
Language Reference

for

Virtual Pascal
v2.1

containing

Lexical elements
Program structure
Compilation process
Untyped constants
Data types
Variables and typed constants
Expressions
Statements
Procedures and functions
Dynamic link libraries
Linker Module Definition File Reference
Compiler directives
Naming conventions
Error messages
Index

Copyright © 1996-1999 by fPrint (UK) Ltd. All rights reserved.

All brand names and product names are trademarks or registered trademarks of their respective holders.

fPrint (UK) Ltd
Riverview House
Beavor Lane
London W6 9AR
United Kingdom

Produced in the United Kingdom.

Contents 3

 Virtual Pascal Language Reference

CHAPTER 1 ... 9
LEXICAL ELEMENTS .. 9

Source file... 9
Whitespace ... 9
Comments... 10
Compiler directives .. 11
Token characters .. 11
Reserved words .. 12
Standard directives... 12
Identifiers ... 13
Literals ... 13

Integer numbers ...13
Floating point numbers ..14
Character strings ..14

Labels ... 15
Symbols .. 15
Conditional compilation... 16

CHAPTER 2 ... 18
PROGRAM STRUCTURE .. 18

Program ... 18
Unit... 18

The interface part...19
The implementation part..19
The initialisation and finalisation parts..20

Dynamic link library .. 20
Uses clause... 21
Block... 21
Scope .. 22

Record scope (i)...23
Object and class scope...23
Block scope (ii)..23
Unit scope (iii)...23

CHAPTER 3 ... 24
COMPILATION PROCESS... 24

The linking process... 25
Creating an import library ... 26
Compiling and binding resources .. 26

CHAPTER 4 ... 27
UNTYPED CONSTANTS... 27

CHAPTER 5 ... 28
DATA TYPES.. 28

Ordinal types.. 28
Integer types ... 29

Basic integer types...29
Discussion: Use32, Use16 and bits..30

Character types .. 31
Enumerated types ... 31
Boolean types ... 31
Subrange types ... 32

4 Contents

Virtual Pascal Language Reference

Floating point types ..32
Pointer types ...34
Structured types ..37
String types ...37

Short strings...37
Long strings...38

Array types ..40
Record types..41
Object and class types...43

Object type declarations ..43
Class type declarations ..45
Object and class components...47
Inheritance...48
Construction of object and class types...48
Class references ...50
Class methods..50
Compatibility rules ..51
Components and scope ..51
Component visibility ...52
Static methods ...53
Virtual methods ...53
Dynamic methods..55
Abstract methods...55
Message handler declarations..56
Message handler implementations...56
Message dispatching..57
Method activations ..57
Properties...58
Access specifiers ...60
Array properties...60
Index specifiers..61
Storage specifiers ..62
Property overrides ...63
Class-reference types...63
Summary of the two object models ...64

Set types ..64
File types...65

Procedural types ..67
Procedural type compatibility..68

Type identity..69
Type compatibility...70
Assignment compatibility ..70

CHAPTER 6 ..72
VARIABLES AND TYPED CONSTANTS..72

Variable and typed constant declarations...72
Simple-typed constants..73
String-type constants...73
Structured-type constants..74

Array-type constants..74
Record-type constants ...75
Object-type constants ..75

Address constants..76
Procedural type constants...76
Memory allocation ..76
Variable references ...77

Contents 5

 Virtual Pascal Language Reference

Qualifiers ...78
Indices ...78
Record field and object component designators ..79
Pointers and dynamic variables ...79
Variable typecasts..79
MEM arrays...80

CHAPTER 7 ... 81
EXPRESSIONS .. 81

Expression syntax... 81
Function calls... 83
Set constructors .. 83
Value typecasts... 84
The @ operator .. 84
Operators ... 85

Rules of precedence...85
Arithmetic operators ..86
Bitwise logical operators ...86
Boolean logical operators ..87
String operator ...88
PChar operators...88
Set operators ..89
Relational operators...89

Class operators .. 91
The is operator...91
The as operator ..91

Port arrays ... 92
CHAPTER 8 ... 93

STATEMENTS... 93
Assignment statements ..93
Procedure statements ...94
Goto statements ...94
Compound statements..95

Conditional statements... 95
if statements...95
Case statements ...96

Repetitive statements .. 96
Repeat statement..97
While statement ...97
For statements..98

With statements .. 99
Exception statements .. 100

The raise statement ..101
The try...except statement ..102
The try...finally statement..103

Assembler statements ... 104
Labels ..105
Prefixes..105
Instructions ..105
Pseudo instructions ..106
Asm directives ...107
Operands..107

CHAPTER 9 ... 111
PROCEDURES AND FUNCTIONS .. 111

6 Contents

Virtual Pascal Language Reference

Procedure declarations...111
Function declarations ...112
Near and far declarations ...113
Export declarations...113
Forward declarations ...113
Calling conventions ..114
External declarations..115
Assembler declarations ...115
Inline declarations ..116
Method declarations ...116

Constructors and destructors ...117
Class methods..120

Parameters..120
Value parameters ...121
Constant parameters ..121
Variable parameters...122
Untyped parameters...122
Open parameters..123

Open array constructors ...124
Type variant open array parameters...124

CHAPTER 10 ..127
DYNAMIC LINK LIBRARIES ...127

What is a DLL? ...127
The traditional method using export..127
Creating DLLs on a per unit basis ...128

Importing symbols from a DLL...128
Static import ..128
Dynamic import...129

Exporting symbols from a DLL...130
The traditional method ..130
The export directive...130
Using module definition files ..131
Exporting the entire interface part (OS/2 only) ...131

Types of DLLs ...131
Subsystems ..131
Subroutine Libraries ..132
Important notes..133
Quick DLL examples ..133

DLLs and unit initialisation code..135
APPENDIX A..136

LINKER MODULE DEFINITION FILE REFERENCE ..136
Segment attributes...138
CODE..139
DATA ..140
DESCRIPTION ...141
EXETYPE..141
EXPORTS..141
IMPORTS..143
LIBRARY...144
NAME..145
OLD ..145
SEGMENTS ..146
STACKSIZE ..147

Contents 7

 Virtual Pascal Language Reference

STUB .. 147
APPENDIX B ... 149

COMPILER DIRECTIVES.. 149
$A, &AlignData.. 149
&AlignCode.. 150
&AlignRec .. 150
&Alters ... 150
&Asm.. 150
$B ... 151
&Cdecl ... 151
&Comments.. 151
$D... 152
$DEFINE.. 152
&Delphi.. 152
&Dynamic .. 153
$ELSE... 153
$ENDIF.. 153
&Export.. 154
&Far16... 154
&Frame .. 154
&G3, &G4, &G5.. 155
$H... 155
$I .. 155
$I .. 156
$IFDEF .. 156
$IFNDEF.. 156
$IFOPT .. 157
$J.. 157
$L ... 157
$L ... 157
&Linker .. 158
&LocInfo .. 158
$M .. 158
$M .. 159
&Open32 .. 159
&Optimise, &Optimize... 159
&OrgName... 160
$P ... 160
&PmType.. 160
&PureInt .. 161
$Q... 161
$R ... 162
$S.. 162
&Saves ... 162
&SmartLink .. 163
&Speed ... 163
$StdCall.. 163
$T ... 163
$UNDEF .. 164
&Use32 .. 164
&Uses... 164
$V ... 164

8 Contents

Virtual Pascal Language Reference

$W ...165
$X..165
$Z ..165
&Zd ...165

APPENDIX C..166
THE OPEN DEBUG API (ODAPI)...166

The debugger DLL ..166
The ODAPI System Interface ..166
The ODAPI IDE Interface...167
ODAPI Types ..168
ODAPI Examples ..169

APPENDIX D..170
ERROR MESSAGES..170

Compiler error messages ..170
Run-time error messages ..184

APPENDIX E ..187
NAMING CONVENTIONS ...187
INDEX ..188

Lexical elements 9

 Virtual Pascal Language Reference

C H A P T E R 1

Lexical elements
This chapter describes the lexical level of the Virtual Pascal Language. From the lexical point of
view, a Pascal program consists of a set of small units, known as tokens. They include identifiers,
reserved words, constants, literals, comments, etc. Tokens can be grouped together to form more
complex structures such as expressions and statements. Tokens are easily identified in the Integrated
Development Environment (IDE) editor when syntax highlighting is on - they are displayed in
different colours.

Source file
The source code of a program is a simple ASCII text file, which can be created by any text file
editor, such as the IDE editor, the E editor supplied with OS/2 or Notepad in Windows. The Virtual
Pascal Compiler recognises MS-DOS style text files, where Carriage Return (ASCII 13) and Line
Feed (ASCII 10) characters are used as the line delimiter. UNIX style text files, where a single Line
Feed (ASCII 10) is used as the line delimiter, are not supported. These must be converted before
compilation, e.g. by means of the IDE editor. The length of a line may not exceed 255 characters;
using files with lines longer than this limit produces a compiler error. However, if the program is to
be compatible with other Pascal compilers (Borland Pascal, Delphi), it is recommended not to create
lines longer that 126 characters, which is the maximum line length supported by these.

The source text can be divided into several files. In this case one of the files is the main or primary
file and the others can be included through the compiler directive {$I filename}. See page 156 for
more information about the $I compiler directive.

Whitespace
Whitespace is a collective name given to spaces (blanks) and control characters such as horizontal
and vertical tabs and new line characters. Whitespaces are used to separate tokens and the compiler
discards them. The ASCII characters representing whitespaces can also occur within literal strings,
in which case they are protected from the normal parsing process. Control ASCII characters (with
codes 0 through 31) and the space character (ASCII 32) are treated as whitespace.

10 Lexical elements

Virtual Pascal Language Reference

Whitespace control characters

dec hex ctrl esc dec hex ctrl esc
00 00 ^@ NUL 16 10 ^P BS
01 01 ^A SOH 17 11 ^Q HT
02 02 ^B STX 18 12 ^R LF
03 03 ^C ETX 19 13 ^S VT
04 04 ^D EOT 20 14 ^T FF
05 05 ^E ENQ 21 15 ^U CR
06 06 ^F ACK 22 16 ^V SO
07 07 ^G BEL 23 17 ^W SI
08 08 ^H BS 24 18 ^X CAN
09 09 ^I HT 25 19 ^Y EM
10 0A ^J LF 26 1A ^Z SUB
11 0B ^K VT 27 1B ^[ESC
12 0C ^L FF 28 1C ^\ FS
13 0D ^M CR 29 1D ^] GS
14 0E ^N SO 30 1E ^^ RS
15 0F ^O SI 31 1F ^_ US

Comments
Comments are pieces of text that are used by the programmers to annotate a program. The compiler
ignores comments; they are stripped from the source file before parsing. Comments must adhere to
the following syntax:

The following types of comments are recognised by Virtual Pascal:

• Any sequence of characters placed after the symbol pair (*, the comment terminates at the first
occurrence of the pair *).

• Any sequence of characters placed after the { symbol, the comment terminates at the first
occurrence of the } symbol.

• Any sequence of characters placed after the symbol pair //, the comment terminates at the end of
the current line.

• Nested comments are allowed, provided they are of the different types. For example,

comment text character

compiler directive &

$

comment { }

comment text(∗∗∗∗ ∗∗∗∗)

comment text

new line character //

Lexical elements 11

 Virtual Pascal Language Reference

{ Use (*$D+*) to enable debug information }

is a valid comment, while

{ Use {$D+} to enable debug information }

is only valid in the {&Comments+} state, since the comment ends at the first } in the default
{&Comments-} state.

Note, that only {} comments can be nested in the {&Comments+} state; (* *) comments can
never be nested.

Compiler directives
Compiler directives are a special type of comment that provide additional information to the
compiler and control the compilation process. Compiler directives begin with either {$ or (*$ and
are followed by the name of the directive. To specify Virtual Pascal specific compiler directives it is
possible to use an ampersand (&) instead of the dollar sign ($). Such a directive is recognised by
Virtual Pascal, but is ignored by other Pascal compilers such as Borland Pascal. Throughout the
manual, all Borland Pascal directives supported by Virtual Pascal are used with a $ sign, while all
Virtual Pascal specific ones are listed with an & sign. For a complete description of Virtual Pascal
compiler directives see the Appendix starting on page 149.

Note
There must be at least one whitespace or a comment between two tokens if both of them are
reserved words, identifiers, labels or numbers.

Token characters
Tokens of Virtual Pascal are comprised of characters from the following groups:

• Letters:

• Underscore:

• Digits:

• Hexadecimal digits:

_ underscore

9

0 digit

letter A

Z

a

z

12 Lexical elements

Virtual Pascal Language Reference

• Single symbols:

+ - * / = < > [] . , () : ; ^ @ { } $ # &

• Symbol pairs:

<= >= := .. (* *) (. .)

The (. symbol pair is synonym to [and .) is equivalent to].

Reserved words
Reserved words are words reserved for special purposes and must not be used as identifier names.
Reserved words are not case-sensitive, so UNIT, Unit and unit are equivalent. The following table
lists all reserved words of Virtual Pascal.

and exports mod shr
array file nil string
as finalization not then
asm finally object threadvar
begin for of to
case function on try
class goto or type
const if packed unit
constructor implementation procedure until
destructor in program uses
div inherited property var
do initialization raise while
downto interface record with
else is repeat xor
end label set
except library shl

Standard directives
Unlike reserved words, standard directives are reserved only in certain contexts and they can be
redefined. However, to avoid confusion, this is not recommended. Standard directives are
highlighted as reserved words in the IDE editor. Standard directives are not case-sensitive. Here is
the list of standard directives:

0 hex digit

9

A

a

f

F

Lexical elements 13

 Virtual Pascal Language Reference

absolute external near published
abstract far nodefault read
assembler far16 orgname resident
at forward override stdcall
cdecl index pascal stored
default inline private virtual
dynamic message protected write
export name public

Identifiers
Identifiers are arbitrary names of any length given to variables, procedures, functions, types, objects,
etc. Only the first 63 characters of an identifier are significant. Identifiers are composed of letters,
digits or underscores and the first character of an identifier must be a letter or an underscore.

The case of the characters is not significant. Although identifier names are arbitrary (excluding the
reserved words), it is not possible to use the same name for more than one identifier within the same
scope (see the scope rules on page 22 for details). If identifiers have the same name and are located
in different modules, it is possible to qualify the identifier with a module identifier in order to select
a specific instance. In this case the module identifier should be followed by a period (.) and the
identifier name for example ModuleName.IdentifierName. An identifier combined in this way is
called a qualified identifier.

Literals
Literals are tokens representing numeric integer and floating point, character and string values.

Integer numbers
Integer numbers can be decimal (base 10) or hexadecimal (base 16). In order to distinguish
between decimal and hexadecimal numbers, hexadecimal ones must start with a dollar sign ($).

Decimal values from 0 to 2147483647 are allowed. Constants exceeding this limit produce a
compiler error. Decimal constants must use the digits 0 to 9, with leading 0s not being
significant.

digit
underscore

letteridentifier
letter

underscore

integer number literal

real number

character string

qualified identifier identifier

.

14 Lexical elements

Virtual Pascal Language Reference

Integer numbers starting with $ are taken to be hexadecimal. Hexadecimal constants must be in
the range $0 to $FFFFFFFF. Hexadecimal constants out of this allowed range produce a
compiler error.

Floating point numbers
For floating point numbers, the conventional and scientific notations are used. A floating point
constant consists of a decimal integer, a decimal point, a decimal fraction (optional), e or E and
a signed integer exponent (optional). A floating point constant must begin with a decimal digit,
so .5 is not allowed. It is allows to omit either the decimal point with the optional decimal
fraction or the letter e (or E) and the signed integer exponent, but not both. If both of them are
omitted, the number is taken to be an integer, which is why whole numbers outside the Longint
range must contain a non-empty fraction part.

Examples:

Constant Value Value
0. 0 0
1.0 1 1
12.34e5 1.234 x 106 1234000
1e-2 1 x 10-2 0.01
2e3 2 x 103 2000

Character strings
Character strings form a special category of literals used to handle fixed sequences of characters.
Character strings are a sequence of zero or more characters enclosed in single quotes.

integer part digit

fraction part . digit

real number integer part

fraction part

fraction part

exponent part

exponent part

exponent part

e

E
+

integer number
-

digit

$

integer number

hex digit

Lexical elements 15

 Virtual Pascal Language Reference

A string constant that has no characters between the quotes is an empty string. It is possible to use
any ASCII characters (including whitespace) between quotes, but string constants must totally reside
in one source line. In order to include the single quote character within a string constant it should be
repeated, for example:

 ’I’’m busy!’

Virtual Pascal allows control characters to be embedded in string constants. The # character
followed by an unsigned integer between 0 and 255 denotes a character with the corresponding
ASCII code.

The caret character (^) followed by a letter A to Z or a to z, or the characters @ [\] ^ denotes the
corresponding control character. For example, ^G denotes the bell ASCII character (#7).

If several control characters are part of a string constant, there must be no whitespace or comment
between them.

Example:

’**Error** Can’’t open file QQ.TXT’#$0D#$0A^G

Labels
Labels are special types of tokens that are used to mark statements. Control can be transferred
control to a statement marked by a label by means of a goto statement. A Label can be represented
either as an integer number in the range 0 to 9999 or an identifier.

Symbols
The following symbols and symbol pairs denote the arithmetic, relational and pointer operators:

integer number label

identifier

character string

any char except ’ or CR
’ ’

’ ’

integer number

[\] ^ _

^

Z@ A

16 Lexical elements

Virtual Pascal Language Reference

Symbols Operation
+ addition, concatenation or union
- subtraction, difference
* multiplication, interaction
/ division
= equal
< less
> greater
<= less or equal
>= greater or equal
@ pointer operator (taking an address)

The brackets [and] or their synonyms (. and .) indicate single and multidimensional array
subscripts. They are also used in the set and open array constructors. The parentheses (and) group
expressions, indicate function or procedure parameters, enclose array, record and object constants,
etc.

The comma (,) separates the arguments of a function or procedure call, unit names in the uses
clause, variable identifiers of the same type in a variable declaration, elements of an array in array
constants, expressions in a set constructor, etc.

The colon (:) separates a variable identifier and its type in a variable declaration, record or object
names and initialisation expression in record or object constants, indicates labelled statement, etc.

The semicolon (;) is a statement and declaration separator. It is also used to separate initialisation
parts of each field in record or object constants.

The period (.) is used to denote a field qualifier.

The caret (^) is used as a pointer qualifier to dereference a pointer.

The := symbol pair denotes the assignment operator.

The .. symbol pair separates the lower and upper bounds of a subrange.

Conditional compilation
Virtual Pascal supports conditional compilation. Conditional compilation is based on the evaluation
of a certain condition depending on which one or another part of the code is compiled. There are two
types of conditions: the first one checks whether a conditional symbol is defined or undefined, the
second one checks whether a switch compiler directive is turned on or turned off. Conditional
compilation is implemented by constructs which resemble Pascal if statements. The following
compiler directives are used in the first case:

• {$IFDEF Symbol} the condition is True if Symbol is defined

• {$IFNDEF Symbol} the condition is True if Symbol is undefined

and these directives are used in the second case:

• {$IFOPT SwitchDir+} the condition is True if the directive SwitchDir is enabled

• {$IFOPT SwitchDir-} the condition is True if the directive SwitchDir is disabled.

The part of the code which should be compiled is defined through the following constructs:

Lexical elements 17

 Virtual Pascal Language Reference

{$IFxxx}
...
{$ENDIF}

The source text between these two directives will be compiled if the condition, specified in
{$IFxxx} is True, otherwise it will be ignored.

{$IFxxx}
...
{$ELSE}
...
{$ENDIF}

If the condition, specified in {$IFxxx} is True, then the source text between {$IFxxx} and {$ELSE}
will be compiled, otherwise the part of the source text between {$ELSE} and {$ENDIF} will be
compiled.

Conditional compilation constructs can be nested as deeply as needed.

Conditional symbols for conditional compilation can be defined in two different ways:

• initial conditional defines, specified using the /D switch of the command-line compiler or in the
Options|Compiler|Conditional defines input box within the IDE.

• in the text of the program, using the directive {$DEFINE Symbol} to define a conditional
symbol and {$UNDEF Symbol} to undefine it.

Conditional symbols are constructed as Pascal identifiers, they must start with a letter or an
underscore followed by any combination of letters, underscores or digits. They can be of any length,
but only the first 63 letters are significant. However, conditional symbols have no relation to Pascal
identifiers. They cannot be evaluated in a program just as any other entities from a program can not
be used in conditional compilation constructs.

Virtual Pascal always defines the following conditional symbols:

• CPU86 and CPU386 indicates that the CPU belongs to the 80x86 processor family.

• CPU87 indicates that the coprocessor is available. Even if there is no hardware coprocessor
installed, it will be emulated by OS/2.

• OS2 indicates that the target operating system is OS/2 and is set when the target platform is set
to OS/2. This symbol can be used when writing portable code which will run under different
operating systems.

• WIN32 indicates that the target operating system is 32-bit Windows and is set when the target
platform is set to Win32.

• USE32 indicates that the compiler produces 32-bit object code. This can be used to check it
when writing 16-bit/32-bit portable code, for example while writing assembler code.

• VER21 indicates the version of the compiler. Future versions will have their own predefined
conditional symbols.

• VIRTUALPASCAL indicates that you are using the Virtual Pascal compiler.

18 Program structure

Virtual Pascal Language Reference

C H A P T E R 2

Program structure
The following chapters describe the syntax of the Virtual Pascal Language. The syntax of the
programming language provides a set of rules, defining the legal order of tokens and how they can
be combined to make up a program.

Standard Pascal features no separate compilation units and all the text of a program must be written
in one module, called the program module. Later, modular programming appeared and separate
compilation units, known as units, were introduced, allowing large applications to be divided into a
set of logically related modules. Units are compiled separately. The final executable file is made by
statically linking a program module by combining all the units that the program module uses.

Modern operating systems such as Windows 95, Windows NT and OS/2 allow the use of dynamic
linking as well as static linking. Dynamically linked modules are combined into a dynamic-link
library (DLL), and other applications are allowed to use part of its variables, procedures and
functions. The actual linking of a program that uses several dynamic-link libraries takes place
dynamically either during the loading of the program into memory or during execution of the
program.

Virtual Pascal supports all of the above-mentioned types of compilation modules. In the description
below, the term module is assumed to be either program, unit or library.

Program
The syntax diagram below shows the main components of a Virtual Pascal program: a program
heading, an optional uses clause and a block .

Unlike standard Pascal, the program header is optional and it is not required to specify the standard
input and output files in the program header. These files are declared in the System unit and can
always be used, irrespective of whether they are declared in the program header. If no program name
is given, a default name of Program is assumed.

Unit
Units are separate compilation modules, allowing a large application to be divided into a set of
logically related parts. The following diagram shows the main components of a unit:

implementation part

initialisation and finalisation parts

unit ; unit interface part unit identifier

.

uses clause
.block

identifier
) (identifier

;programprogram

Program structure 19

 Virtual Pascal Language Reference

The unit identifier must be unique and must reside in a Pascal source file with an identical name (not
counting the .PAS extension). If it is not, the compiler will not be able to find the source and/or
binary file during compile time. Although the length of the unit name may exceed 8 characters on
HPFS, NTFS or VFAT partitions, to retain compatibility with other platforms and file systems, it is
recommended not to declare units with names longer than 8 characters.

As with other identifiers, unit names may not contain spaces.

The interface part
Any constants, types, variables, procedures and functions that are declared in the interface part are
accessible not only from within the unit, but also for any unit, program or library which uses the
unit. For this reason, they are called public.

The interface part contains only procedure and function headings which are in fact forward
declarations. The actual defining declaration with a statement part should be present anywhere in the
implementation part of the unit. The exceptions to this rule are inline procedures and functions that
contain their statement part just after the heading definition in the interface part of the unit (See page
116).

The following diagrams show the syntax of the interface part:

The implementation part
The implementation part contains the actual implementation of all procedures and functions declared
in the interface part. Constants, types, variables, procedures and functions that are declared only in
the implementation part are accessible only from the unit itself; they are not visible from a module
using it and are called private. Here is the diagram for the implementation part:

Note, that it is possible for a unit only to define types, constants and inline procedures and functions.
In this case, the implementation part may be empty and consist just of the reserved word
implementation. See also the section about pure interface units on page 161.

implementation part implementation
uses clause

declaration part

procedure and
function declaration

 part inline directive ;
; procedure declaration

function declaration

interface part interface
uses clause constant declaration part

type declaration part

variable declaration part

procedure and function
declaration part

20 Program structure

Virtual Pascal Language Reference

The initialisation and finalisation parts
The initialisation part contains statements that will be executed upon program start-up, before the
statement part of the program receives control. The initialisation code of different units are executed
in the order in which the units appear in the program’s uses clause. The finalisation part contains
statements that are executed when the program is shut down. The finalisation code of different units
is executed in the reverse order of execution of the initialisation code.

Internally, Virtual Pascal implements this by generating a call to the AddExitProc procedure at the
beginning of every initialisation statement, adding the finalisation statements into the list of exit
procedures to be executed when the program terminates. For this reason, the finalisation part must
be present only if an initialisation part is present.

The finalisation part must be prepared to handle partially initialised data. This can happen in various
cases, for example when the initialisation part of a unit invokes the Halt or RunError standard
procedures to terminate the program because of an unrecoverable error – the finalisation code must
handle this case correctly.

If no initialisation and finalisation is needed for a unit, its initialisation and finalisation parts consist
of the reserved word end only. Use non-empty initialisation and finalisation parts only when it is
really necessary, because it reduces the chances of smart linking out unused code. Even if the
program only uses untyped constants and types declared in the unit, the initialisation and finalisation
parts (including all variables, procedures and functions used by them) will be linked into the
program.

For compatibility with Borland Pascal, the reserved word begin can be used to start the initialisation
part.

Dynamic link library
A dynamic link library is a dynamically linked executable module that allows other applications to
use parts of its variables, procedures and functions. When a program is running and it uses a DLL’s
variables, procedures or functions, the references in the program are dynamically linked to the
corresponding entry points in the DLL. The following diagram defines the structure of a DLL:

identifier ;library library block

.

uses clause

initialization statement

; begin

end

initialisation part
initialization statement

;

end

begin

finalization statement

;

Program structure 21

 Virtual Pascal Language Reference

A DLL has the same structure as a program, except that the reserved word library must be present.
For a detailed guide on how to write dynamic link libraries, refer to the chapter Dynamic link
libraries on page 127.

Uses clause
The uses clause lists all units that are used by a program, a library or a unit.

The uses clause may not necessarily include all units that are actually linked into the program or
library, since units can be included indirectly by themselves being used by units present in the uses
clause. When including a unit in the uses clause, all declarations in the interface part of that unit
become available for use in the program.

The System unit, containing all predefined (built-in) variables, procedures and functions, is always
implicitly used as if it was included as the first unit in the uses clause (in the interface uses clause
of the unit). It does not need to be listed explicitly in the uses clause.

In the {&Use32+} state, the Use32 unit is also implicitly included in the interface uses clause (See
also page 164).

To explicitly specify the full path and file name of the unit, the in reserved word can be used,
followed by the name of the unit in quotes. Delphi uses this syntax when including units defining
forms.

Example:

uses
 SysUtils, VPUtils, MyUnit,
 MyFuncs in ‘c:\vp\source\myfuncs.pas’;

Block
A block is part of a program, unit, procedure, function or method declaration, containing a list of
declarations and a statement part. Virtual Pascal allows the use of any number of declaration
sections in any order. Here is the syntax of a block:

The declaration part is used to declare program objects: labels, types, constants, variables,
procedures and functions. Since Virtual Pascal is a one pass compiler, i.e. it generates code by
parsing the source code of a program only once, every identifier or label must be declared before it
is actually used.1

1 The exception to this rule is the declaration of pointer types. Pointer types can be declared as pointing to not-yet-defined
identifiers. The identifier pointed to must be defined elsewhere in the same type declaration part.

block declaration part statement part

,

identifier uses clause uses ;
in ‘unit path’

22 Program structure

Virtual Pascal Language Reference

All declarations in the declaration part are local to the block in which they are declared. The syntax
of each declaration part is shown below:

An exports clause specifies which procedures or functions are to be exported by a dynamic link
library. See the description on how to export symbols from a DLL on page 130.

The statement part consists of a compound statement which implements the required functionality of
the program, procedure or function.

Scope
The scope of an identifier or label is that part of the program in which the identifier (or label) can be
used to access the entity it identifies (or statement it marks).

The rules of scope define the order in which the compiler looks for an identifier or a label. When an
identifier or a label is encountered, it is searched for starting from the innermost scope and ending in

type declaration part type type declaration

procedure and function declaration part procedure declaration

destructor declaration

constructor declaration

function declaration

compound statement statement part

declaration part

type declaration part

variable declaration part

procedure and function declaration part

exports clause

constant declaration part

label declaration part

label label declaration part label ;

,

typed constant declaration

constant declaration part const constant declaration

variable declaration part var variable declaration

threadvar

Program structure 23

 Virtual Pascal Language Reference

the outermost one. All identifiers must be unique within a particular scope. This ensures that no
ambiguity arises during the searching process.

There are three categories of scope: (i) record, class and object; (ii) block (or local); and (iii) unit
scope. These depend on how and where identifiers are declared. Record, class and object scopes are
the innermost ones, followed by block scope and outermost unit scope.

Record scope (i)
The scope of a field identifier with record scope starts at the declaration point and ends at the end of
the record-type definition. It includes field designators and with statements used with the given
record-type.

Object and class scope
The scope of a component identifier with object and class scope starts at the point of declaration and
ends at the end of the object or class-type definition. The scope includes all descendants, all blocks
of all method declarations of an object or class type, field, method and property designators, in
addition to with statements acting on the given object or class-type.

Block scope (ii)
The scope of an identifier or label with block (or local) scope starts at the declaration point and ends
at the end of the block containing the declaration (such a block is known as an enclosing block).

If an enclosing block contains an inner block, an identifier or label declared in the enclosing block
can be re-declared within the inner block. After the end of the inner block, the identifier or label will
have the same meaning as it had before.

Unit scope (iii)
The scope of an identifier declared in the interface part of a unit extends over all programs, units or
libraries which use this unit. Each unit in the uses clause introduces an outer scope which encloses
all scopes of other units in the uses clause, listed later.

This means that if two or more identifiers with the same name are located in different units and both
are included in the uses clause, the identifier which is declared last in the list of units will be visible.
Since the System is always included implicitly as the first unit in the uses clause, it has the outermost
scope. (One way of remembering this is: If the scope rule had worked the “other way”, it would
have been impossible to redefine System unit functions).

To override the scope rules and select an identifier from a particular unit, qualify its name with a
module name. For example, Dos.DosError will select the DosError identifier in the unit named Dos.

The scope of identifiers declared in the implementation part includes the implementation block of
that unit only, from the point at which it is defined.

24 Compilation process

Virtual Pascal Language Reference

C H A P T E R 3

Compilation process
The following picture illustrates the process of building an application using Virtual Pascal. When
using the built-in linker, the steps involving the linker take place transparently to the user.

Initially, the source code for the program and all used units is compiled by the Virtual Pascal
compiler, VPC. The output of this is standard OMF-386 (Object Module Format) object (.OBJ) or
library (.LIB) files. Note, that if a unit has no code (it is simply used to define constants and types),
no object code is generated and there is no .OBJ or .LIB file for it.

A .LIB file is generated for a unit if smart linking is enabled ({&SmartLink+} state), otherwise, an
.OBJ file is produced. The term smart linking means that unused variables, typed constants,
procedures, functions and objects are not linked into the executable, thus reducing the size of the
final program. To make this possible, each const and var declaration section, procedure and
function is separated into its own object module (all stored inside the resulting .LIB file). When
smart linking is enabled, the compiler cannot generate assembler code for the unit, and DLLs
compiled with smart linking enabled cannot be symbolically debugged from the Virtual Pascal IDE.
Unless this is required there is no reason to disable smart linking.

In the {&SmartLink-,Asm+} state, the compiler generates a readable 386 assembly source (.ASM)
file in addition to the object code. This file can be compiled by MASM version 6.0 or later and
TASM version 3.0 or later.

In the {$D+} or {&Zd+} state, the Pascal source lines are included in the assembler source as
comments, thus showing the source lines alongside the corresponding CPU instructions generated by
Virtual Pascal.

The .VPI file also generated by the compiler is a Virtual Pascal Interface file. A VPI file contains
precompiled interface symbol information and is the only proprietary version-dependent file format

.PAS

VPC

.VPI .LIB .OBJ .LNK

LINKER

(VPC)
.DEF .LIB

IMPLIB

.DEF .DLL

RE

RE

RC

.RC

.EXE
.RES

IDE

.ASM

.DLL.MAP

Compilation process 25

 Virtual Pascal Language Reference

used by the Virtual Pascal compiler. In spite of this, it is still possible to distribute the unit object
code without making the source available. Please refer to the description of the {&PureInt+}
directive on page 161 for directions on how to do this.

Unlike compilers for other high level languages, Virtual Pascal units can not be compiled separately,
but are always compiled as a group. In order to keep track of dependencies between units, the
compiler treats them as a group, which is why make and build facilities are built in to the compiler
and accessible from the IDE via the Compile menu.

When building a module, the compiler automatically recompiles the unit and all units used by it,
including implicitly used ones.

When making a module, the compiler checks whether any dependent units have been changed since
the last compile and recompiles them if necessary. The compiler checks the current module and all
dependent units for the following conditions:

• if the source file for a unit has been modified since the .VPI file was created, the unit is
recompiled;

• if the unit source file includes (Using the {$I} statement) one or more include files and one or
more of them is newer than the .VPI file, the unit is recompiled;

• if the interface of a unit has been changed, all units using it are recompiled.

One difficulty arises when two or more units use each other. The compiler is able to recompile a
dependent unit that uses it, only when its own interface part already has been compiled. For this
reason, mutually dependent units may not use each other in the interface parts. It is possible for one
unit to use the other in the interface part, but the other one must use the first one in the
implementation part.

More complex situations may appear with more than two mutually dependent units and the compiler
checks for a circular path in the interface part uses chains of all mutually dependent units. If it finds
one, a ’Circular unit reference’ error is reported. To avoid this, it is recommended to include used
units in the implementation part uses clause whenever possible.

The compiler also generates a .LNK file, which is primarily of use when using an external linker. In
this case, the generated .LNK file is passed to the linker program. A .LNK file is a text file
containing a list of object and library files comprising the module, the module definition file name
(if the compiler found one) and a map file name to be generated when applicable. The .LNK file can
be examined to see a list of all units that are linked into the executable. By examining the extension
(.OBJ/.LIB) of the files listed, the &SmartLink setting used to compile each unit can be
determined.

The linking process
Virtual Pascal produces only standard object records (no proprietary extensions), which can be
linked by any 32-bit OMF linker capable of generating OS/2 Linear eXecutable (LX) or Win32 PE
files. Virtual Pascal includes a highly efficient built-in linker capable of linking for both these
targets and using an external linker is rarely, if ever, required.

The object and library files produced by the compiler are linked together to form the final executable
file. External object or library files and import library files must be specified using the
{$L FileName} compiler directive (refer to page 157 for details).

The module definition file (.DEF) is an optional file containing detailed information about the
executable. If present, the module definition file must have the name of the primary program or
library file (with a .DEF extension) and must be located in the same directory. Alternatively,

26 Compilation process

Virtual Pascal Language Reference

module definition statements can be included directly in the source code of the program, using the
{&Linker} directive described on page 158.

When using an external linker, the content of a {&Linker} directive will be extracted from the
source text and stored in a .DEF file of the same name, overwriting another .DEF file of the same
name.

The linker can generate a map file containing information about segments by setting the IDE
Option|Linker|Map file setting to Segments only. More detailed information can be obtained by
setting it to Detailed. The detailed information includes a list of public symbols and their addresses,
imported symbols, detailed segment information and a list of all line numbers and their addresses in
code.

With a map file available efficient bug finding is possible. If a customer reports an error, it is easy to
find the error location if the original map file is available. This does not affect the size of the
executable file.

For a more advanced approach to the problem of locating run-time errors, please refer to the
information on the {&LocInfo} switch directive, described on page 158.

Creating an import library
When compiling a dynamic link library file, the IDE can automatically create an import library for
it. This has the same name as the primary file of the library, has a .LIB extension and is placed in the
directory that is listed first in the Options|Directories|Library directories input box.

An import library contains information about all symbols exported by the DLL and can be used with
a DLL to tell the compiler which symbols are defined in it.

Two default import libraries, OS2.LIB and IMPORT32.LIB, contain the import declarations of the
OS/2 and Win32 API functions, respectively. These libraries should not be specified using {$L
FileName} directives; the correct one is automatically included based on the destination platform
chosen in the Compile menu.

In the IDE, the Options|Linker|Generate import library radio buttons specify which file (module
definition or DLL executable) should be taken as the source to create the import library. If the None
radio button is selected, an import library is not generated when creating a DLL.

Compiling and binding resources
Resources include icons, cursors, bitmaps, menus, dialogue boxes, fonts, string tables and other
user-defined data. Virtual Pascal is capable of converting several kinds of resources (.RES files) to a
format appropriate for the target platform and linking them into the executable.

To generate the resource files, a resource editor is usually required; resource compilers and editors
are included with all Borland Pascal products; OS/2 is delivered with a default resource compiler,
RC.EXE.

If a resource file with the same name as the main program file is found in the same directory (but
with a .RES extension), it is automatically linked into the executable.

Additionally resource files can be included (from either the program file or a unit) by using the {$R
ResFile} directive.

Untyped constants 27

 Virtual Pascal Language Reference

C H A P T E R 4

Untyped constants
A literal may be given a name. A named literal is called an untyped constant or simply a constant.
The value of the constant is defined once and can not be changed. In addition to literals, a constant
expression can be used to define the value of an untyped constant. Untyped constants are defined in
the constant declaration section.

A constant expression is an expression that can be evaluated at compile time. Its factors must be
previously defined constants, constant addresses (obtained via the address operator @, or one of
Addr, Ofs, TypeOf, TypeInfo) or calls to the following standard functions:

Abs Length Ord Succ
Addr Lo Pred Swap
Chr Low Ptr Trunc
Hi Odd Round TypeOf
High Ofs SizeOf TypeInfo

Examples:

const

A = 0;
B = 1000;
AB = Abs(A - B);
Average = AB div 2;
space = ’ ’;
readme = ’ These are constants:’;
length = SizeOf(readme);
file = readme + space +’1 2 3 4 5’;
Set1 = [0..100];
Set2 = [101..150];
UnionSet = Set1 +Set2;

constant expression

constant declaration identifier literal = ;

28 Data types

Virtual Pascal Language Reference

C H A P T E R 5

Data types
This chapter contains a description of the Virtual Pascal language data types. The term type is a
fundamental concept of programming languages. Program objects, such as constants, variables,
procedures and functions, expressions, etc., always have an associated type. The type defines the set
of values that a program object can have as well as the operations that can be performed on it.
Virtual Pascal provides a set of basic fundamental types as well as a mechanism for creating new
user-defined types.

Types are declared in the type declaration section, which has the following format:

Ordinal and real types are also known as simple types.

This chapter contains only a brief description of operations and standard functions. A detailed
description of standard procedures and functions is given in the Runtime Library Reference which is
included as part of the online help useable from within the Virtual Pascal IDE. More information
about operators can be found in the Expressions chapter on page 81.

Ordinal types
Ordinal types are types whose values can be enumerated. For each value of an ordinal type, there is
a corresponding numeric ordinal number returned by the Ord standard function. The Succ and Pred
standard functions return the next and the previous value of a given ordinal argument, respectively.
The Low and High standard functions return the lowest and the highest value for a given ordinal
argument.

The following relational operators can be applied to values of any ordinal type:

 = > < > <= >=

They compare ordinal numbers of two ordinal type values; = denotes equality, > “larger than” and <
“less than”.

type ordinal type

real type

string type

structured type

pointer type

procedural type

type identifier

type = ;type declaration identifier

Data types 29

 Virtual Pascal Language Reference

Integer types
Integer types are ordinal types that denote a specific subset of whole numbers. The ordinal number
of an integer type value is the value itself. Virtual Pascal provides a number of basic predefined
integer types.

The size and range of the basic integer types is shown in the following table.

Table 2-1. Basic integer data types
Type Range Format Size (bits)
ShortInt -128..127 Signed 8
SmallInt -32768..32767 Signed 16
Longint -2147483648..2147483647 Signed 32
Byte 0...255 Unsigned 8
SmallWord 0...65535 Unsigned 16
Cardinal 0..2147483647 Unsigned 31

In addition to the basic types, Virtual Pascal provides the types Integer and Word. They are defined
in the System unit as follows:

type
 Integer = SmallInt;
 Word = SmallWord;

The primary aim of Virtual Pascal is to be a 32-bit cross-platform compiler, compatible with 16-bit
Borland Pascal for DOS as well as 16- and 32-bit Borland Delphi Object Pascal. However, one
main obstacle to achieving the level of compatibility required is that the 3 compilers use different
sizes of the basic integer type. The following paragraphs outline the problem and the various
solutions provided by Virtual Pascal.

Basic integer types
The basic integer types defined in the System unit of Virtual Pascal are compatible with 16-bit
Borland Pascal. However, using 16-bit integer variables on a true 32-bit processor is inefficient and

ordinal type integer type

character type

enumerated type

boolean type

subrange type

integer type ShortInt

SmallInt

Longint

Byte

SmallWord

Cardinal

30 Data types

Virtual Pascal Language Reference

we recommend including the Use32 unit in the uses clause of every unit. This unit redefines the 16-
bit integer types Integer and Word as the 32-bit Longint type. In Borland Pascal, the SmallInt and
SmallWord types are not defined; in Delphi, only the SmallInt type is defined. To increase cross-
compiler usability and compatibility, the SmallInt and SmallWord types are defined in the Use32
unit if it is compiled by any compiler other than Virtual Pascal; these are defined in the System unit
of Virtual Pascal. To add to the confusion, 32-bit Delphi defines Word as a 16-bit unsigned type.

Discussion: Use32, Use16 and bits
The use of the Use32 unit ensures that all basic types of Virtual Pascal have the same size and range
regardless of the compiler used to compile the program (Borland Pascal, Virtual Pascal or Borland
Delphi). Where the size of integer variables is significant, for example when saving/retrieving
information from binary files, the basic integer types with a well-defined size (such as SmallInt)
should be used. In all other cases, the Integer and Word types should be used: since these change
size depending on platform and compiler used, this maximises performance.

The {&Use32+} directive, introduced in Virtual Pascal v2.0, automates the procedure described
above. When this directive is defined, the compiler implicitly includes the Use32 unit in the uses
clause just after the System unit, before any other units are included. By default, the {&Use32}
directive is disabled but should be enabled for programs written in Borland Pascal.

When the {&Use32 +} directive is enabled, it is possible to revert to the 16-bit integer types in
selected units, either by changing the setting to {&Use32 -} at the beginning of the unit, or by
including the Use16 unit in the uses clause. The Use16 unit effectively cancels the type re-
definitions done by the implicitly included Use32 unit.

As opposed to Borland Pascal, Delphi Object Pascal was designed with both a 16-bit and a 32-bit
version of the compiler in mind. In Delphi, the concept of fundamental and generic types has been
introduced. The fundamental types in Delphi Object Pascal are ShortInt, SmallInt, Longint, Byte and
Word. The ranges of these fundamental types are independent of the underlying CPU and operating
system and do not change across different implementations. They have the same meaning in Virtual
Pascal as in Delphi.

The generic integer types are Integer and Cardinal, the ranges and format of which depend on the
underlying CPU and operating system. For the 16- bit version of the Delphi compiler they are 16-bit,
for the 32-bit version they are 32-bit. In all Delphi programs, the Integer and Cardinal types are
usually used, resulting in more efficient integer operations for the underlying CPU and operating
system. For this reason it is not necessary nor recommended to include Use32 into the uses clause of
a Delphi program. Instead, the Virtual Pascal SysUtils unit is used to redefine the meaning of the
type Integer to be equivalent to the Longint type. As a result, including SysUtils in the uses clause
makes Virtual Pascal programs compatible with the 32-bit Delphi compiler. The SysUtils unit is
included automatically in the interface uses clause by the Delphi environment. Make sure to include
SysUtils unit in the interface uses clause of all other units written manually. The {&Use32}
directive should not used be used for Delphi programs as the Word type is 16-bit in all versions of
Delphi and is redefined to be 32 bits by the Use32 unit.

Signed types are stored in the 2’s complement format with the sign in the most significant bit.

There are two predefined integer constants:

• MaxInt defines the largest possible SmallInt (32767)

• MaxLongint defines the largest possible Longint (2147483647).

Note
The MaxInt constant is redefined by both Use32 and SysUtils to be equal to MaxLongint; whereas
the System and Use16 units define it as shown above.

Data types 31

 Virtual Pascal Language Reference

The following binary arithmetic operators,

 + - * div mod

are associated with integer types. The ‘-’ (minus) operator may be used as an unary operator to
change the sign of an operand. The ‘/’ (division) binary operation can be used on integer operands,
but the result of the operation is always of type Extended.

Character types
A character type is an ordinal type used to store ASCII characters. Virtual Pascal provides one
predefined character type, Char. Its size is 1 byte. The Chr standard function converts an integer
value into a character with the corresponding ASCII value. The Ord function returns a character’s
ASCII value. A character string consisting of just one character is used to specify a constant of type
character.

Enumerated types
An enumerated type is an ordinal type that defines a list of values by enumerating the identifiers
denoting the possible values. The ordinal number of the first identifier is 0, of the second 1, of the
third 2, etc.

The identifiers in the type definition of an enumerated type become constants of the enumerated
type. The first constant has ordinal number 0, the second has ordinal number 1 etc., for example:

type
 Metal = (Fe, Cu, Ag, Au, Pl); // Ord(Fe) = 0, Ord(Cu)=1,..Ord(Pl)=4

If the Word Sized Enumerated compiler directive is disabled {$Z-}, enumerated types occupy 1 byte
when the number of constants of the enumerated type is less than or equal to 256 and 2 bytes if the
number of constants is larger than 256. In the {$Z+} state, enumerated types always occupy 4 bytes
of memory.

Boolean types
Boolean types are ordinal types that have only two values: False (Ord(False)=0) and True
(Ord(True)=1).

The Boolean type can be regarded as an enumerated type with some special features and the
following definition:

character type Char

Boolean type Boolean

ByteBool

WordBool

LongBool

identifier() enumerated type

,

32 Data types

Virtual Pascal Language Reference

type
 Boolean = (False, True);

The following table lists all predefined boolean types:

Type Size(bytes) Only True and False are allowed
Boolean 1 Yes
ByteBool 1 No
WordBool 2 No
LongBool 4 No

The Boolean type does not allow values with ordinal numbers other than 0 and 1. The ByteBool,
WordBool and LongBool types are provided for compatibility with C language booleans, which are
considered to be False when their ordinal number is 0 and True when the ordinal number is non-
zero. When these boolean types are used in a context where a Boolean value is required (e.g. in
accessing element of an array with a boolean dimension type), the compiler automatically converts
non-zero values to True.

In an expression, the following relational operators produce results of type Boolean:

= <> > < >= <= in

The logical operators not (unary), and and or (binary), work by testing for 0 (False) or non-zero
(True), but always return a result with an ordinal number of 0 or 1.

Subrange types
A subrange type is a range of values taken from an ordinal type called the base type. Two constants
defining the lower and upper bounds declare the subrange.

Both expressions must be of the same ordinal type and the first one must be less than or equal to the
second. The first expression must not start with an open parenthesis symbol ’(‘ since this starts an
enumerated type declaration.

Subrange types have all the properties of the base type, but the values are limited to the defined
range.

The size of a subrange variable is equal to the size of the predefined integer type with the smallest
range that covers the entire subrange.

Examples:

type
 Hour = 1..24;
 PreciousMetal = Ag..Pl;

Floating point types
A floating point (or “real”) type has a set of values that is that subset of real numbers which can be
represented in a floating-point notation with a fixed number of digits.

subrange type constant expression .. constant expression

Data types 33

 Virtual Pascal Language Reference

The normalised range of each type is shown in the following table.

Type Normalised range Digits Size(bytes)
Single 1.18x10-38..3.4x1038 7-8 4
Real 2.9x10-39..1.7x1038 11-12 6
Double 2.23x10-308..1.79x10308 15-16 8
Extended 3.37x10-4932..1.18x104932 19-20 10
Comp -9.2x10-18..9.2x1018 19-20 8
Currency -922337203685477.5808..

922337203685477.5807
19-20 8

Virtual Pascal always uses the 80x87 coprocessor for floating point operations. Real is supported for
compatibility with Borland Pascal only and should be avoided whenever possible, both for
performance and for accuracy reasons. Every time an operation on a Real value is encountered, it is
converted to Extended and back, which means that the Real type only should be used where the size
of the data type is of prime importance.

The Comp type is a 64-bit integer capable of holdin an integer value between -2x1063+1 and
2x1063-1. It is regarded as a floating point type since it can not be used in contexts where integer and
ordinal types are accepted.

The Currency type is a fixed-point data type that can be used for monetary computations. It is stored
as a scaled 64-bit integer with the four least-significant digits implicitly representing four decimal
places. When referenced in expressions or used in assignment statements with other real types,
values of type Currency are automatically scaled by dividing or multiplying by 10,000. Since
numbers stored in the Currency format are exact representations, operations on Currency values are
not subject to rounding errors.

Real type Single

Real

Double

Extended

Comp

Currency

34 Data types

Virtual Pascal Language Reference

The internal representation of the floating point types are as follows:

Data
formats

Range

Precision

Most significant byte (highest addressed byte)

Comp

1018

64 bits

Currency

1018

64 bits

Single

10±38

24 bits

Double

10±308

53 bits

Extended

10±4932

64 bits

Real

10±38

39 bits

S = sign bit (0 - positive, 1 - negative)
∆ = position of implicit binary point
I = integer bit of significand; stored in temporary real, implicit in single and

double
exponent bias (normalised values) :
single : 127 (7FH)
double : 1023 (3FFH)
extended: 16383 (3FFFH)
real: (-1)s(2E-BIAS)(F0F1...)

Pointer types
A pointer type is a special type that is used to store an address of a variable of a specified type,
called the based type.

The base type identifier can be any type identifier, even one that has not yet been declared. In this
case, the declaration of the base type should be present somewhere in the same type declaration
section. This feature allows the declaration of pointers to a structured type that contains a pointer to
itself, for example:

type
 PNode = ^TNode;

7 0 7 0 7 0 7 0 7 0 7 0 7 07 07 0 7 0

63

63

31 23

63 52

47 7

79 64 63∆

two’s
complement

two’s
complement

S biased
exp

biased
exp

significand

significand

S biased
exponent

significand

S biased
exponent

significand I

S

pointer type ^ base type identifier

Data types 35

 Virtual Pascal Language Reference

 TNode = record
 Next: PNode;
 Info: Integer;
 end;

A pointer variable does not represent a variable of the base type itself, it only holds its address
(points to it). When there is no variable of the base type associated with a pointer, a special value
denoted by the reserved word nil is used. nil is compatible with all pointer types. A nil pointer value
is an address that is guaranteed to be different from any valid pointer and is encoded as an address
with the value zero.

A pointer variable is stored as a double word (4-byte value) representing a 32-bit flat memory offset.
The segment (selector) part of the address is not available and is always assumed to be flat.

The predefined type Pointer defines a generic pointer that does not have any base type, which means
that it is a pointer to anything. Values of type Pointer are compatible with all other pointer types.

The predefined type PChar is declared in the System unit as follows:

type
 PChar = ^Char;

Unlike all other user defined pointers to type Char, PChar pointers have special properties, which
take effect only when extended syntax is enabled ({$X+} state). They are used to hold addresses of
null-terminated strings. These are strings consisting of a sequence of non-null characters with a
terminating NUL (#0) character. Unlike the ShortString type (see the description of the ShortString
type on page 37) null-terminated strings have no length byte and can be of any length. They are
stored in special character arrays called zero-based character arrays (refer to page 40 for more
information on array types).

The following relation operators can be applied to all pointer types:

 = <>

Additional operators can be applied to PChar pointers only and only when extended syntax is
enabled:

 < > <= >= + -

The New standard procedure takes a pointer variable as parameter, allocates dynamic memory for a
variable of the pointer base type on the heap and returns the address of it in the pointer variable. The
standard procedure GetMem takes a pointer variable and a block size as parameters and returns the
address of a newly allocated memory block of the given size in the pointer variable. The Ptr
standard function creates a pointer with a specified pointer value. Note, that unlike the 16-bit
implementation of Object Pascal, Ptr in Virtual Pascal accepts only one argument - the flat memory
offset. The standard procedures Inc and Dec can be used with pointer types to increment and
decrement pointer values by the specified number of base type variables. This can be helpful when
performing operations on array elements, e.g.: incrementing a pointer to an array element by one
will cause the pointer to point to the next array element.

Inc and Dec can not be used with pointers of type Pointer, as the compiler does not have size
information associated with a Pointer. The address operator @ returns the address of a variable,
procedure or function entry point. All pointer types can be dereferenced by writing the dereference
pointer symbol ^ after the pointer value. This operation results in a variable of the base type with an
address as defined by the value of the pointer.

When dereferencing a value of type Pointer, the result is an untyped value that can be used when
passing an untyped var parameter as a function parameter, for example.

36 Data types

Virtual Pascal Language Reference

The following features are applicable to PChar pointers only.

• In the {$X+} state (when extended syntax is enabled) a constant string expression can be
assigned to a PChar pointer. For example:

var
 Letters: PChar;
begin
 Letters: = ’ABCDEFG’;
end;

After this assignment, Letters will contain the memory address of a null-terminated copy of the
string constant expression.

• If the formal parameter in a procedure or function call is of type PChar, it is possible to use a
constant string expression as the actual parameter. In this case the compiler will also generate a
null-terminated copy of the string constant expression and the PChar pointer will hold the
memory address of this copy. For example for the procedure:

procedure Error(ErrStr: PChar);
the following call is valid:
Error(’ Unresolved reference ’);

• Constant string expressions can also be used as initialisers for simple or structured typed
constants containing PChar types. For example:

const
 Name: PChar = Queen ’ + ‘Elizabeth ’ + ‘ II’;

Note
Unlike Borland Pascal and Borland Delphi v1, Virtual Pascal imposes no length restrictions on
string constants.

• A PChar type pointer can be indexed as a zero-based character array (See the Array type for
more information about zero-based character arrays). For example:

var
 Symbols: array[0..10] of Char
 Signs: PChar;
 Item: Char;
 Letter: Char;
begin
 Signs := Symbols;
 Item := Signs[0];
 Letter := Signs[1];
end;

In this case the variable Item will be assigned the first and the variable Letter the second
element of the array Symbols. The memory address of Signs[0] is the same as the value of the
pointer Signs. Signs[0] is essentially an equivalent to Signs^, Signs[1] is the same as (Signs+1)^
and so on.

Data types 37

 Virtual Pascal Language Reference

• In the {$X+} state (when extended syntax is enabled) the Assign, Rename, Val, Write and
Writeln standard functions can be used with PChar type pointers and zero-based character
arrays.

Structured types
Structured types are special types that consist of one or more simple or structured component.
Except for the AnsiString, ShortString, Text and file types, structured types are user defined types.
The following sections contain a detailed description of Virtual Pascal structured types.

The reserved word packed can be specified before the declaration of a structured type. It instructs
the compiler to use a more efficient way of storing the components of the structured type. In the
current implementation of Virtual Pascal, the setting defined by the {&AlignRec+} directive can be
overridden by specifying the packed reserved word.

String types
Virtual Pascal supports two types of strings: short strings and long strings. These can be mixed in
assignments and expressions and the Virtual Pascal compiler automatically generates the code
required to perform any string type conversions that may be required.

The short string type is a structured type consisting of a sequence of characters. A short string has a
dynamic length and a maximum length between 1 and 255 that must be specified at compile time.
Both Borland Pascal and all versions of Borland Delphi support the short string type.

The long string type is a structured type that contains a sequence of characters, whose length is only
limited by available memory. It is allocated dynamically during program execution. The long string
type is not available in Borland Pascal or in 16-bit Borland Delphi v1.x but is supported by 32-bit
versions of Borland Delphi and by Virtual Pascal.

The state of the {$H-} compiler directive determines whether the reserved word string denotes a
short string or a long string. In Virtual Pascal, the default state of the directive is {$H-}.

Irrespective of the state of these compiler directives, the predefined identifiers ShortString and
AnsiString (defined in the System unit) can be used to explicitly select the desired string type.

Short strings
The declaration of a short string is as follows:

Structured type array type

record type

object type

class type

class reference type

packed

set type

file type

string type string
unsigned integer

constant expression
[]

38 Data types

Virtual Pascal Language Reference

The unsigned integer expression constant denotes a maximum length. If it is not specified, a
maximum length of 255 is assumed (in the {$H-} state; in the {$H+} state, a string declaration not
specifying a maximum length denotes an AnsiString).

The actual dynamic length of the string is returned by the Length standard function.

The standard function High returns the declared maximum length of the string.

The individual character elements of a string can be indexed. Indices begin with 0. The first
character (index=0) contains the string length, although the standard function Length should be used
wherever possible as it functions with both short and long strings. Variables of short string type
occupy the maximum declared size + 1 byte.

Long strings
The declaration of a long string is as follows:

long string type

The string reserved word is only equivalent to an AnsiString in the {$H+} state.

Long strings are allocated dynamically at run-time and have no declared maximum length, except
for a theoretical upper length of 2GB – or 2 billion characters. In reality, this means that only
available memory and disk space limits the length of the string.

The operations necessary to manage the allocation and deallocation of memory for long strings are
handled entirely by the compiler and require no user code. A long string is really a pointer to a
string of characters and it is nil if the string is empty. When the string is not empty, the long string
variable points to a sequence of 0-terminated characters making up the value of the string. In
addition, the compiler maintains a reference count and the dynamically allocated length of the long
string at offsets –4 and –8 of the base string, respectively.

The reference count for a long string is maintained by the compiler and is incremented when it is
assigned a new value (if it already had a value, the reference count of that string is decremented).
When the reference count of a long string reaches zero, the memory dynamically allocated for the
string is freed. This logic means that string handling can become more efficient: When a long string
is assigned a value, only the 32-bit pointer value is copied rather than the entire string and several
variables can reference the same string without using additional memory.

When a long string is modified and the reference count of the string is greater than one, a copy of the
string is created before it is modified; the reference count of the original string is decremented. This
technique is called copy-on-write and ensures that data is not inadvertently modified.

Since global variables never go out of scope, long strings declared as global variables are only freed
when the program terminates.

Long string variables are always initialised to be empty (nil) when they are created. When they go
out of scope, for example when exiting a function or procedure containing local long string
variables, or when an object containing long string fields is destroyed, the reference count of the
string is decremented.

Long strings do not have their length stored as a single byte at offset 0 (as do short strings); to get
the length of a long string, the Length function should be used. To set the length of a long string

string

Data types 39

 Virtual Pascal Language Reference

explicitly, the SetLength standard procedure should be used. SetLength allows both short and long
strings to be passed as the parameter.

As mentioned above, long string variables are always 0-terminated. When assigning a value to a
long string, the compiler automatically appends a #0 at the end of the string, although this trailing #0
is not counted when retrieving the length of the string.

Because of the automatic 0-termination of long strings, they can be directly typecast to Pchar;
typecasting a long string to PChar is guaranteed to return a pointer to a null-terminated string, even
if the string is empty. When a long string is typecast to PChar, it is valid in the current statement
only and should considered to be read only. Consequently, a long string typecast to a PChar value
should be used in an expression or as a parameter value only.

It is possible to modify a string typecast to PChar only when the string is non-empty and unique.
Calling the SetLength, SetString or UniqueString standard procedures guarantee that a long string is
unique (i.e. has a reference count of 1).

When long string variables are declared as fields of a record type, they cannot form part of any
variant part of the record. To do this would potentially prevent the compiler from performing the
automatic household tasks associated with long strings.

Example:

type
 NumStr = string[10];
const
 S1000: NumStr = ’1000’;
var
 MyAnsiStr : AnsiString;
 MyShortStr : ShortString
begin
 MyShortStr := ‘Test’;
 MyAnsiStr := MyShortStr + ‘ of AnsiString’;
 WriteLn(MyShortStr > MyAnsiStr);
end.

Strings of short and long types can be mixed in expressions and assignment statements and can be
passed by value as parameters. When passing a string as a var parameter, the type of the parameter
must match the type used in the parameter declaration. A short string can be explicitly converted to
a long string by typecasting it (as in AnsiString(S)) and vice versa (ShortString(S)).

The following operations can be performed on string types:

 + = <> < > <= >=

The relation between two strings is established by applying the relation to characters on
corresponding positions. If all characters of the first string are equal to the corresponding characters
of the second string, but the first string is shorter, it is considered to be smaller.

For example,

‘ABC’ > ‘ABB’, ‘ABC’ < ‘ABCD’.

The + operator performs concatenation of two strings, for instance,

’Virtual ’ + ’Pascal’ = ’Virtual Pascal’

Open strings are a special case short of string variables. Variable parameters, declared using the
standard OpenString identifier or the reserved word string in the {$P+,H-} state are taken to be open

40 Data types

Virtual Pascal Language Reference

short string parameters. Unlike normal variable short string parameters, information about the
maximum declared size of the actual parameter is available. It is passed automatically as an
additional parameter to the procedure or function just after the open string parameter address. The
High standard function returns this value and the SizeOf standard function returns this value plus
one.

When passing a long string to an OpenString parameter, the string is truncated to 255 characters and
the High standard function returns 255.

Short string variables of any maximum declared length can be passed as actual parameters to open
string parameters. Using open strings makes it possible to control the indexing of an actual
parameter in the {$R+} state.

Array types
An array is a structured type consisting of a finite number of elements of a simple or structured type.
The declaration of an array type is as follows:

The ordinal type denotes the number of indices and therefore the number of elements of the array.
Unlike Borland Pascal, where an array index can not be of Longint type, Virtual Pascal considers all
ordinal types to be valid index types.

All array elements must be of the same type - the element type. The element type can be any type,
even a structured type.

To access an element of an array, specify the array identifier followed by the index (or indices) of
the desired element enclosed in square brackets. Here are some examples of array types:

const
 MaxLen = 100;
type
 Dimension = 1..200;
 TextLine = array[0..MaxLen-1] of Char;
 Vector = array[Dimension] of Integer;

The element type of an array may itself be an array. For example:

type
 Matrix = array[Dimension] of array[Dimension] of Integer;

or the declaration of Vector may be used in the declaration of Matrix:

type
 Matrix = array[Dimension] of Vector;

Matrix can also be declared using the more convenient form of a multidimensional array:

type
 Matrix = array[Dimension, Dimension] of Integer;

The Low and High standard functions applied to the array’s type identifier return the smallest and
the largest value of the array index, respectively.

] type of array array type ordinal type [

,

Data types 41

 Virtual Pascal Language Reference

Two forms of character arrays have special features. The first one has the following syntax:

array[n1..n2] of Char;

where n1 <= n2 and the array size is less than 256 bytes (that is n2 - n1 < 256). It is called a packed
string type. Typed constants of a packed string type can be initialised by a constant string
expression.

The second form has the syntax:

array[0..n] of Char;

where n > 0 and is called a zero-based character array. These can be used to store null-terminated
strings (See the Pointer type for more information about null-terminated strings). Typed constants of
a zero-based character array type can be initialised by a constant string expression the length of
which is less than the dimension of the array.

In the {$X+} state (when extended syntax is enabled) a zero-based character array can be used
instead of a PChar value. In this case the compiler takes the address of the first element of the array
and uses it as the value of a PChar pointer. For example:

var
 Symbols: array[0..10] of Char;
 Signs: PChar;
begin
 Signs := Symbols;
end;
The Signs variable will point to the first element of the array Symbols after the assignment statement.

When extended syntax is enabled ({$X+} state), zero-based character arrays can be used in place of
string parameters to the Read, Readln, Write, Writeln, Str, Val, Assign, ChDir, MkDir, RmDir and
Rename standard procedures.

Record types
A record is a structured type that consists of a finite number of elements that may be of different
types. The following diagram describes the syntax of a record type:

As the syntax for a field list shows, a record may contain a fixed part, a variant part, or both. If it
contains both, the fixed part must be specified before any variant parts. The fixed part contains a list
of elements that are the same each time the record is accessed.

The name of the elements must be unique within the record. To select an element of a record type,
both the name of the record type and the name of the element should be specified, separated by a
period. This is an example of a record type:

record type record field list end

variant part field fixed part ;
;

fixed part type field identifier :

,
;

42 Data types

Virtual Pascal Language Reference

type
 DayOfWeek = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
 WorkInfo = array[DayOfWeek] of Boolean;
 PWorkInfo = ^WorkInfo;

ScheduleRec = record;
 Day: Mon..Sun;
 Hours: 0..23;
 Minutes: 0..59;
 Sum: Extended;
 Winfo: PWorkInfo;
end;

Records of the same type do not necessarily contain the same elements. They can have more than
one field list or variant and a criterion should be assigned, according to which the program selects
the field list needed at a given time. Only one variant can be active at any one time, and only fields
of the currently active variant can be accessed. The size of the variant part is the size of the largest
variant. The declaration of the variant part is the following:

In most cases it is convenient to use an additional fixed part field (a tag field) in a record with
variants to define which of the variants will be selected. The tag field must be of an ordinal type.

Each variant is identified by at least one constant that should be of ordinal type and be compatible
with the tag field type. All constants must be distinct.

The variant part of a record must not contain long string, or AnsiString, field types.

An example of a record with variants:

type
 Coordinate = record
 xcoor, ycoor: Double;
end;
Shape = (Circle,Line);
Figure = record
 case tag : Shape of
 Circle: (Centre: Coordinate; Radius : Double);
 Line:(Xcoeff, Ycoeff, Constant : Double);
end;

The syntax of a record type allows the use of a record type record end; , called an empty record.
Since an empty record does not have any fields, its size is 0. An empty record is usually used to
mark a specific field without allocating any memory for it.

The fields of a record are stored sequentially in memory with the first field stored at the lowest
memory address. The variant parts share the same memory space and each variant starts at the same

case identifier : ordinal type identifiervariant part of

constant : field list ()

,

;

Data types 43

 Virtual Pascal Language Reference

memory address. If {&AlignRec+} is specified, the next field of the record will be aligned
according to its size as follows:

• Byte sized fields are not aligned;
• Word sized (2 byte) fields are aligned at a word boundary;
• All other fields are aligned at a double word (4 byte) boundary.

In {&AlignRec-} state, no alignment is performed and record fields are simply placed at the next
available offset. In the {&AlignRec} state, the same can be achieved by specifying the reserved
word packed before the record definition.

Object and class types
Virtual Pascal supports two object models: The “old” object model and the “new” class model.

The old object model was introduced in Borland Pascal v5.5 and uses the reserved word object for
the declaration of object types. The new object model first appeared in Delphi v1 and uses the
reserved word class in the declaration of object types. The two object models have a lot in common
and are described together. To make it clear which object model is used we will call old style object
types objects and new object types classes or class instance types.

Each object and class type represents a unique set of components (the collection of members). Each
component of an object or class is either a field, a method or for class types a property. A field
stores data of a particular type, a method performs operations on the object and a property defines
special attributes of a class and allows controlled access to its attributes. Two special types of
methods, constructors and destructors, are used to construct (i.e. allocate memory for and initialise)
and destruct (i.e. free memory used by) objects and classes.

An object or class type must be declared globally and can not be declared within the declaration part
of a procedure or function. The declaration of an object or class type is very similar to that of a
record with the addition that methods and properties can be declared.

For a summary of differences between the two object models, refer to the table on page 64.

Object type declarations

object field list typeidentifier list : ;

method list
component list

object field list

object type
object type identifier ()

object

endcomponent list
component section

44 Data types

Virtual Pascal Language Reference

Example (from the interface section of OBJECTS.PAS):

type
{ TObject base object }

PObject = ^TObject;
TObject = object
 constructor Init;
 procedure Free;
 destructor Done; virtual;
end;

{ TStream }

PStream = ^TStream;
TStream = object(TObject)
 Status: Integer;
 ErrorInfo: Integer;
 constructor Init;
 procedure CopyFrom(var S: TStream; Count: Longint);
 procedure Error(Code, Info: Integer); virtual;
 procedure Flush; virtual;
 function Get: PObject;
 function GetPos: Longint; virtual;
 function GetSize: Longint; virtual;
 procedure Put(P: PObject);
 procedure Read(var Buf; Count: Word); virtual;
 function ReadStr: PString;
 procedure Reset;
 procedure Seek(Pos: Longint); virtual;
 function StrRead: PChar;
 procedure StrWrite(P: PChar);

method heading procedure heading

destructor heading

constructor heading

function heading

component section component list

protected

public

private

integer constant

method list method heading ;
; virtual

Data types 45

 Virtual Pascal Language Reference

 procedure Truncate; virtual;
 procedure Write(var Buf; Count: Word); virtual;
 procedure WriteStr(P: PString);
end;

Class type declarations

component list
method definition field definition

property definition

field definition type identifier list : ;

visibility specifier published

public

protected

private

method definition method directivesmethod heading ;

method heading procedure heading

destructor heading

constructor heading

function heading class

object type
class type identifier()

end

class

component list

visibility specifier

46 Data types

Virtual Pascal Language Reference

Example (from the interface section of CLASSES.PAS):

type
{ TFiler }

TValueType = (vaNull, vaList, vaInt8, vaInt16, vaInt32, vaExtended,
 vaString, vaIdent, vaFalse, vaTrue, vaBinary, vaSet);

TReaderProc = procedure(Reader: TReader) of object;
TWriterProc = procedure(Writer: TWriter) of object;
TStreamProc = procedure(Stream: TStream) of object;

TFiler = class(TObject)
private
 FStream: TStream;
 FBuffer: Pointer;
 FBufSize: Cardinal;
 FBufPos: Cardinal;
 FBufEnd: Cardinal;
 FRoot: TComponent;
 FAncestor: TPersistent;
 FIgnoreChildren: Boolean;
public
 constructor Create(Stream: TStream; BufSize: Cardinal);
 destructor Destroy; override;
 procedure DefineProperty(const Name: string;
 ReadData: TReaderProc; WriteData: TWriterProc;
 HasData: Boolean); virtual; abstract;
 procedure DefineBinaryProperty(const Name: string;
 ReadData, WriteData: TStreamProc;
 HasData: Boolean); virtual; abstract;
 procedure FlushBuffer; virtual; abstract;
 property Root: TComponent read FRoot write FRoot;
 property Ancestor: TPersistent read FAncestor write FAncestor;
 property IgnoreChildren: Boolean read FIgnoreChildren write FIgnoreChildren;
end;

{ TParser }

integer constant

; cdecl ;export ; abstract

method directives

message

virtual

dynamic

;

stdcall

pascal

Data types 47

 Virtual Pascal Language Reference

TParser = class(TObject)
private
 FStream: TStream;
 FOrigin: Longint;
 FBuffer: PChar;
 FBufPtr: PChar;
 FBufEnd: PChar;
 FSourcePtr: PChar;
 FSourceEnd: PChar;
 FTokenPtr: PChar;
 FStringPtr: PChar;
 FSourceLine: Integer;
 FSaveChar: Char;
 FToken: Char;
 procedure ReadBuffer;
 procedure SkipBlanks;
public
 constructor Create(Stream: TStream);
 destructor Destroy; override;
 procedure CheckToken(T: Char);
 procedure CheckTokenSymbol(const S: string);
 procedure Error(MessageID: Word);
 procedure ErrorFmt(const Ident: string; const Args: array of const);
 procedure ErrorStr(const Message: string);
 procedure HexToBinary(Stream: TStream);
 function NextToken: Char;
 function SourcePos: Longint;
 function TokenComponentIdent: string;
 function TokenFloat: Extended;
 function TokenInt: Longint;
 function TokenString: string;
 function TokenSymbolIs(const S: string): Boolean;
 property SourceLine: Integer read FSourceLine;
 property Token: Char read FToken;
end;

Object and class components
The declaration of a field specifies the field’s identifier and data type. If a particular field of a class
type is declared, each instance of that object or class will contain it.

Within a class type the declaration of a method is equivalent to a forward declaration of the method
and must be resolved by a defining declaration of the method somewhere later in the same module.

In addition to fields and methods, class types (not object types) can also have properties. Properties
are similar to object fields, but unlike them do not allocate any space. They are used to provide a
pure implementation-independent interface for reading and writing a value of a particular type. The
actual reading and writing may be performed directly to a host field of the class or via special access
methods for reading and writing.

Properties can be used in expressions and be passed as value parameters, but cannot be passed by
reference (var parameters).

48 Data types

Virtual Pascal Language Reference

Inheritance
An object or a class can be derived from an existing object/class type. The type from which it is
derived is called the immediate ancestor of the new type. The immediate ancestor of the immediate
ancestor is called an ancestor of the new type, as are all of its ancestors. The new type is called a
descendant of its ancestors.

A descendant class can define new components in addition to those inherited from an ancestor type,
but cannot remove the definition of components defined in an ancestor class. In the class model, a
descendant class can redefine components defined by its ancestors. While this effectively hides the
inherited component, the inherited keyword can be used to access the original component.

The domain of an object or class type consists of itself and all of its descendants.

If no ancestor type is specified in the definition of an object type, it has no ancestor type. However,
all class types have the predefined class type TObject as the ultimate ancestor. If a declaration of a
class type does not specify an ancestor type, the class type will inherit from TObject. TObject is
declared in the System unit as follows:

type
 TObject = class;
 TClass = class of TObject;
 TObject = class
 constructor Create;

class function ClassInfo: Pointer;
 class function ClassName: ShortString;
 class function ClassNameIs(const Name: string): Boolean;
 class function ClassParent: TClass;

function ClassType: TClass;
procedure CleanupInstance;
procedure Dispatch(var Message);
function FieldAddress(const Name: ShortString): Pointer;
procedure Free;
class function InheritsFrom(AClass: TClass): Boolean;

 class procedure InitInstance(Instance: Pointer): TObject;
class function InstanceSize: Longint;
class function MethodAddress(const Name: ShortString): Pointer;

 class function MethodName(Address: Pointer): ShortString;
 { Virtual Methods: the order is significant }

procedure DefaultHandler(var Message); virtual;
class function NewInstance: TObject; virtual;

 procedure FreeInstance; virtual;
destructor Destroy; virtual;

 end;

It is very important to mention that object and class types must not be mixed with each other. A
class type can not have an ancestor of an object type and vice versa. The two object models exist
independently of each other, although they both can be used in the same program.

Construction of object and class types
The declaration of an object or class type creates a unique type of which instances can be allocated.
All instances of an object or class type share a single copy of every method (i.e. executable code),
but have their own copies of the fields (i.e. data).

Data types 49

 Virtual Pascal Language Reference

Instances of object types can be either static or dynamic. A static object variable is declared in the
same way as variables of any other type, whereas a dynamic object is allocated at run time. As for
other dynamic variables, the dynamic allocation is performed by a call to the New standard
procedure, which should be passed a variable of type pointer to the object as the parameter. If the
object type has a constructor method, it should be passed to New as a second parameter. Dynamic
objects are disposed of by calling the Dispose standard procedure. If a destructor method is defined
for the object type, it should be specified as the second parameter to Dispose. Note, that although
object types without constructor or destructor methods are allowed they rarely occur, since
constructors are used to initialise the object and destructors are used to perform any cleanup actions
required.

Example

type
 POldStyleObject = ^TOldStyleObject;
 TOldStyleObject = object
 SomeField: Integer;
 constructor Init;
 destructor Done; virtual;
 ...
 end;
var

XDyna: POldStyleObject;
XStatic: TOldStyleObject;

begin
 XDyna := New(POldStyleObject, Init); { or New(XDyna, Init); }
 XDyna^.SomeField := 2;
 ...
 Dispose(XDyna, Done);

 XStatic.Init;
 XStatic.SomeField := 2;
 …
 XStatic.Done;
end.

Instances of class types are always allocated dynamically on the heap, without calling the New and
Dispose standard functions when constructing and destroying class instances. Instead, the
constructors and destructors are called directly. Class types always have the default constructor
Create and destructor Destroy declared in TObject. A variable of a class instance type is an implicit
pointer containing the address of the class instance and should not be declared as a pointer to the
class type but simply as the class type. A variable of a class type contains either nil or a reference to
an object of the class type. If it contains nil, it does not reference a class; otherwise, it points to the
memory block allocated to the class instance. Two class type variables can refer to the same object,
although only one of them should then be destroyed by calling the destructor method. To access
components of a class type variable, the ^ qualifier is implied and should not be specified.

TObject defines a method Free, which normally should be called instead of the Destroy destructor.
Free checks if the class variable is nil and calls Destroy if it is not.

Example

type
 TNewStyleObject = class { Implicitly has TObject as ancestor }
 SomeField: Integer;

50 Data types

Virtual Pascal Language Reference

 ...
 end;
var
 X : TNewStyleObject;
begin
 X. := TNewStyleObject.Create;
 X.SomeField := 2;
 ...
 X.Free;
end.

Mutually dependent class types can be declared by using a forward class declaration. A forward
declaration of a class type makes it possible to use the name of it in other class definitions before it
has been fully defined and consists of a class name followed by the reserved word class. Later
within the same type declaration block, the definition of the class must appear. For an example of a
forward declaration see the declaration of the class TObject above.

Class references
If an object or a class type has any virtual methods, constructors or destructors, a structure uniquely
identifying the object type (a Virtual Method Table, VMT) is created. Since class types always have
TObject as the ultimate ancestor and TObject defines virtual methods, a constructor and a destructor,
class types always have an associated VMT. The structure of the VMT is different for object and
class types and is dependent on the compiler version. Class types store much more information than
objects in their associated VMTs and this information can be accessed via some of the methods
declared in TObject. This interface will not change in future versions of the compiler, with the
possible exception of adding more methods.

The class model introduces another new concept - class reference types. Since class types always
have an associated VMT, the VMT can uniquely identify every class type defined. The term class
reference denotes a value of a class-reference type, which contains the address of the VMT for a
class type. Class reference types are used to construct objects whose actual type is not known at
compile time and this makes it possible to implement virtual constructors - something that was not
possible in the old object model. TClass (in the block defining TObject above) declares a class
reference type. Refer to page 63 for more information on class reference types.

Class methods
The defining declaration of a method always contains an implicit parameter with the name Self. Self
represents the instance for which the method was activated. In addition to normal methods, class
types may declare so-called class methods, which operate on the class reference instead of an
instance of the class. It is possible to call a class method without constructing a particular instance of
the class, although it is possible to call class methods from an instance of a class. The ClassName
method of TObject is an example of a class method; it returns the name of the class as a ShortString.

To define a class method, the method definition must start with the reserved word class. In the
defining declaration of the class method, the Self identifier represents the class for which the method
was activated and does not represent an object reference. Thus, it is possible to use Self to call
constructors and other class methods from within a class method, but it is not possible to use it to
reference fields, properties or normal methods of the class.

Example

var

Data types 51

 Virtual Pascal Language Reference

 X: TObject;
 Y: TClass;
begin
 X := TObject.Create;
 Writeln(‘X is a class instance of type ‘,X.ClassName);
 // Outputs ‘X is a class instance of type TObject’ on screen
 X.Free;

 X := TSomeClass.Create;
 Writeln(‘X is a class instance of type ‘,X.ClassName);
 // Outputs ‘X is a class instance of type TSomeClass’ on screen
 X.Free;

 Y := TSomeClass;
 Writeln(‘Y refers to the class named ‘,Y.ClassName);
 // Outputs ‘Y refers to the class names TSomeClass’ on screen
end.

Compatibility rules
An instance of an object type (or a pointer to an object type) can be assigned an instance of any of its
descendent types (or pointer to any descendent type). A class type is assignment-compatible with
any ancestor class type. During run time a class-type variable can reference an instance of the class
type itself, an instance of any descendant type, or be nil.

Components and scope
The scope of a component identifier starts at the point of declaration and ends with the enclosing
block. A component identifier is visible to all objects or classes derived from the given object or
class type, to all methods of the object or class type, to field, method and property designators, as
well as with statements that perform operations on variables of the class type.

It is possible to redeclare a component identifier declared in an object or class type in the block of a
method declaration (by defining a local variable, for example). To access the component of the
object or class rather than the local identifier, the implicit Self parameter can be used, for example
Self.SomeComponent.

A method component identifier can be redeclared in an object or a class derived from the given type;
in addition the class model allows a field and a property to be redeclared in a descendant class. The
inherited component will be hidden after the redeclaration and can be accessed using the reserved
word inherited.

Example

type
 TMyClassOne = class(TObject)
 FieldA: Integer;
 FieldB: Integer;
 end;
 TMyClassTwo = class(TMyClassOne)
 FieldA: AnsiString;
 function Test: Integer;
 end;

function TMyClassTwo.Test: Integer;

52 Data types

Virtual Pascal Language Reference

var
 FieldB: Boolean;
begin
 // Assign a value to local FieldB based on TMyClassOne FieldB field
 FieldB := (inherited FieldB > 0);
 // Assign a value to FieldA string based on TMyClassOne.FieldB field
 Self.FieldA := IntToStr(inherited FieldA);
 // Assign the function result based on the value of the values found
 Result := Length(FieldA) – ord(FieldB);
end;

Component visibility
A visibility specifier in the component section declaring the identifier defines the visibility of a
component identifier. Visibility specifiers provide four levels of visibility: published, public,
protected and private.

Public components
Component identifiers declared with the public attribute are visible to any code that has access to
the object as a whole and do not have any particular restrictions on their visibility.

Published components
Component identifiers declared with the published attribute have no special restrictions on their
visibility either. A published component acts as if declared as public, with the addition that run-time
type information (RTTI) is generated for the component. Published component declarations are valid
only in class types; no run-time type information is generated for object types. Run-time type
information enables an application to dynamically query information about fields, properties and
methods of a class type at run-time.

The $M compiler directive controls the generation of run-type information for a class. Refer to page
158 for more information about the $M compiler directive. A class type can have published
sections only if it is compiled in the {$M+} state or is derived from a class that was compiled in the
{$M+} state. Component identifiers which are declared right after class type heading have the
published visibility attribute if the class type is compiled in the {$M+} state and public in the {$M-
} state.

Field components can be declared as published only if they are of a class type. Fields of all other
types must be declared as public, protected, or private.

Properties defined as published must be of an ordinal type, a real type (Single, Double, Extended,
Comp or Currency, but not Real), a string type, a small set type (an integer sized set), a class type, or
a method pointer type. A property defined as published can not be an array property.

Protected components
Component identifiers declared with the protected attribute are invisible to code that is not part of
the implementation of methods of the class or its descendants. If a component of a class is for use
only in the implementation of derived classes it should be declared as protected.

Private components
Component identifiers declared with the private attribute are invisible outside the module in which
the class type is declared. Within the module containing the class type declaration, component
identifiers can be accessed as if they were declared as public. If two related class types are declared
in the same module, each of them will be able to access the private components of the other one, but
these private components will be hidden from other modules.

Data types 53

 Virtual Pascal Language Reference

While Borland uses private fields and methods widely in the Visual Component Library, we
recommend the use of protected instead in order to increase usability of defined object types.

Static methods
All methods declared in an object or class are static by default. Static methods act just like normal
procedures and functions. When a static method is called, the compile-time class or object type used
in the method call indicates which method implementation should be invoked and the address of the
method is determined at compile time. Since the compiler is able to determine the address of the
method, it links the method directly and the dispatching of static methods is very quick compared to
dispatching virtual and dynamic methods.

A static method does not change when inherited by another type. If a new type is derived from an
object or class type containing a static method, it shares the same method located at the same
address as the ancestor’s type.

Static methods can not be overridden. If a static method with the same name as an inherited static
method is declared in a descendant type, the inherited static method is replaced completely and
cannot be accessed from the descendant object.

Virtual methods
To declare a method as virtual, the directive virtual should be added to the end of the method
declaration. A virtual method is called just as any other method, but its dispatching mechanism is
more flexible. When a virtual method is called, the run-time class or object type used in the method
call indicates which method implementation should be invoked and the address of the method
cannot be determined at compile time. The object looks up the address of the method at run time.

The virtual directive in a method declaration creates an entry in the VMT of the object or class. The
VMT holds the addresses of all virtual methods in a class type and is used to determine the address
when a virtual method is invoked.

An object type can override any virtual method declared by the ancestor type. The overridden
method must be declared as virtual and must have exactly the same name, exactly the same number
and order of parameters, their names and types and the same function result value, if any.

For class types, it is possible to override a virtual method in a descendant class type by adding the
override directive to the end of the method declaration. The order, types and names of parameters
and the type of the function result (if any) in the declaration of an override of a virtual method must
be identical to those in the declaration of the ancestor’s method. The scope of an override method
includes the class type itself and all its descendants.

If a virtual method is declared in a descendant class type, with the same name as an inherited virtual
method by specifying virtual instead of override, a new virtual method (hiding the inherited virtual
method rather than overriding it) is defined. This is not possible in the old-style object model and is
generally not advisable as it reduces the readability of the code (as illustrated by the example
below). New virtual methods of an object type must have a name that is different from any virtual
methods declared in any ancestor type.

Example 1 – using the class model

type
 TMyObjectOne = class
 destructor Destroy; override; // Overrides an existing virtual method

function MyDynamic: Integer; virtual; // Define a new virtual method
 end;

54 Data types

Virtual Pascal Language Reference

 TMyObjectTwo = class(TMyObjectOne)
 function MyDynamic: ShortString; virtual; // Redefines the method
 end;
var
 MyObject: TMyObjectOne;
 MyInt: Integer;
 MyStr: ShortString;
begin
 // Call TMyObjectOne.Create (really calls TObject.Create)
 MyObject := TMyObjectOne.Create;
 // Call MyDynamic, which returns an Integer
 MyInt := MyObject.MyDynamic;
 ...
 // Call Free, which in turn calls TMyObject.Destroy
 MyObject.Free;

 // Call TObject.Create
 MyObject := TMyObjectTwo.Create;
 // Call MyDynamic, which returns a ShortString
 MyStr := MyObject.MyDynamic;
 ...
 // Call TMyObject.Free, which in turn calls TObject.Destroy
 MyObject.Free;
end;

Example 2 –using the object model

type
 PMyObjectOne = ^TMyObjectOne;
 TMyObjectOne = object
 function MyStatic: Integer;
 function MyDynamic: Integer; virtual;
 end;
PMyObjectTwo = ^TMyObjectTwo;
 TMyObjectTwo = object(TMyObjectOne)
 function MyStatic: Integer;
 function MyDynamic: Integer; virtual;
 end;
var
 MyObject: PMyObjectOne;
begin
 MyObject := New(PMyObjectTwo);
 // Call TMyObjectOne.MyStatic
 WriteLn(MyObject.MyStatic);

 // Call TMyObjectTwo.MyDynamic
 WriteLn(MyObject.MyDynamic);

 // Free memory used by object
 Dispose(MyObjec);
end;

Data types 55

 Virtual Pascal Language Reference

Dynamic methods
Dynamic methods differ from virtual methods only in the way dynamic method calls are dispatched
at run time. A dynamic method does not contribute an entry in the VMT table, instead it assigns a
number to the method and stores the address of the associated code in the Dynamic Method Table
(DMT). Dynamic methods are very useful when object or class types declare a large number of
virtual methods and there are a lot of descendants that override just a few of them. In the
implementation of dynamic methods, the code size is smaller than the code size for the virtual
methods, but the dispatching of dynamic methods is somewhat slower than the dispatching of virtual
methods.

Dynamic methods of an object type are declared like virtual methods with the addition of a dynamic
method index after the virtual standard directive. The dynamic method index must be a non-zero
integer constant expression of type Longint and must be unique among the dynamic method indices
of any ancestors.

const
 cm_First = 0;
 cm_Exit = 20;
type
 TMyObject = object(TObject)

procedure CMExit(var Msg: TMessage); virtual cm_First + cm_Exit;
 end;

As for virtual methods, the heading of an override of a dynamic method must list exactly the same
identifier, parameters and function result type. It must also include the virtual standard directive
with the same dynamic index.

To declare a method as dynamic in a class type, it is necessary to specify the dynamic directive
instead of virtual at the end of the method declaration. It is not necessary to assign a dynamic index
number manually; the compiler automatically assigns a unique number.

type
 TMyClass = class (TObject)

procedure CMExit(var Msg: TMessage); dynamic;
 end;

Abstract methods
Abstract methods are used to define pure interface methods without providing any implementation.
Using these, it is possible to declare just the heading of a method without a defining declaration;
abstract methods are available only for class types. A virtual or dynamic method can be declared as
abstract. Descendant class types that want to use it must override and fully define it.

To declare a virtual or dynamic method as abstract, the abstract directive should be added to the
end of the method declaration. The abstract directive is only valid when a method is first
introduced.

An abstract method can be overridden just as a virtual or dynamic method and it is not possible to
call the ancestor’s method from the implementation of the overriding method. An exception will be
generated at run time if an abstract method is called through a class that has not overridden the
method; if the SysUtils unit is not used, a run-time error 211 is generated instead.

Usually, abstract methods are used to introduce virtual methods in generic classes that are not meant
to be instanced and where descendant classes are expected to implement the abstract methods. Since
the method is defined (just not implemented) in the generic class, other methods of the generic class
can call the abstract method as it would any other method.

56 Data types

Virtual Pascal Language Reference

type
 TGenericClass = class (TObject)

procedure SomeMethod; virtual; abstract;
 end;
 TSpecificClass = class (TGenericClass)

procedure SomeMethod; override;
 end;

Message handler declarations
Message handler methods are used to implement responses to dynamically dispatched messages.
Message handling is available only in the class model.

A message handler method is always a procedure declared with the message directive in conjunction
with an integer constant between 0 and MaxLongInt, specifying a message ID. A message handler
method takes a single parameter, which must be any var parameter.

A typical message-handling method declaration looks like this:

type
 TMyControl = class(TCustomControl)
 ...
 procedure WMSize(var Msg: TWMSize); message wm_Size;
 end;

A message-handling method can be overridden by declaring a new method in a descendant class
type with the same message index as the method it overrides. Using the override directive is not
allowed in this instance. The name of the method and the type of the parameter do not have to match
those of the overridden method.

Message handler implementations
The implementation of a message handler method looks exactly as that of a regular method.

Within the implementation of a message handler method, the implementation of an inherited method
can be called. Since the name and parameter of the method may change, the inherited statement can
be used by itself, without specifying the name of the ancestor method to call the inherited method.
The invoked inherited method will be the first message handler with a matching index found in the
most derived ancestor class. If the ancestor type does not declare a message handler for a particular
message index, the inherited statement calls the TObject virtual method DefaultHandler. Since the
DefaultHandler is available for any class, it is safe to call inherited within a message handler
method, no matter whether the parent classes implement a handler for the message or not.

Example

type
 TMyEditControl = class(TCustomControl)
 ...
 procedure WMSize(var Msg: TWMSize); message wm_Size;
 end;
 TMyOtherEditControl = class(TMyControl)
 ...
 procedure AnotherName(var Parm); message wm_Size;
 end;

procedure TMyEditControl.WMSize(var Msg: TWMSize);

Data types 57

 Virtual Pascal Language Reference

begin
 inherited; // Calls TCustomControl or other ancestor handler
 …
end;

procedure TMyOtherEditControl (var Parm);
begin
 inherited; // Calls the TMyControl.WMSize method
 …
end;

Message dispatching
Message methods are rarely called directly. Instead the message handler methods are usually
dispatched to a class using the Dispatch method inherited from TObject. The declaration of Dispatch
is:

procedure TObject.Dispatch(var Message);

The Message parameter is a record, the first field of which must be of Cardinal type and contain the
message index for the method to be dispatched. In addition to this field, any number of extra fields
can be defined to hold message specific information.

When Dispatch is called, it first checks whether the list of message handlers declared for the class
itself contains a handler for the given message index. If not, Dispatch checks the list of message
handlers of the ancestor type, ancestor’s ancestor type and so on until it either finds a matching
handler or reaches TObject. In the latter case, Dispatch will invoke the DefaultHandler method
declared in TObject. The declaration of the DefaultHandler is:

procedure DefaultHandler(var Message); virtual;

The DefaultHandler does nothing - it simply returns and it is possible to override DefaultHandler to
implement a different default handling of messages. DefaultHandler is also called in case a message
handler executes an inherited statement for which no inherited message handler is defined.

The most common use of message methods is in message handler loops in OS/2 or Windows
programs, where they are used to transfer control based on messages sent to the program by the
operating system.

Method activations
A function or procedure statement, consisting of a method designator followed by an actual
parameter list, activates a method:

The variable reference denotes either an instance of an object or class type, or a class reference. The
method identifier denotes a method of that object or class type. Only class methods and class
constructors can be called by means of a class reference. An instance of an object or class becomes
an implicit actual parameter of the method, corresponding to a formal parameter named Self. For
class methods, Self holds a class reference (the address of the VMT for the class).

method designator method identifier
variable reference .

58 Data types

Virtual Pascal Language Reference

Within a with statement referencing an object or a class, a method designator can consist of a
method identifier only, since the with statement will supply the implicit Self parameter for the
method call.

Within a method, a qualified method designator can be used to denote a particular method. This type
of activation is known as qualified method activation.

The object or class type specified in the qualified method activation must denote an object or class
of the method or any of its ancestors. In this case even virtual and dynamic methods behave as if
they were static, as the method to be invoked can be determined at compile time by the qualified
identifier specified. A qualified method identifier can also be used as an operand of an @ address
operator to query the address of the method’s entry point.

Properties
In addition to fields and methods, class types can also have properties. A property definition in a
class declares a named attribute and the actions associated with reading and writing the attribute.

Properties can be considered to be an extension of fields that allows the operations for getting the
field value (reading) and assigning a new value to it (writing) to be redefined in descendant classes.
Unlike fields, properties do not allocate any space in the class instance, as they only provide an
interface for accessing the attribute of a specified type by associating actions with reading and
writing the attribute.

property definition

property
property interface

identifier property specifiers ;

property interface :
property parameter list

index

type identifier

integer constant

property parameter list parameter declaration []

;

qualified method designator

method identifier

object/class identifier .

inherited

property specifiers

read specifier write specifier stored specifier default specifier

read specifier field or methodread

Data types 59

 Virtual Pascal Language Reference

The declaration of a property requires:

• The name of the property

• The type of the property

• Methods to read and/or set the value of the property

A property can be of any type that a function can return (since the implementation of the property
can use a function).

Example

type
 TPosControl = class(TCustomControl)
 FPosition: Integer;
 procedure SetPosition(Value: Integer);
 property Position: Integer read FPosition write SetPosition default 0;
 end;

The read and write specifiers of a property can refer directly to a field of the class that is of the same
type as the property. Alternatively, the specifiers can refer to access methods that are called when
the value of the property is accessed or set.

When field specifiers are used, reading and/or writing the property value is equivalent to reading and
writing the field value itself, with the important difference that the implementation can be changed
to use an access method later without having to change any code using the class.

For simple properties, the read part of the property is usually a field reference and the write part is
accessed by an access method, as is the case in the example above.

In a program, properties acts like fields of a class. If used as a factor in an expression, a property
returns its value. It is also possible to assign a new value to a property by means of an assignment
statement. However, a property can not be passed as a var parameter and it is illegal to take the
address of a property using the @ operator, even if both the read and write specifiers list a field
identifier. This ensures that any descendants of the class type may change one or both access
specifiers of the property to list a method.

field or method field identifier

method identifier

write specifier field or method write

stored specifier stored field or method

boolean constant

default specifier constant default

nodefault

60 Data types

Virtual Pascal Language Reference

Access specifiers
The read and write parts of a property define the way property data can be accessed. The syntax for
property declarations allows the read and write parts of a property declaration to specify either an
access method instead or a class field.

If a class field is specified as the access specifier, the field type must be the same as the property
type.

If a read specifier lists a method, it must be a function that takes no parameters and returns a value
of the same type as the property. The read method implements the logic required to produce the
value of the property. If a read specifier is not declared, the property is write-only. Because it is an
error to use a write-only property as a factor in an expression, write-only properties are only rarely
useful.

If a write specifier lists a method, it must be a procedure that takes a single value or constant
parameter of the same type as the property. The value passed in the parameter should be used to set
a new value of the property and the write method should take care of any manipulation needed to
put the appropriate values into internal storage. If a write specifier is not declared, the property is
read-only. An attempt to write to a read-only property causes a compiler error to be reported. If
both a read and a write specifier is declared, the property is a read-write property.

Array properties
Array properties can be defined as properties that have multiple values of the same type referred to
by one or more indices.

The declaration of an array property should specify the name of the property, the name(s) and
type(s) of the index (indices) as well as the type of the elements.

Example:

type
 TCursorControl = class
 protected
 // … some fields are probably defined here

function GetCursors(Index: Integer): HCursor;
procedure SetCursors(Index: Integer; NewValue: HCursor);

 published
property Cursors[Inx: Integer]: HCursor read GetCursors write SetCursors;

 end;

The declaration of a property can specify indices of any type (even String), not just ordinal types
like the index type in an array type declaration.

The read and write parts of an array property declaration must be methods and must not directly
refer to class fields.

The read method of an array property must be a function that takes a set of parameters of the same
number, the same type and in the same order as the indices specified in the property declaration. The
function must return a value of the same type as the property elements.

The write method for an indexed property is a procedure that takes a set of parameters of the same
number, the same type and in the same order as the indices specified in the property declaration
along with an additional value or constant parameter of the same type as the property elements.

Data types 61

 Virtual Pascal Language Reference

In a program, an array property can be treated just as if it was an array, with the exception that only
individual elements of an array property can be referenced. Referencing the entire range of the
property is not allowed.

An array property can be declared as the default array property. This allows the array property to be
accessed without specifying its name - the class instance followed by the indices enclosed in square
brackets is enough.

To declare a default array property the default directive should be appended to the definition of the
array property:

type
 THash = class
 function DoSearch(const Key: String): String;
 property Search[const Key: String]: String read DoSearch default;
 end;
...
var
 Hash: THash;
 S1,S2: String;
begin
 S2 := Hash.Search[S1]; // These assignments are equivalent
 S2 := Hash[S1];
end;

A class can have only one default property. When a class type declaration contains a default array
property, all descendants of the class type inherit the default array property and the default array
property can not be redeclared or hidden in descendant classes.

Index specifiers
Index specifiers are used by properties that share the same access method. To declare a property
with an index specifier, the index directive followed by an integer value with the range from -
2147483647 to 2147483647 should be added to the property declaration.

Example:

type
 TStringNum = class
 protected
 FNumber: Integer;
 function GetStr(Index: Longint) : String;
 procedure SetStr(Index: Longint; Value: String);
 published
 property HexStr: String index 0 read GetStr write SetStr;
 property DecStr: String index 1 read GetStr write SetStr;
 property Number: Integer read FNumber write FNumber;
 end;

function TStringNum.GetStr(Index: Longint) : String;
var
 FormatType: String[2];
begin
 case Index of
 0 : FormatType := '%x';

62 Data types

Virtual Pascal Language Reference

 1 : FormatType := '%d';
 end;
 Result := Format(FormatType, [FNumber]);
end;

procedure TStringNum.SetStr(Index: Longint; Value : String);
begin
 if Index = 0 then
 Value := '$'+Value;
 FNumber := IntToStr(Value);
end;

The read and write parts of the declaration of a property with an index specifier must be methods
and may not list class fields.

When referencing a property with an index specifier, the index specifier is passed to the access
method as an additional parameter. The index parameter should be a value parameter of type
Longint and must be added to the parameter list of the access methods of a property. The read
method must have it as the last parameter and the write method must have it as the second to last
parameter.

Storage specifiers
A non-array property definition can include a storage specifier: stored, default or nodefault. The
purpose of these specifiers is to set a special field in the run-time type information for the class. It is
up to the program to choose what to do with this information. The Delphi Visual Component Library
uses this information for saving and loading property values in a form file.

By default, all properties in the published part of the object declaration are stored. It is possible to
choose not to store a particular property at all, or designate a function for determining at run-time
whether to store the property.

To control whether a property is stored, the stored directive should be added to the property
declaration, followed by True, False, or the name of a Boolean field or method.

The default and nodefault directive can be used only with properties of ordinal types or small set
types.

The default directive is used to declare a default value for a property. The default value is a constant
of the same type as the property and is used by Delphi to determine whether or not to store a
property in a form file. If a default value is not specified, the property will always be saved.

When redeclaring a property, the property can be declared to have no default value, even if the
inherited property specified one. To declare a property as having no default value, the nodefault
directive should be added to the property declaration. If neither default nor nodefault is specified in
a property definition, the default setting of nodefault is assumed.

When saving a component’s state, the Delphi Visual Component Library iterates all of the
component’s published properties. For each property, the result of evaluating the boolean constant,
field, or function method of the stored specifier controls whether the property is saved. If the result
is False, the property is not saved. If the result is True, the property’s current value is compared to
the value given in the default specifier (if present). If the current value is equal to the default value,
the property is not saved. Otherwise, if the current value is different from the default value (or if the
property has no default value) the property is saved.

Data types 63

 Virtual Pascal Language Reference

To determine whether the stored attribute of a property is set, the IsStoredProp function declared in
the TypInfo unit can be used.

Property overrides
A class type inherits all properties of its ancestor types. To change the visibility, access specifiers or
storage specifiers of an inherited property in a derived class, the property should be overridden. An
overriding declaration of a property does not include the property interface.

To change just the visibility of a property, the reserved word property followed by an inherited
property name should specified. Note, that overrides can only make properties less restricted, not
more restricted. In other words, a protected property can be made public, but redeclaring it as
protected can not hide a property declared as public in an ancestor class.

When overriding a property, it is possible to declare new access specifiers, new default values and a
new storage specifier.

Example:

type
 TPublicStringNum = class(TSomeClass)
 public
 property HexStr;
 property DecStr;
 procedure SetNumber(Value: Integer);
 property Number write SetNumber;
 end;

In this example, the visibility of the HexStr and DecStr properties is raised and the write access
specifier of the Number property is changed to be a method (from whatever it was in the ancestor
class, where it might also have been a method).

Class-reference types
Class-reference types are used to perform operations directly on class types, as opposed to class
types, which operate on class instances. Class reference types are available only when using the
class model. The syntax of a class reference type declaration is:

A class reference type is used by a virtual constructor to create objects whose actual type is
unknown at compile time and by a class method to perform an operation on a class whose actual
type is unknown at compile time. It can be used as the right hand side operand of an is operator to
perform a dynamic type check with a type that is unknown at compile time, can be used as the right
operand of an as operator to perform a checked typecast on a type that is unknown at compile time,
and can be used to call class methods

A class reference type is assignment-compatible with any ancestor class reference type, so it can
reference the class or any class derived from the class it was defined for.

A class type identifier functions as a class reference type value. A class reference type variable can
be nil, in which case it does not reference a class. A value of a class reference type is encoded as a
pointer to the VMT for the class. The ClassType standard method declared in TObject is used to
receive a class reference value from a class instance, like this:

type

object type identifier class reference type of class

64 Data types

Virtual Pascal Language Reference

 TMyObject = class;
 TMyClass = class of TMyObject;
 ...
var
 One: TMyObject;
 Two: TObject;
 C: TMyClass;
begin
 One := TMyObject.Create;
 C := One.ClassType; // Get the class of object One
 if C is TMyClass then // Always true, but this is an example :-)
 Two := C.Create // Create another object of the same type
 else
 Two := TObject.Create // Create another object of type TObject
end;

When a constructor is invoked on a variable reference of a class reference type, it is used to create
an object, the type of which is unknown at compile time. Constructors that are invoked through class
reference types are usually virtual. If this is the case, the constructor implementation called depends
on the run-time class type selected by the class reference.

Summary of the two object models
The following table summarises the most important features of the two object models.

Feature object types class types
Default ancestor TObject No Yes
Static instances Yes No
Dynamic instances Yes Yes
Dynamic instances must be dereferenced Yes No
Abstract methods No Yes
Message handlers No Yes
Dynamic methods Yes Yes
Virtual constructors No Yes
Class methods No Yes
Properties No Yes
Class reference types No Yes
Guarded type checking using is No Yes
Protected typecast using as No Yes
New instance is automatically cleared No Yes
Run-time type information No Yes
private, public and protected components Yes Yes
published components No Yes
Compatible with Borland Pascal Yes No
Compatible with Borland Delphi Yes Yes

Set types
A set is a collection of elements of the same ordinal type, called the base type. If S is a set of
elements of type T, then any element of type T is either a member of S or is not a member of S.
Values of a set type are subsets of values of the base type. A set may have all the members of the
base type or it may have no members, in which case it is called an empty set and is written [].

The following diagram defines the syntax for a set type:

Data types 65

 Virtual Pascal Language Reference

A set value is stored as a string of bits. Each bit in the string corresponds to a value of the base type.
If a bit is set, the corresponding element is in the set. The maximum size of a set variable is 32 bytes,
which limits the base type of any set to 256 elements and limits the lower and upper bounds to the
0..255 range.

This means that an enumerated base type must not contain more than 256 values and integer base
types must be a subrange of the Byte type. Type Char is also a valid base type for a set. The number
of bytes occupied by a set, the byte number of a particular element and the bit number within that
byte, are calculated using the following formulas:

 Size = (High(BaseType) div 8) - (Low(BaseType) div 8) + 1
 ByteNo = (Ord(Element) div 8) - (Low(BaseType) div 8)
 BitNo = Ord(Element) mod 8

Some examples of set types:

type
 CharSet = set of Char;
 Alphabet = set of ’A’..’Z’;
 WeekPlan = set of DayOfWeek;

The following operators can be applied to set type values:

 + * - = <> <= >= in
The standard procedures Include and Exclude can be used to include or exclude an element of the
base type. They are implemented as an optimised form of the following assignment operators:

Include(SetVar, Element) ⇔ SetVar := SetVar + [Element];

Exclude(SetVar, Element) ⇔ SetVar := SetVar - [Element];

File types
File types are special types that are used to access external files or devices. A file is a linear
sequence of components of a specific type, called the based type. The base type can be any type
except a file, object or class type or can be a structured type not containing fields of any of these
types.

Using standard procedures and functions, all basic input and output (I/O) operations on file types
can be performed, such as opening, reading or writing, setting the file position, closing, renaming,
deleting, etc.

Pascal files fall into three categories:

Typed files
If the reserved word of and a component type are present in the declaration of a file type, the file is
assumed to be typed and it is only possible to read and write components of the declared component
type. The Seek standard procedure and the FileSize and FilePos standard functions assume the file
position and file size to be calculated in component type unit, i.e. not necessarily in bytes.

type file type offile

ordinal type set type of set

66 Data types

Virtual Pascal Language Reference

Untyped files
Untyped files are declared using the reserved word file. No component type is associated with
untyped files. Untyped files are used for low level access to binary files and allow only the most
basic I/O operations of reading and writing blocks of data to be performed. The base blocksize can
be specified when the file is opened by the Reset standard function. If the base size is not specified
in the call to Reset, it assumes a default value of 128 bytes.

Text files
Text is a predefined text file type. Text files are used to access MS-DOS style text files, where
Carriage Return (ASCII 13) and Line Feed (ASCII 10) characters are used as line delimiters. Text is
declared in the System unit as follows:

type
 Text = file of Char;

Unlike other typed files with Char as the base type, Text files have special features:

• It is possible to Read and Write elements that are not of type Char. These will automatically be
converted from/to character representation.

• Text file I/O is buffered using either an internal buffer of 128 characters contained in the file
variable or an external one attached by means of the SetTextBuf standard procedure.

• Special driver functions are used for opening, closing, flushing, reading and writing and offer a
flexible and powerful mechanism for creating a custom user defined low level I/O interface.

The following table lists all standard procedures and functions that can be used with each of the file
types. They are combined into groups according to the function performed:

Name Typed Untyped Text Description
Assign + + + Associates the name of an external file

with a file variable
Append - - + Opens an existing file for appending
Reset + + + Opens an existing file
Rewrite + + + Creates a new file and opens it
Erase + + + Deletes an external file
Rename + + + Renames an external file
Read + - + Reads one or more records/values from

a file
ReadLn - - + The same as Read, but skips to the

beginning of the next line after the read
Write + - + Writes one or more values to a file
WriteLn - - + The same as Write and appends a line

delimiter
BlockRead - + - Reads one or more records from a file
BlockWrite - + - Writes one or more values to a file
Flush - - + Flushes the buffer of a text file
Seek + + - Moves the current position to the

specified record
SeekEof - - + Returns True if end of file is reached

(ignores spaces at the end)
SeekEoln - - + Returns True if end of line is reached

(ignores spaces at the end)
Eof + + + Returns True if end of file is reached
Eoln - - + Returns True if end of line or end of

file is reached

Data types 67

 Virtual Pascal Language Reference

Name Typed Untyped Text Description
FileSize + + - Returns the size of the file
FilePos + + - Returns the size of the file
Truncate + + - Truncates a file at the current file

position
SetTextBuf - - + Associates an external I/O buffer with a

file
Close + + + Closes an open file
IOResult + + + Returns 0 if last I/O operation was

successful or a non-zero error code
otherwise

Internally, file types are stored as records. Typed and untyped file records occupy 332 bytes with the
following structure:

type
 TFileRec = record
 Handle: Longint;
 Mode: Longint;
 RecSize: Longint;
 Private: array [1..28] of Byte;
 UserData: array [1..32] of Byte;
 Name: array [0..259] of Char;
 end;

Text files occupy 460 bytes with the following layout:
type
 TTextBuf = array [0..127] of Char;
 TTextRec = record
 Handle: Longint;
 Mode: Longint;
 BufSize: Longint;
 BufPos: Longint;
 BufEnd: Longint;
 BufPtr: ^TextBuf;
 OpenFunc: Pointer;
 InOutFunc: Pointer;
 FlushFunc: Pointer;
 CloseFunc: Pointer;
 UserData: array [1..32] of Byte;
 Name: array [0..259] of Char;
 Buffer: TTextBuf;
 end;

These records are declared in the Dos unit as FileRec and TextRec and in WinDos and SysUtils units
as TFileRec and TTextRec.

Procedural types
Procedural types are pointers, which enable the use of procedures and functions as parameters both
in procedure and function calls and as variable values. The syntax diagram for a procedural type:

68 Data types

Virtual Pascal Language Reference

A procedural type declaration is similar to a procedure or function heading without a procedure or
function identifier.

Procedural types may be of two forms: global procedure pointers and method pointers.

A global procedure pointer can be thought of as an address of a global procedure or function,
usually in the code segment, where the executable code of the procedure or function is stored; that
is, the address to which control is transferred when the procedure or function is called. The
declaration of a global procedure pointer does not contain the clause of object. Examples of global
procedure pointer types follow:

type
 TMathProcedure = procedure (var X, Y, Z: Integer);
 TStatFunction = function(var X, Y: Extended): Extended;
 TReportFunc = function(var Min, Max: Extended; SF: StatFunction): Extended;

A method pointer is as an address of a procedure or function method of a class. It is implemented as
two pointers, one of which stores the address of a procedure or function method of a class, the other
contains the address of a corresponding class instance. The declaration of a method pointer must
contain the clause of object. For example:

type
 MathMethod = procedure of object;
 MathProcedure = procedure (P: MathObject) of object;

A variable of a procedural type can have one of the following values:

• The nil value.

In this case the procedural variable is considered to be unassigned and using it as a procedure or
function call will result in an error. The standard function Assigned returns True if a procedural
variable has been assigned a value and False if it has not.

• Pointer to a variable of a procedural type.

• A procedure or function identifier (for global procedural pointers).

• A method identifier (for method pointers).

Procedural type compatibility
Procedural types are compatible if they use the same calling convention and their parameters are of
the same number, in the same order and of the same types; the result types of functions must also be
identical.

A value of nil is compatible with any procedural type.

Global procedure and method pointer types are always mutually incompatible, i.e. a global
procedure or function can not be a value of a method pointer variable and a method can not be
assigned to a global procedure pointer variable.

of object

result object :

procedural type

procedure
formal parameter list

formal parameter list

Data types 69

 Virtual Pascal Language Reference

A nested procedure or function is one declared within another procedure or function. Nested
procedures and functions, standard procedures and functions and inline procedures and functions
can not be used as procedural values.

To be used as a procedural value, a standard procedure or function (declared in the System unit)
must be enclosed in a user-defined procedure or function.

Example

type
 TUpCase = function(ch: Char): Char;

function TestFunc (_UpCase: TUpCase; ch: Char): Char;
begin
 if Assigned(_UpCase) then
 Result := _UpCase(ch)
 else
 Result := ch;
end;

function MyUpCase (ch: Char): Char;
begin
 Result := System.UpCase(ch)
end;
var
 TheFunction : TUpCase;
begin
 // Output ‘A’ on screen
 Writeln(TestFunc(MyUpCase, ‘a’));
 // Output ‘A’ on screen
 TheFunction := @MyUpCase;
 Writeln(TestFunc(TheFunction, ‘a’));
 // Output ‘a’ on screen
 Writeln(TestFunc(nil, ‘a’));
end.

Type identity
Type identity is required between an actual and a formal variable parameter in procedure and
function calls.

Two types are identical if one of the following is true:

• They are declared with the same type identifier

• The first type is declared to be equivalent to a type identical to the second type

The second condition means that the first type does not have to be declared directly to be equivalent
the second type. For example, the following declaration:

T1 = Integer;
T2 = T1;
T3 = T2;
makes T1 , T2 and T3 identical types. The type declarations:

T4 = array [0..3] of Byte;

70 Data types

Virtual Pascal Language Reference

T5 = array [0..3] of Byte;

do not make T4 and T5 identical because array [0..3] of Byte is not a type identifier.

Two variables are of identical types if they are declared in the same declaration:

var
 V1, V2: record
 X,Y: Integer;
 end;

Type compatibility
Compatibility between two types is required, for example, in expressions or in relational operations.
Type compatibility is a precondition of assignment compatibility.

Two types are compatible if at least one of the following conditions is true:

• Both types are the same.

• Both types are floating point types.

• Both types are integer types.

• One type is a subrange of the other.

• Both types are subranges of the same host type.

• Both types are set types with compatible base types.

• Both types are packed string types with an identical number of components.

• One type is a string type and the other is either a string type, packed string type, or Char type.

• One type is Pointer and the other is any pointer type.

• Both types are class types or class reference types and one type is derived from the other.

• One type is PChar and the other is a zero-based character array of the form array[0..N] of Char
(applies only when extended syntax is enabled - the {$X+} state).

• Both types are pointers to identical types (applies only when type-checked pointers are enabled
- the {$T+} state).

• Both types are procedural types with identical result types, an identical calling convention, an
identical number of parameters and one-to-one identity between parameter types.

Assignment compatibility
Assignment compatibility is necessary when a value is assigned a value and is also required between
an actual and a formal variable parameter in procedure and function calls.

A value of type T2 is assignment-compatible with a type T1 (that is T1 := T2 is allowed) if any of the
following conditions are true:

• T1 and T2 are identical types and neither is a file type or a structured type that contains a file-
type component at any level of structuring.

• T1 and T2 are compatible ordinal types and the values of type T2 falls within the range of
possible values of T1.

Data types 71

 Virtual Pascal Language Reference

• T1 and T2 are real types and the value of type T2 falls within the range of possible values of T1.

• T1 is a floating point type and T2 is an integer type.

• T1 and T2 are string types.

• T1 is a string type and T2 is a Char type.

• T1 is a string type and T2 is a packed string type.

• T1 and T2 are compatible, packed string types.

• T1 and T2 are compatible set types and all the members of the value of type T2 fall within the
range of possible values of T1.

• T1 and T2 are compatible pointer types.

• T1 is a class type and T2 is a class type derived from T1.

• T1 is a class reference type and T2 is a class type derived from T1.

• T1 is an object type and T2 is an object type derived from T1.

• T1 is a pointer to the object type O1 and T2 is a pointer to the object type O1 or to any object
type derived from O1.

• T1 is a PChar and T2 is a string constant (applies only when extended syntax is enabled - the
{$X+} state).

• T1 is a PChar and T2 is a zero-based character array of the form array[0..N] of Char (applies
only when extended syntax is enabled - the {$X+} state).

• T1 and T2 are compatible procedural types.

� T1 is a procedural type and T2 is a procedure or function with an identical result type, an
identical calling convention, an identical number of parameters and one-to-one identity between
parameter types.

72 Variables and typed constants

Virtual Pascal Language Reference

C H A P T E R 6

Variables and typed constants

Variable and typed constant declarations
A variable is an identifiable region of memory that holds a value (or a set of values) that can change.
Each variable has an associated identifier and type (also known as a data type). All variables must be
declared in a variable declaration that has the following syntax:

An identifier list contains a single identifier or a list of identifiers, separated by commas. An
identifier, specified in the identifier list, can be used to access the variable it identifies within the
block containing the declaration. If an enclosing block contains an inner block, an identifier declared
in the enclosing block can be redeclared within the inner block. In this case, the new variable will
use this identifier, but after the end of the inner block, the identifier will represent the variable
declared in the enclosing block.

The type associated with a variable can be any valid standard data type or a user-defined type. A
user-defined type identifier should be declared in a type declaration part prior to it being used or
may be a new type declaration.

In the {&Delphi+} state, a global variable can be given an initial value by specifying an equal sign
followed by a constant expression, using the same syntax as described for typed constants below.
Local variables (defined inside a procedure, function or method), cannot have an initial value; upon
entry the value of all local variables is undefined.

An example of a variable declaration part:

var
 I, J, M, N: Integer;
 Value: Extended;
 B: ^Byte;
 Statement: array[0..100] of Char;
 Sentence: string[150]
 X: Integer = 8;
 Table: TMatrix;
 DSchedule: TScheduleRec;
 ValRec: record
 SignificandLo: Longint;
 SignificandHi: Longint;
 Exponent: SmallWord;
 end absolute Value;
 Point: record
 X, Y: Integer;
 end = (X: 2; Y: 10);

variable declaration

absolute

; : type
variable identifier

identifier

,
= typed constant

Variables and typed constants 73

 Virtual Pascal Language Reference

The reserved word absolute followed by a variable identifier is used for declaring absolute
variables. These are variables residing at the same memory address as another variable. This is
called an absolute-equivalence. If an absolute clause is present, only one identifier must be
specified.

Note
Unlike Borland Pascal, variables at absolute addresses are not supported, since absolute addresses
have no meaning in protected mode.

Typed constants can be thought of as variables with an initial value and can be used irrespective of
the state of the {&Delphi} directive, as they are compatible with both Borland Pascal and Borland
Delphi. They are initialised once at the beginning of a program and can be used as normal variables.
In addition to the type, a typed constant declaration contains the initial value:

Simple-typed constants
A simple-typed constant declaration defines a simple type and the initial value of the constant. For
example:

const
 LowBound: Integer = 1;
 Delta: Extended = 0.01;

Typed constants can be initialised by normal constant expressions or by constant-address
expressions. A constant-address expression is an expression which takes the address, offset, or
segment of a typed constant, a global variable, a procedure or a function. For example:

var
 TextLine: array[0..255] of Char;
const
 TextLineOfs: Longint = Ofs(TextLine);

Typed constants can not always be used instead of untyped constants. For example, it is not allowed
to use a typed constant in the declaration of other constants or types.

String-type constants
A string-type constant declaration either defines the maximum length of the string and its initial
value (when declaring a ShortString constant) or specifies the AnsiString type followed by an initial
value. For example:

typed constant declaration

identifier type: = typed constant
constant

array constant

address constant

record constant

procedural constant

typed constant

74 Variables and typed constants

Virtual Pascal Language Reference

const
 TextString: string[4] = ’text’;
 LongString: AnsiString = ‘This is a typed long string constant’;

Structured-type constants
A structured-type constant declaration defines the values of the components of a structured-type
constant. Virtual Pascal supports the declaration of array, record, object, class and set-type
constants.

const
 MyRec : record x, y: Integer; end
 = (x: 2; y: 8);

Array-type constants
The following diagram shows the declaration of an array-type constant:

Example

const
 BitMasks = array [0..7] of Byte = ($01,$02, $04, $08, $10, $20, $40, $80);

When a multidimensional-array type constant is initialised, the constants of each dimension should
be enclosed in parentheses and separated by commas. The innermost constants correspond to the
rightmost dimensions.

Example

type
 TCoef = array[1..2, 1..2] of Integer;
const
 Coef: TCoef = ((1, 2), (3, 4));

that is equivalent to the following assignments at the beginning of the program:

Coef[1,1] := 1;
Coef[1,2] := 2;
Coef[2,1] := 3;
Coef[2,2] := 4;

An array-type constant can have components of any type except file types. Packed string type
constants can be initialised both by single characters and by a string constant expression.

Example

const
 WildChars: array [0..1] of Char = (’*’, ’?’);

or using a string constant expression:

const
 WildChars: array [0..1] of Char = ’*?’;

array-type constant constant (

,

)

Variables and typed constants 75

 Virtual Pascal Language Reference

In the {$X+} state, a zero-based character array can be initialised by a string constant expression
whose length is less than the dimension of the array. In this case the remaining characters will be set
to null characters (#0) and the array will contain a null-terminated string.

Example

const
 FileName = array[0..259] of Char = ’Long_File_Name.PAS’;

Record-type constants
The following diagram shows the declaration of a record-type constant:

Example

type
TPoint = record

X, Y: Integer;
end;
TPersonRec = record

Name: string[40];
Surname: string[40];
Age: Integer;

end;

const
 InitPos: TPoint = (X:1; Y: 10);
 PersonRec: TPersonRec = (Name: ’Mary’; Surname: ’Smith’; Age: 30);

A record-type constant can not have components of a file type. The record fields must be initialised
in the same order as they were declared in the record-type. For records with a variant part, only the
active variant can be initialised and if there is a tag field its value must also be defined.

Object-type constants
Object-type constants have the same syntax as record-type constants. Method components are not
initialised.

Here is the example of object-type constants (see page 43 for the earlier object-type declaration):

const
 DataStream: TDataStream = (Status:0; ErrorInfo: 1);

If an object type contains virtual methods, its constants can be initialised without a constructor call.

record-type constant

field identifier typed constant :

;

)(

76 Variables and typed constants

Virtual Pascal Language Reference

Address constants
An address constant is initialised by a constant-address expression.

Example

type
 TFontName = string[32];
 PFontName = ^TFontName;

const
 Times: TFontName = ’Tms Rmn’;
 PTimes: PFontName = @Times; // Or Addr(Times)
In the {$X+} state, when extended syntax is enabled, a PChar typed constant can be initialised with
a string constant. In this case the pointer will contain the address of a null-terminated string that is a
copy of the string constant.

Example

const
 CityStr: PChar = ’London’;

Procedural type constants
A procedural type constant is initialised by an identifier of a procedure or function that is
assignment-compatible with the constant type or by the value nil.

Example

type
 TPrintString = procedure(const Str: string);

procedure ConsoleOutput(const Str: string);
begin
 WriteLn(Str);
end;

const
 PrintString: TPrintString = ConsoleOutput;

Memory allocation
Variables declared in a program or library block, or in the interface or implementation parts of a
unit, are called global variables and are stored in the uninitialised data segment named BSS32.

Typed constants are stored in the initialised data segment called DATA32.

Variables declared in a procedure, function or method block are called local variables. They are
allocated on the stack of the procedure or function when it is called and are disposed of after the
execution of the procedure or function. The stack segment holding local variables is called
STACK32 and the total size of local variables allocated by a procedure or function when it runs can
not exceed the size of the stack segment. The size of the stack is set by the {$M StackSize} compiler

procedural type constant procedure identifier

function identifier

nil

Variables and typed constants 77

 Virtual Pascal Language Reference

directive. StackSize value may not be less than 8 KB to allow for the minimum requirements of the
operating system and defaults to 16KB. In the {&Optimize+} state, if the address of a local variable
is not used, the compiler can allocate it in a CPU register instead of in a memory location.

The $S switch compiler directive is used to control stack overflow checking in a program. In the
default {$S+} state, when stack overflow check is turned on, the compiler generates special code on
entry to each procedure or function, checking the amount of stack currently available. Stack
overflow errors are usually very hard to track, so switch stack checking off only after the code has
been thoroughly tested.

Variables in a variable declaration section started by the reserved word threadvar are stored as
thread local storage (TLS) variables. Thread local storage is created for each thread running, so each
thread has its own instance of every threadvar variable declared. By redeclaring critical global
variables as threadvar, old code can be made re-entrant; this is important in a multithreaded
environment. For example, the InOutRes variable in declared in the System unit of Virtual Pascal is
declared as threadvar. This change is transparent to user code, meaning that the IOResult function
can be relied upon even in multi-threaded programs. When accessing a variable declared as
threadvar, it can not be accessed directly using code written in the built-in assembler, but must
instead be accessed by means of a Pascal wrapper routine.

Since Virtual Pascal generates pure 32-bit code, there is no 64KB restriction on the size of any
segment. In theory, the total size of all segments can not exceed 4GB, although operating systems
may impose limits smaller than this (for example, to maintain compatibility with 16-bit applications,
OS/2 restricts the total size of all segments by a 512 MB limit). Some of the available address space
is used for common code and data of DLLs, meaning that the actual maximum size is somewhat
smaller, depending on the environment.

In the {&AlignData+} state, all word-sized (2-byte) global variables and typed constants are aligned
at a word boundary. If the size of the global variable is greater than 3 bytes, it is aligned at a double
word boundary. In the {&AlignData-} state, no alignment is performed. Aligning can significantly
increase execution speed, at the cost of memory and hard disk space.

Variable references
In a context where a variable is expected, a variable reference can be substituted. Variable references
allow both simple variables, variable type casts, selected components of a structured variable or a
dereferenced pointer to be specified.

A variable reference has the following syntax:

An expression can be used in a variable reference to calculate the value of a pointer to a dynamic
variable. To produce the actual variable reference, the pointer value must be dereferenced (PChar
pointers can also be indexed in {$X+} state), so the syntax demands the use of a qualifier after the
expression.

variable reference variable identifier

expression

variable typecast qualifier

qualifier

Mem array

Port array

78 Variables and typed constants

Virtual Pascal Language Reference

Qualifiers
Qualifiers can be used in variable references to denote a component of a structured or string-type
variable or to dereference or index a pointer value.

Here are some examples:

BitMasks[I+J]

The index I+J denotes the I+Jth component of the array-type variable BitMasks.

ValRec.SignificandLo

The field designator SignificandLo specifies a component of a record-type variable ValRec.

B^

The caret (^) symbol is used to access the value of a dynamic variable that is pointed to by the
pointer-type variable B.

Indices
Indices are used to access specific elements of array- or string-type variables. The following diagram
shows the syntax for an index:

To access an element of an array-type variable, the variable reference followed by the index (or
indices) of the desired element should be specified.

Example

Statement[M+N]
Coef[I][J]
Coef[I, J]

Each index expression corresponds to one dimension of the array. The number and type of
expressions should correspond to the number and type of ordinal types in the array-type declaration.

To access a specific character of a string variable, the variable reference should be followed by a
single index expression. The value of the index for a string variable can range from 0 to N, where N
is the declared length of the string, for example:

Sentence[I]
specifies the Ith character of the string Sentence. It is of the type Char.

For short strings, the character at index 0 contains the current (dynamic) length of the string.
Although a string can be indexed beyond its dynamic length, the result of this operation is
unpredictable.

qualifier index

field designator

^

index expression [

,

]

Variables and typed constants 79

 Virtual Pascal Language Reference

For both short and long strings, the Length function returns the current length of the string.

In the {$X+} state, it is possible to index a value of PChar type. It can have only one index
expression which should be of Cardinal type. The index expression is added to the PChar type
pointer before it is dereferenced to produce a Char type variable reference.

Record field and object component designators
To access a field of a record or a component of an object, class or class reference variable, the
variable reference should be followed by a field designator specifying the field or component to
access. A component designator that designates a method is called a method designator.

The syntax for a field designator is the following:

Example

ValRec.SignificandHi
PersonRec.Name
PPoint^.Xcoor

Within a with statement, fields of a record and components of an object, class or class reference
variable may be referred to by a designator only: the compiler supplies the variable reference to the
base variable. When accessing several fields or components, using a with statement can also reduce
code size and slightly speed up execution.

Example

with Ppoint^ do
 begin

Xcoor:=3;
 Ycoor := 8;
 end;

Pointers and dynamic variables
A pointer variable is used to hold an address of a dynamic variable. When no dynamic variable is
associated with a pointer, a special value denoted by the reserved word nil is used. It is encoded as
the address with value zero and does not point to any variable.

The symbol (^), when it is written after a pointer variable, means that the dynamic variable pointed
to by the pointer variable, is dereferenced.

Example

B^
DSchedule.WInfo^
To create a dynamic variable, the standard procedures New or GetMem can be used.

Variable typecasts
Variable references of one type can be converted to variable references of another type using the
typecasting mechanism. The diagram below shows the variable typecast definition:

variable typecast type identifier variable reference ()

. field identifier field designator

80 Variables and typed constants

Virtual Pascal Language Reference

The type identifier denotes the type which the variable reference will have after the typecasting
conversion. The size of the type, denoted by the type identifier and the size of the variable, referred
to by the variable reference, must be the same.

The syntax allows the use of qualifiers after variable typecasts. For example:

var
 F: Text;
begin

 WriteLn(’File handle = ’, TextRec(F).Handle);

end.

MEM arrays
Mem arrays are used to directly access memory. Here is the syntax diagram for the mem array:

Virtual Pascal has three built-in memory arrays: Mem, MemW and MemL. The components of Mem
have type Byte, the components of MemW have type SmallWord and the components of a MemL
have type Longint. An i-th component of the memory array specifies a Byte, SmallWord or Longint
variable located at the absolute address i. Unlike Borland Pascal, the segment part of an address is
neither required, nor allowed in Virtual Pascal and the integer expression defines a flat memory
address.

In OS/2, some 16-bit API calls like VioGetBuf return 16:16 type pointer instead of the 32-bit 0:32
pointers used by VP. Before accessing the memory pointed to by such a pointer, it should be
converted to a flat memory pointer by calling the SelToFlat procedure located in the System unit.

mem array

integer expression]
. System

Mem

Memw

Meml

[

Expressions 81

 Virtual Pascal Language Reference

C H A P T E R 7

Expressions
An expression is a combination of operators and operands specifying a computation. Operators are
either binary or unary. Binary operators take two operands and are entered in infix notation, which
means that they are written between operands. Unary operators take one operand which must follow
the operator.

Expression syntax
The syntax of expressions is described by the following diagrams:

An expression consists of simple expressions and relational operators. These are examples of
expressions:

A < B
(X+1) <> (Y+Z)
Red in ColourSet
MyClass is TComponent

The syntax for a simple expression is the following:

A simple expression is a combination of terms, adding operators and bitwise and and or operators.
For example, the simple expression

X+Y*Z
is the sum of two terms and the second term has two factors. Terms are made up of factors and
multiplication operators:

expression simple expression
simple expression <

<=

>=

>

>

<>

in

is

term

or

+

-

xor

simple expression

82 Expressions

Virtual Pascal Language Reference

These are examples of terms:

A*B
A div (B+C)
Z shr 1
MyObject as TComponent

The syntax for a factor is shown on the diagram below:

An unsigned constant has the following syntax:

A function call is used in expressions to invoke a function and receive the result returned by the
function. Set constructors are used in expressions to denote set type values. Value typecasts change

unsigned constant integer number

character string

constant identifier

nil

term factor

div

*

/

mod

as

and

shl

shr

factor variable reference

expression

unsigned constant

factor

)(

factor not

value typecast

set constructor

function call

address factor

+

-

Port array

Expressions 83

 Virtual Pascal Language Reference

the type of a value. An address factor calculates the address of a variable, procedure, function or
method.

Here are some examples of factors:

A
2
(B+C)
Exp(-X)
@A

where A is variable reference, 2 is an unsigned constant, (B+C) is a sub-expression, Exp(-X) is a
function call and @A is a pointer containing the address of the variable A.

Function calls
The syntax for a function call is shown in the diagram below:

A function call invokes a function as specified by a function identifier, a method designator, a
qualified method designator, or a variable reference of a procedural type. For each formal parameter
in the function definition there must be an actual parameter of a corresponding type in the function
call. Refer to page 120 for a description of parameter passing rules.

If extended syntax is enabled ({$X+} state), a function can be used in place of a procedure in a
procedure call statement. When used in this way, the value returned by the function call is ignored.

Some examples of function calls follow:

Exp(2*X+Y)
Succ(A)
UserFunc(Z, 10)

Set constructors
A set constructor is used to define a set-type value. The syntax of a set constructor is:

variable reference

expression actual parameter list (

,

)

function call function identifier

method designator

qualified method designator

variable reference

actual parameter list

member group

,

set constructor []

expression member group
expression ..

84 Expressions

Virtual Pascal Language Reference

Each expression denotes a value of the set. All values in a particular set constructor must be of the
same ordinal type. A set can have no members at all, in which case it is called empty and has the
notation []. An empty set is compatible with all other set types.

Example

[’A’..’Z’,’a’..’z’,’_’]
[1..10, 50..100, A div 2]

Value typecasts
A value typecast is used to change the type of an expression. It is applicable to ordinal and pointer
types only.

The following diagram shows the syntax of a value typecast:

Unlike variable typecasts, value typecasts convert values (as opposed to variables) and therefore
cannot be used in variable references.

The size of the specified type can be different from that of the expression. If the size of the type is
less than the type of the expression, the expression will be truncated; if it is longer, the expression
will be extended, with the sign of the expression preserved.

Some examples of value typecast follow:

Char(137)
Metal(J)
Longint(@J)

The @ operator
The @ operator is used in an address factor, which has the syntax:

The @ operator is used to calculate the address of a variable, procedure, function or method. When
the @ operator is applied to a method, the method should be designated by a qualified method
identifier.

When applied to a variable reference, the @ operator returns a pointer to the variable. The $T switch
compiler directive controls the types of pointer values generated by the @ operator. In the {$T-}
state, the result type of the @ operator is always an untyped pointer that is compatible with all
pointer types. In the {$T+} state, when the @ operator is applied to a variable of type T, the type of
the result is ^T, which is compatible only with other pointers to this type of variable.

When applied to a procedure, function or method identifier, the @ operator prevents the compiler
from invoking the routine and returns a pointer to the entry point of the function, procedure or
method. The result type of the @ operator is always an untyped pointer that is compatible with all
pointer types.

expression type identifier value typecast ()

qualified method identifier

address factor variable reference

procedure identifier

function identifier

@

Expressions 85

 Virtual Pascal Language Reference

When applied to a procedural variable, the address operator converts the argument into an untyped
pointer variable that contains an address. The @ operator can also be used to assign an untyped
pointer value to a procedural variable. For example, consider the following fragment from the
WinCrt unit,

type
FnWp = function(Wnd: HWnd; Msg:Wong; Mp1, Mp2: MParam): MResult;
...

var
OldFrameWndProc: FnWp;
...

begin
...
@OldFrameWndProc:=WinSubclassWindow(CrtWindow, Frame, FrameWndProc);
...

end

The WinSubclassWindow function returns as a result an untyped pointer value, which can be
assigned to a procedural variable as shown above. After execution of the assignment statement,
OldFrameWindProc does not contain the address of the WinSubclassWindow function - but the
address of the procedure returned by it.

A double address operator (@@) applied to a procedural value returns the memory address of the
procedural variable (not the address stored in it).

Operators
Operators are tokens that trigger some computation when applied to operands in an expression.
There are arithmetic operators, logical operators, string operators, character-pointer operators, set
operators, relational operators and the @ operator.

Rules of precedence
Expressions are evaluated according to certain rules of precedence, that depend on the operators
used and the presence of parentheses.

The following table shows the precedence of the operators:

Operators Precedence
@, not High
*, /, div, mod, and, shl, shr, as
+, -, or, xor
=, <>, <, >, <=, >=, in, is Low

Operators with higher precedence are performed before operators with lower precedence. Operators
of the same precedence are performed from left to right. The use of parentheses changes the order of
evaluation: expressions enclosed in parentheses are evaluated first.

Example

X + Y < 0 first evaluates X+Y, then compares with 0
X shr 2 + Y xor 5 evaluates the left side of the + operator, adds Y and
 finally applies the xor operator to the result
X div (Y+3) first evaluates Y+3, then divides X by the result
not A and C is True, if A is False and C is True
not (A and C) is True, if A is False and C is False

86 Expressions

Virtual Pascal Language Reference

Arithmetic operators
The following table describes the arithmetic operators, the possible types of operands and the
resulting type of the operations.

Operator Operator type Operation Operand types Result type
+ Binary addition integer type

real type
Longint
Extended

+ Unary sign identity integer type
real type

Longint
Extended

- Binary subtraction Integer type
Real type

Longint
Extended

- Unary sign negation Integer type
Real type

Longint
Extended

* Binary multiplication Integer type
Real type

Longint
Extended

/ Binary division Integer type
Real type

Extended
Extended

div Binary integer division Integer type Longint
mod Binary remainder Integer type Longint

The + operator can also be used as a string or set operator and the +, -, * operators can also be used
as set operators. If A and B are sets of the same type, A * B denotes a set containing only those
elements present in both A and B.

An operand type can be a subrange of an ordinal type. In this case all operations with the operand
are performed as with the ordinal type operand.

If both operands are of an integer type, they are converted to Longint before the operation and the
result type of the operation is always Longint.

If one or both operands of a / operator are of an integer type, they are converted to Extended before
the operation and the result of the operation is always Extended. The second operand must be non-
zero, otherwise a run-time error occurs or an exception is raised.

op1 div op2 is the quotient of op1/op2 rounded towards zero to a value of an integer type. op2 must
be a non-zero value. The use of div with a second operand of zero results in an error.

The mod operator is used to obtain the remainder when dividing one operand by the other.

op1 mod op2 = op1 - (op1 div op2)*op2

The result of mod has the same sign as op1; op2 must be non-zero. The use of mod with a second
operand of zero results in an error.

Bitwise logical operators
The following table describes the bitwise logical operators, the possible type of the operands and the
result type of the operation.

Expressions 87

 Virtual Pascal Language Reference

Operator Operator type Operation Operand types Result type
not Unary bitwise negation integer type integer type
and Binary bitwise and integer type integer type
or Binary bitwise or integer type integer type
xor Binary bitwise xor integer type integer type
shl Binary shift left integer type Longint
shr Binary shift right integer type Longint

Each bit in the result value of the bitwise logical operations is determined as shown in the table
below:

Bit in op1 Bit in op2 not op1 op1 and op2 op1 or op2 op1 xor op2
0 0 1 0 0 0
1 0 0 0 1 1
0 1 1 0 1 1
1 1 0 1 1 0

The result of the not operator is of the same integer type as the operand.

The result type of and, or and xor operators is the common type of both operands. The common
type of the two operands is the basic integer type with the smallest range that includes all values of
the integer types of both operands.

The result of op1 shl op2 is the value of op1 left-shifted by op2 bits. The result of op1 shr op2 is the
value of op1 right-shifted by op2 bits. The type of the result of both operators is the type Longint.

Examples

10 shr 1 = 5
10 shl 2 = 40
3 xor 26 = $03 xor $1A = $19 = 25
10 and 6 = 2
10 or 6 = 14

Boolean logical operators
The table below describes the boolean logical operators, the possible types of the operands and the
result type of the operations.

Operator Operation Operand types Result type
not negation Boolean type Boolean
and logical and Boolean type Boolean
or logical or Boolean type Boolean
xor logical xor Boolean type Boolean

op1 op2 not op1 op1 and op2 op1 or op2 op1 xor op2
False False True False False False
True False False False True True
False True True False True True
True True False True True False

Virtual Pascal supports two models of code generation for the and and or operators: short-circuit
evaluation in the {$B-} state and complete evaluation in the {$B+} state. It is easy to see from the
table above that the result of the and operation is False if at least one of the operands is False. The
result of the or operation is True if at least one of the operands is True. The short-circuit evaluation
model takes these facts into consideration and evaluates the operands from left to right. The

88 Expressions

Virtual Pascal Language Reference

evaluation stops when the result of the entire expression becomes evident. Short-circuit evaluation is
convenient to use and results in minimum execution time. Time consuming operands (e.g. including
function calls) should be used in the end of an expression since this reduces the chance for them to
be evaluated. Short-circuit evaluation makes it possible to evaluate constructs that could not
otherwise be used. For example:

while (P <> nil) and (P^.Count <> 10) do
P: = P^.Next;

In the {$B-} state the second test is not evaluated if the first test is False. In the {$B+} state, the
second test would cause a run -time error if P was nil.

Complete evaluation evaluates all operands of an expression built from and and or operators
without stopping when the result of the entire expression is known. Complete evaluation can be used
if a boolean expression involves function calls that can affect the meaning of the program.

String operator
The table below describes the string operator, the possible types of operands and the result type of
the operation.

Operator Operator type Operation Operand types Result type
+ Binary Concatenation string type,

Char type, or
packed string type

string type

The + operator can be used to concatenate two string operands. The result of op1+op2, where op1
and op2 are of a string type, a Char type, or a packed string type, is the combined string of op1 and
op2.

In the {$H+} state, the result of a string concatenation is always a long string. In the {$H-} state, the
resulting string is a short string, truncated to 255 characters. The result value is compatible with all
string types, but not compatible with Char and packed string types.

PChar operators
In the {$X+} state (when extended syntax is enabled), a number of PChar operations are allowed. In
the following table, where P and Q are values of type PChar and I is a value of type Longint, the
permitted operation with PChar values are shown:

Operation Result
P + I Add I to the flat address of P
I + P Add I to the flat address of P
P - I Subtract I from the flat address of P
P - Q Subtract the flat address of Q from the flat address of P

The plus (+) and minus (-) operators can be used to increment and decrement the flat address of a
pointer value. The result of the operations P+I and I+P is a pointer value that points I characters
after P. The result of the operation P-I is a pointer that points I characters before P.

The (-) operator can be used to calculate the difference between the flat addresses of two PChar
values. The result of the operation P-Q (where P is the higher address and Q is the lower address) is
a value of type Longint that is the number of characters between Q and P. P and Q should point
within the same character array, or the result value is undefined.

Expressions 89

 Virtual Pascal Language Reference

Example

uses
 Strings;
var
 P, Q: PChar;
begin
 P := ‘This is a text string’;
 Q := StrPos(P, ‘text’);
 if Assigned(Q) then
 Writeln(‘Q points ‘,Q-P,’ characters into P’)
 else
 Writeln(‘Text not found; Q is nil’);
end;

Set operators
The table below describes the set operators, the possible types of the operands and the result type of
the operations.

Operator Operator type Operation Operand types
+ Binary union Compatible set types
- Binary difference Compatible set types
* Binary intersection Compatible set types

The result value of the operation op1 + op2 is a set containing the members of both sets op1 and op2.

The result value of the operation op1 - op2 is a set, containing all the members of the set -type value
op1, which are not members of the set-type value op2.

The result value of the operation op1 * op2 is a set, containing only the values which are members
of both sets op1 and op2.

If the smallest ordinal value that is a member of the result of a set operation is A and the largest is B
then the type of the result is a set of A..B.

Example

var
 A: set of 0..10;
 B: set of 5..100;
begin
 A := [3, 5, 7..9];
 B := [6, 8, 31];
 // Ask three questions, the answer to all three is TRUE
 Writeln(‘A and B both contain 8? ‘, 8 in A*B);
 Writeln(‘Either A or B contain 3? ‘, 3 in A+B);
 Writeln(‘Only A contains 7? ‘,7 in A-B);
 end.

Relational operators
The table below shows the possible types of operands and the result types for the relational
operations:

90 Expressions

Virtual Pascal Language Reference

Operator Operation Operand types Result type
= equal to compatible simple, pointer, set,

string, packed string type
Boolean

<> not equal to compatible simple, pointer, set,
string, packed string type

Boolean

< less than compatible simple, string, packed
string types, or PChar

Boolean

> greater than compatible simple, string, packed
string types, or PChar

Boolean

<= less than or
equal to

compatible simple, string, packed
string types, or PChar

Boolean

>= greater than or
equal to

compatible simple, string, packed
string types, or PChar

Boolean

<= subset of compatible set types Boolean
>= superset of compatible set types Boolean
in member of left operand, any ordinal type T;

right operand, set whose base is
compatible with T

Boolean

• Comparing simple types

The relational operators =, <>, <, >, >=, <= can be applied to operands of a simple type. In
order for two simple operands to be compared, they must be of compatible types, although one
operand can be of a real type and the other can be of an integer type.

• Comparing strings
The relational operators =, <>, <, >, >=, <= can be applied to operands of a string type.
Relations between two strings are established by relation between characters on corresponding
positions. If all characters of the first string are equal to the corresponding characters of the
second string, but the first string is shorter, then it is considered to be less. A string-type value
can be compared with any other string-type value (because all string-type values are
compatible), with a character-type value, or with a packed string-type value. A character-type
value is considered to be a string of length 1 when it is compared with a string-type value. A
packed string-type value with N components is considered to be a string with length N when it
is compared with a string-type value.

• Comparing packed strings
The relational operators =, <>, <, >, >=, <= can be applied to the two operands of a packed
string type if both of them have the same number of components. In this case they can be
compared just like two values of a string type with the same length.

• Comparing pointers
The relational operators =, <> can be applied to pointer-type operands. Two pointer values are
equal only if they point to the same object. To be compared the two operands must be of
compatible pointer types.

• Comparing PChar pointers
The relational operators >, <, >=, <= can be applied to PChar values in the {$X+} state (when
extended syntax is enabled). The operators compare the flat addresses of the pointer values, so
the two PChar values must point to the same character array, otherwise the result of the
relational operation will be undefined.

Expressions 91

 Virtual Pascal Language Reference

• Comparing sets
The relational operators =, <>, <=, >= may be used to compare sets:

The = operator denotes set equality and the <> operator denotes set inequality. A set-type value
X is equal to a set-type value Y (X = Y) only if X and Y contain exactly the same members;
otherwise X <> Y.

The <= operator denotes ’is contained in’. A set-type value X is contained in a set type value Y
(X <= Y) if every member of X is also a member of Y.

The >= operator denotes ’contains’. A set-type value X contains a set type value Y (X >= Y) if
every member of Y is also a member of X.

• Testing set membership
The in operator is used to test set membership. If a value of the ordinal-type operand op1 is a
member of the set-type operand op2, then the result of the operator op1 in op2 is True,
otherwise, it is False.

Class operators
There are two class operators: is and as. Both operators have the same syntax:

ObjectRef operator ClassRef

where operator is as or is, ObjectRef is an object reference and ClassRef is a class reference.
ObjectRef must be an instance of a class that is an ancestor of, equal to, or a descendant of ClassRef.
These operators use run time type information (RTTI) generated for the class type.

The is operator
With the is operator it is possible to determine whether an object is of a given type or one of its
descendants. The is operator returns True if ObjectRef is an instance of the class or an instance of a
class derived from the class denoted by ClassRef. Otherwise, the is operator returns False. If
ObjectRef is nil, the result is also False.

The is operator can also be used to perform a protected typecast:

if (Sibling <> Self) and (Sibling is TRadioButton) then
TRadioButton(Sibling).SetChecked(False);

If the value of the test expression is True, Sibling can be safely typecast to be of class TRadioButton.

According to the rules of precedence, the is operator has the same precedence as the relational
operators and the in operator. So (as it is shown in the example above) an expression with an is
operator must be enclosed in parentheses to be treated as a single operand in a boolean expression
containing and or or operands.

The as operator
The as operator is used to assure safe typecasting of objects. The result of the expression is a
reference to the same object as ObjectRef with the type denoted by ClassRef. It is equivalent to the
typecast construct:

if ObjectRef is ClassRef then ClassRef(ObjectRef)...

92 Expressions

Virtual Pascal Language Reference

but unlike it, using the as operator raises an EInvalidCast exception if ObjectRef is not an instance
of the class denoted by ClassRef, an instance of a class derived from the class denoted by ClassRef,
or nil.

The as typecast is most useful as a shorthand when creating a with..do block that includes a
typecast:

with GetComponent(0) as TReport do ...

According to the rules of precedence the as operator has the same precedence as the multiplying
operators. So if an as operator is used in a variable reference and the field designator follows the
variable reference, an as type cast must be enclosed in parentheses.

Port arrays
Port arrays are used to access CPU data ports directly. Here is the syntax diagram for the Port
arrays:

Virtual Pascal has three built-in port arrays: Port, PortW and PortL. The arrays are one-dimensional
and an i-th component of a port array specifies a data port with the address corresponding to the
index i. The components of Port have type Byte, the components of PortW have type SmallWord
and the components of a PortL have type Longint. The index type is the 16-bit type SmallWord.

If a component of Port, PortW, PortL is referenced in an expression, its value is input from the
selected port. If a component of Port, PortW, PortL is assigned a value, the value is output from the
selected port. Components of Port, PortW, PortL can not be used as variable parameters. It is also
not allowed to reference the entire Port, PortW or PortL array.

The actual reading from port and writing to port is performed by special run-time library routines
which are only linked into the program if a Port array is used. Special privileges and other system-
dependent setup is handled seamlessly by the compiler.

In OS/2, a program that uses direct port access can only run if a system wide option allows direct
port access. To make sure this is the case, the following line must be specified in the CONFIG.SYS
file of OS/2:

IOPL=YES

Port array

integer expression]
. System

Port

PortW

PortL

[

Statements 93

 Virtual Pascal Language Reference

C H A P T E R 8

Statements
Statements specify the flow of control as a program executes. If there are no explicit jumps or
conditional statements, statements are executed sequentially in the order of appearance in the source
code.

A statement can be prefixed by a label. The label can be a digit sequence in the range 0..9999 or an
identifier. A label can be referenced by a goto statement within the routine in which it is declared.

Assignment statements
Assignment statements are used to set the value of a variable or the return value of a function. An
assignment statement has the following syntax:

An expression specifies the value that will be given to the variable or the function result. The type of
the expression must be assignment-compatible with the type of the variable or the type of the
function result.

In the {&Delphi+} state, functions also implicitly defines a local variable named Result, of the same
type as the function return value. Assigning a value to Result has the same effect as assigning a
value to the function identifier. In addition, Result can be referred to in expressions referring to the
current function result value, without causing a recursive call.

Examples

Number := 1;
Square := A*B;
Z := Exp(2*X+Y);
ColourSet := [Yellow, Succ(Blue)];

function Sum(_X: Array of Longint): Longint;

statement
label :

compound statement

conditional statement

repetitive statement

with statement

assignment statement

procedure statement

goto statement

exception statement

assembler statement

assignment statement expression variable reference

function identifier

:=

port array

94 Statements

Virtual Pascal Language Reference

var
 I: Integer;
begin
 Result := 0;
 for i := Low(_X) to High(_X) do
 inc(Result, _X[i]);
end;

For old-style object types, an instance of an object type can be assigned an instance of any of its
descendant types. This ensures that all fields of the parent object will receive valid values from its
descendant.

Procedure statements
A procedure statement invokes a procedure, specified by a procedure identifier, a method
designator, a qualified method designator or a variable reference of a procedural type. The syntax for
a procedural statement follows:

The actual parameters are written in a list following the procedure identifier. For each formal
parameter in the procedure definition, there must be an actual parameter of a corresponding type in
the procedure statement. Refer to page 120 for a description of parameter passing rules.

Examples:

Writeln(’Examples:’);
DrawTable(M, N);
SelectTable;
MyObject.Test(17);

Goto statements
A goto statement directly transfers control to a labelled statement, which must be within the same
statement part of the procedure, function or a module initialisation. The following diagram shows
the syntax of a goto statement:

There are some important restrictions on the use of the goto statement. A goto statement must only
be used to jump within a block. If the current block is not an exception block, it is possible to jump
from an inner level to an outer level. A compiler error is reported if a goto attempts to jump into or
out of an exception block. In all other cases an error is not reported, although a goto to a statement
located in a deeper level of nesting can result in unpredictable effects.

The use of the goto statements makes a program less readable and may introduce bugs that are hard
to track and it is recommended to avoid the use of goto statements wherever possible. As a good
alternative, the safe Break, Continue and Exit standard procedures can be used to replace goto
statements.

procedure statement procedure identifier

method designator

qualified method designator

variable reference

actual parameter list

labelgoto statement goto

Statements 95

 Virtual Pascal Language Reference

Compound statements
A compound statement is a sequence of statements introduced by begin and terminated by end.
There must be a semicolon between each pair of statements. The statements are to be executed in the
same sequence as they are written. Wherever a statement may be written in a program, a compound
statement may be used instead.

This is an example of a compound statement:

begin
Z: = Exp(2*X+Y);
Writeln('Result:', Z);

end;

Conditional statements
Conditional statements select from alternative statements that could be executed. The selection is
based on the evaluation of a conditional expression.

if statements
An if statement enables the process to select one of two actions. The selection is made by evaluating
a conditional expression of type Boolean. The following diagram shows the syntax for an if
statement:

If the value of the expression is True, the statement following then is executed. If the value of the
expression is False, the statement following else is executed. The else clause may be omitted, in
which case no action will be taken if the condition yields False when it is evaluated. There are no
semicolons in an if statement and it is syntactically incorrect to put a semicolon before then or else.
Each statement may be a compound statement. The statements after then and else may themselves
be if statements:

if expression1 then if expression2 then statement1 else statement2 else statement3;

In this case the else part belongs to the nearest if for which there is no else clause and is equivalent
to the following:

if expression1 then
begin

if expression2 then
statement1

else
statement2

end
else

statement3;

statement expressionif statement if then

statement else

conditional statement if statement

case statement

statement compound statement begin end

;

96 Statements

Virtual Pascal Language Reference

Example:

if Number <= Max then
Inc(Number)

else
Number := Max;

Case statements
A case statement enables one of several statements to be executed depending on the value of a
selector expression. The selector expression can be of any ordinal type. The syntax for a case
statement follows:

Any statement in the case statement is prefixed by one or more case constants, case ranges or with
the reserved word else. All case constants must be the unique constants of an ordinal type
compatible with the type of the selector. Case constants and case ranges may not overlap each other.

After evaluating the selector, control is transferred to the statement with an equal case constant or
with a case range which includes the selector value. If no match is found and an else part is present,
the statements following else are executed. If no match is found and there is no else part, none of the
statements in the case statement are executed and control is passed to the statement following the
case statement.

Examples:

case Ch of
 ’A’..’Z’, ’a’..’z’: WriteLn (’The letter ’, Ch ’ is found’);
 ’0’..’9’: WriteLn (’The digit ’, Ch ’ is found’);
else
 WriteLn (’No letters or digits are found’);
end

Repetitive statements
Repetitive statements allow a set of statements to be executed several times. There are three forms of
repetitive statements:

statement else part else

;

case statement constant constant : ..

,

case statement case case expression of

else part

;

end
;

Statements 97

 Virtual Pascal Language Reference

The repeat statement is a loop with a termination condition that is evaluated at the end of the loop
body. In the while statement, the condition is evaluated at the beginning of the loop. The for
statement is used when the number of repetitions is known when the program is written.

The Break and Continue standard procedures can be used only inside repetitive statements. Break
terminates the repetition, Continue transfers control to the test expression for while and repeat
statements and to the next iteration in for loops.

Repeat statement
A repeat statement has the following syntax:

The expression must be of type Boolean. The reserved words repeat and until act as statement
brackets and several statements separated by semicolons may appear between them. The statements
within the loop execute repeatedly. Usually one of them affects the value of the terminating
expression and when it is evaluated to True, the loop terminates. The expression is evaluated after
each execution of the loop, so at least one execution of the repeat statement body is assured.

Examples:

repeat
if A[I] < Min then

Min := A[I];
I := I + 1;

until I > 31;

repeat
 DoForever;
until False;

While statement
A while statement has the following syntax:

The expression must be of type Boolean and is evaluated at the beginning of the loop. The
expression must have a well-defined value on entry to the statement. The body of the loop consists
of a single statement, which can be a compound statement. The statement is executed repeatedly
while the expression is True and the loop terminates when the expression becomes False. If it is
False at the beginning, the statement is not executed at all.

Example:

P := CmdLine;
Q := Param;
while P^ in [#1..’ ’]do

repetitive statement repeat statement

while statement

for statement

expression statement repeat statement repeat until

;

statement expression while statement while do

98 Statements

Virtual Pascal Language Reference

Inc(P);
while not (P^ in [#0.. ’ ’]) do
 begin

Q^ := P^;
Inc(P);
Inc(Q);

 end;
Q^ := #0;

while True do

DoForever;

For statements
If the number of repetitions does not depend on the statements within the loop, the appropriate
construction is a for loop. It has the following syntax:

The control variable is used as a counter of iterations in the for statement. The control variable must
be a variable identifier of an ordinal type. The control variable’s values range from initial value to
final value and always start at initial value. The initial and final value must be of a type, assignment-
compatible with the control variable type. The body of the loop consists of one statement that can be
a compound statement. It is executed once for each value of the control variable. The value of the
control variable is incremented by one in each iteration for the to variant of the loop and is
decremented by one for the downto variant.

The general form of the for statement is:

for cv:= expression1 to expression2 do statement;
for cv:= expression1 downto expression2 do statement;
and is defined as to being equivalent to the following compound statement:

begin
temp1 :=expression1;
temp2 :=expression2;
if temp1 <= temp2 then { temp1 >= temp2 for the downto variant }
begin

cv:=temp1;
statement;
while cv <> temp2 do
begin

cv:=Succ(cv); { cv := Pred(cv); for the downto variant }
statement

variable identifier control variable

expression initial value

expression final value

statement final value do
downto

to

for statement for initial value control variable :=

Statements 99

 Virtual Pascal Language Reference

end
end

end;

where cv is the control variable of the for statement. The variables temp1 and temp2 have the same
type as cv. They are created by the compiler and can not be accessed by the program. The point of
introducing them is to ensure that expression1 and expression2 are evaluated once only before the
loop is entered and to prevent the limits of the for loop from being changed within the loop.

When the for statement terminates, the value of the control variable is undefined, unless the
execution of the loop was interrupted by a goto or Break from the for loop body. The value of the
for control variable must not be changed in the body of the loop.

The value of the for loop control variable is undefined when the for loop terminates and must not be
relied upon.

Examples:

for I :=1 to 10 do
for J := 1 to 10 do

if I=J then
E[I,J] := 1

else
E[I,J] := 0;

With statements
If it is necessary to access the same component of a record or object, or different components of the
same record or object, several times in a small section of the program, a with statement is the
appropriate construct to use. It has the following syntax:

Within the statement, components of the record or object type may be referred to by field name
only: the compiler supplies the variable reference to the record or object. In addition to saving some
writing, the with statement may result in more efficient code because the record or object needs only
be located once, instead of several times. This is particularly useful if a reference to a record or
object variable involves function calls, indexing or dereferencing a pointer, as they will be evaluated
once, before the statement is executed.

Examples:

type
PTreeNode = ^TTreeNode;
TTreeNode = record

Left: PTreeNode;
Right: PTreeNode;
Info: Integer;

end;
var

P: PTreeNode;

with statement with statement record or object
variable reference

,

do

variable referencerecord or object
variable reference

100 Statements

Virtual Pascal Language Reference

begin
...
New(P);
with P^ do
begin

Left := nil;
Right := nil;
Info := 1;

end;
...

end;

A with statement introduces a new record or object scope which overrides all enclosing scopes. This
means that if a variable reference can be interpreted as a field of the record within a with statement,
it will be interpreted so, even if a variable with the same name could also be accessed.

The form of the with statement:

with V1 , V2 , ... VN do S;

is defined as equivalent to

with V1 do
with V2 do
...
 with VN do

 S;

Exception statements
An exception is an abnormal situation that arises at run time and interrupts the execution of a
program. In such a case, control is passed to the exception handler, which specifies the actions to be
taken to deal with the situation. The exception - handling mechanism supported by Virtual Pascal
provides a structured means of processing error conditions.

The exception - handling mechanism is only available in the {&Delphi+} state and is implemented
by the SysUtils unit, which must be included in programs relying on exception statements.

Exceptions are represented by class types descending from Exception. This allows exceptions to be
grouped in a hierarchy, so new exceptions can be easily implemented without changing the existing
code. An exception class instance carries information from the point where the exception is raised to
the point where the exception is caught. Information about what error occurred and where it
happened is stored in the exception and can be useful when the program encounters an anomaly at
run time.

Exceptions are declared in the SysUtils unit. If an application that uses the SysUtils unit encounters
an abnormal situation during execution, control is transferred to the appropriate exception handler.
The exception handler usually lets the application recover from the error and continue running. Error
conditions that would otherwise have terminated the program, (like writing to full disks or
attempting to open non-existing files) can be caught and handled.

The declaration of an exception is the same as the declaration of an ordinary class. Although Virtual
Pascal allows an exception to be an instance of any class, it is advisable for an exception object to be
derived from the Exception class declared in the SysUtils unit, since the standard exception handlers
handle only exceptions derived from the Exception class. This means, that if a new exception is

Statements 101

 Virtual Pascal Language Reference

raised in a block of code that is not protected by a specific exception handler for that exception, one
of the standard handlers will be used.

Exception statements allows the use of the exception-handling mechanism. There are three forms of
exception statements:

The raise statement
A raise statement is used to raise an exception. The syntax of the raise statement is shown below:

The reserved word raise must be followed by an expression of a class instance type. An instance of
an exception is usually constructed in the raise statement through a call to the Create constructor of
the corresponding exception class. When an exception is raised, it causes control to be transferred to
the innermost exception handler: control does not return to the statement following raise. After
handling the exception, the exception object is automatically destroyed by the default object’s
Destroy destructor. Destroying a raised exception object manually is not allowed. The innermost
exception handler is the handler whose try...except block was most recently entered and not yet
exited.

If the optional at part is not specified, an exception is raised on the address of the raise statement.
To specify a particular address for the exception, use the reserved word at followed by an address
expression.

Example:

if FontSize <= 0 then
raise EFontError.CreateFmt(’Invalid font size: %d’, [FontSize]);

As can be seen from the example, the default Exception class defines a number of constructors that
allow meaningful descriptions to be created when exceptions are raised. The CreateFmt constructor
used here allows the same parameters to be passed as is the case for the Format function defined in
SysUtils. Please refer to the Virtual Pascal run-time library reference for more information.

A raise statement can omit the argument, which causes it to re-raise the current exception. This
form of a raise statement can be used in an exception block only. Usually an exception handler
handles all local exceptions that are known to it. If an exception handler does not know what to do
with an exception of a particular type, the best action is to transfer control to an outer exception
handler. The re-raise form of the raise statement transfers control to the exception handler of the
enclosing block. Without it, after exiting the handler, the exception would be automatically
destroyed and the enclosing block would not be given the option of handling it.

Example:

try
DoCalculation;

except

exception statement raise statement

try...except statement

try...finally statement

raise statement

raise
exception instance

address expression at

102 Statements

Virtual Pascal Language Reference

on EZeroDivide do HandleZeroDivide;
else { Exception that is unknown to this handler }

raise;
end;

The try...except statement
Try...except statements are used to handle exceptions.

The try statement list contains the statements that are executed normally. If no exception occurs, the
try...except statement is exited after the last statement of the statement list. The except part of the
statement contains exception handlers that are used to catch exceptions. If an exception is raised,
control is transferred to the exception handler which can than handle the exception or re-raise it if it
does not know how to handle it. Exceptions can be raised only by a raise statement in the try
statement list or by a procedure or function called in the try statement list. The SysUtils unit is used
to convert run time error codes and CPU exceptions into corresponding language exceptions. All
CPU and system exceptions are caught by the system exception handler and then translated to the
corresponding exception object which is then raised by a raise statement.

Example:

try
DoSomething;

except
on EInOutError do HandleIOError;

end;
An exception handler listed in the except part will receive exceptions of the exception class
specified after the on reserved word or any descendants of that exception class. The first matching
handler is executed, which is why exception handlers for more general exception classes should be
listed after descendant exception handlers to give them a chance to catch their own exceptions. If
none of the on...do exception handlers can handle the exception and the exception block contains an
else part, the statements in the else part are supposed to handle the exception.

Examples:

try
...

except

try statement

try exception block statement list endexcept

statement list statement

;

exception block exception handler

; statement list

statement list

else

exception handler

class type identifier statement doon
identifier :

Statements 103

 Virtual Pascal Language Reference

 on X1 do HandleX1;
 on X2 do HandleX2;
else
 HandleOtherExceptions;
end;

If an exception block consists only of a statement list, it is supposed to handle all exceptions.

try
...

except
 HandleAnyException;

end;

When an exception is raised, the innermost exception handler that can handle exceptions of the
given class is sought. First the current try...except statement is checked. If it can not handle
exceptions of the given class, the previously current try...except statement is examined. This
process continues until an appropriate handler is found and control is passed to it. If a handler is not
found and there are no more active try...except statements, a run-time error occurs and the
application is terminated.

When an appropriate exception handler is found, the stack is unwound to the procedure or function
that contains the handler and control is passed to the handler.

After the exception handler has executed, the exception object is automatically destroyed through a
call to the object’s Destroy destructor and control is transferred to the statement following the
try...except statement. Control does not return to the statement list.

If an on...do exception handler specifies an identifier and a colon before the exception class
identifier, the identifier will represent the exception object during execution of the statement that
follows on...do. For example:

try
 ...
except
 on X: Exception do ApplicationError(X.Message);
end;

The scope of an identifier declared in an exception handler is the statement that follows on...do. It
hides any other identifiers with the same name in the outer scopes.

The try...finally statement
The try...finally statement is used in situations where it is necessary to ensure that a resource
allocated by the code section will be released again, even if code execution is interrupted by an
exception.

statement list statement

;

try statement

try statement list statement list end finally

104 Statements

Virtual Pascal Language Reference

The statements in a try statement list are executed in the order of appearance until the last statement
in the list is executed or until an exception is raised. In either case, the finally statement list will be
executed. If an exception is raised in the try statement list, control is passed to the finally statement
list and the exception is re-raised.

Note that try...finally statements do not handle exceptions. In fact, the finally part of the statement
does not even know whether an exception has occurred or not.

If an exception occurs in the finally statement list itself and it is not handled, it will be re-raised to
the outer exception handlers and the original exception will be lost.

Example:

New(P);
try

DoSomething(P);
finally

Dispose(P);
end;

Assembler statements
The built-in assembler (BASM) allows the writing of 386, 486 and Pentium assembler code inside a
Pascal program. Unlike macro assemblers, only a small subset of assembler directives are supported
and no macro processing is available.

The built-in assembler is accessed through assembler statements. The syntax of an assembler
statement is:

Several asm instructions can be written in one line, separated by semicolons. Unlike a macro
assembler, only Pascal style comments can be used. It is not possible to insert a comment inside an
asm instruction.

Assembler statements and assembler procedures and functions should conform to the current register
convention. By default, the ebx, esi and edi registers must be preserved by asm statements, although
the {&Saves RegList} or the {&Alters RegList} compiler directives can be used to modify the
register saving convention used by an asm statement. This is the preferred method for embedded
asm statements. In this case, the directives must be specified inside the procedure or function body
just before the reserved word asm and will affect all subsequent asm statements within the current

;

assembler statement asm
asm instruction

asm directive

new line

comment

end

: prefix
opcode

operand

asm label

,

asm instruction

Statements 105

 Virtual Pascal Language Reference

statement part, but will not affect the default register saving convention for procedures and
functions.

For asm procedures and functions, it is better to use the {&Uses RegList} compiler directive. It lists
those of the registers that must be preserved (by default ebx, esi, edi) but are changed by the asm
procedure or function. The {&Uses} directive causes the listed registers to be pushed on entry and
popped on exit. It is not recommended to use the {&Saves} or {&Alters} directives, because the
effect is global when applied to procedures and functions and it will affect all procedures and
functions located further down in the source file as well.

Example:

function StrLen(Str: PChar): Longint; assembler; {&Uses edi} {&Frame-}
asm

cl d // Set forward scan direction
mov edi,Str // Load address of Str into edi
or ecx,-1 // Set ecx to -1
xor eax,eax // Set eax to 0
repne scasb // Scan forward, until 0 byte found
sub eax,ecx // Get 1-Count value into eax
sub eax,2 // Subtract 2 to get function result value

end;

Because of the {&Uses edi} directive in the example, the compiler automatically saves the value of
the edi register on entry, and restores it on exit. If the directive had not been present, no registers
would all have been saved and restored, with possible negative consequenses for the program. VP
always assumes that the ebx, esi and edi registers are preserved, so these must either be saved
manually or saved by making the compiler aware that they may change by using a {&Uses}
directive.

Labels
Assembler statements are treated by the compiler as a block with one entry and one exit. As a result,
Pascal labels cannot be referenced in BASM and it is not possible to declare Pascal labels in the
assembler statement. Only local assembler labels can be used. A local assembler label must start
with an @ sign followed by one or more characters; each of them can be either a letter A...Z, a...z, a
digit 0...9, an underscore _ or an @ sign. Only the 31 first characters are significant.

Prefixes
A prefix is one of the following:

lock
rep
repe

repz
repne
repnz

seges
segcs
segss

segds
segfs
seggs

Instructions
An instruction is one of the following instruction mnemonics:

aaa
aad
aam
aas

adc
add
and
arpl

bound
bsf
bsr
bswap

bt
btc
btr
btc

call
cbw
cdq
clc

cld
cli
clts
cmc

106 Statements

Virtual Pascal Language Reference

cmp
cmpsb
cmpsd
cmpsw
cmpxchg
cmpxchg8b
cpuid
cwd
cwde
daa
das
dec
div
enter
enterd
enterw
f2xm1
fabs
fadd
faddp
fbld
fbstp
fchs
fclex
fcom
fcomp
fcompp
fcos
fdecstp
fdisi
fdiv
fdivp
fdivr
fdivrp
feni
ffree
fiadd
ficom
ficomp
fidiv
fidivr
fild
fimul
fincstp
finit
fist
fistp

fisub
fisubr
fld
fld1
fldcw
fldenv
fldl2e
fldl2t
fldlg2
fldln2
fldpi
fldz
fmul
fmulp
fnclex
fndisi
fneni
fninit
fnop
fnsave
fnstcw
fnstenv
fnstsw
fpatan
fprem
fprem1
fptan
frndint
frstor
fsave
fscale
fsetpm
fsin
fsincos
fsqrt
fst
fsrcw
fstenv
fstp
fstsw
fsub
fsubp
fsubr
fsubrp
ftst
fucom
fucomp

fucompp
fwait
fxam
fxch
fxtract
fyl2x
fyl2xp1
hlt
idiv
imul
in
inc
insb
insd
insw
int
into
invd
invlpg
iret
iretd
ja
jae
jb
jbe
jc
jcxz
je
jecxz
jg
jge
jl
jle
jmp
jna
jnae
jnb
jnbe
jnc
jne
jng
jnge
jnl
jnle
jno
jnp
jns

jnz
jo
jp
jpe
jpo
js
jz
lahf
lar
lds
lea
leave
leaved
leavew
les
lfs
lgdt
lgs
lidt
lldt
lmsw
lodsb
lodsd
lodsw
loop
loopd
loopde
loopdne
loopdnz
loopdz
loope
loopne
loopnz
loopw
loopwe
loopwne
loopwnz
loopwz
loopz
lsl
lss
ltr
mov
movsb
movsd
movsw
movsx

movzx
mul
neg
nop
not
or
out
outsb
outsd
outsw
pop
popa
popad
popf
popfd
push
pusha
pushad
pushf
pushfd
rcl
rcr
rdmsr
rdtsc
ret
retf
retn
rol
ror
rsm
sahf
sal
sar
sbb
scasb
scasd
scasw
seta
setae
setb
setbe
setc
sete
setg
setge
setl
setle

setna
setnae
setnb
setnbe
setnc
setne
setng
setnge
setnl
setnle
setno
setnp
setns
setnz
seto
setp
setpe
setpo
sets
setz
sgdt
shl
shld
shr
shrd
sidt
sldt
smsw
stc
std
sti
stosb
stosd
stosw
str
sub
test
verr
verw
wait
wbinvd
wrmsr
xadd
xchg
xlat
xlatb
xor

Pseudo instructions
Two pseudo-instructions are supported: Align and PopArgs.

The Align pseudo instruction accepts one constant integer operand that can have the following values:

Statements 107

 Virtual Pascal Language Reference

Value Description
1 No code is generated
2 The compiler generates code to align the next instruction to a word

(2-byte) boundary
4 The compiler generates code to align the next instruction to a double

word (4-byte) boundary.

Code generated by the Align instruction does not change any CPU register, except eip (The instruction
pointer).

The PopArgs pseudo instruction accepts one constant integer operand that defines the size of the
arguments that should be popped out after the current subprogram returns. It has meaning only for
assembler procedures and functions. This value is used for RET instruction, generated by the end
statement of the assembler procedure or function.

Asm directives
Virtual Pascal supports the following directives:

Directive Meaning Operand range Size
bytes

db Define byte -128...255 1
dw Define word -32,768...65,535 2
dd Define double word -2,147,483,648...4,294,967,295 4
df Define far 48 bit pointer -2,147,483,648...4,294,967,295 6
dp Define far 48 bit pointer -2,147,483,648...4,294,967,295 6

These directives are used to define data of the corresponding size. Each operand of the directives must
be a value within the specified range; multiple operands must be separated by commas. The operand
can be either an integer constant or a literal string constant. For db a literal string can be of any length,
for dw it should be not longer than 2 characters, for dd not longer than 4 characters and as for df and
dp, its length may not exceed 6 characters.

Definitions of floating point values using dd, dq and dt are not supported. These values must be
declared as typed constants of Single, Double, Comp or Extended type.

The data generated by these directives is stored in the code segment. To define data in the initialised
or uninitialised data segment, Pascal variables or typed constants should be used instead.

It is not possible to specify the name of a data value before a directive name. To mark the generated
data, a local label can be used:

@@PowerOf10Table: dd 1, 10, 100, 1000, 10000, 100000,1000000,10000000

Operands
Assembler instruction operands are expressions constructed from constants, registers, symbols and
operators. BASM supports MASM style syntax for the operands. The exact syntax definition is
beyond the scope of this chapter and can be found in macro assembler manuals. Assembler operands
must be separated by commas. See the Intel manual for a detailed description of the operands for a
particular instruction.

The following words are reserved in the built-in assembler:

ah
al

and
ax

bh
bl

bp
bx

108 Statements

Virtual Pascal Language Reference

byte
ch
cl
cr0
cr2
cr3
cr4
cs
cx
dh
di
dl
dr0
dr1
dr2
dr3

dr6
dr7
ds
dword
dx
eax
ebp
ebx
ecx
edi
edx
es
esi
esp
far
fs

fword
gs
high
large
low
mod
near
not
offset
or
ptr
pword
qword
seg
shl
short

shr
si
small
sp
ss
st
tbyte
tr3
tr4
tr5
tr6
tr7
type
word

xor

If a Pascal symbol name clashes with one of these reserved words, the ampersand (&) identifier
override operator can be used to tell the built-in assembler to look for the Pascal identifier with the
same name instead of the reserved word. For example:

var
 Ch: Char;
 ...
asm
 ...
 inc &Ch { Increases the Pascal variable Ch }
 inc ch { Increases ch register }
 ...
end;

The built-in assembler can be considered as an assembler using Pascal syntax for data definitions.
BASM allows referencing of the following symbols:

Statements 109

 Virtual Pascal Language Reference

Symbol Value Class Type
Local label Address of label Memory SHORT
Untyped constant Value of constant Immediate 0
Type 0 Immediate Size of type
Field Offset of the field Memory Size of field
Variable Address Memory Size of variable
Procedure, function
or method

Address of entry point Memory NEAR

Unit 0 Immediate 0
@Code Flat CS selector of the code

segment
Memory 0FFFFFFF0h

@Data Flat DS selector of the code
segment

Memory 0FFFFFFF0h

@Result Address of the function
result

Memory Size of variable

@Locals Total size of local variables Immediate 0
@Params Total size of parameters Immediate 0
@Uses Total size of the registers

specified in the
{&Uses RegList} directive

Immediate 0

@Code and @Data symbols must be used only with the SEG operator like this:

asm
 ...
 mov eax, SEG @Data
 ...
end;

@Result, @Locals, @Params and @Uses can be used only inside assembler procedures or functions.

The following symbols can not be accessed from the built-in assembler:

• Standard procedures and functions declared in the System unit, like ReadLn.

• Mem and Port arrays.

• String, floating point and set untyped constants.

• Inline procedures and functions.

• Pascal labels

• @Result, @Locals, @Params and @Uses symbols inside a Pascal procedure or inside an
embedded asm statement.

In asm statements within a Pascal statement part, local variables are always accessed via the ebp
register. If a local variable is accessed using the built-in assembler, it will not be allocated in a CPU
register, even in the {&Optimise+} state.

Inside assembler procedures or functions local variables are accessed via ebp in the {&Frame+} state
or via esp in the {&Frame-} state.

The assembler automatically adds [ebp] or [esp] in all references to local variables. However in the
{&Frame-} state references to local variables are valid only if the value of the esp register has not
changed within the body of the asm procedure or function (there are no pushes or pops). Disabling the

110 Statements

Virtual Pascal Language Reference

frames is usually used for small and simple procedures and functions in order to generate more
efficient code.

The type of an assembler expression is returned by the TYPE operator. The following types are
predefined in BASM and can be used in addition to any Pascal types:

Symbol Type
byte 1
word 2
dword 4
pword 6
fword 6
qword 8
tbyte 10
near 0FFFFFFFEh
far 0FFFFFFFFh
short 0FFFFFFFDh

Example

{ Fill Count number of double words (4 bytes) with Value }
procedure FillDWord(var Dest; Count,Value: Longint); {&Uses edi} {&Frame-}
asm
 cld
 mov edi,Dest
 mov eax,Value
 mov ecx,Count
 rep stosd
end;

Procedures and functions 111

 Virtual Pascal Language Reference

C H A P T E R 9

Procedures and functions
Procedures and functions allow the logic of a program to be divided into separate tasks, making it
much easier to develop and understand the program. Each procedure or function is made up of a
heading, which names the procedure or function and a procedure or function block, which contains all
the actions of the routine. To invoke a procedure or function, a procedure or function call is used as
explained later in this chapter.

Procedure declarations
A procedure or function must be declared before being used in a program. The syntax for a procedure
declaration is shown on the diagrams below:

The procedure heading describes the procedure identifier and specifies any optional formal
parameters. The subroutine block immediately follows the heading and contains all statements to be
executed on activation. In case of a forward declaration by means of a forward procedural directive or
a declaration in the interface part of a unit, the block containing the statement part of the procedure
should be omitted. A full declaration with statement part must be declared later on. A procedure is
called by a procedure statement, which consists of the procedure's identifier and actual parameters in
place of the corresponding formal parameters. Within the statement part of a subroutine block, a
procedure can call itself while executing, i. e. it can be a recursive call.

Examples:

procedure UpStr(var S: String);
var
 I: Integer;
begin

procedure heading

procedure

qualified method identifier

formal parameter list

identifier

procedure declaration subroutine blockprocedure heading ; ;

near

block

external directive

asm block

subroutine block

cdecl

stdcall

;

far16

far

export

forward

inline directive

pascal

;

112 Procedures and functions

Virtual Pascal Language Reference

 for I := 1 to Length(S) do
 S[I] := UpCase([S[I]);
end;

Function declarations
A function declaration is similar to a procedure declaration, but the reserved word function replaces
the keyword procedure and the type of the function follows the parameter list.

The function heading introduces the function identifier and optionally specifies any parameters and
the type of the function result. The subroutine block has the same syntax and meaning as the
subroutine block of a procedure. When a function is used as a factor in an expression, the actual
parameters substitute the formal parameters.

After the function has executed, the value of the factor is the return value of the function. Inside the
statement part of the function, the function identifier can be used in assignment statements to assign a
value to the function result. If the function identifier is used as a factor of an expression within the
function statement part, it is interpreted as a recursive call. In the {$X+, Delphi+} state, an implicit
local variable Result is also defined to reference the function result. Unlike the function identifier, it is
possible not just to assign a value to the Result variable, but also to read the current value of it, pass it
as a variable parameter to other procedures or functions, etc. The function block should contain at
least one statement that assigns a value to the function result. If there is more than one statement of
this kind, the last one will assign the return value to the function identifier. If there are no such
statements, the function result is undefined. If extended syntax is enabled (in the {$X+} state), a
function can be used as a procedure in a procedure call statement. In this case the result value of the
function will be discarded.

Examples:

function UpStr(const S: String): String;
var
 I: Integer;
begin
 SetLength(Result, Length(S));
 for I := 1 to Length(S) do

Result[I] := UpCase(S[I]);
end;

function Faculty(X: Cardinal): Cardinal;

function heading

function
qualified method identifier

formal parameter list

identifier

result type :

function declaration subroutine block function heading ; ;

result type

string

type identifier

Procedures and functions 113

 Virtual Pascal Language Reference

begin
 if X <= 0 then
 Result := 1
 else

Result := X * Faculty(X-1); // Recursive call
end;

When writing assembler procedures and functions, the following conventions used for returning
function result values must be taken into consideration:

• Ordinal type function results are returned in the eax CPU register or its part depending on the
result value size as follows: byte sized values are returned in AL, word sized (2-bytes) in ax and
double word sized (4-bytes) values are returned in eax.

• Pointer, class, class reference and global procedure pointer type function results are returned in
the eax register.

• Real type function result values (Single, Double, Extended, Comp, Real and Currency) are
returned in the topmost coprocessor register ST(0).

• For a string or method pointer result, the caller allocates local memory for the function result and
pushes its address as an implicit additional parameter just before any other explicit parameters.
The function must not pop it from the stack.

• For array, records, object and set type function results, byte sized values are returned in al, word
sized are returned in ax, double word sized are returned in eax. For all other values, the caller
allocates the local memory for the function result and pushes its address as an implicit additional
parameter just before any other explicit parameters. The function must not pop it from the stack.

Near and far declarations
All procedure and function calls in a flat memory model are near. Virtual Pascal supports near and
far procedural directives for compatibility with the 16-bit Borland Pascal compiler. The standard
procedural directives near and far are ignored.

Export declarations
There are several ways of exporting symbols from DLLs (refer to page 130 for details). An export
declaration is one of them. The export directive exports a procedure or function by its name and
makes it available to other run-time modules – i.e. applications and dynamic link libraries.

The export directive can only be applied to procedures or functions declared either in the interface
part of a unit or in the source of the program or library.

Forward declarations
A forward declaration is a procedure or function declaration that contains the forward directive
instead of a block with a statement part. Later in the program there must be a defining declaration of
the procedure containing the statement part. The parameter list and the function result can be omitted
in the defining declaration. If they are repeated in the defining declaration, there must be no difference
in the order, types, names of parameters or the type of the function result, from the forward
declaration.

114 Procedures and functions

Virtual Pascal Language Reference

The declaration of a procedure or function in the interface part of a unit is considered to be forward
by default and the forward directive may not be used. The defining declaration must be present in the
implementation part of the unit.

The forward declaration and the defining declaration together make up a complete procedure or
function declaration.

Example:

procedure RecursiveProc1(X: Integer); forward;

procedure RecursiveProc2(I,J :Integer);
begin
...
 RecursiveProc1(J);
...
end;

procedure RecursiveProc1;
begin
...
 RecursiveProc2(X, X*2);
...

end;

In the example, RecursiveProc2 needs to call RecursiveProc1, and vice versa. This can be achieved
by using a forward declaration as shown.

Calling conventions
The calling convention specifies how parameters are passed to a procedure or function and who is
responsible for cleaning up the stack after the call. The following standard procedural directives set up
the default language calling conventions.

State Convention Parameter push order Stack cleanup
Cdecl C language Last to first Caller
Far16 16-bit Pascal First to last Called routine
StdCall STDCALL Last to first Called routine
Pascal 32-bit Pascal First to last Called routine

If none of the directives are specified, the calling convention is taken from the settings of the &Cdecl,
&Far16 or $StdCall compiler directives. The enabled state chooses the corresponding calling
convention, specifying any of them in the disabled state enables the Pascal calling convention (for
details see the description of the &Cdecl directive on page 151).

Virtual Pascal supports far16 calling convention without thunking, which means that it is not required
to write a thunk wrapper routine for calling 16-bit code from 32-bit code; this is performed seamlessly
via a special run-time library helper routine. The far16 calling convention is provided for external
routines only as the compiler itself always generates 32-bit code. A procedure or function that uses the
far16 calling convention must have no more than 16 parameters. By means of the far16 calling
convention, it is possible to call procedures and functions located in 16-bit DLLs, which is very useful
in OS/2 where the text mode functions (Vio, Kbd, Mou and MonCalls) still use a 16-bit interface.

Procedures and functions 115

 Virtual Pascal Language Reference

Note
Since far16 procedures and functions are called via a special helper routine, it is not possible to call
them directly from built-in assembler. In this case a normal pascal wrapper routine which will call the
far16 routine must be written.

Example:

{&Cdecl+}
function CFun(P1: Integer): LongBool;
{&Cdecl-}
function PascalFun(P1: Integer): Boolean;
procedure CProc(P1: Integer; P2: Byte); cdecl;

In the example, both CFun and CProc use the C calling convention, whereas PascalFun uses the
default Pascal calling convention.

External declarations
External declarations make it possible to interface with separately compiled procedures and functions
written in assembly or other programming languages. They allow procedures and functions to be
imported from DLLs. There are several other ways of importing procedures and functions (for more
information on import refer to page 128).

External directives can consist of the reserved word external by itself. The actual implementation of
the procedure or function may be either in an external object file, an object library or in a dynamic
link library. The {$L filename} directive should be used to inform the compiler about the name of the
object file, object library or import library.

If an external directive specifies a dynamic link library name and (optionally) an import name or an
import ordinal number, it can be used to import a procedure or a function from a dynamic link library,
in which case an import library is not required.

Example:

function inet_makeaddr(net: ULong; lna: ULong): ULong;
external ‘TCP32DLL' index 8;

The external directive takes the place of the statement part that should otherwise be present. It must
be used only in the defining declaration of a procedure or a function and may not be used as a
forward declaration.

Assembler declarations
Using assembler declarations, it is possible to write a procedure or function in the built-in assembly
language. Refer to page 104 for more information on BASM.

external directive

external
string constant

name string constant

index integer constant

116 Procedures and functions

Virtual Pascal Language Reference

Inline declarations
The inline directive makes it possible to write macro-style procedures and functions that are expanded
rather than called when they are invoked.

When an inline procedure or function is invoked, the body of the procedure or function is expanded
and takes the place of the call; the actual parameters replace the formal parameters. Since the body of
the procedure or function does not contain the code as it is, it is not possible to apply the @ operator
to an inline procedure or function, or assign the inline procedure or function to a variable of a
procedural type. The following restrictions apply to inline procedure definitions:

• inline procedures and functions may not be nested.

• An inline procedure or function may not contain typed constant declarations.

• An inline procedure or function may not contain parameters that need to be copied to the local
stack of the routine.

• An inline procedure or function may not be called from another inline routine.

• An inline procedure or function can not contain asm statements.

Since the compiler generates code for the entire body of the procedure or function each time it is
called, it makes sense to use the inline directive only for small procedures and functions, or the
executable file may grow significantly in size.

Example:

function MaxL(A, B: Longint): Longint; inline;
begin
 if A > B then
 Result := A
 else
 Result := B;
end;

Method declarations
The declaration of a method within a class type corresponds to a forward declaration of that method.
Later in the same module, the method must be implemented by a defining declaration.

The defining declaration of procedure or function methods is the same as that of regular procedure or
function declarations, with the exception that the method heading should contain a qualified method
identifier, consisting of an object or a class-type identifier followed by a period (.) and a method
identifier.

The defining declaration of constructors and destructors is similar to a procedure declaration, except
that the reserved word constructor or destructor replaces procedure.

inline directive inline block ;

asm block assembler asm statement declaration part ;

Procedures and functions 117

 Virtual Pascal Language Reference

The parameter list can be omitted in the defining declaration (but if it is repeated there must be no
difference in the order, types, names of parameters and function result type from the method
declaration in the object or class type).

The defining declaration of a method always contains an implicit parameter with the identifier Self,
which corresponds to a formal parameter of the class type. Within the method block, Self represents
the instance whose method component was designated to activate the method.

The scope of a component identifier in an object or a class type includes all procedure, function,
constructor, or destructor blocks implementing all methods of the type. The method block behaves as
if it was enclosed by a with statement:

with Self do
 MethodStatementPart;

To access a redeclared or an overridden component identifier within a method block, use the reserved
word inherited. If an identifier is used in conjunction with inherited, the search for the identifier
starts with the immediate ancestor of the object or class type.

Constructors and destructors
Constructors and destructors are methods that perform construction and destruction of objects. There
can be zero or more constructors and destructors for the object or class type. The declaration of
constructors and destructors is the same as the declaration of a procedure or function method, but the
method heading contains the reserved word constructor or destructor instead of procedure or
function.

Constructors
A constructor defines the actions associated with creating and initialising of a new object or class. A
constructor usually initialises an object or a class by using values passed as parameters to the
constructor.

The syntax of a constructor declaration is shown below:

Only constructors in the class model can be virtual; a constructor of an object type can not be virtual.
This is because the mechanism of virtual method calls requires the constructor to be called to initialise
the pointer to the VMT inside the object instance. Virtual class constructors must be called using a
class reference rather than a class instance. Static constructors can be invoked on both a class instance
and a class reference.

Dynamic object variables are created by specifying the object’s constructors as the second operand to
the standard procedure New call. The first parameter must be a pointer type or a pointer variable to the
object type. If the returned value is nil, the constructor call failed. Since no pointer value is returned

constructor heading

constructor

qualified method identifier

formal parameter list

identifier

constructor declaration

subroutine block ; ;constructor heading

118 Procedures and functions

Virtual Pascal Language Reference

for a static object constructor, it instead returns a Boolean value indicating whether construction of the
object was successful. A return value of True indicates success and a return value of False indicates
failure caused by a call to Fail within the constructor.

Note: Constructing an object variable is does not automatically clear the allocated memory; the Init
constructor of TObject must be called to do this. This step is important, particularly if the object in
question contains fields of AnsiString type.

Example:

var
 MyObject: TCollection;
begin
 if MyObject.Init then
 begin

 end
 else
 Writeln(‘Object could not be initialised; fail was called in the constructor’);
end;

Construction of class variables is more complex. When a constructor is used to create a new class
variable, it is invoked on a class reference and the following sequence of actions takes place:

• A call to the NewInstance virtual method is made. The standard behaviour of
TObject.NewInstance is to allocate storage for a new object on the heap and clear it. This means
that it sets the ordinal values of all ordinal type fields to zero, the values of all pointer and class
type fields to nil and the values of all string fields, including long strings, to the empty string.

• The actions specified in the constructor’s statement part are executed.

• The constructor returns a reference to the newly allocated and initialised class instance. The type
of the returned value is the same as the class type specified in the constructor call.

If an exception is raised during execution of a constructor invoked on a class reference, the Destroy
destructor is automatically called to destroy the unfinished object.

If a constructor is called on a class instance, it only executes the actions specified by the user in the
constructor’s statement part. In this case a new object is not allocated and cleared and the constructor
does not return a class instance. Usually, a constructor is invoked on a class instance to execute an
inherited constructor. This is done by prefixing the constructor name with the reserved word
inherited.

When a constructor is activated, it usually first calls an inherited constructor to initialise the inherited
fields of the object. Following this, the constructor initialises the fields that were introduced in the
class. Unless a field’s default value is non-zero, there is no need to initialise the field in a constructor.

A virtual class constructor is equivalent to a static constructor invoked on a class type identifier. In
addition, a virtual constructor can be invoked on a variable reference of a class reference type, which
allows polymorphic construction of classes whose types are not known at compile time.

Example:

type
 TMyClass = class(TObject)
 fData: Integer;
 constructor Create;
 end;

Procedures and functions 119

 Virtual Pascal Language Reference

constructor TMyClass.Create;
begin
 inherited Create; // No memory allocated here
 fData := 8;
end;

var
 MyClass: TMyClass;
begin
 try

MyClass := TMyClass.Create; // Allocate new object
 try
 Writeln(MyClass.fData);
 finally
 MyClass.Free; // Free memory used by class instance
 end;
 except
 on E:Exception do
 Writeln(‘Error: ‘,E.Message);
 end;
end;

Destructors
Destructors define the actions associated with destroying object and class instances. The syntax of a
destructor declaration is the following:

Dynamic object variables are destroyed by specifying the object’s constructors as a second operand to
a call to the standard procedure Dispose. The first parameter must be a pointer variable to the object
type.

Class variables are always dynamically allocated. When a destructor is called, the virtual method
FreeInstance is automatically invoked after the statement part of the destructor has executed. The
default TObject.FreeInstance method deallocates the memory used by the class instance. Normally, a
destructor calls a destructor of its ancestor to let it perform relevant clean-up actions required. To
avoid situations where a class instance would be attempted to be freed multiple times, FreeInstance is
not invoked when a destructor is called using the reserved word inherited.

Although it is possible to declare multiple destructors for a class, it is advisable only to use overrides
of the inherited Destroy destructor. Destroy is declared in the TObject class and is used for a special
purpose. If an exception is raised during the execution of a constructor, the Destroy destructor is
called to destroy the unfinished object. Even if more destructors are defined, they will not be called in
case of an exception. For this reason, descendants of the Destroy destructor must be prepared to

destructor heading

destructor

qualified method identifier

formal parameter list

identifier

destructor declaration

subroutine block ; ; destructor heading

120 Procedures and functions

Virtual Pascal Language Reference

handle destruction of partially constructed objects. Since all fields of a new object are set to zero
before the statement part is executed, any class-type or pointer-type fields in a partially constructed
object will be nil and destructors should check for nil values before performing operations on class-
type or pointer-type fields. Since the Destroy destructor does not make such a check, direct calls to
Destroy are not recommended. It is better to call the Free method declared in TObject which checks
whether Self is nil and only invokes Destroy if Self is not nil.

Class methods
Class methods are methods of a type, rather than of a particular instance of a type and can be called
without first constructing a class instance. The implementation of a class method must not depend on
run-time values of any fields of instances of the class.

A class method is declared by specifying the reserved word class in front of the method declaration.
The defining declaration must also start with the reserved word class. For example, the InstanceSize
class function is declared in the System unit as follows:

class function TObject.InstanceSize: Longint;
asm
 ...
end;

InstanceSize returns the number of bytes used by an instance of a given class. Other class methods
defined include ClassName, which returns the name of a class as a string value, and ClassNameIs,
which returns True if the string passed as parameter is identical to the name of the class.

In the implementation of a class method, the identifier Self represents the class for which the method
was activated. The type of Self is class of ClassType, where ClassType is the class type for which the
method is implemented.

It is possible to call a class method by using either a class reference or a class instance. When a class
method is called as a normal method using an instance of a class type, the class reference of the class
instance is passed as the Self parameter.

Parameters
A formal parameter list follows a procedure or function heading in procedure and function
declarations. The parameters declared in the formal parameter list all have local scope and are valid
for the duration of the procedure or function. The diagrams below define the syntax of a formal
parameter list:

The formal parameter list can contain value, constant, variable, untyped parameters and open
parameters.

parameter declaration formal parameter list (

;

)

parameter declaration

identifier list

parameter type

var

const :
ofarray

Procedures and functions 121

 Virtual Pascal Language Reference

Value parameter declarations include a list of identifiers, followed by a type. Constant parameter
declarations contain an identifier list preceded by the reserved word const and followed by a type. A
variable parameter declaration contains the identifier list preceded by the reserved word var followed
by a type, and untyped parameter declarations has an identifier list, preceded by var or const; the list
is not followed by a type.

String and array type parameters can be open parameters, which means that they can be of variable
size.

Parameters can be passed to procedures or functions in two ways: by reference or by value. If a
parameter is passed by reference, a pointer, pointing to the actual storage location is passed. If a
parameter is passed by value, the actual value is passed.

Value parameters
When a formal parameter is a value parameter, it can be used like a local variable to the procedure or
function. The corresponding actual parameter initialises the value parameter when the function is
called. The actual parameter must be an expression and the result of the expression cannot be of file
type or any structured type containing a file type. The actual parameter must be assignment-
compatible with the type of the formal parameter. Changes made to a formal value parameter have no
effect on the actual parameter.

Value parameters can be passed by value or by reference depending on their type and size. In general,
if the value parameter has a size of 1, 2, 4 or 8 bytes, the actual value is pushed onto the stack - the
parameter is passed by value. Otherwise, a pointer to the value is pushed onto the stack and the routine
then copies the value into a local storage location - the parameter is passed by reference. Parameters of
type Extended are the exception to this rule - they are passed by directly pushing the value on the
stack.

To maintain double word alignment of the stack (which is desirable for reasons of performance),
values pushed on the stack are always double word aligned. This means that byte and word-sized
parameters always are passed as double words with the low byte or word containing the parameter.

A string-type parameter is always passed as a pointer to the value.

Constant parameters
When a formal parameter is a constant parameter, it can be used like a local read-only variable in the
procedure or function. The corresponding actual parameter substitutes the constant parameter when
the function is called. The actual parameter must be an expression and the result of the expression
cannot be of file type or any structured type containing a file type. The actual parameter must be
assignment-compatible with the type of the formal parameter. A constant formal parameter can not be
assigned values, or be passed as an actual variable parameter to another procedure or function.

Constant parameters are passed in the same way as value parameters. However, when a value needs to
be copied to the local stack of the routine, constant parameters are not copied as the compiler makes
sure the variable is not written to. For this reason, it is better to use a constant formal parameter
instead of a value formal parameter, if a formal parameter has the same value during the execution of
a procedure or function. This protects it against accidental assignments and also lets the compiler
generate more efficient code.

Example:

procedure OutputText(const S: String);
begin
 WriteLn(S);

122 Procedures and functions

Virtual Pascal Language Reference

end;

Variable parameters
When a formal parameter is a variable parameter, the corresponding actual parameter must be a
variable reference: it can not be an expression. The formal parameter represents the actual variable
during the activation of the procedure or function and any reference to the formal parameter operates
on the actual parameter. Any changes made to the formal variable parameter will also affect the actual
parameter.

The type of the actual parameter must be the same as the type of the formal variable parameter. The
exception is untyped variable parameters, which accept a variable reference of any type as the actual
parameter. For object types, it is possible to pass an instance of the formal parameter type or any of its
descendant types as the actual parameter.

The $P compiler directive controls the meaning of variable parameters declared using the string
reserved word. In the {$P+} state, variable parameters declared using the string reserved word are
open string parameters. The actual parameter of an open string parameter can be a variable of any
string type and within the procedure or function, the size attribute (maximum length) of the formal
parameter will be the same as that of the actual parameter. In the {$P-} state (default), variable
parameters declared using the string reserved word are normal variable parameters. Regardless of the
setting of the $P directive, the OpenString identifier can always be used to declare open string
parameters.

Variable parameters are always passed by reference.

Untyped parameters
If no type is specified in the declaration of a var or const parameter, it is an untyped parameter. A
variable or constant reference of any type can be used as an actual parameter. The formal untyped
parameter is incompatible with variables of all other types, but can be given a specific type through a
variable typecast.

Example:

function MemCmp(const Src1, Src2; Count: Cardinal): Integer;
var
 P,P1,P2: PChar;
begin
 if Count = 0 then
 Result := 0
 else
 begin
 P1 := @Src1;
 P2 := @Src2;
 P := P1 + Count;
 while (P1 < P) and (P1^ = P2^) do
 begin
 Inc(P1);
 Inc(P2);
 end;
 if (P1-1)^ = (P2-1)^ then Result := 0
 else if (P1-1)^ < (P2-1)^ then Result := -1
 else Result := 1;
 end;

Procedures and functions 123

 Virtual Pascal Language Reference

end;

This function can be used to compare two memory buffers of any size. It accepts variables of any size
in place of the Src1 and Src2.

Open parameters
Open parameters are used to pass strings and arrays of any size as actual parameters to the same
procedure or function.

• Open string parameters
Open string parameters are used to ensure the safe passing of variable parameters of a short string
type. It is possible to use the {$V-} state to pass a string parameters of any size as an actual parameter,
but it is not safe to do so in those cases where the maximum declared size of the actual parameter is
less than the maximum declared size of the formal one. Even in the {$R+} state, the compiler can not
check the indexing of these string parameters.

For an open string parameter, the actual parameter can be a variable of any string type. Unlike normal
variable string parameters, information about the maximum declared size of the actual parameter is
made available, making it possible to check the indexing of the formal parameter in the {$R+} state. It
is also possible to query the maximum size of the actual parameter at run-time. The maximum
declared length is passed automatically as an additional parameter to the procedure or function just
after the open string parameter address. The High standard function returns this value and the SizeOf
standard function returns this value plus one (the Low standard function returns zero).

When a long string is passed to a routine expecting an open string parameter, the string is truncated to
255 characters inside the routine.

There are two ways to declare an open string parameter. The built-in OpenString identifier, declared in
the System unit, can be used to denote an open string parameter. It can only be used in parameter
declarations and may not be used in any other context. In the {$P+} state, a variable parameter
declared using the reserved word string is treated to be an open-string parameter. Value and constant
formal parameters declared using the OpenString identifier or the reserved word string in the {$P+}
state are not considered to be open string parameters.

Open string parameters cannot be passed as regular variable parameters to other procedures or
functions, but they can be passed as open string parameters. Open string parameters are passed by first
pushing a pointer to the string and then pushing a double word containing the maximum length of the
string.

• Open array parameters
Parameters declared with the array of T syntax, where T is a type identifier, is an open array
parameter. Unlike ordinary array declarations, the dimension of the array is omitted and is assumed to
be in the range 0..N-1, where N is the number of elements in the corresponding actual parameter.

Open array parameters allow the passing of arrays of varying dimensions as the actual parameter. It is
also possible to pass a simple variable of type T. This special case is considered to be an array with
one element of type T.

The Low, High and SizeOf standard functions work for an open array parameter in the same way as for
normal arrays, but the result is based on the actual array parameter. Low returns zero, High returns N-1
and SizeOf returns N*SizeOf(T).

If type T is Char, the actual parameter may be a string constant. In this case a string is converted to a
packed string and is passed as a parameter. The empty string is passed as a string with the dimension
one, containing only the #0 character.

124 Procedures and functions

Virtual Pascal Language Reference

A formal array parameter can be accessed by elements only: it is not possible to make assignments to
an entire array.

As other parameters, open array parameters can be value, constant or variable parameters with the
same meaning as for ordinary parameters. Value parameters are copied to the local stack, constant and
variable parameters are passed by reference. The difference between them is that elements of a
constant array parameter can not be modified.

An open array parameter can be passed to other procedures and functions either as an open array
parameter or as an untyped variable parameter. Open array parameters are passed by first pushing a
pointer to the array and then pushing a double word containing the number of elements in the array
less one.

Example:

procedure WriteLines(const A: array of PChar);
var
 I: Cardinal;
begin
 for I := Low(A) to High(A) do
 WriteLn(A[I]);
end;

begin
 WriteLines([‘This is the first line’, ‘This is the second line’];
end.

Open array constructors
Open array constructors are used to construct open array parameters directly within procedure and
function calls. An open array constructor has the following syntax:

An open array constructor can be used as an actual parameter in a procedure or function call, if the
formal parameter in a procedure or function is an open array value or open-array constant parameter.
All expressions of the open array constructor must be assignment compatible with the element type of
the open array parameter. When used, the open array constructor creates a temporary array variable,
the elements of which are initialised with the values of the expressions.

Example:

It is possible to make the following call to the WriteLines procedure declared above:
var
 Row1,Row2,Row3: PChar;
begin
 ...
 WriteLines([’---Table header ---’, Row1, Row2, Row3]);
end;

Type variant open array parameters
Parameters declared with the array of const syntax are type variant open array parameters. They are
used to pass open arrays of expressions of different types to a procedure or function.

open array constructor expression [

,

]

Procedures and functions 125

 Virtual Pascal Language Reference

Type variant open array parameters can also be declared with the syntax array of TVarRec, where
TVarRec is a variant record type declared in the System unit. It can represent values of integer,
boolean, character, real, string, pointer, class and class reference types. The declaration of TVarRec is:

type
TVarRec = record

case Vtype: Byte of
vtInteger: (VInteger: Longint);
vtBoolean: (VBoolean: Boolean);
vtChar: (VChar: Char);
vtExteneded: (VExtended: PExtended);
vtString: (VString: PShortString);
vtPointer: (VPointer: Pointer);
vtPChar: (VPChar: PChar);
vtObject: (VObject: TObject);
vtClass: (VClass: TClass);
vtCurrency: (VCurrency: PCurrency);
vtAnsiString: (VAnsiString: Pointer);

end;
The vtXXX value type constants are declared in the System unit as follows:

const
 vtInteger = 0;
 vtBoolean = 1;
 vtChar = 2;
 vtExteneded = 3;
 vtString = 4;
 vtPointer = 5;
 vtPChar = 6;
 vtObject = 7;
 vtClass = 8;
 vtCurrency = 9;
 vtAnsiString = 10;

If a type variant open array value parameter or type variant open array constant parameter is used as a
formal parameter of a procedure or function, an open array constructor can be used as the
corresponding actual parameter. In this case the open array constructor creates a temporary type
variant open array parameter and initialises its elements with the values of the expressions of the open
array constructor.

The table below represents the possible types of the expressions in a type variant open array
constructor and the corresponding value type codes.

126 Procedures and functions

Virtual Pascal Language Reference

Type code Expression type
vtInteger Any integer type
vtBoolean Any boolean type
vtChar Any character type
vtExteneded Any real type
vtString Any string type
vtPointer Any pointer type except PChar
vtPChar PChar or array[0..X] of Char
vtObject Any class type
vtClass Any class reference type
vtCurrency A pointer to a TCurrency type
vtAnsiString A pointer to a long string

Type variant open array parameters are very useful for string formatting routines and are also useful
when it is necessary to pass a variable number of parameters of any type together with the appropriate
type information.

Example:

uses
 SysUtils;

function IntSum(const A: array of const): Integer;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(A) to High(A) do
 with A[I] do
 case vType of
 vtInteger: Inc(Result, VInteger);
 vtString: Inc(Result, StrToInt(VString^));

 vtAnsiString: Inc(Result, StrToInt(AnsiString(VAnsiString)));
 vtPChar: Inc(Result, StrToInt(StrPas(VPChar)));
 vtExtended: Inc(Result, Round(VExtended^));
 else

 raise EConvertError.Create(’Invalid argument to IntSum’);
 end;
end;

var
 S: String;

begin
 S := ‘48’;
 WriteLn(IntSum([32, ‘71’, s]);
end.

Dynamic link libraries 127

 Virtual Pascal Language Reference

C H A P T E R 1 0

Dynamic link libraries

What is a DLL?
DLLs are libraries which are linked to a program at load time or run time. When a DLL is loaded, its
code, data or resources can be shared among several applications. DLL's code, data and resources are
stored in a separate executable file with the extension .DLL.

There are a number of benefits of using DLLs:

• The size of the .EXE file is smaller, because the code in the DLL is not linked into the program
that uses the DLL. This is particularly useful for large general-purpose libraries.

• Applications can be changed, extended or upgraded without recompiling and relinking.

• System memory is conserved, if multiple applications are using the same DLL.

• A DLL provides an easy way to interface with applications written in different languages.

The syntax of a DLL source file is very similar to that of a program and uses the reserved word
library instead of program (refer to the page 20 for the exact syntax).

The process of making the symbols (procedures, functions, variables and typed constants) available
for other run time modules is called export. The process of using symbols (procedures, functions,
variables and typed constants), located in a DLL, is called import. Internally, the system can reference
symbols in the DLL either by its name or by an ordinal position in the entry table. Importing/exporting
by means of the symbol name is more flexible, since it avoids the problems associated with keeping
track of the exact order of the symbols in the DLL. On the other hand, importing/exporting symbols
by their ordinal numbers is faster, since the system does not need to lookup the name of the symbol to
resolve the external reference. The size of the application and DLL executables when using this
method are also smaller because they do not have to contain the imported/exported symbol names.
The disadvantage is, that all subsequent versions of the same DLL must keep the same ordinal
numbers, in order for earlier versions of the program using the DLL to work properly with the new
version.

There are two ways of creating a DLL:

• Exporting procedures and functions by means of export directives. These functions in turn make
up the interface of the DLL.

• Creating libraries on per unit basis, using the {&Export} directive (Currently available for OS/2
targets only).

The traditional method using export
Procedures and functions are exported by an exports clause and are imported by specifying an
external directives with a name or index clause. Borland Pascal only supports this method of creating
a DLL.

Example:

library SmallDLL;

function MaxL(A, B: Longint): Longint;
begin

128 Dynamic link libraries

Virtual Pascal Language Reference

 if A > B then Result := A else Result := B;
end;

function MinL(A, B: Longint): Longint;
begin
 if A < B then Result := A else Result := B;
end;

function SumL(A, B: Longint): Longint; export;
begin
 if A < B then Result := A else Result := B;
end;

exports
 MaxL index 1, // Export by ordinal
 MinL name ‘MinL, // Export by name
 SumL; // Export by name

end.

Creating DLLs on a per unit basis
For OS/2 targets, Virtual Pascal provides the ability to export the interface part of a unit from a DLL.
In this way, it is possible to create a dynamic version of a unit, where the code of the unit is linked
into a DLL. In the DLL source code, the {&Export UnitName} compiler directive should be used.
This directive causes the entire interface part of the unit, including procedures, functions, objects,
methods, variables and typed constants to be exported from the DLL (refer to page 154 for details
about the {&Export UnitName} directive) In a program using the unit, the {&Dynamic UnitName}
compiler directive should be present to indicate that a dynamic version of the unit is used. If a DLL
contains many units, the {&Dynamic} directive alternatively allows the name of the .LIB file (import
library of the DLL created by Virtual Pascal) to be specified as the parameter instead of a list of unit
names.

Importing symbols from a DLL
There are two ways of importing symbols:

• Static import

• Dynamic import

When static import is used, external references are resolved when the DLL is loaded. Statically
imported symbols always refer to the same symbols in the same DLL. With dynamic import, the DLL
name, the symbol name or ordinal number is specified at run time.

Static import
There are three ways to declare a symbol for use in a program, if it should be statically imported from
a DLL.

• The traditional Borland Pascal method is to use the name and index standard procedural
directives, specifying the name of the dynamic link library and the name of the procedure or
function or its ordinal number. Since this method does not allow variables or typed constants to
be declared, the use of this method is not recommended.

Dynamic link libraries 129

 Virtual Pascal Language Reference

• External procedures or functions can be declared using the external standard directive without
the name and index clause, whether they are imported or not. This method has several benefits
over the previous one. The DLL names, symbol names or indices do not have to be entered
manually; this process can be automated by using an import library. The Implib utility can be
used to automatically generate an import library for a DLL. As an additional benefit, it is easy to
create applications that use either static or dynamic versions of the libraries by replacing the static
libraries by import libraries – the program just has to be relinked.

• For DLLs created on per unit basis (OS/2 only), the import is performed seamlessly. To change
from using a statically linked library to a dynamically linked one, no source code needs to be
changed, and vice versa. Just include the name of the import library in a
{&Dynamic ImportLibrary} directive – the Virtual Pascal linker does the rest. This method
even allows the creation of dynamic versions of object oriented libraries, like Turbo Vision or
Object Professional.

When a dynamic link library is compiled, an import library can be created automatically by the
IDE. This has the same name as the primary file of the library and has a .LIB extension and is
placed in the directory mentioned first in the Options|Directories|Library directories input box.

• For procedures and functions declared with an external directive without name and index clause,
an alternative method to specifying the DLL name and symbol name is to use a module definition
file (or an equivalent {&Linker} directive) . Remember to take the naming convention of Virtual
Pascal into account (see the Appendix on page 187 for details). Use an IMPORTS module
definition file statement to supply this information; more information about the IMPORTS
statement can be found on page 143.

Example:

program Test;

{&Linker
IMPORTS
 MyDll.SomeFunction
 FunctionByOrdinal = MyDll.2
 RenamedFunction = MyDll.OriginalName
}

Dynamic import
Dynamic import allows the name of the DLL as well as the name of the symbol to import to be
specified at run time.

Dynamic import is be used in situations where an operating system API is useful to the program, but
not required – and the API in question is only available on some installations of the operating system.
By using dynamic import, the application can run even on systems not supporting the API in question,
because it is loaded dynamically. This method is used in the OS/2 version of the VpSysLow unit, to
load APIs only available on systems with Presentation Manager installed.

To use dynamic import, first load a DLL and use the handle of the DLL to get the address of the
desired entry point in the DLL. When the entry point is no longer needed, it should be freed; when the
DLL is no longer needed, the DLL handle should be freed.

In OS/2, this is done by first calling the DosLoadModule API function, followed by a call to the
DosQueryProcAddress function to get the address of the required symbol. The DosFreeModule
function frees the dynamically loaded module.

130 Dynamic link libraries

Virtual Pascal Language Reference

In Win32, this is done by first calling the LoadLibrary API function, followed by a call to the
GetprocAddress function. The CloseHandle API can be used to free the module.

Exporting symbols from a DLL
The following methods can be used to export symbols from a DLL:

• The traditional Borland Pascal method by means of exports clause.

• By specifying an export directive in the declaration of the procedure or function to be exported.

• By using a module definition file (Or equivalent {&Linker} directive).

• By using the {&Export UnitName} compiler directive for a DLL created on a per unit basis.

The traditional method
The traditional Borland Pascal method of exporting procedures and functions from a DLL is to use an
exports clause. An exports clause may appear anywhere and any number of times in a library’s
declaration part.

In addition to procedures and functions, Virtual Pascal allows the export of variables and typed
constants by means of an exports clause. Virtual Pascal does not require procedures and functions to
be declared with an export directive before being listed in an exports clause.

The index and name directives specify the way the symbol is exported.

If an index directive is present, the symbol can be exported both by name and ordinal number. When a
name directive is specified, it defines the name with which the given procedure or function will be
known to other modules. If a name is not specified, the original name of the procedure will be used.

If the keyword resident is specified, it indicates to the system that the name of the exported procedure
or function should be placed in a table of resident names, which stays in memory while the DLL is
loaded. This significantly speeds up the search of symbol names at the time of loading a program that
uses the DLL.

The export directive
Unlike Borland Pascal, Virtual Pascal does not require exported procedures and functions to be
declared using the export directive. Rather, all procedures and functions with an export directive that
are declared in a library source or in the interface part of a unit are automatically exported by name.
The name used for the export is defined according to the usual Virtual Pascal naming conventions (see
Appendix E on page 187).

exports entry exports clause exports ;

,

exports entry identifier
integer constantindex

string constantname resident

Dynamic link libraries 131

 Virtual Pascal Language Reference

Using module definition files
As for the import, a module definition file can be used to export procedures, functions, variables and
typed constants from the interface part of a unit or from the program or library source file. To do this,
an EXPORTS module definition file statement should be used (see page 141 for the detailed
information).

Exporting the entire interface part (OS/2 only)
It is possible to export the whole interface part of a unit, including procedures, functions, object
methods, variables and typed constants. To do this, specify the unit name(s) as parameters to an
&Export directive in the dynamic library source file (see page 154). See the source file for the DLL
version of the Virtual Pascal run-time library for an example (SOURCE\RTL\VPRTL*.*).

Types of DLLs
Depending on whether the static data located in a DLL (typed constants and global variables) is shared
or non-shared, DLLs fall into two categories:

• single-data DLLs or subsystems

• multiple-data DLLs or subroutine libraries

Virtual Pascal is capable of creating both types of dynamic link libraries, although subroutine libraries
are most commonly used. Note, that source level debugging is not available for procedures and
functions located in a library source file, so it usually contains only a library heading, a uses clause
and an initialisation part. The debugger is capable of debugging procedures and functions declared in
units used by the main library source file.

Subsystems
The term subsystem refers to a DLL that provides a set of services built around a resource and is a
term that originates from OS/2. Many of the OS/2 subsystems are implemented in the form of DLLs:
The keyboard subsystem (KBDCALLS), which maintains the keyboard, the video subsystem
(VIOCALLS), which maintains the video display, etc. The term resource is used in the most general
sense of the word and is not to be confused with a Presentation Manager resource.

A subsystem usually has to manage a limited resource for an effectively unlimited number of clients.
For this reason, subsystems have common data segment for all applications (clients) that use it. To
keep track of its clients, the subsystem needs to know when new clients arrive and when old clients
terminate. There are two forms of subsystem initialisation and termination - global and instance. A
subsystem can specify either service but not both.

If global initialisation is specified, the initialisation entry point is called only once per activation of the
subsystem. When the DLL is first referenced, the operating system allocates the subsystem's static
data segments, taking their initial values from the .DLL file. and then calls the subsystem's global
initialisation entry point so that the module can do its one-time initialisation.

The second form of initialisation is instance initialisation. The instance initialisation entry point is
called in the same way as the global initialisation entry point except that it is called for every new
client when that client first attaches to the DLL.

The same applies to the DLL termination.

132 Dynamic link libraries

Virtual Pascal Language Reference

Ordinarily, it is not necessary to create or know about module definition files to create a DLL. To
create a subsystem's dynamic link library, module definition statements are required and typically
three statements are required:

{&Linker ;Avoids using an external file but
stores the definitions in source code

LIBRARY LibName <Init> <Term> ; specifies the DLL name
DATA SINGLE NONSHARED ; only one data segment is created
DESCRIPTION 'Text' ; Inserts the specified text into
} ; the library executable file

<Init> can be either INITGLOBAL or INITINSTANCE,

<Term> can be either TERMGLOBAL or TERMINSTANCE.

The initialisation and termination entry points are the same and correspond to the initialisation
statement part of a library. To check whether initialisation or termination is under way, an assembler
function similar to this one can be used:

{ Returns True for DLL initialisation }

function IsInit: Boolean; {&USES None} {&FRAME-}
asm
 cmp DWord Ptr [ebp+0Ch],0
 sete al
end;

The function checks a special parameter passed to the DLL initialisation / termination by the operating
system; this parameter is 0 for initialisation and 1 for termination.

The usual subsystem initialisation part is the following:

begin
 if IsInit then
 begin
 ... Initialisation stuff goes here
 end
 else
 begin
 ... Termination stuff is placed here
 end
end.

Subroutine Libraries
Subroutine libraries are the most convenient way of creating a dynamic version of a Pascal unit.
Procedures, functions and object methods in the subroutine library are written and executed in the
same way as statically linked ones. Units included into a dynamic link library, work exactly as they
were linked statically, the only difference being that the actual linking takes place at load time instead
of at the time of linking.

The operating system creates unique static unit data (global variables and typed constants) for each
application that uses a subroutine dynamic link library. Although subroutine libraries do not need
initialisation and termination code, the Virtual Pascal run-time library requires the initialisation code
of a DLL to be executed each time the DLL is loaded. This means that the INITINSTANCE reserved
word must be specified in the LIBRARY module definition statement. It is not necessary to use a

Dynamic link libraries 133

 Virtual Pascal Language Reference

module definition file to create a subroutine dynamic link library, although it is possible to do so.
Typically, it consists of just three statements:

{&Linker
LIBRARY LibName
INITINSTANCE

; specifies the DLL name

DATA MULTIPLE NONSHARED ; forces OS/2 to create new
 ; instances of data segments for
 ; each application that uses the DLL
DESCRIPTION ’Text’ ; Inserts the specified text into
} ; the library executable file

Important notes
Unlike applications, DLLs do not have their own stack but rely on the stack of the calling application.
The method used by Virtual Pascal for determining the available stack space may not be compatible
with other compilers and it is recommended to turn off Stack Checking ({$S-} state) for all code in a
Virtual Pascal DLL that is used by programs written in other languages.

Another important aspect is that each unit should be included only once in a program. In other words,
it is imperative that a unit included via a DLL is not also linked statically. A common mistake is to
include the System unit in a statically linked program when System is already included via a DLL. This
will not happen when using the {&Dynamic ImportLibrary} way of using DLLs (but unfortunately,
this only works in OS/2). When using the {&DynamicUnitNames} method (Also OS/2 only),
{&Dynamic System} must be specified to avoid program failure because only the initialisation code
of the static version of the System unit will be called.

Another tricky thing is that a DLL must always contain some static data. This can be a problem for a
small DLL containing only code without any static data. TLINK will fail with a ‘General error’
message when linking it and LINK386 will work fine, but the produced DLL can not be loaded by
OS/2 (This restriction does not apply to a Windows DLL). To work around this problem, declare a
dummy global variable in the library source to force the creation of a non-empty data segment.

Quick DLL examples
The first example illustrates how it is possible to write a DLL using the traditional technique. This is
mostly suitable for small, simple DLLs.

library Arrays;
function ArrMean(const X: array of Longint): Longint;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(X) to High(X) do Inc(Result, X[I]);
 Result := Result div (High(X) + 1);
end;

function ArrMin(const X: array of Longint): Longint;
var
 I: Integer;
begin
 Result := X[0];
 for I := Low(X)+1 to High(X) do if X[I] < Result then Result := X[I];
end;

134 Dynamic link libraries

Virtual Pascal Language Reference

function ArrMax(const X: array of Longint): Longint;
var
 I: Integer;
begin
 Result := X[0];
 for I := Low(X)+1 to High(X) do if X[I] > Result then Result := X[I];
end;
exports
 ArrMean index 1,
 ArrMax index 2,
 ArrMin index 3;
begin
end.

No module definition file or {&Linker} statement is required for this DLL.

It is possible to write a program that uses this DLL.

program Test1;
function ArrMean(const X: array of Longint): Longint; external’Arrays’ index 1;
function ArrMin(const X: array of Longint): Longint; external’Arrays’ index 2;
function ArrMax(const X: array of Longint): Longint; external’Arrays’ index 3;

begin
 WriteLn(’The mean value of 10, 100, 1000 is ’, ArrMean([10, 100, 1000]);
 WriteLn(’The min value of 10, 100, 1000 is ’, ArrMin([10, 100, 1000]);
 WriteLn(’The max value of 10, 100, 1000 is ’, ArrMax([10, 100, 1000]);
end.

The second example demonstrates an easy way of creating dynamic versions of units. The library
source file is the following (OS/2 only):

library MyRtl20;
uses SysUtils, Classes;
{&Export System,SysUtils, Classes, TypInfo}
begin
end.

The above library uses core Delphi-like units of the run-time library and exports the entire interface
part of each unit. Before the compilation, it is necessary to set the Options|Linker|Import library radio
button to Use .DLL. This will force the import librarian to use the DLL for creating an import library.
After compilation of the library, the IDE creates an import library MYRTL20.LIB containing
information about all exported symbols. Following this, it is possible to write a program that uses
some functions from this DLL:

program Test2;
uses SysUtils;

{$IFDEF DYNAMIC_VERSION}
 {&Dynamic MYRTL20.LIB}
{$ENDIF}

begin

Dynamic link libraries 135

 Virtual Pascal Language Reference

 WriteLn(‘Current date & time is ‘, DateTimeToStr(Now));
end.

The &Dynamic directive is used to specify that all entry points defined in the DLL corresponding to
MYRTL20.LIB should be taken from the dynamic link library.
The DYNAMIC_VERSION conditional symbol indicates whether the units should be linked statically
or dynamically. If this symbol is not defined, the program is linked statically. If it is defined, the
dynamic versions of System and SysUtils units will be taken from MYRTL20.DLL. Refer to page 16
for more information about conditional compilation.

DLLs and unit initialisation code
When a DLL written in Virtual Pascal on a per-unit basis is used by a Virtual Pascal program, the
initialisation code of all units located in the DLL is automatically called by the startup code of the
program. However if a DLL is written using traditional technique or it is used by a program written in
another language , information about unit initialisation is not available. For this reason, the
initialisation code of all units must be called from the DLL’s initialisation code. To make this happen,
the initialisation code of the library should start with the reserved word initialization rather than the
reserved word begin. This forces the compiler to generate code causing the initialisation code of all
units to be called before the initialisation statement part of the DLL receives control.

In this case, the System unit variables CmdLine and Environment must be manually initialised for the
ParamStr function and other System unit routines accessing the environment to work in the DLL.

136 Linker Module Definition File Reference

Virtual Pascal Language Reference

A P P E N D I X A

Linker Module Definition File Reference
Virtual Pascal includes a built-in linker, and is also able to use an external linker for linking the
executable files. To supply additional information to the linker, a linker module definition file or a
{&Linker} directive can be used.

While this is rarely required, it allows information such as segment attributes, description text, etc to
be specified. The module definition file should be located in the same directory as the primary file of
the program or library and must have the same name, with a .DEF extension, or the statements can be
included in a {&Linker} directive in the source code of the program.

A module definition file is a plain MS-DOS style text file that describes the names, segment attributes,
exports, imports and other characteristics of an application or library. The lexical level of module
definition files is quite simple. Module definition files may contain the following:

• Whitespace. Whitespace includes all control characters and spaces.

• Comments. A semicolon character (;) comments the rest of the line.

• Reserved words. It is important to note, that unlike Pascal reserved words, module definition file
reserved words are case sensitive and must be entered in upper case. The following table lists all
the module definition file reserved words. Not all of them are described here because some of
them are used for 16-bit executables and become obsolete for 32-bit executables and the others
are used for writing device drivers. Also note, that this list is valid for the built-in linker of Virtual
Pascal. Other linkers may not accept all of them or may require a different syntax.

ALIAS
BASE
CLASS
CODE
CONFORMING
CONTIGUOUS
DATA
DESCRIPTION
DEV386
DEVICE
DISCARDABLE
DOS4
DYNAMIC
EXECUTE-ONLY
EXECUTEONLY
EXECUTEREAD
EXETYPE
EXPANDDOWN
EXPORTS
FIXED
HEAPSIZE
HUGE
IMPORTS
IMPURE
INCLUDE
INITGLOBAL
INITINSTANCE

INVALID
IOPL
LIBRARY
LOADONCALL
LONGNAMES
MAXVAL
MIXED1632
MOVABLE
MOVEABLE
MULTIPLE
NAME
NEWFILES
NODATA
NOEXPANDDOWN
NOIOPL
NONAME
NONCONFORMING
NONDISCARDABLE
NONE
NONPERMANENT
NONSHARED
NOTWINDOWCOMPAT
OBJECTS
OLD
ORDER
OS2
PERMANENT

PHYSICAL
PRELOAD
PRIVATE
PROTECT
PROTMODE
PURE
READONLY
READWRITE
REALMODE
RESIDENT
RESIDENTNAME
ROBASE
SEGMENTS
SHARED
SINGLE
STACKSIZE
STUB
SWAPPABLE
SYSBASE
TERMGLOBAL
TERMINSTANCE
UNKNOWN
VIRTUAL
WINDOWAPI
WINDOWCOMPAT
WINDOWS

Linker Module Definition File Reference 137

 Virtual Pascal Language Reference

• Symbol name. Is used to represent the name of exported and imported variables, functions and

procedures. Unlike Pascal identifiers, a wider range of characters are accepted in symbol names:

• Character string. Is used to specify file names, text description, etc.

• Module name. Is used to specify a program or a library name. A character string must be used for
the module name, containing special characters, like spaces or periods (.).

• Integer number. Some of the module definition statements have integer parameters. Integer
numbers must be entered in C language style, not Pascal style. Decimal numbers must not contain
leading insignificant zeros. Octal numbers start with a leading zero, hexadecimal numbers begin
with 0x or 0X.

symbol name module name

character string

first character symbol name
other characters

any character except whitespace ’ ” . ; = @ first character

any character except whitespace ’ ” . ; = other characters

character string any char except CR ’ ’

’ ’

any char except CR ””

” ”

integer number

0 0

8

0

9

0 x A

9

0

f

a

FX

138 Linker Module Definition File Reference

Virtual Pascal Language Reference

The syntax of the module definition file is quite simple. A module definition file contains one or more
module statements. If a NAME or LIBRARY statement is present, it must precede all other
statements in the module definition file.

This appendix lists most of the module definition file statements in alphabetical order with detailed
descriptions. Very rarely used, obscure, and ones dealing with writing device drivers are not described
here.

Segment attributes
The CODE, DATA and SEGMENTS statements are used to specify attributes of the segments in the
executable file. One or more attributes can appear, but only one from each group should be specified.
If several are specified, the last specified will take effect since they are mutually exclusive. If neither
attribute from a group is specified, the default attribute is assumed.

These attributes determine when a segment is loaded:

• PRELOAD The segment is loaded automatically when the program starts.

• LOADONCALL The segment is not loaded until accessed (default).

These attributes determine whether a code segment can be read as well as executed:

• EXECUTEONLY The segment can only be executed.

• EXECUTEREAD The segment can be both executed and read (default).

I/O privilege code attributes determine whether a segment has I/O privilege, that is, whether it can
access the hardware directly:

• IOPL The code segment has I/O privilege.

• NOIOPL The code segment does not have I/O privilege (default).

Note, that the Virtual Pascal compiler automatically assigns I/O privilege to segments requiring it, if
the Port array is used by a program.

These attributes specify whether a code segment is a 286 conforming segment:

• CONFORMING The segment is conforming.

• NONCONFORMING The segment is nonconforming (default).

The concept of a conforming segment has to do with privilege level (the range of instructions that the
process can execute) and is relevant only when you are writing device drivers and system level code.
A conforming segment can be called from either Ring 2 or Ring 3 and the segment executes at the
privilege level of the caller.

These attributes determine the access rights to a data segment:

• READONLY The segment can only be read.

• READWRITE The segment can both be read and written to (default)

These attributes determine whether all instances of the application can share a READWRITE data
segment:

module definition file statement

Linker Module Definition File Reference 139

 Virtual Pascal Language Reference

• SHARED One copy of the data segment is loaded and shared among all processes accessing the
module (default for dynamic-link libraries). An alternative keyword with the same meaning is
PURE.

• NONSHARED The segment cannot be shared and must be loaded separately for each process
(default for applications). The alternative keyword is INPURE. Under OS/2, this field is ignored
if READONLY is specified, since READONLY data segments are always shared.

These attributes determine how an automatic data segment can be shared:

• NONE No automatic data segment is created.

• SINGLE A single automatic data segment is shared by all instances of the module. In this case,
the module is said to have solo data. This reserved word is the default for dynamic-link libraries.

• MULTIPLE The automatic data segment is copied for each instance of the module. In this case,
the module is said to have instance data. This reserved word is the default for applications.

The automatic data segment is the physical segment represented by the group name DGROUP. This
segment group makes up the physical segment that contains the local stack and heap of the
application.

It may occasionally be necessary to mix 16-bit code with 32-bit code. To create groups that allow such
mixing, the linker requires that the segments in that group are declared as MIXED1632.

Segments flagged with the ALIAS reserved word can be addressed using the 16-bit segmented
method (far16), or the 32-bit linear method. The loader must prepare an additional segment selector
for each segment designated with the ALIAS reserved word. This new segment selector allows for 16-
bit addressing.

CODE

This statement defines the default attributes for code segments within the application or library. See
the description of segment attributes on page 138.

code statement

LOADONCALL

PRELOAD

EXECUTEREAD

EXECUTEONLY

NOIOPL

IOPL

CODE

NONCONFORMING

CONFORMING

140 Linker Module Definition File Reference

Virtual Pascal Language Reference

DATA

READWRITE

READONLY

LOADONCALL

PRELOAD

NOIOPL

SHARED

IOPL

NONSHARED

NONE

SINGLE

MULTIPLE

PURE

INPURE

Example

The following example sets the defaults for the module code segments so they have I/O hardware
privilege and are not loaded until accessed.

CODE LOADONCALL IOPL

DATA

This statement defines the default attributes for data segments within the application or library. See
the description of segment attributes on page 138.

Example

The following example defines the application data segment so that it is loaded only when it is
accessed and cannot be shared by more than one copy of the program. By default, the data segment
can be read and written, the automatic data segment is copied for each instance of the module and the
data segment has no I/O privilege.

DATA LOADONCALL NONSHARED

data statement

Linker Module Definition File Reference 141

 Virtual Pascal Language Reference

DESCRIPTION

This statement inserts the specified string into the application or library. The DESCRIPTION
statement is useful for embedding source control or copyright information in an application or library.

Example

The following example inserts the text Example Program into the application or library being defined.

DESCRIPTION 'Example Program'

EXETYPE

This statement specifies under which operating system the application (or dynamic-link library) is to
run. This statement is optional and provides an additional degree of protection against the program
being run on an incorrect operating system.

The EXETYPE reserved word must be followed by a descriptor of the operating system:

• OS2 OS/2 applications and dynamic-link libraries (default)

• WINDOWS Windows applications

• UNKNOWN Other applications

The effect of EXETYPE is to set bits in the header that identify operating-system type. Operating-
system loaders can check these bits.

EXPORTS

export definition

new line

export statement EXPORTS

description statement DESCRIPTION character string

OS2

UNKNOWN

exetype statement EXETYPE

WINDOWS

Export definition exported name
ordinal

NONAME

internal name @

RESIDENTNAME NODATA stackparams

=

142 Linker Module Definition File Reference

Virtual Pascal Language Reference

This statement defines the names and attributes of the symbols exported to other modules and of the
functions that run with I/O privilege.

The term export refers to the process of making a symbol available to other run-time modules. By
default, symbols are hidden from other modules at run time.

Normally, the EXPORTS statement is meaningful only for symbols within dynamic-link libraries and
for functions that execute with I/O privilege.

The EXPORTS reserved word marks the beginning of the export definitions. Each definition is
entered on a separate line.

• Exported name The symbol name as it is known to other modules.

• Internal name The actual name of the export symbol as it appears within the module itself; by
default, this name is the same as Exported name.

• Ordinal The symbol's ordinal position within the module definition table. If this field is used, the
symbol can be referenced by name or by ordinal. Use of ordinal positions is faster and may save
space.

• RESIDENTNAME or NONAME determines what happens to Exported name. The default
action with ordinal is to place Exported name in the nonresident names table.
RESIDENTNAME places Exported name in the resident names table. NONAME discards
Exported name from the DLL and the symbol is exported only by ordinal. These attributes are
applicable only if ordinal is used. If ordinal is not used, OS/2 automatically keeps the names of
all exported symbols resident in memory by default.

• NODATA Specifies that there is no static data in the function.

• StackParams The total size of the function's parameters, as measured in words (bytes divided by
two). This field is required only if the function executes with I/O privilege. When a function with
I/O privilege is called, OS/2 consults StackParams to determine how many words to copy from
the caller's stack to the I/O-privileged function's stack.

Example

EXPORTS
 TestUnitInitProc = TestUnit@$Init @1
 InterfaceFn = TestUnit@InterfaceFn @2 RESIDENTNAME
 LowLevel 8

This example defines three export functions. The first two functions can be accessed either by their
exported names or by an ordinal number. The last function runs with I/O privilege and therefore is
given with the total size of the parameters - 8 words.

export name symbol name

ordinal integer number

stackparams integer number

internal name symbol name

Linker Module Definition File Reference 143

 Virtual Pascal Language Reference

IMPORTS

This statement defines the names of the symbols imported for the application or library.

The term import refers to the process of declaring that a symbol is defined in another run-time module
(a dynamic-link library).

Typically, the linker uses an import library (created by the IMPLIB utility) to resolve external
references to dynamic-link symbols. However, the IMPORTS statement provides an alternative for
resolving these references within a module.

The IMPORTS reserved word marks the beginning of the import definitions. This reserved word is
followed by one or more import definitions, each on a separate line. The only limit on the number of
import definitions is that the total amount of space required for their names must be less than 64K.
Each import definition corresponds to a particular symbol:

• Internal name The name that the importing module uses to reference the symbol. Thus, Internal
name appears in the source code of the importing module, although the symbol can have a
different name in the module where it is defined. By default, Internal name is the same as Entry
name.

• Module name The name of the application or library that contains the function.

• Entry name The function to be imported; can be a name or an ordinal value (ordinal values are set
in an EXPORTS statement). If an ordinal value is given, then Internal name is required.

Note
A given symbol has a name for each of three different contexts. The symbol has a name used by the
exporting module (where it is defined), a name used as an entry point between modules and a name as
it is used by the importing module (where it is called). If neither module uses the optional Internal
name field, the symbol has the same name in all three contexts. If either of the modules uses the
Internal name field, the symbol may have more than one distinct name.

Example

IMPORTS
 Example.TestUnitInitProc
 GetStatus = Example.LowLevel
 InterfaceFn = Example.2

internal name symbol name

entry name symbol name

ordinal integer number

module name symbol name

import definition

new line

import statement IMPORTS

import definition entry name

ordinalinternal name
.module name

=

144 Linker Module Definition File Reference

Virtual Pascal Language Reference

LIBRARY

This statement identifies the executable file as a dynamic-link library and optionally defines the name
and library module initialisation required.

If Module name is given, it becomes the name of the library as it is known by OS/2. This name can be
any valid file name. If Module name is not given, the name of the executable file - with the extension
removed - becomes the name of the library.

• INITGLOBAL The library initialisation routine is called only when the library module is
initially loaded into memory. This reserved word is the default flag for library initialisation. Using
this reserved word without a termination flag implies TERMGLOBAL for DLLs with 32-bit
entry points.

• INITINSTANCE The library initialisation routine is called each time a new process gains access
to the library. Using this reserved word without a termination flag implies TERMINSTANCE
for DLLs with 32-bit entry points.

• TERMGLOBAL The library termination routine is called only when the library module is
unloaded from memory. This reserved word is the default flag for library termination. Using this
reserved word without an initialisation flag implies INITGLOBAL.

• TERMINSTANCE The library termination routine is called each time a process relinquishes
access to the library. Using this reserved word without an initialisation flag implies
INITINSTANCE.

The termination flags can only apply to DLLs with 32-bit entry points.

If the LIBRARY statement is included in a module definition file, the NAME statement must not
appear. If no LIBRARY statement appears, the module definition file describes an application.

Example

The following example assigns the name Clock to the dynamic-link library and specifies that library
initialisation be performed each time a new process gains access.

LIBRARY Clock INITINSTANCE

module namelibrary statement LIBRARY
INITGLOBAL

TERMINSTANCE

INITINSTANCE

TERMGLOBAL

Linker Module Definition File Reference 145

 Virtual Pascal Language Reference

NAME

This statement identifies the executable file as an application and optionally defines its name and type.

If Module name is given, it becomes the name of the application as it is known by OS/2. This name
can be any valid file name. If Module name is not given, the name of the executable file - with the
extension removed - becomes the name of the application.

If the application type is given, it defines the type of the application:

• WINDOWAPI Presentation Manager application. The application uses the API provided by the
Presentation Manager and must be executed in the Presentation Manager environment.

• WINDOWCOMPAT Application compatible with Presentation Manager. The application can
run inside the Presentation Manager, or it can run in a separate screen group. An application can
be of this type if it uses the proper subset of OS/2 video, keyboard and mouse functions supported
in the Presentation Manager applications.

• NOTWINDOWCOMPAT Application that is not compatible with the Presentation Manager and
must operate in a separate screen group from the Presentation Manager (Full Screen Session).

If the NAME statement appears, the LIBRARY statement cannot appear. If none of these statements
appear, the module definition file is assumed to describe an application.

Example

The following example assigns the name Clock to the application being defined. It uses Presentation
Manager API.

NAME Clock WINDOWAPI

OLD

This statement directs the linker to search another dynamic-link module for export ordinals. Exported
names in the current module that match exported names in the OLD module are assigned ordinal
values from that module unless one of the following conditions is in effect:

• The name in the OLD module has no ordinal value assigned.

• An ordinal value is explicitly assigned in the current module.

This statement is useful for preserving export ordinal values throughout successive versions of a
dynamic-link module. The OLD statement has no effect on application modules.

Example

OLD ’MyOldDll.DLL’

character stringold statement OLD

module name name statement NAME
WINDOWCOMPAT

NOTWINDOWCOMPAT

WINDOWAPI

146 Linker Module Definition File Reference

Virtual Pascal Language Reference

SEGMENTS

This statement defines the attributes of one or more segments in the application or library on a
segment-by-segment basis. The attributes specified by this statement override any defaults set in
CODE and DATA statements.

The SEGMENTS reserved word marks the beginning of the segment definitions. This reserved word
can be followed by one or more segment definitions, each on a separate line.

Each segment definition begins with segmentname, optionally enclosed in single quotation marks (').
The quotation marks are required if segmentname conflicts with a module definition reserved word,
such as CODE or DATA.

The CLASS reserved word specifies the class of the segment. Single quotation marks (') are required
for classname. If you do not use the CLASS argument, the linker assumes that the class is CODE.

See also the description of segment attributes on page 138.

segments statement

segment name CLASS

segment name ’ ’

class name ’ ’

READWRITE

READONLY

LOADONCALL

PRELOAD

NOIOPL
SHARED

IOPL

NONSHARED

PURE

INPURE

NONCONFORMING

CONFORMING

ALIAS

MIXED1632

SEGMENTS

Linker Module Definition File Reference 147

 Virtual Pascal Language Reference

Example

SEGMENTS
 TEXT CLASS 'CODE' EXECUTEONLY CONFORMING
 IO16 IOPL
 ‘DATA’ CLASS 'DATA' LOADONCALL READONLY

This example specifies segments named TEXT, IO16 and DATA. The first segment is explicitly
assigned class CODE and the second is assigned CODE by default. Each segment is given different
attributes.

Example

SEGMENTS _CODE ALIAS

The statement above specifies that the segment _CODE can be called using 16-bit far calls and 32-bit
near calls.

STACKSIZE

This option controls the stack size (in bytes) of the application. It is possible to specify any positive
value as an integer number.

Example

The following example sets the size of the stack segment to 16K.

STACKSIZE 16384

Note
You may not use this statement for Virtual Pascal programs, as the stack checking in the {$S+} state
will not work properly. The size of the stack segment must be set by means of the {$M StackSize}
compiler directive (see page 159 for details).

STUB

This statement adds a DOS executable file to the beginning of the application or library being created.
The stub is invoked whenever the module is executed under DOS. Typically, the stub displays a
message and terminates execution. By default, the linker adds its own standard stub for this purpose.

The character string specifies the DOS executable file to be added. Linker looks for it in the current
directory and in the directories specified by the PATH environment variable.

The alternate reserved word NONE prevents linker from adding a default stub. NONE saves space in
the file, but the program will hang the system if loaded in DOS, so it should be used for DLLs only.

Example

STUB ’STUB.EXE’

stacksize statement STACKSIZE integer number

character string stub statement STUB

NONE

148 Linker Module Definition File Reference

Virtual Pascal Language Reference

This example appends the DOS executable file STUB.EXE to the beginning of the module.
STUB.EXE is executed when the module is run under DOS.

Compiler directives 149

 Virtual Pascal Language Reference

Switch: Default=&AlignData+ Type=Local

A P P E N D I X B

Compiler directives
Compiler directives are used to provide information to and set syntax, code generation and other
features of the compiler. Compiler directives are implemented as comments that starts with dollar sign
($) followed by a directive name and optional parameters. Alternatively, an ampersand symbol (&)
can be used instead of $. This is intended to be used with compiler directives that are specific to
Virtual Pascal, since such compiler directives are then ignored by other Pascal compilers. All Borland
Pascal and 16-bit Delphi compiler directives are recognised by Virtual Pascal.

There are two types of compiler directives: global and local. Global directives must appear before the
declaration part of the program, unit or library. Global directives affect the entire compilation process.
Local directives can appear anywhere, they affect only the part of the source file after it.

Compiler directives are further subdivided into two groups:

• Switch directives that act as toggles enabling or disabling certain compiler features. A plus (+) or
minus (-) symbol follows the directive name and indicates the enabled or disabled state of the
directive.

• Parameter directives are used to supply additional information to the compiler. An important
subgroup of parameter directives are conditional directives that select the part of the source file
that is to be compiled. For a description of conditional compilation refer to page 16.

The name of the directive must be followed by at least one whitespace and optionally one or
more parameters.

Virtual Pascal specific directives are listed with a & sign while directives that are common for
Borland and Virtual Pascal compilers are listed with a $ sign.

$A, &AlignData
Switches between byte- and double word-alignment of variables and typed constants. Data alignment
speeds up execution. $A and &AlignData are equivalent.

In the &AlignData+ state, variables and typed constants are aligned according to the following table:

compiler directive switch directive

parameter directive

identifier switch directive

-

+

identifier
Parameter

parameter directive

150 Compiler directives

Virtual Pascal Language Reference

Size of the variable Action
1 No alignment
2 Word (2-byte boundary) alignment
>=3 Double word (4-byte boundary) alignment

In the &AlignData- state, no alignment is performed. Variables and typed constants are simply placed
at the next available address, regardless of their size.

&AlignCode
Specifies whether to align entry points of procedures and functions at a double word boundary. Code
alignment speeds up execution, particularly on newer processors, but makes the executables larger.

In the &AlignCode+ state, all functions and procedures entry points are aligned at a double word (4-
byte) boundary (i.e. the address is divisible by 4).

In the &AlignCode- state, no alignment is performed. Code for functions and procedures is simply
placed at the next available address.

&AlignRec
Switches between byte- and double word-alignment of record and object fields. Field alignment
speeds up execution.

In the &AlignRec+ state, fields are aligned according to the following table:

Field size Action
1 No alignment
2 Word (2-byte boundary) alignment
>=3 Double word (4-byte boundary) alignment

Note: this may affect the size of records containing byte and word sized variables.

In the &AlignRec- state, no alignment is performed. The record and object fields are simply placed at
the next available address, regardless of their size.

&Alters
See description of the &Saves directives on page 162.

&Asm
Specifies whether to produce assembly source for the unit.

In the &Asm+ state, the compiler produces assembly source code in addition to an object file for the
unit. Note, that the compiler is able to generate assembler source only if smart linking is disabled
({&SmartLink-} state), because the compiler generates an object module for each var and const
section, procedure and function, etc., when smart linking is enabled.

In the &Asm- state, only an object file is produced.

See page 23 for more information about the compilation process.

Switch: Default=&AlignCode+ Type=Local

Switch: Default=&AlignRec- Type=Local

Parameter: Default=&Alters eax,ecx,edx Type=Local

Switch: Default=&Asm- Type=Global

Compiler directives 151

 Virtual Pascal Language Reference

The assembler source code produced is readable and can be compiled using a macro assembler like
MASM or TASM.

$B
Switches between the two different models of code generation for and and or boolean operators.

In the $B+ state, the compiler generates code for complete boolean expression evaluation. This means
that every operand of a boolean expression with and and or operators is guaranteed to be evaluated,
even when the result of the entire expression is evident.

In the $B- state, the compiler generates code for short-circuit boolean expression evaluation. This
means that evaluation stops as soon as the result of the entire expression becomes known. Short-
circuit boolean expression evaluation is based on the following facts:

• When at least one operand of an or operator is True, the result of the operator is True.

• When at least one operand of an and operator is False, then result of the operator is False.

If expressions do not have any side effects, this directive can be switched on to increase code speed.
Side effects can occur, if the expression includes a function call and the function modifies the state of
the program.

&Cdecl
These compiler directives set up the default language calling convention.

Directive Calling convention
&Cdecl C language
&Far16 16-bit Pascal
&StdCall Standard call
Disabled Pascal language

Specifying any directive in the disabled state (-) enables the default Pascal calling convention.

Using these directives is the only way to declare a procedural type with the calling convention other
than Pascal.

For a particular procedure or function you can change the default calling convention by specifying one
of the cdecl, far16, stdcall or pascal standard procedural directives. See also the section on Calling
conventions.

&Comments
Enables nested {} comments.

In the &Comments+ state, comments consisting of “curly brackets”, i.e. { and } can be nested up to
32 deep. In the default state, which is compatible with Borland Pascal and Delphi, comments cannot
be nested.

Example:

The following code

{
type

Switch: Default=$B- Type=Local

Switch: Default=&Cdecl- Type=Local

Switch: Default=&Comments- Type=Global

152 Compiler directives

Virtual Pascal Language Reference

 { tMyType is used to hold data }
 tMyType = record
 fTest: Integer;
 fDummy: Integer;
 end;
}

will compile in the {&Comments+} state, but will generate a syntax error in the default
{&Comments-} state.

$D
Specifies whether to produce debug information, consisting of a line number table for each procedure.
The table defines the correspondence between object code addresses and source text line numbers.

In the $D+ state, debug information is generated, which allows the integrated debugger to trace the
code of the unit and set breakpoints. When a run-time error occurs, the integrated debugger can show
the statement that caused the error. For units, the debug information is recorded in a .VPI file. Debug
information increases the size of .VPI files and takes up additional room when you compile programs
that use the unit, but it only slightly affects the size and does not affect the speed of the executable
program.

The state of $D also controls whether local symbol information is generated. Local symbol
information consists of the symbols in the module's implementation part (names and types of all local
variables and constants in a module) and the symbols within the module's procedures and functions.
This was controlled by the $L directive in Borland Pascal.

In the $D+ state, local symbols are stored in the .VPI file for a given program or unit and the
integrated debugger can be used to examine and modify the module's local variables. Calls to the
module's procedures and functions can be examined via the Call Stack window.

In the $D- state, no debug or symbol information is generated.

This switch is usually used with the {&LocInfo} switch.

$DEFINE
Defines a conditional symbol with the given Name.

Syntax:

$DEFINE Name

The defined symbol is recognised for the remainder of the compilation (current unit or program source
file only), or until it appears in an $UNDEF Name directive. The name specified can be examined by
use of the $IFDEF conditional compilation directive.

Note: {$DEFINE Name} has no effect if Name is already defined.

See also the section on Conditional compilation.

&Delphi
Enables the Delphi Object Pascal language extensions.

In the &Delphi+ state Delphi syntax is enabled.

Switch: Default=$D+ Type=Global

Parameter: Type=Local

Switch: Default=&Delphi+ Type=Local

Compiler directives 153

 Virtual Pascal Language Reference

The Delphi language extensions supported by Virtual Pascal can cause code written for Borland
Pascal to fail compilation. In the &Delphi- state, the conflicting parts of the Delphi language
extensions are disabled and you cannot use:

• New reserved words: try, finally, except, finalization, class, etc.

• Function result references via the Result variable.

See page 93 for an example of using Result and page 100 for information about exception handling.

&Dynamic
Indicates that a program or library uses a unit version that is located in a dynamic link library (OS/2
target only).

Syntax:

&Dynamic UnitName [,UnitName]

or

&Dynamic Import library name

When compiling a program or a library, this directive can be used to specify which of the units used
by the program or library are located in DLL(s). For these units the object file names are not specified
in the linker response file. Instead, all definitions of interface symbols of these units should be located
in an import library. The name of this import library should be specified using a $L FileName
directive.

Unit names can be separated by commas, spaces or semicolons. This directive must be placed after the
program or library uses clause. It is illegal to use it in a unit.

Alternatively, the directive can specify the name of the import library. In this case, all external
references that can be resolved using this library are dynamically linked, and no $L directive is
required.

See also the {&Export UnitName} directive on page 154.

$ELSE
Compiles or ignores the source text that follows it.

Syntax:

$ELSE

The $ELSE directive marks an optional clause of a conditional-compilation block defined by a
$IFDEF, $IFNDEF or $IFOPT directives.

$ELSE compiles the source code that follows it if the preceding $IFxxx condition is not met.

If the $IFxxx condition is met, $ELSE ignores the source code that follows it.

$ENDIF
Marks the end of a conditional-compilation block defined by $IFDEF, $IFNDEF or $IFOPT
directive.

Parameter: Type=Global

Parameter(conditional compilation): Type=Local

Parameter(conditional compilation): Type=Local

154 Compiler directives

Virtual Pascal Language Reference

Syntax:

$ENDIF

One $ENDIF is required for each IFxxx directive.

&Export
 Indicates that all interface symbols of the specified unit(s) should be exported.

Syntax:

&Export UnitName [,UnitName]

This directive is used in a library. It specifies the units, dynamic version of which can be used by other
programs or libraries. Unit names can be separated by commas, spaces or semicolons.

This directive must be placed after the program's or library's uses clause. It is illegal to use it in a unit.

Alternative Syntax:

&Export:[ByName ¦ ByOrdinal ¦ NoName]

When used in this fashion, the directive specifies how entries should be exported: By name or by
ordinal numbers. The three parameters have the following meaning:

ByName forces the linker to export all interface symbols of units expecified
in {&Export UnitName} statements as well as all procedures
exported by means of the export standard directive to be exported
by name.

ByOrdinal causes symbols to be exported by ordinal numbers. The names of
the exported symbols are still included in the DLL and can be
imported by name by creating another import library using the
IMPLIB utility.

NoName the same as ByOrdinal, except that names of exported symbols
are not included in the DLL. Exported symbols can be imported by
ordinal numbers only, using the import library generated by the
linker. This causes the smallest DLLs to be created and is the
default setting.

See also the {&Dynamic UnitName} directive on page 152.

&Far16
This compiler directive sets up the default language calling convention. Refer to &Cdecl on page 151 for
more information.

&Frame
Specifies whether to set up a stack frame for assembler procedures and functions. This directive
should be placed before the asm reserved word that starts the statement part.

In the &Frame+ state, a stack frame is generated, allowing the use of the integrated debugger to view
the value of any local variable or argument (when both $D and $L are enabled). Local variables and
parameters are accessed via the EBP stack frame register.

Parameter: Type=Local

Switch: Default=&Far16- Type=Local

Switch: Default=&Frame+ Type=Local

Compiler directives 155

 Virtual Pascal Language Reference

In the &Frame- state, a stack frame is not generated and the values of arguments and local variables
of the procedure cannot be viewed in the integrated debugger. The current stack of calling functions
and procedures is not accessible. Both local variables and parameters are accessed via the ESP stack
pointer register, instead of EBP. This generates the fastest code, but may produce bugs that are hard to
find. Accessing local variables or parameters is possible only if the code does not modify the stack
using push/pop statements, since this changes the value of the ESP register. &Frame- should
normally be used by experienced users when writing small assembler routines only.

The &Frame directive is usually used with a {&Uses RegList} directive (see page 164).

&G3, &G4, &G5
Enables generation of code for the corresponding processor:

• &G3 - 386

• &G4 - 486

• &G5 - Pentium.

These compiler directives are mutually exclusive, so if two or more directives are specified as
enabled, the last one specified is used.

These directives are relevant to the built-in assembler and determine which instruction set is allowed,
and also determine the primary target processor of the executable.

Virtual Pascal generates only 386 instructions and all programs compiled with Virtual Pascal will run
on any of the processors. However, it uses this switch to determine the processor on which the
program should run best and can be used to optimise the code for a Pentium at the expense of 386
machines by specifying {&G5+}, for example.

See also the {&Optimise} directive.

$H
Controls the meaning of the reserved word string and provides compatibility with long strings
introduced in 32-bit Delphi.

In the enabled $H+ state, strings declared using the the string reserved word are long strings
(AnsiString).

In the disabled $H- state, strings declared using the string reserved word are normal Pascal strings
(ShortString)

Note, that strings declared with a maximum length are always short strings, irrespective of the setting
of the $H directive.

$I
Enables or disables the generation of code, checking the result of a call to an I/O procedure.

In the $I+ state, if an I/O procedure returns a non-zero I/O result, the program terminates displaying a
run-time error message.

In the $I- state, the standard IOResult function must be used to check for I/O errors.

Switch: Default=$G3+ Type=Local

Switch: Default=$I+ Type=Local

Switch: Default=$H- Type=Local

156 Compiler directives

Virtual Pascal Language Reference

$I
Instructs the compiler to include the named file in the compilation. If the extension is omitted, a
default of .PAS is assumed.

Syntax:

$I FileName

If FileName does not specify a directory, the compiler searches for the file

• first in the current directory

• then in the directories specified in the Options|Directories|Include directories input box (or in the
directories you specified via the /I option on the command line of VPC).

The included file is inserted in the compiled text right after the {$I FileName} directive.

HPFS, NTFS and VFAT long file names containing special symbols such as blanks are also
supported. In this case the name should be enclosed in double quotes, like this:

{$I ”Very long HPFS file name.INC”}

Note: An include file cannot be specified in the middle of a statement part. All statements between the
begin and end of a statement part must reside in the same source file.

$IFDEF
Compiles the source text that follows it if Name is defined.

Syntax:

$IFDEF Name

The $IFDEF directive controls conditional compilation of the source file by checking the specified
Name. If the Name has been defined by using a $DEFINE directive (or by using the /D command-line
option or Name is listed in the Compiler|Options|Conditional defines input box), $IFDEF directs the
compiler to continue with the source text immediately after the $IFDEF. If the Name has not been
defined, $IFDEF directs the compiler to skip all source text up to the next $ELSE or $ENDIF
directive.

$IFNDEF
Compiles the source text that follows it if Name is not defined.

Syntax:

$IFNDEF Name

The $IFNDEF directive controls conditional compilation of the source file by checking the specified
Name. If the name has not been defined or if its definition has been removed by using an $UNDEF
directive, $IFNDEF directs the compiler to continue processing source up to the next $ELSE or
$ENDIF directive. If the Name is defined, $IFNDEF directs the compiler to skip to the next $ELSE
or $ENDIF directive.

Parameter: Type=Local

Parameter(conditional compilation): Type=Local

Parameter(conditional compilation): Type=Local

Compiler directives 157

 Virtual Pascal Language Reference

$IFOPT
Compiles the source text that follows it if the switch compiler directive is currently in the specified
state.

Syntax:

$IFOPT SwitchDir

SwitchDir is the name of a switch compiler directive, followed by + or -, for example $IFOPT R+.

This can be used to change and restore the setting of a directive:

// Save original setting of the $R directive

{&IFOPT R+} {$DEFINE RCHCK} {$ELSE} {$UNDEF RCHCK} {$ENDIF}

{$R+} // Enable range checking for a bit of code

... code

// Restore original setting

{&IFDEF RCHCK} {$R+} {$ELSE} {$R-} {$ENDIF}

$J
Controls the write access to typed constants.

In the $J- state, typed constants are treated as true constants that cannot be modified, passed as var
parameters, etc.

In the default $J+ state, typed constants are treated as pre-initialised variables that can be modified.
This setting is compatible with Borland Pascal.

$L
Obsolete and ignored.

See the $D directive on page 151.

$L
Instructs the compiler to link the named file with the program or dynamic link library being compiled.

Syntax:

$L FileName

The $L directive is used to use code written in other languages or to specify the name of an import
library containing a list of entries defined in a DLL.

The named file must be either an OMF object file (.OBJ) or library (.LIB). All file names specified in
the $L directives are passed to the linker:

• Object files in the object file list

• Libraries in the library list. If the extension is omitted, a default of .LIB will be assumed and this
library name is placed in the object file list.

If FileName does not contain a directory, the linker will search for it

Parameter(conditional compilation): Type=Local

Parameters: Type=Local

Switch: Default=$J- Type=Local

158 Compiler directives

Virtual Pascal Language Reference

• first in the current directory

• then in the directories specified in the Options|Directories|Library directories input box (or in the
directories specified in the LIB environment variable, when using the command line compiler).

Long file names containing special symbols, such as blanks, are also supported. In this case the name
should be enclosed in double quotes, like this:

{$L ”Quite long file name.obj”}

&Linker
Specifies module definition statements directly in the source code, without using an external .DEF
file.

Syntax:

&Linker Module definition statements

Example:

{&Linker
DESCRIPTION ‘Test Program’
STUB ‘C:\DOS\DosStub.Exe’
}

&LocInfo
Enables or disables the generation of run-time location information (RTLI).

When a unit is compiled in the &LocInfo+ state, Virtual Pascal includes Location Information in the
resulting .VPI file, consisting of line numbers and source code file names.

When the Generate Location Information switch on the Options-Linker page is enabled, the Location
Information is included in the executable file (Only when using the internal linker). This information
can be used at run-time to determine the exact location of an error, and can be an invaluable help
when searching for a problem occurring only at a customer’s site.

When Location Information is enabled, the default error handlers of the System and the SysUtils units
output source file and line number information if the program terminates abnormally. This is
implemented by calls to the GetLocationInfo function defined in the System unit, which returns the
source file name and line number of a given code address for which Location Information is available.

$M
Enables or disables the generation of run-time type information.

When a class is declared in the $M+ state, or derived from a class, declared in the $M+ state, the
compiler generates run-time type information for fields, methods and properties that are declared in
published sections.

If a class is declared in the $M- state and is not derived from a class that was declared in the $M+
state, published sections are not allowed in the class.

Switch: Default $M- Type=Local

Parameters: Type=Local

Switch: Default &LocInfo- Type=Local

Compiler directives 159

 Virtual Pascal Language Reference

$M
Specifies the stack size of a program.

Syntax:

$M StackSize<,MaxStackSize>

StackSize must be an integer number greater than 8192, specifying the size of the stack segment in
bytes.

MaxStackSize optionally specifies the maximum allowed size of the stack in bytes.

Note: the $M directive has no effect when used in a unit. The $M directive is ignored in a library (a
DLL always uses the stack of the application that calls it).

&Open32
Enables Windows compatibility mode for programs using Open32 (OS/2).

In the &Open32+ mode, resource files (.RES) are treated as Windows (Win16 or Win32) resource
files, even when linking for an OS/2 target. The built-in resource linker automatically converts these
to OS/2 format prior to linking them. Additionally, the stdcall standard directive is equivalent to
cdecl in this mode. This way, Windows header files specifying stdcall can be used without
modification when using Open32 for OS/2, which uses the cdecl calling convention.

In the default &Open32- mode, no resource file conversion takes place and the stdcall standard
directive denotes the stdcall calling convention.

Example:

{&Win32+}
 {$R Win16.res} // Include Win16 resource in OS/2 executable
 {$R Win32.res} // Include Win32 resource in OS/2 executable
{&Win32-}
 {$R OS2.res} // Include native OS/2 resource in OS/2 executable

Using the Open32 library from IBM (which emulates a subset of the Win32 API in native OS/2),
Delphi programs can be recompiled to an OS/2 target without changing source code or resource files,
when using this directive.

&Optimise, &Optimize
Enables a set of optimisations, such as allocating the most frequently used local variables in CPU
registers and “peephole” optimisations.

Enabling the &Optimise+ (or &Optimize+) directive speeds up execution and makes the object code
smaller. For debugging purposes, optimisations may be switched off.

When a local variable is kept in a register, the integrated debugger shows the contents of this CPU
register instead of the memory location when evaluating the variable. However, the register may not
always hold the local variable value, because it may be temporarily stored in memory while the
register is used for another variable. This can cause unexpected problems when modifying the values
of local variables. When modifying a local variable that is normally kept in a register, but has been
temporarily stored in memory, modifying it will modify the register in which the debugger thinks it is
stored - even if it is not. This limitation may be removed in a future version of the debugger; the
temporary work-around is to disable optimisations when debugging complex code sequences.

Parameter: Default=$M 16384 Type=Global

Switch: Default=$Optimise+ Type=Local

Switch: Default=&Open32- Type=Local

160 Compiler directives

Virtual Pascal Language Reference

In the &Optimise-(&Optimize-) state, local variables are kept in memory and the debugger always
references the correct value.

See also the {$W} and {&Speed} directives.

&OrgName
Specifies what names are associated with public symbols in object files.

In the &OrgName+ state, public symbols are given their original names. This can be useful if a
Pascal unit is linked into a program written in another language or uses a module written in another
language. In this case, it is the responsibility of the programmer to ensure that the names of public
symbols are unique; if not, a linker error will occur.

In the defualt &OrgName- state, the unit name and an "at" symbol (@) is added to the start of all
public symbol names. This way, it is possible to use public symbols with identical names, as long as
they are located in the different modules (units).

Note: the term public here refers to symbols declared in the interface part of the unit or global
variables, typed constant, procedures and functions of the program or library.

See also the appendix on Naming conventions on page 187.

$P
Controls the meaning of variable parameters declared using the string reserved word.

In the $P+ state, variable parameters declared using the string reserved word are open string
parameters. The actual parameter of an open string parameter can be a variable of any string type and
within a procedure or function, the size attribute (maximum length) of the formal parameter will be
the same as that of the actual parameter.

In the $P- state, variable parameters declared using the string reserved word are normal variable
parameters. Regardless of the setting of the $P directive, the OpenString identifier can always be used
to declare open string parameters.

See also the section on Open string parameters on page 123.

&PmType
Overrides the default application type that is set in Options|Linker dialogue box.

Syntax:

&PmType AppType

Default:

uses the default application type taken from the Linker dialogue box.

AppType can be either NOVIO, VIO or PM.

Note: It is illegal to use this directive in a unit.

Switch: Default=&OrgName- Type=local

Switch: Default=$P- Type=Global

Parameter: Type=Global

Compiler directives 161

 Virtual Pascal Language Reference

Parameter Meaning
NOVIO Not aware of Presentation Manager API (OS/2), runs in a separate

full screen session
VIO Compatible with Presentation Manager API, can run inside a PM

window or in a separate full screen session
PM Uses Presentation Manager API, must be executed inside PM

&PureInt
Forces a unit to be a pure interface unit.

To supply a unit's object code without source code and be sure that it works even if the format of the
.VPI files changes, a pure interface unit for should be created. To do this, it must contain
{&PureInt+} directive at the start of the unit and the entire interface part of the unit. The
implementation part of the unit should be removed, except for the uses clause (if applicable). If the
unit has an initialisation part, the initial begin should be included as well:

implementation
uses
 Dos,Crt;
begin
end.

If no initialisation part is present, the begin should be left out:

implementation
uses
 Dos,Crt;
 end.

The {&PureInt+} directive forces the compiler to ignore undefined forward references to procedures,
functions and methods and assume that they are implemented in the original version of the unit, in the
form of a .OBJ or .LIB file.

No object file or library is generated for a pure interface unit, meaning that a newer version of the
compiler can be used to create an appropriate .VPI file for it and still use the object file or library
produced from the original unit by the old version of the compiler.

In the default {&PureInt-} state, a unit is assumed to implement the interface part as usual.

Note: Those parts of the Virtual Pascal Run-Time Library that are derived from source code
copyrighted by Borland Int are supplied as Pure Interface units; the full source code is supplied as
upgrade patches that requires the original source code to be available.

$Q
Controls the generation of overflow-checking code.

In the $Q+ state, certain integer operations are checked for overflow, such as: +, -, * Abs, Sqr, Succ
and Pred. The code for each of these arithmetic operations is followed by additional code that verifies
that the result is within the supported range. If an overflow check fails, the program terminates and
displays a run-time error message.

In the $Q- state, no overflow checking is performed. The $Q switch is usually used in conjunction
with the $R switch. Enabling overflow checking slows down your program and makes it larger, so use
{$Q+} only for debugging.

Switch: Default=&PureInt- Type=Global

Switch: Default=$Q- Type=Local

162 Compiler directives

Virtual Pascal Language Reference

Note: for compatibility with Borland Pascal, $Q does not affect the Inc and Dec standard procedures.

$R
Enables and disables the generation of range-checking code.

In the $R+ state, all array and string indexing expressions are verified to be within the allowed
bounds. All assignments to scalar variables are checked to be within range. If a range check fails, the
program terminates and displays a run-time error message.

In the $R- state, no range-checking is done.

Enabling range-checking slows down the program and makes it larger, so use it only for debugging.

Note: for compatibility with Borland Pascal $R does not affect the Inc and Dec standard procedures.

$S
In the $S+ state, the compiler generates code at the beginning of each procedure or function, checking
whether sufficient stack space for local variables and other temporary storage is available. If there is
not enough stack space, the program terminates and displays a run-time error message.

In the $S- state, when there is not enough stack space, a call to a procedure or function is likely to
cause a stack fault, but the exact location of the error may not be identified and such errors can be very
difficult to find.

Enabling stack checking slows down the program and makes it larger and as such should primarily be
used for debugging. However, be sure to verify that the program does not contain code that risks
overflowing the stack before disabling this directive.

&Saves
Specifies which CPU registers that are saved (altered for the &Alters directive) by a procedure,
function or asm statement.

Syntax:

&Saves RegisterList
&Alters RegisterList

RegisterList consists of one or more 32-bit general purpose register names (eax, ebx, ecx, edx, esi or
edi) separated by commas, spaces or semicolons, NONE or ALL.

&Alters is complementary to &Saves. For example, if a procedure alters only the eax register, it
saves ebx, ecx, edx, esi and edi, so {&Alters eax} and {&Saves ebx,ecx,edx,esi,edi} are equivalent.

The &Saves (&Alters) directive tells the compiler that the CPU registers specified in the RegisterList
are not changed (changed for the &Alters directive) by the procedure or function. The compiler may
use these registers for register variables, for storing temporary results across function or procedure
calls, etc. If the code of the procedure or function uses these registers, they are saved on entry and
restored on exit. The default setting is compatible with the SYSCALL calling convention, where all
registers except ebx, esi and edi are expected to be altered.

Information about saved registers is included into the procedure or function type. For this reason, only
procedures (functions) with equivalent argument lists (and return values) saving the same registers are

Switch: Default=$R- Type=Local

Switch: Default=$S+ Type=Local

Parameter: Default=&Saves ebx,esi,edi Type=Local

Compiler directives 163

 Virtual Pascal Language Reference

compatible. &Saves (&Alters) affects only the defining (first) declaration of the procedure or
function.

The &Saves (&Alters) directive can be also used to specify registers that are preserved (changed) by
asm statements. In this case, it should be specified inside the statement part before or just after the
asm reserved word. It affects only asm statements located in the current statement part below and
does not change the setting for procedures and functions.

Note: Functions that return an ordinal or a pointer type, constructor, destructor and dynamic method
always change the value of the eax register regardless of the setting of this directive. far16 procedures
and functions always save ebx, esi and edi registers.

Warning: do not change the default setting for procedures and functions unless you are an expert
assembler programmer.

&SmartLink
Specifies the type of the output file to be generated for a unit, .OBJ or .LIB.

In the &SmartLink+ state, the smart linking facility is enabled. For each unit that has object code, the
compiler generates an OMF library file (.LIB).

In the &SmartLink- state, the smart linking feature is disabled. For each unit that has object code, the
compiler generates an OMF object file (.OBJ).

Enabling &SmartLink directive dramatically reduces the size of the produced executable file. When
debugging DLLs, smart linking should be disabled, because the integrated debugger is unable to
symbolically debug DLLs linked from smart linked units.

The &SmartLink directive is ignored if used in a program or library.

Note: Assembly output can be enabled ({&Asm+} state) in the {&SmartLink-} state only.

&Speed
Selects the compiler's optimisation strategy.

In the &Speed+ state, the compiler optimises the generated code for speed, choosing the fastest code
sequence for a given task.

In the &Speed- state, the compiler optimises the generated code for size, choosing the smallest code
sequence possible.

See also the {&Optimise} and {$W} directives.

$StdCall
This compiler directive sets up the default language calling convention. See the description of &Cdecl
directive on page 151 for more information.

$T
Controls the type of pointer values generated by the @ operator.

In the $T- state, the result type of the @ operator is always an untyped pointer that is compatible with
all pointer types.

Switch: Default=&SmartLink- Type=Local

Switch: Default=$Speed- Type=Local

Switch: Default=&StdCall- Type=Local

Switch: Default=$T- Type=Local

164 Compiler directives

Virtual Pascal Language Reference

In the $T+ state, when the @ operator is applied to a variable of type T, the type of the result is ^T,
which is compatible only with other pointers to this type of variable.

$UNDEF
Undefines a previously defined conditional symbol of Name.

Syntax:

$UNDEF Name

This directive removes the definition of the specified Name. It has the same effect for the rest of the
compilation as if the Name was never defined.

Note: $UNDEF Name directive has no effect if Name is not already defined.

&Use32
Provides a shortcut for including the Use32 unit in the uses clause. Units compiled in the &Use32+
state implicitly include the Use32 unit in the uses clause, after the System unit and before any units
explicitly included.

This directive is primarily included for compatibility with Borland Pascal, since most programs
written for 16-bit DOS will compile with Virtual Pascal when the Use32 unit is included in the uses
clause.

The Use32 unit redefines the basic Integer and Word types to be 32-bit types identical to the LongInt
type.

See also Discussion: Use32, Use16 and bits on page 30.

&Uses
Indicates which registers should be automatically pushed at the beginning of an assembler procedure
or function and restored (popped) on exit.

Syntax:

&Uses RegisterList

RegisterList is one or several CPU register names (eax, ebx, ecx, edx, esi, edi, ebp, ds, es, fs, gs, efl)
separated by commas, spaces or semicolons; NONE or ALL.

Using this directive can make assembler code clearer and easier to read.

Example:

Directive Entry code Exit code
{&Uses ebx,esi} PUSH EBX

PUSH ESI
POP ESI
POP EBX

{&Uses ALL} PUSHAD POPAD
{&Uses EFL} PUSHFD POPFD

$V
Controls type-checking on strings passed as variable parameters.

Parameter(conditional compilation): Type=Local

Switch: Default=&Uses NONE Type=Local

Switch: Default=$V+ Type=Local

Parameter: Default=&Use32- Type=Local

Compiler directives 165

 Virtual Pascal Language Reference

In the $V- state, strict type-checking is performed, requiring the formal and actual parameters to be of
identical string types.

In the $V- state, any string type variable is allowed as an actual parameter, even if the declared
maximum length is not the same as that of the formal parameter. You can not reliably check indexing
of the actual parameter in the $R+ state, which is why the use of $V- is not recommended. Use open
string parameters instead (see the $P switch directive on page 160).

$W
Enables the generation of stack frames.

In the $W+ state a stack frame is generated for every procedure and function. This is useful for
debugging, since only procedures and functions with a stack frame can be displayed in the call stack
window.

In the $W- state, the compiler does not generate a stack frame for procedures and functions that do not
have parameters and local variables. This can decrease code size and increase performance.

See also the {&Optimise} and {&Speed} directives.

$X
Enables or disables Virtual Pascal's extended syntax.

In the $X+ state, function calls can be used as statements, i.e. the result of a function call can be
discarded (does not apply to built-in functions). Null-terminated strings are enabled by activating the
special rules that apply to the built-in PChar type and zero-based character arrays.

In the $X- state, extended syntax is disabled.

$Z
Controls the storage size of enumerated types.

In the $Z+ state, an enumerated type state is always stored as a double word (4 bytes).

In the $Z- state, an enumerated type is stored as byte if type has no more than 256 values and as
double word otherwise.

This directive is useful for interfacing with libraries written in other languages, like C or C++, where
enumerated types are represented as double words.

&Zd
Controls the generation of line number information in the object file. It has the same meaning as the
/Zd command line switch that most command line compilers have.

In the &Zd+ state, line number information is generated. This can be useful if you want to link your
Pascal code into a program that is written in the other language. In this case you can trace Pascal
source code in a standalone debugger, such as IPMD.

In the &Zd- state, line number information is not generated.

Note: setting of this directive does not affect the integrated debugger. It uses debug information
recorded in the .VPI file of units compiled in the $D+ state.

Switch: Default=$W+ Type=Local

Switch: Default=$X+ Type=Global

Switch: Default=$Z- Type=Global

Switch: Default=&Zd- Type=Global

166 Compiler directives

Virtual Pascal Language Reference

A P P E N D I X C

The Open Debug API (ODAPI)
Virtual Pascal v2 by default includes support for native debugging of Win32 and OS/2 programs.
This default functionality can be modified to suit your specific needs, or can be extended, through the
VP ODAPI specification.

By using the functionality provided by the Virtual Pascal Open Debug API (ODAPI), it is possible to
include support for debugging programs running on other platforms, across network connections or
even direct cable connections.

In order to implement debugger support for more platforms or for changing the behaviour of the
existing debugger function, the set of functions comprising ODAPI must be implemented as a DLL, to
be used by the Virtual Pascal IDE when debugging applications. The interface to be supported is
defined in the Pascal source file VpDbgApi.Pas, located in the Source\Rtl directory. The following is
a discussion and description of the functions and what they are required to do.

The debugger DLL
A debugger DLL must export a single entrypoint, SysDbgGetIDEInterface, which is called by the IDE
during startup. This call defines an additional set of entrypoints for the debugger to use during the
debugging process; these are described in the section on The ODAPI IDE Interface.

Following this initial step, the debugger calls the SysDbgInterface procedure in the debugger DLL,
making available a set of functions in the debugger that the DLL should call to notify the debugger of
events such as program termination, thread activity, etc.

Having completed these two steps, the interface between the DLL and the debugger is established.

To produce a new debugger DLL or change the existing functionality of the debugger, create a copy
of the VpDbgApi.Pas unit, make the desired changes, and compile/link the VpDbgDll.Pas library file.
The updated DLL should replace the VpDbgDll.Dll file that ships with Virtual Pascal and will
automatically will used the next time the IDE is started.

The ODAPI System Interface
The System Interface defines a set of functions that can and should be used by the debugger DLL both
to get information only available to the debugger and the IDE, and to keep the debugger informed
about events taking place in the debugger DLL.

The debugger DLL should call the SysDbgSetInterface procedure and store the result, which is a
record of type TSysDbgInterface containing the entry points of a number of useful routines in the
debugger itself.

The definition of the System interface can be found in VpDbgApi.Pas:

TSysDbgInterface = record
 GetThreadParam: function(No: Integer): PSysDbgThreadIds;
 ThreadCreated: procedure(ThreadID, ThreadHandle ,ThreadOrdinal: Longint);
 ThreadExited: procedure(ThreadID, ExitCode: Longint);
 DllLoaded: procedure(DllName: PChar; DllHandle ,SegCount: Longint; const SegTable: array
of TSysDbgSegDef);
 DllUnloaded: procedure(DllHandle: Longint);

The Open Debug API (ODAPI) 167

 Virtual Pascal Language Reference

 ProcessExited: procedure(ExitCode, ExitType: Integer);
 NotifyException: procedure(const DbgEvent: TSysDbgEvent);
 StopOnException: function(Code: Longint): Boolean;
 end;

Each field of the TSysDbgInterface structure is a function or procedure pointer, as can be seen from
the definition above. The functions should be called from the debugger for the following purposes:

 GetThreadParam - Ask debugger for information about a thread
 ThreadCreated - Notify debugger that a thread was created
 ThreadExited - Notify debugger that a thread ended
 DllLoaded - Notify debugger that a DLL was loaded
 DllUnloaded - Notify debugger that a DLL was unloaded
 ProcessExited - Notify debugger that process ended
 NotifyException - Notify debugger that an exception was raised
 StopOnException - Ask debugger if exception is of interest

A debugger DLL must export a single entrypoint, SysDbgGetIDEInterface, which is called by the IDE
during startup. This call defines an additional set of entrypoints for the debugger to use during the
debugging process; these are described in the next section on the ODAPI IDE Interface.

The ODAPI IDE Interface
To extend the debugger of Virtual Pascal, the ODAPI IDE Interface should be used. Implement the
functionality by writing a Dynamic Link Library VpDbgDll.Dll exporting an entrypoint,
SysDbgGetIDEInterface, which is defined as follows:

 procedure SysDbgGetIDEInterface(var IDEInt: TSysDbgIDEInterface);

When called, the procedure must change the IDEInt parameter to a valid TSysDbgIDEInterface, as
defined in the following.

Each field of this record (except SysDbgVersion) is a function or procedure pointer and must point to
valid code after the call.

TSysDbgIDEInterface = record
 SysDbgVersion: Longint;
 SysDbgPlatforms: TSysDbgPlatforms;
 SysDbgInitialize: procedure;
 SysDbgGetFlatInfo: procedure(var FlatInfo: TSysDbgFlatInfo);
 SysDbgSetInterface: procedure(var DbgInt: TSysDbgInterface);
 SysDbgStartProcess: function(const FileName,CmdLine: String; AppType: Longint; var
ProcessID,SesID,EntryAddr: Longint): Longint;
 SysDbgTerminateProcess: function: Longint;
 SysDbgSelToFlat: function(Sel,Ofs: Longint): Longint;
 SysDbgReadMemory: function(Sel,Ofs: Longint; Buffer: Pointer; Size: Longint): Longint;
 SysDbgWriteMemory: function(Sel,Ofs: Longint; Buffer: Pointer; Size: Longint): Longint;
 SysDbgReadRegisters: function(Regs: PSysDbgCPURegisters; FPUState:
PSysDbgFSaveFormat): Boolean;
 SysDbgWriteRegisters: function(Regs: PSysDbgCPURegisters; FPUState:
PSysDbgFSaveFormat): Boolean;
 SysDbgFreezeThread: function(const Regs: TSysDbgCPURegisters): Boolean;
 SysDbgResumeThread: function(const Regs: TSysDbgCPURegisters): Boolean;
 SysDbgGetThreadState: function(const Regs: TSysDbgCPURegisters; var State:
TSysDbgThreadState): Boolean;

168 The Open Debug API (ODAPI)

Virtual Pascal Language Reference

 SysDbgSetWatchPoint: function(LinAddr: Longint; BkptLen,BkptType: Byte; ThreadID: Longint):
Longint;
 SysDbgClearWatchPoint: procedure(Id: Longint);
 SysDbgExecute: procedure(Step: Boolean; Regs: TSysDbgCPURegisters; var DbgEvent:
TSysDbgEvent);
 SysDbgWaitUserScreen: procedure(Delay: Longint);
 SysDbgSetHardMode: procedure(Hard: Boolean);
 SysDbgSwitchScreen: procedure(User: Boolean);
 end;

The debugger uses the fields of the TSysDbgIDEInterface for the following purposes:

 SysDbgVersion - The version of the DLL
 SysDbgInitialize - Initialization code for DLL
 SysDbgGetFlatInfo - Get DS and CS selectors
 SysDbgSetInterface - Define debugger interface
 SysDbgStartProcess - Start debugging process
 SysDbgTerminateProcess - Stop process
 SysDbgSelToFlat - Translate Seg:Ofs to flat address
 SysDbgReadMemory - Read memory bytes
 SysDbgWriteMemory - Write memory bytes
 SysDbgReadRegisters - Read registers or FPU state
 SysDbgWriteRegisters - Write registers or FPU state
 SysDbgFreezeThread - Freeze a thread
 SysDbgResumeThread - Resume frozen thread
 SysDbgGetThreadState - Get the state of a thread
 SysDbgSetWatchPoint - Set a watch point
 SysDbgClearWatchPoint - Unset a watch point
 SysDbgExecute - Execute debug process
 SysDbgWaitUserScreen - Wait for a while or keypress
 SysDbgSetHardMode - (OS/2) Set hard/soft PM debug mode
 SysDbgSwitchScreen - Switch to/from user screen

ODAPI Types
The following types are defined in the VpDbgApi unit, and are used to implement the Open Debug
API. Please refer to the ODAPI Interface section for information about the TSysDbgIDEInterface
type.

Type Description

TSysDbgFlatInfo Used to pass code and data segment selectors in the
SysDbgGetFlatInfo function

TSysDbgThreadIds Used to return thread identification information
using the TSysDbgInterface.GetThreadParam
function

TSysDbgSegDef Used when passing DLL segment information to the
TSysDbgInterface.DLLLoaded function

TSysDbgEvent Used to pass debug event information to the
TSysDbgInterface.NotifyException function and to
return this information from the SysDbgExecute call

The Open Debug API (ODAPI) 169

 Virtual Pascal Language Reference

TSysDbgInterface Used to define a set of functions in the debugger
useable by the DLL: The ODAPI System Interface

TSysDbgCPURegisters Thread ID/handle identifier and normal registers,
used by the SysDbgReadRegisters,
SysDbgWriteRegisters and various other functions
to pass thread and register information

TSysDbgFSaveFormat The state of the floating point unit (FPU), used by
the SysDbgReadRegisters and
SysDbgWriteRegisters functions

TSysDbgThreadState Thread state, as returned by the
SysDbgGetThreadState function

ODAPI Examples
The one ODAPI-specific example included with Virtual Pascal is included in the form of the source
code for the debugger DLL used for debugging Win32 and OS/2 applications from the Virtual Pascal
IDE.

The source code for this is included in full in Source\Rtl\VpDbgApi.Pas.

170 The Open Debug API (ODAPI)

Virtual Pascal Language Reference

A P P E N D I X D

Error messages
This section details both Compiler error messages output by the Virtual Pascal compiler when it
encounters and Run-time error messages, which are errors that can occur when the compiled program is
executed.

Compiler error messages
Description
1 Out of memory

This error occurs when the compiler has run out of memory. There is not enough
memory available. Make more room for the OS/2 swap file or increase the
Windows Virtual Memory figure and re-run the compiler.

2 Identifier expected
An identifier was expected at this point. It might be that you tried to redeclare a
reserved word. Reserved words are words that have a special meaning in Pascal,
like asm, implementation, string, nil, etc. See chapter 1 for a list of Pascal
identifiers.

3 Unknown identifier
This identifier has either not been declared, or might not be visible within the
current scope.

4 Duplicate identifier
The identifier has already been defined with another meaning within the current
scope, representing a constant, a variable, a type, a module name, etc.

5 Syntax error
An illegal character was found in the source text. You might have forgotten the
quotes around a string constant.

6 Error in real constant
The floating point constant that you have typed is invalid. Examples of valid
floating point constants are 10, 10.2 and -10.2e+3. See Chapter 1 for details.

7 Error in integer constant
The integer constant that you have typed is invalid. If you want to supply a whole
real number outside the maximum integer range you should follow it by a decimal
point and a zero.

8 String constant exceeds line
You have probably forgotten the ending quote in a string constant.

9 Unexpected end of program
The compiler has encountered the final end of the main statement part in an
include file. Probably, the begins and ends are unbalanced.

10 Unexpected end of file
The error probably occurred because of one of the following:
• An include file ends in the middle of a statement part. Every statement part

must be entirely contained in one file.
• You forgot to close a comment. Check that all comments are closed,

particularly in the {&Comments+} state.
11 Line too long

The maximum line length is 255 characters.
12 Type identifier expected

The identifier does not denote a type as it should.

The Open Debug API (ODAPI) 171

 Virtual Pascal Language Reference

13 Too many open files
Too many files are open. The include files are nested too deeply.

14 Invalid file name
The file name is invalid or specifies a non-existing path.

15 File not found
The file could not be found in the current directory or in any of the search
directories that apply to this type of file.

16 Disk full
Delete some files or use another disk.

17 Invalid compiler directive
The following can cause this error:
• The compiler directive name is unknown.
• The parameter supplied to the compiler directive is invalid.
• A global compiler directive is used after compilation of the program's (unit's

or library's) body has begun.
18 Argument needs type override

The expression needs to have a specific size or type supplied, since its size can not
be determined from the context, for example:
 mov [ebx],1
You can usually correct this error by using the ptr operator to set the size of the
operand:
 mov dword ptr [ebx],1

19 Undefined type in pointer definition
The type was referenced in a pointer-type declaration, but it was never declared.

20 Variable identifier expected
The identifier does not denote a variable as it should.

21 Error in type
This symbol cannot start a type definition.

22 Structure too large
The maximum allowable size of a structured type is 4G bytes.

23 Set base type out of range
The base type of a set must be a subrange with bounds in the range 0..255, or an
enumerated type with up to 256 possible values.

24 File components may not be files or objects
The component type of a file type cannot be an object type or a file type, or any
structured type with a file or object type component.

25 Invalid string length
The maximum length of a string declaration must be in the range 1..255.

26 Type mismatch
This error occurs because of one of the following:
• The types of the expression and the variable in an assignment statement are

incompatible.
• The type of the actual and the formal parameters when calling a procedure or

function are incompatible.
• Indexing an array with an expression type incompatible with the index type.
• Using incompatible types of operands in an expression.

27 Invalid subrange base type
Only ordinal types are valid base types.

28 Lower bound greater than upper bound
The declaration of a subrange type specifies a lower bound greater than the upper
bound.

172 The Open Debug API (ODAPI)

Virtual Pascal Language Reference

29 Ordinal type expected
String types, real types, structured types and pointer types are not allowed here.
Ordinal types include integers, enumerated types, booleans and character types.

30 Integer constant expected
Only an integer constant is allowed here.

31 Constant expected
Only a constant is allowed here.

32 Integer or real constant expected
Only a numeric constant is allowed here.

33 Pointer type identifier expected
The identifier does not denote a pointer type as it should.

34 Invalid function result type
Files types are not allowed as function result type.

35 Label identifier expected
The identifier does not denote a label as it should.

36 begin expected
A begin was expected here, or else there is an error in the block structure of the
unit, program or library.

37 end expected
An end was expected here, or else there is an error in the block structure of the
unit, program or library.

38 Integer expression expected
The expression must be of an integer type.

39 Ordinal expression expected
The expression must be of an ordinal type.

40 Boolean expression expected
The expression must be of a boolean type.

41 Operand types do not match operator
The operator cannot be applied to operands of this type. For example, 'Hello' * 3 is
invalid.

42 Error in expression
This expression does not satisfy the Pascal expression syntax. You might have
forgotten to write an operator between two operands.

43 Illegal assignment
Files and untyped variables cannot be assigned values. A function identifier can
only be assigned values within the statement part of the function.

44 Field identifier expected
The identifier does not denote a field in the record or object variable.

45 Operand types do not match
The size of an instruction operand does not match either the other operand or one
valid for the instruction, for example:
 mov eax,ABC
where ABC is a variable of type Byte.

The Open Debug API (ODAPI) 173

 Virtual Pascal Language Reference

46 Address size conflict
Addressing mode (16 or 32-bit) of the instruction conflicts with addressing mode
(Small or Large) of the operand, for example:
{ Variable is defined in 32-bit segment, that is why it is Large}
var
 Abc: Byte;
asm
 mov al,Abc[bx]
end;
[bx] is allowed only in 16-bit addressing mode, so an error is reported. The valid
form of this instruction is:
 mov al,small Abc[bx]

47 Invalid instruction
While assembling an instruction, you failed to supply an instruction mnemonic or
mistyped it, for example:
 eax,$12345678
 move eax,$12345678
instead of mov eax,$12345678

48 Library too big
The maximum size of the object library file, generated for a unit in the
{&SmartLink+} state is 1M bytes. Please split your unit in two or more smaller
ones.

49 Current procedure or function cannot be inlined
The current procedure or function cannot be inlined because of one of the
following:
• It contains a nested procedure or function;
• Its declaration part contains a typed constant declaration;
• It has a value parameter that should be copied to the local stack.

50 do expected
The reserved word do does not appear where it should.

51 Argument to instruction has illegal size
The size of the argument that you supplied to the instruction is invalid, for
example:
 push QWord Ptr [ebx]

52 Invalid number of operands to instruction
You have specified either too many or too few operands for the instruction, for
example:
 mov eax,ebx,1 { Too many operands }
 mov eax { Too few operands }

53 Invalid ALIGN boundary
The argument that you have supplied to the BASM Align pseudo instruction is
invalid. The valid forms are:
 Align 1 { No alignment }
 Align 2 { Align code to a word (2-byte) boundary }
 Align 4 { Align code to a dword (4-byte) boundary }
You cannot align to a boundary greater than 4, because the code segment itself is
double word aligned.

54 of expected
The reserved word of does not appear where it should.

55 interface expected
The reserved word interface does not appear where it should.

174 The Open Debug API (ODAPI)

Virtual Pascal Language Reference

56 Object record too long
The built-in linker has encountered an object file record or object library record
that is too long. The maximum object record size is 4096 bytes.
The object or library file is probably corrupt.

57 then expected
The reserved word then does not appear where it should.

58 to or downto expected
The reserved word to or downto does not appear where it should.

59 Undefined forward
This error can occur for one of several reasons:
• The procedure or function was declared in the interface part of a unit, but its

declaration never occurred in the implementation part.
• The procedure or function was declared forward, but its definition was not

found.
• The method was declared in an object type, but its implementation was never

found. It might be that you just forgot to put the object type name with a
period before the method name.

60 Cannot be modified
You have attempted to modify a data element that cannot be changed, such as a
constant, structured (array, record or object) or file variable.

61 Invalid typecast
Here are some possible sources of this error:
• In a variable typecast, the sizes of the variable reference and the destination

type differ.
• You are attempting to typecast an expression where only a variable reference

is allowed.
62 Division by zero

This /, DIV, or MOD operation causes a division by zero.
63 Invalid file type

The file-handling procedure does not support the given file's type. For example,
you might have made a call to WriteLn with a typed file or FileSize with a text file.

64 Cannot Read or Write variables of this type
Read and ReadLn can input variables of type Character, Integer, Real and
String.
Write and WriteLn can output variables of types Character, Integer, Real,
String and Boolean only.

65 Pointer variable expected
This variable must be of a pointer type.

66 String variable expected
This variable must be of a string type.

67 String expression expected
This expression must be of a string type.

68 Circular unit reference
Two units are not allowed to use each other in their interface parts, although they
can use each other in the implementation parts. Rearrange your uses clauses so that
circular references occur only in the implementation parts.

69 Unit name mismatch
The name of the unit found in the .VPI file does not match the name specified in
the uses clause.

The Open Debug API (ODAPI) 175

 Virtual Pascal Language Reference

70 Unit version mismatch
One or more of the units used by this unit have been changed since this unit was
compiled. Use Make or Build to automatically recompile the units that have
changed.

71 Internal stack overflow
The compiler’s internal stack is exhausted due to too many levels of nested
statements. Rearrange the code to be less deeply nested.

72 Unit file format error
The .VPI file is somehow invalid. Make sure it is created by the current version of
the Virtual Pascal. If you want to give to somebody an object file of the unit
produced by Virtual Pascal, but do not want to give away the source code, Virtual
Pascal supports the concept of Pure Interface Units. Create an interface unit,
containing the interface part of the unit only and compile this by the newer version
of the compiler. See the description of the {&PureInt} directive for details.

73 implementation expected
The reserved word implementation does not appear where it should.

74 Constant and case types do not match
The type of the case constant is incompatible with the case statement's selector
expression.

75 Record or object variable expected
This variable must be of a record or object type.

76 Constant out of range
You are trying to do one of the following:
• Index an array with an out-of-range constant.
• Assign an out-of-range constant to a variable.
• Pass an out-of-range constant as a parameter to a procedure or function.

77 File variable expected
This variable must be of a file type.

78 Pointer expression expected
This expression must be of a pointer type.

79 Integer or real expression expected
This expression must be of an integer or a real type.

80 Label not within current block
You are trying to do one of the following:
• Reference a label that is outside the current block.
• Jump out of an ASM..END statement body.
• Define a Pascal label (declared in the Label declaration part) within an

asm..end statement body.
81 Label already defined

The label already marks a statement.
82 Undefined label in preceding statement part

The label was declared and referenced in a statement part, but it was never defined.
83 Invalid @ argument

Valid arguments are variable references and procedure or function identifiers.
84 unit expected

The reserved word unit does not appear where it should.
85 ";" expected

A semicolon does not appear where it should.
86 ":" expected

A colon does not appear where it should.
87 "," expected

A comma does not appear where it should.

176 The Open Debug API (ODAPI)

Virtual Pascal Language Reference

88 "(" expected
An opening parenthesis does not appear where it should.

89 ")" expected
A closing parenthesis does not appear where it should.

90 "=" expected
An equal sign does not appear where it should.

91 ":=" expected
An assignment operator does not appear where it should.

92 "[" or "(." expected
A left bracket does not appear where it should.

93 "]" or ".)" expected
A right bracket does not appear where it should.

94 "." expected
A period does not appear where it should. This may indicate that a type is being
used as a variable or that the name of the program itself overrides an important
identifier from another unit.

"95 ".." expected
A subrange does not appear where it should.

96 Too many variables
This error may occur, if :
• The total size of the global variables declared within a program or unit has

exceeded 4G bytes.
• The total size of the local variables declared within a procedure or function

has exceeded 2G bytes.
97 Invalid for control variable

The for statement control variable must be a simple variable defined either in the
declaration part of the current subprogram, or be a global variable or typed
constant.

98 Longint variable expected
This variable must be of an Longint type.

99 File and procedure types are not allowed here
A typed constant cannot be of a file type.

100 String length mismatch
The length of the string constant does not match the number of components in the
character array.

101 Invalid ordering of fields
The fields of a record-type or object-type constant must be written in the order of
declaration.

102 String constant expected
A string constant does not appear where it should.

103 Integer or real variable expected
This variable must be of an integer or real type.

104 Ordinal variable expected
This variable must be of an ordinal type.

105 Invalid array base type
An empty record type must not be the base type of an array.

106 Character expression expected
This expression must be of a character type.

107 external expected
Virtual Pascal generates 32-bit code only. For this reason, procedures and
functions declared as being Far16 must be also declared as external.

The Open Debug API (ODAPI) 177

 Virtual Pascal Language Reference

108 Overflow in arithmetic operation
The result of the preceding arithmetic operation is not in the Longint range:
2147483648..2147483647.Correct the operation or use real-type values, for
example Comp, instead of integer-type values.

109 No enclosing for, while, or repeat statement
The Break and Continue standard procedures cannot be used outside a for, while,
or repeat statement.

110 Local threadvar declarations are not allowed
Variables located in thread local storage (TLS) can be defined only in the
outermost scope of a program, a library or a unit.
threadvar definitions within procedures or functions are not allowed.

111 Invalid or unsupported object file record
The built-in linker has encountered an object record that is not valid or is not
supported. The built-in linker supports only a subset of all object file records, the
most notable exception being COMDEF records, used by many C/C++ compilers.
Make sure that the object or library file is valid. If linking external object code
produced by another compiler, use the OMF linker supplied with this compiler
instead of the one built into Virtual Pascal. Note, that some compilers also
generate proprietary record types which are supported by their linkers only.

112 case constant out of range
The case selector constants must be within the allowed range of the case selector
expression. For example, if the selector expression has type Byte, selector
constants must be within Byte range(0..255).

113 Error in statement
This symbol cannot start a statement. Most likely you have put semicolon (;)
before the else part of a conditional statement.

114 Syntax error in module definition file
The module definition file or &Linker statement does not conform to the allowed
syntax. Please refer to the module definition file syntax on page 136; note, that all
statements must be entered in UPPER CASE.

115 Duplicate case constant
This case selector overlaps with a previous one, for example:
case C of
 '0'..'9','A'..'F': HandleHexDigit;
 'A'..'Z','a'..'z': HandleLetter; { You will get an error here}
end;

116 Duplicate public symbol
The same public symbol is declared in more than one object file module.
Make sure that the same object file is not linked twice (check the .LNK file in the
output directory) and check the setting of the {&OrgName} compiler directive. In
most cases, the default setting of {&OrgName-} should be used.

117 Undefined external symbol
The built-in linker did not find a corresponding public declaration for this external
symbol.
When referencing symbols located in a DLL, make sure that the name of the
import library is included in a {$L LibName.Lib} or {&Dynamic LibName.Lib}
compiler directive.
Also check the setting of the {&OrgName} compiler directive and the orgname
standard procedural directive if the symbol is a procedure or a function.

118 Include files are not allowed here
Every statement part must be entirely contained in one file.

178 The Open Debug API (ODAPI)

Virtual Pascal Language Reference

119 No inherited methods are accessible here
You are using the inherited reserved word outside a method or in a method of an
object type that has no ancestor.

120 Segment too large
The size of this segment exceeds 4GB.

121 Invalid qualifier
You are trying to do one of the following:
• Index a variable that is not an array.
• Specify fields in a variable that is not a record.
• Dereference a variable that is not a pointer.

122 Invalid variable reference
This construct follows the syntax of a variable reference, but does not denote a
memory location.
You are probably calling a pointer function, but forgetting to dereference the
result.

123 Too many symbols
The total size of all symbols in your project is greater than 4MB. This is the limit
for this version of the compiler. If you are compiling with {$L+}, try turning it off.

124 Statement part too large
Virtual Pascal has encountered a statement part that is too large to handle. Move
sections of the statement part into one or more procedures - not only will you be
able to compile the program, it will also benefit from enhanced readability.

125 Undefined class in the preceding declaration
The class name was declared in a forward declaration, but was not fully declared
afterwards.

126 Files must be var parameters
You are attempting to declare a file type value parameter. File-type parameters
must be var parameters.

127 Invalid executable file
The executable file specified as a stub is not a valid DOS executable.

128 Misplaced conditional directive
The compiler encountered an {$ELSE} or {$ENDIF} directive without a matching
{$IFDEF},{$IFNDEF}, or {$IFOPT} directive.

129 ENDIF directive missing
The compilation ended within a conditional compilation construct. There must be
an equal number of {$IFxxx}s and {$ENDIF}s.

130 Error in initial conditional defines
The initial conditional symbols specified in Options|Compiler|Conditional defines
(or in a /D command line option) are invalid. Virtual Pascal expects zero or more
identifiers separated by blanks, commas, or semicolons.

131 Header does not match previous definition
The procedure or function header specified in an interface part or forward
declaration does not match this header.

132 Fixup overflow
The fixups in the specified object module have overflowed. This error may occur
because of an incorrect external reference in an external assembler module.

133 Cannot evaluate this expression
You are attempting to use a non-supported feature in a constant expression or in a
debug expression. For example, you might be attempting to use a function that is
available only at run time.

134 Expression incorrectly terminated
Virtual Pascal expects either an operator or the end of the expression at this point,
but found neither.

The Open Debug API (ODAPI) 179

 Virtual Pascal Language Reference

135 Invalid format specifier
You are using an invalid format specifier, or the numeric argument of a format
specifier is out of range (valid range is 2..18).

136 Invalid indirect reference
The statement attempts to make an invalid indirect reference.

137 Structured variables are not allowed here
You are attempting to perform a non-supported operation on a structured variable.

138 Cannot evaluate without System unit
The IDE cannot find the file SYSTEM.VPI. Enter directory name that contains
SYSTEM.VPI in the Options|Directories|Unit Directories input box and re-run the
IDE. The default is X:\VP\UNITS, where X: is the drive where VP is installed.

139 Cannot access this symbol
A program's entire set of symbols is available as soon as you have compiled the
program. However, certain symbols (such as variables) can not be accessed until
you actually run the program.
It is not possible to access symbols in DLLs compiled in the {$SmartLink+} state.

140 Invalid floating-point operation
An operation on two real type values produced an overflow or a division by zero.

141 Duplicate ordinal number
More than one symbol specifying the same ordinal number is being exported.

142 Pointer or procedural variable expected
The Assigned standard function requires the argument to be a variable of a pointer
or procedural type.

143 Invalid procedure or function reference
You are attempting to call a procedure in an expression.

144 Entry table is too large
The format of the OS/2 LX executable allows a maximum of 65,535 entries in the
entry table. This dynamic link library exceeds this limitation. Split it into two or
more smaller DLLs.

145 Invalid resource file
The resource file being linked is corrupt or invalid. Try recompiling the .RC
source file on the command line and retry. See also {&Open32}

146 File access denied
Typically, the operating system returns this error when you are either
• trying to use a read-only file as an output file, or
• using a directory name as an output file

147 Object type expected
The identifier does not denote an object type.

148 Local object types are not allowed
Object types can be defined only in the outermost scope of a program, a library or
a unit. Object type definitions within procedures and functions are not allowed.

149 virtual expected
The reserved word virtual is missing. You are defining a method, which was
declared virtual in the ancestor object.

150 Method identifier expected
The identifier does not denote a method.

151 Virtual constructors are not allowed
Borland Pascal 7 style objects, declared using the object reserved word, must have
static constructor methods only.

152 Constructor identifier expected
The identifier does not denote a constructor.

153 Destructor identifier expected
The identifier does not denote a destructor.

180 The Open Debug API (ODAPI)

Virtual Pascal Language Reference

154 FAIL only allowed within constructors
The Fail standard procedure can be used only within constructors.

155 Invalid combination of opcode and operands
The instruction you are trying to assemble has one or more operands that are not
allowed, for example:
var Var1,Var2: Byte;
 asm
 mov Var1,Var2
 pop Var1
 shld eax,ebx,Var1
 end;

156 Memory reference expected
The assembler operand is not a memory reference, which is required here. Most
likely you have forgotten to put square brackets around an index register operand,
for example,
 mov eax,eax+ebx
instead of
 mov eax,[eax+ebx].
If you want to add ebx to eax, use
 add eax,ebx
instead.

157 Cannot add or subtract relocatable symbols
The only arithmetic operation that can be performed on a relocatable symbol in an
assembler operand is addition or subtraction of a constant. Variables, procedures,
functions and labels are relocatable symbols.

158 Invalid register combination
The memory reference does not contain one of the permitted combinations of base
and index registers. The valid combinations are:
16-bit addressing mode: [bx], [bp], [si], [di], [bx+si], [bx+di], [bp+si],[bp+di];
32-bit addressing mode:
• any 32-bit general purpose register (eax,ebx,ecx,edx,esi,edi,ebp,esp);
• sum of any two 32-bit general purpose registers;
• one 32-bit general purpose register multiplied by 1, 2, 4 or 8 (except the esp

register);
Local variables are always allocated on the stack and accessed via the ebp or esp
register. The assembler automatically adds [ebp] in references to such variables, so
even though a construct like Local[si] (where Local is a local variable) appears
valid, it is not since the final operand would become Local[ebp+si].
Note: If an assembler procedure or function has no stack frame ({&Frame}), local
variables are accessed via the esp register, otherwise the ebp register is used.

159 Invalid instruction for selected processor
You are trying to assemble an instruction that is not valid for the selected
processor. For example, the CMPXCHG instruction is invalid in the {$G3+} state
and CPUID (Only available on Pentium and later CPUs) is invalid in the {$G4+}
state.

The Open Debug API (ODAPI) 181

 Virtual Pascal Language Reference

160 Invalid symbol reference
This symbol cannot be accessed in an assembler operand. Possible causes are:
• You are attempting to access a standard procedure, a standard function, or the

Mem,MemW,MemL,Port,PortW or PortL special arrays in an assembler
operand.

• You are attempting to access a string, floating-point, or set constant in an
assembler operand.

• You are attempting to access the @Result special symbol outside a function or
in a function returning an integer or pointer value.

• You are attempting to generate a short JMP instruction that jumps to
something other than a label.

161 Code generation error

The preceding statement part contains a LOOPNE, LOOPE, LOOP, JCXZ or
JECXZ instruction that cannot reach its target label.

162 ASM expected
The reserved word asm does not appear where it should.

163 Duplicate dynamic method index
This dynamic method index has already been used by another method. You may be
trying to override a dynamic method but have misspelled its name and thus
introduced a new method.

164 Internal compiler error
The Virtual Pascal compiler has encountered an internal processing error. Please
record its number and location and contact fPrint UK Ltd.

165 Duplicate resource identifier
This resource file contains a resource with a name or ID that has already been used
by another resource

166 No dynamic unit information is available
An import library specified in a {&Dynamic} compiler directive has not been
generated by the Virtual Pascal compiler.
For import libraries generated using the ImpLib utility, use the {$L} directive
instead.

172 Read or Write clause expected
A property definition must include at least a read or write specifier or both.

173 Cannot read a write-only property
It is not possible to read the value of a property that does not have a read specifier
and consequently no read access method. You can only assign a new value to it.

174 Cannot assign to a read-only property
It is not possible to assign new value to a property that does not have a write
specifier and consequently no write access method. You can only read the current
value of it.

175 Cannot exit a finally block
finally statement list must always be executed. It is not possible to leave it by
means of the Exit standard procedure.

176 Label and goto not at same nesting level
The label referenced by a goto statement must be in the same block as the goto
statement.

177 on expected
In the exception block of a try..except statement you must use the reserved word
on before the exception type identifier.

182 The Open Debug API (ODAPI)

Virtual Pascal Language Reference

178 Cannot mix class and object types
Borland Pascal 7 style objects and Delphi style classes are not compatible. It is not
possible to mix them - either inherit one type from the other or assign the value
from a variable of one type to the other.

179 procedure or function expected
The declaration of a class method must start from the class reserved word and be
followed by either of the reserved words procedure or function.

180 Class type identifier expected
In the exception block of the try..except statement the reserved word on must be
followed by a class type identifier representing an exception class.

181 Class expression expected
The expression in the raise statement must be of a class instance type.

182 Instance variable is not accessible here
It is not possible to access the instance of a class in the body of a class procedure
or function. The Self class pointer is not available either.

183 Invalid method reference
It is not possible to call non-class methods from within a class method, since non-
class methods need an instance of the class to be specified.

184 Default property must be an array property
You have declared a default property that is not of an array type or without
assigning it a value. You might have forgotten to define a value after the default
directive.

185 Class already has a default property
Only one default property is allowed. It is not possible to change the default if the
ancestor defines a default array property.

186 Invalid message handler parameter list
The message handler cannot be declared with the parameter list given. The
message handler must have one variable parameter of any type.

187 Method does not exist in base class
You can override only methods that exist in the ancestor class. You might have
misspelled the method name.

188 Cannot override a static method
Only dynamic or virtual method can be overridden.

189 Property does not exist in base class
Property overrides are allowed only for properties declared in the ancestor class.
You might have misspelled the property name.

191 Type not supported in expression list
Only the following types can be used in array of const constructor:
• ordinal types;
• float types;
• pointer types;
• string types;
• class types;
• class reference types;

192 Property access method not found
The property you are trying to evaluate is write-only. It is not possible to evaluate
a property without a read access method.

195 Exception raised during evaluation
An exception occurred while evaluating an expression in the integrated debugger.

198 raise not allowed outside except..end block
You can only re-raise an exception within an except block.

The Open Debug API (ODAPI) 183

 Virtual Pascal Language Reference

200 Published not allowed in this class
If class is defined in the {$M-} state and is not derived from a class that was
declared in the {$M+} state, published sections are not allowed in the class
declaration.

201 This field cannot be published
Only class type fields can be published.

202 This property cannot be published
The property does not satisfy the requirements for a published property.

184 The Open Debug API (ODAPI)

Virtual Pascal Language Reference

Run-time error messages
Description

1..88
< 0

Operating system errors
Runtime errors with numbers 1..88 are reported by the operating system.
For operating system errors greater than 88, run-time error numbers are
negative. Run the HELP command to obtain a definition and brief
description of the error. For example, if you get run-time error #16, type
the following line at the command prompt:
HELP 16

100 Disk read error
Read reports this error on a typed file if
• you attempt to read past the end of the file;
• An I/O error occurs during the read operation.

101 Disk write error
BlockWrite, Close, Flush, Write and Writeln report this error if
• the disk becomes full;
• I/O error occurs during the write operation.

102 File not assigned
Append, Reset and Rewrite report this error if the file variable has not been
assigned a name through a call to Assign

103 File not open
BlockRead, BlockWrite, Close, Eof, FilePos, FileSize, Flush, Read, Seek,
Truncate and Write report this error if the file is not open.

104 File not open for input
Eof, Eoln, Read, ReadLn, SeekEof and SeekEoln report this error on a text
file if the file is not open for input.

105 File not open for output
Write and WriteLn report this error on a text file if the file is not open for
output.

106 Invalid numeric format
Read and ReadLn report this error if a numeric value read from a text file
does not conform to the proper numeric format.

200 Division by zero
The program attempted to divide a number by zero during a /, mod, or div
operation.

201 Range check error
This error is reported by statements compiled in the {$R+} state when one
of the following situations arises:
• The index of an array was out of range.
• The program attempted to assign an out-of-range value to a variable.
• The program attempted to pass an out-of-range value as a parameter to

a procedure or function
202 Stack overflow error

The program reports this error on entry to a procedure or function
compiled in the {$S+} state when there is not enough stack space to
allocate the subprogram's local variables.
Increase the size of the stack by using the {$M StackSize} compiler
directive or by specifying a large stack in the Options|Compiler dialogue.
The Stack Overflow error can also be caused by infinite recursion or by an
assembly language procedure that does not maintain the stack properly.

The Open Debug API (ODAPI) 185

 Virtual Pascal Language Reference

203 Heap overflow error
New and GetMem report this error when there is not enough free space in
the heap to allocate a block of the requested size.
In OS/2, this error occurs only when the MEMMAN command in the
CONFIG.SYS file contains:
• NOSWAP parameter or
• SWAP and COMMIT parameters.
If you get a Heap Overflow error, make more room for the OS/2 swap file
or use the SWAP MEMMAN parameter instead of NOSWAP.
In Windows, increase the Virtual Memory setting.

204 Invalid pointer operation
Dispose and FreeMem report this error if the pointer is nil or if it points to
a location outside the heap.

205 Floating point overflow
A floating-point operation produced a number too large for the numeric
coprocessor to handle. Normally this error does not occur unless you
explicitly unmask overflow exception by clearing the OM bit in the
coprocessor control word.

206 Floating point underflow
A floating-point operation produced an underflow. Normally this error
does not occur unless you explicitly unmask underflow exception by
clearing the UM bit in the coprocessor control word.

207 Invalid floating point operation
One of the following floating-point errors occurred:
• The real value passed to Trunc or Round could not be converted to an

integer within the Longint range(-2147483648 to 2147483647).
• The argument passed to the Sqrt function was negative.
• The argument passed to the Ln function was zero or negative.
• A coprocessor stack overflow occurred.
Normally this error does not occur unless you explicitly unmask invalid
operation exception by clearing the IM bit in the coprocessor control word.

208 Inexact floating point result
A floating-point operation produces a value that has partially lost its
precision. For example, the result of the division 1/7 cannot be exactly
stored in any binary format used by the coprocessor.
Normally this error does not occur unless you explicitly unmask precision
exception by clearing the PM bit in the coprocessor control word.

209 Denormalised floating point operand
This error is reported when one or two operands of a floating point
operation are denormalised numbers.
Normally this error does not occur unless you explicitly unmask denormal
operand exception by clearing the DM bit in the coprocessor control word.

210 BP: Object not initialised
With range-checking on, you made a call to an object's virtual method,
without initialising the object via a constructor call.
Delphi: Call to an abstract method
Your program tried to call an abstract virtual method.

211 Call to abstract method
This error is generated by the Abstract procedure in the Objects unit. It
indicates that your program tried to execute an abstract virtual method.

186 The Open Debug API (ODAPI)

Virtual Pascal Language Reference

212 Stream registration error
This error is generated by the RegisterType procedure in the Objects unit.
It indicates that one of the following errors has occurred:
• The ObjType field of the stream registration record is 0.
• The type has already been registered.
• Another type with the same ObjType value already exists.

213 Collection index out of range
The index passed to a TCollection method is out of range.

214 Collection overflow error
This error is reported by a TCollection if an attempt is made to add an
element when the collection cannot be expanded.

215 Arithmetic overflow error
Reported by statements compiled in the {$Q+} state when an integer
arithmetic operation caused an overflow or the result was outside the
supported range.

216 Access violation
This error is reported if you try to access memory that it is not legal for
your application to access. The following practices cause access violation:
• Loading constant values into segment registers;
• Using segment registers for temporary storage;
• Writing to code segment;
• Accessing memory beyond the address space given to your

application;
• Derefencing nil pointers.

217 Unhandled exception
An exception has occurred for which an exception handler cannot be
found.

219 Invalid type cast
The object on the left side of an as operator is not of the class given on the
right side of the operator.

The Open Debug API (ODAPI) 187

 Virtual Pascal Language Reference

A P P E N D I X E

Naming conventions
To satisfy the scope rules of the Object Pascal language, the Virtual Pascal compiler uses the
following naming conventions for public identifiers in object and library files:

 UnitName@SymbolName
 UnitName@ObjectName@MethodName

where

• UnitName is the name of the program, library or unit where the symbol SymbolName is defined.
If a program is written without a heading (no program name is given), a default of PROGRAM is
assumed.

• SymbolName is the name of a variable, typed constant, procedure or function.

• ObjectName is the name of an object or class type

• MethodName is the name of an object or class method.

All names keep their original case. However, for variables, typed constants, procedures and functions
you can change the default naming convention by specifying the {&OrgName+} switch compiler
directive. This forces the compiler to use the original name of the symbol, retaining its case. Its
primary purpose is for declaring external OS/2 API functions - for examples of this, refer to the
Os2Base unit source code. {&OrgName+} is also useful when interface variables, procedures or
functions written in Virtual Pascal should be used by modules written in other languages.

The orgname standard procedural directive can be used to override the default setting of the
{&OrgName} switch for a single procedure or function.

188 Index

Virtual Pascal Language Reference

Index

A

absolute
clause, 73
variables, 73

abstract
directive, 55
methods, 55

access specifiers
property definitions, 60

actual parameter list, 83, 94
actual parameters, 94, 111, 112
AddExitProc procedure, 20
address factor, 84
address of (@) operator, 85
address-of (@) operator, 84, 164
ALIAS reserved word, 139
aligning data, 149
ancestor of an object/ class type, 48
ancestors, 48
and operator, 87
arithmetic operators, 86
array

types, 40
variables, 78

array properties, 60
default, 61

arrays, 40, 78
accessing elements, 40
indexing, 78
multidimensional, 40
number of elements, 40
of arrays, 40
port access, 92
valid index types, 40
zero-based character, 36, 41, 75

array-type constant syntax, 74
as operator, 63, 91
asm

instructions, 104, 105–6
reserved word, 104

assembler
assigning function result, 113
declaration syntax, 115
procedures and functions, 104
register convention, 104

altering, 162
resolving name conflict, 108
restrictions, 109
statements, 104

assignment
compatibility, 70

old-style object type, 94
statements, 93

assignment-compatibility
class reference types, 63

AX register, 113

B

base type identifier, 34
binary

arithmetic operators, 86
operators, 81

bitwise logical operators, 86
block

defined, 21
procedure and function, 111
scope, 23
syntax, 21

Boolean
data type, 32
expression evaluation, 87

compiler switch, 151
complete, 151
complete, 87
short-circuit, 151
short-circuit, 87

logical operators, 87
boolean data types, 31
Break procedure, 97
building an OS/2 application, 24
built-in assembler

operands, 107
prefix, 105
procedures and functions, 105
pseudo-instructions, 106
reserved words, 107

Byte data type, 30
ByteBool data type, 32

C

c
calling convention, 114

call
models, 113

calling conventions, 114
calling VP/2 DLLs

from programs written in other languages, 135
calls

near and far, 113
Cardinal data type, 30, 57

Index 189

 Virtual Pascal Language Reference

Carriage Return character, 9, 66
case

sensitivity in module definition files, 136
sensitivity of Virtual Pascal, 12
statement syntax, 96

Char data type, 31
character

arrays, 41
strings, 14, 137

checked typecast, 63
Chr function, 31
class

components, 47
operators, 91

class forward declaration, 50
class instance types, 43
class methods, 50, 120
class references, 50
class reserved word, 43, 120
class type compatibility, 51
class type declarations, 45
class types

construction, 48
domain, 48
instances, 48

class variables construction, 118
class variables destruction, 119
classes

ancestors, 48
components, 43
descendants, 48
inheritance, 48
properties, 58

class-reference types, 63
ClassType method, 63
CODE segment

attributes, 139
CODE statement, 138, 139
comments, 10

built-in assembler, 104
in module definition files, 136

common type of two operands, 87
Comp data type, 33, 34
comparing

packed strings, 90
PChar pointers, 90
pointers, 90
sets, 91
simple types, 90
strings, 90

compiler directives, 11, 149
$A, 149
$B, 87, 151
$D, 11, 24, 152, 157, 165
$DEFINE, 17, 152
$ELSE, 17, 153, 178
$ENDIF, 17, 153, 178
$H, 155
$I, 9, 155, 156

$IFDEF, 16, 152, 153, 156, 178
$IFNDEF, 16, 153, 156, 178
$IFOPT, 16, 153, 157, 178
$J, 157
$L, 25, 26, 115, 153, 154, 157, 178
$M, 52, 76, 147, 158, 159, 183, 184
$P, 39, 122, 123, 160
$Q, 161, 186
$R, 40, 123, 161, 162, 165, 184
$S, 77, 133, 147, 162, 184
$StdCall, 163
$T, 84, 163
$UNDEF, 17, 152, 156, 164
$V, 123, 164
$W, 165
$X, 36, 37, 41, 83, 88, 90, 112, 165
$Z, 31, 165
&AlignCode, 150
&AlignData, 77, 149, 150
&AlignRec, 43, 150
&Alters, 104, 150, 162
&Asm, 150, 163
&Cdecl, 114, 151
&Comments, 11, 151, 170
&Delphi, 72, 93, 100, 112, 152
&Dynamic, 128, 133, 153
&Export, 128, 130, 131, 153, 154
&Far16, 114, 151, 154
&Frame, 109, 154
&G3,&G4,&G5, 155
&Linker, 129, 133, 136, 158
&LocInfo, 26, 158
&Open32, 159
&Optimise, 109, 159
&OrgName, 160, 187
&PmType, 160
&PureInt, 25, 161
&Saves, 104, 162
&SmartLink, 24, 150, 163
&Speed, 163
&StdCall, 114
&Use32, 21, 30, 164
&Uses, 105, 109, 164
&Zd, 24, 165
global and local, 149

compiler error messages, 170
complete Boolean evaluation, 88
component visibility, 52

private, 52
protected, 52
public, 52
published, 52

components and scope, 51
compound statement, 22, 95

syntax, 95
concatenation, 88
conditional compilation, 16
conditional statement syntax, 95
CONFORMING segment attribute, 138

190 Index

Virtual Pascal Language Reference

constant
address expression, 73, 76
declaration part syntax, 22
declarations, 27
defined, 27
expressions, 27
parameters, 121
string expressions, assigning to PChar, 36

constant declaration, 73, 74, 173
constants, 27

address, 76
array-type, 74
procedural type, 76
record-type, 75
simple-type, 73
string-type, 73
structured-type, 74
typed, 73, 76
untyped, 27

constructor reserved word, 117
constructor syntax, 117
constructors, 117

class reference types and, 64
class variables, 118
declaration, 116
Fail, 118
open array, 124
virtual, 118

Continue procedure, 97
control characters, 9
CPU386

symbol, 17
CPU87

symbol, 17
Currency data type, 33, 34

D

data
alignment, 77
segment, 76

maximum size, 77
data segment, 139
DATA segment attributes, 140
DATA statement, 138, 140
debugging

extending with ODAPI, 166
optimisation and, 159

decimal notation, 13
default directive, 61, 62
DefaultHandler method, 57
descendant of an object/class type, 48
DESCRIPTION statement, 141
Destroy destructor, 119. See also Free method
destructor reserved word, 117
destructor syntax, 119
destructors, 119

declaration, 116
digit syntax diagram, 11
direct memory access, 80
directives

abstract, 55
assembler, defined, 107
compiler, 16, 149
default, 61, 62
export, 113
forward, 111, 113
index, 61
inline, 116
nodefault, 62
override, 53
standard, 12
stored, 62
virtual, 53, 55

DLL
benefits of using, 127
calling from other languages, 135
data segment, 131
example, 133
important notes, 133
methods of creating, 127
restrictions on debugging, 131
structure of, 20
syntax, 127
termination, 131

domain
object and class types, 48

DOS
stub program, 147

Dos unit, 23
double address operator (@@), 85
Double data type, 33, 34
dynamic

importing, 128, 129
methods, 55
object variables, 49
variable, 79

dynamic link libraries, 20, 127. See also DLL
Dynamic Method Table, 55

E

empty
record, 42
set, 64
string, 15

enumerated types, 31
environment variables

LIB, 158
Manually initialising, 135
PATH, 147

error messages, 170
Examples

ODAPI, 169

Index 191

 Virtual Pascal Language Reference

exception
handler, 100
on..do, 103
raise, 101
try..except, 102
try..finally, 103

Exception class, 100
exceptions, 100
Exclude procedure, 65
EXECUTEONLY segment attribute, 138
EXECUTEREAD segment attribute, 138
EXETYPE statement, 141
exponents, 34
export directive, 113, 130
exporting procedures and functions, 127
exporting symbols, 127
exporting symbols from a DLL, 130

using {&Export} compiler directive, 131
using export directive, 130
using exports clause, 130
using module definition files, 131

exports clause, 127
syntax, 130

EXPORTS statement, 141
expression syntax, 81–83
expressions, 81–92

assembler, 110
constant, 27
constant address, 73
order of evaluation, 87

Extended data type, 33, 34
extended syntax, 35, 36, 37, 41, 165
external

declaration, 115
directive, 115, 127, 129
procedures and functions, 129

F

factor syntax, 82
Fail

constructor failure, 118
False boolean constant, 31
far declaration, 113
far16 calling convention, 114
field

designator syntax, 79
list of records, 41
of a record, 79

fields
in record types, 42
object and class types, 43

file
types, 65

file types. See also files
FileRec records, 67
files

.DEF, 25, 158

.LIB, 24, 26, 157, 161, 163

.LNK, 25, 177

.LX, 25

.OBJ, 24, 161, 163

.RES, 26, 159

.VPI, 24, 152, 161, 165
import library, 26
module definition, 136–38
text, 66
typed, 65
untyped, 66

finalisation part of a unit, 20
fixed part of records, 41
floating point

numbers, 14
types, 32

internal representation, 34
for statement syntax, 98
formal

parameter list syntax, 120
formal parameters, 83, 94, 111, 112
forward

declarations, 113
directive, 111, 114

forward class declaration, 50
Free method, 120
FreeInstance method, 119
function

calls, 83
extended syntax and, 83

declarations, 112
assembler, 115
external, 115
inline, 116

headings, 112
results, 112, 113

functions, 105, 111. See also procedures and
functions
built-in assembler, 105
far, 113
Length, 38
near, 113
nested, 69
recursive, 113
Result variable, 93
SetLength, 39
SetString, 39
SizeOf, 123
standard, 66

G

GetMem procedure, 35, 79
global

compiler directives, 149
procedure pointers, 68

192 Index

Virtual Pascal Language Reference

subsystem initialisation, 131
variables, 76

goto statement syntax, 94

H

Halt procedure, 20
hex digits, 11
hexadecimal

constants, 14
numbers, 14

High function, 28, 38, 123

I

identifier
as labels, 15
defined, 13
qualified, 13
scope of, 22

if statement syntax, 95
implementation part

of a unit, 19
syntax, 19

ImpLib utility, 129
Import library, 129

creating, 129
using with $L, 157

importing symbols from a DLL, 128
dynamically, 129
statically, 128

IMPORTS statement, 143
in operator, 90, 91
Include procedure, 65
index

clause, 127, 129, 130
syntax, 78
types valid in arrays, 40

index directive, 61
index specifiers, 61
indexing PChar pointers, 36
indices in arrays, 40
inherited reserved call, 119
inherited reserved word, 118
inherited statement, 56
initialisation

part of a unit, 20
initialised variables, 73
inline

declarations, 116
directive, 116
restrictions, 116

INPURE segment attribute, 139
Integer data type, 29
integer numbers, 13
integer types, 29

interface part
of a unit, 19
syntax, 19

interface part of a unit, 128
IOPL segment attribute, 138
is operator, 63, 91

L

label
declaration part syntax, 21
scope of, 22
statement, 93

labels
built-in assembler, 105
defined, 15

Length function, 38
length of

a program line, 9
a string type value, 37
character strings, 14
identifiers, 13

letters, defined, 11
lexical elements, 9
libraries

dynamic link, 127
library

dynamic link, 20
LIBRARY statement, 144
Line Feed character, 9, 66
linking

dynamic, 18
executable files, 136
object files, 157
process, 25
smart, 24
static, 18

literals, defined, 13
LOADONCALL segment attribute, 138
local

assembler labels, 105
compiler directives, 149
variables, 76

Location information, 26, 158
LongBool data type, 32
Longint data type, 30
Low function, 28, 123

M

MaxInt constant, 30
MaxLongint constant, 30
Mem array, 80
mem arrays syntax, 80
MemL array, 80
memory

Index 193

 Virtual Pascal Language Reference

allocation, 76
MemW array, 80
message directive, 56
message dispatching, 57
message handler

implementations, 56
message handler

declarations, 56
message ID, 56
method

activations, 57
declarations, 116
designator, 57
pointer, 68
pointers, 68

methods
abstract, 55
class, 120
constructors, 116
defined, 43
destructors, 116
dynamic, 55
message handler, 56
static, 53
virtual, 53

MIXED1632 segment attribute, 139
mod operator, 86
modular programming, 18
module definition file, 136
MULTIPLE segment attribute, 139
multiple-data DLLs. See also subroutine libraries

N

name clause, 127, 129, 130
NAME statement, 145
naming conventions, 187
near declaration, 113
New procedure, 35, 79
nodefault directive, 62
NOIOPL segment attribute, 138
NONCONFORMING segment attribute, 138
NONE segment attribute, 139
NONSHARED segment attribute, 139
not operator, 87
null-terminated strings, 35

NUL character, 35
pointers and, 35

number, 13–14
numbers

decimal, 13
floating point, 14
hexadecimal, 13
integer, 14
syntax, 14

O

object
components, 47

object and class scope, 23
object files (.OBJ), 24

linking with, 157
object model

new, 43
old, 43
old-style

virtual method and, 53
object models

summary of, 64
object reserved word, 43
object type

constants, 75
object type compatibility, 51
object type declarations, 43
object types

construction, 48
domain, 48
instances, 48

objects
ancestors, 48
components, 43
creating, 118
descendants, 48
destroying, 119
inheritance, 48
partially constructed, 120

ODAPI, 166
debugger DLL, 166
Examples, 169
IDE Interface, 167
System Interface, 166
types, 168
Types, 168

OLD statement, 145
open array constructors, 124
Open Debug API, ODAPI, 166
open parameters, 123

array, 123
string, 40, 123, 160
type variant, 124

OpenString identifier, 39, 123, 160
operands, 81

built-in assembler, 107
operators, 81

@ (address-of), 84, 85
@@ (double address-of), 85
and, 87
arithmetic, 86
as, 63, 91
bitwise logical, 86
Boolean logical, 87
class, 91
div, 86

194 Index

Virtual Pascal Language Reference

is, 63, 91
mod, 86
not, 87
or, 87
PChar, 88
relational, 89
rules of precedence, 85
set, 89
shl, 87
shr, 87
string, 88
types of, 85
xor, 87

Optimising code
code optimisation, 159, 163
select processor, 155
stack frames, 165

Ord function, 28, 31
ordinal number, 28, 31
ordinal types, 28
OS/2

dynamic import, 129
Presentation Manager, 129
subsystems, 131
Windows resource files, 159

OS2
symbol, 17

overflow checking, 161
override directive, 53

P

packed
reserved word, 37
string type, 41

parameter
formal, 94

parameter directives, 149
parameters, 120

actual, 83, 94
constant, 121
formal, 83
open, 123

array, 123
string, 123

passing rules, 121
untyped, 122
value, 121
variable, 122

partially constructed objects, 120
passing parameters

by reference, 121
by value, 121

passing string variables of varying sizes, 40
PChar

data type, 35
operators, 88

pointers
indexing, 36
string constant expression and, 36
zero-based character arrays and, 41

pointer
(^) symbol, 79
types, 34
values, 79
variables, 79

Pointer data type, 35
pointers

comparing, 90
Port array, 92
port arrays, 92
Port-arrays

I/O privilege and, 138
PortL array, 92
PortW array, 92
Pred function, 28
PRELOAD segment attribute, 138
private

components, 52
identifiers, 19

procedural type
constants, 76
variables, 68

procedural types, 67
type compatibility of, 68

procedure
declaration syntax, 111
declarations

assembler, 115
external, 115
forward, 113
inline, 116

heading, 111
statements, 94

procedure and function declaration part, 22
procedures, 111. See also procedures and functions

built-in assembler, 105
far, 113
near, 113
nested, 69

procedures and functions. See also procedures;
functions
importing, 128
inline, 116
nested, 69
recursive, 111

program
block, 21
comments, 10
lines, maximum length, 9
structure, 18
syntax, 18

properties, 47, 58
array, 60
defined, 43
definitions, 58

Index 195

 Virtual Pascal Language Reference

index specifiers, 61
overrides, 63
storage specifiers, 62

read-only, 60
read-write, 60
write-only, 60

protected
components, 52

pseudo instructions, 106
Ptr function, 35
public

components, 52
identifiers, 19

published
components, 52, 158

Q

qualified
method

identifiers, 84
method

identifiers, 79
method activation, 58
method designator, 58
method identifier, 116

qualifier syntax, 78

R

raise statement syntax, 101
READONLY segment attribute, 138
READWRITE segment attribute, 138
real

data type, 32
numbers, 32

Real data type, 33, 34
record

fields, 75, 79
scope, 23
types, 41
variant part declaration, 42

records, 42, 75, 79
record-type constant syntax, 75
registers

AX, 113
EAX, 113
EBP, 109
EIP, 107
ESP, 109

repeat statement syntax, 97
repetitive statement syntax, 96
reserved words, 12

ALIAS, 139
built-in assembler, 107
defined, 12

list of, 12
module definition file, 136

resident option in exports clause, 130
resource files

Open32 and, 159
Result

variable, 93
RET instruction, built-in assembler, 107
returning

Char values, 31
the ordinal number of a value, 28

RunError procedure, 20
run-time error messages, 184
Run-time type information, 158

S

scope
block, 23
object and class scope, 23
of a component identifier, 117
of a label, 22
of an identifier, 22
rules of, 22
unit, 23

segment
attributes, 138

SEGMENTS statement, 138, 146
Self identifier, 117, 120
Self parameter, 50, 51, 57, 120
set

constructor syntax, 83
membership testing, 91
operators, 89
types, 64

sets. See also set
comparing, 91

shl operator, 87
short-circuit Boolean evaluation, 87
ShortInt data type, 30
shr operator, 87
significand, 34
simple

expression syntax, 81
types

comparing, 90
simple-typed constants, 73
Single data type, 34
SINGLE segment attribute, 139
single symbols, 12
single-data DLLs. See also subsystems
SmallInt data type, 30
SmallWord data type, 30
source file, 9
space characters, 9
stack

checking switch directive, 162

196 Index

Virtual Pascal Language Reference

frames, built-in assembler, 110
overflow, 77

switch directive, 162
passing parameters and, 121
segment, 76

DLLs and, 133
size, 159

STACKSIZE statements, 147
standard

directives, 12
procedure or function used as a procedural value,

69
statement part syntax, 22
statements, 93

assembler, 104
assignment, 93
case, 96
compound, 95
conditional, 95
exception, 100
for, 98
goto, 94
if, 95
labels, 93
procedure, 94
raise, 101
repeat, 97
repetitive, 96
try...except, 102
try...finally, 103
while, 97
with, 99

static
importing, 128
linking, 18
methods, 53
object variables, 49

storage specifiers, 62
stored directive, 62
storing null-terminated strings, 41
strict string parameter checking, 165
string

operator, 88
type, 37
typed constants, 73
variables, 78

string variables passing, 39
strings. See also string

comparing, 39, 90
concatenating, 39, 88
long, 38. See also types:AnsiString
null-terminated, 35
short, 37
strict parameter checking of, 164
whitespaces and, 9

structured types, 37
STUB statements, 147
subrange type, 32
subroutine libraries, 132

subsystems, 131
Succ function, 28
summary of the two object models, 64
switch compiler directives, 149
symbol

local information, 152
name, 137
pairs, 12

symbols, 12, 15
built-in assembler, 108
conditional, 17

syntax
extended, 165

System unit, 18, 21, 29, 133
SysUtils unit, 30, 100

T

tag field in a record, 42
term

syntax, 81
testing set membership, 91
text files, 66
Text type, 66
TFileRec records, 67
thread local storage, 77
threadvar declarations, 77
TObject class declaration, 48
tokens, 9
trapping I/O errors, 155
True boolean constant, 31
try...except statement syntax, 102
try...finally statement syntax, 103
TTextRec records, 67
TVarRec type, 125
type. See also types

compatibility, 70
declaration, 28
declaration part syntax, 22
identity, 69

Type variant open array parameters, 124
typecasts

of untyped parameter, 122
value, 84
variable, 79

typed
constant declaration, 73
files, 65

types, 28
AnsiString, 37, 38, 155
array, 40
boolean, 31
Boolean, 32
Byte, 30
Cardinal, 30
Char, 31
class-reference, 63

Index 197

 Virtual Pascal Language Reference

Comp, 33
compatible, 70
Currency, 33
Double, 33
enumerated, 31
Extended, 33
file, 65
floating point, 32

internal representation, 34
identical, 69
integer, 29

predefined, 29
size and range, 29

Integer, 29
LongBool, 32
Longint, 30
object and class, 43
ordinal, 28
packed string, 41
PChar, 35
Pointer, 34
procedural, 67
Real, 33
record, 41
set, 64
ShortInt, 30
ShortString, 155
Single, 33
SmallInt, 30
SmallWord, 30
string, 37
structured, 37
subrange, 32
TVarRec, 125
Word, 29
WordBool, 32

U

ultimate ancestor, 48
unary operators, 81
unit

scope, 23
syntax, 18

units, 18
identifier, 19
implementation part, 19
initialisation and finalisation parts, 20
interface part, 19
uses clause, 21

untyped
constants, 27
files, 66
parameters, 122

USE32
symbol, 17

Use32 unit, 30, 164

uses clause, 21
Utilities

ImpLib, 129

V

value
parameters, 121
typecast syntax, 84

var
parameters, 122

variable. See also variables
declaration part syntax, 22
declaration syntax, 72
parameters, 122
reference

qualifier, 77
syntax, 77

typecast declaration, 79
variables

absolute, 73
array-type, 78
class, 79
class reference, 79
class type, 49
dynamic, 79
global, 76
local, 76
object, 79
pointer, 79
record, 79
string-type, 78
with an initial value, 73

variant part of records, 42
VER21 symbol, 17
virtual

constructor, 118
directive, 53
directive, 55
methods, 53

Virtual Method Table, 50
VIRTUALPASCAL symbol, 17
VpDbgDll, 166
VpSysLow unit, 129

W

while statement syntax, 97
whitespaces, 9
Win32

dynamic import, 130
symbol, 17

with statement syntax, 99
with statements, 51, 58, 117
Word data type, 29
WordBool data type, 32

198 Index

Virtual Pascal Language Reference

X

xor operator, 87

Z

zero-based character arrays, 35, 36, 41

	CHAPTER 1	9
	CHAPTER 1
	Lexical elements
	Source file
	Whitespace

	Whitespace control characters
	
	Comments
	Compiler directives
	Token characters
	Reserved words
	Standard directives
	Identifiers
	Literals
	Integer numbers
	Floating point numbers
	Character strings

	Labels
	Symbols
	Conditional compilation

	CHAPTER 2
	Program structure
	Program
	Unit
	The interface part
	The implementation part
	The initialisation and finalisation parts

	Dynamic link library
	Uses clause
	Block
	Scope
	Record scope (i)
	Object and class scope
	Block scope (ii)
	Unit scope (iii)

	CHAPTER 3
	Compilation process
	The linking process
	Creating an import library
	Compiling and binding resources

	CHAPTER 4
	Untyped constants

	C
	CHAPTER 5
	Data types
	Ordinal types
	Integer types

	Table 2-1. Basic integer data types
	
	
	Basic integer types
	Discussion: Use32, Use16 and bits

	Character types
	Enumerated types
	Boolean types
	Subrange types
	Floating point types
	Pointer types
	Structured types
	String types
	Short strings
	Long strings

	Array types
	Record types
	Object and class types
	Object type declarations
	Class type declarations
	Object and class components
	Inheritance
	Construction of object and class types
	Class references
	Class methods
	Compatibility rules
	Components and scope
	Component visibility
	Public components
	Published components
	Protected components
	Private components

	Static methods
	Virtual methods
	Dynamic methods
	Abstract methods
	Message handler declarations
	Message handler implementations
	Message dispatching
	Method activations
	Properties
	Access specifiers
	Array properties
	Index specifiers
	Storage specifiers
	Property overrides
	Class-reference types
	Summary of the two object models

	Set types
	File types
	Procedural types
	Procedural type compatibility

	Type identity
	Type compatibility
	Assignment compatibility

	CHAPTER 6
	Variables and typed constants
	Variable and typed constant declarations
	Simple-typed constants
	String-type constants
	Structured-type constants
	Array-type constants
	Record-type constants
	Object-type constants

	Address constants
	Procedural type constants
	Memory allocation
	Variable references
	Qualifiers
	Indices
	Record field and object component designators
	Pointers and dynamic variables
	Variable typecasts
	MEM arrays

	CHAPTER 7
	Expressions
	Expression syntax
	Function calls
	Set constructors
	Value typecasts
	The @ operator
	Operators
	Rules of precedence
	Arithmetic operators
	Bitwise logical operators
	Boolean logical operators
	String operator
	PChar operators
	Set operators
	Relational operators

	Class operators
	The is operator
	The as operator

	Port arrays

	C
	CHAPTER 8
	Statements
	
	Assignment statements
	Procedure statements
	Goto statements
	Compound statements

	Conditional statements
	if statements
	Case statements

	Repetitive statements
	Repeat statement
	While statement
	For statements

	With statements
	Exception statements
	The raise statement
	The try...except statement
	The try...finally statement

	Assembler statements
	Labels
	Prefixes
	Instructions
	Pseudo instructions
	Asm directives
	Operands

	C
	CHAPTER 9
	Procedures and functions
	Procedure declarations
	Function declarations
	Near and far declarations
	Export declarations
	Forward declarations
	Calling conventions
	External declarations
	Assembler declarations
	Inline declarations
	Method declarations
	Constructors and destructors
	Constructors
	Destructors

	Class methods

	Parameters
	Value parameters
	Constant parameters
	Variable parameters
	Untyped parameters
	Open parameters

	Open array constructors
	Type variant open array parameters

	C
	CHAPTER 10
	Dynamic link libraries
	What is a DLL?
	The traditional method using export
	Creating DLLs on a per unit basis

	Importing symbols from a DLL
	Static import
	Dynamic import

	Exporting symbols from a DLL
	The traditional method
	The export directive
	Using module definition files
	Exporting the entire interface part (OS/2 only)

	Types of DLLs
	Subsystems
	Subroutine Libraries
	Important notes
	Quick DLL examples

	DLLs and unit initialisation code

	A
	APPENDIX A
	Linker Module Definition File Reference
	
	
	IMPURE

	Segment attributes
	CODE
	DATA
	DESCRIPTION
	EXETYPE
	EXPORTS
	IMPORTS
	LIBRARY
	NAME
	OLD
	SEGMENTS
	STACKSIZE
	STUB

	APPENDIX B
	Compiler directives
	$A, &AlignData
	&AlignCode
	&AlignRec
	&Alters
	&Asm
	$B
	&Cdecl
	&Comments
	$D
	$DEFINE
	&Delphi
	&Dynamic
	$ELSE
	$ENDIF
	&Export
	&Far16
	&Frame
	&G3, &G4, &G5
	$H
	$I
	$I
	$IFDEF
	$IFNDEF
	$IFOPT
	$J
	$L
	$L
	&Linker
	&LocInfo
	$M
	$M
	&Open32
	&Optimise, &Optimize
	&OrgName
	$P
	&PmType
	&PureInt
	$Q
	$R
	$S
	&Saves
	&SmartLink
	&Speed
	$StdCall
	$T
	$UNDEF
	&Use32
	&Uses
	$V
	$W
	$X
	$Z
	&Zd

	APPENDIX C
	The Open Debug API (ODAPI)
	The debugger DLL
	The ODAPI System Interface
	The ODAPI IDE Interface
	ODAPI Types
	ODAPI Examples

	APPENDIX D
	Error messages
	Compiler error messages
	Run-time error messages
	
	
	Operating system errors

	APPENDIX E
	Naming conventions
	Index

		2000-05-02T00:05:26+0100
	Allan Mertner
	I am the author of this document

