

ibm.com/redbooks

WebSphere Version 4
Application Development
Handbook

Ueli Wahli
Alex Matthews

Paula Coll Lapido
Jean-Pierre Norguet

Complete guide for WebSphere
application development

How to make the best use of
available tools

Product experts reveal
their secrets

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Version 4 Application Development
Handbook

September 2001

International Technical Support Organization

SG24-6134-00

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (September 2001)

This edition applies to Version 4 of IBM WebSphere Application Server, WebSphere Studio, and
VisualAge for Java, for use with the Windows NT and Windows 2000 Operating System.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 569.

Contents

Preface . xiii
The team that wrote this redbook. xiv
Special notice . xv
IBM trademarks . xv
Comments welcome. xv

Part 1. Introduction. 1

Chapter 1. WebSphere programming model . 3
Characteristics of the programming model . 4
Architectures supported by WebSphere . 4

Web-based client/server applications . 5
Distributed object-based applications . 7
Web-enabled distributed object applications. 8
Features of a programming model driven design . 9

Application components . 10
Browser-hosted components . 11
Web application server hosted components . 18
Distributed object server-hosted components. 29

Control flow mechanisms . 40
Browser component initiated control flow . 40
Web application server component initiated control flow 42

Data flow sources . 45
Browser-maintained data flow sources . 45
Web application server maintained data flow sources 48
Enterprise server-maintained data sources . 54

Chapter summary . 57
Summary of programming model aspects . 57
Meeting the challenges . 60

Chapter 2. Tools overview . 63
IBM tools . 64

WebSphere Application Server Version 4.0 . 64
WebSphere Studio Version 4.0 . 67
VisualAge for Java Version 4.0 . 68
WebSphere Business Components Composer. 68

Third party tools . 69
Rational Rose . 69
Rational ClearCase . 69
© Copyright IBM Corp. 2001 iii

Jakarta Ant . 70
Jakarta Log4J . 70
Jakarta Struts . 70
JUnit . 70

Chapter 3. About the PiggyBank application . 71
Introducing the PiggyBank application . 72

What is a piggy bank? . 72
Functional overview . 72

Standalone client. 73
Web client . 73
Security functionality . 74

Application architecture . 75
Application modules . 76

Common code . 77
EJBs . 77
Use cases . 78
Standalone client. 78
Web client . 79

Application implementation . 79
Application delivery . 80

Part 2. Analysis and design . 81

Chapter 4. Overview of development activities . 83
Analysis and design activities . 84
Assembling a development team. 85
Development roles . 85
Patterns . 86

Model-view-controller pattern . 87
Command pattern . 88

Chapter 5. Requirements modeling . 89
Use case analysis . 90

PiggyBank use cases . 93
PiggyBank use case diagram in Rational Rose . 95
Use case descriptions in VisualAge for Java . 96

Use case realization . 98
The basic approach. 98
Servlet mapping . 99
MVC pattern . 100
Facade pattern . 102
Servlet multiplexing . 104
Command pattern . 105
iv WebSphere Version 4 Application Development Handbook

Display commands . 106
The value of commands . 107
Command granularity . 108
Using session beans . 108
Relationship between command beans and EJB session beans 109
Caching . 109

External systems integration . 110
Representing external use cases . 111
Realizing proxy use cases . 113
Representing agents in VisualAge for Java . 113

Designing the user interface . 115
Screen composition. 116
Navigation . 117
Use case commands. 119
Intermediate commands . 120

Chapter 6. Modeling and code generation . 123
Code generation . 124

Round tripping . 124
Setting the default language for Rose . 125
Code generation and reverse engineering . 125

Code generation . 126
Reverse engineering . 128

Integration with VisualAge for Java . 130
VisualAge for Java Rational Rose bridge . 130
XMI toolkit . 137
Plain Java files . 138

Designing EJBs with Rational Rose. 139
Creating an EJB with Rose . 139
Generating EJB code . 149
Importing an EJB from Rose into VisualAge for Java 152

Chapter 7. Designing with frameworks . 153
Introduction . 154
Starting with a framework . 154

What is a framework? . 155
Frameworks drawbacks . 156
Framework adoption . 157
Integration with the tools . 157

Jakarta Struts . 158
When to use Struts . 158
Servlet controller . 160
Action objects . 160
 Contents v

Form beans . 161
Custom tags . 163
Internationalization . 164
Code dependencies . 164
Downsides. 164
Development . 165

WebSphere Business Components Composer . 165
When to use WSBCC . 166
Deployment and maintenance . 167
Architecture . 167
WSBCC elements . 169
Development . 175

Part 3. Coding the application . 177

Chapter 8. Setting up a development environment 179
Planning for development . 180

Defining the deliverables. 180
Choosing your tools . 181
Automation opportunities . 182

Chapter 9. Development using the Java 2 Software Development Kit . . 183
Organizing the project directory structure . 184
Using the Java 2 SDK to build the application . 186

Tools in the Java 2 SDK . 186
Setting up the environment . 187
Compiling the source code . 187
Creating the common JAR file . 189
Creating the EJB JAR file . 190
Creating the use case JAR file . 192
Creating the WAR file . 192
Creating the client JAR file . 194
Generating documentation . 195

Using Ant to build a WebSphere application . 197
What is Ant? . 197
Installing and configuring Ant . 198
Ant build files . 199
Built-in tasks . 200
Creating build files for the PiggyBank application 200
Master build file . 202
Building the common code . 210
Building the EJBs . 215
Building the use cases . 220
Building the standalone client application . 220
vi WebSphere Version 4 Application Development Handbook

Building the Web application. 222
Further automation opportunities using Ant . 225

Working with meta-data. 226
Meta-data in WebSphere . 226
J2EE deployment descriptors . 227
WebSphere deployment information. 227
Manifest information . 228
Creating and editing meta-data files . 229

Chapter 10. Development using WebSphere Studio 237
Developing Web applications with WebSphere Studio 238

WebSphere Studio components . 238
New features in WebSphere Studio Version 4.0 . 239

Structuring the project in Studio . 240
Working in a team environment with Studio . 243
Custom tag libraries . 244

Integration with VisualAge for Java . 246
Setup . 247
Interfacing with VisualAge for Java from Studio . 247
Interfacing with Studio from VisualAge for Java . 247

Integration with other development tools . 248
Creating and publishing WAR files . 249

Creating the WAR file . 250
Web services wizards . 254

Web services creation wizard . 254
Web services consumption wizard . 257

Chapter 11. Development using VisualAge for Java 259
The integrated development environment (IDE) 260

Configuring the projects and packages. 260
Generating documentation in VisualAge for Java 262

Working in a team environment . 262
Developing Web applications with VisualAge for Java 264

Developing servlets . 264
Developing JSPs. 265
Developing EJBs in VisualAge for Java . 266

WebSphere Test Environment. 270
Configuration . 270
WebSphere Test Environment Control Center . 274
Servlet Engine . 275
Persistent Name Server . 277
Using DataSource objects with the WTE . 278
JSP execution monitor . 279
 Contents vii

Exporting the code . 280
Exporting the EJB code. 281
EJB deployment tool . 282

Debugging in VisualAge for Java. 282

Chapter 12. Development with frameworks . 283
Jakarta Struts . 284

Using Struts in your development environment . 284
Struts configuration file . 292
Building a Struts form . 292
Building a Struts action . 294
Form validation . 296
Message facility. 297
Internationalization . 299
Struts conclusions . 302

WebSphere Business Components Composer . 303
Importing WSBCC into VisualAge for Java . 303
WebSphere Studio setup . 303
WTE setup . 304
Automatic server startup . 305
Building WSBCC operations . 310
Extending XML externalization . 312
Login . 313
Legacy example . 314
Writing a WSBCC service . 315
Generic WSBCC operations . 316
Dealing with contexts . 318
Defining formats . 320
Presentation . 322

What we have achieved in this chapter . 324

Chapter 13. Guidelines for coding WebSphere applications 325
Using JNDI . 326

Obtaining an InitialContext . 326
Local and global JNDI namespaces . 327
Caching JNDI lookup results . 329

Message logging . 330
Why do we need a logging framework? . 330
What do we need from a logging framework?. 331
PiggyBank log wrapper . 333
Choosing a framework . 340
Using the WebSphere JRas facility . 341
Using Log4J . 354
viii WebSphere Version 4 Application Development Handbook

Logging conclusions . 362
Coding for performance. 362

General performance tips . 363
JSP and servlet performance tips . 365
EJB performance tips . 366

Managing application versions . 371
Specifying the application name . 372
Partitioning Web applications in the URI namespace 372
Partitioning EJBs in the JNDI namespace . 377
Partitioning access to database and other resources 382
Automation opportunities . 383

Chapter 14. Software Configuration Management 385
Introduction . 386
Reference . 386

Part 4. Unit testing the application . 387

Chapter 15. Assembling the application . 389
Application Assembly Tool (AAT) . 390

Starting the Application Assembly Tool. 390
Using the interface . 391
Creating a Web module . 394
Creating an EJB module . 404
Creating an application client module . 412
Assembling the complete application: the EAR file. 415

EJB deployment tool . 418
What does the EJB deployment tool do? . 418
When is the EJB deployment tool executed? . 418
Why would I want to run the EJB deployment tool myself? 419
Customizing CMP persistence mapping . 420
Migrating and validating EJB JAR files . 426

Chapter 16. Deploying to the test environment . 431
EARExpander command line tool . 432
SEAppInstall command line tool . 433
Single Server Edition: the browser-based console. 438

Starting the application server. 438
Launching the administrative console in a browser 441
Administering applications though the console . 442
Stopping the AEs application server . 448

Advanced Edition: the stand-alone console . 448
Start and stop . 448
Starting the console . 448
 Contents ix

Installing new applications . 450
Uninstalling applications . 453
Setting up resources . 453

Web server plugin . 454
Application client resource configuration tool. 458
Other tools in the Advanced Edition . 460

XMLConfig . 460
WSCP . 462

Performing a unit test: executing the application 463
Launching the Web application . 463
Launching the client application with the launchClient tool 464

Chapter 17. Debugging the application . 467
Debugging with VisualAge for Java Version 4.0 468

Working with breakpoints . 469
Exceptions. 472
Debugging external classes . 473
Inspecting data . 473
Debugging code snippets . 474

Debugging with the Distributed Debugger and OLT 476
Enabling debugging support in WebSphere Application Server 477
Enabling support in Advanced Edition . 478
Enabling support in Advanced Edition, Single Server 481
Using Object Level Trace . 483
Using the Distributed Debugger . 489
Debugging WebSphere Studio code. 508

A special case: how to debug a JSP . 511
Debugging JSPs in VisualAge for Java. 511
Debugging Studio JSPs: the Distributed Debugger 515
Debugging JSPs in WebSphere Application Server 516

Chapter 18. Automating unit testing using JUnit 517
Unit testing . 518

What is unit testing? . 518
Why unit testing?. 518
Benefits of a unit testing framework . 519

JUnit . 520
Installing JUnit . 521
Organizing our tests . 522
Test case for a simple Java class . 523
Test case for an EJB. 540
Automating unit testing using Ant . 548

Conclusions . 554
x WebSphere Version 4 Application Development Handbook

Part 5. Appendixes . 555

Appendix A. Additional material . 557
Locating the Web material . 557
Using the Web material . 558

System requirements for downloading the Web material 558
How to use the Web material . 558
Installing and running the PiggyBank application 560
Importing the sample code into VisualAge for Java 561
Using the Ant samples . 562

Related publications . 563
IBM Redbooks . 563

Other resources . 564
Referenced Web sites . 566
How to get IBM Redbooks . 567

IBM Redbooks collections. 567

Special notices . 569

Abbreviations and acronyms . 571

Index . 573
 Contents xi

xii WebSphere Version 4 Application Development Handbook

Preface

This IBM Redbook provides detailed information on how to develop Web
applications for IBM WebSphere Application Server Version 4 using a variety of
application development tools.

The target audience for this book includes team leaders and developers who are
setting up a new J2EE development project using WebSphere Application Server
and related tools. It also includes developers with experience of earlier versions
of the WebSphere product, who are looking to migrate to the Version 4
environment.

This book is split into four parts, starting with an introduction, which is followed by
parts presenting topics relating to the high-level development activities of
analysis and design, code, and unit test. A common theme running through all
parts of the book is the use of tooling and automation to improve productivity and
streamline the development process.

� In Part 1 we introduce the WebSphere programming model, the application
development tools, and the example application we use in our discussions.

� In Part 2 we cover the analysis and design process, from requirements
modeling through object modeling and code generation to the usage of
frameworks.

� In Part 3 we cover coding and building an application using the Java 2
Software Development Kit, WebSphere Studio Version 4, and VisualAge for
Java Version 4. We touch on Software Configuration Management using
Rational ClearCase and provide coding guidelines for WebSphere
applications. We also cover coding using frameworks, such as Jakarta Struts
and WebSphere Business Components.

� In Part 4 we cover application testing from simple unit testing through
application assembly and deployment to debugging and tracing. We also
investigate how unit testing can be automated using JUnit.

In our examples we often refer to the PiggyBank application. This is a very
simple J2EE application we created to help illustrate the use of the tools,
concepts and principles we describe throughout the book.
© Copyright IBM Corp. 2001 xiii

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Ueli Wahli is a Consultant IT Specialist at the IBM International Technical
Support Organization in San Jose, California. Before joining the ITSO 17 years
ago, Ueli worked in technical support at IBM Switzerland. He writes extensively
and teaches IBM classes worldwide on application development, object
technology, VisualAge products, data dictionaries, and library management. Ueli
holds a degree in Mathematics from the Swiss Federal Institute of Technology.

Alex Matthews is a Consulting IT Specialist in the IBM Software Business,
based in London, United Kingdom (UK). He has spent the last two and a half
years providing post-sales services to customers who have purchased
WebSphere products and related tools. Alex has seven years experience building
distributed systems using a variety of middleware products. He holds a degree in
Computing Science from Aston University, Birmingham, UK.

Paula Coll Lapido works as an IT Specialist in the e-business Innovation Center
at Madrid, Spain. Her current area of expertise focuses on developing e-business
applications using the WebSphere platform. She has been working at IBM for
one year and a half. She holds a degree in Physics from the Complutense
University of Madrid.

Jean-Pierre Norguet is an IT Specialist, Team Leader and Coach in the IBM
e-business department in Belgium. He has been working at IBM for three years.
His areas of expertise include the entire application development life cycle. He
holds a 5-year Engineering degree in Computer Science from the Universite
Libre de Bruxelles and a Socrates European master’s degree from the Ecole
Centrale Paris.

Thanks to the following people for their contributions to this project:

David Artus IBM Software Business, London Solutions Group, UK

Keys Botzum IBM WebSphere Services, Pittsburgh, USA

Kyle Brown IBM WebSphere Services, Raleigh, USA

Peter Van Sickel IBM WebSphere Services, Pittsburgh, USA
xiv WebSphere Version 4 Application Development Handbook

http://www.ethz.ch

Special notice
This publication is intended to help application analysts and developers to create
Web applications for WebSphere Application Server using a variety of application
development and test tools. The information in this publication is not intended as
the specification of any programming interfaces that are provided by WebSphere
Application Server. See the PUBLICATIONS section of the IBM Programming
Announcement for WebSphere Application Server for more information about
what publications are considered to be product documentation.

IBM trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.

e (logo)®
IBM ®
AIX
CICS
DB2
S/390
VisualAge
Wizard

Redbooks
Redbooks Logo
Alphaworks
CT
OS/390
Tivoli
WebSphere
 Preface xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi WebSphere Version 4 Application Development Handbook

Part 1 Introduction

In this part we introduce information used throughout the rest of the book. In
particular we describe:

� The programming model and application architecture appropriate for a
WebSphere application

� The new features in the latest releases of WebSphere Application Server,
WebSphere Studio and VisualAge for Java

� The PiggyBank application used to illustrate our examples

Part 1
© Copyright IBM Corp. 2001 1

2 WebSphere Version 4 Application Development Handbook

Chapter 1. WebSphere programming
model

This chapter outlines the programming model used to develop applications
targeted for the IBM WebSphere Application Server Advanced Edition Version 4.

1

© Copyright IBM Corp. 2001 3

Characteristics of the programming model
For a programming model to be compelling, we must be able to use it to develop
applications that exhibit the following qualities:

� Functional—satisfies user requirements

� Reliable—performs under changing conditions

� Usable—enables easy access to application functions

� Efficient—uses system resources wisely

� Maintainable—can be modified easily

� Portable—can be moved from one environment to another

Furthermore, the programming model must support a development process that
has the following characteristics:

� Repeatable—has well-defined steps

� Measurable—has well-defined work products that result

� Toolable—has well-defined mapping of inputs to outputs

� Predictable—can make reliable estimates of task times

� Scalable—works with varying project sizes

� Flexible—can be varied to minimize risks

The challenge is to balance both sets of requirements while developing an
application.

Architectures supported by WebSphere
WebSphere Application Server supports three basic application architectures:

� Web-enabled client/server

� Distributed object-based

� Web-enabled distributed object-based

We will discuss each in terms of its features, along with advantages and
disadvantages to consider when making a decision about which pattern is most
appropriate for your application. Of course, any large system will likely use all of
the patterns discussed here, so understanding the trade-offs and when that
pattern best applies is key to choosing the application architecture.
4 WebSphere Version 4 Application Development Handbook

Web-based client/server applications
Web-based client/server applications have a “thin” client tier where a Web
browser executes, a “middle” tier that runs the Web application server (such as
WebSphere), and a “back-end” tier that hosts servers accessible to the entire
enterprise, such as databases, and global directories.

The primary purpose of the Web browser is to display data generated by the
Web application server components and then trigger application events on behalf
of the user through HTTP requests. The data roughly corresponds to the static
model associated with the application flow model states.

The Web application server’s purpose is likewise twofold: it controls the
application flow in response to HTTP requests sent by the client. As noted in the
previous section, transitions on the application flow model will trigger transitions
on an underlying business process model. The business logic associated with
the business process model (BPM) transition may access data and functions
from enterprise servers.

An enterprise server’s main purpose is to provide access to the data associated
with BPM transitions. In some cases, business process functions may be
delegated to enterprise servers (such as CICS transactions). The protocol used
will depend on the back end.

Figure 1-1 shows the relationship between these three tiers in a graphical
fashion, indicating the system components normally hosted on that tier along
with the primary protocol by which it communicates with the other tiers (the ‘???’
label on the connection indicates that there are possibly many different ones
depending on the system).

Figure 1-1 Web-enabled client/server architecture

Browser Enterprise
Server

Application
ServerHTTP

Servlet

JSP

Database

Transactions

???
 Chapter 1. WebSphere programming model 5

Table 1-1 shows some of the advantages and disadvantages of Web-enabled
client/server applications.

Table 1-1 Web-enabled client/server applications

Advantages Disadvantages

� There is no need to install
anything specific on the
client tier, because the
pages are rendered by a
Web server or Web
application server and
passed back as part of a
request.

� The end-to-end path length
is relatively short
(compared to the other
supported architectures),
because the Web
application server
components have direct
access to the enterprise
servers.

� HTTP connections are
stateless, making it
possible to scale to large
numbers of clients,
especially when
load-balancing routers are
employed. However, we
should note here that a
common function provided
by Web application servers
is to provide “state” for the
application. Utilizing this
function can reduce the
benefits of statelessness
(more on this point later).

� Controlling the application flow in the
Web application server rather than in the
client will have an impact on response
time, making it crucial to minimize the
number of HTTP requests from the
browser.

� Components controlling the business
process model must be installed on the
Web application server as well as client
code to the enterprise servers upon
which these components depend, which
makes maintenance much more difficult
(especially if a number of servers are
needed to handle the HTTP traffic).

� Having both the application flow and
business process logic executing in the
same Web application server can
increase the processor and memory
requirements of the host machines,
which may impact throughput.

� Having the business process logic
executing in the same tier as the Web
application server can be considered a
security risk, especially if the Web
application is within the “demilitarized
zone” (servers outside of the firewall).

� Also, having both the application flow
and business process logic executing in
the same Web application server makes
it difficult to share the business logic with
non-Web-enabled clients.
6 WebSphere Version 4 Application Development Handbook

Distributed object-based applications
Distributed object-based applications supported by WebSphere are
characterized by:

� An application client tier that controls both the application flow and associated
data display through applets.

� One or more servers that host distributed objects encapsulating the logic
associated with the business process model.

� One or more back-end enterprise servers that maintain the data associated
with the business process model.

� Communication between the client and distributed object server tiers is
achieved through the Internet Inter-ORB Protocol (IIOP).

Figure 1-2 shows a graphical view of a distributed object-based application
architecture.

Figure 1-2 Distributed object-based architecture

Distributed object-based applications are considered to have “n” logical tiers
because distributed objects can actually be clients of other distributed objects.
The tiers are logical because the distributed objects can be co-deployed on the
same physical tier.

Table 1-2 shows some of the advantages and disadvantages of distributed
object-based applications

Browser Enterprise
Server

Distributed
Object ServerIIOP

Database

Transactions

???

Applet
 Chapter 1. WebSphere programming model 7

Table 1-2 Distributed object-based applications

Web-enabled distributed object applications
A powerful feature of the WebSphere programming model is that these two
styles can be used together in a single application architecture, such as one
where the Web application server components make use of distributed objects
that encapsulate the business process logic. This style of architecture can be
considered to be a Web-enabled distributed object-based application
(Figure 1-3).

Figure 1-3 Web-enabled distributed object architecture

Advantages Disadvantages

� Controlling the application flow on the
client tier usually makes for snappier
response time, especially where heavily
used data is cached locally.

� The business logic is separated from the
application client, providing for better
security and maintainability.

� Having the business logic separated
means that it can be shared by multiple
clients.

� It is also possible to load balance across
multiple distributed object servers to get
higher throughput and system availability.

� The application clients do not have to
install the client code associated with
enterprise servers.

� Application programs
must be explicitly installed
on the client tier, making
maintenance a
consideration. This can
also increase the
processor and memory
requirements of the client
machines.

� There is extra path length
incurred by adding a
distributed object server
between the client, which
will have an impact on
response time.

Browser Enterprise
Server

Distributed
Object ServerIIOP

Database

Transactions

???

Applet

Application
Server IIOPHTTP

Servlet

JSP
8 WebSphere Version 4 Application Development Handbook

Table 1-3 shows some of the advantages and disadvantages of Web-enabled
distributed object applications.

Table 1-3 Web-enabled distributed object applications

We will look at our sample application in terms of this hybrid architecture,
because it covers all the features of the programming model by WebSphere
Application Server.

Features of a programming model driven design
Once we have the candidate architecture identified, the next step is design,
where we map the requirements specified in the analysis phase to programming
model features associated with the architectural tiers.

All programming models, regardless of the architectural tier, have three distinct
features that are key to developing an application:

� The components that embody application functions

� Control flow mechanisms used to invoke one component from another

Advantages Disadvantages

� There is no need to install anything
specific on the client tier, because the
pages are rendered by a Web server or
Web application server and passed back
as part of a request.

� HTTP connections are stateless, making it
possible to scale to large numbers of
clients, especially when load balancing
routers are employed.

� The business logic is separated from the
application client, providing for better
security and maintainability.

� Having the business logic separated
means that it can be shared by multiple
clients.

� It is also possible to load balance across
multiple distributed object servers to get
higher throughput and system availability.

� The Web application servers need not
install the client code associated with
enterprise servers.

� Controlling the application
flow in the Web
application server rather
than in the client will have
an impact on response
time, making it crucial to
minimize the number of
HTTP requests from the
browser.

� There is extra path length
incurred by adding a
distributed object server
between the client, which
will have an additional
impact on response time.
This impact makes it
crucial to minimize the
number of distributed
object requests from the
Web application server.
 Chapter 1. WebSphere programming model 9

� Data flow sources that you can use to pass information from one component
to another

Each of these features will be discussed in a separate section with the following
information:

� A basic definition of the component or mechanism

� The role it plays in the architecture

� Some pros and cons as to its usage

� Alternative approaches, if any exist

Together these sections provide an end-to-end overview of how the components
and mechanisms (services) can be used together effectively to develop a
WebSphere-based application. Individual chapters that follow will get further into
the details of how WebSphere supports the various APIs (which will drive the
code phase), and what you can do at deployment time to exploit the WebSphere
platform.

Application components
Application components are those that a developer will actually have to program,
whether manually or with the aid of tools. The other features of the programming
model represent services that the developer can use when coding an application
component. The language used to develop a given application component will
depend in large part upon the “tier” where the component will be executed at
runtime.

For example, browser-based components will tend to use tag and script-oriented
languages, while Web application server components will tend towards Java.
Enterprise server components may use a variety of languages other than just
Java, such as C, C++, COBOL and the like, so we will focus on the distributed
object server, which tends towards Java as the language of choice.

Because the language differences tend to divide along tier boundaries, we will
divide this section into three separate subsections as we describe the
components you develop that are hosted by browsers, Web application servers,
and distributed object servers.

We will discuss the components for each tier in turn.
10 WebSphere Version 4 Application Development Handbook

Browser-hosted components
While a browser is not provided by WebSphere Advanced Edition,
browser-hosted components make up a large part of any Web-enabled
application. The reason, of course, is that the browser serves as the runtime
engine for the user interface of a Web application.

The browser-hosted components that are most relevant to the WebSphere
programming model include:

� HTML

� Dynamic HyperText Markup Language (DHTML) and JavaScript

� Framesets and named windows

� eXtensible Markup Language (XML), XML Style Language (XSL) and
Document Type Definition (DTD)

We will discuss each in turn.

HTML
HyperText Markup Language (HTML) is the basic “programming language” of the
browser. With HTML, you can direct the browser to display text, lists, tables,
forms, images, and just about everything else you can think of.

Role in the architecture
Every state in a Web application will ultimately result in an HTML page or dialog
of some sort, However, we need to draw the distinction between static and
dynamic content in an HTML page:

� Static content does not change based on application events, but merely
provides access to other states of the application.

� Dynamic content is generated by applications—in many cases based on
database content—or from enterprise servers.

The reason that this distinction is important is that static HTML pages do not
require that the content be generated by programmatic means, such as Web
application components hosted within WebSphere (servlets and JSPs). These
components will be discussed in the next section.
 Chapter 1. WebSphere programming model 11

DHTML and JavaScript
Dynamic HyperText Markup Language (DHTML) is an extension to HTML
wherein all the components of the HTML page are considered to be objects.
Together these objects make up the Document Object Model (DOM) of the page.

Each object in the DOM has a set of associated attributes and events, depending
on the type of object. For example, most objects have attributes describing their
background and foreground colors, default font, and whether they are visible or
not. Most have an event that is triggered when the object is loaded into the DOM
or displayed. An object, such as a button, has attributes that describe the label
and events that fire when it has been pressed.

Events are special because they can be associated with a program that executes
when the event is triggered. One language that can be used for the program is
JavaScript, which is a scripting language with Java-like syntax. JavaScript can
be used to change the attributes of objects in the DOM, thereby providing limited
control of the application flow by the browser.

Role in the architecture
This ability makes DHTML/JavaScript perfect for handling confirmations, data
validations, cascading menus, and certain types of list processing on the browser
side without invoking an HTTP request to the Web application server.

Pros Cons

Static HTML Web pages are not
generated by Web application
components, such as servlets and JSPs.
Their static nature means that they can be
cached by either the browser or proxy
servers.

On the development side, they can be
created and maintained with a WYSIWYG
(what-you-see-is-what-you-get) editor.

Static HTML cannot be customized on the
fly based on customer preferences or
application events. Even pages that may
seem to be “naturally” static, such as the
Customer Home, might actually benefit
from being generated dynamically. For
example, you might limit the functions that
a Customer sees based on the class of
service for which they are registered.

Alternatives
As mentioned above, the “programming language” of the browser is mainly HTML (with
DHTML and JavaScript being the primary exception as described next). However, an
XML-enabled browser can be used to generate the HTML on the client side.

Finally, you should consider creating dynamic components for every “top level”
(non-dialog state), even if it appears to be static. This approach not only makes it easier
to add dynamic content later, but also makes it easier to compose into other pages.
12 WebSphere Version 4 Application Development Handbook

Where validations are concerned, it is important to draw the distinction between
those that are merely syntactic from those that are more semantic in nature:

� Syntactic validations include checks on individual fields of an input form. For
example, is the entry a minimum length? Is it alpha or numeric? Does it have
the right format for a date, phone number or social security number? These
simple types of syntactic validations should be done on the client.

� Semantic validations are those that ultimately require access to business
process logic and data. For example, is an order or product number valid?
Will the change in quantity make the resulting line item quantity less than
zero? Is the requested price within 10 percent of the current average?
Semantic validations belong on the server side.

In the middle ground are more complex syntactic validations that involve multiple
fields or begin to incorporate business process policies. For example, is the start
date less than the end date? Does the date requested fall on a weekend or
holiday? There are arguments both for and against handling complex syntactic
validations on the client side. The most forceful arguments against are that it
introduces extra complexity and redundancy in the DHTML, and can cause a
maintenance problem as policies change.

Pros Cons

Hopefully, the benefit
of using DHTML and
JavaScript in these
scenarios is obvious:
one or more round
trips to the Web
application server are
eliminated, making
the application both
more efficient and
more usable (mainly
because the
response time is
much snappier).

Using DHTML/JavaScript for application control flow, whether
it is on the client or server side, requires programming skills
and are more complicated to develop and test. You cannot use
WYSIWYG editors for the code.

There are differences among the browsers in the details of the
functions supported. To avoid a browser dependency for the
Web application, programmers are forced to either stay with a
common subset of functions or add branching logic and
optimize for each browser.

When syntactic validations (either simple or complex) are
handled in DHTML and JavaScript, you still have to revalidate
on the server side for each request just in case the client
circumvents the input forms. This leads to redundancy of code
on the client and server.

Alternatives
Really, there is no good alternative to DHTML and JavaScript for handling confirmations,
validations, menus, and lists. The complexity for the HTML developer can be managed
somewhat by having a separate programming group develop a set of common functions
that encapsulate the differences between the browsers and have every page designer
include this set of functions within their HTML.
 Chapter 1. WebSphere programming model 13

Framesets and named windows
Framesets and named windows are specialized HTML extensions that break up
a page into separate frames (for framesets) or windows (for named windows).
Each frame or window can be further subdivided as a frameset as well.

Various browser-initiated control flow actions (described in , “Browser component
initiated control flow” on page 40) can be targeted to a given frame or window,
leaving the other frames and windows untouched.

The main difference between framesets and named windows is that framesets
tile the various frames within a single browser window, while named windows
have a separate window for each unique name. Frames in a frameset can have
various attributes that define behaviors such as whether they are resizable,
scrolling, or have borders. Separate named windows can be cascaded or
manually tiled by the user as they see fit.

From a targeting perspective, there is no difference between framesets or named
windows. In fact, they can be used together. If no frame or window with a given
name is open already, one will be opened by the browser to receive the result of
the request. The opened windows can be resized and tiled manually to achieve
an effect very similar to framesets.

Role in the architecture
Framesets are an excellent way to group related states in the application flow
model. For example, an online buying application Web page could be
implemented as a frameset that includes the following three frames (or
windows):

� Navigation, an area that is populated with the Customer Home navigation
links

� Main, an area that is populated with the Product Catalog, Order Status or
Order Details data, depending on the link selected in the Navigation frame.
This area would also be the target of an “open new order” action in the Order
Status state, so it would possibly be populated with the Already Open page.

� Result, an area that displays the result of an add to order, modify line item,
submit, or cancel operation.

Figure 1-4 shows a stylized view of how this page might look using framesets.
14 WebSphere Version 4 Application Development Handbook

Figure 1-4 Stylized view of online buying application frameset

Although not explored in any more detail here, a frameset makes it easy to
mingle Web publishing and business applications together. In this approach, you
provide visual interest such as images, advertisements, news, and such in the
“surrounding” frames, and keep the frames associated with the business of the
application clean, simple, and most importantly fast (because they can be mostly
text based).

Navigation Main Area

Action Result

displays Product Catalog,
Order Status or Order Details,

depending on selection

adding to order, editing
quantity, cancelling or

submitting targets result area

simply the
Customer

Home
navigation
bar where
selections
target main

area
 Chapter 1. WebSphere programming model 15

XML, DTD and XSL
XML provides a means by which documents can be encoded as a set of tags
describing the associated values. The tag language is expressive enough that
tags can be nested and can repeat, so that complex data structures can be
encoded in a form that is both human and machine readable.

Pros Cons

Simplifies navigation—the home state is
always visible.

Maximizes visibility of the important data
and functions. The main area can display
long lists for scrolling.

Minimizes the size of an individual
request. Only the data required for the
target area is returned from a given
request. The Navigation area need never
be rerendered.

Improves the application flow and
efficiency. Error messages can be
displayed with the form data still available.

Parallelizes requests. When a frameset is
rendered, each frame is issued as an
individual request, allowing them to be
handled and displayed separately.

Hides potentially “ugly” URLs of the
individual frames.

Improperly designed, the navigation can
be confusing. Also, if more than one frame
accesses shared system resources, such
as HttpSession state or databases, it can
cause contention problems that affect
performance, and may even cause
deadlocks.

When printing within a frameset, maybe
only the “active” frame (usually where the
cursor is located when the print is
requested) is printed.

Bookmarking a frameset uses the browser
location line, and not the specific content
frame URLs.

Browser back and forward functions work
a frame at a time. This can be somewhat
disconcerting.

Probably the most serious disadvantage is
that not all browsers support framesets, so
a non-frame version must be provided if
the application is designed to be browser
independent.

Alternatives
Before we abandon framesets because of the disadvantages mentioned above, there
are some workarounds to consider:

Printing: develop explicit print functions.
Bookmarking: maintain the last page in a database.
Backward/forward: disable the back and forward buttons on the browser.
Browser support: named windows instead of framesets.

If these workarounds cannot be used in your Web application, the only real alternative
to framesets is to compose the pages representing the individual states, and pay the
cost of rerendering the entire page on every request.
16 WebSphere Version 4 Application Development Handbook

An XML document can be associated with a DTD, which defines the tags and the
structure of the tags in the XML file. A DTD can be used by an XML parser to
validate that the XML is not just well formed syntactically, but is also semantically
legal with respect to the DTD. XML schemas will replace DTDs in the future; they
provide support for stronger typing of the data values.

Finally, more and more browsers are becoming XML enabled. XML-enabled
browsers can handle XML documents returned from the Web server in response
to a request. The XML document can refer to an associated stylesheet coded in
XSL. The stylesheet is used by the browser to map the XML tags to the HTML
that is ultimately displayed. If no stylesheet is specified, the browser will use a
default format that takes advantage of the tag names.

Role in the architecture
XML can play a role in every tier of the application architecture. For a
Web-enabled browser tier, the response to a given request can be an XML
document containing only the data to be displayed. For example, we could build
XML documents representing the data described for each state and provide a
default stylesheet in XSL to map the data to HTML tables and forms.

Pros Cons

One advantage of using XML rather than HTML is
that the stylesheet can be modified to change the
look and feel without having to change the Web
application components (described later) that
generate the data.

Another advantage is that the size of the result will
be smaller than the resulting HTML in many cases.

Yet another advantage is that the same XML
document may be usable in other contexts than a
Web browser, making it possible to reuse the Web
application components.

The main disadvantage is that
XML-enabled browsers are not
yet available every where,
although they are rapidly
becoming so.

Another disadvantage is that
XSL-based stylesheets can be
quite complex to code and
difficult to debug. WYSIWYG
editors for XML/XSL are not yet
widely available either.

Alternatives
One alternative is to have the Web application components check the browser type and
either generate HTML for non-XML-enabled browsers or return the raw XML for
XML-enabled browsers. The next subsection will discuss this idea further.
 Chapter 1. WebSphere programming model 17

Web application server hosted components
In the previous section, we discussed how HTML is the ultimate programming
language for the browser tier, but drew a sharp distinction between static and
dynamic content for Web pages.

We also discussed how a browser is not specifically provided by the WebSphere
platform. This is not the case for the Web server and Web application server.
WebSphere provides the IBM HTTP Server as a Web server that can be used to
serve up static pages, but can be configured to use other popular Web servers
from Microsoft and Netscape, among others.

Of course, the focus of this section is the WebSphere Application Server used to
serve up dynamic pages.

By discussing HTML, DHTML, JavaScript, framesets and XML, we have already
covered the static components of the programming model. The Web application
server components hosted by WebSphere that are most useful in generating
dynamic content include:

� Servlets

� JavaServer Pages (JSPs)

While no special support is provided by WebSphere Application Server, there are
two other components that are useful for clients (including Web applications) of
business logic and data hosted on back-end servers:

� Data structure JavaBeans

� Business logic access beans

Together these components provide the basis for a very effective
model-view-controller (MVC) architecture, where data structure and access
beans represent the business process model (model), servlets control the
application flow (controller), and JSPs handle the layout (view).

An MVC architecture is effective because of the ability to independently develop,
test, deploy and modify the various components. We will discuss each of these
four components in the context of an MVC architecture in the subsections to
follow. See “Model-view-controller pattern” on page 87 for more information.

Servlets
For purposes of understanding the programming model, you develop servlets to
encapsulate Web application flow of control logic on the server side (when it
cannot be handled by DHTML on the client side).
18 WebSphere Version 4 Application Development Handbook

An HttpServlet is a subclass of a generic Java servlet. Most people mean
HttpServlet when they say servlet, but there is a difference. An HttpServlet is
specifically designed to handle HTTP requests from a client. In this redbook, we
call it “servlet” unless we need to distinguish them.

The HttpServlet Java class from which you will inherit (extend) has a number of
methods that you can implement that are invoked at specific points in the life
cycle. The most important ones are:

� init, executed once when the HttpServlet is loaded
� service, by default calls doGet or doPost, unless overwritten.
� doGet, executed in response to an HTTP GET request
� doPost, executed in response to an HTTP PUT request
� destroy, executed once when the HttpServlet is unloaded

The service type methods (for example, doGet and doPost) are passed two
parameters: an HttpServletRequest and an HttpServletResponse object, which
are Java classes that encapsulate the differences among various Web servers in
how they expect you to get parameters and generate the resulting HTML page.

Role in the architecture
Servlets are designed from the ground up to handle dynamic requests from an
HTTP client. In an MVC architecture, servlets represent the controller
component.

However, there is a question of granularity that needs to be addressed. That is,
how many servlets are required to control a Web application?

At one extreme, there are those that create only one servlet to control the entire
application (or worse, they may only build one servlet, ever). The doGet or doPost
methods use a parameter (or the URI) from the request object to determine the
action to take, given the current state. Possible shortcomings are:

� Unmaintainable, when implemented as a large case statement.

� Redundant with other approaches described next, when implemented by
forwarding to an action-specific servlet or JSPs (you might as well route the
request directly to the appropriate servlet).

� Redundant with the servlet APIs themselves, when implemented by loading
an action-specific functional class (the class invoked has to look just like a
servlet, with request and response objects).

� Security for a given function must be manually coded rather than use per
servlet security provided by the WebSphere administration tools.
 Chapter 1. WebSphere programming model 19

Is is possible to analyze the URI and execute a command (that has a matching
name) for processing of the request. Frameworks, such as Jakarta Struts
generate that kind of code.

At the other extreme of the granularity spectrum is one servlet per action. This is
a better approach than a single servlet per application, because you can assign
different servlets to different developers without fear that they will step on each
other’s toes. However, there are some minor issues with this approach as well:

� Servlet names can get really long to insure uniqueness in the application.

� It is more difficult to take advantage of commonality between related actions
without creating auxiliary classes or using inheritance schemes.

In the middle is to develop a single servlet per state in the application flow model
that has dynamic content or actions. This approach resolves the issues
associated with the approaches described above. For example, it leads to a
“natural” naming convention for a servlet: StateServlet. The doGet method is
used to gather and display the data for a given state, while the doPost method is
used to handle the transitions out of the state with update side effects.
Ownership can be assigned by state. Further, commonality tends to occur most
often within a given state and service method type.

Pros Cons

Before the Servlet API became available, each Web application
component (usually a CGI program) had to code to a Web
server-specific API. Java servlets are very portable and can be
used with the leading Web servers. Also, servlets stay resident
once they are initialized and can handle multiple requests. CGIs
generally start a new process for each request.

Servlets can be multi-threaded, making them very scalable.The
application server creates a new thread per client.

Because servlets are Java programs, they can be developed with
an IDE, such as VisualAge for Java.

A minor
disadvantage to
servlets is that
they require
explicit compiling
and deployment
into an application
server.

Alternatives
You can develop monolithic servlets that handle both the application flow logic and
generate HTML, or even go to the extreme of handling business process logic as well.
The only advantage of this approach is that the end-to-end path length is shorter.

The problem with monolithic servlets is that the layout cannot be developed with a
WYSIWYG editor, nor can the business logic be reused in other client types, such as
Java applications. Further, it makes it much more difficult to move the application to
alternate output media, such as WAP and WML.

JavaServer Pages, to be discussed next, are considered by some to be a viable
alternative to servlets, because they are functionally equivalent.
20 WebSphere Version 4 Application Development Handbook

JavaServer Pages
JavaServer Pages (JSPs) are a standard extension to HTML that provide
escapes so that values can be dynamically inserted.

There are numerous tags that allow the developer to do such things as import
Java classes, and declare common functions and variables. The most important
ones used by a JSP developer to generate dynamic content are:

� Java code block (<% code %>), usually used to insert logic blocks such as
loops for tables, selection lists, options, and so on

� Expressions (<%= expression %>), usually used to insert substitute variable
values into the HTML.

� Bean tag (<jsp:useBean>), used to get a reference to a JavaBean scoped to
various sources, such as the request, session, or context.

� Property tag (<jsp:getProperty>) is a special-purpose version of the
expression tag that substitutes a specified property from a bean (loaded with
the useBean tag).

There is also a standard tag extension mechanism in JSP that allows the
developer to make up new tags and associate them with code that can either
convert the tag into HTML or control subsequent parsing (depending on the type
of tag created). This feature would allow a developer (or third-party providers) to
build tags that eliminate the need to explicitly code expressions and java code
blocks, making the JSP code look more HTML-like and less Java like. Custom
tags can make it very easy for non-programmers to develop JSPs (those with
Java skills can develop specialized tags to generate tables, option lists, and
such).

In any event, a JSP is compiled at runtime by WebSphere into a servlet that
executes to generate the resulting dynamic HTML. Subsequent calls to the same
JSP simply execute the compiled servlet.

Role in the architecture
JSPs are best used to handle the display of data associated with a given state
having dynamic content. This role represents the view in an MVC architecture
and contrasts with that of the servlet that represents the controller. The way they
work together is that the servlet gathers the data or handles the transition action,
and then routes flow of control to the associated JSP to generate the response.

Whether extended tags are used or not, we recommend developing JSPs such
that multiple states can be composed within a single page (see “HTML” on
page 11 and “Framesets and named windows” on page 14 for more details on
page composition). This approach actually simplifies the individual JSPs
because they need not worry about setting headers or the <HTML><BODY> and
 Chapter 1. WebSphere programming model 21

other enclosing tags. The associated servlet can handle this setup, or can
delegate it to an inherited servlet as discussed in the previous section. This
approach will also make it easier to exploit dynamic caching that is supported in
WebSphere Application Server Version 4.

Pros Cons

One huge advantage of JSPs is that they
are mostly HTML with a few special tags
here and there to fill in the blanks from
data variables. The standard extension
mechanism allows new tags to be
developed that eliminate the need to use
the Java escape tags at all.

Further, JSPs require none of the “println”
syntax required in an equivalent servlet.
This tag-oriented focus makes them
relatively easy to WYSIWYG edit with
tools such as WebSphere Studio Page
Designer. This focus also makes it easier
to assign the task of building JSPs to
developers more skilled in graphic design
than programming.

JSPs can be used to provide meaningful
error indicators on the same page as the
input fields, including specific messages
and highlighting. Static HTML does not
provide this capability.

Another advantage is that JSPs do not
require an explicit compile step, making
them easy to develop and test in rapid
prototyping cycles. This feature tempts
some developers to use JSPs instead of
servlets to handle the data gathering and
update-transition functions, logic that is
traditionally associated with the controller
component of an MVC architecture.

There are some good reasons not to use
JSPs to control the application flow:

� Current JSP tools do not provide IDE
functions for code blocks.

� A developer should not handle the
application control flow and the layout.

� Combining application flow and layout
in a JSP makes it difficult to migrate to
another output media.

� All HTML tags are compiled into the
servlets service method. This makes
inheritance of common look-and-feel
behaviors in JSPs very difficult.

There are some minor issues associated
with using JSPs.

� JSPs compile on the first invocation,
which usually causes a noticeable
response time delay.

� Communication between the JSP and
servlet creates a name, type and data
flow source convention issue. In other
words, how do you pass data
elements between a servlet and the
corresponding JSP? The next section
discusses using a JavaBean to
encapsulate the data needed by a
JSP.

Alternatives
XML provides a viable alternative to JSP in some situations. It is possible to have the
servlet for a given state return XML directly to an XML-enabled browser, using an XML
parser-generator. Even if a user’s browser does not support XML, the servlet could use
the associated stylesheet to generate the corresponding HTML without using a JSP. We
will discuss this possibility further in the next section, where JavaBeans can be
employed to simplify this process.
22 WebSphere Version 4 Application Development Handbook

If you insist on using JSPs to control the application flow, we recommend building
two per state:

1. StateServlet.jsp, playing the role of servlet with nothing but a script tag
implementing doGet and doPost type methods, It can safely inherit from a
superclass HttpServlet as described in the previous section.

2. State.jsp, playing the role of an output JSP as described in this section.

This approach allows you to take advantage of the quick prototyping capability of
JSPs early in the development cycle (no compile or deploy step needed). Later
on you could convert the “servlet” JSP to a real servlet (to avoid the need to
precompile the JSPs as described above).

However, we should say here that such tools as VisualAge for Java Enterprise
Edition with its embedded WebSphere Test Environment provide the ability to
rapidly develop and test servlets as easily as JSPs, minimizing the development
cycle-time advantage described above that might motivate the use of JSPs for
application flow control.

Data structure JavaBeans (data beans)
A JavaBean is a class that follows strictly specified conventions for naming
properties, events and methods. An auxiliary class, called a BeanInfo class,
contains additional descriptive information that can be used by tools to provide,
among other things, extra levels of documentation and runtime support to edit
property values.

A data structure JavaBean is usually nothing but a simple set of properties, with
no need for events or methods (beyond gets and sets of the associated
properties).

Data structure JavaBeans are sometimes made “immutable”. That is, all
properties are private and only get methods are provided to prevent the data
from being updated. Also, data structure JavaBeans sometimes are associated
with a separate key subcomponent that encapsulates those properties that
uniquely identify the associated data.

Immutable or not, key or not, a data structure JavaBean should implement the
serializable interface that enables it to be passed remotely and stored in various
files and databases. An implication of being serializable is that the object
properties must be simple types or strings, or that any contained objects must be
serializable.

Note: Data structure beans are also called cargo beans, value beans, and
other names.
 Chapter 1. WebSphere programming model 23

Strictly speaking, WebSphere Application Server has no special support for
JavaBeans. However, data structure JavaBeans fill so many useful roles in the
end-to-end architecture that we feel required to include them in a discussion
about the programming model.

Role in the architecture
In an MVC architecture, data structure JavaBeans can be considered to
represent the static properties associated with objects in the model. This makes
them useful to maintain data reads from back-end systems, or results from
executing back-end business functions (more on this in the next section on
business logic access beans).

For purposes of the Web application server tier, we also see them used to
maintain the data passed between the servlet and other middle-tier components,
especially JSPs (described in “JavaServer Pages” on page 21) when there is
more than one property involved. They may represent data from the model as it
is transformed for a specific view associated with a JSP, or as occurs in many
cases, it may be that the model object does not need transforming and can be
passed to the JSP as is.

Some developers build a data structure JavaBean for every JSP whether it has
more than one property or not, and whether or it is associated with a servlet or
not. They may also make these data structure JavaBeans immutable, as
described above, to make them easier to deal with in WYSIWYG editors (only
get methods would show in the palette of functions available).

Some XML enthusiasts propose XML as a dynamic substitute for explicitly coded
JavaBeans (see “XML, DTD and XSL” on page 16). With this approach, a single
XML string is passed or stored rather than a data structure JavaBean. The
receiving component then uses the XML parser to retrieve the data.

While we are strong proponents of XML, and see its merits as a possible
serialized format of a data structure JavaBean, we would not recommend using
XML-encoded strings as a substitute, especially in situations where the data
structure is known at design time.

The extra overhead of generating and parsing the XML strings, plus the storing,
retrieving and transmitting of all the extra tags, makes them very expensive with
respect to the equivalent data structure JavaBean.

Tip: Consider the usa of view beans that provide an interface between data
structure beans and JSPs. View beans will format the values contained in data
beans into strings that are easily accessible by JSPs.
24 WebSphere Version 4 Application Development Handbook

Pros Cons

The data structure JavaBean represents a formal contract
between the servlet and JSP developer roles involved.
Adding properties is easy because the servlets already
create, populate, and pass the associated JavaBeans, while
the JSPs already use the bean and property tags. You can
independently modify the programs to use the new
properties. Also, the new properties can be optional with a
default assigned as part of the constructor.

Removing a property from the contract without modifying the
associated servlets and JSPs that use them will cause errors
to be caught at compile rather than runtime.

It allows the servlet developer for a given state to focus
entirely on Java to control the application control and data
flow, while the JSP developer can focus entirely on HTML or
XML-like tags that control the layout.

Many tools are available that take advantage of JavaBean
introspection for such varied functions as providing
command completion and selection of properties from a
palette at development time, to populating from and
generating XML at runtime.

Setting properties into a data structure JavaBean, and then
setting the whole data structure into a data flow source (such
as HttpServletRequest attributes to be discussed in
“HttpServletRequest attributes” on page 49) is much more
efficient than setting individual properties into that source
one at a time. And getting a single data structure JavaBean
from that same source, and then getting its properties locally,
is much more efficient than getting multiple properties
directly from the source.

The same data structure JavaBeans are likely to be used as
contracts with other components because of their simplicity,
providing a high degree of reuse.

There are no serious
disadvantages to using
data structure
JavaBeans.

The only issue is that
they can be rather
expensive to create,
and may cause extra
garbage collection
cycles as memory is
used.

To circumvent this
problem, some
developers use pooling
techniques, where a
number of
pre-constructed
JavaBeans wait to be
requested, used, and
then released back to
the pool.

Data structure beans
can be tedious to
develop, although in
many instances tools
will generate the data
structure beans.

Alternatives
There is honestly no good alternative to using data structure JavaBeans as the formal
contract between components in the architecture. And, as we will see in the following
sections, data structure JavaBeans are used just about everywhere, making them well
worth the investment.
 Chapter 1. WebSphere programming model 25

Business logic access beans
We noted in the previous subsection on data structure JavaBeans that they
represent the static properties of the model. In the same vein, a business logic
access bean can be thought of as encapsulating the dynamic behavior of the
model.

A business logic access bean is a Java class whose methods encapsulate a unit
of work needed by any type of application, be it for the Web or a distributed
client/server. In other words, a business logic access bean is intended to be user
interface independent.

In our sample application we mapped each use case to a business logic access
bean.

The other primary purpose of the business logic access bean is to insulate the
client from various technology dependencies that may be required to implement
the business logic.

Business logic access beans will almost always make use of data structure
JavaBeans and associated keys in the input and output parameters. Further, any
data cached within an access bean is likely to be in terms of data structure
JavaBeans and associated keys, so the two concepts go hand in hand.

Like data structure JavaBeans, WebSphere Application Server has no special
support for business logic access beans, However, they are so useful in the
end-to-end architecture that we feel required to include them in this discussion as
well.

Role in the architecture
We noted in the previous subsection that data structure JavaBeans represent the
static properties of the model in an MVC architecture. In the same vein, a
business logic access bean can be thought of as encapsulating the dynamic
behavior of the model.

There are numerous approaches to developing business logic access beans,
covering many different aspects that may be useful in a given application. We
touch on a few of them here, but it is not within the scope of this book to discuss
all the different patterns that may be used (see Design Patterns: Elements of
Reusable Object-Oriented Software, by Erich Gamma, et al).

Note: Access bean as it is used here is intended to be a generic Java
wrapper, and not to be confused with the specific kind of access beans
generated by VisualAge for Java Enterprise Edition.
26 WebSphere Version 4 Application Development Handbook

The first aspect we consider is whether the business logic is stateless or stateful:

� Stateless access beans have methods whose input parameters include all
the data necessary to complete the unit of work and whose return values
have the complete result. Stateless access beans retain no memory of what a
given client program has done between invocations. However,
“statelessness” does not mean that the access bean cannot cache data, just
that any data cached must be accessible using parameters passed in a given
method signature.

� Stateful access beans have methods that may rely on the result of previous
methods, thus having an implied “state” model. Statefulness can be exploited
to simplify the method signatures, because parameters or results of previous
calls can be cached so that fewer parameters are needed in subsequent
method signatures. Stateful access beans must have a one-to-one
association with the client so that two different clients in two different “states”
do not interfere with each other. This association is often called client/server
affinity, and it can make stateful access beans less scalable than an
equivalent stateless one by limiting the ability to arbitrarily load balance
method calls.

You can sometimes simulate a stateful access bean with a stateless one by
including extra parameters that either identify the client or contain the current
state data.

The identity is used in the first approach to look up state data cached in the
access bean. If the second approach is used, the current state data is used in the
called method and a new current state is returned to the client (as a data
structure JavaBean, as described in “Data structure JavaBeans (data beans)” on
page 23) to keep until the next call.

Another aspect to consider is granularity. Like servlets described in “Servlets” on
page 18, there is a continuum of granularity that could be considered when
developing a business logic access bean:

� On the one extreme, there could be a single business logic access bean per
unit of work.

� On the other, all units of work for the business process could be represented
by methods on a single business logic access bean.

� In the middle, all the methods needed for the transitions in a given state in the
application flow model could be grouped into a single business logic access
bean.

� Also in the middle (but coarser grained), all the transitions associated with a
state in the business process model could be represented by methods on a
single business logic access bean.
 Chapter 1. WebSphere programming model 27

Some of you may be familiar with the following types of business logic access
beans:

� A command bean is a fine-grained stateful business logic access bean that
encapsulates a single unit of work. The programming model for a command
bean is to create it (or get one from a pool), set properties (its state) that
represent the input parameters, perform the unit of work, and finally get the
properties representing the return parameters (also part of the state). Refer to
the redbook Design and Implement Servlet, JSPs, and EJBs for IBM
WebSphere Application Server, SG24-5754 for more details.

� A business logic access bean that is stateful and holds the data returned from
a query result is sometimes called a rowset. A rowset can be considered to
be a specialized form of command bean. Its programming model is to set
parameters representing a query, perform the query, then iterate through the
results in the rowset.

Pros Cons

One big advantage of wrapping the business logic
associated with the business process model is that wrappers
provide an encapsulating layer that hides the details of
where and how the business logic gets invoked from the
client. This insulation will make it possible to evolve the
technology used by the application over time. For example,
in early stages, the code may make direct calls to JDBC, and
then over time migrate to use Enterprise JavaBeans, all
without having to recompile the client applications.

Another big advantage is that once the method signatures
are defined, it is possible to build the client applications in
parallel with the back-end business logic, and speed the
overall development process. Testing becomes simpler too,
because the logic controlling the application flow is cleanly
separated from the logic controlling the business process,
minimizing the number of code segments that need to be
tested.

There is absolutely no
downside to wrapping
business logic in
objects separate from
the client, even in cases
where there is little or
no opportunity to reuse
the business logic in
other applications.

Alternatives
That said, there is an alternative to wrapping business logic into “vanilla” Java classes,
and that is to directly use Enterprise JavaBeans in the client code. In the next section,
we discuss the various types and applications in the next section that we feel make this
a viable alternative.
28 WebSphere Version 4 Application Development Handbook

Distributed object server-hosted components
The WebSphere programming model provides support for Java-based
distributed objects called Enterprise JavaBeans (EJBs). EJBs can be thought of
as a standard mechanism to wrapper enterprise business logic and data (usually
hosted on some enterprise server) that can take advantage of the following
object services:

� Distribution—the ability for the server to be remote from the client

� Persistence—maintenance of the essential data associated with the
component

� Transactions—providing ACID characteristics for the units of work

� Security—control of the roles that can access the objects and associated
methods

� Trace and monitoring—configurable instrumentation for debugging and
performance tuning

There are two main types of EJBs that can be developed as part of the
programming model: session and entity. In a nutshell, session EJBs are those
that have a short life cycle that lasts only as long as both the client and server
maintain a reference to the session. This reference can be lost if the client
removes the session, or if the server goes down or the session “times out”.

An entity EJB is one that once created (either explicitly or implicitly) can be
subsequently found with a “key” for use by a client application. It persists until the
remove operation is invoked by a client application or until the data is explicitly
removed from the underlying store.

Within a session EJB there are three implementation types: stateless, stateful,
and stateful with session synchronization. Within an entity EJB there are two
implementation types depending on how persistence is managed:
container-managed persistence (CMP), and bean-managed persistence (BMP).

Stateless session EJBs
Stateless session EJBs are those whose method signatures have all the
parameters needed to complete the associated unit of work; they return the
complete result in the method return value (or exceptions that may be thrown).

The effect of being stateless is that any active instance of a stateless session
EJB can service a request from any client in any sequence. This feature makes
stateless session EJBs the most scalable.
 Chapter 1. WebSphere programming model 29

There is no guarantee that two calls to the same stateless session EJB will be
services by the same instance on the server. Because of this feature (good for
scalability), there is a common misconception that stateless session EJBs cannot
have instance variables and thus maintain “state”. They can, as long as the
values can be used by any client, and in any sequence. For example, many
applications cache connections to back-end resources and frequently used
stable read-only data in stateless session EJBs.

Role in the architecture
Stateless session EJBs are ideal for implementing the business logic associated
with the business process model, as we described in see “Business logic access
beans” on page 26.

You could use the stateless session EJBs directly by the client program, or have
the business logic access bean wrapper call the stateless session bean.

The implementations of the stateless session EJBs can be exactly the same as
those provided for the business logic access beans, or they can take advantage
of the features of stateless session EJBs.

For example, if the code manually manages a connection pool for a relatively
expensive resource, you can cache the connection in the stateless session EJB
(as long as it is not client specific). This approach effectively lets the EJB
container act as the pooling mechanism, and makes getting the connection
transparent to the business logic, which can simply use the connection.

As another example, if the methods managed standard Java Transaction API
(JTA) transactions at the beginning and end of the business logic to provide
ACID properties, this code could be removed, because it is provided
automatically by the container.

Tip: Rather than look up the home in the JNDI context, narrow it, and create
the session over and over again for each request, you can create the session
once and cache it in the client (either the servlet or, preferably, the business
logic access bean). This approach should be considered a “best practice”
even though the IBM implementation of the JNDI context in WebSphere
Application Server automatically caches homes to provide a high degree of
scalability.

Also, it is a common practice to cache stable read-only data in a stateless
session EJB (or in an associated singleton object) to minimize repeating
expensive computations. For example, we may want to cache the product
catalog data within a singleton referenced by the stateless session bean.
30 WebSphere Version 4 Application Development Handbook

Pros Cons

Besides simplifying the code to handle
connection pooling, transactions and security,
a key advantage gained when using stateless
session EJBs is that the business logic can be
moved out of (distributed from) the client tier
without having to reprogram the client or
server components. This ability can be
important for security purposes.

For example, we may be happy to have the
Web server and servlets within the DMZ, but
we would probably want to host the business
logic behind the inner firewall of the DMZ to
protect it from direct access by hackers. In
other cases we may want to co-deploy the
business logic with the application flow logic,
but put both behind the DMZ.

Another advantage of using stateless session
EJBs is that it is possible to efficiently load
balance them across multiple application
servers and achieve a high degree of
scalability.

Distributing the business logic out of the client
tier can make the client much “thinner”,
because there is no need to install
connectivity options. Only the Enterprise Java
Servers would need to maintain the
connectivity to the back-end systems. In large
Web application server farms, or Java applets,
having a thin middle tier can be a very
attractive advantage.

Finally, distributing the business logic out of
the client means that it can be reused in
multiple application types, not just Web
applications, as we show in the introduction
(“Distributed object-based applications” on
page 7).

One disadvantage to using EJBs in
general is that the overhead
(distributed calls, security checks and
transaction management) can be quite
expensive even when the client and
server are co-deployed. For this
reason, you must take care to design
the EJBs to minimize the number of
calls required per unit of work.

The second disadvantage to using
EJBs is that the need to find a Home in
the JNDI context, narrow it to the
specific home interface type, and
create the remote interface prior to
using it, adds complexity to the client
programming model.

Still a third disadvantage when using
EJBs is the increased complexity in
testing, debugging, deployment, and
administration.

Specific to stateless session EJBs, a
disadvantage with respect to other
EJB types is the need to pass in extra
parameters on the call, and receive all
the data on the return value. This
requirement can significantly increase
the data transmission costs, if the
objects are not carefully designed.

Also, expensive computations may be
repeated (if the EJB is called more
than once in the logical session),
because a stateless session EJB
retains no memory of previous calls.

Alternatives
If, for example, all the logic is handled by back-end CICS transactions, or all the data is
maintained in a single DB2 database using precompiled SQLJ queries, then a simple
business logic access bean that directly accesses these back-end systems may be the
preferred approach.
 Chapter 1. WebSphere programming model 31

Stateful session EJBs
Stateful session EJBs have a complex life cycle model that allows methods to
maintain state between calls. The effect is that a given task can span multiple
invocations.

Unlike stateless session EJBs, stateful session beans can support a custom
create that takes parameters useful in initializing the state. This feature can be
very useful in simplifying the other method signatures, because they can assume
that the state of the session EJB includes those parameters useful for the lifetime
of the session.

Role in the architecture
Stateful session beans can keep the application/user state over multiple
interactions (methods).

Pros Cons

One benefit of using stateful session EJBs is
that the methods map more closely to the
transitions associated with the business
process model than those of the stateless
session EJB (or business logic access bean)
described previously. Also, the fewer number of
parameters means that there is less data to
marshal and demarshal in a remote method
invocation.

Another benefit of a stateful session EJB is that
it can reduce the number of calls to the back
end by caching frequently used data as part of
its state.

Taking this idea to an extreme, stateful session
EJBs can cache data considered to be
work-in-progress, eliminating all calls to the
back end until specific “checkpoint” type
transitions. This can be especially
advantageous in situations where application
events may terminate the processing before its
logical conclusion.

The primary disadvantage to using
stateful session EJBs is that there
are very few quality of service
guarantees with respect to the ACID
properties you might expect when
working with components. The
container is not obligated to provide
for failover of stateful sessions by
backing up the nontransient instance
variables in a shared file or
database; so in general, if the server
hosting the stateless session EJB
goes down, the state is lost. Further,
the session may time out due to
inactivity and the state is lost.

Another disadvantage related to the
quality of service guaranteed for
stateful session EJBs is that the
container does not roll back the state
if the overall transaction fails.
32 WebSphere Version 4 Application Development Handbook

A middle of the road approach would both
cache the state in the EJB, and store it
persistently on the back end. Any update
methods on the stateful session EJB would
write to the persistent store and would update
the cache to reflect the results. Read-only
methods on the EJB would simply use the data
in the cache.

Whatever you decide to cache using stateful
session EJBs, the “state” is managed
automatically by the container rather than by
explicit programming. All the programmer need
do is specify the instance variables as non
transient, and they are considered to be part of
the state that gets managed. If memory gets
overloaded with sessions, the container will
passivate a bean, reactivating it later if
necessary.

Scalability is affected, because a
client must be attached to the server
hosting the specific stateful session
EJB that is referenced. This
requirement for client/server affinity
limits the ability to balance the
workload among multiple servers.

Another downside is that the
mapping of data from the
non-transient variables to the
backing store (file or database)
during passivation/activation is
through the serialization mechanism
and stored as a binary large object
(BLOB) that is always
stored/retrieved as a whole.

Alternatives
There are alternatives to using stateful session EJBs. For example, any of the
approaches for converting a stateful to stateless access bean described in “Business
logic access beans” on page 26 can be used. These same approaches could be used
to convert a stateful session EJB into a stateless one, especially in situations where the
data is stable and read only, or if client/server affinity is already being used.

In either of these cases, a singleton memory cache can be shared by all instances of a
stateless session EJB within the same JVM to maintain data. It is also possible to cache
this data in the client or Web application server (see , “Data flow sources” on page 45
for details).

Another alternative to stateful session EJBs when failover and ACID properties are
required is to use an entity EJB (discussed in detail below). In this case, the “pseudo
session” life cycle would be explicitly managed by the application, but its state data
would be immune to timeout as well as server and transaction failures.

Pros Cons
 Chapter 1. WebSphere programming model 33

Session EJBs with session synchronization
Session beans can support the session synchronization interface, which lets
them participate in the container’s transaction processing. The session
synchronization interface includes methods that signal when a transaction has
been started, when it is being prepared for commit, and when it is finally
completed, either with a commit or a rollback.

The effect is that the same session EJB can be called one or more times in the
context of a single transaction, and the container (in conjunction with the
transaction controller) manages the calls required to close out the transaction
without an explicit call from the business logic methods.

Session synchronization requires that the session EJB be stateful, because it
adds life cycle states associated with transactional semantics. However, you
should think of it as “converting” either a stateless or a stateful session EJB to
support synchronization. The reason this is important is that the advantages and
disadvantages of the underlying session EJB type tend to dominate. Also, from a
programming model perspective, this characterization associates the choice of
session synchronization with deployment rather than with the business logic
itself.

Role in the architecture
Session synchronization must be carefully designed, for example, if timeout of
stateful sessions is actually desirable, and that client/server affinity and lack of
failover support are not issues. However, many of the business logic methods
could fail after partially updating the cached data, and the programming required
to restore the data to its previous state can be more or less complex depending
on the business logic.

The business logic methods can throw a system exception or set a flag to cause
a rollback; they can throw application exceptions or exit normally to cause a
commit.

Another situation where session synchronization may apply is in situations where
data is backed up in a resource with a non-JTA-based transaction model. For
example, Persistence Builder (PB) is a VisualAge for Java feature that provides
advanced object model to relational mappings, such as preload caching of
related objects, that are not yet available in our CMP entity EJB implementations.
Unfortunately, PB has its own transactional model that must be followed.
34 WebSphere Version 4 Application Development Handbook

Pros Cons

The nice thing about session
synchronization is that the business
logic of the session no longer has to
be concerned with managing
transactions and cached state.
Instead, business logic methods
need only throw an exception when
an error occurs to cause a rollback,
or return successfully to cause a
commit. In either case, the
associated state is properly
managed. If the code needs to cause
a rollback without throwing an
exception (say for read-only
methods), it can explicitly invoke a
setRollbackOnly on its EJB
transaction retrieved from the
context.

In cases where the session EJB was
originally stateless and only added
session synchronization (and state)
to hold a transaction, then failover
and timeout is definitely not an issue,
because the client (HttpSession or
business logic access bean) will
create one as needed anyway.

Except for the simple cases the session
synchronization interface can be very difficult
code to implement, especially if the underlying
resource does not provide support.

Also, the code to manage transactions must
apply to all methods on the session that require
a transaction. For example, there is no way to
process the backup/restore differently based on
the method(s) invoked without involving the
methods themselves. In this case, it may be
best to handle the compensation in the methods
themselves.

Implementing the session synchronization
interface cannot be considered to support true
two-phase commit. The reason is that the
transaction coordinator is not obligated to
resurrect the session and complete the
transaction if there is a failure between phases.
The net effect is that there is a window of
opportunity where resources can become out of
synch.

Finally, session synchronization is relatively
expensive to achieve at runtime, because it
adds an additional set of methods that must be
called to manage a transaction. There should
never be more than one or two per unit of work
(either of our designs above have only one).

Alternatives
If a stateful session EJB is being converted to use session synchronization simply to
provide transactional semantics of the cached data, then consider using a CMP entity
EJB. The advantage would be transparent transactional semantics on the persistent
properties.

In other cases, the best alternative is to defer session synchronization implementation
to the deployer role and have the business logic developer code the session methods
to be as independent of transactional semantics as possible. This alternative takes
session synchronization out of the “normal” programming model and makes it a
deployment responsibility.
 Chapter 1. WebSphere programming model 35

Container-managed persistence entity EJBs
While a session EJB represents an object with a transient identity lasting only as
long as the client and server both maintain a reference to it, an entity EJB
represents an object with a persistent identity that lasts until the object is actually
removed from the container. Because of this difference, entity EJBs have an
associated key, and the home supports methods to find references in various
ways:

� Find methods that return a single EJB reference based on the primary key or
a set of properties that uniquely identify an entity

� Find methods that return multiple EJB references based on zero or more
properties that identify a subset of all entities in the container

An entity has a set of properties, including those that make up the key, which are
considered to be part of its persistent state. The associated business logic
methods operate upon these properties without regard to how they are loaded
and stored.

In a CMP entity EJB, the container manages the persistent properties. When
bean-managed persistence (BMP) is specified, the developer explicitly codes
well-defined methods invoked by the container to manage the persistent
properties.

Role in the architecture
In most applications, the business objects associated with the various states in
the business process model are the most natural fit for CMP entity EJBs,
whether we wrap these business objects with access beans or not.

As with all EJBs, care must be taken to minimize the interactions between the
client and server, even if the two will be co-deployed (as when the client is a
session EJB). For entity EJBs, we recommend the use of the following
approaches:

� Custom creates. These are designed to create the object and initialize its
properties in a single call, rather than the default create that takes just the key
properties followed by individual sets (or a call to a copy helper method as
described below).

� Custom finders. These are designed to return a subset of the entity EJBs
associated with the underlying data store, usually by passing in various
properties that are used to form a query.

� Copy helpers. These are get and set methods that use data structure
JavaBeans to return or pass a number of properties at once.

� Custom updates. These are designed to do some update function and return
a result in a single call.
36 WebSphere Version 4 Application Development Handbook

As a general rule, you can design entity EJBs such that you do at most a single
call to them after a find for a given unit of work. Following this rule will insure that
the application can be distributed as painlessly as possible (although it is usually
best to co-deploy client and server, unless the logic executed on the server side
is expensive enough to warrant load balancing).

Where entity EJBs are used, you will usually end up with the following:

<Entity>Key: A data structure JavaBean that holds the key properties

<Entity>Data: A data structure JavaBean that holds both key and data
properties of the entity. Some go as far as to create a
<Entity>DataOnly that holds only the non-key properties to
minimize the marshalling overhead for the gets and sets.

<Entity>Home: The home interface for finding/creating the EJB, usually with the
following methods:

<Entity> create(<Entity>Data):
creates a new entity and initializes all the properties

<Entity> findByPrimaryKey(<Entity>Key):
finds based on the key

Enumeration find<Entity>sFor<RelEntity>(<RelEntity>Key key):
returns entity EJBs associated with the related entity

<Entity>: The EJB remote interface with at least the following methods:

<Entity>Data get<Entity>Data():
returns the data structure JavaBean representing the data

void set<Entity>Data(<Entity>Data data):
sets the non-key properties from the data

<Entity>Impl: Implements the business logic methods specified in the <Entity>
interface above.

Of course, there are numerous approaches that can be used. For example, many
like to include methods that have individual properties passed in rather than
forcing the use of a data structure JavaBean.

Also, many will add methods on the entity EJBs to aid in navigation across
associations between objects. Of course, the implementations of these
navigation methods ultimately use the custom finders described above.
 Chapter 1. WebSphere programming model 37

Pros Cons

The primary benefit of CMP entity EJBs is
that persistence and transactions are
completely transparent to the business
logic methods. When we used session
EJBs, the only way to get similar
functionality was to implement the session
synchronization interface and use the
methods to load or store the state from a
backing store.

This advantage is key from an
evolutionary perspective. Let’s say our
early iterations used the Persistence
Builder behind the business object access
beans and thus required session
synchronization in the stateless session
EJB associated with the Entry business
logic access bean. Later, we migrate the
business object access beans to use
entity EJBs. Once all the access beans
are converted, we could reimplement the
stateless session bean to drop session
synchronization without having to touch
the business logic. The transaction started
by the stateless session bean propagates
through to each entity so that any changes
are all or nothing.

As with all EJBs, the downside to CMP
entities shows how having a rich set of
object services can be a double-edged
sword: the overhead associated with
managing distribution, security, and
transactions can be very expensive. CMP
entity EJBs require the developer to trust
the container implementation to provide
persistence in an efficient manner.

Currently, there are numerous deployment
choices available within WebSphere
Application Server for entity EJBs. While
this is not a problem for the programming
model, and should be considered to be an
advantage, it does complicate the
decision whether or not to use entity EJBs
in the first place.

At the same time that there are a large
number of choices, there are never
enough. Some would like CMP containers
for CICS VSAM files, or IMS DL/I. Others
are fine with relational databases, but
would like even more bells and whistles,
such as preloading of related objects.

Alternatives
There are at least three alternatives to CMP entities when our current container
implementations do not seem to meet your requirements:

� Client access beans. This option may make sense if you cannot afford the remote
method call overhead associated with EJBs.

� Session EJBs. This option may make sense if you need a thin client tier or must
isolate the business logic from the client for integrity or load-balancing purposes.

� BMP entity EJBs. This option may make sense if having a simplified programming
model for the business logic is the biggest requirement, but you have database
requirements not met by our current container implementations.

The first two options have already been discussed in detail in this section. All three
options can be used together effectively: business logic access beans passing through
to session EJBs, which use business object access beans passing through to BMP
entity EJBs. We will discuss BMP entities next.
38 WebSphere Version 4 Application Development Handbook

Bean-managed persistence entity EJBs
A BMP is simply an entity EJB where the developer manually implements the
service methods, most notably ejbLoad to load the persistent state from the
backing store and ejbStore to store it.

Role in the architecture
We recommend that all entity EJBs be implemented as if they were CMP for the
business logic programming model. That is, business logic methods should
assume that all instance variables are loaded prior to the method executing, and
that they will be stored if needed when the method completes. The BMP
methods to load and store the persistent instance variables should be
implemented as part of the deployment process when the characteristics of the
data store are known. This approach is very much the same as what we
suggested for session synchronization methods on session EJBs.

In short, the ability to develop BMP methods expands the applicability of entity
EJBs to situations where tighter control of the underlying data store is required.
This requirement can occur when WebSphere does not support a legacy
database. It can also occur when performance considerations preclude using the
“vanilla” code generated for CMP entities.

Pros Cons

This approach not only makes the
business object logic much simpler to
write, but also much easier to migrate to
CMPs later, if the required container
options eventually become available.
Following this approach means that the
BMP method implementations can be
discarded and the entity EJBs can simply
be redeployed, without having to change
either the business logic methods or the
client code.

The downside is that the persistence logic
can be relatively complicated to
implement efficiently. For example, in
custom finders, you almost always need to
cache the results of the query so that the
iterative calls to the ejbLoad for each
instance merely retrieve the data from the
cache. In short, it can be very difficult to
minimize the number of transactions and
back-end accesses.

Alternatives
The alternatives have already been discussed in the previous section: mainly, directly
accessing the back end in a business logic access bean or session EJB.

As with CMP entity EJBs, it is almost always a better practice to use a session EJB of
some type as a wrapper, hiding the entity from the client. The advantage is that the
session EJB can coordinate the transaction across multiple EJBs.
 Chapter 1. WebSphere programming model 39

Control flow mechanisms
If you have designed anything other than a monolithic component architecture
(where all the application functions are controlled by a single program
component) then you will need to understand the mechanisms by which you will
transfer control from one component (the source) to another (the target).

Like the components themselves, the mechanisms vary by the tier upon which
the source component executes at runtime. We will likewise divide this section
up accordingly and have a subsection devoted to control flow mechanisms that
can be initiated from:

� Browser-based components, such as HTML

� Web application server-based components, such as servlets

We deliberately do not include the enterprise tier, not because there are no
mechanisms by which control flow is affected, but because they are pure Java
method calls.

We will discuss the control flow mechanisms for each of the above in turn.

Browser component initiated control flow
As we discovered in the previous section, all browser-hosted components
eventually are converted into HTML (or DHTML and JavaScript). And while there
are lots of specific ways to transfer control between Web pages, they boil down
to two that we will consider in this section:

� Those that issue HTTP GET requests

� Those that issue HTTP POST requests

HTTP GETs
An HTTP GET request can be effected in a number of ways:

� An HREF tag associated with text or an image

� Image maps, that allow specific areas of an image to target a given URL
when clicked

� JavaScript onclick=’location=<URL>’ associated with a visible and clickable
DOM object

� A FORM with ACTION=GET and a submit action invoked either through an
associated INPUT TYPE=SUBMIT button, or a JavaScript submit action
associated with a browser event
40 WebSphere Version 4 Application Development Handbook

Once the link is established by any of these mechanisms, a user can click the
link to transfer control to the next state.

Role in the architecture
HTTP GETs are used when the source state can directly transfer control to
another because there are no update side effects, and where a small amount of
data needs to be passed to the target.

HTTP POST (and other method types except for GET)
Unlike HTTP GETs, HTTP POST (and other types) can only be invoked from
within a FORM with METHOD=POST. However, once a FORM context has been
established, there are two primary mechanisms by which control is actually
transferred:

� Clicking an INPUT TYPE=SUBMIT button associated with the FORM

� The JavaScript <FORM>.submit function, usually associated with a button or
other clickable type

Once the link is established, triggering the associated event (such as clicking the
link) will cause the POST request to be issued to the Web server. Usually, POST
requests must be handled by a Web application component, such as a servlet or
JSP.

Pros Cons

Because there is no side effect involved, using
HTTP GETs is the most efficient way to
transfer control from one state to the next,
especially where the next state is pure HTML
that may be already cached by the browser.

Pages invoked with an HTTP GET can be
easily bookmarked to return to the same page
with the same data where dynamic content is
involved.

When using HTTP GETs, the ability to
transfer data to the target state is
limited to the URL query string (more
on this in the next section), which has
definite size limitations (often
dependent on the Web server
handling the request). Also, the
location includes the data passed,
which can be really distracting.

Alternatives
There is no good substitute for an HTTP GET to transfer control with no side effects,
because there is no need to involve an “intermediate” Web application component such
as a servlet or JSP. However, you should remember that updating most of the data flow
sources can be considered to be a side effect, which may be best handled by some
other HTTP request type (such as a POST).
 Chapter 1. WebSphere programming model 41

Role in the architecture
HTTP POSTs are best invoked when update side effects are associated with the
transition to the next state in the application flow model.

Web application server component initiated control flow
Just as all browser-based components reduce to HTML or DHTML and
JavaScript, all Web application server components eventually compile to a
servlet and use the servlet APIs.

We will briefly explore three mechanisms by which servlets can invoke other Web
application components:

� RequestDispatcher forward

� RequestDispatcher include

� HttpServletResponse sendRedirect

Pros Cons

One advantage of an HTTP POST
is that there are no absolute limits
to the amount of data that can be
passed to the Web server as part
of the request. Also, the data
passed does not appear on the
location line of the browser.

Another advantage of an HTTP
POST is that the browser will warn
the user if the request needs to be
reinvoked (such as through a
resize, back, forward or other
browser event that needs the page
to be reloaded).

However, some browsers display a rather ugly
message if an HTTP POST request needs to be
reinvoked due to a browser event, telling the user
to reload the page.

Also, an update side effect is usually expensive,
so HTTP POST requests should be minimized by
handling as many confirmations and validations
as possible on the client side.

Another disadvantage of a POST request is that it
cannot be bookmarked because the associated
data is not available in the URL query string as
mentioned above (more on this in “Data flow
sources” on page 45).

Alternatives
There is really no substitute for an HTTP POST to attempt a transition with an update
side effect. However, some transitions that may seem to have a side effect can actually
be handled with an HTTP GET.

For example, if a source page has a form to gather query parameters, it is possible to
use an HTTP GET to transfer control to the servlet associated with the next state, which
takes the parameters and reads the data to display. The reason that a GET is
reasonable is that the action is read only and the amount of query data is usually
relatively small.
42 WebSphere Version 4 Application Development Handbook

RequestDispatcher forward
The RequestDispatcher is an object that can be obtained from the servlet’s
context (through the getServletContext method). The RequestDispatcher allows
a target Web application component (HttpServlet and JSP) to be invoked from a
source component in two ways: forward and include. We will discuss forward in
this section and include in the next section.

Role in the architecture
The forward method is best used when the servlet completely delegates the
generation of the response to a JSP.

RequestDispatcher include
The include method on the RequestDispatcher neither opens nor closes the
response, nor does it write any headers, which means that multiple components
can be included in the context of a single request.

Pros Cons

When the forward call is used,
the target has complete freedom
to generate the response. For
example, it can write headers, or
forward or include to other Web
application components as it
sees fit.

This freedom for the target
makes programming the source
component much simpler: it does
not need to generate any
headers or set up prior to
delegating to the forwarded
component.

A source component that invokes a target cannot
generate any response prior to the forward call. Nor
can it generate any response after the call returns.
This restriction means you cannot compose pages
with forward.

A source component that was itself invoked by an
include call (see “RequestDispatcher include” on
page 43) cannot use the forward call. This
restriction means a source component (one that will
transfer control to another) has to know how it is
being used.

The target component must be a Web application
component, requiring that targets of forward calls
must be converted to JSPs, even if they contain
purely static HTML.

Alternatives
The most viable alternative to forward is for a servlet to set up the headers and enclosing
HTML tags, then use the include mechanism (discussed next). This approach provides
the ability to compose the response from multiple JSP components with as few changes
as possible.

This alternative also simplifies the JSPs involved, because they do not need to generate
headers and enclosing HTML tags.
 Chapter 1. WebSphere programming model 43

Role in the architecture
Rather than use forward in the servlet’s doGet method to transfer control to the
associated JSP, it may make sense to include the associated JSP instead.

HttpServletResponse sendRedirect
The sendRedirect method is implemented on the HttpServletResponse object
that is passed in on the service methods associated with an HttpServlet. It
generates a special response that is essentially code telling the browser that the
requested URL has temporarily moved to another location (the target URL). No
other response is generated by the source component.

The browser intercepts the response and invokes an HTTP GET request to the
URL returned as part of the response, causing a transition to the next state.

Role in the architecture
The sendRedirect method is best used in a servlet after actions that cause
update side effects to cause transition to the next state.

Pros Cons

One reason to consider this approach is that the included
components are much simpler to code, because they do not
need to generate the <HTML>, <HEADER>, and <BODY>
tags. For JSPs, the calling servlet can handle the code often
required to prevent caching, simplifying them even further.

The included components can often be reused in multiple
places. For example, if we were not able to use framesets in
our application due to restrictions on the browser, we could
convert an HTML output to a JSP and compose the pages in
the servlets.

The components can be included by a superclass
HttpServlet to provide a common look and feel across all
states in the application.

In future versions of WebSphere, included components can
be cached, making it much more efficient to compose pages
from multiple states. The ability to more easily exploit this
feature when it becomes available is another good reason to
consider including components.

Included components
cannot write to the
header or close out the
response. Therefore,
these actions must be
done by the source
component.

Included components
cannot be static Web
pages (or fragments),
requiring that they be
converted to JSPs.

Alternatives
When pages need to be composed, there is no really good alternative to include except
to use framesets or named windows (see “Framesets and named windows” on
page 14).
44 WebSphere Version 4 Application Development Handbook

Data flow sources
Whenever two components must interact, whether they are separately
developed components, or whether a single component is iteratively executed
over time, it is likely that there will be a need to flow data from one to the other.

Like the first two sections, this section is divided into subsections describing data
sources associated with each of the three tiers:

� Browser
� Web application server
� Enterprise servers

And as with control flow mechanisms, we show how the choice of data source
can have a huge impact on the overall performance and integrity of the
application.

Browser-maintained data flow sources
There are a number of browser-maintained data sources that we will discuss in
this section:

� URL query string
� POST data
� Cookies

Pros Cons

One benefit of using sendRedirect is that it
prevents inadvertent re-execution of the side
effects based on such browser events as forward,
back, resize, print, view source, or reload among
others (this unfortunate effect is sometimes called
the reload problem).

The reason sendRedirect solves this problem is
another advantage: the URL for the update never
appears in the browser’s location line or history.
The effect is that only the URLs of the “states” in
the application flow model appear in the location
and history, which is exactly the behavior desired.

The one disadvantage of
sendRedirect is that it causes an
extra round-trip between the
browser and Web application
server.

Luckily, this extra round-trip only
occurs during major transitions in
the application flow model, and is
well worth it, because
sendRedirect solves a major
source of data integrity errors in
Web applications.

Alternatives
There are no good alternatives to using a sendRedirect after processing requests in
servlets that require update side effects.
 Chapter 1. WebSphere programming model 45

All of these sources provide the best scalability characteristics (because the data
is maintained on the client), but with a trade-off that they may not be completely
reliable (because the user has control over the data source).

The discussion in this section will address the details of these and other
trade-offs.

URL query string
Whenever an HTTP GET is invoked, data can be passed in the query string part
of the target URL. This includes FORM data (hidden or otherwise) with METHOD=GET.

In any event, the query string syntax is:

?<name>=<value>{&<name>=<value>}

Neither the names nor values can have embedded spaces; instead spaces and
other special characters must be encoded.

The values can be retrieved through various methods associated with the
HttpServletRequest object, most notably getParameter, which returns the value
for a given name.

Role in the architecture
The most obvious place to use the query string in the online-buying application
flow model is where data is being passed from one state to the next along a
transition without side effects.

Another use for a URL query string is URL encoding of the session ID for
HttpSession on the Web server (see “HttpSession state” on page 50) instead of
cookies (discussed later in this section).

Pros Cons

The benefit of
using the query
string is that it is
very simple to
retrieve the
associated data.

Encoding the URL query string in sendRedirect calls and
generated HREFs can be quite complicated and only a small
amount of data can be passed.

The query string is visible on the location line, and can sometimes
be very long and confusing. This visibility in the query string
extends to hidden fields in forms (when METHOD=GET)

Alternatives
There is no good substitute for the URL query string to send a few small key values to
the target component. However, where the data is common across most states in the
application flow, it may be better to use cookies or HTTP sessions (both discussed later)
to make the data flow transparent to the programs.
46 WebSphere Version 4 Application Development Handbook

POST data
When an HTTP POST is invoked from an HTML FORM with METHOD=POST, the input
fields in the form are passed as part of an encoded input stream to the servlet.
The HttpServletRequest can be used to access the fields in two ways: directly
from the stream, or through the getParameter methods as if they were part of the
URL query string (even though they are not).

Role in the architecture
Post is normally used to pass larger amount of data to a servlet.

Cookies
Cookies are data maintained on the client by the browser on behalf of the server.
Cookies can be made to persist within or across browser sessions. Cookies are
passed to the Web server in the header of the request. Any updates are passed
back on the header in the response.

Within the servlet API, there are methods that allow you to get and set cookies.

Role in the architecture
Cookies are the preferred way to pass a session ID, if any, to the Web application
server. The same approach can be used for other data that is constant across
the Web application. Cookies are an excellent way to store a small amount of
user preference data.

Pros Cons

As with the URL query string, one benefit to using POST data is that it is
easy to retrieve, either by name or iteratively.

However, unlike the URL query string, the main benefit to using POST data
is that there is no absolute limit to the amount of data that can be sent.

Finally, the data passed does not clutter up the URL, so hidden fields remain
hidden to the casual user, and the encoding of the data is transparent to the
source component.

Alternatives
As with the URL query string, there is no good substitute to POST data to provide the
input parameters to actions with update side effects. However, where hidden fields are
used to provide common data across the entire browser session, it may be wise to
consider using cookies or HTTP sessions.
 Chapter 1. WebSphere programming model 47

Web application server maintained data flow sources
There are three main sources of data maintained by the WebSphere:

� HttpServletRequest attributes

� HttpSession state

� ServletContext attributes

All these sources share a characteristic not associated with the other ones: only
a Web application component (servlet or JSP) can store or retrieve data using
them.

We discuss the advantages and disadvantages of each in the context of the role
that source should play in the architecture. We also discuss any alternatives.

Pros Cons

Cookies are automatically
passed in the header, and thus
do not require explicitly coding
hidden fields or URL query
strings in the HTML and JSPs.
This feature of cookies makes
the application much simpler to
develop, test, and maintain.

The ability to maintain persistent
cookies means that the client
machines can be enlisted to help
share the cost of running the
application. In an e-business
application with millions of users,
not having to maintain often used
preference data for each one can
be a significant savings in both
space needed to store it and time
needed to retrieve it.

Passing cookies back and forth can be relatively
expensive. Further, the amount of data that can be
maintained per server may be limited by the
browser. The effect is that cookies should be used
sparingly.

Another problem is that not all browsers or levels of
browsers support cookies. Even if they are
supported, users can turn cookies off as a security
or privacy measure, which means that:

� Your Web application has to be coded for the
case where cookies are not available, and use
alternative techniques (discussed below),

� You must make an explicit decision to support
only users with browsers having cookies
enabled.

Also, other HTTP-based clients, such as applets,
may have trouble dealing with cookies, restricting
the servlets that they may invoke.

Alternatives
URL encoding techniques can be used to put the equivalent data in the URL query string
rather than relying on cookies.
48 WebSphere Version 4 Application Development Handbook

HttpServletRequest attributes
HttpServletRequest attributes (or more simply, request attributes) are
maintained by the Web application server for the duration of the request in what
amounts to an internal hash table.

The HttpServletRequest interface has methods to set and get the attribute
values by name. You can also retrieve a list (Enumeration) of all the attribute
names currently maintained in the request.

A JSP can use the expression syntax or Java escape tags to get request
attributes using the servlet API, or it can use a bean tag scoped to the request
(the default) with introspection to automatically load attributes whose names
match the bean properties.

Role in the architecture
The most prevalent purpose of request attributes is for maintaining the data bean
passed to a JSP by the servlet doGet method handling the display of a state. The
point here is that by having a systematic naming convention, the contract
between the servlet and JSP developer roles is very clear.

Pros Cons

Of all the data sources,
whether maintained by the
browser, Web application
server, or enterprise servers,
HttpRequestAttributes are
the second most efficient
(behind passing the data
directly in parameters of a
method or in a shared
variable).

Because its scope is limited
to the request, there is no
need to write logic to “clean
up” the data.

Setting too many objects into request attributes can
cause problems with:

� The contract between the source and target
component developers. For example, what do you
name the attributes? What is their type?

� Performance, because each set is a Hashtable put
and each get is a Hashtable lookup.

The HttpServletRequest object does not persist across
calls, so it cannot be used to hold data between states
in the application flow model. The net effect is that
request attributes can be passed only to targets using
forward and include. Request attributes cannot be
passed to targets invoked through sendRedirect.

Alternatives
When using forward or include to dispatch to an associated JSP, a controlling servlet
can pass data through HttpSession and ServletContext. When invoking a JSP or servlet
through the sendRedirect, data can be passed using cookies or the URL query string.
 Chapter 1. WebSphere programming model 49

HttpSession state
An HTTP session is a short term (transient) relationship established between a
client browser and a Web application server through which data can be
maintained. It “lives” as long as both the client and the server maintain the
reference to the relationship.

HttpSession state (in this section simply session state) is maintained by the Web
application server for the lifetime of the session in what is basically a hash table
of hash tables, the “outer” one keyed by the session ID (the session hash table)
and the “inner” one keyed by the state variable name (the state hash table).

When the session is created, the ID is passed back and forth to the browser
through a cookie (the preferred approach) or URL encoding. Since servlet API
2.2, the scope for sessions is a Web application (not the whole server).

The session is effective as long as both:

� The browser stays up to maintain the session ID cookie (or the pages with the
ID encoded in the URLs), and

� WebSphere maintains the state hash table for the session

The outer session hash table can be lost if the Web application server goes down
(and the session is not backed up). The inner state hash table can be lost on a
timeout or through explicit application events (the remove method, for example).

The HttpServletRequest interface has methods to get the session (optionally
causing it to create a new one if none exists), which returns a reference to the
HttpSession object. Once you have a reference to the session, you can get and
set state values by name. You can also retrieve a list (Enumeration) of all the
state names currently maintained in the session.

A JSP can use the expression syntax or Java escape tags to get session state
using the servlet API, or it can use a useBean tag scoped to session with
introspection to automatically load states whose names match the bean
properties.

Role in the architecture
Many Web applications handle login explicitly as part of the application flow,
rather than use the security mechanism provided by the Web Application Server.

In this case it is customary to store some sort of “login” token into the session
state. The session state maintained could be as simple as a customer ID, or it
could be a complex object that includes additional data common to all the states
in the application flow, such as open order.
50 WebSphere Version 4 Application Development Handbook

Pros Cons

Session state is rather
easy to use in the
program (especially if a
data structure JavaBean
is stored instead of
individual values). The
Web application server
manages it at runtime
based on configuration
parameters, making it
easy to tune
non-functional
characteristics such as
failover and performance.
This ease of use makes it
tempting to store some
application flow data (the
current open order for
example) in the session
state rather than in a
database that has to be
explicitly administered.

When the data is already
being stored in the back
end, and when accesses
are expensive, the
performance gains of
using session state to
cache the data can be
significant.

Session state suffers from the same problems that request
attributes do if you store too many objects in them in the
course of a single request: there is a name and type
contract problem with the target component, and a
performance penalty with every additional Hashtable put
and lookup.

Session state has some additional disadvantages:

� Timeout. A session can time out when you least
expect, making it risky to store significant application
flow data. Usually you end up explicitly modeling and
programming “save” and “load” type flows to make the
problem less acute.

� Server failure. Even if you have an infinitely long
timeout (and expect servlets to programmatically
invalidate the session state), the server can fail,
causing the data to be lost. Specifying that a session
state be backed up in a database gets around this,
and provides for failover.

� Cache consistency. When a session state is used to
cache back-end data, how do you make sure the
session state is in synch with the data stored in the
back-end system. To provide for cache consistency
means adding code to the doGet methods to check the
key of the data in a session state with that in the
request, and adding code to the doPost methods to
remove the affected session states.

� Cluster consistency. It is likely that you will want to
scale the Web site by adding a cluster of WebSphere
application servers. Even if you add all of the extra
logic to manage cache consistency from the previous
item, you must either force client/server affinity (see
“Stateful session EJBs” on page 32) and lose failover
support, or back the session up in a shared database
and impact performance.

Of course, the memory resources required for session
state should be taken into consideration. Indiscriminate
use of HttpSession can use up vast amounts of data. For
example, if there were 1000 active user sessions each
needing to maintain a megabyte of data, your application
would use up a gigabyte of memory for the session state
alone.
 Chapter 1. WebSphere programming model 51

Servlet context cache
The Web application server provides a context within which properties can be
shared by all servlets and JSPs within that scope. This context is commonly
called the “servlet context” and is accessible through the getServletContext
method on the Servlet API.

Servlet context is used to obtain a RequestDispatcher through which forward
and include can be invoked to flow control from one component to another (see
“Web application server component initiated control flow” on page 42).

Like request attributes and session state, the servlet context also maintains an
object that is the equivalent of a hash table, providing methods to get and set
attributes by name as well as list the names stored within.

Unlike request attributes, which are scoped to a request, and session state,
which is scoped to a session, servlet context is scoped by a Web application.
The current specification explicitly states that sharing of servlet context in a
cluster is unsupported. Note that session data is scoped by the Web application
as well since servlet API 2.2.

Alternatives
When a session state is used to cache data stored in back-end servers, a viable
alternative is to delegate caching to access beans or even EJBs, keeping the application
flow logic in the servlet clean and simple. Another advantage to this approach is that the
access beans are best able to keep the cache consistent because of their knowledge of
the business logic.

If you use WebSphere security so that the getRemoteUser method on the
HttpServletRequest returns an authenticated user ID, you can avoid the use of
HttpSession altogether by keying explicitly modeled business objects with this user ID.
The development costs of explicitly modeling session as a business object may be worth
it in the ability to use that data by other types of applications (client server or distributed
object as the case may be). Of course the primary benefit of eliminating the use of
session state is that the application will scale much better, because client-server affinity
is not required between the browser and Web application server.

If security is not turned on (maybe the application does not require it), and there is only
a small amount of data to be stored, you can use cookies as described above, with the
advantage that the client maintains the data.

However, there is no good substitute for HttpSession in scenarios with relatively small
amounts of data that are relatively stable and must be maintained on the Web
application server for security purposes, such as a login token.
52 WebSphere Version 4 Application Development Handbook

Role in the architecture
Servlet context can be useful for shared read-only data, or when only one servlet
updates the data periodically.

Another interesting use of servlet context is to cache references to business logic
access beans (even if they are singleton wrappers).

If used for either purpose, we would likely set attributes into the servlet context as
part of the init method, which would allow all servlets to use the data.

Pros Cons

Proper use of servlet context can
greatly reduce both the amount of
session state data and the number of
back-end accesses required to load
it.

As with session state, servlet context
is very easy to deal with, and can
eliminate the need to explicitly model
extra business objects.

Because servlet context attributes
cannot be shared in a cluster, there is
no requirement that data stored
therein be serializable. This allows
servlet context to be used to store
very complex objects, such as access
beans (preferred) or EJB references.

Also, storing singleton references in a
servlet context can prevent them from
being garbage collected, because the
reference is maintained for the life of
the Web application server.

Also as with session state (and request
attributes), you should minimize the number of
attributes stored, and make sure that there is a
systematic name and type convention in place.

Unlike HttpSession, the specification prohibits
sharing of servlet context in a cluster, primarily
to force its use as a true cache. This limitation
is not really a disadvantage when servlet
context is used as a cache for stable read-only
data, because each application server will
perform better having its own copy of the data
in memory.

If for some reason there is a requirement to
store common data, yet allow updates to it,
then client/server affinity must be used to
prevent cluster consistency issues. Of course,
this means that the updates have to be
associated with a specific user. Also, because
the servlet context is shared by the entire Web
application, you have to be careful to manage
the code carefully, since multiple servlet
threads could be accessing the same
attributes simultaneously.

Alternatives
Where servlet context is being used to store data from the back end to avoid extraneous
accesses (a caching pattern), an alternative is to delegate caching the data to the
business logic access bean.

Where the default servlet context is accessed (the parameterless version of the API),
then a viable alternative is to use the singleton pattern.

These alternatives do not supersede the advantages of storing business logic access
beans or connection objects in a servlet context to hold a reference and prevent garbage
collection.
 Chapter 1. WebSphere programming model 53

Enterprise server-maintained data sources
Of course, there are many enterprise server-maintained data flow sources
provided by and fully supported by IBM, such as CICS, IMS, and MQ. But in a
discussion of the WebSphere programming model, we are only concerned with
those that use standard Java APIs to provide access to the data or function
maintained:

� Java Naming and Directory Interface (JNDI)

� JDBC

What separates these data sources from the others is that they can be used
outside the context of a Web application server.

Java Naming and Directory Interface (JNDI)
JNDI provides a name value pair oriented interface very much like the Web
application server-maintained data flow sources (request attributes, session
state and servlet context cache).

The primary difference is that the JNDI name context is managed by a distributed
name server, which allows the names and values to be shared across requests,
sessions, application servers, and a cluster.

There are three types of objects that can be maintained in JNDI:

� Simple serializable JavaBeans (or Java objects)

� Distributed object references, such as EJB homes and remote interfaces

� Common object services, such as transaction contexts

The JNDI implementation provided in WebSphere Application Server caches
home references after lookup, providing for additional scalability in a multi-user
distributed environment.

Role in the architecture
One common use of JNDI in an application is to maintain user preference data,
including credentials that aid in authentication.

In a Web application, JNDI would be used by business logic and business object
access beans to get access to the home of EJBs.
54 WebSphere Version 4 Application Development Handbook

JDBC
JDBC provides a Java interface to relational databases, allowing dynamic SQL
statements to be created, prepared, and executed against pooled database
connections.

Any database that supports relational semantics can be wrapped with the JDBC
interfaces and provide a “driver” for use in the client application or creating a data
source.

Role in the architecture
In our online buying application, we would use JDBC to implement the business
object access beans in cases where performance is crucial.

An example of when we might use JDBC is in loading a product catalog into the
cache (distributed object overhead may be considered to be excessive for the
benefits achieved).

Pros Cons

The benefit to using JNDI is that
is designed for storing small to
medium amounts of relatively
stable data per name, without
requiring the involvement of a
database administrator to create
and maintain a new table.

The fact that JNDI is
distributable, sharable, and
persistable makes it applicable in
Web application scenarios where
the other data flow sources
cannot be used.

JNDI accesses are relatively expensive even with
the automated caching support provided by
WebSphere Application Server. Therefore, calls to
them should be limited using the techniques
discussed in “Stateless session EJBs” on page 29.
This approach will make it easier to port to
competitive products without having to worry about
their implementation.

Updates are even more expensive, so only
relatively stable data should be stored in JNDI
name contexts. The pattern is write once, read
many. For example, user preference data fits into
this category, but customer data, with its reference
to the currently open order, does not.

Alternatives
You can always explicitly model the data stored in JNDI as a business object and use
either JDBC or EJBs (preferably behind an access bean).
 Chapter 1. WebSphere programming model 55

Pros Cons

JDBC provides all the
benefits of relational
databases to Java
applications in an
implementation-indepe
ndent manner.

Directly using JDBC in
a client application will
likely provide the most
efficient implementation
of the application,
especially if connection
pooling of data sources
is used.

JDBC client code can be rather complicated to develop
properly. Minimizing the number of statements executed in
the course of a unit of work is key.

Also, explicitly managing the transaction context can be
complicated. If auto commit is turned off, care must be taken
in the program code to commit or rollback the transaction as
appropriate. If auto commit is left on, care must be taken
when there are multiple statements in a single unit of work:
each statement is a separate transaction, which can cause
significant extra overhead and complicate error handling
logic.

Directly using JDBC locks your application into relational
technology, although wrapping it within a business object
access bean can help insulate the client application code,
and make it easier to migrate later.

Even if wrappers are used, JDBC requires that a JDBC driver
be installed on the application server, potentially making it a
“thicker” client that it would be if EJBs were used.

Alternatives
The best standards-based alternative to JDBC is to use EJBs, which makes persistency
transparent to the business object programming model, and allows the client to be
“thinner”.

Of course, you can use non-standard connector-based technology such as CICS, MQ,
and IMS. But whether behind wrappers or not, these connectors make the client even
thicker by requiring additional software to be installed.
56 WebSphere Version 4 Application Development Handbook

Chapter summary
We showed how dividing the programming model into its three fundamental
features makes it easier to understand the issues that you will face when
developing a WebSphere-based application. We will summarize these aspects in
this section.

Throughout this chapter, we applied the programming model aspects to an online
buying application to provide a concrete example. We will briefly summarize the
mapping in this section as well, and show how the WebSphere programming
model meets the challenges outlined in the chapter introduction.

Summary of programming model aspects
Table 1-4 shows the various features of the WebSphere programming model at a
glance.

Table 1-5, Table 1-6, and Table 1-7 summarize the details of the components,
control flow mechanisms and data flow sources.

Table 1-4 WebSphere programming model features

Browser Application Server Enterprise Server

Component HTML, DHTML and
JavaScripts, XML,
framesets

Servlets, JavaServer
Pages, JavaBeans

Session and Entity
Enterprise
JavaBeans

Control flow
mechanism

HTTP (GET & POST) Java (forward,
include,
sendRedirect)

Java (RMI/IIOP)

Data flow
source

URL query string,
POST data, cookies

Request attributes,
session state, servlet
context

JNDI, JDBC
 Chapter 1. WebSphere programming model 57

Table 1-5 Programming model components

Component Tiers Role in architecture

HTML Browser Specifies page content associated with a given
state in the application flow model

DHTML and
JavaScript

Browser Handles client-side validations, confirmations,
cascading menus, list processing and so on to
minimize requests to Web server

Framesets and
named windows

Browser Groups related states on a single page to allow for
smaller, more parallel requests and minimize need
for explicit navigations

XML, DTD, and
XSL

Browser Allows request results to consist of data only and
provide client control of display format

Servlet Web
application

Controls application flow for a given state; inherits
common look and feel from superclass HttpServlet

JavaServer
Pages

Web
application

Handles generation of HTML/DHTML/XML for a
given state in an application flow model

Data structure
JavaBean

Java
application

Serializable data passed between the other
components such as servlets and JSPs/access
beans, EJBs and copy helpers, etc.

Business logic
access bean

Java
application

Wrapper encapsulating units of work (can be
equated with transitions in the business process
model); can be stateless or stateful

Business object
access bean

Java
application

Wrapper encapsulating persistent business objects
(can be identified by object model associated with
states in the business process model)

Stateless
session EJB

Enterprise
Java server

Distributable implementation of stateless units of
work (analogous to business logic access bean)

Stateful session
EJB

Enterprise
Java server

Distributable implementation of stateful units of
work that cache resources or data on behalf of a
user for the duration of a session

Session
synchronization

Enterprise
Java server

Methods added at deployment time to allow session
EJBs to support transparent transactional
semantics in business methods

CMP entity EJB Enterprise
Java server

Distributable implementation of persistence layer
and associated business logic (analogous to
business object access bean)

BMP entity EJB Enterprise
Java server

Methods added at deployment time to allow entity
EJBs to control quality of persistence service
58 WebSphere Version 4 Application Development Handbook

Table 1-6 Control flow mechanisms

Table 1-7 Data flow sources

Mechanism Source
components

Target
components

Role in architecture

HTTP GET HTML or
DHTML

Any URL Directly invoke the target URL
associated with the next state,
invoking a servlet or JSP for
dynamic content

HTTP POST HTML FORM Servlet Invokes the target servlet indicated
in the ACTION to handle update
side effects

Dispatcher
forward

Servlet doGet JSP Delegate the generation of the
HTTP response to the target JSP

Dispatcher
include

Servlet doGet JSP Compose the response from one or
more target JSPs that generate
response fragments

Response
sendRedirect

Servlet
doPost

Any URL Transfer control to the target URL
representing the next state based
on the ACTION result

Data flow
source

Managed by Control flow
mechanism

Role in architecture

URL query
string

Browser HTTP GET

sendRedirect

Pass small amounts of “key” data
used to drive queries in doGet of the
servlet associated with the target
state

POST data Browser HTTP POST Pass input data used to drive updates
in the doPost of the servlet
associated with the current state

Cookie Browser Any Maintain data common to the user or
session used to drive queries or
updates in any state

HttpRequest
attribute

Application
server
(WebSphere)

Dispatcher
forward and
include

Pass data representing the dynamic
content between the controlling
servlet and the associated JSP used
to generate the response
 Chapter 1. WebSphere programming model 59

Meeting the challenges
The WebSphere programming model is compelling because with it you can meet
all the challenges associated with developing a quality application that we
identified in the chapter introduction:

� Functional—the WebSphere programming model features support everything
you need to develop Web-enabled and distributed object applications.

� Reliable—by following the approaches discussed in this chapter, you can
change the deployment characteristics of WebSphere hosted applications to
handle different operational environments without changing the programs.

� Usable—the programming model supports the development of components
customized to handle specific client requests for application functions that are
automatically launched by the WebSphere Application Server.

� Efficient—the programming model features have clearly defined trade-offs
that govern when they best apply to maximize use of system resources.

� Maintainable—the programming model supports a separation of concerns
that make it easy to independently develop, test, and modify components.

� Portable—the features of the programming model are based on Java
standards that make it easy to deploy application components on different
platforms without change.

HttpSession
state

Application
server
(WebSphere)

Any Maintain stable data common to the
session used to drive queries or
updates in any state where cookies
are not feasible

Servlet-
Context
cache

Application
server
(WebSphere)

Any Maintain a cache of stable read-only
data accessible for all requests on a
single server to drive queries or
updates in any state

JNDI Name server
(WebSphere)

Any Maintain small amounts stable data
accessible to all servers

JDBC Database
server

Any Maintain any amount of any type of
data accessible for any request

Data flow
source

Managed by Control flow
mechanism

Role in architecture
60 WebSphere Version 4 Application Development Handbook

Furthermore, the programming model helps you meet the challenges associated
with defining an optimal development process:

� Repeatable—analysis, architecture and design, relatively standard steps
found in many development processes can be followed to develop quality
WebSphere-based applications.

� Measurable—following the analysis, architecture and design steps results in
a well defined number of servlets, JSPs, JavaBeans and Enterprise
JavaBeans.

� Toolable—the systematic mapping from business process models to
JavaBean and Enterprise JavaBeans, and from application flow models to
servlets, JavaServer Pages and JavaBeans has made it possible to use a
number of wizards, IDE and WYSIWYG tools.

� Predictable—given specific skill levels and tool choices, a team should be
able to make and correct productivity estimates that can be used to drive
project plans.

� Scalable—the ability to exploit a separation of concerns with well-defined
contract objects not only makes an application easy to maintain, but also
enables small or large teams of Java programmers and HTML page
designers to work together on projects of any size with minimal amounts of
coordination required.

� Flexible—separation of concerns also enables a team to use an iterative and
incremental development process driven from the top, bottom, or middle in
order to focus attention on high-risk items as early as possible.

If you develop your applications according to these principles, you will have an
application that is not only functional, efficient, maintainable and portable, but
also is able to exploit the deployment options best suited to your operational
environment. Many of these options are discussed in more detail in the
remaining chapters of this book.
 Chapter 1. WebSphere programming model 61

62 WebSphere Version 4 Application Development Handbook

Chapter 2. Tools overview

In this chapter we introduce the tools we refer to in the rest of the book. The tools
fall into two categories:

� IBM tools

� Third party tools

For each tool we include a brief description, links to further information, and
provide references to the chapters where we use and describe the tool.

2

© Copyright IBM Corp. 2001 63

IBM tools
The following sections briefly describe the new IBM products that support the
development of applications in the WebSphere environment. For each product
we focus on the new and important features provided to developers.

The tools we discuss are:

� WebSphere Application Server Version 4.0

� WebSphere Studio Version 4.0

� VisualAge for Java Version 4.0

� WebSphere Business Components Composer

WebSphere Application Server Version 4.0
Version 4.0 is the latest release of WebSphere Application Server (WAS). For
complete information about this latest version of WAS go to:

http://www.ibm.com/software/webservers/appserv/

The key new features in Version 4.0 of WAS that are of particular interest to
developers include:

� Support for all Java 2 Enterprise Edition (J2EE) 1.2 APIs, including:

– Java Development Kit (JDK) 1.3
– Java Servlet 2.2
– Java Server Pages (JSP) 1.1
– Enterprise Java Beans (EJB) 1.1
– Java Message Service (JMS) 1.0.2
– Java Database Connectivity (JDBC) 2.1

� Incorporates support for Web services:

– Simple Object Access Protocol (SOAP)
– Universal Description, Discovery and Integration (UDDI)
– Extensible Markup Language (XML)
– Web Services Definition Language (WSDL)

� New tools to support J2EE application development

� New lightweight single server and developer editions

� Improved performance, including:

– Improved scalability on SMP machines
– Configurable caching of dynamic web content
– Improved plug-in performance using built-in web server
– Improved HTTP session clustering
64 WebSphere Version 4 Application Development Handbook

http://www.ibm.com/software/webservers/appserv/

Java 2 Enterprise Edition support
Version 4 of WAS is the first release to fully support the J2EE APIs. Previous
releases supported earlier APIs that evolved into the versions included in Version
1.2 of the J2EE specification. If you have an existing application developed for an
earlier Version of WebSphere, the application architecture and much of the code
will be fully supported in Version 4. In cases where there have been significant
changes in the J2EE APIs, for example in the move from Version 1.0 to Version
1.1 of the EJB specification, WAS provides backwards-compatibility modes that
will allow existing applications to run largely unaltered while they are migrated.

Web services support
Web services are applications that use open standards to advertise, describe
and provide services to other applications over the Internet. Because Web
services are based on open standards and use XML to encode exchanged
information they enable heterogeneous systems to interoperate without the need
to develop an adapters for each new system. Furthermore, Web services provide
the ability to dynamically locate and bind applications that provide a required
service at runtime.

WebSphere Application Server is the fundamental building block upon which
IBM’s Web services offerings are based. The latest versions of the application
server and related tools include built-in support to enable the development of
applications that provide and use Web services. We touch on these tools only
briefly in this publication—Web services will be covered in detail in a forthcoming
redbook.

New tools
WAS provides a number of new tools to assist in the development and
management of applications.

Of particular interest to developers is the Application Assembly Tool (AAT), which
provides a single GUI interface for creating and managing J2EE module, such as
EJBs and Web applications. It is also used to assemble individual modules into
J2EE Enterprise Applications, ready for deployment into the application server.
Via the AAT GUI you can create and update the Java archive (JAR) files that
contain the packaged J2EE modules, and create and edit the XML deployment
descriptors that describe the contents of the modules. The assembly tool is
described in more detail in the section “Application Assembly Tool (AAT)” on
page 390.
 Chapter 2. Tools overview 65

New single server version
There are two versions of WebSphere Application Server Version 4.0 on the
distributed platforms (Windows, AIX, Solaris, HP-UX, and Linux):

� Advanced Edition (AE)

� Advanced Single Server Edition (AEs)

AE is the full multi-server version, and supports all WebSphere features,
including work load management, clustering and failover. AEs supports all of the
J2EE APIs (including support for EJBs) but is intended for entry-level, single
server environments that do not require the full set of features provided by AE.

The AEs version of WAS is also available with a restricted license that limits its
use to development environments only. This version is included with a number of
IBM tools and is also available for free download from the IBM WebSphere Web
site.

Differences between the AE and AEs versions
The points below highlight the ways in which the lightweight AEs version of WAS
differ from the full AE version:

� They do not require a database in which to store configuration
information—the configuration is stored in XML files in the file system

� No services are added to the Windows services panel—the server is started
and stopped by executing shell scripts or batch files

� Only one application server process can be configured

� There is no support for clustered configurations or workload management
(WLM)

� Administration is via a browser or editing configuration files—there is no
standalone administrator’s console

� WebSphere enterprise extensions are not supported

� Security is supported, however the only security registry supported is the
local operating system—there is no support for LDAP or custom security

Improved performance
Version 4 of WAS introduces a number of enhancements in the area of
performance. Of particular relevance to developers are the improved scalability
on multi-processor (SMP) machines, and the ability to cache dynamic Web
content.
66 WebSphere Version 4 Application Development Handbook

Improved scalability on SMP impacts developers by improving the efficiency of
code that takes advantage of Java’s multi-threading capabilities. This is
especially relevant in a J2EE environment, where servlet requests and EJB
method invocations are serviced by thread pools managed by the application
server.

The ability to cache dynamic content produced by JSPs and servlets may also
influence your application implementation. For each JSP and servlet in your
application WebSphere now offers the ability to specify whether the output from
the component is to be cached, and if so, how long it may be cached.

Often pages displayed contain varying levels of dynamic content—for example a
customer’s account balance is unique to the customer, and so should never be
cached. News headlines displayed on the same page for every customer,
however, may be dynamic in that they are obtained from a database, but change
relatively infrequently. If you separate the headlines into a separate JSP or
servlet and include it in the page using the JSP include directive, you can tell the
application server to cache the generated content for a certain amount of time,
significantly reducing the number of database queries required to obtain the
same information for every user.

WebSphere Studio Version 4.0
Version 4.0 is the latest release of WebSphere Studio. For complete information
about this latest version of Studio go to:

http://www.ibm.com/software/webservers/studio/

The new version of WebSphere Studio includes several new features:

� Support for WebSphere Application Server Version 4.0: this implies support
for the J2EE specifications: servlet 2.2 and JSP 1.1

� Creation of Web archives (WAR files): in this new version of Studio, it is
possible to create the Web modules and publish them to the server locally or
via FTP

� Support for custom tag libraries (as part of the JSP 1.1 specification)

� New creation and consumption wizards for Web services

� A copy of WebSphere Application Server 4.0 AEs, licensed for development
use only

WebSphere Studio Version 4.0 is discussed in more detail in Chapter 10,
“Development using WebSphere Studio” on page 237.
 Chapter 2. Tools overview 67

http://www.ibm.com/software/webservers/studio/

VisualAge for Java Version 4.0
Version 4.0 is the latest release of VisualAge for Java. For complete information
about this latest version go to:

http://www.ibm.com/software/ad/vajava/

The new version of VisualAge for Java includes support to assist developers in
writing code for and deploying code to WebSphere Application Server Version
4.0.

The WebSphere Test Environment (WTE) included in the new version uses
Version 3.5.3 of the WebSphere runtime, which includes support for Version 2.2
of the Servlet API and Version 1.1 of the JSP specification—these are the
versions supported by Version 4.0 of WAS.

Version 4.0 of VisualAge for Java also includes a new menu option that enables
EJBs developed using the built-in EJB development environment to be exported
as EJB 1.1 JAR archives. These archives include the XML deployment descriptor
and database schema and mapping information.

In order to take advantage of the enhanced CMP mapping capabilities provided
by VisualAge for Java, you will also need to download an enhanced EJB
deployment tool (EJBDeploy) from:

http://www.software.ibm.com/vadd/

This is a new command-line tool that replaces the EJBDeploy tool shipped with
WAS AEs. The new tool will be shipped with WAS AE.

VisualAge for Java is discussed in more detail in Chapter 11, “Development
using VisualAge for Java” on page 259.

WebSphere Business Components Composer
WebSphere Business Components Composer (WSBCC) is a framework used in
developing Web applications. It is discussed in Chapter 7, “Designing with
frameworks” on page 153 and Chapter 12, “Development with frameworks” on
page 283.
68 WebSphere Version 4 Application Development Handbook

http://www.ibm.com/software/ad/vajava/
http://www.software.ibm.com/vadd/

Third party tools
The third party tools described in the following sections are use in this redbook.
The tools are:

� Rational Rose

� Rational ClearCase

� Jakarta Ant

� Jakarta Log4J

� Jakarta Struts

� JUnit

Rational Rose
Rose is a model-driven development tool from Rational that allows developers to
model their applications using the Unified Modeling Language (UML).
Information about Rose can be obtained from the Rational Web site at:

http://www.rational.com/products/rose/

Rose is discussed in more detail in Chapter 5, “Requirements modeling” on
page 89 and Chapter 6, “Modeling and code generation” on page 123.

In developing this book we used the version of Rose included with the Rational
Suite Enterprise Version 2001A.04.00.

Rational ClearCase
ClearCase is a software configuration management (SCM) tool developed by
Rational. Information about ClearCase can be obtained from the Rational Web
site at:

http://www.rational.com/products/clearcase/

ClearCase is discussed in more detail in Chapter 14, “Software Configuration
Management” on page 385.
 Chapter 2. Tools overview 69

http://www.rational.com/products/rose/
http://www.rational.com/products/clearcase/

Jakarta Ant
Ant is an open source build tool developed as part of the Apache Jakarta project.
Information about Ant can be obtained from the Ant Web site at:

http://jakarta.apache.org/ant/

Ant is discussed in more detail in Chapter 9, “Development using the Java 2
Software Development Kit” on page 183.

Jakarta Log4J
Log4J is an open source Java logging framework developed as part of the
Apache Jakarta project. Information about Log4J can be obtained from the
Log4J Web site at:

http://jakarta.apache.org/log4j/

Log4J is discussed in more detail in Chapter 13, “Guidelines for coding
WebSphere applications” on page 325.

Jakarta Struts
Struts is an open source framework for developing Web applications using the
Java Servlet API. It is a subproject of the Apache Jakarta project. Information
about Struts can be obtained from the Struts Web site at:

http://jakarta.apache.org/struts/

Struts is discussed in more detail in Chapter 7, “Designing with frameworks” on
page 153 and Chapter 12, “Development with frameworks” on page 283.

JUnit
JUnit is an open source framework that can be used to develop and execute
automate unit tests against Java code. Information about JUnit can be obtained
from the JUnit Web site at:

http://www.junit.org/

JUnit is discussed in more detail in Chapter 18, “Automating unit testing using
JUnit” on page 517.
70 WebSphere Version 4 Application Development Handbook

http://jakarta.apache.org/ant/
http://jakarta.apache.org/log4j/
http://jakarta.apache.org/struts/
http://www.junit.org/

Chapter 3. About the PiggyBank
application

This chapter introduces the PiggyBank application that we use to illustrate
examples throughout this book.

3

© Copyright IBM Corp. 2001 71

Introducing the PiggyBank application
The PiggyBank application is a very simple banking application that we designed
and built while we were developing this Redbook. We use this example
application to illustrate various points throughout the book.

The source code for the multiple versions of the application and other supporting
files such as Ant build scripts and Rose models are included in the Web material
that supports this book and is described in Appendix A, “Additional material” on
page 557.

This chapter provides background information about the PiggyBank application
that is intended to help place the various discussions relating to the application in
context.

What is a piggy bank?
Not every reader is familiar with the term piggy bank so for those readers that are
not, we attempt to explain. A piggy bank is a child’s toy, a container for saving
small amounts of money—typically coins that are inserted through a small slot in
the top. Traditionally a piggy bank is shaped to look like a pig, although the term
is often applied to any such container.

Our application has much in common with a piggy bank—it is little more than a
toy, although we hope that you can learn from it.

Functional overview
The PiggyBank application manages accounts and customer records for our
fictitious bank. The application has two separate user interfaces:

� A Swing-based GUI that runs in a standalone Java application

� An HTML-based Web interface that runs in a client browser

Both interfaces access the same back-end system, and operate upon the same
data. We often refer to these interfaces as channels because they implement just
two of potentially many different channels of communication with our application.
72 WebSphere Version 4 Application Development Handbook

Standalone client
The standalone client application is intended to be rolled out to customer service
staff working in PiggyBank premises such as branches and call centers—it
implements the full range of application functionality, including:

� Create customer
� Open an account
� Display customer information
� Display account information
� Transfer money
� Cash a check

Our user interface, shown in Figure 3-1, is basic but functional.

Figure 3-1 The PiggyBank standalone client in action

Web client
The PiggyBank Web client is intended to be rolled out to PiggyBank customers. It
offers a much reduced set of functionality:

� Log on
� Display account details
� Transfer money
� Log out
 Chapter 3. About the PiggyBank application 73

In Chapter 12, “Development with frameworks” on page 283 we also show how
to implement a multi-lingual Web interface using the open source Struts
framework from the Apache Jakarta project.

Figure 3-2 shows the PiggyBank Web client in action.

Figure 3-2 The PiggyBank Web client in action

Security functionality
Typically security is a primary consideration in a banking application. The
PiggyBank application is unusual in this respect—there is no security
functionality implemented at all. All users of the standalone client have full
access to all customer and account information. Web clients need only enter a
valid customer ID to log in—there is a password field on the log on form but it is
ignored.

We have omitted security from the application in order to allow us to focus on the
real message of this book—how to design, build and deliver well-structured and
serviceable J2EE applications for WebSphere Application Server.
74 WebSphere Version 4 Application Development Handbook

Application architecture
The high-level architecture of the PiggyBank application is illustrated in
Figure 3-3, showing the two types of application clients sharing the same
back-end business logic and data.

Figure 3-3 PiggyBank high-level application architecture

All of the application business logic is implemented as Enterprise JavaBeans
(EJBs). The EJBs store persistent application data, such as account and
customer information, in the database. Rather than make direct JDBC calls to
persist data, the application uses container-managed persistent (CMP) entity
EJBs, leaving the task to the WebSphere EJB container.

Both client channels communicate with the EJBs using RMI over IIOP—the
standalone client communicates with the EJBs directly, whereas the Web client
uses HTTP to connect to servlets that make RMI calls on behalf of the client, and
display the results using Java ServerPages (JSPs).

The only logic implemented locally in the clients is basic validation and
conversation management specific to the channel. The application implements
the model-view-controller (MVC) architecture as described in
“Model-view-controller pattern” on page 87—each client channel implements its
own view and controller, but shares the same model.

Browser Database
Server

EJB
ServerIIOP

Database

JDBC
Web

Application IIOPHTTP

Servlets &
JSPs

Standalone
Client

IIOP
 Chapter 3. About the PiggyBank application 75

Application modules
The PiggyBank application is split into five modules:

� Common code
� EJBs
� Use cases
� Standalone client
� Web application client

The layered, modular design of the PiggyBank application is intended to allow
the replacement of any one module, while maintaining the interface to that
module, without requiring any changes to the internal implementation of other
modules.

For example, in Chapter 12, “Development with frameworks” on page 283 we
replace the entire Web application module with a new one based on the Struts
framework—although the internal implementation of the module changes
significantly, no changes are required in any other module.

The relationships and dependencies between the modules are illustrated in
Figure 3-4.

Figure 3-4 PiggyBank application modules

Common code

Use cases

EJBs

Web
client

Standalone
client
76 WebSphere Version 4 Application Development Handbook

Common code
Common code underpins the entire application. The PiggyBank common code
falls into two categories:

Helper classes Helper classes provide common functionality to all other
modules in the application, such as message logging or
EJB lookup.

Dependent classes Dependent classes bridge the boundaries between
modules—they generally appear in the method signatures
that define the interfaces between modules, and classes
are thus dependent upon them. They consist of data only
objects, as described in “Data structure JavaBeans (data
beans)” on page 23, and application exceptions.

One fundamental characteristic that applies to all of our common code is that is
has no dependency on any other application code—that is to say it can be
compiled in isolation without reference to any other module. Dependencies on
external modules, such as a third party logging library, are allowed.

EJBs
The EJB code implements all of the PiggyBank persistence and business logic.
The EJB module provides services to clients via a session bean façade—the
internal implementation of the business logic hidden behind the session bean
interface is not intended for use by clients of the module (although this policy is
not enforced). This arrangement is illustrated in Figure 3-5.

Figure 3-5 EJB module session façade

Account

Customer

Account Manager

Customer Manager

EJB
client

EJB
module

Session Entity
 Chapter 3. About the PiggyBank application 77

The EJBs depend only upon the common code at build and runtime—no other
modules are required.

Use cases
The PiggyBank application use case classes fulfil the role of business logic
access beans as described in “Business logic access beans” on page 26. Each
use case class supports a single use case defined during the requirements
analysis described in “Use case analysis” on page 90.

The use cases implement the command pattern—clients create an instance of
the use case class, populate it with data using setter methods, and then invoke
the execute method. All use cases return data-only beans as a result of their
execution.

Internally the use case classes are EJB clients—they delegate the processing of
business logic to the EJB layer. In the PiggyBank application they are the only
EJB clients (apart from EJBs such as the session EJBs, of course). This extra
layer gives us a number of advantages:

� Flexibility to modify the business logic implementation without affecting our
client channels

� Removes the need for client channel programmers to understand how to
access the EJBs, or indeed anything about the EJB implementation, including
the fact that there are EJBs involved at all

� Encapsulates the EJB access code into a single place, where it can be
managed and maintained more easily

The use case code depends upon the common code and the EJB code to
compile.

Standalone client
The standalone client application is a simple Swing GUI application. It uses the
use case classes to access the business logic. Results from the use cases are
returned in the form of data only beans—the GUI code extracts information
directly from the data only beans and presents it to the user.

Because the client code is—via the use case code—an EJB client, it must be
packaged as a J2EE application client and execute inside the WebSphere client
container.

Despite this, there are no code dependencies on the EJB layer—the standalone
client requires only the common and use case code to compile.
78 WebSphere Version 4 Application Development Handbook

Web client
The Web application client is implemented using servlets and JSPs. At the core
of the Web application is a crude controller servlet that implements the command
pattern. The controller examines the incoming request URI and uses it to
determine which command must be executed. The commands are created as
individual classes that implement an interface with a single execute method. This
approach is convenient to work with and avoids many of the deficiencies in the
single servlet approach described in “Role in the architecture” on page 19.

The Web application commands access the business logic using the use case
layer. The data only beans they receive in reply are packaged in channel-specific
view beans, which are then placed into the HTTP request and passed to a JSP
for display. The view beans are a wrapped around the data beans, providing
JSP-friendly services such as iteration and text formatting.

As with the Swing client, the code that implements the Web channel requires
only the common and use case code at compilation time—there are no
references to classes in other layers.

Application implementation
The PiggyBank application is implemented in a number of Java packages.
Table 3-1 lists the packages included in each module, and describes the contents
of each package.

Table 3-1 PiggyBank modules and packages

Module Package Description

Common itso.was4ad.data Data only beans

itso.was4ad.exception Business exceptions

itso.was4ad.helpers Helper classes

EJB itso.was4ad.ejb.account Account EJBs

itso.was4ad.ejb.customer Customer EJBs

Use case itso.was4ad.usecase Use cases

Standalone client itso.was4ad.client.swing Swing GUI client

Web application itso.was4ad.webapp.command Web commands

itso.was4ad.webapp.controller Controller servlet

itso.was4ad.webapp.view Web channel view beans
 Chapter 3. About the PiggyBank application 79

Application delivery
The deliverables from our development process are the J2EE modules that
comprise the EJBs, Web application and standalone client, plus the common
supporting code (the common code and use cases) required by these modules.

In a real-world development project, these modules would be assembled into
one or more enterprise archive (EAR) files for deployment into the production
environment. Typically there would be at least two EAR files in production. One
would contain the server side code—the Web application and EJBs, and would
be installed in the application server. The other EAR file would be distributed to
the client machines, and would include only the standalone client code and code
required for the client to run. Another permutation would have the EJB and Web
application code split into separate EAR files and deployed into different parts of
the infrastructure.

The deployment of an application into a production is beyond the scope of this
book. Nevertheless we have to deploy our code into a WebSphere runtime
environment in order to properly test it—in order to do this we describe how to
create a single EAR file that contains all of the PiggyBank modules, and how to
deploy the EAR file into WebSphere.

From a development perspective the configuration, assembly and deployment of
the various modules that make up the application is irrelevant. As long as we
produce truly portable, J2EE compliant modules with well-defined interfaces and
dependencies, we can largely disregard such considerations. This gives the
deployment team the flexibility to configure the production environment
according to the expected and actual workload and usage patterns, and allows
developers to concentrate on the application business logic, rather than topology
questions such as the number of machines and the connectivity between them.

This is not to say developers can ignore deployment issues completely—it is
essential, now more than ever, to write code that will function correctly no matter
how it is deployed. Developers must assume, for example, that EJB server
components are physically remote from a client, and that clustering features
such as workload management and session persistence are in use. This means
that there may be multiple copies of a component active at any one time, and
that subsequent requests from a particular user may not necessarily return to the
same Java process or even the same machine. These are the foundations upon
which truly flexible, scalable applications are built.
80 WebSphere Version 4 Application Development Handbook

Part 2 Analysis and
design

In this part we discuss activities associated with the analysis and design of a
WebSphere application. We describe how we may model our application
requirements and use that model to drive our application design. We also discuss
how tools such as Rational Rose can assist us with analysis and design
activities.

The final chapter in this part of the book discusses how we can use frameworks
in our application design. It introduces two frameworks—Jakarta Struts and
WebSphere Business Components Composer—that we use in later chapters to
implement elements of our example application.

Part 2
© Copyright IBM Corp. 2001 81

82 WebSphere Version 4 Application Development Handbook

Chapter 4. Overview of development
activities

In this chapter we introduce the analysis and design activities described in this
part of the book. Next we discuss the assembly of a development team and the
roles within it. We also introduce the design patterns referred to in this book.

4

© Copyright IBM Corp. 2001 83

Analysis and design activities
The analysis activity has a lot of added value, especially in a development “from
scratch”. First, it captures the requirements in a set of use cases. Then, applying
several methods such as brainstorming, mind-mapping, lexical analysis and
heuristic modeling on the earlier deliverables identifies candidate objects, which
will be precisely defined in a data dictionary. Refining the list allows static object
modeling to provide a class diagram and optionally CRC cards. Finally, dynamic
modeling delivers a set of sequence diagrams combined with some optional
state diagrams. These steps can be iterated as long as required.

Figure 4-1 shows the trail that is followed in Part 2, “Analysis and design”.

Figure 4-1 Analysis and design trail

The term “modeling” is hereby used in the common sense of “a simplification of
the reality”. Modeling can be split into two main activities: analysis and design
(Figure 4-2).

Figure 4-2 Modeling parts

The distinction between analysis and design must be permanently kept in mind:

� Analysis describes what the system does.

� Design describes how the working system will actually perform its task.

Requirements
modeling

Object
modeling

Code
generation

Analysis Design

Modeling
84 WebSphere Version 4 Application Development Handbook

As a corollary of this:

� Analysis deliverables are kept at the business level.

� Design activity produces the technical deliverables.

This part of the book assumes that the project is already covered by a more
complete OO methodology.

Assembling a development team
The e-business applications are created by multidisciplinary teams. The skills
required are contributed from graphic artists, Web page designers, client and
server side script writers, and Java programmers.

Whether there is only one person or one hundred, the concept of the separation
of roles and responsibilities is key to the successful creation and maintenance of
the e-business application.

The command pattern involves separating the tasks by each role, such as:

� The HTML developer uses a tool like WebSphere Page Designer to generate
HTML pages and JSP templates.

� The Script developer uses a Java programming environment like VisualAge
for Java to edit, test and debug servlets and JSPs.

� The Java business logic developer uses a Java programming environment,
like VisualAge for Java, and builders, like the integrated EJB builder, to
specify the details of the business logic, to access legacy applications and
data, and to build the commands.

Further reading
A good reference for assembling a development team is the book The Rational
Unified Process, An Introduction. Philippe Kruchten.

Development roles
In the book, for the sake of clarity, when we refer to, for instance, the senior
business analyst, we mean “the person who plays the role of senior business
analyst”. It might be the same person who plays the role of say the junior Java
developer.
 Chapter 4. Overview of development activities 85

In considering our fictitious project analysis and design, we assume that the
project team will consist of a number of persons who broadly fit into the following
categories:

Business analyst This person is supposed to have a lot of business
knowledge while few technical skills. He can write
documents in good language. In this particular context
he knows about the use case driven approach and has
basic notions of OO analysis and application
development.

OO designer This person is highly skilled in IT and OO and knows
most of the technical environment. He works
intensively with the application architect.

Java developer Senior developers have significant experience from
working on previous projects. They are entrusted with
delivering the more technically challenging and
performance critical sections of the code.

Junior developers are competent Java programmers
with less experience than their more senior
colleagues. The junior developers concentrate their
coding efforts on the servlet and client portions of the
code.

Application architect The application architect is the technical lead on the
project. He has overall responsibility for determining
the high-level structure of the application, and the
interaction between components. He is also a senior
developer.

Web developer Web developers are skilled in the use of HTML and the
tools used to develop and maintain Web content. They
are responsible for delivering HTML and JSP pages
and the various interface elements such as images
contained within them.

Patterns
Most application designs follow certain documented patterns that have been
proven in many successful installations. The original book describing patterns is
Design Patterns: Elements of Reusable Object-Oriented Software. Erich
Gamma, et al.

We will use some of the patterns for the PiggyBank application.
86 WebSphere Version 4 Application Development Handbook

Model-view-controller pattern
The model-view-controller (MVC) pattern consists of three parts:

Model A set of objects that represents the business logic of the
application. This usually includes classes to represent business
abstractions (such as accounts, purchases, and so forth) as well
as real-world objects (such as employees and customers).

View A particular way of presenting a set of information to a user. The
best way to think of a view is to think of a particular Web page or
screen that displays a single set of linked data to the user.

Controller The layer in an application that handles the details of application
flow and navigation. It translates information from the model
layer into a form the View layer can understand, and deals with
the all-important decisions as to what View to display next in
response to a particular user action.

The key here is that the model is kept separate from the details of how the
application is structured (the controller) and how the information is presented to
the user (the view).

The question that may be arising in some readers' minds is "Isn't J2EE already a
framework to solve these problems?". Well, in a way it is. Many development
organizations have successfully applied the following mapping of J2EE API's to
the three roles in the MVC pattern:

� Model: JavaBeans and Enterprise JavaBeans

� View: JavaServer Pages

� Controller: Servlets

Here servlets act as controllers and are the recipients of HTTP POST requests,
and are responsible for passing POSTed data to the model and selecting which
JSP page will be invoked to display results. This is often called the "Model II" JSP
architecture.

This architecture has been described at length in:

� Using JavaServer Pages: Servlets Made Simple. Kyle Brown and Gary Craig.
The Java Report, August 1999.

� Enterprise Java Programming with IBM WebSphere. Kyle Brown, et al.

We will come back to the MVC pattern in “MVC pattern” on page 100.
 Chapter 4. Overview of development activities 87

Command pattern
The command pattern is often used to further isolate business logic from
controller activities. Commands are used to invoke business logic in the same or
in other machines from the servlet controller. Such a design provides additional
flexibility because the business logic may be moved to other servers without
impacting the front-end and the servlets.

We will come back to the command pattern in “Command pattern” on page 105.
88 WebSphere Version 4 Application Development Handbook

Chapter 5. Requirements modeling

In this chapter we describe methods to start building Web applications with a use
case driven approach, based on use case analysis principles.

Next we discuss several design techniques we can use to realize the use cases
and discuss how to interact with external systems.

Finally, we introduce some common principles to design a Web user interface
tied to the use case analysis.

5

© Copyright IBM Corp. 2001 89

Use case analysis
The use case analysis describes the functional requirements of the system under
development. The model uses graphical symbols (Figure 5-1) and text to specify
how users in specific roles will use the system through use cases. The textual
descriptions describing the use cases are from a user's point of view; they do not
describe how the system works internally or its internal structure or mechanisms.

Figure 5-1 Use case analysis UML icons

The use case analysis basically includes the following elements (Figure 5-2):

� Actors

� Use cases

� Communication associations between actors and use cases

� Relationships between use cases (also known as use case associations)

� Termination outcomes

� Conditions affecting termination outcomes

� Termination outcomes decision table

� Problem domain concept definitions in a glossary (also known as data
dictionary, but, be careful, this term is often debased)

� Flows of events and system sequence diagrams

Some of them can be optional or informal at this step, depending on the
methodology.

Use Case Actor
90 WebSphere Version 4 Application Development Handbook

Figure 5-2 Use case analysis elements

Actor names, actor descriptions, use case numbers, use case names, use case
business events, and use case overviews as well as communication-
associations between the actors and the use cases provides an overview of the
functional requirements. The other constructs of the model document the
expected usage, user interactions, and behaviors of the system in different styles
and depth.

The main purpose of use case analysis is to establish the boundary of the
proposed software system and fully state its functional capabilities to be
delivered to the users. Other purposes of use case analysis are:

� Provides a basis of communication between end users and system
developers.

� Is the primary driver for estimating the application development effort.

� Provides a basis for planning the development of the releases.

� Allows scheduling of common functionality early in development.

� Allows development of smaller increments while maintaining broad coverage.

Use CaseNumber:
Subject Area:
Business Event:
Name:
Overview:
Preconditions:
Description:
Associations:
Traceable To:
Usability Index:
Inputs:
Outputs:
Notes:

Txxxxxxxxxxxx

Decision Table

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

T

T T

T

F

FFF

F

Txxxxxxxxxxxx

Decision Table

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

T

T T

T

F

FFF

F

Actor
Name:
Description:
Status:
Subclass:
Superclass:
Associations:

Problem
Domain
Concepts

Flow of Events
STEP A/S ACTION DATA VALIDATION NOTES
xxxx xx xxxxxxxxxxxxxxx xxxx xxxxxxxxxxx xxxxxxxxxx
xxxx xx xxxxxxxxxxxxxxx xxxx xxxxxxxxxxx xxxxxxxxxx
xxxx xx xxxxxxxxxxxxxxx xxxx xxxxxxxxxxx xxxxxxxxxx
xxxx xx xxxxxxxxxxxxxxx xxxx xxxxxxxxxxx xxxxxxxxxx
xxxx xx xxxxxxxxxxxxxxx xxxx xxxxxxxxxxx xxxxxxxxxx

System Sequence Diagram

Termination Outcome:

Conditions Affecting:

Scenario Number
Use Case Number
Termination Outcome
Scenario Notes
Scenario Describption
 Chapter 5. Requirements modeling 91

� Allows scheduling of complex functionality later in development without
changing the code that already exists or having to test for damage to earlier
releases.

� Provides a basis for identifying objects, object functionality, interaction, and
interfaces (see Chapter 6, “Modeling and code generation” on page 123).

� Provides the primary basis for defining the user interface requirements (see
“Designing the user interface” on page 115).

� Provides a basis for defining test cases.

� Serves as the basis for acceptance testing.

� Provides a basis for producing user support materials, such as user
documentation and electronic performance support interventions.

Here are some definitions to provide a base for discussion:

� A requirement is a condition or capability to which the system must conform.

� A use case is a sequence of actions a system performs that yields an
observable result of value to a particular actor.

� An actor is anything external to the system under development that interacts
with it. An actor can be an instance of a user (specific human) or another
system. An instance of an actor can create instances of uses cases. They are
prospective users playing a specific role with the system. Several users can
play the same role and one user can perform several roles.

� Primary actors are those roles for which the system is being built to serve.
They are associated with sets of use cases that reflect the primary functions
of the system.

� Secondary actors have associated use cases for supporting the system in
providing its primary functions. These roles will typically be for maintaining
and customizing the system, such as a system administrator. This is more
considered at design time.

The are many reasons why actors are used with use cases:

� Defining actor types allows us to define use cases in terms of specific
expectations (uses) of the system. In other words, it allows us to narrow the
expectations to specific roles in which a human user would be using the
system.

� Defining actors helps to identify the system border; what is inside the system
and what is outside the system.

� Defining actor types helps us show user training needs for particular aspects
of the system.
92 WebSphere Version 4 Application Development Handbook

� Defining actor types helps us show which security needs are required for
which user types.

Finally, it is important to remember that because the system under development
has not been placed into the user environment, user types/job titles probably do
not exist specifically for the new system. After the new system is placed in the
user environment, it is not unlikely that job titles/user types will be redefined and
possibly reflect the actor types defined in the use case model.

For additional information, the reader can consult the UML User Guide, Rational
Unified Process.

PiggyBank use cases
These are the PiggyBank use cases:

� Transfer money
� Cash a cheque
� Display balance

Transfer money
In this use case we transfer funds from a PiggyBank account to another
PiggyBank account.

� Input:

– Customer ID
– Credit account number
– Debit account number
– Amount to be transferred

� Basic path:

1. The customer enters the required input information and submits the
request.

2. The system checks that both accounts exist, that the customer is owner of
the debit account and that the amount to be transferred is lower than the
debit account current balance.

3. The system debits the customer account and credits the other account by
the specified amount.

4. The system displays the customer a summary of the transaction.

� Alternative path:

2b.One of the checks fails.

3b.The system displays a message explaining why the transaction cannot be
completed.
 Chapter 5. Requirements modeling 93

Cash a cheque
In this use case we cash a cheque from the city bank and credit a PiggyBank
account.

� Input:

– Cheque reference
– Cheque amount
– Account number to credit

� Basic path:

1. The customer enters the required input information and submits the
request.

2. The system checks that the credit account exists.

3. The system calls the remote city bank system and provides it the cheque
reference and amount.

4. The city bank replies with a YES if the cheque can be debited from the
referenced city bank account.

5. The system credits the account by the specified amount.

6. The system displays the customer a summary of the transaction.

� Alternative path:

2b.The credit account does not exist.

3b.The system displays a message explaining why the transaction cannot be
completed.

� Alternative path:

4c.The city bank replies with a NO: the cheque cannot be debited from the
referenced city bank account.

5c.The system displays a message explaining why the transaction cannot be
completed.

Use case analysis typically includes additional use cases for main business
objects life-cycle management, also known as CRUD use cases, where CRUD
stands for create-read-update-delete.

Therefore, with regards to the PiggyBank class diagram, the PiggyBank use
case analysis should also include a display balance use case.
94 WebSphere Version 4 Application Development Handbook

Display balance
In this use case we display the balance of a PiggyBank account.

� Input:

– Customer ID
– Account number

� Basic path:

1. The customer enters the required input information and submits the
request.

2. The system checks that the account exists and that the customer is the
owner.

3. The system displays the customer the account balance.

� Alternative path:

2b.One of the checks fails.

3b.The system displays a message explaining why the transaction cannot be
completed.

The actors of CRUD use cases can be different depending on the instruction. For
instance, delete use cases are usually reserved for privileged users.

This ends the use case description at analysis level. Additional steps and use
cases can be added at design time:

� Login and logout use cases

� Every use case can be started by checking whether the user is logged in and
has enough privilege to perform the action

� Physical communication with the city bank might fail and lead to an additional
alternative path

� Database transactions, included commits and rollbacks, could be specified in
more details

PiggyBank use case diagram in Rational Rose
In this section we are going to write a class diagram in Rational Rose to model
the PiggyBank features:

1. In Rational Rose, create a new J2EE model: File -> New. This opens the
Create New Model wizard, which is automatically opened at Rose startup.
Select J2EE and click OK. This loads the required subunits to model a J2EE
application.

2. Save the currently-empty model as PiggyBank.mdl.
 Chapter 5. Requirements modeling 95

3. Create a new class diagram: in the model browser, right-click on PiggyBank
-> Use Case View and select New -> Use Case Diagram. Call it PiggyBank
and open it by double-clicking on it.

4. Put three use case icons and two actor icons on the diagram then link them
as shown in Figure 5-3.

Figure 5-3 PiggyBank use case diagram

Use case descriptions in VisualAge for Java
Use classes descriptions can be put in the class-level Javadoc comment zone:

/**
* <PRE>
* Use case name and description
* </PRE>
**/
public class UseCaseName {
}

Figure 5-4 shows a use case description edition in VisualAge for Java.

Transfer moneyCustomer

Teller CityBankCash a cheque
96 WebSphere Version 4 Application Development Handbook

Figure 5-4 Use case description in VisualAge for Java

The PiggyBank display balance use case would be commented like this:

/**
<PRE>
Display balance : displays the balance of a PiggyBank account.

Input :
- account number

Basic path :
1. The customer enters the required input information and submits the
request.
2. The system checks that the account exists and that the customer is its
owner.
3. The system records the transaction. (?)
4. The system displays the customer the account balance.

Alternative path :
2b. One of the checks fails.
3b. The system displays a message explaining why the transaction cannot be
completed.
</PRE>
*/
public class DisplayBalance extends UseCase
{

}

 Chapter 5. Requirements modeling 97

Figure 5-5 shows the Javadoc after HTML generation.

Figure 5-5 HTML documentation generated from Javadoc

Use case realization
After the use case analysis is completed, we have a list of use cases with their
descriptions. The purpose of this section is to present different use case
realization techniques, that is, different ways of designing the code that will
actually implement the system use cases.

There is no ideal way—there are several neat techniques that do the things right.
Each of the techniques brings different enhancements that can be combined. We
start from a very basic approach, then we refine the concepts to keep it simple,
while leaving no major drawback. Finally, we present the latest and finest
improvements that help having a modular, versatile design.

The basic approach
The most naive way of implementing a Web application is to leave the
development in anarchy and stick to the servlet framework itself. This typically
results in several servlets having doGet/doPost methods implemented with SQL
calls through JDBC, and HTML output performed through an incredibly
unreadable bunch of out.println instructions.
98 WebSphere Version 4 Application Development Handbook

The JSP technology brings an interesting concept of integrating the HTML code
with the Java code. The integration is performed through the inclusion of
so-called JSP tags with Java code into HTML pages, which become JSPs. At
runtime, the JSP are compiled into servlets that do exactly the same thing as
above. The main advantage is that a JSP is more readable.

Had the application to be JSP-centric or servlet-centric, this approach, also
known as model 1, awfully mixes presentation and business logic. It is good for
sample examples demonstrating the technology and quick-and-dirty application
development, which is not what WebSphere is intended for.

A very popular technique known as model 2 suggests to mix traditional business
logic development, servlets and JSP together. See “MVC pattern” on page 100
for further explanations.

Servlet mapping
This method maps each use case to a servlet class.

Remember the servlet model implies there is usually one class instance in the
JVM memory, which is multithreaded, unless the servlet implements the
javax.servlet.SingleThreadModel interface.

It must be also observed every servlet alias has to be declared in the servlet
engine configuration (see Chapter 15, “Assembling the application” on page 389
and Chapter 16, “Deploying to the test environment” on page 431). If the
application has many use cases, its maintenance can become tedious unless the
servlet name is kept to the fully-qualified class name and will therefore be
accessed through an URL, such as:

http://hostname/webapp/itso.was4ad.servlet.ServletName

The section “Servlet multiplexing” on page 104 explains how to get rid of this
limitation, multiplexing entry points into one servlet.

Figure 5-6 shows the PiggyBank servlet use case realization diagram.

Tip: The servlet logic is coded in a doGet or doPost method, dependent on the
HTML code that invokes the servlet and specifies a GET or POST method. As
a good practice you can always code both doGet and doPost methods and call
a performTask method that contains the logic.
 Chapter 5. Requirements modeling 99

Figure 5-6 PiggyBank servlet use case realization diagram

Drawbacks of this realization are:

� This method does not follow the MVC pattern.

� The use case associations (that is extends and uses/includes) are difficult to
implement (see the redbook Servlet and JSP Programming with IBM
WebSphere Studio and VisualAge for Java, SG24-5755, from page 73 for
more information on servlet interaction techniques).

� The servlet thread and object model, left to the servlet engine vendor-specific
implementation, does not allow normal use of servlet instance variables.

MVC pattern
As a good structure for e-business applications, we suggest to isolate the
business logic of an interaction from the work flow and the view by using the
model-view-controller paradigm. This leads us to the three components of
program logic as shown in Figure 5-7:

� The user interface logic is the view and contains the logic which is necessary
to construct the presentation.

� The servlet acts as the controller and contains the logic which is necessary
to process user events and to select an appropriate response.

� The business logic is the model and accomplishes the goal of the interaction.
This may be a query or an update to a database.
100 WebSphere Version 4 Application Development Handbook

Figure 5-7 Web application model with MVC pattern

It is critical to maintain a clean separation between the different types of program
logic, because the link between the servlet and the business logic is especially
sensitive. As the reason for that we have to face several more problems in the
communication between these layers, such as:

� Problems with performance: The granularity of artifacts on the server (that
is, objects, tables, procedure calls, and so forth) often causes a single
client-initiated business logic request to involve several round-trip messages
between client and server, which consumes a significant amount of system
resources. This may include several calls to perform the business task and
several more calls to retrieve the results of that task. This can cause
efficiency concerns and make programming difficult.

� Problems with stability: Changes in the business logic may affect the
servlet if the interface of the business logic (for example, the EJB) is modified.
As a consequence all servlets using that business logic must be changed.

� Problems with implementing the technology: There are several possible
technologies for how business logic can be implemented. This includes EJB,
JDBC, or the Common Connector Framework. In addition to different
implementation programming models, each of these technologies has a
different way to invoke a request to execute business logic. That means that
the servlet has to be aware of all used technologies and has to implement
interfaces to them.

EIS
Resources

Client View
(User

Interface
Logic)

Servlet
(Interaction
Controller)

Business
Logic
 Chapter 5. Requirements modeling 101

Additionally, we may run into problems when calling EJB directly from the
servlets. This communication is being based on RMI-IIOP and has significant
deployment problems when passing through a firewall.

Facade pattern
Figure 5-8 shows a very simple, fast and convenient way of designing the use
cases into the system with regards of the MVC pattern by using the facade
pattern (Patterns In Java, Volume 1. Mark Grand; and Design Patterns:
Elements of Reusable Object-Oriented Software. Erich Gamma, et al.).

Figure 5-8 Use case facade pattern

This approach is modular: it makes the application more independent of the
architecture. For instance, if the Web application had to be used stand-alone or if
the entry point had to become different, the use case calls can be combined with
the Web entry path, as shown in Figure 5-9.

Figure 5-9 Application entry from the Web and from a standalone client

Servlets
BusinessCustomer

objectsUse cases
102 WebSphere Version 4 Application Development Handbook

Figure 5-10 shows the PiggyBank facade use case realization diagram.

Figure 5-10 PiggyBank facade use case realization diagram

The instantiation policy from the servlets can be in four forms:

1. Every servlet thread can create its own UseCase object: the advantage is that
it avoids multithreading issues, allows the use of instance variables. This
avoids side effects on instance variables. Main disadvantage is that in a
heavily loaded environment it can produce object creation overhead.

2. Servlets use a shared pool of UseCase instances: this reduces the object
creation overhead at the cost of more complexity. It must be ensured that pool
objects instance variables are properly initialized before use.

3. Servlets use a singleton UseCase instance, which prevents us from using
instance variables.

4. UseCase methods are declared static, which is a bad practice in general.

We recommend methods 1 and 3.

Stand-alone clients could also want to easily start the use cases in new threads.
This can be done by having the use case classes implement the
java.lang.Runnable interface, as shown in Figure 5-11.

Transfer money

Cash a cheque

CashCheque
(from usecase)

+ CashCheque()
+ run()

Transfer
(from usecase)

+ Transfer()
+ run()

UseCase
(from usecase)

+ UseCase()

<<realize>>

<<realize>>
 Chapter 5. Requirements modeling 103

Figure 5-11 Use case multithreading support

Servlet multiplexing
Up to now, we have been designing entry points from the Web into the
application using servlets. The section “Servlet mapping” on page 99 outlines the
drawback of having multiple servlets, typically one per use case. This can easily
be improved by using a multiplexing mechanism based upon a URL parameter
called action or id, operation—you name it. In this case, there is only one servlet
that controls the entire application entries: the controller servlet. The incoming
requests therefore contain the servlet name or its alias and an ID as a URL
parameter to specify the action to perform in the system:

http://hostname/webapp/ControllerServlet?action=transfer

At first sight this looks like a bottleneck. Actually, given the servlet thread and
instantiation model, this reduces code overhead while keeping full thread flow
through the servlet code.

In this model, every use case has an ID defined.

The drawback is that the controller servlet can be very big, forking the execution
flow with a long if-then-else-if list, such as:

String action = request.getParameter("action");
if (action == null) {

// return error message
} else if (action.equals("transfer")) {

// call transfer use case
} else if (action.equals("cashCheque")) {

// cash cheque use case
} else if ...
104 WebSphere Version 4 Application Development Handbook

Command pattern
A good way to solve the above problems and a good way to separate the
program logic is by the use of commands. Commands encapsulate business
logic tasks and provide a standard way to invoke the business logic request and
access to data using a single round-trip message.

A command is a stylized Java class with the following characteristics:

� A command object corresponds to a specific business logic task, such as a
query or an update task. There is one or many commands per use case.

� A command has a simple, uniform usage pattern.

� A command hides the specific connector interfaces and logic from the servlet.

� A command can cache information retrieved during the business task.

Commands are used as shown in Figure 5-12, where the servlet instantiates a
command object. Then, the servlet sets the input parameter of the command and
executes it. When the command has finished performing the business logic, the
result, if any, is stored in the command, so that the servlet or the view can get the
result values by interrogating the command object.

Figure 5-12 Using commands

We recommend that you implement the command as a JavaBean, that is, a Java
class with naming restrictions:

� There must be a method for each input property: void setXxxx(Xxxx val);

� There must be a method for each output property: Xxxx getXxxx();

Client
View
(User

Interface
Logic)

Servlet
(Interaction
controller)

Server

Business
logic

C
o

m
m

an
d

 Chapter 5. Requirements modeling 105

Display commands
In our programming model the command bean can be interrogated by the
standard bean mechanism. That means that a JSP programmer has to have
knowledge about Java programming, because the output properties of a
command may include complex structures, such as arrays.

To solve the problem we introduce display commands. The idea is to eliminate
any handwritten code in the JSP, therefore, supporting a development model in
which non-programmers can develop, modify, and maintain presentations.
Display commands are commands except that they are intended to run locally. A
display command calls other commands to run the business logic and
encapsulates all the dynamic content of the page by converting the output
properties of the executed command into HTML (Figure 5-13).

Figure 5-13 Using display commands

For more information and advanced command pattern design, see the redbook
Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere Application
Server, SG24-5754.

Figure 5-14 shows the application developers roles in command development.

Client

View
(JSP)

Servlet

Server

Business
logic

D
is

p
la

y
C

o
m

m
an

d

C
o

m
m

an
d

106 WebSphere Version 4 Application Development Handbook

Figure 5-14 Separation of roles and responsibilities

The value of commands
Commands add a valued layer to the e-business architecture and they give us
the following advantages:

� Because commands are implemented as serialized objects, they can be
shipped to and executed within any Java environment, within any server
supporting Java access to its resources and providing a protocol to copy the
command between the command client JVM and the server JVM. The
protocol does not have to be IIOP. This gives the opportunity of enhancing the
performance and the deployment (firewall) by executing the command on the
enterprise server.

� Commands allow an application to be partitioned into efficient units of
client-server interaction.

� Commands allow the caching of data.

View
(JSP)

Servlet

Business
logic

D
is

p
la

y
C

o
m

m
an

d

C
o

m
m

an
d

HTML Developer Script Developer Java Business Logic
Developer

Create Consume
 Chapter 5. Requirements modeling 107

� Because commands are implemented as JavaBeans, it is easy to get access
to the output data. Therefore, it is possible to store an executed command
bean in a session environment of a servlet and use it by a JSP.

� Commands can even be used or integrated in most Web design tools (for
example, WebSphere Studio), because they are implemented as JavaBeans.

� The servlet code is independent of the style of the command’s
implementation and it is independent of where the command is physically
executed.

� Another advantage of choosing the command pattern approach is that it
facilitates a cleaner separation of roles in a development team.

� The use of commands leads to a stable boundary between business logic and
user-interface logic.

Command granularity
The command pattern can be used to reduce the overhead of cross-tier
communication.

There is no perfect answer to the trade-off between good interface design and a
reduced communication overhead. Our proposal is, that the requesting tier (the
servlet) of a communication has to design the commands exactly to support its
tasks. The idea is, that a servlet should only execute one command per
invocation which encapsulates all of the controller function except for the HTTP
request parsing. That means when implementing an e-business application, the
servlet only interprets the HTTP request and executes commands. As a
consequence of this approach, we will get as many commands as we have
server interactions for a given use case.

Using session beans
To benefit from the power of EJB or if the project already plans to use EJB, use
cases can be realized by sessions beans.

A way to structure things is to group them into object categories. If we look into
the object modeling chapter, we can see the PiggyBank business objects are:

� Customer
� Account

And if we look at the complete use case diagram, including the CRUD use cases,
we can see that they fit into two categories:

� Customer-related use cases
� Account-related use cases
108 WebSphere Version 4 Application Development Handbook

These categories suggest to group the use cases into two packages. We then
map these packages to stateless session beans that we call manager beans:

� CustomerManager
� AccountManager

Following the mapping consideration, each use case can be modeled as a
session bean method. The input parameters are obviously modeled as method
parameters and the returned information can be modeled as data beans.

Relationship between command beans and EJB session beans
An obvious question is: Why not use IIOP to session beans to accomplish the
same objective as commands? The answer is that commands have the following
advantages:

� Command beans handle multiple protocols to accommodate any target
server, not just IIOP to EJB servers. This includes, of course, IIOP but also
HTTP.

� When acting in a distributed environment, command beans require fewer
round-trip messages. For a session bean EJB whose container runs in a
separate server, several remote messages are required to do a single logical
request:

1. Look up the home

2. Narrow the home

3. Create the session bean instance

4. Call the method

5. Destroy the session bean instance

Steps 1 and 2 can often be cached, but there are still three round-trip messages
required per instance.

Caching
Using commands, the cross-tier communication is reduced to one round-trip per
task. Caching is a technology which can be used to reduce this to even less than
one.

Caching is not a new technique; it is a general principle that can be used to
reduce cross-tier communication, database queries and computation.

The principle of caching is simple: Do not ask a question twice if you can do it
once and save the result to use the second time. This principle can be difficult to
 Chapter 5. Requirements modeling 109

implement, because the amount of saved data may become unmanageable and
the results can be reused only if they are still accurate.

In e-business applications, there are two types of information that can be cached:

� Formatted information such as whole or partial HTML pages can be cached.
This works well when many people need to view the same material presented
in the same way, such as on a sports or news site. Caching partial pages
adds the flexibility to customize pages for users while still retaining many of
the benefits of caching. Because view commands represent partial HTML
pages it makes sense to cache those commands.

� Data can be cached. This works well when the same data has to be viewed in
different ways. This means that commands (which are executed by the view
commands) can be cached.

The two types can be used together. For example, a commerce site may cache
product descriptions in a formatted form, while caching customer-profile
information as data.

Another common practice is to cache data in the user HTTP session. This can be
done after the login, when the session is established. It is very useful to perform
such an initial load when the presentation logic plans to use a common
information many times. In the PiggyBank application, we often offer the
customer to select an account from the account list. It is therefore interesting to
cache this information in the user session, and retrieve it from any JSP that
needs it. That makes the input screen more convenient without having to call the
business logic layer.

External systems integration
In every application, the development scope is limited to a certain boundary
representing “the system”. Every element out of this limit is considered as
external. If it interacts with the system, it is an actor of the system. Each actor
can be:

� A person, in its broadest meaning

� A system

If an actor initiates the interaction with the system, it is an initiating actor of the
system. If the system initiates the interaction with the actor, this is a supporting
actor. It must be noted that an actor can be both an initiating and a supporting
actor of the system, playing different roles.
110 WebSphere Version 4 Application Development Handbook

In this section we are discussing the case when the system needs some external
system help to perform its task, initiating the interaction with the appropriate
supporting actor. Figure 5-15 shows how to represent this kind of interaction in
UML.

Figure 5-15 Supporting actors

Representing external use cases
As we mentioned, the supporting actors are most of the time systems. Let us
assume for the example that the A actor is a system.

From the A system point of view, our system is considered as an initiating actor,
as shown in Figure 5-16.

Because A is a system, it can be structured in use cases too, each of them
delivering a result of value to the corresponding initiating actor, that is, our
system.

Use Case 1

Use Case 2

Actor A
 Chapter 5. Requirements modeling 111

Figure 5-16 External system point of view

There is a tight relationship between our system use cases and the supporting
actors relationships. Most of methodologies recommend to represent external
use cases relationships using internal relationships with proxy use cases
(Figure 5-17).

Figure 5-17 Proxy use case

Now external use cases have their equivalents inside our system.

For the PiggyBank, the only supporting actor is CityBank. This provides one
supporting use case to the system: validate a cheque. This can be modeled as a
proxy use case included in the Cash a cheque use case (Figure 5-18).

Figure 5-18 PiggyBank proxy use case

Use Case 1a

Use Case 2a

Our system

Use Case 1 <<proxy>>
Use Case 1a

<<include>>

Cash a cheque
<<proxy>>

Validate cheque

<<include>>

Customer
112 WebSphere Version 4 Application Development Handbook

Realizing proxy use cases
To realize the proxy use cases and to isolate the communication with the
supporting actors into boundary classes, we recommend to apply the facade
pattern. For each supporting actor, one class—you can call it an agent or a
proxy—offers single-point access to the supporting actor use cases in the form of
methods.

This class will be responsible for all the communication aspects regarding the
corresponding supporting actor. It can use helpers classes, connection pooling
and other advanced objects to perform its task. These all form a boundary layer
against the supporting actors.

Figure 5-19 represents the proxy use case realization for PiggyBank. We can see
the realization class responsible for the communication with the CityBank. Its
name concatenates the supporting actor name with the Agent postfix. It has one
method to validate a cheque against the CityBank. All communication and
business considerations are hidden from the rest of the PiggyBank system.

Figure 5-19 PiggyBank proxy use case realization

Representing agents in VisualAge for Java
The business analysis coordinator creates—possibly with the help of a more
experienced VisualAge for Java user—an agent package in VisualAge for Java:

� Right-click on the project (ITSO WAS AD Redbook) -> Add -> Package and
name the new package itso.was4ad.agent.

� Add all the business analysts, designers, developers in the project as as
additional users to the package.

The business analyst, who has identified a supporting actor and its proxy use
cases, creates an agent class:

� Right-click on itso.was4ad.agent -> Add -> Class and name the new class
CityBankAgent (Figure 5-20).

CityBankAgent
(from agent)

+ CityBankAgent()
+ validateCheque()

CityBank
(from Use Case View)

<<communicate>>
 Chapter 5. Requirements modeling 113

Figure 5-20 Create an agent class

� Right-click on CityBankAgent -> Add -> Method. Click Next. Name the method
validateCheque (Figure 5-21). Make it return a boolean and click Add to add
one parameter.

Figure 5-21 Create an agent method

� In the Parameters window (Figure 5-22), name the parameter cheque and set
the type radio button to Reference Types and enter Cheque in the field below.
Click Add once and Close then Finish.
114 WebSphere Version 4 Application Development Handbook

Figure 5-22 Adding a use case parameter

Designing the user interface
A measure of the success of a software solution is its capability in supporting the
tasks and activities users perform to complete their job. A thorough
understanding of these tasks and activities, the environment in which they are
performed, the tools used to do these tasks, and the manner in which these tasks
"fit together" provide a key input for the solution’s high and low-level
user-interface design.

The purpose of this section is to describe a comprehensive technique for
collecting and analyzing data for user-intensive use case models. Specifically,
this technique applies to those use cases that have significant user interaction
and have a critical impact on user satisfaction and performance.

Like use case modeling where the actors are human users of the system, user
interface analysis is a means to understand the interaction between users and
their environment. It is an end to end process description that details the steps
for a user-system interaction. User interface analysis method focuses heavily on
the process and techniques for collecting data from users. By integrating task
 Chapter 5. Requirements modeling 115

analysis and use case modeling techniques, business analysts have a better
understanding of how users do their work currently and how they might
accomplish their work in the future and how this knowledge can be
communicated in a better use case model.

Screen composition
Both activities are tightly tied together and should be performed in a parallel
fashion by business analysts. Therefore, the user interface technical aspects
should be kept as simple as possible in a first step. That is, we do not deal with
the complicated aspects of designing an HTML page. This is a job for the Web
developer. For the requirements modeling phase of the project, the latter role is
stand-by and waits for business analyst UI output to start its more technical and
creative activity. The business analyst can focus on the business and functional
aspects of the user interface, and the main concerns are:

� What information and input elements are shown on the screens

� The navigation between the screens

� Informal description of the information transfers between the screens

This activity should produce very simple screens (Figure 5-23).

Figure 5-23 Simple HTML screen
116 WebSphere Version 4 Application Development Handbook

This deliverable can later be refined by Web developers to produce more
detailed HTML screens (Figure 5-24).

Figure 5-24 Detailed HTML screen

Chapter 10, “Development using WebSphere Studio” on page 237 shows how to
perform screen composition with WebSphere Studio.

Navigation
Typically, the application offers a main menu presenting the list of the use cases
the user can initiate, possibly in a hierarchical manner depending on the size of
the application. Figure 5-25 shows the PiggyBank application main menu.

Figure 5-25 PiggyBank main menu
 Chapter 5. Requirements modeling 117

If login is required, as in most Web applications, the main menu can be accessed
through the login screen. The submit buttons send the login request to the
application server, which handles it, authenticates if necessary and establishes a
new user session. Session management is covered in “Web application server
maintained data flow sources” on page 48.

After the main menu allows the user to select a use case among a list, zero, one
or several input screen can be presented to the user, who can then initiate the
use case by submitting the complete request. That calls the corresponding use
case, which usually performs OK and returns the result, typically a page with the
summary of the transaction to the customer and a link to the main menu
(Figure 5-26).

Figure 5-26 Typical navigation

To make the navigation easier, the main menu can be permanently presented to
the user, as an HTML frame or a component included by every page. JSP
specifications provides two types of include mechanisms to make that possible:

� <jsp:include page="relativeURL" flush="true">

� <%@ include file="relativeURL" %>

<<menu>>
Main menu

<<input>>
Input 1

<<result>>
Display

summary

<<active>>
Use case

<<input>>
Input n

<<input>>
Login[login successful]

[Use case OK]
118 WebSphere Version 4 Application Development Handbook

Figure 5-27 shows the PiggyBank screen navigation in the form of a UML state
diagram.

Figure 5-27 PiggyBank navigation

Use case commands
Now, we introduce the command concept into the previous design principles.
The basic integration rule is to provide one command per input screen.

We begin with the case where the input screen submission leads to a use case.
We call such a command a use case command. Figure 5-28 represents the
navigation state diagram adaptation for a single input screen.

Note: any command starts with
logon check and redirects
to login page if needed

<<active>>
Establishing

session

<<error>>
loginError

.html

<<active>>
Initial
Load

<<menu>>
Welcome

.jsp

<<results>>
logout

.jsp

<<input>>
login
.html

<<active>>
Login

Command

<<active>>
Display

Accounts

<<active>>
Transfer

<<result>>
transfer

Result.jsp

<<result>>
balance

Result.jsp

<<active>>
Transfer

Command

<<input>>
transfer1

.jsp

<<active>>
DisplayAccounts

Command

[input not OK]

[input not OK][input OK][input OK]

[!login successful]
 Chapter 5. Requirements modeling 119

Figure 5-28 Use case command navigation

Intermediate commands
Now we consider the case where the input process leading to a use case is
performed through several input screens, and an input screen submission leads
to the next input screen.

We call such a command an intermediate command. In this particular case, the
command just validates and forwards to the next input screen; it does not start a
use case.

The navigation state diagram is therefore a little bit different (Figure 5-29).

Figure 5-29 Intermediate command navigation

<<input>>
Input n

<<result>>
Display

summary

<<active>>
Command

<<active>>
Use case

user submits form

[input validation OK]

[Use case OK]

[input validation not OK]

<<input>>
Input n

<<active>>
Command

user submits form

[input validation OK]<<input>>
Input n+1

[input validation not OK]
120 WebSphere Version 4 Application Development Handbook

An interesting discussion can be held about the information transmission through
the input screens up to the use case. There are several possibilities:

� The information is saved in the session context. The drawback is this can
lead to problems if the user navigates with multiple browser windows.

� The information is stored into a stateful session bean. The drawback is this
can lead to EJB instantiation overhead.

� The information is transmitted from page to page using hidden form fields.
This is very simple and supports user navigation using multiple browser
windows. The drawback is this can lead to network communication overhead.

For more information see Chapter 1, “WebSphere programming model” on
page 3.
 Chapter 5. Requirements modeling 121

122 WebSphere Version 4 Application Development Handbook

Chapter 6. Modeling and code
generation

In this chapter we discuss how we can use the model created from our design
activities to generate code for our application using the Rational Rose product.
We describe the concept of “round tripping” and discuss integration with other
development tools described in this book, particularly VisualAge for Java.

We also introduce the J2EE support included with Rose, and describe how we
can use it to model and then generate code for one of the EJBs from our
PiggyBank application.

6

© Copyright IBM Corp. 2001 123

Code generation
Once we have a model in Rose that describes the initial design of our
application, the next step is to implement the design in Java code. A naïve
approach would be to create Java source files for each class identified in the
Rose model by hand. Depending on the number of classes involved, this may
turn out to be a rather tedious and somewhat error-prone activity.

Fortunately Rose allows us to avoid this drudgery by taking our model and
automatically generating Java classes from it. The generated code directly
reflects the model, including the associations between classes and the attributes
and operations contained within them.

Round tripping
The next step is to take the code generated from our initial model and develop it
into our application. During the course of development the classes will be
modified substantially—often adding new methods and fields or modifying those
that exist already. If the Rose model is to continue to be of use to us as a source
of information about the application design it is essential that changes in the
code are reflected in the model. To do this by hand requires discipline on the part
of the developer—even if the developer does remember to update the model the
interruption to his train of thought caused by starting up Rose and updating the
model can adversely affect productivity.

Fortunately there is a solution to this problem in the form of round tripping. This
process combines the code generation features of Rose with its reverse-
engineering capabilities—the ability to create a model by examining Java code.
In a round tripping scenario code is generated from a model and modified by a
developer. The developer’s changes are then reverse-engineered, updating the
original model in Rose. The term round tripping describes the round trip from
model to code, and back to the model again.

In the rest of this chapter we discuss how we can use Rose to generate and
reverse-engineer our application code. We also take a look at how to integrate
Rose with VisualAge for Java, and how we can use the J2EE capabilities of Rose
to model and generate code and deployment descriptors for EJBs.
124 WebSphere Version 4 Application Development Handbook

Setting the default language for Rose
Rose supports many target languages for development. All of our WebSphere
development is performed with Java, so we can alter the Rose options to specify
Java as the default language. This enables some additional context menu
options that we will use—this setting also enables Rose to automatically map
classes in our logical view to Java components during code generation.

We change the default language using the options dialog, which we display by
making the menu choice Tools -> Options. Once in the dialog, we select the
Notation tab, which is illustrated in Figure 6-1. Change the default language to
Java and click OK to save the changes.

Figure 6-1 Notations tab in the Rose options dialog

Code generation and reverse engineering
First we describe how to perform code generation to and reverse engineering
from Java source files located in the file system. This basic path allows us to
integrate with any development environment. Later on we describe a much more
convenient way to integrate with the VisualAge for Java IDE.
 Chapter 6. Modeling and code generation 125

Code generation
For this example we use some basic code from the data bean layer of our
application. We start with the class diagram illustrated in Figure 6-2.

Figure 6-2 Initial data bean class diagram

We generate Java code from Rose by selecting the classes for which we want to
generate code, and J2EE / Java -> Generate Code from the context menu. In this
case we select all four classes in the diagram. Because this is the first time we
have generated code for this component, the dialog shown in Figure 6-3
appears. This dialog allows us to specify the destination for the generated code.
The destination must be an entry in the class path defined in the Rose project
specification dialog—if the desired path is not included already, we can add it by
clicking Edit.

Figure 6-3 Assign class path entries dialog
126 WebSphere Version 4 Application Development Handbook

We highlight the appropriate entries on both sides of the dialog, and click Assign.
We then click OK to generate the code, shown in Figure 6-4.

Figure 6-4 CustomerData class generated by Rose

Tip: This assignment is remembered for the entire Rose project. If you want to
generate code for each module into separate directories, as described in
Chapter 9, “Development using the Java 2 Software Development Kit” on
page 183, you may find it easier to create a separate project in Rose for each
module instead of having the entire model in one project.

//Source file: D:\\ITSO4AD\\dev\\src\\common\\itso\\was4ad\\data\\CustomerData.java

package itso.was4ad.data;

import java.io.Serializable;

/**
 * Data object representing a customer
 */
public class CustomerData extends DataBean implements java.io.Serializable {
 private int id;
 private String name;

 /**
 * @roseuid 3B5DB6270126
 */
 public CustomerData() {

}
/**

 * Access method for the id property.
* @return the current value of the id property

 */
 public int getId() {
 return id;
 }

/**
 * Access method for the name property.

* @return the current value of the name property
 */
 public String getName() {
 return name;
 }
}

Note: The getter methods in the source file were generated because we
defined the attributes in the Rose model as simple, read-only bean properties.
 Chapter 6. Modeling and code generation 127

Reverse engineering
We reverse engineer Java code by selecting Tools -> Java / J2EE -> Reverse
Engineer from the main Rose menu, or Java / J2EE -> Reverse Engineer from
the context menu obtained by right-clicking on a component in the model.

Figure 6-5 Selecting code to reverse engineer

We browse through the project class path in the reverse engineer dialog
(Figure 6-5) to select the source files we want to reverse engineer. We click Add
to add files in the top right panel to the list at the bottom, then Select All and
Reverse to reverse engineer the code.

Tip: If you select classes you want to reverse engineer in the model before
you open the dialog, the selected classes are automatically added to the
bottom panel.
128 WebSphere Version 4 Application Development Handbook

We reverse-engineered the final version of the code included in the sample code
to illustrate this point. When we updated the model in Rose, we ended up with
the diagram shown in Figure 6-6.

The association between AccountListData and AccountData was not included in
our original model. Reverse engineering the code added it to our model—we
added it to our class diagram by dragging the association from the browser pane
onto our diagram.

Figure 6-6 Updated data bean class diagram

Class paths and reverse engineering
If you attempt to reverse engineer the complete PiggyBank application you may
find you encounter errors caused by the reverse engineering code not having
access to supporting code required by the application. This includes the
WebSphere logging code, as well as the J2EE libraries—although the Rose
model knows about the EJB and servlet APIs the reverse engineering process
does not.

To fix this problem you should open the Java project specification dialog (Tools ->
Java / J2EE -> Project Specification) and add the following JARs to the class
path:

%WAS_HOME%\lib\j2ee.jar <== J2EE library
%WAS_HOME\lib\ras.jar <== WebSphere logging library

In the examples above, %WAS_HOME% should be replaced by the directory where
you installed the WebSphere Application Server software.
 Chapter 6. Modeling and code generation 129

Integration with VisualAge for Java
There are several ways to exchange code between Rational Rose and VisualAge
for Java:

� VisualAge for Java Rational Rose bridge

� XMI toolkit

� Plain Java files

VisualAge for Java Rational Rose bridge
The VIsualAge for Java Rational Rose bridge is a VisualAge tool extension that is
included with the Rose product. The bridge allows code to be exported directly
from Rose to VisualAge, and from VisualAge directly back into Rose, in a single
operation.

Installing the Rose bridge
The Rose installation program checks to see if VisualAge for Java is installed,
and offers the bridge as an installation option if VisualAge for Java is detected.
Because of this, we recommend you install VisualAge for Java before installing
Rose. If you install Rose before installing VisualAge for Java, you have two
choices:

� Uninstall and reinstall Rose

� Download and execute a separate bridge installation program from Rational

When we were developing this book we discovered that Version 4.0 of VisualAge
for Java—the version we were using—was so new that it was not recognized or
officially supported by Rose. We used the following procedure to fool the Rose
installer into believing that a supported version of VisualAge was installed:

� Export VisualAge for Java Version 4.0 registry entries

� Edit exported file to change Version 4.0 to Version 3.5

� Import edited file

� Install Rose

� Delete imported Version 3.5 settings

Although Rose does not at this time officially support VisualAge for Java Version
4.0, we encountered no problems using the bridge—we believe there are no
significant changes to the VisualAge for Java tool API that would prevent the
bridge from functioning in the new version. If you do encounter problems,
however, you may have to wait until Rational officially supports the new version
before you will be able to obtain support for the feature.
130 WebSphere Version 4 Application Development Handbook

Export Version 4.0 registry entries
We used the Windows regedit tool to locate the VisualAge for Java registry
entries at:

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\VisualAge for Java for Windows

In the tree view you should see a single key in the tree view, named 4.0. Select
the key, then choose the menu option Registry -> Export Registry File to export
the contents of the key to a file. We named our file C:\TEMP\vaj.reg.

Edit exported file
We used Notepad to edit the exported file. Do not double click on the file. Edit
the file by right-clicking and choosing Edit from the context menu, or by dragging
it to your favorite text editor.

In the editor, perform a global find and replace, replacing all instances of the
version ID 4.0 with 3.5. Save the file.

Import edited file
We can now merge the edited file into the registry. Double click on the file, and
answer Yes to the dialog in Figure 6-7.

Figure 6-7 Importing the edited registry file

If you now check the registry you should find an additional 3.5 key along with the
4.0 key we saw earlier. Do not start VisualAge for Java with this extra key in the
registry.

Install Rose
Follow the normal Rose installation procedure—the installer should detect that
VisualAge for Java is installed and automatically select the option to install the
bridge.

Important: These instructions involve editing Windows registry settings. This
must be undertaken with caution, because a mistake can render your machine
unusable. Follow these instructions at your own risk—we strongly recommend
you do so only if you fully understand the procedure and the risks involved.
 Chapter 6. Modeling and code generation 131

Delete imported version 3.5 settings
Once Rose is installed successful we can delete the fake version 3.5 key we
created. Using the Windows regedit tool, we simply locate the key, highlight it
and select Delete from the pop-up menu. Take care to only delete the key we
created, and nothing else.

Configuring the Rose bridge
Before we can use the Rose bridge to transfer code between Rose and
VisualAge we must configure Rose to use the bridge.

We do this in the Rose Java project specification dialog, accessed from the menu
via Tools -> Java / J2EE -> Project Specification and clicking on the Code
Generation tab (Figure 6-8). Change the IDE property to specify VisualAge for
Java, rather than the internal editor.

Figure 6-8 Setting the IDE in the Rose project specification dialog
132 WebSphere Version 4 Application Development Handbook

Earlier versions of Rose have a slightly different version of this dialog, where you
enable integration with VisualAge for Java by altering the JVM property using the
Detail tab (Figure 6-9).

Figure 6-9 Setting the JVM in earlier versions of Rose

Starting the Rose plugin in VisualAge for Java
Rose communicates with VisualAge for Java via a plugin written to use the
VisualAge for Java tool API. Before we can transfer code between Rose and
VisualAge for Java we must first start the Rose plugin.

We can do this from the VisualAge for Java Quick Start dialog shown in
Figure 6-10. Open the dialog by pressing F2 or selecting File -> Quick Start from
the menus. In the dialog select Basic -> Rational Rose VAJ Link Plugin Toggle
and click OK to start the plugin.
 Chapter 6. Modeling and code generation 133

Figure 6-10 VisualAge for Java Quick Start dialog

After a short period the message illustrated in Figure 6-11 appears—VisualAge
for Java is now ready to exchange code with Rose.

Figure 6-11 Rose VisualAge for Java link plugin startup message

Generating code into VisualAge for Java
Now we are ready to generate some code from our Rose model and import it into
VisualAge for Java. For this example we will use the same basic code from the
data bean layer of our application that we used in our earlier code generation
example. We start with the class diagram illustrated in Figure 6-12.

Figure 6-12 Initial data bean class diagram
134 WebSphere Version 4 Application Development Handbook

We generate Java code from Rose by selecting the classes we want to generate
code for and J2EE / Java -> Generate Code from the context menu. In this case
we select all four classes in the diagram. Because this is the first time we are
generating code into VisualAge for Java, we must specify the VisualAge for Java
project we want to use in the dialog that appears (Figure 6-13).

Figure 6-13 Selecting the VisualAge for Java project for the generated code

We select the appropriate project and click OK. The selected project is
remembered for future use. The code for our classes is generated and imported
into the appropriate project in VisualAge for Java.

Reverse engineering code from VisualAge for Java
As we develop our application we update the code generated by Rose in
VisualAge for Java. As we make our changes, the code in VisualAge for Java
diverges from the model we created in Rose. To prevent the Rose model from
becoming out of date with respect to the code we must update the model with the
changes we have made. Doing this by hand is a tedious process—fortunately we
can use the bridge to reverse engineer our code changes and merge them back
into the model.

We can do this from VisualAge for Java by selecting the classes we want to
update in the model and Tools -> Rational Rose Update Model from the context
menu.

We updated our code in VisualAge for Java with the final version included in the
sample code to illustrate this point. When we reverse-engineered the updated
code into Rose we ended up with the diagram shown in Figure 6-14.

The association between AccountListData and AccountData was not included in
our original model. Reverse engineering the code added it to our model—we
added it to our class diagram by dragging the association from the browser pane
onto our diagram.
 Chapter 6. Modeling and code generation 135

Figure 6-14 Updated data bean class diagram

We can also initiate the reverse-engineering of code from within Rose. First we
select Tools -> Java / J2EE -> Reverse Engineer from the Rose menu.

In the reverse engineer dialog (Figure 6-15) expand the class path entry (shown
on the top left) that corresponds to the VisualAge for Java project we are working
with. Locate the package directory containing the files you want to reverse
engineer—when you select the package directory the source files contained
within are displayed in the panel at the top right.

Select the files you want to reverse engineer and click Add to add them to the list
of files in the panel at the bottom of the dialog. Alternatively you can add all files
in a package directory by clicking Add All, or recursively add all files in the
directory and every sub-directory by clicking Add Recursive.

When all of the files you want to reverse engineer are included in the bottom
panel click Select All to select all the files, then Reverse to start the process.
When all files have been reverse-engineered, click Done to return to your
updated model.
136 WebSphere Version 4 Application Development Handbook

Figure 6-15 Rose reverse engineer Java dialog

XMI toolkit
The XMI toolkit is a component of VisualAge that you can use to maintain
consistency between your model and your code. If you want to use the XMI
toolkit you must first make sure that you selected it as an option when you
installed VisualAge for Java.

The XMI toolkit supports the following operations:

� Perform an XMI conversion between Rose and Java

� Show the UML/Java mapping created during an XMI conversion between
Rose and Java

� Show the differences between two versions of UML XMI

� Show the differences between two versions of Java XMI

The XMI toolkit provides a GUI interface as well as command-line tools for
performing these operations.
 Chapter 6. Modeling and code generation 137

You can start the XMI toolkit GUI from VisualAge for Java by selecting
Workspace -> Tools -> XMI Toolkit from the main workspace menu. If the XMI
Toolkit menu option is not visible, most likely you did not choose to install the
component when you installed VisualAge for Java.

The XMI toolkit window is shown in Figure 6-16.

Figure 6-16 VisualAge for Java XMI toolkit window

We prefer and recommend the use of the Rose bridge to manage updates in your
code and model, mainly because of the superior integration—information can be
exchanged between the two tools on the fly, as opposed to having to save work
to and from files.

The XMI toolkit can be used with other modeling tools, not just with Rose. If you
want to learn more about the XMI toolkit, we suggest you consult the
documentation available from the toolkit GUI’s Help menu.

Plain Java files
The final alternative for integration between Rose and VisualAge is to use Java
files exchanged via the file system. Java source code is generated into files by
Rose, and imported into VisualAge using the File -> Import menu option. When
code changes are complete, the code is re-exported from VisualAge for Java into
the file system and reverse-engineered back into Rose to update the model.

This option is the least seamless and involves the most effort on the part of the
developer—we recommend its use only as a last resort.
138 WebSphere Version 4 Application Development Handbook

Designing EJBs with Rational Rose
Rational Rose provides tools to help us work with J2EE components such as
servlets and EJBs. In this section we describe how we can use these tools to
create a new EJB for the PiggyBank application.

Defining the criteria that we use to define which of our business objects should
be implemented as EJB components is beyond the scope of this book—we refer
you to the many publications that discuss this subject.

Creating an EJB with Rose
This example describes how we can use Rose to create an entity EJB that
enables us to represent and manage accounts in the PiggyBank application.

The version of Rose we are working with provides support for different levels of
the J2EE specification. Before we start to create our EJB we must check the
settings in Rose to make sure we generate code that is compatible with
WebSphere Version 4.0.

We open our Java project specification in Rose, using the menu option Tools ->
Java / J2EE -> Project Specification. This displays the project specification
dialog. We click on the J2EE tab to display the dialog shown in Figure 6-17.

Figure 6-17 Rose Java project specification J2EE tab
 Chapter 6. Modeling and code generation 139

We make the following changes and click OK:

� Change the EJB naming conventions as illustrated in the figure—this step is
optional but convenient because our names now match the conventions used
by VisualAge for Java.

� Change the EJB specification version to 1.1—the version supported by
WebSphere Version 4.0.

� Change the servlet specification version to 2.2—this is also the version
supported by WebSphere Version 4.0.

Creating a package
Next we create a package in our logical view in which to place the classes that
make up our EJB. We name the package itso.was4ad.ejb.account. We create
the hierarchy of packages in the Rose logical view using the New -> Package
option from the logical view’s context menu. We create each package in turn until
we get the structure shown in Figure 6-18.

Figure 6-18 Logical view package structure

Create a class diagram
The next thing we do is create a new class diagram for the account EJB. We
right-click in the browser window on the itso.was4ad.ejb.account package and
select New -> Class Diagram. We call the diagram Account EJB, and
double-click on it to open the empty diagram canvas.
140 WebSphere Version 4 Application Development Handbook

Create the EJB
Next we create the account EJB. We select the Tools -> Java / J2EE -> New EJB
menu option. This displays the EJB specification dialog (Figure 6-19), where we
select the options to create a container managed entity bean. We can also
display this dialog by selecting Java / J2EE -> New EJB from our class diagram’s
context menu, available by right-clicking the diagram’s icon in the browser pane
or in the background of the diagram itself.

Figure 6-19 Creating the account EJB in Rose

As we enter the bean name Account into the Bean Name field in the dialog Rose
automatically fills in the other fields with names according to the convention we
specified earlier. We click OK to create the EJB. Rose adds the components to
our class diagram (Figure 6-20).
 Chapter 6. Modeling and code generation 141

Figure 6-20 Customer EJB classes created by Rose

Adding CMP fields to the EJB
The next task is to add CMP fields to the EJB. We select the AccountBean class in
the class diagram, right-click and select Java / J2EE -> New EJB Method -> CMP
Field. This displays the field specification dialog shown in Figure 6-21.

We enter the name of our CMP field, number, in the Name field, and click the
button next to the greyed-out Type field to define the field type.
142 WebSphere Version 4 Application Development Handbook

Figure 6-21 Field specification dialog

We expand the Java Types and select int from the list (Figure 6-22).

Figure 6-22 Selecting the CMP EJB field type
 Chapter 6. Modeling and code generation 143

We repeat this procedure for the other CMP fields in our EJB. All four fields are
listed in Table 6-1.

Table 6-1 CMP fields in the account EJB

The class diagram for our EJB now appears as shown in Figure 6-23.

Figure 6-23 The updated EJB class diagram

Field name Type Description

number int Account number—primary key

customerId int Customer number of the customer that owns the account

amount int Current balance in the account

checking boolean true if a checking account, false if savings
144 WebSphere Version 4 Application Development Handbook

Adding fields to the primary key class
The primary key for the EJB is the account number, which is an int. We must
add a corresponding attribute to the primary key class AccountKey.

We add the attribute by selecting the primary key class in the logical view and
New -> Attribute from the context menu (Figure 6-24).

Figure 6-24 Adding an attribute to the primary key class

We name the attribute number, and double-click to open the Field Specification
dialog. We change the field type to int and click OK.

Adding a finder method to the EJB
We want to add a custom finder to our EJB—we have to be able to find all
accounts belonging to a particular customer—so we create a custom finder
named findByCustomerId. We select the bean class and Java / J2EE -> New
EJB Method -> Finder Method from the context menu.

In the dialog shown in Figure 6-25 we enter the finder name into the Name field,
and click the button to the right of the Return Type field to select the return type.
 Chapter 6. Modeling and code generation 145

Figure 6-25 EJB method specification dialog

We select the java.util.Collection interface (Figure 6-26).

Figure 6-26 Selecting the finder return type
146 WebSphere Version 4 Application Development Handbook

Next we click the button to the right of the Arguments label to add a new
parameter to the finder. The customer ID is an int, so we enter that information
in the next dialog (Figure 6-27).

Figure 6-27 Specifying a finder parameter

Back in the original Method Specification dialog we click OK to add the finder to
the EJB. The EJB home interface in the class diagram is updated (Figure 6-28).

Figure 6-28 EJB home interface with finder methods

Adding business methods to the EJB
We want to add three business methods to the account EJB. The methods are
listed in Table 6-2.

Table 6-2 Account EJB business methods

Method name Description

credit Credits money to the account

debit Debits money from the account

isOwnedBy Tests if an account is owned by a given customer
 Chapter 6. Modeling and code generation 147

We add the methods by selecting the bean class in the class diagram and Java /
J2EE -> New EJB Method -> Business from the context menu. We complete the
Field Specification dialog shown in Figure 6-29 for each method in turn.

Figure 6-29 debit EJB method specification dialog

Having completed these updates, the class diagram now appears as shown in
Figure 6-30.
148 WebSphere Version 4 Application Development Handbook

Figure 6-30 Final class diagram for the account EJB

Generating EJB code
We can generate code for our EJB in exactly the same way we would generate
Java code for any class in Rose, as we described earlier in “Code generation” on
page 126. The steps in this example are fundamentally the same—we illustrate
generating code to the file system.

First of all we go to our class diagram and select all four of the classes that make
up our EJB—the home, remote, bean and primary key classes. We then
right-click on our selection and select Java / J2EE -> Generate Code from the
context menu.

The dialog shown in Figure 6-31 appears. We must tell Rose where to store the
generated Java source files for the itso package hierarchy. We want to save our
source in the directory D:\ITSO4AD\dev\src\ejb. We click on Edit to alter the
class path to include this new directory.
 Chapter 6. Modeling and code generation 149

Figure 6-31 Assigning the class path

We add our new directory to the class path and click OK (Figure 6-32).

Figure 6-32 Adding the source directory to the class path
150 WebSphere Version 4 Application Development Handbook

We then select the new class path entry in the Assign Classpath dialog, and click
Assign to assign the package to that class path. We are now able to click the OK
button to generate the code. Rose displays the dialog shown in Figure 6-33 while
code generation is taking place.

Figure 6-33 Code generation dialog

When the dialog closes, code generation in complete. We can now look in the file
system to examine the generated code. The code has been generated in the
structure shown in Figure 6-34.

Figure 6-34 Directory structure of the generated code

Note that Rose has generated a META-INF directory, which contains a deployment
descriptor for our new EJB. This deployment descriptor is shown in Figure 6-35.
 Chapter 6. Modeling and code generation 151

Figure 6-35 Account EJB deployment descriptor generated by Rose

Importing an EJB from Rose into VisualAge for Java
Instead of generating the code into a directory, you can import an EJB designed
with Rose into VisualAge for Java.

Define an EJB group in VisualAge for Java, then select EJB -> Add -> Import
from Rose or XMI.

In the Import SmartGuide select the Rose model file (.mdl), the EJB group, and
enter the name of the package for the code. Skip the next page (virtual paths)
and click Finish. The EJBs are added to the EJB group and can be tailored in
VisualAge for Java.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>AccountBean</ejb-name>
 <home>itso.was4ad.ejb.account.AccountHome</home>
 <remote>itso.was4ad.ejb.account.Account</remote>
 <ejb-class>itso.was4ad.ejb.account.AccountBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>itso.was4ad.ejb.account.AccountKey</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field>
 <field-name>number</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>customerId</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>amount</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>checking</field-name>
 </cmp-field>
 </entity>
 </enterprise-beans>
</ejb-jar>
152 WebSphere Version 4 Application Development Handbook

Chapter 7. Designing with frameworks

In this chapter we introduce the concepts of frameworks and explain what
frameworks are good for. We provide a high-level vision of two major frameworks
for Web application development and clarify how and when they should be
chosen and applied:

� Jakarta Struts

� WebSphere Business Components Composer (WSBCC)

In Chapter 12, “Development with frameworks” on page 283 we provide the
details on how to develop a Web application with these frameworks.

7

© Copyright IBM Corp. 2001 153

Introduction
As soon as an application development project starts up, one of the first
concerns is the architecture to adopt. This includes the hardware as well as the
software. In the software architecture domain, one of the first decisions to make
is to define the scope of the application, which is made up by two elements:

� What the system should be at the end, what it should do.

� What the system should be at the beginning.

The first point can be left quite vague and is often determined late in the project,
either according to time availability or because of an incremental development
strategy, which mainly focuses on the next iteration dates, leaving the later
schedule in the dark.

The second point is far more critical and it is surprisingly often decided with so
little consideration, according to enterprise-wide standards, contractual
agreements or just because of a hasty project start. And this is a shame,
because choosing the right basis for an application is just like for a house: it will
help its development and decide its robustness.

It is widely considered that starting any development from an existing basis is
more productive than starting from scratch. This is the main idea behind all the
re-use hype all around. And this is true and false because everyone tries to sell
their basic product, and in an apparently random proportion the ongoing projects
realize or not they entered a nightmare they cannot get out of. There is no
random, no fate. The situation is purely rational although complicated—no
surprise. To understand the ins and outs of it, we must introduce some shades in
the utopian vision the marketing world tries to spread. Because the wonderful
productivity promises can be achieved only by being conscious of what the
stakes are.

Starting with a framework
Projects starting from frameworks work. This is a general principle with plenty of
successful examples. And it could become a global reality if the frameworks were
wisely chosen and used, and if some basic recommendations are followed.

In this section, we introduce some concepts and list some major nontechnical
dangers when considering a framework. Avoiding these brings the necessary
freedom that allows focus on the technical considerations.
154 WebSphere Version 4 Application Development Handbook

What is a framework?
This term is very often debased. This adds to the confusion around frameworks.

In the software architecture world, a framework is considered as existing pieces
of code in which your code fits. It follows the well-known Hollywood principle,
“don’t call us we call you.” The code you write is not called directly from the user
intervention into the system. The runtime flow goes through the framework code
then finally ends in your code.

In such a vision, a framework can be opposed to a component library, where the
code you write calls existing pieces of code to perform a task. The UML
sequence diagram in Figure 7-1, where the time goes by downwards, illustrates
these considerations.

Figure 7-1 Framework and components sequence diagram

Sometimes the term framework is also used to refer to an object model that can
be extended (mainly by inheritance) to suit the custom application needs. The
backbone code then considers inherited objects just like framework parent
objects through polymorphism.

A wise definition could be: a framework is a software piece that an application
development can start with; it is a basis.

: Actor
Framework

code
Custom

code
Component

code
 Chapter 7. Designing with frameworks 155

Furthermore, all definitions can be used together. The “WebSphere Business
Components Composer” on page 165 is a perfect example of this and the Java
core classes are full of examples:

� Servlet API

� addElement(Object element) method in the java.util.Vector class

� java.util.Calendar class

Additional information about the Java core classes can be found at:

http://java.sun.com/j2se/1.3/docs/api/index.html

Frameworks drawbacks
Any medal has its reverse. Frameworks bring some advantages and introduce
some limitations:

� Frameworks are not versatile

They are good for what they have been designed for, and nothing else.
Different things have to be done to work around the framework. This is what
makes the framework choice critical. So many projects end up with an
application that has replaced all the framework parts by custom code. In that
case, the use of a framework can result in loss of time.

� Frameworks are not flexible

If you want some minor change to it, it is often impossible to get it from the
provider as any change would break other existing codes. This is particularly
true with a widely-adopted framework where backward compatibility is critical.

� Frameworks impose a way of thinking

Custom code has to stick to the framework jigsaw. Different ideas just do not
fit. If the framework is well designed, this can be a good thing because it
prevents from bad practices.

� Frameworks are specific

If the team is new to it, the learning curve can be long. This needs to be
qualified: the concepts behind are usually standard and the learning process
is therefore limited to new terms.
156 WebSphere Version 4 Application Development Handbook

http://java.sun.com/j2se/1.3/docs/api/index.html

Framework adoption
One of the major problems with frameworks, besides their own technical
characteristics, is their adoption in the team. People hate frameworks.

After the first technical presentations or classes, the team usually rejects the
potential or chosen framework as is. It is considered as “bad” and “useless.”
Sometimes the comments are worse or even abusive. People do not want to use
it. They have their own ideas “to do it better.” Wily programmers talk to their
managers in terms of cost: “we can do it ourselves and it will be cheaper.” This is
seldom true. For large repetitive projects, it is most of the time false.

So, what can we do with that? Actually, the solution falls within the competence of
the project manager and his skills in the human relationships area. Forcing the
team to adopt the framework just will not make it. This negotiation is a matter of
honesty. Using a framework is often a win-win situation that the technical persons
do not see. They know how things have to be done and they often feel the
framework as a denial of their capacity to do what the framework does.

Actually, this is the contrary: they have to be aware that they are the best people
for the job, because they already know the environment they will have to integrate
with. They can add their own value to the framework in the fastest way. And if
they are conscious of their value, which is usually not the case, they can leave
their fear of doing new things and learn from a new experience.

Integration with the tools
There is a consideration common to frameworks and methodologies: they must
fit the tools and vice versa.

There is more than coincidence if some tools fit and some do not. Some
frameworks have been designed with or for some tools. Sometimes both.

For instance, WSBCC has been designed with and for VisualAge for Java. On
the contrary, Struts has been developed totally independently and is more
difficult to integrate with VisualAge for Java. This also shows the mismatch
between two different development worlds: commercial and open-source.
Actually, this can be solved as we describe in “Generating the WTE webapp file
from a web.xml file” on page 287.

Anyway, any mismatch has to be considered before choosing the framework-tool
combination.
 Chapter 7. Designing with frameworks 157

Jakarta Struts
Struts is part of the Jakarta project, sponsored by the Apache Software
Foundation.

The goal of the Struts project is to provide an open source framework useful in
building Web applications with Java Servlet and Java ServerPages (JSP)
technology. Struts encourages application architectures based on the
model-view-controller (MVC) design paradigm, colloquially known as Model II.

Struts includes the following primary areas of functionality:

� A controller servlet that dispatches requests to appropriate Action classes
provided by the application developer.

� JSP custom tag libraries, and associated support in the controller servlet, that
assists developers in creating interactive form-based applications.

� Utility classes to support XML parsing, automatic population of JavaBeans
properties based on the Java reflection APIs, and internationalization of
prompts and messages.

When to use Struts
Actually, most common Web applications can find some benefit in using Struts.
As we have seen earlier, the MVC pattern allows to design the model (business
logic) of the application in a traditional fashion. Adding a Web “controller + view”
transforms this model into a Web application. Struts helps building the “controller
+ view” part, thus focusing on the presentation logic.

Note: This section and its subsections contain documentation taken from the
official Jakarta project Struts home page and from the official Struts user guide
at:

http://jakarta.apache.org/struts
http://jakarta.apache.org/struts/userGuide/introduction.html

It also contains some quotes from Kyle Brown’s articles on Struts in the
VisualAge Developer Domain (VADD):

http://www.ibm.com/vadd

� Apache Struts and VisualAge for Java, Part 1: Building Web-based
Applications using Apache Struts

� Apache Struts and VisualAge for Java, Part 2: Using Struts in VisualAge
for Java 3.5.2 and 3.5.3
158 WebSphere Version 4 Application Development Handbook

http://jakarta.apache.org/struts
http://jakarta.apache.org/struts/userGuide/introduction.html
http://www.ibm.com/vadd

While J2EE APIs make it possible to develop Web-based applications that
implement the MVC pattern, there are a number of common problems that must
be solved in every servlet project (Ibid. Kyle Brown):

� Mapping HTTP parameters to JavaBeans—One of the most common tasks
facing servlet programmers is to map a set of HTTP parameters (from the
command line or from the POST of an HTML form) to a JavaBean for
manipulation. This can be done using the <jsp:useBean> and
<jsp:setProperty> tags, but this arrangement is cumbersome because it
requires POSTing to a JSP, something that is not encouraged in a Model-II
MVC architecture.

� Validation—There is no standard way in servlet/JSP programming to validate
that an HTML form is filled in correctly. This leaves every servlet programmer
to develop his own validation procedures, or not, as is too often the case.

� Error display—There is no standard way to display error messages in a JSP
page or generate error messages in a servlet.

� Message internationalization—Even when developers strive to keep as much
of the HTML as possible in JSPs, there are often hidden obstacles to
internationalization spread throughout servlet and model code in the form of
short error or informational messages. While it is possible to introduce
internationalization with the use of Java resource managers, this is rarely
done due to the complexity of adding these references.

� Hard coded JSP URIs—One of the more insidious problems in a servlet
architecture is that the URIs of the JSP pages are usually coded directly into
the code of the calling servlet in the form of a static string reference used in
the ServletContext.getRequestDispatcher method. This means that it is
impossible to reorganize the JSPs in a Web site, or even change their names,
without updating Java code in the servlets.

The problem is that programmers are too often faced with "reinventing the wheel"
each time they begin building a new Web-based application. Having a framework
to do this work for them would make them more productive and let them focus
more on the essence of the business problems they are trying to solve, rather
than on the accidents of programming caused by the limitations of the technology
(No Silver Bullet: Essence and Accident in Software Engineering. Fred Brooks.
IEEE Computer, April 1987).

Simply put, Struts is an open-source framework for solving the kind of problems
described above. Information on Struts, a set of installable JAR files, and the full
Struts source code is available at the Struts framework Web site. Struts has been
designed from the ground up to be easy to use, modular (so that you can choose
to use one part of Struts without having to use all the others), and efficient. It has
also been designed so that tool builders can easily write their tools to generate
code that sits on top of the Struts framework (Ibid. Kyle Brown).
 Chapter 7. Designing with frameworks 159

Servlet controller
True to the model-view-controller design pattern, Struts applications have three
major components: a servlet controller, Java ServerPages (the "view"), and the
application's business logic (the "model").

The controller bundles and routes HTTP requests from the client (typically a user
running a Web browser) to framework objects and corresponding extended
objects, deciding what business logic function is to be performed, then delegates
responsibility for producing the next phase of the user interface to an appropriate
view component like a JSP.

In Struts, the primary component of the controller is a servlet of class
org.apache.struts.action.ActionServlet. When initialized, the controller
parses a configuration resource file. The configuration resource defines, among
other things, the action mappings for the application. The controller uses these
mappings to turn HTTP requests into application actions.

At a minimum, a mapping must specify:

� A request path

� The object type to act upon the request

Each mapping defines a path that is matched against the request URI of the
incoming request, and the fully qualified class name of an action class (that is, a
Java class extending the Action class) which is responsible for performing the
desired business logic, and then dispatching control to the appropriate View
component to create the response.

The Struts ActionServlet basically plays the same role as the more simple
itso.was4ad.webapp.controller.ControllerServlet we defined in the first
version of the PiggyBank application.

Action objects
The action object can handle the request and respond to the client (usually a
Web browser), or indicate that control should be forwarded to another action. For
example, if a login succeeds, a loginAction object may want to forward control to
a mainMenu action.

Action objects are linked to the application controller, and so have access to that
servlet methods. When forwarding control, an object can indirectly forward one
or more shared objects, including JavaBeans, by placing them in one of the
standard collections shared by Java servlets.
160 WebSphere Version 4 Application Development Handbook

An action object can for instance create a shopping cart bean, add an item to the
cart, place the bean in the session collection, and then forward control to another
action, which may use a JSP to display the contents of the user's cart. Because
each client has their own session, they will each also have their own shopping
cart. In a Struts application, most of the business logic can be represented using
JavaBeans.

Following to the Struts guidelines, the PiggyBank application would contain
several actions:

� Login

� Display accounts

� Transfer

This is represented in a class diagram (Figure 7-2).

Figure 7-2 PiggyBank actions in Struts

The action set is very similar to the command set we defined in the first version of
the PiggyBank application. A corollary of this observation is that the action
classes to define in Struts correspond to the application design use cases in the
same way.

Form beans
JavaBeans can also be used to manage input forms. A key problem in designing
Web applications is retaining and validating what a user has entered between
requests. With Struts, you can easily store the data for a input form in a form
bean. The bean is saved in one of the standard, shared context collections, so
that it can be used by other objects. The action object receives it as input to
perform its task.

Action

+ perform()

DisplayAccounts Transfer Login
 Chapter 7. Designing with frameworks 161

The form bean can be used:

� To collect data from the user

� To validate what the user entered

� By the JSP to re-populate the form fields.

In the case of validation errors, Struts has a shared mechanism for raising and
displaying error messages. It automatically invokes the ActionForm.validate
method whenever the JSP page containing the form corresponding to this
ActionForm submits the form. Any type of validation can be performed in this
method. The only requirement is that it returns a set of ActionError objects in the
return value. Each ActionError corresponds to a single validation failure, which
maps to a specific error message. These error messages are held in a properties
file that the Struts application refers to.

A Struts form bean is defined in the configuration resource and linked to an
action mapping using a common property name. When a request calls for an
action that uses a form bean, the controller servlet either retrieves or creates the
form bean, and passes it to the action object (Figure 7-3).

Figure 7-3 ActionForm handling

The action object can then check the contents of the form bean before its input
form is displayed, and also queue messages to be handled by the form. When
ready, the action object can return control with a forwarding to its input form,
usually a JSP. The controller can then respond to the HTTP request and direct
the client to the JSP. Figure 7-4 summarizes these operations.

Action

+ perform()

ActionServlet

ActionForm

+ validate()

<<instantiate>> <<use>>
162 WebSphere Version 4 Application Development Handbook

Figure 7-4 Struts request sequences

Custom tags
There are four JSP tag libraries that Struts includes:

1. The HTML tag library, which includes tags for describing dynamic pages,
especially forms.

2. The beans tag library, which provides additional tags for providing improved
access to Java beans and additional support for internationalization.

3. The logic tag library, which provides tags that support conditional execution
and looping.

4. The template tag library for producing and using common JSP templates in
multiple pages.

Using these custom tags, the Struts framework can automatically populate fields
from and into a form bean, raising two advantages:

� The only thing most JSPs need to know about the rest of the framework is the
proper field names and where to submit the form. The associated form bean
automatically receives the corresponding value.

� If a bean is present in the appropriate scope, for instance after an input
validation routine, the form fields will be automatically initialized with the
matching property values.

: Web user
(Browser)

: ActionServlet : Action : ActionForm : JSP

HTTP setXxx() validate()

perform()

forward()

getXxx()

getXxx()
 Chapter 7. Designing with frameworks 163

Therefore, an HTML input field declaration code as:

<input type="text" name="amount" value="<%= bean.getFirstName() %>">

can be replaced in a JSP by a more elegant and efficient Struts tag:

<html:text property="amount"/>

Internationalization
Components such as the messages set by the action object can be output using
a single custom tag. Other application-specific tags can also be defined to hide
implementation details from the JSPs.

The custom tags in the Struts framework are designed to use the
internationalization features built into the Java platform. All the field labels and
messages can be retrieved from a message resource, and Java can
automatically provide the correct resource for a client's country and language. To
provide messages for another language, simply add another resource file.

Internationalism aside, other benefits to this approach are consistent labeling
between forms, and the ability to review all labels and messages from a central
location.

Code dependencies
For the simplest applications, an action object can handle the business logic
associated with a request. However, in most cases, an action object should pass
the request to another object, usually a JavaBean. To allow reuse on other
platforms, business logic JavaBeans should not refer to any Web application
objects. The action object should translate needed details from the HTTP
request and pass those along to the business-logic beans as regular Java
variables.

In a database application, the business logic beans might connect to and query
the database and return the result set back to the action servlet to be stored in a
bean and then displayed by the JSP. Neither the action servlet nor the JSP have
to know or care where the result set comes from.

Downsides
No framework is perfect. Struts cannot be all things to all people, so you lose
some things when using Struts that you can do when programming directly to the
servlet API. Possibly the biggest downside is that with Struts you have only one
servlet (the ActionServlet) serving up all of the dynamic pages of your Web
application. Having only a single servlet per application is certainly a problem
164 WebSphere Version 4 Application Development Handbook

when you want to use a tool like WebSphere Resource Analyzer, which gives
number of hits and average response time for a particular servlet. It is harder to
obtain useful performance and load information when you have only a single
servlet per application. In order to obtain this kind of load data, you would have to
instrument your code (Ibid. Kyle Brown).

Another potential mismatch is in trying to apply Struts to a portal style of
application. While you can use Struts in this style of application (especially
considering its template support) you will find more appropriate support in other
Apache projects, such as the Apache JetSpeed and Turbine portal servers (Ibid.
Kyle Brown).

Development
See “Jakarta Struts” on page 284 for further information on application
development with Jakarta Struts.

WebSphere Business Components Composer
The IBM WebSphere Business Components Composer, also known as WSBCC
or “The Composer,” is defined as a component-based framework for developing
enterprise e-business applications. The framework components promote highly
productive application development by supporting code reuse and the use of
parametrization techniques to define business operations and their related
objects externally.

WSBCC enables solution developers to focus on business functions and to avoid
being slowed by technological issues such as communication protocols and
message formatting. This permits faster time to market, especially for
enterprise-wide project where it is possible to capitalize on human resource
investment. A chain of projects starting from no Web application and using
WSBCC typically see surprising time results from the second project.

The main technologies used are HTML, Java and XML. The skills required to
develop with WSBCC are mainly Junior JSP and Senior Java for the framework
extensions.

The development model creates a clear separation of roles that allows project
team members to focus on their specific tasks. In a typical usage, WSBCC relies
less on high programming skills because it provides components that are easy to
understand and use, from back-end connectors to user interface building blocks.
 Chapter 7. Designing with frameworks 165

When to use WSBCC
The WSBCC framework is well suited for building Web-based financial services
applications, such as bank branch systems, as well as building solutions for a
wide variety of retail delivery channels. WSBCC has been specifically designed
to support multichannel architectures and extend the reach of a financial
institution’s information system services to all of its delivery channels. New
channels include:

� Internet banking, or e-banking

� Call centers

� Stand-alone kiosks

� Automated teller machines (ATMs)

� Mobile access terminals, such as wireless access protocol (WAP) capable
cellular phones

In this book, we will focus on the e-banking development.

Financial institution services are most often supported by applications whose
core logic and data reside on large-scale host systems. Financial service delivery
must access transaction functions on these systems, for example, to transfer
funds between accounts. This all means the use cases are most of the time
already existing and have been implemented in a host system. WSBCC provides
a very complete and extensible infrastructure to interface such host systems with
the Web, or other channels. To this end, it includes components designed to
handle all aspects of transaction processing:

� Managing the user interface

� Assisting navigation

� Gathering and validating operation data

� Building host messages

� Processing host responses

� Logging transaction information

� Accessing financial devices

While WSBCC performs the best in financial domain, it is a potential solution to
any transaction processing requirements no matter what the industry. Similar
technical architectures can be found everywhere and WSBCC is highly
customizable. Actually, like in any well-designed framework, it is potentially
possible to build any kind of application. In “WebSphere Business Components
Composer” on page 303 we illustrate with an example what levels of benefits can
be achieved with WSBCC depending on how much you use of it.
166 WebSphere Version 4 Application Development Handbook

Deployment and maintenance
After the application is deployed, its maintenance and operating efforts are small.

Deployment of a WSBCC-based application does not require changes in existing
business logic or transactions run in back-end systems. The framework has been
designed to provide communication systems between existing back-end systems
and the Web application located on a middle-tier server. An extreme case is
where the Web application has no business knowledge and just acts as a
presentation layer.

WSBCC uses the standard TCP/IP network computing architecture for client
administration, code distribution and server management. The deployed
elements are modular and can be operated with minimal system administrator
training.

Portability relies on the Java “Write Once Run Anywhere” paradigm. If
operational conditions require that the application be moved to another platform,
it can be quickly performed. This is also true for typical OS-mismatch between
development and production: there is no particular difficulty to develop the Web
application in a Windows NT distributed environment and to deploy it on a Unix
server.

Ease of adaptation to back-end changes is achieved by externalizing the
interface formats and/or protocols in XML configuration files. These changes can
be made manually in the files or can be assisted through the Development
Workbench tool (which is not covered in this book).

Architecture
The architecture of a WSBCC Web application is based on a logical three-tier
model and standard communication protocols (Figure 7-5):

1. Back-end enterprise server

2. Middle-tier application server

3. Browser

The enterprise server, or back-end server, contains the existing core business
logic of the institution. Such a system and its messaging interface remain
untouched as the Web application uses the WSBCC set of back-end system
connector components and message formatters.
 Chapter 7. Designing with frameworks 167

Figure 7-5 WSBCC Web application architecture

The middle-tier server hardware communicates with the clients using a TCP/IP
connection and the HTTP protocol. The WebSphere Application Server and its
associated HTTP Server runs on the middle-tier server for this purpose. It
processes requests from clients once the application is running. Handling client
requests involves managing user navigation and interface, launching business
operations that interact with back-end transactional systems, processing local
transactions and sending HTML responses to the client running JSPs (or
appropriate response for different channels).

A client is this architecture contains little or preferably no business logic and
usually consists of presentation logic and first-level data validation. The code to
execute the client logic is downloaded on demand from the middle-tier and does
not reside on the client machine. In Internet banking, users want to access the
financial services through a Web browser running on any device, typically a PC,
connected to the Internet. The user interface is based on HTML and associated
technologies. The HTML pages are almost never static and are dynamically
generated on the middle-tier server using JSP technology. Data validation can be
performed on the client-side by embedding JavaScript code in the HTML. This
code remote execution cannot be trusted and acts as a client-side facility running
inside the browser. Real data validation should be performed on the middle-tier
server.

Enterprise server
Business logic + data

IBM WebSphere Application Server + WSBCC

Browser

HTTP, SSL, XML, HTML

LU0, LU6.2, CICS, MQSeries, OTMA, ITOC
168 WebSphere Version 4 Application Development Handbook

WSBCC elements
WSBCC runs on the middle-tier server. Its integration with the other tiers is
based on the component model shown in Figure 7-6.

Figure 7-6 WSBCC component model

This model presents five key elements, or entities:

� Operations

� Data elements

� Formats

� Contexts

� Services

All these entities can be externalized in XML configuration files. Here we present
them, what concepts they carry and what information is parametrized in the
standard XML files.
 Chapter 7. Designing with frameworks 169

Operation
An operation is the entity responsible for performing the set of tasks required to
complete a basic financial operation, including data input and validation,
interaction with external services, and management of the results and data
received. An operation has a client that requests its execution, provides input
data, and eventually receives the results.

An operation step is an entity that represents the set of interactions with the
services that are required for a specific operation. Operation steps are managed
by operations, and each operation’s definition specifies the operation steps it will
use.

Operations manage two basic attributes:

� Operation context—the context from which the operation flow requests the
services to be used; requests that the data be formatted and sent to the
services; and requests that the data received from the services is stored after
it is interpreted. We explain more about the contexts below.

� Formatting services—the entities that are used to build the formatted data
that is interchanged with the services and to interpret the data received from
them.

An operation flow is normally common to many different operations, with the only
differences being the data elements and the formats that are used in the
interaction with the services. Because these differences can be handled by the
formatting services, an operation flow is by nature a highly reusable part. Tasks
inside the operation flow result in one or many operation steps. Operation steps
are also highly reusable pieces of code that can be used by many different
operations.

Context
When an operation is being performed, all the global data and services required
by the application can be grouped into different sets of related information. Each
of these sets of information logically belongs to a different type of banking entity:
some related to the user, some to the branch, some to the client, some to the
server, some to the whole banking institution, and so forth.

Each of these sets of related data and services makes up a context. The data
used by an application can be considered as a context hierarchy, where each
context level is able to provide the information it contains or the information
belonging to contexts in upper levels. Figure 7-7 shows an example of context
hierarchy.
170 WebSphere Version 4 Application Development Handbook

Figure 7-7 Context hierarchy

Each operation model has its own context, the operation context, with a specific
set of operation data that includes elements for data input and for data received
from external sources (for example, host or local DBM). Because the operation
context is part of the context structure, the operation can access data at different
levels in the context chain. When a service is requested, the operation will use
the more specific service associated with the identification defined in the context
chain.

An operation performed in a client/server environment has an operation context
on the client and an operation context on the server. Each operation context is
chained to one of the existing contexts when the operation is initiated.

Services
Services acts like connectors. They are defined in the context. When an
operation wants to interact with a service, it uses a service alias to get a
reference to the service.

Please note that the context hierarchy can contain more than one service with
the same alias. In that case, the service with the requested alias which is closest
to the operation context is returned.

Operation
context

Operation
context

Session
context

Session
context

Global
context

Operation
context
 Chapter 7. Designing with frameworks 171

Data elements
Each operation manages a set of data items, whose values are input from the
client operation, shared from the contexts chain, received from external services,
and so forth. These data elements may be used in various ways, such as being
sent to the host, written as an electronic journal record, printed on a form, or
passed to the client operation as results. For each operation step, data elements
can be formatted differently, depending on the interacting service requirements.

The framework provides five base classes for dealing with data elements
(Figure 7-8).

Figure 7-8 Data elements hierarchy

The data element hierarchy is extensible, and new classes can be derived easily
when more functionality is needed. The classes that conform to the data
hierarchy do not have exactly the same interface: only data fields have value,
and only collections have add, remove, or at methods.

However, they have common instance variables such as name, and they share a
common base class to be included inside collections (generally, collections deal
with data elements). Methods for adding, retrieving, and deleting data elements
are provided. There are also methods for setting and getting the value of the data
elements contained in a collection. To maximize reusability of code, the
DataElement class follows the composite design pattern, which is one in which
any element of the collection can itself be a collection.

DataElement 0..n

DataField DataCollection

KeyedCollection IndexedCollection
172 WebSphere Version 4 Application Development Handbook

The five base data element classes are described as follows:

DataElement This is the abstract base class for either single data items
or data collections. It introduces a mandatory id instance
variable for identification, and an optional description
instance variable for description. Data elements can be
typed or untyped, which depends on the value of its
PropertyDescriptor attribute.

DataField This is the representation of a single data item. It has a
value instance variable for storing the data item value.
Data fields are on the same conceptual level as a Java
object attribute.

DataCollection This is the abstract base class for composite data
elements. Its subclasses are KeyedCollection and
IndexedCollection.

KeyedCollection This holds an ordered collection of data elements identified
by their name or by their position in the collection. It is not
possible to have two elements with the same name inside
a collection, but elements can be other collections. It is
possible to have another element with the same name in
an inner collection. Keyed collections and their elements
can be defined in the framework data definition file, or
created and updated dynamically. Keyed collections are on
the same conceptual level as Java objects. The term
‘collection’ is sometime confusing here.

IndexedCollection This holds a data element that is repeated a number of
times and identified by its position in the collection.
Indexed collections are on the same conceptual level as
Java collections.

To refer to a data element in an inner collection, you must provide the full path.
For example, if the data field dataField1 is inside keyedCollection1, which is
inside keyedCollection2, then to access dataField1, you would specify:
keyedCollection1.dataField1. Note that specifying keyedCollection2 is not
required because you are asking for its element called
keyedCollection1.dataField1.

Another option is to use the * modifier, for example, *.dataField1. In this case,
the first data element named dataField1 is returned. The use of the * modifier is
not recommended when there are different data elements with the same name in
the same structure, or when the structure is very complex, because of the
performance impact.
 Chapter 7. Designing with frameworks 173

Typed data elements
The data elements described above are not aware of the type of the business
objects they represent. Typed data elements can represent business objects,
such as date, product, money, and have behavior that reflects the business rules
that pertain to the business object they represent. The implementation of some
business operations may require typed information in the data elements.

The framework provides the ability to work with or without typed data. Typed and
untyped data elements can coexist at run time, and this allows each operation to
be designed and implemented in the appropriate data typing mode. For example,
a typed data element knows how to format itself for display, how to clone itself,
and the nature of any validation required when requested to change its value.

The information that a data element knows about itself is made available by
associating it with an object of the PropertyDescriptor class. Each
PropertyDescriptor in turn is associated with a Validator and a Converter. A
typed data element is an instance of a DataElement class in which the
PropertyDescription property is not null.

One of the benefits of type-awareness is the ability to exploit object identity. Data
elements that are type-aware can dynamically construct an identifier, which
distinguishes them from other data elements of the same type. Note that this is
object identity of a business object, not a Java object. For example, two
instances of customer 123 are distinct Java objects, but are the same customer
because their identifiers are equal.

Formats
Each operation manages a set of data items, whose values may be taken from
input screens, other devices, shared data repositories (branch data, user data),
host replies to a transaction, and so forth. This data must be formatted and
combined to build the messages that are used in various ways, such as to send a
transaction to the host, write a journal record, print a form, and so forth. For each
of these steps, the data items can be formatted differently depending on the
interacting object requirements (such as a host, electronic journal, financial
printer), making the formatting process complex.

The objective of the hierarchies of format classes is to automate the formatting
process as much as possible. The provided set of classes handles a large
number of formatting situations. In addition, format classes are designed with
extensibility as one of their main objectives because extending a class is the
usual way of adding new required functionality.

The format classes are examples of the composite design pattern. They
implement the concept of collections of elements that can themselves be
collections.
174 WebSphere Version 4 Application Development Handbook

The format classes also implement the decorator design pattern. Format
decorators can be applied to (can "decorate") any format element to add
functionality without requiring you to change it or subclass it.

The FormatElement hierarchy is similar in structure to the DataElement hierarchy.
There are subclasses:

� FieldFormat, which are applied to format DataField

� IndexedCollectionFormat, which are applied to format IndexedCollection

� KeyedCollectionFormat, which are applied to format KeyedCollection

Development
See “WebSphere Business Components Composer” on page 303 for further
information on application development with WebSphere Business Components
Composer.
 Chapter 7. Designing with frameworks 175

176 WebSphere Version 4 Application Development Handbook

Part 3 Coding the
application

In this part we discuss how to set up a development environment that will allow
you to develop J2EE applications for WebSphere Application Server Version 4.0.

First we discuss development using the standard Java 2 software development
kit (SDK), as well as using open-source build tools and tools from IBM.

We then provide some guidelines to assist in coding applications for WebSphere,
and provide practical examples that show how to incorporate frameworks into
your project.

Finally, we introduce software configuration management (SCM) and describe
how Rational ClearCase can be used to provide SCM for a WebSphere
development project.

Part 3
© Copyright IBM Corp. 2001 177

178 WebSphere Version 4 Application Development Handbook

Chapter 8. Setting up a development
environment

In this chapter we present some of the issues that you should consider when
setting up a development environment for a J2EE application using WebSphere.
We outline some of the decisions you will need to make, and highlight issues that
you should consider before you start writing your application code.

8

© Copyright IBM Corp. 2001 179

Planning for development
It is always tempting at the start of a project to sit down and start coding straight
away. We strongly recommend, however, that you take the time to plan out your
environment and put in place the infrastructure to support your development
effort. This is true now more than ever in the environments where WebSphere is
typically deployed, with rapidly changing goals, high staff turnover and
constrained deadlines.

A well-designed environment will save you time and money, and allow you to
cope with the demands of developing applications today. In particular you should
aim to:

� Plan for productivity

– Provide tools to simplify and speed-up common tasks

– Make use of frameworks and off-the-shelf components where appropriate

– Reduce ramp-up time for new staff by using standard tools and processes
wherever possible, and by documenting the complete environment

– Automate wherever possible

� Plan for flexibility

– Structure your code into stand-alone modules that can be re-used if
requirements change or the project grows

� Plan for deployment

– Make sure you can build and deploy your code quickly and easily

– Include configurable logging and tracing in your code from day one

– Consider application performance during every activity

The chapters that follow present some ideas you can use to plan and build a
development environment suitable for your project’s needs.

Defining the deliverables
The PiggyBank application is comprised of a number of subcomponents, each
with its own deliverable module. The deliverables we consider here are:

EJB JAR file This is a Java archive containing the code that implements
the EJBs for the PiggyBank application. These EJBs are
reusable components that provide functionality that may
be reused by other Enterprise Java applications.

WAR file This is a Web application archive containing all of the code
and Web content that implements the Web-based front
180 WebSphere Version 4 Application Development Handbook

end for the PiggyBank application. It includes the servlets,
JSPs and their supporting classes, as well as HTML and
other static content.

Client JAR file This is a Java archive that contains the code implementing
a thick client front-end to the PiggyBank application. This
client is a standalone Java application that uses the
services provided by the PiggyBank EJBs.

Use case JAR file This is a Java archive that contains our use case, or
business logic access bean classes. This code is common
to every client component that wishes to make use of the
services provided by our application model.

Common JAR file This is a separate Java archive that contains utility code
used by all components in our application, for example
data-only beans and helper classes for message logging
and locating EJB homes in JNDI.

In terms of the J2EE specification, we should consider ourselves as developers
to be module providers, that is to say we create the J2EE modules listed above
for assembly into a complete application, stored in an enterprise archive file
(EAR), by an application assembler (see Chapter 15, “Assembling the
application” on page 389).

In reality, however, our work will stray into the assembly area, because we will
need to create EAR files in order to deploy and unit test our code, and depending
on the size and structure of our development organization, application assembly
may well be a responsibility of the development team.

Because this book is concerned primarily with application development, and not
assembly and deployment (in the true J2EE sense of the words), we focus mainly
on the creation of J2EE modules. We do however cover the creation and
deployment of a single EAR containing all of our modules for unit testing
purposes.

Choosing your tools
In this redbook we discuss development for WebSphere Application Server
Version 4.0 using three different sets of tools:

� The Java 2 SDK and Ant, an open source build tool from the Apache Jakarta
project

� IBM VisualAge for Java Version 4.0

� WebSphere Studio Version 4.0
 Chapter 8. Setting up a development environment 181

Although these topics are presented as three separate strands, you may find that
elements of each solution are suitable for your environment.

This part of the redbook also discusses a number of other tools:

� WebSphere command framework

� Struts, from the Apache Jakarta project

� WebSphere Business Components Composer

� Logging and tracing with the WebSphere JRas facility and the Apache
Jakarta project framework Log4J

� Rational ClearCase for Software Configuration Management (SCM)

Automation opportunities
Look for opportunities to automate tasks and processes in your development
environment. Automation can deliver significant advantages to a development
project. The potential benefits include:

� Improved developer productivity

� Reduced turnaround time for builds and code fixes

� Better consistency in application code

� Improved quality

� Reinforcement of development standards and policies

Within each discussions in this publication, we highlight areas where tooling and
automation may pay dividends, and suggest ways in which you can leverage
automation to improve your development environment.
182 WebSphere Version 4 Application Development Handbook

Chapter 9. Development using the Java
2 Software Development Kit

In this chapter we discuss how to develop and build a WebSphere application
using the basic tools that come with the Java 2 Software Development Kit (SDK)
and the base WebSphere Application Server product.

First we describe how the various files that make up a project may be organized
in a directory structure, and how to use the SDK tools to compile and build J2EE
modules for assembly into an application.

Next we investigate how Ant, a popular open source build tool from the Apache
Jakarta project, can be used to automate these build tasks. It describes how to
install and configure Ant to build the sample PiggyBank application.

The final part of this chapter discusses how to work with meta-data files, and
provides hints and tips to assist you with developing your own J2EE applications.

If you plan to use more sophisticated tools during your development project, you
may still find the discussions in this chapter give a useful overview of the
low-level activities involved in building a J2EE application for WebSphere.

9

© Copyright IBM Corp. 2001 183

Organizing the project directory structure
It is well worth spending some time at the beginning of a project to consider how
best to organize the source files that make up your application. When doing this,
you should consider a number of factors, including:

� The number of developers working on the project, and their roles and
experience

� How the deliverables from development will be structured into artifacts such
as JAR and WAR files

� The tools you plan to use to assist with development

� How you expect the project to evolve as it moves from initial development into
production and beyond

Just as no two projects are exactly alike, no one scheme fits every situation. In
this chapter we present solutions for our example application, and attempt to
justify and explain the decisions we have made.

All of the files required to develop and build the PiggyBank application are
managed under a single directory structure. Under that top level directory we
created separate directories for source code, intermediate code produced while
building the application, and the deliverable application modules. We also
created a directory for documentation, which includes the output from the
analysis and design activities described in Part 2, “Analysis and design” on
page 81, as well as that generated from the source code using the javadoc tool,
and other documentation created during the course of the project.

We decided to further split the source code directory along the lines of
deliverables, creating five separate source subtrees, one for each deliverable.
The justifications for the split along these lines are:

� There are clear boundaries between code that will be deployed into different
parts of the infrastructure

� We separate project specific code from the code that makes up reusable
components

� Illegal dependencies between modules can be enforced at compile time—for
example EJB code that depends upon a class in the servlet tree will not
compile

We created a separate directory in the Web application part of the source tree in
which to manage the Web content for the Web application, in which we include
the JSPs as well as static files such as HTML and images.
184 WebSphere Version 4 Application Development Handbook

Finally, within each source directory we created a META-INF directory to hold
meta-data for each component. This meta-data includes manifest files used to
create Java archives, and deployment descriptor information for the application
client and EJB modules. We also created a WEB-INF directory in the Web
application source tree to hold the J2EE Web application deployment descriptor.

The final directory structure is illustrated in Figure 9-1.

Figure 9-1 Development directory structure

Note: Windows NT does not make it easy to specify the case of directory
names using Explorer. The META-INF and WEB-INF directory names must be in
upper case in J2EE archive files. You can create the directories in upper case
using Explorer or using the command line mkdir command, but Explorer may
display the names in the incorrect case.

Source tree

Development tree

Documentation directory

Meta-data directories

Intermediate build code

Deliverable modules

Web content
 Chapter 9. Development using the Java 2 Software Development Kit 185

Using the Java 2 SDK to build the application
It is entirely possible to build a complete J2EE application ready for assembly
and deployment into WebSphere manually, using only the native operating
system command-line and the basic tools supplied with the Java 2 SDK.
Although we do not recommend this approach due to the tedious and error-prone
nature of the steps involved, it is nevertheless a useful exercise to walk through
the steps in order to better understand how to automate the task using scripts or
a tool such as Ant, as discussed later in this chapter in “Using Ant to build a
WebSphere application” on page 197.

The steps we discuss in more detail are as follows:

� Set up the environment

� Compile the source code

� Create JAR file containing the common code

� Create the EJB JAR file

� Create the use case JAR file

� Create the WAR file

� Create the client JAR file

� Generate documentation from the source code

Tools in the Java 2 SDK
First of all we briefly describe the tools that we use to build the application. These
tools are all shipped with the standard Java 2 SDK, which is documented in full
on the Sun Java Web site. We are using the Version 1.3 SDK that is shipped with
WebSphere Application Server, and documented at

http://java.sun.com/j2se/1.3/docs/tooldocs/tools.html

For this example we use the following tools in conjunction with the Windows NT
command line:

javac This is the Java compiler. It takes Java source files and compiles
them into class files containing Java byte code.

jar This tool is used to manage Java archives, which are collections
of multiple files rolled up into a single archive file.

javadoc This tool processes Java source files looking for specially
formatted comments that contain documentation about the
nearby code. All of the Java API reference documentation is
generated using the javadoc tool.
186 WebSphere Version 4 Application Development Handbook

http://java.sun.com/j2se/1.3/docs/tooldocs/tools.html

We are using the 1.3 SDK that is shipped with WebSphere Application Server
Version 4.0. In our examples the WebSphere software is installed in
D:\WebSphere\AppServer. The application source files in the development
directory structure described in “Organizing the project directory structure” on
page 184 are installed in D:\ITSO4AD\dev.

Setting up the environment
Before we can start to build the application, we must first set up our command
line environment so that we are able to locate and run the tools in the SDK, and
compile and package up the application code.

We must update our PATH so that we can locate the SDK tools. The SDK is
installed in the java subdirectory of the WebSphere Application Server directory,
and the tools are located in the SDK bin directory. We must also update our
class path so that the compiler can locate the J2EE runtime libraries, as well as
dependent application classes. The commands to update the PATH and
CLASSPATH are shown in Figure 9-2.

Figure 9-2 Setting environment variables for building on the command line

Compiling the source code
We use the Java compiler, javac, to compile our source code into .class files.
Before we can run the compiler we must first consider:

� Dependencies in our source code

� Compiler options we want to use

set PATH=%PATH%;D:\WebSphere\AppServer\java\bin
set CLASSPATH=%CLASSPATH%;D:\WebSphere\AppServer\lib\j2ee.jar
set CLASSPATH=%CLASSPATH%;D:\ITSO4AD\dev\build\common
set CLASSPATH=%CLASSPATH%;D:\ITSO4AD\dev\build\ejb
set CLASSPATH=%CLASSPATH%;D:\ITSO4AD\dev\build\usecase

Note: We do not have to include the client and Web application build
directories in the class path, because no other code should have
dependencies upon classes in these directories. By not including them in the
class path, we ensure that erroneous dependencies are discovered at compile
time, and not during deployment.
 Chapter 9. Development using the Java 2 Software Development Kit 187

Code dependencies
We must take care to compile the sources in our directory structure in the correct
order, taking into account the dependencies between our high-level code
components. If we had simply placed all the source files in the same directory
structure this would not be a concern, because javac searches for and
automatically compiles dependent classes as required.

In our example, however, we want to restrict this behavior in order to reinforce
boundaries in our architecture, and ensure that the reusable components we
deliver really are reusable.

The dependencies in our code are illustrated in Figure 9-3.

Figure 9-3 Code dependencies

The code dependencies dictate the compilation sequence:

� The utility code in our common directory structure is used by all our other
code. This code must therefore be compiled first.

� The use case code also accesses the EJBs, so they must be compiled before
the use cases.

� The two client modules use both the common code and the use cases, so
these must be left until last.

Common code

Use cases

EJBs

Web
client

Standalone
client
188 WebSphere Version 4 Application Development Handbook

Compiler options
javac accepts a number of options on the command line. In this example we use
two in particular:

-d Specifies the directory structure in which to write generated .class files.
We specify this to make javac write its output to the directory structure
under the build directory.

-g Generates .class files with complete debugging information. This option
is required to enable full debugging support. When compiling for a
production system we may choose to use the -g:none option to remove
the debugging information.

We do not have to specify the -classpath parameter because javac will pick this
up from the environment.

Running the compiler
javac allows us to specify multiple files to compile in a single command. We can
do this either by listing the files one by one on the command line, or by providing
a list of files in another file. We choose this second option, using the dir
command to create the list to ensure we do not miss any source files. Figure 9-4
shows the sequence of commands required to compile the source files that make
up the common components.

Figure 9-4 Compiling the source files for the common code

This procedure must be repeated for the EJB source files, then the use case,
standalone client and servlet sources. For each subtree we change to the base
directory where the source is located, create the file list and execute the Java
compiler. Once we have completed all five sets of compilations we have a full set
of .class files in the directory structure under D:\ITSO4AD\dev\build.

Creating the common JAR file
We place all of the common code in a single Java archive file. Because this is a
regular JAR file, as opposed to an EJB JAR or WAR file, there are no
deployment descriptors include. We have to include information from our own
manifest file, however. This manifest information includes an entry that we use to
specify the class path for the common code.

D:\>cd ITSO4AD\dev\src\common

D:\ITSO4AD\dev\src\common>dir /s /b *.java > filelist

D:\ITSO4AD\dev\src\common>javac -g -d D:\ITSO4AD\dev\build\common @filelist
 Chapter 9. Development using the Java 2 Software Development Kit 189

When the common code module is eventually packaged into a J2EE enterprise
archive (EAR) file, WebSphere will use this class path to locate classes that our
common code needs. We use the m option to specify the manifest file, which is
located in the META-INF directory of the common source tree. We archive all of
the class files under the build\common directory, and place the archive in the
modules directory (Figure 9-5).

Figure 9-5 Creating the common JAR file

Creating the EJB JAR file
We create the EJB JAR file in a similar manner to the common JAR file,
packaging up all of the class files in the build\ejb directory.

The EJB JAR file differs from a regular JAR file, however, in that it also requires
deployment descriptor information that describes the EJBs found in the JAR file.
Our EJB deployment descriptor is named ejb-jar.xml and is located in the
src\ejb\META-INF directory. The same directory also contains our manifest
information, and files that describe WebSphere-specific deployment information;
see “Working with meta-data” on page 226 to learn more about these additional
meta-data files.

D:\ITSO4AD\dev\build>cd common

D:\ITSO4AD\dev\build\common>jar cvmf D:\ITSO4ad\dev\src\common\META-INF\MANIFEST.MF
D:\ITSO4AD\dev\modules\piggybank-common.jar *

added manifest
adding: itso/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/data/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/data/CustomerData.class(in = 805) (out= 394)(deflated 51%)
adding: itso/was4ad/databean/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/databean/AccountData.class(in = 1257) (out= 569)(deflated 54%)
adding: itso/was4ad/databean/CustomerData.class(in = 860) (out= 468)(deflated 45%)
adding: itso/was4ad/exception/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/exception/BusinessException.class(in = 909) (out= 495)(deflated 45%)
adding: itso/was4ad/exception/CustomerNotAuthorized.class(in = 638) (out= 357)(deflated 44%)
adding: itso/was4ad/exception/InsufficientFunds.class(in = 626) (out= 350)(deflated 44%)
adding: itso/was4ad/exception/InvalidCheque.class(in = 614) (out= 349)(deflated 43%)
adding: itso/was4ad/exception/InvalidOperation.class(in = 623) (out= 350)(deflated 43%)
adding: itso/was4ad/exception/NonExistentAccount.class(in = 629) (out= 354)(deflated 43%)
adding: itso/was4ad/exception/NonExistentCustomer.class(in = 632) (out= 354)(deflated 43%)
adding: itso/was4ad/helpers/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/helpers/HomeHelper.class(in = 2814) (out= 1366)(deflated 51%)
adding: itso/was4ad/helpers/LogHelper.class(in = 1930) (out= 770)(deflated 60%)

Note: The jar command in Figure 9-5 must be entered on a single line.
190 WebSphere Version 4 Application Development Handbook

Figure 9-6 shows how we use the -C option on the jar command to change to a
new directory before adding a selection of files. The -C option is used to add the
deployment descriptor information stored in the source tree. The resulting EJB
JAR file is stored in the modules directory.

Figure 9-6 Creating the EJB JAR file

D:\ITSO4AD\dev\build\common>cd ..\ejb

D:\ITSO4AD\dev\build\ejb>jar cvmf D:\ITSO4ad\dev\src\ejb\META-INF\MANIFEST.MF
D:\ITSO4AD\dev\modules\piggybank-ejb.jar -C D:\ITSO4AD\dev\src\ejb META-INF *

added manifest
ignoring entry META-INF/
adding: META-INF/ejb-jar.xml(in = 4634) (out= 814)(deflated 82%)
adding: META-INF/ibm-ejb-jar-bnd.xmi(in = 1307) (out= 408)(deflated 68%)
adding: META-INF/ibm-ejb-jar-ext.xmi(in = 4756) (out= 695)(deflated 85%)
ignoring entry META-INF/MANIFEST.MF
adding: META-INF/Map.mapxmi(in = 2936) (out= 590)(deflated 79%)
adding: META-INF/Schema.rdbxmi(in = 2688) (out= 597)(deflated 77%)
adding: META-INF/Table.ddl(in = 384) (out= 223)(deflated 41%)
adding: itso/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/ejb/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/ejb/account/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/ejb/account/Account.class(in = 370) (out= 250)(deflated 32%)
adding: itso/was4ad/ejb/account/AccountBean.class(in = 4544) (out= 2100)(deflated 53%)
adding: itso/was4ad/ejb/account/AccountBeanFinderHelper.class(in = 254) (out= 201)(deflated 20%)
adding: itso/was4ad/ejb/account/AccountHome.class(in = 507) (out= 285)(deflated 43%)
adding: itso/was4ad/ejb/account/AccountKey.class(in = 852) (out= 533)(deflated 37%)
adding: itso/was4ad/ejb/account/AccountManager.class(in = 604) (out= 351)(deflated 41%)
adding: itso/was4ad/ejb/account/AccountManagerBean.class(in = 8037) (out= 3514)(deflated 56%)
adding: itso/was4ad/ejb/account/AccountManagerHome.class(in = 314) (out= 209)(deflated 33%)
adding: itso/was4ad/ejb/customer/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/ejb/customer/Customer.class(in = 339) (out= 226)(deflated 33%)
adding: itso/was4ad/ejb/customer/CustomerBean.class(in = 5756) (out= 2598)(deflated 54%)
adding: itso/was4ad/ejb/customer/CustomerBeanFinderHelper.class(in = 154) (out=120)(deflated 22%)
adding: itso/was4ad/ejb/customer/CustomerHome.class(in = 465) (out= 258)(deflated 44%)
adding: itso/was4ad/ejb/customer/CustomerKey.class(in = 849) (out= 531)(deflated 37%)
adding: itso/was4ad/ejb/customer/CustomerManager.class(in = 563) (out= 307)(deflated 45%)
adding: itso/was4ad/ejb/customer/CustomerManagerBean.class(in = 7629) (out= 3213)(deflated 57%)
adding: itso/was4ad/ejb/customer/CustomerManagerHome.class(in = 319) (out= 208)(deflated 34%)

Note: We have to make sure that the META-INF directory name in the archive
is correctly specified in upper case, even though the Windows file system is
not case sensitive. We do this by the using upper case name in the
parameters to the jar command.
 Chapter 9. Development using the Java 2 Software Development Kit 191

Creating the use case JAR file
The use case JAR file is just like the common JAR file in that is a regular Java
archive, and thus does not have any J2EE deployment descriptors. We do,
however, require our own manifest so that we can specify a class path that
reflects the dependencies the use case code has upon the common and EJB
JAR files. We place the manifest and the compiled use case .class files in the
archive piggybank-usecase.jar in the modules directory (Figure 9-7).

Figure 9-7 Creating the use case JAR file

Creating the WAR file
The WAR file needs to contain the following items:

� The compiled servlet code, in the WEB-INF\classes directory in the archive

� The Web content from the src\webapp\web directory

� The Web application deployment descriptor, web.xml, also stored in the
WEB-INF directory in the archive

� Additional WebSphere-specific deployment information, also in the WEB-INF
directory (see “Working with meta-data” on page 226 to find out about the
WebSphere-specific meta-data)

� Manifest information from the src\webapp\META-INF\MANIFEST.MF file

D:\ITSO4AD\dev\build\usecase>jar cvmf D:\ITSO4AD\dev\src\usecase\META-INF\MANIFEST.MF
D:\ITSO4AD\dev\modules\piggybank-usecase.jar *

added manifest
adding: itso/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/usecase/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/usecase/CashCheck.class(in = 1276) (out= 607)(deflated 52%)
adding: itso/was4ad/usecase/CreateCustomer.class(in = 2014) (out= 989)(deflated 50%)
adding: itso/was4ad/usecase/DisplayAccount.class(in = 1680) (out= 843)(deflated 49%)
adding: itso/was4ad/usecase/DisplayBalance.class(in = 832) (out= 457)(deflated 45%)
adding: itso/was4ad/usecase/DisplayCustomer.class(in = 1695) (out= 846)(deflated 50%)
adding: itso/was4ad/usecase/DisplayCustomerAccounts.class(in = 1742) (out=
859)(deflated 50%)
adding: itso/was4ad/usecase/DisplayCustomerDetail.class(in = 1733) (out=
855)(deflated 50%)
adding: itso/was4ad/usecase/OpenAccount.class(in = 1026) (out= 549)(deflated 46%)
adding: itso/was4ad/usecase/Transfer.class(in = 1301) (out= 601)(deflated 53%)
adding: itso/was4ad/usecase/UseCase.class(in = 2481) (out= 1119)(deflated 54%)
192 WebSphere Version 4 Application Development Handbook

In order to create this archive, we must first copy some of the files we require into
a temporary directory structure, because the command line parameters for the
jar command do not offer us enough flexibility to create the required structure.

Instead we must create a temporary directory named D:\temp\wartemp, and copy
the servlet code and meta-data files to the appropriate place under the temporary
structure (Figure 9-8).

Figure 9-8 Creating temporary directory structure used for building the WAR file

Figure 9-9 shows how we can now create the WAR file in the modules directory,
using the -C parameter on the jar command to pull in the files from the other
locations, before removing the temporary directory.

D:\ITSO4AD\dev\build\ejb>cd ..\webapp

D:\ITSO4AD\dev\build\webapp>mkdir D:\temp\wartemp\WEB-INF\classes

D:\ITSO4AD\dev\build\webapp>xcopy * D:\temp\wartemp\WEB-INF\classes /s
D:itso\was4ad\webapp\command\CommandConstants.class
D:itso\was4ad\webapp\command\Login.class
D:itso\was4ad\webapp\command\Logout.class
D:itso\was4ad\webapp\command\MainMenu.class
D:itso\was4ad\webapp\controller\Command.class
D:itso\was4ad\webapp\controller\ControllerServlet.class
D:itso\was4ad\webapp\controller\Error.class
7 File(s) copied

D:\ITSO4AD\dev\build\webapp>xcopy D:\ITSO4AD\dev\src\webapp\WEB-INF D:\temp\wartemp\WEB-INF /s
D:\ITSO4AD\dev\src\webapp\WEB-INF\ibm-web-bnd.xmi
D:\ITSO4AD\dev\src\webapp\WEB-INF\ibm-web-ext.xmi
D:\ITSO4AD\dev\src\webapp\WEB-INF\web.xml
3 File(s) copied
 Chapter 9. Development using the Java 2 Software Development Kit 193

Figure 9-9 Creating the WAR file

Creating the client JAR file
The steps to create the client JAR file are essentially the same as for the EJB
JAR file, pulling in instead the compiled classes from the build\client directory,
the manifest information, and the deployment descriptor files from the
src\client\META-INF directory. The commands to run are illustrated in
Figure 9-10.

D:\ITSO4AD\dev\build\webapp>jar cvmf D:\ITSO4AD\dev\src\webapp\META-INF\MANIFEST.MF
D:\ITSO4AD\dev\modules\piggybank-webapp.war -C D:\temp\wartemp WEB-INF
-C D:\ITSO4AD\dev\src\webapp\web .

added manifest
adding: WEB-INF/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/itso/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/itso/was4ad/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/itso/was4ad/webapp/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/itso/was4ad/webapp/command/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/itso/was4ad/webapp/command/CommandConstants.class(in = 645) (out=
397)(deflated 38%)
adding: WEB-INF/classes/itso/was4ad/webapp/command/Login.class(in = 1864) (out = 930)(deflated
50%)
adding: WEB-INF/classes/itso/was4ad/webapp/command/Logout.class(in = 871) (out = 449)(deflated
48%)
adding: WEB-INF/classes/itso/was4ad/webapp/command/MainMenu.class(in = 801) (out = 417)(deflated
47%)
adding: WEB-INF/classes/itso/was4ad/webapp/controller/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/itso/was4ad/webapp/controller/Command.class(in = 325) (out = 212)(deflated
34%)
adding: WEB-INF/classes/itso/was4ad/webapp/controller/ControllerServlet.class(in = 6826) (out =
3043)(deflated 55%)
adding: WEB-INF/classes/itso/was4ad/webapp/controller/Error.class(in = 865) (out = 481)(deflated
44%)
adding: WEB-INF/ibm-web-bnd.xmi(in = 289) (out= 178)(deflated 38%)
adding: WEB-INF/ibm-web-ext.xmi(in = 468) (out= 265)(deflated 43%)
adding: WEB-INF/web.xml(in = 2471) (out= 753)(deflated 69%)
adding: error.jsp(in = 2931) (out= 921)(deflated 68%)
adding: images/(in = 0) (out= 0)(stored 0%)
adding: images/b_lis019.gif(in = 138) (out= 122)(deflated 11%)
adding: images/logo.gif(in = 4895) (out= 4815)(deflated 1%)
adding: images/PoweredByWebSphere.gif(in = 1533) (out= 1190)(deflated 22%)
adding: index.html(in = 2373) (out= 750)(deflated 68%)
adding: login.jsp(in = 2863) (out= 816)(deflated 71%)
adding: loginfail.jsp(in = 2919) (out= 845)(deflated 71%)
adding: logout.jsp(in = 2298) (out= 710)(deflated 69%)
adding: theme/(in = 0) (out= 0)(stored 0%)
adding: theme/Master.css(in = 253) (out= 157)(deflated 37%)
adding: welcome.jsp(in = 3246) (out= 1004)(deflated 69%)

D:\ITSO4AD\dev\build\webapp>rmdir /s D:\temp\wartemp
D:\temp\wartemp, Are you sure (Y/N)? y

Note: The WEB-INF directory name must be spelled in upper case in the
parameters to the jar command.
194 WebSphere Version 4 Application Development Handbook

Figure 9-10 Creating the client JAR file

Generating documentation
javadoc provides a large number of options that control the output from the tool.
In this example we use a simple subset to generate the documentation for our
code, using the standard doclet supplied with the Java 2 SDK. For a more
complete description of the javadoc tool see the SDK documentation at:

http://java.sun.com/j2se/1.3/docs/tooldocs/javadoc/index.html

javadoc options
The options that we use to invoke javadoc are described below:

-private This option causes the tool to generate documentation for all
classes and members, regardless of their visibility. We chose this
option because the intended readers of the documentation will
be maintaining the application code, not just using an
implemented API.

-d This option defines the target directory for the generated HTML.
We decided to generate the documentation for all of the code
into a single directory, the D:\ITSO4AD\dev\doc\javadoc
directory.

-use This option causes pages describing class and package usage to
be generated

-windowtitle This option defines title of the browser window in which the
documentation is displayed

-doctitle This option defines the title on the documentation index page

D:\ITSO4AD\dev\build\webapp>cd ..\client

D:\ITSO4AD\dev\build\client>jar cvmf D:\ITSO4AD\dev\src\client\META-INF\MANIFEST.MF
D:\ITSO4AD\dev\modules\piggybank-client.jar -C D:\ITSO4AD\dev\src\client META-INF *

added manifest
ignoring entry META-INF/
adding: META-INF/application-client.xml(in = 1007) (out= 359)(deflated 64%)
adding: META-INF/ibm-application-client-bnd.xmi(in = 720) (out= 270)(deflated 62%)
ignoring entry META-INF/MANIFEST.MF
adding: itso/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/client/(in = 0) (out= 0)(stored 0%)
adding: itso/was4ad/client/StandaloneClient.class(in = 10398) (out= 4829)(deflated 53%)

Note: WEB-INF must be spelled in upper case in the jar command.
 Chapter 9. Development using the Java 2 Software Development Kit 195

http://java.sun.com/j2se/1.3/docs/tooldocs/javadoc/index.html

Running javadoc
The commands we used to execute the javadoc tool are shown in Figure 9-11.
The tool allows the list of files to process to be specified in the same way as the
Java compiler, so we re-used the files we created in “Compiling the source code”
on page 187. The tool writes a substantial amount of status information to the
console while it is running—we have not included this output.

Figure 9-11 Running the javadoc tool

Viewing the generated documentation
Once the javadoc tool has completed we can use a Web browser to view the
generated documentation (Figure 9-12). Simply open a browser on the
index.html file in the destination directory, which in our case is
D:\ITSO4AD\dev\doc\javadoc.

Figure 9-12 Viewing the generated documentation

D:\ITSO4AD\dev\build\client>cd D:\ITSO4AD\dev\src

D:\ITSO4AD\dev\src>javadoc -private -d D:\ITSO4AD\dev\doc\javadoc -use
-windowtitle "PiggyBank Documentation"
-doctitle "PiggyBank Documentation"
@common/filelist @ejb/filelist @usecase/filelist
@client/filelist @webapp/filelist
196 WebSphere Version 4 Application Development Handbook

Using Ant to build a WebSphere application
It is common practice in all but the most trivial projects to employ tools to simplify
the task of building the application. The reasons are clear—the tasks are
generally simple but may be long-winded, and during the course of development
will be repeated many times by each developer. Tools speed up the process and
reduce the risk of errors, leading to a repeatable, reliable process that is
essential through multiple development cycles.

Traditionally these tasks have been performed by shell scripts or batch files in
UNIX or Windows environments, or by using tools such as make. While these
approaches are still valid, developing Java applications—especially in a
heterogeneous environment—introduces new challenges. A particular limitation
is the close-coupling to a particular operating system inherent in using these
tools.

What is Ant?
Ant attempts to solve some of these issues by providing a framework that
implements extensions in Java, instead of issuing shell commands to perform
build tasks. The base Ant package comes with a comprehensive set of standard
extensions (known as tasks in Ant) for performing common actions such as
compiling source code and manipulating files. If a project requires a more
specialized task, and a suitable task is not already available in the standard
optional library, it is possible to write your own tasks in Java.

Ant is a subproject of the Apache Jakarta project, part of the Apache Software
Foundation. This is the organization responsible for the open source Apache
Web server, the basis of the IBM HTTP Server shipped with WebSphere
Application Server. The goal of the Jakarta project is to “provide
commercial-quality server solutions based on the Java Platform that are
developed in an open and cooperative fashion.”

To find out more about the Jakarta project visit the Jakarta Web site at:

http://jakarta.apache.org/

The Ant Web site is located at:

http://jakarta.apache.org/ant/

This section provides a basic outline of the features and capabilities of Ant. For
complete information you should consult the Ant documentation included in the
Ant distribution or available on the Web at:

http://jakarta.apache.org/ant/manual/
 Chapter 9. Development using the Java 2 Software Development Kit 197

http://jakarta.apache.org/
http://jakarta.apache.org/ant/
http://jakarta.apache.org/ant/manual/

Installing and configuring Ant
First of all we downloaded the Ant binary distribution from the Ant Web site. All of
the examples in this chapter have been developed and tested using the latest
release of Ant available at the time of writing, Version 1.3.

We unpacked the binary distribution file into a temporary directory and copied all
of the files into D:\ant. Following the Ant installation guide we then set the
environment variables ANT_HOME and JAVA_HOME, and updated our PATH. We did
this for the entire machine by selecting Start -> Setting -> Control Panel ->
System -> Environment, and editing the values as shown in Figure 9-13.

Figure 9-13 Setting environment variables

We set ANT_HOME to the base location of the Ant software, in our case D:\ant.
JAVA_HOME is used by Ant to determine the location of the JDK used to run the
tool; in our case we decided to use the JDK shipped with WebSphere, which we
have installed in D:\WebSphere\AppServer\java. We also added D:\ant\bin to
the PATH environment variable, so we could pick up the Ant executable.
198 WebSphere Version 4 Application Development Handbook

http://jakarta.apache.org/ant/manual/

The final configuration step was to install the optional Ant tasks that are also
available on the Web site in a separate package from the main Ant distribution.
We downloaded the JAR containing the optional tasks and installed it into the
D:\ant\lib directory.

Ant build files
Ant uses XML build files to describe what tasks must be performed in order to
build a project. The main components of a build file are:

project A build file contains build information for a single project. It may
contain one or more targets.

target A target describes the tasks that must be performed to satisfy a
goal, for example compiling source code into .class files may be
one target, and packaging the .class files into a JAR file may be
another target. Targets may depend upon other targets, for
example the .class files must be up to date before you can create
the JAR file. Ant will resolve these dependencies.

task A task is a single step that must be performed in order to satisfy a
target. Tasks are implemented as Java classes that are invoked by
Ant, passing parameters defined as attributes in the XML. Ant
provides a set of standard tasks, a set of optional tasks, and an API
which allows you to write your own tasks.

property A property has a name and a value. Properties are essentially
variables that can be passed to tasks via task attributes. Property
values can be set inside a build file, or obtained externally from a
property file or from the command line. A property is referenced by
enclosing the property name inside ${}, for example ${basedir}.

path A path is a set of directories or files. Paths can be defined once
and referred to multiple times, easing the development and
maintenance of build files. For example, a Java compilation task
may use a path reference to determine the class path to use.

Tip: We also edited our existing CLASSPATH environment variable to remove
spaces from it—the batch file that starts the ant command does not work
when there are spaces in the class path. In our case we found that DB2 had
added paths including D:\Program Files—we changed them to D:\Progra~1.

Tip: The script that starts the ant command automatically adds any JAR files
in the lib directory under ANT_HOME to the class path when running Ant.
 Chapter 9. Development using the Java 2 Software Development Kit 199

Built-in tasks
A comprehensive set of built in tasks are supplied with the Ant distribution. The
tasks that we use in this example are described below:

ant Invokes Ant using another build file

copy Copies files and directories

delete Deletes files and directories

echo Outputs messages

jar Creates Java archive files

javac Compiles Java source

javadoc Generates documentation from Java source

mkdir Creates directories

tstamp Sets properties containing date and time information

war Creates WAR files

Creating build files for the PiggyBank application
We take the development tree structure described in “Organizing the project
directory structure” on page 184, and develop Ant build files that can be used to
create the same deliverables we created in “Using the Java 2 SDK to build the
application” on page 186, namely:

� A JAR file containing common code

� An EJB JAR file containing EJB code

� A JAR file containing the use case code

� A client JAR file containing application client code

� A WAR file containing the code and content for the Web client

� Generated documentation for all Java source

Note: On Windows systems Ant recognizes both forward slash (/) and back
slash (\) characters as directory name separators. In order to maintain
portability of our build files so they may run unaltered on UNIX systems we
always use the forward slash character in our build files. Where we have to
specify drive letters, we do this only in property files and not in the build files
themselves.
200 WebSphere Version 4 Application Development Handbook

We split the PiggyBank application into subprojects, each with its own build file,
and invoke the subprojects from a master build file that resides in the base
source directory, as illustrated in Figure 9-14.

This strategy emphasizes the modular nature of the application architecture.
Internal changes in one subproject should not necessitate rebuilding every
deliverable, and reusable components, particularly the use cases, EJBs and
common code, may be separated out from the rest of the application with
minimal pain.

Figure 9-14 Organizing Ant build files into subprojects

The build files are all named build.xml. This is the default name assumed by Ant
if no build file name is supplied. This allows a build of the entire project or a
single subproject to be performed by simply changing to the appropriate directory
and issuing the ant command with no arguments. Each build file has the
following common targets:

init Performs build initialization tasks—all other targets depend upon
this target

compile Compiles Java source into .class files

package Creates the deliverables for each module—depends upon the
compile target

clean Removes all generated files—used to force a full build

The master build file has additional targets that are appropriate for the entire
project, for example to generate documentation from the Java source code.

build.xml
init
compile
package
document
clean

build.xml
init
compile
package
clean

common

build.xml
init
compile
package
clean

ejb

build.xml
init
compile
package
clean

webapp

build.xml
init
compile
package
clean

client

src

build.xml
init
compile
package
clean

usecase
 Chapter 9. Development using the Java 2 Software Development Kit 201

Each Ant build file may have a default target. This target is executed if Ant is
invoked on a build file and no target is supplied as a parameter. In all cases the
default target for our build files is package. The dependencies between targets
are illustrated in Figure 9-15.

Figure 9-15 Dependencies between build targets

Master build file
The master build file sets global properties and delegates responsibility for
actually building code to the individual subprojects’ build files.

Figure 9-16 Master build file outer tags

Figure 9-16 shows the outer tags from the master build file. As we progress
through this section of the book we add XML fragments inside the project tags,
building up the file as we go. See “Using the Web material” on page 558 for the
location of the complete master build file.

compile

package d
ep

en
d

s
o

n
documentclean

init

<?xml version="1.0"?>

<project name="itso4ad" default="package">

<!-- Properties and targets are defined here -->

</project>
202 WebSphere Version 4 Application Development Handbook

Setting global properties
We use properties in our build files to provide information that may change over
time or from machine to machine. We have to provide a sensible default set of
values for each property we use, while also allowing individuals to override those
defaults where appropriate.

A good example is the location of the WebSphere Application Server software.
This information is required in order to locate libraries that we have to compile
our code against, but it may differ from machine to machine, depending on where
the software is installed.

The solution is to use a hierarchy of property files. Ant is able to read properties
from files that use the format recognized by the Java java.util.Properties
class. Once a property has been set, however, it may not be changed. We first
check the current user’s home directory for a properties file and use any
properties defined there, and then read any remaining properties from a file
called global.properties that is stored with the master build file.

The XML that implements this scheme is shown in Figure 9-17. The user.home
property is provided by Ant and is set to the home directory of the user who
started Ant. On our Windows NT system, for example, this resolves to
C:\WinNT\Profiles\resident. The basedir property is also set by Ant, and
defaults to the location of the build file.

Figure 9-17 Setting global properties in the master build file

The global.dev.dir property is used to make the build location independent. No
matter where the development tree is actually installed, the build will always
work, because all paths are calculated relative to this property. We use almost
identical XML to set global properties in the build files for each subproject. The
only difference is that the global.dev.dir property will be defined as being two
directory levels up. This is shown in Figure 9-18.

Note: Although Ant build files use XML, there is no single document type
definition (DTD) that can define the document structure. This is because each
task adds its own tags, and new tasks can easily be written and added to Ant.

<!-- Set up global properties -->
<property name="global.dev.dir" value="${basedir}/.."/>
<property file="${user.home}/override.properties"/>
<property file="${global.dev.dir}/global.properties"/>
 Chapter 9. Development using the Java 2 Software Development Kit 203

Figure 9-18 Setting global properties in a subproject build file

This allows the subproject build files to locate the global properties in the case
where Ant is executed against the subproject build file directly, as well as when
invoked from the master build file.

The initial global properties in global.properties are shown in Figure 9-19. Note
that unlike in regular Java property files we are able to reference other properties
in property values. Ant resolves references at the time the property is set, so
properties must be defined in the correct order.

Figure 9-19 Global properties file global.properties

As we work though the examples we add additional properties to this file as
required.

If we have to override one of the default settings, we can create an
override.properties file in our home directory. An example is shown in
Figure 9-20.

<!-- Set up global properties -->
<property name="global.dev.dir" value="${basedir}/../.."/>
<property file="${user.home}/override.properties"/>
<property file="${global.dev.dir}/global.properties"/>

#
Global build properties file
#
If you need to override anything in here create an
override.properties file in your home directory
#

#
Software locations
#
global.was.dir=D:/WebSphere/AppServer

#
Destination directories
#
global.build.dir=${global.dev.dir}/build
global.module.dir=${global.dev.dir}/modules
global.javadoc.dir=${global.dev.dir}/doc/javadoc
204 WebSphere Version 4 Application Development Handbook

Figure 9-20 Overriding default properties in override.properties

It is also possible to override properties on the ant command line using the -D
parameter of the ant command, for example:

ant -Dglobal.was.dir=C:/WebSphere/AppServer

Build targets
The master build file contains a number of build targets; these are our four
standard targets that we define in all our build files, and a number of project-wide
targets that are unique to the master build file.

Initialization target
The first target we describe is the init target. All other targets in the build file
depend upon this target.

In the init target we execute the tstamp task to set up properties that include
timestamp information. These properties are available throughout the whole
build. We also write out a message indicating that the build is starting. The XML
for the init target is shown in Figure 9-21.

Figure 9-21 Master build file init target

The ant.project.name property used in the starting message is another standard
property supplied by Ant—it is set to the name of the project specified in the
outer project tag in the current build file. When we execute the init target we
see output similar to that shown in Figure 9-22.

#
Override the WebSphere software location
#
global.was.dir=C:/WebSphere/AppServer

<target name="init">
<tstamp/>
<echo>Build of ${ant.project.name} started at ${TSTAMP} on ${TODAY}</echo>

</target>
 Chapter 9. Development using the Java 2 Software Development Kit 205

Figure 9-22 Output from the master build file init target

Compilation and packaging targets
The compile and package targets in the master build file look very similar. They
simply use the ant task to delegate to each of the subproject build files in turn,
then output a message indicating that the target has completed. Figure 9-23
shows the XML that describes these targets.

Figure 9-23 Master build file compile and package targets

The package target in the master build file does not have to depend upon the
compile target. This is because the package targets in all the subproject build
files already depend upon compile in their own build files.

D:\ITSO4AD\dev\src>ant init
Buildfile: build.xml

init:
 [echo] Build of itso4ad started at 1211 on May 23 2001

BUILD SUCCESSFUL

Total time: 0 seconds

<target name="compile" depends="init">
<echo>Compiling ${ant.project.name}</echo>
<ant dir="common" target="compile"/>
<ant dir="ejb" target="compile"/>
<ant dir="usecase" target="compile"/>
<ant dir="client" target="compile"/>
<ant dir="webapp" target="compile"/>
<echo>Finished compiling ${ant.project.name}</echo>

</target>

<target name="package" depends="init">
<echo>Packaging ${ant.project.name}</echo>
<ant dir="common" target="package"/>
<ant dir="ejb" target="package"/>
<ant dir="usecase" target="package"/>
<ant dir="client" target="package"/>
<ant dir="webapp" target="package"/>
<echo>Finished packaging ${ant.project.name}</echo>

</target>
206 WebSphere Version 4 Application Development Handbook

Cleanup targets
The last of our standard targets in the master build file is the clean target. This
target delegates responsibility to the clean targets of the subproject build files,
just as compile and package do. We also create two other cleanup-related targets
in the master build file:

clean-document Removes all the generated documentation from the doc
directory

clean-all Removes both compiled and packaged code and the
generated documentation

The XML for the three cleanup targets is shown in Figure 9-24.

Figure 9-24 Master build file cleanup targets

Documentation target
We generate documentation from the source code using javadoc at the project
level, rather than in each subproject. We do this because we want to have a
single common set of documentation for all the code, with a single index and
cross references that work between sub projects.

The document target in the master build file uses the built in javadoc task
provided by Ant. This task has attributes that map to options of the javadoc tool
provided by the Java SDK described in “javadoc options” on page 195. We obtain
the values for many attributes from global properties—we added the properties
shown in Figure 9-25 to the global properties file.

<target name="clean" depends="init">
<echo>Cleaning ${ant.project.name}</echo>
<ant dir="common" target="clean"/>
<ant dir="ejb" target="clean"/>
<ant dir="usecase" target="clean"/>
<ant dir="client" target="clean"/>
<ant dir="webapp" target="clean"/>
<echo>Finished cleaning ${ant.project.name}</echo>

</target>

<target name="clean-document" depends="init">
<echo>Cleaning documentation for ${ant.project.name}</echo>
<delete dir="${global.javadoc.dir}"/>
<echo>Finished cleaning documentation for ${ant.project.name}</echo>

</target>

<target name="clean-all" depends="init,clean,clean-document"/>
 Chapter 9. Development using the Java 2 Software Development Kit 207

Figure 9-25 Javadoc properties in the global properties file

We also use a path to define the list of directories containing source code to be
scanned by the javadoc task. The path is defined near the beginning of the
master build file, after the XML that defines the global properties. The XML is
shown in Figure 9-26. The path may come in useful if we have to add any new
targets that must process all of the source files.

Figure 9-26 Defining a path containing all source files

The XML for this target is shown in Figure 9-27. Note how we use the TODAY
property set by the tstamp task to include the date at the bottom of each page
generated. The output generated when we use Ant to generate the javadoc
documentation is shown in Figure 9-28.

#
javadoc settings
#
global.javadoc.public=
global.javadoc.protected=
global.javadoc.package=
global.javadoc.private=on
global.javadoc.use=on
global.javadoc.windowtitle=PiggyBank Documentation
global.javadoc.doctitle=PiggyBank Documentation

 <!-- Set up local properties and paths-->
 <path id="itso4ad.source.path">
 <pathelement path="${basedir}/common"/>

<pathelement path="${basedir}/ejb"/>
<pathelement path="${basedir}/usecase"/>
<pathelement path="${basedir}/client"/>

 <pathelement path="${basedir}/webapp"/>
 </path>
208 WebSphere Version 4 Application Development Handbook

Figure 9-27 Master build file document target

Figure 9-28 Output from the Ant document target

<target name="document" depends="init">
<echo>Generating documentation for ${ant.project.name}</echo>
<mkdir dir="${global.javadoc.dir}"/>
<javadoc sourcepathref="itso4ad.source.path"

packagenames="itso.*"
classpath="${global.was.dir}/lib/j2ee.jar;${global.was.dir}/lib/ras.jar"
destdir="${global.javadoc.dir}"
public="${global.javadoc.public}"
protected="${global.javadoc.protected}"
package="${global.javadoc.package}"
private="${global.javadoc.private}"
use="${global.javadoc.use}"
windowtitle="${global.javadoc.windowtitle}"
doctitle="${global.javadoc.doctitle}"
bottom="<i>Generated on ${TODAY}</i>"/>

<echo>Finished generating documentation for ${ant.project.name}</echo>
</target>

Buildfile: build.xml

init:
 [echo] Build of itso4ad started at 1356 on July 16 2001

document:
 [echo] Generating documentation for itso4ad
 [javadoc] Generating Javadoc
 [javadoc] Javadoc execution
 [javadoc] Loading source files for package itso.was4ad.data...
 [javadoc] Loading source files for package itso.was4ad.exception...
 [javadoc] Loading source files for package itso.was4ad.helpers...
 [javadoc] Loading source files for package itso.was4ad.ejb.account...
 [javadoc] Loading source files for package itso.was4ad.ejb.customer...
 [javadoc] Loading source files for package itso.was4ad.usecase...
 [javadoc] Loading source files for package itso.was4ad.client.swing...
 [javadoc] Loading source files for package itso.was4ad.webapp.command...
 [javadoc] Loading source files for package itso.was4ad.webapp.controller...
 [javadoc] Loading source files for package itso.was4ad.webapp.view...
 [javadoc] Constructing Javadoc information...
 [javadoc] Building tree for all the packages and classes...
 [javadoc] Building index for all the packages and classes...
 [javadoc] Building index for all classes...
 [echo] Finished generating documentation for itso4ad

BUILD SUCCESSFUL

Total time: 13 seconds
 Chapter 9. Development using the Java 2 Software Development Kit 209

Building the common code
The Ant build file that describes how to build the common code is located at
src\common\build.xml. We start with a basic skeleton that we use for all our
subproject build files (Figure 9-29).

Figure 9-29 Skeleton build file for subprojects

The only text in this skeleton that is specific to a subproject is the name attribute of
the outer project tag.

<?xml version="1.0"?>

<project name="common" default="package">

 <!-- Set up global properties -->
 <property name="global.dev.dir" value="${basedir}/../.."/>
 <property file="${user.home}/override.properties"/>
 <property file="../global.properties"/>

 <!-- If we were invoked by the master file TSTAMP will be set already -->
 <target name="init" unless="TSTAMP">
 <tstamp/>
 <echo>

Build of ${ant.project.name} started at ${TSTAMP} on ${TODAY}
</echo>

 </target>

 <target name="compile" depends="init">
 <echo>Compiling ${ant.project.name}</echo>
 <echo>Finished compiling ${ant.project.name}</echo>
 </target>

 <target name="package" depends="init,compile">
 <echo>Packaging ${ant.project.name}</echo>
 <echo>Finished packaging ${ant.project.name}</echo>
 </target>

<target name="clean" depends="init">
 <echo>Cleaning ${ant.project.name}</echo>
 <echo>Finished cleaning ${ant.project.name}</echo>
 </target>

</project>
210 WebSphere Version 4 Application Development Handbook

Compiling the common code
Before we compile the code we first ensure that the destination directory exists.
We achieve this using the mkdir task. We then use the javac task to compile the
code, specifying the following attributes:

srcdir The location of the Java source files

destdir The directory in which to write generated .class files

classpathref A reference to the class path to use during compilation

debug Whether to generate debugging information in .class files

optimize Whether to turn on compiler optimization

deprecation Whether to output deprecation warnings

The complete XML for the compile task is shown in Figure 9-30.

Figure 9-30 Common code compile target

The values for the debug, optimize and deprecation attributes are obtained from
global properties. Figure 9-31 shows the information we add to the
global.properties file to support this.

Figure 9-31 Compiler settings in global properties file

 <target name="compile" depends="init">
 <echo>Compiling ${ant.project.name}</echo>
 <mkdir dir="${common.build.dir}"/>
 <javac srcdir="${basedir}"
 destdir="${common.build.dir}"
 classpathref="common.classpath"
 debug="${global.javac.debug}"
 optimize="${global.javac.optimize}"
 deprecation="${global.javac.deprecation}"
 />
 <echo>Finished compiling ${ant.project.name}</echo>
 </target>

#
javac settings
#
global.javac.debug=on
global.javac.optimize=off
global.javac.deprecation=on
 Chapter 9. Development using the Java 2 Software Development Kit 211

The destination directory and class path used during the compile are specific to
this subproject, but may be referred to many times in the build file, so we define
these by adding the XML in Figure 9-32 near the start of the build file, after the
XML defining the global properties.

Figure 9-32 Setting up local properties and class path for the common code

We can test the compilation of the common code in isolation by changing to the
src\common directory and issuing the command:

ant compile

This generates output similar to that shown in Figure 9-33.

Figure 9-33 Output from compiling the common code

Ant is able to determine whether compiles have to be performed or not by
comparing the timestamps on the generated .class files with those on the Java
source files. If we immediately repeat the command to compile the common code
we get a different output (Figure 9-34).

<!-- Set up local properties and paths-->
<property name="common.build.dir" value="${global.build.dir}/common"/>
<path id="common.classpath">

<pathelement location="${global.was.dir}/lib/j2ee.jar"/>
<pathelement location="${global.was.dir}/lib/ras.jar"/>

</path>

D:\ITSO4AD\dev\src\common>ant compile
Buildfile: build.xml

init:
 [echo] Build of common started at 1644 on May 23 2001

compile:
 [echo] Compiling common
 [mkdir] Created dir: D:\ITSO4AD\dev\src\common\..\..\build\common
 [javac] Compiling 12 source files to

D:\ITSO4AD\dev\src\common\..\..\build\common
 [echo] Finished compiling common

BUILD SUCCESSFUL

Total time: 3 seconds
212 WebSphere Version 4 Application Development Handbook

Figure 9-34 Compilation output when no source files are out of date

Packaging the common code
Packaging the common code involves creating a JAR file containing the
compiled .class files generated by the compile target.

The JAR file must be created in the modules directory. We use the mkdir task
again to make sure the modules directory exists, and then the jar task to create
the JAR file. We specify the manifest information to include using the manifest
attribute. This is illustrated in Figure 9-35.

Figure 9-35 Common code package target

This task uses a new local property, client.jar.file, in the build file to define
the name of the JAR file to create. We updated the XML that defines the local
properties as shown in Figure 9-36 to include the new property.

D:\ITSO4AD\dev\src\common>ant compile
Buildfile: build.xml

init:
 [echo] Build of common started at 1646 on May 23 2001

compile:
 [echo] Compiling common
 [echo] Finished compiling common

BUILD SUCCESSFUL

Total time: 0 seconds

<target name="package" depends="init,compile">
<echo>Packaging ${ant.project.name}</echo>
<mkdir dir="${global.module.dir}"/>
<jar jarfile="${common.jar.file}"

basedir="${common.build.dir}"
manifest="META-INF/MANIFEST.MF"/>

<echo>Finished packaging ${ant.project.name}</echo>
</target>
 Chapter 9. Development using the Java 2 Software Development Kit 213

Figure 9-36 Updated local properties and path for the common build file

When we use Ant to execute the package target we get output similar to that
shown in Figure 9-37.

Figure 9-37 Output from packaging the common code

Because package depends on compile Ant first makes sure that all the compiled
code is up to date before creating the JAR file.

<!-- Set up local properties and paths-->
<property name="common.build.dir" value="${global.build.dir}/common"/>
<property name="common.jar.file"

value="${global.module.dir}/piggybank-common.jar"/>
<path id="common.classpath">

<pathelement location="${global.was.dir}/lib/j2ee.jar"/>
<pathelement location="${global.was.dir}/lib/ras.jar"/>
<pathelement location="${global.log4j.lib.dir}/log4j.jar"/>

</path>

D:\ITSO4AD\dev\src\common>ant package
Buildfile: build.xml

init:
 [echo] Build of common started at 1701 on May 23 2001

compile:
 [echo] Compiling common
 [echo] Finished compiling common

package:
 [echo] Packaging common
 [mkdir] Created dir: D:\ITSO4AD\dev\src\common\..\..\modules
 [jar] Building jar:

D:\ITSO4AD\dev\src\common\..\..\modules\piggybank-common.jar
 [echo] Finished packaging common

BUILD SUCCESSFUL

Total time: 1 second
214 WebSphere Version 4 Application Development Handbook

Cleaning up common code files
The clean target in the common build file removes the directory containing the
compiled .class files generated by the compiler and the packaged JAR file. The
XML is shown in Figure 9-38.

Figure 9-38 Common code clean target

Building the EJBs
The Ant build file that describes how to build the EJBs is located at
src\ejb\build.xml. We start again with the basic skeleton and add in the local
properties and path that we need (Figure 9-39).

Figure 9-39 Local properties and path for the EJB code

The main difference from the build file for the common code is that we have
added the common code to the class path, because the EJB code uses classes
from the common code.

Compiling the EJBs
The compile target for the EJBs is nearly identical to that for the common code.
The only difference is in the property names that define the class path to use and
the destination directory for the compiled .class files. The XML is shown in
Figure 9-40.

<target name="clean" depends="init">
<echo>Cleaning ${ant.project.name}</echo>
<delete dir="${common.build.dir}"/>
<delete file="${common.jar.file}"/>
<echo>Finished cleaning ${ant.project.name}</echo>

</target>

<!-- Set up local properties and paths-->
<property name="ejb.build.dir" value="${global.build.dir}/ejb"/>
<property name="ejb.jar.name" value="piggybank-ejb.jar"/>
<property name="ejb.jar.file" value="${global.module.dir}/${ejb.jar.name}"/>
<path id="ejb.classpath">

<pathelement location="${global.was.dir}/lib/j2ee.jar"/>
<pathelement path="${global.build.dir}/common"/>

</path>
 Chapter 9. Development using the Java 2 Software Development Kit 215

Figure 9-40 EJB compile target

Packaging the EJBs
We also use the built in Ant jar task to package the EJB JAR file. The XML for
the package target is shown in Figure 9-41.

Figure 9-41 EJB package target

We specify the output file name and manifest to use with attributes, and the files
to include in the archive using nested fileset elements. The first nested element
adds the compiled .class files to the archive. The second nested element pulls in
the deployment descriptor files, but excludes the manifest file, which was
specified earlier.

Figure 9-42 shows the output from Ant when it is used to package the EJBs.

<target name="compile" depends="init">
<echo>Compiling ${ant.project.name}</echo>
<mkdir dir="${ejb.build.dir}"/>
<javac srcdir="${basedir}"

destdir="${ejb.build.dir}"
classpathref="ejb.classpath"
debug="${global.javac.debug}"
optimize="${global.javac.optimize}"
deprecation="${global.javac.deprecation}"

/>
<echo>Finished compiling ${ant.project.name}</echo>

</target>

<target name="package" depends="init,compile">
<echo>Packaging ${ant.project.name}</echo>
<mkdir dir="${global.module.dir}"/>
<jar jarfile="${ejb.jar.file}"

manifest="META-INF/MANIFEST.MF"
>

<fileset dir="${ejb.build.dir}"/>
<fileset dir="${basedir}">

<include name="META-INF/*"/>
<exclude name="META-INF/MANIFEST.MF"/>

</fileset>
</jar>
<echo>Finished packaging ${ant.project.name}</echo>

</target>
216 WebSphere Version 4 Application Development Handbook

Figure 9-42 Output from packaging the EJBs

Packaging EJBs and generating deployed code
The previous section described how to generate an undeployed EJB JAR file.
When an undeployed EJB JAR or an EAR containing an undeployed EJB JAR
file is installed into WebSphere the application server must deploy the EJB code
before the EJBs can be installed. This deployment process involves examining
the EJB code and deployment information and generating and compiling
WebSphere-specific code that links the EJBs with the WebSphere EJB container
implementation.

While it is quite acceptable to deliver EJBs and generate code in this manner,
you may prefer to generate the deployed code earlier in the cycle, at the point
where we create the EJB JAR file. The main benefits of this approach are:

� Deployment issues caused by problems in the code such as
non-conformance with the EJB specification are highlighted when the code is
built, rather than when it is deployed.

� The code generation is a relatively lengthy process—we can speed up the
development code and unit test cycle if we only generate code when
absolutely necessary, rather than every time we redeploy an EAR file that
contains EJBs.

D:\ITSO4AD\dev\src\ejb>ant package
Buildfile: build.xml

init:
 [echo] Build of ejb started at 1240 on June 6 2001

compile:
 [echo] Compiling ejb
 [echo] Finished compiling ejb

package:
 [echo] Packaging ejb
 [jar] Building jar:

D:\ITSO4AD\dev\src\ejb\..\..\modules\piggybank-ejb.jar

 [echo] Finished packaging ejb

BUILD SUCCESSFUL

Total time: 1 second
 Chapter 9. Development using the Java 2 Software Development Kit 217

Figure 9-43 shows the XML we developed to create the EJB JAR file and
generated deployed code for WebSphere.

Figure 9-43 Package and deploy targets for generating a deployed EJB JAR file

We made two new additions to the original package target. The first of these
uses the Ant built-in uptodate task to determine whether or not we need to
regenerate the deployed EJB code.

 <target name="package" depends="init,compile">
 <echo>Packaging ${ant.project.name}</echo>
 <uptodate property="ejb.deploy.uptodate">
 <srcfiles dir= "${ejb.build.dir}"/>
 <srcfiles dir= "${basedir}/META-INF"/>
 <mapper type="merge" to="${ejb.jar.file}"/>
 </uptodate>
 <mkdir dir="${global.module.dir}"/>
 <jar jarfile="${ejb.jar.file}"
 manifest="META-INF/MANIFEST.MF"
 >
 <fileset dir="${ejb.build.dir}"/>
 <fileset dir="${basedir}">
 <include name="META-INF/*"/>
 <exclude name="META-INF/MANIFEST.MF"/>
 </fileset>
 </jar>
 <antcall target="deploy"/>
 </target>

 <target name="deploy" unless="ejb.deploy.uptodate">
 <echo>Deploying EJB JAR file</echo>

<exec executable="${global.was.dir}/bin/ejbdeploy.bat">
 <arg value="${ejb.jar.file}"/>
 <arg value="${global.temp.dir}"/>
 <arg value="${global.temp.dir}/${ejb.jar.name}"/>
 <arg value="-quiet"/>
 </exec>
 <move file="${global.temp.dir}/${ejb.jar.name}"

tofile="${ejb.jar.file}"
/>

 <echo>Finished deploying EJB JAR file</echo>
 </target>
218 WebSphere Version 4 Application Development Handbook

This task sets a property depending on the time stamps on files—in our case we
compare the dates on the contents of the EJB build tree and the meta-data in the
source tree with the date of the current EJB JAR file, before we run the jar task
to create it. We have to do this because although the jar task is able to
determine whether or not the target file is up to date by examining the source
files, the exec task we use to generate the deployed code is not.

The second addition to the package target uses the built-in antcall task to invoke
a new deploy target in our build file. This new target executes only if the EJB JAR
file was not already up to date, making the decision based upon the property set
by the uptodate task in the package target.

The deploy target runs the WebSphere ejbdeploy tool on the undeployed JAR
file, generating a new JAR file containing the deployed code in a temporary
directory. It then moves the generated file from the temporary directory into the
modules directory.

The output from this version of the package target is shown in Figure 9-44.

Figure 9-44 Output from packaging the EJBs and generating deployed code

Buildfile: build.xml

init:
 [echo] Build of ejb started at 1712 on July 15 2001

compile:
 [echo] Compiling ejb
 [echo] Finished compiling ejb

package:
 [echo] Packaging ejb
 [jar] Building jar:

D:\itso4ad\dev\src\ejb\..\..\modules\piggybank-ejb.jar

deploy:
[echo] Deploying EJB JAR file

 [exec] 0 Errors, 0 Warnings, 0 Informational Messages
 [move] Moving 1 files to D:\itso4ad\dev\src\..\modules
 [echo] Finished deploying EJB JAR file

BUILD SUCCESSFUL

Total time: 1 minute 0 seconds
 Chapter 9. Development using the Java 2 Software Development Kit 219

Cleaning up EJB files
The clean target in the EJB build file removes the directory containing the
compiled .class files generated by the compiler and the packaged JAR file. The
XML is shown in Figure 9-45.

Figure 9-45 EJB clean target

Building the use cases
The Ant build file that describes how to build the use case code is located at
src\usecase\build.xml. It compiles and packages the use case code into the
piggybank-usecase.jar archive, which is stored with the other archives in the
modules directory.

The build file is almost identical to that described for the common code in
“Building the common code” on page 210, except that the use case code
requires the common and EJB build directories on the class path in order to
compile. For this reason we do not describe it further here.

Building the standalone client application
The Ant build file that describes how to build the client code is located at
src\client\build.xml. We start again with the basic skeleton and add in the
local properties and path that we need (Figure 9-46).

Figure 9-46 Local properties and path for the client code

<target name="clean" depends="init">
<echo>Cleaning ${ant.project.name}</echo>
<delete dir="${ejb.build.dir}"/>
<delete file="${ejb.jar.file}"/>
<echo>Finished cleaning ${ant.project.name}</echo>

</target>

<!-- Set up local properties and paths-->
<property name="client.build.dir" value="${global.build.dir}/client"/>
<property name="client.jar.file"

value="${global.module.dir}/piggybank-client.jar"/>
<path id="client.classpath">

<pathelement location="${global.was.dir}/lib/j2ee.jar"/>
<pathelement path="${global.build.dir}/common"/>
<pathelement path="${global.build.dir}/usecase"/>

</path>
220 WebSphere Version 4 Application Development Handbook

Compiling the client code
The compile target for the client code is nearly identical to that for the common
code. The only difference is in the property names that define the class path to
use and the destination directory for the compiled .class files. The XML is shown
in Figure 9-47.

Figure 9-47 Client compile target

Packaging the client code
We use the built in jar task to create the JAR file for the standalone client
application. Figure 9-48 shows how we use two nested fileset elements inside
the JAR element to include the compiled .class files from the build tree, and the
client meta-data from the source tree. The second nested element excludes the
manifest file which we specify explicitly in an attribute of the jar task.

Figure 9-48 Client package target

<target name="compile" depends="init">
<echo>Compiling ${ant.project.name}</echo>
<mkdir dir="${client.build.dir}"/>
<javac srcdir="${basedir}"

destdir="${client.build.dir}"
classpathref="client.classpath"
debug="${global.javac.debug}"
optimize="${global.javac.optimize}"
deprecation="${global.javac.deprecation}"

/>
<echo>Finished compiling ${ant.project.name}</echo>

</target>

<target name="package" depends="init,compile">
<echo>Packaging ${ant.project.name}</echo>
<mkdir dir="${global.module.dir}"/>
<jar jarfile="${client.jar.file}"

manifest="META-INF/MANIFEST.MF"
>

<fileset dir="${client.build.dir}"/>
<fileset dir="${basedir}">

<include name="META-INF/*"/>
<exclude name="META-INF/MANIFEST.MF"/>

</fileset>
</jar>
<echo>Finished packaging ${ant.project.name}</echo>

</target>
 Chapter 9. Development using the Java 2 Software Development Kit 221

Cleaning up client files
The clean target in the client build file removes the directory containing the
compiled .class files generated by the compiler and the packaged JAR file. The
XML is shown in Figure 9-49.

Figure 9-49 Client clean target

Building the Web application
The Ant build file that describes how to build the Web application is located at
src\webapp\build.xml. We start again with the basic skeleton and add in the
local properties and path that we need (Figure 9-50).

Figure 9-50 Local properties and path for the Web application code

Compiling the Web application code
The compile target for the Web application code is nearly identical to that for the
common code. The only difference is in the property names that define the class
path to use and the destination directory for the compiled .class files. The XML is
shown in Figure 9-51.

<target name="clean" depends="init">
<echo>Cleaning ${ant.project.name}</echo>
<delete dir="${client.build.dir}"/>
<delete file="${client.jar.file}"/>
<echo>Finished cleaning ${ant.project.name}</echo>

</target>

<!-- Set up local properties and paths-->
<property name="webapp.build.dir" value="${global.build.dir}/webapp"/>
<property name="webapp.war.file"

value="${global.module.dir}/piggybank-webapp.war"/>
<path id="webapp.classpath">

<pathelement location="${global.was.dir}/lib/j2ee.jar"/>
<pathelement path="${global.build.dir}/common"/>
<pathelement path="${global.build.dir}/usecase"/>

</path>
222 WebSphere Version 4 Application Development Handbook

Figure 9-51 Web application compile target

Packaging the Web application
Ant has a built in war task that can create packaged WAR files. We use this task
to create the WAR file for the Web application (Figure 9-52).

Figure 9-52 Web application package target

We use the following attributes and nested elements with the war task:

warfile The name of the generated archive file

webxml The location of the Web application deployment descriptor

basedir The base location of the Web content that is to be included in the
archive

manifest The file containing the manifest information to use

<target name="compile" depends="init">
<echo>Compiling ${ant.project.name}</echo>
<mkdir dir="${webapp.build.dir}"/>
<javac srcdir="${basedir}"

destdir="${webapp.build.dir}"
classpathref="webapp.classpath"
debug="${global.javac.debug}"
optimize="${global.javac.optimize}"
deprecation="${global.javac.deprecation}"

/>
<echo>Finished compiling ${ant.project.name}</echo>

</target>

<target name="package" depends="init,compile">
<echo>Packaging ${ant.project.name}</echo>
<mkdir dir="${global.module.dir}"/>
<war warfile="${webapp.war.file}"

webxml="WEB-INF/web.xml"
basedir="web"
manifest="META-INF/MANIFEST.MF"

>
<classes dir="${webapp.build.dir}"/>
<webinf dir="WEB-INF">

<exclude name="web.xml"/>
</webinf>

</war>
<echo>Finished packaging ${ant.project.name}</echo>

</target>
 Chapter 9. Development using the Java 2 Software Development Kit 223

classes This nested element that specifies the files that should be
included in the WEB-INF/classes directory in the archive. We
include all the .class files compiled into the build\webapp
directory.

webinf This nested element specifies other files to be included in the
WEB-INF directory in the archive. We include all of the files in the
WEB-INF directory in the source tree, excluding the web.xml which
is specified as an attribute of the war task.

Figure 9-53 shows the output generated when Ant is used to package the Web
application WAR file.

Figure 9-53 Output from packaging the Web application

Cleaning up Web application files
The clean target in the Web application build file removes the directory
containing the compiled .class files generated by the compiler and the packaged
war file. The XML is shown in Figure 9-54.

Figure 9-54 Web application clean target

D:\ITSO4AD\dev\src\webapp>ant package
Buildfile: build.xml

init:
 [echo] Build of webapp started at 1615 on May 24 2001

compile:
 [echo] Compiling webapp
 [echo] Finished compiling webapp

package:
 [echo] Packaging webapp
 [war] Building war:

D:\ITSO4AD\dev\src\webapp\..\..\modules\piggybank-webapp.war
 [echo] Finished packaging webapp

BUILD SUCCESSFUL
Total time: 1 second

<target name="clean" depends="init">
<echo>Cleaning ${ant.project.name}</echo>
<delete dir="${webapp.build.dir}"/>
<delete file="${webapp.war.file}"/>
<echo>Finished cleaning ${ant.project.name}</echo>

</target>
224 WebSphere Version 4 Application Development Handbook

Further automation opportunities using Ant
So far we have seen how we can use the basic features of Ant to build the
separate application modules that make up the PiggyBank application.
Depending on your environment you may find it useful to build upon the ideas
presented here and create build files for Ant that can be used to further enhance
your development environment. Some ideas you may want to consider involve
using Ant to:

� Package application modules into J2EE enterprise application archive (EAR)
files

� Build and rebuild specific application release versions by extracting versioned
application source files from a software configuration management tool such
as Rational ClearCase

� Extract and build source files from VisualAge for Java using the VisualAge
tasks supplied in the package of optional Ant tasks

� Deploy application modules into WebSphere ready for testing

� Initiate automated testing suites such as JUnit (see “Automating unit testing
using JUnit” on page 517).

� Insert build version information into source files before building the application

If you examine the build files that come with the sample application code you can
see some of these ideas put into practice. See “Using the Web material” on
page 558.

To gain a better understanding of the standard features available with Ant consult
the Ant documentation that is available on the Web and in the Ant distribution. If
the standard features do not suit your purposes, remember that Ant provides a
mechanism for you to implement your own tasks in Java.

Automatic builds
A common practice in many development environments is the use of daily builds.
These automatic builds are usually initiated in the early hours of the morning by a
scheduling tool such as cron, which is standard on UNIX systems. Similar tools
are available for Windows environments. The daily builds usually attempts to
build a complete system, based upon the latest checked-in versions of the
application source files.

A daily build benefits a development team by automatically highlighting
compile-time issues in a timely manner. It also assists developers by providing a
baseline against which to develop and unit test their code. Developers can
refresh their individual development environment from the latest daily build
 Chapter 9. Development using the Java 2 Software Development Kit 225

before starting work on a development task. Compilation times are improved
because each developer has to build only the components he or she is currently
working on. Integration issues are reduced because developers work against the
most recent version of the application.

Using Ant you can extend the daily build concept to perform additional tasks as
part of the automatic nightly process. For example, if a nightly build completes
successfully you could then have Ant automatically deploy the latest build into a
test environment and execute all of your unit test cases against it, then e-mail the
results to the appropriate team members.

Ant is especially well suited if you have a heterogeneous environment, perhaps
with Windows-based developer desktops and UNIX for test and deployment.

Working with meta-data
During the earlier discussions in this chapter we mention meta-data files a
number of times. This section describes the various meta-data files involved in
the development and deployment of a WebSphere application, and describes
ways in which the WebSphere tools can be used to create and modify the
meta-data files, while still managing the individual files in the source tree, which
is especially useful in an environment using a software configuration
management (SCM) tool.

This section also describes how we use Ant build files to create an enterprise
archive (EAR) file, complete with WebSphere binding information for a specific
environment, that can be installed directly into WebSphere without user
intervention.

Meta-data in WebSphere
We have to consider three categories of meta-data files when developing and
building WebSphere applications. The three categories are:

� J2EE deployment descriptors

� WebSphere deployment information

� Java archive (JAR) manifest information
226 WebSphere Version 4 Application Development Handbook

J2EE deployment descriptors
The J2EE specification defines a number of deployment descriptors. These are
files that contain XML that describes the components supplied in an application
module and define the resources they require in order to be deployed into a
container.

WebSphere Application Server provides tools that process these deployment
descriptors and map the requirements of an application module to services
provided by the WebSphere containers. Table 9-1 lists the four XML deployment
descriptor files defined in Version 1.2 of the J2EE specification.

Table 9-1 J2EE deployment descriptors

WebSphere deployment information
When you use WebSphere tools such as the Application Assembly Tool (AAT) to
assemble and deploy J2EE modules, the tools store information specific to the
WebSphere environment in separate files in the J2EE archive files. The
information is stored separately from the J2EE deployment information so that
tools from other vendors are still able to process the standard descriptors.

There are two classes of WebSphere-specific information:

� Extensions describe additional information specific to the WebSphere J2EE
implementation, but applicable to every WebSphere installation, for example
EJB methods that should be considered read-only.

� Bindings describe how components should behave in a particular WebSphere
installation, for example the name of the DataSource or the global JNDI name
an EJB should use.

WebSphere-specific meta-data files are listed in Table 9-2. The EJB schema and
map files are described in more detail in “Customizing CMP persistence
mapping” on page 420.

Module type Descriptor file name

EJB ejb-jar.xml

Web application web.xml

Client application client-application.xml

Enterprise application application.xml
 Chapter 9. Development using the Java 2 Software Development Kit 227

Table 9-2 WebSphere deployment meta-data files

Manifest information
When we build our application modules we specify information that we want to
include in the manifest file included in the Java archive (JAR) file. All of the
PiggyBank modules use the JAR manifest to specify the class path to search in
order to find Java classes that the code in the module needs in order to deploy
and run. The contents of the manifest file for the Web application module are
shown in Figure 9-55.

Module type File name Purpose

EJB ibm-ejb-jar-bnd.xmi Binding information for EJBs
including JNDI names and data
source properties

ibm-ejb-jar-ext.xmi Describes security and transaction
information for EJBs, including
defining read-only methods

ibm-ejb-access-bean.xmi Defines EJB access beans

Map.mapxmi Defines mappings between CMP
EJB fields and the DB schema

Schema.dbxmi Describes the database schema
used by CMP EJBs

Web
application

ibm-web-bnd.xmi Binding information for the Web
application, including WebSphere
virtual host name

ibm-web-ext.xmi Settings for WebSphere extensions,
for example default error page and
whether to serve servlets by class
name

Client
application

ibm-application-client-bnd
.xmi

J2EE client binding information, for
example mapping local EJB
references to global JNDI names

Enterprise
application

ibm-application-bnd.xmi Binding information for the
enterprise application

ibm-application-ext.xmi WebSphere extension information
for the enterprise application
228 WebSphere Version 4 Application Development Handbook

Figure 9-55 Manifest information for the PiggyBank Web application module

The Class-Path entry in the manifest indicates that a class loader should search
the common and use case JAR files for classes that the Web application module
needs. The locations are specified relative to the location from which the JAR
that includes the manifest was loaded. When the PiggyBank application is
packaged into an enterprise archive (EAR) file our application modules are all
placed in the same location, the base directory of the archive file.

Creating and editing meta-data files
Because the J2EE deployment descriptors are well documented, and the XML
document type definitions (DTDs) are freely available, it is certainly possible to
create and manage your J2EE deployment descriptors using only a simple text
editor. This is not an easy or enjoyable task however, even with an XML-aware
editor to help you match up tags and highlight syntax errors.

All editions of WebSphere Application Server include the Application Assembly
Tool (AAT), which provides a GUI interface that greatly simplifies the task of
creating and assembling modules and the deployment descriptors that describe
them. It also is able to manage the WebSphere specific binding and extension
files. The AAT is described in more detail in Chapter 15, “Assembling the
application” on page 389.

The problem in an iterative development cycle is that you do not want to go
through the laborious and potentially error-prone process of assembling your
application from scratch before you can test a new version of your code. This is
especially true in an environment using daily or more frequent builds. Most code
changes do not require any modification to the deployment descriptors. Changes
that do—the addition of a new EJB or servlet, for example, are relatively rare.

The solution is to use AAT to create and edit your deployment descriptors, then
extract and save the descriptors in the source tree. When we want to introduce
new code we can rebuild our modules using the saved descriptors. If we have to
edit the descriptors we simply build the module using the old descriptors, load it
into AAT for editing, then extract the new descriptors from the module file saved
by the tool.

This is the mechanism we used to create all of the deployment descriptors used
by the PiggyBank application described in this chapter.

Manifest-Version: 1.0
Class-Path: piggybank-common.jar piggybank-usecase.jar
 Chapter 9. Development using the Java 2 Software Development Kit 229

Extracting deployment descriptors
All J2EE archives can be manipulated using the jar tool included with the Java 2
SDK. To create deployment descriptors in our source tree from a module saved
using AAT, we simply move to the appropriate directory and extract the files we
need. This is illustrated in Figure 9-56, which shows how the various deployment
descriptors can be extracted from the piggybank-webapp.war archive.

Figure 9-56 Extracting meta-data files from a Web application archive

Automation using Ant
We decided to extend our existing Ant build files to allow us to manage our EAR
file and all of the meta-data for the PiggyBank application. We created a new ear
directory in the source tree in which to store the meta-data for the enterprise
application, and the Ant build file that we use to manage it.

There are three targets of interest in the build file:

package Creates the EAR file

edit-ear Helps us edit the deployment descriptors

install Installs the packaged EAR file into WebSphere Application
Server, Single Server Edition, ready for testing

Packaging the EAR file
For simplicity we create a single EAR file which contains all five modules that
make up the PiggyBank application. In a more realistic scenario we would
probably create two separate files:

� The first would be installed into WebSphere and contain the common code,
use case code, EJBs and the Web application.

� The second EAR would be distributed to client systems and would contain
only the common code, use case code, EJB client files and the code for the
standalone application client.

D:\ITSO4AD\dev\src\webapp>jar xvf
D:\ITSO4AD\dev\modules\piggybank-webapp.war
META-INF WEB-INF/web.xml WEB-INF/ibm-web-bnd.xmi WEB-INF/ibm-web-ext.xmi

 created: META-INF/
extracted: META-INF/MANIFEST.MF
extracted: WEB-INF/ibm-web-bnd.xmi
extracted: WEB-INF/ibm-web-ext.xmi
extracted: WEB-INF/web.xml
230 WebSphere Version 4 Application Development Handbook

The XML that describes the package target is shown in Figure 9-57. The EAR file
is created using the standard Ant jar task, pulling in the five modules and the
EAR meta-data files.

Figure 9-57 EAR build file package target

Editing the EAR file
The edit-ear target is used to help us edit the meta-data information for all of the
modules included in the enterprise archive, as well as the archive itself. The XML
that defines the target is shown in Figure 9-58.

This target starts AAT using the Ant exec task so we can edit the descriptors.
Unfortunately, AAT does not recognize file names supplied as command-line
parameters, so the assembly tool prompts us to open the appropriate temporary
file.

Once the assembly tool has terminated, Ant takes the modified EAR file and
extracts the meta-data files for all of the modules out of the EAR into a temporary
directory and puts them back into the appropriate locations in the source tree.
The Ant copy task only copies a file over another file if the time stamp on the
destination file is older than that on the source file. If the EAR file was not
modified by AAT the meta-data files are not altered and Ant does not copy them.

<target name="package" depends="init">
<echo>Packaging ${ant.project.name}</echo>
<jar jarfile="${ear.file}">

<fileset dir="${global.module.dir}">
<include name="piggybank-common.jar"/>
<include name="piggybank-ejb.jar"/>
<include name="piggybank-usecase.jar"/>
<include name="piggybank-client.jar"/>
<include name="piggybank-webapp.war"/>

</fileset>
<fileset dir="${basedir}">

<include name="META-INF/*"/>
</fileset>

</jar>
<echo>Finished packaging ${ant.project.name}</echo>

</target>
 Chapter 9. Development using the Java 2 Software Development Kit 231

Figure 9-58 EAR build file edit-ear target

 <target name="edit-ear" depends="init">
 <property name="ear.temp.dir" value="${global.temp.dir}/edit-ear.${DSTAMP}.${TSTAMP}"/>
 <mkdir dir="${ear.temp.dir}"/>
 <echo>
 Starting the WebSphere Application Assembly Tool (AAT)
 When the tool starts, open and edit the file
 ${global.module.dir}/piggybank.ear
 Wnen you have finished editing the file close AAT and the
 deployment descriptors will be copied back into the source tree.
 </echo>
 <exec executable="assembly"/>

 <echo>Assembly tool has terminated - processing changed deployment descriptors</echo>

 <!-- EAR descriptors -->
 <unjar src="${global.module.dir}/piggybank.ear"
 dest="${ear.temp.dir}"
 />
 <copy todir="META-INF">
 <fileset dir="${ear.temp.dir}/META-INF">
 <exclude name="MANIFEST.MF"/>
 </fileset>
 </copy>

 <!-- EJB descriptors -->
 <mkdir dir="${ear.temp.dir}/ejb"/>
 <unjar src="${ear.temp.dir}/piggybank-ejb.jar"
 dest="${ear.temp.dir}/ejb"
 />
 <copy todir="../ejb/META-INF">
 <fileset dir="${ear.temp.dir}/ejb/META-INF"/>
 </copy>

 <!-- Client descriptors -->
 <mkdir dir="${ear.temp.dir}/client"/>
 <unjar src="${ear.temp.dir}/piggybank-client.jar"
 dest="${ear.temp.dir}/client"
 />
 <copy todir="../client/META-INF">
 <fileset dir="${ear.temp.dir}/client/META-INF"/>
 </copy>

 <!-- webapp descriptors -->
 <mkdir dir="${ear.temp.dir}/webapp"/>
 <unjar src="${ear.temp.dir}/piggybank-webapp.war"
 dest="${ear.temp.dir}/webapp"
 />
 <copy todir="../webapp/META-INF">
 <fileset dir="${ear.temp.dir}/webapp/META-INF"/>
 </copy>
 <copy todir="../webapp/WEB-INF">
 <fileset dir="${ear.temp.dir}/webapp/WEB-INF">
 <exclude name="classes"/>
 <exclude name="lib"/>
 </fileset>
 </copy>

 <delete dir="${ear.temp.dir}"/>
 <echo>EAR meta-data has been copied</echo>
 </target>
232 WebSphere Version 4 Application Development Handbook

Figure 9-59 shows the output from Ant as it launches AAT.

Figure 9-59 Output from the edit-ear target as it launches the assembly tool

When AAT starts, we copy the name of the temporary EAR file onto the Windows
clipboard, click on the Existing tab in the Welcome dialog, and press Ctrl-V to
paste the name into the dialog (Figure 9-60). We then click OK to load the file
into the tool, and edit the information that goes into the new deployment
descriptors.

Figure 9-60 Opening the EAR file using AAT

D:\ITSO4AD\dev\src\ear>ant edit-ear
Buildfile: build.xml

init:
 [echo] Build of itso4ad started at 1015 on June 7 2001

edit-ear:
 [mkdir] Created dir: D:\temp\edit-ear.20010607.1015
 [echo]
 Starting the WebSphere Application Assembly Tool (AAT)
 When the tool starts, open and edit the file
 D:\ITSO4AD\dev\src/../modules/piggybank.ear
 Wnen you have finished editing the file close AAT and the
 deployment descriptors will be copied back into the source tree.
 Chapter 9. Development using the Java 2 Software Development Kit 233

When we have finished working with the descriptor information, we save the EAR
file and exit from AAT. When the assembly tool terminates, Ant takes the edited
EAR file, and extracts the deployment descriptors using the Ant unjar task. The
output from Ant as it extracts the files is shown in Figure 9-61.

Figure 9-61 Ant unjar output from the edit-ear target

Installing the EAR file
The install target is used to deploy our PiggyBank EAR file into a local instance
of WebSphere Application Server, Single Server Edition. It uses the WebSphere
SEAppInstall command to install the archive, supplying command line
parameters that prevent the tool for prompting for any missing information. The
XML that implements the target is shown in Figure 9-62.

Figure 9-62 EAR build file install target

[echo] Assembly tool has terminated - processing changed deployment descriptors
 [unjar] Expanding: D:\ITSO4AD\dev\src\ear\..\..\modules\piggybank.ear into
D:\temp\edit-ear.20010607.1021
 [copy] Copying 3 files to D:\ITSO4AD\dev\src\ear\META-INF
 [mkdir] Created dir: D:\temp\edit-ear.20010607.1021\ejb
 [unjar] Expanding: D:\temp\edit-ear.20010607.1021\piggybank-ejb.jar into
D:\temp\edit-ear.20010607.1021\ejb
 [copy] Copying 4 files to D:\ITSO4AD\dev\src\ejb\META-INF
 [mkdir] Created dir: D:\temp\edit-ear.20010607.1021\client
 [unjar] Expanding: D:\temp\edit-ear.20010607.1021\piggybank-client.jar into
D:\temp\edit-ear.20010607.1021\client
 [copy] Copying 3 files to D:\ITSO4AD\dev\src\client\META-INF
 [mkdir] Created dir: D:\temp\edit-ear.20010607.1021\webapp
 [unjar] Expanding: D:\temp\edit-ear.20010607.1021\piggybank-webapp.war into
D:\temp\edit-ear.20010607.1021\webapp
 [copy] Copying 1 file to D:\ITSO4AD\dev\src\webapp\META-INF
 [copy] Copying 1 file to D:\ITSO4AD\dev\src\webapp\WEB-INF
 [delete] Deleting directory D:\temp\edit-ear.20010607.1021
 [echo] EAR meta-data has been copied

BUILD SUCCESSFUL

Total time: 4 minutes 42 seconds

<target name="install" depends="init">
<echo>Installing EAR file ${ear.file} into WebSphere AEs</echo>
<exec executable="SEAppInstall">

<arg line="-install ${ear.file}"/>
<arg line="-precompileJsp false"/>
<arg line="-interactive false"/>
<arg line="-ejbdeploy false"/>

</exec>
<echo>EAR file ${ear.file} installed</echo>

</target>
234 WebSphere Version 4 Application Development Handbook

We use the -ejbdeploy false flag to tell WebSphere not to regenerate the
deployed code for the EJBs when the EAR is installed. We can do this because
our EAR file already contains EJBs with deployed code generated, as described
in “Packaging EJBs and generating deployed code” on page 217.

The -precompileJsp option is set to false to save time when installing the
application—in a unit testing environment we are less likely to require every
single JSP in the application, so the effort spent precompiling them would be
largely wasted.

Sample output from Ant when the install target is invoked is shown in
Figure 9-63. We can safely ignore the warnings because our application does not
use security, and the datasource used by the CMP EJBs has been defined at the
container level, so the individual beans will inherit that.

Figure 9-63 Output from the install target

D:\ITSO4AD\dev\src\ear>ant install
Buildfile: build.xml
init:
 [echo] Build of ear started at 1942 on June 6 2001
install:
 [echo] Installing EAR file D:\ITSO4AD\dev\src\ear/../../modules/piggybank.ear into WebSphere

AEs
 [exec] IBM WebSphere Application Server Release 4, AEs
 [exec] J2EE Application Installation Tool, Version 1.0
 [exec] Copyright IBM Corp., 1997-2001
 [exec]
 [exec] The -configFile option was not specified. Using

D:\WebSphere\AppServer\config\server-cfg.xml
 [exec] Loading Server Configuration from D:\WebSphere\AppServer\config\server-cfg.xml
 [exec] Server Configuration Loaded Successfully
 [exec] Loading D:\ITSO4AD\dev\modules\piggybank.ear
 [exec] Getting Expansion Directory for EAR File
 [exec] Expanding EAR File to D:\WebSphere\AppServer\installedApps\piggybank.ear
 [exec] Removed EAR From Server
 [exec] Installed EAR On Server
 [exec] Validating Application Bindings...
 [exec] CHKW4518W: No datasource has been specified for the container managed entity bean ?.

The default datasource specified for the EJB jar will be used.
 [exec] CHKW4518W: No datasource has been specified for the container managed entity bean ?.

The default datasource specified for the EJB jar will be used.
 [exec] CHKW6505W: A subject (user or group) has not been assigned for security role,

DenyAllRole.
The security role assignment should be made prior to running the application.

[exec] Finished validating Application Bindings.
 [exec] Saving EAR File to directory
 [exec] Saved EAR File to directory Successfully
 [exec] Saving Server Configuration to D:\WebSphere\AppServer\config\server-cfg.xml
 [exec] Backing Up Server Configuration to: D:\WebSphere\AppServer\config\server-cfg.xml~
 [exec] Save Server Config Successful
 [exec] JSP Pre-compile Skipped......
 [exec] Installation Completed Successfully
 [echo] EAR file D:\ITSO4AD\dev\src\ear/../../modules/piggybank.ear installed
BUILD SUCCESSFUL

Total time: 14 seconds
 Chapter 9. Development using the Java 2 Software Development Kit 235

236 WebSphere Version 4 Application Development Handbook

Chapter 10. Development using
WebSphere Studio

In this chapter we describe the process of developing a Web application using
WebSphere Studio Version 4.0 Advanced Edition, which includes some new
features, such as the support for WebSphere Application Server Version 4.0.

Detailed information about development of Web applications with
WebSphere Studio Version 3 and Version 3.5 can be found in the redbooks:

� Servlet and JSP Programming with IBM WebSphere Studio and
VisualAge for Java, SG24-5755

� Version 3.5 Self Study Guide: VisualAge for Java and WebSphere
Studio, SG24-6136

� How about Version 3.5? VisualAge for Java and WebSphere Studio
Provide Great New Function, SG24-6131

10
© Copyright IBM Corp. 2001 237

Developing Web applications with WebSphere Studio
WebSphere Studio Version 4.0 is a tool that allows us to develop a J2EE
compliant Web application from end to end:

� Developing the Web presentation content: HTML, CSS, JSP

� Developing the server-side code: servlets, JavaBeans, database access

� Assembling the Web application: creating and publishing the WAR file to the
server

WebSphere Studio components
WebSphere Studio includes the following tools to aid in the development of a
Web application:

� Page Designer, WebArt Designer, GifAnimator Designer—tools to create and
edit Web content (HTML and JSP pages, CSS stylesheets, images)

� Applet Designer—a visual tool for creating Java applets combining
JavaBeans and adding multimedia content

� Page Detailer—tool to analyze the performance of the site (download times)

In addition a set of wizards are provided to generate skeleton code:

� SQL, database, and JavaBean wizards—allow to retrieve data from
databases or access beans and include it in the Web pages as dynamic
content

� Web service creation/consumption wizards—create and consume Web
services. The creation wizard generated WSDL and XML files describing a
Web service based on a JavaBean or servlet. The consumption wizard
generates a JSP and a client proxy to interact with an existing Web service.

� Jar creation wizard—acts as a companion to Applet Designer, converting any
class file into a JavaBean that can be added to an applet using this tool.

� Content and user wizards—used to define collections of personalization
resources, by connecting to a database and building the resources from its
tables.

– User resources: attributes of the users visiting the Web site

– Content resources: content attributes to be inserted in the Web pages

To execute these two wizards, it is necessary that the properties for the
project are setup to Version 3.5 of the application server and compile-time
classes.
238 WebSphere Version 4 Application Development Handbook

For developing the pure Java content (servlets, JavaBeans and their utility
classes), the integration with VisualAge for Java Version 4.0 allows to import
content directly from the repository into the Web archive (this is a feature already
existing in previous versions of Studio). For details about this topic, see section
“Integration with VisualAge for Java” on page 246 in this chapter.

There is also support for debugging using the IBM Distributed Debugger (this
topic is covered in Chapter 17, “Debugging the application” on page 467).

Figure 10-1 shows the Studio workbench with the Page Designer.

Figure 10-1 Page Designer window

New features in WebSphere Studio Version 4.0
The new version of WebSphere Studio includes several new features:

� Support for WebSphere Application Server Version 4.0: this implies support
for the J2EE specifications: servlet 2.2 and JSP 1.1

� Creation of Web archives (WAR files): in this new version of Studio, it is
possible to create the Web modules and publish them to the server locally or
via FTP.

� Support for custom tag libraries (as part of the JSP 1.1 specification)

� New creation and consumption wizards for Web services
 Chapter 10. Development using WebSphere Studio 239

Structuring the project in Studio
The default structure of a Studio project is shown in Figure 10-2:

Figure 10-2 Default structure for a project in WebSphere Studio

When structuring a custom project, we might want to create other folders
containing JSP and/or HTML pages, images, and so forth.

For each project, we must setup the properties related to the application server
where we will publish the files (Figure 10-3).

Figure 10-3 Setting up properties for the project

Project name

Personalization
rules

Source code and class
files for generated and/or
imported servlets

Stylesheets
240 WebSphere Version 4 Application Development Handbook

In the project’s properties window, Advanced tab, we specify:

� Application Server version—Studio 4.0 supports WAS 3.0, 3.5 and 4.0, but in
this book we focus on WAS 4.0

� JSP version—if our application is using custom tag libraries, it is necessary
that we select JSP 1.1 (we do that in the case of the PiggyBank application).

In the case of a general application (not deliberately developed for WAS 4.0
but that is going to be installed in it), it is necessary to migrate to JSP 1.1 if we
have been using JSP 0.91 (which is no longer supported by the new version).

� Code generation style—this is used when we have generated code using the
database or JavaBeans wizard. Two styles are possible:

– Servlet model—it acts similarly to the Servlet SmartGuide in VisualAge for
Java, creating a servlet that processes the request from an input HTML
page, and a JSP page that receives the response (creating an error page
or a “no data returned” page is optional).

– JSP model—no servlet is created; instead, a JSP is in charge of
processing the request from an HTML page and send the response to
another JSP page. Again, the creation of an error/no data page is optional.

In the database wizard, with this code generation style, the connection to
the database is done in the JSP page, using the WebSphere custom tags
(see the product documentation for details).

In general, we do not recommend this usage, as it means tight coupling
between the presentation and the model (database) tier; if the database
schema changes, we would have to update all the JSPs that use the
WebSphere database tags. See Chapter 13, “Guidelines for coding
WebSphere applications” on page 325 for more information about coding
guidelines.

� Compile-time classes—because we are deploying to WAS 4.0, we select the
classes that match this version of the application server.

� Markup languages—WebSphere supports HTML, WML, VHML and
CompactHTML (so that we can develop applications for pervasive devices).

Publishing stages and publishing targets
A useful feature of Studio is the possibility to create different publishing stages. A
publishing stage is a model structure of the Web application used for publishing
purposes. By defining different stages, we can publish our application to different
servers, or with different functionality. For example, we can define publishing
stages for the development, testing and production phases of the project. By
default, Test and Production are stages already configured in Studio.
 Chapter 10. Development using WebSphere Studio 241

Publishing stages can be associated with different servers and different
publishing targets (that is, destination locations for the Web application files).

Consider for example that we are developing the Java code in VisualAge and the
Web pages in Studio. Then we can define a publishing stage called VisualAge
with publishing targets aiming at the WebSphere Test Environment folder in the
VisualAge for Java project resources. This way we can test our application in
VisualAge for Java before deploying our Java code out of the repository.

Another scenario related to testing would be the use of WebSphere Application
Server Version 4.0 Single Server Edition (its features are described in “New
single server version” on page 66). This edition of the application server is
intended for unit testing and development, so that in this case, we would define a
Web application war publishing target (Creation of Web archive WAR files is
described in “Creating and publishing WAR files” on page 249) and publish our
Web application to the server using FTP.

Figure 10-4 shows an example of custom publishing stages.

Figure 10-4 Customizing publishing stages in WebSphere Studio

Custom file status
Another feature of Studio is the ability to create custom status for the project files.
By default, Studio includes three status definitions:

� Work-in-Progress

� Submitted-for-Approval

� Ready-for-Publishing

It is possible to define five more status, each of them associated to a color label.
Figure 10-5 shows examples of possible custom status definitions.
242 WebSphere Version 4 Application Development Handbook

Figure 10-5 Customizing file status in WebSphere Studio

When working in a team environment, this feature can allow developers to
quickly identify the status of the files. We can define additional status codes:

� To specify file ownership (this is not suitable if the Web development group is
too big, as there are not enough available status)

� To specify details about the content of the files in an immediate recognizable
way (JSPs with just HTML content, needing Java code, and so forth)

Working in a team environment with Studio
A possible configuration for this scenario is to place the Studio project and its
files in a network drive in some centralized server so that all the Web developers
can access it and perform their work.

When a file is being edited (for example, with Page Designer), Studio marks it as
checked out, and prevents any other developer to access it (except in read-only
mode). Check out is also the label assigned to files under a Version Control
System not accessible for the current user (when that user is not in the group
that can edit the file).

WebSphere Studio stores the checked out files in a default location under the
directory where the product is installed (though it is modifiable):

D:\WebSphere\Studio40\check_out\ProjectName

The files stored at this location are the files currently being edited.

Ready for unit test

Ready for integration test
 Chapter 10. Development using WebSphere Studio 243

When the developer finishes working with a file, there are two possible options to
add back the file to the general access:

� Check In—the changes are saved and the new file is copied from the check
out location to the project default location.

� Undo Check Out—the changes are not saved and Studio reverts to the
version of the file prior to the check out process.

Custom tag libraries
WebSphere Studio Version 4.0 includes support for using custom tag libraries as
a part of the JSP 1.1 specification support.

Custom tags provide an abstraction of Java code as opposed to scriptlets, which
require Java programming experience. For a Web developer in charge of writing
JSPs, using custom tags is easier, as he/she may not have in depth Java
knowledge. Also, with this approach, it is easier to maintain “separation“ between
the presentation tier (the Web pages) and the logic beneath them: in case we
want to change something in that logic, our custom tags can stay unchanged
while we modify the functionality of the classes that handle them. With this view,
we can consider custom tags as wrappers for the Java code.

Using tag libraries also means making the debugging process easier: although
VisualAge for Java supports JSP debugging (through the generated servlet
code), and we can use the Distributed Debugger in WebSphere Studio, the task
of debugging a JSP is not as easy as debugging normal Java classes (this topic
is covered in Chapter 17, “Debugging the application” on page 467 in A special
case: how to debug a JSP).

Custom tag libraries also mean reusability: having a tag library defined, we may
be able to reuse it within our application or in other applications.

Let’s go through the process of adding and using a custom tag library for the
PiggyBank application.

A tag library file is an XML file containing information about the tags, basically
their name, associated Java class, descriptive information and attributes. Their
processing will be delegated to these associated classes. To learn more about
tag libraries, see the redbook Programming J2EE APIs with WebSphere
Advanced, SG24-6124.

The tag library and its supporting Java classes are typically developed in
VisualAge for Java and imported into Studio so that the Web developers can add
the tags to the JSP pages and assemble the components together to build the
Web module and publish the files.
244 WebSphere Version 4 Application Development Handbook

In the case of the PiggyBank application, the tag library file is named
utility.tld. When using Studio, we add this file to the WEB-INF directory of our
project (if the folder does not exist, we create it). Then, to use this taglib in a JSP
page, we have to insert a taglib directive in the Page Properties panel on the JSP
tags tab (Figure 10-6).

Figure 10-6 Including a tag library in a JSP page

The code inserted in the <HEAD> tag of the JSP page is shown in Figure 10-7.

Figure 10-7 Including a tag library in a JSP page: the taglib directive

<HTML>
<HEAD>
<META name="GENERATOR" content="IBM WebSphere Page Designer V4.0 for
Windows">
<META http-equiv="Content-Style-Type" content="text/css">
<TITLE>
This is a sample JSP page using a custom tag library
</TITLE>
<LINK href="/theme/Master.css" rel="stylesheet" type="text/css">
<%@ taglib uri="http://jakarta.apache.org/taglibs/utility" prefix="utils" %>
</HEAD>
<BODY>

<!-- custom tags used here -->
</BODY>
</HTML>
 Chapter 10. Development using WebSphere Studio 245

Then we can proceed to use the custom tags in the JSP page, by selecting the
menu Insert -> JSP tags -> Insert a Custom tag. The window displayed displays
a list of the tag libraries loaded in the project and the corresponding tags in each
of the tag libraries (Figure 10-8).

Figure 10-8 Inserting custom tags from tag libraries

When assembling the Web module in a WAR file for publication in the application
server, we have to include the classes that process our custom tags in the
module, in a JAR file under \WEB-INF\lib. This is in fact the folder where the
utility classes JAR files must be placed (classes used by other components, such
as servlets, or directly by the JSPs in scriptlets).

Integration with VisualAge for Java
One important feature of the integration between VisualAge for Java and Studio
is the possibility of exporting/importing code between the two tools. For example,
servlets or Java beans developed with the Studio wizards can be imported into
VisualAge for Java to be debugged or improved with new functionality. When the
process is complete, the servlet class file can be exported to WebSphere Studio
to be assembled in the Web module (WAR file) and published to the application
server.

Note: The WEB-INF directory name must be in upper case in J2EE archive files
246 WebSphere Version 4 Application Development Handbook

Setup
To access VisualAge for Java code from Studio, it is necessary to start the
Remote Access to Tool API in VisualAge, by selecting Options -> Remote
Access to Tool API and start the service.

To access Studio files from VisualAge for Java, it is not necessary that Studio is
running. To import Java code generated in Studio to VisualAge for Java, we can
use the import SmartGuide in the usual way, or install the WebSphere Studio
Tools so that we can send directly the Java source code to the VisualAge for Java
Workbench from Studio. Select Project -> VisualAge for Java -> Install Studio
Tools in VisualAge and the installation is automatic (it is required to restart
VisualAge for Java for the changes to take effect).

Interfacing with VisualAge for Java from Studio
While specialized Java developers may be working in the servlets and
JavaBeans in VisualAge for Java, the Web developers write the JSPs and other
presentation content in Studio, and whenever it is necessary to create a build for
the Web application (assemble the WAR file), Studio users can request the
update of the code from VisualAge for Java and get the latest version of the class
files.

If the main Java development tool is VisualAge for Java, it is a good practice to
have just the class files in the Studio project, while the Java source code only
exists in the VisualAge for Java repository. Also, the Java source code is never
published in Studio.

We can send the Java source files from Studio to VisualAge for Java by selecting
the appropriate file in the workbench, and then selecting Project -> VisualAge for
Java -> Send to VisualAge. On the first operation we are prompted to select the
VisualAge for Java project that is used to import the Java code.

In the same way, we can update Java and/or class files by selecting Project ->
VisualAge for Java -> Update from VisualAge. The files are retrieved from
VisualAge for Java and checked out.

Interfacing with Studio from VisualAge for Java
After installing the Studio tools in VisualAge for Java we can send files to and
retrieve files from a Studio project. Studio does not have to run, the interface is
purely with the underlying file system where the Studio project is stored.

The Studio options in VisualAge for Java are shown in Figure 10-9.
 Chapter 10. Development using WebSphere Studio 247

Figure 10-9 Using the Studio tools in VisualAge for Java

On the first request you are prompted to select the location of the Studio project
by navigating to the appropriate projectname.wao file (the Studio project file). You
can also set the Studio project at any time using the action shown in Figure 10-9.

Note that you retrieve Java source files (and they are imported), but you can only
send class files. If you want to use the interface from VisualAge for Java, then
that is where the master source files are kept. Class files can be sent to Studio
for publishing.

Integration with other development tools
When using other Java development tools different from VisualAge for Java (for
example, the Java 2 SDK as described in Chapter 9, “Development using the
Java 2 Software Development Kit” on page 183), integration with WebSphere
Studio is also guaranteed.
248 WebSphere Version 4 Application Development Handbook

For example, in the case of the Java SDK, we may develop and compile our
Java components with the SDK and then import them in Studio to assemble the
Web module. Similarly, the Java components created in Studio via the wizards
can be refined and improved with the SDK (as with VisualAge for Java).

To test the components, if we are not using VisualAge for Java and the
WebSphere Test Environment but other tools such as the J2SDK and Apache
Tomcat, we can anyway proceed as in the WAS case: defining a publishing
target to the server so that we can test the Web application.

To manage version control it would be advisable to use a separate SCM system,
such as Rational ClearCase, that can be integrated with Studio, to provide
version control for both parts of the Web application (presentation and Java
code). Version control and SCM are discussed in more extent in Chapter 14,
“Software Configuration Management” on page 385.

Creating and publishing WAR files
Creating the Web application WAR file in WebSphere Studio 4.0 allows the
developer to assemble the Web module directly in his environment, instead of
doing it on the application server environment (this approach is covered in
Chapter 15, “Assembling the application” on page 389).

This new feature of Version 4.0 can only be used when developing an application
based on the servlet 2.2 and JSP 1.1 specification. These are the only levels
supported by WAS Version 4.0, though, because JSP 1.1 is a superset of JSP
1.0, we can consider that 1.0 JSPs will work in the Version 4.0 environment.

We now show an example of creation and deployment of a WAR file with Studio
4.0 to WebSphere Application Server 4.0, based on the PiggyBank application.

First of all, the properties of the project have to be properly configured to target
the application server version and supported specifications, as we described in
section “Structuring the project in Studio” on page 240.

After configuring the project, the server has to be setup to specify the following
information:

� Server address

� Context root (Web application Web path in case of WAS 3.x)

That can be done selecting the server in the Publishing View, and then Edit ->
Properties -> Publishing.
 Chapter 10. Development using WebSphere Studio 249

Creating the WAR file
We are ready to create the Web application file when we have added all the files
to the project in Studio. The first step is to create the Web configuration file (the
deployment descriptor of the Web module). This file contains information about
the servlets and tag libraries included in the module.

Before creating the deployment descriptor file, we configure the Web application:

� For every servlet class file added to the module, we specify a servlet
mapping.

We do this by selecting the servlet properties box (right button menu), select
the Publishing tab and type the required information (Figure 10-10).

Figure 10-10 Specifying servlet mappings in Studio

If we are using the AutoInvoker servlet in WAS, we have to specify Web paths
for every servlet in our Web application (WAS 3.x).

� We include the taglib file under the \WEB-INF folder

� Last, we define the Web path for the Web application by selecting the
Properties right-button menu for the server.

Then we are ready to generate the deployment descriptor file. To do so, we
select Project -> Create Web Configurator Descriptor File.

Specify a servlet
mapping for
each servlet
250 WebSphere Version 4 Application Development Handbook

We can select which components of the project we want to include in the
deployment descriptor, but when we generate the WAR file, all the elements of
the project will be included in it. If we want to make several different Web
modules out of our Studio project, it is a good idea to create several publishing
stages, so that only the desired files are included in each stage. Then we
generate the descriptor and the Web module per stage (or for the configurations
we want to publish and test).

This can be a suitable approach when we want to unit test parts of the Web
application. For example, in an online banking application such as PiggyBank,
we might want to test only the account managing options, so we would create a
publishing stage including only the files related to account management. Then
we would create the descriptor and the WAR file and install the Web module in
the application server for testing.

The deployment descriptor creation window is shown in Figure 10-11.

Figure 10-11 Creating the Web application deployment descriptor in Studio

WebSphere Studio creates this file automatically with the default name of
servername_web.xml. The default location to place it is in the \WEB-INF folder.

Figure 10-12 shows the resulting structure of the project in Studio’s workbench.
 Chapter 10. Development using WebSphere Studio 251

Figure 10-12 Project structure in Studio Version 4.0

Once the deployment descriptor has been generated, we can generate the WAR
file. This file contains all the components in the current publishing stage. As it is
possible to generate several deployment descriptor files (depending on the
contents of the stage), when we select the Project -> Create Web Archive file, we
have to select the appropriate one for our purposes. In case we have not created
one yet, it is possible to do so at this point. We also select the server name to
which the Web module is going to be installed, and the save location.

The last step is to publish the just created WAR file to the application server,
where it will be installed as a stand alone module or as part of an enterprise
application.

Tip: It is useful to create a war publishing stage to publish the whole Web
module to the desired location in the application server (publishing through
FTP).

Web application
deployment
descriptor

JSP custom tag
library file

Utility classes
JAR files folder
252 WebSphere Version 4 Application Development Handbook

War files are published via FTP to a folder in the application server machine that
has been configured for this type of access (this requires that an FTP server is
installed in that machine). In the case of WAS 4.0, we can publish to:

D:\WebSphere\AppServer\installableApps

Because this is the folder that contains the applications available to be installed
in the server.

In the case of our application, we used the WAR FTP Daemon (a shareware
tool) as an FTP server, and we configured the \installableApps folder with
permissions to read and write. We configured a user, was4ad, that could access
only this folder (for security reasons, in case we are accessing the server via FTP
for other purposes apart from publishing).

Then, after setting up the FTP server, we configured the publication in Studio for
a server with the same name (Figure 10-13).

Figure 10-13 Publishing via FTP in Studio

To publish the WAR file, we select Project -> Publish Web Archive, then select
the appropriate data (Figure 10-14).
 Chapter 10. Development using WebSphere Studio 253

Figure 10-14 Publishing the Web archive file to a server

Then we can use either the Administrative Console (Advanced Edition and
Single Server Edition) or the SEAppInstall command line tool (Single Server
Edition) to install the application. For details about this process refer to
Chapter 16, “Deploying to the test environment” on page 431.

Web services wizards
WebSphere Studio Version 4 provides two new wizards to create and consume
Web services.

Web services creation wizard
The creation wizard is started using Tools -> Wizards -> Web Service Creation
Wizard. The wizard looks in the servlet folder for beans and servlets, displays a
list, and you have to select an entry:

� When selecting a bean, you are presented with the list of methods, and then
the Web services description language (WSDL) files and an XML file are
generated.

� When selecting a servlet, you choose between doGet and doPost methods,
and you specify the parameters that have to be passed to the servlet. Again
two WSDL files are generated.

Example
In this example we use an existing JavaBean (CurrencyBean) and generate a
Web service for it (Figure 10-15).
254 WebSphere Version 4 Application Development Handbook

Figure 10-15 Web services creation wizard bean selection

The wizard displays the methods of the bean for your selection, and finally
displays the files that will be generated (Figure 10-16).

Figure 10-16 Web services creation wizard code generation
 Chapter 10. Development using WebSphere Studio 255

The output files are placed into the servlet folder. The files are:

� DD_CurrencyBean.xml—deployment descriptor, provides instructions for
SOAP for loading the class files (Figure 10-17)

� CurrencyBean.wsdl—implementation, defines where the interface is
published and where the Web service is deployed(Figure 10-18)

� CurrencyBean-interface.wsdl—interface, to be published to a UDDI registry
to discover and consume the service (Figure 10-19)

Figure 10-17 Generated deployment descriptor XML file

Figure 10-18 Generated implementation WSDL file

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:currencybean-service" checkMustUnderstands="false">
 <isd:provider type="java" scope="Application" methods="convert">
 <isd:java class="CurrencyBean_ServiceService" static="false"/>
 </isd:provider>
</isd:service>

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="CurrencyBean_Service"
 targetNamespace="http://www.currencybeanservice.com/CurrencyBean"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.currencybeanservice.com/CurrencyBean"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<import
 location="http://localhost:8080/wsdl/CurrencyBean-interface.wsdl"
 namespace="http://www.currencybeanservice.com/CurrencyBean-interface">
</import>

<service
 name="CurrencyBean_Service">
 <documentation>IBM WSTK 2.0 generated service definition file

</documentation>
 <port
 binding="CurrencyBean_ServiceBinding"
 name="CurrencyBean_ServicePort">
 <soap:address location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
</service>

</definitions>
256 WebSphere Version 4 Application Development Handbook

Figure 10-19 Generated interface WSDL file

The implementation WSDL file must be edited to define the correct URL for the
interface file (<import> tag) and the deployed Web service (<soap:address> tag).

Web services consumption wizard
The consumption wizard is started using Tools -> Wizards -> Web Service
Creation Wizard. The consumption wizard uses an existing WSDL interface file
as the base for generating a JSP and a client proxy.

Because the consumption wizard must create a connection to the Web service in
order to create the Java client proxy, you must publish the interface WSDL file
before attempting to use the implementation WSDL file.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="CurrencyBean_Service"
 targetNamespace="http://www.currencybeanservice.com/CurrencyBean-interface"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.currencybeanservice.com/CurrencyBean"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<message
 name="InconvertRequest"/>
<portType
 name="CurrencyBean_Service">
 <operation
 name="convert">
 <input
 message="InconvertRequest"/>
 </operation>
</portType>
<binding
 name="CurrencyBean_ServiceBinding"
 type="CurrencyBean_Service">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation
 name="convert">
 <soap:operation
 soapAction="urn:currencybean-service"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:currencybean-service" use="encoded"/>
 </input>
 </operation>
</binding>
</definitions>
 Chapter 10. Development using WebSphere Studio 257

The wizard examines the WSDL file and provides you with a list of the available
methods in the Web service. After choosing the method(s) the Java proxy client
and the JSP are generated. Based on the selected methods, complex type
handlers and serializers for parameters may be generated in addition.

The wizard notifies you if you have to modify the JSP to edit the parameters. You
may also have to edit the JSP to handle the output of the Web service.
258 WebSphere Version 4 Application Development Handbook

Chapter 11. Development using
VisualAge for Java

In this chapter we describe application development with VisualAge for Java
Version 4.0. We cover:

� General concepts of development and organization of the code in VisualAge
for Java

� Web application development

� WebSphere Test Environment configuration and usage

� EJB developing and deployment

General information about programming with VisualAge for Java can be
found in the redbook Programming with VisualAge for Java Version 3.5,
SG24-5264.

11
© Copyright IBM Corp. 2001 259

The integrated development environment (IDE)
In this section we provide general information about code development in
VisualAge for Java.

Configuring the projects and packages
Let’s take a look at the structure of the PiggyBank application in VisualAge for
Java (Figure 11-1).

Figure 11-1 PiggyBank application in VisualAge for Java

When structuring the project in VisualAge for Java (as well as when using other
development tools), it is convenient to set up some conventions for packages
and code.

A general convention accepted for package naming is to set it as the URL of the
company (reversed) plus some more detailed domain description. In our case, all
the packages could have been named com.ibm.itso.was4ad.pkgname[.subpkg].

When it comes to project structuring, we can consider different approaches:

� Just one project including all the code
260 WebSphere Version 4 Application Development Handbook

� Separate projects for different features or components of the application. An
example of this could be as follows:

– Core of the application

– EJB classes

– Utility packages (logging and tracing)

We can use this technique when we have several development teams, each of
them in charge of a piece of the application (one team developing the EJBs,
another team developing the logging utilities.). Setting up different user groups
for each project also helps to maintain clearer boundaries between the teams.

Solution
If we have defined different projects according to the features or components of
the application, it is useful to setup a global Solution for the whole application, as
a means to ease the global version control process. A Solution is a container for
related projects at a certain version. Solutions are defined in the Repository
Explorer window (Figure 11-2).

Figure 11-2 Defining a solution in the Repository Explorer

This mechanism is useful as an internal control of VisualAge for Java, because
the Solution has no real existence out of the repository. Also, it allows the correct
versions of related projects to be loaded together into the workbench.
 Chapter 11. Development using VisualAge for Java 261

Generating documentation in VisualAge for Java
VisualAge for Java provides options to setup the method and types head
information both for SmartGuides or direct creation. Selecting Window -> Options
-> Coding, we can edit both of this specifications. The javadoc information for the
classes and methods created using SmartGuides can be edited in the Macros
section. Method Javadoc and Type Javadoc detail the information to be included
for methods and types (classes/interfaces) created directly by the user.

We can use the standard Javadoc tags, such as @author and @version, and the
two macros predefined by VisualAge: <user> and <timestamp>, which insert the
name of the Workspace owner and the timestamp of the method/type’s creation.

To generate the documentation once the code is completed, select the project or
packages for which we want to create documentation and select Document ->
Generate Javadoc from the context menu. The options available are the same as
with the standard javadoc command of the J2SDK, plus some more options
regarding the aspect of the generated Web pages (header, footer, bottom line
text).

Working in a team environment
Team development means how to organize a development project where a
number of developers can simultaneously work on VisualAge for Java code. In a
project where two or more developers access the same code, it is necessary to
implement some kind of software control mechanism to ensure consistency.

VisualAge for Java provides two solutions to this problem:

� Team repository—a shared repository on a central server accessible by all
developers. Change control works at the object level and is based on object
ownership.

� External version control—an interface to third-party tools for Software
Configuration Management (SCM). Read more about this topic in Chapter 14,
“Software Configuration Management” on page 385.

It is possible to use both solutions simultaneously, though we do not recommend
such a setup. When using an external SCM system, the shared repository should
not be configured.

Figure 11-3 shows the configuration of the shared repository solution.
262 WebSphere Version 4 Application Development Handbook

Figure 11-3 VisualAge for Java team development environment

In each of the developer’s (client) machines there is a workspace file containing
the developer’s working code set. The shared repository is stored in a
centralized server and the clients access it through TCP/IP connections. Both the
workspace and the repository files are binary files. The repository file contains all
the source and compiled code of all the developer’s work spaces.

Clients can connect to the shared repository and explore it to add new projects or
features to their work spaces. A system of permissions can be established so
that only user with administrator’s rights can perform delete operations. Code
changes made in the local work spaces are automatically saved to the repository.

The concept of team development in VisualAge is based on ownership. Each
element has an owner, and other users can be set as additional editors. The
owner of the element is responsible for managing versions and releases of it.
This ownership applies to classes, packages and projects. This implementation
of the team development environment means that the developers do not have to
perform check in/check out tasks, and the code is always accessible for
everyone that has it loaded in his/her workspace.

Repository
Server

Developer
(client)

TCP/IP TCP/IP

Workspace Workspace Workspace

Shared
repository

Developer
(client)

Developer
(client)
 Chapter 11. Development using VisualAge for Java 263

Developing Web applications with VisualAge for Java
Web applications usually consist of HTML code, servlets, JSPs, and (optionally)
EJBs. VisualAge for Java does not provide editing facilities for HTML and JSP
code, although simple Web pages can be generated using the Servlet
SmartGuide. WebSphere Studio provides the Page Designer for the editing of
Web pages (Figure 10-1 on page 239).

Detailed information about development of Web applications with
VisualAge for Java Version 3 and Version 3.5 can be found in the redbooks:

� Servlet and JSP Programming with IBM WebSphere Studio and
VisualAge for Java, SG24-5755

� Version 3.5 Self Study Guide: VisualAge for Java and WebSphere
Studio, SG24-6136

� How about Version 3.5? VisualAge for Java and WebSphere Studio
Provide Great New Function, SG24-6131

Developing servlets
The supported servlet specification in VisualAge for Java Version 4.0 is 2.2.
There are basically three ways of developing (and testing) servlets with
VisualAge for Java:

� Hand-coding of the servlet code

� Using the Servlet SmartGuide to generate skeleton code

� Importing servlets generated by WebSphere Studio wizards or by other tools

Hand-coding servlets
Experienced Web programmers generally write servlets by hand as subclasses
of the HttpServlet class. In many cases they copy existing servlets as models
and then modify the code.

Servlet SmartGuide
The Servlet SmartGuide can generated skeleton servlet Java code and, if
provided with a JavaBean, also a skeleton HTML input page and a result JSP:

� WIthout using the Import JavaBean option, the SmartGuide only generates
the skeleton code for the basic servlet methods, and it is up to the developer
to complete the code as he/she wishes.

� With the Import JavaBean option, the SmartGuide creates an HTML input
page with a form that includes the specified fields of the bean, as well as a
result JSP that displays the result of the operation performed when submitting
264 WebSphere Version 4 Application Development Handbook

the form. This operation relates to a method of the JavaBean that we have
selected. A JSP error page is also created for handling the exceptions caught
in the servlet.

The generated servlet can be an HttpServlet, or a PageListServlet (an IBM
extension that requires a .servlet configuration file).

With the Import JavaBean option enabled, the Servlet SmartGuide output is quite
similar to the WebSphere Studio JavaBean wizard, though that wizard provides
more options, for example, the code generation style (servlet or JSP model):

� Servlet model—with this choice, the wizard creates an HTML input page, a
servlet that uses the JavaBean, a JSP that formats the result data, and a
.servlet configuration file.

� JSP model—with this choice the wizard generates an HTML input page and a
JSP that does all the processing.

Importing servlets from WebSphere Studio
Servlets generated by WebSphere Studio can be brought into VisualAge for Java
for testing and debugging in several ways:

� Use VisualAge for Java to import the Java source files from any directory

� Use WebSphere Studio to “send” the code into the VisualAge for Java
Workbench (see “Integration with VisualAge for Java” on page 246)

� Use VisualAge for Java to retrieve the Java source code from a Studio project
directory (see “Integration with VisualAge for Java” on page 246)

When working with multiple products you have to have a well-defined process
that specifies how code is shipped between products and where the “master”
code resides.

Developing JSPs
VisualAge for Java 4.0 supports three JSP specifications: 0.91, 1.0 and 1.1,
however, VisualAge for Java is a Java IDE and is not built for developing Web
content (apart from the JSPs generated by the Servlet SmartGuide), but the
functionality provided by the WebSphere Test Environment makes VisualAge for
Java appropriate for testing and debugging purposes.

We develop our JSPs using tools such as WebSphere Studio (or writing the code
from scratch in text editors such as Notepad) and copy them to the WebSphere
Test Environment project resources folder for testing and debugging.

We can also copy JSPs to the Web application’s project resources folder so that
we can perform version control operations of all related code (Java and other).
 Chapter 11. Development using VisualAge for Java 265

Developing EJBs in VisualAge for Java
VisualAge for Java provides the EJB development environment to create and
test EJBs. VisualAge for Java Version 4.0 supports only the EJB 1.0
specification, but an export SmartGuide is provided to deploy EJBs to
WebSphere Application Server Version 4.0 that supports EJB 1.1.

Detailed information about EJB development can be found in the redbook
EJB Development with VisualAge for Java for WebSphere Application
Server, SG24-6144. This redbook also contains information about deployment of
EJBs to WebSphere Application Server Version 3.5 and Version 4.0.

EJB development environment
The VisualAge for Java EJB development environment consists of:

� EJB page—where EJB groups and enterprise beans are defined

� Persistent name server—where EJBs are registered for testing (part of the
WebSphere Test Environment)

� EJB server—provides an EJB container to instantiate enterprise beans

� EJB test client—enables testing of any EJB running in the EJB container

EJB 1.1 specification
EJB 1.1 addresses many of the limitations and loop holes found in EJB 1.0. The
most significant changes are listed here:

� Entity bean support, both container- and bean-managed persistence, is
required.

� Java RMI-IIOP argument and reference types must be supported. That is the
client API must support the Java RMI-IIOP programming model for portability,
but the underlying communication protocol can be anything.

� The javax.ejb.deployment package has been dropped in favor of a XML
based deployment descriptor.

In the 1.0 specification, each EJB had its own deployment descriptor. In 1.1
specification, only one deployment descriptor has to be written per EJB JAR
file (and it contains information about all the beans in that JAR file).

� Declarative security authorization (access control) has changed to be more
role driven.

� Isolation levels are now managed explicitly through JDBC (BMP), the
database or other vendor specific mechanisms.

� The bean-container contract has been enhanced to include a default JNDI
context for accessing properties and resources, for example, JDBC and JMS.
266 WebSphere Version 4 Application Development Handbook

� The basic EJB roles have been expanded and redefined to better separate
responsibilities involved in the development, deployment, and hosting of
enterprise beans.

� Allows a session bean instance to be removed upon a time-out while the
instance is in the passivated state.

� Allows enterprise beans to read system properties.

Migrating 1.0 EJBs to 1.1 EJBs for WebSphere 4.0
If you have existing EJB code developed for an earlier version of WebSphere
there are a number of changes in the EJB specification that you should consider.

WebSphere Version 4.0 provides some backwards-compatibility support for EJB
1.0, which means you do not necessarily have to modify your 1.0 EJBs in order to
deploy and run them in the new version of WebSphere. You must, however,
modify your EJB code to deploy your beans into WebSphere Version 4.0 under
the following circumstances:

� An enterprise bean uses the javax.jts.UserTransaction interface—it has to
be modified to use the new javax.transaction.UserTransaction interface

� An entity bean that uses the UserTransaction interface (not allowed in 1.1)

We also recommend you make the following changes to your 1.0 EJBs, in order
to comply fully with Version 1.1 of the EJB specification:

� EJBs should be modified to use the getCallerPrincipal() and
isCallerinRole(String roleName) methods instead of the deprecated
getCallerIdentity() and isCallerInRole(Identity) methods.

� CMP EJBs should be updated to return the bean’s primary key class from
ejbCreate(...) methods, instead of void as required by the 1.0 specification.
Returning the key class enables the creation of bean-managed beans that are
subclasses of container-managed beans.

� Entity bean finder methods should be updated to define FinderException in
their throws clauses. EJB 1.1 requires that all finders define the
FinderException.

� Enterprise beans should no longer throw java.rmi.RemoteException from the
bean implementation class—this use of the exception is deprecated in EJB
1.1. RemoteException must still be defined in EJB home and remote
interfaces, as required by RMI.

The bean implementation class should throw application exceptions where
required by the business logic. Unrecoverable system-level errors and other
non-business problems should throw a javax.ejb.EJBException; this class
extends java.lang.RuntimeException and does not need to be declared in
the throws clause of a 1.1 EJB.
 Chapter 11. Development using VisualAge for Java 267

� Enterprise beans in EJB 1.1 must not use the UserTransaction interface and
implements the SessionSynchronization interface at the same time.

� EJB code should be updated to look up other EJBs, data sources, and other
resources in JNDI using local JNDI references. See “Using JNDI” on
page 326 for more information about using JNDI in WAS 4.0.

Developing 1.1 EJBs in VisualAge for Java
If you want to use VisualAge for Java to develop EJBs that comply with Version
1.1 of the EJB specification, you should be aware of the following factors:

� The VisualAge for Java EJB creation SmartGuide automatically inserts an
import of java.security.Identity in new EJBs—this is deprecated in JDK
1.3 and causes deprecation warnings if you recompile the code with the JDK
used by WebSphere Version 4.0.

� VisualAge for Java does not provide support for the EJB 1.1 feature that
allows an entity bean’s key class to be a Java primitive type, such as an int.

� The EJB page reports a warning for CMP entity beans that return the key
class from ejbCreate methods, as required by EJB 1.1.

� The EJB page does not require that every ejbCreate method has a matching
ejbPostCreate, as defined in the EJB 1.1 specification.

� The EJB page reports an error for any entity bean finder method that returns
a java.util.Collection—the VisualAge for Java runtime only supports
java.util.Enumeration for multi-object finders.

� The WebSphere Test Environment (WTE) only supports JNDI lookups in the
global JNDI namespace (see “Using JNDI” on page 326). This means you
cannot develop code using EJB references to locate other EJBs.

� The WTE does not support the WebSphere Version 4.0 EJB security
model—it never supported Version 3.x security either, however.

� The WTE includes an earlier implementation of javax.ejb.EJBException that
does not extend java.lang.RuntimeException. We wanted to convert our EJB
implementation classes to remove RemoteException from the throws clause
and throw EJBException instead, without adding it to the throws clause as
permitted by EJB 1.1. When we do this VisualAge reports a compile error
because the exception is not handled. Declaring the EJBException in the
throws clause only magnifies the problem, because VisualAge for Java then
requires all the EJB’s clients to handle the exception.

We were able to work around this problem by importing the 1.1 EJBException
class from the WebSphere Version 4.0 j2ee.jar file into our workspace. This
allowed us to compile and export our code from VisualAge—we must
emphasize however that running the WTE with this modified runtime is not a
supported configuration.
268 WebSphere Version 4 Application Development Handbook

� VisualAge does not support the new way of defining custom finders for CMP
EJBs, where the SQL WHERE clause is specified in a meta-data file.

EJB development and deployment options
Table 11-1 show the different options that are available with VisualAge for Java to
develop EJBs for WebSphere Application Server.

Table 11-1 EJB development and deployment

See “Assembling the application” on page 389 for information about conversion
and deployment of EJBs using the Application Assembly Tool and the EJB
deployment tool, as well as information about CMP persistence mapping in
WebSphere Version 4.0.

Visual Age for Java Version 3.5 VisualAge for Java Version 4

WebSphere
Version 3.5

Develop according to EJB 1.0.
Deploy in either of two ways:

� Create an EJB 1.0 JAR file and
use WebSphere to deploy the
EJBs (generate the mapping
and the deployed classes)

� Create an EJB 1.0 deployed
JAR file and install the
deployed JAR in WebSphere
without generating any code.
This is recommended, and is
required for associations and
inheritance.

Identical to VisualAge for Java
Version 3.5.

Do not create an EJB 1.1 JAR file
(which cannot be deployed in
WebSphere Version 3.5)

WebSphere
Version 4

Develop according to EJB 1.0.

Create an EJB 1.0 JAR file and
use WebSphere to deploy the
EJBs (generate the mapping and
the deployed classes).

You can manually edit the
mapping information and redeploy
the JAR file using the EJB
deployment tool (see “EJB
deployment tool” on page 418).

This is not recommended; we
suggest to install VisualAge for
Java Version 4.

Develop according to EJB 1.0.
Deploy in either of two ways:

� Create an EJB 1.0 JAR file and
use WebSphere to deploy the
EJBs (generate the mapping
and the deployed classes). This
is not recommended.

� Create an EJB 1.1JAR file
(with mapping information)
and use WebSphere to deploy
the JAR file using the
EJBDeploy tool.

Develop according to EJB 1.1
(which means that you cannot test
the EJBs) and create an EJB 1.1
JAR file and deploy it in
WebSphere.
 Chapter 11. Development using VisualAge for Java 269

WebSphere Test Environment
The WebSphere Test Environment (WTE) in VisualAge for Java 4.0 is a
lightweight version of the WebSphere Application Server Version 3.5.3 Advanced
Edition (so the specification level is different from WebSphere Version 4.0).

While WAS 4.0 supports EJB 1.1, VisualAge for Java 4.0 only supports EJB 1.0.
The specification levels for servlets and JSPs are the same: servlet 2.2 and JSP
1.1. The JSP specification levels 0.91, 1.0, and 1.1 are supported in VisualAge
for Java 4.0 and the WTE can be configured to use any of them—we recommend
however, that you keep the default 1.1 JSP level.

WTE contains the runtime environment for the application server, and it is
intended for unit testing purposes. With this tool, the developer can test his/her
code without exporting it from the VisualAge for Java repository.

Configuration
The WTE allows a single server configuration with multiple Web applications.
The configuration files for the WTE are located in the project resources directory:

D:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment\

To setup the configuration for a Web application, we edit the following file:

...\IBM WebSphere Test Environment\properties\default.servlet_engine

We also have to create a webapp_name.webapp for each Web application we are
going to test with the WTE. This files resides in:

...\IBM WebSphere Test Environment\hosts\default_host\webapp_name\servlets

The WTE has one Web application preconfigured, the default application
(default_app).

Configuring a Web application
The file default.servlet_engine is an XML file containing information about the
Web applications (document root, class path, virtual hosts and MIME types).

For example, to add a new Web application to the WTE configuration, we have to
add the following tags to the file (Figure 11-4, see bold lines).
270 WebSphere Version 4 Application Development Handbook

Figure 11-4 Configuring Web applications in the WTE

For each Web application, we create a new directory under

...\IBM WebSphere Test Environment\hosts\default_host\

Each of these directories contains a folder named servlets (to place the
webapp_name.webapp file and the servlets’ class files), and a web folder (to place
the JSPs, HTML pages, images).

<?xml version="1.0"?>
<websphere-servlet-engine name="servletEngine">
 <active-transport>http</active-transport>
 <transport>
 <name>http</name>
 <code>com.ibm.servlet.engine.http_transport.HttpTransport</code>
 <arg name="port" value="8080"/>
 <arg name="maxConcurrency" value="50"/>
 <arg name="server_root" value="$server_root$"/>
 </transport>
 <websphere-servlet-host name="default_host">
 <websphere-webgroup name="default_app">
 <description>Default WebGroup</description>
 <document-root>$approot$/web</document-root>
 <classpath>$approot$/servlets$psep$$server_root$/servlets</classpath>
 <root-uri>/</root-uri>
 <auto-reload enabled="true" polling-interval="3000"/>
 <shared-context>false</shared-context>
 </websphere-webgroup>
 <websphere-webgroup name="PiggyBank">
 <description>PiggyBank</description>
 <document-root>$approot$</document-root>
 <classpath>$approot$</classpath>
 <root-uri>/</root-uri>
 <auto-reload enabled="true" polling-interval="3000"/>
 <shared-context>false</shared-context>
 </websphere-webgroup>
 <mime type="application/SLA">
 <ext>STL</ext>
 <ext>stl</ext>
 </mime>
<!-- ... (other MIME types) -->
</websphere-servlet-host>
 <hostname-binding hostname="localhost:8080" servlethost="default_host"/>
 <hostname-binding hostname="127.0.0.1:8080" servlethost="default_host"/>
</websphere-servlet-engine>
 Chapter 11. Development using VisualAge for Java 271

To create the Web application configuration file (webapp_name.webapp), we can
use the default_app.webapp file as a template.

Here is a list of the main tags we might need to include for our Web applications:

� Error page—to specify the general error page for the application.

� Servlet properties—name, Web path and initial parameters for servlets in the
Web application.

� Invoker servlet—we might want to include data for this servlet, that lets us
load classes by class name (/servlet/pkgname.class).

� JSP specification level—VisualAge for Java supports the three JSP
specifications (0.91, 1.0 and 1.1). The WTE lets us switch the specification
level by selecting the appropriate class name for the servlet that processes
the JSPs (Figure 11-5).

Figure 11-5 Switching the JSP configuration level (default_webapp.webapp)

...
<servlet>

<name>jsp</name>
<description>JSP support servlet</description>

<!--

*** Replace the JSP compiler with the required specification level.

*** JSP 0.91 Compiler ***
<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet</code>

*** JSP 1.0 Compiler ***
 <code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>

*** JSP 1.1 Compiler ***
 <code>com.ibm.ivj.jsp.jasper.runtime.JspDebugServlet</code>

-->
...

<code>com.ibm.ivj.jsp.jasper.runtime.JspDebugServlet</code>
<init-parameter>

<name>scratchdir</name>
<value>$server_root$/temp/JSP1_1/default_app</value>

</init-parameter>
...
272 WebSphere Version 4 Application Development Handbook

Figure 11-6 shows an example of a webapp configuration file for the PiggyBank
application.

Figure 11-6 Writing the Web application’s configuration file for WTE

<?xml version="1.0"?>
<webapp>
 <name>PiggyBank</name>
 <description>PiggyBank Application</description>
 <error-page>/error.jsp</error-page>
 <servlet>
 <name>ControllerServlet</name>
 <description>Controller servlet for PiggyBank</description>
 <code>itso.was4ad.webapp.controller.ControllerServlet</code>
 <servlet-path>*.pbc</servlet-path>
 <init-parameter>
 <name></name>
 <value></value>
 </init-parameter>
 <autostart>false</autostart>
 </servlet>

 <servlet>
 <name>jsp</name>
 <description>JSP support servlet</description>
 <!--*** JSP 1.1 Compiler ***-->
 <code>com.ibm.ivj.jsp.jasper.runtime.JspDebugServlet</code>
 <init-parameter>
 <name>workingDir</name>
 <value>$server_root$/temp/default_app</value>
 </init-parameter>
 <init-parameter>
 <name>jspemEnabled</name>
 <value>true</value>
 </init-parameter>
 <init-parameter>
 <name>scratchdir</name>
 <value>$server_root$/temp/JSP1_1/default_app</value>
 </init-parameter>
 <init-parameter>
 <name>keepgenerated</name>
 <value>true</value>
 </init-parameter>
 <autostart>true</autostart>
 <servlet-path>*.jsp</servlet-path>
 </servlet>
</webapp>
 Chapter 11. Development using VisualAge for Java 273

The WTE provides session management functions as well, and the configuration
parameters are setup in:

...\IBM WebSphere Test Environment\properties\session.xml

The tags within <session-data> are the tags used by the WTE (the rest should
be ignored).

WebSphere Test Environment Control Center
The WTE is controlled through the WebSphere Test Environment Control Center.

The WebSphere Test Environment Control Center is launched by selecting
Workspace -> Tools -> WebSphere Test Environment (Figure 11-7).

Figure 11-7 WebSphere Test Environment Control Center

Let’s take now a closer look at each of the components of the WTE.
274 WebSphere Version 4 Application Development Handbook

Servlet Engine
The Servlet Engine is used to run servlets and JSPs in the WebSphere Test
Environment. We can run code from the Workspace (either servlets or compiled
JSPs) or from external directories.

To run a Web application, we have to set up the class path for the Servlet Engine
(Figure 11-8). We select the projects containing classes used by the servlets we
are going to test. System projects required to run the Servlet Engine (for
example, the IBM WebSphere Test Environment project) are added
automatically.

Figure 11-8 Setting up the Servlet Engine class path

The Servlet Engine must be started/restarted after any changes to the class path
or other settings are made.

The JSP and HTML pages, as well as the images and other static Web content
are placed in the directory (or subdirectory):

...\IBM WebSphere Test Environment\default_host\webappname\web
 Chapter 11. Development using VisualAge for Java 275

If we are using servlets that are not in the repository, we place them under

...\IBM WebSphere Test Environment\default_host\webappname\servlets

We also place in this directory the servlet configuration files (*.servlet).

To invoke the components in the browser, we use the virtual hosts defined in the
default.servlet_engine file (see an example in Figure 11-4 on page 271):

http://localhost:8080/index.html

If we select the option Display trace messages, the console shows a detailed
output of the configuration parameters and servlets that are loaded from the
*.webapp files. When we select this option, we have to click on Apply and restart
the Servlet Engine for the changes to take effect.

JSP processing
JSPs are translated into a servlet by the JSP processor (for the specification
level that we have selected, see for example Figure 11-5 on page 272). The
default settings for the Servlet Engine make the generated code to be imported in
the VisualAge repository under the project JSP Page Compile Generated Code.

However, the generated code is not imported if there are compilation errors in the
JSP. In this case we get error messages, but it might be difficult to figure out
where the problem is. We can try to run the code in the Scrapbook to get better
understandable error messages, or we can select to Load the generated servlet
externally in the Servlet Engine window, so that the compiled Java classes are
stored in (when using the 1.1 specification level):

...\IBM WebSphere Test Environment\temp\JSP1_1\web_app_name\etc

Then we can import the code manually to inspect and debug it. See more about
debugging JSPs in “A special case: how to debug a JSP” on page 511.

When using the option of loading the generated servlet externally, we can also
select:

� Halt at the beginning of the service method—which acts like a breakpoint set
at the service method of the generated servlet

� Enable JSP source debugging—which brings up the VisualAge for Java
debugger with the JSP source code. We then can step through the JSP
source, but there are some restrictions, for example, we cannot step into Java
code embedded in the JSP.
276 WebSphere Version 4 Application Development Handbook

Persistent Name Server
The Persistent Name Server (PNS) is used to configure and access DataSource
objects, as well as to test EJBs.

DataSources and EJBs are bound to a context. The Persistent Name Server
gives access to this context to perform JNDI operations. When an object is bound
to its JNDI name, a description of the object is stored in the database specified in
the PNS properties (Figure 11-9).

Figure 11-9 Persistent Name Server in the WTE

The parameters that we configure before starting the Persistent Name Server are
the following:

� Bootstrap port—is the port used to lookup EJB homes and DataSources. The
default value of 900 is also used by the WebSphere Application Server, so
you have to use another port or stop WAS if WAS has been started on the
same machine.

� Database URL—the JDBC URL if a relational database is used for storage.

� Database driver—the JDBC driver used to access the database. The default
driver corresponds to InstantDB (a relational database simulated in files),
which is recommended for simple configurations.

� Database ID and password—used to connect to a real relational database.

� Trace level—specifies the level (high/medium/low) of the trace information
that is displayed through the console.
 Chapter 11. Development using VisualAge for Java 277

Using DataSource objects with the WTE
To configure and use DataSources, we have to start first the Persistent Name
Server. Once this is done, the WTE interface provides a DataSource
Configuration screen that allows us to add new DataSource objects
(Figure 11-10).

Figure 11-10 Using DataSources in the WTE

When the Persistent Name Server is started, it retrieves the list of DataSources
configured previously (if any). To add a new DataSource object, we have to
configure the following parameters (Figure 11-11):

� Name—the name used to perform the lookup (with the prefix jdbc/). In our
example, the JNDI lookup would be through the name jdbc/piggybank.

� Driver—the JDBC driver used to connect with the relational database

Note: Because VisualAge for Java includes a WAS Version 3.5.3 runtime,
the WTE only supports the .use of global JNDI names, such as
jdbc/piggybank. The WTE does not support local JNDI references such
as, for example, java:comp/env/jdbc/piggybank.

See “Using JNDI” on page 326 for more information on JNDI in WAS 4.0.

Note: The list of driver classes for datasources differs between the WTE
(based on a WAS 3.5.3 runtime) and WAS Version 4.0.
278 WebSphere Version 4 Application Development Handbook

� URL—the URL that matches the JDBC driver

� Type—JDBC or JTA (two-phase commit)

� Description—optional

� Connection and timeout parameters—we recommend to use the default
values (they are suitable for unit testing in most of the cases)

Figure 11-11 shows the DataSource configuration window.

Figure 11-11 Adding a DataSource

JSP execution monitor
The JSP execution monitor is used to monitor the execution of JSP files. We can
view both the JSP source code, the generated servlet code and the HTML
output, and execute the code step by step or in combination with the VisualAge
for Java debugger.

The JSP execution monitor is activated through the WebSphere Test
Environment Control Center (Figure 11-12).

More details about the usage of this feature are described in Chapter 17,
“Debugging the application” on page 467, in the section “A special case: how to
debug a JSP” on page 511.
 Chapter 11. Development using VisualAge for Java 279

Figure 11-12 Enabling the JSP execution monitor

Exporting the code
After testing Web applications in VisualAge for Java, the code can be exported in
a number of ways tor deployment to WebSphere Application Server:

� Export to a directory—Java source code and compiled class files can be
exported into a directory structure. Subdirectories are generated according to
the package names.

� Export to JAR file—Java source code and compiled class files can be
exported into a JAR file that can be added to the class path for execution.

� Export in repository format—This is not for deployment but for archiving or to
move code from one VisualAge for Java system to another. Exporting a
project also exports the project resources into a directory structure in the
target location (where the repository .dat file is created).

� Exporting the resources—Resource files used by the application can be
copied for the project’s resources directory to another location.

� Exporting EJBs—VisualAge for Java can create an EJB JAR file that can be
deployed in WebSphere. The generated JAR file can be an EJB 1.0 JAR file
or an EJB 1.1 JAR file (this is really the only new feature of VisualAge for
Java Version 4.0).
280 WebSphere Version 4 Application Development Handbook

Exporting the EJB code
For the EJB code, we have multiple possibilities in VisualAge 4.0 (Figure 11-13):

� Export to an EJB 1.0 JAR file—such a file must be deployed in WAS.

� Export to an EJB 1.1 JAR file—such a file must be deployed in WAS.

� Export to a deployed JAR file that can be installed in WAS Version 3.5.

� Export to an EJB JAR file for CB (Component Broker).

Figure 11-13 Export options for EJBs for WebSphere Version 4.0

If we select the first option (EJB JAR), when we add our EJBs to the enterprise
application, it is necessary to convert the 1.0 file to a 1.1 file (WebSphere 4.0 no
longer supports the 1.0 specification). This process is explained in Chapter 15,
“Assembling the application” on page 389 in Creating an EJB module.

Exporting EJBs to a 1.1 JAR file
When exporting to a 1.1 JAR file (Figure 11-14) you have to specify the target
database so that the schema and map files that define the mapping of CMP
fields to your database schema can be generated. See “Customizing CMP
persistence mapping” on page 420 for more information about these files.
 Chapter 11. Development using VisualAge for Java 281

Figure 11-14 Exporting the EJBs to a 1.1 JAR file

EJB deployment tool
An enhanced version of the EJBDeploy tool shipped with the first release of
WebSphere AEs is available for download from VisualAge Developer Domain.
This tool can handle all the extra information generated into the EJB 1.1 JAR file
by VisualAge. The enhanced tool will be included in the first AE release, and
upgraded in a refresh of the AEs product.

See “EJB deployment tool” on page 418 for more information.

Debugging in VisualAge for Java
See “Debugging with VisualAge for Java Version 4.0” on page 468 for detailed
information about debugging.
282 WebSphere Version 4 Application Development Handbook

Chapter 12. Development with
frameworks

This chapter discusses how to develop code for a WebSphere application using
some available frameworks.

The frameworks we discuss are:

� Jakarta Struts

� IBM WebSphere Business Components Composer (WSBCC)

The intended reader of this chapter is more interested by the technical aspects of
the frameworks, especially hands-on implementation. It is therefore useful to
Java and Web developers as well as to application designers who are curious to
know how the code to be implemented actually works.

See Chapter 7, “Designing with frameworks” on page 153 for introductions to the
frameworks and information about designing applications to use them.

12
© Copyright IBM Corp. 2001 283

Jakarta Struts
This section explains how to develop a version of the the PiggyBank Web
application using Struts. The example code we develop in this section is available
as part of the additional material for this Redbook—see Appendix A, “Additional
material” on page 557 for information on how to obtain and use the additional
material.

The Struts version of our Web application completely replaces the Web
application module included in the base version of the example PiggyBank
application—the two versions of the Web module are completely
interchangeable.

We used release Version 1.0b1 of Struts to develop these examples. The binary
and source distributions can be downloaded from the Jakarta Web site:

http://jakarta.apache.org/builds/jakarta-struts/

Using Struts in your development environment
Before we discuss how to implement the Web application in Struts, we describe
how to configure your environment to develop, build and test the Struts version of
our example PiggyBank application. We describe how you can integrate Struts
with the following tools described in the this redbook:

� VisualAge for Java and the WebSphere Test Environment, described in
Chapter 11, “Development using VisualAge for Java” on page 259

� WebSphere Studio, described in Chapter 10, “Development using
WebSphere Studio” on page 237

� Ant and the Java 2 SDK, described in Chapter 9, “Development using the
Java 2 Software Development Kit” on page 183

As you read through we advise you to select information from the sections that
follow depending on your environment and the tools available to you.

Importing Struts into VisualAge for Java
If you want to develop applications using Struts in VisualAge for Java, we
recommend you import the Struts source files into your workspace, rather than
importing the compiled .class files. This allows you to view and step through the
framework source when coding and debugging with VisualAge for Java.

Note: The final Struts Version 1.0 was released shortly before work on this
book was completed. Due to time constraints, however, we were unable to
test our example code with this final release.
284 WebSphere Version 4 Application Development Handbook

http://jakarta.apache.org/builds/jakarta-struts/

The Struts source files are distributed under the form of plain Java files in the
Struts source distribution’s src\share directory. To import these files into
VisualAge for Java expand the source distribution into a local directory—our
example uses D:\jakarta-struts—then follow these steps:

� Create a new project in VisualAge for Java, for example Jakarta Struts.

� Right-click on the Jakarta Struts project and select Import. In the import
SmartGuide, select the Directory radio button. Click Next.

� Browse to the D:\jakarta-struts\src\share\ directory. Choose to import the
.java and resources files. Leave the options unchecked. Click Finish.

� Right-click on the project. Select Manage -> Version. Select One Name and
enter 1.0b1 with source. This will version the imported packages and
classes recursively.

Struts uses the JAXP APIs in the javax.xml.parsers package, which are not
provided by the standard XML parser in the IBM XML Parser for Java project
included with VisualAge for Java. Later on, when we configure the WebSphere
Test Environment (see “Setting up the WebSphere Test Environment for Struts”
on page 287) we also require a stylesheet processor. We solve both problems by
downloading and importing Xalan, a stylesheet processor from Apache that also
includes the Xerces XML parser, and is available from:

http://xml.apache.org/xalan-j/

Importing the projects was a little tricky, because some of the classes in the
Xerces JAR conflict with classes in the IBM XML Parser for Java project used by
the WebSphere Test Environment.

We managed to get everything to work successfully by creating a new edition of
the IBM XML Parser for Java project, importing the following packages from the
Xerces JAR file:

� org.w3c.dom
� org.xml.sax
� org.xml.sax.helpers

We then created a separate project for the rest of the Xerces classes and the
Xalan code.

Setting up WebSphere Studio for Struts
We used WebSphere Studio to modify our Web content to work with Struts. We
created a new Studio project to manage our files. To make it easier to test our
changes in VisualAge for Java, we set up a publishing target that published the
files from Studio to the directory used by the VisualAge WebSphere Test
Environment.
 Chapter 12. Development with frameworks 285

http://xml.apache.org/xalan-j/

In the Publishing Targets configuration (Figure 12-1), we set the html and servlet
publishing targets to:

D:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment\
hosts\default_host\piggybank-struts\web <==== html
hosts\default_host\piggybank-struts\servlets <=== servlet

Figure 12-1 Studio publishing targets configuration

Populating the Studio project
Next we inserted the following files from the original PiggyBank application into
our Studio project:

� index.html

� welcome.jsp

� include.jsp

The loginfail.jsp is not required as Struts provides an appropriate error
reporting that can be combined with the login page.

The index.html file displays a HTML login form. To benefit from the Struts input
form facility, this file is changed to a JSP file. Because an HTML file is a particular
case of JSP with no JSP tag, changing its extension to .jsp is initially the only
change we make to the file. We must also remember to update the Web
application’s welcome file list to include index.jsp so that the file name does not
have to be entered explicitly into the browser.

Attention: Any change on any file should be checked in and published from
Studio before being tested in the WebSphere Test Environment. If we do not
publish the files, VisualAge will not pick up the changes. For more information
on Studio checkin and publishing mechanism, see Chapter 10, “Development
using WebSphere Studio” on page 237.
286 WebSphere Version 4 Application Development Handbook

Next we create a WEB-INF directory in our Studio project and insert these files
from the Struts distribution:

� struts-html.tld
� struts-bean.tld
� struts-logic.tld
� struts-config.xml

Finally we also import the images and themes directories from the original
PiggyBank application.

Setting up the WebSphere Test Environment for Struts
If we want to test the Struts version of the PiggyBank alongside existing Web
applications, the WebSphere Test Environment must be configured to support a
new Web application. To do this we edit the file:

D:\IBMVJava\ide\project_resources\IBM Websphere Test Environment\
properties\default.servlet_engine file

We add the following declaration of the piggybank-struts Web application
between the <websphere-servlet-host name="default_host"> tags:

<websphere-webgroup name="piggybank-struts">
<description>PiggyBank application using Struts</description>
<document-root>$approot$</document-root>
<classpath>$approot$</classpath>
<root-uri>/piggybank-struts</root-uri>
<auto-reload enabled="true" polling-interval="3000"/>
<shared-context>false</shared-context>

</websphere-webgroup>

This block redirects all the URI starting with /piggybank-struts to the
Piggybank-Struts Web application, which is configured in the configuration file:

D:\IBMVJava\ide\project_resources\IBM Websphere Test Environment\
hosts\default_hosts\piggybank-struts\servlets\piggybank-struts.webapp

The webapp file is very generic and can be generated from the default web.xml
files included in the Struts distribution.

Generating the WTE webapp file from a web.xml file
The standard J2EE web.xml files are similar to the .webapp file VisualAge for Java
uses. Because both are written in XML, it is possible to convert a web.xml file into
a .webapp file using an XSL stylesheet, as represented in Figure 12-2.

Such a stylesheet is provided with VisualAge for Java in the file:

D:\IBMVJava\ide\project_resources\IBM Websphere Test Environment\
properties\webapp.xsl
 Chapter 12. Development with frameworks 287

Figure 12-2 Converting a web.xml file into a .webapp file using XSL

To apply a stylesheet to an XML, we need a stylesheet processor program such
as Xalan, which we downloaded earlier.

To run the processor go to the org.apache.xalan.xslt.Process class, right-click
on it and select Run -> Run main with. In the Class Path tab, check the Project
path check box and click on Compute Now. In the Program tab, enter this in
Command line arguments:

-IN C:\temp\web.xml -xsl D:\IBMVJava\ide\project_resources\IBM Websphere
Test Environment\properties\webapp.xsl -OUT C:\temp\piggybank-struts.webapp

Make sure the web.xml file to convert is in the C:\temp directory and click OK. In
this case we want to use the example web.xml file shipped with Struts. Check the
console to watch any error messages. An empty console for that program
indicates a successful conversion. The converted piggybank-struts.webapp can
be found in the same C:\temp directory.

To run Xalan outside of VisualAge for Java, we recommend you use Xerces as
an XML parser. It is also possible to (export and) use the IBM XML Parser or any
other JAXP-compliant XML parser. In most versions of the Xalan distribution, a
compatible version of Xerces is included. To run the same command from the
command line copy both xalan.jar and xerces.jar files into the C:\temp\
directory, open a Command Prompt window and type the following command
line:

D:\Websphere\AppServer\java\bin\java
-cp C:\temp\xalan.jar;C:\temp\xerces.jar org.apache.xalan.xslt.Process
-IN C:\temp\web.xml
-xsl "D:\IBMVJava\ide\project_resources\IBM Websphere Test Environment\

properties\webapp.xsl"
-OUT C:\temp\struts-example.webapp

web.xml

piggybank-struts.webapp

webapp.xslXSL processor
<<uses>>
288 WebSphere Version 4 Application Development Handbook

Finally, the generated .webapp file has to be tweaked a little bit to properly
support JSP compilation in the WebSphere Test Environment. After:

<servlet>
<name>jsp11</name>

Add these lines:

<init-parameter>
<name>jspemEnabled</name>
<value>true</value>

</init-parameter>

The resulting .webapp file should be put in the corresponding class path, which for
PiggyBank-Struts is:

D:\IBMVJava\ide\project_resources\IBM Websphere Test Environment\
hosts\default_hosts\piggybank-struts\servlets

The .webapp file can be managed and published from Studio.

Building the Struts version of the application using Ant
The Struts example code in the additional material includes modified versions of
the Ant build scripts described in Chapter 9, “Development using the Java 2
Software Development Kit” on page 183. These scripts have been modified as
follows:

� Struts software locations added to global.properties file

� Web application compile class path updated to include the Struts JAR

� Web application WAR file now includes the Struts JAR file and the Struts tag
libraries used by the example code

We must also update the Web application Web content and remove the existing
Web application code from the source tree—the Struts code completely replaces
the basic Web application code.

Updating the global properties file
The following entries were added to the global.properties file:

global.struts.dir=D:/jakarta-struts
global.struts.jar=${global.struts.dir}/lib/struts.jar

These entries assume the Struts binary distribution has been extracted into
D:/jakarta-struts.
 Chapter 12. Development with frameworks 289

Updating the Web application class path
The class path in the Web application build file build.xml was updated with:

<path id="webapp.classpath">
<pathelement location="${global.was.dir}/lib/j2ee.jar"/>
<pathelement location="${global.struts.jar}"/>
<pathelement path="${global.build.dir}/common"/>
<pathelement path="${global.build.dir}/usecase"/>

</path>

This change is required to compile the Web application code that uses Struts.

Adding Struts components to the WAR file
We updated the Web application package target in the Web application build file
build.xml as shown in Figure 12-3.

Figure 12-3 Struts updates to the Ant Web application package target

 <target name="package" depends="init,compile">
 <echo>Packaging ${ant.project.name}</echo>
 <mkdir dir="${global.module.dir}"/>
 <war warfile="${webapp.war.file}"
 webxml="WEB-INF/web.xml"
 basedir="web"
 manifest="META-INF/MANIFEST.MF"
 >
 <classes dir="${webapp.build.dir}"/>
 <!-- Pick up the reource files -->
 <classes dir="${basedir}">
 <include name="**/*.properties"/>
 </classes>
 <webinf dir="WEB-INF">
 <exclude name="web.xml"/>
 </webinf>
 <!-- Include the struts TLDs -->
 <webinf dir="${global.struts.dir}/lib">
 <include name="struts-bean.tld"/>
 <include name="struts-html.tld"/>
 <include name="struts-logic.tld"/>
 </webinf>
 <!-- Include the struts jar -->
 <lib dir="${global.struts.dir}/lib">
 <include name="struts.jar"/>
 </lib>
 </war>
 <echo>Finished packaging ${ant.project.name}</echo>
 </target>
290 WebSphere Version 4 Application Development Handbook

The additions to the target are highlighted in bold. The Struts tag libraries are
added to the WAR file WEB-INF directory, and the Struts runtime JAR to the
WEB-INF/lib directory. We also include properties files from the source tree—we
add these later to enable message externalization and internationalization.

Updating the PiggyBank Web content
We use the original PiggyBank Web content as a basis for our Struts version of
the PiggyBank. Before we start, however, there are a few changes we have to
make.

First, we must rename the index.html page to index.jsp—this is required
because we are introducing JSP tags into our index page.

We also have to update our Web application deployment descriptor, web.xml. We
update the welcome file list to use the index JSP as the home page for our
application instead of the old HTML. The new welcome file list looks like this:

<welcome-file-list>
<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

We remove the PiggyBank controller servlet and add the Struts action servlet in
its place:

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>PiggyBankResources</param-value>
 </init-param>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>validate</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>
 Chapter 12. Development with frameworks 291

The last update adds the Struts tag library descriptors:

<taglib>
<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

</taglib>
<taglib>

<taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-html.tld</taglib-location>

</taglib>
<taglib>

<taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>

</taglib>

Finally we must add the Struts configuration file for our application. We start by
using the basic struts-config.xml described in “Struts configuration file” below.
We place the configuration file in the WEB-INF directory, the location referenced in
the Struts action servlet initialization parameter.

Struts configuration file
Struts configuration is described in an XML file. A minimal struts-config.xml
configuration file looks like this:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"
 "http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd">
<struts-config>
<!-- Here come the application elements declarations -->
</struts-config>

We will enhance this file throughout this chapter to have PiggyBank-Struts
working.

Building a Struts form
We start from the existing PiggyBank JSPs.

Every HTML form element can be rewritten using the Struts custom tags library.
Table 12-1 shows some mappings between the normal HTML tags and the Struts
custom tags. The Struts documentation provides a more complete and detailed
list.
292 WebSphere Version 4 Application Development Handbook

Table 12-1 Struts custom tags mapping with HTML form tags

Each time a form is defined in a JSP, a corresponding form bean should be
defined in VisualAge for Java. For example, the Struts index.jsp form:

<html:form action="/login.do" focus="user">
<html:text property="user" size="20" maxlength="20"/>
<html:password property="password" size="20" maxlength="20"

redisplay="false"/>
<html:submit property="submit" value="Login"/>
<html:reset/>

</html:form>

This should have a counterpart form bean implemented in Java:

� Create a new package in the existing PiggyBank project for our form beans
and name it itso.was4ad.webapp.form

� Create a new class in this package called LoginForm that extends
org.apache.struts.action.ActionForm

� Add a private user field to the LoginForm class—make the field a String, and
create public getter and setter methods for it.

� Add another password string field in the same manner

The Struts framework is able to recognize the LoginForm class as a JavaBean
and access its properties using the Java reflection APIs—each field in the HTML
form must have a corresponding property with the same name in the form bean.
The form bean is populated from the fields when the form is submitted.

To let Struts know about this class as a form bean, edit the struts-config.xml
file and add the following declaration inside the <struts-config> tags:

<form-beans>
<form-bean name="logonForm" type="itso.was4ad.action.form.LoginForm"/>

</form-beans>

The association between the form and its form bean is done through the action
specified in the form and the associated action mapping, as explained in the
section that follows. This means that a form bean can be reused in several
similar forms.

HTML form tag Struts custom tag

<FORM ACTION="/xxx" METHOD="POST"> <html:form action="xxx.do">

<INPUT TYPE=”text” NAME=”name”> <html:text property=”name”/>

<INPUT TYPE=”submit”> <html:submit/>

</FORM> </html:form>
 Chapter 12. Development with frameworks 293

Building a Struts action
As we described in “Action objects” on page 160, Struts actions are the interface
between the incoming requests and the business logic. Every HTTP request
causes a call from the ActionServlet to the perform method of the appropriate
action class, an instance of which is created.

For the Struts version of the login there is one possible request from the
index.jsp page. We must create a corresponding action class in Java by
performing these tasks:

1. Create a new package for our action classes—we name the new package
itso.was4ad.webapp.action

2. Create a new class named LoginAction in the new package

3. Create the perform method in the class, as described below

LoginAction perform method
The code for the perform method is shown in Figure 12-4.

Figure 12-4 Struts LoginAction perform method

public ActionForward perform(
 ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

// Get a reference to the HTTP session
 HttpSession session = request.getSession();

 try {
 // Use the DisplayCustomer use case to locate the customer info
 DisplayCustomer useCase = new DisplayCustomer();
 useCase.setCustomerId(((LoginForm) form).getCustomerId());
 CustomerData data = (CustomerData) useCase.execute();

// Save the user information in the session
 session.setAttribute("customer", data);
 } catch (Exception e) {
 ActionForward result = mapping.findForward("loginNotSuccessful");
 return result;
 }

 ActionForward result = mapping.findForward("loginSuccessful");
 return result;
}

294 WebSphere Version 4 Application Development Handbook

The full method signature is:

public org.apache.struts.action.ActionForward perform(
org.apache.struts.action.ActionMapping mapping,
org.apache.struts.action.ActionForm form,
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
throws java.io.IOException, javax.servlet.ServletException

We can avoid the long fully-qualified class names by adding these imports to the
class source code:

import org.apache.struts.action.*;
import javax.servlet.http.*;
import java.io.IOException;
import javax.servlet.ServletException;

The method is very similar to the execute method in the LoginCommand class in
the basic PiggyBank application—it simply uses the DisplayCustomer use case
class to locate the customer information and store it in the HTTP session. No
authentication is performed.

The method looks up and returns a Struts ActionForward object depending on
whether the login was successful or not. The forward object is referenced by a
symbolic name—the actual URI to forward to is determined by the Struts
configuration file. This arrangement allows the structure of the Web site to be
modified without altering any code.

Defining the action mapping
The action class and the pages it may forward to are defined in the Struts
configuration file. We edit the struts-config.xml file and add the declaration for
our new action inside the <struts-config> tags (Figure 12-5).

Figure 12-5 Struts login action configuration

<action-mappings>
<action path="/login"

type="itso.was4ad.action.LoginAction"
name="loginForm"
scope="request"
validate="false"
input="/index.jsp">
<forward name="loginSuccessful" path="welcome.jsp"/>
<forward name="loginNotSuccessful" path="index.jsp"/>

</action>
<action-mappings>
 Chapter 12. Development with frameworks 295

Form validation
In “Defining the action mapping” on page 295”, the form validation attribute in the
XML is set to false. We can enable validation of the form by modifying the
validate attribute of the mapping to true. We must also include the input
attribute—this tells the framework which page to return to if input validation fails.

When we enable validation this the ActionServlet calls the validate method of
the specified form bean before performing the action. The method can examine
the submitted values and report any validation errors back to the client.

To validate our login input information, we add a validate method to the
LoginForm class (Figure 12-6).

Figure 12-6 ActionErrors validate method

This method basically checks if the customer ID supplied is a valid integer.

The return object is a collection of all the errors that have been encountered
during the validation process. If it contains more than one ActionError, the
ActionServlet returns a collection of error objects to the input JSP, which can
retrieve and display the errors—for instance above the form—using a very
simple Struts custom tag:

<html:errors/>

The PiggyBank login form includes this tag, enclosed in font tags to display the
errors in red:

<p>

<html:errors/>

</p>

Figure 12-7 shows the output from the login page displayed when a user enters
an invalid user ID.

public ActionErrors validate(ActionMapping mapping, HttpServletRequest req)
{

ActionErrors errors = new ActionErrors();
try {

this.customerId = Integer.parseInt(getUser());
} catch (Exception e) {

errors.add("user", new ActionError("error.login.user"));
}
return errors;

}

296 WebSphere Version 4 Application Development Handbook

Figure 12-7 Output from the Struts errors tag

The error message displayed in the JSP is resolved using the key
error.login.user given at ActionError object creation time. Let’s explains this
error message resolving process in depth.

Message facility
It is usually a good idea to not hardcode messages from the application in Java
code and JSPs, but to externalize them in plain text files instead. This can bring
several benefits:

� There is no need to recompile every time a message changes.

� There are fewer opportunities to introduce errors in the code accidentally.

� Presentation formatting can be separated from the presentation content.

� Internationalization is more straightforward (see “Internationalization” on
page 299).

� Messages can be reused, leading to better consistency and reduced
translation costs.
 Chapter 12. Development with frameworks 297

Struts provides complete support for externalizing messages, built on top of the
standard Java implementation. The messages are all placed in a standard
.properties resource file, where they are identified by keys and associated by
the = sign, following the <key>=<value> pattern, such as:

welcome.hello=Hello
welcome.welcome=Welcome to PiggyBank!
error.login.user=You entered an invalid user ID

We place the lines above in a file and call it PiggyBankResources.properties.

To access the messages from the application, the resource file must be
fully-qualified in the class path and referenced from the Web application
configuration file, as a parameter of the ActionServlet configuration:

<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
[...]
<init-param>

<param-name>application</param-name>
<param-value>PiggyBankResources</param-value>

</init-param>
[...]

</servlet>

To put this file in the VisualAge for Java class path, click on the Resources tab,
right-click on the project and select Add -> Resource. Browse to the desired
directory and select the file or files you want to add.

When we package the code into a J2EE Web module we must remember to
include the file in the WAR archive in the WEB-INF/classes directory.

If you are using Ant to build your application place the properties file at the base
of the source tree and add the following to the XML build file:

<!-- Pick up the resource files -->
<classes dir="${basedir}">

<include name="**/*.properties"/>
</classes>

To display the “Hello” message in include.jsp, we can remove the hardcoded
String and replace it by this Struts custom tag:

<bean:message key="welcome.hello"/>

To have the custom tag working, the following tag library must be declared in the
JSP:

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
298 WebSphere Version 4 Application Development Handbook

To externalize text in HTML reset and submit buttons, we can use the following
Struts tags:

<html:reset>
<bean:message key="button.reset"/>

</html:reset>

Internationalization
In “Message facility” on page 297“, we saw how hardcoded message strings can
be removed from our code and JSPs. This leads us to a new advantage: it
becomes much easier to internationalize the application. Internationalization
(also known as I18N, because there are 18 letters between the I and the N) is the
means by which we can enable our single application for user communities that
understand different human languages.

There are two stages to internationalizing our application:

� Translate messages in our resource files into our chosen languages

� Provide a means in the application to change the current locale (the language
settings for the application to use)

The steps we must perform for Struts more or less follow the standard Java
internationalization technique, which is clearly explained in the Javasoft tutorial
and API documentation:

http://java.sun.com/j2se/1.3/docs/api/java/util/ResourceBundle.html
http://java.sun.com/docs/books/tutorial/i18n/index.html

Translating messages
Translated messages are put in files named PiggyBankResources_xx.properties
where xx is the ISO-639 language code. A list of the ISO-639 language codes
can be found at:

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

For completeness, a list of the ISO-3166 country codes can be found at:

http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Selecting a language
Web applications often place a Choose language option in the main menu, which
can appear during the entire HTML navigation. This can be easily done for our
PiggyBank Struts example in the include.jsp file:

<TD><IMG
src="images/en.gif" width="50" height="35" border="0"></TD>
 Chapter 12. Development with frameworks 299

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://java.sun.com/j2se/1.3/docs/api/java/util/ResourceBundle.html
http://java.sun.com/docs/books/tutorial/i18n/index.html
http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

<TD><IMG
src="images/fr.gif" width="50" height="35" border="0"></TD>
<TD><IMG
src="images/de.gif" width="50" height="35" border="0"></TD>

This displays three flags—American English, French and German—linked to a
JavaScript function which passes two locale parameters to a new Struts form
that allows us to change the language. The language selection menu can be
seen in Figure 12-8.

Figure 12-8 The PiggyBank Struts language selection menu

The JavaScript function is defined as follows:

<script language="JavaScript" type="text/javascript">
<!--
function submitChangeLanguageForm(languageValue, countryValue) {

changeLanguageForm.language.value=languageValue;
changeLanguageForm.country.value=countryValue;
changeLanguageForm.submit();

}
-->
</script>
300 WebSphere Version 4 Application Development Handbook

This JavaScript function puts the locale parameters into the following hidden form
and submits it:

<html:form action="/changeLanguage.do">
<html:hidden property="language"/>
<html:hidden property="country"/>

</html:form>

On the server-side, a corresponding ChangeLanguageForm bean must be created
with the two locale properties:

� language
� country

And declared in the Struts configuration file:

<form-beans>
[...]
<form-bean name="changeLanguageForm"

type="itso.was4ad.action.form.ChangeLanguageForm"/>
</form-beans>

The locale is set by the ChangeLanguageAction class, which has a perform
method that looks like this:

try {
itso.was4ad.action.form.ChangeLanguageForm changeLanguageForm =

(itso.was4ad.action.form.ChangeLanguageForm) form;
java.util.Locale locale =

new java.util.Locale(
changeLanguageForm.getLanguage(),
changeLanguageForm.getCountry());

session.setAttribute(Action.LOCALE_KEY, locale);
} catch (Exception e) {

// do not mind, default locale will be used by Struts
}
ActionForward result = mapping.findForward("welcome");
return result;

This action must also be declared in the Struts configuration file:

<action-mappings>
[...]

<action path="/changeLanguage"
type="itso.was4ad.action.ChangeLanguageAction"
name="changeLanguageForm" scope="request" validate="false">

<forward name="welcome" path="welcome.jsp"/>
</action>

</action-mappings>
 Chapter 12. Development with frameworks 301

Now, clicking on one of the flags in the main menu will automatically change all
the Struts messages displayed in the JSPs to the selected language (provided
these JSPs use the Struts message facility, at least everywhere the
<bean:message> tag is used). This locale setting will last to the end of the session
or until the user selects another language. This is illustrated in Figure 12-9.

Figure 12-9 French language welcome page using Struts

Struts conclusions
This chapter has briefly covered only some of the capabilities of the Struts
framework. In addition to the actions described here, the example code
described in Appendix A, “Additional material” on page 557 also implements
logout and account display actions. Beyond this we recommend you examine the
example code and documentation that comes with the Struts distribution to gain
a fuller grasp of the framework’s capabilities.

Despite the limited scope we hope we have given you an insight into the
capabilities of Struts and the ease with which applications can be developed
using the framework.
302 WebSphere Version 4 Application Development Handbook

WebSphere Business Components Composer
In this section we explain how to develop the PiggyBank application using the
WebSphere Business Components Composer, which we name here “WSBCC”
while the PiggyBank application developed with WSBCC will be named
PiggyBank-WSBCC.

We first consider that the application has to be written from scratch, so that we
use the least from the framework capabilities. Then, we introduce the use of
additional WSBCC features and so rely on less custom code. At the end, the
application looks the most like a typical front-end application integrated in an
existing enterprise environment.

Importing WSBCC into VisualAge for Java
The WSBCC binary files are distributed under the form of compiled class files in
a jar-packaged archive file. To import those files from it into VisualAge for Java:

� Create a new project in VisualAge for Java, for example WSBCC.

� Right-click on the WSBCC project and select Import. In the import SmartGuide,
select the Jar file radio button. Click Next.

� Browse to the $wsbcc-dir$\WSBCC4.jar file. Choose to import the .class and
resource files. Leave the options unchecked. Click Finish.

� Right-click on the WSBCC project. Select Manage -> Version. Select One Name
and enter 4.0. This should version the imported packages and classes
recursively.

For further development, we also create a new itso.was4ad.wsbcc package in
the ITSO WAS AD project.

WebSphere Studio setup
Create a new project in Studio or use an existing one. Create a working directory
called piggybank-wsbcc. In the Publishing Targets configuration (Figure 12-1), set
the HTML publishing target to:

D:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment\
hosts\default_host\piggybank-wsbcc\web

Insert these files from PiggyBank:

� welcome.jsp
� accountDisplay.jsp
� displayAccountsResult.jsp
� transfer.jsp
 Chapter 12. Development with frameworks 303

� transferResult.jsp
� error.jsp
� loginfail.jsp
� logout.jsp

Create an XML directory in the piggybank-wsbcc directory and insert six files:

� dse.ini
� dseoper.xml
� dsectxt.xml
� dsedata.xml
� dsefmts.xml
� dsesrvc.xml

These files are the WSBCC configuration files. We alternatively suggest not to
start actually from blank files but to use the final sample files provided with the
redbook. This jumpstarts the first tests. All along this chapter, we are going to
show and explain the major concepts behind the code.

WTE setup
To test PiggyBank-WSBCC along with the existing Web applications, the
WebSphere Test Environment has to be configured to support a new Web
application. Edit the file:

D:\IBMVJava\ide\project_resources\IBM Websphere Test Environment\
properties\default.servlet_engine file

and add the following PiggyBank-Struts Web application declaration between the
<websphere-servlet-host name="default_host"> tags:

<websphere-webgroup name="piggybank-wsbcc">
<description>PiggyBank application using WSBCC</description>
<document-root>$approot$</document-root>
<classpath>$approot$</classpath>
<root-uri>/piggybank-wsbcc</root-uri>
<auto-reload enabled="true" polling-interval="3000"/>
<shared-context>false</shared-context>

</websphere-webgroup>

Attention: Remember these directories are supposed to be published. Any
change on any file should be checked in and published from Studio before
being tested in the Websphere Test Environment. For more information on the
Studio checkin and publishing mechanism, see Chapter 10, “Development
using WebSphere Studio” on page 237.
304 WebSphere Version 4 Application Development Handbook

This block redirects all the URI starting with /piggybank-wsbcc to the
Piggybank-WSBCC Web application, which is configured in the configuration file:

D:\IBMVJava\ide\project_resources\IBM Websphere Test Environment\
hosts\default_hosts\piggybank-wsbcc\servlets\piggybank-wsbcc.webapp

The piggybank-wsbcc.webapp configuration file is based on the common webapp
file plus one declaration for the WSBCC servlet that will pass the HTTP requests
to the Web service:

<servlet>
<name>htmlController</name>
<code>com.ibm.dse.cs.servlet.CSReqServlet</code>
<autostart>true</autostart>
<servlet-path>/html</servlet-path>

</servlet>

Please note this configuration file is temporary and will be enhanced in the next
sections.

Automatic server startup
We suggest to write first a simple and convenient facility that helps developing
with WSBCC. We want to have:

� WSBCC started at servlet engine startup

� The ability to restart WSBCC from the browser, for instance to reload the
WSBCC XML configuration file

� A versatile configuration support for both development and production

To this end, we create a new servlet itso.was4ad.wsbcc.StartServerServlet. It
will be architected in three parts, that is, three methods (Figure 12-10):

� A servlet-engine-triggered server start entry point

� A browser-triggered server restart entry point

� A common server initialization routine
 Chapter 12. Development with frameworks 305

Figure 12-10 WSBCC startup architecture

initialize method
The initialize method basically calls the necessary framework code to have it
initialized properly from the specified .ini file, the path of which is given as a
parameter:

private void initialize(String iniFileName) throws Exception {
Context.reset();
HandlerRegistry.resetInstance();
// Read data from .ini file
Settings.reset(iniFileName);
Settings.initializeExternalizers(Settings.MEMORY);
// Create the initial context in the server
Context context = new Context("globalContext");
// Initialize the client-server service, required for session management
((CSServerService)context.getService("CSServer")).initiateServer();

}

init method
The init method overrides the standard J2EE API method to initialize a servlet.
It takes the .ini file name from the servlet engine Web application configuration
and calls the initialize method.

Furthermore, it gets another parameter stating whether WSBCC can be restarted
through a HTTP request or not. Finally, a third parameter tells whether the servlet
class loading into the servlet engine should trigger the WSBCC startup
sequence. This is mainly used to start WSBCC along with the servlet engine.

In total, this method gets three parameters that usually take these values,
according to the runtime environment (Table 12-2).

Servlet engine

init()

service()Browser

initialize()
306 WebSphere Version 4 Application Development Handbook

Table 12-2 WSBCC startup parameters

The iniFile can have any name and can be put in any place. Just make sure it is
not accessible through the Web. The init method code looks like this:

public void init(ServletConfig sc) {
 try {
 super.init(sc);
 String initStart = getInitParameter("initStart");
 if (initStart != null && initStart.equals("false")) {
 // Do nothing: the user doesn't want to initialize the
 // environment in the Application Server's startup
 } else {
 // set the HTTP restart preference
 this.acceptHttpRestart =
 (new Boolean(getInitParameter

("acceptHttpRestart"))).booleanValue();
 // Get the path of the server's dse.ini file
 String path = getInitParameter("iniFile");
 if (path == null) {
 path = this.defaultIniFileName;
 } else {
 this.defaultIniFileName = path;
 }
 //only try to initialize when the .ini file exists
 //otherwise trust initialize() to be called from
 //the doGet() method
 if (new java.io.File(path).exists()) {
 initialize(path);
 }
 log("StartServerServlet initialized properly");
 }
 } catch (Exception e) {
 log("Exception in StartServerServlet.init(): " + e);
 }
}

Parameter name Development value Production value

initStart true/false true

acceptHttpRestart true false
 Chapter 12. Development with frameworks 307

service method
The service method uses the same iniFile parameter to restart WSBCC from a
HTTP request, typically coming from a browser. This feature is especially useful
in development as any change in an XML configuration file can be reloaded into
WSBCC without having to restart the entire servlet engine. As enhancements,
the basic HTML output generated can include a hyperlink to the Web application
home page and the framework restart access can be protected by a simple
password. The appropriate method looks like this:

public void service(HttpServletRequest req, HttpServletResponse res)
throws java.io.IOException {

// check the password
String password = req.getParameter("password");
if ((!this.acceptHttpRestart) || ((this.requiredPassword != null) &&

(!this.requiredPassword.equals(password)))) {
// consider it as violent DoS so immediately close the output stream
// NB : it could be considered to log the hit source as well
log("StartServerServlet hit with a wrong password");
ServletOutputStream strmOut = res.getOutputStream();
strmOut.println("No access.");
strmOut.close();
return;

}
// determine the entry point URL
String entryPointUrl = req.getParameter("entryPointUrl");
if (entryPointUrl == null) {

log("Warning: no 'entryPointUrl' parameter in URL, using default");
entryPointUrl = this.defaultEntryPointUrl;

}
// determine the location of .ini file

String iniFileName = req.getParameter("iniFile");
if (iniFileName == null) {

log("Warning: no 'iniFile' parameter in URL, using default");
iniFileName = this.defaultIniFileName;

}
String strMessage = "Initialization OK";

// start the server
try {

log("Using the ini file: " + iniFileName);
strMessage += " from file " + iniFileName + ".
";
strMessage += "You can now <a href=\"" + entryPointUrl +

"\">enter the application.";
initialize(iniFileName);

}
catch (Throwable t) {

strMessage = "ERROR in server: " + t.toString();
}
//send response to client
308 WebSphere Version 4 Application Development Handbook

ServletOutputStream strmOut = res.getOutputStream();
strmOut.println("OK");
strmOut.println("<TITLE>WSBCC Start</TITLE>");
strmOut.println("</HEAD><BODY>");
strmOut.println("<H1>" + this.getClass().getName() +

"</H1><HR>");
strmOut.println(strMessage + "
<HR>");
strmOut.println("</BODY></HTML>");
strmOut.close();
return;

}

A benefit of this method is that we can create a project development page
including several links to this servlet with various WSBCC configuration files and
Web application home pages as HTTP parameters.

Default values are provided to lighten the URL while keeping a flexible entry
point. This is especially useful when accessing the servlet through a HTTP GET
method, where the URL parameters have to be encoded.

To have URL parameters encoded for GET method, it very convenient to use the
VisualAge for Java scrapbook:

1. In the VisualAge for Java Workbench menu, select Window -> Scrapbook.

2. Type: java.net.URLEncoder.encode("URL Test");

3. Select all this code by pressing CTRL+A or by selecting Edit -> Select All in
the scrapbook menu.

4. Inspect the result by pressing CTRL+Q or by selecting Edit -> Inspect in the
scrapbook menu.

5. You can now copy and paste the encoded text in the inspector value window
(Figure 12-11).

Figure 12-11 Inspector value window
 Chapter 12. Development with frameworks 309

Note that WSBCC expects a .ini file path name containing an OS-dependant
path separator. While on a UNIX system it works with /root/dse.ini, WSBCC
on a Win32 system requires a form like C:\\dse\\dse.ini. Also note that in this
latter case, the \ sign is doubled, because Java Strings creation from constants
uses the \ sign as an escape character. Furthermore, if you use the
java.net.URLEncoder, enter a quadruple \\\\ because it also has to build a Java
String from a constant before converting.

Configuration
The servlet we just built has to be declared in the Web application configuration:

<servlet>
<name>startServerServlet</name>
<code>itso.was4ad.wsbcc.StartServerServlet</code>
<autostart>true</autostart>
<servlet-path>/startServer</servlet-path>
<init-parameter>

<name>acceptHttpRestart</name> <value>true</value>
</init-parameter>
<init-parameter>

<name>initStart</name> <value>true</value>
</init-parameter>
<init-parameter>

<name>iniFile</name>
<value>D:\\IBMVJava\\ide\\project_resources\\

IBM WebSphere Test Environment\\hosts\\default_host\\
piggybank-wsbcc\\XML\\dse.ini</value>

</init-parameter>
</servlet>

The URL to restart the WSBCC server with default values is therefore:

http://localhost:8080/piggybank-wsbcc/startServer

Building WSBCC operations
WSBCC operations are similar to Struts action (see “Action objects” on
page 160) and commands (see “Command pattern” on page 105). They are also
use-case driven and follow the same design considerations as commands. There
are as many operations as screens. Therefore, in PiggyBank-WSBCC, there are
four main operations to be defined:

� LoginOperation (welcome.jsp)
� DisplayAccountsOperation (displayAccountsResult.jsp)
� Transfer1Operation (transfer)
� TransferOperation (transferResult)
310 WebSphere Version 4 Application Development Handbook

Each operation executes its operation flow and gives the hand to the appropriate
JSP. This latter functionality is not completely provided by the framework, and we
have to extend the operation class to add it (Figure 12-12).

Figure 12-12 Operation extension

To do this in VisualAge for Java, right-click on the itso.was4ad.wsbcc package
and select Add -> Class. Create a new class CommandOperation extending the
superclass com.ibm.dse.base.DSEServerOperation. Add it a replyPage String
attribute with a default value of null. Now a generic operation class has been
defined with a replyPage attribute and all the child operation classes can use it.

The actual forward to the reply page will be performed by WSBCC as long as the
dse_replyPage attribute is set to the corresponding value in the standard list of
the HTTP request attribute. This can be done in the execute method, which has
to be overridden by any user-defined operation:

public void execute() throws Exception {
super.execute();
setValueAt(com.ibm.dse.cs.html.HtmlConstants.REPLYPAGE,

this.replyPage);
}

Note that the dse_replyPage parameter name is not actually hardcoded but is
referenced instead by the REPLYPAGE constant in the HtmlConstants framework
class.

The execute method implementation looks basically like the corresponding
commands. An example can be found in the sample code distribution:
itso.was4ad.wsbcc.DisplayAccountsOperation.

CommandOperation
- replyPage

DSEServerOperation
 Chapter 12. Development with frameworks 311

Extending XML externalization
To externalize for instance the DisplayAccountsOperation and have it recognized
by WSBCC, we write some XML code in the dseoper.xml configuration file:

<itso.was4ad.wsbcc.DisplayAccounts
id="displayAccountsOperation"
operationContext="displayAccountsContext"
replyPage="displayAccountsResult.jsp">

<itso.was4ad.wsbcc.DisplayAccounts />

This declares the WSBCC ID of the operation, the class that implements it, the
operation context that is available to it and the reply page that should be sent
back to the browser when the operation flow is finished.

Do the same for all the operations and include everything between
<dseoper.xml> tags in the dseoper.xml file. Check as usual the standard <?xml
version="1.0"?> XML starting tag is present.

To support the replyPage XML attribute, we extend the initializeFrom method
of the CommandOperation class:

public Object initializeFrom(Tag aTag)
 throws java.io.IOException, DSEException {
 super.initializeFrom(aTag);
 com.ibm.dse.base.Vector attributes = aTag.getAttrList();
 for (int i = 0; i < attributes.size(); i++) {
 TagAttribute attribute = (TagAttribute) attributes.elementAt(i);
 if (attribute.getName().equals("replyPage")) {
 this.replyPage = (String) attribute.getValue();
 }
 }
 return this;
}

This copies the XML attribute to the Java attribute every time such an operation
object is created by WSBCC. This functionality is automatically inherited by all
the child operation classes, which can then externalize their inherited replyPage
field. An obvious advantage here is that navigation and page naming is controlled
in XML files instead of to-be-compiled Java code.
312 WebSphere Version 4 Application Development Handbook

Login
In WSBCC, the login sequence is handled by a separate controller. A predefined
login sequence is provided by a framework servlet, which we declare in the
piggybank-wsbcc.webapp file:

<servlet>
<name>loginController</name>
<code>com.ibm.dse.cs.servlet.CSEstablishSessionServlet</code>
<autostart>true</autostart>
<servlet-path>/login</servlet-path>

</servlet>

This default controller executes the startupOp operation with an initial
sessionCtx session context. These both WSBCC elements are defined in the
HTMLClient section in the dse.ini file:

<kColl id="HTMLClient">
<field id="minRequestResubmitTime" value="0"/>
<field id="filePath" value="/"/>
<field id="errorPage" value="error.jsp"/>
<field id="homePage" value="welcome.jsp"/>
<field id="startUpOp" value="loginOperation"/>
<field id="sessionCtx" value="sessionContext"/>
<field id="logOffOp" value="logoutOperation"/>

</kColl>

The HTMLClient section also contains three important attributes:

� filePath—the path to add to the web application path in order to find the
JSPs when mentioning them in a communication with WSBCC, allowing to
set the reply page to XXX.jsp, instead of a longer form like
/webappname/jsp/XXX.jsp. Actually, in our example, we do not use this facility
and we put a / value.

� errorPage—the error page where WSBCC can forward the request to when it
encounters an uncaught exception during the web service execution.

� homePage—the page to forward to when the login sequence is complete and
successful.

In our example, the login operation will put the customer information into the
session context like the initial load did for PiggyBank.
 Chapter 12. Development with frameworks 313

Legacy example
In this section, we are already going to rewrite the current code to make it use
more framework capabilities. We now assume the application has to run in an
enterprise environment where a host serves the business requests on a legacy
system. In this case, the PiggyBank-WSBCC application does not have to
provide any business code, that is does not have to implement the use cases, but
instead reuses and interfaces with the existing services the enterprise
environment already provides.

Table 12-3 and Table 12-4 show some typical (invented) host service
documentation specifying input and output message formats.

Table 12-3 customerInfo request (similar to accountsInfo request)

Table 12-4 transfer request

The request strings are typically formed by juxtaposing padded values like this:

00001~~~~~101

Response strings coming back from a host system are usually marked by
delimiter characters separating the values (Table 12-5 and Table 12-6).

Table 12-5 customerInfo answer (single occurrence)

Note: The ~ character indicates a blank space.

Field Length Padding Justify Value

serviceId 5 0 right 00001

customerId 8 ~ right ~~~~~101

Field Length Padding Justify Value

serviceId 5 0 right 00003

customerId 8 ~ right ~~~~~101

debitAccountNumber 8 ~ right 12345678

creditAccountNumber 8 ~ right 23456789

amount 13 ~ right ~~~~~~~~30.50

Field Delimiter Value

customerId \ 101\

customerName \ Joe Bloggs\
314 WebSphere Version 4 Application Development Handbook

Table 12-6 accountsInfo (multiple occurrence)

A typical accountsInfo response would look like this:

31\YES\3200.00\37\NO\1415.50\

In “Defining formats” on page 320 we explain how WSBCC can easily handle
these formats and many others.

Writing a WSBCC service
As we have no existing legacy system for PiggyBank, we are going to write a
simulator that acts exactly the same (see Figure 12-13 and compare it to
Figure 7-5 on page 168).

Figure 12-13 Host simulation from WSBCC point of view

Behind the scenes (Figure 12-14), the simulated host system will actually provide
the required service using the working PiggyBank application we wrote in the
previous chapters.

Figure 12-14 Host simulation behind the scenes

Field Delimiter Value

number \ 1\

checkingFlag \ YES\ or NO\

balance \ 3200.00\

Browser

WSBCC-enabled
application server

PiggyBank-WSBCC

Host

Browser

PiggyBank-WSBCC "Host"

PiggyBank DB
Straight PiggyBank path
 Chapter 12. Development with frameworks 315

The simulator can be written as a WSBCC service, extending the
com.ibm.dse.base.Service abstract class. The HostSystem class, being a
Service in the OO meaning, can be externalized like any WSBCC service in the
dsesrvce.xml file:

<HostSystem id="hostSystem" />

The tag name is referenced from the dse.ini file:

<kColl id="services">
...
<field id="HostSystem" value="itso.was4ad.wsbcc.HostSystem"/>
...

</kColl>

We consider that this service is shared by the entire application. So we put it the
global context in the dsectxt.xml file:

<context id="globalContext" type="Global" parent="nil">
...
<refService refId="hostSystem" alias="hostSystem" type="host"/>
...

</context>

In “Dealing with contexts” on page 318 we explain that this creates only one
instance of the itso.was4ad.wsbcc.HostSystem class in the unique global
context. Therefore its execute method must be thread-safe, which can easily be
achieved by using the standard Java single-semaphore facility: declare the
method as synchronized.

The actual simulator code can be found in the itso.was4ad.HostSystem class in
the sample code distribution provided with the redbook.

Generic WSBCC operations
As we are now connecting to the legacy system to perform the business logic,
the WSBCC operations task is reduced to a single stereotyped succession of
actions:

� Format a host request with context data

� Send request to the host

� Unformat the host response into the context

� Display the returned information to the user by forwarding the flow to a JSP
316 WebSphere Version 4 Application Development Handbook

The last feature and the corresponding XML externalization code is already
provided by our previously written CommandOperation. So we can extend this
class to a GenericHostOperation that will implement the first three requirements
in its execute method:

public void execute() throws Exception {
super.execute();
if ((this.serviceId != null) && (!this.serviceId.trim().equals(""))) {

// get context service
HostSystem hostSystem = (HostSystem) this.getService("HostSystem");
// put service id in the operation context
this.getContext().setValueAt("serviceId", this.serviceId);
// format request from context
FormatElement hostRequestFormat =

(FormatElement) this.getFormat("hostRequestFormat");
String request = hostRequestFormat.format(this.getContext());
// host request
String response = hostSystem.execute(request);
// unformat response into context
FormatElement hostResponseFormat =

(FormatElement) this.getFormat("hostResponseFormat");
hostResponseFormat.unformat(response, this.getContext());

}
}

Extra externalization code has to be provided for the serviceId attribute in the
initializeFrom method, similar to the code written for the replyPage attribute:

public Object initializeFrom(Tag aTag)
throws java.io.IOException, DSEException {
super.initializeFrom(aTag);
com.ibm.dse.base.Vector attributes = aTag.getAttrList();
for (int i = 0; i < attributes.size(); i++) {

TagAttribute attribute = (TagAttribute) attributes.elementAt(i);
if (attribute.getName().equals("serviceId")) {

this.serviceId = (String) attribute.getValue();
}

}
return this;

}

For completeness, here is a list of the services supported by the host simulator:

serviceId operationId Use case

00001 customerInfo Initial Load

00002 accountsInfo Display Accounts

00003 transfer Transfer Money
 Chapter 12. Development with frameworks 317

As we can see in the execute method of the GenericHostOperation, the request
and response formats are externalized too and referenced by two identifiers:

� hostRequestFormat

� hostResponseFormat

This externalization and reference are already implemented by WSBCC. Thus, a
generic host operation that transfers money can be fully externalized in the
dseoper.xml file:

<itso.was4ad.wsbcc.GenericHostOperation id="transferOperation"
operationContext="genericDynamicContext" serviceId="00003"
replyPage="transferResult.jsp">

<refFormat name="hostRequestFormat" refId="transferRequestFormat" />
<refFormat name="hostResponseFormat" refId="transferResponseFormat" />

</itso.was4ad.wsbcc.GenericHostOperation>

In “Defining formats” on page 320 we explain how to actually externalize the
formats.

Dealing with contexts
We now define and explain the WSBCC context paradigms.

Actually, the term context speaks for itself. In WSBCC, a context is modeled as a
group of data elements, which are illustrated in Figure 7-8 on page 172.

Figure 7-6 on page 169 shows that a context is shared all along the framework
flow and is available to all of its components.

To put and retrieve data in a context, get and set methods are provided by
WSBCC (getValueAt and setValueAt in the com.ibm.dse.base.Context class).
Figure 7-7 on page 171 and Figure 12-15 illustrate an important property of the
WSBCC contexts: they can be chained.

Figure 12-15 shows that any unsatisfied get/set method call on a context is
passed to the parent context, an so on, up to the root context (having a nil
parent).

To avoid exceptions when a data name to have its value set is not found in the
hierarchy, WSBCC provides a dynamic facility on the contexts, passing the set
call back down, down to the leaf context, until a dynamic KeyedCollection is
found, creating a new appropriate data element in it to hold the value. This
feature should be used wisely to avoid growing global (unique to the application)
and session (unique to a user session) contexts. Practically, we recommend to
provide a generic dynamic KeyedCollection to the operation contexts and to
leave the upper contexts non dynamic.
318 WebSphere Version 4 Application Development Handbook

Figure 12-15 Context chaining

Contexts can also contain references to services. In PiggyBank-WSBCC, two
services are needed at a global application level:

� The host simulator we developed in “Writing a WSBCC service” on page 315
� The built-in WSBCC client/server Web service

As a result to these considerations, the dsectxt.xml and dsedata.xml file look
like this:

<?xml version="1.0"?>
<dsectxt.xml>
<context id="globalContext" type="Global" parent="nil">

<refKColl refId="globalData"/>
 <refService refId="realCSServer" alias="CSServer" type="cs"/>
 <refService refId="hostSystem" alias="HostSystem" type="host"/>
</context>
<context id="sessionContext" type="Session" parent="globalContext">

<refKColl refId="customerData"/>
</context>
<context id="genericDynamicContext" type="Op" parent="sessionContext">

<refKColl refId="genericDynamicData"/>
</context>
</dsectxt.xml>

<?xml version="1.0"?>
<dsedata.xml>
<kColl id="globalData" dynamic="false">
</kColl>
<kColl id="customerData" dynamic="false">

<field id="customerId" />
<field id="customerName" />

</kColl>
<kColl id="genericDynamicData" dynamic="true">
</kColl>
</dsedata.xml>

Session
Context

Global
Context

Operation
Contextget/set
 Chapter 12. Development with frameworks 319

We can see the syntax is very straightforward in this case. For further
development, a complete syntax guide can be found in the WSBCC product
documentation.

Defining formats
WSBCC provides a very complete and customizable set of components to
externalize the context format and unformat processes that are shown in
Figure 12-16.

Figure 12-16 Format and unformat processes

Imagine we have a context containing these two data elements:

Also, the expected host request format is a juxtaposition of the serviceId
element value and of the customerId padded with blank characters at its left.

This very common case can be solved by a simple WSBCC format
externalization:

<fmtDef id="accountsInfoRequestFormat">
<record>

<fString dataName="serviceId"/><fixedLength length="5"
justify="right" padChar="0"/>

<fString dataName="customerId"/><fixedLength length="8"
justify="right" padChar=" "/>

</record>
</fmtDef>

The id attribute in the fmtDef tag is used to be referenced for instance from the
dseoper.xml file as described in “Generic WSBCC operations” on page 316.

Name Value

serviceId 00002

customerId 1

Context String

format

unformat
320 WebSphere Version 4 Application Development Handbook

Each line between the <record> tag is composed of two different kinds of
elements:

� A data reference
� A decorator

The two instances we have used and many others are described in the WSBCC
product documentation. Here their respective uses are obvious in the format
process. In the unformat process, the decorator is used to delimit the part of the
string to be unformatted into the decorated data reference.

The two main decorators are:

� The fixed length decorator, which sets the string cut after a fixed number of
characters (Figure 12-17).

Figure 12-17 Fixed length decorator

� The delimiter decorator, which set the string cut before a specified character
(Figure 12-18).

Figure 12-18 Delimiter decorator

At unformat time, the difference between a <record> and a <dRecord> is that
when a data name specified in a <dRecord> is not present in a dynamic context, it
is created instead of throwing an exception. The <nullCheck> decorator can be
used with the similar intention at formatting time.

Finally, an <iCollF> tag unformats a series of record occurrences into an
IndexedCollection. The times attribute specifies how many times the unformat
process has to be applied. A value of * lets the unformat process go until the
string is completely unformatted.

<fixedLength length="5">

...

<delim delimChar="\">

...A B C D \
 Chapter 12. Development with frameworks 321

Presentation
As soon as the operation flow is over, the HTTP request is forwarded to the
appropriate JSP, which is responsible for the presentation.

The link between the JSP and the framework is done through the use of a
so-called utb bean. WSBCC provides a default bean:

com.ibm.dse.cs.html.DSEJspContextServices

We recommend to extend the default bean (Figure 12-19) to have three basic
features to access the context without having any WSBCC classes knowledge in
the JSP:

� Get a string value from a KeyedCollection, giving a data name

� Get a string value from an IndexedCollection, giving an index and a data
name

� Get the size of an IndexedCollection

Figure 12-19 WSBCC utb bean extension

The actual implementation can be found in the sample code distribution:

itso.was4ad.wsbcc.PiggyBankJspContextServices

Before such a bean can be used in a JSP, it must be initialized with the standard
JSP request variable representing the HTTP request object, where WSBCC
actually stores the necessary information and can retrieve it through a call to the
default utb.initialize method.

Therefore, the starting code of the JSP looks like this:

<jsp:useBean id="utb" class="itso.was4ad.wsbcc.PiggyBankJspContextServices"
scope="page">
 <% utb.initialize(request); %>
</jsp:useBean>

PiggyBankJspContextServices

DSEJspContextServices
322 WebSphere Version 4 Application Development Handbook

The utb bean can be used in the JSP to access the context in multiple ways:

<%
for (int i = 0; i < utb.getSize("accountsInfoIColl"); i++) {
%>
<TR>

<TD>
<%= utb.getIndexedToken("accountsInfoIColl", i, "number") %>

</TD>
<TD>

$ <%= utb.getIndexedToken("accountsInfoIColl", i, "balance") %>
</TD>
<TD>

<%= utb.getIndexedToken("accountsInfoIColl", i, "checkingFlag") %>
</TD>

</TR>
<%
}
%>

Hi <%= utb.getStringValue("customerData.customerName") %>, and welcome to
PiggyBank.

Attention: As in any JSP, special care must be taken about catching possible
exceptions, which break the output process and call the Servlet Engine error
reporter:

� The default WebSphere error reporter displays the stack trace so this
should be really avoided in a production environment.

� Although it is simply possible to write a less verbose error reporter, another
possible solution is to add a standard JSP tag to specify an error page; that
works as long as the JSP output is not flushed.

� Keep in mind that the <jsp:include> directive always flushes the output.

Additional error handling recommendations can be found in the WebSphere
and WSBCC products documentations.
 Chapter 12. Development with frameworks 323

What we have achieved in this chapter
We have considered the PiggyBank application development starting with two
different frameworks:

� Jakarta Struts

� IBM WebSphere Business Components Composer

This led us to two different development processes and mentalities. In each
case, we focused our attention and efforts on the PiggyBank application
components where the frameworks help the most, leading to incomplete results
that are themselves very interesting, because they outline the real capabilities
and main benefits of each of the frameworks.

This is therefore a valuable reference to be compared with the vision of any
starting project that is considered to be developed with one these two
frameworks.
324 WebSphere Version 4 Application Development Handbook

Chapter 13. Guidelines for coding
WebSphere applications

In this chapter we present some guidelines to assist in writing code for
WebSphere applications.

The topics we cover are:

� Using JNDI

� Message logging

� Coding for performance

� Managing multiple application versions in the same WebSphere environment

13
© Copyright IBM Corp. 2001 325

Using JNDI
Version 4.0 of WebSphere Application Server introduces some changes that
impact the way code that accesses JNDI should be written. Version 4.0 includes
JNDI backward compatibility that ensures that all existing code developed for
versions 3.02 and 3.5 of WAS will continue to work. New code, however, should
be written to comply with the J2EE specification—the changes required are
described in this section.

Support for JNDI in WAS is described in detail in the WebSphere InfoCenter.

Obtaining an InitialContext
The J2EE specification recommends that code accessing JNDI obtain a
reference to a JNDI InitialContext object using the default constructor, with no
arguments. Furthermore, the specification requires that the container provide an
environment in which a valid InitialContext will be obtained by using the
default constructor. See Section 6.9 “Java Naming and Directory Interface (JNDI)
1.2 Requirements” in the Java 2 Platform Enterprise Edition Specification, V1.2;
and Section 18.2.1.3 “JNDI 1.2 requirements” in the Enterprise JavaBeans
Specification, V1.1.

WAS Version 4.0 and Version 3.5 both fulfil this requirement, meaning that an
InitialContext can be simply obtained using the code:

import javax.naming.InitialContext;
...
InitialContext context = new InitialContext();

This code will function correctly in EJBs, servlets, JSPs and application clients
running in the appropriate WebSphere container.

Earlier versions of WebSphere required you to specify the initial context factory
class and the naming service provider URL in a Hashtable or Properties object
to the InitialContext constructor. This approach will still work, however you
should be aware that the factory class has changed in Version 4.0:

com.ibm.ejs.ns.jndi.CNInitialContextFactory <=== Version 2/3
com.ibm.websphere.naming.WsnInitialContextFactory <=== Version 4

The factory class supported by earlier versions of WebSphere is still provided for
backwards compatibility with old code, however its use has been
deprecated—the internal implementation of the earlier factory class simply uses
the new factory.
326 WebSphere Version 4 Application Development Handbook

When you develop new code for WebSphere Application Server Version 4.0 we
recommend that you use the default constructor as described above. This
approach ensures the best compatibility with the J2EE specification. If you find
you must specify properties to the InitialContext constructor, we strongly
recommend you externalize these from your application code.

Local and global JNDI namespaces
Earlier versions of WAS provided a single global JNDI namespace. Client code
that needed to locate an EJB’s home interface, for example, would perform a
lookup on the global JNDI name for the EJB. For any one EJB home, all clients
running in the same WebSphere cluster that wanted to access the EJB had to
know the global JNDI name that the EJB was deployed with. This situation is
illustrated in Figure 13-1, where both client A and client B locate the EJB using
the global JNDI name itso/was4ad/ejb/Account.

Figure 13-1 Global JNDI namespace

Version 4.0 of WAS, in line with the J2EE specification, introduces the concept of
a local JNDI namespace. Each Web application, client application and individual
EJB has its own local JNDI namespace that the component accesses by
performing lookups with names that begin java:comp/env.

When a J2EE module is created each component must define in its deployment
descriptor all the resources that it expects to find in the local JNDI namespace.
These resources may include EJB homes, data sources, mail providers, and
general configuration information the component expects to find in its
environment. We can enter this information manually into the deployment
descriptor XML, or use the WebSphere Application Assembly Tool (AAT) GUI.

Global JNDI namespace

Account
EJB

itso/was4ad/ejb/Account: AccountHome

Client A

lookup("itso/was4ad/ejb/Account")

Client B

lookup("itso/was4ad/ejb/Account")
 Chapter 13. Guidelines for coding WebSphere applications 327

When the module is installed into the application server, the deployment tool
locates all of the local references declared in the deployment descriptor, and
asks the deployer to provide global JNDI names that correspond to the actual
deployed resources that the modules want to locate.

At runtime, when a client performs a JNDI lookup in its local JNDI namespace,
the container uses the information supplied when the application was installed to
map the local name understood by the module to the global name which
identifies where the component is actually located. This is illustrated in
Figure 13-2, where the two client modules locate the same EJB home using two
different local JNDI names.

Figure 13-2 Local and global JNDI namespaces

This extra level of indirection at the JNDI level makes it much easier to assemble
applications from components created by multiple providers, because it
eliminates naming conflicts between components and allows each component’s
resources to be configured in a consistent manner without having to know
anything about the component’s internal implementation.

This feature is also useful for allowing multiple versions of the same components
to run independently in the same WebSphere cluster—we describe in detail how
to manage this in “Managing application versions” on page 371.

Because the global JNDI namespace remains as before, existing applications
coded for earlier versions of WebSphere will continue to behave in the same
manner as before.

Global JNDI namespace

Account
EJB

itso/was4ad/ejb/Account: AccountHome

Client A

lookup("java:comp/env/ejb/Account")

Local JNDI namespace

ejb/Account -> itso/was4ad/ejb/Account

Client B

lookup("java:comp/env/ejb/PiggyBank/Account")

Local JNDI namespace
ejb/PiggyBank/Account -> itso/was4ad/ejb/Account
328 WebSphere Version 4 Application Development Handbook

We do recommend, however, that any new code developed for Version 4.0 of the
application server be written to use the local JNDI namespace as described here.
Such applications will ultimately be more flexible and easier to manage, as well
as complying more closely with the J2EE specification.

Caching JNDI lookup results
With earlier versions of WebSphere a well-documented and widely implemented
best practice concerning coding using JNDI recommended that any object
returned as a result of a JNDI lookup be cached by the application code for future
reuse. Following this recommendation significantly enhanced the performance of
applications running in versions of the application server that did not implement
any internal JNDI caching mechanism.

As a result many organizations have written and successfully deployed
application code that caches JNDI lookup results. A common implementation
uses a helper class following the Singleton design pattern—the singleton
manages a cache of objects in a Hashtable, using the JNDI name used to locate
the object as a key.

With the introduction of Version 4.0 of the application server, we find ourself in a
position where we must re-examine this best practice and, in certain
circumstances at least, caution against its use.

There are two factors that drive this new recommendation:

� The introduction of a local JNDI namespace

� The evolution of the caching capabilities of the WebSphere JNDI
implementation

First, let us consider the caching singleton helper class. With the introduction of a
local JNDI namespace, just as multiple components may use different local JNDI
names to refer to the same resource, two components may also use the same
local JNDI name to refer to different resources. Under these circumstances use
of a caching singleton to perform the JNDI lookups will result in a race condition,
whereby only the first component to perform the lookup will obtain the correct
resource. This situation will clearly result in application failures. We strongly
caution you against making such an error.

Important: Existing code caching objects looked up in the global JNDI
namespace will continue to work correctly without modification. This
discussion recommends a migration away from this approach; however, it is
not necessary to do so to migrate code from earlier versions of WebSphere
Application Server.
 Chapter 13. Guidelines for coding WebSphere applications 329

The second consideration is the WebSphere implementation of JNDI. Internal
JNDI caching by the WebSphere container code has been in the product since
fixpack 2 of WAS Version 3.5. With the introduction of Version 4.0, we can
reasonably consider this implementation to be both mature and robust.

This is welcome, because maintaining a cache in application code is both
burdensome and redundant. It forces the application developer to consider
infrastructure issues specific to the particular container implementation, and
duplicates effort already implemented. We no longer believe or recommend that
maintaining your own caching code is either necessary or appropriate in WAS
Version 4.0.

Message logging
In this section we outline the reasons for establishing a coherent strategy for
managing messages logged by an application. We use the PiggyBank
application code to demonstrate how flexible logging capabilities can be
incorporated into an application, leveraging two existing logging systems; the
WebSphere application server trace facility, and Log4J, an open source logging
mechanism from the Apache Jakarta project.

Why do we need a logging framework?
Virtually all useful applications have a requirement to output messages of one
sort or another. In a simple desktop application it may be sufficient to simply
display messages to the end-user in a dialog box, or write them to a local disk
file. The environments in which WebSphere applications run are usually much
more demanding, however.

Messages may be logged for different reasons—during the initial stages of
development, for example, a developer may need to output the values of some
variables to assist in debugging, whereas in a production environment an
administrator needs to be notified only when important events occur. If the
production system is down, however, the values that the developer needed
during debugging may be crucial to the administrator solving the problem and
getting the application running again.

The simplest method of logging from a Java application is simply to write
messages to standard out, or to a file. Indeed, if no logging strategy is in place,
this is what often happens. The problem with this scheme however, is that each
developer in the team usually chooses a different message destination, a
different output format, and a different mechanism for controlling what messages
are displayed.
330 WebSphere Version 4 Application Development Handbook

Consider also that WebSphere applications often span many machines, using
load balancing and remote components. This means a single user interaction
could cause code to be executed in multiple processes running on multiple
machines. Performance is another critical point to bear in mind—writing to
standard output or to disk is a relatively expensive operation—so we should
avoid it if the message is unlikely to be read.

In our experience, the limitations of not having a strategy are usually not exposed
until an application is being handed over from development to the team that will
administer it in production, which far too late to effect major changes. In the early
stages of the hand over, administrators investigating problems find themselves
searching through different files and trying to understand whether a message
they find is relevant or not to the problem they are trying to solve. Eventually they
call for assistance from a developer, who then decides to insert some more
messages in order to narrow down the problem. When the new build with the
extra messages arrives, the cycle starts again.

In this section we describe how a small amount of effort invested in a logging
framework at the beginning of a project can reap dividends later on in the
development cycle. A consistent approach to logging will result in an application
that is easier to debug, easier to test, and easier to manage in production.

What do we need from a logging framework?
The key requirements of a logging framework are outlined below. Both of the
logging facilities we demonstrate later on in this section meet these
requirements.

Ease of use A logging framework has to be easy to use. If it is not, developers
simply will not use it. If the code does not output any messages,
it is not much use to anybody. Consider writing simple tools to
assist with inserting basic logging statements into code.

Performance Performance is one of the main justifications for not including
detailed logging information in application code. Under normal
conditions the logging code must have a minimal impact on the
performance of the application. In error conditions this
requirement need not be so strict, because in these
circumstances providing the information needed to fix the
problem is the key consideration.

Types It must be possible to assign types to messages to distinguish
between different message types and severities. It must also be
possible to filter messages based on type.

Originator Each message must be labelled so that the component that logs
the message can be identified. Ideally the originating class
 Chapter 13. Guidelines for coding WebSphere applications 331

should be specified. In a WebSphere application many clients
may be serviced concurrently by separate threads in the same
process, so thread information is also crucial, and context
information that identifies messages relating to a single client
desirable. In a distributed environment it is also necessary to
include the originating host name and process ID. It must be
possible to filter messages based upon their origin.

Flexibility In addition to being able to filter messages by category and
originator, it must also be possible to specify different
destinations for messages based upon these criteria. For
example, warning and error messages must also be fed into a
systems management application such as Tivoli. For
troubleshooting purposes it is also desirable that logging filters
and destinations be altered dynamically at run time, since it may
not always be possible to restart a WebSphere application for
problem diagnosis.

Consistency All messages logged should have a consistent format to aid
analysis—this is especially helpful for tools. Messages must be
written to consistent destinations, based upon the originator and
category of each message as described above. This removes
the need to manually correlate information from multiple sources.
In a distributed WebSphere application you should be able to
automatically collate messages from all systems in a single
location, such as a database or systems management
application, or a common native operating system log.

Timestamps All messages must include a timestamp. Analyzing failures is
much easier if you can tell whether two adjacent events
happened together or some time apart. Ideally the absolute time
should be supplied, especially where events from multiple
sources are collated. In cases where performance is at a
premium the cost of generating a time stamp may be reduced by
using a relative timestamp.

Reliability The logging mechanism should be reliable and be able to
continue logging messages in adverse circumstances. In
particular, it should not have an absolute dependency on a single
point of failure, or the correct functioning of a particular
infrastructure component. If you are logging messages only to a
database, for example, and the database suffers a failure, you
will not be able to store or analyze any log entries until the
database can be returned to service. In a production
environment your systems management software may rely on
the timely delivery of messages in order to flag error conditions
for operator intervention.
332 WebSphere Version 4 Application Development Handbook

PiggyBank log wrapper
In this redbook, we describe the use of two separate logging frameworks with our
example PiggyBank application. In order to achieve this easily we created a
simple wrapper class that hides the specific logging implementation from the
application. Wrapping the logging framework in a helper class of our own
provides us with a number of advantages:

� We can easily switch from one logging framework to another by rewriting the
wrapper class.

� The application code is isolated from changes in a particular logging
framework’s API that may otherwise prevent us from moving to a newer
version of the API.

� We have the potential to take advantage of new framework features without
necessarily having to re-engineer our code.

� We can simplify the work for developers and improve consistency and better
enforce logging policy in our application by limiting the logging API available
to them.

There is some disadvantage in using the wrapper, although on balance it does
suit our purpose well. You may find you have a different set of priorities in your
own project. The issues we considered are listed below:

� The wrapper involves a small performance penalty—we designed the
wrapper in such a way as to minimize this cost.

� The full facilities of our chosen framework are not available to us—this is
countered by the ability to enhance our own API and switch frameworks if
absolutely necessary.

The complete code for both implementations of our log wrapper class can be
found in “Using the Web material” on page 558.

Designing the log wrapper
The PiggyBank log wrapper is designed with simplicity in mind. We decided to
create a single helper class to manage logging. Each application class registers
with the logging system by creating an instance of the helper class, and saving it
in a static member. We decided to implement four message types:

debug Debug messages are inserted in code by developers to assist in
problem determination during the code and unit testing cycle.
These messages may also be used for problem determination in
the later stages of the project.

information Information messages are used to log events that may have
some importance under certain circumstances, but are not
necessarily critical to the everyday functioning of the application.
 Chapter 13. Guidelines for coding WebSphere applications 333

An example is to signal the successful initialization of a
component such as a servlet.

warning Warning messages are used to flag conditions that, while
unexpected, do not prevent the application from functioning
correctly. The condition may be a result of a flaw in the
application business logic, for example the discovery of an
inconsistency in the database when processing a particular
record—the individual transaction may fail but the application as
a whole can continue.

error Error messages are used to signal more serious infrastructure
errors, for example if resources such as EJBs, data sources or
JMS queues cannot be located. The application may not be able
to recover from the situation and operator intervention is
required.

You may decide this set of types is too limited for your own project. Most logging
frameworks provide a larger number of types, and some allow you define your
own. Some frameworks also define specific types for particular event classes,
such as entry and exit from methods.

Whatever conclusions you come to, take care not to overburden developers by
forcing them to insert too many logging statements into the code. Make sure that
for any event the appropriate choice of message type is clearly documented and
understood by all developers. This is essential to having consistent logging
behavior in your application.

For each of our message types our wrapper class defines two methods—one
that accepts a single Object parameter, and another that takes two
parameters—an Object and an Exception.

� The Object parameter will be converted to a String when the message is
logged using its toString method. Object is used rather than String to allow
the expense of string conversion to be delayed until absolutely necessary.

� The Exception parameter, if supplied, causes the stack trace from an
exception to be included in the log output. This is a relatively expensive
operation, so our policy encourages it be used carefully.

Some messages may require significant overhead before they are submitted to
the log wrapper, for example, if a developer wants to log the contents of a
data-only object. The wrapper provides methods that allow developers to check
whether logging is enabled for the debug and information message types, the two
types that will generate the most input and are also likely to be disabled in a
production system.
334 WebSphere Version 4 Application Development Handbook

The empty log wrapper class is shown in Figure 13-3. This class implements the
API we expose to our application developers.

Figure 13-3 Empty wrapper class

package itso.was4ad.helpers;
public class LogHelper {

/**
 * Creates a new LogHelper instance for a component
 */
public LogHelper(Class component) {}
/**
 * Logs a debug message
 */
public void debug(Object o) {}
/**
 * Logs a debug message including stack trace from an exception
 */
public void debug(Object o, Exception e) {}
/**
 * Logs an error message
 */
public void error(Object o) {}
/**
 * Logs an error message including stack trace from an exception
 */
public void error(Object o, Exception e) {}
/**
 * Logs an informational message
 */
public void info(Object o) {}
/**
 * Logs an informational message including stack trace from an exception
 */
public void info(Object o, Exception e) {}
/**
 * Logs a warning message
 */
public void warn(Object o) {}
/**
 * Logs a warning message including stack trace from an exception
 */
public void warn(Object o, Exception e) {}
/**
 * Returns true if debug level logging is enabled for this component
 */
public boolean isDebugEnabled() {}
/**
 * Returns true if info level logging is enabled for this component
 */
public boolean isInfoEnabled() {}

}

 Chapter 13. Guidelines for coding WebSphere applications 335

Writing code to use the log wrapper
For application logging to be truly effective every class in your application must
include logging code. This is true even for the most trivial components—the code
may not seem complex at first, but it may evolve over time, and you never know
when you might need to discover what other component is calling code that you
originally thought was unimportant.

It is much easier to add logging to code as it is originally developed—retrofitting
log messages to existing code is tedious at best. You will also find that the
messages you log are more useful if you add them as you are developing the
code, since your mind is focussed on the business problem in hand.

We recommend that you choose your logging API and policy before you develop
any other code—even if you just start with an empty or trivial implementation, it is
much easier if you log consistently from the start.

Initializing the log wrapper
Our log wrapper is implemented in the itso.was4ad.helpers.LogHelper class.
Every application class must register itself with the logging framework by
creating a static instance of the wrapper class. For convenience we add code to
the application class to import the wrapper:

import itso.was4ad.helpers.LogWrapper;

We then create the wrapper instance and save it in a static member. The
following example is taken from the AccountBean class that implements the
PiggyBank Account EJB:

private static final LogHelper LOG = new LogHelper(AccountBean.class);

LOG can be declared as final since it will not be altered once set.

Logging messages
Application code uses the static LOG object to log messages. Figure 13-4 shows
how the code for the transfer method of the PiggyBank AccountManager EJB
makes use of the low wrapper to log various messages.

The very first debug message in the method builds a message that reports the
message signature, complete with parameters. Because this involves string
concatenation, which is a relatively expensive operation, we check to see if
debug messages are enabled before building the message.

The other debug messages are simple strings that will be optimized to constants
by the compiler, so we can rely on the code within the logging framework to
check the logging level for us.
336 WebSphere Version 4 Application Development Handbook

Figure 13-4 Logging messages using the log wrapper

/**
 * Transfers money from one account to another
 * @param debitID int
 * @param creditID int
 * @param amount int
 */
public void transfer(int debitID, int creditID, int amount)

throws NonExistentAccount, InsufficientFunds {

if (LOG.isDebugEnabled()) {
LOG.debug("transfer(" + debitID + ", " + creditID + ", " + amount + ")");

}
 try {
 // Locate the accounts
 LOG.debug("Looking up home");
 AccountHome home =
 (AccountHome) HomeHelper.getHome(ACCOUNT_HOME, AccountHome.class);
 LOG.debug("Locating debit account");
 AccountKey key = new AccountKey(debitID);
 Account debitAccount = home.findByPrimaryKey(key);
 LOG.debug("Locating credit account");
 key = new AccountKey(creditID);
 Account creditAccount = home.findByPrimaryKey(key);

 // Transfer the funds - debit first in case we get an InsufficientFunds
// exception

 LOG.debug("Debiting debit account");
 debitAccount.debit(amount);
 LOG.debug("Crediting credit account");
 creditAccount.credit(amount);
 } catch (FinderException e) {

 LOG.warn("transfer() caught finder exception", e);
 throw new NonExistentAccount(
 NonExistentAccount.WARNING,
 "Cannot locate accounts");
 } catch (NamingException e) {

 LOG.error("transfer() caught naming exception", e);
 throw new EJBException(e);
 } catch (RemoteException e) {

 LOG.error("transfer() caught remote exception", e);
 throw new EJBException(e);
 }
}

 Chapter 13. Guidelines for coding WebSphere applications 337

Automation opportunities
Because every class in your application requires logging code that follows a
similar pattern, you may find it convenient to automate some of the tasks
involved. A simple starting point is to provide skeleton source files that already
include the code to initialize logging for the component—all the developer would
have to change would be the class name. A more sophisticated approach may
involve scanning code as part of your build process, checking for and inserting
logging code if necessary.

If you are using VisualAge for Java, you can quickly speed up the process of
inserting logging code by defining macros. VisualAge for Java macros allow you
define arbitrary text that can be inserted into source code using the code assist
feature that is activated by pressing Ctrl-Space.

To create a new macro in VisualAge select Window -> Options, then in the
Options window expand Coding and select Macros. Figure 13-5 shows the
VisualAge for Java Options window being used to edit a macro called init that
inserts code that initializes logging for a component.

Figure 13-5 Creating a macro in VisualAge for Java
338 WebSphere Version 4 Application Development Handbook

To create a macro click Add and enter a name for the new macro. This name
identifies the macro in the code completion dialog. In the Expansion panel enter
the code that will be inserted into the code when the macro is invoked. The
character sequence <|> can be used in the macro to indicate where the cursor
should be placed after the macro is inserted.

The code for our init macro is:

private static final itso.was4ad.helpers.LogHelper LOG =
new itso.was4ad.helpers.LogHelper(<|>.class);

To insert this macro into your code, type init then press Ctrl-Space to open the
code completion window (Figure 13-6).

Figure 13-6 Using code completion to insert a macro in VisualAge for Java

When you select the macro from the top of the list the macro code is inserted and
the cursor is moved to the appropriate location to enter the new class name
(Figure 13-7).

Figure 13-7 Code inserted by VisualAge for Java macro

In addition to the init macro, we also created macros for each of the message
types, and an ifdebug macro that inserts the code to log a debug message only if
debug messages are enabled. The code for the ifdebug macro looks like this:

if (LOG.isDebugEnabled()) {
LOG.debug("<|>");

}

 Chapter 13. Guidelines for coding WebSphere applications 339

Choosing a framework
There are a number of logging facilities available to WebSphere developers
today. At a minimum you should ensure that the framework you choose meets
the requirements described in “What do we need from a logging framework?” on
page 331.

In this publication we discuss two options in more detail:

� The JRas facility provided with WebSphere Application Server

� Log4J from the Apache Jakarta project

Other frameworks you may want to investigate include the Logging Toolkit for
Java (also known as JLog) from IBM, and Trace.Java, another open source
package.

The Logging Toolkit for Java is available from the IBM AlphaWorks web site:

http://alphaworks.ibm.com/

Trace.Java is available from the Visible Workings Web site:

http://visibleworkings.com/trace/

You should also be aware that there are plans to introduce logging functionality
into the core Java 2 API. The proposed API is described in Java Specification
Request (JSR) 47. At the time of writing this specification has completed the
public review stage and looks likely to be included in Version 1.4 of the Java 2
SDK. The API will be implemented in the java.util.logging package. For up to
date information on the status of this specification request check the Java
Community Process Web site at:

http://jcp.org/

Writing your own framework
You can of course choose to write your own framework, one that implements all
the features that you need for your application.

We advise against this however; it is unlikely you’ll come up with a revolutionary
system. You will simply end up spending more time implementing and
maintaining your logging code—time that would be better spent working on your
business logic.

If you really do find that none of the frameworks meets your requirements as-is, it
will probably be easier to implement your needs as an extension to an existing
framework such as Log4J. If you feel inclined to do so you can then submit your
extension to the community and have other developers help maintain it with you.
340 WebSphere Version 4 Application Development Handbook

http://alphaworks.ibm.com/
http://visibleworkings.com/trace/
http://jcp.org/

Using the WebSphere JRas facility
Version 4.0 of WebSphere Application Server introduces support for the IBM
JRas toolkit, a message logging and trace facility that is designed for use by
application developers. JRas is a standalone IBM product that has been
customized for use with WebSphere Application Server. The WebSphere JRas
implementation is integrated with the internal logging system used by the
application server code and has been present in the product for some time.

The JRas facility is powerful and flexible, and uses a ring buffer that can be
dumped on command to store the most recently recorded events. The level of
tracing and the components to be traced can be specified either when a process
starts, or dynamically using the command line or GUI tools shipped with
WebSphere. JRas also provides internationalization support for logged
messages—the static text for messages are stored in text files that can be
translated into different languages and the correct language version chosen at
runtime.

For complete information on the WebSphere JRas implementation check the
WebSphere documentation in the InfoCenter, available for download or browsing
from:

http://www.software.ibm.com/webservers/appserv/library.html

To locate the JRas documentation navigate to the section “Using the JRas
Message Logging and Trace Facility” in the master table of contents. The
InfoCenter also includes JRas documentation in PDF format, and API
documentation generated by the javadoc tool.

The decisive advantage that would lead you to use WebSphere trace to log
application events is that messages from the application are fully integrated with
messages from the application server. You use the same tools to control trace
information from both sources, and the messages are collated in the same place.

Severe messages from the application are reported to the WebSphere
administrator’s console, and both WebSphere and your application can be
integrated into your systems management infrastructure at the same time,
simplifying the task and potentially halving the amount of work that needs to be
done in that area.

This integration can also assist with debugging, particularly if you are concerned
about how your application interacts with the application server, because
messages from your application and WebSphere are interleaved in the same
location, in the correct sequence and using the same message format.
 Chapter 13. Guidelines for coding WebSphere applications 341

http://www.software.ibm.com/webservers/appserv/library.html

Implementing the log wrapper using the JRas facility
The classes we need to implement our log wrapper using the WebSphere JRas
facility are located in the com.ibm.ras and com.ibm.websphere.ras packages.

The first package contains the classes and interfaces that our logging code will
use to log messages. The second package contains the singleton class
com.ibm.websphere.ras.Manager. We use this class to create instances of the
WebSphere-specific JRas implementation classes.

JRas message categories
JRas separates logged messages into two distinct categories:

Messages Messages report significant events and are intended for the
end-user of the application in day-to-day operations—they are
enabled by default and support internationalization.

Trace Trace reports low-level information to assist developers in the
debugging of the application code—trace is not enabled by
default, and does not support internationalization.

JRas provides a logging class for each of these two categories. Our debug
messages fall into the JRas trace category, and our other message types into the
message category, so our log wrapper has to manage an instance of the JRas
trace logger for each of our components as well as an instance of the message
logger class.

JRas supports a large range of different trace message types defined in the
RASITraceEvent interface, whereas our simple log wrapper has only one. We
map all our debug messages to the JRas message type TYPE_MISC_DATA.

The JRas message logger on the other hand defines three types of messages in
the RASIMessageEvent interface—TYPE_INFO, TYPE_WARN and TYPE_ERR. These
types can be mapped directly to the info, warning and error types provided by our
log wrapper.

Writing the wrapper class
Figure 13-8 shows the outline of our log wrapper. We import the package that
contains the JRas API, and declare instance variables to store the JRas objects
that allow us to log messages and trace—the wrapper will manage these on
behalf of the application components. We also store the class name and the
package in instance variables, because these are required by the JRas API calls.
342 WebSphere Version 4 Application Development Handbook

Figure 13-8 Outline of the log wrapper class for WebSphere

The class defines two static variables; the first is a flag to indicate whether the
logging system has been initialized, the second is a reference to the WebSphere
singleton Manager class that we use to create JRas message and trace loggers.
Finally, we declare some string constants that are used when we register
components with JRas.

Log wrapper constructor
Each component in the application creates a new instance of the wrapper class
to manage logging for that component. The class of the component is passed as
a parameter to the log wrapper constructor.

First of all we make sure that we have initialized the log wrapper correctly. We
then use the WebSphere JRas manager singleton to create a message and a
trace logger for our component. We use constants to define the organization and
product names for the loggers, and set the loggers’ component name, specified
in the third parameter, to the package name of the class. The complete code for
the constructor is shown in Figure 13-9.

package itso.was4ad.helpers;

import com.ibm.ras.*;

/**
 * This class provides a log and trace facility to the PiggyBank
 * application. It is implemented as a wrapper around the
 * WebSphere JRas facility, to enable the underlying logging
 * framework to be changed without rewriting application code.
 */
public class LogHelper {

// Instance variables
private RASMessageLogger ml = null;
private RASTraceLogger tl = null;
private String className = null;
private String packageName = null;

// Statics
private static boolean initialized = false;
private static com.ibm.websphere.ras.Manager manager = null;

// Constants
private static final String ORGANIZATION = "PiggyBank Corporation";
private static final String PRODUCT = "PiggyBank Application";
private static final String DEFAULT_PACKAGE = "Default package";

}

 Chapter 13. Guidelines for coding WebSphere applications 343

Figure 13-9 Log wrapper constructor using WebSphere JRas

Initializing JRas
Our log wrapper code performs initialization steps in the init method
(Figure 13-10).

Figure 13-10 Initializing the log wrapper using WebSphere JRas

The JRas version of the wrapper simply obtains and saves a reference to the
WebSphere JRas Manager class.

/**
* Creates a new LogHelper instance for a component
*/

public LogHelper(Class component) {
super();

// Initialize JRas if necessary
if (!initialized) {

init();
}

// Set up the loggers for this component
className = component.getName();
int index = className.lastIndexOf(".");
if (index > 0) {

packageName = className.substring(0, index);
} else {

packageName = DEFAULT_PACKAGE;
}
ml =manager.createRASMessageLogger(ORGANIZATION, PRODUCT, packageName, className);
tl =manager.createRASTraceLogger(ORGANIZATION, PRODUCT, packageName, className);

}

/**
* Initialize the JRas logging system
*/

private static synchronized void init() {
// Safeguard against race condition
if (!initialized) {

// Get a reference to the manager singleton
manager = com.ibm.websphere.ras.Manager.getManager();

// We have now initialized the logging system successfully
initialized = true;

}
}

344 WebSphere Version 4 Application Development Handbook

Logging simple messages
We use two mechanisms to log messages without exceptions. Debug messages
are logged using the trace method of the RASTraceLogger object managed by the
log wrapper (Figure 13-11).

Figure 13-11 Logging a simple debug message using WebSphere JRas

The trace method we use takes four parameters:

� The trace event type

� The name of the class logging the trace message

� The name of the method logging the trace message

� The trace message to be logged

There is an alternative method that allows the object logging the message to be
specified rather than the class name—this would be useful during debugging in
order to identify on which instance of a class a method is being invoked. Due to
the architecture of our log wrapper we do not have this information available,
however—if we had designed our log wrapper with JRas in mind, we may have
chosen to include this information as a parameter.

The calling method name is determined by invoking the getCallingMethod
method, shown in Figure 13-12.

This method parses the stack trace generated by creating a new instance of the
Throwable class in order to determine the calling method’s name. This is rather
clumsy and inefficient, so we wrap the entire trace call in an if statement that
determines whether debug messages are enabled.

/**
* Logs a debug message
* @param o java.lang.Object The message to be written to the log
*/

public void debug(Object o) {
if (isDebugEnabled()) {

tl.trace(RASITraceEvent.TYPE_MISC_DATA, className, getCallingMethod(),
o.toString());

}
}

 Chapter 13. Guidelines for coding WebSphere applications 345

Figure 13-12 Determining the name of the method logging the message

The code for the other three simple logging methods is basically the same. Each
method invokes a textMessage method on the JRas RASMessageLogger managed
by the log wrapper, specifying the message type according to the mappings we
described earlier.

The textMessage methods allows us to specify the text of the message to be
logged—because our log wrapper is not designed to support internationalization,
we cannot use the other methods that take message IDs and obtain the
message text from message catalogs. If we want to take advantage of the
internationalization support we will have to redesign our log wrapper.

The code for the info method is shown in Figure 13-13; the warn and error
methods follow the same pattern, except that they do not check to see if the
message type is enabled.

Figure 13-13 Logging a simple information message using WebSphere JRas

/**
* Returns the name of the method invoking the logger.
* This method is very expensive, so try not to call it
* unless absolutely necessary.
*/

private String getCallingMethod() {
java.io.StringWriter sw = new java.io.StringWriter();
java.io.PrintWriter pw = new java.io.PrintWriter(sw);
new Throwable().printStackTrace(pw);
String st = sw.toString();
int start = st.indexOf(className) + className.length() + 1;
int end = st.indexOf(")", start) + 1;
return st.substring(start, end);

}

/**
* Logs an informational message
* @param o java.lang.Object The message to be written to the log
*/

public void info(Object o) {
if (isInfoEnabled()) {

ml.textMessage(RASIMessageEvent.TYPE_INFO, className, getCallingMethod(),
o.toString());

}
}

346 WebSphere Version 4 Application Development Handbook

Logging messages with exceptions
The JRas API provides methods for logging exceptions, but not for logging a
message and an exception in a single method call. We work around this by
logging two messages—the first logs the message text and the second the
exception. Figure 13-14 shows the code for the info method—the other three
methods follow the same pattern, except that the debug method uses the
RASTraceLogger instead of the RASMessageLogger to log the message, and warn
and error do not check to see if the message type is enabled.

Figure 13-14 Logging a message with an exception using WebSphere trace

Checking if debug and information messages are enabled
The last two messages in our JRas log wrapper allow code to check whether
certain messages are enabled. Both the trace and message logger classes
provide an isLoggable method that allows us to determine whether the message
type is enabled. The code for the two methods can be seen in Figure 13-15.

Figure 13-15 Checking logging levels using WebSphere JRas

/**
* Logs an informational message including stack trace from an exception
* @param o java.lang.Object The message to be written to the log
* @param e java.lang.Exception The exception
*/

public void info(Object o, Exception e) {
if (isInfoEnabled()) {

ml.textMessage(RASIMessageEvent.TYPE_INFO, className, getCallingMethod(),
o.toString());

ml.exception(RASIMessageEvent.TYPE_INFO, className, getCallingMethod(), e);
}

}

/**
* Returns true if debug level logging is enabled for this component
* @return boolean
*/

public boolean isDebugEnabled() {
return tl.isLoggable(RASITraceEvent.TYPE_MISC_DATA);

}

/**
* Returns true if info level logging is enabled for this component
* @return boolean
*/

public boolean isInfoEnabled() {
return ml.isLoggable(RASIMessageEvent.TYPE_INFO);

}

 Chapter 13. Guidelines for coding WebSphere applications 347

Building and deploying the log wrapper
The WebSphere JRas code is located in the archive ras.jar, which you will find
in the lib directory under the directory where the application server is installed.

If you are developing code using VisualAge for Java you will find that the JRas
code is already present in your workspace if you add the EJB development
environment feature, so no further effort is required to build your code. If you are
building your code outside of VisualAge, using the Java SDK or another IDE, you
have to make sure that ras.jar is in the class path when you compile the log
wrapper code.

Because the trace facility is used by the WebSphere runtime the relevant classes
are already available during deployment and at runtime, so you do not have to
include the ras.jar file in any other class path.

Controlling application logging with the JRas facility
When we log application messages using the WebSphere JRas facility, we are
able to use the same WebSphere tools to control the logging of messages from
the application as we use to control logging of messages from WebSphere itself.

More complete information on how to control WebSphere trace is included in the
product documentation—we use a small number of examples to illustrate some
of the possibilities.

Logging using the administrator’s console
One of the most useful side-effects of using JRas to log application messages is
that informational, warning and error messages from code running in an
application server are automatically posted to the console window.

Figure 13-16 shows part of the console window displaying messages logged
using the info method of our class by a PiggyBank servlet on initialization.

Figure 13-16 Application messages in the administrator’s console window
348 WebSphere Version 4 Application Development Handbook

The WebSphere administrator’s console can also be used to dynamically modify
the message types that will be logged by an application deployed in a running
application server process.

To do this open the Trace dialog by selecting the appropriate application server in
the console’s tree view and selecting Trace from the pop-up menu
(Figure 13-17).

Figure 13-17 Opening the trace dialog for a running application server

The Trace dialog lists the application components alongside the WebSphere
components. You can select an individual component or part or all of the
component hierarchy and modify the message types that will be logged
(Figure 13-18).
 Chapter 13. Guidelines for coding WebSphere applications 349

Figure 13-18 WebSphere trace dialog

Color coded boxes in the dialog indicate components for which message types
have been activated. Once you have chosen the components and the message
types you want them to log, click the OK button to enable the new settings.

The Trace dialog also allows you manage the application server’s ring buffer,
which maintains a circular log of the most recently recorded messages in
memory:

� To modify the size of the ring buffer enter the new size and click OK

� To dump the current contents of the ring buffer to a file, enter the file name
and click Dump

Figure 13-19 shows an extract from a dumped ring buffer that shows debug
messages logged by the PiggyBank code when the transfer method of the
AccountManager EJB is invoked with an invalid account number.
350 WebSphere Version 4 Application Development Handbook

Figure 13-19 Application debug messages from the WebSphere ring buffer

The warning and audit messages from this trace are also logged to the
administrator’s console window (Figure 13-20).

Figure 13-20 Application warning messages in the administrator’s console window

[01.07.10] 59ee96f AccountManage D itso.was4ad.ejb.account.AccountManagerBean
setSessionContext(AccountManagerBean.java:225) ORB.thread.pool:2 setSessionContext()
[01.07.10] 59ee96f AccountManage D itso.was4ad.ejb.account.AccountManagerBean
ejbCreate(AccountManagerBean.java:159) ORB.thread.pool:2 ejbCreate()
[01.07.10] 59ee96f AccountManage D itso.was4ad.ejb.account.AccountManagerBean
transfer(AccountManagerBean.java:236) ORB.thread.pool:2 transfer(123, 456, 1000)
[01.07.10] 59ee96f AccountManage D itso.was4ad.ejb.account.AccountManagerBean
transfer(AccountManagerBean.java:240) ORB.thread.pool:2 Looking up home
[01.07.10] 59ee96f HomeHelper D itso.was4ad.helpers.HomeHelper
getHome(HomeHelper.java:24) ORB.thread.pool:2 Getting EJB home:
java:comp/env/ejb/Account
[01.07.10] 59ee96f HomeHelper D itso.was4ad.helpers.HomeHelper
getHome(HomeHelper.java:28) ORB.thread.pool:2 Getting InitialContext
[01.07.10] 59ee96f HomeHelper D itso.was4ad.helpers.HomeHelper
getHome(HomeHelper.java:30) ORB.thread.pool:2 Looking up home
[01.07.10] 59ee96f AccountManage D itso.was4ad.ejb.account.AccountManagerBean
transfer(AccountManagerBean.java:244) ORB.thread.pool:2 Locating debit account
[01.07.10] 59ee96f AccountBean D itso.was4ad.ejb.account.AccountBean
setEntityContext(AccountBean.java:164) ORB.thread.pool:2 setEntityContext()
[01.07.10] 59ee96f AccountBean D itso.was4ad.ejb.account.AccountBean
ejbActivate(AccountBean.java:63) ORB.thread.pool:2 ejbActivate()
[01.07.10] 59ee96f AccountBean D itso.was4ad.ejb.account.AccountBean
unsetEntityContext(AccountBean.java:172) ORB.thread.pool:2 unsetEntityContext()
[01.07.10] 59ee96f AccountManage W itso.was4ad.ejb.account.AccountManagerBean
transfer(AccountManagerBean.java:257) ORB.thread.pool:2 transfer() caught finder exc.
[01.07.10] 59ee96f AccountManage W itso.was4ad.ejb.account.AccountManagerBean
transfer(AccountManagerBean.java:257) ORB.thread.pool:2 The following exception was
logged javax.ejb.ObjectNotFoundException: itso.was4ad.ejb.account.AccountKey@7b
 Chapter 13. Guidelines for coding WebSphere applications 351

The administrators console can also be used to specify the initial WebSphere
trace settings when an application server is started.

To do this open the Trace Service dialog (Figure 13-21). Select the application
server in the console’s tree view, then select Properties from the pop-up menu. In
the application server Properties dialog select the Services tab, then select the
Trace Service, and click the Edit Properties button.

Figure 13-21 WebSphere Trace Service dialog

Figure 13-21 shows the Trace Service dialog being used to edit the initial trace
settings for the PiggyBank application server—debug messages from the entire
application are to be sent to the file D:\temp\debug.txt. The format of the trace
specification is described in full in the WebSphere documentation. To confirm the
changes click the OK button.

Logging using the command line
The single server edition of Websphere Application Server does not feature the
administrator’s console supplied with the full edition of the software. With this
edition the browser-based administration GUI offers similar functionality. As an
alternative you may choose to use command line tools which work with all
editions of the software.

Use the WebSphere DrAdmin command to administer WebSphere trace from the
command line. This command communicates directly with a thread that runs in
each WebSphere process that is dedicated to servicing the trace facility. The
various command options are shown in Figure 13-22.
352 WebSphere Version 4 Application Development Handbook

Figure 13-22 DrAdmin command line options

The DrAdmin command has to know the number of the TCP/IP port that the
server thread is listening on. This port number is written to the standard output of
each WebSphere application server process soon after it starts. An example of
this message is shown below:

[01.06.05 14:05:26:925 PDT] 3609a403 DrAdminServer I WSVR0053I: DrAdmin
available on port 1225

Usage:
 java com.ibm.ejs.sm.util.debug.DrAdmin [options]

Options:
 -help [Show this help message]
 -serverHost <Server host name>
 -server <Server name>
 -defaultConfiguration [Use default configuration file]
 -configurationFile <configuration file>
 -serverPort <Server port number>
 -testConnection [Test Connection]
 -testVersions [Test Connection and Versions]
 -retrieveTrace [Retrieve the trace specification]
 -retrieveComponents [Retrieve the trace components]
 -setTrace <Trace specification>
 -setRingBufferSize <Number of ring buffer entries, in K>
 -dumpRingBuffer <Dump file> [default]
 -dumpState <Dump string>
 -dumpThreads
 -dumpConfig (all | server)
 -stopServer
 -stopNode

Either a server configuration file, or a server port number must
be specified.

Either the '-defaultConfiguration' option or the '-configurationFile' may
be provided. The default configuration is 'server-cfg.xml'.

The '-testConnection' option may be used to test the connection
to the trace server; use -testVersions to test the connection
and to test program versions.

The '-dumpRingBuffer' option is executed if no other
options are specified. In this case the dump file name is taken as
'JmonDump.' plus the current time in milliseconds.
 Chapter 13. Guidelines for coding WebSphere applications 353

The port number used by the single server edition of WebSphere is defined in the
application server’s configuration file. The initial value specified in the default
configuration file, server-cfg.xml, is 7000.

You may either specify the port number to DrAdmin using the -serverPort option,
or, if you are using the single server edition of WebSphere, you can specify the
configuration file which defines the port number for the application server
process to use. The -defaultConfiguration flag tells the command to use the
default configuration file.

If, for example, we want to enable all messages for our PiggyBank application in
the server which logged the port number in the previous example, we issue the
following command:

DrAdmin -serverPort 1225 -setTrace itso.*=all=enabled

If we are diagnosing a problem on a production system, we have to dump the log
information into a file, then disable the trace again to reduce the performance
impact of leaving debug messages enabled. We issue the following two
commands:

DrAdmin -serverPort 1225 -setTrace itso.*=all=disabled
DrAdmin -serverPort 1225 -dumpRingBuffer ring.txt

The ring buffer is dumped into the ring.txt file in the working directory of the
application server process.

Using Log4J
Log4J ia a subproject of the Apache Jakarta project, the same organization
responsible for the Ant tool described in “Using Ant to build a WebSphere
application” on page 197. Like Ant, Log4J is an open source tool that is
maintained by a community of developers from many separate organizations.

In this section we describe only a very small subset of the features available in
Log4J. For more information you should consult the Log4J Web site:

http://jakarta.apache.org/log4j/

The Log4J framework has been designed with performance and flexibility in
mind. It comes with many standard extensions, and is easily extensible through
the use of user written extensions which can be plugged in to the base
framework.
354 WebSphere Version 4 Application Development Handbook

http://jakarta.apache.org/log4j/

Log4J also features a number of interesting and useful innovations, such as
nested diagnostic contexts which allow context information to be associated with
a thread and included in all messages logged by that thread. This is particularly
useful in an application server where information such as a user name or client
IP address can be used to easily identify events relating to a particular user.

Installing Log4J
We downloaded Version 1.1.1 of the Log4J distribution from the Log4J Web site.
The download page is located at:

http://jakarta.apache.org/log4j/docs/download.html

We extracted the contents of the archive file onto our D: drive, creating a new
directory, D:\jakarta-log4j-1.1.1.

Implementing the log wrapper using Log4J
The core Log4J API is implemented in the org.apache.log4j package. There are
two classes in this package that we will use to implement our wrapper class using
Log4J.

� The Category class is used to manage and perform logging for a particular
component

� The PropertyConfigurator class is used to configure Log4J using a property
file

Log4J message types
Log4J provides five message types, known as priorities in Log4J. These types
are arranged in a hierarchy—enabling the logging of WARN messages for a
component will also enable messages of the ERROR and FATAL priorities. Log4J
also allows new priorities to be defined by extending the Log4J Priority class.

Because our simplified log wrapper supports only four message types, we map
PiggyBank debug, warning, information and error messages to Log4J DEBUG,
INFO, WARNING and ERROR messages, and disregard the Log4J FATAL priority.

Writing the wrapper class
Figure 13-23 shows the outline of our log wrapper. We import the package that
contains the Log4J tracing API, and declare an instance variable to store the
Log4J Category object that the wrapper will manage on behalf of the application
components. We also declare a static boolean variable that we use to flag
whether the Log4J framework has been initialized for the current process.
 Chapter 13. Guidelines for coding WebSphere applications 355

http://jakarta.apache.org/log4j/docs/download.html

Figure 13-23 Outline of the log wrapper class for Log4J

Log wrapper constructor
Each component in the application creates a new instance of the wrapper class
to manage logging for that component. The class of the component is passed as
a parameter to the log wrapper constructor.

The constructor first checks to see if Log4J has been initialized, and initializes it if
necessary. The code then creates a new Log4J Category object that manages
logging for the component. The code for the constructor is shown in
Figure 13-24.

Figure 13-24 The log wrapper constructor for Log4J

import org.apache.log4j.*;
/**
 * This class provides a log and trace facility to the PiggyBank
 * application. It is implemented as a wrapper around the
 * Jakarta Log4J logging facility, to enable the underlying logging
 * framework to be changed without rewriting application code.
 */
public class LogHelper {

// Static variables
static private boolean initialized = false;

// Instance variables
private Category category = null;

}

/**
 * Creates a new LogHelper instance for a component
 */
public LogHelper(Class component) {

super();

// Initialize the logging system if required
if (!initialized) {

init();
}

// Register this component as a Log4J category
category = Category.getInstance(component);

}

356 WebSphere Version 4 Application Development Handbook

Initializing Log4J
The Log4J framework is initialized by the init method, which is called by the
constructor if Log4J is not already initialized. The code for this method is shown
in Figure 13-25.

Figure 13-25 Initializing Log4J

First we check to see if another wrapper class already initialized Log4J while we
were waiting to enter the synchronized init method. If not, we use the Log4J
PropertyConfigurator class to configure Log4J based on information in the file
log4j.properties.

The configureAndWatch method searches for the file on the class path. It then
checks every 60 seconds to see if the file has been modified, and reload the
configuration if necessary. This rather crude mechanism allows the logging
configuration to be altered dynamically in a running server.

Logging simple messages
The code for the four simple logging methods is basically the same. Each
method invokes the appropriate method on the Log4J Category object managed
by the wrapper, according to the mappings we described previously. The code for
the info method is shown in Figure 13-26; the other three methods follow the
same pattern.

/**
 * Initialize the underlying logging system that this class wraps
 */
private static synchronized void init() {
 // Safeguard against possible race condition
 if (!initialized) {
 // Use a Log4J PropertyConfigurator to load logging information from
 // a properties file. configureAndWatch() will start a thread to
 // check the properties file every 60 seconds to see if it has changed
 // and reload the configuration if necessary.
 PropertyConfigurator.configureAndWatch("log4j.properties", 60000);

 // We have now initialized the logging system successfully
 initialized = true;
 }
}

Note: The PropertyConfigurator class is not the only way to manage the
runtime configuration of Log4J. More sophisticated methods are described in
the Log4J documentation.
 Chapter 13. Guidelines for coding WebSphere applications 357

Figure 13-26 Logging a simple message using Log4J

The message object passed to the wrapper method is passed directly to the
wrapped Log4J component. The Log4J framework only invokes toString on the
message if logging is enabled for the message type.

Logging messages with exceptions
The Log4J API includes the facility to log an exception with a message, so the
four methods to log exceptions are also virtually identical. Figure 13-27 shows
the code for the info method.

Figure 13-27 Logging a message with an exception using Log4J

Checking if debug and information messages are enabled
The last two messages in our Log4J log wrapper allow code to check whether
certain message types are enabled.

The Log4J Category object that we store in our wrapper class provides methods
that provide this functionality and these methods simply delegate the request to
the wrapped object. The code for the two methods is shown in Figure 13-28.

/**
 * Logs an informational message
 * @param o java.lang.Object The message to be written to the log
 */
public void info(Object o) {
 category.info(o);
}

/**
 * Logs an informational message including stack trace from an exception
 * @param o java.lang.Object The message to be written to the log
 * @param e java.lang.Exception The exception
 */
public void info(Object o, Exception e) {
 category.info(o, e);
}

358 WebSphere Version 4 Application Development Handbook

Figure 13-28 Checking logging levels using Log4J

Building and deploying the log wrapper
The complete Log4J API is available in the archive log4j.jar, which you will find
in the dist\lib directory under the directory where Log4J is installed. The core
API is also provided in a smaller file, log4j-core.jar.

If you are developing code using VisualAge for Java you have to import at least
the core API into your workspace in order to compile the wrapper class. You may
find it convenient to import the Log4J source from the Log4J src\java directory
into your workspace—this will enable you to step through the Log4J code in the
VisualAge for Java debugger.

If you are building your code outside of VisualAge for Java , using the Java SDK
or another IDE, you have to make sure that the log4J.jar file is in the class path
when you compile the log wrapper code.

For deployment and runtime, we found it easiest to package the Log4J archive in
the J2EE enterprise archive (EAR) file along with our application components.
We then included log4j.jar in the class path entry of the manifest of the JAR file
containing the log wrapper class.

/**
 * Returns true if debug level logging is enabled for this component
 * @return boolean
 */
public boolean isDebugEnabled() {

return category.isDebugEnabled();
}

/**
 * Returns true if info level logging is enabled for this component
 * @return boolean
 */
public boolean isInfoEnabled() {

return category.isInfoEnabled();
}

Note: Although there can be only one instance of a Log4J Category class for a
given component, multiple class loaders in the same process may load
separate instances of the class. Because WebSphere can use different class
loaders to load different components, there are circumstances where the
logging of a component may behave unexpectedly. For more information on
the WebSphere class loaders consult the WebSphere documentation in the
InfoCenter.
 Chapter 13. Guidelines for coding WebSphere applications 359

Controlling application logging with Log4J
One of the strongest features of the Log4J framework is the degree to which it
can be configured and extended. This discussion only touches briefly on some of
the capabilities of the framework. If you are considering using Log4J in your own
project, we encourage you to investigate the online Log4J documentation to gain
a fuller picture. The documentation is available on the Web at:

http://jakarta.apache.org/log4j/docs/documentation.html

Our simple log wrapper uses a Log4J PropertyConfigurator to configure the
logging framework using information supplied in a property file. The file uses the
name=value format understood by the standard java.util.Properties class.

The contents of a sample configuration file is shown in Figure 13-29. We named
the file log4j.properties and placed it in the properties directory of the
WebSphere product directory, which is included in the class path of all
WebSphere processes.

Figure 13-29 Sample Log4J property configuration file

Log4J organizes components (categories in Log4J terminology) into a hierarchy,
with each level separated by a . character, which in our case structures the
hierarchy according to the Java package structure of the PiggyBank application.
At the base of the hierarchy is the Log4J root category.

#
Set root category priority to WARN and its only appender to FILE.
#
log4j.rootCategory=WARN,FILE

#
Set the redbook EJB code priority to DEBUG
#
log4j.category.itso.was4ad.ejb=DEBUG

#
FILE is a FileAppender that appends to D:\temp\trace.log
#
log4j.appender.FILE=org.apache.log4j.FileAppender
log4j.appender.FILE.File=D:/temp/trace.log

#
FILE uses a PatternLayout
#
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.ConversionPattern=%d [%t] %-5p %c{1} - %m%n
360 WebSphere Version 4 Application Development Handbook

http://jakarta.apache.org/log4j/docs/documentation.html

Enabled message priorities and message destinations are inherited through the
hierarchy. The first line in the example in Figure 13-29 configures the root
category, and hence all components that descend from it, to enable log
messages of the Log4J WARN priority or higher. All messages in the hierarchy will
be sent to the destination named FILE, which is defined later on in the
configuration file.

The second configuration item enables DEBUG messages and higher—in other
words all messages—for components in the hierarchy under itso.was4ad.ejb.
This is all our EJB code. We could have chosen to specify one or more
destinations for these messages—these would have been in addition to the
destination inherited from the root category.

Message destinations are written to by Log4J Appenders. Appenders are
implemented as Java classes. There are a number of standard appenders
supplied with the Log4J framework, that can log to various destinations, such as
rolling log files, UNIX system logs and Windows event logs. You can also
implement your own appenders to meet your specific requirements. We are
using a basic FileAppender that writes messages to a text file.

The final part of the configuration file specifies the format of the output message
written to the file. It uses a standard Log4J layout—a PatternLayout—again you
can implement your own layouts. The PatternLayout formats the log message
by parsing a format string similar to that used by the printf function in C.

Our format string specifies that each log message includes the following items:

� A date and time stamp

� The ID of the thread that logs the message

� The message priority name

� The last part of the name of the component that logs the message

� The message itself

� A new-line character

An example of this message format can be seen in Figure 13-30, which shows
the log statements that are written to the log file when the transfer method of
the AccountManager EJB is invoked, passing in an invalid account ID.
 Chapter 13. Guidelines for coding WebSphere applications 361

Figure 13-30 Debug messages written using the Log4J log wrapper

Logging conclusions
In summary, we hope the discussions presented in this section have highlighted
the need to include message logging as a fundamental component of a
WebSphere application development project. We believe the benefits of
implementing such a component at the earliest stages of development easily
mitigate the effort involved, and ultimately lead to easier application deployment,
and improved manageability in production. In real terms, for developers, this
means fewer late nights and weekends getting systems live and fixing bugs in
production.

Coding for performance
Every application has performance requirements. What is surprising however, is
the number of projects that define no formal requirements in this area. In our
experience as WebSphere consultants, we have encountered a frightening
number of customer projects where the sole focus of the development team has
been on application functionality, with little or no regard to the non-functional
behavior of the application.

Although there many things you can do to tune an application once it is deployed
into WebSphere, experience tells us that the most dramatic performance
improvements—and performance problems—are driven by design and
implementation of an application. We recommend you consider performance and
scalability issues from the very beginning of your project, and set down
development standards that encourage good practice.

2001-06-05 18:36:09,971 [ORB.thread.pool:1] DEBUG AccountManagerBean -
setSessionContext()

2001-06-05 18:36:09,971 [ORB.thread.pool:1] DEBUG AccountManagerBean - ejbCreate()
2001-06-05 18:36:09,971 [ORB.thread.pool:1] DEBUG AccountManagerBean - transfer(432,

604, 1000)
2001-06-05 18:36:09,971 [ORB.thread.pool:1] DEBUG AccountManagerBean - Looking up

home
2001-06-05 18:36:09,982 [ORB.thread.pool:1] DEBUG AccountManagerBean - Locating debit

account
2001-06-05 18:36:10,022 [ORB.thread.pool:1] DEBUG AccountBean - setEntityContext()
2001-06-05 18:36:10,022 [ORB.thread.pool:1] DEBUG AccountBean - ejbActivate()
2001-06-05 18:36:10,472 [ORB.thread.pool:1] DEBUG AccountBean - unsetEntityContext()
2001-06-05 18:36:10,512 [ORB.thread.pool:1] WARN AccountManagerBean - transfer()

caught finder exception
javax.ejb.ObjectNotFoundException:
itso.was4ad.ejb.account.AccountKey@1b0
362 WebSphere Version 4 Application Development Handbook

In this section we outline some of the issues you should consider when building
your application. Much of the information presented here comes from a
WebSphere white paper, Development Best Practices for Performance and
Scalability, by Harvey Gunther:

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

General performance tips
The following performance tips are relevant to the development of any
WebSphere application component.

Database connection pooling
Obtaining JDBC connections is a relatively expensive operation. WebSphere
provides the facility to define and manage JDBC connections in pools that are
made available to applications at runtime. In addition to performing better your
application will also be easier to manage, because the connections can be
defined and managed using the WebSphere tools.

An application obtains a pooled JDBC connection from a javax.sql.DataSource
object obtained from a JNDI lookup, using code as shown in Figure 13-31.

Figure 13-31 Obtaining a JDBC connection from a connection pool

You have to declare the local JNDI reference to the JDBC resource
jdbc/MyDataSource in the deployment descriptor of the application that uses this
code. When the application is installed into WebSphere the reference is bound to
a DataSource defined in the global JNDI namespace using the WebSphere
administration tools.

import javax.naming.InitialContext;
import javax.sql.DataSource;
import java.sql.Connection;

...

// Lookup the DataSource and use it to obtain a Connection
InitialContext context = new InitialContext();
DataSource ds = context.lookup(“java:comp/env/jdbc/MyDataSource”);
Connection conn = ds.getConnection();

// Use the connection
...

// Release the connection back to the pool
conn.close();
 Chapter 13. Guidelines for coding WebSphere applications 363

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

You must also take care to ensure that every connection you obtain is returned to
the pool promptly. Applications that ‘leak’ connections will quickly use up all
available connections in the pool which will lead to significant problems in a
production environment. Try to release the connection in the same method in
which you obtain it—never hold on to a connection between user interactions. It
is also good practice to put the close in a finally clause to ensure that the
connection is always returned to the pool even if an exception is raised.

Using System.out
Invoking System.out.println can seriously degrade application throughput
because the write to the standard output stream is synchronous. In the
WebSphere environment standard error and output are redirected to disk files.
The println method will not return until the information has been written to the
file system. This can cause bottlenecks, because disk storage is relatively slow.

Instead of logging directly to standard out we recommend you develop another
strategy for managing the logging of messages. We discuss this topic in detail in
“Message logging” on page 330.

String concatenation
Manipulating String objects in Java is expensive, due to that fact that each string
is represented by an immutable Java object. When you use the + or += operators
to concatenate strings temporary String objects are created and discarded. If
you are going to perform string concatenation, a java.util.StringBuffer will
perform better. For example the code:

String[] names = request.getParameters("name");
String msg = "Names:";
for (int i = 0; i < names.length; i++) {

msg += " ";
msg += names[i];

}
return msg;

Could be better written as:

String[] names = request.getParameters("name");
StringBuffer msg = new StringBuffer("Names:");
for (int i = 0; i < names.length; i++) {

msg.append(" ");
msg.append(names[i]);

}
return msg.toString();
364 WebSphere Version 4 Application Development Handbook

JSP and servlet performance tips
The following performance tips are related to coding Web applications using
servlets and JSPs.

Storing objects in HTTP sessions
The Java servlet API provides the javax.servlet.http.HttpSession class for
use by applications wanting to store client-specific state information between
requests from a client browser. In a single-server configuration this information
may be stored in memory—in multi-server configurations WebSphere ensures
this state information is available to all servers by persisting it to a database.

Although the application server provides mechanisms for caching session
information and tuning the persistence mechanism, the best way to improve the
performance of HTTP sessions is to minimize the amount of information you
store in them. This leads us to the following guidelines for the use of HTTP
sessions:

� Do not store large objects or object graphs in an HTTP session—if absolutely
necessary store instead a reference to data persisted using JDBC or an entity
EJB

� Use the session only for information required over multiple requests—use
setAttribute on the HttpRequest object to pass results to JSPs

� Remove objects from sessions when they are no longer required

� Explicitly destroy sessions that are no longer required by calling
HttpSession.invalidate from a logoff servlet

Using HTTP sessions in JSPs
By default a JSP always obtains a reference to a client’s HttpSession object,
even if the JSP does not use it. If the client does not already have an active
session, the JSP will cause a new session to be created. This effect is
particularly noticeable if your application uses frames in the client browser which
use multiple JSPs. When you turn on session persistence WebSphere serializes
access to the HttpSession object, so each JSP in the frameset has to wait for the
page that currently has the session to complete before it can execute.

If a JSP does not use information stored in an HTTP session, prevent it from
obtaining a session reference using the following JSP page directive:

<%@ page session="false" %>
 Chapter 13. Guidelines for coding WebSphere applications 365

Servlet multi-threading
By default WebSphere creates just one instance of each servlet class, and
allows multiple threads to execute the servlet’s service method concurrently.
Because of this access to servlet instance variables must be controlled by Java
synchronization mechanisms, which can quickly become a bottleneck in an
application. Code your application to avoid such bottlenecks by keeping as many
variables in your servlets as possible on the stack, declaring them at the method
level. Although it may be tempting to use the SingleThreadModel feature of the
servlet API to allow you to disregard these issues, try not to as it prevents
WebSphere from pooling servlet resources in the most efficient manner.

EJB performance tips
The following tips relate to performance when coding with Enterprise Java
Beans.

Accessing EJBs from client code
When you design your EJBs try to design your remote interfaces so that clients
can perform all the processing required for a single user interaction by invoking a
single method. This improves performance in two ways:

� First of all the work requested by the client can be performed, where
appropriate, in a single EJB transaction. Managing transactions incurs a
significant amount of overhead, especially if the transaction involves a
two-phase commit between multiple participants. Reducing the number of
transactions that WebSphere has to manage reduces the number of times
this overhead is incurred. Entity EJBs also synchronize their persistent fields
from and to the database once per transaction. Encapsulating the request
into a single transaction may also be desirable, or even required, for your
business logic.

� Second, the number of remote method calls may be reduced. With
standalone clients, and potentially with servlets, the actual EJBs are deployed
into a separate process from the EJB client. Under these circumstances
communication between the EJB client and server code involves additional
network overhead. When multiple EJBs are deployed into the same server
process WebSphere is able to optimize out the network interaction.

You should also consider eliminating the getter and setter methods from entity
EJBs that are generated using VisualAge for Java. Although these methods are
convenient they can encourage the proliferation of RMI calls as clients of the EJB
use each method in turn. Replace getters and setters with business methods that
enforce correct behavior according to your business logic, rather than allow
366 WebSphere Version 4 Application Development Handbook

clients to modify data fields arbitrarily. If you find you do need to extract all of the
data from an entity EJB, for displaying to a user, for example, consider the use of
bulk getter methods. These are serializable data-only objects that can be
obtained from an entity by a single method call.

Entity EJB read-only methods
WebSphere allows you to specify that individual methods of an entity EJB are
read-only—that is to say they do not modify the bean’s persistent fields. If
read-only methods are the only methods invoked on an entity EJB instance
during the course of a transaction WebSphere is optimizes out the ejbStore
operation that stores the bean’s persistent fields back into the database.

Read-only methods are specified using the WebSphere Application Assembly
Tool (AAT). To specify a bean method as being read-only, load the module
containing the EJB into AAT and expand the tree view in the left hand pane to
reveal the Method Extensions item for the EJB (Figure 13-32).

Figure 13-32 EJB Method Extensions item in the assembly tool tree view

Next, in the right hand pane, select the method you want to change, and check
the Access intent box (Figure 13-33). Select Read from the drop-down box
labeled Intent Type and click Apply to confirm the change.
 Chapter 13. Guidelines for coding WebSphere applications 367

Figure 13-33 Declaring the getAccountData method as being read-only

Because the read-only optimization is a WebSphere extension to the EJB
specification, the information we enter is saved into the ibm-ejb-jar-ext.xmi
deployment descriptor file saved in the EJB JAR file. Figure 13-34 shows the
XML fragment that is inserted in this file as a result of setting the getAccountData
method to be read-only.

Figure 13-34 Read-only method information in the deployment descriptor

<accessIntents xmi:id="AccessIntent_2" intentType="READ">
<methodElements xmi:id="MethodElement_9" name="getAccountData" parms=""

type="Remote">
<enterpriseBean xsi:type="ejb:ContainerManagedEntity"

href="META-INF/ejb-jar.xml#Account"/>
</methodElements>

</accessIntents>
368 WebSphere Version 4 Application Development Handbook

Isolation levels
Isolation levels are used to specify the degree to which an EJB transaction
accessing a resource may be affected by other concurrent transactions
accessing the same resource. For entity EJBs mapped to a relational database
the isolation level determines the locking policy used when accessing a
database. Isolation levels are discussed in detail in the WebSphere InfoCenter
documentation.

The most strict isolation level is Serializable. An EJB that specifies this isolation
level is guaranteed to get consistent results from the database for the duration of
each transaction.

To achieve this behavior, every row that satisfies an SQL SELECT issued by the
EJB or the underlying persistence layer is locked for the duration of the
transaction. In development, where individual developers may have separate
databases or separate schemas in a single database, this may not cause any
problems. In a production system with multiple concurrent clients this strict
locking can cause significant bottlenecks.

The default isolation level assigned to EJBs by the WebSphere tools is
Repeatable read. While not as strict as Serializable, this isolation level can still
cause bottlenecks.

The isolation level Read committed is adequate for many applications. Although
a more strict isolation level may appear to be a safer choice, you must consider
the impact of such a change on the performance of the application in production.

Therefore, do not sacrifice application integrity for the sake of performance by
using an isolation level that does not provide the level of protection your business
logic requires.

Note: The mapping of WebSphere isolation levels to actual behavior in the
database is resource manager-specific. The same isolation level in
WebSphere can produce different results with DB2 than with Oracle, for
example.

Important: Every participant in a transaction accessing the same resource
manager must share the same isolation level. If isolation levels differ the
transaction will be rolled back.
 Chapter 13. Guidelines for coding WebSphere applications 369

To modify the isolation level you must edit the EJB module using the WebSphere
AAT tool:

� Select the Method Extensions item in the tree view for the EJB you want to
modify, as described in “Entity EJB read-only methods” on page 367.

� To change the isolation level for a particular method, select that method from
the list at the top of the right hand pane.

� To change the level for all methods in the home, remote, or both the home
and remote interface, select the appropriate entry labeled with an asterisk (*)
for the name.

Check the Isolation level attributes box and select the appropriate isolation level
from the list (Figure 13-35). Once you have made your selection click Apply to
save the changes.

Figure 13-35 Modifying the isolation level for all methods in the remote interface
370 WebSphere Version 4 Application Development Handbook

Managing application versions
It is often desirable to be able to run two versions of the same application inside
the same WebSphere cluster, or even on the same server. There are two
scenarios which usually drive this requirement:

� A single large server—often but not necessarily a UNIX server—must be
shared between multiple developers, each of which needs his own
independent WebSphere environment in which to work.

� Two or more copies of the same application, either the same or different
versions, must be hosted in the same environment—examples include to
allow parallel running and final user acceptance testing of a new release, or to
allow two different user communities access to the same application
accessing separate data.

The introduction of the single server edition of WebSphere Application Server
with Version 4.0 goes some way to addressing these problems—these
lightweight editions do not require a database as an administrative repository
and are generally easier to manage, making it much more feasible to have a
copy on every developer’s desktop machine.

There are still valid scenarios, however, where you want to be able to host
multiple applications in the same instance or cluster of the advanced edition of
WebSphere. The single server edition does not provide any workload
management or clustering capabilities, for example. If your developers have
Windows desktops but your deployment environment is UNIX it is a good idea to
test your application on the target platform from early in the development
cycle—in some cases it may be absolutely necessary, perhaps because of other
software components that are only available in the deployment environment.

In this section we describe how to install multiple versions of the same
application into separate application server processes running in the same
WebSphere cluster.

There are four areas where two instances of the same application may conflict
when running in the same WebSphere cluster:

� The application name

� The Web application in the URI namespace

� The EJBs in the JNDI namespace

� Access to database and other resources

While we cover the case where the two instances have to connect to different
databases. The scenario where the two versions accessing the same database
require different database schemas is beyond the scope of this discussion.
 Chapter 13. Guidelines for coding WebSphere applications 371

Specifying the application name
The two versions of the application installed in WebSphere may not share the
same name. To separate the names you must enter a new name into the first
panel of the WebSphere application installation wizard (Figure 13-36).

Figure 13-36 Specifying a unique name for the application

Partitioning Web applications in the URI namespace
There are two approaches to partitioning the URI namespace:

� Use the same Web application context root, and different virtual hosts

� Use the same virtual host, but different Web application context roots

In general the first approach may be more appropriate for a production
environment, and the second more appropriate in a development environment.
This is due mainly to the fact that you will have many developers and over time
new staff will be recruited and existing staff move on to other projects. Managing
aliases in DNS for each developer in this environment is an unnecessary burden.
372 WebSphere Version 4 Application Development Handbook

Partitioning using virtual hosts
In this scenario we create a new virtual host for each version of the application. If
we call our two versions version1 and version2, for example, we need to perform
the following actions:

� Define host aliases for both version1 and version2, that resolve to the Web
server IP address, or the address of the load balancing component in a
multi-server configuration

� Use the WebSphere administrator’s console to define the two virtual hosts to
WebSphere

� Specify binding information for the Web application that binds the two
versions of the application to separate virtual hosts

Defining host aliases
In a production environment we would ask our DNS administrator to create the
two aliases for our production machine. In this example we simply create aliases
by editing the file C:\WINNT\system32\drivers\etc\HOSTS, adding the two
additional lines shown below:

127.0.0.1 version1
127.0.0.1 version2

Defining WebSphere virtual hosts
We have to define two new virtual hosts to WebSphere to allow WebSphere to
route requests to each virtual host correctly.

To define a new virtual host, click the Virtual Hosts folder in the administrator’s
console tree view, and select New from the pop-up menu. This opens the Create
Virtual Host dialog (Figure 13-37).

Tip: If you follow these instructions you will only be able to use the virtual
hosts from the local machine where they are defined. To correctly define the
host aliases they must be defined globally.

Important: You must also remember to configure your Web server to
recognize the new virtual hosts.
 Chapter 13. Guidelines for coding WebSphere applications 373

Figure 13-37 Defining a new WebSphere virtual host

In the Create Virtual Host dialog, enter a name for the new virtual host in the
Name field. This is the name that will appear in the console. To add a host alias
for this virtual host, click the Add button, enter the host name in the dialog that
pops up, then click OK.

Remember to include the port number if the Web server listens on a port other
than port 80; if the web server is using SSL the port is usually set to port number
443.

Specifying binding information
You can specify the binding between a Web application and the virtual host in
one of two ways:

� At installation time using the installation wizard

� Prior to deployment using the Application Assembly Tool (AAT)
374 WebSphere Version 4 Application Development Handbook

Specifying binding information using the installation wizard
Use the administrator’s console to install the module containing the application.
When you get to the page that specifies the virtual host to use (Figure 13-38),
select the Web module, and click Select Virtual Host.

Figure 13-38 Specifying the virtual host using the deployment wizard

In the dialog that pops-up (Figure 13-39), select the appropriate virtual host from
the drop-down list, and click OK.

Figure 13-39 Selecting the virtual host
 Chapter 13. Guidelines for coding WebSphere applications 375

Specifying binding information using the assembly tool
You may also specify the binding information using AAT. Start the assembly tool
and open the module containing your Web application. Use the tree view to
select the Web application (Figure 13-40). Click the Bindings tab, enter the virtual
host name in the virtual host name field, and click Apply.

Figure 13-40 Specifying the virtual host name using the assembly tool

When you deploy the module into WebSphere, the virtual host you set using AAT
is automatically selected.

Partitioning using the Web application context root
The context root of a Web application module defines the base URI of the
application relative to the base of the Web server URI. If we modify the context
root for our Web application to include the version identifier, we can separate the
namespace using the same virtual host, so for example, one version of our
application can occupy the URIs under:

http://hostname.domainname.com/version1/

The other version uses URIs under:

http://hostname.domainname.com/version2/
376 WebSphere Version 4 Application Development Handbook

The context root binding for a Web application is specified using the WebSphere
assembly tool. We start the tool and open the EAR file containing our Web
application. First we use the tree view to navigate to the Web application
(Figure 13-41). We then select the General tab and enter the new context root in
the field labeled Context root. Finally we click Apply and save the modified
module file.

Figure 13-41 Changing the Web application context root using the assembly tool

Partitioning EJBs in the JNDI namespace
When we install the EJBs into the application server we specify the names that
the beans will use in the global JNDI namespace—for example the
AccountManager EJB might use the global JNDI name:

itso/was4ad/ejb/account/AccountManager

We can define the global JNDI name to use for each EJB using AAT or the
WebSphere application installation wizard. Figure 13-42 shows how AAT can be
used to specify the JNDI name for an EJB.
 Chapter 13. Guidelines for coding WebSphere applications 377

Figure 13-42 Specifying an EJB JNDI name using AAT

The global JNDI name can also be specified when the application is installed into
the WebSphere environment. Figure 13-43 shows how the application
installation wizard invoked from the administrator’s console can be used to
specify or override the binding of an EJB to a JNDI name.

Figure 13-43 Specifying an EJB JNDI name in the application installation wizard
378 WebSphere Version 4 Application Development Handbook

If we have to run two versions of the same EJBs concurrently in the same cluster,
we must ensure the global JNDI names are unique. In our example with two
versions, we could decide to install the first version of the account manager as:

version1/itso/was4ad/ejb/account/AccountManager

and the second version as:

version2/itso/was4ad/ejb/account/AccountManager

Our application’s EJB client code uses EJB references to locate EJB home
objects. All of our applications that use EJBs look for them in the EJB client’s
local JNDI namespace, under java:comp/env, for example:

java:comp/env/ejb/AccountManager

These names are coded as constants in the classes that are EJB clients. When
we use the assembly tool to build our application we declare the references used
by each application client, Web application and EJB component. Different
components may use different local names to refer to the same EJB, or the same
local name to refer to different EJBs. When a component looks up an EJB the
WebSphere runtime maps the local EJB reference to the correct global JNDI
name for the EJB that particular component needs.

When we install client code that uses the EJB, we simply specify the correct
binding for the version we require, without any need to modify our own code
(Figure 13-44).

Figure 13-44 Binding EJB references to JNDI names

Global JNDI name:
version1/itso/was4ad/ejb/account/AccountManager

AccountManager
version 1

AccountManager local EJB reference:
ejb/AccountManager

Web app
version 1

Binding

Global JNDI name:
version2/itso/was4ad/ejb/account/AccountManager

AccountManager
version 2

AccountManager local EJB reference:
ejb/AccountManager

Web app
version 2

Binding
 Chapter 13. Guidelines for coding WebSphere applications 379

The local EJB references used by a module are described in the module’s
deployment descriptor.

We use the WebSphere AAT tool to manage EJB references (Figure 13-45).

Figure 13-45 Managing EJB references using AAT

We can also define the binding that maps each EJB reference to a JNDI name
using AAT, using the Binding tab (Figure 13-46).
380 WebSphere Version 4 Application Development Handbook

Figure 13-46 Specifying an EJB reference binding using AAT

Alternatively we can specify or modify the binding when we install the application
using the application installation wizard (Figure 13-47).

Figure 13-47 Specifying an EJB reference binding in the installation wizard
 Chapter 13. Guidelines for coding WebSphere applications 381

Partitioning access to database and other resources
We can use a similar approach to that used for EJBs to define bindings to other
resources, including JDBC DataSources and JMS queue connection factories. In
each case the code that requires the resource should perform the JNDI lookup in
the local JNDI namespace, under java:comp/env. For example, to lookup a
JavaMail session you could write the following code:

InitialContext context = new InitialContext();
Session sess = (Session) context.lookup("java:comp/env/mail/MailSession");

The local JNDI name used must be defined in the component’s deployment
descriptor, which can be edited using AAT (Figure 13-48).

Figure 13-48 Editing a JavaMail resource reference using AAT

When you install a new application version define the resources that are unique
to the new version with unique global JNDI names in the WebSphere
environment, using the administrator’s console or other appropriate WebSphere
tools such as wscp. You can then specify the bindings for the new application
version using AAT, or during installation using the application installation wizard.
382 WebSphere Version 4 Application Development Handbook

Automation opportunities
There are two opportunities for automation that can assist you in managing an
environment with multiple application versions:

� Creating ready-bound modules

� Scripting installation of application versions

These opportunities are outlined below.

Creating ready-bound modules
If you are using Ant to create your modules, perhaps in a manner similar to that
described in “Using Ant to build a WebSphere application” on page 197, you can
extend your build process to automatically insert version information into the
binding information stored in the J2EE modules.

One way to do this is to use the Ant built-in replace task. This task copies a
source file to a new location, replacing occurrences of named tags with a
specified value. Tags are specified in the source file using the syntax:

@TAG_NAME@

If we define a tag @VERSION@ in our source deployment descriptors, we can use
the replace task to automatically insert a version identifier into the files that
specify deployment bindings, as we build the modules that make up our
application.

Scripting installation of application versions
You may find that you plan to install new application versions on a regular basis,
because, for example, you have a single large machine that is used as a shared
development or test machine. Under these circumstances it will probably be
worth creating scripts that can automatically install and uninstall application
versions, creating all the appropriate resources such as JDBC DataSources and
JMS queue connection factories that each application version requires.

WebSphere provides tools which enable you to perform these administration
tasks from scripts or the command line, most notably the wscp tool. A description
of this tool is out of the scope of this publication, however.
 Chapter 13. Guidelines for coding WebSphere applications 383

384 WebSphere Version 4 Application Development Handbook

Chapter 14. Software Configuration
Management

In this chapter we touch on the challenging area of Software Configuration
Management (SCM), and how it relates to WebSphere Studio and VisualAge for
Java.

While the starting point of customer involvement with SCM varies, no customer
can afford to ignore this area. In fact, after implementing SCM processes, the
resulting improvements in IT reaction times to meet business demands could
well prove to be a key success factor for being successful with e-business.

14
© Copyright IBM Corp. 2001 385

Introduction

SCM is one of the key areas that has to be addressed when developing and
maintaining applications. This is not only true for managing the software
configuration within your development environment, but also applies to the
software configuration within the production environment.

Application architectures, methodologies, technologies, and associated tools put
into a development process context potentially fail on delivering the appropriate
functionality to the business if SCM processes and supporting tools are not in
place.

Pressure to deliver faster and more complex applications makes it more urgent
to implement SCM. At the same time, businesses that are developing and
deploying applications in the e-business space may find themselves open to
exposure when SCM problems occur.

This calls for an end-to-end (E2E) approach for SCM throughout the complete
application life cycle. However, addressing all aspects of SCM would be a book
in itself.

Reference
When writing this redbook we ran out of time to investigate and test a complete
SCM approach.

We therefore refer to Chapter 9. Software Configuration Management in the
redbook Servlet and JSP Programming with IBM WebSphere Studio and
VisualAge for Java, SG24-5755.

In the referenced redbook we documented an SCM approach and showed how
to implement SCM with Rational ClearCase for WebSphere Studio.

Definition: The U.S. Department of Defense, in its standard on software
development, DOD-STD-2167A, defines SCM as follows:

Software Configuration Management is the discipline of identifying the
configuration of software systems at discrete points in time for the purpose
of controlling changes and maintaining traceability of changes throughout
the software life cycle.
386 WebSphere Version 4 Application Development Handbook

Part 4 Unit testing the
application

In this part of the book we provide information to assist you in unit testing and
debugging a WebSphere Version 4 application.

First we describe how to use the WebSphere Application Assembly Tool (AAT) to
assemble the application into J2EE modules that can be deployed into a
WebSphere environment for testing. We then describe the deployment process
itself, explaining how to deploy into both the full and single-server versions of
WebSphere Application Server.

After that we discuss application debugging, and describe how we can use the
facilities provided by VisualAge for Java and the IBM Online Trace (OLT) and
Distributed Debugger products to debug WebSphere applications.

Finally we introduce JUnit, an open source framework for unit testing Java
applications. We describe how to use JUnit to create test cases and discuss how
to use the tool to unit test EJB components running in WebSphere.

Part 4
© Copyright IBM Corp. 2001 387

388 WebSphere Version 4 Application Development Handbook

Chapter 15. Assembling the application

In this chapter we describe the process of assembling a J2EE application using
the tools available for WebSphere Application Server 4.0 Advanced Edition (AE)
and Single Server Edition (AEs).

We describe the assembly process using the following tools:

� Application Assembly Tool (AAT)

� ejbdeploy command line tool

Both of them are new features in WebSphere Application Server 4.0.

We focus on the basic aspects of the assembly process, skipping through
options that are not necessary in a unit test scenario.

We also discuss how the ejbdeploy can be used to help validate and migrate
version 1.0 EJBs to the new 1.1 specification level, and describe the new
XML-based CMP persistence mapping supported by the tool.

15
© Copyright IBM Corp. 2001 389

Application Assembly Tool (AAT)
The Application Assembly Tool is a new feature introduced in WebSphere 4.0,
both for Advanced Edition and Single Server Edition. It allows packaging and
assembling an enterprise application and its modules according to the J2EE
specification.

For details about J2EE packaging, see Chapter 8, “Setting up a development
environment” on page 179.

Starting the Application Assembly Tool

From the command line
The bat file that starts the Application Assembly Tool, assembly.bat, is located in

d:\WebSphere\AppServer\bin

If we start the tool from a command window, this window remains in the
background, and it must not be closed, or the assembly tool is closed as well.
This window displays tracing information for changes in the properties of the
module’s elements.

From the WAS Administrative Console (AE only)
Before we can start the Administrative Console, we must first start the
AdminServer: go to Start -> Programs -> IBM WebSphere -> Application Server
v4.0 -> Start AdminServer, or either start the IBM WS AdminServer service from
the Windows Services panel.

It is also possible to start the AdminServer from the command line, typing:

net start “IBM WS AdminServer“

Note: The assembly tool allows us to specify installation-specific information
in addition to its role in providing a GUI facility for defining J2EE modules.
These entries are known as bindings, because they bind an application to a
specific WebSphere installation, specifying global JNDI names, and user IDs
and passwords for databases, for example.

This is a useful shortcut for administrators who do not want to specify the
global JNDI name for every EJB every time they install a new version of an
application. Binding information is supplemental to the J2EE deployment
information, however, and is not portable to other application server vendors’
products.
390 WebSphere Version 4 Application Development Handbook

Then start the Application Server’s Administrator’s Console, by selecting Start ->
Programs -> IBM WebSphere -> Application Server v4.0 -> Administrator’s
Console.

To start the Application Assembly Tool from the Administrative Console, select
Tools -> Application Assembly Tool.

Using the interface
The first view onto the Application Assembly Tool is a general menu that allows
the user to create any of the J2EE modules:

� Application (EAR file)
� Web module (WAR file)
� EJB module (EJB JAR file)
� Application client (JAR file)

It is possible to perform these creation tasks either using the property dialogs or
the corresponding wizard. Wizards require minimum information to complete the
process. They ask for the required information and fill in the rest with the default
values.

The welcome screen is shown in Figure 15-1.

Figure 15-1 Application Assembly Tool welcome screen
 Chapter 15. Assembling the application 391

It is also possible to open an existing module (of any of the previously listed
types), by selecting the Existing tab, as it is shown in Figure 15-2.

Figure 15-2 Opening an existing file

The interface for any module has two parts:

� Navigation pane

� Property pane

The navigation pane is a tree view of the module’s contents, assembly
properties, and files. It is used to select components or property groups and to
review the content and structure of the module.

The property pane displays the properties for the element selected in the
navigation pane. It is possible to hide this pane by selecting View -> Show
Property Pane. Fields indicating required properties are signaled with a red
asterisk.

The AAT user interface is shown in Figure 15-3.
392 WebSphere Version 4 Application Development Handbook

Figure 15-3 AAT user interface

In addition to the menu bar, the toolbar provides access to the main functions
related to module creation and administration (Figure 15-4).

Figure 15-4 AAT toolbar

Navigation
pane

Property
pane

Create new
modules

View
descriptor

Generate
code for
deployment

Verify Wizards
 Chapter 15. Assembling the application 393

Creating a Web module
The Application Assembly Tool allows the user to create a J2EE Web module
from pieces, that is, creating an empty module and incorporating the
components, such as servlets, JSPs, or static content (HTML pages, images).

In Figure 15-5 we can see the structure of the navigation pane for a Web module.

Figure 15-5 AAT navigation panel for a Web module

It is possible to drag-and-drop files from other Web modules (opening them in the
AAT), so that both the configuration and the file are copied.

If we use the Import option, only the configuration is copied, and we have to add
the file manually to the Files folder. The same applies to the New option, though
in this case we have to type in the configuration for the new file.

When expanding the WAR file, the files are placed as shown in Figure 15-6.

Web content: HTML,
JSP, images

Utility classes JAR
files

Servlet class files

Servlets and/or JSPs
and their parameters

Tag libraries file
names and locations

Mappings for servlets
in the Web application

References to external
resources (DataSources,
Messaging systems)

References to EJBs
and their JNDI names
394 WebSphere Version 4 Application Development Handbook

Figure 15-6 Files in the expanded Web application

Using the Web module creation wizard
We now describe the process of creating a new Web module for the PiggyBank
application using the Create Web Module Wizard, as an example to illustrate the
main configurable features of Web applications.

To launch the wizard, select File -> Wizards -> Create Web Module Wizard, or
either click on the last button on the right (the Wizards button), and then select
Create Web Module Wizard.

The first window lets the user specify the basic properties of the Web module
(Figure 15-7).

Figure 15-7 Web module creation wizard
 Chapter 15. Assembling the application 395

A description of the fields follows:

� Parent application—the enterprise application to which the module belongs (if
any). For a stand-alone Web module, it is not necessary to fill in this field (or if
we are creating the Web module previous to the creation of the enterprise
application).

� Context root—only applicable when selecting a parent application (then, the
context root is the root of the Web module inside the enterprise application)

� Display name—the Web module name (as it is displayed in the navigation
panel).

� File name—the name of the WAR file (required)

� Description—description of the module

After completing this information, the next step is to add files to the module
(Figure 15-8).

Figure 15-8 Adding files to the Web module\

As we have described before, each type of file available corresponds to the
following:

� Resource files—JSPs, HTML pages, images, etc. (Web content)

� Class files—compiled classes that the application uses (servlets or other).

� Jar files—JAR files containing utility classes used by the Web components,
for example, the Log4j classes of the PiggyBank application.
396 WebSphere Version 4 Application Development Handbook

We can choose to add the common code as a JAR file or as individual classes. If
our application only has a Web component (no EJBs or application client) and
the utility classes are not many, we can choose this approach, but it is not
recommended when the common code is shared across the application by all the
component modules. In this case it is better to add the common JAR file to the
enterprise application and indicate it in the class path of the individual modules.

For the PiggyBank application we have chosen a mixed configuration: we have
packaged the shared common code in a JAR file, piggybank-common.jar, but in
the Web module, piggybank-webapp.war, we have included individual class files
for the command classes that the servlet uses, as they are not shared with the
other component modules.

Thus, we have two utility classes JAR files for PiggyBank:

� piggybank-common.jar

� Log4J.jar (used for the logging part of the application)

To add the files, we open the folder that contains them in the browser window
and add them.

To add the static resources files (JSPs, HTML, images), we select Add Resource
Files and select D:\PiggyBank\src\web, the folder containing the static Web
content.

Skipping through the Icons screen, the next step we have to care about is Adding
Web Components. Here, we are able to register the servlets and JSPs in our
Web module.

Select New to register new components or Import to get components from other
Web modules or enterprise applications (Figure 15-9).

Figure 15-9 Adding Web components
 Chapter 15. Assembling the application 397

The following screen capture shows an example for the PiggyBank Controller
servlet (Figure 15-10).

Figure 15-10 Adding a new servlet

For every component added, we have to type at least the information regarding
the Component name (as it appears in the Web module navigation tree if no
display name is introduced) and the appropriate file.

Also, it is possible to specify security roles and initialization parameters (servlets)
for the component.

Skipping the security roles definition screen, we show next the Specifying Servlet
Mappings screen. Here, for example, we add the mappings for the PiggyBank
Controller (Figure 15-11).
398 WebSphere Version 4 Application Development Handbook

Figure 15-11 Adding servlet mappings

By clicking on Add, a new panel is displayed and we select the servlet name and
type the URL mapping.

The next two panels allow the assembler to specify references to external
resources (for example, databases or messaging systems) and context
parameters for the servlets running in the Web application.

The next steps specify default Error pages and MIME mappings.

To configure Tag libraries in the next step we specify both the name of the file
and its location within the WAR file (Figure 15-12).

Figure 15-12 Specifying tag libraries for JSPs

In the next panel, we can specify the welcome file for our application, index.html
(Figure 15-13).
 Chapter 15. Assembling the application 399

Figure 15-13 Specifying welcome files

In the last panel of the wizard, we specify the EJB references used by elements
of the Web module.

The Web module creation is finished when we click on the Finish button, and we
can see the module structure in the standard AAT interface (Figure 15-14).

Figure 15-14 PIggyBank Web application module

To save, select File -> Save As and navigate to the desired saving location.
400 WebSphere Version 4 Application Development Handbook

Creating a Web module without the wizard
Wizards are useful to begin using the tool and become familiar with the options,
as well as providers of a systematic module build process, but in general direct
assembly of the modules is faster when we know which options we want to
configure.

We describe now how to setup a Web module with its basic features, using again
the PiggyBank application.

In the welcome screen (shown in Figure 15-1 on page 391), select Web Module
or select File -> New -> Web Module. The skeleton of the module is shown in the
navigation pane (Figure 15-15).

Figure 15-15 Creating an empty Web module

It is possible to build WAR files from existing Web modules, by importing the
required files to the new archive.
 Chapter 15. Assembling the application 401

Consider, for example, that we have several modules with different parts of the
Web application (let’s say, for the case of an online banking application as the
PiggyBank, account management, funds management, and so forth). At some
moment we might want to test the interaction between these modules, so we
have to assemble parts of them together (perhaps not all the files, but the ones
that gives us key information about that interaction). We can take two
approaches in this case:

� Group all the components we want to assemble from the repository (Java
code in VisualAge for Java) or their storage locations and create the new Web
module

� Create the Web module by importing the components directly from another
pre-built modules.

Following with the second scenario, to import the Web components to the new
module we have to:

� Add the files (class, JAR, etc.) from the existing module

� Import the configuration into the Web Components folder

Add files to the module by selecting Files and then Class Files in the navigation
pane, and Add Files from the context menu. The process is the same that the
performed using the wizard:

� Open the JAR (or ZIP) file where the compiled code for the servlet is

� Select the appropriate class file, navigating within the folders if necessary

� Click Add and then OK

The added files are placed under the \WEB-INF\classes directory of the web
module.

The resource files (utility classes used by the other elements of the module),
added as a JAR file, are placed under \WEB-INF\lib.

We add the JSP and static files (HTML, images) to the Resource Files section
too. They are placed under the directory \WEB-INF.

Import the configuration details by selecting Web Components and Import from
the context menu.

In the case of adding new files (not previously configured in other modules), we
select the New option. Importing is useful when we have setup “complicated”
configurations for the components (with long lists of initialization parameters that
are tedious to rewrite), and it acts like a copy-paste mechanism between
modules.
402 WebSphere Version 4 Application Development Handbook

Importing is equivalent to dragging and dropping components from other
modules (we can do this by opening the second module, and dragging the
required component to the Web Components folder; the properties and the files
are copied automatically).

Again, the screens shown are the same as the screens displayed for the wizard
section (see Figure 15-10 on page 398). The JSP files are added in the same
way.

After having all the required files added to the module, the next step is to create a
mapping for the servlets: in the navigation pane, select Assembly Properties ->
Servlet Mapping -> (Right button) and select New. A window is displayed where
we must enter the URL pattern name and the servlet associated to it (see
Figure 15-11 on page 399)

After clicking OK, the new servlet mapping is displayed in the Servlet Mappings
list (Figure 15-16).

Figure 15-16 Servlet mappings list

For the PiggyBank application, the addition of the other features (tag libraries,
error and welcome pages) is done through the node in the navigation pane, in a
similar way as how it is done by the wizard.
 Chapter 15. Assembling the application 403

Creating an EJB module
WebSphere 4.0 supports only the EJB 1.1 specification, so that if our EJBs have
been created with the 1.0 specification, we have to convert them to 1.1.

With VisualAge for Java 4.0 we can export the EJBs to a 1.1 undeployed JAR file
(see Chapter 11, “Development using VisualAge for Java” on page 259), and
then generate the deployment code either with the AAT or with the command line
EJB deployment tool (see “EJB deployment tool” on page 418), but it may be
necessary to fix some details of the code (the aspects that have to do with the
differences between the 1.0 and 1.1 specifications).

The structure of the navigation tree for an EJB module is shown in Figure 15-17.

Figure 15-17 AAT navigation panel for an EJB module

Setting up the configuration data
Here we describe how the deployment descriptor information matches the AAT
property panels and how to configure EJB data using only the AAT.

Figure 15-18 shows schematically how the deployment descriptor information fits
in the AAT tree structure.

Extensions and default
module bindings
(DataSource)

EJB-specific
configuration

EJB class files and
deployment descriptors

General assembly
properties
404 WebSphere Version 4 Application Development Handbook

Figure 15-18 Deployment descriptor data in the AAT

Security roles are also configurable through the Security Roles panel in the
enterprise application (EAR) file.

Class path information added through the module main property panel is written
to the manifest.mf file. Class path entries must be separated by spaces
(Figure 15-19).

Figure 15-19 Setting up the class path for the module

Environment
values (lookup
via JNDI)

EJB resource
references

Transaction
isolation levels

Transaction
attributes

Security Role
References

Security Identity
(Run As)

Security Roles

Security Method
Permissions
 Chapter 15. Assembling the application 405

Basic EJB properties, such as the home and remote interface names are
configured through the General panel of each bean (Figure 15-20).

Figure 15-20 Setting up general EJB configuration data

The Bindings pane is the place to detail the JNDI name of the bean, as well as
the default DataSource to be used in case of an Entity bean.

CMP for entity EJBs can be setup in the CMP Fields pane under each EJB.

Transaction data (such as isolation levels) has to be setup under the Container
Transactions node (Figure 15-21).
406 WebSphere Version 4 Application Development Handbook

Figure 15-21 Setting up container transaction properties

Working with EJB 1.1 JAR files
When using 1.1 EJBs, we only have to care about generating the deployed code
(if necessary), and specifying the deployment descriptor information.

Let’s pick up the example of PiggyBank again: we describe how to generate
deployment code for the EJBs created using the Java 2 SDK (see Chapter 9,
“Development using the Java 2 Software Development Kit” on page 183).

The property pane shows the deployment descriptor information that we
configured previously.
 Chapter 15. Assembling the application 407

In the PiggyBank example, we have added the common code JAR file to the EAR
archive (as we are packaging all the modules together in a single enterprise
application file, we do not want to include the common JAR file in each single
module, but only at the top level, and reference it through the class path inside
the modules). For the EJBs to find the utility classes, we specify the JAR file
name in the Classpath entry (see Figure 15-19 on page 405).

The Bindings tab lets us specify the default DataSource for the module, but if we
specify a DataSource for each bean, the default configuration is overridden
(Figure 15-22).

Figure 15-22 Specifying binding information for the EJB module

We generate the deployed code once we have setup the deployment descriptor
information.
408 WebSphere Version 4 Application Development Handbook

Working with EJB 1.0 JAR files
If we have developed 1.0 EJBs, we adapt them to the 1.1 specification prior to
deployment (we fix the code differences and recompile the bean classes).

Let’s pick up the EJB 1.0 undeployed file from the PiggyBank application,
PiggyBankEJBs10.jar, developed in VisualAge for Java, and open it in the AAT.

We are prompted to specify the dependent classpath (used to specify classes
that are not included in the EJB JAR file but are needed to inspect the EJB
classes), as shown in Figure 15-23.

Figure 15-23 EJB 1.0 dependent class path

We click OK on this window (our EJBs do not require dependent class path
specification), and the EJB file is opened in the AAT interface.

At this point, we can edit the deployment descriptor to configure the module
properties. By selecting the JAR file in the navigation pane, we can see its
properties in the property pane (setting this pane to be visible as described in
“Using the interface” on page 391), and we can also specify properties for every
EJB in the JAR file.

Let’s review the configuration options with more detail:

� Environment entries—defined to customize the business logic of the
application at runtime, so that no modifications of the source code are
necessary. These variables are available through an JNDI name context.

For example, we can setup an environment variable that defines the activation
or not of the tracing facility implemented in our application.

� EJB references—used to reference an EJB’s home interface that the
component uses (this option is general for all modules, as EJBs can be
referenced from the Web, client or EJB tier).

� Resource references—used to specify logical names that define a connection
to an external resource (database, messaging system, and so forth).

� Security role references—linking to security roles used in the code (for
example, an EJB’s method can be performed based on the user’s role).

� Method extensions—security and transaction information for EJB methods,
(read-only methods, isolation levels, and so forth).
 Chapter 15. Assembling the application 409

If we save the file now, WebSphere generates the deployment descriptor
(ejb-jar.xml) and the extension files (ibm-ejb-jar-bnd.xmi and
ibm-ejb-jar-ext.xmi and the database files for entity beans). The next task to
be performed is the generation of the deployed code.

Generating deployed code
AAT allows us to generate deployed code for an EJB module, or all of the EJB
modules in an EAR file, by providing a GUI interface to the ejbdeploy tool.
ejbdeploy is discussed in “EJB deployment tool” on page 418.

To perform this task in the Application Assembly Tool, select File -> Generate
Code for Deployment (Figure 15-24).

Figure 15-24 Generating deployment code for EJB 1.1 JAR files

A description of the fields and available options follows:

� Deployed module name—the name of the deployed mode resulting from the
code generation process

� Working directory—folder to store temporary files created during the process

� Dependent classpath—when the EJBs require classes that are not present in
the JAR file

� Code generation only—select this to generate the Java files only, without
running the RMI compiler rmic and javac

� Compress JARs—check this box to compress the contents of the generated
JAR
410 WebSphere Version 4 Application Development Handbook

� Validate archive—checks that the archive is complete and that the
deployment descriptor properties and references contain the appropriate
values:

– All classes referenced in the deployment descriptor must exist in the JAR

– Method signatures must be compliant with the EJB 1.1 specification

Errors appearing during the code generation process are shown in the text area.
If any errors or exceptions appear while executing RMIC, the deployment
process is aborted and the deployed code is not generated.

We have to generate the deployment code only when the EJBs have been fixed
to be 1.1 compliant.

Once the code generation process is completed, we have an EJB 1.1 JAR file
prepared to be added to an enterprise application.

It is also possible to deploy EJBs using the command line tool EJBDeploy directly
(see “EJB deployment tool” on page 418).

Using the EJB module creation wizard
We now review briefly the use of the EJB module creation wizard. This feature is
useful when first using the tool, to familiarize oneself with the options and
structure of the configuration.

Figure 15-25 shows the Create EJB Module Wizard.

Figure 15-25 EJB module creation wizard
 Chapter 15. Assembling the application 411

As in the case of the Web module wizard, we have to type at least the required
field, File name (the name of the EJB module file). We select a parent
application, if we are creating this EJB module inside an enterprise application,
otherwise we leave these fields blank.

In the Adding Files screen, we select utility files used by the EJBs (libraries).
Next (skipping the icons section), we add the EJBs to the module (Adding
Enterprise Beans). Click on New to add new beans to the module or on Import to
import existing EJBs from another module.

If, for example, we are combining EJBs from two modules into one, we can just
drag-and-drop the beans from the modules, so that both the configuration and
the files are copied, and the process is easier. However, it is not possible to do
this from the wizard screen.

After finishing, we can modify any of the properties of the JAR file (that are
written to the deployment descriptor), by selecting them from the navigation pane
and editing them on the property pane.

Creating an application client module
A difference between a standard Java program and an application client
following the J2EE model is that the client accesses the resources (EJBs,
DataSources, messaging systems, and so forth) through JNDI lookup (so no
“physical” resource data is hard coded in the program). Storing the actual
resource data outside the client program provides flexibility and reusability. This
configuration data is set up using two tools in WebSphere environment:

� Application Assembly Tool—to build the client JAR file (or the client EAR file if
we are assembling the client code separately to distribute it across the client
machines) and configure the EJB references, environment entries and other
non-client specific resources.

� Application client resource configuration tool—to set up the client-specific
resources (databases, messaging systems). We talk about this tool in
Chapter 16, “Deploying to the test environment” on page 431, in “Application
client resource configuration tool” on page 458.

All these references are resolved by the application server at runtime.

Assembling the module
The structure of an application client module in the AAT is shown in Figure 15-26.
412 WebSphere Version 4 Application Development Handbook

Figure 15-26 Application client navigation tree

When we create a new application client in the AAT, several steps have to be
followed to set up the module (Figure 15-27):

� Add the client classes to Files: for PiggyBank, we have only one class,
itso.was4ad.client.StandaloneClient for the command line client.

For the Swing client, we add all the classes in the itso.was4ad.client.swing
package.

� Specify the executable class (the one that contains the main method). This
class appears in the property pane in the Main Class field.

� Set up the class path: we add any JAR files that contain classes used by the
client.

Figure 15-27 Setting up the application client class path

For the PiggyBank, as we are assembling all the modules in a single EAR file.
We do not add the common code and EJB client JAR files to the client
application module, but we include references to them in the class path.

All client files and utility classes

References and
bindings to resources
 Chapter 15. Assembling the application 413

� Set up the references to resources (EJBs and DataSources) and environment
entries (Figure 15-28):

Figure 15-28 Setting up EJB references in the client module

– The PiggyBank standalone client references two EJBs: AccountManager
and CustomerManager. We include both under the EJB References node.

– In the General tab we enter the name of the reference, as well as the type
of the bean (session or entity) and the home and remote interfaces. We
use se the Browse button to open the JAR file containing the classes and
select them (they are not included in our application client JAR file).

– In the Bindings tab, we can enter the global JNDI name of the EJB:

itso/was4ad/ejb/account/AccountManagerHome

We setup resource references under the Resource References node. These
references have to be configured also in the application client resource
configuration tool (see “Application client resource configuration tool” on
page 458), and several details have to be taken in account:

� The JNDI name specified in the Bindings tab has to match the JNDI name
specified in the application client resource configuration tool (as they refer to
the same resource).

� The Name field in the General tab and the JNDI name in the Bindings tab
have to be the same.

Note: For more information about using JNDI see “Using JNDI” on page 326.
414 WebSphere Version 4 Application Development Handbook

The Name field in the General tab is used to bind a reference to the object in
the JNDI namespace and to retrieve client specific resource information
configured in the application client resource configuration tool.

Application client creation wizard
The Application Assembly Tool provides a wizard to guide us in the process of
creating an application client JAR file. Essentially, the steps of the wizard are the
ones we have just described:

� Introduce the file name and display name for the module
� Add class and/or resource files
� Select the executable class and set up the class path
� Add icons for the module
� Configure EJB references
� Configure external resources references
� Configure environment entries

Assembling the complete application: the EAR file
Once we have built all the J2EE modules, we can assemble the PiggyBank
enterprise application in an EAR file. The structure of an EAR file in the AAT is
shown in Figure 15-29.

Figure 15-29 Enterprise application navigation tree

Deployment descriptors
and utility classes

Component modules
and their assembly
properties

General assembly properties
for the enterprise application
 Chapter 15. Assembling the application 415

Assembling options for enterprise applications
In the PiggyBank example, we have created a single EAR file containing all the
application code. However, in a real scenario, we would package the client code
apart from the Web application (so that it can be distributed and installed across
the client machines). Then we would build two EAR files containing the following:

� Web application, EJBs and common code

� Client application, EJB client files and common code

Other configurations might be appropriate depending on the application
structure, for example, assembling the EJBs in a separate file in case they are
shared across several Web applications. Then, each Web application should
include references to the EJBs as external resources.

Using the enterprise application wizard
Let’s use the Create Application Wizard for this task.

In the first panel (Figure 15-30) we have to enter the application name and file
name (in a similar way as to the other modules).

Figure 15-30 Create application wizard

The next step is to add supplementary files that the enterprise application uses.
These can be icon libraries or other utilities. The icons used to represent the file
are selected in the next panel.
416 WebSphere Version 4 Application Development Handbook

Then we come to the panel where we must add the EJB modules that our
enterprise application uses. We add here the 1.1 JAR files created in the section:
“Creating an EJB module” on page 404. After clicking on Add, navigate to the
directory that contains the JAR file and add it to the module (Figure 15-31).

Figure 15-31 Adding EJB modules to the enterprise application

The Web modules and application clients are added in the next two steps in a
similar way (we add the modules that we have created in previous sections).

The last step is the specification of security roles for the whole enterprise
application.

After completing the wizard tasks, and prior to the installation in the application
server, we have to configure some details such as the binding information
(resolving the JNDI names for the EJBs).

In case we have not generated the deployed code for our EJBs, we do this prior
to the installation of the enterprise application in WAS (though the application
server provides the option of deploying the code when installing).

Now, the PiggyBank application is ready to be installed in WAS 4.0.

We can also assemble the EAR file by dragging and dropping the previously
created modules (so that we copy both the configuration and the files) from
another windows of the AAT, speeding up the creation process.
 Chapter 15. Assembling the application 417

EJB deployment tool
In this section we describe the command line EJB deployment tool, ejbdeploy.
We discuss the functions performed by the tool, and explain when and how you
might want to use it.

What does the EJB deployment tool do?
Some readers may find the name of the tool a little confusing—although the tool
is named ejbdeploy it does not actually deploy EJBs into the application server,
that is to say it does not install them into an instance of the application server. It
does however perform a task that is essential to deployment—it generates
deployed code for our EJBs.

The deployed code is the WebSphere-specific code that hooks your
J2EE-compliant EJB into the WebSphere container—if for some reason we
wished to deploy to another vendor’s EJB container there would be an equivalent
process that would generate code specific to that vendor’s container.

The deployed code includes the Remote Method Invocation (RMI) stub code
generated by the rmic compiler, as well as persistence mapping code for
container managed persistent (CMP) EJBs. We describe the generation of
persistence mapping code in more detail shortly.

When is the EJB deployment tool executed?
The WebSphere deployment tools invoke ejbdeploy automatically when you
install an EJB module (either standalone or as part of an EAR file) under the
following circumstances:

� You install any EJB module into WebSphere AEs using SEAppInstall (see
“SEAppInstall command line tool” on page 433) and you do not specify the
command option -ejbdeploy false.

Important: The original release of WebSphere AEs included an early version
of the ejbdeploy tool that does not provide all of the functionality described
here. The version of the tool we describe was made available for download
from the VisualAge Developer Domain Web site at the same time that
VisualAge for Java Version 4.0 became generally available. This newer
version of the tool includes support for enhanced CMP EJB mapping. The
updated tool will be included in the first release of WebSphere AE, and
updated in a PTF (fixpack) for WebSphere AEs.
418 WebSphere Version 4 Application Development Handbook

� You use the AE administrator’s console to install an EJB module that has not
already been processed by the ejbdeploy tool into WebSphere (see
“Installing new applications” on page 450).

� You use the AE administrator’s console to install an EJB module that has
already been processed by the ejbdeploy tool into WebSphere and you click
Yes when prompted with the dialog in Figure 15-32.

Figure 15-32 AE administrator’s console redeployment dialog

The AAT also invokes ejbdeploy when you choose the File -> Generate Code for
Deployment menu option, as described in “Generating deployed code” on
page 410.

Why would I want to run the EJB deployment tool myself?
We envisage several scenarios where you must run ejbdeploy directly, either
from the command line, from AAT, or from a script such as a build script:

� You want to generate default CMP persistence mapping files so that you can
customize them to provide meet-in-the-middle mapping (see ““Customizing
CMP persistence mapping” on page 420”).

� You are using WebSphere AEs with the original version of the ejbdeploy tool
and you want to install an EJB JAR with customized CMP mapping using the
standalone EJB deployment tool downloaded from VisualAge Developer
Domain.

� You are creating an EJB JAR that will be installed into WebSphere many
times—for example to support individual developer environments—and you
want to incur the cost of generating deployed code once only (see “Packaging
EJBs and generating deployed code” on page 217).

� You want to create and extract XML EJB 1.1 deployment descriptors from an
EJB 1.0 JAR file which contains serialized deployment descriptors (see
“Migrating and validating EJB JAR files” on page 426).

� You want to test a newly-created EJB JAR file for EJB 1.1 compliance.

Under other circumstances, while there is no harm caused by generating the
deployed code directly, there is no real benefit in not allowing WebSphere to
execute the tool for you.
 Chapter 15. Assembling the application 419

Customizing CMP persistence mapping
When the ejbdeploy tool is used against a JAR file that contains CMP entity
EJBs, it looks for two meta-data files in the EJB JAR file that tell it how to
generate the code that persists the container managed fields in the EJB to the
target database. These two files are stored in the JAR file at the following
locations:

META-INF/Schema/Schema.dbxmi Contains descriptions of the tables in the
database and defines their columns

META-INF/Map.mapxmi Connects the object model description with
the specified database schema

These files are created by VisualAge for Java Version 4.0 when we use the
Export -> EJB 1.1 JAR menu option to create an EJB JAR file. VisualAge for
Java creates these files using the database schema and mapping information
stored in the repository and managed using the schema and map browser tools
that enable us to perform meet-in-the-middle mapping between CMP EJBs and
the database tables.

We anticipate that future, yet-to-be-released WebSphere EJB development tools
will also offer the ability to create and maintain these files.

If the schema and map files do not exist in the EJB JAR file, ejbdeploy creates a
new schema and map based upon its default mapping rules. We can see this if
we run ejbdeploy against a version of our PiggyBank EJB JAR that does not
contain a schema or map (Figure 15-33).

Figure 15-33 Running ejbdeploy on a JAR without a schema or map

D:\DeployTool>ejbdeploy d:\itso4ad\dev\modules\piggybank-ejb.jar d:\temp
d:\temp\deployed-piggybank-ejb.jar

Starting workbench.
Creating the project.
Importing file..
Starting Validation.
Creating Top-Down Map...
Generating deployment code
Building: /deployed-piggybank-ejb.jar.
Invoking RMIC.
Building: /deployed-piggybank-ejb.jar.
Generating DDL
Shutting down workbench.
EJBDeploy complete.
0 Errors, 0 Warnings, 0 Informational Messages
420 WebSphere Version 4 Application Development Handbook

If we examine the deployed EJB JAR file generated by ejbdeploy, we can see
the new schema and map files (Figure 15-34).

Figure 15-34 Generated schema, map, and DDL files

The tool also generated a Table.ddl file—this contains DDL that we can use to
create our database tables (Figure 15-35).

Figure 15-35 Contents of the DDL file to create the tables

If we run the same command against a JAR that does contain a schema and
map, the default map is missing, and the message highlighted in Figure 15-33 is
not reported, as seen in Figure 15-36.

D:\DeployTool>jar tf D:\temp\deployed-piggybank-ejb.jar META-INF
META-INF/Map.mapxmi
META-INF/Schema/Schema.dbxmi
META-INF/Table.ddl
META-INF/ejb-jar.xml
META-INF/ibm-ejb-jar-bnd.xmi
META-INF/ibm-ejb-jar-ext.xmi
META-INF/MANIFEST.MF

-- Generated by Relational Schema Center on Thu Jul 26 14:34:20 PDT 2001

CREATE TABLE "CUSTOMER"
 ("ID" INTEGER NOT NULL,
 "NAME" VARCHAR(32));

ALTER TABLE "CUSTOMER"
 ADD CONSTRAINT "CUSTOMERPK" PRIMARY KEY ("ID");

CREATE TABLE "ACCOUNT"
 ("NUMBER" INTEGER NOT NULL,
 "BALANCE" INTEGER,
 "CHECKING" SMALLINT,
 "CUSTOMERID" INTEGER);

ALTER TABLE "ACCOUNT"
 ADD CONSTRAINT "ACCOUNTPK" PRIMARY KEY ("NUMBER");
 Chapter 15. Assembling the application 421

Figure 15-36 Running ejbdeploy on a JAR with a schema and map

If the default mapping is not suitable for our target database we can extract the
schema and map files from the deployed JAR file, edit them to suit our needs,
then create a new JAR file which we can then run through ejbdeploy a second
time to generate new persistence mapping code for us, based on the modified
files.

This enables us to modify the default CMP persistence mapping, even if we do
not have access to Version 4.0 of VisualAge for Java. As we will see, however,
the XML files are somewhat cryptic, so we still recommend you use VisualAge for
Java Version 4 if the option is available to you.

The standalone deployment tool available for download from VisualAge
Developer Domain includes some documentation on how to modify the schema
and map files—we anticipate this documentation will be included in some future
revision of the WebSphere InfoCenter. We refer you to the documentation for a
full description of the files.

Schema file
An extract from the PiggyBank schema file for DB2 showing the CUSTOMER table is
shown in Figure 15-37.

D:\DeployTool>ejbdeploy d:\itso4ad\dev\modules\piggybank-ejb.jar d:\temp
d:\temp\deployed-piggybank-ejb.jar

Starting workbench.
Creating the project.
Importing file..
Starting Validation.
Generating deployment code
Building: /deployed-piggybank-ejb.jar.
Invoking RMIC.
Building: /deployed-piggybank-ejb.jar.
Generating DDL
Shutting down workbench.
EJBDeploy complete.
0 Errors, 0 Warnings, 0 Informational Messages

Tip: If you decide you want to edit the generated schema and map files
yourself, you may find it helpful to use an XML-aware editor.
422 WebSphere Version 4 Application Development Handbook

The XML first defines the database and the SQL types available for the target
database—in this case DB2 UDB Version 7. It then goes on to define the
CUSTOMER table, and the primary key constraint on the ID column. Each column in
the table is described, in the order in which they are defined in the database. In
this case we see the ID column defined as an INTEGER that may not be null. The
name column is a VARCHAR(32) and may be null.

Figure 15-37 Extract from the PiggyBank schema file

If we want to modify the database schema we must modify this file. Changing the
table and column names is fairly straightforward—we simply locate the names
and alter them as required. Changing the type of columns is a little more
involved—we must alter the href to refer to the correct SQL primitive for the
column type we want.

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:RDBSchema="RDBSchema.xmi">

 <RDBSchema:RDBDatabase xmi:id="RDBDatabase_1" name="TopDownDB"
tableGroup="CUSTOMER ACCOUNT">

 <dataTypeSet href="UDBV7_Primitives.xmi#SQLPrimitives_1"/>
 </RDBSchema:RDBDatabase>
 <RDBSchema:RDBTable xmi:id="CUSTOMER" name="CUSTOMER"

primaryKey="SQLReference_1" database="RDBDatabase_1">
 <namedGroup xmi:type="RDBSchema:SQLReference" xmi:id="SQLReference_1"

members="RDBColumn_1" table="CUSTOMER"
constraint="Constraint_CUSTOMERPK"/>

 <constraints xmi:id="Constraint_CUSTOMERPK" name="CUSTOMERPK"
type="PRIMARYKEY" primaryKey="SQLReference_1"/>

 <columns xmi:id="RDBColumn_1" name="ID" allowNull="false"
group="SQLReference_1">

 <type xmi:type="RDBSchema:SQLExactNumeric" xmi:id="SQLExactNumeric_1">
 <originatingType xmi:type="RDBSchema:SQLExactNumeric"

href="UDBV7_Primitives.xmi#SQLExactNumeric_1"/>
 </type>
 </columns>
 <columns xmi:id="RDBColumn_2" name="NAME">
 <type xmi:type="RDBSchema:SQLCharacterStringType"

xmi:id="SQLCharacterStringType_1" characterSet="800"
length="32">

 <originatingType xmi:type="RDBSchema:SQLCharacterStringType"
href="UDBV7_Primitives.xmi#SQLCharacterStringType_3"/>

 </type>
 </columns>
 </RDBSchema:RDBTable>

[ACCOUNT TABLE NOT SHOWN]
</xmi:XMI>
 Chapter 15. Assembling the application 423

The SQL primitives for each database are defined in XML documents stored in:

DeployTool\plugins\com.ibm.etools.sqlmodel\runtime\primitives

Where, DeployTool is the location where you installed the standalone tool
downloaded from VADD. In the AE and updated AEs products we expect, but
cannot confirm, that this directory will be located in the WebSphere install
directory.

Figure 15-38 shows an extract from the document that defines the primitives for
Oracle.

Figure 15-38 Extract from the Oracle SQL primitives document

<RDBSchema:SQLPrimitives xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:RDBSchema="RDBSchema.xmi"
xmi:id="SQLPrimitives_1" domain="ORACLE_V8">

<types xmi:type="RDBSchema:SQLBinaryLargeObject"
xmi:id="SQLBinaryLargeObject_1" externalName="BINARY LARGE OBJECT"
name="BLOB" jdbcEnumType="2004" domain="ORACLE_V8"
requiredUniqueInstance="false" renderedString="BLOB"
typeEnum="BINARYLARGEOBJECT"
formatterClassName=

"com.ibm.etools.rdbschemagen.formatter.oracle.SimpleTextFormatter"
length="4" multiplier="G"/>

<types xmi:type="RDBSchema:SQLCharacterStringType"
xmi:id="SQLCharacterStringType_1" externalName="CHARACTER"
name="CHAR" jdbcEnumType="1" domain="ORACLE_V8"
requiredUniqueInstance="true" renderedString="CHAR"
typeEnum="CHARACTER"
formatterClassName=

"com.ibm.etools.rdbschemagen.formatter.oracle.CharacterTextFormatter"
characterSet="800" length="1"/>

<types xmi:type="RDBSchema:SQLCharacterStringType"
xmi:id="SQLCharacterStringType_2" externalName="CHARACTER VARYING"
name="VARCHAR2" jdbcEnumType="12" domain="ORACLE_V8"
requiredUniqueInstance="true" renderedString="VARCHAR2"
typeEnum="CHARACTERVARYING"
formatterClassName=

"com.ibm.etools.rdbschemagen.formatter.oracle.CharacterTextFormatter"
characterSet="800" length="1"/>

<types xmi:type="RDBSchema:SQLNumeric" xmi:id="SQLNumeric_6" externalName="DECIMAL"
name="NUMBER" jdbcEnumType="3" domain="ORACLE_V8"
requiredUniqueInstance="true" renderedString="NUMBER" typeEnum="DECIMAL"
formatterClassName=

"com.ibm.etools.rdbschemagen.formatter.oracle.NumericTextFormatter"
precision="5" scale="0"/>

...
424 WebSphere Version 4 Application Development Handbook

Map file
An extract from the PiggyBank map file that defines the mapping between the
customer EJB and the table defined in the schema is shown in Figure 15-39.

Figure 15-39 Extract from the PiggyBank map file

<ejbrdbmapping:EjbRdbDocumentRoot xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:ejbrdbmapping="ejbrdbmapping.xmi" xmlns:ejb="ejb.xmi"
xmlns:RDBSchema="RDBSchema.xmi" xmlns:Mapping="Mapping.xmi"
xmi:id="EjbRdbDocumentRoot_1" outputReadOnly="false"
topToBottom="true">

 <helper xmi:type="ejbrdbmapping:RdbSchemaProperies"
xmi:id="RdbSchemaProperies_1" primitivesDocument="DB2UDBNT_V71">

 <vendorConfiguration
href="RdbVendorConfigurations.xmi#DB2UDBNT_V71_Config"/>

 </helper>
 <inputs xmi:type="ejb:EJBJar" href="META-INF/ejb-jar.xml#ejb-jar_ID"/>
 <outputs xmi:type="RDBSchema:RDBDatabase"

href="META-INF/Schema/Schema.dbxmi#RDBDatabase_1"/>
 <nested xmi:type="ejbrdbmapping:RDBEjbMapper" xmi:id="RDBEjbMapper_1">
 <helper xmi:type="ejbrdbmapping:PrimaryTableStrategy"

xmi:id="PrimaryTableStrategy_1">
 <table href="META-INF/Schema/Schema.dbxmi#CUSTOMER"/>
 </helper>
 <inputs xmi:type="ejb:ContainerManagedEntity"

href="META-INF/ejb-jar.xml#Customer"/>
 <outputs xmi:type="RDBSchema:RDBTable"

href="META-INF/Schema/Schema.dbxmi#CUSTOMER"/>
 <nested xmi:id="Customer_id---CUSTOMER_ID">
 <inputs xmi:type="ejb:CMPAttribute"

href="META-INF/ejb-jar.xml#Customer_id"/>
 <outputs xmi:type="RDBSchema:RDBColumn"

href="META-INF/Schema/Schema.dbxmi#RDBColumn_1"/>
 <typeMapping href="JavatoDB2UDBNT_V71TypeMaps.xmi#int-INTEGER"/>
 </nested>
 <nested xmi:id="Customer_name---CUSTOMER_NAME">
 <inputs xmi:type="ejb:CMPAttribute"

href="META-INF/ejb-jar.xml#Customer_name"/>
 <outputs xmi:type="RDBSchema:RDBColumn"

href="META-INF/Schema/Schema.dbxmi#RDBColumn_2"/>
 <typeMapping href="JavatoDB2UDBNT_V71TypeMaps.xmi#String-VARCHAR"/>
 </nested>
 </nested>

[ACCOUNT TABLE NOT SHOWN]
</ejbrdbmapping:EjbRdbDocumentRoot>
 Chapter 15. Assembling the application 425

The following XML elements are used:

helper Defines database-specific helper objects used to set schema
properties, table strategy, and as converters between attribute
and column types

inputs Used to identify CMP references in the EJB deployment
descriptor—uses an href tag that uses a path relative to the
META-INF directory

outputs Used to identify database table references in the schema
document, also using an href tag that uses a path relative to
the META-INF directory

nested Defines child mappings for each input and output

typeMapping Defines the type mapper to be used for a CMP field—the
mappers are defined in documents in the directory
DeployTool\plugins\com.ibm.etools.ejbdeploy\typemaps

The inputs and outputs tags are paired—in our example there is a pair that
maps from the JAR file to the database in the schema, another that maps from
the EJB in the deployment descriptor to the table in the schema document, and
two further pairs that map each of the two CMP fields for the customer EJB to the
appropriate columns in the database schema.

Migrating and validating EJB JAR files
We can use the ejbdeploy tool to help us migrate existing EJB 1.0 JAR files to
the new EJB 1.1 specification. There are three areas of concern where the tool
can assist us:

� Validating our EJB code to complies with the EJB 1.1 specification

� Converting EJB 1.0 serialized deployment descriptors to EJB 1.1 XML
deployment descriptors

� Migrating CMP beans to work without modifying our database schema

We discuss each in turn, using the standard sample EJBs that are delivered with
VisualAge for Java in our examples.

Validating EJB code
In “Developing EJBs in VisualAge for Java” on page 266 we discussed some of
the differences between EJB code developed for Versions 1.0 and 1.1 of the EJB
specification. As we work through our code modifying it to comply with the new
specification level we can use ejbdeploy to check that we have made all the
required changes—it is very easy to miss out the odd RemoteException or
ejbCreate method that needs updating.
426 WebSphere Version 4 Application Development Handbook

To demonstrate this we run the EJB deployment tool on sample11.jar—this
contains the unaltered VisualAge for Java samples exported as a 1.1 JAR file
using the VisualAge Export -> EJB 1.1 JAR menu option.

The output of the ejbdeploy command is shown in Figure 15-40.

Figure 15-40 Using ejbdeploy to validate an EJB JAR file

D:\DeployTool>ejbdeploy D:\temp\sample11.jar D:\temp D:\temp\deployed-sample.jar
Starting workbench.
Creating the project.
Importing file..
Starting Validation.
[*Warning] /deployed-sample.jar(0): CHKJ2031W: Home interface IncrementHome defines a create
method, Public abstract com.ibm.ivj.ejb.samples.increment.Increment
com.ibm.ivj.ejb.samples.increment.IncrementHome.create(com.ibm.ivj.ejb.samples.increment.Increment
Key) throws javax.ejb.CreateException,java.rmi.RemoteException, but there is no matching
ejbPostCreate method. While the deployment code can be generated if this method is absent, the
generated code does not invoke ejbPostCreate as it should. The EJB 1.1 specification states that
this method must be implemented, and the EJB 1.0 specification intended for this method to be
implemented, but did not state that it was a requirement. Read section 9.2.4 of the EJB 1.1
specification for details.
[*Warning] /deployed-sample.jar(0): CHKJ2406W: The method Public void
com.ibm.ivj.ejb.samples.increment.IncrementBean.ejbCreate(com.ibm.ivj.ejb.samples.increment.Increm
entKey) throws javax.ejb.CreateException,java.rmi.RemoteException declared in bean
com.ibm.ivj.ejb.samples.increment.IncrementBean should return the primary key type
com.ibm.ivj.ejb.samples.increment.IncrementKey. Read section 9.2.3 (BMP beans) or 9.4.2 and
9.4.7.3 (CMP beans) of the EJB 1.1 specification for details. The EJB 1.1 specification has
changed the method signature required on CMP beans' ejbCreate method.
[*Warning] /deployed-sample.jar(0): CHKJ2400W: Public void
com.ibm.ivj.ejb.samples.increment.IncrementBean.ejbCreate(com.ibm.ivj.ejb.samples.increment.Increm
entKey) throws javax.ejb.CreateException,java.rmi.RemoteException throws a
java.rmi.RemoteException. This is permitted in the EJB 1.0 specification, but deprecated in the
EJB 1.1 specification. In the EJB 1.1 specification, a javax.ejb.EJBException (or another
java.lang.RuntimeException) should be thrown to indicate non-application exceptions.
[*Warning] /deployed-sample.jar(0): CHKJ2002W: IncrementBean implements an ejbCreate method with
signature Public void
com.ibm.ivj.ejb.samples.increment.IncrementBean.ejbCreate(com.ibm.ivj.ejb.samples.increment.Increm
entKey) throws javax.ejb.CreateException,java.rmi.RemoteException but does not implement the
matching ejbPostCreate method. While the deployment code can be generated if this method is
absent, the generated code does not invoke ejbPostCreate as it should. The EJB 1.1 specification
states that this method must be implemented, and the EJB 1.0 specification intended for this
method to be implemented, but did not state that it was a requirement. Read section 9.2.4 of the
EJB 1.1 specification for details.
[*Warning] /deployed-sample.jar(0): CHKJ2400W: Public void
com.ibm.ivj.ejb.samples.helloworld.HelloWorldBean.ejbCreate() throws
javax.ejb.CreateException,java.rmi.RemoteException throws a java.rmi.RemoteException. This is
permitted in the EJB 1.0 specification, but deprecated in the EJB 1.1 specification. In the EJB
1.1 specification, a javax.ejb.EJBException (or another java.lang.RuntimeException) should be
thrown to indicate non-application exceptions.
Generating deployment codeBuilding: /deployed-sample.jar.
Invoking RMIC.
Building: /deployed-sample.jar.
Generating DDL
Shutting down workbench.
EJBDeploy complete.
0 Errors, 5 Warnings, 0 Informational Messages
 Chapter 15. Assembling the application 427

As you can see from the figure the tool generated five warnings from the two
EJBs in the JAR file. A quick scan through the messages reveals the problems:

� The Increment entity bean does not define an ejbPostCreate method to
match its ejbCreate method.

� The Increment entity bean ejbCreate method returns void (as required by the
1.0 specification) instead of the primary key type.

� The Increment ejbCreate method throws a RemoteException, deprecated in
the 1.1 specification.

� Another missing ejbPostCreate in Increment.

� Another RemoteException thrown by Increment.

In this case we only found warnings, so we can run the EJBs in WebSphere 4.0
unmodified if we desire. If we want to make our beans truly J2EE compliant,
however, we must make the changes suggested by the tool.

Converting serialized deployment descriptors
The 1.0 EJB specification required bean providers to store deployment
information in serialized Java objects, using the SessionDescriptor and
EntityDescriptor classes in the javax.ejb.deployment package. The 1.1 EJB
specification, however, now requires us to store this same information in XML
files.

If we are using Version 4.0 of VisualAge for Java, we can easily create these
XML deployment descriptors using the Export -> EJB 1.1 JAR menu option on an
EJB group. If we do not have the latest version of VisualAge for Java, however,
that option is not available to us.

We can use the EJB deployment tool to save us the effort of manually creating
the XML descriptors, either by hand in an editor, or by entering the information
into AAT.

We start with a simple undeployed EJB 1.0 JAR, sample10.jar, and run it
through ejbdeploy (Figure 15-41).

Then we extract the XML deployment descriptors from the deployed JAR file
(Figure 15-42).
428 WebSphere Version 4 Application Development Handbook

Figure 15-41 Running ejbdeploy on an EJB 1.0 JAR

Figure 15-42 Extracting generated deployment descriptors

Migrating CMP beans
If we created our 1.0 EJBs using meet-in-the-middle or bottom-up mapping using
VisualAge for Java, the best and by far the easiest way to migrate our schema
and mapping information is to use the EJB 1.1 export feature of VisualAge
version 4. The only alternative, described earlier in “Customizing CMP
persistence mapping” on page 420, is not for the faint-hearted.

If we did not use VisualAge for Java to create our 1.0 EJBs, however, but we did
deploy them into Version 3.5 of WAS, we would have had no choice but to accept
the default top-down CMP persistence mapping in that version of the product.

D:\DeployTool>ejbdeploy D:\temp\sample10.jar D:\temp D:\temp\deployed-sample.jar
Starting workbench.
Creating the project.
Importing file..
Importing MOF Resource..
Importing MOF Resource..
Importing MOF Resource..
Starting Validation.
[SKIPPED WARNINGS]
Creating Top-Down Map...
Generating deployment code
Building: /deployed-sample.jar.
Invoking RMIC.
Building: /deployed-sample.jar.
Generating DDL
Shutting down workbench.
EJBDeploy complete.
0 Errors, 5 Warnings, 0 Informational Messages

D:\temp>jar xvf deployed-sample.jar META-INF
extracted: META-INF/Map.mapxmi
extracted: META-INF/Schema/Schema.dbxmi
extracted: META-INF/Table.ddl
extracted: META-INF/ejb-jar.xml
extracted: META-INF/ibm-ejb-jar-bnd.xmi
extracted: META-INF/ibm-ejb-jar-ext.xmi
extracted: META-INF/MANIFEST.MF
 Chapter 15. Assembling the application 429

The default top-down mapping strategy has changed in WAS Version 4—if we
have been running our 1.0 EJBs in a Version 3.5 production system all our
application data will be stored in a database with a different schema from the one
the default Version 4 mappings would produce. On the face of it, this would leave
us with two choices, neither of which may seem attractive:

� Migrate our database schema to match the Version 4 mapping

� Manually customize our CMP mapping, as described earlier

Fortunately, the EJB deployment tool provides an option that can help solve this
problem. We can specify -35 as an option on the ejbdeploy command line.

When we use this option to generate the schema and map files for the EJB 1.0
entity bean in the VisualAge for Java samples, we get a schema file that contains
the following extract:

<RDBSchema:RDBTable xmi:id="INCREMENTBEANTbl" name="INCREMENTBEANTbl"
primaryKey="SQLReference_1" schema="RDBSchema_1" database="RDBDatabase_1">

We have highlighted the table name in the example—readers familiar with
Version 3.5 of WebSphere will recognize the format of the table name.
430 WebSphere Version 4 Application Development Handbook

Chapter 16. Deploying to the test
environment

In this chapter we describe the process of deployment for the following
environments:

� WebSphere Application Server Version 4 Advanced Edition (AE)

� WebSphere Application Server Version 4 Single Server Edition (AEs)

Relating to these environments, we describe the following tools:

� EARExpander, to expand/collapse enterprise application (EAR) files

� SEAppInstall, to install applications in AEs

� Administrative Console, both for AEs (Web-based console) and AE
(standalone console)

� Application Client Resource Configuration, to configure resources associated
to application clients

� XMLConfig, to export/import configuration data from the administrative
repository

� WSCP, the command-line and scripting interface for administering
WebSphere applications

16
© Copyright IBM Corp. 2001 431

EARExpander command line tool
A new feature of WebSphere Version 4.0, the EARExpander command line tool’s
function is to expand enterprise application files (.ear) into the format desired by
the application server runtime. It can also generate EAR files from a suitable
directory structure (reverse operation).

The usage of the EARExpander tool is shown in Figure 16-1.

Figure 16-1 Usage of the EARExpander tool

An example of expanding an application is shown in Figure 16-2.

Figure 16-2 Expanding an EAR file with EARExpander

If the specified directory for expanding or collapsing does not exist,
EARExpander creates it.

Figure 16-3 shows an example of collapsing a directory into an EAR file.

Usage: java com.ibm.websphere.install.se.EARExpander
-ear <ear file or directory>
-expandDir <directory in which to expand ear>
-operation <expand | collapse>
[-expansionFlags <all | war>]

D:\WebSphereSSE\AppServer\bin>earexpander
-ear ..\installableApps\PiggyBank.ear -expandDir ..\temp\PiggyBank
-operation expand

IBM WebSphere Application Server Standard Edition, Release 4.0
J2EE Application Expansion Tool, Version 1.0
Copyright IBM Corp., 1997-2001

Expanding ..\installableApps\PiggyBank.ear into ..\temp\PiggyBank

D:\WebSphereSSE\AppServer\bin>
432 WebSphere Version 4 Application Development Handbook

Figure 16-3 Collapsing a directory into an EAR file using EARExpander

This tool can be useful when we want to expand an application for viewing and/or
updating (although we can view the application by using the Application
Assembly Tool, we cannot edit single files, such as JSPs).

For example, when we want to change a class file, we can just expand the
module file and change the class (in installed applications we can do this directly
on the directory structure under $WASPATH$\installedApps, but we have to restart
the server afterwards for the changes to take effect).

SEAppInstall command line tool
The SEAppInstall tool is a command line-based tool that allows the user to install
enterprise applications in the WebSphere Application Server 4.0 Advanced
Edition Single Server (for the AE, the enterprise applications are installed using
the Admin Console).

Using this tool to install the applications is equivalent to do the installation from
the browser-based administrative console, because the console calls the
SEAppInstall tool to perform this task. The difference that might make this tool
more useful for experienced users is that it allows several options for each
command, while the console uses the default options, that might not be suitable
in all occasions.

This is the list of features that the SEAppInstall tool provides:

� Install/uninstall enterprise applications

The uninstall option removes the application data from the configuration files,
but by default it does not remove the files from the installedApps folder
(manual deletion is necessary). To remove the files, first stop the server and
then delete them.

D:\WebSphereSSE\AppServer\bin>earexpander -ear ..\temp\PiggyBank.ear
-expandDir ..\temp\PiggyBank -operation collapse

IBM WebSphere Application Server Standard Edition, Release 4.0
J2EE Application Expansion Tool, Version 1.0
Copyright IBM Corp., 1997-2001

Collapsing ..\temp\PiggyBank into ..\temp\PiggyBank.ear

D:\WebSphereSSE\AppServer\bin>
 Chapter 16. Deploying to the test environment 433

To get the files automatically removed using SEAppInstall, select the option
-delete true when executing the uninstall command. The directory structure
is deleted, but not the JAR files included in the modules (for example, utilities
JAR file).

� Export enterprise applications installed in the server as an EAR file with
binding information

� List applications/modules installed in the server

� Extract DDL for database creation from EJB JAR file configuration data (when
using entity beans).

� Validate application and servers configurations

When the option -ejbDeploy true is selected, the SEAppInstall tool calls the
EJBDeploy tool to perform the deployment of all the EJBs in the module. For
usage of the EJBDeploy refer to “EJB deployment tool” on page 418.

The usage of the SEAppInstall tool is shown in Figure 16-4.

When installing an application, precompiling the JSP code (-precompileJsp
true, the default option) means a faster execution of the pages when we first
load them after installation.

In general, when we are installing a module previously assembled with the AAT
(or other tool such as Ant, as we showed in “Using Ant to build a WebSphere
application” on page 197), we should not have to redeploy the EJBs, and all the
necessary binding information should be already included in the module
deployment descriptor, but the SEAppInstall tool provides options for performing
both of these task in case it is necessary.

The SEAppInstall tool updates the server configuration file with the changes due
to the operation performed (includes new data for the newly installed applications
or erases data related to the uninstalled ones). The default value for the server
configuration file is server-cfg.xml (regardless of the configuration file we have
started the server with).
434 WebSphere Version 4 Application Development Handbook

Figure 16-4 Usage of the SEAppInstall command tool

 java com.ibm.websphere.install.se.SEApplicationInstaller
 -install <ear file or directory>
 [-configFile <server configuration file>]
 [-expandDir <directory in which to expand ear>]
 [-nodeName <name of node>]
 [-serverName <name of server>]
 [-ejbdeploy <TRUE | false>]
 [-precompileJsp <TRUE | false>]
 [-validate <app | server | both | NONE>]
 [-denyAll <TRUE | false>]
 [-interactive {TRUE | false}]
 If you selected "-interactive false", you will not be asked an
 questions and you will not be able to specify binding data

 java com.ibm.websphere.install.se.SEApplicationInstaller
 -uninstall <application name>
 [-delete <true | false>]
 [-configFile <server configuration file>]
 [-nodeName <name of node>]
 [-serverName <name of server>]

 java com.ibm.websphere.install.se.SEApplicationInstaller
 -export <application name>
 [-configFile <server configuration file>]
 -outputFile <name of the ear file to create>

 java com.ibm.websphere.install.se.SEApplicationInstaller
 -list <apps | wars | ejbjars | all>
 [-configFile <server configuration file>]

 java com.ibm.websphere.install.se.SEApplicationInstaller
 -extractDDL <application name>
 [-DDLPrefix <Prefix to apply to front of all DDL file names>]
 [-configFile <server configuration file>]

 java com.ibm.websphere.install.se.SEApplicationInstaller
 -validate <app | server | both | NONE>
 [-ear <ear file>]
 [-configFile <server configuration file>]
 If you specify "-validate app" or "-validate both", you must
 include the "-ear" option. If you specify "-validate server"
 or "-validate both", the "-configFile" option is optional.
 Chapter 16. Deploying to the test environment 435

Figure 16-5 shows an example of the output of the SEAppInstall tool for the
installation of an enterprise application (EAR) module.

Figure 16-5 Output of the SEAppInstall tool

D:\WebSphereSSE\AppServer\bin>seappinstall -install
..\installableapps\SampleApp.ear -configFile ..\config\server-cfg.xml
-expandDir ..\installedapps\SampleApp.ear -nodeName 23bk55y -ejbDeploy false
-precompileJsp false -validate both -interactive false
IBM WebSphere Application Server Release 4, AEs
J2EE Application Installation Tool, Version 1.0
Copyright IBM Corp., 1997-2001

Loading Server Configuration from
D:\WebSphereSSE\AppServer\config\server-cfg.xml
Using Server on Node: 23bk55y
Server Configuration Loaded Successfully
Loading D:\WebSphereSSE\AppServer\installableApps\sampleApp.ear
Validating Application DD and Extensions...
Validating class definition of com.transarc.jmon.examples.Inc.IncBean.
Validating method ejbCreate on com.transarc.jmon.examples.Inc.IncBean.
CHKJ2406E: The method Public void
com.transarc.jmon.examples.Inc.IncBean.ejbCreate(com.transarc.jmon.examples.
Inc.IncKey) declared in bean com.transarc.jmon.examples.Inc.IncBean should
return the primary key type com.transarc.jmon.examples.Inc.IncKey. Read
section 9.2.3 (BMP beans) or 9.4.2 (CMP beans) of the EJB 1.1 specification
for details. The EJB 1.1 specification has changed the method signature
required on CMP beans ejbCreate method.
... (other errors in validation)
... (validation of other methods/classes and possible errors)
Access will be denied to all unprotected methods.
Installed EAR On Server
Validating Application Bindings...
... (errors related to bindings)
Validating Server Configuration...
... (errors related to server configuration)
Finished validating Server Configuration.
Saving EAR File to directory
Saved EAR File to directory Successfully
Saving Server Configuration to
D:\WebSphereSSE\AppServer\config\server-cfg.xml
Backing Up Server Configuration to:
D:\WebSphereSSE\AppServer\config\server-cfg.xml~
Save Server Config Successful
JSP Pre-compile Skipped......
Installation Completed Successfully
436 WebSphere Version 4 Application Development Handbook

In the Single Server Edition (AEs) we have only one node (machine) and one
application server. These options can be different for different configuration files
(though there can’t be more than one node or server per file).

The output when uninstalling an application is shown in Figure 16-6.

Figure 16-6 Uninstalling applications with SEAppInstall

The option to list applications is useful when we have several configuration files
with different installed applications. We can list the enterprise application, the
Web modules and the EJB modules (or all of them). Figure 16-7 shows an
example of using this option.

D:\WebSphereSSE\AppServer\bin>seappinstall -uninstall sampleApp -configFile
..\config\server-cfg.xml

IBM WebSphere Application Server Release 4, AEs
J2EE Application Installation Tool, Version 1.0
Copyright IBM Corp., 1997-2001

Loading Server Configuration from
D:\WebSphereSSE\AppServer\config\server-cfg.xml
Server Configuration Loaded Successfully
Removed Application From Server: sampleApp
Saving Server Configuration to
D:\WebSphereSSE\AppServer\config\server-cfg.xml
Backing Up Server Configuration to:
D:\WebSphereSSE\AppServer\config\server-cfg.xml~
Save Server Config Successful
 Chapter 16. Deploying to the test environment 437

Figure 16-7 Listing installed applications using SEAppInstall

Single Server Edition: the browser-based console
In this section we discuss the configuration of the Single Server Edition through
the Web browser.

Starting the application server
Before launching the administrative console in the browser, it is necessary to
start the server. AEs does not install a Windows service to launch the server; this
task is performed by executing a command file:

D:\WebSphereSSE\AppServer\bin\startstd.bat

D:\WebSphereSSE\AppServer\bin>seappinstall -list all -configFile
..\config\server-cfg.xml
IBM WebSphere Application Server Release 4, AEs
J2EE Application Installation Tool, Version 1.0
Copyright IBM Corp., 1997-2001

Loading Server Configuration from
D:\WebSphereSSE\AppServer\config\server-cfg.xml
Server Configuration Loaded Successfully

Installed Applications
--
1) another
2) Server Administration Application
3) sampleApp
4) PiggyBank Application

Installed Web Applications
--
1) Server Administration Application:admin [WebModuleRef_3]: Admin servlets
2) sampleApp:examples [WebModuleRef_2]: example servlets
3) sampleApp:default_app [WebModuleRef_1]: default application
4) PiggyBank.ear:piggy_bank [WebModuleRef_4]: PiggyBank application

Installed EJB Jars
--
1) another:another.ear::deployedtestsejs.jar [EJBModuleRef_3]:
deployedtestsejs jar
2) sampleApp:sampleApp.ear::Increment.jar [EJBModuleRef_1]: null
3) PiggyBank.ear:PiggyBank.ear::PiggyBankEJB.jar [EJBModuleRef_3]: null
438 WebSphere Version 4 Application Development Handbook

The usage of the startstd command is shown in Figure 16-8.

Figure 16-8 Usage of the startstd command

In the Single Server Edition, it is possible to have only one application server
installed and only one machine, as it is intended for unit testing (each developer
can have it installed on his/her machine).

The server configuration files are stored in

D:\WebSphereSSE\AppServer\config

The default file to use when loading the server is server-cfg.xml, though we can
have other configuration files with different installed applications, trace level
settings, and so forth (this acts as having different servers, though we can start
only one at a time, unlike in the Advanced Edition). We will only be able to launch
the applications that are installed in the currently loaded configuration file. The
administrative application is included in a separate configuration file,
admin-server-cfg.xml.

To generate new configuration files, we can edit them by hand or modify the
configuration on the console and then save it to a new file. The console provides
the option of creating a new configuration file using the current one as a
template; this option is useful for users not familiar with the syntax of the
configuration files.

The messages displayed in the command window when starting the server are
essentially in the same format as the ones displayed in the WAS Advanced
Edition standalone Admin Console (a sample output is shown in Figure 16-9).

D:\WebSphereSSE\AppServer\bin>startstd ?help
IBM WebSphere Technology For Developers, Release 1.0
Copyright IBM Corp., 1997-2001

Usage:
 java com.ibm.ws.runtime.StandardServer
 [-configFile <server configuration file>]
 [-nodeName <name of node>]
 [-serverName <name of server>]
 [-traceString <package name>]
 [-traceFile <file name>]

If no configuration file is specified and the environment variable
server.root is set to the WebSphere installation root, then
the default configuration file, server-cfg.xml, will be used.
 Chapter 16. Deploying to the test environment 439

Figure 16-9 Starting the WAS 4.0 AEs server

D:\WebSphereSSE\AppServer\bin>startstd
IBM WebSphere Technology For Developers, Release 1.0
Copyright IBM Corp., 1997-2001

************ Start Display Current Environment ************
WebSphere AEs 4.0.0 n0117.04 running with process name Default Server and

process id515
Host Operating System is Windows NT, version 4.0
Java version = J2RE 1.3.0 IBM build cn130-20010329 (JIT enabled: jitc),

Java Compiler = jitc
server.root = D:\WebSphereSSE\AppServer
Java Home = D:\WebSphere\AppServer\java\jre
ws.ext.dirs = D:\WebSphere\AppServer\java/lib;D:\WebSphereSSE\AppServer/cla

sses;D:\WebSphereSSE\AppServer/lib/ext;D:\WebSphereSSE\AppServer/lib;D:\W
ebSphereSSE\AppServer/web/help

Classpath = D:\WebSphereSSE\AppServer/lib/bootstrap.jar;D:\WebSphereSSE\App
Server/properties

Java Library path = D:\WebSphere\AppServer\java\bin;.;C:\WINNT\System32;C:\W
INNT;D:\IBMDebug\bin;C:\Program Files\ibm\gsk5\lib; D:\IBM Connectors\Enc
ina\bin;D:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;c:\lotus\notes;C:
\ProgramFiles\Pcom;D:\IBM\IMNNQ;D:\WebSphere\AppServer\bin;D:\SQLLIB\BIN;
D:\SQLLIB\FUNCTION;D:\SQLLIB\SAMPLES\REPL;D:\SQLLIB\HELP;D:\WebSphereSSE\
AppServer\bin;c:\PSM;D:\WebSphereSSE\AppServer\bin

Current trace specification = com.ibm.ws.runtime.*=all=disabled
************* End Display Current Environment *************
[01.06.07 11:23:23:504 PDT] 3605e28d Server U Version : 4.0.0
[01.06.07 11:23:23:544 PDT] 3605e28d Server U Edition: AEs
[01.06.07 11:23:23:554 PDT] 3605e28d Server U Build date: Mon Apr 30

00:00:00 PDT 2001
[01.06.07 11:23:23:554 PDT] 3605e28d Server U Build number: n0117.04
[01.06.07 11:23:27:320 PDT] 3605e28d DrAdminServer I WSVR0053I: DrAdmin

available on port 7000
... (Trace messages: launching the Servlet Engine, the HTTP Plugin tool,

loading the applications, etc.)
[01.06.07 11:23:44:745 PDT] 3605e28d Server I WSVR0023I: Server

Default Server open for ebusiness
440 WebSphere Version 4 Application Development Handbook

Launching the administrative console in a browser
To launch the administrative console (after starting the server), enter the
following URL in the browser:

http://servername:9090/admin

Figure 16-10 shows the interface of the browser-based administrative console.

Figure 16-10 WAS Single Server Edition: the browser-based console

The left frame allows us to navigate within the structure of the application server,
while the right frame displays the configuration settings and options (similarly to
the AE edition).

Note that the current server configuration file is displayed in the screen. It is
possible to open other configuration files by clicking on Configuration (top of the
screen) and selecting the file we want to open. We have to refresh the
configuration tree (left pane) manually. This feature lets us switch configurations
for editing without having to stop and restart the server to load another
configuration file.

Figure 16-11 shows the expanded tree.
 Chapter 16. Deploying to the test environment 441

Figure 16-11 The options tree in the browser based console

Administering applications though the console
The browser-based console enables us to perform many configuration tasks.

Installing applications
To install a new application, select Nodes -> nodename -> Enterprise
Applications. The right frame shows a list of the installed applications. By clicking
on Install, a new page is displayed where we enter the application file name
(Figure 16-12).

The next steps guide us through the Application Installation Wizard, allowing us
to select security roles, JNDI bindings for EJBs, virtual hosts and other
parameters. This is equivalent to using the SEAppInstall tool with the option
-interactive true (the default option).
442 WebSphere Version 4 Application Development Handbook

Figure 16-12 Installing an application in the browser-based console

Interactive mode means that we are able to change the JNDI names for EJBs,
EJB resource references or other resources, the virtual host, and so forth. The
application installer extracts the information from the deployment descriptors and
display it in the screen so that we can make changes.

After installing an application, the console displays a warning in the main frame
indicating that the Web server plugin has to be regenerated and the configuration
has to be saved (Figure 16-13).

Figure 16-13 Warnings after installing an application
 Chapter 16. Deploying to the test environment 443

When installing applications through the SEAppInstall tool, it is necessary to
regenerate the plugin configuration manually, by executing GenPluginCfg.bat as
described in “Web server plugin” on page 454, though the configuration is saved
automatically.

The new application is installed under \installedApps, in a folder with the same
name as the EAR file: ..\installedApps\application-name.ear.

Changing configuration settings
Settings related to the internal components of the enterprise application cannot
be changed through the administrative console (use the Application Assembly
Tool or edit the deployment descriptors manually to do this). Using the console
we can modify the settings of the Default Server and install needed resources as
JDBC drivers or DataSources.

The options for the server configuration are listed under Default Server
(Figure 16-14).

Figure 16-14 AEs server configuration settings

When setting up the environment for unit testing, we are interested in configuring
these features:

� OLT settings—activate OLT to debug the application using the Distributed
Debugger (see more about this topic in Chapter 17, “Debugging the
application” on page 467).

� Web container settings—customize the properties for the Web container,
such as allowing persistent sessions or cookies.
444 WebSphere Version 4 Application Development Handbook

� EJB container settings—specify the default DataSource or the passivation
directory for the EJBs.

� Transaction service settings—activate the transaction service to enable
transactions within the server.

� Trace service settings—enable tracing to receive information about the
events in the server (loading applications, invoking components or custom
tracing).

Setting up resources
The resources are structured all in the same fashion: first it is necessary to
create a resource provider (for example, a JavaMail provider or a JDBC driver).
Later, we can create a resource factory relating to the provider, for example, a
JavaMail session or a JDBC DataSource. These resource factories are available
to the enterprise applications installed in the server.

The resources used by the applications are listed under the Resources folder
(Figure 16-15).

Figure 16-15 Resource settings

Here is a brief description on how to set up a DataSource, based on the
PiggyBank application:

1. First install the JDBC driver (or use one of the existing). In our case, because
we are using DB2 as the database for the PiggyBank application, we use one
of the drivers already installed: Db2JdbcDriver, as it suites our needs.

Specify the implementation class as well as the class path where it is located.

Check the product documentation for the list of available drivers.
 Chapter 16. Deploying to the test environment 445

Setup the driver properties as shown in Figure 16-16.

Figure 16-16 Setting up the JDBC driver

2. Then, configure the DataSource using this driver.

Setup the JNDI name and the database name, as well as the pooling
properties (maximum/minimum number of connections, timeouts) as shown in
Figure 16-17.
446 WebSphere Version 4 Application Development Handbook

Figure 16-17 Setting up the DataSource properties

Uninstalling applications
Applications are uninstalled from the Enterprise Applications panel. After
uninstallation, it is necessary to regenerate the plugin configuration (the
appropriate warning appears in the console screen).

Uninstallation through the console does not delete the files from the uninstalled
application (like executing SEAppInstall with the default option -delete false),
so we have to delete them manually.

If we have just uninstalled an application and we want to install another one with
the same name (for example, a newer version of the same application), we have
to stop the server, delete the files, and start the server again before we are able
to make the new installation. If we attempt to delete the files without stopping the
server, the console does not allow us to do it and it displays a screen with
instructions.
 Chapter 16. Deploying to the test environment 447

Stopping the AEs application server
To stop the server, execute:

D:\WebSphereSSE\AppServer\bin\stopserver.bat

The usage of the command is shown in Figure 16-18.

Figure 16-18 Usage of the stopserver command

As usual, the default configuration file name used will be server-cfg.xml, if no
other is specified.

Advanced Edition: the stand-alone console
In this section we discuss the configuration of the Advanced Edition through the
stand-alone console.

Start and stop
WebSphere Application Server Advanced Edition is normally started and
stopped through the Windows Services panel. The service is named IBM WS
AdminServer.

You can also use the Start menu and select Start -> Programs -> IBM
WebSphere -> Application Server v4.0 -> Start Admin Server.

Starting the console
To start the Administrative Console select Start -> Programs -> IBM WebSphere
-> Application Server v4.0 -> Administrative Console.

The console in Version 4.0 is quite similar to previous versions, though several
options have changed to adapt the server to the J2EE model of packaging.
Figure 16-19 shows the user interface.

D:\WebSphereSSE\AppServer\bin>stopserver ?help
stopServer
Syntax: stopServer [-configFile "<server configuration file path>"]
448 WebSphere Version 4 Application Development Handbook

Figure 16-19 Admin Console in WAS 4.0 Advanced Edition

The structure is similar to the Web-based console in the Single Server Edition,
but the stand alone console includes some more options as the J2C Resources
Adapters (for a review on the differences between AE and AEs, see “Differences
between the AE and AEs versions” on page 66).

The Console Messages panel displays the tracing messages of the server and of
the applications that use the WebSphere Tracing facility (see details about this
feature in “Using the WebSphere JRas facility” on page 341).

The Options button lets us select the event level (Fatal, Warning or Audit) as well
as properties for the log file. If we want to examine a trace, we use the Details
button, which displays a window with the complete information for the event. An
example is shown in Figure 16-20.
 Chapter 16. Deploying to the test environment 449

Figure 16-20 Examining trace details in the AE Admin Console

Installing new applications
As in the case of the Single Server Edition, we can choose to install a
pre-assembled enterprise application (EAR file), or a standalone module, so that
the console itself will assemble this module in a new EAR file and deploy its
contents if we require it.

Let’s consider the following scenario: we have a standard client for EJBs
deployed in the application server and we want to unit test the EJBs. In this case
we can deploy the EJB module into the server and use the client to test it, and it
is not necessary to assemble both modules in an EAR file.

Applications are installed using the Install Enterprise Application wizard. This
wizard lets us specify binding information for EJBs, security roles and other
properties such as the virtual host and the server to which the application will be
installed. The last option is the deployment of the module. In general, modules
should have been deployed previously, in the assembly phase (see Chapter 15,
“Assembling the application” on page 389), but we can redo the process if
necessary.
450 WebSphere Version 4 Application Development Handbook

Using the application installation wizard
Figure 16-21 shows the first screen of the wizard.

Figure 16-21 Using the application installation wizard

This is a description of the options available when installing an application:

� Specify role mappings for bean methods

This relates to security roles defined for the module. If any mappings have
been defined at module level, they appear in the list so that we can modify
them.

When the EJBs added to the enterprise application have role mappings
defined for some of their methods but not to all, these other methods appear
in the list in case we want to specify security roles for them.

� Mapping users to roles

Roles defined at the assembly phase for the application have to be mapped
to users in the system where the application server is running.

� Mapping EJB RunAs roles to users

EJBs have RunAs roles defined to relate with other EJBs, and in this step we
have to map these roles to the users of the system that have been mapped to
that specific role (done in the previous step).
 Chapter 16. Deploying to the test environment 451

� Mapping resource references to resources

Resource references used by the application have to be mapped to external
resources.

� Bind EJB to JNDI name

This information is read from the EJB deployment descriptor (and, again, we
can change it if necessary).

� Mapping EJB references to EJB

EJB references in other modules: for example, in the Web module servlets
looking up EJBs directly have to be mapped to the specific EJB they
reference (this is not the case in the PiggyBank application).

� Specifying the default DataSource for an EJB module

If we have not created the specific DataSource we want to use with our
enterprise application, we can skip this section and create it after. Otherwise,
we select it in Select a Datasource.

� Specifying a DataSource for individual CMP beans

This is used when different CMP beans use different DataSources, and it
overrides the default DataSource specification of the previous screen. If no
specific DataSources are specified for CMP beans, they use the default
specified for the module.

� Selecting the virtual hosts for WAR modules

We should create the virtual host we want to use with our application before
(or, if we want to change it afterwards, we have to edit the configuration using
XMLConfig, for example).

Once the enterprise application has been installed using a virtual host, that
information is not visible in the console.

� Selecting the application server

We select the application server for each of the modules integrating our
enterprise application. We can select to install the modules on the same
server, or each of them in a different server (but we must have the servers
created previously).

� Finish and summary information

At this moment, the wizard prompts if the module should be deployed again.
As we have said before, in general we would perform the deployment before
the installation, so it will not be necessary to redeploy the code.
452 WebSphere Version 4 Application Development Handbook

Uninstalling applications
To uninstall an application from the console, it is required that this application is
stopped (though the server where it is running does not have to be stopped to
perform this task).

The console offers the possibility to export the configuration of the installed
application (as an EAR file with updated binding information), so that, if later we
decide to reinstall it again, we can choose this exported file that contains the
most recent binding configuration.

After uninstalling an application, the files are removed from ..\installedApps,
unlike the case of the AEs.

Setting up resources
Resource configuration can be done either before or after the application
installation. As in the case of the Single Server Edition, the resources are
structured as providers and factories.

We now go through the same example of PiggyBank’s DataSource creation to
show how to configure resources in the application server’s Advanced Edition.

The Admin Console provides the Create DataSource Wizard to perform this task.
It allows us to create a DataSource based on an existing JDBC driver, or either
install a new driver for the new DataSource.

In case we do not want to use the wizard, we can create the DataSource and/or
JDBC driver directly under the Resources folder.

Figure 16-22 shows the properties of a new DataSource.

Note: In the Single Server Edition, the equivalent task is performed through
the SEAppInstall tool, with the -export option.
 Chapter 16. Deploying to the test environment 453

Figure 16-22 Creating a new DataSource

� If we create a new driver, we have to install it in the appropriate node(s).

To do this, we select the driver under the JDBC Providers folder, go to Nodes
and click on Install New. In the next panel, we select the node in which the
driver will be installed, and the JAR file containing the driver’s class.

� Create a new virtual host (if necessary); this will be done prior to the
application installation.

Select the Virtual Host folder in the navigation pane, right-click on it and select
New. Then, enter the name of the new virtual host, as well as the needed
aliases, and click on OK to complete the process.

Web server plugin
Web server plugins allow separation between the Web server machine and the
application server machine, and this configuration provides more flexibility in the
architecture of the global solution.
454 WebSphere Version 4 Application Development Handbook

Prior to WebSphere 4.0, the Web server plugin communicated with the
application server using an IBM proprietary protocol, OSE. To solve several
problems due to this configuration, two transport plugins have been
implemented, HTTP and OSE. They communicate with the backend application
server over HTTP and can communicate securely (HTTPS) if needed.

When installing WebSphere Application Server Version 4.0, you are prompted to
specify which plugin to use, so that it will be configured in the Web server
configuration files. Figure 16-23 shows the entries added to the httpd.conf file
for the IBM HTTP Server (IHS).

Figure 16-23 Configuration of the HTTP server plugin for IHS

The HTTP transport plugin
The configuration of the HTTP plugin is stored in a single file (Figure 16-24):

D:\WebSphere\AppServer\config\plugin-cfg.xml

Figure 16-24 HTTP plugin configuration file: an example

LoadModule ibm_app_server_http_module full/path/to/module
AddModule mod_app_server_http.c (Optional)
WebSpherePluginConfig full/path/to/config

<?xml version="1.0"?>
<Config>

<Log LogLevel="Inform" Name="D:\Websphere\Appserver\logs\native.log"/>
<VirtualHostGroup Name="default_host">

<VirtualHost Name="*:80"/>
<VirtualHost Name="*:9080"/>

</VirtualHostGroup>
<ServerGroup Name="Default Server">

<Server Name="Default Server" SessionID="991347369197">
<Transport Hostname="*" Port="9080" Protocol="http"/>

</Server>
</ServerGroup>

<UriGroup Name="PiggyBank webapp_URIs">
<Uri Name="/"/>

</UriGroup>
<Route ServerGroup="Default Server" UriGroup="PiggyBank webapp_URIs"
 VirtualHostGroup="default_host"/>

</Config>
 Chapter 16. Deploying to the test environment 455

The application server regenerates the configuration after any changes that
affect communication with the Web server, for example when adding a new
application server, changing components in the Web applications, defining new
virtual hosts, and so forth.

Single Server Edition
For the Single Server Edition, manual regeneration is necessary. When using the
Web console, it displays a warning message advising to regenerate the plugin
configuration. This can be done through the application server’s property panel
(Figure 16-25).

Figure 16-25 Regenerating the plugin configuration in the AEs console

This link leads us to the Web Server Plug-in configuration page, where we can
regenerate the configuration file by simply clicking on the button.

Advanced Edition
In the Advanced Edition, manual regeneration is also possible through the
administrative console.
456 WebSphere Version 4 Application Development Handbook

Command line plugin generation
For both editions, there is a command line program that regenerates the
configuration of the plugin:

D:\WebSphere\AppServer\bin\GenPluginCfg.bat

However, its usage is different for both versions.

Single Server Edition
Figure 16-26 shows the plugin generator for the Single Server Edition.

Figure 16-26 WebSphere plugin generator, AEs

Because only one node can exist in the Single Server Edition, it has to match the
administration node (so this option is redundant).

The key option in the AEs plugin regenerator is the configuration file of the
server. Because no administrative database is used, the configuration is stored
in XML files in the ..\config directory.

D:\WebSphereSSE\AppServer\bin>genplugincfg -help
IBM WebSphere Application Server Standard Edition, Release 4.0
Plugin Configuration Generator, Version 1.0
Copyright IBM Corp., 1997-2001

Usage: Use one of the following commands

 java com.ibm.websphere.plugincfg.tool.SEGeneratePluginCfg
 -configFile <server configuration file>
 [-outputFile <directory to write the config file to>]
 [-nodeName <name of node>]
 [-serverName <name of server>]
 Chapter 16. Deploying to the test environment 457

Advanced Edition
Figure 16-27 shows the plugin generator for the Advanced Edition.

Figure 16-27 WebSphere plugin generator, AE

Manual plugin regeneration is necessary, for example, after installing/uninstalling
an application using the command line tools (see Chapter 16, “Deploying to the
test environment” on page 431).

Application client resource configuration tool
This is a stand alone tool that allows us to setup resources associated to
enterprise applications’ standalone clients. To launch the tool, execute

D:\WebSphereSSE\AppServer\bin\clientConfig.bat

The configuration data is stored in the EAR client application file, and is used by
WebSphere to resolve resources bindings at runtime.

The tool interface is shown in Figure 16-28.

Figure 16-28 Application client resource configuration tool

D:\WebSphere\AppServer\bin>genplugincfg -help
Usage: java com.ibm.websphere.plugincfg.tool.AEGeneratePluginCfg
 -serverRoot <Product Install Directory>
 -adminNodeName <Administration Server Node Name>
 -nodeName <Local Node Name>
 [-nameServicePort <Administration Server Name Service Port>]
 [[-traceString <trace spec>]
 [-traceFile <file name>]
 [-inMemoryTrace <number of entries>]] |
 [-help | /help | -? | /?]
458 WebSphere Version 4 Application Development Handbook

The resource providers (for example, JDBC drivers) have to be installed in the
client’s application prior to running the code.

The data for this resource configuration is stored in the EAR file under
\META-INF\client-resource.xmi.

Figure 16-29 shows an example of the client configuration file for the PiggyBank
application, setting up the DataSource associated to a DB2 JDBC driver.

Figure 16-29 Application client resource configuration file

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:resources="resources.xmi">

<resources:MailProvider xmi:id="MailProvider_1" name="Default Mail
Provider" description="IBM JavaMail Implementation">

<propertySet xmi:id="null_ps"/>
</resources:MailProvider>
<resources:ResourceProviderRef xmi:id="ResourceProviderRef_1"
 resourceProvider="MailProvider_1"/>
<resources:ResourceProviderRef xmi:id="ResourceProviderRef_2"
 classpath="D:\SQLLIB\java\db2java.zip" resourceProvider="JDBCDriver_1"/>
<resources:JDBCDriver xmi:id="JDBCDriver_1" name="DB2JdbcDriver"
 description="DB2 JDBC Driver"
 implementationClassName="COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource"
 urlPrefix="jdbc:db2">

<factories xsi:type="resources:DataSource" xmi:id="DataSource_1"
 name="PiggyBankDataSource" jndiName="jdbc/piggybank"
 description="PiggyBank DataSource" databaseName="was4ad">

<propertySet xmi:id="J2EEResourcePropertySet_3">
<resourceProperties xmi:id="J2EEResourceProperty_3" name="user"
 value=""/>
<resourceProperties xmi:id="J2EEResourceProperty_4"
 name="password" value="{xor}"/>

</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_2"/>

</resources:JDBCDriver>
</xmi:XMI>

Note: Information related to client resource configuration does not appear in
the standard deployment descriptor files (application.xml, etc.), and will not be
visible through the Application Assembly Tool. This information is only used by
the WebSphere Application Server runtime.
 Chapter 16. Deploying to the test environment 459

Other tools in the Advanced Edition
In this section we provide a brief introduction to other configuration tools
available for WebSphere Application Server 4.0 Advanced Edition. We do not
discuss the tools in depth, as they are broad topics in themselves, but we give a
basic idea of their purpose and how they fit in the unit testing environment.

XMLConfig
The XMLConfig tool allows to export/import configuration files from and to the
WAS repository database in the Advanced Edition. It can be used to setup the
configuration manually, so that a single configuration file can be imported into
WebSphere, and we avoid having to perform a long list of tasks in the console.

The bat file to execute XMLConfig can be found in:

D:\WebSphere\AppServer\bin\xmlconfig.bat

The usage of XMLConfig is shown in Figure 16-30.

Figure 16-30 Usage of XMLConfig

XMLConfig is also accessible as an option from the Admin Console, in Files ->
Import from XML/Export to XML.

The XMLConfig tool provides three main features:

� Full export—the configuration file generated describes the configuration of
the entire domain.

� Partial export—the configuration file includes only data from the resources
that we specify. The list of this resources to export must be detailed in another
XML file, the XML data file.

� Import—a new or modified configuration file is imported to the administrative
repository.

D:\WebSphere\AppServer\bin>xmlconfig -?
Illegal command line:Odd number of arguments specified.

java com.ibm.websphere.xmlconfig.XMLConfig
{ [(-import <xml data file>) ||
(-export <xml output file> [-partial <xml data file>])]
-adminNodeName <primary node name>
[-nameServiceHost <host name> [-nameServicePort <port number>]]
[-traceString <trace spec> [-traceFile <file name>]]
[-substitute <"key1=value1[;key2=value2[...]]">]}
In input xml file, the key(s) should appear as key for substitution.
460 WebSphere Version 4 Application Development Handbook

An example of an exported configuration file is shown in Figure 16-31.

Figure 16-31 Exported XML configuration file

You can edit such a configuration file to:

� Add new virtual hosts using <virtual-host> tags

� Add new JDBC drivers and DataSources using <jdbc-driver> and
<data-source>

� Configure the application server properties under the tag
<application-server>

� Add new enterprise applications by adding <enterprise-application> tags.
 Chapter 16. Deploying to the test environment 461

XMLConfig syntax
In this section we provide a brief introduction to the XMLConfig syntax. Check
the product documentation for further details.

In an XMLConfig document, each tag, representing an object type
(application-server, virtual-host, etc.), has two attributes:

� Name—identifies the specific resource on which the action is taken

� Action—controls the behavior of the import/partial export operation.

The list of available actions follows:

– create
– update
– delete
– locate
– export
– start
– stop
– stopforrestart
– restart
– enable
– disable
– createclone
– associateclone
– disassociateclone

Some of the actions (start, stop) only apply to some resources (for example, you
can start an application server, but not a virtual host), and others apply to specific
operations (for example, export applies only to the partial export operation).

WSCP
WSCP stands for WebSphere Control Program, and it is a command-line and
scripting interface for administering resources in WebSphere Application Server
Advanced Edition.

All console tasks can be performed through WSCP, using commands or scripts.
For example, to emulate a wizard, there is no specific command, but a script can
be written to perform the same task.

WSCP is based on the tool command language (TCL), an scripting language
with a simple and programmable syntax. WSCP extends TCL by providing a set
of commands suitable to manipulating WebSphere objects.
462 WebSphere Version 4 Application Development Handbook

Using WSCP is possible to automate administrative tasks or create custom
procedures. However, the actions performed via WSCP are not immediately
reflected in the console (explicit refresh is required). It is recommended not to
perform concurrent tasks both in the console and WSCP, to avoid
inconsistencies in the configuration data.

In an unit testing environment, we can consider that the administrative tasks are
not going to be many, so we could use only the console, but WSCP provides
ways to automate these administrative tasks. For example, if we have to install
and uninstall our application often to incorporate fixes or new features, we might
consider appropriate to write a WSCP script that automates the task, so that we
do not need to run through the application installation wizard every time.

Performing a unit test: executing the application
Once the application has been deployed and installed on the server, it is time to
begin with the actual unit test process.

Launching the Web application
Start the application server that contains the Web application to test and launch it
in the browser. Figure 16-32 shows the welcome page for the PiggyBank.

Figure 16-32 PiggyBank Web application welcome page
 Chapter 16. Deploying to the test environment 463

Launching the client application with the launchClient tool
WebSphere 4.0 provides a command line tool for launching a client application
installed as an EAR file (it can be an independent EAR file with the external
references appropriately configured, or it can be the global EAR file, as we have
done with PiggyBank):

D:\WebSphere\AppServer\bin\launchClient.bat

The usage of the command is shown in Figure 16-33.

Figure 16-33 Usage of the launchClient tool

D:\WebSphereSSE\AppServer\bin>launchClient
IBM WebSphere Application Server, Release 4.0
J2EE Application Client Tool, Version 1.0
Copyright IBM Corp., 1997-2001

WSCL0012I: Processing command line arguments.
Usage: launchClient [<userapp.ear> | -help | -?] [-CC<name>=<value>] [app args]
where:
 <userapp.ear> = The path/name of the .ear file containing the

client application.
 -help, -? = print this help message

where the -CC properties are for use by the Client Container:
 -CCverbose = <true|false> Use this option to display additional

informational messages.
 -CCjar = The path/name of the jar file within the ear

file that contains the application you wish to
launch. This argument is only necessary when
you have multiple client application jar files
in your ear file.

 -CCBootstrapHost = The name of the host server you wish to connect to
initially. Format: your.server.ofchoice.com

 -CCBootstrapPort = The server port number to use.
 -CCtrace = <true|false> Use this option to have WebSphere

write debug trace information to a file. You may
need this information when reporting a problem to
IBM Service.

 -CCtracefile = The name of the file to write trace information
to.

 -CCpropfile = Name of a Properties file containing launchClient
specific properties.

 -CCinitonly = <true|false> This option is intended for ActiveX
applications to initialize the Application Client
runtime without launching the client application.

where "app args" are for use by the client application and are ignored by
WebSphere.
464 WebSphere Version 4 Application Development Handbook

Figure 16-34 shows the output of the launchClient tool for the PiggyBank
command line application client.

Figure 16-34 Launching the PiggyBank application client

D:\WebSphereSSE\AppServer\bin>launchClient ..\installableapps\piggybank.ear
IBM WebSphere Application Server, Release 4.0
J2EE Application Client Tool, Version 1.0
Copyright IBM Corp., 1997-2001

WSCL0012I: Processing command line arguments.
WSCL0013I: Initializing the J2EE Application Client Environment.
WSCL0035I: Initialization of the J2EE Application Client Environment has
completed.
WSCL0014I: Invoking the Application Client class
itso.was4ad.client.StandaloneClient

Standalone Client Menu

Select an option:

 (1) Create a new customer
 (2) Create a new account
 (3) Display Customer
 (4) Display Account
 (5) Transfer Money
 (6) Cash a check
 (0) Exit

Choice (1-6,0)
 Chapter 16. Deploying to the test environment 465

466 WebSphere Version 4 Application Development Handbook

Chapter 17. Debugging the application

In this chapter we discuss how to debug applications using the following tools:

� VisualAge for Java Version 4.0

� WebSphere Application Server Version 4.0 and the Distributed Debugger and
Object Level Trace (OLT) Version 9.1

Version 9.1 of the Distributed Debugger and OLT software is required to work
with WebSphere Version 4.0—this is the first version that supports the Version
1.3 Java virtual machine (JVM) used by this release of WebSphere.

17
© Copyright IBM Corp. 2001 467

Debugging with VisualAge for Java Version 4.0
The VisualAge for Java debugger is a powerful feature that allows the developer
to debug code within the IDE (debug servlets, JSPs, general Java applications
and even classes outside VisualAge for Java). It is possible to debug either
complete classes or code snippets (in the scrapbook). In this section we describe
the main features of the debugger and how to make the most of the tool when
developing WebSphere applications.

First, let’s take a look at the user interface of the debugger (Figure 17-1).

Figure 17-1 VisualAge for Java debugger interface

The main pane, Debug, shows several frames with different information:

� Threads—a list of all the currently running threads is shown. Threads are
grouped by application.

� Variable—this panel shows a list of the variables visible at the current
debugging stage.

� Value—displays the values of the variables. From this panel, we can change
these values to alter the flow of execution.
468 WebSphere Version 4 Application Development Handbook

� Source—shows the source code for the class and method being currently
debugged.

Variables and their values be detached into a separate window by selecting
Window -> Visible Variables. This action provides more space to inspect
variables with a large amount of data or applications with many variables.

The Breakpoints pane shows a list of the breakpoints and displays the source
code where the breakpoint has been set.

The Exceptions pane shows a list of exceptions recognized by the VisualAge for
Java runtime. The debugger stops when the selected exception is thrown, both if
it is an uncaught exception or if it is managed later in a catch or finally block.

With the debugger it is possible to fix code errors while debugging, without
having to restart the application. Changes to a method mean that only that
method is recompiled (incremental compilation).

Working with breakpoints
Setting a breakpoint in VisualAge for Java is as easy as making a double click at
the left side of a code line in the Workbench or in any source code view (not in
the scrapbook, we describe how to debug code fragments in “Debugging code
snippets” on page 474), or hitting Ctrl+B when selecting a statement.

The debugger provides several options to manage the breakpoints globally: it is
possible to enable/disable or clear all of them at a time.

Breakpoints can also be configured to have a segment of code attached to them,
so that, every time the breakpoint is reached, this code is executed.

This and other settings can be configured through the context menu Modify
(focusing on the breakpoint) for an existing breakpoint, or by selecting
Breakpoint from the context menu of any source line for a new breakpoint.

The configuration window is shown in Figure 17-2.
 Chapter 17. Debugging the application 469

Figure 17-2 Configuring breakpoints in VisualAge for Java

Here we can configure a conditional breakpoint (that is, one that only opens the
debugger if a certain condition is evaluated to the boolean value true), using the
On expression option. For conditions involving looping parameters, we can use
the On iteration option, and set up the iteration number where we want the
debugger to be triggered.

To configure a conditional breakpoint, we can either select one of the
expressions from the list (that contains the 10 last expressions used by
breakpoints), or write a code segment in the window, so that we can make the
breakpoint print a message in the console when it is triggered, for example.

The package com.ibm.uvm.tools, that is part of the IBM Java implementation,
contains the DebugSupport class used by the debugger, that we may also use for
our conditional breakpoints. In particular, the bell method can be useful in
certain circumstances; it causes a “beep” sound to be played by the computer
when the breakpoint is hit.
470 WebSphere Version 4 Application Development Handbook

To print messages on a conditional breakpoint, we can use simple
System.out.println statements, though the expression window allows us to
write any code.

To make the debugger open conditionally when hitting a breakpoint, we use the
variable true. If we use the variable false, any message we include as output
are displayed in the console, but the debugger does not halt at the breakpoint.
Instead of using directly these variables, we can use conditional expressions
that, when evaluated to a true or false boolean value, causes the debugger to
halt at the breakpoint or not.

An example of the usage is shown in Figure 17-3.

Figure 17-3 Working with conditional breakpoints

The Modify window also allows us to set breakpoints in specific threads. If we are
running several threads of the same program, we might not want to have the
same breakpoint set in all of them. This window lets us select the thread for
which the breakpoint will be enabled.

When the debugger hits a breakpoint, we have several options to continue with
the program execution (toolbar buttons or Selected menu):

Step into—the debugger steps into the next executable statement and
halts at its first line.

Step over—the debugger steps to the next statement.

Run to return—skip to the end of the method and go back to the point
where it was called (or stepped into).

Resume—the program continues to be executed until it hits the next
breakpoint (or until the end if there are none).

Suspend—halt a running thread (this option is not available when a
thread is stopped at a breakpoint).

Terminate—the execution of the thread is terminated (there is the
option to stop all the threads for the current program).

Run to cursor—the debugger runs the program up to the point where
the cursor has been placed. After setting the cursor, select Selected ->
Run to Cursor.
 Chapter 17. Debugging the application 471

Exceptions
The debugger stops at uncaught exceptions, but sometimes we might want to
stop at caught exceptions to inspect them and find out about their origin. The
Exceptions pane of the debugger lets us select exceptions by class, package or
hierarchy, so that if any of the selected is thrown, the debugger stops at it
regardless of whether our program catches it or not.

Figure 17-4 shows the Exceptions pane when sorting the exceptions by
hierarchy.

Figure 17-4 Listing exceptions by hierarchy
472 WebSphere Version 4 Application Development Handbook

Debugging external classes
The debugger lets the developer set breakpoints in external classes outside of
the repository (but not in classes running in other JVM; to debug a external Java
program or file, it has to run inside VisualAge for Java).

We set breakpoints in external class files through the Breakpoints pane of the
debugger, selecting Methods -> External .class file breakpoints.

We can select the file from a directory or from a JAR/ZIP file. We can set
breakpoints when entering the methods of the selected class, but if we want to
set breakpoints anywhere in the code, we place the corresponding source file in
the same location as the class file (in the same directory or JAR/ZIP file) or we
specify the location of the source in the debug class path (Figure 17-5).

Figure 17-5 Setting breakpoints in external class files

External breakpoints cannot be conditional.

Inspecting data
We can inspect the values of variables through the Variables and Values panes
of the debugger. The values shown are at the current execution point, so if we
step through the code, we can see the values change. We can also change the
values through the Value pane.

The option Inspect acts in the same way, though it opens a new window
containing all the variable’s data.
 Chapter 17. Debugging the application 473

A watch is an Java expression that the debugger evaluates each time a stack
trace is shown (when hitting a breakpoint or encountering an exception as well
as when advancing the stack frame with the step functions). By using the
Watches panel, we can have a number of expressions defined so that every time
we execute the program, we do not have to inspect the results manually (we get
them automatically in the Watches panel). An example is shown in Figure 17-6.

Figure 17-6 Watches panel

Debugging code snippets
Sometimes, we might have pieces of code we want to debug, and we do not
want to run through the whole application. The scrapbook in combination with the
debugger provides us with the tool we have to perform this task.

To run a piece of code in the scrapbook, we simply copy it in a new page, select
the fragment of code we want to run and hit the Run button. If we also want to
debug it, we click on the Debug button.

It is not possible to set breakpoints in the scrapbook, but we can debug the code
fragment step by step adding the following sentence at the beginning of the
page:

com.ibm.uvm.tools.DebugSupport.halt();

The execution of the halt method causes the debugger to be opened at the first
sentence of the page. Then we can perform the debugging of the code fragment
as any other Java code. The thread associated to the snippet we are executing is
shown in the debugger with the name of the scrapbook page that contains it
(Figure 17-7).
474 WebSphere Version 4 Application Development Handbook

Figure 17-7 Debugging code snippets in the scrapbook

The Debugger has another feature that allows us debugging code fragments: the
Evaluation Area. It lets us run any Java code against the currently selected
object (as if we wrote the code in the Source pane, or in the Value pane if we
have selected the variable this). We can use this feature for example to set or
change parameters related to the current object (for example, the look and feel
for a Swing object, or others as the class path, environment variables).

The way to execute code in the Evaluation Area is similar to the scrapbook: we
select the piece of code and run it (but this time it is related to an object in the
debugger window, for example, this). If we want to trigger the debugger before
executing the code snippet, we include a call to DebugSupport.halt(). Again, the
thread corresponding to the snippet is displayed in the debugger’s Threads
window (Figure 17-8).
 Chapter 17. Debugging the application 475

Figure 17-8 Executing code in the evaluation area

Debugging with the Distributed Debugger and OLT
The Distributed Debugger and Object Level Trace (OLT) are two parts of a single
product we can use to trace and debug code running in WebSphere. The major
benefits in using the Distributed Debugger and OLT are:

� We can debug code running on platforms other than Windows.

� We can debug code running in WebSphere Application Server processes on
both local and remote systems.

� We can collate and display debugging information from multiple processes in
the same window.

The Distributed Debugger and OLT installation code is included on the product
CD with WebSphere Application Server, VisualAge for Java and WebSphere
Studio. In the examples in this chapter we installed the Distributed Debugger and
OLT code in D:\IBMDebug.

In the following sections we describe how to configure WebSphere to enable
debugging support, and how to use the OLT and Distributed Debugger tools.

Tip: Select Window -> Flip Orientation to get this look of the debugger.
476 WebSphere Version 4 Application Development Handbook

Enabling debugging support in WebSphere Application Server
To debug a WebSphere application, it is necessary to attach the debugger to the
application server Java Virtual Machine. To debug a standalone application, we
can either launch the program containing the main method, or attach the
debugger to the Java Virtual Machine of the running application.

To use OLT in combination with the Distributed Debugger, we select either the
Debug only or the Trace and Debug modes.

Both OLT and the Distributed Debugger allow us to trace and debug local or
remote applications—the remote machine does not have to be running the same
operating system as the client. We now describe how to set up the debugger to
connect to a running Java Virtual Machine.

To use the Distributed Debugger in a WebSphere environment, it is necessary to
set up the application server for this purpose.

� The Java classes to be debugged must be compiled with the -g option (to
include debugging information).

� The Java Virtual Machine must be started in debug mode.

� OLT and the Distributed Debugger have to be enabled in WebSphere.

The first task has to be performed prior to the code deployment and installation in
the server, but the other two are specified as administration options. Because
JSPs are compiled in the application server, specifying the debug option for the
JVM assures that the compiled files contain the debug information needed.

Virtual machine debug options
There are a number of options we can specify to control the debugging behavior
of a virtual machine. We use these options in the following examples to configure
the WebSphere JVM to allow us to debug our applications.

Let’s describe the JVM options we use in more detail:

-Xdebug Enables debugging

-Xnoagent Disables the old debug agent (sun.tools.debug, see more
details below)

-Djava.compiler The NONE option disables the just in time (JIT) compiler

Attention: These extended JVM options are specific to the virtual machine
implementation—in this case we describe the IBM virtual machine that runs on
Windows. You may find that options available on other platforms differ.
WebSphere on Windows sets these options when you enable the debugger.
 Chapter 17. Debugging the application 477

-Xrunjdwp Loads the implementation of the Java Debug Wire Protocol
(JDWP)

The Java 2 Platform incorporate a new debugging support with the Java Platform
Debug Architecture (JPDA). JDWP is the interface that communicates between
the debugger’s JVM and the application’s JVM.

The options for -Xrunjdwp that we use in this example are the following:

transport Name of the transport used to connect to the debugger’s JVM
(dt_socket in our case).

server The default value n indicates that the server will attach to the
debug engine at the specified address (or at the automatically
generated address if this parameter is not specified). Specifying a
value of y means that the server will listen for a debug engine to
attach at the address specified.

suspend The value of y (default) indicates that the JVM is suspended before
the main class is loaded. The user then sets a deferred breakpoint
where to stop, and runs the application to that breakpoint. The
value of n indicates that the JVM can proceed with the execution of
the program before the debug engine is attached.

address The port number where the debug engine will attach to the server.
More information about JDPA and its associated interfaces is
available at Sun’s Web site:

http://java.sun.com/products/jpda/readme.html

Enabling support in Advanced Edition
We use the WebSphere AE administrative console to enable OLT and the
Distributed Debugger and set JVM debug options. These settings are all
controlled at the application server level using the application server’s properties.
To change these settings, open the console and use the tree view in the panel on
the left side to navigate to and select the application server whose properties you
want to change (Figure 17-9).

Figure 17-9 Navigating to the Default Server application server in the console
478 WebSphere Version 4 Application Development Handbook

http://java.sun.com/products/jpda/readme.html

Enabling OLT
Select the application server in the console and click the Services tab. Highlight
Object Level Trace in the list of services, and click Edit Properties (Figure 17-10).

Figure 17-10 Enabling OLT in AE

In the Object Level Trace Service dialog check the box to enable OLT. Enter the
host name of the machine where the OLT server is running in the OLT server
host field—typically this is the machine where you collect the trace and run the
OLT and debugger GUI. The default port number of 2102 should normally not be
changed, unless the port is already being used for another purpose.

Enabling the Distributed Debugger
To enable the Distributed Debugger to work in conjunction with OLT we must
enable it from the administrative console. Select the JVM Settings tab and click
Advanced Settings to open the dialog shown in Figure 17-11.

� Check the Enable IBM distributed debugger box highlighted in the figure. You
may also specify a location on the server for the debugger to search for the
Java source files for the code to debug. If the source files are not found on the
server, the debugger GUI prompts you for a local location when you debug
the code—this is described in “Source pane” on page 491.

� If you have not already enabled OLT, a dialog pop-up asks if you want to
enable OLT—OLT must be enabled if you check the Enable IBM distributed
debugger box.
 Chapter 17. Debugging the application 479

Figure 17-11 Enabling the Distributed Debugger to work with OLT in AE

Setting virtual machine options
If you want to use specific options with the Distributed Debugger without OLT, or
if you want to use another JDPA debugger against the applications running in
WebSphere, you can explicitly specify the debugging options for the virtual
machine.

� Select the application server in the console and click the JVM Settings tab.
Click Advanced Settings to open a new dialog (Figure 17-12).

� Check the Enable debug mode box—this causes the console to add these
arguments to the JVM options:

-Xdebug -Xnoagent

� Add to these options to tell the JVM to listen for debugging requests on port
7777, by entering the following in the Debug string field:

-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=7777
480 WebSphere Version 4 Application Development Handbook

Figure 17-12 Entering JVM debugging options in AE

� After starting the application server with these options, you have to start the
debugger and attach to the JVM (see “Attaching the debugger to the JVM” on
page 496).

For the users of the IBM distributed debugger we recommend to follow the steps
in “Enabling the Distributed Debugger” on page 479. We did not test debugging
with another JDPA debugger.

Enabling support in Advanced Edition, Single Server
The AEs Web administration tool provides fields that mirror the settings already
described for the AE console. AEs also allows us to specify debug and OLT
parameters on the command line when we start the application server, and we
found this to be the most convenient way to work.

Figure 17-13 shows the command line options available when issuing the AEs
startServer command. The options related to OLT and debugging are
highlighted.
 Chapter 17. Debugging the application 481

Figure 17-13 AEs startServer command line options

� We enable OLT in AEs by specifying either the -oltEnable or -oltenable
option (the two are equivalent). We can also choose to specify options to
change the OLT server host, which defaults to the local host if not specified,
and the OLT server port, which defaults to 2102 if not supplied.

� We enable debugging by specifying the -debugEnable or -debug
options—again, the two are equivalent. We can also specify a port for the
JVM to listen on; the default port number is 7777.

� The command we issue to start our AEs application server, enabling both
OLT and debug is:

startServer -oltEnable -debugEnable [-host hostnameUserInterface]

This would be the typical usage of this command, accepting the defaults for both
OLT and debugging, with the OLT server code running on the same machine as
AEs—likely to be the case if you are a developer debugging code on your own
machine. Specify the -host option if you run the OLT and debugger user
interface on another machine.

D:\work\src>startServer -usage

IBM WebSphere Application Server
Application Server Launcher
Copyright (C) IBM Corporation, 2001

Usage:
 startServer
 [-configFile <config file name>]
 [-nodeName <node name>]
 [-serverName <server name>]
 [(-oltEnable | -oltenable)]
 [(-oltPort | -port) <OLT port number>]
 [(-oltHost | -host) <OLT hostname>]
 [(-debugEnable | -debug)]
 [-jdwpPort <JDWP port number>]
 [(-debugSource | -debug_cp) <JDWP souce path>]
 [(-serverTrace | -traceString) <server trace string>]
 [(-serverTraceFile | -traceFile) <server trace file name>]
 [-script [<script file name>]
 [-targetOS <operating system name>]]
 [-noExecute]
 [-usage]
 [-help]
 [-verbose]
482 WebSphere Version 4 Application Development Handbook

Using Object Level Trace
Object Level Trace (OLT) is a distributed object tracing facility that allows us to
see the relations between servlets and JSPs involved in a Web application
request process, and in combination with the Distributed Debugger, allows to
debug distributed code.

The OLT consists of a GUI client and a trace server. When we configure
WebSphere to use OLT, we specify the hostname and port for the OLT server.
WebSphere connects to the OLT server and sends it application trace events.
More than one application server can connect to the same OLT server at the
same time, enabling the OLT server to collate trace from multiple servers.

The OLT GUI also connects to the server—it takes the collected trace events and
presents them in a graphical display for analysis. We start the OLT GUI
(Figure 17-14) and the local OLT server using this command:

D:\IBMDebug\bin\olt.exe

Figure 17-14 Initial OLT GUI
 Chapter 17. Debugging the application 483

Configuring OLT
From the initial screen we can select one of the following trace and debugging
modes:

� Trace only

� Debug only

� Trace and debug

� No trace and debug

The debug modes operate OLT in conjunction with the Distributed Debugger, so
that breakpoints set in OLT trigger the debugger, and we can see at the same
time the flow of the application and the possible code errors.

Figure 17-15 shows the OLT client settings (File -> Preferences) when the client
is installed in the same machine as the OLT server. It is possible to have
distributed configurations where the application server, the application client, the
OLT server and the OLT client are running in different machines, though it is
more common to have the OLT server and client in the same machine.

Figure 17-15 OLT settings
484 WebSphere Version 4 Application Development Handbook

Reading tracing information
The graphical interface of the OLT client is shown in Figure 17-16.

Figure 17-16 OLT graphical interface

Each node represents a method call, and the arrows indicate the flow of the
program.

A trace line is an horizontal line connecting events running under the same
execution thread. Each trace line represents one component (servlet, JSP, client
application) running in the application server. Events can be defined as method
calls, return from method calls or start or end of a process.

The main elements of the trace window are shown in Figure 17-17. For more
information about the graphical representation, check the product
documentation.
 Chapter 17. Debugging the application 485

Figure 17-17 Reading OLT traces

The status lines at the bottom of the window provide information identifying the
location of the selected event and the current event:

� The selected event (highlighted green by default) is the last event clicked with
the left mouse button.

� The current event is the event that the mouse pointer is currently positioned
over. As you move your pointer, the current event changes.

An example of the status line display is shown in Figure 17-18.

Figure 17-18 Status line information

We can choose two displays for the tracing:

� Partial order display (default, shown in Figure 17-17)—events are not always
drawn in the sequence in which they happened. The goal of this display is to
represent as many events as possible in the trace screen. However, the
casual relationships between elements are preserved.

� Real time display—shows the real order for the sequence of events and
timing information (Figure 17-19).

Selected: receive reply “_jspService” [23bk55y:37087526:21:itso.was4ad.webapp.
controller.ControllerServlet,#11]

Current: start [23bk55y:73768374:23:transfer1_jsp_0,#0]

Host name

Object hash code: traceID

Object name Start/exit
points

Object
method
calls
486 WebSphere Version 4 Application Development Handbook

Figure 17-19 Traces in real time display

The display properties can be changed through File -> Preferences -> OLT ->
Display. This window also allow us to enable Performance Analysis.

Performance Analysis lets us monitor the time between any two calls. By setting
up a maximum time, we can control if the call takes more time than the
established maximum, so that we can detect possible bottlenecks or slowness in
the functions. Figure 17-20 shows how to set the time intervals.

Figure 17-20 Configuring the performance analysis parameters
 Chapter 17. Debugging the application 487

Calls exceeding the defined time interval are shown in red (default color) in the
traces window (Figure 17-21).

Figure 17-21 Viewing the performance analysis data in the traces window

It is possible to save the trace to a file if we want to analyze it afterwards, or
transport it to another machine.

Tracing local and remote applications
Tracing a local application means that the OLT server and client are installed on
the same machine as the application server. Then, the host name specified in the
application server when enabling OLT can be simply localhost.

For remote applications, we specify the fully qualified network name of the
machine where the OLT server is installed.

See details about setting up the application server for OLT and debugging in
section “Enabling debugging support in WebSphere Application Server” on
page 477.

Object method call exceeding
the time interval
488 WebSphere Version 4 Application Development Handbook

Setting breakpoints
Breakpoints can be set for any debuggable event. Debuggable events in the OLT
graphical interface are represented by filled circles (see Figure 17-17 on
page 486).

The Breakpoints menu also provides the option to set breakpoints in any object
method that is part of the trace. Figure 17-22 shows an example of how to set a
method breakpoint using this feature.

Figure 17-22 Creating method breakpoints in OLT

The option List Method Breakpoints allows us to enable, disable or delete any of
the breakpoints we have set.

With OLT we cannot use more types of breakpoints than the method type, but
more options are available when using the Distributed Debugger (which is more
appropriate to perform in-depth debugging).

Setting breakpoints in OLT would be done before launching the Distributed
Debugger, where we perform the “hard” debugging work.

If we select the Step-by-step Debugging Mode, OLT stops at every debuggable
method of the trace, prompting us to enter the method, and then the debugger is
automatically launched to connect to the running JVM or process.

Using the Distributed Debugger
The Distributed Debugger is a client/server application that allows to debug
programs both locally or through a network connection. It is composed of a
server, or Debug engine, and a client GUI where we can set up breakpoints and
control the execution of the debugged applications. Both can be installed in the
same or in different machines (we talk more about configurations in the next
sections).
 Chapter 17. Debugging the application 489

It is possible to debug programs in several programming languages (compiled,
as C or C++, or interpreted, as Java), though we only focus on Java applications
in this book. For more information about other possibilities, check the product
documentation.

With the Distributed Debugger it is possible to debug different applications
simultaneously, with applications located in different systems (locally or over the
network). The information displayed for each application depends on the debug
engine the client is connected to.

Starting the debugger
The Distributed Debugger program can be launched from:

D:\IBMDebug\bin\idebug.exe

Several options are available through a command line startup (Figure 17-23) and
we provide more details on some of the options in the following sections.

Figure 17-23 Idebug command line parameters
490 WebSphere Version 4 Application Development Handbook

The graphical interface
Figure 17-24 shows the graphical user interface of the Distributed Debugger.

Figure 17-24 Distributed Debugger user interface

Source pane
The Source pane displays the source code for the program being debugged.
When we are debugging an application, the debugger searches for the source
code and prompts us to specify the location if it cannot find the source code
(Figure 17-25).

Monitor and
Locals pane

Breakpoints, Packages
and Stacks panes

Source pane
 Chapter 17. Debugging the application 491

Figure 17-25 Locating source code files

No source code is displayed if we have not compiled our classes including the
debugging information.

It is possible to specify to the Distributed Debugger where to look for the source
code (Figure 17-26).

Figure 17-26 Specifying the source search path

You can set the source search path either before you launch the program from
the Load Program dialog by clicking on the Advanced button, or while you are
debugging the program from the Source menu.

Breakpoints pane
The Breakpoints pane displays a view of the breakpoints we have set in the
application we are debugging. In this pane we can add new breakpoints or
modify the properties of the existing ones.

Tip: You can also specify the debugger source path using the DER_DBG_PATH
environment variable. If you include this variable in your environment you can
avoid having to set the source path each time you restart the debugger. You
must set the variable before starting the debugger.
492 WebSphere Version 4 Application Development Handbook

We can configure three types of breakpoints:

� Line breakpoints—triggered before the code in the specified line is executed

� Method breakpoints—triggered when the specified method is called

� Watchpoints—triggered when class field being monitored is modified
(available only for Java if the JVM supports it)

We can also see the properties of each breakpoint: if it is enabled, or for which
thread it is enabled (Figure 17-27).

Figure 17-27 Breakpoints pane

Packages pane
The Packages pane displays a list of the packages used by the application. The
<default> package includes the JSPs.
 Chapter 17. Debugging the application 493

The context menu allows us to set breakpoints for the methods, as well as to see
the Properties information for the elements (for example, if the classes include
debug information). An example for the PiggyBank Controller Servlet is shown in
Figure 17-28.

Figure 17-28 Packages pane

Stacks pane
The Stacks pane provides a view of the stack in each thread of the program we
are debugging.

Monitors pane
The Monitors pane (Figure 17-29) shows a list of the variables and expressions
that we have selected to monitor. We can enable, disable or delete the monitored
elements through this pane (right button menu). Options concerning all the
monitored elements are available through the Monitors menu.
494 WebSphere Version 4 Application Development Handbook

Figure 17-29 Monitors pane

This pane is useful when we want to monitor global variables throughout the
debugging process. To see the current value of a variable, we suggest to activate
the Tool Tip Evaluation for variables, either in the Source menu or through File ->
Preferences -> Debug (Figure 17-30).

Figure 17-30 Enabling the tool tip evaluation for variables
 Chapter 17. Debugging the application 495

This option provides a “hover help” on variable values in the source pane, so that
at any time we can view the value of a variable simply by pointing at it
(Figure 17-31).

Figure 17-31 Using the tool tip evaluation on the source pane

Attaching the debugger to the JVM
After setting up the environment, we are ready to attach to the application
server’s JVM. It is possible to use the command line arguments of idebug.exe to
provide the data, but if no arguments are used, we select File -> Attach and
specify the appropriate data (Figure 17-32).

Figure 17-32 Attaching to a local JVM with the Distributed Debugger
496 WebSphere Version 4 Application Development Handbook

To attach to a running JVM from the command line, we use the command shown
in Figure 17-33.

Figure 17-33 Attaching to a local JVM through the command line

� The -a option indicates the attachment, and the 0 indicates that it is made to a
JVM.

� If we are attaching to a local JVM (the application server and the debugger’s
daemon and client are in the same machine), we use localhost as the host
name.

� If we are attaching to a remote JVM but the debugger’s daemon and client
are in the same machine, we use the same command, but specifying the
name of the machine where the application is running as the host name.

At this point you can run the application. See “Working with breakpoints” on
page 499 on how to set breakpoints to stop the application. You can also set
deferred breakpoints in classes that have not been loaded yet.

Attaching to a different machine
If we have the debugger’s daemon installed in a different machine than the
interface, we first start the daemon connecting to the running JVM
(Figure 17-34).

Figure 17-34 Starting the debugger’s daemon remotely

� The debuggerhostname is the TCP/IP name or address of the machine where
the debugger’s interface will be running.

� The hostname is the TCP/IP name or address of the machine where the JVM
we want to attach to is running (they can be both the same). If the daemon
and the JVM are in the same machine, we use localhost instead of the
hostname.

Other irmtdbgj options are shown in Figure 17-35.

idebug -a0 -host=hostname -password=7777

irmtdbgj -qhost=debuggerhostname -quiport=8001 -host=hostname
-password=agent_password_or_port_number
 Chapter 17. Debugging the application 497

Figure 17-35 Irmtdbgj options

After starting the daemon we start the interface connecting to the daemon
(Figure 17-36). The default port for connecting to the daemon is 8000.

Figure 17-36 Starting the debugger’s interface

You would also use this command to attach to the WebSphere Application Server
when using the Distributed Debugger without OLT. The qport would be the
address specified in the -Xrunjdwp options (Figure 17-12 on page 481).

Usage: irmtdbgj [debugger options] [jvm attach options]
 [ui daemon options [class [parameters]]]

debugger options:
 [-help] [-multi] [-qquiet] [-qfilter=<filter file>] [-lang=<lang>]
 [-qport=<service port>] [-jvmargs=<args>]
where:
 -help help for command
 -multi allows connections from multiple front ends
 -qquiet suppresses irmtdbgj output
 <filter file> file containing the list of packages not to be debugged
 <lang> is the console locale (eg. en_US, jp_JP)
 <service port> is the port on which the engine will listen (default 8000)
 <args> are the arguments passed to the JVM which will run the

application to be debugged

jvm attach options:
 [-host=<hostname> -password=<password>]
where:
 <hostname> is the host name of the JVM to attach to

(name or IP address)
 <password> is the agent password of the JVM to attach to

ui daemon options (auto UI invocation):
 [-qhost=<uidhost>] [-quiport=<uidport>] [-qtitle=<uidtitle>] [-s]
where:
 <uidhost> is a UI Daemon's host name
 <uidport> is a UI Daemon's port (default 8001)
 <uidtitle> is the title for the debug session in the UI
 -s causes the debugger to run the application after attach
 (default is to stop the application after attach)

idebug -a0 -qhost=daemonhost -qport=8000
498 WebSphere Version 4 Application Development Handbook

When using OLT in combination with the Distributed Debugger, it is not
necessary to launch the debugger separately: OLT launches the program when it
encounters the first method breakpoint set (or, if we are operating under the
step-by-step mode, when it encounters the first debuggable method), and the
debugger will attach automatically to the remote JVM.

To stop debugging and continue with the normal flow of the application, we use
the option Detach Program. We can always reattach to the JVM at any time by
activating a breakpoint or the Step-by-step debug mode in OLT.

Debugging Web applications with the debugger
In this section we explain the techniques to debug Web applications with the
Distributed Debugger.

Working with breakpoints
We have already listed the three types of breakpoints available for the
Distributed Debugger:

� Line breakpoints

� Method breakpoints

� Watchpoints

It is possible to set line breakpoints by double clicking on the line number in the
Source pane. The breakpoint information is automatically added to the
Breakpoints pane.

When creating a breakpoint in the Line Breakpoint dialog (Breakpoints -> Set
Line or Set Method), you can create a breakpoint in a class that is not yet loaded
by selecting the Defer Breakpoint check box. The breakpoint is enabled when
that DLL or package is loaded, and then it behaves as a normal breakpoint.

Whenever the debugger stops on a breakpoint, the suspended thread is shown
in the Stacks pane. In the Locals pane, we can see the subelements of the trace
(it is possible to specify the number of subelements to be displayed), including
the variables. At this point we can change the variables values to vary the
execution path of the program (Figure 17-37).

Attention: When using the Distributed Debugger and you click the Terminate
button (or select Debug -> Terminate), the program does not stop the current
thread, but the whole JVM—in the case of a WebSphere application this
means the WebSphere Application Server itself is stopped.
 Chapter 17. Debugging the application 499

Figure 17-37 Working with breakpoints in the Distributed Debugger

When stopping in a breakpoint, the options available for continuing with a step by
step execution are the following:

Step over—to skip over the current statement

Step into—to step into the current message

Step debug—to step into the next debuggable statement

Step return or step out—to exit the current method and go back to
the calling method

Only the Step debug option is different from the debug options available with
VisualAge for Java.
500 WebSphere Version 4 Application Development Handbook

If we select Step debug, the debugger does not step into the base class code;
this is very useful, because we want to debug the code we wrote, not the JDK
classes. The debugger looks in the following packages to check if a method is in
a base class:

– java.*
– javax.*
– sun.*
– com.sun.*
– com.ibm.*
– org.omg.*
– org.xml.*
– org.w3c.*

If we want to add other classes to the base class list (so that the debugger
doesn’t step into them during the execution), we can add an option to the
DEBUG_OPTIONS when starting the application server (that would be in the
startServer.bat file for AEs or in the JVM settings for the corresponding
application server in AE’s console):

-qfilter=%WAS_HOME%\bin\debug.lst

Where debug.lst is a plain text file containing the base class list. An example is
shown in Figure 17-38.

Figure 17-38 An example of a base classes list

java.*
javax.*
sun.*
com.sun.*
org.omg.*
org.xml.*
org.w3c.*
com.ibm.som.*
com.ibm.CORBA.*
com.ibm.debug.*
com.ibm.IExtendedNaming.*
com.ibm.IExtendedLifeCycle.*
com.ibm.CBCUtil.*
com.ibm.IManagedClient.*
com.ibm.IManagedCollections.*
com.ibm.ISessions.*
com.ibm.IQueryManagedClient.*
com.ibm.IExtendedQuery.*
com.ibm.ICollectionBase.*
 Chapter 17. Debugging the application 501

Another function provided by the Distributed Debugger is the Run to location
function. To use it, we select a statement in the Source pane and execute this
option (right button menu or Debug -> Run to Location). The debugger runs the
program up to the specified location (if no active breakpoints are hit). This is
useful when we want to skip sections of code not interesting for debugging
purposes.

Exceptions
The Distributed Debugger allows us to select from a list of recognized exceptions
that stop the execution of the program if thrown (they can be uncaught
exceptions or exceptions handled in a catch or finally block).

We select the exceptions to be monitored in File -> Preferences -> Debug ->
ProcessName -> Exception Filter Preferences Settings (Figure 17-39).

Figure 17-39 Selecting exception filtering in the Distributed Debugger

When the debugger encounters an exception, it displays the exception name and
it points to the code line where it was thrown in the Source pane, if the source
code is available.

For example, if we query a customer number that is not in the database, the
program throws a NullPointerException when trying to access retrieved data
(Figure 17-40).
502 WebSphere Version 4 Application Development Handbook

Figure 17-40 Exception detected by the Distributed Debugger

Whenever an exception is detected by the debugger, we are able to inspect the
data in the Locals pane. In this example, we see that the customer variable is
null, which causes the exception to be thrown (Figure 17-41).

Figure 17-41 Inspecting data after an exception detection

you can enlarge the
dialog box to see the
whole text
 Chapter 17. Debugging the application 503

Two options are available to continue the execution:

� Step exception

� Run exception

With Step exception, the debugger stops at the catch block handling the
exception (if any), or at the method that started the JVM thread if it is an
uncaught exception.

Run exception continues the execution of the program, stopping at any catch or
finally blocks (as Step exception), if any. For an uncaught exception, the
debugger itself handles it (writing the data to a command window).

Inspecting data
If we want to keep track of a variable value, the Distributed Debugger gives us
the possibility of adding the variable to the Monitors pane (see Figure 17-29 on
page 495), so that we can keep control of its value during the execution process.

We can add variables to the Monitors pane using the Monitors menu, or by
double clicking on the selected variable declaration (we have to enable this
option in the Preferences window: Debug -> Add to program monitor on double
click). We can change the values of these monitored applications in the Monitors
pane (in a similar way to other non-monitored variables in the Locals pane).

Debugging standalone applications with the debugger
To attach the Distributed Debugger to a running standalone application, Java
1.3.x applications have to be executed with the options shown in Figure 17-42.

Figure 17-42 Executing Java 1.3.x applications for debugging

The tools.jar file contains the JPDA classes and is passed using the
-Xbootclasspath option.

Check the Distributed Debugger documentation for details on other options.

Other JVM options for the program, such as class path entries, can be included
with the former. When executing the program, we get this output in the command
line:

Listening for transport dt_socket at address: 2121

java -Xdebug -Xnoagent
 -Djava.compiler=NONE
 -Xbootclasspath/a:<WAS_HOME>/java/lib/tools.jar
 -Xrunjdwp:transport=dt_socket,server=y,suspend=n <classname and args>
504 WebSphere Version 4 Application Development Handbook

We can force the JVM to listen in a specific port number by adding
address=<portnumber> to the -Xrunjdwp option (Figure 17-43).

Figure 17-43 Specifying a JVM port

Once we have this port number, we can connect to the running JVM from the
debugger’s interface or from the command line. An example of connecting
through the interface is shown in Figure 17-44.

Figure 17-44 Attaching to a local JVM running a Java client

To perform the attachment through the command line we use the command
shown in Figure 17-45.

Figure 17-45 Attaching to a JVM machine running an application client

We can also use localhost as machine ID for local attachment.

For remote attachment, we start the debugger daemon listening on the JVM port,
as we have described previously (Figure 17-46).

-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=portnumber

idebug -a0 -password=2121 -host=machineid
 Chapter 17. Debugging the application 505

Figure 17-46 Launching the debugger daemon

Then we launch the debugger client program (Figure 17-47).

Figure 17-47 Launching the debugger client

The hostname is the TCP/IP name or address of the machine where the
debugger daemon is running (if all the three hosts are the same, then we perform
local debugging, so we use the commands described before for this purpose).

If we are using WAS 4.0, we must use the launchClient command line program
to launch our J2EE client application, instead of doing it directly by the Java
runtime. We can find this utility program in

D:\WebSphere\AppServer\bin\launchclient.bat

Its usage is described in “Performing a unit test: executing the application” on
page 463. launchClient does not include the -Xrunjdwp option that allows us to
get or specify the JVM port number, but if we are going to use this tool to launch
our client application, it is easy to edit the file and add the option (Figure 17-48).

Figure 17-48 Editing the launchClient.bat file to include JVM port information

irmtdbgj -qhost=workstation_id -quiport=8001 -host=hostname -password=2121

idebug -a0 -qhost=hostname -qport=8000

@echo off
REM Usage: launchClient [<ear-file> | -help | -?]

setlocal
call "%~dp0setupCmdLine.bat"

set NAMING_FACTORY=com.ibm.websphere.naming.WsnInitialContextFactory

%JAVA_HOME%\bin\java %CLIENTSAS% -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=n

-Dws.ext.dirs=%WAS_HOME%/classes;%WAS_HOME%/lib/ext;%WAS_HOME%/lib;%WAS_HOME
%/web/help;%WAS_HOME%/properties;%DBDRIVER_PATH% -Dcom.ibm.CORBA.Bootstrap
Host=%COMPUTERNAME% -Djava.naming.factory.initial=%NAMING_FACTORY%
-Dserver.root=%WAS_HOME% -jar %WAS_HOME%/lib/bootstrap.jar
com.ibm.websphere.client.applicationclient.launchClient %*

endlocal
506 WebSphere Version 4 Application Development Handbook

Then, when we launch the application, we get the same message about the port
number in the command line (Figure 17-49).

Figure 17-49 Using the edited launchClient command line tool

We take the port information and attach to the JVM locally or remotely in the
same way as before. Then we are ready for debugging.

Debugging application clients is not different from debugging Web applications.
We are prompted to locate the source files if necessary, and we can work with
breakpoints, as in any other case.

An example where we are debugging the PiggyBank Swing application client is
shown in Figure 17-50.

Note: Our example illustrates modifying the Windows version of the
launchClient script—the same principle also works on UNIX platforms, but
the scripting languages differ.

D:\WebSphereSSE\AppServer\bin>launchClient
..\installedapps\piggybank-swing.ear -CCjar=pb-swingclient.jar

Listening for transport dt_socket at address: 2363
IBM WebSphere Application Server, Release 4.0
J2EE Application Client Tool, Version 1.0
Copyright IBM Corp., 1997-2001

WSCL0012I: Processing command line arguments.
WSCL0013I: Initializing the J2EE Application Client Environment.
WSCL0035I: Initialization of the J2EE Application Client Environment has
completed.
WSCL0014I: Invoking the Application Client class
itso.was4ad.client.swing.SwingStandaloneClient
 Chapter 17. Debugging the application 507

Figure 17-50 Debugging a client application using the Distributed Debugger

Debugging WebSphere Studio code
To debug the project files in WebSphere Studio, they must be compiled with the
debug flag on and published to an application server that has the debug and OLT
option enabled.

In the case of WAS 4.0, it is a requirement that we assemble the Web module
before publishing to the server (see Chapter 10, “Development using WebSphere
Studio” on page 237 for details about publishing Web archive files, and
Chapter 15, “Assembling the application” on page 389 for general details about
assembling the application modules).
508 WebSphere Version 4 Application Development Handbook

Studio provides the Debug publish option, that compiles and publishes the java
files and JSPs that we select. We can use this option to publish the class files to
a temporary location so that afterwards we can assemble them into the Web
archive (WAR file) for deploying in the server. This way, the classes contain the
debug information necessary for later debugging.

The first thing we have to do in Studio prior to compiling and publishing the Java
files is setting the debug server for each publishing stage (or for the stage where
the debuggable code is). Figure 17-51 shows an example of setting up a debug
server for the Test stage.

Figure 17-51 Setting up a debug server in Studio
 Chapter 17. Debugging the application 509

To compile the java files and JSPs and publish them to the Debug Server, we use
the Debug Publish option, accessed through the Project menu (Figure 17-52).

Figure 17-52 Using the Debug Publish option in Studio

The Non-debug Publish option compiles and publishes the selected files without
debug information. Query Server Status is used to verify that the server is
running. We can start the debug server directly enabling OLT and the debug
mode, if we have selected this options when setting up the debug server for the
current stage.

When using WAS 4.0 as the application server, we can test the just-published
files only if we assemble them in a Web archive file, or if we are using this Studio
feature to replace old files already deployed in the server.

For example, consider the case where we have already assembled and
deployed the PiggyBank application in WAS. Then, by performing some unit
tests, we discover that several JSPs have to be modified. We can do this in
Studio and then publish them directly on the debug server (though in this case it
is not necessary to compile the JSPs, because the application server compiles a
JSP the next time the JSP is invoked).

We can set up different debug servers depending on the stage the application is
in (using WAS 4.0 Advanced Edition, which allows to have several servers, but
not for Single Server Edition, where we can only start one server per machine).
510 WebSphere Version 4 Application Development Handbook

A special case: how to debug a JSP
JSPs are “harder” to debug than conventional Java classes because of their
combination of HTML and Java code: we cannot import them in VisualAge as
standard code, but we can take other approaches:

� In VisualAge for Java:

– Import the compiled servlet code and debug it with the VisualAge for Java
debugger

– Use the JSP execution monitor

� Outside VisualAge for Java (from WebSphere Studio or directly from the
application server where the application has been installed):

– Use external debugging tools, such as the Distributed Debugger

We now illustrate the different methods and their advantages and disadvantages.

Debugging JSPs in VisualAge for Java
In this case, we have the Java code needed to run the application in the
VisualAge for Java repository (servlets, JavaBeans), and we publish the Web
files (HTML, JSPs) in the WebSphere Test Environment folder:

d:\IBMVAJava\ide\project_resources\IBM WebSphere Test Environment\
hosts\default_host\default_app\web

With Studio, it is easier to define a VisualAge publishing target so that we can
publish the Web files automatically (for more information about this, see
“Publishing stages and publishing targets” on page 241).

We then launch the WebSphere Test Environment (WTE). There are a number of
options related to JSPs and we can perform the debugging tasks in several ways
combining these options.

Debug a JSP without importing the code to VisualAge for Java
To avoid importing the generated code to VisualAge for Java, we select the
option Load generated servlet externally in the WTE (see Figure 11-7 on
page 274). The code is stored in:

...\IBM WebSphere Test Environment\temp\JSP1_1\default_app

Later, if desired, we can import the code to the workbench to debug it.

When we are performing exhaustive debugging of the JSPs, changing the code
frequently to fix errors or to improve details, importing the generated servlet each
time increases the VisualAge for Java repository unnecessarily.
 Chapter 17. Debugging the application 511

We have two suboptions for external loading of the generated code:

� Halt at the beginning of the service method

� Enable JSP source debugging

Halt at the beginning of the service method
This option sets a breakpoint at the beginning of the service method, after which
we can continue the execution step by step or bypassing sections of code.

The code shown in the debugger window is the generated servlet code
(Figure 17-53). We can set breakpoints and execute step by step as we would do
with any Java class, but the Java code is stored outside of the repository.

Figure 17-53 Halting at the beginning of the service method
512 WebSphere Version 4 Application Development Handbook

Enable JSP source debugging
This option allows to debug the JSP source with the VisualAge for Java
debugger. We cannot change the code (because the generated Java servlet is
not visible) and correct the possible errors. We should use the JSP editor we
have used to create the pages, for example Studio, which provides a compiler
that lets us do a first test). To enable a more exhaustive debugging, it is better to
import the code and debug it as any other Java class.

Debug a JSP by importing the code
In this case, we do not select any options in the WTE window. The JSP compiler
compiles and imports the code into the Workbench. We have to go through a first
execution to get this generated code so that after we can debug it in the usual
way by setting breakpoints for future executions.

The generated servlet code for the JSP can be found in the Workbench in the JSP
Page Compile Generated Code project(Figure 17-54).

Figure 17-54 JSP compiled code in VisualAge for Java

The generated servlet reads the HTML content of the JSP from a file stored
under the generated code directory

...\IBM WebSphere Test Environment\temp\JSP1_1\default_app\etc\

and sends it back to the browser combined with the appropriate dynamic data.

However, debugging the JSP using the generated code means that we cannot
see the HTML output (which might be interesting in some cases), and the
generated servlet code is difficult to read, except for very simple JSPs.

We can fix small errors in the generated Java servlet for debugging purposes,
but the errors must really be fixed in the JSP source code, and then recompiled.
 Chapter 17. Debugging the application 513

Import of the generated servlet can fail if “bad” Java code has been inserted into
the JSP (for example a missing bracket or semicolon). In this case the JSP
compiler issues error messages. If the error is hard to diagnose, you can load the
generated Java source servlet into a VisualAge for Java scrapbook window to
analyze the code and get more meaningful error messages.

If we want to check the syntax errors directly in the JSP code, we can use the
JSP Execution Monitor.

JSP execution monitor
This tool allows us to monitor the execution of the JSP and detect run-time
errors. We can also set breakpoints in the JSP code and execute it step by step
(in a similar way as how we would do it in the debugger).

In the WTE window, the option Enable monitoring JSP execution launches the
tool when a JSP file is called in the browser. The option Retrieve syntax error
information highlights syntax errors in the JSP source code in the monitoring tool
window.

The monitor displays the JSP, the generated servlet code, and the HTML output
(Figure 17-55). It is possible to change the display options in the View menu.

Figure 17-55 JSP execution monitor

JSP source
code

Generated
servlet code

Output for
the browser
514 WebSphere Version 4 Application Development Handbook

The Step into IDebugger (F5) option launches the debugger window with the
generated servlet code so we can perform debugging tasks with a more suitable
tool (and we are able to see the HTML output in the parallel JSP Execution
Monitor window).

To set breakpoints in external files (for example, if we want to debug Java code
that is not in the repository: from third parties or externally generated servlets):

� In the breakpoints tab of the debugger window, select Methods -> External
.class files breakpoints, select the class file (from a directory or a JAR file),
and then either Set breakpoints in source or Break on method enter.

� In the case of externally generated servlets, it is more useful to set the
breakpoints directly in the JSP source code (or using the JSP Execution
Monitor) if we do not want to import the code.

Debugging Studio JSPs: the Distributed Debugger
WebSphere Studio provides a compiler that allows us to make an initial check of
the JSP code. However, this compiler does not provide options to set breakpoints
or provide other more sophisticated debugging features.

The Distributed Debugger is an optional feature in the Studio Advanced Edition
installation. It is the same debugger that is available with WebSphere Application
Server and VisualAge for Java.

With the Distributed Debugger we can debug JSPs as well as any other Java
code included in our Studio project. The steps to set up the debug server have
been described before in “Debugging WebSphere Studio code” on page 508, so
we do not repeat them here.

Let’s suppose we have already published the JSPs to the server, assembled the
application and deployed it. We can perform a first test on the JSPs by compiling
them in the Server at deployment time or in Studio, before publishing. To include
debug information in the compiled classes, we have to setup the Java Virtual
Machine in the application server to be launched with the debug option (see
“Enabling debugging support in WebSphere Application Server” on page 477).

After starting the server, we launch OLT (locally or remotely) and set breakpoints
to begin the debug task.

The Distributed Debugger—because it is a line-based debugger—does not allow
us to enter the Java code sections in the JSP, but we are able to set breakpoints
in the compiled JSP methods (init, service), or line breakpoints. These
breakpoints are visible in the Source pane.
 Chapter 17. Debugging the application 515

We can step from one JSP executable line to the next without worrying about the
underlying generated java code. This is good for a user who does not want to
understand what set of Java source lines correspond to what JSP source line.

To control the execution, the two options available are Step Debug (it does the
same as Step Over for JSPs) and Run. The JSPs variables are not visible in the
Locals pane.

When we attempt to enter a JSP tag, the debugger displays whatever debug
information was generated by the JSP processor. Variables declared in Java
code blocks are accessible and can be added to the Monitors pane.

Debugging JSPs in WebSphere Application Server
Once JSPs have been compiled in the application server, they can be debugged
in the same way as Java servlets. Breakpoints can be set to halt execution and
all variables are available for monitoring.

Because the Java servlet is generated for a JSP, debugging is not quite as easy
as for hand-written servlets. It takes some insight to understand the generated
methods and Java code, and how that code relates to the original HTML code
and the JSP tags. The HTML code is output as text constants that are created
from the JSP source code.
516 WebSphere Version 4 Application Development Handbook

Chapter 18. Automating unit testing
using JUnit

In this chapter we discuss the value of defining a unit testing strategy and
employing automated unit testing in a development environment.

We then introduce JUnit, an open source framework for creating and running unit
tests, and describe how it can be incorporated into the development process
using examples from our PiggyBank application.

18
© Copyright IBM Corp. 2001 517

Unit testing
The first part of this chapter is a generalized discussion about unit testing. We
define what we mean by the term unit testing, and discuss the benefits and
problems associated with including a unit testing strategy in a development
process. Finally we describe some of the benefits you may obtain from basing
your unit tests upon an existing unit testing framework.

What is unit testing?
Before we delve into the details, let us first explain what unit testing means to us.
During the course of a development project you often encounter many different
terms associated with different types of testing, and it is common practice to
dedicate individuals, teams or even entire departments to the testing function.

Unit tests, however, are informal tests that are generally executed by the
developers of the application code. They are often quite low-level in nature, and
test the behavior of individual software components such as individual Java
classes, servlets or EJBs.

Because unit tests are usually written and performed by the application
developer, they are often “white-box” in nature, that is to say they are written
using knowledge about the implementation in mind, to test specific code paths,
for example. This is not to say all unit tests have to be written this way—one
common practice is to write the unit tests for a component based on the
component specification before developing the component itself. Both
approaches are valid—when defining your own unit testing policy you may want
to make use of both.

Why unit testing?
On the face of it this is a question with a straightforward answer. We test to find
defects in our code, and to verify that changes that we have made to existing
code does not break that code. Perhaps it is more useful to look at the question
from the opposite perspective, that is to say, why do developers not perform unit
tests?

In general the simple answer is because it is too hard, and because nobody
forces them to. Writing an effective set of unit tests for a component is not a trivial
undertaking. Given the pressure to deliver that many developers find themselves
subjected to, the temptation to postpone the creation and execution of unit tests
in favour of delivering code fixes or new functionality is often overwhelming.
518 WebSphere Version 4 Application Development Handbook

In practice, this usually turns out to be a false economy—developers very rarely
deliver bug-free code, and the discovery of code defects and the costs
associated with fixing them are simply pushed further out into the development
cycle. This is inefficient—the best time to fix a code defect is immediately after
the code has been written, while it is still fresh in the developer’s mind.
Furthermore, a defect discovered during a formal testing cycle must be written
up, prioritized and tracked—all of these activities incur cost, and may mean that a
fix is deferred indefinitely, or at least until it becomes critical.

Based on our experience, we believe that encouraging and supporting the
development and regular execution of unit test cases ultimately leads to
significant improvements in productivity and overall code quality. The creation of
unit test cases need not be a burden—developers often find the intellectual
challenge quite stimulating and ultimately satisfying. The thought process
involved in creating a test can also highlights shortcomings a design which might
not otherwise have been identified in a situation where the main focus is on
implementation.

We recommend that you take the time to define a unit testing strategy for your
own development projects. A simple set of guidelines and a framework that
makes it easy to develop and execute tests will pay for itself surprisingly quickly.

Benefits of a unit testing framework
Once you have decided to implement a unit testing strategy in your project, the
first hurdles to overcome are the factors that dissuade developers from creating
and running unit tests in the first place. A testing framework can help by:

� Making it easier to write tests

� Making it easier to run tests

Tests are easier to write, because a lot of the infrastructure code that you require
to support every test is already available. A testing framework also provides a
facility that makes it easier to run and re-run tests, perhaps via a GUI. The more
often a developer runs tests, the quicker problems can be located and fixed,
because the delta between the code that last passed a unit test and the code that
fails the test is smaller.

Testing frameworks also provide other benefits:

Consistency Because every developer is using the same framework, all of
your unit tests will work in the same way, can be managed in
the same way, and report results in the same format.
 Chapter 18. Automating unit testing using JUnit 519

Maintenance Because a framework has already been developed and is
probably already in use in a number of projects you spend
less time maintaining your testing code.

Ramp-up time If you select a popular testing framework, you may find that
new developers coming into your team are already familiar
with the tools and concepts involved.

Automation A framework may offer the ability to run tests unattended,
perhaps as part of a daily or nightly build (see “Automatic
builds” on page 225).

Tool integration A framework may have the ability to integrate with existing
development tools such as Ant or VisualAge for Java.

JUnit
JUnit is an open source testing framework that is used to develop and execute
unit tests in Java. It was written by Erich Gamma, one of the “Gang of Four” who
wrote the classic book Design Patterns, and Kent Beck, who has also written
extensively about object development and first described the eXtreme
Programming (XP) software development process.

A good starting point for finding information about JUnit on the Web is the JUnit
Web site:

http://www.junit.org/

This site contains documentation and links, as well as a free download that
includes both the JUnit source and compiled code.

The rest of this chapter describes how we used JUnit to create and run unit tests
for components of our example PiggyBank application, including a discussion
about how to test Enterprise JavaBean (EJB) components. We also demonstrate
how we can use Ant (described in “Using Ant to build a WebSphere application”
on page 197) to automate the execution of test cases in a WebSphere
environment.

While we briefly explain the JUnit features we take advantage of, we do not
attempt to provide a comprehensive description of all of JUnit’s features—we
recommend you consult the documentation included in the JUnit distribution.

The examples we describe in this section are included in the junit subdirectory
of the additional Web material for this redbook. Appendix A, “Additional material”
on page 557 describes how to obtain the Web material.
520 WebSphere Version 4 Application Development Handbook

http://www.junit.org/

Installing JUnit
We downloaded Version 3.7 of JUnit, the latest version available at the time of
writing, from a link on the JUnit Web site home page. We expanded the ZIP
archive onto our local disk, creating the directory structure under D:\junit3.7
shown in Figure 18-1.

Figure 18-1 JUnit directory structure

The compiled JUnit code is located in the archive junit.jar, in the base
directory. The source code is also available in the archive src.jar in the same
location. Documentation is included in the package in the doc and javadoc
directories.

Installing JUnit in VisualAge for Java
JUnit works particularly well in the VisualAge for Java environment—VisualAge’s
built-in incremental compilation allows you to leave the JUnit GUI running and
re-run tests at the touch of a button as you modify your application code.

We decided to import the JUnit source code into our workspace in order to
examine the code and allow us to step through it in the debugger if necessary.
We created a new project named JUnit, and imported the source code into the
new project from the JAR src.jar using the VisualAge File > Import menu
option. We then versioned the project with the version name 3.7 to reflect the
JUnit version number.

There is a more detailed discussion about how to integrate JUnit into VisualAge
for Java on the JUnit Web site:

http://www.junit.org/junit/doc/vaj/vaj.htm

When we developed this chapter the latest version of VisualAge for Java
described on this page was Version 3.5—the information is also applicable to
Version 4.0 however.
 Chapter 18. Automating unit testing using JUnit 521

http://www.junit.org/junit/doc/vaj/vaj.htm

Organizing our tests
We create test cases by extending the junit.framework.TestCase class. Each
test case includes one or more individual tests. Each test is implemented in a
method, which is given a name that starts with test, and describes the nature of
the test performed, for example, testDebit tests the debit function of our
component. The use of this naming convention is important, as we will explain
shortly.

We create one test case class for each component we want to test, that is for
each Java class or EJB. We place the test cases in a separate package from the
tested components, created by appending the name tests to the package name:

itso.was4ad.webapp.view <=== component
itso.was4ad.webapp.view.tests <=== test cases for component

We do this for two reasons:

� When we compile the test cases we cannot accidentally take advantage of
additional privileges granted to us by virtue of being in the same package as
the component under test.

� When we create production builds of our application we can easily filter out
the test cases by excluding the contents of any package that ends with the
name tests.

Test suites
Collections of test cases can be organized into test suites, managed by the
junit.framework.TestSuite class. JUnit provides tools that allow every test in a
suite to be run in turn and report on the results.

Both TestCase and TestSuite implement the Java interface
junit.framework.Test, which allows us to organize our test cases into a
hierarchy (Figure 18-2).

We create an additional AllTests test case class in each package containing test
cases. This class defines a suite method that creates and returns a TestSuite
comprising all of the test cases in the package.

We can use this hierarchy to select the tests we want to run, whether a single
test case, or all of the test cases for a package, a module, or the entire
PiggyBank application.
522 WebSphere Version 4 Application Development Handbook

Figure 18-2 Hierarchy of test suites and test cases

Test case for a simple Java class
First we show how to create and run a test case for a simple Java class. The
class we use for this example is the AccountListView class, which is part of the
Web application module and located in the itso.was4ad.webapp.view package.

Expected behavior
This class is intended for use in JSPs—it manages an array of AccountData
objects, typically obtained as a result of a call into the use case layer of the
PiggyBank application.

The class is intended to allow a JSP to use the bean to iterate through each
account in the list using the WebSphere tsx:repeat tag, extracting the
information about the accounts in the list in turn without needing to code any
explicit Java in the page. The page iterates through the elements in the array by
invoking the getNext method, which can be called using the standard
jsp:getProperty tag. When the end of the list is reached, the class throws an
ArrayIndexOutOfBoundsException, which signals to the tsx:repeat code that the
loop should be terminated.

An example of this usage from the page accountDisplay.jsp is shown in
Figure 18-3.

PiggyBank
Tests

EJB Tests Use Case
Tests

Client
Tests

Common
Tests

Web App
Tests

Account
Tests

Customer
Tests

View
Tests

Controller
Tests

Account
ListView

Account
View

Account
Manager

Account Customer
View
 Chapter 18. Automating unit testing using JUnit 523

Figure 18-3 Example usage of the AccountListView class

The current item in the list can be reset to the beginning using the reset method.
This is useful where the same data may need to be included in a page twice, for
example while building selection boxes in forms.

In addition to supporting iteration, the bean also performs formatting of the data
for the Web channel, adding a currency symbol to the account balance and
converting the boolean value indicating whether the account is a checking
account into a string representing the account type, checking or savings.

Choosing what tests to write
We will write a number of tests to validate the behavior of the class:

� Test iteration through a complete data set

� Test partial iteration and reset

� Test the default no-argument constructor

� Test an attempt to use the data without first calling getNext

The second two tests in the list are common error situations that we foresee. We
could also choose to test the formatting of data returned by the bean. We
decided not to, however, because we know that the class uses the AccountView
bean to format the data—we implement the formatting tests in the test case for
that class.

At this stage we believe that this set of tests is adequate—of course there is
nothing preventing us from adding more tests later if we decide we need them.

<jsp:useBean id="accountList"
class="itso.was4ad.webapp.view.AccountListView" scope="request"/>

<P>Here are your account details:</P>
<TABLE border="1">

<TR>
<TD>Number</TD>
<TD>Balance</TD>
<TD>Type</TD>

</TR>
<tsx:repeat>

<jsp:getProperty name="accountList" property="next"/>
<TR>

<TD><jsp:getProperty name="accountList" property="number"/></TD>
<TD><jsp:getProperty name="accountList" property="amount"/></TD>
<TD><jsp:getProperty name="accountList" property="type"/></TD>

</TR>
</tsx:repeat>

</TABLE>
524 WebSphere Version 4 Application Development Handbook

Writing the test case class
We create a new test case class AccountListViewTests in which to write our
tests. This class extends the JUnit TestCase class, and is placed in the
itso.was4ad.webapp.view.tests package. The outline of the class including the
required constructor is illustrated in Figure 18-4.

Figure 18-4 Outline of the AccountListViewTests class

In addition to importing the package containing the JUnit framework, we also
import the package containing the class we are testing, and the package
itso.was4ad.data, which contains the AccountData class we also require for
these tests.

Set-up and tear-down
Our tests require data to operate on—specifically they need a list of accounts in
an array of AccountData objects. Rather than write code to create such an array
in the body of each test method, we can create a method called setUp in our test
case class. JUnit invokes this method before executing each test (Figure 18-5.)

Tip: A good time to write a new test is when you find a new problem. If you
write a test that reproduces the problem you can use the test to help you
debug and fix it. Because we can often unit test components in isolation this
can often be easier than setting up a complete test scenario for your
application. It also means that you immediately notice the problem if you
accidentally reintroduce it at some point in the future.

package itso.was4ad.webapp.view.tests;

import itso.was4ad.data.*;
import itso.was4ad.webapp.view.*;
import junit.framework.*;
/**
 * JUnit tests for the AccountListView class
 */
public class AccountListViewTests extends TestCase {

/**
 * AccountListViewTests constructor
 * @param name java.lang.String
 */
public AccountListViewTests(String name) {

super(name);
}

}

 Chapter 18. Automating unit testing using JUnit 525

Figure 18-5 AccountListViewTests setUp method

The setUp method creates an array in an instance variable data—we add the
variable to the class as follows:

AccountData[] data = null; // Data used by the tests

There is a corresponding tearDown method in which we can clean up any
permanent resources such as files or database rows. Our test case does not
create any permanent resources, however, so for this class we do not have to
implement tearDown.

Testing iteration
Our first test is designed to exercise the iteration behavior—this is, after all, the
primary purpose of the class. We create a new method named testIteration,
shown in Figure 18-6.

First of all we create a new instance of the AccountListView class, using the data
prepared by the setUp method. There are ten accounts in this array—we
therefore expect to iterate through the accounts ten times, which we do in a for
loop. We expect the accounts to be returned in the same order that they are
specified in the original array, so we check them using the assertEquals method.

/**
 * Set up some data we'll use in some of the tests
 */
public void setUp() {
 // Create some account data - make the contents predictable
 data = new AccountData[10];
 for (int i = 0; i < 10; i++) {
 data[i] =
 new AccountData(
 i % 4 + 100, // 4 Customer IDs
 1000 + i, // Unique account IDs
 i * 250, // Unique Balances
 (i % 2 == 0 ? true : false)); // Half checking
 }
}

526 WebSphere Version 4 Application Development Handbook

Figure 18-6 AccountListViewTests testIteration method

We expect the eleventh iteration to result in a ArrayIndexOutOfBounds exception.
We test this by attempting to catch the exception. If the exception is raised when
the test is executed, we simply discard it and exit the test method normally, which
signals to the JUnit framework that the test was successful. If the exception is not
raised, however, we cause the test to fail using the fail method.

The assertEquals and fail methods are provided by the JUnit framework. JUnit
provides a number of methods that can be used to assert conditions and fail a
test if the condition is not met. These methods are inherited from the class
junit.framework.Assert, via TestCase, and are summarized in Table 18-1.

All of these methods include an optional String parameter that allows the writer
of a test to provide a brief explanation of why the test failed—this message is
reported along with the failure when the test is executed.

/**
 * Test the behavior when we iterate through the list
 */
public void testIteration() {
 AccountListView list = new AccountListView(data);

 // Make sure we iterate correctly through all 10 items
 for (int i = 0; i < 10; i++) {

 list.getNext();
 int accountId = 1000 + i;
 assertEquals("Item " + i + " incorrect", "" + accountId, list.getNumber());

 }

// Past the end of the list now
 try {
 list.getNext();
 list.getNumber();
 fail("Expected ArrayIndexOutOfBoundsException");
 } catch (ArrayIndexOutOfBoundsException e) {
 // expected
 }
}

Note: Every get method in our view class returns a String formatted for
insertion into a JSP. We must convert the account number we expect into a
String in order to perform the comparison with the value from the view bean.
 Chapter 18. Automating unit testing using JUnit 527

Table 18-1 JUnit assert methods

Testing reset
The next test tests the reset behavior. It also uses the array created by the setUp
method, using the data instance variable to create an instance of our
AccountListView class. It then iterates part-way through the list, checking the
account numbers on the way, just to make sure we aren’t stuck on the first item.
We then invoke the reset method, and assert that the next account number
returned by the bean is the number of the first account in the list. If this is the
case the test is complete and we exit the test method normally.

The code for the testReset method is shown in Figure 18-7.

Figure 18-7 AccountListViewTests testReset method

Method name Description

assertEquals Assert that two objects or primitives are equal. Compares
objects using equals, and compares primitives using ==.

assertNotNull Assert that an object is not null

assertNull Assert that an object is null

assertSame Assert that two objects refer to the same object. Compares
using ==.

assertTrue Assert that a boolean condition is true

fail Fails the test

/**
 * Test the reset method
 */
public void testReset() {
 AccountListView list = new AccountListView(data);

 // Make sure we iterate correctly through the first 5 items
 for (int i = 0; i < 5; i++) {

 list.getNext();
 int accountId = 1000 + i;
 assertEquals("Item " + i + " incorrect", "" + accountId, list.getNumber());

 }

 // Now reset the view and make sure we're back at the beginning
 list.reset();
 list.getNext();
 assertEquals("Reset incorrect", "1000", list.getNumber());
}

528 WebSphere Version 4 Application Development Handbook

Testing the default constructor
The next test we write tests the behavior of the class when a new instance is
created using the default no-argument constructor. This is important for a class
intended to be passed to a JSP because the JSP uses the default constructor to
create a new instance of the bean if the useBean tag is used with the class
attribute, but no bean exists in the specified scope.

This could happen if a user attempts to access a JSP page directly, instead of via
the appropriate servlet, for example. Under these circumstances we would like
the page to behave gracefully, rather than fail with a NullPointerException. The
code for the testDefaultConstructor method is shown in Figure 18-8.

Figure 18-8 AccountListView testDefaultConstructor method

We expect the class to allow an instance of the bean to be created, but to throw
an ArrayIndexOutOfBounds exception when an attempt is made to use it—this
immediately terminates any enclosing tsx:repeat loop.

Our test code creates a new instance of the class using the default constructor,
then attempts to use it. If we catch the expected exception, all is well. If we do not
catch the exception, we cause the test to fail by invoking the JUnit fail method.

Testing iteration without an initial getNext
The last of our tests investigates what happens when a JSP attempts to obtain
data from our bean without first invoking the getNext method. We include this test
because we anticipate that this is a mistake many JSP developers may make.

The behavior under these circumstances is undefined by our design—we did not
consider this sequence of events until we started thinking about how to break our
class. This usefully illustrates one of the benefits of our unit testing
strategy—sooner or later a JSP developer is likely to make this mistake but at
least now we know we can cope with it.

/**
 * Test the behavior with the default constructor
 */
public void testDefaultConstructor() {
 AccountListView list = new AccountListView();
 try {
 list.getNext();
 list.getCustomerID();
 fail("Expected ArrayIndexOutOfBoundsException");
 } catch (ArrayIndexOutOfBoundsException e) {
 // expected
 }
}

 Chapter 18. Automating unit testing using JUnit 529

We expect the bean to handle this situation gracefully—it throws an
ArrayIndexOutOfBounds exception, which is a reasonable thing to do. Having
highlighted the issue, however, we may consider altering our design so that the
bean throws an InvalidOperation, with a message explaining why—this may
provide more assistance in debugging the broken JSP.

The code for the testNoGetNext method is shown in Figure 18-9.

Figure 18-9 AccountListViewTests testNoGetNext method

Building the tests
We compile our test case class along with the Web application code it tests. The
only change we must make in order to compile the test code is to add the JUnit
JAR to the compiler class path. The archive is located in the JUnit installation
directory—in our case the full path to the JAR file is:

D:\junit3.7\junit.jar

If you are using Ant to build the application as described in “Using Ant to build a
WebSphere application” on page 197, for example, you need to add the JUnit
JAR file to the class path specified in the Web application build.xml build file, as
Figure 18-10 illustrates.

Figure 18-10 Updating the Web application build file to build the test case class

/**
 * Test the behavior without an initial getNext()
 */
public void testNoGetNext() {
 AccountListView list = new AccountListView(data);
 try {
 list.getCustomerID();
 fail("Expected ArrayIndexOutOfBoundsException");
 } catch (ArrayIndexOutOfBoundsException e) {
 // expected
 }
}

 <path id="webapp.classpath">
 <pathelement location="${global.was.dir}/lib/j2ee.jar"/>
 <pathelement location="${global.junit.jar}"/>
 <pathelement path="${global.build.dir}/common"/>
 <pathelement path="${global.build.dir}/usecase"/>
 </path>
530 WebSphere Version 4 Application Development Handbook

The global.junit.jar property defines the location of the JAR file—we added
the property to the global.properties file (Figure 18-11).

Figure 18-11 Updating the Ant global.properties file to specify JUnit file locations

If you are developing using VisualAge for Java and imported the JUnit code into
the workspace as described in “Installing JUnit in VisualAge for Java” on
page 521, you do not have to make any further changes in order to compile the
code, because VisualAge for Java locates the JUnit classes in the workspace.

Running the tests
The JUnit framework provides both text and GUI test runner tools that can your
tests and report the results. We illustrate how to execute the tests in out test case
using a text-based user interface and a Swing GUI.

Before we can run either tool, we must first make sure that all the classes we
need are on our class path. In this case, in order to run the tests in the class
AccountListViewTest we need the JUnit code plus the PiggyBank Web
application and common code in our class path.

To run the tools from VisualAge for Java, we must add the projects containing the
code we want to test to the class path for each tool—we can do this by locating
the tool runner class in the VisualAge GUI and selecting Properties from the
context menu of the class. We then select the Class Path tab in the properties
dialog. We then click the Edit button and select the appropriate project
(Figure 18-12).

We also use the properties dialog to specify the command-line arguments to
pass to the tool runner class—we can set them in the dialog as described, or
have the dialog pop-up when we run the class by selecting Run -> Run main with
from the context menu.

global.junit.dir=D:/junit3.7
global.junit.jarfile=junit.jar
global.junit.jar=${global.junit.dir}/${global.junit.jarfile}
 Chapter 18. Automating unit testing using JUnit 531

Figure 18-12 Adding a project to the TestRunner class path in VisualAge for Java

Running the text-based test runner
The text-based test runner included with JUnit is started from the
junit.textui.TestRunner class. We can run the tests in our test case class
AccountListViewTests by passing the name of the class to the test runner.
Figure 18-13 shows the test runner being invoked from the command line using
the java command. The command is entered on a single line—it has been split
onto two lines in the example for formatting purposes.

Figure 18-13 Running the text-based test runner from the command line

Each dot (.) output by the tool represents the start of a test. We have four tests in
our test case, so there are four dots. Once all the tests are complete the test
runner tells us how long they took, and summarizes the results—in this case all
of our tests were successful.

D:\itso4ad\dev\src>java junit.textui.TestRunner
itso.was4ad.webapp.view.tests.AccountListViewTests

....
Time: 0.03

OK (4 tests)
532 WebSphere Version 4 Application Development Handbook

Running the Swing-based test runner
The Swing-based test runner included with JUnit is started from the
junit.swingui.TestRunner class. We also supply the name of the class to test
on the command-line with this test runner, for example:

java junit.swingui.TestRunner itso.was4ad.webapp.view.tests.AccountListViewTests

When we execute the Swing test runner the GUI is displayed and the tests in our
test case executed.

Figure 18-14 Swing-based test runner

In Figure 18-14 we can see the results of our tests on the AccountListView class.
The progress bar is green, which indicates that all of the tests ran
successfully—any failures would have been indicated by a red bar. This
observation is confirmed by the result summary—it reports that of the four tests
run, none failed, and none resulted in an error.

Tip: A test is considered to be successful if the test method returns normally.
A test fails if one of the methods from the Assert class signals a failure. An
error indicates that an unexpected exception was raised by the test method, or
the setUp or tearDown method invoked before or after it.

Summary

Progress /
Status Bar
 Chapter 18. Automating unit testing using JUnit 533

We can re-run the test by clicking Run. This is especially useful in a VisualAge
for Java environment, because any code changes we make are automatically
picked up without restarting the tool.

Failed tests
So far we have not seen any failed tests, although we can assure you this was
not the case when we were initially developing this chapter. At this point we
introduce an intentional defect into our code in order to demonstrate this
scenario.

We introduce the defect by editing the default constructor of the ArrayListView
class, commenting out the line that invokes another constructor with an empty
array. The modified code is shown highlighted in Figure 18-15.

Figure 18-15 Introducing a defect in the AccountListView class

We recompile this class—in VisualAge this simply involves saving the modified
method—and re-run our tests.

The output from the text-based test runner is shown in Figure 18-16. It still shows
four dots, because four tests were attempted. After the last dot however, we see
an E. This character represents an error—if the test had been failed by one of the
methods from Assert we would have seen F instead.

After the tests complete we get a summary of the failures—in this case there is
just one—it tells us there was a NullPointerException when we tested the
default constructor.

Note: The JUnit test runner is also able to reload classes—it achieves this
using a specialized class loader. While this works well for simple tests, as we
will see later on, we are unable to use this facility when testing code running in
a WebSphere container, because WebSphere uses its own specialized class
loaders.

/**
 * AccountListView default constructor
 */
public AccountListView() {
 //this(new AccountData[0]);
}

534 WebSphere Version 4 Application Development Handbook

Figure 18-16 Test failure in the text-based test runner

Figure 18-17 shows the same failure in the Swing-based GUI—the progress bar
is red (this can be seen more clearly in the PDF version of this book), and the
summary reports a single error. The description panel at the bottom of the
window shows the NullPointerException relating to the failure highlighted in the
center panel.

Figure 18-17 Test failure in the Swing-based test runner

D:\itso4ad\dev\src>java junit.textui.TestRunner
itso.was4ad.webapp.view.tests.AccountListViewTests

....E
Time: 0.03
There was 1 error:
1) testDefaultConstructor(itso.was4ad.webapp.view.tests.AccountListViewTests)
java.lang.NullPointerException
 at itso.was4ad.webapp.view.AccountListView.getNext(AccountListView.java:59)
 at itso.was4ad.webapp.view.tests.AccountListViewTests.testDefaultConstructor(
AccountListViewTests.java:39)

FAILURES!!!
Tests run: 4, Failures: 0, Errors: 1
 Chapter 18. Automating unit testing using JUnit 535

Clicking on Test Hierarchy in this window displays the tree-based view of the
hierarchy of tests shown in Figure 18-18—this view shows the tests that passed
and failed using icons. The hierarchy view becomes more useful when we
organize our test case classes into suites.

Figure 18-18 Displaying the test hierarchy in the Swing-based test runner

Adding the test case to a test suite
The next step we will demonstrate is the assembly of a number of tests into a test
suite, which we can then organize into a hierarchy as we described earlier in
“Test suites” on page 522.

Writing the AllTests class
The first step is to create a new class named AllTests in the same package as
our test case classes, itso.was4ad.webapp.view.tests. This new class also
extends the TestCase class—Figure 18-19 shows the outline of the class source.
536 WebSphere Version 4 Application Development Handbook

Figure 18-19 Outline of the AllTests class

The next step is to define a suite method that returns a TestSuite object
containing all of the tests in the suite. We create a new instance of TestSuite,
providing a descriptive name for the suite in the constructor (Figure 18-20).

Figure 18-20 Suite method source

We then add tests to the suite using the addTestSuite method. This method
takes a Class object as a parameter and adds all the methods in the class with
names that begin with test to the suite—this is the reason why we followed this
convention when we created the methods.

package itso.was4ad.webapp.view.tests;

import junit.framework.*;
/**
 * Runs all of the tests in this package
 */
public class AllTests extends TestCase {

/**
 * AllTests constructor
 * @param name java.lang.String
 */
public AllTests(String name) {

super(name);
}

}

/**
 * Returns a test suite containing all tests in this package
 * @return junit.framework.Test
 */
public static Test suite() {

TestSuite suite = new TestSuite("All web application view tests");

// Add any new tests here
suite.addTestSuite(CustomerViewTests.class);
suite.addTestSuite(AccountViewTests.class);
suite.addTestSuite(AccountListViewTests.class);

// Return the test suite
return suite;

}

 Chapter 18. Automating unit testing using JUnit 537

We have two other tests in this particular package, in addition to the
AccountListViewTests class we developed earlier.

We also have tests that exercise the CustomerView and AccountView classes in
the same package. The tests in all three test case classes are added to the test
suite, which is then returned as the result of the suite method. Any new test
cases we create in this package are added to the suite by adding a
corresponding addTestSuite call to the suite method.

For convenience we also create a main method in the AllTests class. This is a
simple shortcut that allows us to execute the tests by invoking the class directly,
rather than passing the class name to a test runner (Figure 18-21).

Figure 18-21 AllTests main method

Running the test suite
This main method starts a text-based test runner by passing it the TestSuite
returned by the suite method—it would be just as simple to start one of the GUI
test runners, however. We can now run all the tests in the suite using the
command shown in Figure 18-22.

Figure 18-22 Using the main method to run the test suite

We can also run the tests in the Swing GUI by issuing the command:

java junit.swingui.TestRunner itso.was4ad.webapp.view.tests.AllTests

/**
 * Run this test suite
 * @param args java.lang.String[]
 */
public static void main(String[] args) {

junit.textui.TestRunner.run(suite());
}

D:\itso4ad\dev\src>java itso.was4ad.webapp.view.tests.AllTests
........
Time: 0.03

OK (8 tests)
538 WebSphere Version 4 Application Development Handbook

The GUI displaying the hierarchy of test results from the test suite is shown in
Figure 18-23.

Figure 18-23 Running a test suite in the Swing GUI test runner

Creating the hierarchy
We complete the hierarchy of test cases by creating AllTests classes in the
packages itso.was4ad.webapp.tests, and itso.was4ad.tests. These suites
correspond to all the code in the Web application module, and the entire
PiggyBank application respectively.

The classes are almost identical, however instead of adding tests to the suite
using addTestSuite, they use the addTest method (remember TestSuite
implements the Test interface), passing the output of each AllTests.suite
method as a parameter, for example:

suite.addTest(itso.was4ad.webapp.view.tests.AllTests.suite());
 Chapter 18. Automating unit testing using JUnit 539

Test case for an EJB
We’ve already seen how to test a relatively simple component—now we look at
how to use JUnit to test an EJB component. We use the Account EJB for our
example—this is a container managed persistent (CMP) entity bean, although
many of the issues we discuss are appropriate to both entity and session beans.

Writing the test case
We create a new class for out tests named AccountTests. The classes that make
up the account EJB are located in the itso.was4ad.ejb.account package, so we
place our test case class in a package named itso.was4ad.ejb.account.tests.
The outline of the class code is included in Figure 18-24.

Figure 18-24 AccountTests class source code outline

The list of import statements is relatively large compared to our earlier
example—this is partly because the interface to the EJB uses more code from
our application, but also because our test case class is an EJB client. Note also
the constant defining the JNDI name we use to locate the EJB.

package itso.was4ad.ejb.account.tests;

import junit.framework.*;
import itso.was4ad.helpers.HomeHelper;
import itso.was4ad.ejb.account.*;
import itso.was4ad.data.*;
import itso.was4ad.exception.*;
import javax.naming.*;
import javax.ejb.*;
import javax.rmi.*;
import java.rmi.*;
import java.util.*;
/**
 * JUnit tests for the Account EJB
 */
public class AccountTests extends TestCase {

private static final String ACCOUNT_HOME = "java:comp/env/ejb/Account";
/**
 * AccountTests constructor
 * @param name java.lang.String
 */
public AccountTests(String name) {

super(name);
}

}

540 WebSphere Version 4 Application Development Handbook

Running as an EJB client
All of our tests are going to run as clients of our EJB, with the EJB running in
WebSphere. This approach allows us to test the behavior of the EJB from a
client’s perspective, which is after all how it will be used.

This is not the only choice however—we could, for example, test the class from
the container’s perspective, where the test creates an instance of the EJB
implementation class directly and invokes EJB life-cycle methods such as
ejbActivate directly.

This requires a little more effort but may pay dividends. With CMP beans you
could eliminate the need for a persistent store completely, setting instance
variables yourself using the Java reflection API. With bean-managed persistent
(BMP) beans on the other hand you may want to exercise the persistence code
more thoroughly, running tests that check the data written to the persistent store
directly instead of through the EJB.

Because all our tests have to locate the account EJB home, we created a simple
helper method in our test case class that test methods can use to easily obtain
the home interface. The code for the getAccountHome method is shown in
Figure 18-25.

Figure 18-25 getAccountHome helper method

Set-up and tear-down
Because the EJB is an entity bean, most of our test cases require data on which
to operate—the exceptions are those that test the creation of data. We use the
setUp and tearDown methods to create and remove our test data.

/**
 * Helper method that locates the Account EJB's home interface
 * @return itso.was4ad.ejb.account.AccountHome
 * @exception javax.naming.NamingException
 */
private static AccountHome getAccountHome() throws NamingException {
 InitialContext context = new InitialContext();
 return (AccountHome) PortableRemoteObject.narrow(

context.lookup(ACCOUNT_HOME),
AccountHome.class);

}

 Chapter 18. Automating unit testing using JUnit 541

We have two choices when it comes to managing the data in the database—we
can either use the EJB to manage the data, or code JDBC directly to the
database. Both options have their advantages and disadvantages. If we only ever
use the bean to access the database, for example, we may not find certain types
of persistence problem. On the other hand, using the EJB itself is much easier,
and the set-up and tear-down become extensions of the test case. In the end we
decided to use the EJB in the interests of expediency.

Figure 18-26 shows the setUp method.

Figure 18-26 AccountTests setUp method

We need to take extra care with the tear-down method—it needs to be robust
enough to cope with anything the tests we write might do to the data. We must
take care to ensure that the test data is always removed—if for some reason an
account is not removed the next test will fail as our set-up method, which is
admittedly not particularly robust, will throw a DuplicateKeyException before we
even get to run the test.

Our solution (Figure 18-27), is to attempt to remove any account with a number
in the range from 1000 to 1009. This includes the accounts we create in the
set-up method, but also allows for tests to create their own accounts. If an
account does not exist, we simply ignore it and carry on, because tests may also
remove accounts.

Finally, we must make sure the accounts are empty before we remove them,
because the application enforces a business rule that does not allow us to
remove an account that has a balance.

/**
 * Set up some data used by the tests
 */
public void setUp() throws

NamingException, CreateException, RemoteException, InvalidOperation {

// Get the home interface
AccountHome home = getAccountHome();

// Create some accounts and put money in some of them
home.create(1000, 100, false);
home.create(1001, 101, false).credit(1000);
home.create(1002, 102, true).credit(10000);
home.create(1003, 102, false).credit(2500);
home.create(1004, 103, true).credit(10);

}

542 WebSphere Version 4 Application Development Handbook

Figure 18-27 AccountTests tearDown method

Writing the test methods

Because we are testing an entity EJB we must test both the home and remote
interfaces. The tests we perform on the home interface are listed in Table 18-2.

Table 18-2 Methods testing the Account EJB home interface

/**
 * Delete the data used by the tests. CAUTION This method
 * removes any account with a number in the range 1000 - 1009!
 */
public void tearDown() throws NamingException, RemoteException {
 // Get the home interface
 AccountHome home = getAccountHome();

 // Delete any accounts left lying around
 for (int i = 1000; i < 1010; i++) {
 try {
 // Look for the account
 AccountKey key = new AccountKey(i);
 Account acct = home.findByPrimaryKey(key);

 // Empty the account and remove it
 int balance = acct.getAccountData().getAmount();
 if (balance != 0) {
 acct.debit(balance);
 }
 acct.remove();
 } catch (Exception e) {
 //Ignore
 }
 }
}

Test method Description

testCreate Test creation of a new account

testFindByCustomerID Test finder that returns a collection of accounts

testRemove Test the straightforward removal of an account with no
balance

testRemoveWithBalance Test the removal of an account which has an outstanding
balance—this is not allowed by the business rules that
govern the application
 Chapter 18. Automating unit testing using JUnit 543

The tests on the remote interface of the Account EJB are listed in Table 18-3.

Table 18-3 Methods testing the Account EJB remote interface

The individual test methods do not introduce any new JUnit features, so we only
include a single example here, testDebitOverdraw (Figure 18-28).

Figure 18-28 testDebitOverdraw method in the AccountTests class

Test method Description

testCredit Test a straightforward credit to the account

testDebit Test a straightforward debit from the account

testDebitOverdraw Test a debit that takes more money from the account than is
available—our simple application does not provide an
overdraft facility

testIsOwnedBy Test that we can correctly determine whether a particular
customer owns an account

testNegativeCredit Test a credit of a negative amount to an account

testNegativeDebit Test a debit of a negative amount from an account

/**
 * Test debit of more money than is in the account
 */
public void testDebitOverdraw() throws NamingException, FinderException,
RemoteException, BusinessException {
 // Locate one of the previously set up accounts
 AccountKey key = new AccountKey(1004);
 Account account = getAccountHome().findByPrimaryKey(key);

 // Get the balance
 int balance = account.getAccountData().getAmount();

 // Attempt to debit more than we have
 try {

 account.debit(balance + 1);
 fail("Should throw InsufficientFunds");

 } catch (InsufficientFunds e) {
 // expected

 }

 // Make sure the balance is the same
 assertEquals("Balance changed after InsufficientFunds", balance,
account.getAccountData().getAmount());
}

544 WebSphere Version 4 Application Development Handbook

Updating the test suite hierarchy
We want to include our new EJB test in our test suite hierarchy. We do this by
creating AllTests classes in the itso.was4ad.ejb.account.tests and
itso.was4ad.ejb.tests packages, as described in “Adding the test case to a test
suite” on page 536. We also add the EJB tests to the suite method in the
top-level itso.was4ad.tests.AllTests class.

Building the tests
As with the Web application tests, because we compile the EJB tests at the same
time as the EJB code, all we have to do to compile our tests is to add the
junit.jar archive to the compiler class path.

Packaging the tests
Our AccountTest test case is an EJB client so we must execute it in an
environment where it has access to the services provided by the WebSphere
container. The specific requirement is that we be able to perform the lookup on
the EJB using the JNDI name java:comp/env/ejb/Account.

Because the JUnit test runners are standalone Java programs, the easiest way
to do this is to create a new J2EE client module and package the tests into it. We
can then run the tests using the WebSphere client container launchClient. We
chose to achieve this by updating the main method of our top-level AllTests class
to start the test runner for us (Figure 18-29).

Figure 18-29 Top-level AllTests main method

/**
 * Run all the PiggyBank tests
 * Usage: itso.was4ad.tests.AllTests [-gui]
 * @param args java.lang.String[]
 */
public static void main(String[] args) {
 // Check the command line args
 if (args.length > 0 && args[0].equals("-gui")) {
 // Run the GUI tool - tell it to use the system classloader
 junit.swingui.TestRunner runner = new junit.swingui.TestRunner();
 runner.setLoading(false);
 runner.start(new String[] {AllTests.class.getName()});
 } else {
 // Run the text version
 junit.textui.TestRunner.run(suite());
 }
}

 Chapter 18. Automating unit testing using JUnit 545

We update the method to check for the -gui flag in the command-line argument.
If the flag is present we start the Swing GUI test runner, otherwise we start the
text-based test runner. If we are using the GUI test runner we explicitly set a flag
disabling JUnit’s class reloading facility—this uses a class loader that is unable
to locate our test classes when we package them in an EAR file.

We use AAT to create a new client module, specifying the top-level AllTests
class as the main class—this is the only class we want to include in the module,
because it does not belong to any one component. We also define the local EJB
JNDI reference used to locate the account EJB ,and bind it to the same global
JNDI name specified in the bindings for our EJB module.

For simplicity we add the test client module to our single application EAR file.
This allows us to use the class path defined in the test module’s JAR manifest to
include the common, use case, and EJB JAR files in the test client’s class path.

This approach does not work for the Web application, however, because the Web
application classes are located in WEB-INF/classes in the WAR file. We worked
around this by explicitly including all of the Web application classes in the test
client module JAR file. This is less than ideal because now we have two copies of
these classes in our EAR archive. It does not affect the execution of the actual
application code, however, so we decided to live with the situation.

The final EAR file and the code used to create it are included in the additional
material, described in Appendix A, “Additional material” on page 557.

Running the tests
At this point we now have a single EAR file containing all of our application
code—including the test case classes, and out client module that we use to run
the tests.

Before we can run the tests, however, we must deploy the application into an
application server and start it. This is described in Chapter 16, “Deploying to the
test environment” on page 431.

Once the application is up and running in WebSphere, we are finally able to start
our tests. We invoke the test runner using the WebSphere launchClient
command. There are now two client modules in the EAR file—the standalone
PiggyBank Swing client and our test module.

If you simply run the standard launchClient command without specifying which
client you want to run, WebSphere appears to always execute the one that is
described first in the enterprise application’s deployment descriptor.
546 WebSphere Version 4 Application Development Handbook

The first application in our case is the PiggyBank client, therefore, to run the our
unit tests we have to use the -CCjar option to tell the client container which client
to run:

launchclient piggybank.ear -CCjar=piggybank-test.jar -gui

This command runs all of our unit tests using the Swing GUI (Figure 18-30).

Figure 18-30 Running all PiggyBank unit tests in the Swing GUI

As you can see, two of our tests failed—it seems our PiggyBank application is
quite happy to allow bank accounts to be credited and debited negative amounts.
Fortunately this is just an example application, so in time-honored fashion, we
leave the correction of our code as an exercise for the reader.

We can re-run all the tests by clicking the uppermost Run button. If we simply
want to rerun one of the failing tests, we select the test in the center panel and
click the lower Run button. This gives us the opportunity to diagnose the problem
using the configurable logging mechanism described in “Message logging” on
page 330 to dynamically turn on debug messages for the offending component.
 Chapter 18. Automating unit testing using JUnit 547

Automating unit testing using Ant
We are now at the stage where we have created some test cases for our
application, and we know how to run them. This is a very good start, but it is
essential to remember that tests are only useful if they are run. One way to make
sure that this happens is to schedule an automatic process that runs through all
of our tests, perhaps in conjunction with an automatic build process as described
in “Automatic builds” on page 225.

In this section we describe how we can extend the Ant build scripts we
developed in “Using Ant to build a WebSphere application” on page 197 to
automatically install the application into WebSphere AEs, start the application
server, and run our unit tests. We chose AEs for these examples because AEs is
ideal for use as a unit test environment on a developer’s desktop machine—the
scripts we develop can be used during day-to-day development as well as by the
automatic daily build process.

All of the code we developed for this example is available in the additional
material—see Appendix A, “Additional material” on page 557.

Building the tests
In “Packaging the tests” on page 545 we described how we created an
application client JAR for the test runner, and included it in our EAR file. We must
extend our Ant build scripts to achieve the same thing.

Creating the directory structure
The first thing to do is create a new subdirectory in our source tree for our test
module. We named our directory test, locating it with our other subproject
directories in D:\ITSO4AD\dev\src. Into this directory we place a single Java
source file for the top-level AllTests class, itso\was4ad\tests\AllTests.java.
We also created a META-INF directory for the client meta-data, which we extract
from the JAR file created by AAT using the Java SDK jar command.

Creating the build file
Next we must create a build file, build.xml, for Ant to use to build the test
module. We start with the same basic build file we used before, and customize it
for the test module.

First we update the local properties and path—the class path for the compile
must include all of our subprojects because the AllTests class refers to them all
in order to build a suite of all tests. The changes are shown in Figure 18-31.
548 WebSphere Version 4 Application Development Handbook

Figure 18-31 Local properties and path from the test module build file

The only other significant change we have to make is to the package target. We
must create a JAR file that includes not just the AllTests class and client
meta-data, but also all the compiled classes from the Web application, as
described in “Packaging the tests” on page 545. The resulting package target is
shown in Figure 18-32.

Figure 18-32 Package target from the test module build file

 <!-- Set up local properties and paths-->
 <property name="test.build.dir" value="${global.build.dir}/test"/>
 <property name="test.jar.name" value="piggybank-test.jar"/>
 <property name="test.jar.file"

value="${global.module.dir}/${test.jar.name}"/>
 <path id="test.classpath">
 <pathelement location="${global.junit.jar}"/>
 <pathelement path="${global.build.dir}/common"/>
 <pathelement path="${global.build.dir}/ejb"/>
 <pathelement path="${global.build.dir}/usecase"/>
 <pathelement path="${global.build.dir}/webapp"/>
 <pathelement path="${global.build.dir}/client"/>
 </path>

 <target name="package" depends="init,compile">
 <echo>Packaging ${ant.project.name}</echo>
 <mkdir dir="${global.module.dir}"/>
 <jar jarfile="${test.jar.file}"
 manifest="META-INF/MANIFEST.MF"
 >
 <fileset dir="${test.build.dir}"/>
 <fileset dir="${basedir}">
 <include name="META-INF/*"/>
 <exclude name="META-INF/MANIFEST.MF"/>
 </fileset>
 <!-- Hack for webapp files -->
 <fileset dir="${global.build.dir}/webapp"/>
 </jar>
 <echo>Finished packaging ${ant.project.name}</echo>
 </target>
 Chapter 18. Automating unit testing using JUnit 549

Updating the master build file
The next step involves updating the master build file, build.xml located in the
D:\ITSO4AD\dev\src directory. First of all we must update the compile, package
and clean targets to delegate to the test subproject’s build file. We add the test
subproject so that its targets always execute last (Figure 18-33).

Figure 18-33 Updated master build file package target

We also update the itso4ad.source.path property so that the document target
picks up the source code in the test subproject when it generates documentation.

Running the tests
To run the tests using Ant we must create targets to perform the following
actions:

� Start WebSphere Application Server

� Stop WebSphere Application Server

� Run the unit tests

We already have targets that create and install an EAR file, as described in
“Packaging the EAR file” on page 230 and “Installing the EAR file” on page 234.

Starting and stopping WebSphere Application Server
We create two new targets in the master build file to start and stop WebSphere
AEs.

The start target depends upon the stop, package and install targets—by
executing this target we first stop WebSphere if it is running, rebuild the
application EAR file if necessary, and install it into the application server. Only
then do we actually start the server. This sequence allows a developer to refresh
the unit test environment with the latest code by issuing a single Ant command.

 <target name="package" depends="init">
 <echo>Packaging ${ant.project.name}</echo>
 <ant dir="common" target="package"/>
 <ant dir="ejb" target="package"/>
 <ant dir="usecase" target="package"/>
 <ant dir="client" target="package"/>
 <ant dir="webapp" target="package"/>
 <ant dir="test" target="package"/>
 <ant dir="ear" target="package"/>
 <echo>Finished packaging ${ant.project.name}</echo>
 </target>
550 WebSphere Version 4 Application Development Handbook

The start target starts the application server using the WebSphere startServer
script—this script starts AEs in the background (Figure 18-34). The target has
only been tested on Windows systems and will only work on that platform. It
should prove relatively simple to update for other platforms, however.

Figure 18-34 Master build file start and stop targets

The stop target is very similar, although it does not depend on any targets other
than the standard init target. It uses the WebSphere stopServer command to
stop the application server. An example of the output generated by this target is
shown in Figure 18-35

Figure 18-35 Stopping WebSphere AEs using the stop target

 <target name="start" depends="init,stop,package,install">
 <echo>Starting WebSphere AEs</echo>
 <exec executable="${global.was.dir}/bin/startServer.bat"
 os="Windows NT,Windows 2000"
 />
 <echo>WebSphere AEs started</echo>
 </target>

 <target name="stop" depends="init">
 <echo>Stopping WebSphere AEs</echo>
 <exec executable="${global.was.dir}/bin/stopServer.bat"
 os="Windows NT,Windows 2000"
 />
 <echo>WebSphere AEs stopped</echo>
 </target>

stop:
 [echo] Stopping WebSphere AEs
 [exec] IBM WebSphere Application Server
 [exec] Command Line Runtime Utility Program
 [exec] Copyright (C) IBM Corporation, 2001
 [exec]
 [exec] Loading configuration from file.
 [exec] Using the specified configuration file:
 [exec] D:\WebSphere\AppServer\config\server-cfg.xml
 [exec] The diagnostic host name was read as "localhost".
 [exec] The diagnostic port was read as "7000".
 [exec] Issuing command to stop server.
 [exec] The stop server command completed successfully.
 [exec] Examine the server log files to verify that the server has stopped.
 [echo] WebSphere AEs stopped
 Chapter 18. Automating unit testing using JUnit 551

Running the tests
We also create two new targets to run the JUnit tests in the test module—test
runs the unit tests using the text-based test runner, whereas testgui runs the
Swing GUI test runner. The two targets are shown in Figure 18-36.

Figure 18-36 Master build file test and testgui targets

Note that we did not make either of the targets that execute the tests depend
upon the start target. There are two primary reasons for this:

� A developer using the JUnit tests to reproduce a problem may not necessarily
want to restart WebSphere every time to re-run the tests.

� The startServer command is asynchronous—when the command completes
successfully, the start of the application server is not complete. If we attempt
to run tests immediately after the start target completes the tests may fail
since the application may not have completed starting up.

The output from the test target is shown in Figure 18-37. As you can see we still
have to fix the debit and credit problem with negative amounts.

 <target name="test" depends="init">
 <echo>Running JUnit tests</echo>
 <exec executable="${global.was.dir}/bin/launchclient.bat"
 os="Windows NT,Windows 2000"
 >
 <arg line="${global.module.dir}/piggybank.ear"/>
 <arg line="-CCjar=piggybank-test.jar"/>
 </exec>
 <echo>JUnit test complete</echo>
 </target>

 <target name="testgui" depends="init">
 <echo>Running JUnit tests</echo>
 <exec executable="${global.was.dir}/bin/launchclient.bat"
 os="Windows NT,Windows 2000"
 >
 <arg line="${global.module.dir}/piggybank.ear"/>
 <arg line="-CCjar=piggybank-test.jar"/>
 <arg line="-gui"/>
 </exec>
 <echo>JUnit test complete</echo>
 </target>
552 WebSphere Version 4 Application Development Handbook

Figure 18-37 Output from the test target

D:\itso4ad\dev\src>ant test
Buildfile: build.xml

init:
 [echo] Build of itso4ad started at 2134 on July 19 2001

test:
 [echo] Running JUnit tests
 [exec] IBM WebSphere Application Server, Release 4.0
 [exec] J2EE Application Client Tool, Version 1.0
 [exec] Copyright IBM Corp., 1997-2001
 [exec]
 [exec] WSCL0012I: Processing command line arguments.
 [exec] WSCL0013I: Initializing the J2EE Application Client Environment.
 [exec] WSCL0035I: Initialization of the J2EE Application Client Environment
 has completed.
 [exec] WSCL0014I: Invoking the Application Client class itso.was4ad.tests.AllTests
 [exec]F.F......
 [exec] Time: 12.237
 [exec] There were 2 failures:
 [exec] 1) testNegativeDebit(itso.was4ad.ejb.account.tests.AccountTests)

junit.framework.AssertionFailedError: Shouldn't allow negative debit
 [exec] at itso.was4ad.ejb.account.tests.AccountTests.testNegativeDebit(

AccountTests.java:196)
 [exec] at itso.was4ad.tests.AllTests.main(AllTests.java:29)
 [exec] at com.ibm.websphere.client.applicationclient.launchClient.

createContainerAndLaunchApp(launchClient.java:430)
 [exec] at com.ibm.websphere.client.applicationclient.launchClient.main(

launchClient.java:288)
 [exec] at com.ibm.ws.bootstrap.WSLauncher.main(WSLauncher.java:63)
 [exec] 2) testNegativeCredit(itso.was4ad.ejb.account.tests.AccountTests)

junit.framework.AssertionFailedError: Shouldn't allow negative credit
 [exec] at itso.was4ad.ejb.account.tests.AccountTests.testNegativeCredit

(AccountTests.java:180)
 [exec] at itso.was4ad.tests.AllTests.main(AllTests.java:29)
 [exec] at com.ibm.websphere.client.applicationclient.launchClient.

createContainerAndLaunchApp(launchClient.java:430)
 [exec] at com.ibm.websphere.client.applicationclient.launchClient.main(

launchClient.java:288)
 [exec] at com.ibm.ws.bootstrap.WSLauncher.main(WSLauncher.java:63)
 [exec]
 [exec] FAILURES!!!
 [exec] Tests run: 18, Failures: 2, Errors: 0
 [exec]
 [echo] JUnit test complete

BUILD SUCCESSFUL

Total time: 23 seconds
 Chapter 18. Automating unit testing using JUnit 553

Conclusions
We hope the discussions presented in this chapter have encouraged you to
consider including a unit testing strategy and some sort of unit testing tool in your
own development projects.

We remain convinced that the approaches outlined here lead to improved
productivity and overall code quality, as well as improving the day-to-day of
developers working in your team. Our experience in developing this chapter has
merely reinforced this opinion—the simple tests described here uncovered
numerous embarrassing bugs that, fortunately for us, you will never see.
554 WebSphere Version 4 Application Development Handbook

Part 5 Appendixes

Part 5
© Copyright IBM Corp. 2001 555

556 WebSphere Version 4 Application Development Handbook

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246134

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246134.

A

© Copyright IBM Corp. 2001 557

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this redbook includes the
following:

� readme.txt—short instructions
� sg246134code.zip—all sample code in ZIP format

System requirements for downloading the Web material
The following system configuration is recommended for installing VisualAge for
Java and WebSphere Application Server to work with the additional Web
material:

Hard disk space: 3 GB
Operating System: Windows NT, 2000
Processor: 400 MHz or better
Memory: 385 MB, recommended 512 MB

How to use the Web material
Create a subdirectory (folder) on your workstation and download the
sg246134code.zip file into this folder. Unzip the file onto a hard drive to create
this directory structure and files:

sg246134
sampcode - master directory

piggybank - PiggyBank application EAR
repository - VisualAge for Java repository
studio - WebSphere Studio archive file
ant - build and source files for Ant
log4j - source code for Log4J
junit - source code for JUnit
struts - source code for Jakarta Struts
wsbcc - code for WebSphere Business Components
rose - Rose model for the PiggyBank application
wte - html, jsp, webapp files

The piggybank subdirectory contains the code of the PiggyBank application:

piggybank.ear enterprise archive for installation in WebSphere
piggybank.jar complete source code
table.dll DDL for customer and account tables
earexpanded directory with expanded EAR file
warexpanded directory with expanded WAR file (from EAR file)
558 WebSphere Version 4 Application Development Handbook

The repository subdirectory contains the exported repository from VisualAge for
Java (piggybank.dat). This repository contains the code for all versions of the
example PiggyBank application.

The studio subdirectory contains a Studio archive file (piggybank-all.wsr) with
HTML and JSP files for the PiggyBank application (basic, Struts, WSBCC). Note
that some files may be out of date as compared to the latest Java source code in
the Struts and WSBCC directories.

The ant subdirectory contains Ant build files and the source code to build the
basic PiggyBank application, as described in Chapter 9, “Development using the
Java 2 Software Development Kit” on page 183. It also contains generated
javadoc documentation and modules for the application.

The log4j subdirectory contains a single source file implementing the Log4J
version of the PiggyBank log wrapper class discussed in “Using Log4J” on
page 354.

The junit subdirectory contains Ant build files and the source code to build the
JUnit version of the application described in Chapter 18, “Automating unit testing
using JUnit” on page 517.

The struts subdirectory contains Ant build files and the source code to build the
Struts version of the PiggyBank application, as described in “Jakarta Struts” on
page 284.

The wsbcc subdirectory contains the source code for the PiggyBank WSBCC
example discussed in “WebSphere Business Components Composer” on
page 303.

The rose subdirectory contains the Rose model discussed in Chapter 6,
“Modeling and code generation” on page 123.

The wte subdirectory contains the Web application HTML and JSP files for the
basic, Struts, and WSBCC versions of the PiggyBank for testing in VisualAge for
Java. This includes .webapp files and a default.servlet_engine file for
configuration of the servlet engine with multiple Web applications. Note that
some files may be out of date as compared to the latest Java source code in the
Struts and WSBCC samples.

Tip: Some chapters refer to an ITSO4AD directory for the sample code. You
have to copy relevant portions of the sample code to such a directory to match
the description in the chapters.
 Appendix A. Additional material 559

Installing and running the PiggyBank application
The EAR file supplied in the piggybank subdirectory is ready for installation into
WebSphere. The EAR contains a deployed EJB JAR for which code has been
generated for the PiggyBank CMP EJBs to use DB2 UDB Version 7 as the target
database. If you want to use another database, the EJB JAR file must be
redeployed (see “EJB deployment tool” on page 418).

Before installing the EAR file into WebSphere you must:

� Create the database tables used by the PiggyBank application—a DDL file is
supplied in the piggybank subdirectory

� Create a JDBC driver and DataSource for the PiggyBank CMP EJBs to
use—the EAR contains bindings that expect the data source to be located at
jdbc/WAS4AD in the global JNDI namespace—you may modify this binding
when you install the module

� Remove or disable any existing Web application that uses the root context /
and shares the same virtual host as the PiggyBank Web application—if you
intend to use the default_host virtual host you have to remove or disable the
WebSphere samples that also use the root context / in order to start the
PiggyBank Web application

The EAR file should install into either WebSphere AE or AEs. Once the
PiggyBank is installed and started, you can access the application as follows:

� Access the Web application by opening a Web browser on the virtual host
name you used to install the application, for example:

http://localhost:9080/

� Start the standalone Swing client by issuing the command:

launchclient <path to piggybank.ear>\piggybank.ear

You can use the Swing client to enter data for the application to use, or enter
sample data by hand using SQL commands.

Note: In WebSphere Application Server Version 4.0.1, you may have to
update the EAR file to specify a binding of the Web application to the virtual
host (for example, default_host). When we developed the PiggyBank using
Version 4.0, a default of default_host was taken if none was supplied, but in
Version 4.0.1, the Web application fails to start using the EAR file shipped with
the sample code.
560 WebSphere Version 4 Application Development Handbook

http://localhost:9080/

Importing the sample code into VisualAge for Java
To import the PiggyBank sample code into VisualAge for Java, select the File ->
Import menu option, then select Repository and click Next. Select Local
repository and in the Repository name field enter the location of the
piggybank.dat file extracted from the ZIP file.

Next, click Projects and click Details.

Figure 18-38 VisualAge for Java project import dialog

In the dialog select all four versions of the PiggyBank project (Figure 18-38) and
click OK. Finally uncheck Add most recent edition to workspace and click Finish
to import the example code into your workspace.

To work with one of the PiggyBank versions, add the appropriate project version
to your workspace. Each project version has a comment describing the contents
of the project and listing dependencies on third party software not supplied with
the additional material.

The WSBCC sample code is also included in the repository—import the package
into your repository in the same way, selecting Packages instead of Projects.

Attention: The PiggyBank example EJBs use J2EE features not supported by
VisualAge for Java. As a result, you cannot test the PiggyBank EJB code
inside VisualAge without modifying it. This can be achieved without affecting
any other components, however. See “Developing EJBs in VisualAge for Java”
on page 266 for information on developing EJBs to version 1.1 of the EJB
specification in VisualAge for Java.
 Appendix A. Additional material 561

Using the Ant samples
If you want to work with the sample code that uses Ant, you must first obtain and
install Ant, as described in “Using Ant to build a WebSphere application” on
page 197.

If you want to build the JUnit, Struts, or Log4J samples, you must also obtain the
appropriate third party code, as described in the relevant sections.

You must also install WebSphere Application Server, either Advanced Edition
(AE) or Advanced Edition, Single Server (AEs).

Once you have downloaded and installed the software you need, you must edit
the global.properties file (located in the src directory) to specify the locations
of the components Ant requires to build the application.

To build the code, open a command window and change to the src directory. To
rebuild the entire application issue the command:

ant clean package

To rebuild only modified components, issue the command:

ant package

If you have WebSphere AEs installed, you can build, install and start the
PiggyBank application using the command:

ant start

For more information refer to the appropriate chapter for the component you are
working with.

Note: The Ant examples include database schema and map files for DB2
UDB version 7. If you want to use another database you must create new
schema and map files—see “EJB deployment tool” on page 418.
562 WebSphere Version 4 Application Development Handbook

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 567.

� Programming J2EE APIs with WebSphere Advanced, SG24-6124

� Enterprise JavaBeans for z/OS and OS/390 CICS Transaction Server V2.1,
SG24-6284

� EJB Development with VisualAge for Java for WebSphere Application Server,
SG24-6144

� Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application Server, SG24-5754

� Programming with VisualAge for Java Version 3.5, SG24-5264

� WebSphere V3.5 Handbook, SG24-6161

� Version 3.5 Self Study Guide: VisualAge for Java and WebSphere Studio,
SG24-6136

� How about Version 3.5? VisualAge for Java and WebSphere Studio Provide
Great New Function, SG24-6131

� Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for
Java, SG24-5755

� Revealed! Architecting Web Access to CICS, SG24-5466

� IMS Version 7 and Java Application Programming, SG24-6123

� Migrating WebLogic Applications to WebSphere Advanced Edition,
SG24-5956

� WebSphere Personalization Solutions Guide, SG24-6214

� User-to-Business Patterns Using WebSphere Advanced and MQSI: Patterns
for e-business Series, SG24-6160

� WebSphere Scalability: WLM and Clustering Using WebSphere Application
Server Advanced Edition, SG24-6153
© Copyright IBM Corp. 2001 563

� Patterns for e-business: User-to-Business Patterns for Topology 1 and 2
using WebSphere Advanced Edition, SG24-5864

� The XML Files: Using XML for Business-to-Business and
Business-to-Consumer Applications, SG24-6104

� The XML Files: Using XML and XSL with IBM WebSphere 3.0, SG24-5479

� CCF Connectors and Database Connections Using WebSphere Advanced
Edition Connecting Enterprise Information Systems to the Web, SG24-5514

� WebSphere V3 Performance Tuning Guide, SG24-5657

� WebSphere Application Servers: Standard and Advanced Editions,
SG24-5460

� VisualAge for Java Version 3: Persistence Builder with GUIs, Servlets, and
Java Server Pages, SG24-5426

� IBM WebSphere and VisualAge for Java Database Integration with DB2,
Oracle, and SQL Server, SG24-5471

� Developing an e-business Application for the IBM WebSphere Application
Server, SG24-5423

� The Front of IBM WebSphere Building e-business User Interfaces,
SG24-5488

� VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets -
CICS Connector, SG24-5265

� VisualAge for Java Enterprise Version 2 Team Support, SG24-5245

� Creating Java Applications Using NetRexx, SG24-2216

Other resources
These publications are also relevant as further information sources:

� Enterprise Java Programming with IBM WebSphere. Kyle Brown, et al.
Addison-Wesley Professional, May 2001. ISBN: 0201616173

� Design Patterns: Elements of Reusable Object-Oriented Software. Erich
Gamma, et al. Addison-Wesley Publishing Company, January 1995.
ISBN: 0201633612

� Patterns In Java, Volume 1. Mark Grand. John Wiley & Sons, September
1998. ISBN: 0471258393

� The Rational Unified Process, An Introduction. Philippe Kruchten. 2nd ed.
Addison-Wesley Publishing Company, March 2000. ISBN: 0201707101
564 WebSphere Version 4 Application Development Handbook564 WebSphere Version 4 Application Development Handbook

� Rules and Patterns for Session Facades. Kyle Brown. June 2001; article from
WebSphere Developer Domain at:

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0106_brown/sessionfa
cades.html

� Complement Copy Helper Access Beans with Value Beans in VisualAge for
Java. Willy Farrel. July 2001; article from VisualAge Developer Domain, at:

http://www7.software.ibm.com/vad.nsf/Data/Document4083?OpenDocument&
p=1&BCT=3&Footer=1

� Apache Struts and VisualAge for Java, Part 1: Building Web-based
Applications using Apache Struts. Kyle Brown. May 2001; article from
VisualAge Developer Domain at:

http://www7.software.ibm.com/vad.nsf/Data/Document2557?OpenDocument&
p=1&BCT=3&Footer=1

� Apache Struts and VisualAge for Java, Part 2: Using Struts in VisualAge for
Java 3.5.2 and 3.5.3. Kyle Brown. May 2001; article from VisualAge
Developer Domain at:

http://www7.software.ibm.com/vad.nsf/Data/Document2558?OpenDocument&
p=1&BCT=3&Footer=1

� Using the Distributed Debugger — Part 2: Stepping Through Code. Joe
Winchester. May 2001; article from VisualAge Developer Domain at:

http://www7.software.ibm.com/vad.nsf/Data/Document4383?OpenDocument&
p=1&BCT=3&Footer=1

� Using the IBM Distributed Debugger — Part 1: Installing and Troubleshooting.
Joe Winchester. March 2001; article from VisualAge Developer Domain at:

http://www7.software.ibm.com/vad.nsf/Data/Document4378?OpenDocument&
p=1&BCT=3&Footer=1

� Automated Builds with VisualAge for Java and Ant. Glenn McAllister. January
2001; article from VisualAge Developer Domain at:

http://www7.software.ibm.com/vad.nsf/Data/Document4366?OpenDocument&
p=1&BCT=3&Footer=1

� Mapping Rational Rose Models to the VisualAge for Java EJB Development
Environment. Christina Li. December 2000; article from VisualAge Developer
Domain at:

http://www7.software.ibm.com/vad.nsf/Data/Document2447?OpenDocument&
p=1&BCT=3&Footer=1

� Development Best Practices for Performance and Scalability. Harvey Gunther.
September 2000; WebSphere white paper at:

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
 Related publications 565

http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

Referenced Web sites
These Web sites are also relevant as further information sources:

� http://www.ibm.com/software/webservers/appserv/
WebSphere Application Server

� http://www.ibm.com/software/webservers/studio
WebSphere Studio

� http://www.ibm.com/software/ad/vajava/
VisualAge for Java

� http://www.ibm.com/software/vad/
VisualAge Developer Domain

� http://www7b.boulder.ibm.com/wsdd/
WebSphere Developer Domain

� http://www.ibm.com/software/data/
Database and Data Management

� http://www.ibm.com/framework/patterns
IBM Patterns for e-business

� http://alphaworks.ibm.com
IBM alphaWorks

� http://jakarta.apache.org
The Jakarta Project

� http://xml.apache.org
The Apache XML Project

� http://java.sun.com
Sun Java Technology

� http://www.junit.org
JUnit Home Page

� http://www.w3.org
W3C, World Wide Web Consortium

� http://www.omg.org
Object Management Group

� http://www.rational.com
Rational Home Page

� http://jcp.org
Java Community Process

� http://visibleworkings.com
Visible Workings, Java Tracing

� http://www.software.ibm.com/vadd/
EJB deployment tool (EJBDeploy) download

� http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
ISO-639 language codes
566 WebSphere Version 4 Application Development Handbook566 WebSphere Version 4 Application Development Handbook

http://www7b.boulder.ibm.com/wsdd/
http://www.ibm.com/software/data/
http://www.ibm.com/framework/patterns
http://www.ibm.com/software/webservers/appserv/
http://www.ibm.com/software/webservers/studio
http://www.ibm.com/software/ad/vajava/
http://www.ibm.com/software/vad/
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://alphaworks.ibm.com
http://jakarta.apache.org
http://xml.apache.org
http://java.sun.com
http://www.junit.org
http://www.w3.org
http://www.omg.org
http://www.rational.com
http://jcp.org
http://visibleworkings.com
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.software.ibm.com/vadd/

� http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
ISO-3166 country codes

� http://www.software.ibm.com/webservers/appserv/library.html
WebSphere JRas implementation

How to get IBM Redbooks
Search for additional Redbooks or Redpieces, view, download, or order hardcopy
from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
 Related publications 567

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.software.ibm.com/webservers/appserv/library.html
http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

568 WebSphere Version 4 Application Development Handbook568 WebSphere Version 4 Application Development Handbook

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 2001 569

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In
Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
570 WebSphere Version 4 Application Development Handbook

acronyms
AAT application assembly tool

ACL access control list

API application programming
interface

AWT abtract windowing toolkit

BLOB binary large object

BMP bean-managed persistence

CCF Common Connector
Framework

CICS Customer Information Control
System

CMP container-managed
persistence

CORBA Component Object Request
Broker Architecture

DBMS database management
system

DCOM Distributed Component
Object Model

DDL data definition language

DLL dynamic link library

DTD document type description

EAB Enterprise Access Builder

EAR enterprise archive

EIS Enterprise Information
System

EJB Enterprise JavaBeans

EJS Enterprise Java Server

FTP File Transfer Protocol

GUI graphical user interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protoco

IBM International Business
Machines Corporation

Abbreviations and
© Copyright IBM Corp. 2001
IDE integrated development
environment

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

IMS Information Management
System

ITSO International Technical
Support Organization

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

JAF Java Activation Framework

JAR Java archive

JDBC Java Database Connectivity

JDK Java Developer’s Kit

JFC Java Foundation Classes

JMS Java Messaging Service

JNDI Java Naming and Directory
Interface

JSDK Java Servlet Development Kit

JSP JavaServer Page

JTA Java Transaction API

JTS Java Transaction Service

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

MFS message format services

MVC model-view-controller

OLT object level trace

OMG Object Management Group

OO object oriented

OTS object transaction service

PAO procedural adapter object

RAD rapid application development
 571

RDBMS relational database
management system

RMI Remote Method Invocation

SCCI source control control
interface

SCM software configuration
management

SCMS source code management
systems

SDK Software Development Kit

SPB Stored Procedure Builder

SQL structured query language

SSL secure socket layer

TCP/IP Transmission Control
Protocol/Internet Protocol

UCM Unified Change Management

UDB Universal Database

UML Unified Modeling Language

UOW unit of work

URL uniform resource locator

VCE visual composition editor

VXML voice extensible markup
language

WAR Web application archive

WAS WebSphere Application
Server

WML Wireless Markup Language

WSBCC WebSphere Business
Components Composer

WTE WebSphere Test Environment

WWW World Wide Web

XMI XML metadata interchange

XML eXtensible Markup Language
572 WebSphere Version 4 Application Development Handbook

Index

A
AAT 227, 327, 390

application client module 412
EAR file 415
EJB module 404
start 390
user interface 393
Web module 394

access bean 26
ActionServlet 160, 164, 296
actor 90, 92
AE 66

administrative console 448
application installation 450, 451
DataSource 453
Distributed Debugger 479
JDBC driver 453
OLT 479
resources 453
start 448
stop 448
WSCP 462
XMLConfig 460

AEs 66
administrative console 441
application installation 442
browser-based console 438
configuration files 439
DataSource 446
Distributed Debugger 482
JDBC driver 445
OLT 482
plugin configuration 456
resources 445
start 438
stop 448

AlphaWorks 340
analysis 84

use cases 90
Ant 70

automation 225
build files 199
EJBs 215
© Copyright IBM Corp. 2001
installation 198
PiggyBank 200
run JUnit 552
start and stop WebSphere 550
Struts 289
test automation 548
using PiggyBank sample 562
WebSphere 197

Apache 70
Software Foundation 158

applet 7
Applet Designer 238
application

architect 86
client creation wizard 415
client module 412
client resource configuration tool 458
components 10
debugging 467
development tools 63
installation 451
logging 348, 360
versions 371

Application Assembly Tool
see AAT

automation 225, 383

B
bean-managed persistence

see BMP
BMP 36, 39
brainstorming 84
breakpoint

conditional 470
Distributed Debugger 492
JSP execution monitor 515
OLT 489
VisualAge for Java 469

browser-hosted components 11
build target 205
business

analyst 86
logic access beans 18, 26
 573

methods 147
process model 5

C
caching

command 109
JNDI 329

class path 187
dependent 409
EJB module 405

CLASSPATH 187
ClearCase 69, 249, 386
client

Ant 220
JAR 194

client/server applications 5
CMP 36

fields 142
persistence mapping 419, 420, 429

CNInitialContextFactory 326
code

dependencies 188
generation 123

collection 268
command

bean 28, 109
caching 109
granularity 108
JavaBean 105
multi protocol 109
pattern 88, 105
PiggyBank 119

Common Connector Framework 101
compiler options 189
components

application 10
browser 11
Web application server 18

connection pooling 363
container

transaction properties 407
container-managed persistence

see CMP
control flow 40
controller 87
cookies 47
copy helper 36
CRC cards 84

CSS 238
custom finder 36

D
data structure JavaBeans 18, 23
database

connection pooling 363
DataCollection 173
DataElement 173
DataField 173
DataSource 277
debugging

external classes 473
JSP 511
scrapbook 475
variables 473
VisualAge for Java 468
WebSphere Studio 508

DebugSupport 470, 474
default language 125
deployed code 410
deployment descriptor 410
design 84

user interface 115
development

environment 179
framework 283
roles 85
team 85

DHTML 11, 40
display command 106
distributed

object server 7, 29
object-based application 7

Web enabled 8
Distributed Debugger 244, 476

attach 496
breakpoints 493
exceptions 502
source code 492
standalone application 504
start 490
user interface 491
variables and expressions 494
Web application 499
WebSphere Studio 515

document object model 12
DrAdmin 352
574 WebSphere Version 4 Application Development Handbook

DTD 11, 17, 229
dynamic

content 11
modeling 84

E
EAR 80, 226

AAT 415
Ant 230

EARExpander tool 431, 432
EJB 29

1.0 JAR 409
1.1 JAR 407
Ant 215
CMP fields 142
configuration data 406
deployed code 410
deployment tool

see EJBDeploy
development 269
entity 36, 39
finder method 145
generate code 149
JAR 180, 190, 281, 419
JUnit 540
migration 426
module 404
module creation wizard 411
performance 366
PiggyBank 77
primary key 145
Rose 139
session 29, 32
specification 266
test client 266
undeployed JAR 428
validation 426
VisualAge for Java 266

EJBDeploy 68, 282, 418, 566
EJBException 267
enterprise

application wizard 416
archive

see EAR
server 5, 7

Enterprise JavaBeans
see EJB

entity EJB 36, 39

enumeration 268
exceptions

Distributed Debugger 502
export 280
eXtensible Markup Language

see XML
external systems 110

F
facade

pattern 102
finder method 145
FinderException 267
form 162

validation 296
framesets 11, 14
framework 153, 155

development 283
Log4J 357
logging 330

G
GifAnimator Designer 238
global properties

Ant 203

H
heuristic modeling 84
home interface 37
HTML 11

form 40
HTTP

GET 40
POST 41
transport plugin 455

HttpServlet 19, 265
HttpServletRequest 19, 46, 48
HttpServletResponse 19, 42
HttpSession 48, 365

I
IDE

VisualAge for Java 260
IIOP 7
IndexedCollection 173, 322
InitialContext 326
InstantDB 277
 Index 575

internationalization 299
Internet Inter-ORB Protocol

see IIOP
ISO

language code 299
isolation level 369, 406

J
J2EE 64, 181, 183

deployment descriptor 227
Jakarta

Ant
see Ant

Log4J
see Log4J

Struts
see Struts

JAR 65
client 194
EJB 190

Java
developer 86

JavaBean 23
command 105

javac 186, 189
javadoc 186, 195, 262
JavaMail 445
JavaScript 11, 40, 300
JavaServer Pages

see JSP
JDBC 54, 55, 64

driver 278, 445
JDK 64
JMS 64
JNDI 30, 54, 268, 326

namespaces 327
JRas 182, 341
JSP 18, 21

configuration 272
debugging 511
execution monitor 279, 514
performance 365
processor 276
specification 265

JTA 30, 279
JUnit 70, 517

Ant 530
EJB testing 540

execute 533
installation 521
run tests 547
test case 522
test failure 535
test suite 538
VisualAge for Java 521

K
KeyedCollection 173, 322

L
launchClient tool 464, 506, 546
lexical analysis 84
Log4J 70, 182, 340, 354
logging 330
Logging Toolkit for Java 340

M
macro 338
meta-data 226
META-INF 185, 190, 420
method

bell 470
destroy 19
doGet 19
doPost 19
ejbCreate 267
ejbLoad 39
ejbStore 39
forward 42
getCallerIdentity 267
getCallerPrincipal 267
getParameter 46
getProperty 21
getRequestDispatcher 159
getServletContext 43, 52
include 42
init 19
initialize 306
isCallerInRole 267
isCallerinRole 267
sendRedirect 42, 44
service 19, 308
setAttribute 365
toString 334

mind-mapping 84
576 WebSphere Version 4 Application Development Handbook

model 87
model-view-controller

see MVC 100
multiple protocol

command 109
multi-threading 366
MVC 18, 87

pattern 100, 160
Web application 101

N
named windows 11, 14
navigation 117

O
Object Level Trace

see OLT
object-based applications 7
OLT 476

breakpoints 489
configuration 484
graphical interface 485
GUI client 483
performance analysis 487

OO designer 86
OSE 455

P
Page

Designer 238
Detailer 238

PageListServlet 265
PATH 187
patterns 86

command 105
facade 102
MVC 100

performance 362
Persistent Name Server 277
PiggyBank 71

Ant examples 562
application 79
application client module 413
architecture 75
build files 200
client configuration file 459
DataSource 445

debugging 507
EAR file 416
EJB 1.1 JAR 407
EJB deployment tool 420
EJB module 404
EJBs 77
facade 103
import into VisualAge for Java 561
install 560
JUnit 520
launchClient 465
log wrapper 333
map file 425
modules 76
navigation 117
run 560
schema file 422
Struts 161, 291
use cases 93
user interface 73
Web module 395
welcome page 463
WSBCC 310

plugin generation 457
primary key 145
project

directory structure 184
PropertyConfigurator 357
proxy use cases 113
publishing 241

R
RASMessageLogger 347
RASTraceLogger 347
Rational

ClearCase
see ClearCase

Rose
see Rose

read-only methods 367
Redbooks Web site 567

Contact us xv
remote interface 37
RemoteException 267
repeatable read 369
repository explorer 261
RequestDispatcher 42
requirement 92
 Index 577

modeling 89
resource configuration tool 458
reverse engineering 125, 135
RMI-IIOP 266
role 107
Rose 69

code generation 134
default language 125
EJBs 139
installation 131
PiggyBank use cases 95
reverse engineering 128
round tripping 124
VisualAge for Java bridge 130

round tripping 124
rowset 28
Runnable 103
RuntimeException 267

S
sample code 558
SCM 182, 249, 262, 385
scrapbook 309, 468
SDK 183, 186
SEAppInstall 234, 254
SEAppInstall tool 418, 431, 433
serializable 369
serialized deployment descriptors 428
servlet 18

controller 160
engine 275
mapping 403
multiplexing 104
multi-threading 366
performance 365

ServletContext 48
session

bean 108
EJB 29, 32
HTTP 50
synchronization 34

SessionSynchronization 268
SingleThreadModel 99
SOAP 64
Software Configuration Management

see SCM
SSL 374
stateful

access beans 27
session EJB 32

stateless
access beans 27
session EJB 29

static content 11
string concatenation 364
Struts 70

configuration 292
design 153
development 284
Jakarta project 158
PiggyBank 161
VisualAge for Java 284

Studio
see WebSphere Studio

stylesheet 285
syntactic validation 13

T
tag libraries 67, 244
task

command 105
team

development
Studio 243
VisualAge for Java 262

test
case 525
suite 522, 536

Trace.Java 340

U
UDDI 64
UML 69, 155
Unified Modeling Language

see UML
unit testing 518
use case 78

analysis 90
JAR 192
PiggyBank 93
proxy 113
realization 98

useBean 21
user interface

design 115
UserTransaction 267
578 WebSphere Version 4 Application Development Handbook

V
view 87

beans 24
virtual host 372
VisualAge Developer Domain 282
VisualAge for Java 68, 259

debugger 468
import PiggyBank 561
JSP debugging 511
JUnit 521
Rational Rose bridge 130
Rose plugin 133
Struts 284
Studio integration 246
WSBCC 303
XMI toolkit 138

W
WAR 180, 192, 246, 394

publishing 249
Studio 239

Web
application

Ant 222
debugging 499
MVC 101
server 5, 18
Struts 284
VisualAge for Java 264

browser 5
developer 86
module 394, 401

creation wizard 395
server 18

plugins 454
services 65

wizard 254
WebArt Designer 238
WEB-INF 192, 245, 291
WebSphere

Advanced Edition
see AE

Advanced Single Server Edition
see AEs

Application Server 18, 64
Business Components Composer

see WSBCC
Distributed Debugger 477

JRas 341, 567
programming model 3, 57
Resource Analyzer 165
Studio 67, 237

debugging 508
Struts 285
VisualAge for Java integration 246
WSBCC 303

Test Environment 23
see WTE 68

trace 350
WSBCC 165

component model 169
design 153
development 283, 303
VisualAge for Java 303
Web application 167
WebSphere Studio 304

WSCP 431, 462
WSDL 64, 257
WsnInitialContextFactory 326
WTE 68, 242, 268

configuration 270
Control Center 274
Struts 287
WSBCC 304

X
Xalan 285, 288
Xerces 285, 288
XMI toolkit 130, 137
XML 11, 16, 64

build files 199
EJB 1.1 deployment descriptors 419
map file 425
parser 285
schema file 423

XMLConfig 431, 460
XSL 11, 17, 287
 Index 579

580 WebSphere Version 4 Application Development Handbook

(1.0” spine)
0.875”<

->1.498”
460 <

-> 788 pages

W
ebSphere Version 4

Application Developm
ent Handbook

®

SG24-6134-00 ISBN 0738423181

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere Version 4
Application Development
Handbook
Complete guide
for WebSphere
application
development

How to make the
best use of
available tools

Product experts
reveal their
secrets

This IBM Redbook provides detailed information on how to develop Web
applications for IBM WebSphere Application Server Version 4 using a variety of
application development tools.

The target audience for this book includes team leaders and developers, who are
setting up a new J2EE development project using WebSphere Application Server
and related tools. It also includes developers with experience of earlier versions of
the WebSphere products, who are looking to migrate to the Version 4 environment.

This book is split into four parts, starting with an introduction, which is followed by
parts presenting topics relating to the high-level development activities of analysis
and design, code, and unit test. A common theme running through all parts of the
book is the use of tooling and automation to improve productivity and streamline
the development process.

In Part 1 we introduce the WebSphere programming model, the application
development tools, and the example application we use in our discussions.

In Part 2 we cover the analysis and design process, from requirements modeling
through object modeling and code generation to the usage of frameworks.

In Part 3 we cover coding and building an application using the Java 2 Software
Development Kit, WebSphere Studio Version 4, and VisualAge for Java Version 4.
We touch on Software Configuration Management using Rational ClearCase and
provide coding guidelines for WebSphere applications. We also cover coding using
frameworks, such as Jakarta Struts and WebSphere Business Components.

In Part 4 we cover application testing from simple unit testing through application
assembly and deployment to debugging and tracing. We also investigate how unit
testing can be automated using JUnit.

In our examples we often refer to the PiggyBank application. This is a very simple
J2EE application we created to help illustrate the use of the tools, concepts and
principles we describe throughout the book.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Part 1 Introduction
	Chapter 1. WebSphere programming model
	Characteristics of the programming model
	Architectures supported by WebSphere
	Web-based client/server applications
	Distributed object-based applications
	Web-enabled distributed object applications
	Features of a programming model driven design

	Application components
	Browser-hosted components
	Web application server hosted components
	Distributed object server-hosted components

	Control flow mechanisms
	Browser component initiated control flow
	Web application server component initiated control flow

	Data flow sources
	Browser-maintained data flow sources
	Web application server maintained data flow sources
	Enterprise server-maintained data sources

	Chapter summary
	Summary of programming model aspects
	Meeting the challenges

	Chapter 2. Tools overview
	IBM tools
	WebSphere Application Server Version 4.0
	WebSphere Studio Version 4.0
	VisualAge for Java Version 4.0
	WebSphere Business Components Composer

	Third party tools
	Rational Rose
	Rational ClearCase
	Jakarta Ant
	Jakarta Log4J
	Jakarta Struts
	JUnit

	Chapter 3. About the PiggyBank application
	Introducing the PiggyBank application
	What is a piggy bank?

	Functional overview
	Standalone client
	Web client
	Security functionality

	Application architecture
	Application modules
	Common code
	EJBs
	Use cases
	Standalone client
	Web client

	Application implementation
	Application delivery

	Part 2 Analysis and design
	Chapter 4. Overview of development activities
	Analysis and design activities
	Assembling a development team
	Development roles
	Patterns
	Model-view-controller pattern
	Command pattern

	Chapter 5. Requirements modeling
	Use case analysis
	PiggyBank use cases
	PiggyBank use case diagram in Rational Rose
	Use case descriptions in VisualAge for Java

	Use case realization
	The basic approach
	Servlet mapping
	MVC pattern
	Facade pattern
	Servlet multiplexing
	Command pattern
	Display commands
	The value of commands
	Command granularity
	Using session beans
	Relationship between command beans and EJB session beans
	Caching

	External systems integration
	Representing external use cases
	Realizing proxy use cases
	Representing agents in VisualAge for Java

	Designing the user interface
	Screen composition
	Navigation
	Use case commands
	Intermediate commands

	Chapter 6. Modeling and code generation
	Code generation
	Round tripping

	Setting the default language for Rose
	Code generation and reverse engineering
	Code generation
	Reverse engineering

	Integration with VisualAge for Java
	VisualAge for Java Rational Rose bridge
	XMI toolkit
	Plain Java files

	Designing EJBs with Rational Rose
	Creating an EJB with Rose
	Generating EJB code
	Importing an EJB from Rose into VisualAge for Java

	Chapter 7. Designing with frameworks
	Introduction
	Starting with a framework
	What is a framework?
	Frameworks drawbacks
	Framework adoption
	Integration with the tools

	Jakarta Struts
	When to use Struts
	Servlet controller
	Action objects
	Form beans
	Custom tags
	Internationalization
	Code dependencies
	Downsides
	Development

	WebSphere Business Components Composer
	When to use WSBCC
	Deployment and maintenance
	Architecture
	WSBCC elements
	Development

	Part 3 Coding the application
	Chapter 8. Setting up a development environment
	Planning for development
	Defining the deliverables
	Choosing your tools
	Automation opportunities

	Chapter 9. Development using the Java 2 Software Development Kit
	Organizing the project directory structure
	Using the Java 2 SDK to build the application
	Tools in the Java 2 SDK
	Setting up the environment
	Compiling the source code
	Creating the common JAR file
	Creating the EJB JAR file
	Creating the use case JAR file
	Creating the WAR file
	Creating the client JAR file
	Generating documentation

	Using Ant to build a WebSphere application
	What is Ant?
	Installing and configuring Ant
	Ant build files
	Built-in tasks
	Creating build files for the PiggyBank application
	Master build file
	Building the common code
	Building the EJBs
	Building the use cases
	Building the standalone client application
	Building the Web application
	Further automation opportunities using Ant

	Working with meta-data
	Meta-data in WebSphere
	J2EE deployment descriptors
	WebSphere deployment information
	Manifest information
	Creating and editing meta-data files

	Chapter 10. Development using WebSphere Studio
	Developing Web applications with WebSphere Studio
	WebSphere Studio components
	New features in WebSphere Studio Version 4.0

	Structuring the project in Studio
	Working in a team environment with Studio
	Custom tag libraries

	Integration with VisualAge for Java
	Setup
	Interfacing with VisualAge for Java from Studio
	Interfacing with Studio from VisualAge for Java

	Integration with other development tools
	Creating and publishing WAR files
	Creating the WAR file

	Web services wizards
	Web services creation wizard
	Web services consumption wizard

	Chapter 11. Development using VisualAge for Java
	The integrated development environment (IDE)
	Configuring the projects and packages
	Generating documentation in VisualAge for Java

	Working in a team environment
	Developing Web applications with VisualAge for Java
	Developing servlets
	Developing JSPs
	Developing EJBs in VisualAge for Java

	WebSphere Test Environment
	Configuration
	WebSphere Test Environment Control Center
	Servlet Engine
	Persistent Name Server
	Using DataSource objects with the WTE
	JSP execution monitor

	Exporting the code
	Exporting the EJB code
	EJB deployment tool

	Debugging in VisualAge for Java

	Chapter 12. Development with frameworks
	Jakarta Struts
	Using Struts in your development environment
	Struts configuration file
	Building a Struts form
	Building a Struts action
	Form validation
	Message facility
	Internationalization
	Struts conclusions

	WebSphere Business Components Composer
	Importing WSBCC into VisualAge for Java
	WebSphere Studio setup
	WTE setup
	Automatic server startup
	Building WSBCC operations
	Extending XML externalization
	Login
	Legacy example
	Writing a WSBCC service
	Generic WSBCC operations
	Dealing with contexts
	Defining formats
	Presentation

	What we have achieved in this chapter

	Chapter 13. Guidelines for coding WebSphere applications
	Using JNDI
	Obtaining an InitialContext
	Local and global JNDI namespaces
	Caching JNDI lookup results

	Message logging
	Why do we need a logging framework?
	What do we need from a logging framework?
	PiggyBank log wrapper
	Choosing a framework
	Using the WebSphere JRas facility
	Using Log4J
	Logging conclusions

	Coding for performance
	General performance tips
	JSP and servlet performance tips
	EJB performance tips

	Managing application versions
	Specifying the application name
	Partitioning Web applications in the URI namespace
	Partitioning EJBs in the JNDI namespace
	Partitioning access to database and other resources
	Automation opportunities

	Chapter 14. Software Configuration Management
	Introduction
	Reference

	Part 4 Unit testing the application
	Chapter 15. Assembling the application
	Application Assembly Tool (AAT)
	Starting the Application Assembly Tool
	Using the interface
	Creating a Web module
	Creating an EJB module
	Creating an application client module
	Assembling the complete application: the EAR file

	EJB deployment tool
	What does the EJB deployment tool do?
	When is the EJB deployment tool executed?
	Why would I want to run the EJB deployment tool myself?
	Customizing CMP persistence mapping
	Migrating and validating EJB JAR files

	Chapter 16. Deploying to the test environment
	EARExpander command line tool
	SEAppInstall command line tool
	Single Server Edition: the browser-based console
	Starting the application server
	Launching the administrative console in a browser
	Administering applications though the console
	Stopping the AEs application server

	Advanced Edition: the stand-alone console
	Start and stop
	Starting the console
	Installing new applications
	Uninstalling applications
	Setting up resources

	Web server plugin
	Application client resource configuration tool
	Other tools in the Advanced Edition
	XMLConfig
	WSCP

	Performing a unit test: executing the application
	Launching the Web application
	Launching the client application with the launchClient tool

	Chapter 17. Debugging the application
	Debugging with VisualAge for Java Version 4.0
	Working with breakpoints
	Exceptions
	Debugging external classes
	Inspecting data
	Debugging code snippets

	Debugging with the Distributed Debugger and OLT
	Enabling debugging support in WebSphere Application Server
	Enabling support in Advanced Edition
	Enabling support in Advanced Edition, Single Server
	Using Object Level Trace
	Using the Distributed Debugger
	Debugging WebSphere Studio code

	A special case: how to debug a JSP
	Debugging JSPs in VisualAge for Java
	Debugging Studio JSPs: the Distributed Debugger
	Debugging JSPs in WebSphere Application Server

	Chapter 18. Automating unit testing using JUnit
	Unit testing
	What is unit testing?
	Why unit testing?
	Benefits of a unit testing framework

	JUnit
	Installing JUnit
	Organizing our tests
	Test case for a simple Java class
	Test case for an EJB
	Automating unit testing using Ant

	Conclusions

	Part 5 Appendixes
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material
	Installing and running the PiggyBank application
	Importing the sample code into VisualAge for Java
	Using the Ant samples

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Abbreviations and acronyms
	Index
	Back cover

