

User’s Guide

for

Virtual Pascal
v2.1

containing

Introduction
Installation
Virtual Pascal Features
Compatibility with Borland Pascal and Delphi
The VP User Interface
Writing programs using VP
Configuration and tools
Debugging programs with VP
VP example programs
Extending Virtual Pascal
Index

Copyright © 1996-1999 by fPrint (UK) Ltd. All rights reserved.

All brand names and product names are trademarks or registered trademarks of their respective
holders.

fPrint (UK) Ltd
Riverview House
Beavor Lane
London W6 9AR
United Kingdom

Produced in the United Kingdom.

Contents 3

CHAPTER 1 ...6
INTRODUCTION..6

About this manual...6
What is Virtual Pascal?..6
History of development...7
System Requirements ..7
Conventions used..7
Contacting Product support ...8
Acknowledgements ...8

CHAPTER 2 ...10
INSTALLATION...10

Running the installation program ..10
Component selection ..10
Drive selection..10
Directory case ..10
Installation directory ..11
Source code and upgrades ...11
Finishing the installation..11
Directory structure ...11

CHAPTER 3 ...13
VIRTUAL PASCAL FEATURES ...13

The two OS/2 IDE variants...13
Key IDE Features ...13

The Debugger ...14
Key Compiler Features...16
The Run-Time Library ..17
The built-in linker, VPLink ...18
Program Examples ...19

CHAPTER 4 ...21
COMPATIBILITY WITH BORLAND PASCAL AND DELPHI ..21

Run-Time Library compatibility ...21
Data Type Compatibility ..22

Integers ...22
Reals ...23
Pointers ...23
Classes ..23

Compiler directives ..24
Built-in assembler (BASM)...24
Inline statements and inline subroutines ..24
Turbo Vision ...25
Object Windows Library (OWL)...25
Visual Component Library (VCL) ..26
Code generation ...26

CHAPTER 5 ...27
THE VP USER INTERFACE...27

Starting the VP IDE..27
Text-mode controls ...28
File associations...28
Windows of the IDE..29

Local Menus ...29

4 Contents
The editor window: Colours ...29

Cursor navigation ...30
Editing ..30
Block operations...31
Searching..31
Undo and Redo...32
Other editor options..32
Macros..32
Syntax Highlighting..33

Getting Help..33
The menu bar ..33
The VP/PM Smartbar ...35
Configuring the IDE ...35

Options|Resource compiler...36
Options|Directories...36
Options|Environment|Preferences...37
Options|Environment|Editor ...37
Options|Environment|Mouse ..39
Options|Environment|Colours...39
Options|Save options ..39

CHAPTER 6 ...41
WRITING PROGRAMS USING VP ...41

Writing your first program ...41
Your second Virtual Pascal program ...42
For more information ...42

CHAPTER 7 ...43
CONFIGURATION AND TOOLS ...43

Changing settings in the IDE ...43
Options|Compiler ..43

Fastest setup ...43
Smallest setup...43
Debug setup..43
The individual configuration options ...43

Options|Linker ..49
Generating an import library ..50

Command-line tools ...51
The command line compiler VPC...51

Sample VPC response file ..54
The Import Library manager IMPLIB...54
The Help Generator HG..55
The Help converter TPH2VPH...56

Error Messages ..57
CHAPTER 8 ...58
DEBUGGING PROGRAMS WITH VP..58

Why debug? ..58
Finding semantic errors ...58

Understanding compiler messages ..59
A brief note on semicolons...59
Type conflicts ...59
The compiler setup ...60

Preparing to debug...61
Options|Debugger ...61

Beginning the debug session ..62
Starting and stopping the program..62
Run-time errors ...63

Contents 5
Run-time location information..63
Breakpoints ...64
Exception trapping..65
Examining the state of the program ..65

The Evaluator ...66
The Watch Window..66
The Inspector..66

Format specifiers...67
Examples of format specifiers ..68

Stepping through the program ..69
Run|Animate...69
Run|Parameters...69

Advanced debugging ..70
Advanced breakpoint options ...70
The Call stack ...70
The Log window...71
The Symbols window..71
The Unit list ..71
The Threads list ..71
The Object Hierarchy window..72
The Dump window ...72
The Registers window...73
The NCP window..73
The CPU window..73

The CPU window as a stand-alone debugger ...76
CHAPTER 9 ...77
VP EXAMPLE PROGRAMS...77

Common Virtual Pascal examples..77
Borland Pascal examples ..78

Windows-specific examples ..78
OS/2-specific examples...79

CHAPTER 10 ...81
EXTENDING VIRTUAL PASCAL...81

Interface to the OS..81
RTL support..81
Linker support ..81
Debugger support...82
Defining new targets in the IDE...82

Restrictions in target definitions ...84
Using the Command-Line Compiler ...84

Win32 Keyboard Support ...84
INDEX..86

6 Introduction

Virtual Pascal User’s Guide

C H A P T E R 1

Introduction

About this manual

Thank you for purchasing Virtual Pascal v2 for OS/2 and Windows. Throughout this
manual, it will be referred to as VP.

This volume of the manual is intended for newcomers and experienced Pascal
programmers alike. Users already familiar with Borland Pascal or Borland Delphi may
skip over the chapters relating to the basics of writing a Pascal program and instead have a
look at the list of unique Virtual Pascal features introduced in Chapter 3 on page 13.

If you just want to dive in and experiment, please refer to Chapter 2 for guidelines on
installing VP on your computer. Once you have installed the product, have a look at the
examples, or read Chapter 6 for an introduction to writing your own program.

All users can benefit from reading Chapter 7, which describes the intricacies of the built-in
debugger.

For an in-depth description of the Pascal language implemented by VP and many technical
details, please refer to the Language Reference Manual.

What is Virtual Pascal?

VP is a cross-platform 32-bit compiler, linker and debugger, which supports both OS/2,
Windows 95, Windows NT and certain compatible 32-bit DOS extenders. Its open
architecture allows this compatibility to be extended to more Intel-based operating
systems, including full source-level debugging.

VP is the best choice of compiler for any person or organisation desiring to produce fast,
compact cross-platform applications as quickly as possible. Prior knowledge of the Pascal
language is an advantage, but not a requirement. If you do not have any knowledge of the
Pascal language, you should buy a book on Pascal programming to get the most out of
Virtual Pascal - although the Language Reference Manual does provide enough
information to get started, it is not intended as a textbook on the Pascal language.

VP features a very high level of compatibility with Borland Pascal 7.0 for DOS and
Borland Delphi v1 to 3 for Windows. The primary aim of having a high degree of
compatibility is to ensure that the process of porting existing code based on the DOS and
Windows environments to native 32-bit OS/2 and Windows applications is as quick and
smooth as possible. Being compatible also means that there already is a host of
supplementary literature on the dialect of Pascal used by VP available - buy any Borland
Pascal programming book and most of the issues apply to VP as well.

While being very compatible with the standards set by Borland, VP also offers a wide
range of features unique to 32-bit development under OS/2 and Win32. All central parts of
the system are prepared for multi-threading and the OS/2 and Win32 API functions are
available and ready for use.

For new and experienced programmers alike, VP offers a productive, fast and modern
development environment that enables users to make the best of development time.

Introduction 7

Virtual Pascal User’s Guide

History of development

VP was initially developed and designed by Vitaly Miryanov while living in Ukraine and
working at the Kiev Institute of Cybernetics. Many of the core parts of VP as it looks
today were written on a PC AT-386DX-40Mhz with 4MB of RAM, as should be evident
in the superb performance of both the IDE and the compiler itself. Although development
has now moved to more modern computers, it is still an important part of the VP design
philosophy to avoid today’s multi-megabyte bloated applications that run slowly even on
400MHz Pentium IIs.

In June 1995, a public beta version of Virtual Pascal for OS/2 was released. Based on a
thorough evaluation of the beta version, fPrint UK realised both the quality of the work
already done and the big potential for a real, supported and properly documented version
of VP.

fPrint UK contacted Vitaly who then became part of the development team at the fPrint
offices in Hammersmith, London, where the initial versions of Virtual Pascal v1.x were
developed.

In 1996, Virtual Pascal for OS/2 v1.0 was released, followed by an update to v1.1 later in
the year.

In 1999, version 2 of Virtual Pascal was released, the first version supporting both OS/2
and Windows, implementing many changes to facilitate a true cross-platform system. Not
only the IDE and compiler are cross-platform; the Run-Time Library included for your
benefit allows you to create cross-platform programs as well.

With the takeover of fPrint by Peregrine Systems, Inc, in April 1999, development of
Virtual Pascal virtually stopped, but – as this new v2.1 of Virtual Pascal shows – has been
resumed.

Peregrine Systems has graciously agreed to sell all rights to Virtual Pascal to Allan
Mertner, who has been lead developer of the project for the last few years, and now works
on the project during spare time along with Vitaly Miryanov (who does the really difficult
bits :)

We would like to take this opportunity to thank Peregrine Systems for making this
possible! Peregrine Systems, Inc, can be contacted through http://www.peregrine.com.

System Requirements

VP requires a PC with at least a 386 processor and 8MB of RAM, although more memory
is recommended.

VP, including the IDE, debugger, compiler, linker and utilities, runs in OS/2 v2.x (with
Workplace Shell) or later, Windows 95/98, Windows NT v4, and Windows 2000.

A Linux version is being worked on, which will support Linux with a kernel of 2.2 or later.

Conventions used

This manual uses a consistent set of fonts and conventions making it easy and
unambiguous reading. The conventions used are becoming standard in most literature of
its kind and are outlined below:

Courier

Is used to represent text as it appears in programs on the screen. Further, it is used for
anything you must type on the OS/2 or Windows command line.

http://www.peregrine.com/

8 Introduction

Virtual Pascal User’s Guide

bold

A boldfaced font is used for Virtual Pascal reserved words, for command line options and
compiler directives (begin, {&Frame-}, /C).

KeyStroke

This font is used to represent a key or keys on your keyboard, for example “Press Ctrl-Esc
to see the OS/2 task list or the Windows Start Menu”. Control character sequences, where
you should hold down the Control key while pressing a character sequence is denoted with
a leading caret (^). For example, ^KB means “Press Control and hold it down while
pressing first K, then B”.

[]

Square brackets are used to signify optional parameters to commands or other optional
items.

Italics

Are used when introducing new terms and to indicate Pascal identifiers. For a definition of
an identifier, refer to the VP Language Reference.

File|New

Is how menu item selections made in the VP IDE are displayed. File|New is equivalent to
selecting the File menu (by pressing Alt-F or clicking on File on the menu bar) and
selecting the New option from that menu.

Contacting Product support

Support for VP is available either from your supplier or directly from the Virtual Pascal
team. However, since Virtual Pascal is a spare-time project, we cannot teach you how to
program Pascal – please refer to the help and manuals included and consult other literature
available in the market.

Technical support is available by one of the following means:

World-Wide Web

Virtual Pascal has its own web-site, which can be reached using a normal web-browser
such as Netscape Navigator or Internet Explorer on the following address:

http://www.vpascal.com

The www-site contains up-to-date information about updates, bugs and new upcoming
releases of Virtual Pascal.

e-mail

e-mail is the preferred route for support requests. Please direct mails to
vpascal@vpascal.com; sales enquiries should be sent to registrations@vpascal.com.

Telephone support

Telephone support is not available for Virtual Pascal.

Acknowledgements

Virtual Pascal would never have become a reality without the support and enthusiasm
offered by a large number of users worldwide. We appreciate the effort made by
everybody and hope you find the product lives up to your expectations.

http://www.vpascal.com/
mailto:vpascal@vpascal.com
mailto:registrations@vpascal.com

Introduction 9

Virtual Pascal User’s Guide

Special thanks goes - in no particular order - to

Irina Miryanova, Kiev/London - for both patience and hard work

Christoph Bratschi, Switzerland - who did the VP/2 OWL clone

Anthony Busigin, Canada - for the MATHPAK library

Charlie Calvert, Borland US - for sending all those Delphi betas

Joanna Hodgson, EMEA DAP - for excellent technical support

Rick Timkovich, IBM US - for making the OS/2 API specs available

Matt Yurst, Canada - who wrote the VDUMP utility and LSXPower

Mr N Sriram, Singapore – for hosting the vpascal mailing list

Jörg Pleumann – for hard work on the Linux port

Veit Kannegieser – for making DPMI support available

Our spouses - for close to infinite patience

Dominos Pizza - for those late-night deliveries

In addition, we would like to thank those hundreds of people who have patiently been
sending bug reports, suggestions and feature requests.

Thanks!

10 Installation

Virtual Pascal User’s Guide

C H A P T E R 2

Installation
Virtual Pascal v2 is supplied with a text-mode installation program, one for OS/2 v2.0 or
higher and one for Windows 95 and Windows NT/2000.

Before proceeding, unzip the Virtual Pascal archives downloaded to the same directory.
This directory should not be the one to which VP is to be installed.

Running the installation program

The Windows installation program is called W32Setup.Exe; the OS/2 one is called
Os2Setup.Exe. Depending on the operating system on which you wish to install VP v2,
execute one of the installation programs.

To do this, either navigate to the directory/folder containing the installation files using the
Drives object (OS/2) or Explorer (Windows), or open a command line. Then, click on the
installation program or type the name of the program to run, and press Enter.

When the installation program has started, it shows the Virtual Pascal licence agreement –
please read it carefully before proceeding. Press Alt-I or Select File-Install to start the
installation wizard.

On the first page of the installation wizard, click the “>>” button to proceed to the next
page. At any stage during the installation setup procedure, click the button marked “<<”
to return to the previous page.

Component selection

On the main selection screen, select the VP options you wish to install. Some of the items
contain sub-items, indicated in the status line along with the number of selected sub-
components selected.

 The check-box shows the current state of each item: a space indicates that no components
from this group are selected; an X means that all components are selected, and a ? that
some components are selected.

To include a component, click on the check box, or press Space. To select sub-
components, click the Details button. Make the selection, and press the “>>” button.

When all desired components have been selected, click the >> button to continue to the
drive selection dialog.

Drive selection

This dialog shows a list of all available drive letters, their volume label and available disk
space. Select the drive on which VP v2 should be installed. At the bottom of the screen,
the disk space required for the selected options is displayed.

Then, click the >> button to proceed.

Directory case

The installation program can create all directories of the VP installation either in lower
case, UPPER CASE or Mixed Case. Select your preference in this dialog.

Installation 11

Virtual Pascal User’s Guide

Then, click the >> button to proceed.

Installation directory

By default, Virtual Pascal v2.1 is installed to the VP21 directory off the installation drive
selected. To install to a different directory, please enter the directory name (without drive
letter) in this dialog.

Click the >> button to complete the setup process or start the installation process.

Source code and upgrades

Several components are supplied as upgrade patches, and are available only to users who
own a licence of various Borland products: Turbo Vision, OWL and the Delphi VCL.

If any of these components were included in the Component Selection step, the installation
program now prompts for the path to the original, unmodified, source files. The path
required is usually the base directory of the original installation; the installation program
automatically checks the relevant subdirectories.

For Turbo Vision, specify C:\BP\RTL (for example), and the installation program will look
in the COMMON and TV sub-directories off this directory when looking for the original
source files. If they are found, they will be copied to the Source\TV directory off the
\VP21 directory, and upgraded to VP compatibility in place.

For Object Windows Library (OWL), specify C:\BP\RTL (if upgrading from the Borland
Pascal version), C:\DELPHI\SOURCE\RTL70 (if upgrading from the OWL code supplied
with Delphi v1). The files are copied to Source\OWL and upgraded there.

For the Visual Component Library (VCL), specify C:\DELPHI\SOURCE\VCL. Upgrade
patches to upgrade the core of the VCL source code are included for Delphi v1.00, 2.00,
3.00 and 3.02. As for the other libraries, the original files are not modified but are copied
to Source\VCL before they are upgraded to VP compatibility.

When all paths to existing source code have been entered, click >> to start the installation
process.

Finishing the installation

The installation program now unpacks and copies the files selected previously. At the end
of the process, the installation program adds an item to the Start Menu (Windows) or the
desktop (OS/2) and terminates.

VP is now ready to run – just open the Virtual Pascal object created, or run VP.EXE for
your platform of choice.

The installation program does not modify the environment. In OS/2, it may be required to
add the BIN.OS2 directory to the PATH and LIBPATH variables in CONFIG.SYS. In
Windows, the PATH may be updated to point to the BIN.W32 directory.

Please refer to the following chapters for details about the IDE, debugger and command
line utilities supplied with Virtual Pascal v2.1.

Directory structure

The installation program creates a number of sub-directories; the hierarchy is explained
below.

12 Installation

Virtual Pascal User’s Guide

Each directory shown below is assumed to reside off the default main VP v2.1 installation
directory (\VP21) and is not included. Some directories include %p. This indicates that
two directories exist, one where %p is substituted for OS2 (containing OS/2-specific
files), and one where %p is substituted for W32 (containing Win32-specific files).

This release also contains experimental Linux support files in LNX directories.

Directory Contents

bin.%p
Binary (executable) files for each platform. This includes
the compiler, the IDE, any command-line tools and any
platform-specific help files.

lib.%p
Import libraries for each platform. The default libraries
contain information about the system DLLs containing
operating system APIs.

units.%p

Output directory for object files and other support files for
each platform. Initially, these directories include
precompiled versions of the Run-Time Library and Turbo
Vision.

res.%p Resource files for each platform.

out.%p Executable output directory for each platform. Initially,
these directories are empty.

out.%p\units Output directory for each platform, where support files
(.VPI, .LIB, .LNK, .ASM, etc.) are stored.

doc Documentation (ReadMe, Language Reference, Users’
Guide, licence agreement, etc.).

doc\os2 OS/2-specific documentation (API reference in .INF
format)

common Common files, such as online help, the vp.ini file used in
both OS/2 and Win32, etc.

source The root of the source files for various libraries.

source\%p Platform-specific source code (Operating system API
header files such as Os2Base.Pas)

source\rtl Source for the Virtual Pascal Run-Time Library

source\rtl\sys Source for the System unit of the Run-Time Library

source\tv Source for the Turbo Vision library

source\owl Source for the Object Windows Library

source\vcl Source for the Visual Component Library

examples The root of all example source code

examples\common Example source code for all supported platforms

examples\%p Platform-specific example code

Virtual Pascal Features 13

Virtual Pascal User’s Guide

C H A P T E R 3

Virtual Pascal Features
Virtual Pascal is a professional quality 32-bit Object Pascal compiler for OS/2 and Win32.
It includes both a command line compiler/linker and an Integrated Development
Environment (IDE) with fully integrated debugger. VP can be used to develop both text
mode and graphical applications and to port existing software products written in Borland
Pascal or Borland Delphi to 32-bit OS/2 or Windows code.

This chapter is meant as an overview of the key features of Virtual Pascal. For descriptions
on how to use a specific feature, please refer to the relevant sections in the Language
Reference Manual.

Inspired by Borland Pascal and Turbo Debugger, the VP IDE is a text mode application.
This means that the IDE does not look as flashy as some other modern development tools
but also means that the resource requirements and speed of VP is unequalled.

The two OS/2 IDE variants

For OS/2, VP offers two distinct versions of the powerful integrated development
environment. The two environments look very much the same and share most capabilities,
but serve two different purposes

The text-only version of the VP IDE runs on any computer running OS/2 v2.0 or later,
even without the OS/2 Presentation Manager installed. It runs either in full screen mode or
in any size window on the OS/2 desktop and offers the fastest possible operation. The
drawback of this environment is the fact that OS/2’s design, with only a single PM
message queue, makes the writing and debugging of Presentation Manager applications
difficult.

The PM version of the VP IDE was written to work around this design limitation of OS/2,
allowing you to run and debug Presentation Manager applications without fear of crashing
the entire system. In addition to this, VP/PM offers a graphical speedbar, whose smart-
icons give quick access to the most commonly used features of the IDE with only a single
click of the mouse. VP/PM requires OS/2 Presentation Manager and does not work if this
is not present.

Apart from the differences noted above, the two IDE versions remain identical in both
features and usage.

Key IDE Features

• VP compiles in the background. While compilation is in progress, you can continue
editing, browsing, read online help, etc.

• The editor allows multiple open windows, in each of which text files of any size can
be edited. Special features worth mentioning include:
• Unlimited number of Undo/Redo operations.
• All block operations work with 3 block types: Line, Columnar and Stream.
• Clipboard operations: Cut, Copy and Paste. VP/PM uses the OS/2 clipboard,

making cut/paste operations between VP and other applications easy. The
standard VP IDE for OS/2 and Win32 uses its own clipboard that is not accessible
from the operating system.

14 Virtual Pascal Features

Virtual Pascal User’s Guide

• Full Pascal syntax highlighting. Reserved words, numbers, text strings, comments
and assembler statements are shown in their own configurable colour.

• Search and Replace with regular expressions.
• Incremental search facility.
• Mouse support. Right-clicking anywhere shows an intuitive pop-up menu offering

quick access to some commonly used features.
• Full keystroke macro support, including a Macro List dialog box that displays

currently defined keystroke macros and lets you add, remove and edit macros.
• Support for nested {} comments, up to 32 levels.

• Context-sensitive help system, including help for the IDE, the compiler, error
messages, the Open Debug API and the Run-Time Library.

• If the help window is resized, the text is wrapped to fit the window.

• Topic search from editor and help windows.

• Search for text in the current topic, index or in all topics with Case Sensitive and
Clipboard Copy and Copy Example commands.

• The text-mode IDE runs in a window and can have any size up to 250x50 characters.
Set the desired screen size with the mode command and select
Options|Environment|Preferences|Keep Original to make VP run without resizing
the window.

• VP/PM allows dynamic sizing of the work area. When the window is resized, the
editor windows are resized to fit the new size. The size and font is saved when VP/PM
is exited and restored when it is next started (OS/2 only).

• The Integrated Debugger is a source level debugger that uses the Editor windows to
facilitate source code tracking whilst executing.

• The IDE supports the special string %P in all directory and file name entries.
Occurrences of %P are replaced by OS2 when the compiler target is OS/2, and with
W32 when programming for a Win32 target. Using this feature, it is possible to use
the same configuration file for cross-platform projects – simply change the target
platform setting and recompile without making any further changes.

• All platform-specific files are stored in directories containing the 3 letters generated
by %P. For example, OS/2 API header files are stored in Source\Os2, and those for
Windows in Source\W32. OS/2 Import libraries are stored in Lib.Os2, and those for
Windows in Lib.W32, meaning that the unit path can be set to Source\%P and the
library path to Lib.%P, irrespective of target platform.

The Debugger

• Sophisticated source tracing algorithm that allows complex lines to be stepped over at
high speed (E.g: for I := 1 to 100000 do SomeFuncCall;)

• If the program being debugged fails with a run-time error or an exception, the source
file containing the error is loaded and the cursor is positioned to the error location. If
no source code is available, or debugging information is disabled, the CPU window is
displayed instead, with the cursor moved to the offending instruction.

• Watch window showing the value of variables or even complex expressions. The
window is automatically updated whenever necessary during program execution.

• Call stack window, showing the call stack, including parameter values.

Virtual Pascal Features 15

Virtual Pascal User’s Guide

• Breakpoints window. In addition to execution breakpoints it is possible to set up to
four datapoints (supported by the CPU), each having a condition and a pass count for
triggering it and an action that can be either Break or Log.

• Register window that shows the values of CPU registers and flags and allows them to
be changed.

• Numeric Coprocessor window displaying the Stack registers, the Control register and
the Status register panes showing the state of the x87 coprocessor as well as allowing
you to change the state of it.

• Dump window that can show the memory in all Pascal integer and floating point
formats.

• Object Hierarchy window, which shows an outline of your currently defined object
hierarchy. Two different hierarchies are established; one for each object model
supported by VP.

• Inspector window, which allows the inspection of complex structured variables in an
efficient manner.

• Symbols window. Shows a list of all global and local symbols (types, constants,
variables, procedures, functions) including their current values. The incremental
search facility makes it easy to locate a specific symbol.

• CPU window with Code, Data, Register and Stack panes displays the source lines and
the corresponding disassembled instructions. The code can be patched during
execution using a built-in assembler similar to the one available in asm..end
statements in a program.

• Log window collecting information about program flow (Module load, thread creation
and termination, exceptions, breakpoints, user comments, etc). The Log window can
also log expressions from Log-Points, which are similar to breakpoints, but log an
expression instead of interrupting program execution.

• Evaluate/Modify dialog, used to evaluate expressions and modify the value of
variables at run-time

• Messages window, containing information about compilation and linking progress.

• Threads dialog lets you examine all current program threads and allows you to freeze
or resume them.

• Exceptions dialog which lists all OS/2 system exceptions and allows you to specify
whether the debugger should handle a particular exception or if the user program is
responsible for handling it. This can be particularly useful for catching hard-to-find
bugs.

• Unit dialog list, listing all units used by the program along with include files. If a unit
or an include file is selected, the source file is loaded into an editor window.

• The IDE can be used as a high speed assembler level debugger. Any 16- or 32-bit
OS/2 executable or 32-bit Win32 executable can be loaded into the IDE using the
File|Load Program menu item. The debugger can only load applications for the
platform on which it is currently running.

16 Virtual Pascal Features

Virtual Pascal User’s Guide

Key Compiler Features

• The compiler is very fast and generates efficient and small executables. On a low-spec
machine (Pentium Pro-200), VP compiles and links roughly 600,000 lines of Pascal
source code per minute.

• Generates optimised 32 bit code; including Pentium-specific optimisations.

• Borland Pascal version 7.0 compatible, including: Open array parameters, Open
strings, Null-terminated strings, Dynamic methods and Small (integer-sized) sets.

• Borland Delphi v1.0 compatible. All language extensions introduced by Delphi v1.0
are available in VP in the {&Delphi+} state:
• The class model (class, property),
• Exception handling (try..except, try..finally, raise),
• Guarded typecasts (is, as),
• Result variable to assign and manipulate function result values,
• Run-Time Type Information (RTTI),
• Functions can return results of any type except file types,
• Open Array constructors,
• Method pointers,
• Type variant open array parameters.

• Key 32-bit Delphi v2-v4 features are supported as well:
• Local thread storage using threadvars,
• Long strings, AnsiString and the $H directive,
• Initialised variables and read-only typed constants in $J+.
• Support for the TMemoryManager interface
• The Currency floating point type is supported,
• Unit initialization and finalization parts,
• Double slash (//) comments,
• The assembler directive is not required for assembler procedures and functions.
• Separate output directory for .EXE and .MAP files, leaving support files (.OBJ,

.LIB, .LNK, .VPI, etc) in a separate directory.

• Built-in Make and Build tools.

• 386/486/Pentium capable built-in assembler (BASM).

• VPC can generate object files, object libraries or readable assembly source that can be
compiled by TASM (Turbo Assembler) 3.0+ or MASM (Microsoft Assembler) 6.0a+
to obtain equivalent object files. This allows you to mix code written in Virtual Pascal
with code written in other languages.

• VPC supports the Pascal, C, StdCall and far16 Pascal (without thunking) calling
conventions, allowing:
• All OS/2 and Win32 API functions to be called directly without special interface

libraries.
• Operating system exception handlers etc to be written in Pascal.
• 16-bit OS/2 1.x API functions to be called directly without any special interface

thunk libraries.

Virtual Pascal Features 17

Virtual Pascal User’s Guide

• Direct, efficient I/O port and memory access through the Port and Mem arrays.

• Standard units are highly compatible with the DOS protected mode and Windows
platforms of Borland Pascal.

• VP features Smart Linking, which lets you create tiny executables even without
resorting to the use of DLLs. “Smart Linking” means that unused variables,
procedures, functions and objects are not linked into the executable.

• VP can generate dynamic link libraries (DLL), usable from VP programs or programs
written in another language, such as C or C++.

• Every definition in the interface section of a unit, including variables, typed constants,
procedures, function and objects can be exported to a DLL and be used by any
program using the DLL. This allows for the creation of DLLs even for complex
object-oriented libraries like Turbo Vision and Object Professional. (OS/2 target only)

• No 64kB limits on either code segment, data segment or symbol sizes.

• The ampersand character (&) is allowed as a replacement for the dollar sign ($) in
compiler directives. This can be used to specify Virtual Pascal specific directives:
other Pascal compilers, such as Borland Pascal, will treat these as ordinary comments.

• All Borland Pascal compiler directives are accepted. The ones that have no Virtual
Pascal equivalents are ignored. $A is equivalent to &AlignData.

• A number of Virtual Pascal specific compiler directives are supported: AlignCode,
AlignData, AlignRec, Alters, Asm, Cdecl, Far16, Frame, G3, G4, G5, Open32,
Optimise, OrgName, PureInt, Saves, SmartLink, Speed, StdCall, Use32, Uses, Zd.

• Compiler and IDE can be extended to support additional compiler targets, by
modifying the VP.INI file located in the Common\ directory. For additional
information on defining additional targets, please refer to the chapter.Extending
Virtual Pascal.

The Run-Time Library

• The entire RTL is platform independent, with all platform-specific functions
encapsulated in the VpSysLow unit. The VpSysLow unit, along with implementations
for OS/2 and Win32 in VpSysOs2.pas and VpSysW32.pas, respectively, can be found
in the Source\Rtl directory.

• The RTL includes the following units with full source code: VpSysLow, System, Crt,
Dos, Strings, TypInfo, Use32, Rexx, VpUtils and WinDos. Also included as pure
interface units that can be updated to full source for owners of Delphi are SysUtils,
Classes and Math. Owners of Turbo Vision can upgrade the source code to VP
compatibility for Objects, Memory, Validate, and all the other TV units.

• Long file names are supported by the run-time library.

• The size of the file variables has been increased to hold a long file name. The PathStr,
DirStr, NameStr, ExtStr, SearchRec types in the Dos/WinDos units have been
modified accordingly.

• The section on Compatibility with Borland Pascal and Delphi contains a full
explanation of compatibility and porting issues.

• In OS/2, a program (.EXE) or a library (.DLL) can use either the static or a dynamic
version of any unit it uses. If using the static version, the unit’s object file is linked
into the executable. If the dynamic version is used, the program requires the DLL to

18 Virtual Pascal Features

Virtual Pascal User’s Guide

run. Full source level integrated debugging support is offered whichever method is
used.

• For Win32, the low-level system wrapper functions (in VpSysW32.Pas) for keyboard
handling can be replaced by similar functions placed in a DLL. This functionality has
been included as a work-around for problems encountered on specific keyboard
layouts. Please refer to the chapter on Extending Virtual Pascal for further
information.

• Interface units providing access to almost all OS/2 base API calls are available. These
are stored in the Source\os2 directory:
• Os2Base: Base OS/2 API calls and 16-bit OS/2 1.x API (Vio, Kbd, Mou,

Mon and Nls calls).
• Os2PmApi: All Presentation Manager APIs.
• Os2MM: All OS/2 Multimedia APIs.
• Os2Def: Definitions of commonly used types and constants.

• Interface units providing access to almost all Win32 API calls are available. Most of
these are stored in the Source\RTL directory, and some in the Source\W32 directory.
(Since Open32 for OS/2 supports many of the Windows APIs, this unit is included in
the common RTL directory):
• Windows: Base Win32 API calls.
• Messages: Message constants and message cracker types.
• CommDlg: Common dialogs interface.
• WinSock: Windows Sockets interface
• ShellApi: Basic Win32 Shell API interface
• VpKbdW32: Win32 Keyboard Handler code used by VpSysLow.

The built-in linker, VPLink

VP includes a fast one-pass built-in linker, capable of producing both OS/2 LX and Win32
PE executables.

• Support for the {$R ResourceFile} compiler directive. When this directive is
specified, the linker automatically binds the resource files specified to the executable.
Also supported is the form {$R *.RES}, which causes the resource file
ModuleName.Res to be linked into the program.

• Compression (OS/2 only). OS/2 supports 2 levels of compression, Exepack 1 and
Exepack 2. The VP linker supports both, and compresses both code and resources in
accordance with the compression option selected in the Linker options dialog.

• Advanced Stub support. Any DOS program, even one using overlays, can be
specified as a stub program. A stub program is a DOS program that is included in the
executable and is loaded if the program is executed in DOS. The default stub is a
small program (112 bytes) that runs the program if started from a Dos command
prompt inside the native operating system.

• 4 levels of Map files can be automatically created: None, Segments, Public and
Detailed. Map files are text files describing the internal layout of the executable, and
can include information about segments, public symbols and line numbers. The map
files produced by the VP linker are compatible with IBM’s MAPSYM utility and can
be used to create OS/2 .SYM files. They are also compatible with map files created
using Borland’s TLink.

Virtual Pascal Features 19

Virtual Pascal User’s Guide

• Support for an external linker. Note, that some features like location information are
only available when using the built-in linker.

• New &Linker directive. Using this directive, an external .DEF file is not needed and
the linker instructions can be kept inside the Pascal source files. If an external linker
is used, the content of the &Linker directive will be copied to a .DEF file before
invoking the linker.

• The built-in linker automatically recognises when direct port I/O is performed using
the Port array and grants I/O privilege as required.

• Full support for resource files with string name identifiers, even in OS/2 (when using
the Open32 library).

• The linker automatically generates an import library when linking a DLL, removing
the need for the external ImpLib utility. When using an external linker, ImpLib is still
used.

• For units and programs compiled in the {&LocInfo+} state, VPLink can generate
Location Information in the executable. Location Information includes information
about source file names and line numbers, which is accessible at run time through the
GetLocationInfo function in the System unit and is used by the default error handlers
in the System and SysUtils units to provide detailed error information on program
failure.

Program Examples

More than 80 examples of programming in VP are included in the package. Some are for
OS/2 or Windows only, and others are for both platforms - for a discussion of the more
interesting ones, please refer to Chapter 8.

• All Turbo Pascal examples can be compiled by Virtual Pascal with minor changes
(BreakOut, TVDemo, TVEdit, TVFM, etc.) The more interesting ones are included as
OS/2 and Win32 executables. Since many versions of these examples exist, the
Virtual Pascal installation includes .DIF files describing the changes required to each
source file of the examples.

• Examples that show the use of the standard units Dos, WinDos, Crt and WinCrt are
included both as source code and as executables.

• An example demonstrating the use of the VPUtils unit is included as
TestUtil\TestUtil.Pas. The VPUtils unit is a Virtual Pascal specific part of the Run-
Time Library.

• An example of converting C code to Pascal is included in the form of UNRAR. The
original distributable C source code is included along with the working Pascal source.

• An example of assembler programming is included in the Sort example. This example
implements a very fast routine for sorting text files and makes use of Virtual Pascal’s
built-in 32 bit assembler.

• A simple example of multithreading is included in the RatRace example. This
example starts 8 threads, each of which displays a textual graphic (a “rat”) on screen
and races them across to the finish line.

• An example of the TMemoryManager class and performance monitoring can be found
in the MemMgr directory.

• Two examples of interfacing to a Dynamic Link Libraries (DLLs) with VP can be
found in the Dll directory. The source code for a simple DLL is also included.

20 Virtual Pascal Features

Virtual Pascal User’s Guide

• Three examples of using the core of the Delphi VCL library, Classes, SysUtils, are
included in the Delphi directory. ClsDemo.Pas demonstrates the Classes unit,
SysDemo.Pas demonstrates the SysUtils unit, and TlsDemo demonstrates the use of
Thread Local Storage (threadvar variables).

• Two OS/2 Presentation Manager programs, the Triplex game and the Clock
application are included for OS/2 only.

• Two examples of 32-bit OWL (Object Windows Library) programming are included:
OwlChess (a chess program) and Calc (a simple calculator). When compiling these,
remember to define the WINDOWS and OWL conditional defines and do a Build of
the project, rather than a Make.

Compatibility with Borland Pascal 21

Virtual Pascal User’s Guide

C H A P T E R 4

Compatibility with Borland Pascal and Delphi
Borland Pascal and Borland Delphi 1 generate 16 bit code whereas VP generates 32-bit
code. The main differences between Borland Pascal/Delphi and VP are related to this fact.
To achieve compatibility with these environments, VP uses a number of tricks and
workarounds - they are described in this chapter.

If you do not plan to port Borland Pascal or Borland Delphi code to 32-bit OS/2 or
Windows using VP, this chapter is probably of limited interest. In the following, a working
knowledge of Borland Pascal or Borland Delphi is assumed.

Run-Time Library compatibility

One of the most important aspects of compatibility is one of source code libraries and
standard functions. This section is intended to give an overview of the changes made to the
Run-Time Library units for VP.

• The following standard units are shipped with VP: VpSysLow, System, SysUtils,
Use32, Use16, Dos, Crt, Strings, Printers, WinDos, WinCrt, TypInfo, Math and
Classes. For the SysUtils, Classes, Math and TypInfo units, only the interface sections
are included (because the original copyright belongs to Borland International); the
other units are all supplied with full source code.

• The VpSysLow unit encapsulates all platform dependencies – no other units in the
RTL (except System) use platform-specific features. This not only means that the
code is not cluttered with IFDEFs, but also that it is possible, at least in theory, to
make Virtual Pascal produce object code for other platforms by simply porting the
VpSysLow unit. See chapter 10 about Extending Virtual Pascal for more information
about this.

• The source for the System unit and a batch file to compile it (MakeSys.Cmd) can be
found in the Source\RTL\Sys directory of the VP installation.

• All other common RTL units, including VpSysLow, can be found in the Source\RTL
directory of the VP installation. A batch file for recompiling the entire RTL is also
included (BldRtl.Cmd).

• All Integer and Word type parameters to standard procedures and functions as well as
function return values of these types have been extended to Longint.
• For this reason, the Use32 unit should always be included in the uses clause before

trying to recompile 16-bit code written with Borland Pascal. If it is not, variable
parameters of types Word and Integer will cause Type mismatch errors when
compiling.

• To ease this process, the compiler can be instructed to implicitly include the Use32
unit in the uses clause by specifying the {&Use32+} state.

• When using {&Use32+} to include the Use32 unit implicitly, it is possible to
revert to the original 16-bit integer types by including the Use16 unit in the uses
clause. This unit simply reverts the changes done by the Use32 unit.

• Delphi units always use the SysUtils unit. The VP version of SysUtils redefines
Integer as Longint, and the use of Use32 is not required nor recommended for
these units.

• The differences in each of the RTL units included consists of:

22 Compatibility with Borland Pascal

Virtual Pascal User’s Guide

• System unit:
• The Mark and Release real mode procedures are not implemented.
• Since VP operates with a flat 32-bit memory model as opposed to a 16:16 bit

segmented one, the Ptr function accepts only one argument, Offset.
• Two new procedures for converting between 16:16 and 0:32 pointer types, SelToFlat

and FlatToSel have been added.
• Two new 16-bit integer types, SmallInt and SmallWord are introduced.
• Three new variables supplementing FileMode are defined: FileModeReadWrite,

which is used when using ReWrite on a typed or untyped file instead of FileMode,
TextModeRead, used when Reset is used on a file of type Text, and
TextModeReadWrite, used when ReWrite is used on a file of type Text. The file mode
variables are all declared as threadvar and can safely be used in multi-threaded
programs.

• Thread and exception handling functions are added.
• The TMemoryManager interface is added.
• Several functions for handling of long strings are added.
• A function for accessing run-time location information, GetLocationInfo, is added.

• Crt unit:
• The Sound and NoSound procedures are not implemented; the VP procedure

PlaySound implements a combination of both.
• Dos, WinDos units:

• Procedures specific to the DOS operating system (Intr, MsDos, GetCBreak,
SetCBreak, Keep, GetIntVec and SetIntVec) are not implemented.

• SwapVectors is available, but does nothing.
• WinCrt and Strings: No changes.
• Printers unit:

• In order to actually print what has been written to the Lst file, a call to the new
FlushPrinter procedure must be made.
• SysUtils unit: No changes
• TypInfo unit: No changes
• Classes unit:

• The TThread type is not supported.
• Math unit: No changes.

Data Type Compatibility

By default, all built-in data types have the same name, size and meaning as they do in
Borland Pascal. All data types of Borland Pascal and Delphi (except Variant) are
supported and consist of Byte, Word, Integer, LongInt, SmallInt, Cardinal, Currency,
Real, Comp, Double, Extended, String, AnsiString and PChar.

Integers

On a 32-bit processor like the 80386 and later, it is not efficient to use 16 bit arithmetic.

For this reason, units should either use the SysUtils or the Use32 unit, either of which
should be included in the uses clause of every unit. Use32 redefines the built-in 16-bit
integer types Integer and Word as being 32-bit types and not much else, and SysUtils does

Compatibility with Borland Pascal 23

Virtual Pascal User’s Guide

the same and a whole lot more. (The source code of Use32 is available if you installed the
RTL source code in the file Source\Rtl\Use32.pas).

As an alternative to manually changing the uses clause of all units, the {&Use32+} setting
can be used, for example by setting the Use32 option in the Options¦Compiler dialog.
When this directive is enabled, the Use32 unit is implicitly included in the uses clause,
after the System unit but before any units explicitly listed. Note, that this setting should be
used for programs being ported from Borland Pascal only, not for programs that need to be
compatible with any version of Borland Delphi.

If you must use 16-bit integer values, use the new SmallInt and SmallWord types instead of
Integer and Word, or use the fully qualified identifiers: System.Integer and System.Word.

In VP, all Byte and Word sized operands are converted to type Longint for integer
arithmetic operations.

See also the discussion on integer types in the Data Types chapter of the Language
Reference Manual.

Reals

For floating-point calculations, VP always uses coprocessor types internally (for reasons
of speed and code size), but allows the use of 6-byte Reals for reasons of compatibility
with older code. When operating on 6-byte Reals, these are converted to Extended and
back again when the operation is complete. This obviously is a slow process and we
recommend the use of Reals only when strictly necessary.

When using a variable of type Real, rounding errors can occur. These rounding errors are
consistent with the results obtained from Borland Pascal programs using reals, compiled in
the {$N+} state.

Pointers

Virtual Pascal uses a 32-bit flat memory model, making the use of segments a thing of the
past. Pointers in Virtual Pascal have the same size as in Borland Pascal and Borland
Delphi (4 bytes) but denote a 32-bit flat memory address rather than 16-bit segment (or
selector) and 16-bit offset. Consequently, the Mem arrays have only one index - the 32-bit
flat memory offset.

The same applies to the Ptr function, which also takes a single offset argument.

Some 16-bit OS/2 API functions, like VioGetBuf, returns segmented 16:16 bit pointers. In
order to address the memory pointed to by this pointer, use the SelToFlat procedure
defined in the System unit to convert the pointer to a flat 32-bit one and call FlatToSel to
convert a normal 32-bit flat memory pointer to 16:16 for use with these functions.

Classes

Classes and class variables are compatible with Delphi, from a compiler/language point of
view. In other words, a class definition that compiles in Delphi will compile with Virtual
Pascal, and vice versa.

However, it is not possible to create a DLL defining classes in one compiler, and use the
DLL with a program compiled using the other. This is because the 32-bit Delphi
compilers use the Register calling convention not supported by VP. Since the RTTI (Run-
Time Type Information) stored for classes does not contain calling convention
information, it is not possible to change the calling convention for read/write methods for
properties, for example.

24 Compatibility with Borland Pascal

Virtual Pascal User’s Guide

Compiler directives

All Borland Pascal compiler directives implemented in VP have the same spelling. A
number of new switch directives have been introduced in VP; these have descriptive
names instead of being one-letter switches as used in Borland Pascal. A detailed
description of all VP compiler directives can be found in the online help and in the
Language Reference Manual.

Several Borland Pascal directives are not relevant in the 32-bit environments supported by
VP and these are ignored:

Switch Meaning
$E Emulation
$F Force FAR Calls
$G Generate 286 Instructions
$K Smart Callbacks
$N Numeric Coprocessor
$O Overlay Code Generation
$Y Symbol Reference Information

The following parameter directives are also ignored in VP:
Directive Meaning
$C Attribute Code Segment Attribute
$D Text Description
$G UnitName Group Unit Segments
$O UnitName Overlay Unit Name
$S SegSize Segment Size Preference

Built-in assembler (BASM)

The built-in assembler of VP supports all 386, 486 and Pentium instructions. Assembler
code written for Borland Pascal or 16-bit Delphi should be rewritten to 32 bit, which
usually is a very simple process. All segment register references can usually be discarded,
since a single register can hold the offset of the desired memory location. As an example,
LDS BX,Test loads the address of Test into DS:BX in 16-bit mode and should be
replaced by MOV EBX,Test in 32-bit mode.

32-bit assembler code written in 32-bit Delphi should be converted to use the standard
pascal calling convention, since VP does not support the register calling convention used
by default in these compilers.

Two new operators are introduced: Small and Large. They should be used to modify the
memory addressing mode (Small: 16-bit, Large: 32-bit). They have the same meaning and
syntax as in other 32-bit assemblers, such as MASM or TASM.

Two pseudo instructions are available, ALIGN and POPARGS.

For a more complete discussion about the features of the built-in assembler, please refer to
the Language Reference Manual.

Inline statements and inline subroutines

The Inline procedure defined by Borland Pascal, where numbers representing machine
code language can be entered directly, is not supported. This statement was introduced
into Turbo Pascal prior to the introduction of the built-in assembler and should be avoided
in Borland Pascal programs as well. Instead, use the built-in assembler for this kind of
code - it is just as fast and much more readable.

Compatibility with Borland Pascal 25

Virtual Pascal User’s Guide

VP supports inline subroutines written in Pascal. Inline subroutines are not called, but are
instead expanded every time they are used, like macros. Declaring small functions that are
used very often in the code as inline may give a speed improvement at the cost of code
size. Larger functions should never be declared as inline.

For more information about Inline functions and restrictions imposed on them, please refer
to the Language Reference Manual.

Turbo Vision

VP includes a patch to make the Turbo Vision v2.0 source code compatible with it, for
both OS/2 and Win32 targets. The Drivers and Objects unit have been completely
rewritten and the assembler code of all other Turbo Vision units has been rewritten.

The DOS specific TEmsStream object is not implemented. The TEvent record has been
extended to include a ShiftState byte field for the evKeyDown variant. Critical error
handlers are not available, since OS/2 and Win32 handles critical errors properly. The
FormatStr procedure has been rewritten in built-in assembler. High level units such as
Menus, Dialogs, etc, remain virtually unchanged.

The original Turbo Vision v2.0 source code is supplied with Borland Pascal v7.0 and
v7.01 in the package that includes the runtime library (RTL) source code, or the RTL can
be purchased separately from Borland. In order to install source code support for Turbo
Vision, the original Borland source code files must already be installed.

Users that do not have the Turbo Vision source code but wish to make use of the library
with VP, the Turbo Vision library is included as precompiled units with Pure Interface
units of all units in the Source\TV directory.

Object Windows Library (OWL)

VP includes a patch with which the OWL library source code can be made VP-compatible.
OWL support is available for Win32 targets only. The original source code for OWL
(required to make use of this compatibility in Virtual Pascal) is included in Borland Pascal
and Borland Delphi v1. Additionally, 32-bit OWL programs require the file
BWCC32.DLL in order to run. This DLL is included with Borland C v4.x and higher, and
should be widely available for download from the Internet.

Using the ported version of the OWL library source files, it is relatively easy to recompile
16-bit OWL applications written with Borland Pascal for Windows to 32-bit Windows.

Two examples of OWL compatibility (from Borland Pascal) are included as executables:
CALC and OWLCHESS; for copyright reasons, the required BWCC32.DLL file is not
included.

A few special considerations are warranted when compiling OWL: Define the conditional
define OWL, and recompile the RTL, particularly including the Objects unit. In OWL,
some of the functions are implemented differently than for Turbo Vision; the precompiled
version of Objects is compiled for use with TV.

Also note, that while OWL programs may compile with no changes, the differences in
messages between Win16 and Win32 may mean that the programs do not work, and some
work will be required to find and remove the problems.

26 Compatibility with Borland Pascal

Virtual Pascal User’s Guide

Visual Component Library (VCL)

The basic parts of the Visual Component Library of Borland Delphi are included with
Virtual Pascal: TypInfo, SysUtils, Math and Classes. The other units are not included with
Virtual Pascal but most should be able to compile with only a few changes.

Using the Open32 library from IBM (Previously called DAX or DAPIE), it may be
possible to cross-compile Delphi applications to an OS/2 target using Virtual Pascal.

To assist the porting process, VP defines a new compiler directive, {&Open32+}, which
can only be used for OS/2 targets. In this state, all resource files included using a $R
directive are considered to be Win16 or Win32 resources and are converted to OS/2
resource format prior to linking.

Additionally, the meaning of the stdcall standard directive is changed to be identical to
cdecl when the &Open32 state is enabled. This is because the standard Windows calling
convention is stdcall, and this is obviously used in all Windows API header files.
However, IBM has implemented Open32 with the standard OS/2 calling convention cdecl
– this directive allows the same Windows header files to be used for both Windows and
OS/2 targets without changing the source code.

At the time of writing, Delphi programs ported to OS/2 using the Open32 library were
both slow and visually unappealing. This may of course change in future versions of the
Open32 library.

Code generation

VP generally generates very efficient code. The main differences in code generation from
Borland Pascal and Delphi are outlined here. This section is highly technical and only of
interest for programmers with a thorough knowledge of Intel assembler programming.

• Nested procedures and functions use a different model for accessing local variables
and arguments of an enclosing procedure or function based on the ENTER instruction.

• For overflow checking, VP uses the INTO instruction and the BOUND instruction to
implement range checking. The result is that the overhead of enabling range and
overflow checking is minimal, both in terms of code size and speed.

• VP replaces multiplications and divisions by powers of 2 by right- and left-shifts,
speeding up execution.

• In the {&Speed+} state, VP replaces multiplication by a number of small constants (3,
5, 6, 9, etc) by equivalent LEA and shift instructions.

• VP always keeps a pointer to Self in a register for maximum performance when
programming using objects. In the {&Optimise+} state, VP always attempts to store
the most frequently used local variables in CPU registers instead of memory for
optimum performance.

• VP generates very efficient for loop code. However, after the loop has terminated, the
value of the FOR control variable is 1 greater than the maximum bound. Programs
should not rely on the value of a for control variable outside the for loop.

• Case statements cause more efficient code to be generated. As opposed to Borland
Pascal, VP does not allow overlapping case selectors.

• In the &G5+ state (Pentium processor is the primary target), ENTER instructions are
used instead of the usual push ebp; mov ebp,esp sequence. This also works on non-
Pentium processors but is slightly slower on these.

The VP User Interface 27

Virtual Pascal User’s Guide

C H A P T E R 5

The VP User Interface
The IDE of VP is your most valuable tool in developing new programs and since you are
likely to spend a lot of time using it, it is important that you learn to feel comfortable with
it. If you have not already done so, you should spend a minute or two browsing the pull-
down menus to get an overview of the available options. This will make it easier for you to
follow and understand the information contained in this chapter.

Starting the VP IDE

The IDE is launched like any other executable, either from the command-line or by
double-clicking the icon on the desktop. If running OS/2, choose the IDE that suits your
needs the best; a description of the differences between the two different IDEs (VP or
VPPM) can be found on page 13.

Either IDE accepts a number of command-line parameters, which can be used to
automatically load a source file or project on start-up. The start-up syntax is as follows:

VP [options] [files]

The following options are available for both IDEs:

Option Description
/C<FileName> Use configuration file <FileName>. If not specified, VP.VPO is

used.
<FileName> Load <FileName> into the editor
/S<Path> For OS/2, specifies path of .SYM files
/H or /? Display a help screen

If a configuration file is specified, all settings stored in the file will be restored on starting
the IDE. This includes the compiler settings, desktop layout, editor windows, colour
schemes and macros, etc. Alternatively, any number of source files can be specified and
will be loaded into the editor. All parameters are optional.

When the IDE is not configured to use 25- or 50-line mode, but to keep the dimensions of
the original window, the desired window size can be established by issuing a Mode
command prior to invoking the VP IDE. This setting can be found in the
Options¦Environment¦Preferences dialog.

VPPM (OS/2 only) supports an additional two parameters used to specify the desired font-
size. By default, a font-size of 16x8 is selected and this can be overridden on the
command-line. Once a new font-size has been selected, this font becomes the new default
and does not have to be specified on the command line again.

Specify the font-size by specifying two extra parameters:

 VPPM /Fx<SizeX> /Fy<SizeY>,

for example

 VPPM /Fx30 /Fy20.

This will select a 30x20 font, or the closest matching font available on your system.

In OS/2, the debugger supports .SYM files for debugging. Please refer to page 76 for more
information.

28 The VP User Interface

Virtual Pascal User’s Guide

Text-mode controls

The currently active window in the IDE has a number of different icons on the border of
the window, used to manipulate its location and size on the desktop. Below is a picture of
a screenshot, showing commonly used functions and their keyboard shortcuts.

Each of these options can also be activated using the Window option located on the
pulldown menu at the top of the screen.

In addition to the above icons, editor windows also display the current cursor position (as
column:line number) at the bottom of the screen. Windows may also contain scroll bars,
which can be used for navigating through large files.

File associations

Both OS/2 and Windows can use the extension of data files to associate groups of files
with an application.

During installation, VP creates an association between files with a .PAS extension and the
VP IDE, after which double clicking any .PAS file automatically loads VP with the
selected file.

To change the association to another program, different methods are required in Windows
and OS/2:

OS/2: Open the settings notebook for the application you wish to associate .PAS file to.
Select the Association tab of the settings notebook and add a file association by typing a
wildcard in the New name: field and select Add>>. Delete the existing association in the
same manner.

 Windows: In Explorer, go to View, Options, and select the File types tab. Scroll down to
the item associated with .PAS files and click Edit. Click Open in the actions window, and
edit the filename of the executable to use to point to VP.EXE.

Close window
Alt-F3 Maximize or

restore window
F5

Select window
Alt-<number>

Scroll bar
Arrow keys

Size window
Ctrl-F5

Drag to move window
Ctrl-F5

Menu bar
Alt-<Hotkey>

Shortcut bar
Alt-X to exit

Cursor
Row:Col

The VP User Interface 29

Virtual Pascal User’s Guide

Windows of the IDE

Several different types of windows can be found in the IDE. The most important one is the
editor window, which is where programs should be written and where source level
debugging takes place. A host of other windows are available, mainly to help find
problems in your programs - a process called debugging. An introduction to the subject of
debugging and the various facilities available in VP is available in chapter 6, starting on
page 58.

Local Menus

Most windows in the VP IDE have Local menus associated with them. To view the local
menu for a particular window, either right-click the mouse in the window, or press Alt-
F10.

Local menus typically contain shortcuts to much-used functions for the window; learning
to use the local menus can save a lot of time.

Each menu item on a local menu has an associated hot-key (The letter is highlighted in the
menu), making it easy to access a particular item once the menu has been displayed.

When you have used VP long enough that you start memorising the hotkeys, there is even
a shortcut for reaching individual items on the local menu without first displaying the
menu: Press Ctrl-Shift and the hotkey on the local menu. For example, the local menu for
an editor window has an Origin item, which causes the cursor to move to the current point
of execution while debugging. Pressing Ctrl-Shift-O in an editor window has the same
effect as pressing Alt-F10 to display the menu and then select the Origin menu item.

Figure 1: The local menu for an editor window

The editor window: Colours

The editor window is where you write and edit your programs. In the default colour
scheme, it contains a blue background with normal text being yellow. To change the
colours to your liking, use the Options|Environment|Colours menu:

30 The VP User Interface

Virtual Pascal User’s Guide

Fi
Figure 2: The colours dialog

In the editor window, a number of aids for writing Pascal programs are available:

Cursor navigation

On the most basic level, you need to be able to navigate your source code as efficiently as
possible. The VP editor implements the following keystrokes for cursor navigation:

Keys Action
^S or Left arrow Character left
^D or Right arrow Character right
^A or Ctrl+Left arrow Word left
^F or Ctrl+Right arrow Word right
^E or Up arrow Line up
^X or Down arrow Line down
^W Scroll up
^Z Scroll down
^R or PgUp Page up
^C or PgDn Page down

Editing

Even if it is nice to be able to move the cursor, it would not be much fun if the editor did
not allow editing of text. Fortunately, it does. To add text, simply type it in the editor
window and it will appear.

In addition, the following editing keys are available:

Keys Action
^V or Ins Insert mode on/off
^M or Enter Insert line
^Y Delete line
^Q H Delete to start of line
^Q Y Delete to end of line
^H or Backspace Delete character left
^G or Del Delete character
^Backspace Delete word left
^T Delete word right

The VP User Interface 31

Virtual Pascal User’s Guide

Block operations

Block operations are used to cut or copy manually selected fragments (blocks) of text to
the clipboard, with an option to paste its contents back into the source file at a later time.
The VPPM version of the IDE uses the OS/2 clipboard, so text copied to the clipboard can
be pasted into other OS/2 programs and vice versa. Block operations can also be used for
moving or indenting text in an easy and convenient manner, without interfering with the
contents of the clipboard. (To indent is to move the text right or left).

VP gives you the choice of three different block types, although only one block type can
be used at a time. The default block type is the stream block, which selects all characters
between the start and the end of the block. Enable stream blocks by pressing ^KM. The
second block type is the line block, which selects text by the line instead of by the
character. Press ^KX to select this type of block. The third block type is the columnar
block, enabled by ^KG. A columnar block is a rectangular block of text.

A special clipboard window is used to hold the contents of the clipboard. Whenever you
cut or copy text to the clipboard, the previous contents of the clipboard are flushed and the
new text stored in its place.

 The following keys apply to blocks:

Searching

For locating a particular string of text or for replacing one string with another, text
search/replace is available. In addition to text search, the Search menu also provides
options for finding the location of a specific procedure and for locating the last compiler
or run-time error location.

Up to 10 bookmarks, or place marks, are also available. Setting a bookmark at a specific
location in the source code makes it very easy to return to that location at a later time.

The following keystrokes are available for searching:

Keys Action
^Kn (n = 0..9) Set place marker (0-9)
^Qn (n = 0..9) Go to place marker (0-9)
^QF Find
^QA Find and replace
^QW Go to last error
^L Repeat last find

Keys Action Keys Action
^KM Set stream block ^KP Print block
^KX Set line block ^KI Indent block
^KG Set columnar block ^KU Un-indent block
^KB Mark block begin ^QB Move to beginning of block
^KK Mark block end ^QK Move to end of block
^KT Mark single word ^KD Exit to menu bar
^KC Copy block ^KL Mark line
^KV Move block ^Ins Copy to clipboard
^KY Delete block Shift-Del Cut to clipboard
^KR Read block from disk ^Del Delete block
^KW Write block to disk Shift-Ins Paste to clipboard
^KH Hide block

32 The VP User Interface

Virtual Pascal User’s Guide

Undo and Redo

The VP editor allows you to undo or redo every editor action performed and maintains an
undo buffer that can be as large as required. This gives you great freedom in
experimenting with various features of the editor, without fear of losing lots of work, as
you will be able to undo any changes made. Undo will reverse any operation done to your
code, while redo is used to reverse any undo commands executed. The undo buffer is
emptied when you leave the editor or close your source file, after which you will no longer
be able to undo/redo.

Keys Action
Alt-Backspace Undo
Alt-Shift-Backspace Redo

Other editor options

In addition to the above mentioned editor features, the following keys are useful to know
when programming in the IDE:

Keys Action
^KS or F2 Save
F3 Open file
Alt-F3 Close active window
^I or Tab Tab
^OI Auto indent on/off
^Q Pair matching (of brackets)
^OO Insert compiler options in source file
^P Ctrl+character prefix

Macros

The IDE supports keystroke macros, where any key can be assigned a sequence of
keystrokes. While recording a macro, the mouse can be used to perform actions that
should not form part of the macro.

The scope of each macro can be global (i.e. it works in any context), or Editor only, in
which case the macro only is available when an editor window is active.

Keyboard macros allow for detailed customisation of the user interface. For example,
some users prefer a Turbo Debugger-style interface, and will redefine F2 to set a
breakpoint, F9 to Run and Ctrl-F9 to Make. This is shown in the screenshot below, which
shows the view displayed when selecting the Options¦Macros¦List dialog:

Figure 3: Three commonly defined keyboard macros

To define a new keyboard macro, use Options¦Macros¦Create (Alt=) to start recording.
You are then prompted for the key to redefine; when this has been entered, a red R in the

The VP User Interface 33

Virtual Pascal User’s Guide

upper right hand corner indicates that macro recording is taking place. Press the keys you
wish to enter in the macro, and end recording by selecting Options¦Macros¦Stop recording
(Alt-minus), preferably using the mouse. Pressing the key being defined again also ends
macro recording.

If a mistake was made during recording, macros can be edited or deleted from the view
shown in the figure above.

Note, that while recording a keyboard macro, all keys have their original meanings. Thus,
it is possible to swap the meaning of the Ctrl-F9 and F9 keys as shown in the example
above. However, this means that macros cannot be nested, and that it is not possible to
define a macro for a key involving the key itself (as pressing it again stops recording).

This safeguards against circular or recursive macros that might cause the IDE to hang.

Syntax Highlighting

Syntax highlighting makes it easier to get an overview of a piece of code. Reserved words
are highlighted in white, comments are grey, numbers are green and strings are light blue.
This makes it easy to spot spelling mistakes in keywords, since you expect them to be
white. It also does away with the need for writing reserved words in UPPER CASE – an
unnecessary habit of many programmers who started programming before Syntax
Highlighting became a standard editor feature.

Syntax highlighting is enabled or disabled in the Options|Environment|Editor dialog in
the IDE and is on by default, highlighting files with a .PAS or .INC extension.

Note, that syntax highlighting always assumes the source code is in {&Comments+} state.
This means that nested { } comments are allowed and are syntax highlighted as such, up to
32 levels deep.

Getting Help

To call for help on a menu item or other topics of the IDE, press F1 or select Help from
the menu. To get context-sensitive help about the word currently at the cursor position,
press ^F1. This will cause VP to search through the index and display help on the selected
topic or the closest matching topic.

Online help for VP is provided in .VPH files. If you have installed Borland Pascal, you
can make the BP help files available for use in the VP IDE by converting the Borland-style
.TPH help files to the more compact .VPH format by using the Help Conversion utility.
You can also write your own online help files and compile them for use with VP, using the
Help Generator utility.

See the sections about The Help Generator HG and The Help converter TPH2VPH for
more information.

On startup, VP looks for available help files in several places. Firstly, it looks in all paths
listed in the VPHELP environment variable, followed by the ..\Common directory and the
directory containing VP.EXE itself.

This way, help common to all platforms (such as IDE and RTL help) does not have to be
duplicated, and platform-specific help (such as API references) can be copied to the
relevant \bin.%p directory.

The menu bar

The menu bar appears on the topmost line of the screen and provides access to most
features of VP. It has been designed to look familar to people used to working with

34 The VP User Interface

Virtual Pascal User’s Guide

computer software and divides the available commands into logical sections of related
commands.

To activate the menu bar at any time, either press F10 or click on it using the mouse. A
combination of pull-down and pop-up menus then gives easy access to all menu commands
and options.

In the following, the commands of the above mentioned logical groups are outlined.
Because the size of this manual is limited, some basic knowledge of files and programs is
assumed along with a basic understanding of the operating systems.

The File menu (Alt-F) offers choices for opening and loading existing files, creating new
files, changing directory, as well as saving files. It also provides the ability to shell to a
command prompt window (temporarily leaving the IDE), print the active source file and
exit the IDE.

The Edit menu (Alt-E) provides commands to cut, copy and paste text in edit windows.
You can also open a clipboard window to view or edit its contents.

The Search menu (Alt-S) provides commands to search for text, procedure declarations
and error locations in your files.

The Run menu (Alt-R) provides commands to run a program and to start and end
debugging sessions. To use any of the Run commands except Run|Parameters, you must
have compiled and linked your program. For details on using the debugging features of the
IDE, please refer to chapter 7.

The options available from the Compile menu (Alt-C) are used to turn source code into
an executable program or a dynamic link library. It is possible to reduce the amount of
time required for compiling and linking by selecting the method most suitable for your
needs:

• Compile|Compile compiles only the currently active file, even if several source files
are loaded.

• Compile|Make compiles the primary file (if specified using Compile|Primary File) or
the file in the currently active editor window, as well as all changed files on which the
primary file depends. This option is the one normally used.

• Compile|Build compiles all files in a project, regardless of whether any changes have
been made to the source files.

Additionally, the Compile menu (Alt-C) is used to select the desired target platform,
OS/2 or Win32. Every time the menu item is selected, the value toggles to the next
available platform.

The View menu (Alt-V) allows easy access to several powerful views, each containing
information about different aspects of a program. The items in this menu are useful when
debugging a program; for information about the options available, please refer to the
chapter on debugging.

The Debug menu (Alt-D) is also used when debugging programs. Again, please refer to
chapter 7 for more information on this subject.

The Options menu (Alt-O) contains commands that let you view and change various
default settings in the IDE. Most of the commands in this menu lead to a dialog box.
Please refer to the section 'Configuring the IDE' for an explanation of the most commonly
used options, or refer to the online help for details.

The Window menu (Alt-W) contains commands for manipulating, arranging and opening
editor windows.

The VP User Interface 35

Virtual Pascal User’s Guide

The Help Menu (Alt-H) can be used to browse the online help. Help|About displays a
dialog box detailing the current version of VP being used.

The VP/PM Smartbar

The OS/2 VP/PM IDE has a list of icons at the top of the window. Each of these icons
correspond to a menu item in the IDE. Clicking one of the icons has the same effect as
choosing the menu item.

To speed up memorising the icons, you can rest the mouse pointer “on” one of the icons.
After about one second, a small yellow box with a short description of the button will
appear.

The icons available are the following:

Icon Command Keyboard Shortcut

Open File F3

Save File F2

Undo last editor operation Alt-BackSpace

Cut selected text to clipboard Shift-Del

Copy selected text to clipboard ^Ins

Paste text on clipboard Shift-Ins

Search for text in editor window ^QF

Repeat last search ^L

Compile current source file Alt-F9

Make current unit F9

Run program ^F9

Trace into current call F7

Execute and step over current call F8

Stop current action (Compilation or execution) ^Break

Get help F1

Configuring the IDE

The IDE is highly configurable, and can be customised in a number of ways. Using the
Options menu, a number of options for configuring all aspects of the IDE and the
compiler are available.

36 The VP User Interface

Virtual Pascal User’s Guide

A description of the configuration options in the Options|Compiler and Options|Linker
dialogs can be found in the following chapter. These dialogs are used for configuring the
behaviour of the compiler, and are not relevant to this chapter.

Options|Resource compiler

Most graphical applications use resources in one form or another. Resources are anything
from menus to buttons, dialog definitions and icons, to tables of strings and help
identifiers.

The resource information for GUI applications is typically stored in resource files, which
are just plain text files of a special format that describe the resources of the applications.
Before the resources described can be linked into the program, the resource files need to
be compiled to binary form - this is done using a resource compiler. The job of the
resource compiler is to turn the resource file (which should have a .RC extension) into a
binary .RES file and link the .RES file into your executable.

VP can use any resource compiler available; in OS/2, the Resource Compiler (RC.EXE)
that comes with OS/2 is used. If you have moved it to another location, or wish to use
another resource compiler, the entry field in the Options|Resource compiler dialog
should contain the full path specification of the resource compiler.

Creating resource files can be done either by hand, or by using one of several readily
available tools for this purpose.

Resource files are included in a program by using the {$R ResFile.Res} compiler
directive. See also the {&Open32} directive.

For Win32, an executable named RC.EXE is included in the bin.w32 directory. This
executable accepts parameters compatible with OS/2’s RC.EXE, and passes control to
Borland’s BRC32.EXE resource compiler (with appropriately translated parameters). For
this to work, BRC32.EXE and files required by this executable must be available in
PATH.

Options|Directories

This dialog contains a list of directory-names; each of the directories listed must already
exist. All of the entry fields (except the two topmost ones, containing output directories)
can contain a list of directories, separated by semicolons (;).

The Output directory is where the VP compiler stores all supporting output files,
typically files with OBJ, LIB, VPI, LNK and RES extensions. This directory is also
searched if a unit is not found in the list of unit directories.

The Exe output directory is where the compiler creates the real output (.EXE and .DLL
files) along with their .MAP files, if map file creation is enabled in the linker options.

The Include directories contains the list of directories where the compiler searches for
include files included using the {$I FileName} compiler directive. Before any of the
directories listed are searched, a matching file in the current directory will be included.

The Unit directories entry field contains the list of directories the compiler searches for
unit files included in a program or library through a uses clause. The current directory is
implicitly added to the beginning of the list and is searched before any other directories.
Unit directories can contain either Pascal source code or precompiled units in the form of
.VPI files with associated .OBJ or .LIB files.

The Library directories is where the linker searches for .LIB files when resolving
references to identifiers declared as external. Object files (.OBJ) included with a {$L
ObjectFile} should also be in directories listed here. As for Include and Unit directories,
the current directory is searched first.

The VP User Interface 37

Virtual Pascal User’s Guide

The Resource directories are where the Resource compiler is instructed to look for .RC,
.H and .DLG files that are included into the main resource file, as well as precompiled
.RES files.

For environments where these directories are shared between different operating systems,
Virtual Pascal implements support for “Drive Substitutions” to make it easier to manage
the process. For more information on this, please refer to the chapter about Extending
Virtual Pascal.

Options|Environment|Preferences

This dialog is used to set up certain aspects of the editor and the IDE in general.

The Screen size option applies only to the text-mode version of the IDE (VP.EXE) and is
used to control the window or screen size of the IDE at start-up. You can select either 25
or 43/50 lines, corresponding to DOS text mode windows, or you can select Keep
original. In this case, VP will keep the window size set by a previous mode command on
the command line. In this way, you can execute mode co100,40 (OS/2), mode 100,40
(Windows) and then run VP in a 100x40 window.

The OS/2 VP/PM IDE always uses Keep original, and may be resized at will, up to a
maximum window size of 150x50 characters.

Source tracking determines whether a new edit window should be used to display source
code as you step through a program during a debugging session. If the source file
referenced is not already open in an edit window, the IDE opens it and highlights the
appropriate source line. If New Window is selected, a new editor window will be opened,
and if Current Window is selected, the newly loaded source file will replace the contents
of the current edit window.

Auto save is used to make the IDE save some or all of the current desktop configuration
automatically. If Editor files is checked, the currently active files will be auto-saved on
every make, build, compile or shell command. The Environment checkbox covers all
settings contained in the Options menu, any changes made to the search dialog boxes and
the primary file name entry. If the Desktop option is selected, the position, size and cursor
position of all currently open windows will be stored when the VP IDE is exited.

Do note, that editor files are saved independently of the current Editor files setting when
compiling, making or building a program. This is required because the compiler is an
external program (VPC.EXE) that always uses the source files currently on disk for
compilation.

If Change dir on open is checked, the IDE changes the current directory when a new file
is opened.

If Return to last dir is checked, the IDE stores the current directory and changes to this
directory when VP is next started.

If Bring messages to top is checked, the Messages window (which displays progress
information for the compiler, linker, etc) will be shown and made active when a
compilation is started. The messages window can still be closed by pressing ESC or ALT-
F4. If this option is not checked,the Messages window behaves like any other window.

Note, that the Messages window must be the active window for the IDE to be able to
position the cursor at the position of any errors occurring during compilation.

Options|Environment|Editor

Using this dialog, the editor can be extensively configured. Each of the configuration
options available will be covered briefly; for a more exhaustive explanation, please refer to
the online help.

38 The VP User Interface

Virtual Pascal User’s Guide

If Create backup files (default ON) is checked, a backup copy is automatically created
when a file is saved. This file is given a .BAK extension, independent of the extension of
the original file.

Insert mode (default ON) determines whether the editor is in Insert or Overtype mode
when it is first started. The insert mode can be changed while editing by pressing the Ins
key.

In Auto indent mode (default ON), pressing Enter causes the editor to move to the next
line, in the column containing the first non-blank character in the line above. This is very
useful when writing Pascal programs, where the indention usually changes only slightly
from one source line to another. If this option is unchecked, pressing Enter places the
cursor in column 1 of the next line.

Smart tab (default ON) is another valuable help when writing Pascal programs. When
this option is checked, TAB moves the cursor to the next non-space character in the line
above the current one. If it is unchecked, TAB just moves the cursor to the next tab
position as defined in the Tab size input box.

If UNIX text (default OFF) is checked, the editor handles UNIX style text files correctly.
In normal MS-DOS text files, each line is terminated by Carriage Return (#13) followed
by LineFeed (#10), whereas UNIX text files use only the LineFeed (#10) character to
separate lines.

When Optimal fill (default OFF) is enabled, all long sequences of spaces are converted
to TABs to make the source file as small as possible. In the disabled state, all TABs are
converted to spaces before the file is saved.

When Backspace unindents (default ON) is checked, pressing the Backspace key when
the cursor is on a blank line or on the position of the first non-blank character of the line,
the line is outdented to the previous indention level. If this option is unchecked, Backspace
simply deletes one character.

When Persistent blocks (default ON) is selected, marked blocks remain marked if a key
is pressed. When this option is off, pressing any key de-selects the block.

Truncate spaces (default ON) causes the IDE to remove spaces that trail lines of text,
immediately after loading or before saving a file. Spaces are also truncated when the End
key is pressed.

Syntax highlighting (default ON) colours the various elements of Pascal source code
differently. This significantly improves the readability of code and helps to avoid syntax
and spelling errors. When this option is off, all code appears with the default text
foreground and background attributes. The colours used for Syntax highlighting can be
configured in the Options|Environment|Colours dialog, described on page 39. Also refer
to the Highlight extensions setting on this page.

Enable Block insert cursor (default OFF) to change the way the cursor looks. In the
default OFF state, a block cursor indicates Overtype mode, and an underline cursor
indicates Insert mode. Checking this option reverses this.

If Find text at cursor (default ON) is checked, the word underneath the cursor appears as
the text to search for in the Text to find input box of the Search|Find and
Search|Replace dialogs. If OFF, the search text of the previous search will appear.

Background only (default OFF) determines how a selected block is displayed. In the
OFF state, all text in a block appears with the same fore- and background colours. In the
ON state, only the background colour changes, and syntax highlighting, breakpoints etc
are still visible.

The VP User Interface 39

Virtual Pascal User’s Guide

When the Overwrite Block option is checked, the IDE behaves closer to CUA standard.
When enabled, this option causes a double mouse click to select the current word instead
of the current line.

In addition, when Persistent Blocks are disabled (and this option is enabled), and the
cursor is inside or at the beginning or end of the selected block,
• Pressing the DEL or Backspace keys causes the block to be deleted,
• Typing any character key causes the block to be replaced with that key,
• Pasting from the clipboard replaces the selection.

The Highlight extensions entry field contains a list of file wildcards, separated by
semicolons (;). If Syntax highlighting is enabled, all files matching a wildcard from this list
will be syntax highlighted.

Options|Environment|Mouse

This dialog is used to configure the default behaviour of the right mouse button in
combination with the Ctrl, Alt and Shift keys. Each combination can be assigned to an
action described elsewhere in this manual.

If the Reverse mouse buttons option is enabled, the meaning of the right and left mouse
buttons are reversed.

Setting the Mouse double click slider can set the speed at which two consecutive mouse
clicks are considered to be a single double-click instead of two distinct single-clicks.

The default settings when holding down a key while clicking the right mouse button are:

Key Action Keyboard shortcut
Ctrl Context-sensitive help index lookup ^F1
Alt Execute to Cursor F4
Shift Inspect Debug|Inspect

or Ctrl-Shift-I

Options|Environment|Colours

Using this dialog, all colours used in the VP IDE can be changed to your liking. The
colours are divided into several groups: Desktop, Menus, Dialogs, Editor, Help, Data
window, Low level, Breakpoints and Syntax.

Each group contains a number of items, the colour of which can be modified separately.
To change a colour setting, click on the item you wish to change, and click on the desired
foreground and background colours. A sample of the setting can be seen in the lower right-
hand corner of the dialog.

When all colours are to your liking, select OK. Selecting Cancel causes all changes made
to be lost.

Options|Save options

This dialog allows you to save the current desktop layout and environment settings in a VP
options file with a default extension of .VPO. This file can be retrieved later by specifying
the file name on the command line as described on page 27, or it can be loaded using the
Options|Retrieve Options menu item.

This effectively implements complete project management. You can store as many
different configuration files as you want, and have different settings for directories,
colours, compiler, etc for each of them.

40 The VP User Interface

Virtual Pascal User’s Guide

By being able to load and save different IDE settings and desktop layouts, the task of
working on several different projects at the same time is greatly simplified.

The .VPO file is a text file, editable with a normal text editor like the VP IDE. The .VPO
file is not compatible with the binary .CFG file format used by earlier versions of Virtual
Pascal, although VP v2 is still able to read these, just not write them. When loading an
old-style .CFG file, make sure it is given a .VPO extension when it is re-saved.

Writing programs using VP 41

Virtual Pascal User’s Guide

C H A P T E R 6

Writing programs using VP
This chapter guides you through the steps required to create simple programs in VP, and
discusses the different compiler options available. You should be familiar with the
principles of starting, using and configuring the IDE introduced in the preceding chapter
before reading this.

This is not meant as a tutorial in Pascal programming. If you are unfamiliar with the Pascal
language, please refer to the Language Reference section of this manual, or third-party
literature. Several books covering Pascal, Pascal programming or OS/2 and Windows
specific programming issues exist; this chapter is meant solely as an appetising
introduction to the topics in question.

If you are an experienced programmer with knowledge of Borland Pascal, you may want
to skip the first section of this chapter and go directly to the section discussing configuring
the compiler on page 42.

Writing your first program

Start the VP IDE by clicking on the appropriate icon in the VP desktop folder or the Start
Menu.

Select File|New to open a new editor window, and type in the following in the editor
window:

Program Hello;
{&PMType:VIO}
begin

WriteLn('Hello World!');
ReadLn;

end.

This is a complete Pascal program!

The first line defines the program name as being Hello.

The second line instructs the linker to create a text-mode (VIO) application that can be run
either in a window or in full-screen. The same effect can be achieved by selecting
Compatible with PM in the Options|Linker|Applications dialog box.

The program itself starts on line 3, and consists of just two statements enclosed by begin
and end. The WriteLn statement is a built-in function defined in the System unit of VP, and
causes the string passed to it as a parameter to be output on the screen. The ReadLn
statement causes the program to wait for the user to press Enter.

Let us save the new program by pressing F2. The File Save dialog pops up, and asks for a
name for the file. Type in Hello to save the file as Hello.Pas.

The next step is to have VP create an executable file (.EXE) that can perform the actions
instructed. This is achieved in a single step, since VP handles the details of compiling and
linking in a transparent manner. First, make sure the correct target platform is selected by
checking the Compile|Target platform option. If it is not, just select it to toggle between
the available platforms.

Press F9 or select the Compile|Make menu item to start the compile/link process.

42 Writing programs using VP

Virtual Pascal User’s Guide

This will cause the Messages window to be opened at the bottom of the screen (if the
Bring messages to top option is enabled. This window keeps you informed of the
progress of the compilation process, and should contain something like this:

6 lines, 0.1 seconds.
Linking...
Success.

You have now created you first executable program! In order to execute it, either open a
command line window, change the current directory to be identical to the Exe output
directory, and type Hello to execute the newly created HELLO.EXE. This program is a
stand-alone executable that you can copy to a disk and execute on any computer running
your target operating system - no unwieldly DLLs need to be copied along with it.

Alternatively, run the program from within the Virtual Pascal IDE. To do so, press ^F9 or
select the Run|Run menu item.

Your second Virtual Pascal program

Let us expand the program slightly: Change the program to read

program Hello;
{&PMType VIO}
uses

Crt;
begin

ClrScr;
GotoXY(10, 10);
WriteLn('Hello World!');
ReadLn;

end.

This version of the program introduces a new concept: units. A unit is a Pascal source file,
which uses the reserved word Unit in place of Program. Other Pascal programs or units
can use the functionality of the unit

The uses clause on line 3 tells the compiler that the program requires part of the
functionality defined in the Crt unit. The Crt unit forms part of the standard Run-Time
Library that comes with VP, and implements a large number of functions dealing with
screen in- and output.

The two new statements in the program, ClrScr and GotoXY, are both defined in the Crt
unit. ClrScr causes the screen to be cleared, and GotoXY places the cursor at the screen
location specified as parameters.

Now press ^F9 again. VP realises that the source code has changed, and re-compiles and
re-links the program before executing it. This time, the program actually clears the screen
before it writes the text - and the text is located at position (10,10) on the screen.

For more information

A detailed description of the structure and formal syntax of a Pascal program, along with a
description of all compiler directives, reserved words, etc, can be found in the Virtual
Pascal Language Reference Manual.

Note, that the Language Reference is not a Pascal textbook; for a proper introduction to
writing Pascal programs, it is recommended that a book on this subject is purchased
separately.

Configuration and tools 43

Virtual Pascal User’s Guide

C H A P T E R 7

Configuration and tools
The VP compiler can be configured for a number of different purposes. While you are in
the process of writing a program, you will want as much information to be available as
possible, and do not care that much about the size of the program.

When you have finished writing your program, you will probably want all extraneous
information to be removed and the program to be as small and execute as fast as possible.

This chapter provides information about the use of the various settings available, and also
covers the command-line tools included with Virtual Pascal.

Changing settings in the IDE

The Virtual Pascal compiler is extremely configurable, and can be set up in a number of
different ways, depending on what you are currently doing. This process is performed via
the Options|Compiler and Options|Linker dialogs.

Options|Compiler

This is a huge dialog, where many aspects of the compilation process can be configured.
To ease setting up the most commonly used configurations, three default settings are
provided: Fastest, Smallest and Debug.

Select the option you require by pressing the appropriate button; the buttons are located in
the lower left hand corner of the dialog.

Fastest setup

Choose this if you have finished debugging your application and want the compiler to
generate the fastest possible executable, even at the expense of file size.

Smallest setup

Press this button when you have finished debugging your application and want the
compiler to generate the smallest possible executable, at the expense of speed.

The difference between Fastest and Smallest setup is usually relatively small. It is
recommended that you experiment with these settings to see which one best suits your
particular application.

Debug setup

Select this, if you are still in the process of writing and debugging your application. The
program will be both slower and larger than for the Fast and Small setups, but a host of
information enabling you to find problems in your code will be available. For details on
how to debug applications in VP, please refer to the following chapter.

The individual configuration options

Once you have selected your preferred overall setup using one of the three defaults, you
can fine-tune the setup by manipulating the settings individually. Also, some of the settings
available do not influence code size, speed or debug information, and are not changed by
the default selection buttons.

The options are divided into several related groups, and each option is covered in the
following.

44 Configuration and tools

Virtual Pascal User’s Guide

The Code Generation group of checkboxes tells the compiler how to compile your code.
Each option is equivalent to a switch compiler directive, with the checked state of the
check box corresponding to the enabled (+) state of the directive. All VP compiler
directives are explained in detail in the Language Reference section of this manual and in
the online help. For each option, the corresponding compiler directive is listed along with
its default setting. The following options are available:

• Align Code, {&AlignCode+}. When this is enabled, procedure and function entry
points are aligned on 4-byte addresses. This slightly speeds up execution, at the cost
of code size.

• Align Data, {&AlignData+}. In the enabled state, variables and typed constants are
aligned based on their size. Byte-sized variables are not aligned, Word-sized variables
are aligned on 2-byte boundaries, and variables with a size greater than 2 are aligned
on double-word (4 byte) boundaries. In the disabled state, no data alignment is
performed. Aligning data in this way can speed up execution speed.

• Align rec/obj, {&AlignRec-}. When enabled, individual fields in record and object
types are aligned according to the same rules as for {&AlignData}. In the default
(disabled) state, no field alignment takes place. Exercise caution with this setting. If a
record is defined as:

TestRec = record
b : Byte;
w : SmallWord;

end;

the size of the record will be 3 in the {&AlignRec-} state, and 4 in the {&AlignRec+}
state, since the SmallWord size variable will be aligned to offset 2 within the record;
the byte at offset 1 will be unused.

In the {&AlignRec+} state, alignment can be disabled for a record declaration by
using the reserved word packed in the type declaration. To make sure the size of the
record is as small as possible, the following definition can be used:

TestRec = packed record
b : Byte;
w : SmallWord;

end;

In this example, the size of the record is 3 bytes, irrespective of the setting of
{&AlignRec}.

• Asm stack frame, {&Frame+}. This setting specifies whether or not to create a stack
frame for assembler procedures. Please refer to the Language Reference section for a
detailed description of the implications of this setting.

• Original names, {&OrgName-}. It should only be required to change this setting
when creating VP object files or DLLs for use in programs written in other languages.
In the disabled state, the unit name and a @ character are prepended the identifier
names in the generated object modules. This allows for identifiers with the same
name, as long as they reside in different units. In the {&OrgName+} state, the names
of identifiers are converted to upper case and are not prepended with the unit name.

See also the chapter on Naming Conventions in the Language Reference Manual.

• Stack Frame, {$W+}. Controls the generation of stack frames for normal Pascal
procedures and functions. In the default state, a stack frame is always generated. In the
disabled state (automatically selected with the Smallest option), stack frames are only
generated when they are required. If a procedure or function does not have a stack

Configuration and tools 45

Virtual Pascal User’s Guide

frame, certain debugging options are not available (Call stack display and local
variable evaluation).

• DWord enums {$Z-}. In the default state, enumerated types take up only one byte of
storage, if the number of elements is smaller than 256, and 2 bytes for sets containing
256 elements or more. In the enabled state, enumerated types always occupy 4 bytes.

The Calling convention radio buttons let you specify the default conventions used to pass
arguments when calling functions and procedures:

• Pascal: This is the default, and should normally be selected. An individual procedure
can be made to use this calling convention by appending the pascal; standard
directive after its definition.

• C, {&CDecl-}. Enables the C style calling convention, and should be used for
procedures that are called by OS/2, such as dialog handlers in PM programs. An
individual procedure can be made to use this calling convention by appending the
cdecl; standard directive after its definition.

• 16-bit Pascal, {&Far16l-}. Enables the far 16-bit Pascal calling convention, which
should not normally be used. An individual procedure can be made to use this calling
convention by appending the far16; standard directive after its definition.

• Standard, {&StdCall-}. Enables the standard calling convention, and should be used
for procedures called by Windows, such as dialog and message handlers. An
individual procedure can be made to use this calling convention by appending the
stdcall; standard directive after its definition.

The CPU radio buttons specify which instructions are allowed in asm..end statements.
The following options are available:

• 80386 only, {&G3+}. In this state, only instructions available on 80386 and later are
allowed. This is the default.

• i486, {&G4+}. In this state, instructions available on either 80386 or i486 processors
are allowed. The compiler may generate code that runs faster or is smaller on i486
processors (but will still run on 386 CPUs).

• Pentium, {&G5+}. In this state, all instructions available on 80386, i486 or Pentium
processors are allowed. The compiler may generate code that runs faster or is smaller
on Pentium processors (but will still run on 386 and 486 CPUs).

The Optimize for buttons determines the compiler's code generation strategy:

• Optimise for Size, {&Size+}. In the enabled state, the compiler always chooses the
smallest code sequence possible at the expense of execution speed.

• Optimise for Speed, {&Size-}. In this state, the compiler optimises for speed, and
chooses the fastest sequence possible with less regard for code size.

The Optimisation group of checkboxes tells the compiler whether to optimise the
generated code:

• Optimise, {&Optimise-} or {&Optimize-}. In the disabled state, the compiler
performs no code optimisations. In the enabled state, the compiler uses a number of
strategies to maximise execution speed and minimise code size. This is done by a
sophisticated combination of optimisation methods, including routines for removing
redundant instructions and storing local variables in registers.

Note: For very complex programs, it may be necessary to disable optimisation while
debugging the program. If a local variable is stored in a register and the compiler

46 Configuration and tools

Virtual Pascal User’s Guide

runs out of registers to allocate, the register variable may be temporarily spilled to
memory. The integrated debugger does not have information that this has happened,
and will (wrongly) display the register value when watching, evaluating or inspecting
the spilled variable. This can cause strange results when manually changing the value
of a spilled variable.

• Smart link, {&SmartLink-}. In the disabled state, all code and data from all units
used in the program or library are linked into the executable. In the enabled state, VP
compiles each unit in a way that allows the linker to only include code and data that is
actually being used. This typically reduces the size of the executable by a very
significant amount. There is a small overhead in linking speed when smart linking is
enabled.

Note, that smart linking actually takes place already at compile time (the compiler
generates .LIB files when smart linking is enabled and .OBJ files when it is disabled),
so it is not enough to simply turn Smart linking on and Make the project to switch
from one setting to another. It is possible to mix the two, with some units being .LIB
files and some .OBJ files.

The Runtime Errors group of checkboxes specifies the type of error checking code the
compiler generates. Error checking slows down execution speed and results in slightly
larger executables.

• Range checking, {$R-}. When this option is enabled, all indexing of string or array
types is checked for out-of-bounds conditions, as are all assignment operations to
scalar and subrange types. If a check fails, a run-time error 201 is generated.

• Stack checking, {$S-}. In the enabled state, all procedures and functions check to see
if there is enough room on the stack to complete the call. If there is not, a run-time
error 202 is generated. Do not disable Stack checking, unless you are absolutely
certain that a stack error can not occur. Stack overflow errors in the {$S-} state can be
very hard to find.

• I/O checking, {$I+}. In the enabled state, any I/O operation (such as reading from a
file) that fails will cause a run-time error to occur. In the disabled state, the result of
I/O operations can and should be accessed by checking the IOResult function.

• Overflow checking, {$Q-}. In the enabled state, certain integer functions such as +, -,
*, Abs, Pred, Succ and Sqr are checked to prevent the result from overflowing the
allowed range. If an overflow occurs, a run-time error 215 is generated. In the
disabled state, no overflow checking takes place.

The Syntax Options group of checkboxes specifies the type of syntax options you want
the compiler to use and recognise.

• Strict var strings, {$V-}. In the enabled state, the size of the formal and the actual
parameters must be identical when passing strings as variable parameters. In the
disabled state, it is the responsibility of the programmer to ensure that no critical data
is overwritten, even if the declared length of the string passed is different from the
declared length at the receiving end.

• Complete boolean evaluation, {$B-}. In boolean expressions, the result of the entire
expression is often evident before the expression has been fully evaluated. In the
default {$B-} state, evaluation of the expression stops as soon as the value of it has
been determined. In the {$B+} state, every sub-expression is guaranteed to be
evaluated.

In the {$B-} state, code that would otherwise be illegal can be executed successfully.
For example,

Configuration and tools 47

Virtual Pascal User’s Guide

while (p <> nil) and (p^ = 8) do
...

would result in a run-time error in the {$B+} state, since evaluating p^ when p = nil is
an error.

However, if the evaluation of an expression involves calling a function that has a side-
effect (i.e. affects the state of the program), {$B+} may be appropriate. For example,

if (x = 5) and (IOResult = 0) then
...

should be evaluated in the {$B+} state, since IOResult is a function that returns the
value of the threadvar InOutRes and sets it to 0 – thus changing the state of the
program.

It is generally not advisable to write code that relies on a certain state of the {$B}
directive.

• Extended syntax, {$X+}, enables a set of extensions to the Pascal language that were
introduced in Borland Pascal v7. These include:
• Functions can be called as procedures; in this case, the function result value is

simply discarded.
• Handling of null-terminated strings is enabled, and 0-based array of char types

can be treated as 0-terminated strings.
• If in the {&Delphi+} state as well as the {$X+} state, function results can be

assigned to the implicitly defined Result variable. Result has the same type as the
function result, can be used as any other variable, and can even be passed as a
variable parameter to another function or procedure.

• Typed @ operator, {$T-}. When this option is disabled, the @ operator returns an
untyped pointer that is compatible with all other pointer types.

In the enabled state, applying @ to a variable of type T returns a value of type ^T, and
normal type checking rules apply.

• Open string Parameters, {$P-}. In the enabled state, all string type parameters are
considered to be open strings. This means that the routine called can access
information about the declared length of the string actually passed. In the default
disabled state, string parameters are interpreted as normally.

In any case, the OpenString identifier can always be used to explicitly make a
parameter an open string type.

• Delphi syntax, {&Delphi+}. In the default enabled state, the language extensions
introduced by Borland Delphi v1, and some features from v2 and v3, are allowed in
VP programs. For a list of these features, please refer to page 16.

Since these extensions include adding new reserved words, old code not written for
these extensions may not compile in the {&Delphi+} state. To disable any of the new
features that could break old code, you can temporarily switch to the {&Delphi-}
state.

The new reserved words are as, class, except, finally, finalization, initialization, is,
on, property, raise, threadvar, and try.

• Huge strings, {$H-}. This option controls the meaning of the reserved word string. In
the enabled state, string is equivalent to AnsiString, a dynamically allocated string
type with a length of up to 2GB. In the disabled state, string is equivalent to

48 Configuration and tools

Virtual Pascal User’s Guide

ShortString, the standard static Pascal string with a maximum length of 255
characters.

• Writeable consts, {$J-}. Controls write access to typed constants. In the enabled
state, typed constants are treated as true constants that cannot be modified, parsed as
var parameters, etc. In the default (disabled) state, typed constants are treated as
initialised variables.

• Open32 compatibility mode, {&Open32-}. This switch, which only applies when the
target platform is set to OS/2, is intended to assist the process of porting Windows
applications to OS/2. In the enabled state, resource files included using the {$R
ResFile} directive are treated as Windows (Win16 or Win32) resources, and are
automatically converted to OS/2 format prior to the link process. Additionally, the
stdcall directive is changed to have the same meaning as the cdecl standard directive.
To declare a function as using the stdcall calling convention in the {&Open32+}
state, use the {&StdCall+} directive.

• Automatic inclusion of the Use32 unit, {&Use32-}. This directive can be used when
porting 16-bit Borland Pascal applications to Win32 and OS/2. In the enabled state,
the Use32 unit, which redefines the meaning of the basic Integer and Word types to be
32 bits, is implicitly included in the interface section uses clause of every unit. In this
state, the Use32 unit must not be explicitly mentioned in the uses clause.

• Nested “curly brackets” comments, {&Comments-}. When this directive is enabled,
the compiler allows {} comments to be nested, up to 32 levels. Because this switch
may break code containing mismatching comments, the default state is Off.

The Debugging group of checkboxes turn on or off the generation of information used for
debugging.

• Debug information, {$D+}. When this option is enabled, the compiler collects
information about the correlation between line numbers and addresses in the
executable module. When this information is available, source level debugging (as
described in more detail in the next chapter) is possible. This directive also
encompasses the old $L directive, which is ignored in VP v2. When $D is enabled,
local symbol information is collected and stored with the line number information,
meaning that variables can be evaluated and inspected when debugging an
application. Please refer to the next chapter for more information about debugging.

• Line numbers, {$Zd-}. In the enabled state, information about line numbers is stored
in the executable file in a standard format that can be used by other debuggers, such as
IBM's IPMD. VP’s integrated debugger does not use the information collected in this
way.

• Assembly output, {&Asm-}. Enabling this option only works if smart linking is
disabled: {&SmartLink-}. In the enabled state, an assembler file (.ASM) is created
for each unit compiled in this state. This file contains the assembler mnemonics that
VP has generated from the Pascal source code, and can be compiled by standard
assemblers such as MASM and TASM to produce object files. In addition, you can
use the assembler files to look at the code generated by VP, and maybe find ways to
optimise your code.

In the Conditional Defines input box, you can enter a list of conditional defines, separated
by semicolons (;). These symbols are used in conditional compilations, where code should
only be compiled if a particular symbol is defined (or not). For more information on
conditional compilation, please refer to the Language Reference section. As an example,
the entry field could contain

BetaVersion;DebugCode

Configuration and tools 49

Virtual Pascal User’s Guide

This defines two symbols, BetaVersion and DebugCode for use in conditional compilation
with {$IFDEF BetaVersion} or {$IFDEF DebugCode} defines.

 The Unit aliases entry field can contain a list of unit names and the unit for which each
should be substituted. This is useful when porting Win16 applications to Win32, since
these typically include the WinTypes, WinProcs and WinApi units in the uses clause and
these units do not exist in Win32. Instead, a set of 3 unit aliases can be entered, aliasing
each of these units to the Windows unit, including the definitions of them all, like this:

 WinTypes=Windows; WinProcs=Windows; WinApi=Windows

The Stack size entry field contains the number of bytes to allocate for the stack. Enter a
value that is no less than 8192 and no greater than 512MB. Typically, the default value of
16kB is sufficient. This setting is overridden by a $M directive in the source code (See
the Language Reference for details of this and other compiler directives).

Options|Linker

VP includes a powerful one-pass built-in linker, and also has the ability to use an external
linker. Note, that some debugging options such as Run-time Location Information are only
available when using the built-in linker.

The job of the linker is to combine the object files created during compilation (.OBJ and
.LIB files) to an executable image for the target operating system. VPLink is capable of
generating both OS/2 LX and Win32 PE executables (both .EXE and .DLL files).

The Application radio group specifies the type of application being generated.

• When compiling for OS/2, Full Screen generates text-mode applications useable in
screen sessions only. In Windows, this setting is identical to the Compatible with
GUI option. This option is equivalent to using the {&PMType:NoVio} compiler
directive in the program file.

• Compatible with GUI should be used when creating a text-mode application that can
run either in full screen or in a window on the desktop. Checking this box corresponds
to using the {&PMType Vio} compiler directive.

• GUI application instructs the linker to create a graphical application, native to the
target operating system, such as those created when using OWL or Borland Delphi..
Checking this box corresponds to using the {&PMType PM} compiler directive.

The Compression group determines whether to compress the executable and any
resources in it. This setting applies to (OS/2 only, as Windows does not support
compressed executables; for a Windows target, this setting is ignored.

• Select None to not perform any compression.

• Select Exepack 1 to compress the executable using minimum compression, supported
by all versions of OS/2 from v2.0 and up.

• Select Exepack 2 to compress the executable using a superior compression algorithm.
This compression method is only supported on OS/2 Warp and later; programs linked
with this compression will not run on OS/2 v2.x.

• When the ExePack 2 option is selected and the target is Win32, the executable is
marked as “Windows v4.0” and will not run in older Win32 variants, such as
Windows NT v3.51. When ExePack 2 is not selected, the Win32 executables will be
marked as “Windows v3.10” and will run in any version of Win32.

50 Configuration and tools

Virtual Pascal User’s Guide

The Map File radio buttons specify which type of map file should be generated for the
executable. A map file is a plain text file containing information about the executable,
segments used, line numbers, etc. When enabled, the map file is stored in the Exe output
directory along with the executable itself.

• To disable creation of a map file, select None.

• To generate a map file that only lists the segments of the executable, select Segments
only.

• To generate a map file that includes both segment information as well as a list of all
public symbols in the executable, select Public.

• To generate a full map file, containing the same as above, plus the addresses of entry
points for all functions and procedures, information about imported and exported
functions and detailed line number information, select Detailed.

The Options checkboxes determines other linker settings:

• To include Location Information in the executable, check the Generate location info
option. When this option is enabled, the linker will store location information for
every unit compiled in the {&LocInfo+} state. This information consists of the name
of the source file and line number information, which can be used for locating errors
in the program or for other purposes, using the GetLocationInfo function of the
System unit.

The overhead of including location information is about 1 byte per source line.
Location information is only available when using the built-in linker.

• To use an external linker instead of the built-in one, check the Use external linker
option. and configure the linker in the entry fields below.

When the external linker is OS/2’s LINK386, the current linker settings are reflected
as command line options in the LINK386 options entry field. If a linker other than
LINK386 is used, all desired command line options should be entered in the other
options entry field. When using an external linker, the name of the linker executable
should be entered in the Linker path entry field.

Generating an import library

An import library is a .LIB file that does not contain any object code, but instead contains
references to all public symbols of a DLL and are used by linkers to resolve external
references to DLLs.

When linking a DLL, the built-in linker can automatically create an import library for it,
and places it in the first directory mentioned in the Library directories option (in the
Directories Options dialog).

When using an external linker to link a DLL, VP can run the IMPLIB utility supplied with
VP to create an import library. IMPLIB can be used on any DLL, not just ones created
using VP.

In the Generate import library field, choose the preferred method for creating an import
library:

• Select No to prevent an import library from being created.

• Select Use DLL to create an import library based on the newly created DLL.

• Select Use DEF if a module definition file is to be used for creating the import
library. This can be relevant if the entry points of the DLL should have names
different from the names in the Pascal source code; please refer to the Language

Configuration and tools 51

Virtual Pascal User’s Guide

Reference about Module Definition Files for details. As an alternative to creating a
.DEF file, a {&Linker} directive can be used instead.

Command-line tools

Virtual Pascal includes a number of tools for use from the command line, including the
compiler and linker. Experienced users may want to use the command line compiler for
automatically compiling with the desired settings. The Help generator and help converter
can be useful to most users.

The command line compiler VPC

The command line version of the compiler is called VPC.EXE. VPC itself is only a few
kB in size, because the core functionality is stored in the compiler/linker DLL
VPCOMP20.DLL, also used by the IDE.

To compile a program from the command line, start VPC with the desired options. The
syntax is

vpc [options] filename [options]

 or store these in a text file and call VPC with the name of this text file as a parameter
(with an @ in front of the name), like this:

vpc @settings.cfg

VPC supports a number of command line options, and allows compiler directives to be
supplied as well. The options supported are

Option Description Example

-A<unit=alias> Specify unit aliases -AWinTypes=Windows

-B Build all units -B

-C Compile only (No link) -C

-CO[:Dir:Cond] Sets OS/2 as the target; enables the
OS2 conditional define.

If :Dir:Cond is specified, the 3-
letter string substituted for %p is
replaced with Dir. Cond is a list of
conditional defines that are defined
for this target.

-CO

-CO:TST:TEST;XYZ

-CW[:Dir:Cond] Sets Win32 as the target; enables
the Win32 conditional define.

If :Dir:Cond is specified, the 3-
letter string substituted for %p is
replaced with Dir. Cond is a list of
conditional defines that are defined
for this target.

-CW

-CW:D32;DPMI;DOS

-D<syms> Sets symbols listed as conditional
defines

-DDebug;Test

-E<path> Sets the Exe output directory, -E\vp21\out.%P

52 Configuration and tools

Virtual Pascal User’s Guide

Option Description Example
where the .EXE, .DLL and .MAP
file is stored

-GD Create detailed level map file -GD

-GP Create publics level map file -GP

-GS Create segments level map file -GS

-I<paths> Set Include directories where the
compiler searches for files included
using {$I}

-I\vp21\source\rtl;
\vp21\source\%p

-K<addr> Set image base address (OS/2 DLLs
only)

-K100000

-L<paths> Set Library directories, where the
compiler searches for import
libraries

-L\vp2\lib.%p

-M Only make modified units -M

-O<path> Set Output dir, where supporting
files (.OBJ, .LIB, .VPI, .LNK, etc)
are stored

-O\vp21\units.%p

-P[0 ¦ 1 ¦ 2] Set compression level to 0 (None),
1 (ExePack 1), or 2 (ExePack 2).
OS/2 target only.

-P1

-Q Quiet compile. No progress is
shown during compilation

-Q

-R<paths> Set Resource directories, where the
compiler searches for resource files
included using {$R}

-R\vp21\res.%p

-T Generate Location Information.
All units compiled in the
{&LocInfo+} state have location
information included in the file
when –T is specified.

-T

-U<paths> Set Unit directories, where the
compiler searches for units (either
compiler .VPI and .LIB or .OBJ
files or Pascal .PAS source files)
included in uses clauses.

-U\vp21\units.%p

-V<.VPO file> Use a .VPO options file compatible
with the one used by the IDE for
specifying settings for the compiler.
This is a useful alternative to
specifying a .CFG response file.

-V Project1.vpo

The following compiler directives can also be specified on the VPC command line or in
the settings file. Please refer to the section on Compiler Options on page 43 and the
Language reference manual for a complete description of compiler directives. Following

Configuration and tools 53

Virtual Pascal User’s Guide

the table of compiler directives below, a sample VPC settings file (or response file) is
shown.

Directive Description

-$AlignCode+ Code alignment on/off

-$AlignData+ Data alignment on/off

-$AlignRec- Record field alignment on/off

-$B- Full boolean expression evaluation on/off

-$CDecl- Sets the C calling convention

-$D+ Debug information on/off

-$Delphi+ Delphi language extensions on/off

-$Far16- Sets the Far16 calling convention

-$Frame+ Assembler routine stack frames on/off

-$G3+ Sets the 80386 as primary target CPU

-$G4- Sets the i486 as primary target CPU

-$G5- Sets the Pentium as primary target CPU

-$H- Long strings on/off (When on, string = AnsiString)

-$I- I/O error checking on/off

-$J+ Writeable consts on/off

-$LocInfo+ Run-Time Location Information on/off

-$M- Run-Time Type Information on/off

-$M16384,100000 Set the initial and maximum stack size in bytes

-$Open32- Open32 compatibility mode on/off

-$Optimise+ Code optimisations on/off

-$OrgName- Original names (no unit identifier in front) on/off

-$P- Open string parameters on/off

-$PMType:<type> Set the application type to VIO, NOVIO or PM.

-$PureInt- Pure Interface Unit on/off

-$Q- Overflow checking code on/off

-$R- Range checking code on/off

-$S- Stack checking code on/off

-$SmartLink+ Smart Linking (.LIB file generation) on/off

-$Speed+ Optimise for speed or size

-$StdCall- Sets the StdCall calling convention as default

-$T- Typed @ operator on/off

54 Configuration and tools

Virtual Pascal User’s Guide

Directive Description

-$Use32- Implicitly include the Use32 unit on/off

-$V+ Strict var string checking on/off

-$W- Always generate stack frame on/off

-$X+ Enable extended syntax options on/off

-$Z- DWord-sized enumerated variables on/off

-$Zd+ Include line number information in .OBJ/.LIB files on/off

Sample VPC response file

The command line compiler can use a response file, typically given an extension of .CFG,
instead of or in addition to specifying command line options.

A response file contains settings identical to those that can be specified on the command
line, with each option starting on a new line of the file, for example:

/u\vp21\units.%p;\vp21\source\tv
/l\vp21\lib.%p
/r\vp21\source\rtl;\vp21\source\%p
/$SmartLink+
/$D-
/$Delphi+
/$Optimize+
/$W-
/$L-
/$V-
/$LocInfo+
/T

To make TEST.PAS using the options in the response file above, named TEST.CFG, the
following command line should be used:

VPC TEST.PAS @TEST.CFG

The Import Library manager IMPLIB

IMPLIB can be used to generate import libraries for DLLs, either by directly reading the
DLL or by reading a .DEF file for it. Additionally, IMPLIB is able to generate a .DEF file
listing all public entry points for a DLL.

To create a .DEF file for a DLL, the syntax of is:

implib [options] <name>.DEF <name>.DLL

This causes IMPLIB to analyse the DLL and create a .DEF file containing the name and
description of the DLL along with a list of entry points exported by the DLL. The .DEF
file created can then be used to create another import library for the same DLL, if so
desired.

To create an import library (.LIB) from a DLL, the following syntax should be used:

implib [options] <name>.LIB <name>.DLL

- and to create an import library from a Module Definition File:

implib [options] <name>.LIB <name>.DEF

Configuration and tools 55

Virtual Pascal User’s Guide

IMPLIB supports the following command line options:

Option Description

/C Generate case-sensitive library

/P# Specify page size

/N Import by name

/X Force NoName attribute

/I Process IMPORTS statements

/? or /H Display help

IMPLIB can be run with a response file containing the desired parameters as well. To do
this, specify the name of the response file on the command line, preceded by an “at” sign
(@).

The Help Generator HG

HG is used to convert Virtual Pascal .HLP source files to the format used for online help
in the IDE, .VPH.

The syntax for running HG is

hg [options] HelpSourceFiles, Outputfile

HG supports the following command line options:

Option Description

/C Do not generate .VPH file; check for syntax only

/N Create a file containing const declaration of topic
numbers. This file is given the same name as the
output file, with a .EQU extension.

/P Pack (compress) help file

/W Disable warning messages

/? or /H Display help

The help source files are plain text files, divided into sections. To create links and index
entries, several symbols are used as control characters. To include a character that is also a
control character in the help, the symbol must be repeated twice.

Help source files can use the following control characters:

Symbol ASCII Meaning

¦ 124 Treat the rest of the line as a comment

“Smiley
face”

1 Highlight colour 1 (section must end with this symbol
as well

` 96 Highlight colour 2 (section must end with this symbol
as well)

“Dark face” 2 Mark an example (Can be copied to clipboard with the

56 Configuration and tools

Virtual Pascal User’s Guide

Symbol ASCII Meaning
Copy Example command in the IDE

~ 126 Define a help topic. Syntax:

 ~TopicName IndexString1 IndexString2

where

 TopicName is the name of the topic,
 IndexString? are the string(s) placed in the index

^ 94 Define a hyperlink to a help topic. Syntax:

 ^TopicName {Hyperlink text}

The hyperlink text will be highlighted in the display of
the help file, and clicking on it will navigate to the
topic with the name TopicName.

A hyperlink can point to a topic anywhere in the current collection of help source files, but
cannot point to a topic in another .VPH file.

Example

A very simple help source file could look like this:
¦ Sample help file
~Sample Sample_Help
This is a `sample` help file. Click ^SomeTopic {here} to
go to another topic.

~SomeTopic Sample_Topic
This is another sample topic. To return to the first
topic, ^Sample {click here}.

To make a compressed .VPH file.for use in the IDE from the above, run HG on the source
file SAMPLE.HLP:

hg /P sample.hlp, sample.vph

Copy this file to the directory containing VP.EXE, or to the \Common subdirectory off the
main install directory, and re-run the IDE to see the new help.

The Help converter TPH2VPH

TPH2VPH (supplied as an OS/2 executable only) can be used to convert Borland Pascal
help files with a .TPH extension to the Virtual Pascal .VPH file format containing help for
use in the IDE.

The syntax of TPH2VPH is

tph2vph <name>

This causes the help file to be converted to Virtual Pascal Help file source and compiled to
a .VPH file in one step. After the conversion, the help file can be made available for use in
the IDE by copying the .VPH file to the \Common directory of the VP installation.

The .TPH extension of the file name should not be specified on the command line.

Configuration and tools 57

Virtual Pascal User’s Guide

Error Messages
Virtual Pascal generates two kinds of error messages: compiler error messages and run-
time error messages.

A list of all error messages and their meanings can be found in the Language Reference and
in the online documentation accessible from within the VP IDE by pressing F1.

58 Debugging programs with VP

Virtual Pascal User’s Guide

C H A P T E R 8

Debugging programs with VP
Programs containing more than a few lines of code almost always require a level of fine
tuning before they work as desired. The built-in debugging facilities of Virtual Pascal
provide a wide range of tools that can help the debugging process.

This chapter is intended to cover the basics of debugging, by introducing all of the
different options available. Additionally a range of advanced debugging features available
in VP is introduced at the end of the chapter.

Why debug?

When writing a Pascal program the first problem is to get the compiler to accept your
input, and to make it “understand” what you are trying to do. Even if it may sometimes be
difficult to find out why a particular construct is not allowed by the compiler, it is not an
insurmountable task since the Pascal language has a strictly defined syntax that can be
looked up in the Language Reference Manual.

The compiler is also a good help in finding these syntactical errors. When there is a bug,
the compiler immediately tells you where it is and what caused it. In the section labelled
Finding semantic errors on page 58, the tools available to find and remove these bugs
will be discussed.

Once the program has been successfully compiled, there might still be problems with it
caused by flaws in the logic of syntactically correct code, and these flaws can be hard to
find.

With this in mind, a large part of VP is centred around helping the programmer - you - find
and remove these flaws in logic. Again, there are two kinds of logical flaws that are quite
distinct:

• Flaws that cause the program to crash or otherwise misbehave, and

• Flaws that are not apparent; the program simply does not produce the desired results.
This may or may not be obvious.

The main difference between the two types is that VP can tell you that the program
contains the first kind of flaw, whereas the second kind requires you as the programmer to
realise it yourself. Starting from the Preparing to debug section on page 61, we will look
at the aids available for finding and removing both of these kinds of bugs.

Finding semantic errors

Syntactical errors occur when trying to do something that is outside the Virtual Pascal
language definition, or is otherwise illegal. The entire Pascal language as VP understands
it is covered in the Language Reference section.

The easiest way to find syntactical errors is to instruct the compiler to compile your code
by selecting Compile|Make or pressing the F9 key. If any syntax errors are discovered,
the compiler opens the appropriate source file and positions the cursor to the error
location. An error message will appear at the top of the screen, with a number and a brief
description of the error.

Debugging programs with VP 59

Virtual Pascal User’s Guide

To get more information about the error encountered, either look up the error code in the
Language Reference or press F1 to display a detailed description of the error and the
possible cause of the error in a help window.

In the course of removing the problem, you will most likely scroll up and down in the
source file, open other source files, etc. If you need to quickly locate the original error
position or remind yourself of the exact error code, you can press ^QW, which will do just
that. Alternatively, you can select the Search|Show last compiler error menu item, which
has the same effect.

When you have corrected the error, re-compile by pressing F9 again - eventually, your
program should compile and link without error. If this is the stage you are at, but your
program does not perform as expected, continue in the Preparing to debug section later
in this chapter.

Understanding compiler messages

A significant part of correcting code, which the compiler refuses to compile, consists of
understanding the error messages it presents. Carefully reading the description of the error
is a good start.

Some errors may not be obvious, or the compiler may seem to write a wrong error
message. Consider the following code fragment, where x is assumed to have been declared
as an Integer type previously:

if x = 2 then
WriteLn('x is 2');

else
WriteLn('x is not 2');

...

If you try to compile this, the compiler will move the cursor to the beginning of else and
state Error 113: Error in statement. This may not look particularly helpful, unless you
press F1 to get more help about the actual error. The online help enlightens us by stating
that “This symbol cannot start a statement. Most likely, you have put a semicolon before
the else part of a conditional statement”. According to the Pascal language as defined in
the Language Reference section, it turns out that there should not be a semicolon before
the else part of the if statement. Removing the semicolon helps, and the fragment
compiles.

A brief note on semicolons

While this is not meant to be a Pascal tutorial, semicolons do play a significant role in the
Pascal language, and they are worth mentioning here, since the most frequently occurring
mistake any aspiring Pascal programmer makes is one of misplacing or forgetting
semicolons.

The important thing to keep in mind is that Semicolons in Pascal act as statement
separators, not statement terminators. The if...then...else... statement shown above is one
statement, and should not contain any semicolons, since there are no statements to
separate. The final WriteLn has a semicolon after it, because more statements follow it in
the source text (these are not shown).

Type conflicts

Closely following semicolon errors, a common error is caused by a conflict between the
formal parameters listed in the definition of a procedure or function, and the actual
parameters with which it is called in your code.

60 Debugging programs with VP

Virtual Pascal User’s Guide

Since VP is aimed strongly at porting 16-bit DOS and Windows code to 32-bit OS/2, this
mistake is destined to be even more common when porting programs written in Borland
Pascal.

The Integer type in VP is 16 bit, just as it is in Borland Pascal. However, using 16-bit
values in a true 32-bit environment is inefficient and the compiler can generate much
better code if 32-bit values are used. For efficiency, programs should include either Use32
or SysUtils in the uses clauses of all units that form part of the program. Both of these
redefine Integer to be identical to the 32-bit LongInt type.

Use32 also redefines Word to be 32 bit. SysUtils does not do this, since the Word type is
still 16 bit in Borland Delphi. Instead, the new 31-bit unsigned Cardinal type has been
introduced in the System unit. See also the section on Integers, which discusses this
subject in depth.

All units in the Run-Time Library of VP include Use32, and consequently use 32-bit
Integer types wherever it is appropriate to do so. If you do not, you will experience type
conflict errors that can be hard to understand. Consider the definition of the GetFAttr
procedure as defined in the Dos unit:

procedure GetFAttr(var F; var Attr: Word);

Having looked at it, you might write the following program, using the GetFAttr procedure:

uses Dos;
var

F : Text;
Attr : Word;

begin
...
GetFAttr(F, Attr);

end.

It does not work, however: a type mismatch error is reported. Having read the preceding
section, the reason should be obvious: The Word type used in the definition in the Dos unit
is 32-bit, and the Word used in the small program is 16 bit. The program can be made to
compile by changing the uses clause to read

uses Use32, Dos;

instead, redefining the meaning of Word in the program. An alternative solution could be
to simply change the definition of the Attr variable in the var section above to

var
F : Text;
Attr : LongInt;

While this would work, it potentially requires many code changes and it makes the code
less readable. Not to mention that it will not work with Borland Pascal any more, where
Words are still only 16 bit...

An alternative is to instruct the compiler to automatically include the Use32 unit in the
uses clause by enabling the {&Use32+} state.

The compiler setup

Other compiler errors may be caused by wrong compiler settings. As described in Chapter
5 on page 21, the compiler supports a number of different language extensions and options
that all affect the way the compiler interprets the source code.

The following small procedure:

Debugging programs with VP 61

Virtual Pascal User’s Guide

function Test(ch: Char) : Integer;
var
Result : Integer;

begin
Result := ord(ch);
Test := Result * 2

end;

compiles fine in the {&Delphi-} state, where Result does not have any special meaning,
but fails to compile with Error 4: Duplicate identifier ‘Result’ in the {&Delphi+} state.

One way of avoiding this kind of error is to explicitly set the state of all relevant compiler
directives at the beginning of each source file. VP can automatically convert all of the
defined settings of the Options|Compiler dialog into the equivalent compiler directives
and insert into the code; simply press ^OO to do this.

Preparing to debug

While you are still working on a program, it is advantageous to tell the compiler to
generate as much information about it as possible, to enable it to help you find possible
errors.

You will also want the compiler to make as many “sanity checks” as possible, to help
catch obvious errors in the code at an early stage.

To do this, go to the Options|Compiler dialog and click the Debug button. This will
enable all of the compiler options that can help: Debug information, Range checking,
Stack checking and Overflow checking. It also disables Optimisation, and enables the
generation of stack frames for all procedures.

All of these options cause your executable program to become bigger and to run slightly
slower, but enables you to find bugs that would otherwise be very difficult to find. A small
price to pay, since all you have to do is click on Fastest once you (think you) have found
and removed all bugs and then rebuild the program.

Options|Debugger

Before moving on to the next session, the Options|Debugger dialog items will be briefly
covered. If you are not an experienced user, you should go directly to the next session and
return to this only when you are comfortable with debugging in VP. The options in this
dialog determine the behaviour of the debugger, and include:

• Display Swapping can be either None, Run Only or Smart, and applies to situations
where you debug the program by single-stepping through it. The name of the switch
is inherited from the Dos environment and no longer describes accurately what it
does:

When None is selected, the program does not accept keyboard or mouse input, unless
you switch to the session manually using Alt-F5. The display is still updated
correctly.

In the Run Only state, input is only accepted when Run|Run is selected.

In the default Smart state, input is only accepted when VP “thinks” there is a chance
that this may happen during execution.

• The Integer Format radio button determines how integer type values are displayed in
the Evaluator, Watch and Inspector windows. They can be displayed as Decimal,
Hex or Both.

62 Debugging programs with VP

Virtual Pascal User’s Guide

• The Debugging group contains two options:
• Debug Startup code, which is disabled by default. When an OS/2 or Windows

program starts executing, a host of operating system start-up code is executed
before control is transferred to the program itself. This code is normally not of
interest, but you can force VP to start the debugging session by debugging this
code. If you do this, your debugging session will start in the CPU Window and
point to somewhere in an operating system DLL. This option must be checked to
debug DLL initialisation code. You will then be able to start the debugging
session, place a breakpoint in the initialisation code of the DLL and run the
program.

• Run in VIO Window (OS/2 only) If this option is enabled (default), any text-
mode VIO application will be run in a window on the OS/2 desktop when being
debugged. If disabled, a text-mode application being debugged will run in a full-
screen OS/2 session.

• Break on exception determines what action the debugger takes when a language
exception is raised. When checked, the debugger stops when an exception is
raised, and displays a message containing the class and message of the exception.
(Language exceptions are raised using the raise reserved word).

• Hard PM mode (OS/2 VP/PM IDE only) determines which mode to use when
debugging OS/2 Presentation Manager programs. When hard mode is enabled, the
debugger is responsible for handling all PM messages, including those for other
running tasks. This ensures that all messages are received in the same order as
when the program is run outside the debugger. Please refer to the online help for
further information about this setting.

• The User Screen Delay entry field should contain the number of 10ths of a second to
delay before returning control to the debugger after pressing Alt-F5 to display the
User Screen when debugging a PM application or a text-mode application in a
window. The default value is 5 seconds (50 1/10ths). When debugging programs
running in a Full-Screen session, control does not return to VP until a key is pressed.
When debugging a program under Windows, pressing a key does not return focus to
the debugger.

Beginning the debug session

A debugging session can be started in a number of ways, depending on what you want to
do. The simplest way is to press ^F9 or select Run|Run. If the program has changed since
it was last compiled, it is recompiled and then started, otherwise VP will just run it.

After it has started, the word Go appears on the menu bar in white letters on a red
background, and the IDE does not respond to mouse clicks or keyboard input.

You can however interact with your program or watch it executing. Once the program
stops executing, either because of an error, or because it finished execution, control returns
to the VP IDE. The reason why the program terminated along with an error code is
displayed in a dialog box.

For more information about different methods of starting and continuing a debug session,
please refer to the section on Stepping through the program on page 69.

Starting and stopping the program

To temporarily stop program execution while it is running inside the debugger, press Ctrl-
Break or click the Stop button on the VP/PM toolbar.

Debugging programs with VP 63

Virtual Pascal User’s Guide

Once the program has been stopped, either by this method or by any of the other methods
described later in this chapter, you can choose to either resume execution or stop the
debugging session.

If you wish to resume execution either press ^F9, select the Run|Run menu, or click on
the lightning-icon on the VP/PM toolbar.

If you do not wish program execution to continue, either press ^F2 to restart the program
or Shift-F4 to reset it. ^F2 causes the program to be reloaded and make it ready to re-start
execution. Shift-F4 causes all current debug information to be discarded and the current
output window to close.

After a program has terminated, but before resetting or restarting the program, you can still
examine both screen output and the values of static variables1.

Run-time errors

If a run-time error was the cause of termination, a dialog box displaying the number and
location of the error is displayed. When the OK button is pressed, VP displays the location
of the error by opening the appropriate source file (if available), and positions the cursor
on the statement that caused the error.

In most cases, knowing the exact location of the error will help you to quickly determine
the cause of it. As for compiler errors, pressing ^QW takes you to the last error location,
and redisplays the error message.

One problem with run-time errors, particularly range check, overflow and protection
errors, is that the program terminates when the error is encountered. This makes it difficult
to determine the state of the program when it failed, since you can no longer see the value
of local variables, examine the call stack etc.

Two different methods can be of help in this case: Breakpoints and Exception trapping.

If the error occurs outside of the development environment, the error can be even harder to
track, since the standard error message just outputs an error code and an address. To get
more information in this case, please refer to the section about Run-time location
information.

Run-time location information

Run-time location information, RTLI, is generated by the compiler for every unit compiled
in the {&LocInfo+} state. If the linker option to generate location information is enabled,
the generated RTLI is included in the executable and can be used for error tracking
purposes.

When a run-time error occurs in a unit that does not include RTLI, the error message can
look something like

Runtime error 216 at 0001001C (Exception C0000005) TID=1.

This is useful if you have a map file – after all, you know that the code crashed in thread 1,
and the address at which it crashed. However, if RTLI is available, the error message
could look like this:

Runtime error 216 at 0001001C (STRINGS.PAS#781)
(Exception C0000005) TID=1.

1 In Windows, the program window closes when the program terminates. To inspect screen output when the program
terminates, place a ReadLn as the last statement of the program, or place a breakpoint on the last end.

64 Debugging programs with VP

Virtual Pascal User’s Guide

Note, that this line contains information about the unit in which the error occurred
(Strings.Pas) as well as the line number in which the error occurred (781).

Including RTLI adds about 1 byte of information per source line to the executable – RTLI
has been implemented to make it as small as possible, at the expense of speed.

By calling the GetLocationInfo function defined in the System unit in your own exit
procedure, it is possible to customise the error message displayed at run-time to suit your
specific needs.

For example, the following small program does this:
var

OldExit: Pointer;
procedure MyExitProc;
var

FileName: ShortString;
LineNumber: Longint;

begin
ExitProc := OldExit;
if GetLocationInfo(ErrorAddr, FileName, LineNumber) <>

nil then
WriteLn('Error ',ExitCode,' in ',FileName,

' line ',LineNumber)
else

WriteLn('Error ',ExitCode,' at ',
Longint(ErrorAddr));

end;
var

P: ^Longint;
begin

OldExit := ExitProc;
ExitProc := @MyExitProc;
p := nil;
p^ := 1;

end.

Since this program does little other than establish the exit procedure and then perform an
illegal operation, running it outputs the following::

Error 216 in TEST.PAS line 25

If the program instead stops in the debugger and opens the CPU window, disable breaking
on the Access Violation exception as described in the Exception trapping section – or run
it from the command line for now.

Breakpoints

The simplest form of breakpoint is a fixed location in the program, where the program is to
be stopped whenever it reaches this location. Placing a breakpoint at or just before a place
where a run-time error is known to have occurred allows you to examine the state of
variables, the call stack etc. and can help you find the exact cause of the error.

A breakpoint is placed by moving the cursor to the source line where a break should occur,
and press ^F8 or select Debug|Toggle breakpoint. The line now containing a breakpoint
is highlighted in red, and execution will stop when the program reaches the breakpoint.

The breakpoint can be removed by moving the cursor to the breakpoint line and pressing
^F8 or selecting Debug|Toggle breakpoint again. To show a list of all breakpoints in the
program, use the View|Breakpoints dialog.

Debugging programs with VP 65

Virtual Pascal User’s Guide

If the program does not stop when it reaches the breakpoint, you probably have not
enabled debug information. Make sure that you have followed the directions outlined in
the Preparing to debug section.

Once program execution has stopped at a breakpoint, the tools described in the following
section about Exception trapping can be used.

For information about Advanced breakpoint options, please to refer to page 70.

Exception trapping

Run-time errors are often caused by CPU exceptions. An exception is an abnormal
condition that causes an interruption of the normal flow of execution.

When the checking options (Range, Overflow and Stack checking) are enabled, code is
included to generate an appropriate exception if one of the checks fail. In case of an
invalid memory reference (General protection fault), which normally causes a run-time
error 216 to be generated, an exception is also generated.

Normally, when an exception occurs, a run-time error is generated and the program
terminates. Using the View|Exceptions dialog, this behaviour can be modified.

The dialog lists all operating system (OS/2 and Windows) exceptions of relevance, and a
tick mark can be placed next to each exception either by clicking the checkbox, or by
pressing the Break button. As the name of the button hints, placing a checkmark for a
particular exception causes program execution to break instead of passing control to any
exception handlers installed when this exception is encountered.

When an exception that is set to break occurs, VP opens either an Editor Window or the
CPU Window, with the instruction that caused the exception to occur highlighted. (An
editor window is only opened if the address of the exception matches the address of the
beginning of a source line.) The state of the program is preserved, and can be examined as
usual. If you are unfamiliar or uncomfortable with the CPU Window (described in detail
on page 73), you can close it by pressing Alt-F3. If you then press Ctrl-Shift-O or select
Origin from the local menu of an editor window (Press Alt-F10 or right-click the mouse to
show the local menu), VP will position the cursor on the source line that caused the
exception.

Enabling VP to break on exceptions is a very powerful way of quickly eliminating errors,
since you do not have to know where the errors may occur before you execute the
program.

The exceptions normally of interest are

XCPT_ACCESS_VIOLATION An invalid memory address was
accessed

XCPT_FLOAT_DIVIDE_BY_ZERO Real number division by zero

XCPT_INTEGER_DIVIDE_BY_ZERO Integer division by zero

XCPT_ARRAY_BOUNDS_EXCEEDED Range check error

Examining the state of the program

When program execution has been temporarily stopped, either because a breakpoint was
hit, an exception caused a break, or by one of the methods described later in this chapter, it
is often necessary to determine the state of the program, its variables etc.

66 Debugging programs with VP

Virtual Pascal User’s Guide

The Evaluator

Using the Evaluator dialog, it is possible to display the value of an expression and modify
the value of variables and typed constants. Open the evaluator by pressing ^F4, or by
selecting Debug|Evaluate/modify.

The dialog displays three input lines, labeled Expression, Result and New value. In the
Expression field type the expression to evaluate. Enter the expression and press Enter, the
expression is evaluated, and the result is displayed in the Result field. If the expression is a
modifiable value, a new value can be entered in the New value field; press Enter again to
change the value.

The evaluator supports complex expressions and format specifiers; please refer to the
section on Format specifiers for further details.

The Watch Window

The Watch Window can be used to display the values of a number of different expressions.
To add an expression to the list of expressions to watch, press ^F7 or select the
Debug|Add watch menu item.

In the dialog, enter the expression to watch (including any format specifiers), and press
Enter. If the watch window is not open, it will be opened and will appear in the bottom of
the screen.

An easy way to add an expression to the Watch window is by using the local menu for the
editor window. Position the cursor to the expression and either right-click or press Alt-F10
to display the local menu. From this menu, select the Watch item, and the expression
under the cursor will be added to the Watch window.

The Watch window also has a local menu that enables you to Add watch items, Edit
items, Remove items, Enable items temporarily disabled, Change the value of an item
and Inspect an item in an Inspector window. Options for enabling, disabling and removing
all watches are also available in the local menu.

The Watch window supports complex expressions and format specifiers; please refer to
the section on Format specifiers for further details.

If you wish to examine a CPU register, the Watch window supports this too. All register
identifiers as well as two selector values, FlatDS and FlatCS, can be used as if they were
defined in the System unit.

For example, you can watch either CH or System.CH to view the value of the CH CPU
register. Mem[esi] or Mem[FlatDS:esi] displays the byte value at the address contained
in the ESI register – in OS/2, this works even after the program has terminated.

The Inspector

The Inspector is yet another method available for determining the state of your program
and variables. The Inspector is particularly useful for inspecting complex structures such
as arrays, records or objects - or a combination.

To inspect an expression, either select Debug|Inspect, or move the cursor in an editor
window to the expression to be expected and select Inspect from the local editor menu.

Unlike the Watch window, where all expressions being watched are displayed in one
window with one line per expression, each expression being inspected requires its own
Inspector window. Any number of inspector windows can be displayed simultaneously.

The top line in the Inspector window tells you where the expression being inspected is
stored. This can be Constant, if you inspect a constant expression, a memory address
displayed as @xxxxx, if it is a variable or typed constant expression, or it can be Register

Debugging programs with VP 67

Virtual Pascal User’s Guide

if the expression being inspected is a local variable that is kept in a CPU register or if you
explicitly specify the name of a CPU register for inspection.

Below the storage description, each member of the indicated data item is displayed
together with their names, types and values. If the object is an array, a list of indices is
displayed, with the values displayed on the right-hand side of the window. If the object is a
record- or object-type, the list of identifiers together with their values is displayed.

Individual items in the array or object can be inspected by pressing Enter. This causes the
view to zoom in on the current item, and the zooming in can continue until a simple type
expression is encountered.

The Inspector window has a local menu, from where you can specify a Range to inspect
(Array types only) or Change the value of an item in the list. For object types, it allows
you to specify whether methods should be displayed along variable identifiers and
whether inherited fields should be displayed. You can also Inspect the current data item
(equivalent to pressing Enter), or you can Descend to a lower level without opening a new
Inspector window.

Finally, the local menu allows you to inspect a New expression, Type cast the data
currently being inspected to another type, or show the placement of the current data item in
the Object hierarchy window (Objects and Classes only).

As for the Watch and Evaluate windows, the Inspector window supports format specifiers,
described in the next section.

Format specifiers

When watching or evaluating an integer expression, it is displayed in its default state as set
up in the Display format radio group in the Options|Debugger dialog.

One or more Format specifiers, appended to the expression after a comma, can override
the default display. For example, an Integer variable can be displayed as a memory dump,
a Pointer can be displayed as a string - almost anything is possible - please refer to the
following table for details.

In addition to applying format specifiers to expressions, typecasts can be used to change
the format. After the list of format specifiers, a number of examples show some of the
flexibility available.

Specifier Effect
C Character. Causes special display characters for control

characters (ASCII 0 through 31) to be displayed. By default, such
characters are shown using the equivalent #xx sequences. Affects
only characters and strings.

D Decimal. Shows all integer values in decimal. Affects simple
integer expressions as well as arrays and structures containing
integers.

Fn Floating point. Shows n significant digits, where n should be an
integer between 2 and 18. The default value of n is 11. Affects
only floating-point values.

H,X,$ Hexadecimal. Shows all integer values in hexadecimal with a $
prefix. Affects simple integer expressions as well as arrays and
structures containing integers.

M Memory dump. Displays a memory dump, starting with the
address of the indicated expression. The expression must be a
construct that would be valid on the left side of an assignment

68 Debugging programs with VP

Virtual Pascal User’s Guide

Specifier Effect
statement (a construct that denotes a memory address). If it is not,
the M specifier is ignored.

N As number. Causes Boolean and enumarated values to be
displayed as numbers, rather than constant names.

P Pointer. Causes pointers of the built-in type PChar to be
displayed as pointers, instead of displaying the string being
pointed to.

R Record. Displays record or object field names, such as (X:1;Y:2)
instead of (1,2). Affects only record and object variables.

S String (default). Shows control characters (ASCII 0 through 31)
as ASCII values using the #xx syntax. Since this is the default
character and string display format, the S specifier is only useful
in conjunction with the M specifier.

Examples of format specifiers

Given the following declarations and code fragment:

var
Coor : Record x,y : Byte; end;
col : (red, blue, green);
I : Longint;
pS : ^String;
r : Extended;
pCH : pChar;

begin
Coor.x := 10;
Coor.y := 20;
col := green;
New(pS);
pS^ := 'Dynamic';
r := pi/2;
I := -$1234;
pCh := StrNew(‘ABC’);

end.

If program execution is stopped after the last assignment operation, the following results
could appear in the Watch or Evaluator windows:

Expression Result Expression Result
Coor (10,20) SmallWord(Coor),xd 5130 ($140A)
Coor,r (X:10, Y:20) Length(pS^)+Coor.x 17
Coor,rx (X:$A, y:$14) col green
I -4660 col,n 2
I,x $FFFFEDCC r 1.5707963268
pCh ‘ABC’ EAX,x $31004
pCh,p Ptr($1B118) r,f2 1.6
pS Ptr($1B018) i*r-25+ord(col),f4 -7342.9
pS^ 'Dynamic' I,2m CC ED
pS,m 18 00 1B 00 I,md 204 237 255

255

Debugging programs with VP 69

Virtual Pascal User’s Guide

Stepping through the program

The Run menu features a number of different ways to execute a program a bit at a time.

If you place the cursor at an interesting location in the source code and press F4 (or select
Run|Go to cursor), the program will be started and will not stop until execution reaches
the cursor location (or another break condition, such as a breakpoint). Go to cursor can be
considered to be a temporary breakpoint, which is only active until you set another
temporary breakpoint or recompile.

Another way of executing a small portion of code is by single stepping. VP offers two
different forms of single stepping: Run|Trace into (F7) and Run|Step over (F8). Both
single stepping methods cause just a single line of source code to be executed. The
difference between the two only becomes apparent when executing a statement containing
a function, procedure or method call. In this case Step Over causes the procedure to
execute, as if it was just another source line, whereas Trace into follows execution into
the procedure call.

Run|Execute to (Shift-F9) prompts you for an address, after which the program executes
until it reaches the address entered. This is equivalent to Go to cursor, except you specify
an address instead of a cursor location to execute to. The address can take the form of any
valid address expression, such as a number, a pointer or a procedure name.

Run|Until return (Alt-F8) causes execution to continue, until the currently executing
subroutine is about to return to its caller.

Run|Animate

The items in this menu allow single-step execution to take place automatically, until a key
is pressed or the program terminates. For all the three animation options, you will be asked
to enter an animation delay in 1/10th of a second units. If a value of 5 is entered, VP will
wait 0.5 second before each single stepping command is executed.

• Run|Animate|Trace into (Alt-F4) is equivalent to having VP press F7 continuously.

• Run|Animate|Step over is equivalent to having VP press F8 continuously.

• Run|Animate|Instruction trace will open the CPU Window and single step each CPU
instruction in the trace into mode. For more information about the CPU Window,
please refer to the section on Advanced debugging.

Run|Instruction trace (Alt-F7) opens the CPU Window and executes a single CPU
instruction. This is equivalent to pressing F7 if the CPU window is already the active
window.

Run|Parameters

Select this menu item to specify the parameters you wish to pass to the program being
executed from the VP IDE. Parameters specified using this method are equivalent to
parameters passed via the command line processor, if the program had been executed from
there.

Please note that it is not possible to specify redirectors on the command line in the IDE (
>, <, |). If these are specified as parameters to a program executed via the command line,
they would have a special meaning because CMD.EXE treats them in a special way. If
they are specified in the Run|Parameters in VP, they will be passed to the program as any
other parameter.

Parameters passed to a VP program can be counted using the ParamCount function, and
accessed using the ParamStr function.

70 Debugging programs with VP

Virtual Pascal User’s Guide

Advanced debugging

This chapter is meant for users with a working knowledge of the VP IDE and the topics
covered in the last section. If you have reached a stage where you want to do something in
the debugger that is not possible with the basic features explained so far, this is the place
to look.

The core of the debugging features of VP can be accessed via the View and Debug menus.
Each of those items that have not been covered in previous sections will be discussed in
the following.

Advanced breakpoint options

Select View|Breakpoints to open a dialog containing a list of all breakpoints defined in
your program. Each breakpoint is summarised on a single line in this window, and can be
modified through the Change Options item on the local menu.

In this dialog each breakpoint can be configured in a number of ways:

• Every breakpoint has an address on which it triggers. This address can be entered as a
line number of a source file, as the address of an identifier or as an absolute address
expression.

• A breakpoint can either cause the program to Break, or it can cause a line to be added
to the Log window. Or both. Select the desired actions in the Action field.

• Normal breakpoints are Execution breakpoints. When execution reaches the address
specified, execution is interrupted. In addition to these, the 386 hardware supports up
to 4 Data points, where action is taken when data at the specified address is read,
written or accessed. Specify the type of breakpoint in the Type field.

• Breakpoints can be temporarily disabled. Check the Enabled box for those breakpoints
that should be active.

• If you know that your program fails the 1018's time it reaches a certain location, you
can specify a Pass count for the breakpoint. The default value is 0, meaning that the
breakpoint is activated the first time its condition is met.

• In the TID field, you can specify a thread ID. If this is 0, the breakpoint will cause any
thread meeting the break conditions to break, but you can specify that only a specific
thread should break on a breakpoint.

• In the Condition field, you can enter any valid boolean expression in Pascal. Every
time the breakpoint is hit, the Condition is evaluated, and the breakpoint is only
activated if it evaluates to True. Note, that evaluating a condition every time can
severely slow down execution.

• In the Log expression field, you can enter any number of Pascal expressions, separated
by semicolons. If the Log Action is enabled, these expressions are evaluated and
written to the Log window when the breakpoint is activated.

The Call stack

If stack frames are generated ({$W+} state), the call stack can be viewed by selecting
View|Call stack (^F3). This opens the Stack Window, which contains a list of all function,
procedure or method calls that have brought execution to its current stage.

Each call is listed on one line, listing all parameters passed. On the local menu of the Stack
window, you can select just one option, Inspect, equivalent to pressing Enter on the

Debugging programs with VP 71

Virtual Pascal User’s Guide

currently highlighted item. This moves the cursor to the point just after where the call was
made, and where execution will return to once the subroutine has finished execution.

The Log window

During a debug session, VP constantly updates the Log window with information about
module loads, threads starting and stopping, Log breakpoints and user messages.

The local menu of the Log window allows you to Open Log file if you wish to store the
content of the window in a file as well as display it in the window. When you are done
with a particular log file you can Close log file.

Select the Logging option to toggle logging on/off. Select Add comment to add any text
string (you will be prompted for it) to the log, and select Erase to empty the current log
window.

The Symbols window

Use View|Symbols to open the Symbols Window. This window is a dual-pane window
displaying information about all symbols in your program. In the top pane, global symbols
are listed, and in the bottom pane local symbols can be found.

By default, all variables, procedures and symbols declared in the interface part of any
unit, as well as declarations from the implementation part of the current unit, are
displayed in the top window, and all local variables defined in the current procedure,
function or method are displayed in the bottom window. All symbols in the top window
are fully qualified by unit name to allow for duplicate identifiers across multiple units.

The Symbol window can be set up either by the Options|Symbols menu or by selecting
Options from the local menu. In this dialog, you can choose to include labels, constants or
type definitions to the information already displayed. In the Display checkboxes, you can
enable displaying not just the values of variables, but also the types. You can also choose
to have all parameters listed for procedures, functions and methods listed in the top pane
by checking the Show procedure parms checkbox.

The Symbols window supports incremental searches in both panes, to allow you to quickly
locate a particular symbol. If you do not know the unit in which the symbol is defined,
start your incremental search by typing a full stop (.), which is used to separate the unit
name from the names of identifiers. As you type more characters, the cursor moves to the
right and moves the cursor line to point to the first matching item.

The Unit list

To get a list of all units and include files in the current program, select View|Units or
press Shift-F3. This opens a dialog, listing all units currently included in the project.

All units compiled with debug information enabled have a (+) sign to the right of their
name.

The unit list also displays files included using the $I directive, and supports incremental
search (type a partial unit name to find it quickly).

Move the cursor to a unit and press Enter, to load that source file into an editor window.

The Threads list

Select View|Threads or press F6 to get a list of all currently active threads. The Threads
List opens, displaying the list of threads along with their current status and location.

72 Debugging programs with VP

Virtual Pascal User’s Guide

If you want to follow the execution of a single thread, and be sure that all other threads are
inactive, you can use the State button to Freeze or Thaw each individual thread in the
process.

The Object Hierarchy window

VP can display the currently defined hierarchy of objects in an outline style format. Select
View|Hierarchy to open the Hierarchy window.

If you press Enter on a particular object, or select the Inspect item from the local menu, an
Inspector window is opened for the selected object. Note that the inspector is inspecting
the object type, not a particular instance of the object.

The Dump window

To get a formatted dump of a particular memory location, select View|Dump. This opens
a Dump window, displaying the content of memory at the desired location.

If a question mark (?) is displayed instead of data, your program does not have access
rights to the memory being viewed; accessing this memory from your program would
cause an access violation exception.

Any number of Dump windows can be opened at any one time.

The local menu allows a number of different actions to be taken:

• Go to lets you enter any valid address exception, and the Dump window will display
this portion of memory.

• Follow should be used to interpret data at the current position as a pointer that should
be followed; it can be interpreted in a number of ways: Near code should be used if
the data at the current cursor position can be interpreted as a near 32-bit pointer to
executable code. The CPU Window is opened at this location. Far code is when the
data is a 16:16 segmented pointer to executable code. Again, the CPU Window is
opened at the location specified.

Offset to data causes the current memory location to be interpreted as a flat 32-bit
memory location, and the dump window moves to display this portion of memory.
Segment:Offset to data is interpreted as a 16:16 bit pointer to data, and Base
segment:0 to data interprets the 16-bit word as a segment selector, and displays the
memory at this segment:0.

• Previous restores the dump window to display memory at the location it showed
before the last change.

• Change is used to change data. You will be prompted for a new value (it is possible
to enter a list of values separated by spaces as well).

• Display as is used to specify the display format used and can be changed to any of the
VP simple integer or floating point types. For example, selecting Extended, causes the
data to be displayed as 10-byte FPU floating point values. When Byte is selected (the
default), data is displayed as single hexadecimal bytes and as a character dump on the
right hand side of the window

• Marker sets a “bookmark” at the current memory location. Moving the cursor causes
the relative offset to the marker location to be displayed at the top of the window.

• When Fixup is selected, an address expression must be entered. This can be a CPU
register (eax, for example) or can be an expression involving Pascal variables or
constants. After pressing Enter, the Dump window will evaluate the Fixup expression

Debugging programs with VP 73

Virtual Pascal User’s Guide

and go to that address. This can be very useful when debugging; setting the fixup
expression to esi, for example, means that the data at the address pointed to by the esi
register is always available at a glance - even when the value of the register changes.

• Select Remove fixup to clear the fixup expression for the dump window and return to
normal operation.

• The Filter item acts as a toggle control. When filtering is disabled, all characters in
the 32-255 range are displayed in the ASCII dump to the right of the window. When
filtering is enabled, only letters, numbers and symbols are displayed; all others are
displayed as dots (.).

• The Block menu allows you to manipulate memory directly. You can Clear a range of
memory (fill it with 0s), you can Move a range of memory or you can Set a range of
memory to a specific value.

The Block|Read option allows you to fill a block of memory with data read from a
file, and the Block|Write command writes a range of memory to a disk file.

• Using the Search item, you can search for a set of bytes in memory. Use the Next
item to repeat the search.

See also the CPU window, which includes a dump window.

The Registers window

Open the Registers Window by selecting View|Registers. This window displays the values
of all CPU registers, selectors and flag bits.

Through the local menu, it is possible to Increment, Decrement, Zero or Change the
value of any register. Pressing Enter has the same effect as selecting Change.

When a register has changed, it is highlighted in white. This makes it easy to quickly see
which registers are changed by executing a statement or an assembler instruction in the
CPU Window. The colours of the registers change every time the program has executed
using any of the means available (F4, F7, F8, ^F9, etc.).

See also the CPU window, which includes a registers window.

The NCP window

VP allows you to display and modify the current state of the Floating-Point Unit (FPU), or
Numeric Co-Processor (NCP). Select View|Numeric coprocessor to open this window.

The local menu in the NCP window allows you to Zero, Empty, or Change the value of
any of the values on the NCP stack. If you are unfamiliar with the way FPUs work, please
refer to Intel technical documentation.

The Status Word and Control Word panes have separate local menus, which allow you to
either Toggle the state of the words, or explicitly set a new value with the Change menu
item. For a description of the NCP status and control words, please refer to Intel technical
documentation.

The CPU window

The CPU Window provides instant assembler-level access to your programs. It contains a
combination of the Registers and Dump windows, plus a Stack display and a disassembly
pane containing information about both the source code and the resulting assembler
instructions which the compiler generated based on the source code.

74 Debugging programs with VP

Virtual Pascal User’s Guide

It is probably the most powerful debugging feature of VP, and can even act as a stand-
alone debugger for any 16- or 32-bit OS/2 executable programs and 32-bit Windows
programs.

Open the CPU Window by selecting the View|CPU menu item. The functionality of the
Dump window and Registers window have already been described, so this section only
contains information about the possibilities of the CPU and the Stack panes.

In the CPU pane, low-level information about your program is displayed:

• Each source line is displayed (if source code is available, and Debug information is
turned on with {$D+}) preceded by the unit name and line number of the source line.

• Following the source line, the resulting machine op-codes and corresponding
assembler instruction mnemonics are displayed.

For a function containing a simple loop, for calculating the sum of the elements of an
array, like this:

function GetSum: Longint;
var

i : Longint;
Sum : Longint;

begin
Sum := 0;
for i := 1 to 10 do

Sum := Sum + x[i];
GetSum := Sum;

end;

the output in the CPU Window could look like this (In the {&Optimise+} state):

Debugging programs with VP 75

Virtual Pascal User’s Guide

Figure 4: The CPU Window

The Sum variable is kept in the eax register, and the value of i is kept in ecx. The base
address of the x array is 4031E0h - if you are proficient in Intel assembler code, the rest
should be obvious. Nevertheless, here is a quick reminder: xor a register with itself to
efficiently zero it; mov assigns a value (to a register, ecx, in this case); add adds a value to
eax; inc increases it by 1, cmp compares it with a value, jle jumps to the specified address
if the value was “less that or even”, and ret returns to the caller.

The local menu of the CPU window allows the code and registers to be manipulated, and
provides the following options:

• Goto... prompts for a valid address expression, and moves the view to that address.

• Origin moves the view to the current cs:eip address.

• Follow follows a call or jmp instruction to its destination, without actually executing
the code. Even indirect calls and jumps via a register or memory can be followed.

• Previous reverts the display to the last location, before the last Origin, Follow or
Goto command. VP stores the last five locations, so the Previous command can be
used to backtrack long sequences of Goto and Follow commands.

• Use Search to search for a sequence of bytes or a particular assembler instruction.
VP uses the built-in assembler to assemble any instructions you type, and searches for
the resulting sequence of bytes. Use Next to repeat the search.

This symbol indicates
the current point of
execution

Pascal source and the
generated assembler
instructions

The Dump
pane The Flags

pane

The Registers
pane

The Stack
pane

The name of
the current
function

Code
addresses

76 Debugging programs with VP

Virtual Pascal User’s Guide

Note, that code generated for short near calls and jumps, the instruction generated
depends on the address where it is assembled. Do not try to such instructions.

• View Source is used to revert to the source display for the code currently being
displayed in the CPU window.

• The Mixed item toggles between three different display modes. Select No to see only
the disassembled instructions, Yes to see the default view exemplified above, where
source code and assembler instructions are interspersed, or select Both to have source
lines replace the assembler instruction lines where appropriate. This is very useful
when debugging code written in the built-in assembler.

• Use New CS:eIP to set a new address from which execution will be resumed. A very
useful function that should be used with appropriate care! It is particularly useful, if an
instruction causes an exception, and you wish to disregard the offending instruction
and continue execution after it.

• The Assemble... command allows you to enter any assembler instruction as you would
do it in an asm..end block in your Pascal source code. The instruction entered will be
compiled and replaces any instructions already present at the current cursor location.

While this is a powerful tool for dynamically changing and testing various
instructions, it should be used with great care. Also note, that any changes made to
the program being debugged are lost the next time you compile, load or reload the
program from disk.

The CPU window as a stand-alone debugger

The CPU window can be used to debug stand-alone executables.

In OS/2, any 16- or 32-bit OS/2 executable can be loaded; in Windows, any native Win32
application can be debugged.. To load the executable into the VP IDE, select File|Load
program..., and enter the file name of the executable.

When debugging stand-alone executables, no debug information is available. No source
tracking and variable inspection is possible, but all other features are available.

In OS/2, the debugger supports standard .SYM files. .SYM files for all of the standard
OS/2 DLLs are available from IBM, and include in these the names of many DLL entry
points. Using IBM’s MAPSYM utility, the .MAP files generated by VP can be used to
produce .SYM files.

To specify the location of .SYM files, use a /F<path> parameter on the command line
when specifying the IDE. When debugging modules for which .SYM files are available,
VP will show the names of the entry points in place of addresses in call and jmp
statements.

VP example programs 77

Virtual Pascal User’s Guide

C H A P T E R 9

VP example programs
VP comes with a selection of example programs, designed to assist in overcoming the
intial hurdles when programming using VP.

The examples are divided into 3 groups: Common, OS/2-specific and Win32-specific. In
addition to the examples supplied with Virtual Pascal, a number of examples and libraries
are available for download from the fPrint FTP site as well as from a number of third-party
sites.

Common Virtual Pascal examples

These examples reside in a directory off the Examples subdirectory, and illustrate many
different aspects of programming in VP.

• Delphi. This directory contains 4 examples, demonstrating the use of some of the
Delphi-compatible units included with Virtual Pascal:

• ClsDemo demonstrates some of the capabilities of the Classes unit, the use of is
and as, TStringList, TBits, TCollection, TFileStream and Tparser

• SysDemo demonstrates some of the SysUtils unit, using the system settings, the
Format functions, conversion functions, the Currency type, date manipulation
functions, string functions and disk/file functions.

• TlsDemo demonstrates the use of thread local storage using threadvar
declarations in a multi-threaded program,

• XcptDemo demonstrates the use of try..except blocks, i.e. Delphi-style exception
handling.

• Dll. Shows how to create a DLL (TstVpDll), and two different ways of using a DLL
(TestDll1.pas and TestDll2.pas).

• MemMgr. The main file in this directory is MemMgrEx.pas, which uses a sample
memory manager installed using the new TmemoryManager interface. The installed
memory manager (PerfMgr.pas) does not change the memory allocation scheme, but
instead measures the time spent in the memory allocation calls. In order to measure
the time very accurately and introduce as little overhead as possible, the timing is
performed using the Pentium-only RDTSC instruction.

• RatRace. Demonstrates how to program a simple multithreading application in VP.
The multithreaded application controls access to critical routines by using a Mutex
semaphore, initialised through a VpSysLow function. The program initialises 8 “rats”
in different colours that are assigned a thread each. Every time a thread becomes
active, the rat moves forward one character. The final positions of the rats are written
at the bottom of the screen.

• Sort. Shows an example of a highly optimised algorithm for sorting text files, using a
mix of Pascal and 32-bit assembler code.

• Test. This directory contains 4 examples, demonstrating compatibility with the Crt,
WinCrt, Dos and WinDos units of Borland Pascal:

• TestCrt demonstrates compatibility with the Crt unit by playing a little tune, while
filling a text window with a string of various colours. When a key is pressed, it

78 VP example programs

Virtual Pascal User’s Guide

manipulates the content of the window. The second part displays a "star sky",
with blinking stars.

• TestDos and TestWDos demonstrate compatibility with the Dos and WinDos
units: searching for files, expanding file names, etc.

• TestWCrt shows the use of the WinCrt unit. It simply writes some text to the
window, and allows the user to enter text. Terminate the example by typing q and
Enter.

These programs can also be compiled with Borland Pascal without any changes.

• TestUtil demonstrates some of the abilities of the VPUtils unit by showing various
system and current settings: Current time, process ID, keyboard state, window size,
boot drive, drive type, code page, dynamic memory in use, etc.

• Touch implements a simple Touch program, changing files’ date and time to the
current one.

• UnRAR. Implementing a fully functional Pascal version of an unpacker for the
popular RAR archiver, which is the compression program also used for compressing
the VP distribution archives. The code is a direct port of the public C source code
version of UnRar - this also is evident from the Pascal code.

Borland Pascal examples

Borland Pascal comes with a great number of examples, most of which can be immediately
compiled with Virtual Pascal. The three most interesting ones do require a number of
small changes to the source code.

These examples all reside in the EXAMPLES\COMMON\BP7 directory and
subdirectories, and .DIF files outlining the changes to make to the original source code.
You must already have the Borland Pascal source code in order to be able to compile these
examples. Once the changes are applied, the examples will compile for either a Win32 or
an OS/2 target.

The changes required are detailed in a text file; one per example:

• BreakOut. This example, which implements a text mode version of a classic game,
can be found in the BREAKOUT directory. The changes required to make the
program work are listed in the BREAKOUT.DIF text file in the same directory.

• TVDemo. Residing in the TVDEMO directory, this example demonstrates a range of
features available to programs using the Turbo Vision library from Borland. The
changes required to the source code of this example are detailed in TVDEMO.DIF.

• TVFM. A powerful program also written using Turbo Vision, implementing a text-
based File Manager clone. With multiple windows support, drag and drop and even a
trashcan, it is a powerful demonstration of the capabilities of Turbo Vision. Changes
required to the source code are listed in TVFM.DIF.

Windows-specific examples

These examples reside in the W32 directory off the Examples subdirectory. In this version
of Virtual Pascal, the only Win32-specific examples are examples demonstrating the OWL
compatibility of VP.

These examples are installed as source code updates of the Equivalent Borland Pascal for
Windows examples.

VP example programs 79

Virtual Pascal User’s Guide

• Calc demonstrates a tiny OWL program that implements a simple calculator.

• OwlChess is a full-blown chess program, that is able to show a chess board as well as
be your opponent in a game of chess. Please make sure OWL is defined and that the
RTL is re-built before compiling this example.

OS/2-specific examples

These examples reside in the OS2 directory off the Examples subdirectory, and illustrate
some of the aspects of OS/2 programming using Virtual Pascal.

• Clock. The Clock example is an example of an OS/2 Presentation Manager program.
It implements a very simple analog clock, which when minimized continues to update
its minimized icon.

• Dive. The example, TestDive.Pas, illustrates how to use the DIVE wrapper class
implemented in the Os2Dive unit. DIVE is OS/2’s Direct Video Extensions API.

• EA: An examples showing how to use and access OS/2 Extended Attributes, TestEA.
This example uses the tEAList class implemented in the Os2EA unit, and uses this to
manipulate the list of extended attributes of the file specified as a parameter on the
command line.

• ObjClass. This directory contains two examples:

• ListCls shows how to enumerate objects registered with the OS/2 Workplace
Shell.

• NewObj demonstrates how to create a program object on the OS/2 desktop using
VP. First, it forces an error and demonstrates how to obtain extended error
information from OS/2. It then creates a "VP Test Object" which when opened
will attempt to load C:\CONFIG.SYS into E.EXE.

• Os2Exec. This directory contains an example, TestExec, showing how to use the
TredirExec class implemented in the Os2Exec unit. This class allows you to execute a
child process and capture the output from that process; the example uses this to issue a
DIR command, showing the output in a window.

• Rexx. This directory contains examples showing how to interface with the REXX
command processor of OS/2, in two examples:

• CallRexx. Shows how REXX functions can be called directly from Virtual Pascal.
When run, it executes two REXX scripts, the first of which plays a little tune, the
second of which TYPEs C:\AUTOEXEC.BAT.

• RexxExt. Demonstrates how to write a DLL extending the functionality of REXX
in VP by implementing a REXX function called VPTouch. Includes a small
REXX script demonstrating how to use the DLL, TestExt.Cmd.

• Flame. Demonstrates how to do full-screen graphics in OS/2 using VP. The program
runs in full screen mode only. If you try to switch to another session using Ctrl-ESC or
Alt-ESC while Flame is running, it may appear as if OS/2 hangs. What really happens
is, that OS/2 delays taskswitching commands for 30 seconds while full screen graphics
are running. Flame is terminated by pressing any key.

• SysLevel is a simple program implementing roughly the same functionality as OS/2’s
SysLevel command, but running significantly faster. Shows how to efficiently
implement FindFirst/FindNext calls to enumerate all files on a hard disk drive.

80 VP example programs

Virtual Pascal User’s Guide

• Triplex. Is an OS/2 Presentation Manager game, somewhat similar to the popular
TETRIS game. The purpose of the example is to demonstrate the steps involved in
implementing a PM program using VP.

Extending Virtual Pascal 81

Virtual Pascal User’s Guide

C H A P T E R 1 0

Extending Virtual Pascal
Virtual Pascal v2.1 supports two major platforms, OS/2 and Win32, and includes a
debugger for natively debugging programs running on both platforms.

In addition to this, it is possible to extend the functionality of both the compiler and the
debugger to include support for more platforms. Doing so involves several steps: RTL
support, linker support, and debugger support.

This work has started for the Linux v2.x platform, where some preliminary support is
included in this release.

These steps are outlined in the following:

Interface to the OS

The first step is to interface to the operating system API. This should be done by
converting header files (probably from C) to Pascal, listing every API call in the operating
system, types, etc. For Windows, the Windows unit holds this information; for OS/2, the
Os2Def, Os2Base, Os2MM, etc. units holds it.

RTL support

The Run-Time Library is platform-independent, with all platform dependencies extracted
and localised in the VpSysLow unit. Enabling VP to generate object code for platforms
other than OS/2 and Win32 is, at least in theory, a matter of porting the VpSysLow unit to
the new operating system, using the API calls made available previously.

For the most part, this should be a straightforward job in practice as well. However, some
parts may prove difficult to do, because the System unit (which uses the VpSysLow unit)
relies on certain operating system characteristics, particularly in the area of exception
handling. The structures passed in OS/2 and Win32 are similar, and it may be difficult to
make the port work if the exception handling mechanism is very different from the model
currently used.

For such systems, the System unit will require some customisation, implemented using
conditional compilation. Please refer to the System unit source code for details on how
this is currently done.

When the VpSysLow unit has been ported to another operating system, such as Linux or
BeOS, the compiler and IDE should be just a recompile away from being able to run on
those systems as well.

Linker support

The next phase is to implement linker support. VP’s built-in linker can use OMF standard
object files and libraries (.OBJ and .LIB) and create both OS/2 LX and Win32 PE
executables from these.

If the target operating system supports one of these executable file formats, the built-in
linker can be used to produce executables for the operating system, and the system is now
useable.

82 Extending Virtual Pascal

Virtual Pascal User’s Guide

This is, for example, the case for certain 32-bit DOS extenders, which are implemented to
support the Win32 PE executable file format as well as a subset of the Win32 API. On
such extenders, such as RTX-DOS/32, programs compiled and linked with VP for a
Win32 target can run with no changes.

If the operating system does not support any of these executable file formats, a linker
native to the operating system must be used. If such a linker exists, and is able to read and
process OMF style object files, it is simply a matter of configuring the VP IDE to use this
linker, if it runs on either Win32 or OS/2. If it does not run on Win32 or OS/2, the link
process can take place directly on the target platform instead.

If a linker exists, but does not support OMF-style object files, a new linker needs to be
written. Writing a linker is a complex task, and this may prove to be the most difficult
stumbling block in making VP produce executables for other operating systems. Please
refer to any technical documentation on the operating system, file formats, and linkers that
can be found for more information.

Debugger support

Once the above steps have been completed, VP is able to produce executables for a new
operating system, but is not able to debug them.

Fortunately, the debugger VP is based around an Open Debug API: By using the
functionality provided by the ODAPI, it is possible to write support for debugging
programs running on other platforms, across network connections, or even direct cable
connections.

In order to provide debugger support for the new platform, or to change the behaviour of
the existing debugger, the set of functions comprising the ODAPI must be implemented as
a DLL, to be loaded by the Virtual Pascal IDE when debugging applications.

The interface to be supported is defined in the Pascal source file VpDbgApi.pas, located in
the Source\Rtl\Debug directory. This unit shows how debugger support is implemented
for OS/2 and Win32 and can be used as a template for extending the functionality to other
platforms.

Please refer to the online help and Appendix C of the Language Reference Manual for a
full description of ODAPI, its entry points, and the way in which it can be integrated into
the VP IDE.

Defining new targets in the IDE

The IDE supports the notion of targets other than the default Win32 and OS/2 ones. When
a new target platform has been implemented as outlined above, or if you just would like to
have a range of specialised targets, the IDE can be customised to make these targets
selectable from the Compiler -> Target Platform menu item.

To define additional targets, edit the VP.INI file located in the \Common directory of the
Virtual Pascal installation.

In this file, a single section defines the list of additional targets available for selection,
separated by semicolons. The properties of each target is defined in a separate section per
target. For example, to define three new targets called OWL, DPMI and Linux, add the
following to VP.INI:

[Targets]
Targets=OWL;DPMI;Linux

Extending Virtual Pascal 83

Virtual Pascal User’s Guide

[OWL]
Platform=W
Subst=OWL
Defines=WINDOWS;OWL;WIN32

[DPMI]
Platform=O
Subst=DOS
Defines=DOS32;OS2;DPMI

[Linux]
Platform=W
Subst=Lnx
Defines=Linux
ExecCustom=\vp21\bin.w32\pe2elf.exe
ExecParm=%s

[DriveSubst_Linux]
Count=2
Subst_1=P:?/home/am
Subst_2=T:\vp21?/home/am/vp21

[DriveSubst_Os/2]
Count=2
Subst_1=P:?C:
Subst_2=T:\vp21?C:\sources

After applying any changes to VP.INI, restart the IDE to make the changes take effect. In
the above examples, 3 new targets would be available for selection in the IDE.

The OWL target would, when selected, use the string “OWL” in %P string substitutions in
directory names etc, cause the conditional defines WINDOWS, OWL and WIN32 to be
defined, and cause the compiler to link the program as a Win32 executable.

The DPMI target would use “DOS” as the %P substitution string, define DOS32, OS2 and
DPMI, and would cause the compiler to link the program as an OS/2 executable.

The Linux target would use “LNX” as the %P substitution string, define LINUX, and
create a PE executable. After the link process, a program called pe2elf.exe would be
executed, with the fully qualified name of the executable as the parameter.

The “DriveSubst” sections are used when working in environments that share source code
but where drive letters change – or are not used, as is the case in Linux. The compiler
looks for a DriveSubst section matching the current execution environment (i.e. is
independent of the target selected) and reads the list of substitution strings specified. For
each drive substitution string, the string to the left of the question mark character (?) is
substituted by the string to the right of it, for all parts of every search path used by the
compiler.

For example, if you are running in OS/2, and your Units search path is

p:\sources\vp;t:\vp21\source\rtl;c:\test

the translated source path used when compiling the program (to any target) will be

c:\sources\vp;c:\sources\source\rtl;c:\test

This is particularly useful if the source code or other paths are shared on a network, or if
Virtual Pascal is run in an emulated environment such as VMWare.

84 Extending Virtual Pascal

Virtual Pascal User’s Guide

Restrictions in target definitions

The settings specified in VP.INI must adhere to the following restrictions:
• The Platform setting can be either W or O, representing Windows and OS/2,

respectively. When OS/2 is specified, the OS/2 Import Library OS2.LIB is used and
OS/2 LX executables are produced. When Windows is specified, the Win32 Import
Library IMPORT32.LIB is used, and Win32 PE executables are produced.

• The Subst string is used to replace any occurrences of the string %P in any unit,
library, resource, output or include paths specified. This means that it is possible to
separate both source code and output files for different platforms into separate
directory structures; it also means that you should make copies of the standard import
libraries (located in the LIB.OS2 and LIB.W32 directories) if your new target does
not provide its own import library.

• The Defines setting can be up to 80 characters in length, and can contain any number
of valid conditional define identifiers, separated by semicolons.

• The ExecCustom setting should be blank, or contain the name of an executable
program. If defined, this program will be executed with the content of ExecParm as
its parameters, after the normal VP compile and link process finishes.

• The ExecParm setting should contain any command line parameter to pass to the
ExecCustom program, substituting the first occurrence of %s for the name of the
executable just created.

• The DriveSubst sections that the compiler looks for are “DriveSubst_” followed by
either Linux, DPMI, OS/2, Win32s, Win9x or WinNT – the strings returned by the
SysPlatformName function in VpSysLow. The paths substituted using the strings here
are all normal search paths: Output, Exe Output, Units, Include, Resource and Library
directory search paths.

Using the Command-Line Compiler

The command line compiler can be called directly, without using the IDE, while retaining
the ability to specify additional target information. This is done by an extension to the /Cx
command line option, which allows the information specified in VP.INI for the IDE to be
passed on the command line.

The syntax when compiling for Windows is

VPC.EXE /CW[:Subst:Defines]

For OS/2 targets, the syntax is

VPC.EXE /CO[:Subst:Defines]

If /CW or /CO is specified by itself, the default Windows or OS/2 targets are used. To
specify a new target, such as the OWL target from the example above, use the additional
parameters to specify the substitution string and conditional defines:

VPC.EXE /CW:OWL:WINDOWS;OWL;WIN32

Note, that the drive substitutions specified in VP.INI for the IDE are also read and used by
the compiler, depending on the platform on which it runs.

Win32 Keyboard Support

During the extensive Beta program of Virtual Pascal, the biggest problem was
implementing good keyboard support for Win32. The keyboard handling functions used

Extending Virtual Pascal 85

Virtual Pascal User’s Guide

by all programs, implemented in the platform-specific VpSysLow unit, proved to be
difficult to get working in all conditions. In particular, supporting the very varied
keyboard layouts used throughout the world proved difficult.

For this reason, the default keyboard handling code is located in a unit called VpKbdW32;
the source code can be found in the \Source\W32 directory. In most programs, this should
not be of concern as this code is linked statically into your program and is used by the
VpSysLow functions.

If, however, your program (or the VP IDE itself) exhibits strange behaviour related to the
keyboard, and you wish to change this behaviour, VP supports this.

On startup, all Win32 programs written with VP, will look for a DLL called
VpKbdW32.Dll. If this DLL is found, and defines the required entry points, the keyboard
handling functions defined in this DLL will replace the default keyboard functions linked
into the program.

To create a modified keyboard handler, load the VpKbdW32.Pas unit into the Virtual
Pascal IDE, and define the conditional define KEYDLL. Save the unit under a new name,
and modify this file according to your particular needs. Compile the file, and a VP
Keyboard DLL is the result.

The interface to the DLL is quite simple, and consists of two entry points. The first entry
point, KbdInit, initialises the DLL with pointers to variables used by the keyboard handler
and VpSysLow. The second entry point, KbdUpdateEventQueues, is called regularly by
functions in VpSysLow, and should cause the mouse and keyboard event queues to be
updated with any pending events.

86 Index

Virtual Pascal User’s Guide

Index

A

assembler, 16, 24
CPU window, 74
stack frames, 44

associations
OS/2, 28
Windows, 28

auto indent, 38
auto save, 37

B

backup files, 38
blocks

persistent, 38
breakpoints, 64. See also debugging

advanced options, 70
data, 70
execution, 70
threads and, 70

C

call stack, 70
calling conventions

assembler code and, 24
C, 26, 45
pas16, 45
pascal, 45
stdcall, 26, 45

command line, 69
command line tools, 51
comments

nested, 48
compatibility. See also features

Borland Pascal, 48
classes, 23
Pointers, 23

compatibility, 21
Compatibility

Reals, 23
compile

build, 34
compile, 34
make, 34, 41
target platform, 41

compiler
command line, 51
configure, 43

compiler directives, 17
$B, 46

$D, 48, 74
$H, 47
$I, 46, 52, 71
$J, 48
$L, 48
$M, 49
$Q, 46
$R, 36, 46, 48, 52
$S, 46
$T, 47
$V, 46
$W, 44
$X, 47
$Z, 45
$Zd, 48
&AlignCode, 44
&AlignData, 44
&AlignRec, 44
&Asm, 48
&CDecl, 45
&Comments, 33, 48
&Delphi, 47
&Delphi-, 61
&far16, 45
&Frame, 44
&G3, 45
&G4, 45
&G5, 45
&Linker, 19, 51
&LocInfo, 50, 52, 63
&Open32, 26, 48
&Optimise, 26, 45, 74
&Optimize, 45
&OrgName, 44
&PMType, 49
&Size, 45
&SmartLink, 46, 48
&StdCall, 45, 48
&Use32, 21, 48, 60
automatically insert, 61
ignored, 24
VP specific, 17
VPC and, 52

Compiler directives, 24
compiler:. See also VPC
compression, 18
conditional compilation, 48
controls, 28
conventions, 7
CPU window, 73
CUA setup, 39

D

debugger

Extending Virtual Pascal 87

Virtual Pascal User’s Guide

API, 82
break on exception, 62
debug startup code, 62
display swapping, 61
extending, 82
hard PM mode, 62
integer format, 61, 67
local menu, 66
origin, 65
run in window, 62
user screen delay, 62

debugging, 58
advanced, 70
animate, 69
breakpoints, 64
call stack, 70
coprocessor, 73
CPU window, 73

CPU pane, 74
example, 74
local menu, 75

dump window, 72
evaluate expression, 66
fill memory block, 73
go to cursor, 69
inspect, 66
instruction trace, 69
modify variable, 66
object hierarchy, 72
registers, 73
reset, 63
restart, 63
run program, 62
run-time errors, 63
semantic errors, 58
show last error, 59, 63
single step, 69
stand-alone executables, 76
step over, 69
threads, 71
trace into, 69
unit list, 71
watch expressions, 66
why, 58

description, 6
direct port I/O, 17
directories, 14

by platform, 14
exe output, 50
library, 50

directory structure, 11
DOS extenders, 82
DOS stub, 18
drive substitution, 37, 83, 84
dump window, 72

E

editor

CUA, 39
syntax highlight, 38, 39

e-mail address, 8
environment variables

VPHELP, 33
evaluator, 66
example

first program, 41
second, 42

examples
Borland Pascal, 78

exceptions
catching, 65
CPU, 65
language, 62

expanding VP, 81
debugger support, 82
linker support, 81
RTL support, 81

F

features, 13
Borland Pascal, 16
Delphi 1, 16
Delphi 2 and 3, 16

files
.ASM, 48
.CFG, 40, 54
.DEF, 19, 50

creating, 54
.DLL, 17, 49, 50
.EXE, 16, 17, 49
.HLP, 55
.LIB, 36, 46, 49, 50, 52, 54, 81
.MAP, 16
.OBJ, 16, 36, 46, 49, 52, 81
.PAS, 52
.RES, 18
.SYM, 18, 27, 76
.TPH, 56
.VPH, 55, 56
.VPI, 16, 36, 52
.VPO, 27, 39, 52
executable, 36
import libraries, 36
import library, 50
include, 36
locations, 11, 36
map, 18
resource files, 37
units, 36

H

Help converter, 33, 56
Help generator, 55

88 Index

Virtual Pascal User’s Guide

history, 7

I

IDE, 13
basics, 28
blocks, 31
colours, 29
configuring, 35
editing, 30
help, 33
local menus, 29
macros, 32
menu bar, 33
navigating, 30
redo, 32
searching, 31
undo, 32
VPPM for OS/2, 13
windows, 29

ImpLib, 54
inline, 24
insert mode, 38
inspector window, 66

settings, 67
zoom, 67

installation, 10
source code upgrades, 11

K

Keyboard
Windows, 84

L

linker. See options:linker
external, 50
internal, 49

Linux, 12, 81
location information, 19, 22, 50, 63
log window, 70, 71
Lst, 22

M

macros
recording, 32
restrictions, 33
stop recording, 33

map files, 18
Mem array, 23
menus

compile, 34
debug, 34

edit, 34
file, 34
help, 35
local, 29
options, 34
run, 34
search, 34
view, 34
window, 34

N

NCP window, 73
nested comments, 48

O

object hierarchy, 72
Object Windows Library, 25
ODAPI. See debugger
Open32, 19, 26
options

auto save, 37
calling convention, 45
changing directory, 37
code generation, 44
colours, 39
compiler, 43

defaults, 43
conditional defines, 48
CPU, 45

80386, 45
i486, 45
Pentium, 45

debugger, 61
debugging, 48
directories, 36
editor, 37
error checking, 46
linker, 43, 49

application, 49
compression, 49
map file, 50

messages window, 37
mouse, 39
optimisation

debugging, 45
options, 45
speed vs size, 45

resource compiler, 36
save, 39
screen size, 37
source tracking, 37
stack size, 49
starting directory, 37
syntax, 46

Extending Virtual Pascal 89

Virtual Pascal User’s Guide

unit aliases, 49

P

parameters, 69
program type

VIO, 41
project

configuration file, 40

R

record
packed, 44

registers window, 73
resource files, 18
RTL, 17

Crt, 22
Dos, 22
Printers, 22
System, 21, 22
SysUtils, 19, 21
Use16, 21
Use32, 21
VpSysLow, 17, 21
Windows, 18

RTLI. See location information
RTTI, 16, 23
RTXDOS, 82
Run-Time Library. See RTL

S

semicolons, 59
smart linking, 17
smart tabs, 38
stub program, 18
support, 8
syntax highlight, 33, 38

file extensions, 39
sysplatformname, 84
system requirements, 7

T

target platform, 34, 41
command line compiler, 84
restrictions, 84
user-defined, 82

threads. See debugging
Turbo Vision, 25
types

AnsiString, 47
integers, 21, 22, 60
pointers, 23
reals, 23
ShortString, 48
string, 47

U

unit
introducing, 42

UNIX text, 38
uses clause, 42

V

variables
initialised, 48
storage, 66

Visual Component Library, 26
VPC

compiler directives, 52
options, 51
response file, 54
settings file, 51
syntax, 51

W

watch window, 66
local menu, 66

window
messages, 42

	CHAPTER 1
	Introduction
	About this manual
	What is Virtual Pascal?
	History of development
	System Requirements
	Conventions used
	Contacting Product support
	Acknowledgements

	CHAPTER 2
	Installation
	Running the installation program
	Component selection
	Drive selection
	Directory case
	Installation directory
	Source code and upgrades
	Finishing the installation
	Directory structure

	CHAPTER 3
	Virtual Pascal Features
	The two OS/2 IDE variants
	Key IDE Features
	The Debugger

	Key Compiler Features
	The Run-Time Library
	The built-in linker, VPLink
	Program Examples

	CHAPTER 4
	Compatibility with Borland Pascal and Delphi
	Run-Time Library compatibility
	Data Type Compatibility
	Integers
	Reals
	Pointers
	Classes

	Compiler directives
	Built-in assembler (BASM)
	Inline statements and inline subroutines
	Turbo Vision
	Object Windows Library (OWL)
	Visual Component Library (VCL)
	Code generation

	CHAPTER 5
	The VP User Interface
	Starting the VP IDE
	Text-mode controls
	File associations
	Windows of the IDE
	Local Menus
	The editor window: Colours
	Cursor navigation
	Editing
	Block operations
	Searching
	Undo and Redo
	Other editor options
	Macros
	Syntax Highlighting

	Getting Help
	The menu bar
	The VP/PM Smartbar
	Configuring the IDE
	Options|Resource compiler
	Options|Directories
	Options|Environment|Preferences
	Options|Environment|Editor
	Options|Environment|Mouse
	Options|Environment|Colours
	Options|Save options

	CHAPTER 6
	Writing programs using VP
	Writing your first program
	Your second Virtual Pascal program
	For more information

	CHAPTER 7
	Configuration and tools
	Changing settings in the IDE
	Options|Compiler
	Fastest setup
	Smallest setup
	Debug setup
	The individual configuration options

	Options|Linker
	Generating an import library

	Command-line tools
	The command line compiler VPC
	Sample VPC response file

	The Import Library manager IMPLIB
	The Help Generator HG
	The Help converter TPH2VPH

	Error Messages

	C

	CHAPTER 8
	Debugging programs with VP
	Why debug?
	Finding semantic errors
	Understanding compiler messages
	A brief note on semicolons
	Type conflicts
	The compiler setup

	Preparing to debug
	Options|Debugger

	Beginning the debug session
	Starting and stopping the program
	Run-time errors
	Run-time location information
	Breakpoints
	Exception trapping
	Examining the state of the program
	The Evaluator
	The Watch Window
	The Inspector

	Format specifiers
	Examples of format specifiers

	Stepping through the program
	Run|Animate
	Run|Parameters

	Advanced debugging
	Advanced breakpoint options
	The Call stack
	The Log window
	The Symbols window
	The Unit list
	The Threads list
	The Object Hierarchy window
	The Dump window
	The Registers window
	The NCP window
	The CPU window
	The CPU window as a stand-alone debugger

	CHAPTER 9
	VP example programs
	Common Virtual Pascal examples
	Borland Pascal examples

	Windows-specific examples
	OS/2-specific examples

	CHAPTER 10
	Extending Virtual Pascal
	Interface to the OS
	RTL support
	Linker support
	Debugger support
	Defining new targets in the IDE
	Restrictions in target definitions
	Using the Command-Line Compiler

	Win32 Keyboard Support

	Index

		2000-05-02T00:06:58+0100
	Allan Mertner
	I am the author of this document

