError and contains an object describing the type of

error that occurred.

You should connect this action to the initError event of this part.

displayGetError item, error

Displays a message box describing an error that has occurred when attempting

to get the value of a data item from FlowMark. Parameter item has class String

and contains the name of the data item that could not be gotten. Parameter error

has class FmError and contains an object describing the type of error that

occurred.

You should connect this action to the getError event of this part.

displaySetError item, value, error

Displays a message box describing an error that has occurred when attempting

to set the value of a data item in the FlowMark output container. Parameter item

has class String and contains the name of the data item that could not be set.

Parameter value has class Integer, String, or Float and contains the value that

could not be set for the data item. Parameter error has class FmError and

contains an object describing the type of error that occurred.

You should connect this action to the displaySetError event of this part.

inputMembers

Returns an object of class OrderedCollection containing the names of all data

structure members in the FlowMark input container.

outputMembers

Returns an object of class OrderedCollection containing the names of all data

structure members in the FlowMark output container.

inputItems

Returns an object of class OrderedCollection containing the names of all data

items in the FlowMark input container.

70 Application Integration Guide

outputItems

Returns an object of class OrderedCollection containing the names of all data

items in the FlowMark output container.

typeOfInputItem item

Gets the type of a data structure member in the FlowMark input container.

Parameter item has class String and contains the name of the data structure

member whose type is to be returned. If the parameter contains a data item

name, it is translated to the related data structure member name internally.

The result of the action is a string describing the type of the data structure

member. Possible values are Long, String, and Float, or unknown if the data

structure member does not exist in the FlowMark container.

typeOfOutputItem item

Gets the type of a data structure member in the FlowMark output container.

Parameter item has class String and contains the name of the data structure

member whose type is to be returned. If the parameter contains a data item

name, it is translated to the related data structure member name internally.

The result of the action is a string describing the type of the data structure

member. Possible values are Long, String, and Float, or unknown if the data

structure member does not exist in the FlowMark container.

cardinalityOfInputItem item

Gets the cardinality of a data structure member in the FlowMark input container.

Parameter item has class String and contains the name of the data structure

member whose cardinality is to be returned. If the parameter contains a data

item name, it is translated to the related data structure member name internally.

The result of the action is an integer containing 0, if the data structure member

holds a single data item, or the number of elements in the array described by the

data structure member.

cardinalityOfOutputItem item

Gets the cardinality of a data structure member in the FlowMark output container.

Parameter item has class String and contains the name of the data structure

member whose cardinality is to be returned. If the parameter contains a data

item name, it is translated to the related data structure member name internally.

The result of the action is an integer containing 0, if the data structure member

holds a single data item, or the number of elements in the array described by the

data structure member.

 Chapter 5. FlowMark—VisualAge integration 71

 Current Activity—Events
initialized activity

The part has been successfully initialized. The connection to FlowMark is

established, and the structure of the data containers has been obtained from

FlowMark.

Parameter activity has class FmCurrentActivity and contains the part itself.

You should connect this event to the openWidget action of your application

window to ensure that the window is opened only when the connection to

FlowMark has been set up successfully.

inputContainer input

Always signaled together with event initialized.

Parameter input has class FmInputContainer and can be used to access the

input data of the FlowMark activity.

If your application contains an Input Container part, you should connect this event

to the setContainer action of that part to initialize it.

outputContainer output

Always signaled together with event initialized.

Parameter output has class FmOutputContainer and can be used to access the

output data of the FlowMark activity.

If your application contains an Output Container part, you should connect this

event to the setContainer action of that part to initialize it.

initError error

An error has occurred when attempting to connect to FlowMark and obtain the

structure of the data containers. Parameter error has class FmError and contains

an object describing the type of error that occurred.

You should connect this event to the displayInitError action of this part to display

an error message to the user, and to action signalWithCode of a Function Data to

end your application in case of an initialization error (do not forget to set the

parameter for the signalWithCode action).

getError item, error

An error has occurred when attempting to get the value of a data item from

FlowMark. Parameter item has class String and contains the name of the data

item that could not be gotten. Parameter error has class FmError and contains

an object describing the type of error that occurred.

You should connect this event to the displayGetError action of this part to display

an error message to the user.

72 Application Integration Guide

setError item, value, error

An error has occurred when attempting to set the value of a data item in the

FlowMark output container. Parameter item has class String and contains the

name of the data item that could not be set. Parameter value has class Integer,

String, or Float and contains the value that could not be set for the data item.

Parameter error has class FmError and contains an object describing the type of

error that occurred.

You should connect this event to the displaySetError action of this part to display

an error message to the user.

 Input Container
Select Input Container to add a part that you can use to access the input data of the

FlowMark activity in cases where you know the structure of the data already when you

build the application.

You must place an Input Container on the free-form surface outside the bounds of parts

from the Canvas category, such as Window and Form parts.

Public interface:

� Attributes (see “Input Container—Attributes”)

� Actions (see “Input Container—Actions” on page 74)

� Events (see “Input Container—Events” on page 74)

Settings:

� General (see “Input Container—Settings” on page 75)

Class name: FmInputCtnrPart

Category: FlowMark

 Input Container—Attributes
dataMembers (OrderedCollection)

Contains the definition of the data structure used for the container. Each element

of the collection has class FmContainerItem and describes one data structure

member in the container.

When you specify items for the dataMembers collection in the settings view, additional

attributes are dynamically generated for the part. For each data item defined by the

data structure members specified, an attribute is created whose name is equal to the

name of the data item. These attributes do not have set methods, so you cannot

update their value. You can only draw connections to these attributes to obtain the

values of these data items from the FlowMark input container.

If any of the connections you draw results in VisualAge to obtain the value of such an

attribute before the container is initialized, the constant value nil is returned. As soon

as the container is initialized, the value for the data item is obtained from FlowMark and

stored in the attribute.

 Chapter 5. FlowMark—VisualAge integration 73

 Input Container—Actions
setContainer container

Initializes the part with the initialized instance of class FmInputContainer passed

as parameter container.

This action signals events structureOk or structureMismatch, depending on

whether the data structure that has been defined for the part at build time

matches the data structure of the FlowMark input container at runtime.

You should connect this action to the inputContainer event of a Current Activity

part to ensure that the container is correctly set as soon as the activity is

initialized.

When you specify items for the dataMembers collection in the settings view, additional

actions are dynamically generated for the part. For each data item defined by the data

structure members specified, an action is created whose name is built by concatenating

the string get with the name of the data item.

The methods implementing the interface to the FlowMark container from this part make

sure that data is obtained from FlowMark only when it is really needed (that means,

when the corresponding attributes are connected to other objects). This can cause the

problem that, if a value for a data item is required only to be used in a script (via an

event-to-script connection), the value is not obtained from FlowMark, and the event is

never signaled.

For these cases, the get.... actions have been defined to force the retrieval of a

data-item value from FlowMark.

Example:

If you want to use the value of the predefined FlowMark data item _ACTIVITY in a script

that is to be run as soon as your window is opened, you need to draw the following

connections:

1. From the openedWidget event of your window part to the get_ACTIVITY action of

the input container part.

2. From the _ACTIVITY event of the input container part to the script that is to be run.

 Input Container—Events
structureOk

During initialization of the part, it has been verified that all predefined data items

really exist in the FlowMark input container.

structureMismatch

During initialization of the part, one or more predefined data items could not be

found in the FlowMark input container. Any subsequent attempt to access one of

these items results in the FlowMark error condition ExmpjInvalidItemName.

74 Application Integration Guide

getError item, error

An error has occurred when attempting to get the value of a data item from

FlowMark. Parameter item has class String and contains the name of the data

item that could not be retrieved. Parameter error has class FmError and contains

an object describing the type of error that occurred.

You can connect this event to the displayGetError action of a Current Activity part

to display an error message to the user.

When you specify items for the dataMembers collection in the settings view, additional

events are dynamically generated for the part. For each data item defined by the data

structure members specified, an event is created whose name is built by concatenating

the string error with the name of the data item.

Whenever the attempt to retrieve the value of a data item from FlowMark fails, the

corresponding error... event is signaled, in addition to the common getError event.

An object of class FmError describing the type of error that occurred is passed as

parameter on these events.

 Input Container—Settings
Structure

Defines the data structure of the input container of the FlowMark activity. Click

mouse button 2 somewhere on the table part to get a pop-up menu that you can

use to modify the displayed list.

The values you enter are stored in attribute dataMembers.

You can use the Import button to import a data structure from an FDL file.

 Output Container
Select Output Container to add a part that you can use to modify the output data of

the FlowMark activity in cases where you know the structure of the data already when

you build the application.

You must place an Output Container on the free-form surface outside the bounds of

parts from the Canvas category, such as Window and Form parts.

Public interface:

� Attributes (see “Output Container—Attributes” on page 76)

� Actions (see “Output Container—Actions” on page 76)

� Events (see “Output Container—Events” on page 77)

Settings:

� General (see “Output Container—Settings” on page 77)

Class name: FmOutputCtnrPart

Category: FlowMark

 Chapter 5. FlowMark—VisualAge integration 75

 Output Container—Attributes
dataMembers (OrderedCollection)

Contains the definition of the data structure used for the container. Each element

of the collection has class FmContainerItem and describes one data structure

member in the container.

When you specify items for the dataMembers collection in the settings view, additional

attributes are dynamically generated for the part. For each data item defined by the

data structure members specified, an attribute is created whose name is equal to the

name of the data item.

The initial value of all these attributes is nil. When you update the value of these

attributes, those values are not actually written to the FlowMark output container, but

only stored in internal memory.

You need to invoke action setItems to move these values from internal storage to the

FlowMark container.

 Output Container—Actions
setContainer container

Initializes the part with the initialized instance of class FmOutputContainer passed

as parameter container.

This action signals events structureOk or structureMismatch, depending on

whether the data structure that has been defined for the part at build time

matches the data structure of the FlowMark output container at runtime.

You should connect this action to the outputContainer event of a Current Activity

part to ensure that the container is correctly set as soon as the activity is

initialized.

setItems

Copies the values of all data items that have been stored internally via

connections to the dynamically generated attributes to the output container of the

FlowMark activity.

You can connect this action, for example, to the aboutToCloseWidget event of

your application window to make sure that all data is saved to FlowMark when

the window is closed.

When you specify items for the dataMembers collection in the settings view, additional

actions are dynamically generated for the part. For each data item defined by the data

structure members specified, an action is created whose name is built by concatenating

the string set with the name of the data item.

You can use these methods instead of the corresponding attributes to copy a value to

FlowMark immediately. You have to pass the new value for the container item as

parameter. Invoking these action does not update the values of the corresponding

attributes.

76 Application Integration Guide

It is strongly recommended that you use the dynamically generated attributes, in

conjunction with the setItems method, to move data to the FlowMark output container,

rather than to use the set... methods, to ensure that the FlowMark API is invoked only

once for each data item.

 Output Container—Events
structureOk

During initialization of the part, it has been verified that all predefined data items

really exist in the FlowMark output container.

structureMismatch

During initialization of the part, one or more predefined data items could not be

found in the FlowMark output container. Any subsequent attempt to access one

of these items results in a FlowMark error condition ExmpjInvalidItemName.

setError item, value, error

An error has occurred when attempting to set the value of a data item in the

FlowMark output container. Parameter item has class String and contains the

name of the data item that could not be set. Parameter value has class Integer,

String, or Float and contains the value that could not be set for the data item.

Parameter error has class FmError and contains an object describing the type of

error that occurred.

You can connect this event to the displaySetError action of a Current Activity part

to display an error message to the user.

When you specify items for the dataMembers collection in the settings view, additional

events are dynamically generated for the part. For each data item defined by the data

structure members specified, an event is created whose name is built by concatenating

the string error with the name of the data item.

Whenever the attempt to set the value of a data item in FlowMark fails, the

corresponding error... event is signaled, in addition to the common setError event.

An object of class FmError describing the type of error that occurred is passed as

parameter on these events.

 Output Container—Settings
Structure

Defines the data structure of the output container of the FlowMark activity. Click

mouse button 2 somewhere on the table part to get a pop-up menu that you can

use to modify the displayed list.

The values you enter are stored in attribute dataMembers.

You can use the Import button to import a data structure from an FDL file.

 Chapter 5. FlowMark—VisualAge integration 77

 FlowMark Session
Select FlowMark Session to add a part that represents a process control session in

FlowMark Runtime to your application.

You can use this part to start and stop a process control session in FlowMark, which

you need if you plan to invoke any of the process control functions defined in the

FlowMark process API.

You must place a FlowMark Session on the free-form surface outside the bounds of

parts from the Canvas category, such as Window and Form parts.

Public interface:

� Actions (see “FlowMark Session—Actions”)

� Events (see “FlowMark Session—Events” on page 79)

Class name: FmSession

Category: FlowMark

 FlowMark Session—Actions
startForSessionId sessionId

Starts a process control session for an application that has been invoked under

the control of FlowMark. Parameter sessionId has class String and must contain

the session identifier that has been assigned to your application by FlowMark.

If your application has been invoked directly by FlowMark without the VisualAge

service broker, you can specify nil as value for sessionId, which causes the part

to obtain the current session identifier from FlowMark.

If the operation is successful, event started is signaled, with the session handle

as parameter. If the operation fails, event startError is signaled.

startExternal

Starts a process control session for an application that has not been invoked

under the control of FlowMark.

This action displays a logon dialog that prompts the user to enter the required

parameters to start a FlowMark session and then logs on to FlowMark using the

supplied values.

If the operation is successful, event started is signaled, with the session handle

as parameter. If the operation fails, event startError is signaled.

startExternalWith logonData

Starts a process control session for an application that has not been invoked

under the control of FlowMark. Parameter logonData has class FmExmApiBegin.

This action tries to log on to FlowMark using the logon parameters provided in

logonData.

If the operation is successful, event started is signaled, with the session handle

as parameter. If the operation fails, event startError is signaled.

78 Application Integration Guide

endSession

Terminates the FlowMark process control session.

If the operation is successful, event closed is signaled. If the operation fails,

event closeError is signaled.

displayStartError error

Displays a message box describing an error that has occurred when attempting

to start a process control session. Parameter error has class FmError and

contains an object describing the type of error that occurred.

You should connect this action to the startError event of this part.

displayCloseError error

Displays a message box describing an error that has occurred when attempting

to close a process control session. Parameter error has class FmError and

contains an object describing the type of error that occurred.

You should connect this action to the closeError event of this part.

 FlowMark Session—Events
started handle

A FlowMark process control session has been started. Parameter handle has

class LargeInteger and contains the handle of the FlowMark session.

closed

The FlowMark process control session has been terminated.

startError error

An error has occurred when attempting to start a FlowMark process control

session. Parameter error has class FmError and contains an object describing

the type of error that occurred.

You should connect this event to the displayStartError action of this part to

display an error message to the user.

closeError error

An error has occurred when attempting to close the FlowMark process control

session. Parameter error has class FmError and contains an object describing

the type of error that occurred.

You should connect this event to the displayCloseError action of this part to

display an error message to the user.

 FlowMark Activity
Select FlowMark Activity to add a part that represents an activity in FlowMark Runtime

to your application. You can use this part to change the status of the activity in

FlowMark.

You must place a FlowMark Activity on the free-form surface outside the bounds of

parts from the Canvas category, such as Window and Form parts.

 Chapter 5. FlowMark—VisualAge integration 79

Public interface:

� Attributes (see “FlowMark Activity—Attributes”)

� Actions (see “FlowMark Activity—Actions”)

� Events (see “FlowMark Activity—Events” on page 81)

Settings: General (see “FlowMark Activity—Settings” on page 81)

Class name: FmActivity

Category: FlowMark

 FlowMark Activity—Attributes
processName (String)

The name of the FlowMark Runtime process instance that contains the activity

that is to be manipulated by this part.

activityName (String)

The fully qualified name of the activity in FlowMark that is to be manipulated by

this part.

 FlowMark Activity—Actions
setHandle handle

Assigns the handle of an active FlowMark process control session to the part.

Parameter handle has class LargeInteger.

A process control session handle has to be assigned to the part using this action

before the status of the associated activity can be changed. You can connect

setHandle to the started event of a FlowMark Session part to make sure that

the handle is available as soon as the process control session is started.

start

Starts the activity in FlowMark Runtime.

This action works only if the current status of the activity in FlowMark is ready.

If the operation is successful, event running is signaled. If the operation fails due

to an invalid status of the activity, event wrongState is signaled. If the operation

fails for any other reason, event apiError is signaled with a parameter indicating

the type of the error that occurred.

restart

Restarts the activity in FlowMark Runtime.

This action works only if the current status of the activity in FlowMark is running

or pending.

If the operation is successful, event running is signaled. If the operation fails due

to an invalid status of the activity, event wrongState is signaled. If the operation

fails for any other reason, event apiError is signaled with a parameter indicating

the type of the error that occurred.

80 Application Integration Guide

finish

Finishes the activity in FlowMark Runtime.

This action works only if the current status of the activity in FlowMark is ready,

running, or pending.

If the operation is successful, event finished is signaled. If the operation fails

due to an invalid status of the activity, event wrongState is signaled. If the

operation fails for any other reason, event apiError is signaled with a parameter

indicating the type of the error that occurred.

displayError error

Displays a message box describing an error that has occurred when attempting

to change the activity status. Parameter error has class FmError and contains an

object describing the type of error that occurred.

You should connect this action to the apiError event of this part.

 FlowMark Activity—Events
running

The activity has been successfully started or restarted.

finished

The activity has been successfully finished.

wrongState state

The activity status could not be changed due to an invalid current status of the

activity. Parameter state has type Integer and contains the current status of the

activity.

apiError error

An error has occurred when attempting to change the status of the activity.

Parameter error has class FmError and contains an object describing the type of

error that occurred.

You should connect this event to the displayError action of this part to display an

error message to the user.

 FlowMark Activity—Settings
Process

The name of the FlowMark Runtime process instance that contains the activity

that is to be manipulated by this part.

The value you enter is stored in attribute processName.

Activity

The fully qualified name of the FlowMark activity that is to be manipulated by this

part.

The value you enter is stored in attribute activityName.

 Chapter 5. FlowMark—VisualAge integration 81

 FlowMark Process
Select FlowMark Process to add a part that represents a process instance in

FlowMark Runtime to your application.

You can use this part to invoke the process control functions defined in the FlowMark

process API, like starting a new process from a process template or suspending an

active process.

You must place a FlowMark Process on the free-form surface outside the bounds of

parts from the Canvas category, such as Window and Form parts.

Public interface:

� Attributes (see “FlowMark Process—Attributes”)

� Actions (see “FlowMark Process—Actions” on page 83)

� Events (see “FlowMark Process—Events” on page 85)

Settings:

� General (see “FlowMark Process—Settings” on page 86)

Class name: FmProcess

Category: FlowMark

 FlowMark Process—Attributes
processName (String)

The name of the FlowMark Runtime process instance that is to be manipulated

by this part. If a new process instance is created, the default name that is to be

used for the new instance.

templateName (String)

If the part is to be used to create a new FlowMark process instance, this is the

name of the process template that is to be used to create the instance from.

startData (OrderedCollection)

If the part is to be used to create a new FlowMark process instance, this is the

input data that is passed to the new process. Each element in the collection

must be an instance of class FmStartDataItem.

When you specify items for the startData collection in the settings view, additional

attributes are dynamically generated for the part. For each data item specified, an

attribute is created whose name is equal to the name of the data item. You can draw

connections to these attributes to update the values of these data items.

82 Application Integration Guide

 FlowMark Process—Actions
setHandle handle

Assigns the handle of an active FlowMark process control session to the part.

Parameter handle has class LargeInteger.

A process control session handle has to be assigned to the part using this action

before any of the process control functions can be invoked. You can connect

setHandle to the started event of a FlowMark Session part to make sure that

the handle is available as soon as the process control session is started.

start

Starts a new process instance in FlowMark Runtime.

The name of the template used to start the process from is taken from attribute

templateName. Attribute processName is the default name for the new process,

and attribute startData is the input data that is passed to the input container of

the new process.

If the operation is successful, event started is signaled. Furthermore, since the

name of the new process in FlowMark can be different from the default name

passed to the API, event processName is signaled with the actual name of the

new process as parameter. If the operation fails, event processError is signaled

with a parameter indicating the type of the error that occurred.

startFromTemplate template

Sets the value of attribute templateName to the value of parameter template, and

then starts a new process instance in FlowMark Runtime, as described for action

start.

suspend

Suspends the process in FlowMark Runtime. The name of the process to

suspend is taken from attribute processName.

If the operation is successful, event suspended is signaled. Furthermore, event

topLevelProcess is signaled with the name of the top-level process in FlowMark

that contains the process that has been suspended. If the operation fails, event

processError is signaled with a parameter indicating the type of the error that

occurred.

suspendAll

Like suspend, with the difference that, in addition to the process from

processName, all of its subprocesses are suspended too.

resume

Resumes the process in FlowMark Runtime. The name of the process to resume

is taken from attribute processName.

If the operation is successful, event resumed is signaled. Furthermore, event

topLevelProcess is signaled with the name of the top-level process in FlowMark

that contains the process that has been resumed. If the operation fails, event

processError is signaled with a parameter indicating the type of the error that

occurred.

 Chapter 5. FlowMark—VisualAge integration 83

resumeAll

Like resume, with the difference that, in addition to the process from

processName, all of its subprocesses are resumed too.

terminate

Terminates the process in FlowMark Runtime. The name of the process to

terminate is taken from attribute processName.

If the operation is successful, event terminated is signaled. Furthermore, event

topLevelProcess is signaled with the name of the top-level process in FlowMark

that contains the process that has been terminated. If the operation fails, event

processError is signaled with a parameter indicating the type of the error that

occurred.

restart

Restarts the process in FlowMark Runtime. The name of the process to restart is

taken from attribute processName.

If the operation is successful, event restarted is signaled. Furthermore, event

topLevelProcess is signaled with the name of the top-level process in FlowMark

that contains the process that has been restarted. If the operation fails, event

processError is signaled with a parameter indicating the type of the error that

occurred.

queryTopLevelName

Obtains the name of the top-level process in FlowMark that contains the process

whose name is stored in attribute processName.

If the operation is successful, event topLevelProcess is signaled with the name of

the top-level process in FlowMark. If the operation fails, event processError is

signaled with a parameter indicating the type of the error that occurred.

displayError error

Displays a message box describing an error that has occurred when attempting

to perform a process control function. Parameter error has class FmError and

contains an object describing the type of error that occurred.

You should connect this action to the processError event of this part.

addItemValue name, value

Creates an instance of class FmStartDataItem and adds it to the startData

collection of the part. Parameter name has class String and contains the name

of the data item. Parameter value has class String, Integer, or Float and contains

the value that is to be assigned to the data item when the process is started.

addDataItem dataItem

Adds a data item to the startData collection of the part. Parameter dataItem has

class FmStartDataItem and holds the data item that is to be added to the start

data of the process.

If the startData already contains an item with the same name, the value of that

item is updated with the new value from the dataItem parameter.

84 Application Integration Guide

removeDataItem dataItem

Removes a data item from the startData collection of the part. Parameter

dataItem has class FmStartDataItem and holds the data item that is to be

removed from the start data of the process.

The value of dataItem is not significant. If the startData collection contains a data

item with the same name, it is removed without checking the value.

 FlowMark Process—Events
started

A FlowMark process instance has been successfully created and started, using

the values from the attributes of the part. The name of the new process is

contained in attribute processName. This event is always signaled together with

event processName.

suspended

The FlowMark process instance whose name is stored in attribute processName

has been successfully suspended. This event is always signaled together with

event topLevelProcess.

resumed

The FlowMark process instance whose name is stored in attribute processName

has been successfully resumed. This event is always signaled together with

event topLevelProcess.

terminated

The FlowMark process instance whose name is stored in attribute processName

has been successfully terminated. This event is always signaled together with

event topLevelProcess.

restarted

The FlowMark process instance whose name is stored in attribute processName

has been successfully restarted. This event is always signaled together with

event topLevelProcess.

topLevelProcess tlp

One of the process control functions, which, as a side effect, return the name of

the top-level process, has been successfully executed. Parameter tlp has class

String and contains the name of the top-level process in FlowMark that contains

the process whose name is stored in the processName attribute.

processError error

An error has occurred when attempting to perform any FlowMark process control

function. Parameter error has class FmError and contains an object describing

the type of error that occurred.

You should connect this event to the displayError action of this part to display an

error message to the user.

 Chapter 5. FlowMark—VisualAge integration 85

 FlowMark Process—Settings
Instance name

The name of the FlowMark Runtime process instance that is to be manipulated

by this part. If a new process instance is created, this is the default name that is

to be used for the new instance.

The value you enter is stored in attribute processName.

Template name

If the part is to be used to create a new FlowMark process instance, this is the

name of the process template that is to be used to create the instance from.

The value you enter is stored in attribute templateName.

Start Data

If the part is to be used to create a new FlowMark process instance, this is the

input data that is passed to the new process. Click mouse button 2 somewhere

on the table part to get a pop-up menu that you can use to modify the displayed

list.

You can use the Import button to import a data structure from an FDL file.

The value you enter is stored in attribute startData.

 FmApiLibrary
Class FmApiLibrary provides the necessary methods to call the external functions that

make up the FlowMark API. An initialized instance of this class is created whenever

application FmApiBase is loaded.

Subclass of:

Object

Instance variables:

id query get set logon pass logoff start suspend resume terminate restart

changeAct

Class variables:

DefaultLib

Pool dictionaries:

FmConstants

Public instance methods:

getContainerItem: session name: name dataSize: size dataArea: data

dataLength: length

Invoke FlowMark function ExmcGetContainerItem to get the data item

name. Returns an integer containing the return code issued by FlowMark.

getSessionId: session

Invoke FlowMark function ExmcGetSessionID to obtain a session identifier.

Returns an integer containing the return code issued by FlowMark.

86 Application Integration Guide

logoff: handle

Invoke FlowMark function ExmcLogoff to terminate the process control

session represented by handle. Returns an integer containing the return

code issued by FlowMark.

logon: logonData handle: handle

Invoke FlowMark function ExmcLogon to start a process control session

with the logon values contained in logonData. Returns an integer

containing the return code issued by FlowMark.

passThru: session handle: handle

Invoke FlowMark function ExmcPassThru to start an internal process

control session for the session identifier session. Returns an integer

containing the return code issued by FlowMark.

queryContainerStructure: session type: type dataSize: size data: data

dataLength: length

Invoke FlowMark function ExmcQueryDataStructure to obtain the structure

of the FlowMark data container. Returns an integer containing the return

code issued by FlowMark.

restart: handle name: name tlp: tName mode: mode

Invoke FlowMark function ExmcRestartProcess to restart the process

instance identified by name. Returns an integer containing the return code

issued by FlowMark.

resume: handle name: name tlp: tName mode: mode

Invoke FlowMark function ExmcResumeProcess to resume the process

instance identified by name. Returns an integer containing the return code

issued by FlowMark.

setContainerItem: session name: name dataSize: size dataArea: data

Invoke FlowMark function ExmcSetContainerItem to set the data item name

to the value in data. Returns an integer containing the return code issued

by FlowMark.

start: handle from: template name: name with: data

Invoke FlowMark function ExmcStartProcess to create and start a new

process instance from template template, giving it name name and input

data data. Returns an integer containing the return code issued by

FlowMark.

suspend: handle name: name tlp: tName mode: mode

Invoke FlowMark function ExmcSuspendProcess to suspend the process

instance identified by name. Returns an integer containing the return code

issued by FlowMark.

terminate: handle name: name tlp: tName mode: mode

Invoke FlowMark function ExmcTerminateProcess to terminate the process

instance identified by name. Returns an integer containing the return code

issued by FlowMark.

 Chapter 5. FlowMark—VisualAge integration 87

Public class methods:

default

Returns the initialized instance of the receiver that has been created when

the application was loaded.

 FmError
Class FmError provides the means to implement a generalized error-handling

mechanism for all interactions with FlowMark. All methods in any of the classes of this

integration package that invoke a FlowMark API function returns an instance of this

class when FlowMark returns an error code.

Subclass of:

Object

Instance variables:

code text

Class variables:

none

Pool dictionaries:

FmConstants

Public instance methods:

display

Display a message box describing the error condition stored in the

receiver.

errorCode

Returns an integer containing the error code that has been issued by

FlowMark.

errorCodeAsString

Returns a string that is the textual representation (the name of the variable

in the FmConstants dictionary) of the error code that has been issued by

FlowMark.

errorCondition

Returns a string that contains the textual representation of the error code,

followed by the numeric error code in parentheses.

isDatabaseError

Returns true if the receiver holds an error code indicating an invalid

database field in the logon data structure of an ExmcLogon API call.

isFmError

Returns true. A similar method has been implemented in class Object

returning false. This enables sending message isFmError to any object to

check whether it is an instance of this class.

88 Application Integration Guide

isPasswordError

Returns true if the receiver holds an error code indicating an invalid

password field in the logon data structure of an ExmcLogon API call.

isServerError

Returns true if the receiver holds an error code indicating an invalid server

field in the logon data structure of an ExmcLogon API call.

isUserIdError

Returns true if the receiver holds an error code indicating an invalid user ID

field in the logon data structure of an ExmcLogon API call.

Public class methods:

forCode: anInteger

Returns an initialized instance of the receiver that describes the FlowMark

error condition indicated by code anInteger.

 FmContainer
Class FmContainer provides the common interface for its subclasses FmInputContainer

and FmOutputContainer.

It serves as an abstract base class, so you should not create instances of this class.

Instead, use the provided subclasses.

Subclass of:

Object

Instance variables:

attrCount attrInfos itemValues sessionId

Class variables:

none

Pool dictionaries:

FmConstants

Public instance methods:

cardinalityOf: item

Returns an integer containing the cardinality of the data item or data

structure member with name item. The value is 0 if the data structure

member for item does not describe an array of data. Otherwise, it is the

number of elements in the array.

dataMembers

Returns an ordered collection containing the names of all data structure

members in the container.

 Chapter 5. FlowMark—VisualAge integration 89

defaultValueFor: item

Returns the default value for the data item item, which is an integer 0 if

item has type Long, a null string for type String, and a floating point 0 for

type Float. If item is not included in the container, the return value is an

integer 0.

includesAttribute: aString

Returns true if aString is the name of a data structure member in the

container.

includesDataItem: aString

Returns true if aString is the name of a data item in the container.

items

Returns an ordered collection containing the names of all data items in the

container.

queryStructure

Query the structure of the FlowMark data container. Returns an instance

of class FmError if FlowMark returns an error condition.

setSessionId: anId

Set the session identifier that is to be used for all FlowMark API calls

issued by the receiver to anId, which must be a string holding the

FlowMark session identifier assigned to your application by FlowMark.

stringTypeOf: item

Returns a string, the type of the data item or data structure member with

name item. Possible values are String, Long, and Float, or unknown if item

does not exist in the container.

Public class methods:

none

 FmInputContainer
Class FmInputContainer can be used to access the data in the input container of a

FlowMark activity.

Subclass of:

FmContainer

Instance variables:

none

Class variables:

none

Pool dictionaries:

none

90 Application Integration Guide

Public instance methods:

getAllItems

Get the value for all data items in the container from FlowMark and store

them in the internal data collection. Returns an instance of FmError if

FlowMark returns any error code other than ExmpjItemNotSet.

getItem: item

Returns the value of data item item in the container. The value is obtained

from the internal data collection, or, if it has not yet been retrieved, the

FlowMark API is invoked to get the value from the container. If the

FlowMark API returns an error code, an instance of FmError is returned.

Public class methods:

none

 FmOutputContainer
Class FmOutputContainer can be used to update the data in the output container of a

FlowMark activity.

Subclass of:

FmContainer

Instance variables:

none

Class variables:

none

Pool dictionaries:

none

Public instance methods:

setItem: item value: anObject

Set the value of data item item in the output container to anObject via the

FlowMark API. The type of anObject must be String, Long, or Float and

must match the type of the data item in the FlowMark container. If the

FlowMark API returns an error code, an instance of FmError is returned.

getItem: item

Returns the value of data item item that has been previously set to the

container, or, if the data item has not been set, returns the default value for

the specified data item. The value is obtained from the internal data

collection of the part. Thus, a previously set value is returned only if it has

been set using the same part. An instance of FmError is returned if the

data item does not exist in the container.

Public class methods:

none

 Chapter 5. FlowMark—VisualAge integration 91

 FmContainerItem
Class FmContainerItem is used to describe the data structure members in a FlowMark

container.

Subclass of:

Object

Instance variables:

name type cardinality stringType requested

Class variables:

none

Pool dictionaries:

FmConstants

Public instance methods:

= anObject

Returns true if anObject has the same name as the receiver.

cardinality

Returns an integer containing the cardinality of the data structure member.

name

Returns the name of the data structure member.

type

Returns an integer containing the type of the data structure member, which

is one of the constants ExmpjTypeString, ExmpjTypeLong, or

ExmpjTypeFloat from the FmConstants pool dictionary.

stringType

Returns a string describing the type of the data structure member.

Possible values are String, Long, Float, and unknown.

valueClass

Returns the class that is required for values of the data structure member.

Possible values are String, Integer, Float, and Object.

Public class methods:

namePtr: aPtr type: aType size: anInt

Returns an initialized instance of the receiver, with name set to a string

obtained from address aPtr, type aType, and size anInt.

92 Application Integration Guide

 FmStartDataItem
Class FmStartDataItem is used to hold input data items that can be passed to new

processes.

Subclass of:

Object

Instance variables:

name value displayValue

Class variables:

none

Pool dictionaries:

none

Public instance methods:

= anObject

Returns true if anObject has the same name as the receiver.

dataSize

Returns the size of the value. The returned value is 4 for integers, 8 for

floating point numbers, and the actual size of the string for strings.

displayValue

Returns a string holding the value of the receiver.

name

Returns the name of the receiver.

name: aString

Set the name of the receiver to aString.

namePtr

Returns a pointer to the name of the receiver.

type

Returns a string representing the type of the receiver. Possible values are

Long, Float, and String.

value

Returns the current value of the receiver.

value: aValue

Set the value of the receiver to aValue, which must have type String,

Integer, or Float.

valuePtr

Returns a pointer to the value of the receiver. If the value is of type Float,

the pointer does not point to the actual value, but to the value encoded as

C-language double precision number.

 Chapter 5. FlowMark—VisualAge integration 93

Public class methods:

name: aName value: aValue

Returns an initialized instance of the receiver, with name set to aName and

value set to aValue. A value must have type String, Integer, or Float.

 FmExmApiBegin
Class FmExmApiBegin is used as a data structure that holds the required data to

perform a logon to FlowMark.

Subclass of:

OSStruct

Instance variables:

none

Class variables:

none

Pool dictionaries:

none

Public instance methods:

database

Returns the value of field database, which is a pointer.

database: obj

Set the value of field database to the pointer obj.

password

Returns the value of field password, which is a pointer.

password: obj

Set the value of field password to the pointer obj.

server

Returns the value of field server, which is a pointer.

server: obj

Set the value of field server to the pointer obj.

userid

Returns the value of field userid, which is a pointer.

userid: obj

Set the value of field userid to the pointer obj.

Public class methods:

fixedSize

Returns the size of the receiver in bytes.

94 Application Integration Guide

 FmExmApiTypeInfo
Class FmExmApiTypeInfo is used as a data structure to access the information that is

returned by FlowMark when the structure of a data container is queried.

Subclass of:

OSStruct

Instance variables:

none

Class variables:

none

Pool dictionaries:

none

Public instance methods:

none

createAttribute: anInt

Returns a new instance of class FmContainerItem initialized from the

variable item at position anInt.

nameAt: anIndex

Returns the value of field name, which is a pointer, of the variable item at

position anIndex.

nameAt: anIndex put: obj

Set the value of field name of the variable item at position anIndex to the

pointer obj.

number

Returns the value of field number, which is an integer.

number: obj

Set the value of field number to the integer obj.

sizeAt: anIndex

Returns the value of field size, which is an integer, of the variable item at

position anIndex.

sizeAt: anIndex put: obj

Set the value of field size of the variable item at position anIndex to the

integer obj.

typeAt: anIndex

Returns the value of field type, which is an integer, of the variable item at

position anIndex.

typeAt: anIndex put: obj

Set the value of field type of the variable item at position anIndex to the

integer obj.

 Chapter 5. FlowMark—VisualAge integration 95

Public class methods:

fixedSize

Returns the size of the fixed part of the receiver in bytes.

totalLength: length

Returns a new instance of the receiver, with an overall size of length bytes,

including both fixed and variable components.

variableSize

Returns the size of the variable part of the receiver in bytes.

 FmExmApiStructureData
Class FmExmApiStructureData is used as a data structure that holds the input data that

is to be passed to new FlowMark processes.

Subclass of:

OSStruct

Instance variables:

none

Class variables:

none

Pool dictionaries:

none

Public instance methods:

dataareaAt: anIndex

Returns the value of field dataarea, which is a pointer, of the variable item

at position anIndex.

dataareaAt: anIndex put: obj

Set the value of field dataarea of the variable item at position anIndex to

the pointer obj.

nameAt: anIndex

Returns the value of field name, which is a pointer, of the variable item at

position anIndex.

nameAt: anIndex put: obj

Set the value of field name of the variable item at position anIndex to the

pointer obj.

number

Returns the value of field number, which is an integer.

number: obj

Set the value of field number to the integer obj.

sizeAt: anIndex

Returns the value of field size, which is an integer, of the variable item at

position anIndex.

96 Application Integration Guide

sizeAt: anIndex put: obj

Set the value of field size of the variable item at position anIndex to the

integer obj.

Public class methods:

fixedSize

Returns the size of the fixed part of the receiver in bytes.

totalLength: length

Returns a new instance of the receiver, with an overall size of length bytes,

including both fixed and variable components.

variableSize

Returns the size of the variable part of the receiver in bytes.

 FmMaintainProcess
Class FmMaintainProcess displays a window (shown in Figure 15) that enables you to

start new FlowMark processes from the provided sample process template and to

perform any of the other process-control functions defined in the FlowMark process API

on any of the process instances available in FlowMark Runtime.

Figure 15. Window Handle VisualAge Sample Process

Use the Session menu to start and stop a FlowMark process control session.

Use the Process menu to perform process control functions on the process whose

name is displayed in the Process Name field.

When you select Start from Process, a new instance is created from process template

VisualAge Sample, with the instance name and the input data from the entry fields.

The status area at the bottom of the panel displays the result of the last operation that

you performed.

 Chapter 5. FlowMark—VisualAge integration 97

 FmDisplayActivity
Part FmDisplayActivity displays a window showing the process name and the activity

name of the FlowMark activity it has been invoked from, as well as its FlowMark

session identifier and the passed input parameter string.

The window looks like the window shown in Figure 16.

Figure 16. Window FlowMark Activity

98 Application Integration Guide

 FmMaintainContainer
Class FmMaintainContainer displays a window (shown in Figure 17) that enables you

to browse the contents of the input container and to modify the contents of the output

container of the FlowMark activity that it is invoked from.

Figure 17. Window FlowMark Container

The window consists of:

� A set of radio buttons labeled Input and Output, which you can use to switch

between input and output mode, and a Copy push button used to copy all values

of the input container to the output container.

� A group box labeled Structure, which displays the structure of the data in the

container. The list box shows the names of all data structure members in the

container. When you select an element in the list box, the entry fields show the

type and cardinality of the data structure member.

� A group box labeled Values, which can be used to display the contents of the input

container or to update the contents of the output container. The list box shows all

data items in the container. In input mode, when you select an element from the

list, the value of the data item is displayed in the text field. In output mode, you

can select an element, type a value in the text field, and click on the Update button

to set the value of the data item in the container.

 Chapter 5. FlowMark—VisualAge integration 99

 FmMaintainData
Part FmMaintainData displays a window showing the contents of data structure

VisualAge Sample. When the window opens, the entry fields display the data from the

FlowMark input container. When you close the window with the OK button, the

contents of the entry fields are written to the FlowMark output container.

The window looks like the one shown in Figure 18.

Figure 18. Window Maintain Container Data

100 Application Integration Guide

Chapter 6. Creating your own service brokers

This section provides information you need to develop your own service brokers and

services.

Designing service brokers and services

If you did not install the Toolkit and Samples when the Service Broker Manager was

installed, refer to the Installation and Maintenance guide for details on how to install

them at any other time.

Ensure that the directory where the service broker and service DLLs reside is specified

in the LIBPATH statement in your CONFIG.SYS file. This is done automatically by the

standard Service Broker Manager installation.

Service brokers and services must be written in C or C++ and compiled with Version

3.0 of the IBM VisualAge for C++ for OS/2 or any other equivalent compiler that can

compile 32-bit OS/2 programs.

API functions described in this book are provided as a programming interface for C,

C++, or REXX programs. Although other functions may appear in header files, use only

the functions described in this book.

C language conventions
Service brokers and service functions receive a single parameter that points to a

structure containing actual input or output parameters. The actual size of such a

parameter structure is stored in the first field:

typedef struct {

ULONG Size; /\ I: actual size of structure \/

... /\ additional fields \/

} AnyStructure;

The size received should then be compared with the size information for the respective

structure within the service broker or the service function. If the sizes do not match, it

indicates different versions of Service Broker Manager and service broker, or service

broker and service function.

 Copyright IBM Corp. 1996 101

C structure descriptions contain the following abbreviations:

Abbreviation Description

I Input (read-only).

O Output (written by the function).

I/O Input and output.

Implementing a service broker

This section describes the operation of service brokers and how to implement them.

The service broker functions described in this section are called for each service broker

instance.

 Implementation
Each service broker consists of a DLL that exports the following functions (optional

functions are marked with opt):

 � Broker_GetDllVersion

 � Broker_GetVersion

 � Broker_GetCfgReqs opt

 � Broker_Init opt

 � Broker_Exit opt

 � Broker_Logon opt

 � Broker_Logoff opt

 � Broker_SetupCfg opt

The Service Broker Manager calls these functions to:

� Determine the version of the service broker

� Determine specific requirements of the service broker

� Load and initialize the service broker

� Perform logon and logoff according to the managed application

� Clean up and unload the service broker

� Set up specific configuration notebook pages

102 Application Integration Guide

Service broker functions are exported through the use of a module definition file. The

following is a template for a service broker module definition file:

LIBRARY SAMPBROK INITINSTANCE TERMINSTANCE
DESCRIPTION 'Sample Broker DLL'
PROTMODE
DATA MULTIPLE NONSHARED
EXPORTS

 Broker_GetDllVersion
 Broker_GetVersion
 Broker_Init
 Broker_Exit
 Broker_Logon
 Broker_Logoff

Necessary definitions are included in the header file EXMP3CBR.H, which requires the

standard OS/2 header file OS2.H to be included first. A sample service broker DLL,

SAMPBROK.C, is shown in “Sample service broker DLL (SAMPBROK.C)” on

page 146.

Description of functions
The following sections describe the functions exported by service broker DLLs.

 Broker_GetDllVersion
This mandatory function has the following format:

ULONG APIENTRY Broker_GetDllVersion (VOID)

This function must return the value of the predefined constant

SB_BROKER_DLLVERSION.

 Example

ULONG APIENTRY Broker_GetDllVersion (VOID)
{
 return SB_BROKER_DLLVERSION;
}

 Broker_GetVersion
This mandatory function has the following format:

VOID APIENTRY Broker_GetVersion (SbBrokerVersion \ pVersion)

 Chapter 6. Creating your own service brokers 103

This function must return the internal name and version of the service broker DLL by

filling in an empty SbBrokerVersion structure that is passed to the function.

The SbBrokerVersion structure is defined as follows:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
PSZ pName; /\ O: user-defined broker name \/
ULONG Version; /\ O: user-defined broker version \/

} SbBrokerVersion;

 Important

It is recommended to provide a C header file containing name and version

declarations. Implementers of services can then use this information to check the

version of the service broker.

 Example

VOID APIENTRY Broker_GetVersion (SbBrokerVersion \ pVersion)
{
 pVersion->pName = "SampleBroker";

pVersion->Version = 123;
}

 Broker_GetCfgReqs
This optional function has the following format:

VOID APIENTRY Broker_GetCfgReqs (SbBrokerCfgReqs \ pReqs)

This function can return configuration requirements that need to be enforced by the

Service Broker Manager.

The SbBrokerCfgReqs structure is defined as follows:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
 BOOL32 Synchronized; /\ O: synchronization required? \/

ULONG MinStackSize; /\ O: minimum stack size, 0 or >8192 \/

} SbBrokerCfgReqs;

104 Application Integration Guide

If the service broker must run within a single synchronized thread, Synchronized can be

set to TRUE. Furthermore, if the minimum stack size of threads assigned to the

service broker exceeds 8192 bytes (8K), it can be set in the MinStackSize output

variable.

 Example

VOID APIENTRY Broker_GetCfgReqs (SbBrokerGetCfgReqs \ pReqs)
{

pReqs->Synchronized = FALSE;
pReqs->MinStackSize = 32768; /\ 32K \/

}

 Broker_Init
This optional function has the following format:

APIRET APIENTRY Broker_Init (SbBrokerInit \ pInit)

This function is called when a service broker instance is loaded and returns 0 if it was

successful, otherwise the loading of the service broker is discontinued. A structure

containing initialization information is passed to the function:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ I: handle of broker instance \/
HMODULE BrokerDLL; /\ I: module handle of broker DLL \/
PSZ pBrokerName; /\ I: logical name of broker instance \/
PVOID pInstance; /\ O: user-defined instance pointer \/

} SbBrokerInit;

You can use a user-defined instance pointer, pInstance, to store any instance-related

information. This pointer is passed to all subsequent function calls, but can only be set

in the Broker_Init function.

If you need to know the module handle of the service broker DLL (for example, to load

± resources), store the value of the BrokerDLL field in order to use it during subsequent

function calls (for example, Broker_Logon).

The handle of the service broker instance, Handle, is necessary to issue service broker

API functions (see “Using the C language service broker API” on page 110).

If this function takes more than 15 seconds (for example, due to user interaction), the

SbbDisableTimeout service broker API function must be called (see “Disabling timeout”

on page 115).

 Chapter 6. Creating your own service brokers 105

 Example

APIRET APIENTRY Broker_Init (SbBrokerInit \ pInit)
{

/\ ... user-defined initialization ... \/
 return 0;
}

 Broker_Exit
This optional function has the following format:

APIRET APIENTRY Broker_Exit (SbBrokerExit \ pExit)

This function is called when a service broker instance is unloaded and returns 0 if it

was successful, otherwise the unloading of the service broker is discontinued. A

read-only structure containing exit information is passed to the function:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ I: handle of broker instance \/
PVOID pInstance; /\ I: user-defined instance pointer \/

} SbBrokerExit;

If this function takes more than 15 seconds (for example, due to user interaction), the

SbbDisableTimeout service broker API function must be called (see “Disabling timeout”

on page 115).

 Example

APIRET APIENTRY Broker_Exit (SbBrokerExit \ pExit)
{

/\ ... user-defined exit ... \/

 return 0;
}

 Broker_Logon
This optional function has the following format:

APIRET APIENTRY Broker_Logon (SbBrokerLogon \ pLogon)

106 Application Integration Guide

This function performs a logon to the application that is managed by the service broker,

and can fill in optional fields in a SbBrokerLogon structure that is passed to the

function. It returns 0 if it was successful, otherwise the logon is discontinued.

The SbBrokerLogon structure is defined as follows:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ I: handle of broker instance \/
HAB Hab; /\ I: anchor block \/
HMQ Hmq; /\ I: message queue \/
PVOID pInstance; /\ I: user-defined instance pointer \/
PVOID pSession; /\ O: user-defined session data \/
ULONG SessionSize; /\ O: size of session data \/
PVOID pInfoArea; /\ I: Logon information area \/
ULONG InfoAreaLength; /\ I: Length of area \/

} SbBrokerLogon;

pSession and SessionSize refer to a user-defined logon or session buffer, that contains

a handle of the connection to the managed application, or similar logon information.

If the buffer is allocated by this function, it must be freed in the Broker_Logoff function.

pSession and SessionSize are also accessible from registered services of this service

broker instance. pInfoArea and InfoAreaLength are passed from the requester to the

Service Broker Manager if the service broker is started with the API call

SbrStartBrokerWithInfo. The information in these fields can be used during logon, for

example, to suppress the display of a logon panel. If the broker was not started via

that API function, pInfoArea and InfoAreaLength are set to 0.

To accomplish any Presentation Manager (PM) tasks during logon (for example,

displaying a logon panel), current handles of anchor block and message queue are

provided in the Hab and Hmq fields. However, the PM message queue is not

processed. Therefore, any PM operations that require a standard PM message loop

are not allowed.

If this function takes more than 15 seconds (for example, due to user interaction), the

SbbDisableTimeout service broker API function must be called (see “Disabling timeout”

on page 115).

 Important

It is recommended to provide a C header file containing type declarations needed

for the session buffer. Implementers of services can then use this information to

write services running under this particular service broker.

 Chapter 6. Creating your own service brokers 107

 Example

typedef struct { ... } MyLogonInfo; /\ Logon structure \/

...

APIRET APIENTRY Broker_Logon (SbBrokerLogon \ pLogon)
{

MyLogonInfo \ pLogonInfo;

pLogonInfo = (MyLogonInfo \) malloc (sizeof (MyLogonInfo));

/\ ... logging on ... \/
/\ ... set logon information ... \/

pLogon->pSession = (PVOID) pLogonInfo;
pLogon->SessionSize = sizeof (MyLogonInfo);

 return 0;
}

 Broker_Logoff
This optional function has the following format:

APIRET APIENTRY Broker_Logoff (SbBrokerLogoff \ pLogoff)

This function performs a logoff from the application that is managed by the service

broker. The fields of the SbBrokerLogoff structure contain the information from the

SbBrokerLogon structure from the call to Broker_Logon. A session buffer that was

allocated by Broker_Logon must be freed with this function.

The SbBrokerLogoff structure is defined as follows:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ I: handle of broker instance \/
HAB Hab; /\ I: anchor block \/
HMQ Hmq; /\ I: message queue \/
PVOID pInstance; /\ I: user-defined instance pointer \/
PVOID pSession; /\ I: user-defined session data \/
ULONG SessionSize; /\ I: size of session data \/

} SbBrokerLogoff;

108 Application Integration Guide

If this function takes more than 15 seconds (for example, due to user interaction), the

SbbDisableTimeout service broker API function must be called (see “Disabling timeout”

on page 115).

 Example

APIRET APIENTRY Broker_Logoff (SbBrokerLogoff \ pLogoff)
{

/\ ... logging off ... \/
 free (pLogoff->pSession);
 return 0;
}

 Broker_SetupCfg
This optional function has the following format:

APIRET APIENTRY Broker_SetupCfg (SbBrokerCfg \ pCfg)

This function is called when the Settings notebook of an already loaded service broker

instance is opened. You can add user-defined pages to the notebook. The function

returns 0 if it was successful. A read-only structure containing the notebook window

handle is passed to the function:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ I: handle of broker instance \/
PVOID pInstance; /\ I: user-defined instance pointer \/
HWND Notebook; /\ I: handle of configuration notebook \/

} SbBrokerCfg;

See the OS/2 Warp, Version 3 Presentation Manager Programming Guide, Advanced

Topics, for details on notebook programming.

 Chapter 6. Creating your own service brokers 109

There are three predefined window messages that added notebook pages may handle:

 Example

APIRET APIENTRY Broker_SetupCfg (SbBrokerCfg \ pCfg)
{

/\ ... add user-defined notebook pages ... \/

 return 0;
}

Message Description

WM_SB_BROK_SET_FOCUS The notebook page receives the focus.

WM_SB_BROK_COLLECT_DATA The user pressed the notebook’s OK button.

The notebook page may save any user-defined

configuration values, for example, by using the

profile functions of the service broker API (see

“Using the C language service broker API”). It

must respond by returning either TRUE to

signal successful completion, or FALSE in case

of errors (for example, if wrong user input was

detected). In the latter case, the notebook

page then receives the

WM_SB_BROK_SET_FOCUS_ERROR

window message.

WM_SB_BROK_SET_FOCUS_ERROR The notebook page receives the focus due to

an error in the handling of the

WM_SB_BROK_COLLECT_DATA window

message.

Using the C language service broker API
The service broker API provides auxiliary functions that can be utilized by service

brokers and services. Service broker API function names start with the prefix Sbb.

The auxiliary API functions are:

 � SbbWriteProfile

 � SbbReadProfile

 � SbbLog

 � SbbQueryLogLevel

 � SbbDisableTimeout

Service broker API functions may only be called:

� After or within the Broker_Init or Service_Init function

� Before or within the Broker_Exit or Service_Exit function

� Within service functions

110 Application Integration Guide

A handle of a service broker or service instance is needed by all service broker API

functions and is passed to all standard service broker or service functions like

Broker_Init and Service_Init.

Necessary definitions are in the header file EXMP3CBR.H that is also included by

EXMP3CSE.H. The standard OS/2 header file OS2.H must be included first. Service

brokers and services using the service broker API must be linked with the supplied

library EXMP3KBR.LIB.

Storing configuration data
Use the SbbWriteProfile function to store user-defined configuration data for a service

broker or service instance.

APIRET APIENTRY SbbWriteProfile (ULONG Handle,
 PVOID pBuffer,
 ULONG BufferSize)

If pBuffer is NULL and BufferSize is 0, an existing configuration entry is deleted.

Parameter I/O Description

Handle I Handle of service broker or service instance.

pBuffer I User-defined configuration data or NULL.

BufferSize I Size of user-defined configuration data or 0.

Return Code Description

SB_BROK_RC_OK (0) Operation completed successfully.

SB_BROK_RC_MEMORY (1) Not enough memory.

SB_BROK_RC_INVALID_ARGS (2) Invalid data or size specified.

SB_BROK_RC_INVALID_HANDLE (3) Invalid handle specified.

 Chapter 6. Creating your own service brokers 111

 Example

typedef struct { ... } MyConfigData; /\ configuration data \/

...

VOID APIENTRY Broker_Exit (SbBrokerExit \ pExit)
{

MyConfigData config = { ... }; /\ set configuration data \/
 APIRET rc;

rc = SbbWriteProfile (pExit->Handle, &config, sizeof(config));

if (rc != SB_BROK_RC_OK)
 {

/\ ... error handling ... \/
 }
}

Retrieving configuration data
Use the SbbReadProfile function to retrieve user-defined configuration data for a

service broker or service instance.

APIRET APIENTRY SbbReadProfile (ULONG Handle,
 PVOID pBuffer,
 PULONG pBufferSize)

Parameter I/O Description

Handle I Handle of service broker or service instance.

pBuffer O Address of a buffer where configuration data is written or

NULL.

pBufferSize I/O On input it contains the size of the supplied buffer or 0. On

return the actual size of the stored configuration data is

returned. If the actual size exceeds the specified size, error

SB_BROK_RC_BUFFER_OVERFLOW is returned.

Return Code Description

SB_BROK_RC_OK (0) Operation completed successfully.

SB_BROK_RC_INVALID_ARGS (2) Invalid data or size specified.

SB_BROK_RC_INVALID_HANDLE (3) Invalid handle specified.

SB_BROK_RC_BUFFER_OVERFLOW (4) Supplied buffer is too small.

112 Application Integration Guide

 Example

typedef struct { ... } MyConfigData; /\ configuration data \/

...

APIRET APIENTRY Service_Init (SbServiceInit \ pInit)
{

MyConfigData config; /\ buffer \/
ULONG size = sizeof(config); /\ size of buffer \/

 APIRET rc;

rc = SbbReadProfile (pInit->Handle, &config, &size);

if (rc != SB_BROK_RC_OK || size != sizeof(config))
 {

/\ ... error handling ... \/
 }

/\ ... use configuration data ... \/
}

 Logging messages
Use the SbbLog function to log any user-defined messages. These messages are

displayed in the Message Monitor of the Service Broker Manager. Furthermore, date

and time information and the name of the service broker or service instance are

inserted.

APIRET APIENTRY SbbLog (ULONG Handle,
 ULONG Level,
 PSZ pText)

 Chapter 6. Creating your own service brokers 113

 Example

APIRET APIENTRY Broker_Logon (SbBrokerLogon \ pLogon)
{

SbbLog (pLogon->Handle, SB_BROK_LOG_LEVEL_2, "Logon in progress ...");

/\ ... user-defined logon ... \/

SbbLog (pLogon->Handle, SB_BROK_LOG_LEVEL_2, "Logged on!");

 return 0;
}

Parameter I/O Description

Handle I Handle of service broker or service instance.

Level I Logging level of message specified in pText:

� SB_BROK_LOG_LEVEL_1 for error messages

� SB_BROK_LOG_LEVEL_2 for error messages and

general status information

� SB_BROK_LOG_LEVEL_3 for error messages, status

information, and problem determination messages

The message is logged only if the current logging level of the

Service Broker Manager is greater than or equal to the

specified level. The Service Broker Manager logging levels are

described in “Defining the detail level for messages” on

page 14.

pText I User-defined message to be logged without CR or LF

characters.

Return Code Description

SB_BROK_RC_OK (0) Operation completed successfully.

SB_BROK_RC_INVALID_ARGS (2) Invalid data or size specified.

SB_BROK_RC_INVALID_HANDLE (3) Invalid handle specified.

Querying current logging level
Use the SbbQueryLogLevel function to determine the current logging level of the

Service Broker Manager. In situations where complex logging messages are built, this

function can be used to check in advance if logging is appropriate at all.

APIRET APIENTRY SbbQueryLogLevel (ULONG Handle,
 PULONG pLevel)

114 Application Integration Guide

 Example

APIRET APIENTRY Service_Start (SbBrokerStart \ pStart)
{
 ULONG level;

SbbQueryLogLevel (pStart->Handle, &level);

if (level >= SB_BROK_LOG_LEVEL_2) {
/\ ... build and log messages ... \/

 }

/\ ... user-defined start-up ... \/

 return 0;
}

Parameter I/O Description

Handle I Handle of service broker or service instance.

pLevel O Address of a value where current logging level is returned.

Return Code Description

SB_BROK_RC_OK (0) Operation completed successfully.

SB_BROK_RC_INVALID_ARGS (2) Invalid data or size specified.

SB_BROK_RC_INVALID_HANDLE (3) Invalid handle specified.

 Disabling timeout
The SbbDisableTimeout function must be used in situations where the following

functions take more than 15 seconds (for example, due to user interaction):

 � Broker_Init

 � Broker_Exit

 � Broker_Logon

 � Broker_Logoff

 � Service_Init

 � Service_Exit

 � Service_Start

 � Service_Stop

The Service Broker Manager disables service brokers and services that do not return

within 15 seconds if you did not disable this timeout with the SbbDisableTimeout

function.

APIRET APIENTRY SbbDisableTimeout (ULONG Handle)

 Chapter 6. Creating your own service brokers 115

 Example

APIRET APIENTRY Broker_Logon (SbBrokerLogon \ pLogon)
{
 SbbDisableTimeout (pLogon->Handle);

/\ ... display logon panel ... \/

 return 0;
}

Parameter I/O Description

Handle I Handle of service broker or service instance.

Return Code Description

SB_BROK_RC_OK (0) Operation completed successfully.

SB_BROK_RC_MEMORY (1) Disabling was not possible.

SB_BROK_RC_INVALID_HANDLE (3) Invalid handle specified.

Implementing a service

This section describes the operation of services and how to implement them. The

standard service functions described in this section are called for each service instance.

 Implementation
Each service consists of a DLL that exports the following standard functions, plus any

user-defined service functions (optional functions are marked with opt):

 � Service_GetDllVersion

 � Service_CheckBroker

 � Service_GetCfgReqs opt

 � Service_Init opt

 � Service_Exit opt

 � Service_Start opt

 � Service_Stop opt

 � Service_SetupCfg opt

116 Application Integration Guide

The Service Broker Manager calls these functions to:

� Determine the version of the service

� Check if the service is compatible with a service broker

� Determine specific requirements of the service

� Load and initialize the service

� Start and stop the service

� Clean up and unload the service

� Set up specific configuration notebook pages

A service can additionally export an arbitrary number of service functions performing

user-defined operations using the current logon or session provided by the

corresponding service broker.

For performance reasons, you can place a single service in a service broker DLL. But

this is recommended only for general services that are needed whenever the service

broker is used.

Multiple service functions can be executed in parallel, so they should be reentrant. To

avoid unserialized access to the C run-time environment, use multithread libraries

supplied with your compiler (for example, specify the /Gm+ compiler option to enable

multithread support for the IBM VisualAge for C++).

Service functions are exported through the use of a module definition file. A template

for a service DLL module definition file is shown next:

LIBRARY SAMPSERV INITINSTANCE TERMINSTANCE
DESCRIPTION 'Sample Service DLL'
PROTMODE
DATA MULTIPLE NONSHARED
EXPORTS

 Service_GetDllVersion
 Service_CheckBroker
 Service_Init
 Service_Exit
 Service_Start
 Service_Stop

 AFunction
 AnotherFunction

Necessary definitions are included in the header file EXMP3CSE.H which requires the

standard OS/2 header file OS2.H to be included first. A sample service DLL,

SAMPSRVC.C, is shown in “Sample service DLL (SAMPSERV.C)” on page 148.

 Chapter 6. Creating your own service brokers 117

Description of functions
The following sections describe the functions exported by service DLLs.

 Service_GetDllVersion
This mandatory function has the following format:

ULONG APIENTRY Service_GetDllVersion (VOID)

This function must return the value of the predefined constant

SB_SERVICE_DLLVERSION.

 Example

ULONG APIENTRY Service_GetDllVersion (VOID)
{
 return SB_SERVICE_DLLVERSION;
}

 Service_CheckBroker
This mandatory function has the following format:

APIRET APIENTRY Service_CheckBroker (SbBrokerVersion \ pVersion)

This function checks if the service is compatible with the service broker. A read-only

SbBrokerVersion structure is passed to the function containing the internal name and

version of the service broker. The function returns 0 if it is compatible with the service

broker, otherwise the loading of the service is discontinued (see “Broker_GetVersion”

on page 103).

The SbBrokerVersion structure is defined as follows:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
PSZ pName; /\ I: user-defined broker name \/
ULONG Version; /\ I: user-defined broker version \/

} SbBrokerVersion;

118 Application Integration Guide

 Example

APIRET APIENTRY Service_CheckBroker (SbBrokerVersion \ pVersion)
{

return (strcmp (pVersion->pName, "SampleBroker") != 0) ||
pVersion->Version < 123);

}

 Service_GetCfgReqs
This optional function has the following format:

VOID APIENTRY Service_GetCfgReqs (SbServiceCfgReqs \ pReqs)

This function can return configuration requirements that need to be enforced by the

Service Broker Manager.

The SbServiceCfgReqs structure is defined as follows:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
 BOOL32 Synchronized; /\ O: synchronization required? \/

ULONG MinStackSize; /\ O: minimum stack size, 0 or >8192 \/

} SbServiceCfgReqs;

If the service must run within a single synchronized thread of a synchronized service

broker, Synchronized can be set to TRUE. Furthermore, if the minimum stack size of

threads assigned to the service or its service broker exceeds 8192 bytes (8K), it can be

set in the MinStackSize output variable.

 Example

VOID APIENTRY Service_GetCfgReqs (SbServiceGetCfgReqs \ pReqs)
{

pReqs->Synchronized = FALSE;
pReqs->MinStackSize = 32768; /\ 32K \/

}

 Service_Init
This optional function has the following format:

APIRET APIENTRY Service_Init (SbServiceInit \ pInit)

 Chapter 6. Creating your own service brokers 119

This function is called when a service instance is loaded and returns 0 if it was

successful, otherwise the loading of the service is discontinued. A structure containing

initialization information is passed to the function:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ I: handle of service instance \/
HMODULE ServiceDLL; /\ I: module handle of service DLL \/
PSZ pServiceName; /\ I: logical name of service instance \/
HMODULE BrokerDLL; /\ I: module handle of broker DLL \/
PSZ pBrokerName; /\ I: logical name of broker instance \/
PVOID pInstance; /\ O: user-defined instance pointer \/

} SbServiceInit;

You can use a user-defined instance pointer, pInstance, to store any instance-related

information. This pointer is passed to all subsequent service function calls, but can be

set in the Service_Init function only.

If you need to know the module handle of the service or broker DLL (for example, to

load PM resources), store the value of the ServiceDLL and BrokerDLL fields in order to

use it during subsequent service function calls.

The handle of the service instance, Handle, is necessary to issue service broker API

functions (see “Using the C language service broker API” on page 110).

If this function takes more than 15 seconds (for example, due to user interaction), the

SbbDisableTimeout service broker API function must be called (see “Disabling timeout”

on page 115).

 Example

APIRET APIENTRY Service_Init (SbServiceInit \ pInit)
{

/\ ... user-defined initialization ... \/
 return 0;
}

 Service_Exit
This optional function has the following format:

APIRET APIENTRY Service_Exit (SbServiceExit \ pExit)

120 Application Integration Guide

This function is called when a service instance is unloaded and returns 0 if it was

successful, otherwise the unloading of the service is discontinued. A read-only

structure containing exit information is passed to the function:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ I: handle of service instance \/
PVOID pInstance; /\ I: user-defined instance pointer \/

} SbServiceExit;

If this function takes more than 15 seconds (for example, due to user interaction), the

SbbDisableTimeout service broker API function must be called (see “Disabling timeout”

on page 115).

 Example

APIRET APIENTRY Service_Exit (SbServiceExit \ pExit)
{

/\ ... user-defined exit ... \/

 return 0;
}

 Service_Start
This optional function has the following format:

APIRET APIENTRY Service_Start (SbServiceStart \ pStart)

This function is called when the service is started and returns 0 if it was successful,

otherwise the start-up is discontinued.

The SbServiceStart structure is defined as follows:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ I: handle of service instance \/
PVOID pInstance; /\ I: user-defined instance pointer \/
PVOID pSession; /\ I: user-defined session data \/
ULONG SessionSize; /\ I: size of session data buffer \/

} SbServiceStart;

 Chapter 6. Creating your own service brokers 121

SessionSize and pSession refer to the associated service broker’s session data.

If this function takes more than 15 seconds (for example, due to user interaction), the

SbbDisableTimeout service broker API function must be called (see “Disabling timeout”

on page 115).

 Example

APIRET APIENTRY Service_Start (SbServiceStart \ pStart)
{

/\ ... starting ... \/
 return 0;
}

 Service_Stop
This optional function has the following format:

APIRET APIENTRY Service_Stop (SbServiceStop \ pStop)

This function is called when the service is stopped and returns 0 if it was successful,

otherwise the shut-down is discontinued.

The SbServiceStop structure is defined as follows:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ I: handle of service instance \/
PVOID pInstance; /\ I: user-defined instance pointer \/
PVOID pSession; /\ I: user-defined session data \/
ULONG SessionSize; /\ I: size of session data buffer \/

} SbServiceStop;

If this function takes more than 15 seconds (for example, due to user interaction) the

SbbDisableTimeout service broker API function must be called (see “Disabling timeout”

on page 115).

 Example

APIRET APIENTRY Service_Stop (SbServiceStop \ pStop)
{

/\ ... stopping ... \/
 return 0;
}

122 Application Integration Guide

 Service_SetupCfg
This optional function has the following format:

APIRET APIENTRY Service_SetupCfg (SbServiceCfg \ pCfg)

This function is called when the Settings notebook of an already loaded service

instance is opened. You can add user-defined pages to the notebook. The function

returns 0 if it was successful. A read-only structure containing the notebook window

handle is passed to the function:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ I: handle of service instance \/
PVOID pInstance; /\ I: user-defined instance pointer \/
HWND Notebook; /\ I: handle of configuration notebook \/

} SbServiceCfg;

See the OS/2 Warp, Version 3 Presentation Manager Programming Guide, Advanced

Topics, for details on notebook programming.

There are three predefined window messages that added notebook pages may handle:

Message Description

WM_SB_SERV_SET_FOCUS The notebook page receives the focus.

WM_SB_SERV_COLLECT_DATA The user pressed the notebook’s OK button.

The notebook page can save any user-defined

configuration values, for example, by using the

profile functions of the service broker API (see

“Using the C language service broker API” on

page 110). It must respond by returning either

TRUE to signal successful completion, or

FALSE in case of errors (for example, if wrong

user input was detected). In the latter case,

the notebook page then receives the

WM_SB_SERV_SET_FOCUS_ERROR window

message.

WM_SB_SERV_SET_FOCUS_ERROR The notebook page receives the focus due to

an error in the handling of the

WM_SB_SERV_COLLECT_DATA window

message.

 Chapter 6. Creating your own service brokers 123

 Example

APIRET APIENTRY Service_SetupCfg (SbServiceCfg \ pCfg)
{

/\ ... add user-defined notebook pages ... \/

 return 0;
}

 Service functions
The syntax of a service function is as follows:

LONG APIENTRY AFunction (SbFuncInfo \ pInfo,
 PVOID pData,
 PULONG pDataSize,
 ULONG MaxOutDataSize)

A service DLL can provide several service functions. The length of a service function

name is limited to 30 characters, otherwise the function cannot be called by a service

requester.

The SbFuncInfo structure is defined as follows:

Parameter I/O Description

pInfo I A read-only structure containing information about the service

function’s environment (for example, the field pSession points

to the session buffer allocated by Broker_Logon).

pData I/O Points to a data buffer; as input, it contains input data of size

*pDataSize. The service function can copy MaxOutDataSize

bytes of its output data to pData.

pDataSize I/O As input, it contains the size of input data; as output, it must

contain the size of written output data or 0.

MaxOutDataSize I Maximum size of output data.

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ I: handle of service instance \/
HAB Hab; /\ I: anchor block of service thread \/
HMQ Hmq; /\ I: message queue of service thread \/
PVOID pInstance; /\ I: user-defined instance pointer \/
PVOID pSession; /\ I: user-defined session buffer \/
ULONG SessionSize; /\ I: user-defined size of session buffer \/

} SbFuncInfo;

124 Application Integration Guide

To accomplish any PM tasks within a service function, handles of anchor block and

message queue are provided in the Hab and Hmq fields. Any PM operations that

require a standard PM message loop (such as displaying a dialog box or a window in a

service function) are not allowed, because they can affect the Service Broker Manager.

A service function can return a user-defined return code that must be greater than or

equal to 0, or standard error codes below 0:

Output data is returned to the caller only if the return code is greater than or equal to 0.

Standard error codes cause the function call to fail.

 Example

#define STRING_RESULT "This is a string result"

LONG APIENTRY AFunction (SbFuncInfo \ pInfo,
 PVOID pData,
 PULONG pDataSize,
 ULONG MaxOutDataSize)
{

unsigned OutputSize = strlen(STRING_RESULT) + 1;
/\ size of output data \/

if (\pDataSize == 0) /\ invalid input data? \/
 return SB_FUNC_RC_INVALID_DATA;

if (OutputSize > MaxOutDataSize) /\ buffer too small? \/
 return SB_FUNC_RC_OVERFLOW;

memcpy(pData, STRING_RESULT, OutputSize); /\ copy result string \/
\pDataSize = OutputSize; /\ set size of output \/

return 456; /\ user-defined return code \/
}

Standard Error Code Description

SB_FUNC_RC_MEMORY (-1) Not enough memory to complete the operation.

SB_FUNC_RC_OVERFLOW (-2) Buffer is too small to write output data.

SB_FUNC_RC_INVALID_DATA (-3) Input data cannot be recognized, or is invalid.

Implementing a service requester

This section describes the function and implementation of a service requester.

To invoke a service function, the following must be specified:

� The logical name of a service broker

� The logical name of a service

� The name of a service function

� Any optional parameters for this service function

 Chapter 6. Creating your own service brokers 125

Using the C language service requester API
Service functions can be executed using the service requester API. Service requester

API function names start with the prefix Sbr.

There are these API functions:

 � SbrCallService

 � SbrCallServiceWithRetry

 � SbrStartBroker

 � SbrStartBrokerWithInfo

 � SbrStopBroker

 � SbrStartService

 � SbrStopService

 � SbrGetErrorMessage

Necessary definitions are included in the header file EXMP3FRE.H, which requires the

standard OS/2 header file OS2.H to be included first. Programs using the service

requester API must be linked with the supplied library EXMP3KRE.LIB. A sample

service requester, SAMPREQ.C, is shown in “Sample C language service requester

(SAMPREQ.C)” on page 150.

Calling a service function
Use the SbrCallService function to call a service function. If the specified service

broker or service is not active, the Service Broker Manager starts it before calling the

service function.

APIRET APIENTRY SbrCallService (PSZ pBroker,
 PSZ pService,
 PSZ pFunction,
 PVOID pInData,
 ULONG InDataSize,
 PVOID pOutData,
 PULONG pOutDataSize,
 PLONG pRC,
 ULONG TimeOut)

126 Application Integration Guide

Parameter I/O Description

pBroker I Logical name of service broker (not case-sensitive, limited to 8

characters).

pService I Logical name of service (not case-sensitive, limited to 8

characters).

pFunction I Name of service function (case-sensitive, limited to 30

characters).

pInData I Address of a buffer that contains input data or NULL.

InDataSize I Size of input data or 0.

pOutData O Address of a buffer for output data.

pOutDataSize I/O As input, it contains the size of the output buffer. As output, it

contains the actual size of output data written to pOutData or 0.

pRC O User-defined return code of service function.

TimeOut I Timeout in milliseconds or SB_REQ_WAIT_INDEFINITE for no

timeout. The TimeOut parameter limits the amount of time that

a thread blocks on a SbrCallService call. If the time limit is

reached before the service function call could be completed,

SB_REQ_RC_TIMEOUT is returned.

Return Code Description

SB_REQ_RC_OK (0) Operation completed successfully.

SB_REQ_RC_MEMORY (1) Not enough memory.

SB_REQ_RC_INVALID_ARGS (2) Invalid arguments specified.

SB_REQ_RC_SERVICE_NOTFOUND (3) The specified service is not available.

SB_REQ_RC_TIMEOUT (4) The operation has not been completed

in time.

SB_REQ_RC_BUFFER_OVERFLOW (7) The provided output data buffer is too

small and was truncated.

SB_REQ_RC_FUNCTION_NOTFOUND (8) The specified function does not exist.

SB_REQ_RC_FUNCTION_LOAD (9) The specified function could not be

loaded.

SB_REQ_RC_FUNCTION_TRAP_ACCESS (10) The specified function trapped due to

an access violation.

SB_REQ_RC_FUNCTION_TRAP_INSTR (11) The specified function trapped due to

an instruction that is not permitted.

SB_REQ_RC_FUNCTION_TRAP_FP (12) The specified function trapped due to

a floating point exception.

SB_REQ_RC_FUNCTION_MEMORY (13) The specified function does not have

enough memory.

SB_REQ_RC_FUNCTION_OVERFLOW (14) The provided output data buffer is too

small for the specified function.

SB_REQ_RC_FUNCTION_DATA (15) Wrong service function parameters

specified.

 Chapter 6. Creating your own service brokers 127

 Example

#define BUFFER_SIZE 512

char buffer [BUFFER_SIZE]; /\ buffer \/
PSZ inputData; /\ input data \/
ULONG outSize; /\ size of output \/
LONG outRC;
APIRET rc;

outSize = BUFFER_SIZE; /\ size of output buffer \/
inputData = "This is input data"; /\ sample input data \/

rc = SbrCallService ("MYBROK",
 "MYSERV",
 "DoSomething",
 (PVOID) inputData,

strlen(inputData) + 1,
 buffer,
 &outSize,
 &outRC,

5000); /\ 5 secs timeout \/

if (rc != SB_REQ_RC_OK)
{

/\ ... error handling ... \/
}

Return Code Description

SB_REQ_RC_MGR_NOTFOUND (17) The Service Broker Manager is not

running.

SB_REQ_RC_MGR_BUSY (18) The Service Broker Manager is

currently busy.

SB_REQ_RC_MGR_CONNECT (19) The connection to the Service Broker

Manager is broken.

SB_REQ_RC_BROKER_NOTFOUND (20) The specified service broker is not

available.

SB_REQ_RC_BROKER_START (21) The specified service broker could not

be started.

SB_REQ_RC_SERVICE_START (23) The specified service could not be

started.

SB_REQ_RC_MGR_STOP (25) The Service Broker Manager has been

stopped.

SB_REQ_RC_SERVICE_DISABLED (26) The specified service is disabled and

cannot be used.

SB_REQ_RC_BROKER_DISABLED (27) The specified service broker is

disabled and cannot be used.

128 Application Integration Guide

Calling a service function with retry
The SbrCallServiceWithRetry function is equivalent to the SbrCallService function,

except that, in case of an error, a message box describing the reason is displayed.

The user can cancel or retry the operation.

APIRET APIENTRY SbrCallServiceWithRetry (PSZ pBroker,
 PSZ pService,
 PSZ pFunction,
 PVOID pInData,
 ULONG InDataSize,
 PVOID pOutData,
 PULONG pOutDataSize,
 PLONG pRC,
 ULONG TimeOut)

This function can only be called by a thread that has already initialized its PM interface

(WinInitialize, WinCreateMsgQueue). However, since the calling thread is blocked until

the result is available, this function must not be used inside a PM message loop.

This function is used by the standard service requester (see “Using the standard

service requester” on page 144) and the FlowMark service requester (see “FlowMark

requester” on page 34).

 Example

...
WinInitialize (...);
WinCreateMsgQueue (...);
...
SbrCallServiceWithRetry (...);
...
WinDestroyMsgQueue (...);
WinTerminate (...);
...

Starting a service broker
Use the SbrStartBroker function to start an inactive service broker:

APIRET APIENTRY SbrStartBroker (PSZ pBroker,
 ULONG TimeOut)

 Chapter 6. Creating your own service brokers 129

 Example

APIRET rc;

...

rc = SbrStartBroker ("MYBROK", SB_REQ_WAIT_INDEFINITE);

if (rc != SB_REQ_RC_OK)
{

/\ ... error handling ... \/
}

Parameter I/O Description

pBroker I Logical name of service broker (not case-sensitive, limited to 8

characters).

TimeOut I Timeout in milliseconds or SB_REQ_WAIT_INDEFINITE for no

timeout. The TimeOut parameter limits the amount of time a

thread blocks on a SbrStartBroker call. If the time limit is

reached before the service broker could be started,

SB_REQ_RC_TIMEOUT is returned.

Return Code Description

SB_REQ_RC_OK (0) Operation completed successfully.

SB_REQ_RC_MEMORY (1) Not enough memory.

SB_REQ_RC_INVALID_ARGS (2) Invalid arguments specified.

SB_REQ_RC_TIMEOUT (4) The operation has not been completed in time.

SB_REQ_RC_MGR_NOTFOUND (17) The Service Broker Manager is not running.

SB_REQ_RC_MGR_BUSY (18) The Service Broker Manager is currently busy.

SB_REQ_RC_MGR_CONNECT (19) The connection to the Service Broker Manager

is broken.

SB_REQ_RC_BROKER_NOTFOUND (20) The specified service broker is not available.

SB_REQ_RC_BROKER_START (21) The specified service broker could not be

started.

SB_REQ_RC_MGR_STOP (25) The Service Broker Manager has been

stopped.

SB_REQ_RC_BROKER_DISABLED (27) The specified service broker is disabled and

cannot be used.

130 Application Integration Guide

Starting a service broker with additional information
Use the SbrStartBroker function to start an inactive service broker and pass logon

information to the Service Broker Manager:

APIRET APIENTRY SbrStartBrokerWithInfo(PSZ pBroker,
 PVOID pInfoArea,
 ULONG InfoAreaLength,
 ULONG TimeOut)

This function basically works like SbrStartBroker but you can pass additional

information to the structure SbBrokerLogon that is used in the Broker_Logon function.

If you work with multiple applications that are served by service brokers and need to log

on to any of these applications, you usually have a logon panel displayed for the

respective application. To suppress the display of logon panels, start the service

brokers for the applications with SbrBrokerWithInfo. So you can pass the logon

information directly to the service brokers which can then perform an unattended logon.

For information about the return codes of this function, refer to “Starting a service

broker” on page 129.

Parameter I/O Description

pBroker I Logical name of service broker (not case-sensitive, limited to 8

characters).

pInfoArea I Information area that is passed to the SbrBrokerLogon function.

InfoAreaLength I Length of the information area.

TimeOut I Timeout in milliseconds or SB_REQ_WAIT_INDEFINITE for no

timeout. The TimeOut parameter limits the amount of time a

thread blocks on a SbrStartBroker call. If the time limit is

reached before the service broker could be started,

SB_REQ_RC_TIMEOUT is returned.

Stopping a service broker
Use the SbrStopBroker function to stop an active service broker:

APIRET APIENTRY SbrStopBroker (PSZ pBroker,
 ULONG TimeOut)

 Chapter 6. Creating your own service brokers 131

 Example

APIRET rc;

...

rc = SbrStopBroker ("MYBROK", SB_REQ_WAIT_INDEFINITE);

if (rc != SB_REQ_RC_OK)
{

/\ ... error handling ... \/
}

Parameter I/O Description

pBroker I Logical name of service broker (not case-sensitive, limited to 8

characters).

TimeOut I Timeout in milliseconds or SB_REQ_WAIT_INDEFINITE for no

timeout. The TimeOut parameter limits the amount of time a

thread blocks on a SbrStopBroker call. If the time limit is

reached before the service broker could be stopped,

SB_REQ_RC_TIMEOUT is returned.

Return Code Description

SB_REQ_RC_OK (0) Operation completed successfully.

SB_REQ_RC_MEMORY (1) Not enough memory.

SB_REQ_RC_INVALID_ARGS (2) Invalid arguments specified.

SB_REQ_RC_TIMEOUT (4) The operation has not been completed in time.

SB_REQ_RC_MGR_NOTFOUND (17) The Service Broker Manager is not running.

SB_REQ_RC_MGR_BUSY (18) The Service Broker Manager is currently busy.

SB_REQ_RC_MGR_CONNECT (19) The connection to the Service Broker Manager

is broken.

SB_REQ_RC_BROKER_NOTFOUND (20) The specified service broker is not available.

SB_REQ_RC_BROKER_STOP (22) The specified service broker could not be

stopped.

SB_REQ_RC_MGR_STOP (25) The Service Broker Manager has been

stopped.

SB_REQ_RC_BROKER_DISABLED (27) The specified service broker is disabled and

cannot be used.

132 Application Integration Guide

Starting a service
Use the SbrStartService function to start an inactive service:

APIRET APIENTRY SbrStartService (PSZ pBroker,
 PSZ pService,
 ULONG TimeOut)

Parameter I/O Description

pBroker I Logical name of service broker (not case-sensitive, limited to 8

characters).

pService I Logical name of service (not case-sensitive, limited to 8

characters).

TimeOut I Timeout in milliseconds or SB_REQ_WAIT_INDEFINITE for no

timeout. The TimeOut parameter limits the amount of time a

thread blocks on a SbrStartService call. If the time limit is

reached before the service could be started,

SB_REQ_RC_TIMEOUT is returned.

Return Code Description

SB_REQ_RC_OK (0) Operation completed successfully.

SB_REQ_RC_MEMORY (1) Not enough memory.

SB_REQ_RC_INVALID_ARGS (2) Invalid arguments specified.

SB_REQ_RC_SERVICE_NOTFOUND (3) The specified service is not available.

SB_REQ_RC_TIMEOUT (4) The operation has not been completed in time.

SB_REQ_RC_MGR_NOTFOUND (17) The Service Broker Manager is not running.

SB_REQ_RC_MGR_BUSY (18) The Service Broker Manager is currently busy.

SB_REQ_RC_MGR_CONNECT (19) The connection to the Service Broker Manager

is broken.

SB_REQ_RC_BROKER_NOTFOUND (20) The specified service broker is not available.

SB_REQ_RC_SERVICE_START (23) The specified service could not be started.

SB_REQ_RC_MGR_STOP (25) The Service Broker Manager has been

stopped.

SB_REQ_RC_SERVICE_DISABLED (26) The specified service is disabled and cannot

be used.

SB_REQ_RC_BROKER_DISABLED (27) The specified service broker is disabled and

cannot be used.

 Chapter 6. Creating your own service brokers 133

 Example

APIRET rc;

...

rc = SbrStartService ("MYBROK", "MYSERV", SB_REQ_WAIT_INDEFINITE);

if (rc != SB_REQ_RC_OK)
{

/\ ... error handling ... \/
}

Stopping a service
Use the SbrStopService function to stop an active service:

APIRET APIENTRY SbrStopService (PSZ pBroker,
 PSZ pService,
 ULONG TimeOut)

Parameter I/O Description

pBroker I Logical name of service broker (not case-sensitive, limited to 8

characters).

pService I Logical name of service (not case-sensitive, limited to 8

characters).

TimeOut I Timeout in milliseconds or SB_REQ_WAIT_INDEFINITE for no

timeout. The TimeOut parameter limits on the amount of time

a thread blocks on a SbrStopService call. If the time limit is

reached before the service could be stopped,

SB_REQ_RC_TIMEOUT is returned.

Return Code Description

SB_REQ_RC_OK (0) Operation completed successfully.

SB_REQ_RC_MEMORY (1) Not enough memory.

SB_REQ_RC_INVALID_ARGS (2) Invalid arguments specified.

SB_REQ_RC_SERVICE_NOTFOUND (3) The specified service is not available.

SB_REQ_RC_TIMEOUT (4) The operation has not been completed in time.

SB_REQ_RC_MGR_NOTFOUND (17) The Service Broker Manager is not running.

SB_REQ_RC_MGR_BUSY (18) The Service Broker Manager is currently busy.

SB_REQ_RC_MGR_CONNECT (19) The connection to the Service Broker Manager

is broken.

SB_REQ_RC_BROKER_NOTFOUND (20) The specified service broker is not available.

SB_REQ_RC_SERVICE_STOP (24) The specified service could not be stopped.

134 Application Integration Guide

 Example

APIRET rc;

...

rc = SbrStopService ("MYBROK", "MYSERV", SB_REQ_WAIT_INDEFINITE);

if (rc != SB_REQ_RC_OK)
{

/\ ... error handling ... \/
}

Return Code Description

SB_REQ_RC_MGR_STOP (25) The Service Broker Manager has been

stopped.

SB_REQ_RC_SERVICE_DISABLED (26) The specified service is disabled and cannot

be used.

SB_REQ_RC_BROKER_DISABLED (27) The specified service broker is disabled and

cannot be used.

Retrieving an error message
Use the SbrGetErrorMessage function to retrieve the error message for a particular

error code:

APIRET APIENTRY SbrGetErrorMessage (APIRET Error,
 PSZ pBuffer,
 ULONG BufferSize)

Parameter I/O Description

Error I Error code of requested error message (see the return codes

of service requester API functions).

pBuffer O Address of a buffer where error message is written.

BufferSize I Size of the buffer including trailing 0.

Return Code Description

SB_REQ_RC_OK (0) Operation completed successfully.

SB_REQ_RC_INVALID_ARGS (2) Invalid arguments specified.

SB_REQ_RC_BUFFER_OVERFLOW (7) The provided buffer was too small. Truncated

error message was copied.

SB_REQ_RC_MESSAGE_NOTFOUND (16) The error message could not be found.

 Chapter 6. Creating your own service brokers 135

 Example

#define BUFFER_SIZE 512

char buffer [BUFFER_SIZE];
APIRET errorCode;
APIRET rc;

...
errorCode = SbrCallService (...);
...
if (errorCode != SB_REQ_RC_OK)
{

rc = SbrGetErrorMessage (errorCode, buffer, BUFFER_SIZE);
 ...
}

Using the REXX language service requester API
Service functions can be executed using the REXX service requester API. REXX

service requester API function names start with the prefix RxSbr.

There are these API functions:

 � RxSbrLoadFuncs

 � RxSbrDropFuncs

 � RxSbrCallService

 � RxSbrStartBroker

 � RxSbrStopBroker

 � RxSbrStartService

 � RxSbrStopService

 � RxSbrGetErrorMessage

By default, a REXX DLL file, EXMP3KRX.DLL, is automatically installed. To use the

REXX API functions, the service requester functions can be loaded by a REXX program

at each invocation.

A sample REXX service requester, EXMP3SRX.CMD, is shown in “Sample REXX

language service requester (EXMP3SRX.CMD)” on page 152.

Loading API functions
Use the RxSbrLoadFuncs function to load and register all REXX service requester API

functions.

RC = RxSbrLoadFuncs()

136 Application Integration Guide

 Example

call RxFuncAdd 'RxSbrLoadFuncs', 'SBREQRX', 'RxSbrLoadFuncs'
rv = RxSbrLoadFuncs()
if rv \= 0 then do

say "Service Requester API functions could not be loaded: rc =" rv
 exit 1
end

Return Code Description

0 Operation completed successfully.

<> 0 Operation failed.

Unloading API functions
Use the RxSbrDropFuncs function to deregister and unload all REXX service requester

API functions.

RC = RxSbrDropFuncs()

 Example

rv = RxSbrDropFuncs()
if rv \= 0 then do

say "Service Requester API functions could not be unloaded: rc =" rv
 exit 1
end

Return Code Description

0 Operation completed successfully.

<> 0 Operation failed.

Calling a service function
Use the RxSbrCallService function in your REXX program to call service functions that

handle string arguments as input and output parameters. Service functions expecting

or returning binary data must be called via the C language service requester API. If the

specified service broker or service is not active, the Service Broker Manager starts it

before calling the service function.

 Chapter 6. Creating your own service brokers 137

RC = RxSbrCallService(Broker,
 Service,
 Function,
 Input,
 'Output',
 'Result'
 [,TimeOut])

Parameter I/O Description

Broker I Logical name of service broker (not case-sensitive, limited to 8

characters).

Service I Logical name of service (not case-sensitive, limited to 8

characters).

Function I Name of service function (case-sensitive, limited to 30

characters).

Input I Input string.

Output O The name of a REXX variable into which the output string is to

be returned (maximum output data size is currently 512 bytes).

Result O The name of a REXX variable into which the function’s return

code is to be returned.

TimeOut I Timeout in milliseconds or 0 for no timeout (optional). The

TimeOut parameter limits the amount of time the program

blocks on a RxSbrCallService call. If the time limit is reached

before the service function call could be completed, 4 is

returned.

Return Code Description

0 Operation completed successfully.

1 Not enough memory, or not enough memory to store output variables Output

or Result.

2 Invalid arguments specified.

3 The specified service is not available.

4 The operation has not been completed in time.

7 The internal output buffer is too small (currently 512 bytes).

8 The specified function does not exist.

9 The specified function could not be loaded.

10 The specified function trapped due to an access violation.

11 The specified function trapped due to an instruction that is not permitted.

12 The specified function trapped due to a floating point exception.

13 The specified function does not have enough memory.

14 The provided output data buffer is too small for the specified function.

15 Wrong service function parameters specified.

138 Application Integration Guide

 Example

rv = RxSbrCallService('MYBROK',
 'MYSERV',
 'DoSomething',

'This is input data',
 'output',
 'result')
if rv = 0 then do

say 'Output is:' output
say 'Result is:' result

end
else

say 'Service could not be called (error 'rv')'

Return Code Description

17 The Service Broker Manager is not running.

18 The Service Broker Manager is currently busy.

19 The connection to the Service Broker Manager is broken.

20 The specified service broker is not available.

21 The specified service broker could not be started.

23 The specified service could not be started.

25 The Service Broker Manager has been stopped.

26 The specified service is disabled and cannot be used.

27 The specified service broker is disabled and cannot be used.

Starting a service broker
Use the RxSbrStartBroker function in your REXX program to start an inactive service

broker:

RC = RxSbrStartBroker(Broker,
 [,TimeOut])

Parameter I/O Description

Broker I Logical name of service broker (not case-sensitive, limited to 8

characters).

TimeOut I Timeout in milliseconds or 0 for no timeout (optional). The

TimeOut parameter limits the amount of time the program

blocks on a RxSbrStartBroker call. If the time limit is reached

before the service broker could be started, 4 is returned.

 Chapter 6. Creating your own service brokers 139

 Example

rv = RxSbrStartBroker('MYBROK')
if rv \= 0 then do

/\ ... error handling ... \/
end

Return Code Description

0 Operation completed successfully.

1 Not enough memory.

2 Invalid arguments specified.

4 The operation has not been completed in time.

17 The Service Broker Manager is not running.

18 The Service Broker Manager is currently busy.

19 The connection to the Service Broker Manager is broken.

20 The specified service broker is not available.

21 The specified service broker could not be started.

25 The Service Broker Manager has been stopped.

27 The specified service broker is disabled and cannot be used.

Stopping a service broker
Use the RxSbrStopBroker function in your REXX program to stop an active service

broker:

RC = RxSbrStopBroker(Broker,
 [,TimeOut])

Parameter I/O Description

Broker I Logical name of service broker (not case-sensitive, limited to 8

characters).

TimeOut I Timeout in milliseconds or 0 for no timeout (optional). The

TimeOut parameter limits the amount of time the program

blocks on a RxSbrStopBroker call. If the time limit is reached

before the service broker could be stopped, 4 is returned.

Return Code Description

0 Operation completed successfully.

1 Not enough memory.

2 Invalid arguments specified.

4 The operation has not been completed in time.

17 The Service Broker Manager is not running.

140 Application Integration Guide

 Example

rv = RxSbrStopBroker('MYBROK')
if rv \= 0 then do

/\ ... error handling ... \/
end

Return Code Description

18 The Service Broker Manager is currently busy.

19 The connection to the Service Broker Manager is broken.

20 The specified service broker is not available.

22 The specified service broker could not be stopped.

25 The Service Broker Manager has been stopped.

27 The specified service broker is disabled and cannot be used.

Starting a service
Use the RxSbrStartService function in your REXX program to start an inactive service:

RC = RxSbrStartService(Broker,
 Service,
 [,TimeOut])

Parameter I/O Description

Broker I Logical name of service broker (not case-sensitive, limited to 8

characters).

Service I Logical name of service (not case-sensitive, limited to 8

characters).

TimeOut I Timeout in milliseconds or 0 for no timeout (optional). The

TimeOut parameter limits the amount of time the program

blocks on a RxSbrStartService call. If the time limit is reached

before the service could be started, 4 is returned.

Return Code Description

0 Operation completed successfully.

1 Not enough memory.

2 Invalid arguments specified.

3 The specified service is not available.

4 The operation has not been completed in time.

17 The Service Broker Manager is not running.

18 The Service Broker Manager is currently busy.

19 The connection to the Service Broker Manager is broken.

 Chapter 6. Creating your own service brokers 141

 Example

rv = RxSbrStartService('MYBROK','MYSERV')
if rv \= 0 then do

/\ ... error handling ... \/
end

Return Code Description

20 The specified service broker is not available.

23 The specified service could not be started.

25 The Service Broker Manager has been stopped.

26 The specified service is disabled and cannot be used.

27 The specified service broker is disabled and cannot be used.

Stopping a service
Use the RxSbrStopService function in your REXX program to stop an active service:

RC = RxSbrStopService(Broker,
 Service,
 [,TimeOut])

Parameter I/O Description

Broker I Logical name of service broker (not case-sensitive, limited to 8

characters).

Service I Logical name of service (not case-sensitive, limited to 8

characters).

TimeOut I Timeout in milliseconds or 0 for no timeout (optional). The

TimeOut parameter limits the amount of time the program

blocks on a RxSbrStopService call. If the time limit is reached

before the service could be stopped, 4 is returned.

Return Code Description

0 Operation completed successfully.

1 Not enough memory.

2 Invalid arguments specified.

3 The specified service is not available.

4 The operation has not been completed in time.

17 The Service Broker Manager is not running.

18 The Service Broker Manager is currently busy.

19 The connection to the Service Broker Manager is broken.

20 The specified service broker is not available.

142 Application Integration Guide

 Example

rv = RxSbrStopService('MYBROK','MYSERV')
if rv \= 0 then do

/\ ... error handling ... \/
end

Return Code Description

24 The specified service could not be stopped.

25 The Service Broker Manager has been stopped.

26 The specified service is disabled and cannot be used.

27 The specified service broker is disabled and cannot be used.

Retrieving an error message
Use the RxSbrGetErrorMessage function to retrieve the error message for a particular

error code in your REXX program:

RC = RxSbrGetErrorMessage(Error, 'Message')

Parameter I/O Description

Error I Error code of requested error message (see the return codes

of service requester API functions).

Message O The name of a REXX variable into which the specified error

message is to be returned (maximum message size is currently

512 bytes).

Return Code Description

0 Operation completed successfully.

1 Not enough memory to store output variable Message.

2 Invalid arguments specified.

7 The internal buffer is too small (currently 512 bytes). Truncated error

message was copied.

16 The error message could not be found.

 Chapter 6. Creating your own service brokers 143

 Example

rv = RxSbrCallService(...)
if rv = 0 then do
 ...
end
else do

rc = RxSbrGetErrorMessage(rv,'message')
if rc = 0 then

 say message
 else

say 'Service could not be called (error 'rv')'
end

Using the standard service requester
To test your service broker or service, you can use the program EXMP3FFR.EXE.

Note: Use EXMP3FFR if your service function requires textual parameters only. If the

parameters are based on access to the FlowMark container API (for example, by

receiving the session ID), you can only test your services by starting the FlowMark

service requester as a FlowMark program activity within a process model. See

Chapter 2, “Using the Service Broker Manager for OS/2” on page 7 for details.

Enter exmp3ffr, followed by at least three parameters, at the OS/2 command prompt:

►►──exmp3ffr─ ──┬ ┬──── ─broker──service──function─ ──┬ ┬──────── ─────────────────►◄
 └ ┘─/q─ └ ┘─params─

EXMP3FFR returns the return code of the service function or 255, if the function failed.

The service function’s output data and result code are displayed in a window unless /Q

was specified.

 Example

exmp3ffr mybrok myserv DoSomething 'this is a parameter string'

Parameter Description

/q Quiet; output data and result code, or error message is not displayed (optional).

broker Logical name of the service broker that provides the specific service (not

case-sensitive).

service Logical name of the service providing the requested function (not case-sensitive).

function Name of the service function (case-sensitive). This function must be exported by

the service DLL.

params Textual parameters that must be passed to the service function (optional). Refer

to the documentation of the used service brokers and services for further details.

144 Application Integration Guide

Using the standard external controller
You can use the program EXMP3UCT.EXE to control the Service Broker Manager. It

allows you to:

� Start a service broker

� Start a service

� Stop a service broker

� Stop a service

The syntax for invoking this program is:

►►─ ─exmp3uct─ ──┬ ┬──── ──┬ ┬─start─ ─broker─ ──┬ ┬───────── ────────────────────────►◄
 └ ┘─/q─ └ ┘─stop── └ ┘─service─

Starting a service of a service broker that has not been started fails. EXMP3UCT

returns 0 to signal successful completion, or 255, if the action failed.

 Example

exmp3uct start mybrok myserv

Parameter Description

/q Quiet; error messages are not displayed.

broker The logical name of a service broker. This value is not case-sensitive.

service The logical name of a service. This value is not case-sensitive.

Debugging service brokers and services

This section describes how to debug service broker and service DLLs using the

debugger supplied with the IBM VisualAge for C++ (IPMD.EXE).

Since service broker and service DLLs are loaded by the Service Broker Manager, the

only way to debug these DLLs is to debug the Service Broker Manager:

►►──ipmd──exmp3uup───►◄

Use the run command to start execution. If a DLL has been successfully loaded by the

Service Broker Manager, its name appears in the Components list box of the Debug

Session Control window, provided that debug information is included in the DLL file

(use the /Ti+ compiler option of the IBM VisualAge for C++ to generate debug

information). Click on the plus icon to the left of the DLL file name to display the list of

contained object files, double-click on the object of your choice, and set appropriate

breakpoints. Use the run command again to continue execution.

 Chapter 6. Creating your own service brokers 145

To debug broker or service initialization code (Broker_Init or Service_Init) a load

occurrence breakpoint must be set for the particular DLL before starting execution of

the Service Broker Manager. To set such a breakpoint, select the Breakpoints menu

from the Debug Session Control window, select Load occurrence... and specify the

name of your DLL. Use the run command to start execution. When the specified DLL

is being loaded, the above breakpoint is encountered, and the DLL’s name appears.

Continue as described above.

 Sample files

When you install the Service Broker Manager toolkit, the following files are provided.

Use these files as templates for your own service brokers, services and service

requesters. By default, these files are installed in subdirectories of the

EXM\SBM\SAMPLES\TOOLKIT directory.

Sample service broker DLL (SAMPBROK.C)
/\\\/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ "Restricted Materials of IBM" \/
/\ \/
/\ 5697-216 \/
/\ \/
/\ (C) Copyright IBM Corp. 1995, 1996 All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with \/
/\ IBM Corp. \/
/\ \/
/\\\/
/\ \/
/\ File: SAMPBROK.C \/
/\ \/
/\ Purpose: Sample Broker DLL \/
/\ \/
/\\\/

#include <os2.h>
#include <string.h>
#include <stdlib.h>
#include "exmp3cbr.h"

/\\\/
/\ \/
/\ Standard Broker DLL Interface: \/
/\ \/
/\ Mandatory: Broker_GetDllVersion \/
/\ Broker_GetVersion \/
/\ \/
/\ Optional: Broker_Init \/
/\ Broker_Exit \/
/\ Broker_Logon \/
/\ Broker_Logoff \/
/\ Broker_GetCfgReqs \/
/\ Broker_SetupCfg \/
/\ \/
/\\\/

146 Application Integration Guide

/\ Broker name & version \/

#define BROKER_NAME "MyBroker"
#define BROKER_VERSION 123

/\\\/
/\ Return DLL version \/
/\\\/

ULONG APIENTRY Broker_GetDllVersion (void)
{
 return SB_BROKER_DLLVERSION;
}

/\\\/
/\ Return broker version information \/
/\\\/

VOID APIENTRY Broker_GetVersion (PSbBrokerVersion pVer)
{
 pVer->pName = BROKER_NAME;

pVer->Version = BROKER_VERSION;
}

/\\\/
/\ Called when broker is loaded: 0 Successful \/
/\ != 0 ... Error \/
/\\\/

APIRET APIENTRY Broker_Init (PSbBrokerInit pInit)
{

/\ ... user-defined initialization ... \/

SbbLog (pInit->Handle, SB_BROK_LOG_LEVEL_2, "Initialized!");

 return 0;
}

/\\\/
/\ Called when broker is unloaded: 0 Successful \/
/\ != 0 ... Error \/
/\\\/

APIRET APIENTRY Broker_Exit (PSbBrokerExit pExit)
{

/\ ... user-defined exit ... \/

SbbLog (pExit->Handle, SB_BROK_LOG_LEVEL_2, "Exit!");

 return 0;
}

/\\\/
/\ Called when broker is started: 0 Successful \/
/\ != 0 ... Error \/
/\\\/

APIRET APIENTRY Broker_Logon (PSbBrokerLogon pLogon)
{

char \ pSession = (char \) malloc (100);
strcpy (pSession, "This is a session");

 pLogon->pSession = pSession;
pLogon->SessionSize = 100;

SbbLog (pLogon->Handle, SB_BROK_LOG_LEVEL_2, "Logged on!");

 Chapter 6. Creating your own service brokers 147

 return 0;
}

/\\\/
/\ Called when broker is stopped: 0 Successful \/
/\ != 0 ... Error \/
/\\\/

APIRET APIENTRY Broker_Logoff (PSbBrokerLogoff pLogoff)
{
 free (pLogoff->pSession);

SbbLog (pLogoff->Handle, SB_BROK_LOG_LEVEL_2, "Logged off!");

 return 0;
}

Sample service DLL (SAMPSERV.C)
/\\\/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ "Restricted Materials of IBM" \/
/\ \/
/\ 5697-216 \/
/\ \/
/\ (C) Copyright IBM Corp. 1995, 1996 All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with \/
/\ IBM Corp. \/
/\ \/
/\\\/
/\ \/
/\ File: SAMPSERV.C \/
/\ \/
/\ Purpose: Sample Service DLL \/
/\ \/
/\\\/

#include <os2.h>
#include <string.h>
#include "exmp3cse.h"

/\\\/
/\ \/
/\ Standard Service DLL Interface: \/
/\ \/
/\ Mandatory: Service_GetDllVersion \/
/\ Service_CheckBroker \/
/\ \/
/\ Optional: Service_Init \/
/\ Service_Exit \/
/\ Service_Start \/
/\ Service_Stop \/
/\ Service_GetCfgReqs \/
/\ Service_SetupCfg \/
/\ \/
/\\\/

/\ Required broker name & version \/

#define BROKER_NAME "MyBroker"
#define BROKER_VERSION 123

148 Application Integration Guide

/\\\/
/\ Return DLL version \/
/\\\/

ULONG APIENTRY Service_GetDllVersion (void)
{
 return SB_SERVICE_DLLVERSION;
}

/\\\/
/\ Check if broker is compatible: 0 Successful \/
/\ != 0 ... Error \/
/\\\/

APIRET APIENTRY Service_CheckBroker (PSbBrokerVersion pVer)
{

return (strcmp(pVer->pName, BROKER_NAME) != 0) ||
(pVer->Version < BROKER_VERSION);

}

/\\\/
/\ Called when service is loaded: 0 Successful \/
/\ != 0 ... Error \/
/\\\/

APIRET APIENTRY Service_Init (PSbServiceInit pInit)
{

/\ ... user-defined initialization ... \/

SbbLog (pInit->Handle, SB_BROK_LOG_LEVEL_2, "Initialized!");

 return 0;
}

/\\\/
/\ Called when service is unloaded: 0 Successful \/
/\ != 0 ... Error \/
/\\\/

APIRET APIENTRY Service_Exit (PSbServiceExit pExit)
{

/\ ... user-defined exit ... \/

SbbLog (pExit->Handle, SB_BROK_LOG_LEVEL_2, "Exit!");

 return 0;
}

/\\\/
/\ Called when service is started: 0 Successful \/
/\ != 0 ... Error \/
/\\\/

APIRET APIENTRY Service_Start (PSbServiceStart pStart)
{

/\ ... user-defined start-up ... \/

SbbLog (pStart->Handle, SB_BROK_LOG_LEVEL_2, "Started!");

 return 0;
}

/\\\/
/\ Called when service is stopped: 0 Successful \/
/\ != 0 ... Error \/
/\\\/

 Chapter 6. Creating your own service brokers 149

APIRET APIENTRY Service_Stop (PSbServiceStop pStop)
{

/\ ... user-defined stopping ... \/

SbbLog (pStop->Handle, SB_BROK_LOG_LEVEL_2, "Stopped!");

 return 0;
}

/\\\/
/\ \/
/\ Service Functions \/
/\ \/
/\\\/

#define STRING_RESULT "This is a string result"

LONG APIENTRY AFunction (PSbFuncInfo pInfo,
 PVOID pData,
 PULONG pDataSize,
 ULONG MaxOutDataSize)
{

unsigned OutputSize = strlen(STRING_RESULT) + 1; /\ size of output data \/

if (\pDataSize == 0) /\ invalid input data? \/
 return SB_FUNC_RC_INVALID_DATA;

if (OutputSize > MaxOutDataSize) /\ buffer too small? \/
 return SB_FUNC_RC_OVERFLOW;

memcpy(pData, STRING_RESULT, OutputSize); /\ copy result string \/
\pDataSize = OutputSize; /\ set size of output \/

SbbLog (pInfo->Handle, SB_BROK_LOG_LEVEL_2, "AFunction completed!");

 return 0;
}

LONG APIENTRY AnotherFunction (PSbFuncInfo pInfo,
 PVOID pData,
 PULONG pDataSize,
 ULONG MaxOutDataSize)
{

\pDataSize = 0; /\ no output \/

SbbLog (pInfo->Handle, SB_BROK_LOG_LEVEL_2, "AnotherFunction completed!");

 return 123;
}

Sample C language service requester (SAMPREQ.C)
/\\\/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ "Restricted Materials of IBM" \/
/\ \/
/\ 5697-216 \/
/\ \/
/\ (C) Copyright IBM Corp. 1995, 1996 All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with \/
/\ IBM Corp. \/
/\ \/

150 Application Integration Guide

/\\\/
/\ \/
/\ File: SAMPREQ.C \/
/\ \/
/\ Purpose: Sample Service Requester \/
/\ \/
/\\\/

#include <os2.h>
#include <stdio.h>
#include <string.h>
#include "exmp3fre.h"

/\\\/
/\ Constants \/
/\\\/

#define EXITCODE_ERROR 255
#define BUFFER_SIZE 512

/\\\/
/\ main \/
/\\\/

int main (int argc, char \ argv [])
{

char buffer [BUFFER_SIZE]; /\ buffer \/

char \ broker; /\ service broker \/
char \ service; /\ service \/
char \ function; /\ service function \/
char \ args; /\ function argument \/

ULONG inSize; /\ size of input \/
ULONG outSize; /\ size of output \/

 LONG outRC;
 APIRET rc;

 /\\/
 /\ Process arguments \/
 /\\/

if (argc != 4 && argc != 5) {
printf ("Usage: SAMPREQ Broker Service Function [\"...\"]\n");

 return EXITCODE_ERROR;
 }

 broker = argv[1];
 service = argv[2];

function = argv[3];

if (argc == 5 && \argv[4] != 0) {
 args = argv[4];

inSize = strlen (argv[4]) + 1;
} else {

 args = 0;
inSize = 0;

 }

 /\\/
/\ Call service function \/

 /\\/

outSize = BUFFER_SIZE; /\ size of output buffer \/

rc = SbrCallService (broker, /\ name of broker \/

 Chapter 6. Creating your own service brokers 151

service, /\ name of service \/
function, /\ name of function \/
args, /\ input data \/
inSize, /\ size of -"- \/
buffer, /\ output buffer \/
&outSize, /\ size of -"- \/
&outRC, /\ return code \/
SB_REQ_WAIT_INDEFINITE); /\ no timeout \/

 /\\/
 /\ Handle result \/
 /\\/

if (rc == SB_REQ_RC_OK) {

if (outSize != 0)
printf ("Result = '%s'\n", buffer);

printf ("Return Code = %u\n", outRC);
 return outRC;

} else {

if (SbrGetErrorMessage (rc, buffer, BUFFER_SIZE) == SB_REQ_RC_OK)
printf ("Error %u: %s\n", rc, buffer);

 else
printf ("Error %u: error message could not be retrieved!\n", rc);

 return EXITCODE_ERROR;
 }
}

Sample REXX language service requester (EXMP3SRX.CMD)
/\\\/
/\ \/
/\ Licensed Materials - Property of IBM \/
/\ \/
/\ "Restricted Materials of IBM" \/
/\ \/
/\ 5697-216 \/
/\ \/
/\ (C) Copyright IBM Corp. 1995, 1996 All Rights Reserved \/
/\ \/
/\ US Government Users Restricted Rights - Use, duplication or \/
/\ disclosure restricted by GSA ADP Schedule Contract with \/
/\ IBM Corp. \/
/\ \/
/\\\/
/\ \/
/\ File: EXMP3SRX.CMD \/
/\ \/
/\ Purpose: REXX Requester sample; similar to EXMP3FFR.EXE \/
/\ \/
/\ Usage: EXMP3SRX broker service function params \/
/\ \/
/\\\/

parse arg broker service function params

/\ Check parameters \/

if broker = '' | service = '' | function = '' then do
say 'Usage: EXMP3SRX broker service function params'

 exit 100
end

/\ Load functions \/

152 Application Integration Guide

call RxFuncAdd 'RxSbrLoadFuncs', 'EXMP3KRX', 'RxSbrLoadFuncs'
rv = RxSbrLoadFuncs()
if rv \= 0 then do

say "Service Requester API functions could not be loaded: rc =" rv
 exit 1
end

/\ Call service: output data -> variable 'output' \/
/\ function return code -> variable 'result' \/

rv = RxSbrCallService(broker,service,function,params,'output','result')
if rv = 0 then do

say 'Output is: "'output'"'
say 'Result is: 'result

 exit result
end
else do

rv2 = RxSbrGetErrorMessage(rv,'message')
if rv2 = 0 then

 say message
 else

say 'Service could not be called (error 'rv')'
 exit 101
end

/\ Registration error \/

RegistrationError:
say 'Necessary functions could not be loaded!'

 exit 102

 Chapter 6. Creating your own service brokers 153

154 Application Integration Guide

Chapter 7. The Service Broker Manager for Windows

This chapter gives you some general information about the Service Broker Manager for

Windows 3.1. It also explains how to use the Service Broker Manager for Windows

and how to implement service brokers and services.

About the Service Broker Manager for Windows

The concept of the Service Broker Manager for Windows, like that of the Service Broker

Manager on OS/2, includes the following components:

� Service Broker Manager

The Service Broker Manager controls the operation of service broker sessions.

This includes the interaction between service requester and services, between

service broker and services, and also the initialization of the service brokers and

services.

 � Service broker

The service broker establishes and maintains a logon session with the base

product (for example, Lotus Notes).

 � Services

A service interfaces to the integrated product. A service function receives the user

data from the Service Broker Manager and calls the appropriate product APIs to

perform the work. The results are returned via the Service Broker Manager to the

service requester and then back to the user application.

 � Service requester

A service requester is the interface to the user application. The user application

calls the service requester APIs to request the product to perform some work. The

service requester formats the user data and issues a request to the Service Broker

Manager function which forwards the request to the appropriate service function.

However, there are differences between the Service Broker Manager for Windows and

the Service Broker Manager on OS/2:

1. The Service Broker Manager for Windows does not supply a general interface with

which you can load multiple service brokers and services. When you start Service

Broker Manager for Windows, one service broker and one service are loaded. So,

if you want to work with more than one base application at the same time, you

must start several instances of the Service Broker Manager for Windows.

2. The Service Broker Manager for Windows does not support threads. No function

that relates to thread administration is available.

3. The data area exchanged between the service requester and the Service Broker

Manager for Windows is limited to 64 KB.

 Copyright IBM Corp. 1996 155

Starting the Service Broker Manager for Windows

You can start the Service Broker Manager for Windows from:

� The FlowMark Runtime folder

To start the Service Broker Manager, click on the Service Broker Manager program

item in your FlowMark folder. This starts the program EXMW3USB.EXE. The EXE

file is stored in the BIN directory of FlowMark. If the program cannot be loaded,

check if the BIN directory is part of your PATH.

When the EXE is started, the Service Broker Manager window with the menu items

Action and Log and the Service Broker Manager:Log window are displayed. To

start or stop a service broker or to exit the Service Broker Manager, select Action.

With Start Broker, specify the names of the service broker and service DLLs

without the extension .DLL. Note that these DLLs must reside in a directory that is

part of your PATH. The window titles change to the name of the broker that you

started.

Figure 19 shows the windows for an active service broker.

Figure 19. Active service broker

With Log, you can select which type of messages are to be recorded:

No Logging

No messages are recorded.

Error messages

Only error messages are recorded.

Status messages

Error and status messages are recorded.

All messages

Error, status, and information messages are recorded.

Log messages are written to your log window and to a log file. The log file is

named broker_name.LOG, where broker_name is the name of the service broker

that you started. The log file resides in the LOG directory of the Service Broker

Manager.

156 Application Integration Guide

� The command line

To start the Service Broker Manager from the command line, use the

EXMW3USB.EXE for Windows 3.1. The syntax is:

►►─ ─── ──exmw3usb.exe─ ─broker──service────────────────────────────────────►◄

The service broker and the service that you specify with the command are started

automatically.

If an error occurs during the startup (for example, if the logon to the base product is

unsuccessful), the service broker and the service are unloaded.

When you stop the Service Broker Manager, the service broker and the service are

unloaded.

Implementing a service broker on Windows

Each service broker consists of a DLL that exports the following functions (optional

functions are marked with opt):

 � Broker_GetDllVersion

 � Broker_GetVersion

 � Broker_Init opt

 � Broker_Exit opt

 � Broker_Logon opt

 � Broker_Logoff opt

� LibMain opt for Windows 3.1

The Service Broker Manager calls these functions to:

� Determine the version of the service broker

� Load and initialize the service broker

� Perform logon and logoff according to the managed application

� Clean up and unload the service broker

If your service broker does not contain the mandatory functions, the Service Broker

Manager stops processing and unloads the service broker.

Necessary definitions are included in the header file EXMW3CAL.H. Additionally, the

EXMW3CAL.H file includes EXMP3FTP.H, which contains the type definitions for this

API. Include the broker header file first when you implement a service broker.

 Chapter 7. The Service Broker Manager for Windows 157

So, your service broker program starts with the following statements:

//
// Sample broker dll
//
#include <windows.h> // Windows header

#include <exmw3cal.h> // broker header file

 Broker_GetDllVersion function
This mandatory function has the following format:

ULONG APIENTRY Broker_GetDllVersion(VOID)

This function must return the value of predefined constant

SB_BROKER_DLLVERSION.

 Example

ULONG APIENTRY Broker_GetDllVersion (VOID)
{
 return SB_BROKER_DLLVERSION;
}

 Broker_GetVersion
 This mandatory function has the following format:

VOID APIENTRY Broker_GetVersion(SbBrokerVersion FAR \ pVer)

This function must return the name and version of the broker DLL by filling the structure

SbBrokerVersion:

 Example

VOID APIENTRY Broker_GetVersion (PSbBrokerVersion pVer)
{

pVer->pName = "WINBROK"; // Name of broker DLL
pVer->Version = 123;

}

158 Application Integration Guide

 Broker_Init
This optional function is called after your service broker has been loaded. It has the

following format:

APIRET APIENTRY Broker_Init(SbBrokerInit FAR \ pInit)

A structure containing initialization information is passed to the function:

typedef struct
{

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ NOT USED ON WINDOWS \/
HMODULE BrokerDLL; /\ NOT USED ON WINDOWS \/
PSZ pBrokerName; /\ I: Name of broker dll \/
PVOID pInstance; /\ O: user-defined instance pointer \/

} SbBrokerInit;

You can use a user-defined instance pointer, pInstance, to store any instance-related

information. This pointer is passed to all subsequent function calls, but can only be set

in the Broker_Init function.

 Example

APIRET APIENTRY Broker_Init (PSbBrokerInit pInit)
{

SbbLog(0, SB_BROK_LOG_LEVEL_3, "Broker_Init has been called");

 //
// Initialization starts here

 //

 return 0;

}

If the return code of the Broker_Init function is not zero, the Service Broker Manager

stops processing and unloads the service broker and the service.

 Chapter 7. The Service Broker Manager for Windows 159

 Broker_Exit
This optional function is called when the Service Broker Manager is stopped. This is

the last function that the Service Broker Manager calls before exiting, so do all cleanup

here.

The function has the following format:

APIRET APIENTRY Broker_Exit(SbBrokerExit FAR \ pExit)

A read-only structure containing exit information is passed to the function:

typedef struct
{

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ NOT USED ON WINDOWS \/
PVOID pInstance; /\ I: user-defined instance pointer \/

} SbBrokerExit;

 Example

APIRET APIENTRY Broker_Exit (PSbBrokerExit pExit)
{

SbbLog(0, SB_BROK_LOG_LEVEL_3, "Broker_Exit has been called");

// Cleanup processing:
// Close file now

 //
 _lclose(hFile);

 return 0;

}

If the return code of the Broker_Exit function is not zero, an error message containing

the return code is written to the log file. The service broker is unloaded.

160 Application Integration Guide

 Broker_Logon
This function performs a logon to the application that is managed by the service broker.

It has the following format:

APIRET APIENTRY Broker_Logon (SbBrokerLogon FAR \ pLogon)

The SbBrokerLogon structure that is passed to the function has the following format:

typedef struct
{

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ NOT USED ON WINDOWS \/
HAB Hab; /\ NOT USED ON WINDOWS \/
HMQ Hmq; /\ NOT USED ON WINDOWS \/
PVOID pInstance; /\ I: user-defined instance pointer \/
PVOID pSession; /\ I/O: user-defined session data \/
ULONG SessionSize; /\ I/O: data size \/

} SbBrokerLogon;

pSession and SessionSize refer to a user-defined logon or session buffer that contains

a handle of the connection to the managed application, or similar logon information.

The buffer must be allocated within the Broker_Logon function and can be freed in the

Broker_Logoff function. Services also have access to pSession and pSessionSize.

If the return code of the Broker_Logon function is not zero, the Service Broker Manager

stops processing and unloads the service broker and services.

 Chapter 7. The Service Broker Manager for Windows 161

 Broker_Logoff
This optional function performs a logoff from the application that is managed by the

service broker. It is called when you stop the Service Broker Manager. The format of

this function is:

APIRET APIENTRY Broker_Logoff(SbBrokerLogoff FAR \ pLogoff)

A SbBrokerLogoff structure is passed to the function. The fields of the SbBrokerLogoff

structure contain the information from the SbBrokerLogon structure from the call to

Broker_Logon. If you allocated a session buffer in Broker_Logon, free this buffer in the

Broker_Logoff function. The SbBrokerLogoff structure is defined as follows:

typedef struct
{

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ NOT USED ON WINDOWS \/
HAB Hab; /\ NOT USED ON WINDOWS \/
HMQ Hmq; /\ NOT USED ON WINDOWS \/
PVOID pInstance; /\ I: user-defined instance pointer \/
PVOID pSession; /\ I/O: user-defined session data \/
ULONG SessionSize; /\ I/O: data size \/

} SbBrokerLogoff;

 Example

APIRET APIENTRY Broker_Logoff (PSbBrokerLogoff pLogoff)
{

 //
// Logoff ...

 //

 free (pLogoff->pSession);

 return 0;

}

If the return code of the Broker_Logoff function is not zero, an error message

containing the return code is written to the log file.

162 Application Integration Guide

LibMain (for Windows 3.1)
This function is called by the Windows operating system when a DLL is loaded. You

can use this function to retrieve the module instance handle.

 Example

HINSTANCE hInst; // Global dll instance handle

int FAR PASCAL LibMain (HINSTANCE hInstance, WORD wDataSeg, WORD wHeapSize,
 LPSTR lpszCmdLine)
{

if (wHeapSize > 0)
 UnlockData (0);

hInst = hInstance; // Set the instance handle

 return 1;

 }

 Chapter 7. The Service Broker Manager for Windows 163

Building the service broker DLL
To build the service broker DLL, you need a makefile and a module definition file. The

module definition file exports the broker functions, so that the Service Broker Manager

can load the functions:

 Windows 3.1

LIBRARY winbrok
EXETYPE WINDOWS
DESCRIPTION 'Broker DLL Windows'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE SINGLE

HEAPSIZE 8192

EXPORTS
 Broker_GetDllVersion @1
 Broker_GetVersion @2
 Broker_Init @3
 Broker_Exit @4
 Broker_Logon @5
 Broker_Logoff @6

164 Application Integration Guide

A makefile to build the DLL looks similar to the following:

Makefile for Windows 3.1

Makefile for Broker DLL on Windows
Borland Compiler

SBROOT = m:\exmw
BORLANDC = f:\bc45
INCLUDES = -I$(BORLANDC)\INCLUDE -I$(SBROOT)\INCLUDE

CC = bcc
CFLAGS = -c -v -ml -w-par -P -W -2 $(INCLUDES)
LFLAGS = /c /v /n /Tw /L$(BORLANDC)\LIB;$(SBROOT)\LIB c0dl
LIBS = import mathws cwl exmw3cal
ADDFLAGS = /DWIN31

winbrok.dll: winbrok.obj winbrok.def
tlink $(LFLAGS) winbrok.obj, winbrok.dll, NUL, $(LIBS), winbrok

 rc winbrok.dll
implib winbrok.lib winbrok.def

winbrok.obj: winbrok.c
$(CC) $(CFLAGS) $(ADDFLAGS) winbrok.c

The libraries (IMPORT.LIB, MATHWS.LIB, and CWL.LIB) are part of the compiler (in

this case, the Borland C++ compiler). The library EXMW3CAL.LIB contains the C

language service broker API. Currently, only function SbbLog() is supported, which

writes messages to the log file and to your main Service Broker Manager window.

Implementing a service on Windows

Each service consists of a DLL that exports the following standard functions, plus any

user-defined service functions (optional functions are marked with opt):

 � Service_GetDllVersion

 � Service_CheckBroker

 � Service_Init opt

 � Service_Exit opt

 � Service_Start opt

 � Service_Stop opt

� LibMain opt for Windows 3.1

The Service Broker Manager calls these functions to:

� Determine the version of the service

� Check if the service is compatible with a service broker

� Load and initialize the service

� Start and stop the service

� Clean up and unload the service

 Chapter 7. The Service Broker Manager for Windows 165

A service can additionally export an arbitrary number of service functions performing

user-defined operations using the current logon or session provided by the

corresponding service broker.

For performance reasons, you can place a single service in a service broker DLL. But

this is recommended only for general services that are needed whenever the service

broker is used.

Multiple service functions can be executed in parallel, so they should be reentrant.

If your service does not contain the mandatory functions, the Service Broker Manager

stops processing and unloads the service broker and the service.

Necessary definitions are included in the header file EXMW3LSR.H. Additionally,

EXMW3LSR.H includes EXMP3FTP.H that contains the type definitions used in this

API. Include the service header file first when you implement a service. So, your

service program starts with the following statements:

#include <windows.h> // Windows header

#include <exmw3lsr.h> // Service header

 Service_GetDllVersion
This mandatory function must return the value of the predefined constant

SB_SERVICE_DLLVERSION. It has the following format:

ULONG APIENTRY Service_GetDllVersion (void)

If the returned version does not match the current version of the Service Broker

Manager, the Service Broker Manager stops processing. In this case, you must update

your Service Broker Manager for Windows.

 Example

ULONG APIENTRY Service_GetDllVersion(void)
{
 return SB_SERVICE_DLLVERSION;
}

166 Application Integration Guide

 Service_CheckBroker
This mandatory function checks if the service is compatible with the service broker. It

has the following format:

APIRET APIENTRY Service_CheckBroker(SbBrokerVersion FAR \ pBroker)

A read-only SbBrokerVersion structure containing the name and version of the service

broker is passed to the function. The function returns 0 if the name and version are

correct. Otherwise the service broker and the service are unloaded and the Service

Broker Manager stops processing.

 Example

APIRET APIENTRY Service_CheckBroker(PSbBrokerVersion pVer)
{
APIRET apiRc = 0;

 //
// Check the name of the broker:

 //
if (strcmp(pVer->pName), "WINBROK") != 0)

 {
apiRc = 1; // Wrong broker name

 }

 //
// Check the version:
if (pVer->Version < 123)

 {
apiRc = 1; // Wrong version

 }

 return apiRc;

}

 Chapter 7. The Service Broker Manager for Windows 167

 Service_Init
This optional function is called after the service has been loaded. It contains all

initialization information for the service. The format of this function is:

APIRET APIENTRY Service_Init(SbServiceInit FAR \ pInit)

A structure containing initialization information is passed to the function:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ NOT USED ON WINDOWS \/
HMODULE ServiceDLL; /\ NOT USED ON WINDOWS \/
PSZ pServiceName; /\ I: Name of service instance \/
HMODULE BrokerDLL; /\ NOT USED ON WINDOWS \/
PSZ pBrokerName; /\ I: Name of broker instance \/
PVOID pInstance; /\ O: user-defined instance pointer \/

} SbServiceInit;

You can use a user-defined instance pointer, pInstance, to store any instance-related

information. This pointer is passed to any subsequent service function calls, but can be

set in the Service_Init function only. This function returns zero if it was successful.

Otherwise the service broker and the service are unloaded and the Service Broker

Manager stops.

 Example

APIRET APIENTRY Service_Init (PSbServiceInit pInit)
{
// Init process ...

 return 0;
}

168 Application Integration Guide

 Service_Exit
This optional function is called when the service is unloaded. The format of this

function is:

APIRET APIENTRY Service_Exit(SbServiceExit FAR \ pExit)

A read-only structure containing exit information is passed to the function:

typedef struct {

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ NOT USED ON WINDOWS \/
PVOID pInstance; /\ I: user-defined instance pointer \/

} SbServiceExit;

 Example

APIRET APIENTRY Service_Exit (PSbServiceExit pExit)
{

// Cleanup processing ...
 return 0;

}

If the return code of the Service_Exit function is not zero, an error message that

contains this return code is written to the log file and the service is unloaded.

 Service_Start
This optional function is called when the service is started. It has the following format:

APIRET APIENTRY Service_Start(SbServiceStart FAR \ pStart)

The function returns 0 if it was successful. Otherwise the service broker and the

service are unloaded.

 Chapter 7. The Service Broker Manager for Windows 169

The SbServiceStart structure is defined as follows:

typedef struct
{

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ NOT USED ON WINDOWS \/
PVOID pInstance; /\ I: user-defined instance pointer \/
PVOID pSession; /\ I: user-defined session buffer \/
ULONG SessionSize; /\ I: user-defined size of session buffer \/

} SbServiceStart;

pSession and SessionSize refer to the service broker’s session data.

 Example

APIRET APIENTRY Service_Start (PSbServiceStart pStart)
{

SbbLog(0, SB_BROK_LOG_LEVEL_3, "... Service_Start ..."):

// Start processing ...

 return 0;

}

 Service_Stop
This optional function is called when the service is stopped. It has the following format:

APIRET APIENTRY Service_Stop(SbServiceStop FAR \ pStop)

This function returns 0 if it was successful. If the return code of the Service_Stop

function is not zero, an error message that contains the return code is written to the log

and the service is unloaded.

170 Application Integration Guide

The SbServiceStop structure is defined as follows:

typedef struct
{

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ NOT USED ON WINDOWS \/
PVOID pInstance; /\ I: user-defined instance pointer \/
PVOID pSession; /\ I: user-defined session buffer \/
ULONG SessionSize; /\ I: user-defined size of session buffer \/

} SbServiceStop;

 Example

APIRET APIENTRY Service_Stop (PSbServiceStop pStop)
{

// Stop processing

 return 0;

}

LibMain (for Windows 3.1)
This function is called by the Windows operating system when a DLL is loaded. You

can use this function to retrieve the module instance handle.

 Example

HINSTANCE hInst; // Global dll instance handle

int FAR PASCAL LibMain (HINSTANCE hInstance, WORD wDataSeg, WORD wHeapSize,
 LPSTR lpszCmdLine)
{

if (wHeapSize > 0)
 UnlockData (0);

hInst = hInstance; // Set the instance handle

 return 1;

 }

 Chapter 7. The Service Broker Manager for Windows 171

Implementing a service function
The syntax of a service function is as follows:

LONG APIENTRY ServiceFunction(SbFuncInfo FAR \ pInfo,
 PVOID pData,

UINT FAR \ pDataSize,
 UINT MaxOutDataSize)

A service DLL can provide several service functions. The parameters passed to the

function are:

Parameter I/O Description

pInfo I A read-only structure containing information about the service

function’s environment (for example, the field pSession points

to the session buffer allocated by Broker_Logon).

pData I/O Points to a data buffer; as input, it contains input data of size

*pDataSize. The service function can copy MaxOutDataSize

bytes of its output data to pData.

pDataSize I/O As input, it contains the size of input data; as output, it must

contain the size of written output data or 0.

MaxOutDataSize I Maximum size of output data.

172 Application Integration Guide

The SbFuncInfo structure is defined as follows:

typedef struct
{

ULONG Size; /\ I: actual size of structure \/
ULONG Handle; /\ NOT USED ON WINDOWS \/
HAB Hab; /\ NOT USED ON WINDOWS \/
HMQ Hmq; /\ NOT USED ON WINDOWS \/
PVOID pInstance; /\ I: user-defined instance pointer \/
PVOID pSession; /\ I: user-defined session buffer \/
ULONG SessionSize; /\ I: user-defined size of session buffer \/

} SbFuncInfo;

A service function can return a user-defined return code that must be greater than or

equal to 0. Return codes less than 0 should not be used, because they are reserved

for Service Broker Manager internal purposes, except the following pre-defined return

codes:

Output data is returned to the caller only if the return code is greater than or equal to 0.

The following is a service function example that just copies a string into the output area:

Standard Error Code Description

SB_FUNC_RC_MEMORY (-1) Not enough memory to complete the operation

SB_FUNC_RC_OVERFLOW (-2) Buffer is too small to write output data

SB_FUNC_RC_INVALID_DATA (-3) Invalid input data

 Chapter 7. The Service Broker Manager for Windows 173

 Example

#ifdef __cplusplus
extern "C" {
#endif

//
// Function prototype:
//
LONG APIENTRY DoSomething(PSbFuncInfo pInfo,
 PVOID pData,

UINT FAR \ pulDataSize,
 UINT MaxOutDataSize);

#ifdef __cplusplus
}
#endif

//
// ... and the function itself:
//
#define STRING_RESULT "This is a string result"

LONG APIENTRY DoSomething (PSbFuncInfo pInfo,
 PVOID pData,

UINT FAR \ pDataSize,
 UINT MaxOutDataSize)
{

174 Application Integration Guide

 Example (continued)

SbbLog(0, SB_BROK_LOG_LEVEL_3, " ... DoSomething ... "):

 //
// What is our output size that we want to send ?

 //
UINT OutputSize = strlen(STRING_RESULT) + 1;

 //
// Invalid output data

 //
if (\pDataSize == 0)

 return SB_FUNC_RC_INVALID_DATA;

 //
// Buffer too small ?

 //
if (OutputSize > MaxOutDataSize)

 return SB_FUNC_RC_OVERFLOW;

 //
// Copy the data into the buffer
// and set the size field
memcpy(pData, STRING_RESULT, OutputSize);
\pDataSize = OutputSize;

 //
// That's it. No problem.

 //
 return 0;

}

 Chapter 7. The Service Broker Manager for Windows 175

Building the service DLL
To build the service DLL, you need a makefile and a module definition file. The module

definition file exports the service functions, so that the Service Broker Manager can

load the functions:

Module definition file for Windows 3.1

LIBRARY winserv
EXETYPE WINDOWS
DESCRIPTION 'Broker Service DLL Windows'
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE SINGLE

HEAPSIZE 8192

EXPORTS

 Service_GetDllVersion @1
 Service_CheckBroker @2
 Service_Init @3
 Service_Exit @4
 Service_Start @5
 Service_Stop @6
 DoSomething @7

176 Application Integration Guide

A makefile to build the DLL looks similar to the following:

Makefile for Windows 3.1

Makefile for Broker DLL on Windows
Borland Compiler

SBROOT = m:\exmw
BORLANDC = f:\bc45
INCLUDES = -I$(BORLANDC)\INCLUDE -I$(SBROOT)\INCLUDE

CC = bcc
CFLAGS = -c -v -ml -w-par -P -W -2 $(INCLUDES)
LFLAGS = /c /v /n /Tw /L$(BORLANDC)\LIB;$(SBROOT)\LIB c0dl
LIBS = import mathws cwl exmw3cal
ADDFLAGS = /DWIN31

winserv.dll: winserv.obj winserv.def
tlink $(LFLAGS) winserv.obj, winserv.dll, NUL, $(LIBS), winserv

 brc winserv.dll
implib winserv.lib winserv.def

winserv.obj: winserv.c
$(CC) $(CFLAGS) $(ADDFLAGS) winserv.c

The libraries (IMPORT.LIB, MATHWS.LIB, and CWL.LIB) are part of the compiler (in

this case, the Borland C++ compiler). The library EXMW3CAL.LIB contains the C

language service broker API.

Implementing a service requester

Service functions can be executed using the service requester API. Necessary

definitions are in the header file EXMP3FRQ.H. This include file contains all prototypes

and the return codes of the SbrCallService function. The name of the service requester

API library is EXMW3KRQ.LIB for Windows 3.1.

Calling a service function
Use the SbrCallService function to call a service function. The format of SbrCallService

is as follows:

 Chapter 7. The Service Broker Manager for Windows 177

APIRET APIENTRY SbrCallService (PSZ pBroker,
 PSZ pService,
 PSZ pFunction,
 PVOID pInData,
 UINT InDataSize,
 PVOID pOutData,

UINT FAR \ pOutDataSize,
LONG FAR \ pRC,

 ULONG TimeOut);

The parameters are:

Parameter I/O Description

pBroker I Name of service broker (not case-sensitive, limited to 8

characters).

pService I Name of service (not case-sensitive, limited to 8 characters).

pFunction I Name of service function (case-sensitive).

pInData I Address of a buffer that contains input data or NULL.

InDataSize I Size of input data or 0.

pOutData O Address of a buffer for output data.

pOutDataSize I/O As input, it contains the size of the output buffer. As output, it

contains the actual size of output data written to pOutData or 0.

pRC O User-defined return code of service function.

TimeOut I Currently not used.

178 Application Integration Guide

Sample service requester for Windows 3.1
The following is an example for coding a service requester. The sample service

requester WINREQ.C for Windows 3.1 is provided with the product. It is located in the

SBM\SAMPLES\TOOLKIT subdirectory of your FlowMark directory. This directory also

contains a sample makefile and a sample module definition file for a service requester.

 Example

//
// Includes:
//
#include <windows.h>
#include <string.h>

#include <exmp3frq.h> // necessary !
#include "winreq.h"

VOID CallServiceBroker()
{
VOID FAR \ pInAreaPtr;
VOID FAR \ pOutAreaPtr;

// Set inarea and outarea stuff
pInAreaPtr = (VOID FAR \) &szInarea[0];
pOutAreaPtr = (VOID FAR \) &szOutarea[0];

dInareaLen = lstrlen(szInarea);
dOutareaLen = AREALEN;

lOutRc = 0;

 //
// Call ServiceBrokerManager via requester interface

 //
apiRc = SbrCallService(szBroker,

 szService,
 szFunction,
 pInAreaPtr,
 dInareaLen,
 pOutAreaPtr,
 &dOutareaLen,
 &lOutRc,
 0);

if (apiRc != 0)
 {

MessageBox(NULL, "SBM error detected. See <request.log> for more info",
 szBroker, MB_ICONEXCLAMATION|MB_OK);

 }
 return;
 }

 Chapter 7. The Service Broker Manager for Windows 179

Using the standard service requester on Windows 3.1
Use the program EXMW3FRC.EXE, which is located in the EXMWIN\BIN directory, to

pass textual parameters to the Service Broker Manager for Windows and to the

services. To run the program, do one of the following:

� Set the Program Icon Properties under Windows 3.1 as follows:

Description FlowMark Requester Command Line

Command Line x:EXMWIN\BIN\EXMW3FRC.EXE parameters

Working Directory x:EXMWIN\BIN

Where x is the drive where this directory is located. Then, double-click on the

program icon.

� On the Windows 3.1 Run command line, enter:

exmw3frc parameters

Where parameters are:

Parameter Description

/q Quiet; output data and result code, or error message is not displayed (optional).

broker Logical name of the service broker that provides the specific service (not

case-sensitive).

service Logical name of the service providing the requested function (not case-sensitive).

function Name of the service function (case-sensitive). This function must be exported by

the service DLL.

params Textual parameters that must be passed to the service function (optional). Refer

to the documentation of the used service brokers and services for further details.

Using the FlowMark requester
You can use the program EXMW3FRQ.EXE, which is located in the EXMWIN\BIN

directory, to prepare and test the FlowMark requester functions. The program opens a

dialog that provides entry fields for all required parameters. You can set default values

by using the push buttons labeled with the names of the FlowMark service functions.

To run the program, do the following:

1. Set the Program Icon Properties under Windows 3.1 as follows:

Description FlowMark Requester Test

Command Line x:EXMWIN\BIN\EXMW3FRQ.EXE

Working Directory x:EXMWIN\BIN

Where x is the drive where this directory is located.

2. Double-click on the program icon.

180 Application Integration Guide

Chapter 8. Building block for MQSeries support

Note: The programs in this building block are designed for general purpose use and

are available for OS/2 and AIX.

You can use this building block with FlowMark to start, suspend, resume, and terminate

a FlowMark process on another FlowMark system by using MQSeries. The started

process can also return data, such as a subprocess. These functions are currently

supported between FlowMark and FlowMark for MVS/ESA Application Integration

Feature (AIF) systems.

MQSeries enables communication between applications running on the same platform

or on different platforms. MQSeries uses queues as its communications vehicle. The

applications use the queues to send and receive messages.

 Restrictions

� The parent process name, the FlowMark database, and the FlowMark server

cannot be determined by FlowMark API calls. The database and server names are

extracted from environment variables, if available, and the parent-process name is

replaced by FMMQI_UNKNOWN.

� The codepage support is currently restricted to one of the following:

– Any codepage if the same codepage is used on all FlowMark systems

– Codepage 037 (US-EBCDIC) and 001 (US-ASCII) when different codepages

are used on the FlowMark systems.

 MQSeries definitions

A local queue manager must already be installed.

With MQSeries, you can use various communications protocols. Therefore, the

standard and tuning settings can vary from installation to installation. The following

descriptions show sample minimum definitions in a TCP/IP environment.

For more complex definitions, refer to the MQSeries documentation, especially to the

MQSeries Distributed Queuing Guide and the MQSeries Command Reference.

 Copyright IBM Corp. 1996 181

Customizing the MQSeries definitions
Edit the sample file EXMP2ABB.MQI. Modify the definitions according to your network

installation parameters. In the following definitions, it is assumed that the queue

manager name is the same as the TCP/IP host name.

For a connection between two FlowMark systems on OS/2, change at least the names

of the channels and the transmission queue and the attributes of the remote queue on

each system:

 � Channels

 – FMMQI_LOCAL_OS2NAME

 – FMMQI_OS2NAME_LOCAL

Replace the string LOCAL with the name of the respective local queue manager.

 � Transmission queue

 – OS2NAME

 � Remote queue

 – FMMQI_START_OS2

Note: The easiest way to do this in a TCP/IP environment is to set OS2NAME in all

these definitions to the queue manager name of the target OS/2 machine.

For a connection between two FlowMark systems on AIX, change at least the names of

the channels and the transmission queue and the attributes of the remote queue on

each system:

 � Channels

 – FMMQI_LOCAL_AIXNAME

 – FMMQI_AIXNAME_LOCAL

Replace the string LOCAL with the name of the respective local queue manager.

 � Transmission queue

 – AIXNAME

 � Remote queue

 – FMMQI_START_AIX

Note: The easiest way to do this in a TCP/IP environment is to set AIXNAME in all

these definitions to the queue manager name of the target AIX machine.

182 Application Integration Guide

For a connection between a FlowMark system on OS/2 and a FlowMark system on AIX,

change at least the names of the channels and the transmission queue and the

attributes of the remote queue on each system:

 � Channels

 – On AIX:

 - FMMQI_LOCAL_OS2NAME

 - FMMQI_OS2NAME_LOCAL

 – On OS/2:

 - FMMQI_LOCAL_AIXNAME

 - FMMQI_AIXNAME_LOCAL

Replace the string LOCAL with the name of the respective local queue manager.

 � Transmission queue

– On AIX: OS2NAME

– On OS/2: AIXNAME

 � Remote queue

– On AIX: FMMQI_START_OS2

– On OS/2: FMMQI_START_AIX

Note: The easiest way to do this in a TCP/IP environment is to set AIXNAME in these

definitions to the queue manager name of the AIX machine and OS2NAME to the

queue manager name of the OS/2 machine.

For a connection between a FlowMark system on OS/2 or AIX and a FlowMark for

MVS/ESA system, change at least the names of the channels and the transmission

queue and the attributes of the remote queue on each system:

 � Channels

– On AIX or OS/2:

 - FMMQI_LOCAL_MVSNAME

 - FMMQI_MVSNAME_LOCAL

– On MVS for a connection to AIX:

 - FMMQI_LOCAL_AIXNAME

 - FMMQI_AIXNAME_LOCAL

– On MVS for a connection to OS/2:

 - FMMQI_LOCAL_OS2NAME

 - FMMQI_OS2NAME_LOCAL

Replace the string LOCAL with the name of the respective local queue manager.

 Chapter 8. Building block for MQSeries support 183

 � Transmission queue

– On AIX or OS/2: MVSNAME

– On MVS for a connection to AIX: AIXNAME

– On MVS for a connection to OS/2: OS2NAME

 � Remote queue

– On AIX or OS/2: FMMQI_START_MVS

– On MVS for a connection to AIX: FMMQI_START_AIX

– On MVS for a connection to OS/2: FMMQI_START_OS2

Note: The easiest way to do this in a TCP/IP environment is to set MVSNAME in

these definitions to the queue manager name of the MVS machine, AIXNAME to the

queue manager name of the AIX machine and OS2NAME to the queue manager name

of the OS/2 machine.

Make sure that the local queue manager is active and apply the updated definitions by

entering the command:

runmqsc < exmp2abb.mqi > exmp2abb.dat

Check the contents of EXMP2ABB.DAT.

For communication between different queue managers, you must make some network

definitions that enable the queue managers to communicate via channels. These

definitions are different for each communications protocol and each platform. For

details about setting up MQSeries communication on OS/2 and AIX systems, refer to

the MQSeries Distributed Queuing Guide.

Example for a connection between three systems A, B, and C
System A: OS/2, queue manager name = HOSTNAME = ALPHA

 � Channels

 FMMQI_ALPHA_BETA
CHLTYPE(SDR) CONNAME('BETA') XMITQ('BETA')

 FMMQI_ALPHA_GAMMA
CHLTYPE(SDR) CONNAME('GAMMA') XMITQ('GAMMA')

 FMMQI_BETA_ALPHA
 CHLTYPE(RCVR)
 FMMQI_GAMMA_ALPHA
 CHLTYPE(RCVR)

 � Transmission queues

 BETA
 GAMMA

 � Remote queues

 FMMQI_START_AIX
 RQMNAME('BETA')
 FMMQI_START_MVS
 RQMNAME('GAMMA')

184 Application Integration Guide

System B: AIX, queue manager name = HOSTNAME = BETA

 � Channels

 FMMQI_BETA_ALPHA
CHLTYPE(SDR) CONNAME('ALPHA') XMITQ('ALPHA')

 FMMQI_BETA_GAMMA
CHLTYPE(SDR) CONNAME('GAMMA') XMITQ('GAMMA')

 FMMQI_ALPHA_BETA
 CHLTYPE(RCVR)
 FMMQI_GAMMA_BETA
 CHLTYPE(RCVR)

 � Transmission queues

 ALPHA
 GAMMA

 � Remote queues

 FMMQI_START_OS2
 RQMNAME('ALPHA')
 FMMQI_START_MVS
 RQMNAME('GAMMA')

System C: MVS, queue manager name = HOSTNAME = GAMMA

 � Channels

 FMMQI_GAMMA_ALPHA
CHLTYPE(SDR) CONNAME('ALPHA') XMITQ('ALPHA')

 FMMQI_GAMMA_BETA
CHLTYPE(SDR) CONNAME('BETA') XMITQ('BETA')

 FMMQI_ALPHA_GAMMA
 CHLTYPE(RCVR)
 FMMQI_BETA_GAMMA
 CHLTYPE(RCVR)

 � Transmission queues

 ALPHA
 BETA

 � Remote queues

 FMMQI_START_OS2
 RQMNAME('ALPHA')
 FMMQI_START_AIX
 RQMNAME('BETA')

 Chapter 8. Building block for MQSeries support 185

Setting up FlowMark

This section describes how to set up FlowMark for the use of the MQSeries building

blocks.

Preparing the sample processes
Start the Buildtime client, import the FDL file EXMP2ABB.FDL, and translate all sample

processes.

Using the sample processes
Open the sample processes as diagrams to look at the samples.

On both the local and the remote system:

1. Start the queue manager

2. Start the listener program (if necessary)

3. Start the channels by entering the following commands:

runmqsc
START CHANNEL(FMMQI_LOCAL_qmremote)

Start the daemon programs EXMP2ASV.EXE and EXMP2ARM.EXE with the

appropriate parameters from the command line.

Start the Runtime client and start the process of your choice:

� OS/2 Runtime client

FMMQI_OS2_LOCAL

Start a subprocess on the same OS/2 machine

FMMQI_OS2_OS2

Start a subprocess on a remote OS/2 machine

FMMQI_OS2_AIX

Start a subprocess on a remote AIX machine

FMMQI_OS2_MVS

Start a subprocess on a remote MVS machine

FMMQI_CONTROL_OS2_LOCAL

Control (start, suspend, resume, terminate, or restart) a subprocess on

the same OS/2 machine

FMMQI_CONTROL_OS2_OS2

Control (start, suspend, resume, terminate, or restart) a subprocess on

a remote OS/2 machine

FMMQI_CONTROL_OS2_AIX

Control (start, suspend, resume, terminate, or restart) a subprocess on

a remote AIX machine

186 Application Integration Guide

FMMQI_CONTROL_OS2_MVS

Control (start, suspend, resume, terminate, or restart) a subprocess on

a remote MVS machine

� AIX Runtime client

FMMQI_AIX_LOCAL

Start a subprocess on the same AIX machine

FMMQI_AIX_AIX

Start a subprocess on a remote AIX machine

FMMQI_AIX_OS2

Start a subprocess on a remote OS/2 machine

FMMQI_AIX_MVS

Start a subprocess on a remote MVS machine

FMMQI_CONTROL_AIX_LOCAL

Control (start, suspend, resume, terminate, or restart) a subprocess on

the same AIX machine

FMMQI_CONTROL_AIX_AIX

Control (start, suspend, resume, terminate, or restart) a subprocess on

a remote AIX machine

FMMQI_CONTROL_AIX_OS2

Control (start, suspend, resume, terminate, or restart) a subprocess on

a remote OS/2 machine

FMMQI_CONTROL_AIX_MVS

Control (start, suspend, resume, terminate, or restart) a subprocess on

a remote MVS machine

 Sample scenarios

This section describes several scenarios:

� “Starting FlowMark for MVS/ESA from FlowMark on OS/2 or AIX”

� “Controlling FlowMark for MVS/ESA from FlowMark on OS/2 or AIX”

� “Starting FlowMark on OS/2 or AIX from FlowMark for MVS/ESA”

� “Controlling FlowMark on OS/2 or AIX from FlowMark for MVS/ESA”

� “Starting FlowMark on OS/2 or AIX from FlowMark on OS/2 or AIX”

� “Controlling FlowMark on OS/2 or AIX from FlowMark on OS/2 or AIX”

 Chapter 8. Building block for MQSeries support 187

Starting FlowMark for MVS/ESA from FlowMark on OS/2 or AIX

FlowMark Process Programs MQ Messages FlowMark/MVS

┌───────────────┐ │
│ │
│ ┌───────────┐ │ 1 ┌──────────┐ │ ┌──────────┐
│ │ ├─┼────►│ │ 2 │ ─── │ │ ─── │ │ │
│ │ Start │ │ │ EXMP2ASD ├────────►│ ─── │ ────┼────►│ ─── │────────►│ SCRIPT │
│ │ │◄┼─────┤ │ │ ─── │ │ ─── │ │ │
│ └─────┬─────┘ │ 3 └──────────┘ └─────┘ │ └─────┘ │ │
│ │ │ │ │
│ ▼ │ │ │ │
│ ┌───────────┐ │ 4 ┌──────────┐ │ │
│ │ ├─┼────►│ │ │ │ │
│ │ Suspend │ │ │ EXMP2ASP │ │ │
│ │ │◄┼─────┤ │ │ │ │
│ └─────┬─────┘ │ 5 └──────────┘ │ │
│ │ │ │ │ │
│ │ │ │ │
│ │ │ ┌──────────┐ │ │ │
│ ▼ │ 8 │ │ 7 │ ─── │ │ ─── │ 6 │ │
│ │◄────┤ EXMP2ARM │◄────────│ ─── │◄────┼─────│ ─── │◄────────│ │
│ │ │ │ │ ┌───│ ─── │ │ ─── │ │ │
│ │ │ └──────────┘ │ └─────┘ │ └─────┘ └──────────┘
│ │ │ │
│ ▼ │ │ │
│ ┌───────────┐ │ 9 ┌──────────┐ │
│ │ ├─┼────►│ │ 10 │ │
│ │ Receive │ │ │ EXMP2ARV │◄────┘
│ │ │◄┼─────┤ │ │
│ └───────────┘ │ 11 └──────────┘
│ │ │
└───────────────┘

Figure 20. Process and data flow: Start MVS from LAN. Overview about the process and data flow when starting

FlowMark for MVS/ESA scripts from a FlowMark on OS/2 or AIX process.

The FlowMark for MVS/ESA script is started by a FlowMark on OS/2 or AIX process

consisting of the activities:

 � Start

 � Suspend

 � Receive

The Start activity invokes EXMP2ASD (1) and passes data to it through command-line

parameters and the FlowMark input container.

EXMP2ASD uses MQ calls to create an MQ message In addition, it encodes the data

(including all input container data and specific process-relevant data, for example,

instance name of the starting process) within the application data and passes the

message to the queue specified with the command-line data (2). The connected

remote queue is serviced by FlowMark for MVS/ESA, so a script is started. This script

can invoke other scripts to handle the actual request. It is recommended that this first

script controls all logging activities.

188 Application Integration Guide

EXMP2ASD sets specific members within the output container to return (3)

process-relevant information (for example, FMMQI_CONTROL.InstanceName).

The Suspend activity invokes EXMP2ASP (4), which suspends the current process (5).

When the FlowMark for MVS/ESA script returns, it writes a message to a queue (6) that

is continuously browsed (using blocking mechanisms) by the daemon program

EXMP2ARM (7). The message contains the original message ID as correlation ID

within the MQ header and additional data (including container data).

EXMP2ARM retrieves the instance name from the message and resumes this specific

instance (8).

The Receive activity invokes EXMP2ARV (9) and, via command-line parameters,

passes data (including the instance name of the remote process) to it.

EXMP2ARV uses native MQ calls to read the MQ message (10). It generates the

correlation ID from the remote instance name returned in step (3) to get the appropriate

message.

EXMP2ARV sets specific members within the output container to return

process-relevant information and returns all container data from the message to the

output container (11), if there are matching item names.

 Chapter 8. Building block for MQSeries support 189

Controlling FlowMark for MVS/ESA from FlowMark on OS/2 or AIX

FlowMark Process Programs MQ Messages FlowMark/MVS

┌───────────────┐
│ │
│ ┌───────────┐ │ 1 ┌──────────┐ ┌──────────┐
│ │ Suspend ├─┼────►│ │ 2 │ ─── │ │ ─── │ │ │
│ │ Resume │ │ │ EXMP2ASD ├────────►│ ─── │ ────┼────►│ ─── │────────►│ SCRIPT │
│ │ Terminate │◄┼─────┤ │ │ ─── │ │ ─── │ │ │
│ │ Restart │ │ 3 └──────────┘ └─────┘ └─────┘ │ │
│ └───────────┘ │ │ │
└───────────────┘ │ ... │
 │ ... │
 │ ... │
 │ │
 └──────────┘

Figure 21. Process and data flow: Control MVS from LAN. Overview about the process and data flow when

controlling FlowMark for MVS/ESA scripts from a FlowMark on OS/2 or AIX process.

Assumption: A FlowMark for MVS/ESA process has been started by a FlowMark on

OS/2 or AIX process as described in “Starting FlowMark for MVS/ESA from FlowMark

on OS/2 or AIX” on page 188 and is currently running.

The Suspend, Resume, Terminate, or Restart activity invokes EXMP2ASD (1) and,

via command-line parameters, passes data (including remote instance name and

requested action) to it.

EXMP2ASD uses MQ calls to create an MQ message. In addition, it encodes the data

within the application data and passes the message to the queue specified with the

command-line data (2). The connected remote queue is serviced by FlowMark for

MVS/ESA, so a script is started. This script handles the requested action (suspend,

resume, terminate, restart).

EXMP2ASD sets specific members within the output container to return (3)

process-relevant information (for example, FMMQI_CONTROL.ReasonCode).

190 Application Integration Guide

Starting FlowMark on OS/2 or AIX from FlowMark for MVS/ESA

FlowMark Process Programs MQ Messages FlowMark/MVS

 │

┌──────────┐ │ ┌──────────┐
3 │ │ 2 │ ─── │ │ ─── │ 1 │ │

┌─────────────┤ EXMP2ASV │◄────────│ ─── │◄────┼─────│ ─── │◄────────┤ SCRIPT 1│
│ │ │ │ ─── │ │ ─── │ │ │
│ └────┬─────┘ └─────┘ │ └─────┘ │ │

 ▼ │3a └──────────┘
┌───────────────┐ ▼ │
│ │
│ ┌───────────┐ │ │
│ │ │ │
│ │ A 1 │ │ │
│ │ │ │
│ └─────┬─────┘ │ │
│ │ │
│ ▼ │ │
│ │
│ │ │
│ │
│ ▼ │ │
│ ┌───────────┐ │
│ │ │ │ │
│ │ A n │ │
│ │ │ │ │
│ └─────┬─────┘ │
│ │ │ │
│ ┌─────▼─────┐ │ 4 ┌──────────┐ ┌──────────┐
│ │ ├─┼────►│ │ 5 │ ─── │ │ │ ─── │ 6 │ │
│ │ Return │ │ │ EXMP2ASD ├────────►│ ─── │──────────►│ ─── │────────►│ SCRIPT 2 │
│ │ │◄┼─────┤ │ │ ─── │ │ │ ─── │ │ │
│ └───────────┘ │ 7 └──────────┘ └─────┘ └─────┘ │ │
│ │ │ │ │
└───────────────┘ └──────────┘

Figure 22. Process and data flow: Start LAN from MVS. Overview about the process and data flow when starting

FlowMark on OS/2 or AIX processes from a FlowMark for MVS/ESA process.

SCRIPT 1 uses FlowMark for MVS/ESA API calls to put an MQ message (1) with

encoded data (including all input container data and specific process-relevant data, for

example, FMMQI_CONTROL.InstanceName) to the queue that is serviced by

EXMP2ASV.

The connected remote queue is continuously read (using blocking mechanisms) by the

daemon program EXMP2ASV (2). EXMP2ASV decodes the encoded data from the

message and starts (3) the FlowMark on OS/2 or AIX process, which is specified within

the data. The container data of the message is passed to the process as initial data

and some additional data items are automatically provided (for example,

FMMQI_CONTROL.InstanceName). These additional data items are described in

“EXMP2ASV return data” on page 203.

 Chapter 8. Building block for MQSeries support 191

EXMP2ASV invokes an exit function (3a) after the process start and passes all relevant

data (such as success, instance names) to it. This can be used to provide logging and

alert possibilities.

The FlowMark on OS/2 or AIX process can consist of several activities A1 to An. The

last activity is the Return activity, which invokes EXMP2ASD with a reply request (4).

EXMP2ASD uses the data passed via its command line and from the input container.

It uses MQ calls to create an MQ message. In addition, it encodes the data (including

all input container data and specific process-relevant data, for example, instance name

of the starting process) within the application data and passes the message to the

queue specified with the command-line data (5).

The connected remote queue is serviced by FlowMark for MVS/ESA (6), so the script

SCRIPT2 is started. This script can invoke other scripts to handle the actual return. It

is recommended that this script controls all logging activities.

EXMP2ASD sets specific members within the output container to return (7)

process-relevant information (for example, FMMQI_CONTROL.ReasonCode).

192 Application Integration Guide

Controlling FlowMark on OS/2 or AIX from FlowMark for MVS/ESA

FlowMark Process Programs MQ Messages FlowMark/MVS

┌───────────────┐
│ │
│ ┌───────────┐ │
│ │ │ │
│ │ A 1 │ │
│ │ │ │ │
│ └─────┬─────┘ │
│ │ │ ┌──────────┐ │ ┌──────────┐
│ ▼ │ 3 │ │ 2 │ ─── │ │ ─── │ 1 │ Suspend │
│ │◄────┤ EXMP2ASV │◄────────│ ─── │◄────┼─────│ ─── │◄────────┤ Resume │
│ │ │ │ │ ─── │ │ ─── │ │ Terminate│
│ │ │ └─────┬────┘ └─────┘ │ └─────┘ │ Restart │
│ ▼ │ │3a └──────────┘
│ ┌───────────┐ │ ▼ │
│ │ │ │
│ │ A n │ │ │
│ │ │ │
│ └─────┬─────┘ │ │
│ │ │
│ ▼ │ │
│ │
└───────────────┘

Figure 23. Process and data flow: Control LAN from MVS. Overview about the process and data flow when

controlling FlowMark on OS/2 or AIX processes from a FlowMark for MVS/ESA process.

Assumption: A FlowMark on OS/2 or AIX process has been started by a FlowMark for

MVS/ESA process as described in “Starting FlowMark on OS/2 or AIX from FlowMark

for MVS/ESA” on page 191 and is currently running.

The Suspend, Resume, Terminate, or Restart script uses FlowMark for MVS/ESA API

calls to put an MQ message (1) with encoded data (including remote instance name

and requested action).

The connected remote queue is continuously read (using blocking mechanisms) by the

daemon program EXMP2ASV (2). EXMP2ASV decodes the encoded data from the

message and performs the requested action (3) on the specified FlowMark on OS/2 or

AIX process instance.

EXMP2ASV invokes an exit function (3a) after performing the requested action and

passes all relevant data (such as success, instance names) to it. This can be used to

provide logging and alert possibilities.

 Chapter 8. Building block for MQSeries support 193

Starting FlowMark on OS/2 or AIX from FlowMark on OS/2 or AIX

FlowMark Process Programs MQ Messages Programs FlowMark Process

┌───────────────┐ │
│ │
│ ┌───────────┐ │ 1 ┌──────────┐ │ ┌──────────┐
│ │ ├─┼────►│ │ 2 │ ─── │ │ ─── │ 6 │ │ 7
│ │ Start │ │ │ EXMP2ASD ├────────►│ ─── │ ───┼────►│ ─── │────────►│ EXMP2ASV ├───────────┐
│ │ │◄┼─────┤ │ │ ─── │ │ ─── │ │ │ │
│ └─────┬─────┘ │ 3 └──────────┘ └─────┘ │ └─────┘ └────┬─────┘ │
│ │ │ │7a ▼
│ ▼ │ │ ▼ ┌───────────────┐
│ ┌───────────┐ │ 4 ┌──────────┐ │ │
│ │ ├─┼────►│ │ │ │ ┌───────────┐ │
│ │ Suspend │ │ │ EXMP2ASP │ │ │ │ │
│ │ │◄┼─────┤ │ │ │ │ A 1 │ │
│ └─────┬─────┘ │ 5 └──────────┘ │ │ │ │
│ │ │ │ │ └─────┬─────┘ │
│ │ │ │ │ │
│ │ │ │ │ ▼ │
│ │ │ │ │
│ │ │ │ │ │
│ │ │ │ │ │
│ │ │ │ │ ▼ │
│ │ │ │ ┌───────────┐ │
│ │ │ │ │ │ │ │
│ │ │ │ │ A n │ │
│ │ │ │ │ │ │ │
│ │ │ │ └─────┬─────┘ │
│ │ │ │ │ │ │
│ │ │ ┌──────────┐ ┌──────────┐ 8 │ ┌─────▼─────┐ │
│ ▼ │ 12 │ │ 11 │ ─── │ │ │ ─── │ 9 │ │◄────┼─┤ │ │
│ │◄────┤ EXMP2ARM │◄────────│ ─── │◄─────────│ ─── │◄────────┤ EXMP2ASD │ │ │ Return │ │
│ │ │ │ ┌───│ ─── │ │ │ ─── │ │ ├─────┼►│ │ │
│ │ │ └──────────┘ │ └─────┘ └─────┘ └──────────┘ 10 │ └───────────┘ │
│ │ │ │ │ │ │
│ ▼ │ │ └───────────────┘
│ ┌───────────┐ │ 13 ┌──────────┐ │ │
│ │ ├─┼────►│ │ 14 │
│ │ Receive │ │ │ EXMP2ARV │◄────┘ │
│ │ │◄┼─────┤ │
│ └───────────┘ │ 15 └──────────┘ │
│ │
└───────────────┘ │

Figure 24. Process and data flow: Start LAN from LAN. Overview about the process and data flow when starting

FlowMark on OS/2 or AIX processes from a FlowMark on OS/2 or AIX process.

The remote FlowMark on OS/2 or AIX process is started by a local FlowMark on OS/2

or AIX process consisting of the activities:

 � Start

 � Suspend

 � Receive

The Start activity invokes EXMP2ASD (1) and passes data to it through command-line

parameters and the FlowMark input container.

EXMP2ASD uses MQ calls to create an MQ message. In addition, it encodes the data

(including all input container data and specific process-relevant data, for example,

instance name of the starting process) within the application data and passes the

message to the queue specified within the command-line data (2).

194 Application Integration Guide

EXMP2ASD sets specific members within the output container to return (3)

process-relevant information (for example, FMMQI_CONTROL.InstanceName).

The Suspend activity invokes EXMP2ASP (4), which suspends the current process (5).

The connected remote queue is continuously read (using blocking mechanisms) by the

daemon program EXMP2ASV (6). EXMP2ASV decodes the encoded data from the

message and starts (7) the FlowMark on OS/2 or AIX process that is specified within

the data. The container data of the message is passed to the process as initial data

and some additional data items are automatically provided (for example,

FMMQI_CONTROL.InstanceName). These additional data items are described in

“EXMP2ASV return data” on page 203.

EXMP2ASV invokes an exit function (7a) after the process start and passes all relevant

data (such as success, instance names) to it. This can be used to provide logging and

alert possibilities.

The remote FlowMark on OS/2 or AIX process can consist of several activities A1 to

An. The last activity is the Return activity, which invokes EXMP2ASD with a reply

request (8).

EXMP2ASD uses the data passed via its command line and from the input container.

It uses MQ calls to create an MQ message. In addition, it encodes the data (including

all input container data and specific process-relevant data, for example, instance name

of the starting process) within the application data and passes the message to the

queue specified with the command-line data (9).

EXMP2ASD sets specific members within the output container to return (10)

process-relevant information (for example, FMMQI_CONTROL.ReasonCode).

The reply queue is continuously browsed (using blocking mechanisms) by the daemon

program EXMP2ARM (11). The message contains the original message ID as

correlation ID within the MQ header and data (including container data). The data is

encoded.

EXMP2ARM retrieves the instance name from the message and resumes this specific

instance (12).

The Receive activity invokes EXMP2ARV (13) and, via command-line parameters,

passes data (including the instance name of the remote process) to it.

EXMP2ARV uses MQ calls to read the MQ message (14). It generates the correlation

ID from the remote instance name returned in step (3) to get the appropriate message.

EXMP2ARV sets specific members within the output container to return

process-relevant information and returns all container data from the message to the

output container (15), if there are matching item names.

 Chapter 8. Building block for MQSeries support 195

Controlling FlowMark on OS/2 or AIX from FlowMark on OS/2 or AIX

FlowMark Process Programs MQ Messages Programs FlowMark Process

 ┌───────────────┐
 │ │

│ ┌───────────┐ │
 │ │ │ │
 │ │ A 1 │ │
┌───────────────┐ │ │ │ │
│ │ │ └─────┬─────┘ │
│ ┌───────────┐ │ 1 ┌──────────┐ ┌──────────┐ │ │ │
│ │ Suspend ├─┼────►│ │ 2 │ ─── │ │ ─── │ 4 │ │ 5 │ ▼ │
│ │ Resume │ │ │ EXMP2ASD ├────────►│ ─── │ ────┼────►│ ─── │───────►│ EXMP2ASV │─────►│ │
│ │ Terminate │◄┼─────┤ │ │ ─── │ │ ─── │ │ │ │ │
│ │ Restart │ │ 3 └──────────┘ └─────┘ └─────┘ └────┬─────┘ │ │ │
│ └───────────┘ │ │5a │ ▼ │
└───────────────┘ ▼ │ ┌───────────┐ │
 │ │ │ │
 │ │ A n │ │
 │ │ │ │

│ └─────┬─────┘ │
│ │ │
│ ▼ │

 │ │
 └───────────────┘

Figure 25. Process and data flow: Control LAN from LAN. Overview about the process and data flow when

controlling FlowMark on OS/2 or AIX processes from a FlowMark on OS/2 or AIX process.

Assumption: A remote FlowMark on OS/2 or AIX process has been started by a local

FlowMark on OS/2 or AIX process as described in “Starting FlowMark on OS/2 or AIX

from FlowMark on OS/2 or AIX” on page 194 and is currently running.

The Suspend, Resume, Terminate or Restart activity invokes EXMP2ASD (1) and

passes data (including remote instance name and requested action) to it via

command-line parameters.

EXMP2ASD uses MQ calls to create an MQ message. In addition, it encodes the data

within the application data and passes the message to the queue specified with the

command-line data (2).

EXMP2ASD sets specific members within the output container to return (3)

process-relevant information (for example, FMMQI_CONTROL.ReasonCode).

The connected remote queue is continuously read (using blocking mechanisms) by the

daemon program EXMP2ASV (4). EXMP2ASV decodes the encoded data from the

message and performs the requested action (5) on the specified FlowMark on OS/2 or

AIX process instance.

EXMP2ASV invokes an exit function (5a) after performing the requested action and

passes all relevant data (such as success, instance names) to it. This can be used to

provide logging and alert possibilities.

196 Application Integration Guide

 General considerations

This section contains information about:

� “Unique process-instance ID”

� “Process tracking and alert events”

� “Predefined data structures”

 � “Sample FDL”

� “Sample MQSeries definitions”

Unique process-instance ID
A unique process-instance ID consists of a 3-digit random number, the MQSeries

message ID, and a static eye-catcher.

The random number is created by the starting process and passed to the other

environment within the encoded process-control data of the message. The purpose of

the random number at the beginning of the unique instance ID is to ease update

operations on DB2 tables by distributing the key.

The message ID is converted to a hexadecimal representation to ensure that blanks or

X'0' values are converted to displayable characters.

The eye-catcher serves for identification purposes within process-instance lists.

The resulting length of the instance name is 54 characters.

For example (in ASCII):

Random number 5

Message ID ABCDEFGHIJKLMNOPQRSTUVWX

Eye-catcher FMQ

Resulting unique instance name

0054142434445464748494A4B4C4D4E4F505152535455565758FMQ

Process tracking and alert events
Process tracking and alert event messages are supported by calling exit functions

within EXMP2ASV and EXMP2ARM. These exit functions are implemented by DLL

functions within EXMP2AEX.DLL. The default implementation supplied by IBM just

writes error messages to STDOUT (standard output). If customers want to implement

process tracking or event tracking, they have to change these exits.

Predefined data structures
There is one predefined data structure that is implicitly used by building block for

FlowMark MVS/ESA: FMMQI_CONTROL

 Chapter 8. Building block for MQSeries support 197

Figure 26. Predefined FMMQI_CONTROL data structure

Name Type Meaning

ReasonCode Long Depends on return code:

RC Reason code

0 0

4 FlowMark on OS/2 or AIX API return code

8 FlowMark for MVS/ESA MQ reason code

12 FlowMark on OS/2 or AIX API return code

16 Internal

ParentProcessName String Name of the parent process (to be used by send reply)

InstanceName String Complete unique instance name

ReplyQueue String Name of the reply queue

ReplyQueueManager String Name of the reply queue manager

 Sample FDL
The sample FDL (file EXMP2ABB.FDL in the BIN subdirectory) supports all scenarios

described in “Sample scenarios” on page 187.

Sample MQSeries definitions
The sample MQSeries definitions (file EXMP2ABB.MQI in the BIN subdirectory) support

all scenarios described in “Sample scenarios” on page 187.

 EXMP2ASD

EXMP2ASD starts a new process within a remote environment, controls the execution

(suspend, resume, terminate, restart) of a remote process, or returns the output of a

child process to its remote parent process (reply).

The command syntax is:

►►──exmp2asd─ ──┬ ┬─q_mgr─ ─┤ action ├──output_q──►◄
 └ ┘─\─────

action:

├─ ──┬ ┬─start──process_name──reply_q── ───────────────────────┤
 ├ ┤ ──┬ ┬ ──┬ ┬─suspend─ ──┬ ┬─current─ ─instance────────────────────────────────
 │ ││ │└ ┘─resume── └ ┘─all─────
 │ │├ ┤─terminate────────────────
 │ │└ ┘─restart──────────────────
 └ ┘─reply──parent_process──parent_instance─ ──┬ ┬─correl_name─ ─output_q_mgr─
 └ ┘─\───────────

The command parameters are:

q_mgr The name of the local queue manager the program connects

to. If an asterisk (*) is specified, the default queue manager is

used.

198 Application Integration Guide

process_name The name of the process to be started.

reply_q The name of the reply queue to be used by the subprocess.

output_q_ The name of the output queue the message is put into.

current Suspend or resume just the current instance.

all Suspend or resume the current instance and all of its

subprocesses.

instance The instance name of the process to be manipulated.

parent_instance The name of the parent process instance to which the reply is

sent.

parent_process The name of the parent process to which the reply is sent. If

the target is not FlowMark for MVS/ESA, this value is currently

not used. If the parent is FlowMark on OS/2 or AIX, the value

of FMMQI_CONTROL.ParentProcessName is always

FMMQI_UNKNOWN in the current implementation.

correl_name The correlation name to be used for the reply (the MQ

correlation ID is built from this name). If an asterisk (*) is

specified, the current instance name is used.

output_q_mgr The name of the queue manager where the output queue is

defined. If an asterisk (*) is specified, the local default queue

manager is used.

EXMP2ASD return data
The return data in the following output container members can be:

_rc

Return code

Value Meaning

0 Successful completion

4 FlowMark API error, no message sent

8 Communications error, no message sent

12 FlowMark API error, message already sent

16 Invocation error

32 Internal error

FMMQUI_CONTROL.ReasonCode

Reason code (see “Predefined data structures” on page 197)

FMMQUI_CONTROL.InstanceName

Unique instance name of the started process

 Chapter 8. Building block for MQSeries support 199

EXMP2ASD message handling
The message is built from the encoded data including all input container items without

any members starting with _ (FlowMark system variables) or FMMQI_CONTROL

(FMMQI control variables).

 EXMP2ASP

EXMP2ASP suspends its own or the current process, respectively.

The command syntax is:

►►──exmp2asp───►◄

There are no invocation parameters.

EXMP2ASP return data
The return data in the following output container members can be:

_rc

Return code

Value Meaning

0 Successful completion

4 FlowMark API error, process not

suspended

16 Invocation error

32 Internal error

FMMQUI_CONTROL.ReasonCode

Reason code (see “Predefined data structures” on

page 197)

 EXMP2ARM

EXMP2ARM is a daemon program that browses its input queue for reply messages and

suspends the FlowMark on OS/2 or AIX processes associated with the messages read.

The command syntax is:

►►──exmp2arm─ ──┬ ┬─q_mgr─ ─input_q─ ──┬ ┬─userid─ ──┬ ┬─password─ ─database──server──xxx──────────────────►◄
 └ ┘─\───── └ ┘─\────── └ ┘─\────────

The command parameters are:

q_mgr The name of the local queue manager the program connects to. If

an asterisk (*) is specified, the default queue manager is used.

input_q The name of the input queue (local).

200 Application Integration Guide

userid The FlowMark user ID. If an asterisk (*) is specified, the current

value of the environment variable FMMQI_USERID is used.

password The password associated with the FlowMark user ID. If an asterisk

(*) is specified, the current value of the environment variable

FMMQI_PASSWORD is used.

database The name of the FlowMark database.

server The name of the FlowMark server.

xxx Additional arguments that are passed to the user-exit DLL

EXMP2AEX.DLL. The meaning of these parameters is defined by

the user’s exit code.

EXMP2ARM return data
The return data can be:

Return code Meaning

0 Successful completion

12 FlowMark API error

16 Invocation error

20 Exit error

32 Internal error

EXMP2ARM message handling
The message is retrieved by an MQSeries MQGET API call (with BROWSE_NEXT

option).

The name of the process instance to be resumed is built from the encoded

Parent_Process_Instance.

 EXMP2ARV

EXMP2ARV reads a message from its input queue and writes the encoded container

data within the message to its output container.

The command syntax is:

►►──exmp2arv─ ──┬ ┬─q_mgr─ ─input_q──process_instance───────────────────────────►◄
 └ ┘─\─────

The command parameters are:

q_mgr The name of the local queue manager the program connects

to. If an asterisk (*) is specified, the default queue manager is

used.

input_q The name of the input queue (local).

 Chapter 8. Building block for MQSeries support 201

process_instance The unique process-instance name of the process that has

sent the reply message.

EXMP2ARV return data
The return data in the following output container members can be:

_rc

Return code

Value Meaning

0 Successful completion

8 Communications error, no message read

12 FlowMark API error, message already read

16 Invocation error

32 Internal error

FMMQUI_CONTROL.ReasonCode

Reason code (see “Predefined data structures” on page 197)

EXMP2ARV message handling
The message is read by an MQGET call with the parameters:

 � qname=input_q

� correlid=built from process_instance

 EXMP2ASV

EXMP2ASV starts a new process within a local environment (passing the container

data of the message) or controls the execution (suspend, resume, terminate, restart) of

a local process.

The command syntax is:

►►──exmp2asv─ ──┬ ┬─q_mgr─ ─input_q─ ──┬ ┬─userid─ ──┬ ┬─password─ ─database──server──xxx──────────────────►◄
 └ ┘─\───── └ ┘─\────── └ ┘─\────────

The command parameters are:

q_mgr The name of the local queue manager the program connects

to. If an asterisk (*) is specified, the default queue manager is

used.

input_q_ The name of the input queue (local).

userid The FlowMark user ID. If an * is specified, the current value of

the environment variable FMMQI_USERID is used.

password The password associated with the FlowMark user ID. If an

asterisk (*) is specified, the current value of the environment

variable FMMQI_PASSWORD is used.

202 Application Integration Guide

database The name of the FlowMark database.

server The name of the FlowMark server.

xxx Additional arguments that are passed to the user-exit DLL

EXMP2AEX.DLL. The meaning of these parameters is defined

by the user’s exit code.

EXMP2ASV return data
The return data can be one of the following return codes:

Return code Meaning

0 Successful completion

4 FlowMark API error during startup, no messages received

8 Communications error during startup, no messages received

16 Invocation error

20 Exit error

32 Internal error

The return data in one of the following container members can be:

FMMQUI_CONTROL.CorrelName

The correlation name to be used when invoking EXMP2ASD with the

REPLY action

FMMQUI_CONTROL.ParentProcessName

The name of the parent process to be used when invoking EXMP2ASD

with the REPLY action

FMMQUI_CONTROL.InstanceName

The unique instance name of the parent process to be used when invoking

EXMP2ASD with the REPLY action

FMMQUI_CONTROL.ReplyQueue

The name of the reply queue

FMMQUI_CONTROL.ReplyQueueManager

The name of the reply queue manager

EXMP2ASV message handling
The message is read by an MQGET with the parameter:

 � qname=input_q

 Chapter 8. Building block for MQSeries support 203

204 Application Integration Guide

Chapter 9. Building block for AS/400 support

The programs in this building block are designed for general purpose use and are

available for OS/2 and AIX.

You can use this building block with FlowMark:

� To access AS/400 applications from FlowMark processes

� To control (that is, to start, suspend, resume, terminate, and restart) FlowMark

processes from AS/400 applications

The package contains the following:

� Executables for OS/2 and AIX (EXMP24SD.EXE, EXMP24RC.EXE, and

EXMP24SV.EXE)

� Executables for AS/400 (EXMP24EU.SAV) which have to be transferred to the

AS/400

� Sample code (EXMP24BB.FDL and EXMP24BB.MQI)

MQSeries definitions for AS/400 support

The following describes the setup for OS/2, but the equivalent setup applies to AIX.

A local queue manager must already be installed on each of the machines

With MQSeries, you can use various communications protocols. Therefore, the

standard and tuning settings can vary from installation to installation. The following

descriptions show sample minimum definitions in an APPC environment.

For more complex definitions, refer to the MQSeries documentation, especially to the

MQSeries Distributed Queuing Guide and the MQSeries Command Reference.

 Copyright IBM Corp. 1996 205

Customizing the MQSeries definitions for AS/400 access
Figure 27 shows the relationship of the MQSeries elements.

OS/2 remote
definition of

AS/400 queue

PAC.REQUEST

PAC.RESPONSE QMFM PAC.RESPONSE

QMAS400 PAC.REQUEST

OS/2
local
queue

EXMP24RC

EXMP24SD
QMFM
queue

manager

QMAS400
queue

manager

FLMPACAS/400OS/2

OS/2
transmission

queue

AS/400
transmission

queue

AS/400
local

queue

AS/400 remote
definition of
OS/2 queue

OS/2
sender
channel

AS/400
sender
channel

AS/400
receiver
channel

OS/2
receiver
channel

QMFM.TO.QMAS400

QMAS400.TO.QMFM

Figure 27. MQSeries topology for the sample process

On OS/2, edit the sample file EXMP24BB.MQI. Modify the definitions according to your

MQSeries definitions and your network installation parameters.

Note: In the examples, statements where values in the definitions must match are

marked with numbers (such as ▌3▐) to the right of the statement.

206 Application Integration Guide

 � Local queues

 � Remote queues

 � Transmission queue

DEFINE QLOCAL('PAC.RESPONSE') +
 REPLACE +

DESCR('QMFM local queue') +
 PUT(ENABLED) +
 DEFPRTY(5) +
 DEFPSIST(YES) +
 GET(ENABLED)

 ▌1▐

DEFINE QLOCAL('CTL.REQUEST') +
 REPLACE +

DESCR('QMFM local queue') +
 PUT(ENABLED) +
 DEFPRTY(5) +
 DEFPSIST(YES) +
 GET(ENABLED)

 ▌2▐

DEFINE QREMOTE('PAC.REQUEST') +
 REPLACE +

DESCR('AS/400 local queue') +
 PUT(ENABLED) +
 DEFPRTY(5) +
 DEFPSIST(YES) +
 XMITQ('QMAS400') +
 RNAME('PAC.REQUEST') +
 RQMNAME('QMAS400')

 ▌3▐
 ▌4▐

DEFINE QREMOTE('CTL.RESPONSE') +
 REPLACE +

DESCR('AS/400 local queue') +
 PUT(ENABLED) +
 DEFPRTY(5) +
 DEFPSIST(YES) +
 XMITQ('QMAS400') +
 RNAME('CTL.RESPONSE') +
 RQMNAME('QMAS400')

 ▌3▐
 ▌5▐

DEFINE QLOCAL('QMAS400') +
 REPLACE +

DESCR('transmission queue to the AS/400') +
 USAGE(XMITQ)

 ▌3▐

 Chapter 9. Building block for AS/400 support 207

 � Sender channel

 � Receiver Channel

The NDF file on OS/2 must contain statements similar to the following:

DEFINE CHANNEL(QMFM.TO.QMAS400) +
 CHLTYPE(SDR) +
 TRPTYPE(LU62) +
 REPLACE +

DESCR('sender channel to the AS/400') +
 BATCHSZ(5) +
 DISCINT(0) +
 TPNAME(AS400) +
 MODENAME(LU62) +
 SHORTTMR(60) +
 SHORTRTY(10) +
 LONGTMR(6000) +
 LONGRTY(10) +
 SEQWRAP(999999999) +
 MAXMSGL(10000) +
 CONVERT(NO) +
 XMITQ('QMAS400') +
 CONNAME('400PLU')

 ▌6▐

 ▌7▐

 ▌3▐
 ▌8▐

DEFINE CHANNEL(QMAS400.TO.QMFM) +
 CHLTYPE(RCVR) +
 TRPTYPE(LU62) +
 REPLACE +

DESCR('receiver channel from the AS/400') +
 BATCHSZ(5) +
 PUTAUT(DEF) +
 SEQWRAP(999999999) +
 MAXMSGL(10000)

 ▌9▐

DEFINE_LOCAL_CP FQ_CP_NAME(xxxxxxx.xxx)
 CP_ALIAS(xxx)
 ...

▌10▐

DEFINE_PARTNER_LU FQ_PARTNER_LU_NAME(xxxxxxx.AS400)
 PARTNER_LU_ALIAS(400PLU)
 ...

 ▌8▐

DEFINE_TP TP_NAME(AS400)
 FILESPEC(x:\MQM\BIN\AMQCRS6A.EXE)

PARM_STRING(/M QMFM /N AS400)
 ...

▌11▐

208 Application Integration Guide

On the AS/400, make sure that the object authority for the libraries QMQM and

QMQMDATA is defined as *USE *PUBLIC. Then, edit the sample file MQSETUP in

QZWM/QCLSRC and define the following:

1. Local, remote, and transmission queues

Considerations:

a. The name of this local queue must be used in the definition of the remote

queue on OS/2.

b. Set the message length (MAXMSGLEN) in the definition of the transmission queue

at least to the value set for the remote queue plus 4000.

2. Dedicated channels to the FlowMark server or client on OS/2

Considerations:

a. Use the same name for the sender channel on one system as for the receiver

channel on the other system.

b. The value for the message-length parameter (MAXMSGLEN) must be at least

5000. Values below 5000 result in a FlowMark Program Access-internal error

when FlowMark Program Access writes to the MQSeries message queue.

CRTMQMQ QNAME(PAC.REQUEST)
 QTYPE(\LCL)
 DFTPTY(5)
 MAXMSGLEN(5000)

 ▌4▐

CRTMQMQ QNAME(CTL.RESPONSE)
 QTYPE(\LCL)
 DFTPTY(5)
 MAXMSGLEN(5000)

 ▌5▐

CRTMQMQ QNAME(PAC.RESPONSE)
 QTYPE(\RMT)
 DFTPTY(5)
 RMTQNAME(PAC.RESPONSE)
 RMTMQMNAME('QMFM')
 TMQNAME('QMFM')

 ▌1▐

▌12▐

CRTMQMQ QNAME(CTL.REQUEST)
 QTYPE(\RMT)
 DFTPTY(5)
 RMTQNAME('CTL.REQUEST')
 RMTMQMNAME('QMFM')
 TMQNAME('QMFM')

 ▌2▐

▌12▐

CRTMQMQ QNAME(QMFM)
 QTYPE(\LCL)
 MAXMSGLEN(10000)
 USAGE(\TMQ)

▌12▐

 Chapter 9. Building block for AS/400 support 209

3. Routing entry in the communications subsystem

Considerations:

a. The compare value (CMPVAL) must match the value specified for TPNAME in the

channel definitions (DEFINE CHANNEL) on OS/2.

b. The routing entry must be included before the entry for PGMEVOKE, if there is

any.

4. Communication side information

Considerations:

a. The communication side information (CSI) is used only for sending messages

from OS/400 to OS/2.

b. The remote location name (RMTLOCNAME) must match the LU name in the OS/2

NDF file.

c. The transaction program name (TNSPGM) must match the TP name in NDF file

(DEFINE_TP TP_NAME(name)).

 5. Communication entry

ADDCMNE SBSD(QSYS/QCMN)
 DEV(\ALL)
 DFTUSR(QPGMR)
 MODE(\ANY)

CRTMQMCHL CHLNAME(QMAS400.TO.QMFM)
 CHLTYPE(\SDR)
 TRPTYPE(\LU62)
 CONNAME(FLMCSI)
 TMQNAME(QMFM)
 MAXMSGLEN(10000)

 ▌9▐

▌13▐
▌12▐

CRTMQMCHL CHLNAME(QMFM.TO.QMAS400)
 CHLTYPE(\RCVR)
 TRPTYPE(\LU62)
 MAXMSGLEN(10000)

 ▌6▐

ADDRTGE SBSD(QSYS/QCMN)
 SEQNBR(5)
 CMPVAL(AS400 37)
 PGM(QMQM/AMQCRC6A)
 CLS(QSYS/QBATCH)

 ▌7▐

CRTCSI CSI(QSYS/FLMCSI)
 RMTLOCNAME(xxx)
 TNSPGM(AS400)

▌13▐
▌10▐
▌11▐

210 Application Integration Guide

Customizing the MQSeries definitions for controlling FlowMark processes from
the AS/400

Figure 28 shows the relationship of the MQSeries elements.

AS/400 remote
definition of
OS/2 queue

CTL.REQUEST

CTL.RESPONSE QMAS400 CTL.RESPONSE

QM.FM CTL.REQUEST

AS/400
local
queue

SNDFLMRQS

SNDFLMRQS
QMAS400

queue
manager

QMFM
queue

manager

EXMP24SVOS/2AS/400

AS/400
transmission

queue

OS/2
transmission

queue

OS/2
local

queue

OS/2 remote
definition of

AS/400 queue

AS/400
sender
channel

OS/2
sender
channel

OS/2
receiver
channel

AS/400
receiver
channel

QMAS400.TO.QMFM

QMFM.TO.QMAS400

Figure 28. MQSeries topology for controlling FlowMark processes from the AS/400

Accessing AS/400 applications from FlowMark processes

The following executables are provided with FlowMark to enable access to AS/400

applications:

EXMP24SD.EXE Sends an MQSeries message to a FlowMark Program Access on the

AS/400, which calls the appropriate AS/400 application

EXMP24RC.EXE Receives the message that is returned from the FlowMark Program

Access when the AS/400 application has completed

You send the following information to the FlowMark Program Access:

� The name of the AS/400 application program

� The name of the AS/400 library where the program resides

� The AS/400 user ID

� Up to 1 KB of data, such as parameters

 Chapter 9. Building block for AS/400 support 211

Before you can work with the building block for AS/400 support, do the following:

1. Set up the MQSeries environment for the FlowMark Program Execution client on

OS/2 or AIX and for the AS/400. How to do this is shown in “Customizing the

MQSeries definitions for AS/400 access” on page 206.

2. Transfer the file EXMP24EU.SAV in binary format to the AS/400. Then restore the

library QZWM and add it to the library list. How to do this is described in the

Installation and Maintenance manual.

3. Define a FlowMark subprocess with the programs EXMP24SD and EXMP24RC.

An example for such a subprocess is shown in Figure 30 on page 214. The FDL

for this example is provided with the product (EXMP24BB.FDL).

To work with the building block for AS/400 support, do the following:

1. Start a FlowMark Runtime server or a FlowMark Runtime client. This starts the

FlowMark Program Execution client on the OS/2 or AIX workstation.

2. Sign on to the AS/400.

3. Start the message queue manager on the AS/400.

4. Start the message queue manager on the OS/2 or AIX workstation.

5. On the OS/2 or AIX workstation, start the channel to the AS/400.

6. On the AS/400, start the channel to the OS/2 or AIX workstation.

7. Start FlowMark Program Access (in batch or interactive mode) on the AS/400. See

“FlowMark Program Access” on page 217 for information on using FlowMark

Program Access.

212 Application Integration Guide

Sample scenario for AS/400 access
This section describes a sample scenario for accessing AS/400 applications from a

FlowMark process.

The file EXMP24BB.FDL contains a sample process that shows how EXMP24SD.EXE

and EXMP24RC.EXE are used to access an AS/400 application from a FlowMark

process.

Note: Include the directory where the files EXMP24SD.EXE and EXMP24RC.EXE

reside (for example, MQMBB) in the following statements in your CONFIG.SYS:

 � LIBPATH=.;D:\MQMBB;...

 � SET PATH=.;D:\MQMBB;...

 � SET HELPNDX=D:\MQMBB;

Do the following:

1. Import the FDL in Buildtime

2. If the Program Execution client and the building block programs reside in a

directory other than \EXM\BIN, change the path in the settings notebook of the

following programs accordingly:

� MQI_400SetData (file name EXMSSCNT.CMD)

� MQI_400SendForReply (file name EXMP24SD.EXE)

� MQI_400Receive (file name EXMP24RC.EXE)

� MQI_400ShowData (file name EXMSSCNT.CMD)

3. Translate MQI_* processes:

a. In the FlowMark Buildtime processes folder, select the processes.

b. Select Translate from Selected.

c. In the FlowMark Runtime client, start MQI_400SampleProcess.

The current building block for AS/400 support requires all the parameters within the

FlowMark data container that are defined in the sample FDL.

The following parameters are used:

 � Send

All parameters except RC and MsgID are used. A MsgID is assigned by

MQSeries.

 � Receive

Only RC and Parms are updated in the output data container and MsgID is set to

the actual message ID. All other parameters remain unchanged.

The sample process and the sample parameter settings are shown in Figure 29 on

page 214 and Figure 30 on page 214. You can use the sample AS/400 programs

BATCHAPPL and INTERAPPL (provided in library QZWM) with the sample process.

 Chapter 9. Building block for AS/400 support 213

Figure 29. Sample process MQI_400SampleProcess

Figure 30. Sample subprocess MQI_400SubProcess

214 Application Integration Guide

 General considerations
This section contains information about:

� “Predefined data structures”

 � “Sample FDL”

� “Sample MQSeries definitions”

Predefined data structures
There is one predefined data structure that is implicitly used by EXMP24SD and

EXMP24RC: MQI_400Parms.

Figure 31. Predefined MQI_400Parms data structure

Name Type Meaning

QMgrName String Name of a queue manager

OutQueueName String Name of an output queue

InQueueName String Name of an input queue

MsgID String Message identifier for the communication

CorrelID String Correlation identifier to be used for MQSeries (equivalent

to the AS/400 user ID)

Lib String Name of an AS/400 library

Pgm String Name of an AS/400 program

Rc String Return code provided by the AS/400 program

Parms String Parameters required for the AS/400 program

 Sample FDL
The sample FDL (file EXMP24BB.FDL in the BIN subdirectory) supports the sample

scenario.

Sample MQSeries definitions
The sample MQSeries definitions (file EXMP24BB.MQI in the BIN subdirectory)

supports the sample scenario.

 EXMP24SD
EXMP24SD sends a message to the AS/400 to start a defined application.

The command syntax is:

►►──exmp24sd──q_mgr:out_q──q_mgr:in_q──correl_id─────────────────────────────►◄

The command parameters are:

q_mgr:out_q The name of the local queue manager to which the program

connects and the name of the output queue, that is, the

remote definition of the AS/400 local queue.

 Chapter 9. Building block for AS/400 support 215

q_mgr:in_q The name of the local queue manager to which the program

connects and the name of the input queue.

correl_id The correlation ID, that is, the AS/400 user ID.

All other parameters are taken from the input container of the respective activity.

EXMP24SD return data
The return data in the following output container members can be:

_rc Return code

Value Meaning

0 Successful completion

4 FlowMark error, no message sent

8 MQSeries error, no message sent

32 Internal error

EXMP24SD message handling
Error messages are written to the file MQBB400.TRC in the current directory.

 EXMP24RC
EXMP24RC receives a message from the AS/400 to indicate that a defined application

has been processed.

The command syntax is:

►►──exmp24rc──q_mgr:in_q──msg_id───►◄

The command parameters are:

q_mgr:in_q The name of the local queue manager to which the program

connects and the name of the input queue.

msg_id The message ID that was set by EXMP24SD.

EXMP24RC return data
The return data in the following output container members can be:

_rc Return code

Value Meaning

0 Successful completion

4 FlowMark error, no message sent

8 MQSeries error, no message sent

32 Internal error

99 The defined AS/400 program could not be found

216 Application Integration Guide

parms The parameters as changed by the AS/400 program (up to 1 KB of data)

EXMP24RC message handling
Error messages are written to the file MQBB400.TRC in the current directory.

FlowMark Program Access
The FlowMark Program Access program is available for batch and for interactive

applications. The commands to start and stop the FlowMark Program Access are:

� Start FlowMark Program Access (STRFLMPAC)

à@ ð
Start FlowMark Program Access (STRFLMPAC)

 Type choices, press Enter.

 Program type ____________ \BATCH, \INTERACTIVE
 Input queue ________________________________
 Wait time \UNLIMITED 0-99999, \UNLIMITED

 Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

á ñ
The parameters are:

Program type Indicates if the FlowMark Program Access is to be used for

batch or interactive AS/400 applications.

If *BATCH is selected, the appropriate job is started in the batch

subsystem.

If *INTERACTIVE is selected, the screen is locked until

processing of the interactive application is complete.

Input queue The name of the MQSeries queue from which FlowMark

Program Access reads the messages sent by FlowMark.

Wait time The amount of time, in seconds, for how long the FlowMark

Program Access waits for a message to arrive. If this parameter

is set to *UNLIMITED, FlowMark Program Access must be

stopped explicitly with the ENDFLMPAC command.

FlowMark Program Access logs in the history log which applications were called.

� End FlowMark Program Access (ENDFLMPAC)

 Chapter 9. Building block for AS/400 support 217

à@ ð
End FlowMark Program Access (ENDFLMPAC)

 Type choices, press Enter.

 User ID __________ Name
 Input queue ___

 Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

á ñ
FlowMark Program Access is stopped when the current application that was started

by FlowMark Program Access is completed. ENDFLMPAC sends a high priority

message with stop values to the message queue. This message is read before

any other start messages, and FlowMark Program Access terminates.

The parameters are:

User ID By default, the ID of the user currently logged on. To terminate

FlowMark Program Access for a different user, change this

value.

Input queue By default, the queue name that was used to start FlowMark

Program Access. To terminate FlowMark Program Access for a

different queue, change the value.

Controlling FlowMark processes from AS/400 applications

FlowMark process instances on OS/2 or AIX can be controlled from the AS/400 with the

command SNDFLMRQS on the AS/400 and the program EXMP24SV.EXE on OS/2 or

AIX. That is, process instances can be started, terminated, suspended, resumed, and

restarted.

The command SNDFLMRQS sends requests for FlowMark control actions to an

MQSeries message queue. The EXMP24SV daemon monitors a local MQSeries queue

for messages requesting a FlowMark process-instance action that have been sent by

SNDFLMRQS and performs the requested actions. If a process instance is started, the

input container is initialized with the data provided in the message.

If the MQSeries message type set with the SNDFLMRQS command is *RQST,

EXMP24SV sends a reply message to the answer queue specified by SNDFLMRQS.

Before you can work with this command, you must do the following:

1. Set up the MQSeries environment for the FlowMark Runtime server and the

AS/400 as described in “Customizing the MQSeries definitions for controlling

FlowMark processes from the AS/400” on page 211.

218 Application Integration Guide

2. Transfer the file EXMP24EU.SAV to the AS/400. Then restore the library QZWM

and add it to the library list. How to do this is described in the Installation and

Maintenance manual.

To work with the programs, do the following:

1. Start the EXMP24SV daemon.

2. Sign on to the AS/400.

3. Start the message queue manager on the AS/400.

4. Start the message queue manager on the OS/2 or AIX workstation.

5. On the OS/2 or AIX workstation, start the channel to the AS/400.

6. On the AS/400, start the channel to the OS/2 or AIX workstation.

7. Submit the command SNDFLMRQS.

 EXMP24SV
EXMP24SV receives a message from the AS/400 with the request to control a defined

process instance. The control actions are: start, suspend, resume, terminate, and

restart.

The command syntax is:

►►──exmp24sv──q_mgr:in_q──fm_user_id──fm_password──fm_database──fm_server──────────────►◄

The command parameters are:

q_mgr:in_q The name of the local queue manager to which the program

connects and the name of the input queue

fm_user_id The FlowMark user ID

fm_password The FlowMark password for fm_user_id

fm_database The name of the FlowMark database

fm_server The name of the FlowMark server

EXMP24SV return data
The return data in the following output container members can be:

_rc Return code

Value Meaning

0 Successful completion

4 FlowMark error

8 MQSeries error

32 Internal error

 Chapter 9. Building block for AS/400 support 219

EXMP24SV message handling
Error messages are written to the file MQBB400S.TRC in the current directory.

Send FlowMark request (SNDFLMRQS)
This AS/400 command is used to control FlowMark processes.

à@ ð
Send FlowMark Request (SNDFLMRQS)

 Type choices, press Enter.

 FlowMark Process name ____________________
 FlowMark Process instance name ____________________
 FlowMark Action __________ \START, \SUSPEND, \RESUME...
 FlowMark API mode ________ \CURRENT, \ALL, \QUERY
 MQSeries Message type ______ \DTGRM, \RQST
 MQSeries Queue manager ____________________
 MQSeries Output queue ____________________
 FlowMark Container variables . . ________________________________

+ for more values ________________________________
 MQSeries Input queue ____________________

 Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

á ñ

The parameters are:

FlowMark Process name

The name of FlowMark process to be controlled. This parameter is

required for the FlowMark action *START.

FlowMark process instance name

The name of FlowMark process instance to be controlled.

FlowMark Action

The action that is to be performed with the process instance.

Possible values are:

 *START

 *SUSPEND

 *RESUME

 *TERMINATE

 *RESTART

If you select *START, you can also define container variables as a

controlled parameter.

220 Application Integration Guide

FlowMark API mode

Additional FlowMark API parameters. Possible values are:

 � *CURRENT

 � *ALL

 � *QUERY

For a detailed description of the values refer to the sections about

the respective API functions in the Programming Guide.

FlowMark Container variables

If *START is selected as FlowMark action, you can define container

variables here. Do this in the following format:

Name:Type=Value

Where:

Name The name of the FlowMark container variable.

Type The type of the FlowMark container variable. Possible

values are:

S string

L long

F float

Value The value of the FlowMark container variable. If the

value of a string variable contains blanks, enclose the

value in double quotes (").

For example:

Name:S=Tony
Age:L=24
Amount:F=12.34
Song:S="O happy day"

Note: The FlowMark container variables must be specified on

FlowMark process level.

MQSeries Message type

The type of the MQSeries message. Possible values are:

*DTGRM If no reply message is required.

*RQST To request a reply message containing the FlowMark

return code.

If *RQST is selected, you must also define an MQSeries input queue

as a controlled parameter.

MQSeries Queue manager

The name of the AS/400 queue manager.

 Chapter 9. Building block for AS/400 support 221

MQSeries Output queue

The name of the AS/400 output queue.

MQSeries Input queue

The name of the MQSeries input queue for the response messages.

This parameter is optional. It is necessary only if *RQST is specified

as message type.

If the MQSeries message type is set to *RQST, SNDFLMRQS logs the actions to the

history log.

222 Application Integration Guide

Appendix A. Ways to integrate FlowMark and Lotus Notes

This appendix gives an overview of those FlowMark components that you can use to

integrate FlowMark and Lotus Notes. It also provides some hints and tips when to use

which component.

 Overview

The following sections describe in short the functions offered by:

� The FlowMark service broker

� The Lotus Notes service broker

� The Runtime client for Lotus Notes

FlowMark service broker
The FlowMark service broker can be invoked from the Lotus Notes environment by

starting EXMP3FFR.EXE with command-line parameters. It allows you to manipulate

FlowMark process instances and process activities: You can start, suspend, resume,

terminate, and restart process instances and start, restart, and finish process activities.

However, this service broker does not provide any functions to retrieve information

about existing process templates, process instances, or process activities, like:

� Which process templates are available

� Which process instances are available

� What is the current status of a specific process instance

� Which process activities are currently on my worklist

� What is the actual status of a process activity on my worklist

So, the FlowMark service broker is suitable if there is a need to start process instances

with start data from a predefined process template. For all other functions, there has to

be additional communication between the FlowMark and the Lotus Notes environment.

Lotus Notes service broker
The Lotus Notes service broker is invoked from FlowMark as a manual or automatic

activity. This service broker allows you to open and close Lotus Notes databases and

to create, decrypt, delete, encrypt, read, sign, unsign, and update Lotus Notes

documents. You can also select a document using a view with selection criteria.

The Lotus Notes service broker manipulates Lotus Notes documents. The Lotus Notes

service broker offers no functions to invoke Lotus Notes scripts or to manipulate the

Lotus Notes user interface (for example, display a specific view or form).

 Copyright IBM Corp. 1996 223

The different actions in the Lotus Notes environment must be implemented as

FlowMark activities. So, the Lotus Notes service broker is suitable if there are only a

few actions to be performed within the Lotus Notes environment, like:

� Open a database, create and sign a document, close the database.

� Open a database, search for and read a document, close the database.

Runtime client for Lotus Notes
The Runtime client for Lotus Notes is invoked as a Lotus Notes application from the

Lotus Notes environment. The Runtime client for Lotus Notes allows you to manipulate

FlowMark process templates, process instances, and process activities (that is, work

items), including all available functions and the retrieval of all associated attributes (for

example, the status). The functions are available from a Lotus Notes user interface as

well as from API functions accessible by other Lotus Notes applications.

The Runtime client for Lotus Notes is a Lotus Notes application that can be combined

with customized Lotus Notes scripts. Therefore, it has access to all Lotus Notes API

functions within these scripts. This includes the possibility to implement FlowMark

activities by Lotus Notes scripts, which can invoke other Lotus Notes applications

displaying specific forms and views.

The Runtime client for Lotus Notes cannot be combined with a native FlowMark

Runtime client and it is not possible to implement automatic FlowMark activities as

Lotus Notes scripts.

So, the Runtime client for Lotus Notes is suitable if one or both of the following are

true:

� Lotus Notes is the corporate desktop environment.

� The parts of a FlowMark activity that are to be performed within the Lotus Notes

environment are rather complex.

Tips for selecting the appropriate component

The following provides scenarios to help you select the component most suitable for the

integration of FlowMark and Lotus Notes in a specific part of a workflow.

Scenario 1: Two organizations, one using FlowMark, the other Lotus Notes
Organization A uses FlowMark and organization B uses Lotus Notes. All members of

organization A use the operating system (for example, workplace shell) as the desktop

environment, the members of organization B use Lotus Notes as the desktop

environment. In this case, the service brokers are probably the best solution: The

Lotus Notes service broker for organization A and the FlowMark service broker for

organization B.

224 Application Integration Guide

If the FlowMark process inside organization A requires data available from organization

B, the Lotus Notes service broker can be used to retrieve this data. This service broker

can also create or update Lotus Notes documents from automatic activities inside the

FlowMark process.

A Lotus Notes application can start FlowMark processes from predefined process

templates and can pass start data to the process. It can also manipulate such a

process instance afterwards.

In this scenario, the integration of FlowMark and Lotus Notes is primarily focused on

the interchange of data (start data on process start and data inside a Lotus Notes

document).

Scenario 2: Two organizations using FlowMark and Lotus Notes
Organization A uses FlowMark and organization B uses Lotus Notes and FlowMark. In

this case, the Lotus Notes service broker is probably the best solution for A and the

Runtime client for Lotus Notes is probably the best solution for B.

If the FlowMark process inside organization A requires data available from organization

B, the Lotus Notes service broker can be used to retrieve this data. It can also create

or update Lotus Notes documents from automatic activities inside the FlowMark

process.

Any Lotus Notes application of organization B can use the Runtime client for Lotus

Notes to manipulate FlowMark objects. In addition, the members of organization B can

use the Runtime client for Lotus Notes to manipulate the FlowMark objects.

In this scenario, the integration of FlowMark and Lotus Notes is focused on the

interchange of data (A and B) and on the integration of the FlowMark client user

interface with the Lotus Notes desktop (B).

Scenario 3: One organization using FlowMark and Lotus Notes
There is one organization where Lotus Notes and FlowMark are used. In this case, the

Runtime client for Lotus Notes is probably the best solution.

If a FlowMark process needs to access data in a Lotus Notes database, it can use the

Runtime client for Lotus Notes in combination with an activity implemented as Lotus

Notes application to retrieve or manipulate the data.

Any Lotus Notes application can use the Runtime client for Lotus Notes to manipulate

FlowMark objects. In addition, the users can manipulate the FlowMark objects via the

Runtime client for Lotus Notes.

In this scenario, the integration of FlowMark and Lotus Notes is focused on the

integration of the FlowMark client user interface with the Lotus Notes desktop.

 Appendix A. Ways to integrate FlowMark and Lotus Notes 225

226 Application Integration Guide

Appendix B. Migrating from a previous version of the Service
Broker Manager

This appendix describes what you have to consider when you migrate from a previous

version (that is, shipped with Version 2.2 of FlowMark or before) of the Service Broker

Manager and the provided service brokers on OS/2 or Windows 3.1.

Migrating the Service Broker Manager on OS/2

You have to delete the following files:

� SBM.INI (Service Broker Manager)

� SBBFM.INI (FlowMark Broker)

� SBBLNTS.INI (Lotus Notes Broker)

You have to adapt your FDL:

1. Export your database to an FDL file.

2. Edit the FDL file and change the names of the Service Broker Manager

components according to Figure 32 (for example, replace SBREQLN with

EXMP3LRQ).

The following files have been renamed:

Figure 32. Service Broker Manager on OS/2: Renaming

 Old name New name

Library files SBBROKER.LIB

SBREQ.LIB

SBSERVIC.LIB

EXMP3KBR.LIB

EXMP3KRE.LIB

EXMP3KSV.LIB

Executables SBPREDIT.EXE

SBREQ.EXE

SBCNTRL.EXE

SBREQFM.EXE

SBBFMSB.EXE

SBM.EXE

SBMADMIN.EXE

SBMUSER.EXE

EXMP3CPR.EXE

EXMP3FFR.EXE

EXMP3UCT.EXE

EXMP3FRR.EXE

EXMP3FMS.EXE

EXMP3UUP.EXE

EXMP3UAD.EXE

EXMP3UUS.EXE

Standard service broker SBBSTD.DLL EXMP3CST.DLL

FlowMark service broker SBBFM.DLL EXMP3FBR.DLL

FlowMark service SBSFM.DLL EXMP3FFM.DLL

FlowMark service requester SBREQFM.DLL EXMP3FRQ.DLL

Lotus Notes service broker SBBLNTS.DLL EXMP3LBR.DLL

Lotus Notes service SBSLNTS.DLL EXMP3LSE.DLL

Lotus Notes service requester SBREQLN.DLL EXMP3LRQ.DLL

 Copyright IBM Corp. 1996 227

If you developed your own service broker, change the name of the following include

files and recompile your service broker:

Old name New name

SBBFM.H EXMP3FBR.H

SBBROKER.H EXMP3CBR.H

SBREQ.H EXMP3FRE.H

SBSERVIC.H EXMP3CSE.H

Migrating the Service Broker Manager on Windows 3.1

You have to adapt your FDL:

1. Export your database to an FDL file.

2. Edit the FDL file and change the names of the Service Broker Manager

components according to Figure 33 (for example, replace SBWRQLN with

EXMW3LRQ).

The following files have been renamed:

If you developed your own service broker, change the name of the following include

files and recompile your service broker:

Figure 33. Service Broker Manager on Windows 3.1: Renaming

 Old name New name

Library files SBWBROK.LIB

SBWREQ.LIB

EXMW3CAL.LIB

EXMW3KRQ.LIB

Executables SBWREQC.EXE

SBWRFM.EXE

SBMWIN.EXE

EXMW3FRC.EXE

EXMW3FRU.EXE

EXMW3USB.EXE

FlowMark service broker SBWBFM.DLL EXMW3FBR.DLL

FlowMark service SBWSFM.DLL EXMW3FSE.DLL

FlowMark service requester SBWRFM.DLL EXMW3FRU.DLL

Lotus Notes service broker SBWBRLN.DLL EXMW3LBR.DLL

Lotus Notes service SBWSVLN.DLL EXMW3LSE.DLL

Lotus Notes service requester SBWRQLN.DLL EXMW3LRQ.DLL

Old name New name

SBWFM.H EXMW3FBR.H

SBWBROK.H EXMW3CAL.H

SBWREQ.H EXMW3FRQ.H

SBWSERV.H EXMW3LSR.H

228 Application Integration Guide

 229

230 Application Integration Guide

 Glossary

This glossary defines terms and abbreviations used in

this publication. If you do not find the term you are

looking for, refer to the IBM Dictionary of Computing,

New York: McGraw-Hill, 1994.

Also consult the OS/2 glossary in the Information object

on the OS/2 desktop.

This glossary includes terms and definitions from the

Information Technology Vocabulary, developed by

Subcommittee 1, Joint Technical Committee 1, of the

International Organization for Standardization and the

International Electrotechnical Commission (ISO/IEC

JTC1/SC1). Definitions of published parts of this

vocabulary are identified by the symbol (I) after the

definition.

A
activity. One of the steps that make up a process.

See program activity and process activity.

activity block. Synonym for block.

activity bundle. Synonym for bundle.

activity information member. A predefined data

structure member associated with the operating

characteristics of an activity. They are defined in the

activity settings notebook. See also fixed member and

process information member.

activity instance. The processing of an activity as part

of a process instance.

activity status. The status of an activity in a process

instance that has been started. The status can be one

of the following: ready, running, suspended, pending,

force-finished, or finished.

animation. A facility for dynamically verifying workflow

models. Animating a workflow model lets the user

simulate the flow of work through its activities.

animation control panel. A graphical object containing

buttons that are used to control the animation of a

workflow model.

animation session. A record of the interactions

between a modeler who is animating a model and the

animation facility. An animation session can be saved

and replayed.

animation work area. An OS/2 work-area folder that

contains the following animation objects: control panel,

activities, connectors, work-list manager, trace, and

setup.

animator action. An action performed by the person

animating a workflow model to simulate the action of a

program or person.

API. Application Programming Interface.

application program interface. An interface provided

by the FlowMark workflow manager that enables

programs to start and control process instances, and to

work with data containers.

audit trail. A facility for recording events that occur

when process instances are run. If the audit flag is set

in the model of a process, events in each instance of it

are recorded in a flat file for later analysis.

authorization. The attributes of a user’s staff definition

that determine whether that user can model processes,

define staff, start processes, or access the worklists of

other users.

B
bend point. A point at which a connector starts, ends,

or changes direction.

block. A modeling construct that enables the grouping

of related activities in a lower-level diagram, and the

modeling of loops and bundles. Synonymous with

activity block. See also bundle.

Buildtime. The FlowMark component, sometimes

called Buildtime client, used to define processes.

bundle. A type of block that supports multiple instances

of a single program or process activity at run time. The

number of instances of the activity is determined at run

time by a special program activity called the planning

activity. Synonymous with activity bundle. See also

block, bundle activity, pattern activity, and planning

activity.

 Copyright IBM Corp. 1996 231

bundle activity. One of the multiple instances of the

pattern activity created for an activity bundle at run time.

The number of instances is determined by input to the

planning activity.

bundle-planning tool. An executable program

(EXMPOBCL.EXE for OS/2, exmpobcl for AIX and

HP-UX, EXMCOBCL.EXE for Windows, and

EXMBOBCL.EXE for Windows NT), which is supplied

with the FlowMark product. See also planning activity.

C
cardinality. (1) An attribute of a relationship that

describes the membership quantity. There are four

types of cardinality: One-to-one, one-to-many,

many-to-many, and many-to-one. (2) The number of

rows in a database table or the number of different

values in a column of a database table.

child organization. An organization within the

hierarchy of administrative units of an enterprise that has

a parent organization. Each child organization can have

one parent organization and several child organizations.

The parent is one level above in the hierarchy. Contrast

with parent organization.

condition. An expression that determines the flow of

control through a process instance. See start condition,

exit condition, and transition condition.

connector. An arrow drawn between two nodes in a

process diagram to signify the flow of control or data

between them. See control connector and default

connector.

container. Synonym for data container.

control connector. The graphical representation of the

flow of control from an activity or block to another,

shown as in a process diagram. See also
default connector and transition condition.

coordinator. A predefined role that is automatically

assigned to the person designated to coordinate a role.

D
data connector. The graphical representation of the

flow of data, shown as in a process diagram.

data container. Storage for the input and output data

of an activity, block, or process. See input container and

output container.

data item. The element defined by a data structure for

which values can be assigned.

data mapping. The specification data transfer from

source to target data containers.

data structure member. One of the variables of which

a data structure is composed.

database client. A FlowMark component that

communicates via TCP/IP or NetBIOS with the Database

server. The FlowMark server, Buildtime client, and the

Database server itself are database clients.

default connector. The graphical representation of a

special kind of control connector, shown as in a

process diagram. Control flows along this connector if

no other control path is valid. See also transition

condition.

Delivery server. A server that is used in a process

environment with distributed processes. There is one

Delivery server for each database. The Delivery server

ensures the communication between the FlowMark

Runtime servers.

Delivery server node. The node address (APPC or

TCP/IP) of a computer on which the Delivery server for a

specific FlowMark Runtime server is running.

dynamic staff assignment. A method of assigning

staff to an activity by specifying criteria such as role,

organization, or level. The users to receive the activity

on their worklists are determined when the activity

becomes ready. See also level, organization, process

administrator, and role.

232 Application Integration Guide

E
end activity. An activity that has no outgoing control

connector.

exit condition. A logical expression that specifies

whether control exits from an activity or block.

Export. A FlowMark utility program that (1) in Buildtime

converts the definitions of staff, servers, programs,

processes, and data structures into an external format

called FDL, and (2) in Runtime converts templates,

instances, and work items into an external format called

FRL. Contrast with Import.

F
FDL. FlowMark definition language.

fixed member. A predefined data structure member

that provides information about the current activity. The

value of a fixed member is set by the FlowMark workflow

manager.

FlowMark definition language (FDL). An external

format for defining staff, programs, data structures, and

workflow models in a flat file. The definitions in the FDL

file can then be imported into a FlowMark database.

See also Export and Import.

FlowMark runtime language (FRL). An external

format for templates, instances, and work items in a flat

file. See also Export and Import.

Form. In Lotus Notes, a Form controls how you enter

information into Lotus Notes and how that information is

displayed and printed.

formula. In Lotus Notes, a mathematical expression

that is used, for example, to select documents from a

database or to calculate values for display.

fully qualified name. A qualified name that is

complete; that is, one that includes all names in the

hierarchical sequence above the structure member to

which the name refers, as well as the name of the

member itself.

FRL. FlowMark runtime language.

I
Import. A FlowMark utility program that (1) in Buildtime

takes definitions of staff, server, programs, processes,

and data structures in the FlowMark definition language

(FDL), and places them in a FlowMark database, and (2)

in Runtime takes information about templates, instances,

and work items in the FlowMark runtime language (FRL),

and places them in a FlowMark database. Contrast with

Export. See also FlowMark definition language and

FlowMark runtime language.

input container. Storage for data used as input to an

activity, process, or block. See also source and data

mapping.

integration building block. Reusable sample code

modules that enable the interaction of FlowMark with

another software product. These modules can be

changed or expanded to meet customers’s needs.

L
level. A number from 0 through 9 that is assigned to

each person in a FlowMark database. The person who

defines staff can assign a meaning to these numbers,

such as rank or experience. Level is one of the criteria

that can be used to dynamically assign activities to

people.

logical expression. An expression composed of

operators and operands that, when evaluated, gives a

result of true, false, or an integer. (Nonzero integers are

equivalent to true and zero is equivalent to false.) See

also exit condition and transition condition.

M
manager. A predefined role that is automatically

assigned to the person designated to head an

organization.

N
navigation. Movement from a completed activity to

subsequent activities in a process. The paths followed

are determined by control connectors, their associated

transition conditions, and by the start conditions of

activities. See also control connector, exit condition,

transition condition, and start condition.

 Glossary 233

node. (1) The generic name for symbols that can be

joined by connectors in a process diagram. Nodes

include activities, blocks, sources, and sinks. (2) In a

network, a point at which one or more functional units

connect channels or data circuits. (I)

notification. A FlowMark facility that can notify a

designated person when a process or activity is not

completed within the specified time.

O
organization. An administrative unit of an enterprise.

Organization is one of the criteria that can be used to

dynamically assign activities to people. See child

organization and parent organization.

output container. Storage for data produced by an

activity, block, or process for use by other activities or

for evaluation of conditions. See also sink.

P
parent organization. An organization within the

hierarchy of administrative units of an enterprise that has

one or more child organizations. A child is one level

below its parent in the hierarchy. Contrast with child

organization.

pattern activity. The single program or process activity

in a bundle from which multiple instances, called bundle

activities, are created at runtime.

person (pl. people). A member of staff in the

enterprise who has been defined in the FlowMark

database.

planning activity. A special program activity that

creates, at run time, the required number of bundle

activities for a specific bundle. The planning activity

must use a program that refers, in its registration, to the

bundle-planning tool supplied with the FlowMark product.

See also program activity and program registration.

platform. The operating system environment in which a

program runs. FlowMark is a distributed cross-platform

(OS/2, AIX, and Windows) application.

process. A set of activities that must be completed to

accomplish a given task. See also subprocess.

process activity. An activity to which a separate

process is assigned. Starting this activity creates an

instance of the referenced process and starts it.

Contrast with program activity.

process administrator. The person responsible for the

smooth execution of a process instance. This person

can be specified in the workflow model. Otherwise, the

person who starts the process instance is the process

administrator.

process category. An attribute that a process modeler

can specify for a process. Only users authorized for this

category can start and control instances of the process

as a top-level process.

process diagram. A graphical representation of a

process that shows all its nodes and connectors.

process information member. A predefined data

structure member associated with the operating

characteristics of a process. They are defined on the

Staff page in the process settings notebook. See also

fixed member and activity information member.

process instance. An executable copy of a process

template in FlowMark Runtime.

process management. The FlowMark Runtime tasks

associated with process instances. These consist of

creating, starting, suspending, resuming, terminating,

restarting, and deleting process instances.

process model. Synonym for workflow model.

process-relevant data. Data that is used to control the

sequence of activities in a process instance.

process status. The status of a process instance. The

status can be one of the following: ready, pending,

running, suspended, terminated, or finished. Process

templates, which are also displayed in the process list,

always have a status of translated.

process template. The translated form of a workflow

model in FlowMark Runtime. See also process instance.

program. A computer-based application that supports

the work to be done in an activity. Program activities

reference executable programs using the logical names

associated with the programs in FlowMark program

registrations. See also program registration.

program activity. An activity to which a registered

program is assigned. Starting this activity invokes the

program. Contrast with process activity.

234 Application Integration Guide

program registration. Identification of a program to a

FlowMark database so that it can be assigned to a

program activity in a workflow model.

R
role. A responsibility that is defined for staff members.

Role is one of the criteria that can be used to

dynamically assign activities to people.

Runtime. The FlowMark component, sometimes called

Runtime client, used to execute process instances.

S
server (server definition). A name for an external

FlowMark server. One can use this name upon defining

subprocesses. Such subprocesses are run on the

external server the name is referring to.

server definition. In the FlowMark database, you can

define Runtime servers that can be used for remote

execution of subprocesses. In a subprocess, the server

is referenced by the name defined in the database.

service. A service interfaces to the integrated product.

A service function receives the user data from the

Service Broker Manager and calls the appropriate

product APIs to perform the work. The results are

returned via the Service Broker Manager to the service

requester and then back to the user application.

service broker. A FlowMark component that

establishes and maintains a logon session with the

product that is integrated. Logon session data is passed

to the service via the Service Broker Manager. The

services use this logon session data when invoking the

product APIs.

Service Broker Manager. A FlowMark component that

controls the operation of service broker sessions. This

includes the interaction between service requester and

services, between service broker and services, and also

the initialization of the service brokers and services.

service requester. A service requester is the interface

to the user application. The user application calls the

service requester APIs to request the product to perform

some work. The service requester formats the user data

and issues a request to the Service Broker Manager

function which forwards the request to the appropriate

service function.

service thread. One or more service threads are

started for each service. Each thread receives

information from the service requester to call the

respective service function. When the function has been

called, the thread returns information to the service

requester.

sink. The symbol that represents the output container

of a process or block.

source. The symbol that represents the input container

of a process or block.

staff. The people and their roles, organizations, and

levels as defined in a FlowMark database.

start activity. An activity that has no incoming control

connector. A start activity becomes ready when the

process or block that contains it starts. There can be

more than one start activity in a process or block.

start condition. The setting that determines when an

activity with incoming control connectors can start.

subprocess. A process instance that is started by a

process activity.

substitute. The person to whom an activity is

automatically transferred when the person assigned that

activity is flagged as absent.

support tool. A program that end users can start from

their worklists in FlowMark Runtime to help complete a

program or process activity.

symbolic reference. A reference to a specific data

item, the process name, or activity name in the

description text of activities or in the command-line

parameters of program registrations. Symbolic

references are expressed as pairs of percent signs (%)

that enclose the fully qualified name of a data item, or

either of the keywords _PROCESS or _ACTIVITY.

system administrator. (1) A predefined role that

conveys all authorizations and that can be assigned to

exactly one person in a FlowMark database. (2) The

person at a computer installation who designs, controls,

and manages the use of the computer system.

 Glossary 235

T
top-level process. A process that is started from a

user’s process list or from an application program.

transition condition. A logical expression associated

with a control connector. If specified, it must be true for

control to flow along the associated control connector.

See also control connector and default connector.

translate. To convert a Buildtime workflow model into a

Runtime process template.

U
user ID. An alphanumeric string that uniquely identifies

a FlowMark user.

W
workflow. The sequence of activities performed in

accordance with the business processes of an

enterprise.

workflow model. A complete representation of a

process. It consists of the process diagram and settings

and the definitions of staff, programs, and data

structures associated with the activities of the process.

Synonymous with process model.

work item. Representation of work to be processed in

the context of a workflow process activity in a workflow

process instance.

worklist. A list of work items assigned to a user and

retrieved from a workflow management system.

worklist view. A subset of work items assigned to a

user and retrieved from a workflow management system.

The worklist view is determined by filter criteria.

236 Application Integration Guide

 Bibliography

To order any of the following publications, contact your

IBM representative or IBM branch office.

 FlowMark publications

This section lists the publications included in the

FlowMark library.

� IBM FlowMark: Modeling Workflow, form number

SH19-8241, explains the basic concepts of workflow

modeling and describes how to use FlowMark to

build and automate a workflow model.

� IBM FlowMark: Managing Your Workflow, form

number SH19-8243, describes how to use the

FlowMark Runtime clients.

� IBM FlowMark: Programming Guide, form number

SH19-8240, explains the FlowMark application

program interfaces (APIs).

� IBM FlowMark: Installation and Maintenance, form

number SH12-6260, contains information and

procedures for installing, administrating, and

maintaining FlowMark.

� IBM FlowMark: Diagnosis Guide, form number

SH19-8239, contains information to correct

problems encountered when installing and using

FlowMark. The procedure for reporting unresolved

errors is included.

� IBM FlowMark: Application Integration Guide, form

number SH12-6267, describes how to use the

service broker concept and FlowMark building

blocks to integrate other applications with FlowMark.

An online book, Online Overview, is part of the library. It

provides an interactive introduction to FlowMark and

helps the user to become familiar with:

� The organization of FlowMark components

� FlowMark windows and menus

� FlowMark example process models

� The basics of building and running FlowMark

process models

 Related publications

� IBM AIX Version 4.1 for RISC System/6000:

Installation Guide, SC23-2550

� IBM AIX Version 4.1: System Management Guide;

Communications and Networks, SC23-2526

� IBM REXX/6000: Reference, SC24-5708

� IBM Application Support Facility Version 3:

Administration Guide, SH12-5936

� OS/2 Warp, Version 3 Control Program

Programming Guide, G25H-7101

� OS/2 Warp, Version 3 Control Program

Programming Reference, G25H-7102

� OS/2 Warp, Version 3 Presentation Manager

Programming Guide, Advanced Topics, G25H-7104

� User’s Guide to OS/2 Warp Version 3, S83G-83001

� Warp Connect with Windows Up and Running,

S25H-78761

� Warp Connect without Windows Up and Running,

S25H-79251

� TCP/IP Version 2.1.1 for DOS: Installation and

Administration, SC31-7047

� TCP/IP Version 2 for OS/2: Installation and

Administration, SC31-6075

� MQSeries Distributed Queuing Guide, SC33-1139

� MQSeries Command Reference, SC33-1369

� AS/400 Advanced Series, Integrated Services for

File Server I/O Processor Version 3, SC41-3123

� Lotus Notes Release 4: Administrator's Guide

� Lotus Notes Release 4: Application Developer's

Guide

� Lotus Notes Release 4: Database Manager's Guide

1 These manuals are not available in print. They are part of the respective Online Product Libraries on the IBM Online Library OS/2

Collection, SK2T-2176.

 Copyright IBM Corp. 1996 237

238 Application Integration Guide

 Index

A
accessing the container 60, 61

accessing the FlowMark data 60

accessing the FlowMark data. 61

activity, change status 39

alert event 197

API

service broker 110

service requester 126

AS/400

applications, accessing 211

sample scenario 213

support 205

automatic refresh 12

B
bibliography 237

book conventions xii

broker

broker 16

service 26

broker DLL name 17

broker page 17

broker setup page 18

Broker_Exit function

OS/2 106

Windows 160

Broker_GetCfgReqs function 104

Broker_GetDllVersion function

OS/2 103

Windows 158

Broker_GetVersion function

OS/2 103

Windows 158

Broker_Init function

OS/2 105

Windows 159

Broker_Logoff function

OS/2 108

Windows 162

Broker_Logon function

OS/2 106

Windows 161

Broker_SetupCfg function 109

buffer size 28

building block

AS/400 support 205

MQSeries support 181

building the service broker DLL 164

C
C header files

EXMP3CBR.H 102, 110

EXMP3CSE.H 117

EXMP3FRE.H 126

EXMW3CAL.H 157

C language conventions 101

C-language service requester API

return codes

call service function 127

retrieve error message 135

start broker function 130

start service function 133

stop broker function 132

stop service function 134

calling a service function

C 126, 129, 177

REXX 137

change font 15

change status of an activity 39

ChangeActivityState 39

communication entry 210

communication side information 210

compatibility check

OS/2 103

broker 118

broker DLL 103

service DLL 118

Windows

broker 158

broker DLL 158

service DLL 166

compiler 101

concepts of integration 1

configuration notebook

service 123

service broker 109

configuration requirements

service 119

 Copyright IBM Corp. 1996 239

configuration requirements (continued)

service broker 104

considerations for VisualAge applications 59

control remote

FlowMark for MVS/ESA from FlowMark on OS/2 or

AIX 190

FlowMark on OS/2 or AIX from FlowMark for

MVS/ESA 193

FlowMark on OS/2 or AIX from FlowMark on OS/2 or

AIX 196

controlling the Service Broker Manager 145

conventions

syntax xiii

typographical xii

Create function 45

create the VisualAge runtime image 53

CreateEncryptable function 46

Current Activity

actions 68

events 72

general 68

customizing MQSeries definitions 182, 206, 211

D
data structures, predefined 197, 215

DBClose function 46

DBOpen function 46

debugging

service 145

service broker 145

Decrypt function 47

dedicated channels 209

definitions, MQSeries 181, 205

delete broker 20

Delete function 47

delete service 29

detail level for messages 14

details view 10

display broker details 16

display broker services 22

display choices 10

display service details 26

DLL name

broker 17

service 27

E
Encrypt function 47

end FlowMark Program Access 217

ENDFLMPAC 217

error messages, retrieving

C 135

REXX 143

exit function

service 120, 169

service broker 106, 160

EXMP24BB.FDL 205

EXMP24BB.MQI 205, 206

EXMP24EU.SAV 205

EXMP24RC 205, 211, 216

EXMP24SD 205, 211, 215

EXMP24SV 205, 219

EXMP2ABB.DAT 184

EXMP2ABB.MQI 182

EXMP2ARM 200

EXMP2ARV 201

EXMP2ASD 198

EXMP2ASP 200

EXMP2ASV 202

EXMP3CBR.H 228

EXMP3CPR.EXE 227

EXMP3CSE.H 228

EXMP3CST.DLL 227

EXMP3FBF.DLL 227

EXMP3FBF.H 228

EXMP3FBR.DLL 33

EXMP3FFM.DLL 33, 227

EXMP3FFR.EXE 56, 227

EXMP3FMS.EXE 227

EXMP3FRE.H 228

EXMP3FRQ.DLL 33, 56, 57, 227

EXMP3FRR.EXE 227

EXMP3KBR.LIB 227

EXMP3KRE.LIB 227

EXMP3KSV.LIB 227

EXMP3LBR.DLL 43, 227

EXMP3LRQ.DLL 43, 227

EXMP3LSE.DLL 43, 227

EXMP3SFM.CMD 42

EXMP3SRX.FDL 42

EXMP3UAD.EXE 227

EXMP3UCT.EXE 145, 227

EXMP3UUP.EXE 227

EXMP3UUS.EXE 227

EXMP3VBR.DLL 55, 56

240 Application Integration Guide

EXMP3VND.EXE 57

EXMP3VSM.FDL 54

EXMP3VSM.IMG 53

EXMP3VSM.INI 54

EXMW3CAL.H 228

EXMW3CAL.LIB 228

EXMW3FBR.DLL 33, 228

EXMW3FBR.H 228

EXMW3FRC.EXE 228

EXMW3FRQ.DLL 33

EXMW3FRQ.H 228

EXMW3FRU.DLL 228

EXMW3FRU.EXE 228

EXMW3FSE.DLL 33, 228

EXMW3KRQ.LIB 228

EXMW3LBR.DLL 43, 228

EXMW3LRQ.DLL 43, 228

EXMW3LSE.DLL 43, 228

EXMW3LSR.H 228

EXMW3USB.EXE 156, 228

exported functions

service 116—125

service broker 102—110, 157

F
FlowMark Activity

actions 80

attributes 80

events 81

general 79

settings 81

FlowMark C container API 60

FlowMark C process API 62

FlowMark example process 54

FlowMark Process

actions 83

attributes 82

events 85

general 82

settings 86

FlowMark Program Access 217

FlowMark Session

actions 78

events 79

general 78

FlowMark type mapping 50

FmApiBase 51

FmApiLibrary 86

FmArchivalCode 51

FmBrokerSamples 53

FmContainer 89

FmContainerItem 92

FmDisplayActivity 55, 98

FmEditApiBase 51

FmEditServiceBroker 51

FmError 88

FmExmApiBegin 94

FmExmApiStructureData 96

FmExmApiTypeInfo 95

FmInputContainer 90

FmMaintainContainer 55, 99

FmMaintainData 55, 100

FmMaintainProcess 55, 97

FmOutputContainer 91

FMRequest 57

FmSamplesArchivalCode 53

FmServiceBroker 51, 58

FmStartDataItem 93

Function Data

actions 65

events 65

general 64

I
implementation

service 116, 165

service broker 2, 102, 157

service function 172

service requester 125, 177

implementing application classes as visual parts 58

indicate the end of the function 58

initialization function

service 119, 168

service broker 105, 159

initialize container parts 60

initialize Current Activity part 60, 61

Input Container

actions 74

attributes 73

events 74

general 73

settings 75

installing the VisualAge programming examples 53

instance

service 116

service broker 3

 Index 241

InvokeClass 55

L
LibMain function 163, 171

library files

EXMP3KBR.LIB 110

EXMP3KRE.LIB 126

load broker 20

load service 30

local queue 209

logoff function for service brokers 108, 162

logon function for service brokers 106, 161

logon procedure 8

Lotus Notes 43

broker 44

service functions

Create 45

CreateEncryptable 46

DBClose 46

DBOpen 46

Decrypt 47

Delete 47

Encrypt 47

Read 47

SearchDoc 48

Sign 48

SignedOrEncrypted 49

Unsigned 49

UpdateEncryptable 50

M
manage

broker services 25

brokers 15

manual refresh 12

message

change font 15

detail level 14

monitor 13

message handling

EXMP24RC 217

EXMP24SD 216

EXMP24SV 220

EXMP2ARM 201

EXMP2ARV 202

EXMP2ASD 200

EXMP2ASV 203

message ID 197

migrating

OS/2 227

FlowMark service broker 227

Lotus Notes Service Broker Manager 227

Service Broker Manager 227

Windows 3.1 228

FlowMark service broker 228

Lotus Notes Service Broker Manager 228

Service Broker Manager 228

module definition file

service 117

service broker 102, 157

monitor Service Broker Manager 13

MQSeries

customizing definitions 182, 206, 211

definitions 181, 205

support 181

O
Output Container

actions 76

attributes 76

events 77

general 75

settings 77

P
predefined data structures 197, 215

process instance

restart 39

resume 37

start 36

suspend 37

terminate 38

process tracking 197

Process VisualAge Sample 54

process-instance ID 197

Program VisualAge Display Activity 54

Program VisualAge Maintain Container 54

Program VisualAge Maintain Data 54

programming examples, VisualAge broker 53

programming requirements 101

provided parts, VisualAge 64

242 Application Integration Guide

Q
query data from the FlowMark input container 61

query the structure of the FlowMark container 62

queue

local 209

remote 209

transmission 209

R
Read function 47

refresh

automatic 12

choices 12, 19

interval 13, 24

manual 12

remote queue 209

restart process instance 39

RestartProcess 39

resume suspended process instance 37

ResumeProcess 37

return codes

RxSbrCallService function 138

RxSbrDropFuncs function 137

RxSbrGetErrorMessage function 143

RxSbrLoadFuncs function 137

RxSbrStartBroker function 139

RxSbrStartService function 141

RxSbrStopBroker function 140

RxSbrStopService function 142

SbrCallService function 127

SbrGetErrorMessage function 135

SbrStartBroker function 130

SbrStartService function 133

SbrStopBroker function 132

SbrStopService function 134

service function 125

return data

EXMP24RC 216

EXMP24SD 216

EXMP24SV 219

EXMP2ARM 201

EXMP2ARV 202

EXMP2ASD 199

EXMP2ASP 200

EXMP2ASV 203

REXX language service requester API

return codes

call service function 138

load API functions 137

REXX language service requester API (continued)

return codes (continued)

retrieve error message function 143

start broker function 139

start service function 141

stop broker function 140

stop service function 142

unload API functions 137

routing entry 210

RxSbrCallService function 137

RxSbrDropFuncs function 137

RxSbrGetErrorMessage function 143

RxSbrLoadFuncs function 136

RxSbrStartBroker function 139

RxSbrStartService function 141

RxSbrStopBroker function 140

RxSbrStopService function 142

S
sample files

EXMP3SRX.CMD 152

SAMPBROK.C 102, 146

SAMPREQ.C 126, 150

SAMPSERV.C 148

SAMPSRVC.C 117

sample process

FMMQI_AIX_AIX 187

FMMQI_AIX_LOCAL 187

FMMQI_AIX_MVS 187

FMMQI_AIX_OS2 187

FMMQI_CONTROL_AIX_AIX 187

FMMQI_CONTROL_AIX_LOCAL 187

FMMQI_CONTROL_AIX_MVS 187

FMMQI_CONTROL_AIX_OS2 187

FMMQI_CONTROL_OS2_AIX 186

FMMQI_CONTROL_OS2_LOCAL 186

FMMQI_CONTROL_OS2_MVS 186

FMMQI_CONTROL_OS2_OS2 186

FMMQI_OS2_AIX 186

FMMQI_OS2_LOCAL 186

FMMQI_OS2_MVS 186

FMMQI_OS2_OS2 186

sample scenario 213

SbbDisableTimeout function 115

SBBFM.DLL 227

SBBFM.H 228

SBBFMSB.EXE 227

SBBLNTS.DLL 227

 Index 243

SbbLog function 113

SbbQueryLogLevel function 114

SbbReadProfile function 112

SBBROKER.H 228

SBBROKER.LIB 227

SBBSTD.DLL 227

SbbWriteProfile function 111

SBCNTRL.EXE 227

SBM.EXE 227

SBMADMIN.EXE 227

SBMUSER.EXE 227

SBMWIN.EXE 228

SBPREDIT.EXE 227

SbrCallService function 126, 177

SbrCallServiceWithRetry function 129

SBREQ.EXE 227

SBREQ.H 228

SBREQ.LIB 227

SBREQFM.DLL 227

SBREQFM.EXE 227

SBREQLN.DLL 227

SbrGetErrorMessage function 135

SbrStartBroker function 129

SbrStartBrokerWithInfo function 131

SbrStartService function 133

SbrStopBroker function 131

SbrStopService function 134

SBSERVIC.H 228

SBSERVIC.LIB 227

SBSFM.DLL 227

SBSLNTS.DLL 227

SBWBFM.DLL 228

SBWBRLN.DLL 228

SBWBROK.H 228

SBWBROK.LIB 228

SBWFM.H 228

SBWREQ.H 228

SBWREQ.LIB 228

SBWREQC.EXE 228

SBWRFM.DLL 228

SBWRFM.EXE 228

SBWSERV.H 228

SBWSFM.DLL 228

SBWSVLN.DLL 228

SearchDoc function 48

separately accessible function parts 58

service

configuration requirements 119

controlling 145

debugging 145

service (continued)

description 116

exported functions 116—125

implementation 116, 165

instance 116

module definition file 117

sample 148

testing 144, 180

service broker

configuration data 110

configuration requirements 104

controlling 145

debugging 145

demo 42

description 2

exported functions 102—110, 157

functions 103

implementation 102, 157

instance 3

module definition file 102, 157

sample 146

testing 144, 180

version information 103, 118, 158, 167

service broker API

description 110

SbbDisableTimeout 115

SbbLog 113

SbbQueryLogLevel 114

SbbReadProfile 112

SbbWriteProfile 111

service broker concept

design 3

overview 1

service broker library

FlowMark 33

Lotus Notes 43

Service Broker Manager

differences between Windows and OS/2 155

OS/2 7

Windows 155

service functions

calling 125, 126, 137, 177

calling with retry 129

implementation 172

OS/2 124

return codes 125

Windows 172

service registration

service page 27

244 Application Integration Guide

service requester

API 126

error messages 135, 143

implementation 177

implementing 125

samples 150, 152

starting

service 133

service broker 129

service broker with additional information 131

stopping

service 134

service broker 131

service requester API

C 126

description 126

REXX 136

RxSbrCallService 137

RxSbrDropFuncs 137

RxSbrGetErrorMessage 143

RxSbrLoadFuncs 136

RxSbrStartBroker 139

RxSbrStartService 141

RxSbrStopBroker 140

RxSbrStopService 142

SbrCallService 126, 177

SbrCallServiceWithRetry 129

SbrGetErrorMessage 135

SbrStartBroker 129

SbrStartBrokerWithInfo 131

SbrStartService 133

SbrStopBroker 131

SbrStopService 134

Service_CheckBroker function

OS/2 118

Windows 167

Service_Exit function

OS/2 120

Windows 169

Service_GetCfgReqs function 119

Service_GetDllVersion function

OS/2 118

Windows 166

Service_Init function

OS/2 119

Windows 168

Service_SetupCfg function 123

Service_Start function

OS/2 121

Windows 169

Service_Stop function

OS/2 122

Windows 170

Sign function 48

SignedOrEncrypted function 49

SNDFLMRQS 220

stack size 28

standard

broker 29

external controller 145

service requester 144, 180

start

broker 21, 156

function for services 121, 169

process instance 36

service 30, 156

Service Broker Manager 8, 156

services dynamically 31

start external process-control session 62

start FlowMark Program Access 217

start remote

FlowMark for MVS/ESA from FlowMark on OS/2 or

AIX 188

FlowMark on OS/2 or AIX from FlowMark for

MVS/ESA 191

FlowMark on OS/2 or AIX from FlowMark on OS/2 or

AIX 194

start service broker at application startup 58

StartProcess 36

startup status 19, 27

status, change 39

stop

broker 21, 156

function for services 122, 170

service 31, 156

STRFLMPAC 217

suspend running process instance 37

SuspendProcess 37

synchronization of resources 3

synchronizing requests 28

syntax conventions xiii

T
terminate running process instance 38

TerminateProcess 38

testing service brokers and services 144, 180

tracking of process 197

transmission queue 209

 Index 245

tree view 10

typographical conventions xii

U
unique process-instance ID 197

unload broker 20

unload service 30

Unsigned function 49

update data in the FlowMark output container 62

UpdateEncryptable function 50

using a FlowMark Session part 62

using the FlowMark requester 180

V
version numbers, returning 103, 118, 158, 166

VisualAge 51

VisualAge applications for FlowMark

considerations 59

FlowMark definitions 57

registering 56

requirements 58

Service Broker Manager definitions 56

testing 63

VisualAge example code 55

VisualAge parts 64

FlowMark C language API 52

service broker 51

support parts 52

used in the composition editor 52

W
Windows 155

246 Application Integration Guide

Your comments, please ...

IBM FlowMark
Application Integration Guide
Version 2 Release 3

Publication No. SH12-6267-01

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make
suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

If you mail this form to us, be sure to print your name and address below if you would like a reply.

You can also send us your comments using:

� A fax machine. The number is: +49–7031–166609.

� Internet. The address is: gadlid@sdfvm1.vnet.ibm.com.

� IBMLink. The address is: SDFVM1(GADLID).

� IBM Mail Exchange. The address is: DEIBM3P3 at IBMMAIL.

Please include the title and publication number (as shown above) in your reply.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

Your comments, please ...
SH12-6267-01

IBM

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Postfach 1380
71003 Boeblingen
Germany

Fold and Tape Please do not staple Fold and Tape

SH12-6267-01

IBM

Part Number: 83H1985

Program Number: 5697-216

Distributed electronically for customer printing

