
Warp

vs.

Chicago

A Decision Maker's Guide to 32-bit
Operating System Technology

IBM Personal Software Marketing

September 1994

Executive Summary

This document is designed to provide the corporate decision maker with benefits of OS/2 and important

information about critical weaknesses in Microsoft's forthcoming Chicago operating system. At the heart of

the discussion are key architectural, operational, and strategic flaws in the Chicago OS design and strategy -

flaws that Microsoft has either downplayed or ignored in its efforts to market Chicago as the "next

generation" Windows desktop platform.

For example, you'll learn:

Why OS/2's ability to isolate individual 16-bit Windows applications into their own separate VDMs

provides a level of inter-application protection that is unavailable under Windows 3.1 or Chicago.

How this same isolation also allows OS/2 to preemptively multitask existing 16-bit Windows

applications, with no impact on native application performance

Why having a comprehensive System Object Model (SOM) is important, and how OS/2's SOM

implementation acts as the "glue" to the WorkPlace Shell interface.

Ways in which OS/2's Virtual DOS Machine implementation is more flexible than Chicago's.

Major topics include:

Architectural flaws that compromise Chicago's stability when running 16-bit Windows applications.

How these same flaws also limit Chicago's multitasking capabilities with a mixture of application

types.

Why the lack of a System Object Model makes the Chicago interface "fragile."

Ways in which Chicago's DOS heritage render the product inflexible when dealing with 16-bit DOS

device drivers.

At the end of each section, a direct comparison is made between the Chicago implementation of a particular

subsystem or feature/function, and that of the leader in 32-bit desktop operating systems, IBM's Operating

System/2.

The material is based on an in-depth analysis of Microsoft's public statements regarding Chicago's design

characteristics and various presentations given at trade shows by industry consultants.

OS/2 - The Right Solution

Choosing the right operating system. In many ways it's the most important personal computer technology

decision you'll make in this century. Choose wisely and you'll reap the benefits for years. Choose poorly

and you may find yourself in a quagmire of under-performing software and inadequate computing power.

So just what constitutes a wise choice in today's confusing PC marketplace? Simple: the product that does

the best job of preserving your existing investments while opening the door to the future. In a nutshell, the

wise choice is Operating System/2.

__

OS/2 - The World's Most Popular 32-bit Operating System for IBM and IBM compatible PC's

Why OS/2? Because it represents the most logical upgrade path for today's PC users. OS/2 preserves your

investment in 16-bit DOS and Windows applications while providing access to a new world of 32-bit,

object-oriented technology.

Upgrading to OS/2 is a win-win proposition. Just ask any of the more than five-million OS/2 users - over 8

times as many users as Microsoft's current 32-bit offering, Windows NT. These are people just like you

who have outgrown their existing DOS or Windows environments and who are looking for more - more

power, more functionality, more stability.

With OS/2 they've found a powerful mix of backward-compatibility, 32-bit processing power, and ease of

use, along with the kind of rock-solid reliability that only a mature, established operating system platform

can deliver. With the release of V3, OS/2 is entering in its 3rd generation, and the product's reputation for

reliability and price/performance is unmatched in the PC industry.

But what about Chicago?

This is the question that perplexes both corporate decision makers and end users alike. With all of the media

hype surrounding this "next generation" of Microsoft Windows, many customers feel paralyzed when

making operating system purchasing decisions. The fear of "missing-out" on Chicago is overwhelming for

some.

But as experience with the initial beta release of Chicago has demonstrated, Microsoft's "next generation" of

Windows is far less compelling than they would lead you to believe. In fact, the core of Windows 4.0 is

probably running on a PC near you: it's called Microsoft Windows 3.1.

__

Architecture

Chicago - Same Code, Different Packaging

"How can that be? It looks so different!"

Looks can be deceiving. While Chicago indeed sports a radically

different user interface (more on that later), as you peel-away the layers

of GUI and packaging you'll discover a product that looks remarkably

like Windows 3.1. In fact, Chicago retains so much of its original

DOS/Windows heritage that it retains the latter's most notorious

operational characteristic: instability.

For example, under Windows 3.1 all applications, as well as the

operating system code itself, share a single memory address space.

While such a memory management model breeds performance, it also

means that an error in any single application can potentially crash the

entire operating system.

This crashing phenomena is often referred to as a General Protection Fault or "GPF," and has been the bane

of Windows users since version 3.0. It is because of this inherent architectural weakness that Windows 3.1

has gained a well-deserved reputation of being an unstable, unreliable operating environment.

Under Chicago, this same single address space model (referred to as the

"System Virtual Machine") is retained, along with the inherent

weakness of leaving key portions of the operating system code exposed

to potentially buggy applications. Thus the same application failures

that crashed Windows 3.1 can potentially bring down the entire Chicago

operating system.

To their credit Microsoft has made great strides in "cleaning-up" many

of the bugs in the original Windows 3.1 code while preparing it for

inclusion with Chicago. However they cannot avoid the inherent

architectural flaws that the Windows 3.1 single System VM model

introduces. There will always remain the possibility of an errant

application causing a disastrous system crash.

OS/2 - Same Code, Better Implementation

OS/2 eliminates the Single System VM stability problem by letting you run Windows applications in their

own separate sessions, or "VDMs" (Virtual DOS Machines). Thus if an application fails under OS/2, the

effect of the failure is limited to the individual session. Other applications, as well as the operating system

itself, remain unaffected.

And by retaining much of the original Windows 3.1 code base, OS/2's environment remains highly

backward compatible with Windows 3.1 applications and device drivers.

__

Multitasking

Chicago - a "Semi-Preemptive" Task Switcher?

One of Microsoft's biggest selling points for Chicago has been the promise of a new breed of 32-bit

Windows applications. These applications are to be preemptively multitasked by the Chicago operating

system, and will have access to advanced performance enhancing techniques like multi- threading.

Let's define the difference between preemptive and cooperative multitasking. Preemption is an involuntary

loss of control which the application must handle. Cooperative multitasking is where the application is

given control and it is the application's responsibility to give up control so that other applications may

execute.

The move to a preemptive multitasking model represents a a significant departure from Windows 3.1.

Under that environment applications must "cooperate" in order for multitasking to occur. Each program

"yields" to the operating system so that it can switch control of the PC's CPU to a different application (this

is often referred to as "cooperative multitasking" or "task-switching").

It is a well know fact that the Windows "cooperative multitasking" model is inefficient. It also forces

programmers to code their applications in a way that adds complexity and hinders performance. So it

comes as no surprise that Microsoft's promise of preemptive multitasking in Chicago has been heralded as

one of the new platform's most important features.

But the truth is that Microsoft isn't telling the whole story when it comes to Chicago's multitasking

architecture. In reality, unless you work exclusively with 32-bit "Win32" applications, you won't reap the

benefits of true preemptive multitasking.

Why? Because of Chicago's heavy reliance on 16-bit,

Windows 3.1-era code. Under Chicago, both 16-bit and 32-bit

applications rely on 16-bit code structures that reside within

the System VM - code that has been brought over from

Windows 3.1.

While the "bitness" of the code itself isn't significant, the

environment from which it hails is. Windows 3.1 was written

as a cooperative, not preemptive, multitasking environment.

When you introduce portions of its code into a preemptive

setting, where more than one task may be vying for its services

at any given time, the code breaks.

To safeguard against this sort of "code breakdown," Microsoft has serialized access to key portions of the

Chicago infrastructure - most notably the USER (window management) and GDI (graphics device

interface) subsystems. In technical terms, this is referred to as a "non-reentrant" design, meaning that only

one application may execute within these modules at any given time.

While such an approach works with Win32 applications - which can be preempted at any point during their

execution - it breaks down once a 16-bit Windows (Win16) application begins to execute. As it stands,

currently shipping Win16 applications cannot be reliably preempted during execution. Attempting to do so

while such an application is calling on a non-reentrant, 16-bit code module can cause the entire operating

system to crash.

__

To avoid this latter scenario, and thus retain some semblance of multitasking, Microsoft has implemented a

special locking mechanism. Dubbed "Win16LOCK," this mechanism denies access to the older code when

a 16-bit application has called on its services. Thus only the currently running Win16 application has

access to the 16-bit code - all other applications, including Win32 applications, are "blocked" from

executing until the 16-bit application has finished and the environment has been made safe for the next task.

In practice, the performance hit associated with this locking phenomena is minimal when running 32-bit

applications exclusively. However, when you introduce a mixture of 16 and 32-bit applications - the most

likely scenario given the projected lack of available Win32 products - Win16LOCK becomes a major

problem.

Most 16-bit Windows applications are notorious for failing to yield properly under Windows 3.1, and until

they do so under Chicago, all other applications will be blocked from accessing USER and/or GDI (in

reality, only 50% of GDI calls are affected - but these are the most common functions so the net result is the

same).

Taken as a whole, these two compromises - the serialization of subsystem access and Win16LOCK - create

what would best be described as a "semi-preemptive" multitasking environment. And while the resulting

"hourglass" is expected under a cooperatively multitasked environment, it seems out of place in a "next

generation" Windows that supposedly "preemptively multitasks" native Win32 applications.

OS/2 - True Preemption for Better Performance

OS/2 has featured true preemptive multitasking of native applications since day one. Regardless of the

mixture of application types, OS/2 can continue to smoothly multitask dozens of concurrent programs, and

its reentrant subsystems allow it to service multiple concurrent requests without the overhead of a

"Win16LOCK" implementation.

And thanks to its ability to run them in separate VDMs, OS/2 can also preemptively multitask existing

16-bit Windows applications which Chicago can not. Thus you can have DOS, Windows, and OS/2

applications running concurrently, side-by-side, without any performance penalties and all preemptively

multitasked. This is a feature that Chicago will be unable to match without underlying architecture

changes, and a welcome addition to any power-user's arsenal.

__

Interface

Chicago - Beauty That's Only Skin-Deep

Another major feature of Chicago, and one that has drawn considerable attention from the industry press, is

its new user interface. Terms like "object-oriented" and "desktop metaphor" are often used to describe this

radically different Windows look.

But as with most of Chicago's underpinnings, the actual foundation underneath the product's user interface

is nothing more than an extension to what already existed in Windows 3.1. Unlike a true object-oriented

environment - where links between individual objects are "live" and updated automatically - the Chicago

GUI is static. "Objects" on the Chicago desktop are merely pointers to files on the disk. "Properties" for

these objects are stored in .INI files (for Windows applications) or .PIF files (for DOS applications), and

links between them (called "shortcuts" under Chicago) are equally static.

For example, if you create a shortcut to an executable file and place it on the Chicago desktop, then rename

the original executable, the shortcut will essentially be severed. To re-establish it you'll have to re-create

the shortcut from scratch.

In a true object-oriented environment,

all shortcut-like links to the executable

would have been updated automatically

by the underlying object management

model. Chicago has no such

underpinnings, so links are easily

broken by novice users who are

unfamiliar with the crudeness of the

Chicago interface.

Going hand-in-hand with Chicago's shortcut mechanism is the product's support for long file and directory

names on FAT volumes. Microsoft is emphasizing Chicago's ability to automatically convert long

file/directory names into 8.3 character abbreviations for compatibility with existing DOS and Windows

applications. What they seem to be ignoring, however, is the fact that promoting the use of long names can

be disastrous when there is no underlying object model.

Take, for example, the novice user who, upon discovering long filenames, decides to "reorganize" their hard

disk. They gleefully rename directories at will, unaware that they are severing shortcut after shortcut in the

process. Suddenly none of their applications work, and I/S is called in to undo the damage (which in some

cases may mean reinstalling both operating system and applications).

The Chicago desktop itself is not an OLE 2.0 object. This statement in itself has no ramifications until you

start understanding what type of integration is lost due to this lack of object technology. This deficiency in

the product, means that an application is not well integrated with the desktop and does not inherit any of the

advantages like Drag 'n' Drop support.

Heralded by Microsoft as one of Chicago's key selling points, the new Windows interface may in the end

prove to be one of its biggest flaws. Without an underlying system object model to tie everything together,

this new "shell" may prove to be an I/S support nightmare.

OS/2 - True Object-Orientation

OS/2's WorkPlace Shell is a true object-oriented interface. The underlying System Object Model (SOM)

provides complete object-tracking so simple operations like dragging a directory to another directory won't

invalidate links and other interface structures. Thus it's easier on both novices and IS support staff alike.

SOM also allows applications to fully manipulate the WorkPlace Shell interface. A good example is

cc:Mail for OS/2, which uses SOM to seamlessly integrate its in/outbox interfaces with the WorkPlace

Shell desktop. This level of integration isn't possible under Chicago since its shell is itself not an object.

Application Support

Chicago - Still DOS After All These Years

"Chicago eliminates the need for DOS. It is a true operating system..."

This is one of the more colorful myths surrounding Microsoft's Chicago operating environment. Microsoft

claims that Chicago eliminates the need for DOS - that DOS and Windows are now completely integrated

and that all the old restrictions that DOS brought to the table have been eliminated.

While it is true that you will no longer have to

purchase a separate DOS product in order to

install and use Chicago, this in no way constitutes

the eradication of DOS as a part of the Windows

operating system equation. DOS is still there,

lurking in the shadows. It's just been cleverly

disguised by a different Windows GUI. And

though much of its functionality - including file

system access - has been replaced by 32-bit

Chicago VxDs (Virtual Device Drivers), there are

still ways in which DOS can hinder the Windows

environment.

Take real-mode device drivers, for example.

Under DOS/Windows 3.1 you were forced to load

all DOS device drivers at DOS boot-time via the

CONFIG.SYS file. These drivers would then

occupy all DOS sessions under Windows' 386

Enhanced Mode, impacting their available

conventional memory and limiting the overall

configurability of the Windows VDM architecture.

Chicago suffers from this very same limitation. Any real-mode DOS device drivers that you wish to access

from within Chicago must be loaded via CONFIG.SYS at boot-time. Thus, if you want access to a

particular resource, and this resource requires a DOS device driver, you'll be forced to pay a penalty in

terms of lost conventional memory and potential compatibility problems across all Chicago VDMs.

And what about troublesome applications like games? Chicago features a special DOS session - the "Single

MS-DOS Application Mode" - that allows such applications to execute unencumbered by the confines of a

traditional Virtual DOS Machine (virtual I/O, video memory, etc.). What Microsoft doesn't publicize,

however, is the fact that, in order to invoke this mode, you must essentially shut-down Chicago. All

running applications close, and the Chicago GUI itself is paged to disk. This entire process can take up to a

minute depending on the speed of the hardware in use and the number of open applications - quite a

disruption, especially when you're trying to finish that last minute memo or download a large file from a

host system.

__

OS/2 - A Better DOS than DOS (or Chicago)

OS/2 really does eliminate the need for DOS. It's VDMs are completely configurable, allowing you to

create individual CONFIG.SYS and AUTOEXEC.BAT files for each DOS session. This is an important

option in those situations where a single device driver or TSR configuration for all VDMs would be

inadequate.

OS/2's VDMs are also highly backward-compatible and can also be configured to allow direct hardware

access for applications that require it. And if an application truly refuses to run under OS/2 you can use the

"dual-boot" option to run real DOS in about the same amount of time it takes you to invoke Chicago's

"Single MS-DOS Application Mode."

__

Independent Software Vendor Commitments

Chicago: An ISV Headache

One area where Microsoft continues to be uncertain is on the subject of API standards. Independent

Software Vendors (ISVs) have been fighting an uphill battle in their efforts to pin-down Microsoft's overall

API strategy. This is especially true of the native Chicago API, Win32c, which is itself a subset of the full

Win32 API published nearly two years ago and implemented on Windows NT.

Further exacerbating the situation is Microsoft's continual updating of the Win32c specification. New APIs

emerge almost monthly, many of which extend Win32 in ways that tie applications to the Chicago platform.

This has aggravated ISVs who wish to write cross-platform applications for Windows, Windows NT, and

Chicago. The only way these ISV's can write cross-platform

applications, because of the different APIs support, is to poll the

Kernel, determine which API is available and write dual or triple

path code. With the APIs still in a state of flux there is no

guarantee that the multiple path code will work.

What this means to the 32-bit operating system customer is a

potential delay in the release of Chicago-compatible Win32

applications. Given the architectural limitations of Chicago's

Win16 application support - especially when multitasking and

stability are major considerations - lack of Win32 applications

could represent a serious obstacle to the platform's widespread

adoption. Chicago needs Win32 applications before it even begins

to make sense as a replacement for Windows 3.1. But given the

confusion and frustration in the ISV community it may be some

time before we see a substantial selection of Win32 titles.

OS/2 - A Consistent Message

In contrast to Microsoft's "API du jour" strategy, IBM has stood firm on its promises to support open

standards and honor ISV commitments. There is one 32-bit OS/2 Presentation Manager API for both client

and server systems. Applications written to that API will work across OS/2 versions running on Intel-based

PC's, and will be easily portable to more advanced implementations in the future (including OS/2 for

PowerPC).

OS/2 currently boasts over 2000 native applications, all of which tap into the superior multitasking and

performance of the world's most popular 32-bit operating system.

Summary

OS/2: the Right Answer

As you can see, Microsoft's Chicago operating system is long on hype and somewhat short on technology.

But if you've followed their product offerings over the past few years, this revelation should really come as

no surprise. Microsoft has a track record of delivering "cosmetically advanced" operating systems while

ignoring the more important issues like robustness, capacity, and true object-orientation.

In contrast, IBM has a very different track record, one that speaks of commitment to open standards and

listening to customer needs. This is the same company that has been developing cutting edge OS

technology for mainframe and minicomputer systems since the dawn of the information age. With OS/2,

IBM has laid the foundation for a truly robust, high-capacity computing environment that preserves your

existing investments while opening the door to the future.

You can see the difference in areas like the OS/2 user interface. The WorkPlace Shell, in conjunction with

the System Object Model (SOM), provide a truly object-oriented computing environment, one that thinks

for you and doesn't break-down when you try to tap into its power. Likewise, OS/2's multitasking

represents a no-compromises approach to bringing this powerful capability to the masses. From native

OS/2 applications to its robust Win-OS2 VDMs, it is an operating system that can juggle your most

complex tasks with ease.

So in the end, the wise choice is obvious: OS/2 has the backward compatibility you want, the stability and

reliability you need, and the kind of rock-solid commitment to excellence you've come to expect from the

world's number one software company, IBM. Chicago looks more and more like a warmed-over version of

yesterday's technology, not the "next generation Windows" platform that Microsoft is advertising it to be.

So what about Chicago? Good question! With one foot still buried in the DOS/Windows grave, Chicago is

yesterday's technology dressed-up to look like tomorrow's 32-bit OS. Why wait for an impostor? OS/2 is

here today, and represents the real future in personal computer operating systems.

Appendix A: Features Chart for OS/2 and Chicago

The following charts provide a summary of OS/2 and Chicago features, including multitasking

characteristics, application environments, and bundled productivity tools.

Feature Warp Warp LAN Client Chicago

32-bit Window Management Yes Yes No

32-bit Graphics Subsystem Yes Yes No

32-bit Printing Subsystem Yes Yes Yes

32-bit Multimedia Subsystem Yes Yes Yes

32-bit Kernel Yes Yes Yes

Demand Paged Virtual Memory Yes Yes Yes

HPFS Support Yes Yes No

Non-locking Input Queue Yes Yes No

USER is 16-bit, non-reentrant code

50% of GDI calls are serviced by 16-bit, non-reentrant code

WARP, new version of OS/2, has an engine that will unlock the input queue if it is locked

__

__

Feature Warp Warp LAN Client Chicago

16-bit OS/2 PM Applications Yes Yes No

32-bit OS/2 PM Applications Yes Yes No

Win32s Applications Yes Yes Yes
(version 1.0 & 1.1)

Preemptive Multitasking Yes Yes No

Win16 Application Support Yes Yes Yes

Win16 Device Driver Support Yes Yes Some

Number of 32-bit Applications 2000+ 2000+ 0

 Available

See chart on multitasking comparison

Windows 3.x communications drivers need to be re-written

Native Chicago applications

__

__

Feature Warp Warp LAN Client Chicago

Preemptive of 32-bit Applications Yes Yes Yes

Preemptive of DOS Applications Yes Yes Yes

Preemptive of Win16 Applications Yes Yes No

Preemptive of mixed 16/32-bit Yes Yes No

 Applications

Multiple, Protected Win16 VDMs Yes Yes No

Crash Protection Yes Yes No

Preemptive Multithreading Yes Yes Yes

Win16LOCK prohibits access to USER and portions of GDI when a Win16 application is executing

All 16-bit applications share a single address space - the System Virtual Machine (VM)

Key operating system code structures (USER and GDI) share the System VM address space with 16-bit applications

__

__

Feature Warp Warp LAN Client Chicago

Folder Work Areas Yes Yes No

Integration with Operating SOM Yes Yes No

Launch Pad Yes Yes Yes

Drag & Drop Deletion Yes Yes No

Drag & Drop Faxing Yes Yes Yes

Drag & Drop Access Paths Yes Yes No

Object Type Templates Yes Yes No

Parent Folder Closing Options Yes Yes No

Chicago shell components are not OLE 2.01 objects

__

__

Feature Warp Warp LAN Client Chicago

Image Viewer Yes Yes No

Photo CD Support Yes Yes No

Autodesk Animation Yes Yes No

Play any Audio File from Internet Yes Yes No

Audio/Video Synch Manager Yes Yes No

MPEG Support Yes Yes Yes

32-bit Audio/Video Playback Yes Yes Yes

__

__

Feature Warp Warp LAN Client Chicago

Internet Access Tools Yes Yes No

 FTP Yes Yes No

 Telnet Yes Yes No

 Gopher Yes Yes No

 Newsreader Yes Yes No

 WEBExplorer Yes Yes No

CompuServe Front-End Yes Yes No

Word Processor Yes Yes No

Spreadsheet Yes Yes No

Database Yes Yes No

Charting Yes Yes No

Report Writer Yes Yes No

Electronic Mail Yes Yes Yes

Image Viewer Yes Yes No

FAX Yes Yes Yes

Phonebook Yes Yes No

Personal Information Manager Yes Yes No

Sys Info Yes Yes No

VideoIn Yes Yes No

Video Conferencing Yes Yes No

Chicago comes with a simple text editor, not a word processor

__

__

Disclaimer

The information contained in this document represents the current view of IBM Corporation on the issues discussed

at the date of publication. Because IBM must respond to changing market conditions, it should not be interpreted to

be a commitment on the part of IBM, and IBM cannot guarantee the accuracy of any information presented after the

date of publication.

This document is for informational purposes only. IBM makes NO WARRANTIES, EXPRESSED OR IMPLIED,

IN THIS SUMMARY.

 1994 IBM Corporation. All Rights Reserved. Printed in the United States of America.

OS/2 is a registered trademark of International Business Machines Corporation. Microsoft is a registered trademark

and Windows is a trademark of Microsoft, Inc. NetWare is a registered trademark of Novell, Inc.

__
