

Bento Specification 83

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

Appendix B: Handler Interfaces

This appendix documents the handler mechanism, and the prototypes of a number
of important handler operations.

The Bento sources come with a complete and well-documented set of example
handlers that run in most environments, since they depend only on the ANSI C libraries.
Many of the points in this appendix will be easier to understand if you read it in conjunc-
tion with the code.

Meta-Handler Interface

The handlers registered with Bento are actually metahandlers, because they are not
called directly to carry out the operations. Instead, they are called to get procedure
pointers to specific handlers that can carry out the desired operation. Typically, these
procedure pointers will be cached and then used in the normal manner.

Each metahandler may provide handlers for any number of operations.

Each metahandler implements only one operation, with the following prototype:

CMProcPtr CMMetaHandler(CMType targetType,

const CMGlobalName operationType);

This is the required prototype of any metahandler registered by the application
using

CMSetHandler

. When a specific operation is required, the

meta

handler is called,
and it must return a

CMProcPtr

 for the operation, or return

NULL

 to indicate that the
operation is not available. Once retrieved, the

CMProcPtr

s may be cached indefinitely.

targetType

 is the refnum of the type to which the operation will be applied, and

operationType

 is the name of the desired operation.

targetType

 is required because
in some cases the operation may be applied to values whose type has no global unique
name.

This approach provides more flexibility than simply passing a vector of procPtrs,
and allows each operation to have its own prototype for static type checking, which
would be impossible if operations were indicated by passing a selector.

Thre are three varieties of metahandlers: session, container, and value.

1

 Each of
these varieties is expected to provide certain operations, as documented below.

 Session Handler Operations

There are three handlers that must be provided by the metahandler passed in to

CMStartSession()

. They should have the following prototypes

1.

 Note that this is not a fundamental distinction. In principle, a single metahandler
could function in two or even all three of these roles. However, as a practical matter, this
would not be a good way to structure things.

84 Handler Interfaces

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

void error_Handler(CMErrorNbr errorNumber, ...)

The error reporting handler is a required special routine whose address is asked for
by

CMStartSession()

. All errors are reported through here. Using the API routine

CMError()

, calls can be made outside the Container Manager as long as the session is
defined (

CMStartSession()

). The intent is that handlers will call

CMError()

 to report
their errors just like the Container Manager does internally.

 The API generally assumes the error handler will

never

 return. It tries to protect
itself in case you do, but don't count on it! Assume your container is screwed if this
handler is called.

 The Container Manager API makes available some of the same routines used inter-
nally. Specifically, the ability to take an string that can contain inserts and "edit in" those
inserts (

CM[V]AddMsgInserts()

). See the utility routines documented at the end of this
appendix.

void * Alloc_Handler(CMSize size);

The Container Manager API requires some form of memory management that can
allocate memory and return pointers to it. By generalizing this as a handler you are free
to choose a memory management mechanism appropriate to your environment.

If you are running in a standard C runtime environment, mapping this handler
directly onto the C runtime

malloc()

 may prove sufficient.

void Free_Handler(CMPtr ptr);

The Container Manager API calls this handler when it wants to free up memory it no
longer needs. The memory attempting to be freed will, of course, be memory previously
allocated by the memory allocator handler.

Container Handler Operations

Bento requires container metahandlers to provide certain operations. Bento imple-
ments all of the other operations in the API using these required operations.

Operations involving updating may be difficult to understand without reading the
code.

Container handlers must provide the stream operations. These have interfaces and
semantics derived from the standard C library stream operations:

VOID CMOpenStream(CMValue value,

CMStreamMode mode);

VOID CMCloseStream(CMValue value);

CMSize CMReadStream(CMValue value,

CMPtr buffer,

CMSize elementSize,

CMCount theCount);

Bento Specification 85

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

CMSize CMWriteStream(CMValue value,

CMPtr buffer,

CMSize elementSize,

CMCount theCount);

CMSize CMGetPosStream(CMValue value);

CMSize CMSetPosStream(CMValue value,

CMSize posOff,

CMSeekMode mode);

VOID CMFlushStream(CMValue value);

CMStreamStatus CMEofStream(CMValue value);

When the Bento library calls the stream operations to perform I/O on a container,
the value it passes as the first argument to the operations is the

referenceConstant

originally provided when the container was

Use

d.

VOID CMReadLabel(void *attributes,

CMMagicBytes magicBytesSequence,

CMContainerFlags *containerFlags,

CMEncoding *encoding,

USHORT *majorVersion,

USHORT *minorVersion,

CMSize *tocOffset,

CMSize *tocSize);

This operation finds the label of the container specified by

attributes

 and returns
all of the information it contains. The location of the label is container type dependent.
However, all files must have a label as specified in the format definition.

VOID CMWriteLabel(void *attributes,

CMValue value,

CMMagicBytes magicBytesSequence,

CMContainerFlags containerFlags,

CMEncoding encoding,

USHORT majorVersion,

USHORT minorVersion,

CMSize TOCOffset,

CMSize TOCSize);

This operation is called after all of the necessary information has been written to the
container by Bento, just before it closes the container. It must write the label for the
container (if any) and do any implementation dependent container writes. When this
operation completes, the state of the container should be such that if the next call on the
handler is a

CMCloseStream

, the container will be well formed and usable if it is opened
again in the future.

86 Handler Interfaces

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

CMValue CMReturnParentValue(CMRefCon refCon);

This handler routine is used

only

 for embedded containers. It is called at open time
by

CMOpen[New]Container()

 so that the Container Manager may determine for itself
that it is opening an embedded container for a value and what that value is. It is the parent

CMValue

 for this handler that is retured by this function.

This is a

required

 handler routine for embedded containers only. Therefore,
container metahandlers will typically return

NULL

 when asked for this handler.

static CM_UCHAR *returnContainerName_Handler(CMRefCon refCon)

When the Container Manager reports errors it passes appropriate string inserts that
may be formatte into the error message. One of those inserts is usually an string that iden-
tifies for which container the error applies. The handler defined here is used by the
Container Manager to get that identification.

 For files, the most appropriate identification is typically the pathname for the
container file.

 This is an

optional

 routine for reading and writing. If not provided, the type name
passed to

CMOpen[New]Container()

, i.e., the metahandler type, is used for the identi-
fication.

CMType CMReturnTargetType(CMRefCon refCon,

CMContainer container);

If

CMOpenNewContainer()

 is called with useFlags set to

kCMUpdateTarget

, then
the intent is to open a new container which will record updating operations of updates
applied to

another

 distinct (target) container. The target container is accessed indirectly
through a dynamic value whose type is gotten from a this handler. This handler must
have be supplied and it must return a type which will spawn a dynamic value when

kCMUpdateTarget

 is passed to

CMOpenNewContainer()

.

 The process of creating a dynamic value (by the Container Manager using the
returned type) will generate a "real" value in the parent container (the new container to
record the updates). That value can be used by future

CMOpenContainer()

's to "get at"
the target again. To be able to find it, the created value becomes a special property of TOC
#1.

CMOpenContainer()

 will look for that property.

 This handler is running in the context of the parent container, which is passed as a
parameter along with the usual refCon. The handler registers the type in this container.

 See the description of dynamic values and their base types for further details on how
these types spawn dynamic values.

 This is a

optional

 routine for reading and writing. It is

required

 for updating when

CMOpenNewContainer()

 is called with useFlags set to

kCMUpdateTarget

.

Bento Specification 87

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

void FormatData(CMRefCon refCon,

CMDataBuffer buffer,

CMSize size,

CMPrivateData data);

 This handler is used to format "internal" Container Manager data to be written to
the container (e.g., updating data). 1, 2, or 4 bytes (size 8-bit byte) "chunks" of data are
expected to be copied from the data to a buffer. Pointers to the data and the buffer are
passed in. The buffer can always be assumed large enough to hold the data. The pointer
to the data can be assumed to point to a

CM_UCHAR

 if size is 1,

CM_USHORT

 if size is 2, and

CM_ULONG

 is size if 4.

The 1, 2, or 4 bytes are, of course, stored in the

CM_UCHAR

,

CM_USHORT

, or

CM_ULONG

as a function of the architecture. These may be a different size than what is expected to
be written to the container. Indeed, it is the potential difference between the architecture
from the data layout in the container that this handler must be provided.

The information is stored in the container in a layout

private

 to the Container
Manager. For example, it is used to format the fields of the TOC. The library does
repeated calls to this handler to format the information it needs into a buffer that is even-
tually written using the write handler.

In this example

CM_UCHAR

,

CM_USHORT

 and

CM_ULONG

 directly map into the
container format 1, 2, and 4 byte entities. Hence the formatting is straight-forward.

This is an

optional

 routine for reading and writing. It is

required

 for writing or
updating when

CMOpenNewContainer()

 is called with useFlags set to

kCMUpdateTa-

rget

 or

kCMUpdateByAppend

.

void CMExtractData(CMRefCon refCon,

CMDataBuffer buffer,

CMSize size,

CMPrivateData data);

This handler is used to extract "internal" Container Manager data previously written
to the container (e.g., updating data). 1, 2, or 4 bytes (size 8-bit byte) "chunks" of data are
expected to be copied from a buffer to the data. Pointers to the data and the buffer are
passed in. The buffer can always be assumed large enough to supply all the requested
data. The pointer to the data can be assumed to point to a

CM_UCHAR

 if size is 1,

CM_USHORT

 if size is 2, and

CM_ULONG

 is size if 4.

The 1, 2, or 4 bytes are, of course, formatted within the

CM_UCHAR

,

CM_USHORT

, or

CM_ULONG

 as a function of the architecture. These may be a different size than what is
expected to be written to the container. Indeed, it is the potential difference between the
architecture from the data layout in the container that this handler must be provided.

This routine is used to store information in the container in a layout

private

 to the
Container Manager. For example, it is used to extract the fields of the TOC. The
Container Manager does repeated calls to this handler to extract the information it needs
from a buffer that it loads using the read handler.

88 Handler Interfaces

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

 This is a

optional

 routine for writing. It is

required

 for reading, or if an updating
container is opened (i.e., a container used previously for updating). It is

required

 for
updating when

CMOpenNewContainer()

 is called with useFlags set to

kCMUpdateTa-

rget

 or

kCMUpdateByAppend

.

Value Handlers

These are discussed in the chapter on Types and Dynamic Values.

Handler Support Routines __

When writing handlers, certain facilities used by the API are needed to provide a
consistent interface to the application.

Session Handler Pass-Throughs

The handlers need to use the session facilities for memory management and error
reporting, since they are effectively running as part of the library. These routines provide
access to those facilities.

void CMMalloc(CMSize size, CMSession sessionData)

This routine provides a access path for the handler writer to use the same memory
management allocator defined for the current Container Manager session. size bytes are
allocated as defined by that handler.

The session memory allocator handler is defined by the metahandler passed to

CMStartSession()

. The

sessionData

 is the current session refNum returned from

CMStartSession()

.

void CMFree(CMPtr ptr,

CMSession sessionData)

This routine provides a access path for the handler writer to use the same memory
management deallocator defined for the current Container Manager session. A pointer
(ptr) which must have been allocated by

CMMalloc()

 is passed to release the memory in
the manner defined by the handler.

The session memory deallocator handler is defined by the metahandler passed to

CMStartSession()

. The

sessionData

 is the current session refNum returned from

CMStartSession()

.

void CMError(CMSession sessionData, CMErrorString message, ...);

This routine provides an access path for a handler writer to use the same error
reporter defined for the current Container Manager session. The session error reporting
handler is defined by the metahandler passed to

CMStartSession()

. The

session-

Data

 is the current session refNum returned from

CMStartSession()

.

Note, as currently defined, the error reporting handler should not return to its caller.
But if it does,

CMError()

 will also.

Bento Specification 89

Revision 1.0d5

Copyright 1993 Apple Computer

July 15, 1993

Error Reporting Support

char *CMAddMsgInserts(char *msgString,

CMSize maxLength,

...);

This routine takes the (error) message string in

msgString

 and replaces all
substrings of the form "^n" with the inserts from the variable arg list of insert strings. The
function returns the edited

msgString

 as its result.

 The string buffer must be passed in

msgString

. Its max length is also specified but
this must be a value less than or equal 1024 (not including delimiting null). The message
will be truncated to fit in the buffer. The string pointer is returned as the function result.

 The substring "

^0

" is replaced with the first insert. "

^1

" is replaced with the second
insert, and so on. It is assumed that there are enough insert strings to cover all the "

^n

"s
called for (not unlike

printf()

).

 Note, the "

^n

"s in the message string do not have to be in ascending order. Thus
"

^1

" could occur before "

^0

" in the

msgString

.

char *CMVAddMsgInserts(char *msgString,

CMSize maxLength,

va_list inserts);

 This routine is the same as

CMAddMsgInserts()

 above, except that the extra
(inserts) arguments are given as a variable argument list as defined by the "stdarg" facility.

CMErrorString CMGetErrorString(CMErrorString errorString,

CMSize maxLength,

CMErrorNbr errorNumber,

...)

This routine takes a defined Container Manager (error) message number and its
corresponding insert strings and returns a (english) string corresponding to the message
number with the inserts filled into their proper positions. It is assumed the error number
and inserts were the ones reported to the error handler.

 The string buffer must be passed in errorString. Its max length is also specified but
this must be a value less than or equal 1024 (not including delimiting null). The message
will be truncated to fit in the buffer. The string pointer is returned as the function result.

 This routine is provided as a convenience to easily convert the error codes and their
corresponding inserts to a printable string.

CMErrorString CMVGetErrorString(CMErrorString errorString,

CMSize maxLength,

CMErrorNbr errorNumber,

va_list inserts)

 This routine is the same as

CMGetErrorString

() above, except that the extra
(inserts) arguments are given as a variable argument list as defined by the "stdarg" facility.

90 Handler Interfaces

July 15, 1993

Copyright 1993 Apple Computer

Revision 1.0d5

char *CMReturnContainerName(CMContainer container);

 Generally the errors reported are provided with at least one insert that identifies
which container we're talking about. The wording of the messages defined for the
Container Manager assume this identification insert. The identification takes the form of
the container "name" which is obtained from a handler routine provided for that purpose.

This routine is provided to test if the container metahandler provides a name
handler, and call the handler if it exists. If it doesn't exist the container type name is
returned.

 Note, this routine is available to handler writers so that they can generalize their
error reporting/message routines and word their messages with the container identifica-
tion.

Value Handler Support

CMCount CMScanDataPacket(CMType type,

CMMetaData metaData,

CMDataPacket dataPacket, ...)

This routine is used by a dynamic value's "new value" handler to extract the fields of
a data packet passed to it by the Container Manager. The data packet represents all the

CMNewValue()

 "..." parameters for the type also passed to the "new value hander".

Only that portion of the

CMNewValue()

 "..." parameters associated with the type are
passed in the data packet. The Container Manager determines the parameters by the
placement of the type within its heirarchy (types may have base types) and the metadata.

The Container Manager accesses the metadata through a "metadata" handler for the
type to build the data packet.

CMScanDataPacket()

 inverts the the operation and
allows the "new value" handler to extract the data back into distinct variables. The "new
value" handler can use its own "metadata" handler to pass to the

CMScanDataPacket()

routine to extract the data. Each

CMScanDataPacket()

 "..." parameter must be a pointer;
extracted data read from the data packet are stored into the locations pointed to by the
pointers.

The function returns the number of data items extracted and assigned to the param-
eters. This could be 0 if metadata is passed as

NULL

, or if an error is reported and the error
reporter returns.

CMValue CMGetBaseValue(CMValue value)

Returns the base value for a dynamic value and

NULL

 if the value is not a dynamic
value. It is expected that this routine will only be called from dynamic value handlers.
Indeed, this is enforced!

