

Bento Specification 19

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

Chapter 4: API Definition

Changes Since Version 1.0a4

Aside from the introduction of the additional reference manipulation routines, the
API changes are essentially refinements of the 1.0a4 spec.

Minor changes to the API are not listed here, but are marked with change bars in the
body of the chapter. Purely expository changes are not marked at all.

Addition of Reference Routines

Four reference manipulation routines have been added to the API:

CMSetRefer-

ence

,

CMDeleteReference

,

CMCountReferences

, and

CMGetNextReference

.
In addition, for consistency,

CMGetReferenceData

 has been renamed

CMNewRef-

erence

; its interface is unchanged.

Change to the Error Handler Prototype

 The error handler prototype has been changed to take an error number and a vari-
able number of strings rather than a single error string. This allows easier classifica-
tion of errors reported to the handler.

Change Generation Number to 32 Bits

 CMGeneration has been changed to 16 bits to 32 bits. A number of Bento reviewers
had expressed a concern that a significant number of Bento containers might have

lifetimes of more than 2

16

 generations. This change will generally impose no addi-
tional TOC overhead because of the new TOC format.

Container Encoding Control Eliminated

The encoding argument has been eliminated from CMOpenNewContainer. All
container TOCs will have little-endian encoding.

AbortSession and AbortContainer Calls Added

Calls to abort a session or a container cleanly after unrecoverable errors were added.

Design Comments

Portability

The actual API headers are annotated with macros to support the various declara-
tors needed for different systems and especially different C compilers. These annotations
have been removed from the API as presented in this chapter of the specification.

We have carried out extensive testing to make sure that Bento will run in as many
environments as possible.

Declaration Style

Declarations are deliberately made in a platform-independent manner. A mapping
from the declarations as given to a specific platform will be required for each implemen-
tation.

Names specific to the API are prefixed with “CM” (Container Manager).

20 API Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

Error Reporting

The API calls an error handler provided in the initialization call to report errors. This
handler could do a longjump, or it could use a more sophisticated error reporting scheme.

Error Codes

The error codes returned by the operations are defined in Appendix C. This list will
continue to grow with extensions to the design. The list of errors possible from each oper-
ation is not yet included in the spec.

Types and Constants ___

Low level basic types

typedef char CHAR;

typedef unsigned char UCHAR;

Signed and unsigned1-byte values.

typedef short SHORT;

typedef unsigned short USHORT;

Signed and unsigned2-byte values.

typedef long LONG;

typedef unsigned long ULONG;

Signed and unsigned 4-byte values.

Types

All Container Manager types are defined here with the intent to aid in enforcing
compiler type checking. Note that “refNums” for session data, container control blocks,
values, and objects are uniquely typed to strictly enforce type checking of those entities.
These types are defined as pointers derived from an “incomplete type”, i.e. structs. The
structs are

not

 defined. In ANSI C, an “incomplete type” need not be defined.

typedef struct CMSession_ *CMSession;

Pointer to session (task) data.

typedef struct CMContainer_ *CMContainer;

“RefNum” for containers.

typedef struct CMObject_ *CMObject;

“RefNum” for objects.

typedef CMObject CMProperty;

“RefNum” for property description objects.

typedef CMObject CMType;

“RefNum” for type description objects.

Bento Specification 21

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

typedef struct CMValue_ *CMValue;

“RefNum” for values.

typedef CHAR *CMOpenMode;

Handler open mode string pointers.

typedef CHAR *CMGlobalName;

Global unique name pointers.

typedef CHAR *CMErrorString;

Error message string pointers.

typedef CM_CHAR *CMMetaData;

Type metadata string pointers.

typedef void *CMRefCon;

Reference constants ("refCon"s).

typedef void *CMPtr;

Arbitrary data pointers.

typedef UCHAR *CMMagicBytes;

Magic byte pointers.

typedef CM_UCHAR *CMDataPacket;

"New value" handler data packets.

typedef CM_UCHAR *CMDataBuffer;

Ptr to data buffer for handlers.

typedef CM_UCHAR *CMPrivateData;

Ptr to private CM data for handlers.

typedef CM_UCHAR CMReference[4];

Referenced object data pointers.

typedef UCHAR CMSeekMode;

Container "fseek()" handler modes.

typedef UCHAR CMBoolean;

Boolean funct. results (0==>false).

typedef USHORT CMContainerUseMode;

Container open use mode flags.

typedef USHORT CMContainerFlags;

Container label flags.

22 API Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

typedef CM_USHORT CMContainerModeFlags;

Container open mode flags.

typedef USHORT CMEofStatus;

"feof()" handler result statusc

typedef CM_LONG CMErrorNbr;

Error handler error numbers.

typedef ULONG CMGeneration;

Container generation numbers.

typedef ULONG CMSize;

Sizes

typedef ULONG CMCount;

Amounts or counts.

typedef void

*CMPtr;

Arbitrary data pointers.

typedef void

(

*CMHandlerAddr)();

Handler address pointers.

typedef CMHandlerAddr (*CMMetaHandler)

(CMType,

const CMGlobalName);

Metahandler prototype.

Constants

The following flags are passed to

CMOpen[New]Container()

. They modify the
open in the indicated ways. Note that kCMReading, kCMWriting, kCMUpdating are
also returned from

CMGetContainerInfo()

 to indicate the mode of the container, i.e. it
was opened for reading, writing, or updating.

const CMContainerUseMode kCMReading = 0x0001

Container was opened for reading.

const CMContainerUseMode kCMWriting = 0x0002

Container was opened for writing.

const CMContainerUseMode kCMReuseFreeSpace = 0x0004

Try to reuse freed space.

const CMContainerUseMode kCMUpdateByAppend = 0x0008

Open container for update-by-append.

const CMContainerUseMode kCMUpdateTarget = 0x0010

Bento Specification 23

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

Open container for updating target.

const CMContainerUseMode kCMConverting = 0x0020;

Open a container for "converting".

The following flags are options to the "seek" I/O handler.

const CMSeekMode kCMSeekSet = 0x00;

 "fseek()" handler mode (pos).

const CMSeekMode kCMSeekCurrent= 0x01;

 "fseek()" handler mode (curr+pos).

const CMSeekMode kCMSeekEnd = 0x02;

 "fseek()" handler mode (end+pos).

Operation Definitions __

Session Operations

The session is an explicit object created by initializing the library. It represents
private Container Manager data that is global to all open containers. The intent is that this
data is unique to the currently running session (or task). The caller may extend this data
to include his or her own special per-session information.

CMSession CMStartSession(CMMetaHandler metaHandler,

CMRefCon sessionRefCon)

This call is used for all global initialization of the Container Manager. It

must

 be
called before any other Container Manager routine and should only be called once. If not,
every API routine will try to exit without doing anything.

An anonymous non-

NULL

 pointer is returned if initialization is successful.

NULL

 is
returned for failure unless the error reporter (discussed below) aborts execution.

This routine takes as its main parameter the address of a metahandler. This meta-
handler must define operations for error handling, memory allocation, and memory deal-
location. The interface to the metahandler and to the three specific handlers is
documented in Appendix B.

In addition the caller can pass a “reference constant” (refCon) as the last parameter
to this routine. It is saved in the session data. The refCon is not used by the API and can
be anything, but usually it will be a pointer to the caller's own session data.

void CMEndSession(CMSession sessionData,

CMBoolean closeOpenContainers)

This should be called as the

last

 call to the Container Manager. It frees the space allo-
cated for the session by

CMStartSession()

 and optionally calls

CMCloseContainer()

on all remaining open containers.

24 API Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

The sessionData specifies the session data pointer returned from

CMStartSes-

sion()

. If

closeOpenContainers

 is passed as 0 (i.e., "false"), then an error is reported
for each container that has

not

 been explicitly closed by

CMCloseContainer()

. If true
(non-zero) is specified, then the Container Manager will call

CMCloseContainer()

 for
you for each remaining open container.

No further calls should be done once this routine is called. All memory occupied by
the containers, as well as the session itself are freed.

void CMAbortSession(CMSession sessionData);

 This is basically a

CMAbortContainer()

 for all currently open containers followed
by a

CMEndSession()

. This routine

will

 return to its caller. It is up to the user to actually
abort execution if that is required. This call is intended to be used to abort the session
from unrecoverable errors.

 All containers are closed without further writing to those containers, i.e., as if all
containers were opened for reading even when opened for writing. All memory allo-
cated by all the container data structures are freed (if possible) and the container close
handlers called to physically close the containers. All dynamic values currently in use are
released in an attempt to allow them to properly clean up any files and memory allocated
by their handlers. No further API calls should be done.

CMRefCon CMGetSessionRefCon(CMContainer container)

This routine can be used to get at the user's session refCon saved as part of the
session data created by

CMStartSession()

. The session data is "tied" to each container
created by

CMOpen[New]Container()

. Thus typically the refCon will be accessed via a
container refNum.

void CMSetSessionRefCon(CMContainer container,

CMRefCon refCon)

This routine may be called to change the user's session refCon associated with the
session data.

CMHandlerAddr CMSetMetaHandler(const CMSession sessionData,

const CMGlobalName typeName,

CMMetaHandler metaHandler)

This routine records the association of Global Names with their metahandlers.

The designated metahandler will be associated with the

typeName

. The previous
metahandler for this type name, if any, is returned. If there was no previous metahandler
defined,

NULL

 is returned. The association between handlers and type names is global
within a session, rather than specific to a given container.

A metahandler will be called whenever Bento or the application needs to find out
how to perform a given operation on a container or value of this type. The metahandler
can define specific handlers for any number of different operations, potentially with
completely different interfaces. The interface to the metahandler is documented in the
section on handler interfaces.

Bento Specification 25

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

This routine must be used to associate a type name with a metahandler before

CMOpen[New]Container()

 is called, so that the Container Manager can find the appro-
priate metahandler for the container.

CMHandlerAddr CMGetMetaHandler(const CMSession sessionData,

const CMGlobalName typeName)

This function searches the metaHandler symbol table for the specified

typeName

and returns the associated metahandler address. If no metahandler is associated with
that type name, it returns

NULL

.

CMHandlerAddr CMGetOperation(CMType targetType,

const CMGlobalName operationType);

 This routine takes a

targetType

 which has a globally unique name and uses that
name to find a metahandler. The metahandler, in turn, is called to get the handler routine
address for the specified

operationType

. The function returns the resulting address.

 Metahandler proc addresses are given to the Container Manager by calls to

CMSet-

MetaHandler

. The global name for the input

targetType

 is treated as the

typeName

 to
find the metahandler.

See Appendix B for more information on the hander mechanism.

Container Operations

Containers (files and blocks of memory) are always accessed through handlers, to
provide platform independence and support nested containers. Handlers are respon-
sible for creating a container if necessary, opening and closing it, managing stream I/O to
it, and reading and writing the container label (which provides such information as the
location of the Table of Contents). The interfaces to container handlers are documented
in the Appendix B.

The types of storage that can be used as containers are limited only by the types of
handlers available.

CMContainer CMOpenContainer(CMSession sessionData,

CMRefCon attributes,

const CMGlobalName typeName,

CMContainerUseMode useFlags);

This operation opens an existing Bento container.

The

attributes

 must designate management structures for the container storage.
This

attributes

 argument is not examined by Bento, but is simply passed to the appro-
priate handler interfaces. It is intended to provide the information necessary for the
handlers to locate a specific container. Thus

attributes

 serves as a communication
channel between the application and the Open handler. In its simplest form for a
container file it would be a pathname. For an embedded container, it would be the parent
value (CMValue), corresponding to the embedded container.

26 API Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

The

typeName

 is used to find a metahandler defined for that same typeName. The
metahandler, in turn, defines the handlers for the container and thus knows how to get at
the physical container. These handers must understand the

attributes

 provided.

The useFlags must be 0 or

kCMReuseFreeSpace

. 0 implies that the container is to
be open for reading only. No writes may be done. If

kCMReuseFreeSpace

 is specified,
than

both

 reading and writing may be done to update the container. Free space from
deleted data will be reused and overwrites of existing data may be done to change it
(subject to the container label flags, see below).

A container refnum is returned.

Note that an individual value can be opened as an embedded container. Through the
attributes, the value is passed to the handlers. This value must be typed as an embedded
container value. Embedded containers can have embedded containers which can also be
opened and read. The effect is that a tree of nested containers can be opened and read
without restriction. However, when a

CMCloseContainer()

 is done on a parent
container, all of its descendents will also be closed.

CMContainer CMOpenNewContainer(CMSession sessionData,

CMRefCon attributes,

const CMGlobalName typeName,

CMContainerUseMode useFlags,

CMGeneration generation,

CMContainerFlags containerFlags,

...);

This operation opens a new Bento container for writing. This is similar to opening
for reading (see documentation above) except that here a new and empty container is
opened. A minimum TOC is created along with the special TOC object 1 with its seed and
offset properties.

The resulting container can be updated.

In addition to

kCMReuseFreeSpace

, the useFlags may be 0,

kCMConverting

,

kCMUpdateByAppend

, or

kCMUpdateTarget

.

generation

 is the generation number of the container; it must be

≥

 1. If this
container is a copy of a previous container, the generation number should be 1 greater
than the generation number of the previous container.

containerFlags

 is the flag value that will be stored in the container label. No
container flags are currently defined.

If the

kCMConverting

 flag is set in

CMContainerUseMode

, the physical container
is assumed to already contain a sequence of bytes that the caller wants to convert to
container format. The application uses

CMDefineValueData()

 to create values for
objects in the bytes. All new stuff, including the TOC is written at the end of the existing
stuff. Bento will not modify the existing data.

Bento Specification 27

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

If the

kCMUpdateByAppend

 or

kCMUpdateTarget

 flags are set, all updates to a
"target" container are recorded in the container being opened. Future opens of this
container, with

CMOpenContainer()

 will apply the updates to the target to bring it "up-
to-date" while it is open.

If

kCMUpdateByAppend

 is specified, then the container is opened for update-by-
append. All updates are appended to the existing container and an additional TOC is
layered on to the end of the container when closed. Each time the container is opened and
then closed for update-by-append, the new updates and a new TOC are appended.
Whenever such a container is opened (in any mode), all the updates are applied appro-
priately to the original container.

Using

kCMUpdateTarget

 is similar to

kCMUpdateByAppend

, but the updates are
recorded in a new container.

In both cases the “target” container is specified in a type-dependent way, using the

CMRefCon

 and the “

...

” parameters passed to

CMOpenNewContainer()

. These param-
eters are interpreted in exactly the same way as the corresponding parameters of

CMNewValue()

; see the documentation of

CMNewValue()

 for further details on the
“

...

” parameters.

A container refnum is returned.

Just as in reading, any number of embedded containers can be opened. Also
embedded containers can be opened within embedded containers to any depth. The effect
is that a tree of nested containers can be opened and written without restriction. However,
when a

CMCloseContainer

 is done on a parent container, all of its descendents will also
be closed.

It is an error to call

CMOpenNewContainer

 with a value that belongs to a container
that is not updatable, since that call would create an embedded container open for
writing.

void CMGetContainerInfo(const CMContainer container,

CMGeneration *generation,

CMContainerFlags *containerFlags,

CMGlobalName typeName);

The corresponding values for the designated container are returned.

NULL

 may be
passed for any reference; in that case the corresponding value is not returned.

CMSession CMGetSession(CMContainer container)

The session global data pointer returned from CMStartSession() is passed to most of
the handler routines defined in this file. This routine is provided to make it easier to
retrieve the pointer as a function of the container refNum.

VOID CMCloseContainer(CMContainer container);

If the container was open for writing, all I/O to the designated container is
completed, and the table of contents and label are built and written out.

28 API Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

This call closes the specified container and

all

 its currently opened embedded
containers (if any).

This call destroys the association between the container refnum and the designated
container. On return the specifed container refNum and all the others corresponding to
the embedded containers are invalid. All memory associated with a container's data
structures is freed. After this call the container refNum may be returned by a subsequent

CMOpenContainer

 call, designating another container.

VOID CMAbortContainer(CMconst_CMContainer container);

The container is closed without further writing to the container, i.e., as if it were
opened for reading even when opened for writing. This is intended to be used to abort
processing of the container from unrecoverable errors.

 All memory allocated by the container data structures is freed (if possible) and the
container close handler called to physically close the container. All dynamic values
currently in use are released in an attempt to allow them to properly clean up any files
and memory allocated by their handlers. No further API calls should be done on the
container as it will be closed upon return.

 Note, this routine will return to its caller. It is up to the user to actually abort execu-
tion if that is required.

Type and Property Operations

All types and properties must be registered before they can be used. The operations
behave the same on standard types and properties as on normal types and properties.
However, standard types and properties will not actually be given TOC entries for their
descriptions just because they are registered. If additional, non-standard properties are
added to the description of a standard type or property, they will be stored.

The refnum returned from registration can be used in exactly the same manner as an
object refnum in the object and value operations.

Types and properties may be registered more than once; the refnum returned from
all the different registrations of the same type is the same. Identity of types is defined by
string equality of their names.

CMType CMRegisterType(CMContainer targetContainer,

const CMGlobalName name);

The designated type is registered in the designated container, and a refnum for it is
returned. If a type with that name already exists, the refNum for it is returned.

Standard types may be registered, but this is not required.

CMProperty CMRegisterProperty(CMContainer targetContainer,

const CMGlobalName name);

The designated property is registered in the designated container, and a refnum for
it is returned. If a property with that name already exists, the refNum for it is returned.

Standard properties may be registered, but this is not required.

Bento Specification 29

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

CMBoolean CMIsType(CMObject theObject);

CMBoolean CMIsProperty(CMObject theObject);

These operations test the designated object and return non-zero if it is a type descrip-
tion or a property description, respectively, otherwise 0.

CMType CMGetNextType(CMContainer targetContainer,

CM CMType currType);

A refnum for the next type registered in the same container is returned.

currType

is generally a refNum previously returned from this routine. Successive calls to this
routine will thus yield all the type descriptions in the container.

Types are returned in order of increasing ID. If there are no larger type IDs regis-
tered,

NULL

 is returned. To begin the iteration, pass

NULL

 as the type refnum.

CMProperty CMGetNextProperty(CMContainer targetContainer,

CMProperty currProperty);

A refun for the next property registered in the same container is returned.

currProperty

 is generally a refNum previously returned from this routine. Successive
calls to this routine will thus yield all the property descriptions in the container.

Properties are returned in order of increasing ID. If there are no larger property IDs
registered,

NULL

 is retured. To begin the iteration, pass

NULL

 as the property refnum.

CMCount CMAddBaseType(CMType type,

CMType baseType)

This routine defines base types for a given type so that layered dynamic values can
be created. Base types essentially provide type inheritance. See the chapter on Types and
Dynamic Values for a full description of how base types are used.

A base type is added to the specified type. For each call to

CMAddBaseType()

 for
the type a new base type is recorded. They are recorded in the order of the calls. The total
number of base types recorded for the type is retuned. 0 is returned if there is an error and
the error reporter returns.

It is currently an error to attempt to add the

same

 base type more than once to the
type.

CMCount CMRemoveBaseType(CMType type,

CMType baseType)

The specified base type previously added to the specifed type by

CMAddBase-

Type()

 is removed. If

NULL

 is specified as the baseType,

all

 base types are removed. The
number of base types remaining for the type is returned.

Note, no error is reported if the specified base type is not present or the type has no
base types.

30 API Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

Object Operations

CMObject CMNewObject(CMContainer targetContainer);

A refnum to a new object in the designated container is returned. At this point the
object has nothing but an identity.

CMObject CMGetNextObject(CMContainer targetContainer,

CMObject currObject);

A refum for the next object defined in the same container is returned. currObject is
generally a refNum previously returned from this routine. Successive calls to this routine
will thus yield all the objects in the container.

Objects are returned in order of increasing ID. If there are no larger object IDs
defined,

NULL

 is returned. To begin the iteration, pass

NULL

 as the object refnum.

Since type and property descriptions are objects, they will be returned in sequence
as they are encountered. Only objects in the current container will be returned, not objects
in any base containers.

CMProperty CMGetNextObjectProperty(CMObject theObject,

CMProperty currProperty);

A refnum for the next property defined for this object is returned.

currProperty

is generally a refNum previously returned from this routine. Successive calls to this
routine will thus yield all the properties for the given object.

This routine returns the refNum for the next property defined for the given object. If
there are no more properties defined for this object,

NULL

 is returned. If

currProperty

is

NULL

, the refNum for the first property for the object is returned.

CMObject CMGetNextObjectWithProperty(CMContainer targetContainer,

CMObject currObject,

CMProperty property)

 This routine returns the refNum for the next object in the container that has the
given property.

currObject

 is generally a refNum previously returned from this
routine. Successive calls to this routine will thus yield all the objects with the given prop-
erty.

If

currObject

 is

NULL

, the search starts with the first object in the container. If there
is no next object with the given property,

NULL

 is returned.

CMContainer CMGetObjectContainer(CMObject theObject);

The container of the designated object is returned.

CMGlobalName CMGetGlobalName(CMObject theObject);

The name of the designated object is returned. This operation is typically used on
types and properties, but it can be applied to any object with a Globally Unique Name
property.

NULL

 is returned if the object does not have a Globally Unique Name.

Bento Specification 31

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

CMRefCon CMGetObjectRefCon(CMObject theObject)

This routine returns the user's "refCon" (reference constant) that s/he may associate
with any object refNum (i.e., a

CMObject

). The refCon is a

CM_ULONG

 that the user may
use in any way. It is not touched by the API except to initialize it to 0 when the object is
read into memory.

Note that the refCon is

not

 preserved across closed containers, i.e., it is not saved in
the TOC.

void CMSetObjectRefCon(CMObject theObject,

CMRefCon refCon)

This routine is used to set the user's "refCon" (reference constant) to be assoicated
with an object. The refCon is a

CM_ULONG

 that the user may use in any way. It is not
touched by the API.

Note that the refCon is

not

 preserved across closed containers, i.e., it is not saved in
the TOC.

VOID CMDeleteObject(CMObject theObject);

The specified object and all its properties and values are deleted. It is an error to use
the object refnum after this call has been made.

A deleted object will be treated by all Bento operations as though it does not exist.
For example, it will not be found by

CMGetNextObject,

 etc.

Objects containing values that are currently open embedded containers cannot be
deleted. Also, some objects created and used in the management of the TOC itself cannot
be deleted.

VOID CMDeleteObjectProperty(CMObject theObject,

CMProperty theProperty);

The designated object property is deleted along with all of its values.. It is an error
to use the refnum of any value of this property of this object after this call has been made.

A deleted object property will be treated by all Bento operations as though it does
not exist. For example, it will not be found by

CMGetNextObjectProperty,

 etc.

Object properties containing values that are currently open embedded containers
cannot be deleted. Also, some object properties created and used in the management of
the TOC itself cannot be deleted.

VOID CMReleaseObject(CMObject theObject);

The association between the object refnum and the designated object is destroyed.
After this call the refnum is invalid and may be returned from one of the object calls to
designate another object.

This call is also used to destroy the association between properties and types and
their associated refnums.

32 API Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

Value Operations

All the I/O calls in the current API do I/O to or from a buffer provided by the appli-
cation.

The generation number can be set, but it is not passed in the

NewValue

 call.
NewValue defaults the generation number to the current generation value for the
container. Normally this is what is wanted.

CMCount CMCountValues(CMObject object,

CMProperty property,

CMType type);

A property for an object can be defined to have more than one value. This routine
returns the number of values for the specified property belonging to the specified object.

If the type is specified as

NULL

, the total number of values for the object's property is
returned. If the type is not

NULL

, 1 is returned if a value of that type is present (because
there can be a maximum of one value of that type), and 0 otherwise. If the property is not
defined for the object, 0 is always returned.

CMValue CMUseValue(CMObject object,

CMProperty property,

CMType type);

This routine is used to get the refNum for the value of an object's property of the
given type.

NULL

 is returned if the value does not exist, or if or the object does not contain
the property. If the type of the value corresponds to a global type name that has an asso-
ciated "use value" handler, or if its base types (if any) have associated "use value"
handlers, a the refnum returned will refer to a dynamic value rather than the base value.
(Normally, an application will never be aware of this difference.)

If the value is typed as an embedded container, then this refnum can be passed to

CMOpenContainer

 as the attributes argument.

CMValue CMGetNextValue(CMObject object,

CMProperty property,

CMValue currValue)

This routine returns the refNum for the next value (according to the current value
order) in the objects property following

currValue

. If currValue is

NULL

, the refNum for
the first value for that object's property is returned. If

currValue

 is not

NULL

, the next
value for that object's property is returned.

NULL

 is returned if there are no more type
values following

currValue

 or the object does not contain the property.

currValue

 is generally a refNum previously returned from this routine. Successive
calls to this routine will thus yield all the values for the specified property of the specified
object as long as no other operations change the value order.

Bento Specification 33

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

CMValue CMNewValue(CMObject object,

CMProperty property,

CMType type,

...);

A new entry is created for the designated object, with the designated property and
type and a refnum to the entry is returned. The generation number of the value defaults
to the generation number of the container, but it may be set with

CMSetValueGenera-

tion

.

An object's properties can have more than one value. However, the all the types for
the values belonging to a given object property must be

unique

. It is an error to attempt
to create a value for a property when there is already a value of the same type for that
property.

If the specified type corresponds to a global type name that has an associated “use
value” handler, or if its base types (if any) have associated “use value” handlers, a
dynamic value will be created and returned. The value will be initialized using the

dataInitParams

 arguments, which must correspond to the initialization arguments for
a value of that type. See Chapter 5: Types and Dynamic Values for details.

Note that the value refnum at this point has no associated data. The value data is set
with

CMWriteValueData

 or

CMOpenNewContainer

 (to write an embedded container).
If the value will be used as an embedded container it must have the embedded container
type. Using

CMWriteValueData

 on a value of this type is an error.

The value is created at an unspecified location in the sequence of values for the spec-
ified property. Creating a new value may cause the order of the values for that property
to change.

CMValue CMVNewValue(CMObject object,

CMProperty property,

CMType type,

va_list dataInitParams)

This routine is the same as

CMNewValue()

 above, except that the dynamic value
data initialization (i.e., "...") parameters are given as a variable argument list as defined by
the "stdarg" facility.

This routine assumes the caller sets up and terminates the variable arg list using the
"stdarg.h" calls as follows:

#include <stdarg.h>

callersRoutine(args, ...)

{

va_list dataInitParams;

- - -

va_start(dataInitParams, args);

value = CMVNewValue(object, property, type, dataInitParams);

34 API Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

va_end(dataInitParams);

- - -

}

CMSize CMGetValueSize(CMValue value);

The size of the designated value is returned.

If the storage size of the value is different from its size as seen by the application (for
example, if it is compressed) the value handlers are responsible for keeping track of the
application visible size and responding correctly. See Chapter 5: Types and Dynamic
Values for details.

CMSize CMReadValueData(CMValue value,

CMPtr buffer,

CMCount offset,

CMSize maxSize)

 The data, starting at the offset, for the value is read into the buffer. The size of the
data read is returned. Up to

maxSize

 characters will be read (can be 0).

 The data is read starting at the offset, up to the end of the data, or maxSize charac-
ters, whichever comes first. Offsets are relative to 0. If the starting offset is greater than or
equal to the current data size, no data is read and 0 returned.

 It is an error to attempt to read a value which has no data, i.e., a value where only a

CMNewValue

 has been done.

void CMWriteValueData(CMValue value,

CMPtr buffer,

CMCount offset,

CMSize size)

 The buffer is written to the container and defined as the data for the value. If the
value already has data associated with it, the buffer overwrites the "old" data starting at
the offset character position.

size

 bytes are written.

 If the current size of the value data is T (it will be 0 for a new value created by

CMNewValue

), then the offset may be any value from 0 to T+1. That is, existing data may
be overwritten or the value extended with new data. The value of T can be gotten using

CMGetValueSize

. Note that no "holes" can be created. It is an error to use an offset
greater than T+1.

 Once data has been written to the container, it may be read using

CMReadValue-

Data

.

CMWriteValueData

 may only be used on an updateable container.

CMWriteValueData

 calls for a particular value do not have to be contiguous.
Writes for other values can be done in between writes to a given value. The library takes
care of generating separate value segments. The data is physically not contiguous in the
container in this case.

CMWriteValueData

 and

CMReadValueData

 hide this by
allowing the user to view the data as contiguous. The input offset is mapped to the proper
starting segment and to the offset within that segment.

Bento Specification 35

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

CMWriteValueData()

 may only be used for a container opend for writing (or
converting) using

CMOpenNewContainer()

. It is an error to write to protected values,
which are created implicitly by the API. This includes the predefined TOC objects (seed
and offset values) and objects representing currently opened embedded containers.

 For creating embedded containers,

CMOPenNewContainer

 is used instead of

CMWriteValueData

. See

CMNewValue

 and

CMOpenContainer

 for further details.

VOID CMInsertValueData(CMValue value,

CMPtr buffer,

CMCount offset,

CMSize size)

If the current size of the value data is T,

offset

 must be

≤

 T+1. The existing data in
the value is “pushed aside” and the buffer is written in the space created.

VOID CMDeleteValueData(CMValue value,

CMCount offset,

CMSize size)

Let T be the length of the value data. The bytes from

offset

 to

offset

 +

size

 are
deleted from the value, and the value is “closed up”. After this operation, the size of the
value data is T-

size

 (assuming

offset+size

 is

≤

 T). If

offset

 is greater than T, no data
is deleted. If

offset+size

 is greater than T, all the data from

offset

 to T is deleted.
Neither case produces an error.

Existing value data:
T+size

Inserted data:

Size:

Offset:

0 offset offset+size

Existing value data:
T-size

Deleted data:

Size:

Offset:

0 offset offset+size

36 API Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

VOID CMDefineValueData(CMValue value,

CMSize offset,

CMSize size);

Existing data in the container, which must have been in the container when it was
opened by Bento, is defined as the data for the value. No data is written to the container.
The container must have been opened using

CMOpenNewContainer

, with the flag

kCMConverting

 set in the

useMode

.

The designated value is set to reference the indicated data. The offset given is the
offset from the beginning of the container. It is an error to give an offset or a size that
would result in the value containing bytes outside of the data that was in the container
when it was opened. The offset therefore, must be in the range of 0 to N-1, where N is the
size of preexisting data at the time the container was opened.

Additional calls to CMDefineValueData() for the

same

 value will define additional.
i.e., continued, segments when the offset produces noncontiguous data definition. If the
size of the last (most recent) value segment is T, and the offset for that segment is such that
offset+T equals the offset for the additional segment, then the last segment is simply
extended. This follows the same rules as

CMWriteValueData()

.

void CMMoveValue(CMValue value,

CMObject object,

CMProperty property)

Moves the specified value from its original object property to the specified object
property. The value is physically deleted from its original object/property as if a

CMDeleteValue()

 were done on it. If the value deleted is the only one for the property,
the property itself is deleted as in

CMDeleteObjectProperty()

.

The value is added to the "to"s object propery in the same manner as a

CMNewValue()

. The order of the values for both the value's original object property and
for the value's new object property may be changed.

Note, that although the effect of a move is logically a combination

CMDeleteVal-

ue()

and

CMNewValue()

, the refnum of the value remains valid. Its association is now
with the new object property.

This operation may be done at any time. No data need be assoicated with the value
at the time of the move. Only moves

within the same container

 are allowed.

VOID CMGetValueInfo(CMValue value,

CMContainer *container,

CMObject *object,

CMProperty *property,

CMGeneration *generation);

The container, object, property, and generation of the designated entry are returned.

NULL

 may be passed for any argument except the first.

Bento Specification 37

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

void CMSetValueType(CMValue value,

CMType type)

The type of the value is set as specified.

void CMSetValueGeneration(CMValue value,

CMGeneration generation)

The generation for the specified value is set. The generation number must be greater
than or equal to 1. Normally this routine doesn’t need to be used since the value inherits
its generation from its container.

void CMDeleteValue(CMValue value);

The designated value is deleted from its object property. A deleted value will be
treated by all Bento operations as though it does not exist. For example, it will not be
found by

CMUseValue

, counted by

CMCountValues

, etc. .

If the value deleted is the only one for the property, the property itself is deleted as
in

CMDeleteObjectProperty

. If that property is the only one for the object, the object
is also deleted as in

CMDeleteObject

. Some values are protected from deletion.
Protected values include the predefined TOC object values (seed and offset) and any
currently open embedded container values.

void CMReleaseValue(CMValue value);

The association between the

Value

 refnum and the entry is destroyed. After this call
the refnum is invalid, and may be returned from a subsequent

CMUseValue

 or

CMNewValue

 call to designate another value.

Reference Operations

CMReference *CMNewReference(CMValue value,

CMObject referencedObject,

CMReference theReferenceData)

This is the only way to get a persistent reference to an object that can be saved in a
value, and then read from the value and used to refer to that object when the container is
opened in another environment.

CMNewReference

 does some bookkeeping behind the
scenes and returns a token (

theReferenceData

) that will refer to

referencedObject

,
but this reference will only be valid in the context of

value

!

The caller should write the

theReferenceData

 to the value. It can be embedded
in any way in the value: encrypted, compressed, whatever you want. The size of

theReferenceData

 is determined by the size of the

CMReference

 type.

CMObject CMGetReferencedObject(CMValue value,

CMReference theReferenceData)

Provides the object refNum corresponding to

theReferenceData

.

38 API Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

value

 must be the value that contained

theReferenceData

. Values from many
containers may be present at the same time, and the caller may not be aware of what
container a given reference is from, especially in the presence of I/O redirection. Further-
more, the reference may have been “fixed up” using the other references routines below.
Such fixups only apply to a hidden reference table associated with the value, so the value
must be used as the context for converting the persistent reference.

CMReference *CMSetReference(CMValue value,

CMObject referencedObject,

CMReference theReferenceData);

This call is similar to

CMNewReference()

 except that here the caller defines the

CMReference

 key to associate with an object. The specified key must be a nonzero value.
The (input) pointer to

theReferenceData

 key is returned.

 In all cases the specified

CMReference

 key is associated with the specified

refer-

encedObject

. These associations are maintained in a persistent table attached to the
value. If

theReferenceData

 key is new, a new reference is recorded. If

theRefer-

enceData

 key matches one of the previously recorded keys in the table the reference
associated with that key is

changed

 to associate it with the (new)

referencedObject

.

This call can be used to “fix up” existing references if a value is copied as part of a
structure or moved to a new environment. It can also be used to associate object refer-
ences with pre-existing keys in the value data.

 The only difference between

CMNewReference()

 and

CMSetReference()

 is that
with

CMNewReference()

, the Container Manager defines the

CMReference

 key, while
with

CMSetReference()

 the caller can define the key. The net result is the same; the
keys are recorded in a persistent form attached to the value.

 Note that multiple references to the same object can be recorded by passing different
keys as

theReferenceData

.

 Once these associations are recorded, they may be counted, deleted, and accessed
using

CMCountReferences()

,

CMDeleteReference()

, and

CMGetNextRefer-

ence()

 respectively.

void CMDeleteReference(CMValue value,

CMReference theReferenceData);

This call deletes a single object reference created by

CMNewReference()

 or

CMSe-

tReference()

 associated with the

theReferenceData

 key in the reference table
attached to the value.

 The value‘s reference table is searched for the specified

theReferenceData

 key.
If it is found, the association is removed. If it is not found this routine does nothing. It is
not an error if the

theReferenceData

 key is not found.

CMCount CMCountReferences(CMValue value);

Returns the total number of references in the reference table attached to the value.
These references were recorded by

 CMNewReference()

 or

CMSetReference()

.

Bento Specification 39

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

CMReference *CMGetNextReference(CMValue value,

CMReference currReferenceData);

This routine returns the next reference key following the

currReferenceData

 key
in the reference table for the specified value.

 If

currReferenceData

 is 0, then the first object reference key is returned. If

currReferenceData

 is not 0, the next reference key after

currReferenceData

 is
returned. The next reference key is stored into

currReferenceData

 and the pointer to

currReferenceData

 is returned as the function result.

NULL

 is returned and

currRef-

erenceData

 is undefined if there are no references following the key passed in as

currReferenceData

.

40 API Definition

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

