

VisualAge COBOL IBM

Programming Guide
Version 2.2

 SC26-9050-02

VisualAge COBOL IBM

Programming Guide
Version 2.2

 SC26-9050-02

 Note!

Before using this information and the product it supports, be sure to read the general infor-
mation under “Notices” on page xx.

Third Edition (April 1998)

This edition applies to Version 2.2 of IBM VisualAge COBOL (program number 5639-B92) and to all subsequent
releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, W92/H3
P.O. Box 49023
San Jose, CA 95161-9023

 U.S.A.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1996, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xx
Programming Interface Information . xx
Trademarks . xxi

About This Book . xxii
How This Book Will Help You . xxii
Abbreviated Terms . xxiii
Syntax Notation . xxiv
How Examples Are Shown . xxv

Summary of Changes . xxvi
Major Changes in Version 2.1 . xxvi

| Major Changes in Version 2.2 . xxvi

Part 1. Coding Your Program . 1

Chapter 1. Introduction to COBOL Terms . 2
Variables, Structures, Literals, and Constants . 2

Variables . 2
Data Structure . 2
Literals . 3
Constants . 4

Assignment and Terminal Interactions . 4
Initializing a Variable (INITIALIZE Statement) 4
Initializing a Structure (INITIALIZE Statement) 6
Assigning Values to Variables or Structures (MOVE Statement) 7
Assigning Terminal/File Input to Variables (ACCEPT Statement) 7
Displaying Data Values on the Terminal/File (DISPLAY Statement) 8
Assigning Arithmetic Results . 8

Built-in (Intrinsic) Functions . 9
Introduction to Intrinsic Functions . 9
Using Function References in Other Contexts 9
Types of Intrinsic Functions . 10
Nesting Functions . 10
Substrings of Function-Identifiers . 10
Arguments to Intrinsic Functions . 10

Arrays and Pointers . 11
Pointers . 11
Procedure Pointers . 11

Chapter 2. Program Structure . 12
IDENTIFICATION DIVISION . 12

PROGRAM-ID Paragraph . 12
Avoiding Mismatches Between Names . 13

 Copyright IBM Corp. 1996, 1998 iii

Changing Header of Source Listing . 13
ENVIRONMENT DIVISION . 13

CONFIGURATION SECTION . 13
INPUT-OUTPUT SECTION: . 16
Identifying Files to the Operating System . 17

DATA DIVISION . 18
Limits in the DATA DIVISION . 18
FILE SECTION (Using Data in Input/Output Operations) 18
Function and Use of FILE SECTION Entries 18
WORKING-STORAGE SECTION and LOCAL-STORAGE SECTION 19
LINKAGE SECTION (Using Data from Another Program) 21

PROCEDURE DIVISION . 22
PROCEDURE DIVISION Headers . 22
How Logic is Divided in the PROCEDURE DIVISION 23
Statements Used in the PROCEDURE DIVISION 24
Declaratives . 27

Chapter 3. Numbers and Arithmetic . 29
General COBOL View of Numbers (PICTURE clause) 29

Defining Numeric Items . 29
Separate Sign Position (for Portability) . 29
Extra Positions for Displayable Symbols (Numeric Editing) 30

Computational Data Representation (USAGE Clause) 30
External Decimal (USAGE DISPLAY) Items 31
External Floating-Point (USAGE DISPLAY) Items 31
Binary Items . 32
Packed Decimal (PACKED-DECIMAL or COMP-3) Items 33
Floating-Point (COMP-1 and COMP-2) Items 33

Data Format Conversions . 35
Conversion Takes Time . 36
Conversions and Precision . 36

Sign Representation and Processing . 37
Checking for Incompatible Data (Numeric Class Test) 37

How to Do a Numeric Class Test . 38
Performing Arithmetic . 38

COMPUTE and Other Arithmetic Statements 38
Arithmetic Expressions . 39
Numeric Intrinsic Functions . 40

Fixed-Point versus Floating-Point Arithmetic . 43
Floating-Point Evaluations . 44
Fixed-Point Evaluations . 44
Arithmetic Comparisons (Relation Conditions) 44
Examples of Fixed-Point and Floating-Point Evaluations 45

Chapter 4. Handling Tables . 47
Defining a Table (OCCURS Clause) . 47

One Dimension . 47
Two Dimensions . 48

iv VisualAge COBOL Programming Guide

Three Dimensions . 48
Referring to an Item in a Table . 49

Subscripting . 49
Subscripting Using Index-Names (Indexing) 50
Referring to a Substring of a Table Item . 52

Putting Values into a Table . 53
Loading the Table Dynamically . 53
Initializing the Table (INITIALIZE Statement) 53
Assigning Values When You Define the Table (VALUE Clause) 53

Creating Variable-Length Tables (DEPENDING ON Clause) 57
ODO Object and Subject Contained in Group Item 57
ODO Object outside the Group . 59
Complex OCCURS DEPENDING ON . 60

Searching a Table (SEARCH Statement) . 61
Serial Search . 61
Binary Search (SEARCH ALL Statement) 62

Processing Table Items (Intrinsic Functions) . 63
Processing Multiple Table Items (ALL Subscript) 63

Efficient Coding for Tables . 64

Chapter 5. Selection and Iteration . 65
Selection (IF and EVALUATE Statements) . 65

IF Statement . 65
EVALUATE statement . 67
Conditional Expressions . 67

Iterative Loops (PERFORM Statement) . 71
Coding a Loop to Be Performed a Definite Number of Times 72
Conditional Looping . 72
Looping through a Table . 72
Executing a Group of Paragraphs or Sections 73

Chapter 6. String Handling . 74
Joining Data Items (STRING Statement) . 74

STRING Statement Example . 74
Splitting Data Items (UNSTRING Statement) 76

UNSTRING Statement Example . 76
Manipulating Null-Terminated Strings . 79
Referencing Substrings of Data Items (Reference Modifiers) 80

Common Reference Modification Mistakes 81
Benefits of Reference Modification . 81
Using Arithmetic Expressions as Reference Modifiers 82
Referencing Substrings of Table Items . 83

Tallying and Replacing Data Items (INSPECT Statement) 83
INSPECT Statement Examples . 83

Converting Data Items (Intrinsic Functions) . 85
Converting to Uppercase or Lowercase (UPPER-CASE, LOWER-CASE) . . . 85
Converting to Reverse Order (REVERSE) 85
Converting to Numbers (NUMVAL, NUMVAL-C) 86

 Contents v

Evaluating Data Items (Intrinsic Functions) . 87
Evaluating Single Characters for Collating Sequence (CHAR, ORD) 87
Finding the Largest or Smallest Data Item (MAX, MIN, ORD-MAX, ORD-MIN) 87
Finding the Length of Data Items (LENGTH) 89
Finding the Date of Compilation (WHEN-COMPILED) 89

Chapter 7. Processing Files . 91
File Input/Output Overview . 92

File Organization . 92
File Access Modes . 94

COBOL Coding for Files . 95
Accessing Files . 97
Distributed File Access . 98
Coding Input/Output Statements for Files . 98
File Position Indicator . 100
Opening a File . 100
Reading Records from a File . 101
Updating Records in a File . 102
Adding Records to a File . 103
Replacing Records in a File . 104
Deleting Records from a File . 104
File Sharing and Record Locking (OS/2 Only) 104

File Sorting and Merging . 106
Basics of Sorting and Merging . 106
The SORT Statement . 108
Coding the Input Procedure . 110
Coding the Output Procedure . 111
Restrictions on Input and Output Procedures 112
The MERGE Statement . 112
Determining Whether the Sort or Merge Was Successful 112
Prematurely Stopping a Sort or Merge Operation 113
SORT Special Registers . 113

The STL File System . 114
File Status and the STL File System . 114

SMARTdata Utilities for OS/2 . 116
Quick Start for Remote File Access . 116
Problems with Remote Files Access . 117
Platform-Specific Behavior . 118
Data Conversion . 118
File Conversion . 119
LAN-Installed SMARTdata Utilities . 119
Translation Tables . 119
Client Enhancement for Stream Data Conversion 120

Chapter 8. Error Handling . 121
STRING and UNSTRING Operations . 121
Arithmetic Operations . 122

Example of Checking for Division by Zero 122

vi VisualAge COBOL Programming Guide

Input/Output Error Handling Techniques . 123
End-of-File Phrase (AT END) . 125
EXCEPTION/ERROR Declarative . 125
File Status Key . 126
File System Return Code . 128
INVALID KEY Phrase . 130

CALL Statements . 131

Part 2. Compiling, Linking, and Running Your Program 133

Chapter 9. Compiling, Linking, and Running Programs 134
Setting Environment Variables . 134
Definitions of COBOL Environment Variables 135

Compiler Environment Variables . 136
Object-Oriented Programming Environment Variables 137
Run-Time Environment Variables . 137

Compiling and Linking Programs . 142
Options Supported by cob2 . 142
Filenames and Extensions Supported . 145
Examples using cob2 . 146
Alternative Ways to Specify Compiler Options 147

Compiler-Detected Errors and Messages . 148
Compiler Error Messages . 148
Compiler Error Message Codes . 149
Correcting Errors in Your Source Program 150
Generating a List of All Compiler Error Messages 151

| Starting the Linker . 151
| Linking within WorkFrame . 151
| Linking through the Compiler . 152
| Linking from a Make File . 153
| Optimized Linking (OS/2 Only) . 153
| Linker Input and Output Files . 154
| Linker Search Rules . 154
| Specifying Object Files . 156
| Specifying Executable Output Type . 157
| Linker Return Codes . 158
| Correcting Linker Errors . 158

Running COBOL programs . 159

Chapter 10. Compiler Options . 160
Compiler Options Summary . 160

Default Values for Compiler Options . 161
Performance Considerations . 161

Compiler Option Descriptions . 162
ADATA . 162
ANALYZE . 162
APOST . 163
BINARY . 163

 Contents vii

CALLINT . 164
CHAR . 165
COLLSEQ . 167
COMPILE . 168
CURRENCY . 168

| DATEPROC . 170
DYNAM . 171
ENTRYINT . 171
EXIT . 172
FLAG . 177
FLAGSTD . 178
FLOAT . 180
IDLGEN . 181
LIB . 182
LINECOUNT . 183
LIST . 183
MAP . 184
NUMBER . 185
OPTIMIZE . 185
PGMNAME . 186
PROBE . 188
PROFILE . 188
QUOTE/APOST . 188
SEPOBJ . 189
SEQUENCE . 190
SIZE . 191
SOURCE . 191
SPACE . 192
SQL . 192
SSRANGE . 193
TERMINAL . 193
TEST . 194
THREAD . 194
TRUNC . 195
TYPECHK . 197
VBREF . 198
WORD . 199

| WSCLEAR . 199
XREF . 200

| YEARWINDOW . 201
ZWB . 201

Compiler-Directing Statements . 202

| Chapter 11. Setting Linker Options . 208
| Setting Options on the Command Line . 208
| Setting Options in the ILINK Environment Variable 209
| Setting Options in the WorkFrame Environment 209
| Specifying Numeric Arguments . 209

viii VisualAge COBOL Programming Guide

| Summary of OS/2 Linker Options . 211
| Linker Options for OS/2 . 211
| /? . 212
| /ALIGNMENT . 212
| /BASE, /NOBASE . 212
| /CODEVIEW, NOCODEVIEW . 213
| /DBGPACK, /NODBGPACK . 213
| /DEBUG, /NODEBUG . 214
| /DEFAULTLIBRARYSEARCH, /NODEFAULTLIBRARYSEARCH 214
| /DLL . 215
| /EXEC . 215
| /EXEPACK, /NOEXEPACK . 215
| /EXTDICTIONARY, /NOEXTDICTIONARY 216
| /FORCE . 217
| /FREEFORMAT, /NOFREEFORMAT . 217
| /HELP . 217
| /IGNORECASE, /NOIGNORECASE . 218
| /INFORMATION, /NOINFORMATION . 218
| /LINENUMBERS, /NOLINENUMBERS . 218
| /LOGO, /NOLOGO . 219
| /MAP, /NOMAP . 219
| /OPTFUNC, /NOOPTFUNC . 220
| /OUT . 220
| /PACKCODE, /NOPACKCODE . 221
| /PACKDATA, /NOPACKDATA . 221
| /PMTYPE . 222
| /SECTION . 222
| /SEGMENTS . 224
| /STACK . 224
| Summary of Windows Linker Options . 226
| Windows Linker Options . 227
| /? . 227
| /ALIGNADDR . 227
| /ALIGNFILE . 227
| /BASE . 228
| /CODE . 228
| /DATA . 229
| /DBGPACK, /NODBGPACK . 229
| /DEBUG, /NODEBUG . 230
| /DEFAULTLIBRARYSEARCH, /NODEFAULTLIBRARYSEARCH 230
| /DLL . 231
| /ENTRY . 231
| /EXECUTABLE . 231
| /EXTDICTIONARY, /NOEXTDICTIONARY 232
| /FIXED, /NOFIXED . 232
| /FORCE . 232
| /HEAP . 233
| /HELP . 233

 Contents ix

| /INCLUDE . 233
| /INFORMATION, /NOINFORMATION . 234
| /LINENUMBERS, /NOLINENUMBERS . 234
| /LOGO, /NOLOGO . 234
| /MAP, /NOMAP . 235
| /OUT . 235
| /PMTYPE . 236
| /SECTION . 236
| /SEGMENTS . 237
| /STACK . 237
| /STUB . 238
| /SUBSYSTEM . 238
| /VERBOSE . 238
| /VERSION . 239

Chapter 12. Run-Time Options . 240
Syntax . 240

CHECK . 240
DEBUG . 240
ERRCOUNT . 241
FILESYS . 241
TRAP . 242
UPSI . 243

Chapter 13. Debugging Techniques . 244
Using Source Language to Debug . 244

Tracing Program Logic (DISPLAY Statements) 244
Handling Input/Output Errors (USE EXCEPTION/ERROR Declaratives) 245
Validating Data (Class Test) . 245
Assessing Switch Problems (INITIALIZE or SET Statements) 245
Improving Program Readability (Explicit Scope Terminators) 245
Finding Input/Output Errors (File Status Keys) 246
Generating Information about Procedures (USE FOR DEBUGGING

Declaratives) . 246
Using Compiler Options for Debugging . 249

The FLAG Option . 249
The NOCOMPILE Option . 252
The SEQUENCE Option . 252
The XREF Option . 252
The MAP Option . 253
The SSRANGE Option . 253
The TEST Option . 254

Getting Useful Listing Components . 254
A Short Listing—the Bare Minimum . 254
A Listing of Your Source Code—for Historical Records 257
Using Your Own Line Numbers . 257
Data Map Listing . 258
A PROCEDURE DIVISION Listing with Assembler Expansion (LIST Output) . 262

x VisualAge COBOL Programming Guide

A Verb Cross-Reference Listing . 262
A Data-Name, Procedure-Name, and Program-Name Cross-Reference Listing 263

Debugging User Exit Modules . 267
Debugging Assembler Routines . 267
Resolution to Common Problems . 268

System Message SYS1808 . 268

Part 3. Object-Oriented Programming Topics . 269

Chapter 14. Writing Object-Oriented Programs 270
Writing a Class Definition . 272

Class IDENTIFICATION DIVISION: Required 272
Class ENVIRONMENT DIVISION: Required 272
Class DATA DIVISION: Optional . 273
Class PROCEDURE DIVISION: Optional 274

Complete Class Example . 275
Writing a Method Definition . 276

Method IDENTIFICATION DIVISION: Required 276
Method ENVIRONMENT DIVISION: Optional 277
Method DATA DIVISION: Optional . 277
Method PROCEDURE DIVISION: Optional 278

Complete Class with Methods Example . 280
Writing a Client Definition . 285

Client IDENTIFICATION DIVISION: Required 286
Client ENVIRONMENT DIVISION: Required 286
Client DATA DIVISION: Optional . 286
Client PROCEDURE DIVISION: Optional . 287

Complete Client Example . 289
Writing a Subclass Definition . 290

Subclass IDENTIFICATION DIVISION: Required 292
Subclass ENVIRONMENT DIVISION: Required 292
Subclass DATA DIVISION: Optional . 293
Subclass PROCEDURE DIVISION: Optional 293
Subclass Method IDENTIFICATION DIVISION: Optional 293
Subclass Method ENVIRONMENT DIVISION: Optional 294
Subclass Method DATA DIVISION: Optional 294
Subclass Method PROCEDURE DIVISION: Optional 294

Complete Subclass with Methods Example . 294
Writing a Metaclass Definition . 306

Metaclass IDENTIFICATION DIVISION: Required 307
Metaclass ENVIRONMENT DIVISION: Required 307
Metaclass DATA DIVISION: Optional . 308
Metaclass PROCEDURE DIVISION: Optional 308
Metaclass Method IDENTIFICATION DIVISION: Optional 308
Metaclass Method ENVIRONMENT DIVISION: Optional 308
Metaclass Method DATA DIVISION: Optional 308
Metaclass Method PROCEDURE DIVISION: Optional 308
Changes to Class or Subclass Definitions 309

 Contents xi

Changes to the Client Program . 309
Complete Metaclass with Methods Example . 310

Chapter 15. Using System Object Model (SOM) 317
SOM Interface Repository . 317

Accessing the IR . 317
Populating the IR . 317

SOM Environment Variables . 318
System Object Model (SOM) Services . 319

SOM Methods and Functions . 319
SOM Initialization . 320
Class Initialization . 320
Class Interface Evolution . 321

Chapter 16. Using SOM IDL-Based Class Libraries 323
SOM Objects—a Refresher . 323
SOM IDL . 324
Mapping IDL to COBOL . 324

IDL Identifiers . 325
IDL Operations . 325
IDL Attributes . 326
Common IDL Types . 327
Complex Types . 332
Argument and Return Value Passing Conventions 335
Operation Example . 342

Other SOM Topics . 345
Errors and Exceptions . 345
Initializers . 349
If You Need to Look at the IDL File . 350

Memory Management . 352
Helper Routines Source Code . 356

Chapter 17. Converting Procedure-Oriented Programs to Object-Oriented
Programs . 358

Wrapping a Procedure-Oriented Program . 358
Glass-top Coordination . 359
Boundary Interface Coordination . 359
Required Change to Procedural Code . 360
Coexistence . 360

Converting a Procedure-Oriented Program . 360
Identify Objects . 361
Analyze Data Flow and Usage . 361
Reallocate Code to Objects . 361
Write the Object-Oriented Code . 362

Part 4. Advanced Topics . 363

Chapter 18. Porting Applications between Platforms 364

xii VisualAge COBOL Programming Guide

Getting Mainframe Applications to Compile on the PC 364
Choosing the Right Compiler Options . 364
Differences from Mainframe COBOL Language Features 364
Using the COPY Statement to Help Port Programs 365

Getting Mainframe Applications to Run on the PC 366
Data Representations Causing Run-Time Differences 366
Environment Differences Affecting Portability 368
Language Elements Causing Run-Time Differences 369

Writing PC Code to Run on the Mainframe . 369
Language Features Supported Only by the PC Compiler 369
Compiler Options Supported Only on the PC 370
Names Supported Only on the PC . 370

Writing Applications That Are Portable between the PC and AIX 370

Chapter 19. Subprograms . 372
Transferring Control to Another Program . 372

Recursive Calls . 372
Main Programs and Subprograms . 372
Making Calls between COBOL Programs . 373

Structure of Nested Programs . 373
Static, Dynamic, and Run-time Linking . 376

CALL identifier . 377
CALL literal . 377

Making Calls between COBOL and C/C++ Programs 377
Rules and Guidelines for ILC Applications 377
Matching Data and Linkages . 379
Example - Calling C/C++ Functions from a COBOL Program 379
Example - C Programs That are Called by and Call COBOL Programs 382
Example - COBOL Program Called by a C Program 384
Results of Running COBCALLC . 385

Chapter 20. Data Sharing . 387
Passing Data . 387

Describing Arguments in the Calling Program 388
Describing Parameters in the Called Program 389

LINKAGE SECTION . 389
PROCEDURE DIVISION . 389

Grouping Data to Be Passed . 390
Null-Terminated Strings . 390
Using Pointers to Process a Chained List 391

Using Procedure Pointers . 395
Rules for Using Procedure Pointers . 395
Windows Restriction . 396

Multiple Entry Points on Windows . 397
Passing Return Code Information . 398

RETURN-CODE Special Register . 398
PROCEDURE DIVISION RETURNING . 398

CALL . . . RETURNING . 399

 Contents xiii

Sharing Data Using the EXTERNAL Clause . 399
Sharing Files between Programs (EXTERNAL Files) 399

Advantages of EXTERNAL Files . 400
Example Using EXTERNAL Files . 400

Command Line Arguments . 404

Chapter 21. Programming for a DB2 Environment 406
Compiling with the DB2 Co-Processor . 406
Options for the DB2 Co-Processor . 406

How Options Are Accumulated . 407
Package and Bind File Names . 407
Ignored Options . 408

SQL INCLUDE Statement . 408
COBOL Language Usage with SQL . 408
Level of SQL Support . 409
 Testing the Return Code . 409

Chapter 22. Programming for a CICS Environment 410
An Overview of COBOL in a CICS Environment 410

| Installing and Running CICS Programs . 410
Preparing COBOL Applications to Run under CICS 412

Additional Language Restrictions . 412
Selecting Compiler Options . 413
Selecting Run-Time Options . 414
Planning for ASCII-EBCDIC Differences . 414

| System Date under CICS . 414
Dynamic Calls under CICS . 415
Accessing Btrieve Data . 417
Calls between COBOL and C++ under CICS 417
Debugging CICS Programs . 417

Chapter 23. Open Database Connectivity 418
Introducing ODBC . 418

Background . 418
ODBC Driver Manager . 418
Choosing Embedded SQL or ODBC . 419

Using the ODBC Drivers . 419
On-line Help . 420
Environment-Specific Information . 420
Connecting to a Data Source . 421
Supported ODBC Functions . 422
Error Messages . 422

ODBC APIs from COBOL . 423
CALL Interface Convention . 423
Using the Supplied Copybooks . 423
Mapping of ODBC C Types . 425
Passing a Pointer as an Argument . 426
Accessing Function Return Values . 428

xiv VisualAge COBOL Programming Guide

Testing Bits with a Bit Mask . 429
| Null-Terminated Character Strings . 430

Setting Licensing Information for ODBC Driver Manager/Driver 430
Sample Program Using Supplied Copybooks 430

Chapter 24. Building Dynamic Link Libraries 439
Static Linking Overview . 439
Dynamic Linking Overview . 439

Terminology Notes . 440
How the Linker Resolves References to DLLs 440
Creating a DLL . 441

Example of a DLL Source File . 441
| Module Definition Files . 442

Example of a Module Definition File . 442
Export Files (Windows Only) . 442
Coding for CALL identifier . 442
Coding for CALL literal . 443

Creating an Import Library . 444
Sample Program Using Call Resolution by the Linker 445

Compiling and Linking Your DLL . 445
Creating Object-Oriented DLLs . 446

| Chapter 25. Creating Module Definition Files 448
| Reserved Words . 449
| Summary of Module Statements . 450
| Linker Module Statements . 450
| BASE . 451
| CODE . 451
| DATA . 453
| DESCRIPTION . 455
| EXETYPE . 455
| EXPORTS . 456
| HEAPSIZE . 457
| IMPORTS . 458
| LIBRARY . 459
| NAME . 460
| OLD . 461
| SEGMENTS . 462
| STACKSIZE . 465
| STUB . 465

Chapter 26. Preparing COBOL Programs for Multithreading 467
How Language Elements Are Interpreted in a Multithreaded Environment 468

Working with Run-Unit Scoped Elements . 470
Working with Program Invocation Instance Scoped Elements 470

Choosing THREAD for Multithreading Support 470
Language Restrictions under THREAD . 470
Recursion with Threading . 471

 Contents xv

Control Transfer within a Multithreaded Environment 471
Limitations on COBOL in a Multithreaded Environment 472
Example of Using COBOL in a Multithreaded Environment 472

Sample Code for the Multithreading Example 472
Compiling, Linking, and Running the Multithreading Example 475

Chapter 27. National Language Support Considerations 477
Locales and Code Sets Supported . 477
DBCS User-Defined Word Support . 481

Usage Notes . 482
Restrictions on Specific User-Defined Words 482

DBCS Literal Support . 482
DBCS Data Type Support . 483

Declaring DBCS Data . 483
DBCS Class Test . 484
Collating Sequence . 484

Intrinsic Functions with Collating Sequence Sensitivity 485
Comments . 486
Messages Enabled for NLS . 486
Cross-Reference Output Sequence . 486
Locale Sensitivity . 486

Chapter 28. Pre-initializing the COBOL Run-Time Environment 489
Initialize Persistent COBOL Environment . 489
Terminate Pre-initialized COBOL Environment 490
Example of Pre-initializing the COBOL Environment 491

Chapter 29. Productivity and Tuning Techniques 496
Simplifying Complex Coding and Other Programming Tasks 496

Intrinsic Functions . 496
Date and Time Callable Services . 496

Optimization . 505
The OPTIMIZE Compiler Option . 506
Other Compiler Features that Affect Optimization 507

Compiler Options . 507

Chapter 30. The "Year 2000" Problem . 510
| Date Processing Problems . 510

Year 2000 Solutions . 510
The Full Field Expansion Solution . 511

| The Internal Bridging Solution . 513
The Century Window Solution . 514

| The Mixed Field Expansion and Century Window Solution 515
The Century Encoding/Compression Solution 516
The Integer Format Date Solution . 516

| Performance Considerations . 518
| Performance Comparison . 518
| How to Get 4-digit Year Dates . 518

xvi VisualAge COBOL Programming Guide

| Chapter 31. Using the Millennium Language Extensions 520
| Description . 520
| Getting Started . 521
| Implementing Date Processing . 521
| Resolving Date-Related Logic Problems . 522
| Basic Remediation . 522
| Internal Bridging . 523
| Full Field Expansion . 525
| Programming Techniques . 527
| Date Comparisons . 528
| Arithmetic Expressions . 529
| Other Date Formats . 531
| Controlling Date Processing Explicitly . 532
| Eliminating Warning-Level Messages . 534
| Principles . 535
| Objectives . 535
| Concepts . 536
| Date Semantics . 536
| Compatible Dates . 536
| Treatment of Non-Dates . 537

Appendix A. Summary of Differences with Host COBOL 540

Appendix B. System/390 Host Data Type Considerations 543
CICS Access . 543
Date and Time Callable Services . 543
Floating Point Overflow Exceptions . 543
DB2 . 544
MQSeries . 544
Remote File Access . 544
SORT . 544

Appendix C. Intermediate Results and Arithmetic Precision 545
Calculating Precision of Intermediate Results 545
Fixed-Point Data and Intermediate Results . 547

Exponentiations Evaluated in Fixed-Point Arithmetic 547
Truncated Intermediate Results . 549
Binary Data and Intermediate Results . 549
Intrinsic Functions Evaluated in Fixed-Point Arithmetic 549

Floating-Point Data and Intermediate Results 551
Exponentiations Evaluated in Floating-Point Arithmetic 551
Intrinsic Functions Evaluated in Floating-Point Arithmetic 551

Arithmetic Expressions in Non-arithmetic Statements 552

Appendix D. Complex OCCURS DEPENDING ON 553
Be Sure to Set Values of ODO Objects . 553

Complex ODO Example . 554
How Length Will be Calculated . 554

 Contents xvii

Changes in ODO Object Value . 554
Changing ODO Object with Complex-ODO Index Names 555
Changing ODO Object with Variable Occurrence Table 555

Appendix E. Date and Time Callable Services Reference 558
CEECBLDY—Convert Date to COBOL Integer Format 558
CEEDATE—Convert Lilian Date to Character Format 562
CEEDATM—Convert Seconds to Character Timestamp 567
CEEDAYS—Convert Date to Lilian Format . 572
CEEDYWK—Calculate Day of Week from Lilian Date 576
CEEGMT—Get Current Greenwich Mean Time 579
CEEGMTO—Get Offset from Greenwich Mean Time to Local Time 582
CEEISEC—Convert Integers to Seconds . 584
CEELOCT—Get Current Local Date or Time 588
CEEQCEN—Query the Century Window . 590
CEESCEN—Set the Century Window . 592
CEESECI—Convert Seconds to Integers . 595
CEESECS—Convert Timestamp to Seconds 599
CEEUTC—Get Coordinated Universal Time . 604
IGZEDT4—Get Current Date . 604

Appendix F. Run-Time Messages . 606

Appendix G. Remote DL/I . 638
How Remote DL/I Works . 638
Remote DL/I Utilities . 638
IMS Batch Support . 639
Remote DL/I Server Environment File . 642
Checkpoint and Rollback Support . 643

| VisualAge CICS Support (OS/2 Only) . 644
| Preparing to use Remote DL/I with VisualAge CICS 644
| Preparing COBOL Programs . 645
| User Interface Block . 646
| Supported Function Codes . 646
| Scheduling a PSB . 647
| Syncpoint Coordination . 648
| Diagnostics Using CBLTDLI . 648
| Using a Debugger . 649

Appendix H. Remote DL/I Run-Time Messages 650

Bibliography . 658
VisualAge COBOL . 658
Related Publications . 658

COBOL for OS/390 & VM . 658
COBOL Set for AIX . 658
VisualAge CICS Enterprise Application Development 658
CICS for OS/2 . 658

xviii VisualAge COBOL Programming Guide

CICS for Windows NT . 658
DB2 . 658
SMARTdata Utilities for OS/2 . 659
SMARTdata Utilities for Windows . 659
SOMobjects Developer's Toolkit . 659
Other . 659

Glossary . 660

Index . 683

 Contents xix

 Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any of the intellectual property rights
of IBM may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling: (1) the exchange of information between independently created programs and
other programs (including this one) and (2) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation, W92/H3
P.O. Box 49023
San Jose, CA 95161-9023

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information
This VisualAge COBOL Programming Guide is intended to help the user create,
compile, link, and run IBM VisualAge COBOL application programs. This book docu-
ments General-Use Programming Interface and Associated Guidance Information pro-
vided by IBM VisualAge COBOL.

General-Use programming interfaces allow the customer to write programs that obtain
the services of IBM VisualAge COBOL.

xx  Copyright IBM Corp. 1996, 1998

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

UNIX is a registered trademark in the United States and other countries licensed exclu-
sively through X/Open Company Limited.

Microsoft, Windows, Windows NT, the Windows 95 logo, and Open Database
Connectivity are trademarks or registered trademarks of Microsoft Corporation.

INTERSOLV is a registered trademark and DataDirect a trademark of INTERSOLV,
Inc.

MQ/Series is the registered trademark of MQSoftware Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

AD/Cycle
AIX
AIX/6000
AS/400
C/370
CICS
CICS OS/2
COBOL/370
DATABASE 2
DB2
DFSMS/MVS
DFSORT
IBM

IMS
Language Environment
MQSeries Three Tier
MVS/ESA
Operating System/2
OS/2
OS/390
Presentation Manager
RS/6000
System Object Model
System/390
SOMobjects
VisualAge

 Notices xxi

About This Book

Welcome to IBM VisualAge COBOL1, IBM's new COBOL development environment for
OS/2, Windows 95, and Windows NT! VisualAge COBOL gives you a comprehensive
development environment designed specifically for mission-critical, client/server applica-
tions.

VisualAge COBOL supports local and remote access to DB2, CICS, and VSAM (remote
access only to VSAM using Windows), giving you access to data and transactions
nearly anywhere in your enterprise. And all the IBM COBOL family of solutions support
the high subset of ANSI 85 COBOL functions, so your applications can be ported
across supported platforms, whether they are running on a mainframe, an RS/6000, or
a personal computer with OS/2, Windows 95, or Windows NT.

VisualAge COBOL supports object-oriented extensions, allowing you to develop soft-
ware objects using COBOL and share objects created by other languages, like C++.

VisualAge COBOL provides a complete development environment. The environment
includes an editor, debugger, GUI designer, and performance analyzer, all integrated
with WorkFrame. WorkFrame integrates your tools and files, so selecting a file also
selects the application you need to control the execution of a program, examine and
modify data, and perform many other useful functions.

How This Book Will Help You
This book will help you write, compile, link-edit, and run your VisualAge COBOL pro-
grams. It will also help you define object-oriented classes and methods, invoke
methods, and refer to objects in your programs.

This book assumes experience in developing application programs and some know-
ledge of COBOL. It focuses on using COBOL to meet your programming objectives
and not on the definition of the COBOL language. For complete information on COBOL
syntax, refer to IBM COBOL Language Reference.

There are some differences between host and PC COBOL. For details on language
and system differences between VisualAge COBOL and IBM COBOL for OS/390 & VM,
see Appendix A, “Summary of Differences with Host COBOL” on page 540.

This book also assumes familiarity with OS/2 or Windows and the VisualAge COBOL
development environment. For information on OS/2 or Windows, see your operating
system documentation. To learn about the VisualAge COBOL development environ-
ment, see the Getting Started guide.

1 IBM VisualAge COBOL is referred to as VisualAge COBOL throughout this publication.

xxii  Copyright IBM Corp. 1996, 1998

Abbreviated Terms

Throughout this book, we use these indicators to identify platform-specific information:

� Prefix the text with platform-specific text (for example, “Under OS/2...”)

� Add parenthetical qualifications (for example, “(Windows only)”)

� Bracket the text with icons. We use the following icons:

 Informs you of information specific to OS/2.

 Informs you of information specific to Windows.

 Abbreviated Terms
Certain terms are used in a shortened form in this book. Abbreviations for the product
names used most frequently in this book are listed alphabetically in Figure 1. Abbrevi-
ations for other terms, if not commonly understood, are shown in italics the first time
they appear, and are listed in the glossary in the back of this book.

In addition to these abbreviated terms, the term “COBOL 85 Standard” is used in this
book to refer to the combination of the following standards:

� ISO 1989:1985, Programming languages - COBOL

� ISO 1989/Amendment 1, Programming Languages - COBOL - Amendment 1:
Intrinsic function module

� X3.23-1985, American National Standard for Information Systems - Programming
Language - COBOL

� X3.23a-1989, American National Standard for Information Systems - Programming
Language - Intrinsic Function Module for COBOL

The two ISO standards are identical to the American National Standards.

Figure 1. Common Abbreviations in this Book

Term Used Long Form

CICS CICS for OS/2 or
CICS for Windows NT or
VisualAge CICS Enterprise Application Development

DB2 Database 2

OS/2 Operating System/2

SOM System Object Model

STL Standard Language file system

 About This Book xxiii

Syntax Notation

 Syntax Notation
Throughout this book, syntax for the compiler options is described using the structure
defined below.

� Read the syntax diagrams from left to right, from top to bottom, following the path
of the line. The following table shows the meaning of symbols at the beginning
and end of syntax diagram lines.

Diagrams of syntactical units other than complete statements start with the 5───
symbol and end with the ───5 symbol.

� Required items appear on the horizontal line (the main path).

55──STATEMENT──required item───5%

� Optional items appear below the main path.

55──STATEMENT─ ──┬ ┬─────────────── ──5%
 └ ┘─optional item─

� When you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

55──STATEMENT─ ──┬ ┬─required choice 1─ ────────────────────────────────────5%
└ ┘─required choice 2─

If choosing one of the items is optional, the entire stack appears below the main
path.

55──STATEMENT─ ──┬ ┬─────────────────── ────────────────────────────────────5%
├ ┤─optional choice 1─
└ ┘─optional choice 2─

� An arrow returning to the left above the main line indicates an item that can be
repeated.

 ┌ ┐───────────────────
55──STATEMENT─ ───

6
┴─repeatable item─ ──────────────────────────────────────5%

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

Symbol Indicates

55─── The syntax diagram starts here

───5 The syntax diagram is continued on the next line

5─── The syntax diagram is continued from the previous line

───5% The syntax diagram ends here

xxiv VisualAge COBOL Programming Guide

How Examples Are Shown

� Keywords appear in uppercase letters (for example, PRINT). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example, item).
They represent user-supplied names or values.

� If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

� Use at least one blank or comma to separate parameters.

How Examples Are Shown
This book shows numerous examples of sample COBOL statements, program frag-
ments, and small programs to help illustrate the concepts being discussed. The exam-
ples of program code are written in lowercase, uppercase, or mixed case to
demonstrate that you can write your programs in any of these three cases.

Where it helps to more clearly separate the examples from the explanatory text, they
are indented, presented in a different font style, or are shown in boxes.

Names of files, COBOL keywords, commands, and options appearing in text are gener-
ally shown in SMALL UPPER CASE, unless they are mixed-case, in which case they are
presented in a different font style.

 About This Book xxv

Summary of Changes

This section lists the key changes that have been made to the IBM VisualAge COBOL
product since Version 2.0. Those documented in this publication have an associated
page reference for your convenience. The latest technical changes are marked in the
text by a change bar in the left margin.

Major Changes in Version 2.1
� New compiler option -host to facilitate setting of all host data compiler options

(“Options Supported by cob2” on page 142).

� New compiler option ANALYZE to check the syntax of embedded SQL and CICS
statements (“ANALYZE” on page 162).

� Host DBCS, removal of restriction “CHAR (EBCDIC) does not apply to DBCS
data.,” (removed from Appendix B, “System/390 Host Data Type Considerations”
on page 543).

� Default EBCDIC code page based on run time locale, (“Locale Sensitivity” on
page 486 and “Definitions of COBOL Environment Variables” on page 135).

� Enable Japanese Era and Chinese Era support in the date/time callable services.

� Remote workstation DL/I calls (Appendix G, “Remote DL/I” on page 638)
(Windows only).

� Extension of the ACCEPT statement to cover the recommendation in the Working
Draft for Proposed Revision of ISO 1989:1985 Programming Language COBOL
(“How to Get 4-digit Year Dates” on page 518).

� New intrinsic date functions.

| Major Changes in Version 2.2
| � The millennium language extensions, enabling compiler-assisted date processing
| for dates containing 2-digit and 4-digit years (Chapter 31, “Using the Millennium
| Language Extensions” on page 520).

| � Remote workstation DL/I calls for OS/2 (Appendix G, “Remote DL/I” on page 638).

| � Host data type support for DB2 and the date and time callable services.

| � Support for Version 3 of the Open Database Connectivity (ODBC) interface
| (Chapter 23, “Open Database Connectivity” on page 418).

xxvi  Copyright IBM Corp. 1996, 1998

Part 1. Coding Your Program

This part of the book explains how to do various programming tasks using the COBOL
language. It discusses the most common topics, starting with basic ones, then building
on those in succeeding chapters. Topics related to object-oriented COBOL are in
Part 3, “Object-Oriented Programming Topics” on page 269. More complex program-
ming topics are treated in Part 4, “Advanced Topics” on page 363.

For complete details on the COBOL language, see IBM COBOL Language Reference.

Chapter 1. Introduction to COBOL Terms . 2

Chapter 2. Program Structure . 12

Chapter 3. Numbers and Arithmetic . 29

Chapter 4. Handling Tables . 47

Chapter 5. Selection and Iteration . 65

Chapter 6. String Handling . 74

Chapter 7. Processing Files . 91

Chapter 8. Error Handling . 121

 Copyright IBM Corp. 1996, 1998 1

COBOL Terms for Data

Chapter 1. Introduction to COBOL Terms

This chapter is intended to help the non-COBOL programmer relate terms used in other
programming languages to COBOL terms.

This chapter introduces COBOL fundamentals for:

� Variables, Structures, Literals, and Constants
� Assignment and Terminal Interaction
� Built-In (Intrinsic) Functions
� Tables and Pointers

Variables, Structures, Literals, and Constants
Most high-level programming languages share the concept of data being represented
as variables, structures, literals, and constants. This section describes how these data
representations are defined in COBOL. You place all data-item definitions in the DATA
DIVISION of your program.

 Variables
In COBOL you refer to a variable by a data-name. For example, if a customer name is
a variable in your program, code:

 Data Division.

 .

 .

 ð1 Customer-Name Pic X(2ð).

 ð1 Original-Customer-Name Pic X(2ð).

 .

 .

 Procedure Division.

 .

 .

Move Customer-Name to Original-Customer-Name

 .

 .

The data used in a COBOL program can be divided into three classes: alphabetic,
alphanumeric, and numeric. For complete details on the classes and categories of data
and the PICTURE clause rules for defining data, see IBM COBOL Language Reference.

 Data Structure
Related data items are often parts of a larger, hierarchical data structure. A data item
that is composed of subordinated data items is called a group item. An elementary
data item is a data item that does not have any subordinate items. A record can be
either an elementary data item or a group of data items.

2  Copyright IBM Corp. 1996, 1998

COBOL Terms for Data

Group Items Example
In the following example, Customer-Record is a group item composed of two group
items (Customer-Name and Part-Order) both of which contain elementary data items.
You can refer to the entire group item or to parts of the group item as shown in the
MOVE statements in the Procedure Division.

 Data Division.

 File Section.

 FD Customer-File

Record Contains 45 Characters.

 ð1 Customer-Record.

 ð5 Customer-Name.

 1ð Last-Name Pic x(17).

 1ð Filler Pic x.

 1ð Initials Pic xx.

 ð5 Part-Order.

 1ð Part-Name Pic x(15).

 1ð Part-Color Pic x(1ð).

 Working-Storage Section.

 ð1 Orig-Customer-Name.

 ð5 Surname Pic x(17).

 ð5 Initials Pic x(3).

 ð1 Inventory-Part-Name Pic x(15).

 .

 .

 Procedure Division.

 .

 .

Move Customer-Name to Orig-Customer-Name

Move Part-Name to Inventory-Part-Name

 .

 .

 Literals
When you know the value you want to use for a data item, you don't need to define or
refer to a data-name; instead use a literal representation of the data value in the Proce-
dure Division.

For example, you might want to prepare an error message for an output file:

Move “Invalid Data” To Customer-Name

Or, you might want to compare a data item to a certain number:

 ð1 Part-number Pic 9(5).

 .

 .

If Part-number = ð3519 then display "Part number was found"

In these examples, "Invalid Data" is a non-numeric literal, and ð3519 is a numeric
literal.

 Chapter 1. Introduction to COBOL Terms 3

Assigning Values to Data

 Constants
COBOL does not define a construct specifically for constants, but most programmers
define a data item with an initial VALUE (as opposed to initializing a variable using the
INITIALIZE statement):

 Data Division.

 .

 .

ð1 Report-Header pic x(5ð) value "Company Sales Report".

 .

 .

ð1 Interest pic 9v9999 value 1.ð265.

 Figurative Constants
Certain commonly used constants and literals are provided as reserved words, called
figurative constants. Because they represent fixed values, figurative constants do not
require a data definition: ZERO, SPACE, HIGH-VALUE, LOW-VALUE, QUOTE, NULL, ALL.

For example: Move Spaces To Report-Header.

Assignment and Terminal Interactions
After you have defined a data item, you can assign a value to it at any time. Assign-
ment takes many forms in COBOL, depending on the purpose behind the assignment:

Figure 2. How to Assign Values to a Data Item

What You Want to Do How to Do It

Assign values to a data item
or large data area

One of these ways:

 � INITIALIZE statement
 � MOVE statement
� STRING or UNSTRING statement
� VALUE clause (To set data items to the values you want

them to have when the program is in its initial state.)

Replace characters or groups
of characters in a data item

INSPECT statement

Receive input values from the
terminal or a file

ACCEPT statement

Receive input values from a
file

READ (or READ INTO) statement

Assign the results of arith-
metic

COMPUTE statement

Initializing a Variable (INITIALIZE Statement)
The following examples illustrate some uses of the INITIALIZE statement. (The symbol ␣
indicates a space.)

4 VisualAge COBOL Programming Guide

Assigning Values to Data

Initializing a Variable to Blanks or Zeroes :

INITIALIZE identifier-1

Initializing a Right-Justified Field :

ð1 ANJUST PIC X(8) JUSTIFIED RIGHT.

ð1 ALPHABETIC-1 PIC A(4) VALUE "ABCD".

 .

 .

 INITIALIZE ANJUST

REPLACING ALPHANUMERIC DATA BY ALPHABETIC-1

Initializing an Alphanumeric Variable :

ð1 ALPHANUMERIC-1 PIC X.

ð1 ALPHANUMERIC-3 PIC X(1) VALUE "A".

 .

 .

 INITIALIZE ALPHANUMERIC-1

REPLACING ALPHANUMERIC DATA BY ALPHANUMERIC-3

Initializing a Numeric Variable :

ð1 NUMERIC-1 PIC 9(8).

ð1 NUM-INT-CMPT-3 PIC 9(7) COMP VALUE 1234567.

 .

 .

 .

 INITIALIZE NUMERIC-1

REPLACING NUMERIC DATA BY NUM-INT-CMPT-3

IDENTIFIER-1
PICTURE

IDENTIFIER-1
Before

IDENTIFIER-1
After

 9(5) 12345 ððððð

 X(5) AB123 ␣␣␣␣␣

 99XX9 12AB3 ␣␣␣␣␣

XXBX/XX ABbC/DE ␣␣␣␣/␣␣

**99.9CR 1234.5CR \\ðð.ð␣␣

 A(5) ABCDE ␣␣␣␣␣

+99.99E+99 +12.34E+ð2 +ðð.ððE+ðð

ALPHABETIC-1 ANJUST Before ANJUST After

ABCD ␣␣␣␣␣␣␣␣ ␣␣␣␣ABCD

ALPHANUMERIC-3 ALPHANUMERIC-1
Before

ALPHANUMERIC-1
After

A y A

 Chapter 1. Introduction to COBOL Terms 5

Assigning Values to Data

Initializing an Edited Alphanumeric Variable :

ð1 ALPHANUM-EDIT-1 PIC XXBX/XXX.

ð1 ALPHANUM-EDIT-3 PIC X/BB VALUE "M/␣␣".

 .

 .

 INITIALIZE ALPHANUM-EDIT-1

REPLACING ALPHANUMERIC-EDITED DATA BY ALPHANUM-EDIT-3

NUM-INT-CMPT-3 NUMERIC-1
Before

NUMERIC-1
After

1234567 98765432 ð1234567

ALPHANUM-EDIT-3 ALPHANUM-EDIT-1
Before

ALPHANUM-EDIT-1
After

M/␣␣ AB␣C/DEF M/␣␣/␣␣␣

Initializing a Structure (INITIALIZE Statement)
You can reset the values of all subordinate items in a group by applying the INITIALIZE
statement to the group item. However, it is inefficient to initialize an entire group unless
you really need all the items in the group initialized.

The following example shows how you can reset fields in a transaction record produced
by a program to spaces and zeros. (Notice that the fields are not identical in each
record produced.)

ð1 TRANSACTION-OUT.

 ð5 TRANSACTION-CODE PIC X.

 ð5 PART-NUMBER PIC 9(6).

 ð5 TRANSACTION-QUANTITY PIC 9(5).

 ð5 PRICE-FIELDS.

 1ð UNIT-PRICE PIC 9(5)V9(2).

 1ð DISCOUNT PIC V9(2).

 1ð SALES-PRICE PIC 9(5)V9(2).

 .

 .

 INITIALIZE TRANSACTION-OUT

TRANSACTION-OUT Before TRANSACTION-OUT After

Record 1 Rðð1383ððð24ðððððððððððððððð ␣ððððððððððððððððððððððððððð

Record 2 Rðð139ðððð48ðððððððððððððððð ␣ððððððððððððððððððððððððððð

Record 3 Sðð141ðððð12ðððððððððððððððð ␣ððððððððððððððððððððððððððð

Record 4 Cðð1383ððððððððð425ððððððððð ␣ððððððððððððððððððððððððððð

Record 5 Cðð2ð1ððððððððððððð1ðððððððð ␣ððððððððððððððððððððððððððð

Note: The symbol ␣ represents a blank space.

6 VisualAge COBOL Programming Guide

Assigning Values to Data

Assigning Values to Variables or Structures (MOVE Statement)
Use the MOVE statement to assign values to variables or structures. For example, the
following statement:

Move Customer-Name to Orig-Customer-Name

assigns the contents of the variable Customer-Name to the variable Orig-Customer-Name.
If Customer-Name were longer than Orig-Customer-Name, truncation would occur on the
right. If it were shorter, the extra character positions on the right would be filled with
spaces.

When you move a group item to another group item, be sure the subordinate data
descriptions are compatible. The compiler performs all MOVE statements regardless of
whether items fit, even if that means a destructive overlap could occur at run time. In
such cases, you'll get a warning message when you compile your program.

Assigning Values to Numeric Variables
For variables containing numbers, moves can be more complicated because there are
several ways numbers are represented. In general, the algebraic values of numbers
are moved if possible (as opposed to the digit-by-digit move performed with character
data):

 ð1 Item-x Pic 999v9.

 .

 .

Move 3.ð6 to Item-x

This move would result in Item-x containing the value 3.0, represented by 0030.

Assigning Terminal/File Input to Variables (ACCEPT Statement)
Another way to assign a value to a variable is to read the value from the terminal or a
file. To enter data from the terminal, first associate the terminal with a mnemonic-name
in the SPECIAL-NAMES Paragraph:

 Environment Division.

 Configuration Section.

 Special-Names.

Console is Names-Input.

Then the statement:

Accept Customer-Name From Names-Input

assigns the line of input entered at the terminal to the variable Customer-Name.

To read from a file instead of the terminal, either:

 � Change

Console is Names-Input

to

device is Names-Input

 Chapter 1. Introduction to COBOL Terms 7

Assigning Values to Data

in the above example, where device is any valid system device (for example,
SYSIN).

-or-

� Set the environment variable CONSOLE to a valid file specification using the SET

command. For example:

SET CONSOLE=\myfiles\myinput.rpt

Note that the environment variable must be the same as the system device used.
In the above example, the system device is Console, but the method of assigning
an environment variable to the system device name is supported for all valid
system devices. For example, if the system device is SYSIN, the environment vari-
able which must be assigned a file specification is SYSIN also).

For more information on setting environment variables, see “Setting Environment
Variables” on page 134.

Displaying Data Values on the Terminal/File (DISPLAY Statement)
In addition to assigning a variable a value read in from the terminal or a file, you can
also display the value of a variable on the terminal or write it to a file. For example, if
the contents of the variable Customer-Name is JOHNSON, then the following statement:

Display “No entry for surname '” Customer-Name “' found in the file.”

will display this message on the terminal:

No entry for surname 'JOHNSON' found in the file.

To write data to a destination other than the system logical output unit, the UPON
clause must be used on the DISPLAY statement. For example:

Display "Hello" UPON SYSOUT

writes to the system logical output device, or to the destination specified in the
SYSOUT environment variable, if defined.

Assigning Arithmetic Results
When assigning a number to a variable, it is sometimes better to use the COMPUTE
statement instead of the MOVE statement. For example, the following two statements
accomplish the same thing in most cases:

Move w to z

Compute z = w

However, when significant left-order digits would be lost in execution, the COMPUTE
statement can detect the condition and allow you to handle it. The MOVE statement
carries out the assignment with destructive truncation.

When you use the ON SIZE ERROR phrase of the COMPUTE statement, the compiler
generates code to detect a size-overflow condition. If the condition occurs, the code in
the ON SIZE ERROR phrase is performed, and the content of z remains unchanged. If
the ON SIZE ERROR phrase is not specified, the assignment is carried out with trun-
cation. There is no ON SIZE ERROR support for the MOVE statement.

8 VisualAge COBOL Programming Guide

Introducing Intrinsic Functions

Assigning Results of Computations (COMPUTE Statement)
The COMPUTE statement is also used to assign the result of an arithmetic expression
(or intrinsic function) to a variable. For example:

Compute z = y + (x \\ 3)

Compute x = Function Max(x y z)

For information on intrinsic functions, see the IBM COBOL Language Reference.

Built-in (Intrinsic) Functions
Some high-level programming languages have built-in functions that you can reference
in your program as if they were variables having defined attributes and a predetermined
value. In COBOL, these are called intrinsic functions; they provide various string- and
number-manipulation capabilities.

Introduction to Intrinsic Functions
The groups of highlighted words in the following examples are referred to as function-
identifiers. A function-identifier is the combination of the COBOL reserved word FUNC-
TION followed by a function-name (such as Max), followed by any arguments to be
used in the evaluation of the function (such as x, y, z):

Unstring Function Upper-case(Name) Delimited By Space Into Fname Lname

Compute A = 1 + Function Log1ð(x)

Compute M = Function Max(x y z)

A function-identifier represents both the function's invocation and the data value
returned by the function. Because it actually represents a data item, a function-
identifier can be used in most places in the Procedure Division where a data item
having the attributes of the returned value can be used.

Because the value of an intrinsic function is derived automatically at the time of refer-
ence, you do not need to define functions in the Data Division. Define only the non-
literal data items that you use as arguments. Figurative constants are not allowed as
arguments.

Using Function References in Other Contexts
Function-identifiers are loosely referred to in this book as function references. Whereas
the COBOL word FUNCTION is a reserved word, the function-names are not reserved;
you can use them in other contexts, such as for the name of a variable, and without
references to a function.

For example, you could use SQRT to invoke an intrinsic function and/or to name a vari-
able in your program:

 Chapter 1. Introduction to COBOL Terms 9

Introducing Intrinsic Functions

 Working-Storage Section.

 ð1 x Pic 99 value 2.

 ð1 y Pic 99 value 4.

 ð1 z Pic 99 value ð.

 ð1 Sqrt Pic 99 value ð.

 .

 .

Compute Sqrt = 16 \\ .5

Compute z = x + Function Sqrt(y)

 .

 .

Types of Intrinsic Functions
A function-identifier represents a value that is either a character string (alphanumeric

| data class) or a number (numeric data class) depending on the type of function. The
| functions MAX, MIN, DATEVAL, and UNDATE can return either type of value depending

on the type of arguments you supply.

| Three functions, DATEVAL, UNDATE, and YEARWINDOW are provided with the
| millennium language extensions to assist with manipulationg and converting windowed
| date fields. For details on the millennium language extensions, see Chapter 31, “Using
| the Millennium Language Extensions” on page 520. The three functions are described
| individually in IBM COBOL Language Reference.

Numeric intrinsic functions are further classified according to the type of numbers they
return. See the IBM COBOL Language Reference for more details.

 Nesting Functions
Functions can reference other functions as arguments as long as the results of the
nested functions meet the requirements for the arguments of the outer function. For
example:

Compute x = Function Max((Function Sqrt(5)) 2.5 3.5)

In this case, Function Sqrt(5) returns a numeric value. Thus, the three arguments to
the MAX function are all numeric, which are allowable argument types for this function.

Some of the examples in the next three chapters show nesting of functions.

Substrings of Function-Identifiers
You can include a substring specification (reference modifier) in your function-identifier
for alphanumeric functions.

Arguments to Intrinsic Functions
The ALL subscript, which enables you to easily reference all of the elements of an array
as function arguments, and allowable types of function arguments are discussed in IBM
COBOL Language Reference.

10 VisualAge COBOL Programming Guide

Arrays and Pointers

Arrays and Pointers
In COBOL, arrays are called tables. The language constructs available for representing
and handling tables are discussed in Chapter 4, “Handling Tables” on page 47.

 Pointers
Pointer data items can contain virtual storage addresses. You define them explicitly
with the USAGE IS POINTER clause in the Data Division or implicitly as ADDRESS OF
special registers.

Pointer data items can be:

� Passed between programs using the CALL ... BY REFERENCE statement
� Moved to other pointers using the SET statement
� Compared to other pointers for equality using a relation condition
� Initialized to contain an invalid address, using VALUE IS NULL

Use pointer data items to:

� Accomplish limited base addressing, particularly if you want to pass and receive
addresses of a variably located record area.

� Handle a chained list.

 Procedure Pointers
A procedure pointer is a pointer to an entry point. Define the entry address for a proce-
dure entry point with the USAGE IS PROCEDURE-POINTER clause in the Data Divi-
sion.

 Chapter 1. Introduction to COBOL Terms 11

IDENTIFICATION DIVISION

 Chapter 2. Program Structure

A COBOL program consists of four divisions, each with a specific logical function. Only
the IDENTIFICATION DIVISION is required.

� The IDENTIFICATION DIVISION, discussed on page 12.

� The ENVIRONMENT DIVISION, discussed on page 13.

� The DATA DIVISION, discussed on page 18.

� The PROCEDURE DIVISION, discussed on page 22.

To define a COBOL class or method, you need to define some divisions differently than
you would for a program. For detail on the differences, see “Writing a Class Definition”
on page 272 or “Writing a Method Definition” on page 276.

 IDENTIFICATION DIVISION
Use the IDENTIFICATION DIVISION to name your program and to optionally give other
identifying information. For example:

 Identification Division.

 Program-ID. Helloprog.

Author. A. Programmer.

 Installation. Computing Laboratories.

 Date-Written. ð8/18/1997.

 Date-Compiled. ð2/27/1998.

You can use the optional AUTHOR, INSTALLATION, DATE-WRITTEN, and DATE-COMPILED
paragraphs for descriptive information about your program. The data you enter on the
DATE-COMPILED paragraph is replaced with the latest compilation date.

 PROGRAM-ID Paragraph
Use the PROGRAM-ID paragraph to name your program. The program name you
assign is used in these ways:

� Other programs use the name to call your program.

� The name appears in the header on each page, except the first page, of the
program listing generated when the program is compiled. (See “Changing Header
of Source Listing” on page 13 for details.)

Marking Programs as RECURSIVE
Code the RECURSIVE attribute on the PROGRAM-ID clause so your program can be
recursively re-entered while a previous invocation is still active.

RECURSIVE can be coded only on the outermost program of a compilation unit. Neither
programs containing nested subprograms nor nested subprograms can be recursive.

12  Copyright IBM Corp. 1996, 1998

ENVIRONMENT DIVISION

Marking Programs as COMMON
Use the COMMON attribute with the PROGRAM-ID clause so your program can be called
by the containing program or by any program in the containing program. However, the
COMMON program cannot be called by any program contained in itself. Only contained
programs can have the COMMON attribute. For more information, see “Structure of
Nested Programs” on page 373.

Marking Programs as INITIAL
Use the INITIAL attribute to specify that whenever a program is called, it is placed in its
initial state, and any of its contained programs are also placed in their initial states.

Definition of Initial State: Essentially, a program is in its initial state when data items
having VALUE clauses are set to the specified value, changed GO TO statements and
PERFORM statements are set to their initial states, and non-EXTERNAL files are closed.

Avoiding Mismatches Between Names
To avoid mistakes when the name is case-sensitive, verify that the appropriate setting
of the PGMNAME option is used.

Changing Header of Source Listing
The header on the first page of your source statement listing contains the identification
of the compiler and the current release level, plus the date and time of compilation and
the page number. For example:

PP 5639-B92 IBM VisualAge COBOL (OS/2) 2.2 Date ð2/27/1998 Time 15:ð5:19 Page 1

The header indicates the compilation platform used as either OS/2 or Windows.
(Throughout this book, all sample headers show OS/2 as being the compilation plat-
form.)

You can customize the header on succeeding pages of the listing with the compiler-
directing TITLE statement. See the IBM COBOL Language Reference for details of the
TITLE statement.

 ENVIRONMENT DIVISION
In the ENVIRONMENT DIVISION you can describe those aspects of your program that are
dependent upon the characteristics of the computing environment in which you are
working.

 CONFIGURATION SECTION
You can use the CONFIGURATION SECTION to describe the computer for compiling your
program (in the SOURCE-COMPUTER paragraph); describe the computer for running
your program (in the OBJECT-COMPUTER paragraph); and specify such items as the
currency sign, symbolic characters (in the SPECIAL-NAMES paragraph), and user-

 Chapter 2. Program Structure 13

ENVIRONMENT DIVISION

defined classes (in the REPOSITORY paragraph). Figure 3 on page 15 shows a
sample of some of the entries you might include in the CONFIGURATION SECTION.

Specify the Collating Sequence
Using the PROGRAM COLLATING SEQUENCE clause and the ALPHABET clause of the
SPECIAL-NAMES paragraph, you can establish the collating sequence used in the fol-
lowing operations:

� Non-numeric comparisons explicitly specified in relation conditions and condition-
name conditions

� HIGH-VALUE and LOW-VALUE settings

 � SEARCH ALL

� SORT and MERGE unless overridden by a COLLATING SEQUENCE phrase on the
SORT or MERGE statement.

The sequence you use can be based on one of these alphabets:

 � NATIVE

NATIVE is the collating sequence specified by the locale setting. The locale setting
refers to the national language locale name in effect at compile time. It is usually
set at installation. See “Locale Sensitivity” on page 486 for more information about
locale sensitivity.

 � EBCDIC

� ASCII (use NATIVE if the native character set is ASCII, STANDARD-12 if it is not).

� ISO 7-bit code3, International Reference Version (use STANDARD-2).

� An alteration of the ASCII sequence that you define in the SPECIAL-NAMES para-
graph.

You can also specify a collating sequence of your own definition.

Caution: If the code page is DBCS the ALPHABET-NAME clause is not allowed.

Specifying Collating Sequence Example: Figure 3 on page 15 shows the ENVIRON-
MENT DIVISION coding used to specify a collating sequence where uppercase and low-
ercase letters are similarly handled for comparisons and for sorting or merging. When
you change the ASCII sequence in the SPECIAL-NAMES paragraph, the overall collating
sequence is affected, not just the collating sequence of the characters included in the
SPECIAL-NAMES paragraph.

2 STANDARD-1 refers to American National Standard X3.4, Code for Information Interchange.

3 ISO 7-bit code, as defined in International 646, 7-Bit Coded Character Set for Information Processing Interchange, International
Reference.

14 VisualAge COBOL Programming Guide

ENVIRONMENT DIVISION

Identification Division.

.

.

Environment Division.

 Configuration Section.

 Object-Computer.

Program Collating Sequence Special-Sequence.

 Special-Names.

Alphabet Special-Sequence Is

"A" Also "a"

"B" Also "b"

"C" Also "c"

"D" Also "d"

"E" Also "e"

"F" Also "f"

"G" Also "g"

"H" Also "h"

"I" Also "i"

"J" Also "j"

"K" Also "k"

"L" Also "l"

"M" Also "m"

"N" Also "n"

"O" Also "o"

"P" Also "p"

"Q" Also "q"

"R" Also "r"

"S" Also "s"

"T" Also "t"

"U" Also "u"

"V" Also "v"

"W" Also "w"

"X" Also "x"

"Y" Also "y"

"Z" Also "z".

Figure 3. Example of an Alternate Collating Sequence

Define Symbolic Characters
Use the SYMBOLIC CHARACTER clause to give symbolic names to any character of the
specified alphabet. For example, to give a name to the plus character (X'2B' in the
ASCII alphabet) code:

SYMBOLIC CHARACTERS PLUS IS 44

Use ordinal position to identify the character; position 1 corresponds to character
X'00'.

Define a User-Defined Class
Use the CLASS clause to give a name to a set of characters listed in the clause. For
example, name the set of digits by coding:

CLASS DIGIT IS "ð" THROUGH "9"

 Chapter 2. Program Structure 15

ENVIRONMENT DIVISION

The class name can only be referenced in a class condition. (This user-defined class is
not the same concept as an object-oriented class.)

 INPUT-OUTPUT SECTION:
Your IBM VisualAge COBOL programs can process files with line sequential, sequen-
tial, indexed, or relative organization.

Use the FILE-CONTROL and I-O-CONTROL paragraphs to:

� Identify and describe the characteristics of your program files.

� Associate your files with the corresponding system file name, directly or indirectly.

� Optionally identify the file system (for example, VSAM or STL file system) associ-
ated with the file. You can also do this at program execution time.

� Provide information on how the file is accessed.

 FILE-CONTROL Paragraph
The FILE-CONTROL paragraph associates each file in the COBOL program with a phys-
ical file known to your file system. Figure 4 shows an example of a FILE-CONTROL
paragraph for a VSAM indexed file.

FILE-CONTROL Entries for a VSAM Indexed File

SELECT COMMUTER-FILE .1/
ASSIGN TO COMMUTER .2/
ORGANIZATION IS INDEXED .3/
ACCESS IS RANDOM .4/
RECORD KEY IS COMMUTER-KEY .5/
FILE STATUS IS .5/

 COMMUTER-FILE-STATUS
 COMMUTER-VSAM-STATUS.

Figure 4. Example of a FILE-CONTROL Paragraph

.1/ The SELECT clause chooses a file in the COBOL program to be associated with
a corresponding system file.

.2/ The ASSIGN clause associates the program's name for the file with the name of
the file as known to the system. COMMUTER may be the system file name or the
name of the environment variable whose value (at run time) is used as the
system file name with optional directory and path names.

.3/ Use the ORGANIZATION clause to describe the file's organization. If omitted, the
default is ORGANIZATION IS SEQUENTIAL.

.4/ Use the ACCESS MODE clause to define the manner in which the records in the
file will be made available for processing—sequential, random, or dynamic. If
you omit this clause, ACCESS IS SEQUENTIAL is assumed.

16 VisualAge COBOL Programming Guide

ENVIRONMENT DIVISION

.5/ You might have additional statements in the FILE-CONTROL paragraph
depending on the type of file and file system you use. See the IBM COBOL
Language Reference for more information about the FILE-CONTROL paragraph.

Chapter 7, “Processing Files” on page 91 provides a general overview on files and file
processing.

Identifying Files to the Operating System
As stated in the previous example, the ASSIGN clause associates the program's name
for a file with the name of the file as known to the operating system.

You can use either an environment variable, a system file name, a literal, or a data
name in the ASSIGN clause. If you specify an environment variable, its value is evalu-
ated at run time and is used as the system file name with optional directory and path
names.

If you plan to use a file system other than the default file system, you need to select the
file system explicitly, for example, by specifying the file system identifier before the
system file name. For example, if the file MYFILE is a Btrieve file and you use F1 as the
file's name in your program, the ASSIGN clause would be

SELECT F1 ASSIGN TO BTR-MYFILE

Note that this assumes that MYFILE is a system file name and not an environment vari-
able. If MYFILE is an environment variable, then its value will be used. For example, if
it is set to MYFILE=VSAM-YOURFILE, the system file name in the ASSIGN clause becomes
YOURFILE at run time, and the file is treated as a VSAM file, overriding the file system ID
used in ASSIGN clause in the program.

Vary the Input/Output File at Run Time
The file-name you code in your SELECT sentence is used as a constant throughout your
COBOL program, while the name of the file in your SET command can be associated
with a different file at run time.

Changing a file-name in your COBOL program requires changing input/output state-
ments and recompiling the program. In contrast, you can change the assignment-name
in your SET command.

Example of Using Different Input Files: As an example, consider a COBOL program
that might be used in exactly the same way for several different master files. It con-
tains this SELECT sentence:

 SELECT MASTER

ASSIGN TO MASTERA

For example, if you are accessing both checking and savings files using the same
MASTER file, you can set the MASTERA environment variable prior to the program exe-
cution as follows:

set MASTERA=d:\accounts\checking

to access the file named checking in the d:\accounts drive and directory and

 Chapter 2. Program Structure 17

DATA DIVISION

set MASTERA=d:\accounts\savings

to do the same for the file named savings

The same program can be used to access both checking and savings files by way of
the COBOL MASTER file without source program changes or recompilation.

Environment variable values in effect at the time of the program invocation are used for
associating COBOL file names to the system file names (including any drive and path
specifications).

 DATA DIVISION
Define the characteristics of your data and group your data definitions into one of the
sections in the DATA DIVISION:

� Define data used in input/output operations in the FILE SECTION (discussed in
“FILE SECTION (Using Data in Input/Output Operations)”).

� Define data developed for internal processing:

– To be statically allocated and exist for the life of the run-unit:
WORKING-STORAGE SECTION (discussed on page 19).

– To be allocated each time a program is called and deallocated when the
program ends: LOCAL-STORAGE SECTION (discussed on page 20).

� Describe data from another program in the LINKAGE SECTION (discussed on page
21).

Limits in the DATA DIVISION
The IBM VisualAge COBOL compiler limits the maximum size of data division elements.
For a complete list of these compiler limits, see IBM COBOL Language Reference.

FILE SECTION (Using Data in Input/Output Operations)
Define the data you use in input and output operations in the FILE SECTION:

� Name the input and output files your program will use.

Use the FD entry to give names to your files that the input/output statements in the
PROCEDURE DIVISION can refer to.

Caution: Data items defined in the FILE SECTION are not available to PROCEDURE
DIVISION statements until the file has been successfully opened.

� In the record description following the FD entry describe the records and their fields
in the file. The record-name established is the object of WRITE and REWRITE state-
ments.

Function and Use of FILE SECTION Entries
Entries in the FILE SECTION are summarized in Figure 5.

18 VisualAge COBOL Programming Guide

DATA DIVISION

Figure 5. FILE SECTION Entries

Clause To Define

FD The file-name to be referred to in PROCEDURE DIVISION input/output state-
ments (OPEN, CLOSE, READ, START, and DELETE). Must match file-name in
the SELECT clause. file-name is associated with the system file through the
assignment-name.

RECORD CONTAINS n Size of logical records (fixed length)

RECORD IS VARYING Size of logical records (variable length)

RECORD CONTAINS n TO m Size of logical records (variable length)

VALUE OF An item in the label records associated with file. Comments only.

DATA RECORDS Names of records associated with file. Comments only.

RECORDING MODE Record type for sequential files.

Sharing Files Using the EXTERNAL and GLOBAL Clauses
Programs in the same run unit can refer to the same COBOL file names. You can also
share physical files without using external or global file definitions in COBOL source
programs.

For example, if you specify:

SELECT F1 ASSIGN TO MYFILE.

SELECT F2 ASSIGN TO MYFILE.

The application has two COBOL file names, but these COBOL files are associated with
one system file.

EXTERNAL: Is used for separately compiled programs. A file that is defined as
EXTERNAL can be referenced by any program in the run unit that describes the file.
See “Sharing Files between Programs (EXTERNAL Files)” on page 399 for an
example.

GLOBAL: Is used for programs in a nested, or contained, structure. If a program
contains another program (directly or indirectly), both programs can access a common
file by referencing a GLOBAL file name. For more information on contained programs
and the GLOBAL clause, see “Structure of Nested Programs” on page 373.

WORKING-STORAGE SECTION and LOCAL-STORAGE SECTION
You can write a program that processes data without performing any input/output oper-
ations. All the data would be defined in the WORKING-STORAGE SECTION or
LOCAL-STORAGE SECTION.

Most programs, however, have a combination of input and output file processing and
internal data manipulation; the data files are defined in the FILE SECTION, and the data
developed by the program is defined in the WORKING-STORAGE SECTION or
LOCAL-STORAGE section.

 Chapter 2. Program Structure 19

DATA DIVISION

What is the WORKING-STORAGE SECTION?
When a program is invoked, the WORKING STORAGE associated with the program is
allocated. Any data items with VALUE clauses are initialized to the appropriate value at
that time. For the duration of the run-unit, Working-Storage items persist in their last-
used state. Exceptions are:

� A program with INITIAL specified on the PROGRAM-ID.

In this case, WORKING-STORAGE data items are reinitialized each time the program
is entered.

� A subprogram that is called and then cancelled.

In this case, WORKING-STORAGE DATA items are reinitialized on the first reentry
into the program following the CANCEL.

Working-Storage is deallocated at the termination of the run-unit.

What is the LOCAL-STORAGE SECTION?
Local-Storage is allocated each time the program is called and is deallocated when the
program returns via an EXIT PROGRAM, GOBACK, or STOP RUN. Any data items with
VALUE clauses are initialized to the appropriate value each time the program is called.
The value in the data items is lost when the program returns.

Storage Sections Example
The following is an example of a recursive program that uses both Working-Storage
and Local-Storage.

20 VisualAge COBOL Programming Guide

DATA DIVISION

CBL apost,pgmn(lu)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\ Recursive Program - Factorials

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

 Identification Division.

 Program-Id. factorial recursive.

 Environment Division.

 Data Division.

 Working-Storage Section.

ð1 numb pic 9(4) value 5.

ð1 fact pic 9(8) value ð.

 Local-Storage Section.

ð1 num pic 9(4).

 Procedure Division.

move numb to num.

if numb = ð

move 1 to fact

 else

subtract 1 from numb

 call 'factorial'

multiply num by fact

 end-if.

display num '! = ' fact.

 goback.

 End Program factorial.

Figure 6. Storage Sections Example

Recursive

CALL's: Main 1 2 3 4 5

L-S num 5 4 3 2 1 ð

W-S numb 5 4 3 2 1 ð

fact ð ð ð ð ð ð

Recursive

GOBACK's: 5 4 3 2 1 Main

L-S num ð 1 2 3 4 5

W-S numb ð ð ð ð ð ð

fact 1 1 2 6 24 12ð

LINKAGE SECTION (Using Data from Another Program)
How you share data depends on whether the programs are separately compiled or are
nested.

 Chapter 2. Program Structure 21

PROCEDURE DIVISION

Separately Compiled Programs
Many times an application's solution consists of many separately compiled programs
that call and pass data to one another. The LINKAGE SECTION in the called program
describes the data passed from another program. The calling program must use a
CALL ... USING or INVOKE ... USING statement to pass the data. For details on using
data from other programs, see “Passing Data” on page 387.

 Nested Programs
An application's solution might consist of nested programs—programs that are con-
tained in other programs. Level-01 LINKAGE SECTION data items can include the
GLOBAL attribute. This allows any nested program that includes the declarations to
access these LINKAGE SECTION data items.

A nested program can also access data items in a sibling program (one at the same
nesting level in the same containing program) that is declared with the COMMON attri-
bute. For more details, see “Structure of Nested Programs” on page 373.

With Recursion or Multithreading
If you compile your program as recursive or with the THREAD option, data defined in the
LINKAGE SECTION may not be accessible between entries.

The ability to address a record in the LINKAGE SECTION is established by:

� Passing an argument to the program and specifying the record in an appropriate
position in the USING phrase in the program or

� Using the Format 5 SET statement.

If you compile your program as recursive or with the THREAD option, the address to that
record is valid for the particular instance of the program invocation. The address to the
record in another execution instance of the same program must be re-established for
that execution instance. Unpredictable results will occur if reference is made to a data
item whose address has not been established.

 PROCEDURE DIVISION
In the PROCEDURE DIVISION of a program you code the executable statements that
process the data you have defined in the other divisions. The PROCEDURE DIVISION
contains one or two headers and the logic of your program.

PROCEDURE DIVISION Headers
The PROCEDURE DIVISION begins with the division header and a procedure-name
header. The division header for a program can simply be:

PROCEDURE DIVISION.

Or, you can code your division header to receive parameters with the USING phrase or
to return a value with the RETURNING Phrase.

22 VisualAge COBOL Programming Guide

PROCEDURE DIVISION

USING Phrase

To receive an argument that was passed by reference (the default) or by content, code
the division header for a program like this:

PROCEDURE DIVISION USING dataname

Or this:

PROCEDURE DIVISION USING BY REFERENCE dataname

Take Note: dataname in these examples would need to be defined in the LINKAGE
SECTION of the program.

To receive a parameter that was passed by value, code the division header for a
program like this:

PROCEDURE DIVISION USING BY VALUE dataname

See “Passing Data” on page 387 for more information on BY VALUE.

RETURNING Phrase

To return a value as a result, code the division header like this:

Procedure Division RETURNING dataname2

You can also combine USING AND RETURNING in a PROCEDURE DIVISION header:

Procedure Division USING dataname RETURNING dataname2

Take Note: dataname and dataname2 in these examples would need to be defined in
the LINKAGE SECTION.

How Logic is Divided in the PROCEDURE DIVISION
The PROCEDURE DIVISION of a program is divided into sections, paragraphs, sen-
tences, and statements:

Section Logical subdivision of your processing logic.

A section can contain several paragraphs.

A section can be the subject of the PERFORM statement.

Paragraph Subdivides a section, procedure, or program.

It contains a set of related statements that provide a function and is one
of the basic building blocks of a structured program. A paragraph can be
the subject of a statement.

Sentence Series of one or more COBOL statements ending with a period.

Many structured programs do not have separate sentences. Each para-
graph can contain one sentence. Using scope terminators instead of
periods to show the logical end of a statement is preferred. Scope termi-
nators, both explicit and implicit, are discussed beginning on page 25.

 Chapter 2. Program Structure 23

PROCEDURE DIVISION

Statement Performs a defined step of COBOL processing, such as adding two
numbers.

A statement is a valid combination of words, beginning with a COBOL
verb.

Statements Used in the PROCEDURE DIVISION
In the COBOL language, statements are imperative (indicating unconditional action),
conditional, or compiler-directing.

Imperative and conditional statements can be ended implicitly or explicitly. If you end a
conditional statement explicitly, it becomes a delimited scope statement (which is an
imperative statement).

 Imperative Statements
An imperative statement indicates that an unconditional action is to be taken. Exam-
ples are ADD, MOVE, INVOKE, and CLOSE. A full list of imperative statements can be
found in IBM COBOL Language Reference.

 Conditional Statements
A conditional statement is either a simple conditional statement (IF, EVALUATE,
SEARCH) or a conditional statement made up of an imperative statement that includes a
conditional phrase or option.

Examples of Conditional Phrases: For example, an arithmetic statement without ON
SIZE ERROR is an imperative statement. But an arithmetic statement with the condi-
tional option ON SIZE ERROR and without a scope terminator is a conditional statement.

The following are examples of conditional statements if they are coded without scope
terminators:

� Data-manipulation statements with ON OVERFLOW.
� CALL statements with ON OVERFLOW.
� I/O statements with INVALID KEY, AT END, AT END-OF-PAGE.
� RETURN with AT END.

Using the NOT Phrase: For additional program control, the NOT phrase can also be
used with conditional statements. For example, you can provide instructions to be per-
formed when a particular exception does not occur, such as NOT ON SIZE ERROR. The
NOT phrase cannot be used with the ON OVERFLOW phrase of the CALL statement, but
it can be used with the ON EXCEPTION phrase.

Do Not Nest Conditional Statements: An unterminated conditional statement cannot
be contained by (nested within) another statement. Except for nesting statements
within IF statements, nested statements must be imperative statements and must follow
the rules for imperative statements.

24 VisualAge COBOL Programming Guide

PROCEDURE DIVISION

 Compiler-Directing Statements
A compiler-directing statement is not part of the program logic. A compiler-directing
statement causes the compiler to take specific action about the program structure,
COPY processing, listing control, control flow, or CALL interface convention.

A description of compiler-directing statements can be found in IBM COBOL Language
Reference. See “Compiler-Directing Statements” on page 202 for usage notes.

Explicit Scope Terminators
Explicit scope terminators end certain conditional and imperative forms of PROCEDURE
DIVISION statements. Use an explicit scope terminator to make a conditional statement
imperative (see “Delimited Scope Statements” on page 26). Or use an explicit scope
terminator to clearly end an imperative statement. Explicit scope terminators are pro-
vided for certain COBOL verbs, such as scope terminator END-IF for the IF verb, and
can be found in IBM COBOL Language Reference.

Example of Using Explicit Scope Terminators

MOVE ð TO TOTAL

PERFORM UNTIL X = 1ð

ADD 1 TO TOTAL

IF X = 5

DISPLAY "HALFWAY THROUGH"

DISPLAY "TOTAL IS " TOTAL

 END-IF

ADD 1 TO X

 END-PERFORM

DISPLAY "FINAL TOTAL IS " TOTAL

Implicit Scope Terminators
An implicit scope terminator is a period (.) that ends the scope of all previous state-
ments not yet ended.

Example of Using Implicitly Terminated Statements:

 IF CAT

DISPLAY "It is a cat."

 ELSE

 IF DOG

DISPLAY "It is a dog."

 ELSE

DISPLAY "It is not a dog or cat.".

Each of the two periods in the above program fragment end the IF statements, making
the code equivalent to the following example that has explicit scope terminators:

 Chapter 2. Program Structure 25

PROCEDURE DIVISION

 IF CAT

DISPLAY "It is a cat."

 ELSE

 IF DOG

DISPLAY "It is a dog."

 ELSE

DISPLAY "It is not a dog or cat."

 END-IF

 END-IF

If you use implicit terminators, it can be unclear where statements end. As a result,
you might end statements unintentionally, changing your program's logic. Explicit scope
terminators make a program easier to understand and prevent unintentional ending of
statements. For example, in the program fragment below, changing the location of the
first period in the first implicit scope example changes the meaning of the code:

IF ITEM = "A"

DISPLAY "VALUE OF ITEM IS " ITEM

ADD 1 TO TOTAL.

MOVE "C" TO ITEM

DISPLAY " VALUE OF ITEM IS NOW " ITEM

IF ITEM = "B"

ADD 2 TO TOTAL.

The two statements:

MOVE "C" TO ITEM

DISPLAY " VALUE OF ITEM IS NOW " ITEM

will be performed regardless of the value of ITEM, despite what the indentation indi-
cates, because the first period terminates the IF statement. For improved program
clarity and to avoid unintentional ending of statements, you should use explicit scope
terminators instead of implicit scope terminators, especially within paragraphs. Use
implicit scope terminators only at the end of a paragraph or the end of the program.

Delimited Scope Statements
A delimited scope statement is a conditional statement ended with an explicit scope
terminator. A delimited scope statement can be used in these ways:

� To delimit the range of operation for a COBOL conditional statement and to explic-
itly show the levels of nesting.

For example, use an END-IF statement instead of a period to end the scope of an
IF statement within a nested IF.

� To code a conditional statement where the COBOL syntax calls for an imperative
statement.

For example, code a conditional statement as the object of an inline PERFORM:

26 VisualAge COBOL Programming Guide

PROCEDURE DIVISION

PERFORM UNTIL TRANSACTION-EOF

 PERFORM 2ðð-EDIT-UPDATE-TRANSACTION

 IF NO-ERRORS

 PERFORM 3ðð-UPDATE-COMMUTER-RECORD

 ELSE

 PERFORM 4ðð-PRINT-TRANSACTION-ERRORS

 END-IF

READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD

 AT END

SET TRANSACTION-EOF TO TRUE

 END-READ

 END-PERFORM

An explicit scope terminator is required for the inline PERFORM statement, but it is
not valid for the out-of-line PERFORM statement.

Rules for Delimited Scope Statements: Because a period implicitly ends the scope
of all previous statements, do not use a period in a delimited scope statement.

In general, a delimited scope statement can be coded wherever an imperative state-
ment is allowed by language rules.

Using Nested Delimited Scope Statements: When nested within another delimited
scope statement with the same verb, each explicit scope terminator ends the statement
begun by the most recently preceding (and as yet unpaired) occurrence of that verb.

Be careful when coding an explicit scope terminator for an imperative statement that is
nested within a conditional statement. Ensure that the scope terminator is paired with
the statement for which it was intended. In the following example, the scope terminator
will be paired with the second READ statement, though the programmer intended it to
be paired with the first.

 READ FILE1

 AT END

MOVE A TO B

 READ FILE2

 END-READ

To ensure that the explicit scope terminator is paired with the intended statement, the
preceding example can be recoded in this way:

 READ FILE1

 AT END

MOVE A TO B

 READ FILE2

 END-READ

 END-READ

 Declaratives
Declaratives provide one or more special-purpose sections that are executed when an
exceptional condition occurs.

 Chapter 2. Program Structure 27

PROCEDURE DIVISION

Each Declarative Section starts with a USE statement that identifies the function of the
section; the series of procedures that follow specify what actions are to be taken when
the condition occurs. See the IBM COBOL Language Reference for a complete
description of declaratives and Chapter 13, “Debugging Techniques” on page 244 and
“Input/Output Error Handling Techniques” on page 123 for instances of their use.

28 VisualAge COBOL Programming Guide

How COBOL Views Numbers

Chapter 3. Numbers and Arithmetic

This chapter explains how COBOL views numeric data and how you can best represent
numeric data and perform efficient arithmetic operations. The topics are:

� “General COBOL View of Numbers (PICTURE clause).”
� “Computational Data Representation (USAGE Clause)” on page 30.
� “Data Format Conversions” on page 35.
� “Sign Representation and Processing” on page 37.
� “Checking for Incompatible Data (Numeric Class Test)” on page 37.
� “Performing Arithmetic” on page 38.
� “Fixed-Point versus Floating-Point Arithmetic” on page 43.

General COBOL View of Numbers (PICTURE clause)
In general, you can view COBOL numeric data in a way similar to character-string
data—as a series of decimal digit positions. However, numeric items can have special
properties, such as an arithmetic sign.

Defining Numeric Items
Define numeric items using the character "9" in the data description to represent the
decimal digits of the number instead of using an "x" like with alphanumeric items:

ð5 Count-x Pic 9(4) Value 25.

ð5 Customer-name Pic x(2ð) Value "Johnson".

You can code up to 18 digits in the PICTURE clause, as well as various other characters
of special significance. The "s" in the following example means that the value is
signed:

ð5 Price Pic s99v99.

The field can hold a positive or negative value. The "v" indicates the position of an
implied decimal point. Neither "s" nor "v" are counted in the size of the item, nor do
they require extra storage positions, unless the item is coded as USAGE DISPLAY with
the SIGN IS SEPARATE clause. An exception is internal floating point data (COMP-1 or
COMP-2), for which there is no PICTURE clause.

Separate Sign Position (for Portability)
If you plan to port your program or data to a different machine, you might want to code
the sign as a separate digit position in storage:

ð5 Price Pic S99V99 Sign Is Leading, Separate.

This ensures that the convention your machine uses for storing a non-separate sign will
not cause strange results when you use a machine that uses a different convention.

 Copyright IBM Corp. 1996, 1998 29

How COBOL Stores Your Numbers

Extra Positions for Displayable Symbols (Numeric Editing)
You can also define numeric items with certain editing symbols (such as decimal points,
commas, and dollar signs) to make the data easier to read and understand when dis-
played or printed on reports. For example:

ð5 Price Pic 9(5)v99.

ð5 Edited-price Pic $zz,zz9v99.
...

Move Price To Edited-price

 Display Edited-price

If the contents of Price were 0150099 (representing the value 1,500.99), then $
1,5ðð.99 would be displayed after the code is run.

How to Use Numeric-Edited Items as Numbers
Numeric-edited items are classified as alphanumeric data items, not as numbers.
Therefore, they cannot be operands in arithmetic expressions or ADD, SUBTRACT, MUL-
TIPLY, DIVIDE, and COMPUTE statements.

Numeric-edited items can be moved to numeric and numeric-edited items. In the fol-
lowing example, the numeric-edited item is de-edited and its numeric value is moved to
the numeric data item.

Move Edited-price to Price

Display Price

If these two statements were to immediately follow the statements shown in the pre-
vious example, then Price would be displayed as 0150099, representing the value
1,500.99.

For complete information on the data descriptions for numeric data, refer to IBM
COBOL Language Reference.

Computational Data Representation (USAGE Clause)
Control how the computer internally stores your numeric data items by coding the
USAGE clause in your data description entries. The numeric data you use in your
program will be one of the formats available with COBOL:

External decimal (USAGE DISPLAY)
External floating-point (USAGE DISPLAY)
Internal decimal (USAGE PACKED-DECIMAL)
Binary (USAGE BINARY)

 Binary (COMP-5).
Internal floating-point (USAGE COMP-1, USAGE COMP-2)

COMP and COMP-4 are synonymous with BINARY, and COMP-3 is synonymous with
PACKED-DECIMAL.

30 VisualAge COBOL Programming Guide

How COBOL Stores Your Numbers

Regardless of what USAGE clause you use to control the computer's internal represen-
tation of the value, you use the same PICTURE clause conventions and decimal value in
the VALUE clause except for floating point data.

External Decimal (USAGE DISPLAY) Items
When you code USAGE DISPLAY or omit the USAGE clause, each position (or byte) of
storage contains one decimal digit. This corresponds to the format used for printing or
displaying output, meaning the items are stored in displayable form.

What USAGE DISPLAY Items Are For
External decimal items are primarily intended for receiving and sending numbers
between your program and files, terminals, and printers. However, it is also acceptable
to use external decimal items as operands and receivers in your program's arithmetic
processing, and it is often convenient to program this way.

Should You Use Them for Arithmetic
If your program performs a lot of intensive arithmetic and efficiency is a high priority,
you might want to use one of COBOL's computational numeric data types for the data
items used in the arithmetic.

The compiler has to automatically convert displayable numbers to the internal represen-
tation of their numeric value before they can be used in arithmetic operations. There-
fore, it is often more efficient to define your data items as computational items to begin
with, rather than as DISPLAY items. For example:

ð5 Count-x Pic s9v9(5) Usage Comp Value 3.14159.

External Floating-Point (USAGE DISPLAY) Items
Displayable numbers coded in a floating-point format are called external floating-point
items. Like external decimal items, you define external floating-point items explicitly
with USAGE DISPLAY or implicitly by omitting the USAGE clause.

In the following example, Compute-Result is implicitly defined as an external floating-
point item. Each byte of storage contains one character (except for V).

ð5 Compute-Result Pic -9v9(9)E-99.

The VALUE clause is not allowed in the data description for external floating-point items.
Also, the minus signs (-) do not mean that the mantissa and exponent will always be
negative numbers, but that when displayed the sign will appear as a blank for positive
and a minus sign for negative. If a plus sign (+) were used, positive would be displayed
as a plus sign and negative as a minus sign.

Just as with external decimal numbers, external floating-point numbers have to be con-
verted (automatically by the compiler) to an internal representation of the numeric value
before they can be operated on.

 Chapter 3. Numbers and Arithmetic 31

How COBOL Stores Your Numbers

 Binary Items
BINARY, COMP, and COMP-4 are synonyms on all platforms. COMP-5 is a new USAGE
type based on the X/OPEN COBOL specification.

Binary format occupies 2, 4, or 8 bytes of storage and is handled for arithmetic pur-
poses as a fixed-point number with the leftmost bit being the operational sign. For
byte-reversed binary data, the sign bit is the leftmost bit of the rightmost byte.

How Much Storage BINARY Occupies
A PICTURE description with 4 or fewer decimal digits occupies 2 bytes; with 5 to 9
decimal digits, 4 bytes; with 10 to 18 decimal digits, 8 bytes.

Why Use Binary
Binary items can, for example, contain subscripts, switches, and arithmetic operands or
results.

However, you might want to use packed decimal format instead of binary because:

� Binary format might not be as well suited for decimal alignment as packed decimal
format.

� Binary format is not converted to and from DISPLAY format as easily as packed
decimal format.

Truncation of Binary Data (TRUNC Compiler Option)
Use the TRUNC(STD|OPT|BIN) compiler option (described in “TRUNC” on page 195) to
indicate how binary data (BINARY, COMP, and COMP-4) is truncated.

COMP-5 Note: COMP-5 data is truncated according to TRUNC(BIN) regardless of
which suboption of TRUNC you set.

Byte-Reversal of Binary Data (BINARY Compiler Option)
On the PC you sometimes need to be concerned with byte reversal. How binary data
is stored depends on the platform you're running under or the products you're using.

For example, Intel platforms by default store binary data in little-endian format (most
significant digit is on the highest address). System/390 and AIX by default store binary
data in big-endian format (least significant digit is on the highest address).

The BINARY(NATIVE|S390) compiler option (described in “BINARY” on page 163) allows
you to indicate whether binary data types BINARY, COMP, and COMP-4 are to be
stored in big-endian or little-endian format.

COMP-5 is handled as the native binary data format regardless of the
BINARY(NATIVE|S390) option setting.

COMP-5 is the recommended data type to use when interfacing with other languages
(such as C or C++) or other products (such as CICS or DB2) that assume native binary
data formats. However, a SORT or MERGE statement must not contain both big-

32 VisualAge COBOL Programming Guide

How COBOL Stores Your Numbers

endian and little-endian binary keys. That is, if the BINARY(S390) option is in effect and
a SORT or MERGE key is a COMP-5 data item, no other SORT or MERGE key may
be a COMP, BINARY, or COMP-4 data item.

Packed Decimal (PACKED-DECIMAL or COMP-3) Items
Packed decimal format occupies 1 byte of storage for every two decimal digits you
code in the PICTURE description, except that the right-most byte contains only 1 digit
and the sign. Packed decimal format is handled as a fixed-point number for arithmetic
purposes.

Why Use Packed Decimal
� Packed decimal format requires less storage per digit than DISPLAY format

requires.

� Packed decimal format might be better suited for decimal alignment than binary
format.

� Packed decimal format is converted to and from DISPLAY format more easily than
binary format.

� Packed decimal format can, for example, contain arithmetic operands or results.

Floating-Point (COMP-1 and COMP-2) Items
COMP-1 refers to short (single-precision) floating-point format, and COMP-2 refers to
long (double-precision) floating-point format, which occupy 4 and 8 bytes of storage,
respectively.

On the PC, COMP-1 and COMP-2 data items are represented in IEEE format if the
FLOAT(NATIVE) compiler option is in effect. See “FLOAT” on page 180 for additional
information.

A PICTURE clause is not allowed in the data description of floating-point data items,
but you can provide an initial value using a floating-point literal in the VALUE clause:

ð5 Compute-result Usage Comp-1 Value ð6.23E-24.

The characteristics of conversions between floating-point format and other number
formats are discussed in the next section, “Data Format Conversions” on page 35.

Floating-point format is well suited for containing arithmetic operands and results and
for maintaining the highest level of accuracy in arithmetic.

For complete information on the data descriptions for numeric data, see IBM COBOL
Language Reference.

 Chapter 3. Numbers and Arithmetic 33

How COBOL Stores Your Numbers

Figure 7. Internal Representation of Numeric Items—Native Data Types. This table assumes that
the BINARY(NATIVE), CHAR(NATIVE), and FLOAT(NATIVE) compiler options are in effect.

Numeric
Type

PICTURE and USAGE and Optional
SIGN Clause Value Internal Representation

External
Decimal

PIC S9999 DISPLAY + 1234

- 1234

 1234

31 32 33 34

71 32 33 34

31 32 33 34

PIC 9999 DISPLAY 1234 31 32 33 34

PIC S9999 DISPLAY

SIGN LEADING

+ 1234

- 1234

31 32 33 34

71 32 33 34

PIC S9999 DISPLAY

SIGN LEADING SEPARATE

PIC S9999 DISPLAY

SIGN TRAILING SEPARATE

+ 1234

- 1234

+ 1234

- 1234

2B 31 32 33 34

2D 31 32 33 34

31 32 33 34 2B

31 32 33 34 2D

Binary PIC S9999 BINARY

 COMP

 COMP-4

+ 1234

- 1234

 D2 ð4

 2E FB

 COMP-5 + 1234

- 1234

 D2 ð4

 2E FB

PIC 9999 BINARY

 COMP

 COMP-4

 1234 D2 ð4

 COMP-5 1234 D2 ð4

Internal
Decimal

PIC S9999 PACKED-DECIMAL

 COMP-3

+ 1234

- 1234

ð1 23 4C

ð1 23 4D

PIC 9999 PACKED-DECIMAL

 COMP-3

 1234 ð1 23 4F

Internal
Floating
Point

 COMP-1 + 1234

- 1234

ðð 4ð 9A 44

ðð 4ð 9A C4

Internal
Floating
Point

 COMP-2 + 1234

- 1234

ðð ðð ðð ðð ðð 48 93 4ð

ðð ðð ðð ðð ðð 48 93 Cð

External
Floating
Point

PIC +9(2).9(2)E+99 DISPLAY + 1234 2B 31 32 2E 33

34 45 2B 3ð 32

- 1234 2D 31 32 2E 33

34 45 2B 3ð 32

34 VisualAge COBOL Programming Guide

Data Format Conversions

Figure 8. Internal Representation of Numeric Items—System/390 Host Data Types. This table
assumes that the BINARY(S390), CHAR(EBCDIC), and FLOAT(HEX) compiler options are in effect.

Numeric
Type

PICTURE and USAGE and Optional
SIGN Clause Value Internal Representation

External
Decimal

PIC S9999 DISPLAY + 1234

- 1234

 1234

F1 F2 F3 C4

F1 F2 F3 D4

F1 F2 F3 C4

PIC 9999 DISPLAY 1234 F1 F2 F3 F4

PIC S9999 DISPLAY

SIGN LEADING

+ 1234

- 1234

C1 F2 F3 F4

D1 F2 F3 F4

PIC S9999 DISPLAY

SIGN LEADING SEPARATE

PIC S9999 DISPLAY

SIGN TRAILING SEPARATE

+ 1234

- 1234

+ 1234

- 1234

4E F1 F2 F3 F4

6ð F1 F2 F3 F4

F1 F2 F3 F4 4E

F1 F2 F3 F4 6ð

Binary PIC S9999 BINARY

 COMP

 COMP-4

+ 1234

- 1234

 ð4 D2

 FB 2E

 COMP-5 + 1234

- 1234

 D2 ð4

 2E FB

PIC 9999 BINARY

 COMP

 COMP-4

 1234 ð4 D2

 COMP-5 1234 D2 ð4

Internal
Decimal

PIC S9999 PACKED-DECIMAL

 COMP-3

+ 1234

- 1234

ð1 23 4C

ð1 23 4D

PIC 9999 PACKED-DECIMAL

 COMP-3

 1234 ð1 23 4F

Internal
Floating
Point

 COMP-1 + 1234

- 1234

43 4D 2ð ðð

C3 4D 2ð ðð

Internal
Floating
Point

 COMP-2 + 1234

- 1234

43 4D 2ð ðð ðð ðð ðð ðð

C3 4D 2ð ðð ðð ðð ðð ðð

External
Floating
Point

PIC +9(2).9(2)E+99 DISPLAY + 1234 4E F1 F2 4B F3

F4 C5 4E Fð F2

- 1234 6ð F1 F2 4B F3

F4 C5 4E Fð F2

Data Format Conversions
When the code in your program involves the interaction of items with different data
formats, the compiler converts these items:

� Temporarily, for comparisons and arithmetic operations.
� Permanently, for assignment to the receiver in a MOVE, COMPUTE, and other

arithmetic statement.

 Chapter 3. Numbers and Arithmetic 35

Data Format Conversions

When possible, the compiler performs the move to preserve the numeric “value” as
opposed to a direct digit-for-digit move. (For more information on truncation and pre-
dicting the loss of significant digits, refer to Appendix C, “Intermediate Results and
Arithmetic Precision” on page 545.)

Conversion Takes Time
Conversion generally requires additional storage and processing time because data is
moved to an internal work area and converted before the operation is performed. The
results might also have to be moved back into a work area and converted again.

Conversions and Precision
Conversions between fixed-point data formats (external decimal, packed decimal, and
binary) are completed without loss of precision, as long as the target field can contain
all the digits of the source operand.

Conversions Where Loss of Precision Is Possible
A loss of precision is possible in conversions between fixed-point data formats and
floating-point data formats (short floating-point, long floating-point, and external floating-
point). These conversions happen during arithmetic evaluations that have a mixture of
both fixed-point and floating-point operands. (Because fixed-point and external floating-
point items both have decimal characteristics, reference to fixed-point items in the fol-
lowing examples includes external floating-point items as well, unless stated otherwise.)

When converting from fixed-point to internal floating-point format, fixed-point numbers in
base 10 are converted to the numbering system used internally, base 16.

Although the compiler converts short form to long form for comparisons, zeros are used
for padding the short number.

When a USAGE COMP-1 data item is moved to a fixed-point data item with more than
6 digits, the fixed-point data item will receive only 6 significant digits, and the remaining
digits will be zero.

Conversions that Preserve Precision: If a fixed-point data item with 6 or fewer digits
is moved to a USAGE COMP-1 data item and then returned to the fixed-point data
item, the original value is recovered.

If a USAGE COMP-1 data item is moved to a fixed-point data item of 6 or more digits
and then returned to the USAGE COMP-1 data item, the original value is recovered.

If a fixed-point data item with 15 or fewer digits is moved to a USAGE COMP-2 data
item and then returned to the fixed-point data item, the original value is recovered.

If a USAGE COMP-2 data item is moved to a fixed-point (not external floating-point)
data item of 18 digits and then returned to the USAGE COMP-2 data item, the original
value is recovered.

36 VisualAge COBOL Programming Guide

Numeric Class Test

Conversions that Result In Rounding: If a USAGE COMP-1 data item, a USAGE
COMP-2 data item, an external floating-point data item, or a floating-point literal is
moved to a fixed-point data item, rounding occurs in the low-order position of the target
data item.

If a USAGE COMP-2 data item is moved to a USAGE COMP-1 data item, rounding
occurs in the low-order position of the target data item.

If a fixed-point data item is moved to an external floating-point data item where the
PICTURE of the fixed-point data item contains more digit positions than the PICTURE
of the external floating-point data item, rounding occurs in the low-order position of the
target data item.

Sign Representation and Processing
Sign representation affects the processing and interaction of your numeric data.

Given X'sd', where s is the sign representation and d represents the digit, the valid
sign representations for external decimal (USAGE DISPLAY without the SIGN IS SEP-
ARATE clause) are :

Positive: 0, 1, 2, 3, 8, 9, A, and B.

Negative: 4, 5, 6, 7, C, D, E, and F.

When the CHAR(NATIVE) compiler option is in effect, signs generated internally are 3 for
positive and unsigned, and 7 for negative.

When the CHAR(EBCDIC) compiler option is in effect, signs generated internally are C
for positive, F for unsigned, and D for negative.

Given X'ds', where d represents the digit and s is the sign representation, the valid
sign representations for internal decimal (USAGE PACKED-DECIMAL) COBOL data
are:

Positive: A, C, E, and F.

Negative: B and D.

Signs generated internally are C for positive, F for unsigned, and D for negative.

Checking for Incompatible Data (Numeric Class Test)
The compiler assumes that the values you supply for a data item are valid for the item's
PICTURE and USAGE clauses and assigns the value you supply without checking for
validity. When an item is given a value that is incompatible with its data description,
references to that item in the PROCEDURE DIVISION will be undefined and your
results will be unpredictable.

Frequently, values are passed into your program and assigned to items that have
incompatible data descriptions for those values. For example, non-numeric data might

 Chapter 3. Numbers and Arithmetic 37

Doing Math

be moved or passed into a field in your program that is defined as a numeric item. Or,
perhaps a signed number is passed into a field in your program that is defined as an
unsigned number. In either case, these fields contain invalid data. Ensure that the
contents of a data item conforms to its PICTURE and USAGE clauses before using the
data item in any further processing steps.

How to Do a Numeric Class Test
You can use the numeric class test to perform data validation. For example:

Linkage Section.

ð1 Count-x Pic 999.

 .

 .

Procedure Division Using Count-x.

If Count-x is numeric then display "Data is good"

 .

 .

The numeric class test checks the contents of a data item against a set of values that
are valid for the particular PICTURE and USAGE of the data item.

 Performing Arithmetic
COBOL provides various language features to perform arithmetic:

� ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE statements (discussed in
“COMPUTE and Other Arithmetic Statements”).

� Arithmetic expressions (discussed in “Arithmetic Expressions” on page 39).

� Intrinsic functions (discussed in “Numeric Intrinsic Functions” on page 40).

For the complete details of syntax and usage for COBOL language constructs, refer to
IBM COBOL Language Reference.

COMPUTE and Other Arithmetic Statements
The general practice is to use the COMPUTE statement for most arithmetic evaluations
rather than ADD, SUBTRACT, MULTIPLY, and DIVIDE statements. This is because
one COMPUTE statement can often be coded instead of several individual statements.

The COMPUTE statement assigns the result of an arithmetic expression to a data item:

Compute z = a + b / c \\ d - e

or to many data items:

Compute x y z = a + b / c \\ d - e

When to Use Other Arithmetic Statements
Some arithmetic might be more intuitive using the other arithmetic statements. For
example:

Add 1 To Increment

38 VisualAge COBOL Programming Guide

Doing Math

instead of:

Compute Increment = Increment + 1

Or,

Subtract Overdraft From Balance

instead of:

Compute Balance = Balance - Overdraft

Or,

Add 1 To Increment-1, Increment-2, Increment-3

instead of:

Compute Increment-1 = Increment-1 + 1

Compute Increment-2 = Increment-2 + 1

Compute Increment-3 = Increment-3 + 1

You might also prefer to use the DIVIDE statement (with its REMAINDER phrase) for
division in which you want to process a remainder. The REM intrinsic function also
provides the ability to process a remainder. For an example of the REM function, see
“Mathematics” on page 43.

 Arithmetic Expressions
In the examples of COMPUTE shown above, everything to the right of the equal sign
represents an arithmetic expression. Arithmetic expressions can consist of a single
numeric literal, a single numeric data item or a single intrinsic function reference. They
can also consist of several of these items connected by arithmetic operators. These
operators are evaluated in a hierarchic order:

Operators at the same level are evaluated from left to right; however, you can use
parentheses with these operators to change the order in which they are evaluated.
Expressions in parentheses are evaluated before any of the individual operators are
evaluated. Parentheses, necessary or not, make your program easier to read.

In addition to using arithmetic expressions in COMPUTE statements, you can also use
them in other places where numeric data items are allowed. For example, you can use
arithmetic expressions as comparands in relation conditions:

If (a + b) > (c - d + 5) Then...

Figure 9. Operator Evaluation

Operator Meaning Order of Evaluation

Unary + or - Algebraic Sign First

** Exponentiation Second

/ or * Division or multiplication Third

Binary + or - Addition or subtraction Last

 Chapter 3. Numbers and Arithmetic 39

Doing Math

Numeric Intrinsic Functions
Intrinsic functions can return an alphanumeric or numeric value.

Numeric intrinsic functions:

� Return a signed numeric value.

� Are considered to be temporary numeric data items.

� Can be used only in the places in the language syntax where expressions are
allowed.

� Can save you time because you don't have to provide the arithmetic for the many
common types of calculations that these functions cover.

For more information on the practical application of intrinsic functions, including
examples of their usage, refer to “Intrinsic Function Examples” on page 41.

Types of Numeric Functions
Numeric functions are classified into these categories:

Integer Those that return an integer

Floating-Point Those that return a long floating-point value

Mixed Those that return an integer, a long floating-point value, or a fixed-
point number with decimal places, depending on the arguments

The numeric functions available in COBOL under these categories are described in IBM
COBOL Language Reference.

Nesting Functions and Arithmetic Expressions
Numeric functions can be nested; you can reference one function as the argument of
another. A nested function is evaluated independently of the outer function, except
when determining whether a mixed function should be evaluated with fixed-point or
floating-point procedures.

Because numeric functions and arithmetic expressions hold similar status syntactically
speaking, you can also nest an arithmetic expression as an argument to a numeric
function:

Compute x = Function Sum(a b (c / d))

In this example, there are only three function arguments: a, b and the arithmetic
expression (c / d).

ALL Subscripting and Special Registers
Two other useful features of intrinsic functions are the ALL subscript and special
registers:

� You can reference all the elements of an array as function arguments by using the
ALL subscript. This feature is used with tables, and examples of its use are shown
under “Processing Table Items (Intrinsic Functions)” on page 63.

40 VisualAge COBOL Programming Guide

Doing Math

� The integer-type special registers are allowed as arguments wherever integer argu-
ments are allowed.

Intrinsic Function Examples
You can use intrinsic functions to perform several different kinds of arithmetic, as out-
lined in Figure 10.

Figure 10. Types of Arithmetic that Numeric Intrinsic Functions Handle

Number Han-
dling Date/Time Finance Mathematics Statistics

LENGTH
MAX
MIN
NUMVAL
NUMVAL-C
ORD-MAX
ORD-MIN

CURRENT-DATE
DATE-OF-INTEGER
DATE-TO-YYYYMMDD
DAY-OF-INTEGER
DAY-TO-YYYYDDD
INTEGER-OF-DATE
INTEGER-OF-DAY
WHEN-COMPILED
YEAR-TO-YYYY

ANNUITY
PRESENT-VALUE

ACOS
ASIN
ATAN
COS
FACTORIAL
INTEGER
INTEGER-PART
LOG
LOG10
MOD
REM
SIN
SQRT
SUM
TAN

MEAN
MEDIAN
MIDRANGE
RANDOM
RANGE
STANDARD-DEVIATION
VARIANCE

The following examples and accompanying explanations show intrinsic functions in
each of the categories listed in the preceding table.

General Number-Handling: Suppose you want to find the maximum value of two
prices (represented as alphanumeric items with dollar signs), put this value into a
numeric field in an output record, and determine the length of the output record. You
could use NUMVAL-C (a function that returns the numeric value of an alphanumeric
string) and the MAX function to do this:

ð1 X Pic 9(2).

ð1 Price1 Pic x(8) Value "$8ððð".

ð1 Price2 Pic x(8) Value "$2ððð.

ð1 Output-Record.

 ð5 Product-Name Pic x(2ð).

 ð5 Product-Number Pic 9(9).

 ð5 Product-Price Pic 9(6).

 .

 .

 .

Procedure Division.

Compute Product-Price =

Function Max (Function Numval-C(Price1) Function Numval-C(Price2))

Compute X = Function Length(Output-Record)

Additionally, to ensure that the contents in Product-Name are in uppercase letters, you
could use the following statement:

Move Function Upper-case(Product-Name) to Product-Name

 Chapter 3. Numbers and Arithmetic 41

Doing Math

Date/Time: The following example shows how to calculate a due date that is 90 days
from today. The first eight characters returned by the CURRENT-DATE function repre-
sent the date in a 4-digit year, 2-digit month, and 2-digit day format (YYYYMMDD). In
the example, this date is converted to its integer value. Then 90 is added to this value,
and the integer is converted back to the YYYYMMDD format.

ð1 YYYYMMDD Pic 9(8).

ð1 Integer-Form Pic S9(9).

 .

 .

 .

Move Function Current-Date(1:8) to YYYYMMDD

Compute Integer-Form = Function Integer-of-Date(YYYYMMDD)

Add 9ð to Integer-Form

Compute YYYYMMDD = Function Date-of-Integer(Integer-Form)

Display 'Due Date: ' YYYYMMDD

Finance: Business investment decisions frequently require computing the present
value of expected future cash inflows to evaluate the profitability of a planned invest-
ment. The present value of money is its value today. The present value of an amount
that you expect to receive at a given time in the future is that amount which if invested
today at a given interest rate would accumulate to that future amount.

For example, assume a proposed investment of $1,000 produces a payment stream of
$100, $200, and $300 over the next three years, one payment per year respectively.
The following COBOL statements show how to calculate the present value of those
cash inflows at a 10% interest rate:

ð1 Series-Amt1 Pic 9(9)V99 Value 1ðð.

ð1 Series-Amt2 Pic 9(9)V99 Value 2ðð.

ð1 Series-Amt3 Pic 9(9)V99 Value 3ðð.

ð1 Discount-Rate Pic S9(2)V9(6) Value .1ð.

ð1 Todays-Value Pic 9(9)V99.
...

Compute Todays-Value =

 Function

Present-Value(Discount-Rate Series-Amt1 Series-Amt2 Series-Amt3)

The ANNUITY function can be used in business problems that require you to determine
the amount of an installment payment (annuity) necessary to repay the principal and
interest of a loan. The series of payments is characterized by an equal amount each
period, periods of equal length, and an equal interest rate each period. The following
example shows how you could calculate the monthly payment required to repay a
$15,000 loan at 12% annual interest in three years (36 monthly payments, interest per
month = .12/12):

42 VisualAge COBOL Programming Guide

Fixed-Point vs. Floating-Point

ð1 Loan Pic 9(9)V99.

ð1 Payment Pic 9(9)V99.

ð1 Interest Pic 9(9)V99.

ð1 Number-Periods Pic 99.
...

Compute Loan = 15ððð

Compute Interest = .12

Compute Number-Periods = 36

Compute Payment =

Loan \ Function Annuity((Interest / 12) Number-Periods)

Mathematics: The following COBOL statement demonstrates how intrinsic functions
can be nested, how arguments can be arithmetic expressions, and how previously
complex mathematical calculations can be simply performed:

Compute Z = Function Log(Function Sqrt (2 \ X + 1)) + Function Rem(X 2)

Here, the remainder of dividing X by 2 is found with an intrinsic function instead of
using a DIVIDE statement with a REMAINDER clause.

Statistics: Intrinsic functions also make calculating statistical information on data
easier. Assume you are analyzing various city taxes and want to calculate the mean,
median, and range (the difference between the maximum and minimum taxes):

ð1 Tax-S Pic 99v999 value .ð45.

ð1 Tax-T Pic 99v999 value .ð2.

ð1 Tax-W Pic 99v999 value .ð35.

ð1 Tax-B Pic 99v999 value .ð3.

ð1 Ave-Tax Pic 99v999.

ð1 Median-Tax Pic 99v999.

ð1 Tax-Range Pic 99v999.
...

Compute Ave-Tax = Function Mean(Tax-S Tax-T Tax-W Tax-B)

Compute Median-Tax = Function Median(Tax-S Tax-T Tax-W Tax-B)

Compute Tax-Range = Function Range (Tax-S Tax-T Tax-W Tax-B)

Fixed-Point versus Floating-Point Arithmetic
Many statements in your program might involve arithmetic. For example, each of the
following COBOL statements requires some kind of arithmetic evaluation:

 � General arithmetic.

compute report-matrix-col = (emp-count \\ .5) + 1

add report-matrix-min to report-matrix-max giving report-matrix-tot

� Expressions and functions.

compute report-matrix-col = function sqrt(emp-count) + 1

compute whole-hours = function integer-part((average-hours) + 1)

 � Arithmetic comparisons.

if report-matrix-col < function sqrt(emp-count) + 1
if whole-hours not = function integer-part((average-hours) + 1)

 Chapter 3. Numbers and Arithmetic 43

Fixed-Point vs. Floating-Point

For each arithmetic evaluation in your program—whether it is a statement, an intrinsic
function, an expression, or some combination of these nested within each other—how
you code the arithmetic determines whether it will be floating-point or fixed-point evalu-
ation.

The following discussion explains when arithmetic and arithmetic comparisons are eval-
uated in fixed-point and floating-point. For details on the precision of arithmetic evalu-
ations, see Appendix C, “Intermediate Results and Arithmetic Precision” on page 545.

 Floating-Point Evaluations
In general, if your arithmetic evaluation has either of the characteristics listed below, it
will be evaluated by the compiler in floating-point arithmetic:

� An operand or result field is floating-point.

A data item is floating-point if you code it as a floating-point literal, or if you define
it as USAGE COMP-1, USAGE COMP-2, or as external floating-point (USAGE
DISPLAY with a floating-point PICTURE).

An operand that is a nested arithmetic expression or a reference to numeric
intrinsic function results in floating-point when:

– An argument in an arithmetic expression results in floating-point.
– The function is a floating-point function.
– The function is a mixed-function with one or more floating-point arguments.

� An exponent contains decimal places.

This is true if you use a literal that contains decimal places, give the item a
PICTURE containing decimal places, or use an arithmetic expression or function
whose result has decimal places.

An arithmetic expression or numeric function yields a result with decimal places if
any operand or argument—excluding divisors and exponents—has decimal places.

 Fixed-Point Evaluations
In general, if your arithmetic operation contains neither of the characteristics listed
above for floating-point, it will be evaluated by the compiler in fixed-point arithmetic. In
other words, your arithmetic evaluations will be handled by the compiler as fixed-point
only if all your operands are given in fixed-point, your result field is defined to be fixed-
point, and none of your exponents represent values with decimal places. Nested arith-
metic expression and function references must represent fixed-point values.

Arithmetic Comparisons (Relation Conditions)
If your arithmetic is a comparison (contains a relational operator), then the numeric
expressions being compared—whether they are data items, arithmetic expressions,
function references, or some combination of these—are really operands (comparands)
in the context of the entire evaluation. This is also true of abbreviated comparisons;
although one comparand might not explicitly appear, both are operands in the compar-
ison. For example, in the following statement:

if (a + d) = (b + e) and c

44 VisualAge COBOL Programming Guide

Fixed-Point vs. Floating-Point

there are two comparisons: (a + d) = (b + e) and (a + d) = c. Although (a + d)

does not explicitly appear in the second comparison, it is nevertheless an operand in
that comparison (and thus, evaluation of (a + d) is influenced by the attributes of c).

Implicit Note: Implicit comparisons (no relational operator used) are not handled as a
unit—the two expressions being compared are treated separately as to whether they
will be evaluated in floating-point or fixed-point. In the following example we actually
have five arithmetic expressions that are evaluated independent of one another's attri-
butes, and then are compared to each other.

Thus, the rules outlined so far for determining whether your evaluation will be done in
fixed-point or floating-point arithmetic apply to your comparison statement as a unit.

evaluate (a + d)

when (b + e) thru c

when (f / g) thru (h \ i)

 .

 .

 .

end-evaluate

Your comparison operation (and the evaluation of any arithmetic expressions nested in
your comparison) will be handled by the compiler as floating-point arithmetic if either of
your comparands is a floating-point value or resolves to a floating-point value.

Your comparison operation (and the evaluation of any arithmetic expressions nested in
your comparison) will be handled by the compiler as fixed-point arithmetic if both of
your comparands are fixed-point values or resolve to fixed-point values.

Examples of Fixed-Point and Floating-Point Evaluations
For the examples shown on page 43, if you define the data items in the following
manner:

ð1 employee-table.

 ð5 emp-count pic 9(4).

ð5 employee-record occurs 1 to 1ððð times

depending on emp-count.

 1ð hours pic +9(5)e+99.
...

ð1 report-matrix-col pic 9(3).

ð1 report-matrix-min pic 9(3).

ð1 report-matrix-max pic 9(3).

ð1 report-matrix-tot pic 9(3).

ð1 average-hours pic 9(3)v9.

ð1 whole-hours pic 9(4).

� These evaluations would be done in floating-point arithmetic:

compute report-matrix-col = (emp-count \\ .5) + 1

compute report-matrix-col = function sqrt(emp-count) + 1

if report-matrix-tot < function sqrt(emp-count) + 1

 Chapter 3. Numbers and Arithmetic 45

Fixed-Point vs. Floating-Point

� These evaluations would be done in fixed-point arithmetic:

add report-matrix-min to report-matrix-max giving report-matrix-tot

compute report-matrix-max =

function max(report-matrix-max report-matrix-tot)

if whole-hours not = function integer-part((average-hours) + 1)

46 VisualAge COBOL Programming Guide

Defining a Table

 Chapter 4. Handling Tables

A table is a collection of data items that have the same description. It is the COBOL
equivalent to an array of elements. This chapter explains the concepts and coding
techniques necessary for defining, referencing, initializing, searching, and processing
table items, including both fixed-length and variable-length items.

Defining a Table (OCCURS Clause)
You could define table items as separate, consecutive entries in the DATA DIVISION,
but this practice has disadvantages. First, the code does not clearly show the unity of
the items. Second, you cannot take advantage of subscripting and indexing for easy
reference to the table elements. (See “Referring to an Item in a Table” on page 49 for
information on subscripting and indexing.)

Use the COBOL OCCURS clause in the DATA DIVISION entry to define a table, and
you do not need separate entries for repeated data items. The OCCURS clause also
supplies the information necessary for the use of subscripts or indexes. (For more
information on the format of the OCCURS clause, refer to IBM COBOL Language Ref-
erence).

To code a table, give the table a group name and define a subordinate item (the table
element) that is to be repeated n times:

ð1 table-name.

ð5 element-name OCCURS n TIMES.

 .

. (subordinate items of the table element might follow)

 .

The following figures show how to code tables:

� One-Dimensional Table—Figure 11 on page 48
� Two-Dimensional Table—Figure 12 on page 48
� Three-Dimensional Table—Figure 13 on page 49.

For all the tables, the table element definition (which includes the OCCURS clause) is
subordinate to the group item that contains the table; the OCCURS clause cannot
appear in a level-01 description.

To create tables of more than one dimension, use nested OCCURS clauses. Tables of
up to seven dimensions can be defined using this same method.

 One Dimension
To create a one-dimensional table, use one OCCURS clause. For example:

 Copyright IBM Corp. 1996, 1998 47

Defining a Table

SAMPLE-TABLE-ONE

COBOL Code Graphic Representation

10 TABLE-ITEM-1 PIC X(2).
10 TABLE-ITEM-2 PIC X(1).

05 TABLE-COLUMN OCCURS 3 TIMES.
01 SAMPLE-TABLE-ONE.

Figure 11. Coding a One-Dimensional Table

SAMPLE-TABLE-ONE is the group item that contains the table. TABLE-COLUMN names the
table element of a one-dimensional table that occurs three times.

 Two Dimensions
To create a two-dimensional table, define a one-dimensional table in each occurrence
of another one-dimensional table. For example:

Graphic Representation

SAMPLE-TABLE-TWO

COBOL Code

05 TABLE-ROW OCCURS 2 TIMES.
01 SAMPLE-TABLE-TWO.

10 TABLE-COLUMN OCCURS 3 TIMES.
15 TABLE-ITEM-1 PIC X(2).
15 TABLE-ITEM-2 PIC X(1).

Figure 12. Coding a Two-Dimensional Table

SAMPLE-TABLE-TWO is the name of a two-dimensional table. TABLE-ROW is an element of
a one-dimensional table that occurs two times. TABLE-COLUMN is an element of a two-
dimensional table that occurs three times in each occurrence of TABLE-ROW.

 Three Dimensions
To create a three-dimensional table, define a one-dimensional table in each occurrence
of another one-dimensional table, which is itself contained in each occurrence of
another one-dimensional table. For example:

48 VisualAge COBOL Programming Guide

Referring to a Table Item

COBOL Code
Graphic Representation

SAMPLE-TABLE-THREE

01 SAMPLE-TABLE-THREE.
05 TABLE-DEPTH OCCURS 2 TIMES.

10 TABLE-ROW OCCURS 2 TIMES.
15 TABLE-COLUMN OCCURS 3 TIMES.

20 TABLE-ITEM-1 PIC X(2).
20 TABLE-ITEM-2 PIC X(1).

Figure 13. Coding a Three-Dimensional Table

In SAMPLE-TABLE-THREE, TABLE-DEPTH is an element of a one-dimensional table that
occurs two times. TABLE-ROW is an element of a two-dimensional table that occurs two
times within each occurrence of TABLE-DEPTH. TABLE-COLUMN is an element of a three-
dimensional table that occurs three times within each occurrence of TABLE-ROW.

Referring to an Item in a Table
A table element has a collective name, but the individual occurrences within it do not
have unique data-names. To refer to them, use the data-name of the table element,
together with the occurrence number, called a subscript, of the desired item within the
element.

The technique of supplying the occurrence number of individual table elements is called
subscripting. See page 49. A related technique, called subscripting using index-names
(indexing) is also available for table references.

An index is a symbol used to locate an item in a table. An index differs from a sub-
script in that an index is a value to be added to the address of a table to locate an item
(the displacement from the beginning of the table). See page 50.

 Subscripting
The lowest possible subscript value is 1, which points to the first occurrence of the
table-element. In a one-dimensional table, the subscript corresponds to the row
number. In a two-dimensional table, the two subscripts correspond to the column and
row numbers. In a three-dimensional table, the three subscripts correspond to the
depth, column, and row numbers.

You can use a literal subscript or a data-name for a variable subscript.

 Chapter 4. Handling Tables 49

Referring to a Table Item

 Literal Subscripts
The following are valid literal subscript references to SAMPLE-TABLE-THREE:

TABLE-COLUMN (2, 2, 1)

TABLE-COLUMN (2 2 1) (The spaces are required for subscripting.)

In the table reference TABLE-COLUMN (2, 2, 1), the first value (2) refers to the second
occurrence within TABLE-DEPTH, the second value (2) refers to the second occurrence
within TABLE-ROW, and the third value (1) refers to the first occurrence within
TABLE-COLUMN.

If a subscript is represented by a literal and the subscripted item is of fixed length, then
the compiler resolves the location of the subscripted data item within the table at
compile time.

 Variable Subscripts
The following is a valid, variable subscript reference to SAMPLE-TABLE-TWO, (assuming
that SUB1 and SUB2 are data-names containing positive integer values within the range
of the table):

TABLE-COLUMN (SUB1 SUB2)

The data-name used as a variable subscript must be described as an elementary
numeric integer data item.

If a data-name is being used as a subscript or qualifier, it cannot itself be subscripted.

If a subscript is represented by a data-name, the code generated for the application
resolves the location at run time. The most efficient format for data used as a variable
subscript is COMPUTATIONAL (COMP) with a PICTURE size of less than five digits.

 Relative Subscripts
In relative subscripting, the subscript can be incremented or decremented by a speci-
fied integer amount. Relative subscripting is valid with either literal or variable sub-
scripts. For example:

TABLE-COLUMN (SUB1 - 1, SUB2 + 3)

Subscripting Using Index-Names (Indexing)
You can refer to table elements by using a subscript, an index, or both. An index is a
displacement from the start of the table, based on the length of the table element.

To reference a table by an index:

1. Define the index-name for a table in the INDEXED BY clause of the OCCURS
clause in the table definition.

2. Choose direct or relative indexing (described below).

3. Initialize the index-name with a SET, PERFORM VARYING, or SEARCH ALL
statement before using it in a table reference.

50 VisualAge COBOL Programming Guide

Referring to a Table Item

4. Use the index in SET, SEARCH, SEARCH ALL, PERFORM VARYING, or rela-
tional condition statements.

How the Index Value Is Determined
The compiler determines the index of an entry using the following formula:

I = L * (S-1)

where:

I is the index value.
L is the length of a table entry.
S is the subscript (occurrence number) of an entry.

To be valid during execution, an index value must correspond to a table element occur-
rence of not less than 1 nor greater than the highest permissible occurrence number.
This restriction applies to both direct and relative indexing.

 Direct Indexing
In direct indexing, the index-name is in the form of a displacement. The value con-
tained in the index is then calculated as the occurrence number minus 1, multiplied by
the length of the individual table entry.

For example:

ð5 TABLE-ITEM OCCURS 1ð INDEXED BY INX-A PIC X(8).

For the fifth occurrence of TABLE-ITEM, the binary value contained in INX-A is (5 - 1) * 8
= 32.

 Relative Indexing
In relative indexing, the index-name is followed by a space, followed by a + or a -,
followed by another space, followed by an unsigned numeric literal. The literal is con-
sidered to be an occurrence number, and is converted to an index value before being
added to or subtracted from the index-name.

Relative Indexing Example: If you code indexing for SAMPLE-TABLE-THREE as follows:

ð1 SAMPLE-TABLE-THREE

ð5 TABLE-DEPTH OCCURS 3 TIMES INDEXED BY INX-A.

1ð TABLE-COLUMN OCCURS 4 TIMES INDEXED BY INX-B.

15 TABLE-ROW OCCURS 8 TIMES INDEXED BY INX-C PIC X(8).

a relative indexing reference to:

TABLE-ROW (INX-A + 1, INX-B + 2, INX-C - 1)

causes the following computation of the displacement:

(contents of INX-A) + (256 \ 1)

+ (contents of INX-B) + (64 \ 2)

+ (contents of INX-C) - (8 \ 1)

 Chapter 4. Handling Tables 51

Referring to a Table Item

That is,

� Each occurrence of TABLE-DEPTH is 256 characters in length.
� Each occurrence of TABLE-COLUMN is 64 characters in length.
� Each occurrence of TABLE-ROW is 8 characters in length.

More Ways to Use Index References
� An index can be modified using a PERFORM, SEARCH, or SET statement.

� To compare two different occurrences of a table element, use a direct indexing
reference together with a relative indexing reference, or use subscripting, which is
easier to read in your code.

� An index can be shared among different tables. That is, you can use the index
defined with one table to index another table if both table descriptions are identical.
To be identical, the tables must have the same number of occurrences, as well as
occurrences of the same length.

� Store index values in index data items you define with the USAGE IS INDEX
clause. Use the SET statement to assign to an index the value that you stored in
the index data item.

For example, when you read records to load a variable-length table, you can store
the index value of the last record in a data item defined as USAGE IS INDEX.
Then, when you use the table index to look through or process the variable-length
table, you can test for the end of the table by comparing the current index value
with the index value of the last record you stored in the index data item.

Because you're comparing a physical displacement, you can use index data items
only in SEARCH and SET statements or for comparisons with indexes or other
index data items. You cannot use index data items as subscripts or indexes.

Referring to a Substring of a Table Item
Both reference modification and subscripting can be coded for a table element in the
same statement. For example, if you define a table like this:

ð1 ANY-TABLE.

 ð5 TABLE-ELEMENT PIC X(1ð)

OCCURS 3 TIMES

 VALUE "ABCDEFGHIJ".

the statement

MOVE "??" TO TABLE-ELEMENT (1) (3 : 2)

will move the value "??" into table element number 1, beginning at character position
3, for a length of 2.

52 VisualAge COBOL Programming Guide

Putting Values into a Table

So, if ANY-TABLE looked ANY-TABLE would look

like this before the change: like this after the change:

┌──────────┐ ┌──────────┐

│ABCDEFGHIJ│ │AB??EFGHIJ│

├──────────┤ ├──────────┤

│ABCDEFGHIJ│ │ABCDEFGHIJ│

├──────────┤ ├──────────┤

│ABCDEFGHIJ│ │ABCDEFGHIJ│

└──────────┘ └──────────┘

Putting Values into a Table
Use one of these methods to put values in a table:

� Load the table dynamically.
� Initialize the table (INITIALIZE statement).
� Assign values when you define the table (VALUE clause).

Loading the Table Dynamically
If the initial values of your table are different with each execution of your program, the
table can be defined without initial values, and the changed values can be read into the
table before your program refers to the table.

To load a table, use:

� The PERFORM . . . VARYING statement.
� Either subscripting or indexing.

When reading data to load your table, test to make sure that the data does not exceed
the space allocated for the table. Use a named value giving the item count, rather than
using a literal. Then, if you make the table bigger, you need to change only one value,
instead of all references to a literal.

Initializing the Table (INITIALIZE Statement)
You can also load your table with a value during execution with the INITIALIZE state-
ment. For example, to fill a table with 3s:

INITIALIZE TABLE-ONE REPLACING NUMERIC DATA BY 3.

The INITIALIZE statement cannot load a variable-length table (one that was defined
using OCCURS DEPENDING ON).

Assigning Values When You Define the Table (VALUE Clause)
If your table contains stable values (for example a table that contains the days and
months of the year), set the specific values your table holds when you define it.

Define static values in Working-Storage in one of the these ways:

� Initialize each table item individually.

 Chapter 4. Handling Tables 53

Putting Values into a Table

� Initialize an entire table at the 01 level.
� Initialize all occurrences of a given table element to the same value.

Initializing Each Table Item Individually
� Describe the table storage area by arranging subordinate data description entries,

setting the initial value of each subordinate entry in a VALUE clause.
� Code a REDEFINES entry to describe the table as a record that contains a

repeating subordinate entry, defined with an OCCURS clause.

For an example of this method, see "Error Flag Table” and “Error Message Table” in
Figure 14 on page 55.

This technique is practical only for small tables. To initialize larger tables, use MOVE,
PERFORM, or INITIALIZE statements, as described above.

Initializing a Table at the 01 Level
Code a level-01 record and assign to it, through the VALUE clause, the contents of the
whole table. Then, in a subordinate level data item, use an OCCURS clause to define
the individual table items.

For example:

ð1 TABLE-ONE VALUE "1234".

ð5 TABLE-TWO OCCURS 4 TIMES PIC X.

Initializing a Variable-Size Table: A VALUE clause can also be present on a group
item that contains an OCCURS clause with the DEPENDING ON option. Each subordi-
nate structure that contains the DEPENDING ON option is initialized using the
maximum number of occurrences. If the entire table is defined with the DEPENDING
ON option, all the elements are initialized using the maximum defined value of the
DEPENDING ON object.

In both cases, if the ODO object has a VALUE clause, it is logically initialized after the
ODO subject has been initialized. For example:

ð1 TABLE-THREE VALUE "3ABCDE".

 ð5 X PIC 9.

ð5 Y OCCURS 5 TIMES

DEPENDING ON X PIC X.

causes Y(1) to be initialized to A, Y(2) to B,... Y(5) to E, and finally the object of the
ODO (X) is initialized to 3. Any subsequent reference to TABLE-THREE (such as
DISPLAY) would refer to the first 3 elements, Y(1) through Y(3).

Initializing All Occurrences of a Table Element
You can use the VALUE clause on a table element to initialize the element to the indi-
cated value.

As an example, this code:

54 VisualAge COBOL Programming Guide

Putting Values into a Table

ð1 T2.

 ð5 T-OBJ PIC 9 VALUE 3.

ð5 T OCCURS 5 TIMES DEPENDING ON T-OBJ.

 1ð X PIC XX VALUE "AA".

 1ð Y PIC 99 VALUE 19.

 1ð Z PIC XX VALUE "BB".

causes all the X elements (1 through 5) to be initialized to AA, all the Y elements (1
through 5) to be initialized to 19, and all the Z elements (1 through 5) to be initialized to
BB. T-OBJ is then set to 3.

\\\

\\\ E R R O R F L A G T A B L E \\\

\\\

 ð1 Error-Flag-Table Value Spaces.

 88 No-Errors Value Spaces.

 ð5 Type-Error Pic X.

 ð5 Shift-Error Pic X.

 ð5 Home-Code-Error Pic X.

 ð5 Work-Code-Error Pic X.

 ð5 Name-Error Pic X.

 ð5 Initials-Error Pic X.

 ð5 Duplicate-Error Pic X.

 ð5 Not-Found-Error Pic X.

 ð5 Address-Error Pic X.

 ð5 City-Error Pic X.

 ð5 State-Error Pic X.

 ð5 Zipcode-Error Pic X.

 ð5 Home-Phone-Error Pic X.

 ð5 Work-Phone-Error Pic X.

 ð5 Home-Junction-Error Pic X.

 ð5 Work-Junction-Error Pic X.

 ð5 Driving-Status-Error Pic X.

 ð1 Filler Redefines Error-Flag-Table.

ð5 Error-Flag Occurs 17 Times

Indexed By Flag-Index Pic X.

\\\

\\\ E R R O R M E S S A G E T A B L E \\\

\\\

 ð1 Error-Message-Table.

ð5 Filler Pic X(25) Value

"Transaction Type Invalid".

ð5 Filler Pic X(25) Value

"Shift Code Invalid".

ð5 Filler Pic X(25) Value

"Home Location Code Inval.".

Figure 14 (Part 1 of 2). Table with Static Values Defined for Every Table Element

 Chapter 4. Handling Tables 55

Putting Values into a Table

ð5 Filler Pic X(25) Value

"Work Location Code Inval.".

ð5 Filler Pic X(25) Value

"Last Name - Blanks".

ð5 Filler Pic X(25) Value

"Initials - Blanks".

ð5 Filler Pic X(25) Value

"Duplicate Record Found".

ð5 Filler Pic X(25) Value

"Commuter Record Not Found".

ð5 Filler Pic X(25) Value

"Address - Blanks".

ð5 Filler Pic X(25) Value

"City - Blanks".

ð5 Filler Pic X(25) Value

"State Is Not Alphabetic".

ð5 Filler Pic X(25) Value

"ZipCode Is Not Numeric".

ð5 Filler Pic X(25) Value

"Home Phone Number Error".

ð5 Filler Pic X(25) Value

"Work Phone Number Error".

ð5 Filler Pic X(25) Value

"Home Junction Is Blanks".

ð5 Filler Pic X(25) Value

"Work Junction Is Blanks".

ð5 Filler Pic X(25) Value

"Driving Status Invalid".

 ð1 Filler Redefines Error-Message-Table.

ð5 Error-Message Occurs 17 Times

Indexed By Message-Index Pic X(25).

Figure 14 (Part 2 of 2). Table with Static Values Defined for Every Table Element

Processing a Table Using Subscripting and PERFORM...VARYING
The procedure shown in Figure 15 processes the entire table shown in Figure 14 on
page 55, using subscripting and the PERFORM...VARYING statement.

Perform

Varying Sub From 1 By 1

 Until No-Errors

If Error-Flag (Sub) = Error-On

Move Space To Error-Flag (Sub)

Move Error-Message (Sub) To Print-Message

 Perform 26ð-Print-Report

 End-If

End-Perform

Figure 15. Processing the Sample Table, Using Subscripting

56 VisualAge COBOL Programming Guide

Variable-Length Tables

Processing a Table Using Indexing
The procedure shown in Figure 16 processes the entire table, using indexing.

Set Flag-Index To 1

Perform Until No-Errors

 Search Error-Flag

When Error-Flag (Flag-Index) = Error-On

Move Space To Error-Flag (Flag-Index)

Set Message-Index To Flag-Index

Move Error-Message (Message-Index) To

 Print-Message

 Perform 26ð-Print-Report

 End-Search

End-Perform

Figure 16. Processing the Sample Table, Using Indexing

Creating Variable-Length Tables (DEPENDING ON Clause)
If you don't know before execution how many occurrences of a table element there are,
you need to set up a variable-length table definition. To do this, use the OCCURS
DEPENDING ON (ODO) clause. For example:

X OCCURS 1 TO 1ð TIMES DEPENDING ON Y

X is the ODO subject, Y is the ODO object.

The cases to consider when using the ODO clause are:

� ODO object and subject are contained within the same group item, and that item is
a sending field or that item is a receiving field.

� ODO object is outside of the group item that contains the subject.

ODO Object and Subject Contained in Group Item

Whether Maximum Length or Actual Length Is Used
If a group item is not complex ODO, contains both the subject and object of the ODO,
and it is a receiving item, then the maximum length of the item is used. In this situation
it is not necessary to set the value of the ODO object before a reference is made.

If the receiving item is followed by a data-item which is in the same record but is not
subordinate to the receiver (is complex ODO), then the actual length is used and a
compiler message is issued to inform you that the actual length, not the maximum, will
be used. In this situation it is necessary to set the value of the ODO object before any
reference to the item.

The following example contrasts how the length is determined for a group item whose
subordinate items contain an OCCURS clause with the DEPENDING ON option and

 Chapter 4. Handling Tables 57

Variable-Length Tables

the object of that DEPENDING ON option, depending on whether it is the sending
group item or the receiving group item.

WORKING-STORAGE SECTION.

ð1 MAIN-AREA.

 ð3 REC-1.

 ð5 FIELD-1 PIC S9.

ð5 FIELD-2 OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-1 PIC X(ð5).

ð1 REC-2.

 ð5 REC-2-DATA PIC X(5ð).

Sending Group Item
If you want to move REC-1 to REC-2, the length of REC-1 is determined immediately prior
to the MOVE, using the current value in FIELD-1. If the contents of FIELD-1 do not
conform to its PICTURE, that is, if FIELD-1 does not contain an external decimal item,
the result is unpredictable. (See Chapter 3, “Numbers and Arithmetic” on page 29 for
more information on data and sign representation).

As you can see, you must be sure that you have the correct value placed in the ODO
object before the MOVE is initiated.

Receiving Group Item
If you want to do a MOVE to REC-1, the length of REC-1, for the purpose of the MOVE,
is determined using the maximum number of occurrences. In this example, that would
be 5 occurrences of FIELD-2 plus FIELD-1 for a length of 26.

In this case, the ODO object (FIELD-1) need not be set before referencing REC-1 as a
receiving item. However, the sending field's ODO object needs to be set to a valid
numeric value between 1 and 5 for the ODO object of the receiving field to be validly
set by the move.

Another Record Makes this Complex ODO
However, if REC-2 were followed by a data item which is in the same record but is not
subordinate to REC-2, then the actual length of REC-2 is used and the ODO object must
be set before the reference.

In the following example, REC-1 is followed by REC-2.

ð1 MAIN-AREA

 ð3 REC-1.

 ð5 FIELD-1 PIC S9.

 ð5 FIELD-3 PIC S9.

ð5 FIELD-2 OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-1 PIC X(ð5).

 ð3 REC-2.

ð5 FIELD-4 OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-3 PIC X(ð5).

58 VisualAge COBOL Programming Guide

Variable-Length Tables

If you do a MOVE to REC-1 in this case, the actual length of REC-1 is calculated imme-
diately prior to the move using the current value of the ODO object (FIELD-1), and a
compiler message is issued letting you know that the actual length, instead of the
maximum length, was used. This case requires that you set the value of the ODO
object (FIELD-1) prior to using the item as a receiving field.

ODO Object outside the Group
You must ensure that the object of the OCCURS DEPENDING ON clause contains a
value that correctly specifies the current number of occurrences of the table elements.
Figure 17 shows how to define a variable-length table.

 DATA DIVISION.

 FILE SECTION.

 FD LOCATION-FILE.

 ð1 LOCATION-RECORD.

 ð5 LOC-CODE PIC XX.

 ð5 LOC-DESCRIPTION PIC X(2ð).

 ð5 FILLER PIC X(58).

 WORKING-STORAGE SECTION.

 ð1 FLAGS.

ð5 LOCATION-EOF-FLAG PIC X(5) VALUE SPACE.

 88 LOCATION-EOF VALUE "FALSE".

 ð1 MISC-VALUES.

ð5 LOCATION-TABLE-LENGTH PIC 9(3) VALUE ZERO.

ð5 LOCATION-TABLE-MAX PIC 9(3) VALUE 1ðð.

 \\\

\\\ L O C A T I O N T A B L E \\\

\\\ FILE CONTAINS LOCATION CODES. \\\

 \\\

 ð1 LOCATION-TABLE.

ð5 LOCATION-CODE OCCURS 1 TO 1ðð TIMES

DEPENDING ON LOCATION-TABLE-LENGTH PIC X(8ð).

Figure 17. Defining a Variable-Length Table

Figure 18 shows a do-until structure used to control loading of a variable-length table.
When initialization is complete, LOCATION-TABLE-LENGTH will contain the subscript of the
last item in the table. (This variable-length table is defined in Figure 17.)

 Chapter 4. Handling Tables 59

Variable-Length Tables

Perform Test After

Varying Location-Table-Length From 1 By 1

 Until Location-EOF

Or Location-Table-Length = Location-Table-Max

Move Location-Record To

 Location-Code (Location-Table-Length)

 Read Location-File

At End Set Location-EOF To True

 End-Read

End-Perform

Figure 18. Loading a Variable-Length Table

Two factors that affect the successful manipulation of variable-length records are the
correct calculation of records lengths and the conformance of the data in the
OCCURS...DEPENDING ON object to its picture. If you are using variable-length group
items in either a READ...INTO or WRITE...FROM statement, in conjunction with an
OCCURS...DEPENDING ON statement, make sure that the receiver or intermediate
field length is correct. The length of the variable portions of a group item is the product
of the object of the DEPENDING ON option and the length of the subject of the
OCCURS clause.

If the content of the ODO object does not match its PICTURE clause, the program may
abnormally terminate. See Chapter 3, “Numbers and Arithmetic” on page 29 for more
information on data and sign representation.

Complex OCCURS DEPENDING ON
Complex OCCURS DEPENDING ON is supported as an extension to the COBOL 85
Standard.

The basic forms of complex ODO permitted by the compiler are:

� A data item described by an OCCURS clause with the DEPENDING ON option is
followed by a non-subordinate element or group (variably-located item).

� A data item described by an OCCURS clause with the DEPENDING ON option is
followed by a non-subordinate data item described by an OCCURS clause with the
DEPENDING ON option (variably-located table).

� A data item described by an OCCURS clause with the DEPENDING ON option is
nested within another data item described by an OCCURS clause with the
DEPENDING ON option (table with variable-length elements).

� Index-name for a table with variable-length elements.

Complex ODO is tricky to use and can make maintaining your code more difficult. If
you choose to use it in order to save disk space, follow the guidelines in Appendix D,
“Complex OCCURS DEPENDING ON” on page 553.

60 VisualAge COBOL Programming Guide

Searching a Table

Searching a Table (SEARCH Statement)
COBOL provides two search techniques for tables: serial and binary.

To perform serial searches:

� Use the PERFORM . . . VARYING statement with subscripting or indexing (dis-
cussed in “Creating Variable-Length Tables (DEPENDING ON Clause)” on
page 57).

� Use SEARCH and indexing.

To perform binary searches, use indexing and the SEARCH ALL statement.

The following discussion assumes you are familiar with the format of the SEARCH and
SEARCH ALL statements. If you are not, see IBM COBOL Language Reference.

 Serial Search
Use the SEARCH statement to perform a serial search beginning at the current index
setting. To modify the index setting, use the SET statement.

The conditions in the WHEN option are evaluated in the order in which they are written.

� If none of the conditions is satisfied, the index is increased to correspond to the
next table element, and the WHEN conditions are evaluated again.

� If one of the WHEN conditions is satisfied, the search ends; the index remains
pointing to the table element that satisfied the condition.

� If the entire table has been searched and no conditions were met, the AT END
imperative statement is executed, if there is one. If you do not use the AT END
option, control passes to the next statement in your program.

Searching More than One Level of a Table
Only one level of a table (a table element) can be referenced with each SEARCH state-
ment. SEARCH statements can be nested to search multiple levels of a table.
However, SEARCH statements can be nested only if you delimit each nested SEARCH
statement with END-SEARCH. The WHEN condition must be followed by an imper-
ative statement; the SEARCH statement is an imperative statement only when it is
delimited by END-SEARCH.

Speeding Up Your Search
It is important to know if the found condition comes after some intermediate point in the
table element. You can speed up the SEARCH by using the SET statement to set the
index to begin the search after that point.

Arranging the table so that the data used most often is at the beginning also enables
more efficient serial searching. If the table is large and is pre-sorted, a binary search is
more efficient. See “Binary Search (SEARCH ALL Statement)” on page 62 more infor-
mation on binary searches.

 Chapter 4. Handling Tables 61

Searching a Table

Serial Search Example
ð1 TABLE-ONE.

ð5 TABLE-ENTRY1 OCCURS 1ð TIMES

INDEXED BY TE1-INDEX.

1ð TABLE-ENTRY2 OCCURS 1ð TIMES

INDEXED BY TE2-INDEX.

15 TABLE-ENTRY3 OCCURS 5 TIMES

ASCENDING KEY IS KEY1

INDEXED BY TE3-INDEX.

 2ð KEY1 PIC X(5).

 2ð KEY2 PIC X(1ð).

 .

 .

PROCEDURE DIVISION.

 .

 .

SET TE1-INDEX TO 1

SET TE2-INDEX TO 4

SET TE3-INDEX TO 1

MOVE "A1234" TO KEY1 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)

MOVE "AAAAAAAAðð" TO KEY2 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)

 SEARCH TABLE-ENTRY3

 AT END

MOVE 4 TO RETURN-CODE

WHEN TABLE-ENTRY3(TE1-INDEX, TE2-INDEX, TE3-INDEX)

 = "A1234AAAAAAAAðð"

MOVE ð TO RETURN-CODE

 END-SEARCH

Values after execution :

TE1-INDEX = 1

TE2-INDEX = 4

TE3-INDEX points to the TABLE-ENTRY3

that equals "A1234AAAAAAAAðð"

RETURN-CODE = ð

Binary Search (SEARCH ALL Statement)
When you use SEARCH ALL to perform a binary search, you do not need to set the
index before you begin. The index used is always the one associated with the first
index-name in the OCCURS clause, and it varies during execution to maximize the
search efficiency.

To use the SEARCH ALL statement, your table must be ordered on the key or keys
coded in the OCCURS clause. You can use any key in the WHEN condition, but all
preceding data-names in the KEY option must also be tested. The test must be an
equal-to condition, and the KEY data-name must be either the subject of the condition
or the name of a conditional variable with which the tested condition-name is associ-
ated. The WHEN condition can also be a compound condition, formed from one of the
simple conditions listed above, with AND as the only logical connective. The KEY and
its object of comparison must be compatible, as stated in the relation test rules.

62 VisualAge COBOL Programming Guide

Referencing All Table Items

Binary Search Example
For example, a table defined like this:

ð1 TABLE-A.

ð5 TABLE-ENTRY OCCURS 9ð TIMES

ASCENDING KEY-1, KEY-2

 DESCENDING KEY-3

INDEXED BY INDX-1.

 1ð PART-1 PIC 99.

 1ð KEY-1 PIC 9(5).

 1ð PART-2 PIC 9(6).

 1ð KEY-2 PIC 9(4).

 1ð PART-3 PIC 9(18).

 1ð KEY-3 PIC 9(5).

can be searched using the following instructions:

SEARCH ALL TABLE-ENTRY

 AT END

 PERFORM NOENTRY

WHEN KEY-1 (INDX-1) = VALUE-1 AND

KEY-2 (INDX-1) = VALUE-2 AND

KEY-3 (INDX-1) = VALUE-3

MOVE PART-1 (INDX-1) TO OUTPUT-AREA

END-SEARCH

These instructions will execute a search on the given table that contains 90 elements of
40 bytes and 3 keys. The primary and secondary keys (KEY-1 and KEY-2) are in
ascending order, but the least significant key (KEY-3) is in descending order. If an entry
is found in which three keys are equal to the given values (VALUE-1, VALUE-2, and
VALUE-3), PART-1 of that entry will be moved to OUTPUT-AREA. If the matching keys are
not found in any of the entries in TABLEA, the NOENTRY routine is performed.

Processing Table Items (Intrinsic Functions)
You can process alphanumeric or numeric table items using intrinsic functions as long
as the table item's data description is compatible with the function's argument require-
ments. The IBM COBOL Language Reference describes the required data formats for
the arguments of the various intrinsic functions.

Use a subscript or index to reference an individual data item as a function argument.
Assuming Table-One is a 3x3 array of numeric items, you can find the square root of
the middle element with a statement such as:

Compute X = Function Sqrt(Table-One(2,2))

Processing Multiple Table Items (ALL Subscript)
You might often need to process the data in tables iteratively. For intrinsic functions
that accept multiple arguments, you can use the ALL subscript to reference all the
items in the table or single dimension of the table. The iteration is handled automat-
ically, making your code shorter and simpler.

 Chapter 4. Handling Tables 63

Efficient Table Coding

 Example 1
This example sums a cross section of Table-Two:

Compute Table-Sum = FUNCTION SUM (Table-Two(ALL, 3, ALL)))

Assuming that Table2 is a 2x3x2 array, the above statement would cause these ele-
ments to be summed:

Table-Two(1,3,1)

Table-Two(1,3,2)

Table-Two(2,3,1)

Table-Two(2,3,2)

 Example 2
This example computes values for all employees.

ð1 Employee-Table.

 ð5 Emp-Count Pic s9(4) usage binary.

ð5 Emp-Record occurs 1 to 5ðð times

depending on Emp-Count.

 1ð Emp-Name Pic x(2ð).

 1ð Emp-Idme Pic 9(9).

 1ð Emp-Salary Pic 9(7)v99.

 .

 .

Procedure Division.

Compute Max-Salary = Function Max(Emp-Salary(ALL))

Compute I = Function Ord-Max(Emp-Salary(ALL))

Compute Avg-Salary = Function Mean(Emp-Salary(ALL))

Compute Salary-Range = Function Range(Emp-Salary(ALL))

Compute Total-Payroll = Function Sum(Emp-Salary(ALL))

 Example 3
Scalars and array arguments can be mixed for functions that accept multiple
arguments:

Compute Table-Median = Function Median(Arg1 Table-One(ALL))

Efficient Coding for Tables
For efficient table-handling, follow these suggestions:

� If the table is searched sequentially, put the data values most likely to satisfy the
search criteria at the beginning of a table.

� Use index-names instead of subscripts. This method is more efficient, but sub-
scripting might be easier to understand and maintain. Relative index references
are executed as fast as direct index references. For additional details, see
“Subscripting” on page 49 and “Subscripting Using Index-Names (Indexing)” on
page 50.

� Use binary (COMP) data items with 8 or fewer digits for subscripts and OCCURS
DEPENDING ON objects. Use fewer than five digits, if possible.

� Avoid referencing errors by coding subscript and index checks into your program.

64 VisualAge COBOL Programming Guide

Selecting Program Actions

Chapter 5. Selection and Iteration

Selection (IF and EVALUATE Statements)
Use control structures to:

� Choose program actions based on the outcome of a decision.
� Control looping in your program.

Selection is providing for different program actions depending on the tested value of
some data item or data items.

The IF and EVALUATE statements are COBOL selection constructs. The testing of a
data item or data items is done in both of these statements by means of a conditional
expression.

 IF Statement
Use IF . . . ELSE to code a choice between two processing actions. (The word THEN is
optional in a COBOL program.) For example:

 IF condition-p

 statement-1

 ELSE

 statement-2

 END-IF

IF Statement with a Null Branch
There are two ways you can code an IF statement when one of the processing choices
is no action. Because the ELSE clause is optional, you can code the following:

 IF condition-q

 statement-1

 END-IF

This coding is suitable for simple programming cases. However, if the logic in your
program is complex (for example, you have nested IF constructs with action for only
one of the processing choices), you might want to use the ELSE clause and code the
null branch of the IF statement with the CONTINUE statement:

 IF condition-q

 statement-1

 ELSE

 CONTINUE

 END-IF

Nested IF Statements
When an IF statement has another IF statement as one of its possible processing
branches, these IF statements are said to be nested IFs. Theoretically, there is no limi-
tation on the depth of nested IF statements. However, when the program has to test a

 Copyright IBM Corp. 1996, 1998 65

Selecting Program Actions

variable for more than two values, EVALUATE is the better choice. (For more informa-
tion, see “EVALUATE statement” on page 67).

Use nested IF statements sparingly; the logic can be difficult to follow, although proper
indentation helps.

Logic of a Nested IF Statement: The following is pseudocode for a nested IF
statement:

 IF condition-p

 IF condition-q

 statement-1

 ELSE

 statement-2

 END-IF

 statement-3

 ELSE

 statement-4

 END-IF

Here an IF is nested, along with a sequential structure, in one branch of another IF.
The structure for this logic is shown in Figure 19 on page 66.

When you code a structure like the one in Figure 19, the END-IF closing the inner
nested IF becomes very important. Use END-IF instead of a period, because a period
would end the outer IF structure as well.

Statement 1 Statement 3

condition-p

condition-q

Statement 2

Statement 4

True

True

False

False

Figure 19. Control Logic Structure for Nested IF Statements

66 VisualAge COBOL Programming Guide

Selecting Program Actions

Good Coding Practice for Nested IFs: When you nest IF statements, readability and
debugging will be easier if each IF statement has its own END-IF scope-terminator and if
you use proper indentation. For example:

IF A = 1

IF B = 2

 PERFORM C

ELSE PERFORM D.

The ELSE PERFORM D phrase is interpreted as the ELSE phrase of the last previous IF
which is, IF B = 2. If this is the intent, you can make the logic clearer with the fol-
lowing coding:

IF A = 1

IF B = 2

 PERFORM C

 ELSE

 PERFORM D

 END-IF

 END-IF

If the intent is to have ELSE PERFORM D depend on IF A = 1, the code would look like
this:

IF A = 1

IF B = 2

 PERFORM C

 END-IF

 ELSE

 PERFORM D

 END-IF

 EVALUATE statement
The EVALUATE statement is an expanded form of the IF statement. An IF statement
allows your program to act on one of two conditions: true or false. If you had three or
more possible conditions instead of just two, and you were limited to using IF state-
ments, you would need to nest or cascade the IF statements. Such nested IF state-
ments are a common source of logic errors and debugging problems.

With the EVALUATE statement, you can test any number of conditions in a single state-
ment and have separate actions for each. In structured programming terms, this is a
case structure. It can also be thought of as a form of decision table.

 Conditional Expressions
The IF and EVALUATE statements let you code different program actions that will be
performed depending on the true or false value of a condition expression. COBOL lets
you specify any of these simple conditions:

 Chapter 5. Selection and Iteration 67

Selecting Program Actions

You can create combined conditions by using logical connectives (AND, OR, or NOT),
and you can combine conditions. Rules for using conditions are given in IBM COBOL
Language Reference.

Figure 20. Conditions You Can Test For In COBOL

Condition Type What It Tests Where to Look for Information

Class Whether your data is uppercase
alphabetic, lowercase alphabetic,
numeric, MBCS Kanji, or con-
sisting entirely of characters listed
in the definition of a user-defined
class-name.

NUMPROC(PFD), which
bypasses invalid sign processing,
might affect the outcome of a test
for numeric data.

“Checking for Incompatible Data
(Numeric Class Test)” on page 37.

User-defined A level-88 condition name, to dis-
cover whether a data item con-
tains a particular value or range of
values.

See “Condition-Names (Switches
and Flags)” on page 68 for details
on how to use level-88 items to
define condition-names that you can
test to control the processing of
switches and flags.

Relation Compares two items. IBM COBOL Language Reference.

Sign Whether a numeric operand is
less than, greater than, or equal
to zero.

IBM COBOL Language Reference.

Switch-status Whether an UPSI switch is on or
off.

IBM COBOL Language Reference.

Condition-Names (Switches and Flags)
Some program decisions are based on whether the value of a data item is true or false,
on or off, yes or no. To control these two-way decisions in your program, define
level-88 items with meaningful names (a condition name) to act as switches.

Some program decisions are based not on an on or off condition of a data item, but
instead, depend on the particular value (or range of values) of a data item. When
condition-names are used to give more than just on or off values to a field, the field is
generally referred to as a flag, not a switch. For details on flags, see the section
“Flags” on page 69, below.

Flags and Switches Make Changing Code Easier: Flags and switches make your
code easier to change. If you need to change the values for a condition, you have to
change only the level-88 condition-name value.

For example, a program that uses a condition-name to test a field for a given numeric
range—a salary range—need not be changed. If the program must be changed to
check for a different salary range, you would need to change only the condition-name

68 VisualAge COBOL Programming Guide

Selecting Program Actions

value in the DATA DIVISION. You do not need to make changes in the PROCEDURE
DIVISION.

Switches: For example, to test for an end-of-file condition for an input file named
Transaction-File, you could use the following data definitions:

 Working-Storage Section.

 ð1 Switches.

 ð5 Transaction-EOF-Switch Pic X value space.

 88 Transaction-EOF value "y".

The level-88 description says a condition named Transaction-EOF is turned on when
Transaction-EOF-Switch has a value of "y". Referencing Transaction-EOF in your
PROCEDURE DIVISION expresses the same condition as testing for
Transaction-EOF-Switch = "y". For example, the statement:

If Transaction-EOF Then Perform Print-Report-Summary-Lines

causes the report to be printed only if your program has read through to the end of the
Transaction-File and if the Transaction-EOF-Switch has been set to "y".

Flags: To test for more than two values, assign more than one condition-name to a
field by using multiple level-88 items.

Consider a program that updates a master file. The updates are read from a trans-
action file. The transaction file's records contain a field for the function to be per-
formed: add, change, or delete. In the input file's record description, code a field for the
function code using level-88 items:

 ð1 Transaction-Input Record

 ð5 Transaction-Type Pic X.

 88 Add-Transaction Value "A".

 88 Change-Transaction Value "C".

 88 Delete-Transaction Value "D".

The code in the PROCEDURE DIVISION for testing these condition-names might look like
this:

 Evaluate True

 When Add-Transaction

 Perform Add-Master-Record-Paragraph

 When Change-Transaction

 Perform Update-Exisitng-Record-Paragraph

 When Delete-Transaction

 Perform Delete-Master-Record-Paragraph

 End-Evaluate

Resetting Condition-Names (Switches and Flags)
Throughout your program, you might need to reset your switches or change your flags
back to the original values they have in their data descriptions. To do so, you can use
either a SET statement or define your own data item to use.

 Chapter 5. Selection and Iteration 69

Selecting Program Actions

SET condition-name TO TRUE: When you use the SET condition-name TO TRUE
statement, the switch or flag is set back to the original value it was assigned in its data
description.

This method makes it easy for the reader to follow your code if you choose meaningful
condition-names and if the value assigned has some association with a logical value of
True.

The SET statement in the following example does the same thing as Move "y" to

Transaction-EOF-Flag:

 ð1 Switches

 ð5 Transaction-EOF-Switch Pic X Value space.

 88 Transaction-EOF Value "y".

 .

 .

 .

 Procedure Division.

 ððð-Do-Main-Logic.

 Perform 1ðð-Initialize-Paragraph

 Read Update-Transaction-File

At End Set Transaction-EOF to True

 End-Read

The following example shows how you can assign a value for a field in an output record
based on the transaction code of an input record.

 ð1 Input-Record.

 ð5 Transaction-Type Pic X(9).

 .

 .

 .

 ð1 Data-Record-Out.

 ð5 Data-Record-Type Pic X.

 88 Record-Is-Active Value "A".

 88 Record-Is-Suspended Value "S".

 88 Record-Is-Deleted Value "D".

 ð5 Key-Field Pic X(5).

 .

 .

 .

70 VisualAge COBOL Programming Guide

Repeating Program Actions

 Procedure Division.

 .

 .

 .

Evaluate Transaction-Type of Input-Record

 When "ACTIVE"

Set Record-Is-Active to TRUE

 When "SUSPENDED"

Set Record-Is-Suspended to TRUE

 When "DELETED"

Set Record-Is-Deleted to TRUE

 End-Evaluate

Level-88 Note: For a level-88 item with multiple values (such as 88

Record-is-Active Value "A" "O" "S"), SET condition-name TO TRUE assigns the first
value (here, A).

SWITCH-OFF: Establish a data item with this description:

 ð1 SWITCH-OFF Pic X Value "n".

Then use SWITCH-OFF throughout your program to set on/off switches to off. With this
method, whoever reads your code can easily see what you are doing to a switch. From
this code:

 ð1 Switches

 ð5 Transaction-EOF-Switch Pic X Value space.

 88 Transaction-EOF Value "y".

 ð1 SWITCH-OFF Pic X Value "n".

 .

 .

 .

 Procedure Division.

 .

 .

 .

Move SWITCH-OFF to Transaction-EOF-Switch

it is easy to see that you are setting the end-of-file switch to off. In other words, you
have reset the switch to indicate that the end of the file has not been reached.

Iterative Loops (PERFORM Statement)
For looping (repeating the same code), use one of the forms of the PERFORM state-
ment. You can use the PERFORM statement to loop a set number of times or to loop
based on the outcome of a decision.

PERFORM statements can be inline or out-of-line.

Use the PERFORM statement to run a paragraph and then implicitly return control to the
next executable statement. In effect, the PERFORM statement is a way of coding a
closed subroutine that you can enter from many different parts of the program.

 Chapter 5. Selection and Iteration 71

Repeating Program Actions

Coding a Loop to Be Performed a Definite Number of Times
Use the PERFORM . . . TIMES statement to execute a paragraph a certain number of
times:

PERFORM ð1ð-PROCESS-ONE-MONTH 12 TIMES

INSPECT . . .

When control reaches the PERFORM statement, the code for the paragraph
ð1ð-PROCESS-ONE-MONTH is executed 12 times before control is transferred to the
INSPECT statement.

 Conditional Looping
Use the PERFORM . . . UNTIL statement to execute a paragraph until a condition you
choose is satisfied. You can use either of the following forms:

PERFORM . . . WITH TEST AFTER . . . UNTIL . . .
PERFORM . . . [WITH TEST BEFORE] . . . UNTIL . . .

In the following example, the implicit WITH TEST BEFORE phrase provides a do-while
structure:

 PERFORM ð1ð-PROCESS-ONE-MONTH

UNTIL MONTH EQUAL DECEMBER

INSPECT . . .

When control reaches the PERFORM statement, the condition (MONTH EQUAL DECEMBER)
is tested. If the condition is satisfied, control is transferred to the INSPECT statement. If
the condition is not satisfied, ð1ð-PROCESS-ONE-MONTH is executed, and the condition is
tested again. This cycle continues until the condition tests as true. (To make your
program easier to read, you might want to code the WITH TEST BEFORE clause.)

Use the PERFORM . . . WITH TEST AFTER . . . UNTIL if you want to execute the para-
graph at least once and then test before any subsequent execution. This is equivalent
to the do-until structure.

Looping through a Table
Use the PERFORM statement to control a loop through a table. You can use either of
the following forms:

PERFORM . . . WITH TEST AFTER . . . VARYING . . . UNTIL . . .
PERFORM . . . [WITH TEST BEFORE] . . . VARYING . . . UNTIL . . .

PERFORM. . .WITH TEST AFTER Example
You can use PERFORM . . . VARYING to initialize a table. In this form of the PERFORM
statement, a variable is increased or decreased and tested until a condition is satisfied.
The following code shows an example of looping through a table to check for invalid
data:

72 VisualAge COBOL Programming Guide

Repeating Program Actions

\\\ BLANK FIELDS ARE NOT ALLOWED IN THE INPUT DATA \\\

PERFORM TEST AFTER VARYING WS-DATA-IX

 FROM 1 BY 1

 UNTIL WS-DATA-IX = 12

 IF WS-DATA (WS-DATA-IX) EQUALS SPACES

SET SERIOUS-ERROR TO TRUE

 DISPLAY ELEMENT-NUM-MSG5

 END-IF

END-PERFORM

INSPECT . . .

In the code above, when control reaches the PERFORM statement, WS-DATA-IX is set
equal to 1 and the PERFORM statement is executed. Then the condition (WS-DATA-IX =

12) is tested. If the condition is true, control drops through to the INSPECT statement.
If it is false, WS-DATA-IX is increased by 1, the PERFORM statement is executed, and the
condition is tested again. This cycle of execution and testing continues until WS-DATA-IX
is equal to 12.

In terms of the application, this loop controls input-checking for the 12 fields of item
WS-DATA. Empty fields are not allowed, and this section of code loops through and
issues error messages, as appropriate.

Executing a Group of Paragraphs or Sections
In structured programming, the paragraph you execute is usually a single paragraph.
However, you can execute a group of paragraphs, a single section, or a group of
sections using the PERFORM . . . THRU. statement.

WHEN YOU USE PERFORM . . . THRU use a paragraph-EXIT statement to clearly indicate
the end point for the series of paragraphs.

Intrinsic functions can make the task of the iterative processing of tables simpler and
easier for you to code. For information on using the ALL subscript with intrinsic func-
tions to reference all the items in a table, see “Processing Table Items (Intrinsic
Functions)” on page 63.

 Chapter 5. Selection and Iteration 73

Joining Data Items

 Chapter 6. String Handling

COBOL provides language constructs for performing these operations associated with
string data items:

Figure 21. COBOL Data Constructs for Manipulating Strings

What You Want to Do What to Use Where to Look

Join data items STRING Statement On page 74

Split data items UNSTRING Statement On page 76

Manipulate null-terminated strings Usual string handling statements. On page 79

Reference substrings of data items Reference modifiers On page 80

Tally and replace data items INSPECT statement On page 83

Convert data items Intrinsic functions UPPER-CASE,
LOWER-CASE, REVERSE,
NUMVAL, and NUMVAL-C

On page 85

Evaluate data items Intrinsic functions CHAR, ORD,
MAX, MIN, ORD-MAX, ORD-MIN,
LENGTH, and WHEN-COMPILED

On page 87

Joining Data Items (STRING Statement)
Use the STRING statement to join all or parts of several data items into one data item.
One STRING statement can save you several MOVE statements.

The STRING statement transfers data into the receiving item in the order you indicate.
In the STRING statement you can also specify:

� Delimiters that cause a sending field to be ended and another to be started

� Special actions to be taken when an ON OVERFLOW condition occurs (when the
single receiving field is filled before all of the sending characters have been proc-
essed).

STRING Statement Example
In the following example, an input record is read, and the STRING statement is used to
select and format information as an output line consisting of a line number, customer
name and address, invoice number, next billing date, and balance due, truncated to the
dollar figure shown. (The symbol ␣ indicates a blank space.)

In the FILE SECTION, the following records are defined:

74  Copyright IBM Corp. 1996, 1998

Joining Data Items

 ð1 RCD-ð1.

 ð5 CUST-INFO.

 1ð CUST-NAME PIC X(15).

 1ð CUST-ADDR PIC X(35).

 ð5 BILL-INFO.

 1ð INV-NO PIC X(6).

 1ð INV-AMT PIC $$,$$$.99.

 1ð AMT-PAID PIC $$,$$$.99.

 1ð DATE-PAID PIC X(8).

 1ð BAL-DUE PIC $$,$$$.99.

 1ð DATE-DUE PIC X(8).

In the WORKING-STORAGE SECTION, the following fields are defined:

 77 RPT-LINE PIC X(12ð).

 77 LINE-POS PIC S9(3).

77 LINE-NO PIC 9(5) VALUE 1.

77 DEC-POINT PIC X VALUE ".".

The record, as read, contains the following information:

 J.B.␣SMITH␣␣␣␣␣

 444␣SPRING␣ST.,␣CHICAGO,␣ILL.␣␣␣␣␣␣

 A14275

 $4,736.85

 $2,4ðð.ðð

 ð9/22/76

 $2,336.85

 1ð/22/76

In the PROCEDURE DIVISION, the programmer initializes RPT-LINE to SPACES and sets
LINE-POS, the data item to be used as the POINTER field, to 4. (By coding the POINTER
phrase of the STRING statement, you can use the explicit pointer field to control place-
ment of data in the receiving field.) Then, the programmer issues this STRING
statement:

 STRING

LINE-NO SPACE CUST-INFO INV-NO SPACE DATE-DUE SPACE

DELIMITED BY SIZE

 BAL-DUE

DELIMITED BY DEC-POINT

 INTO RPT-LINE

WITH POINTER LINE-POS.

STRING Program Results
When the statement is performed, the following steps take place:

1. The field LINE-NO is moved into positions 4 through 8 of RPT-LINE .
2. A space is moved into position 9.
3. The group item CUST-INFO is moved into positions 10 through 59.
4. INV-NO is moved into positions 60 through 65.
5. A space is moved into position 66.
6. DATE-DUE is moved into positions 67 through 74.

 Chapter 6. String Handling 75

Splitting Data Items

7. A space is moved into position 75.
8. The portion of BAL-DUE that precedes the decimal point is moved into positions 76

through 81.
9. The value of LINE-POS is 82 after the STRING statement is performed.

After the STRING statement is performed, RPT-LINE appears as shown in the following:

Column

 4 1ð 6ð 67 76

 │ │ │ │ │

 │ │ │ │ │

 6 6 6 6 6

 ðððð1 J.B. SMITH 444 SPRING ST., CHICAGO, ILL A14275 1ð/22/76 $2,336

Splitting Data Items (UNSTRING Statement)
Use the UNSTRING statement to split one sending field into several receiving fields.
One UNSTRING statement can save you several MOVE statements.

You can indicate delimiters that, when encountered in the sending field, cause the
current receiving field to be switched to the next one indicated. You might have the
number of characters placed in each receiving field returned to you, and keep a count
of the total number of characters transferred. You might also specify special actions for
the program to take if all the receiving fields are filled before the end of the sending
item is reached.

UNSTRING Statement Example
In the following example, selected information is taken from the input record; some is
organized for printing and some for further processing.

In the FILE SECTION, the following records are defined:

76 VisualAge COBOL Programming Guide

Splitting Data Items

 \ Record to be acted on by the UNSTRING statement:

 ð1 INV-RCD.

 ð5 CONTROL-CHARS PIC XX.

 ð5 ITEM-INDENT PIC X(2ð).

 ð5 FILLER PIC X.

 ð5 INV-CODE PIC X(1ð).

 ð5 FILLER PIC X.

 ð5 NO-UNITS PIC 9(6).

 ð5 FILLER PIC X.

 ð5 PRICE-PER-M PIC 99999.

 ð5 FILLER PIC X.

 ð5 RTL-AMT PIC 9(6).99.

 \

 \ UNSTRING receiving field for printed output:

 ð1 DISPLAY-REC.

 ð5 INV-NO PIC X(6).

ð5 FILLER PIC X VALUE SPACE.

 ð5 ITEM-NAME PIC X(2ð).

ð5 FILLER PIC X VALUE SPACE.

 ð5 DISPLAY-DOLS PIC 9(6).

 \

 \ UNSTRING receiving field for further processing:

 ð1 WORK-REC.

 ð5 M-UNITS PIC 9(6).

 ð5 FIELD-A PIC 9(6).

ð5 WK-PRICE REDEFINES FIELD-A PIC 9999V99.

 ð5 INV-CLASS PIC X(3).

 \

 \ UNSTRING statement control fields

 77 DBY-1 PIC X.

 77 CTR-1 PIC S9(3).

 77 CTR-2 PIC S9(3).

 77 CTR-3 PIC S9(3).

 77 CTR-4 PIC S9(3).

 77 DLTR-1 PIC X.

 77 DLTR-2 PIC X.

 77 CHAR-CT PIC S9(3).

 77 FLDS-FILLED PIC S9(3).

In the PROCEDURE DIVISION, the programmer writes the following UNSTRING
statement:

 Chapter 6. String Handling 77

Splitting Data Items

\ Move subfields of INV-RCD to the subfields of DISPLAY-REC

 \ and WORK-REC:

 UNSTRING INV-RCD

DELIMITED BY ALL SPACES OR "/" OR DBY-1

INTO ITEM-NAME COUNT IN CTR-1

INV-NO DELIMITER IN DLTR-1 COUNT IN CTR-2

 INV-CLASS

M-UNITS COUNT IN CTR-3

 FIELD A

DISPLAY-DOLS DELIMITER IN DLTR-2 COUNT IN CTR-4

WITH POINTER CHAR-CT

TALLYING IN FLDS-FILLED

ON OVERFLOW GO TO UNSTRING-COMPLETE.

Before issuing the UNSTRING statement, the programmer places the value 3 in CHAR-CT
(the POINTER field) to avoid working with the two control characters in INV-RCD. A
period (.) is placed in DBY-1 for use as a delimiter, and the value 0 (zero) is placed in
FLDS-FILLED (the TALLYING field). The data is then read into INV-RCD, as shown in the
following:

Column

1 1ð 2ð 3ð 4ð 5ð 6ð

│ │ │ │ │ │ │

│ │ │ │ │ │ │

│ │ │ │ │ │ │

6 6 6 6 6 6 6

ZYFOUR─PENNY─NAILS 7ð789ð/BBA 47512ð ðð122 ððð379.5ð

UNSTRING Program Results
When the UNSTRING statement is performed, the following steps take place:

1. Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are placed in ITEM-NAME,
left-justified in the area, and the unused character positions are padded with
spaces. The value 16 is placed in CTR-1.

2. Because ALL SPACES is coded as a delimiter, the 5 contiguous SPACE characters
are considered to be one occurrence of the delimiter.

3. Positions 24 through 29 (707890) are placed in INV-NO. The delimiter character, /,
is placed in DLTR-1 , and the value 6 is placed in CTR-2.

4. Positions 31 through 33 are placed in INV-CLASS. See Note at end of list.
5. Positions 35 through 40 (475120) are examined and placed in M-UNITS. The value

6 is placed in CTR-3. See Note at end of list.
6. Positions 42 through 46 (00122) are placed in FIELD-A and right-justified in the

area. The high-order digit position is filled with a 0 (zero). See Note at end of list.
7. Positions 48 through 53 (000379) are placed in DISPLAY-DOLS. The period (.)

delimiter character in DBY-1 is placed in DLTR-2, and the value 6 is placed in CTR-4.

78 VisualAge COBOL Programming Guide

Manipulating Null-Terminated Strings

8. Because all receiving fields have been acted on and 2 characters of data in
INV-RCD have not been examined, the ON OVERFLOW exit is taken, and execution
of the UNSTRING statement is completed.

SPACE Note: In steps 4, 5, and 6, the delimiter is a SPACE, but because no field has
been defined as a receiving area for delimiters, the SPACE is bypassed.

After the UNSTRING statement is performed, the fields contain:

 � DISPLAY-REC contains:

7ð789ð FOUR-PENNY-NAILS ððð379

 � WORK-REC contains:

47512ðððð122BBA

� CHAR-CT (the POINTER field) contains the value 55.

� FLDS-FILLED (the TALLYING field) contains the value 6.

Manipulating Null-Terminated Strings
Null-terminated strings are supported using syntax shown in the IBM COBOL Language
Reference. You can construct and manipulate null-terminated strings passed to or from
a C program, for example, by using string handling mechanisms such as:

� Using null terminated literal constants (Z" ... ").

� Using INSPECT statement to count number of characters in a null-terminated string:

MOVE ð TO char-count

INSPECT source-field TALLYING char-count

 FOR CHARACTERS

 BEFORE X"ðð"

� Using UNSTRING statement to move characters in a null-terminated string to a
target-field and get the character count:

 WORKING-STORAGE SECTION.

 ...

 ð1 source-field PIC X(1ðð1).

 ð1 char-count COMP-5 PIC 9(4).

 ð1 target-area.

ð2 individual-char OCCURS 1 TO 1ððð TIMES DEPENDING ON char-count

 PIC X.

 ...

 PROCEDURE DIVISION.

 ...

UNSTRING source-field DELIMITED BY X"ðð"

 INTO target-area

COUNT IN char-count

 ON OVERFLOW

DISPLAY "source not null terminated or target too short"

 ...

 END-UNSTRING

 ...

 Chapter 6. String Handling 79

Referencing Substrings

� Using a SEARCH statement to locate trailing null or space characters (Define the
string being examined as a table of single characters.)

� Checking each character in a field in a loop (PERFORM) looking at each character
of the field (Each character in the field can be examined using a reference modifier
such as source-field (I:1).)

The following example shows the use of several of these mechanisms:

ð1 L pic X(2ð) value z'ab'.

ð1 M pic X(2ð) value z'cd'.

ð1 N pic X(2ð).

ð1 N-Length pic 99 value zero.

ð1 Y pic X(13) value 'Hello, World!'.

\ Display null-terminated string

Inspect N tallying N-length

for characters before initial x'ðð'

Display 'N: ' N(1:N-length) ' Length: ' N-length

\ Move null-terminated string to alphanumeric, strip null

Unstring N delimited by X'ðð' into X

\ Create null-terminated string

String Y delimited by size

X'ðð' delimited by size

 into N.

\ Concatenate two null-terminated strings

String L delimited by x'ðð'

M delimited by x'ðð'

X'ðð' delimited by size

 into N.

Figure 22. Handling Null-Terminated Strings

Referencing Substrings of Data Items (Reference Modifiers)
Reference a substring of character-string data item items (including ASCII data items)
with reference modifiers. Intrinsic functions that return character-string values are also
considered alphanumeric data items, and can include a reference modifier.

The following example shows how to use a reference modifier to reference a substring
of a data item:

Move Customer-Record(1:2ð) to Orig-Customer-Name

As this shows, in parentheses immediately following the data item you code the ordinal
position (from the left) of the character you want the substring to start with and the
length of the desired substring, separated by a colon.

80 VisualAge COBOL Programming Guide

Referencing Substrings

The length is optional. If you omit the length, the substring created will automatically
extend to the end of the item. Omitting the length, when possible, is recommended as
a simpler, less error-prone coding technique.

These values can be variables or expressions.

Common Reference Modification Mistakes
If the leftmost character position or the length value is a fixed-point non-integer, trun-
cation will occur to create an integer; if it is a floating-point non-integer, rounding will
occur to create an integer.

Both numbers in the reference modifier must be at least 1, and their sum should not
exceed the total length of the data item.

The following options detect out-of-range reference modifiers and flag violations with a
run-time message:

� SSRANGE compiler option, discussed on page 193.
� CHECK run-time option, discussed on page “CHECK” on page 240.

For additional information on reference modification, see IBM COBOL Language Refer-
ence.

Benefits of Reference Modification
Assume that you want to retrieve the current time from the system and display its value
in an expanded format. You can retrieve the current time value from the system with
the ACCEPT statement, which returns the hours, minutes, seconds, and hundredths of
seconds in this format:

 HHMMSSss

However, you might prefer to view the current time in this format:

 HH:MM:SS

Without reference notification you would have to define data items for both formats, the
one from the system and the one you want, and write code to convert from one format
to the other.

With reference modification, you do not need to provide names for the subfields that
describe the TIME elements. The only data definition needed is:

 ð1 REFMOD-TIME-ITEM PIC X(8).

The code to retrieve and expand the time value would appear as follows:

 Chapter 6. String Handling 81

Referencing Substrings

ACCEPT REFMOD-TIME-ITEM FROM TIME.

DISPLAY "CURRENT TIME IS: "

\ Retrieve the portion of the time value that corresponds to

\ the number of hours:

 REFMOD-TIME-ITEM (1:2)

 ":"

\ Retrieve the portion of the time value that corresponds to

\ the number of minutes:

 REFMOD-TIME-ITEM (3:2)

 ":"

\ Retrieve the portion of the time value that corresponds to

\ the number of seconds:

 REFMOD-TIME-ITEM (5:2).

Reference Modification of an Intrinsic Function
The simplest solution to our problem would be to reference a substring of the
CURRENT-DATE function, which requires no DATA DIVISION entries and fewer lines of
code.

Display "Current Date is: "

 Function Current-Date(9:2)

 ":"

 Function Current-Date(11:2)

 ":"

 Function Current-Date(13:2).

Using Arithmetic Expressions as Reference Modifiers
You can also use an arithmetic expression as either of the integers in a reference modi-
fier. For example:

Suppose that a field contains some characters, right-justified, and you want to move the
characters to another field, but justified to the left instead of the right. Using reference
modification and an INSPECT statement, you could do that.

The program would have the following data:

 ð1 LEFTY PIC X(3ð).

ð1 RIGHTY PIC X(3ð) JUSTIFIED RIGHT.

 ð1 I PIC 9(9) USAGE BINARY.

The program would count the number of leading spaces and, using arithmetic
expressions in a reference modification expression, move the right-justified characters
into another field, left-justified:

MOVE SPACES TO LEFTY

MOVE ZERO TO I

| INSPECT RIGHTY

TALLYING I FOR LEADING SPACE.

IF I IS LESS THAN LENGTH OF RIGHTY THEN

MOVE RIGHTY (I + 1 : LENGTH OF RIGHTY - I) TO LEFTY

 END-IF

82 VisualAge COBOL Programming Guide

Counting and Replacing Data Items

The MOVE statement transfers characters from RIGHTY, beginning at the position com-
puted in I + 1, for a length that is computed in LENGTH OF RIGHTY - I, into the field
LEFTY.

Using Intrinsic Functions as Reference Modifiers
Because a numeric function-identifier can be used anywhere an arithmetic expression is
allowed, it can be used as the leftmost character position and/or the length in the refer-
ence modifier.

For example:
 ð5 WS-name Pic x(2ð).

 ð5 Left-posn Pic 99.

 ð5 I Pic 99.

 .

 .

Move Customer-Record(Function Min(Left-posn I):Function Length(WS-name)) to WS-name

When performed, this statement causes a substring of Customer-Record to be moved
into the variable WS-name; the substring is determined at run time.

If you want to use a numeric, non-integer function in a position requiring an integer
function, you can use the INTEGER or INTEGER-PART function to convert the result to an
integer. For example:

Move Customer-Record(Function Integer(Function Sqrt(I)):) to WS-name

For a list that shows which numeric functions return integer and non-integer results, see
IBM COBOL Language Reference.

Referencing Substrings of Table Items
You can also reference substrings of table entries, including variable-length entries.
This is discussed in Chapter 4, “Handling Tables” on page 47.

Tallying and Replacing Data Items (INSPECT Statement)
The INSPECT statement is useful for:

� Filling selective portions of a data item with a value.

� Replacing portions with a corresponding portion of another data item.

� Counting the number of times a specific character (zero, space, asterisk, for
example) occurs in a data item.

INSPECT Statement Examples
The following examples show some uses of the INSPECT statement. In all instances,
the programmer has initialized the COUNTR field to zero before the INSPECT statement is
performed.

 Chapter 6. String Handling 83

Counting and Replacing Data Items

 Example 1:
77 COUNTR PIC 9 VALUE ZERO.

ð1 DATA-2 PIC X(11).

 .

 .

 INSPECT DATA-2

TALLYING COUNTR FOR LEADING "ð"

REPLACING FIRST "A" BY "2" AFTER INITIAL "C"

DATA-2 Before COUNTR After DATA-2 After

ððACADEMYðð 2 ððAC2DEMYðð

ððððALABAMA 4 ððððALABAMA

CHATHAMðððð 0 CH2THAMðððð

 Example 2:
77 COUNTR PIC 9 VALUE ZERO.

ð1 DATA-3 PIC X(8).

 .

 .

 INSPECT DATA-3

REPLACING CHARACTERS BY ZEROS BEFORE INITIAL QUOTE

DATA-3 Before COUNTR After DATA-3 After

456"ABEL 0 ððð"ABEL

ANDES"12 0 ððððð"12

"TWAS BR 0 "TWAS BR

 Example 3:
The following example shows the use of INSPECT CONVERTING with AFTER and
BEFORE phrases. The table shows examples of the contents of DATA-4 before and after
the conversion statement is performed.

ð1 DATA-4 PIC X(11).

 .

 .

 INSPECT DATA-4

 CONVERTING

 "abcdefghijklmnopqrstuvwxyz" TO

 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

AFTER INITIAL "/"

 BEFORE INITIAL"?"

84 VisualAge COBOL Programming Guide

Converting Character Data Items

DATA-4 Before DATA-4 After

a/five/?six a/FIVE/?six

r/Rexx/RRRr r/REXX/RRRR

zfour?inspe zfour?inspe

Converting Data Items (Intrinsic Functions)
Intrinsic functions are available to convert character-string data items to the following:

� Upper or lower case
 � Reverse order
 � Numbers

Besides using intrinsic functions to convert characters, you can also use the INSPECT
statement. See the examples under “Tallying and Replacing Data Items (INSPECT
Statement)” on page 83.

Converting to Uppercase or Lowercase (UPPER-CASE, LOWER-CASE)
This code:

ð1 Item-1 Pic x(3ð) Value "Hello World!".

 ð1 Item-2 Pic x(3ð).

 .

 .

 Display Item-1

Display Function Upper-case(Item-1)

Display Function Lower-case(Item-1)

Move Function Upper-case(Item-1) to Item-2

 Display Item-2

would display the following messages on the terminal:

 Hello World!

 HELLO WORLD!

 hello world!

 HELLO WORLD!

The DISPLAY statements do not change the actual contents of Item-1 and only affect
how the letters are displayed. However, the MOVE statement causes uppercase letters
to be moved to the actual contents of Item-2.

Converting to Reverse Order (REVERSE)
The following code:

Move Function Reverse(Orig-cust-name) To Orig-cust-name

would reverse the order of the characters in Orig-cust-name. For example, if the
starting value was “JOHNSON␣␣␣,” the value after the statement is performed would be
“␣␣␣NOSNHOJ.”

 Chapter 6. String Handling 85

Converting Character Data Items

Converting to Numbers (NUMVAL, NUMVAL-C)
The NUMVAL and NUMVAL-C functions convert character strings to numbers. Use these
functions to convert alphanumeric data items that contain free format character repre-
sentation numbers to numeric form and process them numerically. For example:

ð1 R Pic x(2ð) Value "- 1234.5678".

 ð1 S Pic x(2ð) Value " $12,345.67CR".

ð1 Total Usage is Comp-1.

 .

 .

Compute Total = Function Numval(R) + Function Numval-C(S)

The difference between NUMVAL and NUMVAL-C is that NUMVAL-C is used when the
argument includes a currency symbol and/or comma, as shown in the example. You
can also place an algebraic sign in front or in the rear, and it will be processed. The
arguments must not exceed 18 digits (not including the editing symbols). For exact
syntax rules, see IBM COBOL Language Reference.

Numeric Result: Both NUMVAL and NUMVAL-C return long (double-precision) floating-
point values. A reference to either of these functions, therefore, represents a reference
to a numeric data item. For more information on characteristics of numeric data, see
Chapter 3, “Numbers and Arithmetic” on page 29.

Why Use NUMVAL and NUMVAL-C
When you use NUMVAL or NUMVAL-C you don't need to statically declare numeric data
in a fixed format and input data in a precise manner. For example, for this code:

ð1 X Pic S999V99 leading sign is separate.

 .

 .

Accept X from Console

The user of the application must enter the numbers exactly as defined by the PICTURE
clause. For example:

 +ðð1.23

 -3ðð.ðð

However, using the NUMVAL function, you could code:

 ð1 A Pic x(1ð).

 ð1 B Pic S999V99.

 .

 .

Accept A from Console

Compute B = Function Numval(A)

and the input could be:

 1.23

 -3ðð

86 VisualAge COBOL Programming Guide

Evaluating Data Items

Evaluating Data Items (Intrinsic Functions)
Several intrinsic functions can be used in evaluating data items:

� CHAR and ORD for evaluating integers and single alphanumeric characters with
respect to the collating sequence used in your program.

� MAX, MIN, ORD-MAX, and ORD-MIN for finding the largest and smallest items in a
series of data items.

� LENGTH for finding the length of data items.

� WHEN-COMPILED for finding the date and time the program was compiled.

Evaluating Single Characters for Collating Sequence (CHAR, ORD)
If you want to know the ordinal position of a certain character in the collating sequence,
reference the ORD function using the character in question as the argument, and ORD
will return an integer representing that ordinal position. One convenient way to do this
is to use the substring of a data item as the argument to ORD:

IF Function Ord(Customer-record(1:1)) Is > 194 THEN ...

On the other hand, if you know what position in the collating sequence you want but
don't know what character it corresponds to, then reference the CHAR function using
the integer ordinal position as the argument, and CHAR will return the desired character:

INITIALIZE Customer-Name REPLACING ALPHABETIC BY Function Char(65)

Finding the Largest or Smallest Data Item (MAX, MIN, ORD-MAX, ORD-MIN)
If you have two or more alphanumeric data items and want to know which data item
contains the largest value (evaluated according to the collating sequence), use the MAX
or ORD-MAX function, supplying the data items in question as arguments. If you want to
know which item contains the smallest value, you would use the MIN or ORD-MIN func-
tion.

MAX and MIN
The MAX and MIN functions simply return the contents of one of the variables you
supply.

For example, with these data definitions:

ð5 Arg1 Pic x(1ð) Value "THOMASSON ".

 ð5 Arg2 Pic x(1ð) Value "THOMAS ".

 ð5 Arg3 Pic x(1ð) Value "VALLEJO ".

the following statement:

Move Function Max(Arg1 Arg2 Arg3) To Customer-record(1:1ð)

would assign “VALLEJO␣␣␣” to the first ten character positions of Customer-record.

If MIN were used instead, then “THOMAS␣␣␣␣” would be returned.

 Chapter 6. String Handling 87

Evaluating Data Items

ORD-MAX and ORD-MIN
The functions ORD-MAX and ORD-MIN return an integer that represents the ordinal posi-
tion of the argument with the largest or smallest value in the list of arguments you have
supplied (counting from the left).

If the ORD-MAX function were used in the example above, you would receive a syntax
error message at compile time, because you would be attempting to reference a
numeric function in an invalid place (see IBM COBOL Language Reference). The fol-
lowing is a valid example of the ORD-MAX function:

Compute x = Function Ord-max(Arg1 Arg2 Arg3)

This would assign the integer 3 to x, if the same arguments were used as in the pre-
vious example. If ORD-MIN were used instead, the integer 2 would be returned.

Notes on MAX, MIN, ORD-MAX, ORD-MIN
This group of functions can also be used for numbers, in which case the algebraic
values of the arguments are compared. For more information, see the appropriate
section of Chapter 3, “Numbers and Arithmetic” on page 29.

The above examples would probably be more realistic if Arg1, Arg2 and Arg3 were
instead successive elements of an array (table). For information on using table ele-
ments as function arguments, see the section on “Processing Table Items (Intrinsic
Functions)” on page 63 in Chapter 4, “Handling Tables.”

Returning Variable-Length Results with Alphanumeric Functions
The results of alphanumeric functions might be of varying lengths and values
depending on the function arguments.

In the following example, the amount of data moved to R3 and the results of the
COMPUTE statement depend on the values and sizes of R1 and R2:

ð1 R1 Pic x(1ð) value "e".

ð1 R2 Pic x(ð5) value "f".

ð1 R3 Pic x(2ð) value spaces.

 ð1 L Pic 99.

 .

 .

Move Function Max(R1 R2) to R3

Compute L = Function Length(Function Max(R1 R2))

Here, R2 is evaluated to be larger than R1. Therefore, assuming that the symbol ␣
represents a blank space, the string “f␣␣␣␣” would be moved to R3 (the unfilled char-
acter positions in R3 are padded with spaces), and L evaluates to the value 5. If R1
were the value “g” then R1 would be larger than R2, and the string “g␣␣␣␣␣␣␣␣␣” would
be moved to R3 (the unfilled character positions in R3 would be padded with spaces);
the value 10 would be assigned to L.

You might be dealing with variable-length output from alphanumeric functions. Plan
your program code accordingly. For example, you might need to think about using

88 VisualAge COBOL Programming Guide

Evaluating Data Items

variable-length record files when it is possible that the records you will be writing might
be of different lengths:

 File Section.

 FD Output-File.

 ð1 Customer-Record Pic X(8ð).

 Working-Storage Section.

 ð1 R1 Pic x(5ð).

 ð1 R2 Pic x(7ð).

 .

 .

Write Customer-Record from Function Max(R1 R2)

Finding the Length of Data Items (LENGTH)
The LENGTH function is useful in many programming contexts for determining the
length of string items. The following COBOL statement shows moving a data item such
as a customer name into the particular field in a record that is for customer names:

Move Customer-name To Customer-record(1:Function Length(Customer-name))

Numeric & Table: The LENGTH function can also be used on a numeric data item or
a table entry. Numeric data and tables are discussed in Chapter 3, “Numbers and
Arithmetic” on page 29 and in Chapter 4, “Handling Tables” on page 47.

LENGTH OF Special Register
In addition to the LENGTH function, another technique to find the length of a data item is
to use the LENGTH OF special register. Coding either Function Length(Customer-Name)

or LENGTH OF Customer-Name would return the same result— the length of
Customer-Name in bytes.

Whereas the LENGTH function can only be used where arithmetic expressions are
allowed, the LENGTH OF special register can be used in a greater variety of contexts.
For example, the LENGTH OF special register can be used as an argument to an
intrinsic function that allows integer arguments. (An intrinsic function cannot be used as
an operand to the LENGTH OF special register.) The LENGTH OF special register can
also be used as a parameter in a CALL statement.

Finding the Date of Compilation (WHEN-COMPILED)
If you want to know the date and time the program was compiled as provided by the
system on which the program was compiled, you can use the WHEN-COMPILED func-
tion. The result returned has 21 character positions with the first 16 positions in the
format:

 YYYYMMDDhhmmsshh

to show the 4-digit year, month, day, and time (in hours, minutes, seconds, and hun-
dredths of seconds) of compilation.

 Chapter 6. String Handling 89

Evaluating Data Items

WHEN-COMPILED Special Register
The WHEN-COMPILED special register is another technique you can use to find the date
and time of compilation. It has the format:

 MM/DD/YYhh.mm.ss

The WHEN-COMPILED special register supports only a two-digit year and carries the
time out only to seconds. This special register can only be used as the sending field in
a MOVE statement.

90 VisualAge COBOL Programming Guide

Processing Files

 Chapter 7. Processing Files

Reading and writing data to and from files is an essential part of every program. Your
program retrieves information, processes it as you request, and then produces the
results.

This chapter provides a brief introduction on file organization and access modes,
describes the coding your COBOL programs need to identify and process files, and
explains how files must be defined and identified to the operating system before your
program can process them.

The topics in this chapter are:

“File Input/Output Overview” on page 92

“COBOL Coding for Files” on page 95

“Input/Output Error Handling Techniques” on page 123

“File Sorting and Merging” on page 106

“The STL File System” on page 114

Record-oriented files that are organized as sequential, relative, indexed, or line sequen-
tial (byte stream) files are accessed through a file system. An application can use file-
system functions to create and manipulate the records in any of these types of files.

VisualAge COBOL supports the following file systems:

� The STL file system, which provides the basic facilities for local files. It is provided
with VisualAge COBOL and supports sequential, relative, and indexed files.

� The VSAM file system, which allows you to read and write files on remote systems
such as OS/390. It is provided with VisualAge COBOL and supports sequential,
relative, and indexed files.

 On OS/2, the VSAM file system supports local files as well as remote.

� The Btrieve file system, which allows you to access Btrieve files. Btrieve is a sepa-
rate product available from Btrieve Technologies, Inc. (BTI).

| Note: By using the Btrieve file system you can access files created by VisualAge
| CICS Enterprise Application Development and CICS for OS/2.

Most programs will get the same results on all file systems. However, files written
using one file system cannot be read using a different file system.

Two ways you can select a file system are by setting the assignment-name environ-
ment variable or by using the FILESYS run-time option. See “Accessing Files” on
page 97 for futher details. All the file systems allow you to use COBOL statements to
read or write COBOL files.

 Copyright IBM Corp. 1996, 1998 91

File Organization

If you have more complex requirements which are not covered in this book, or are
going to be a frequent user of file systems, you should review the Btrieve Programmer's
Manual and the publications for the SMARTdata Utilities for OS/2 or Windows, which
are provided as part of the on-line documentation.

File Input/Output Overview
This section describes file organization and file access modes. You should decide on
the file types you will use when you design your program. Your file management
system handles the input/output requests and record retrieval from the input/output
devices.

Figure 23 summarizes file organization, access modes, and record lengths for COBOL
files.

Figure 23. File Organizations and Access Modes

File Organization
Sequential
Access

Random
Access

Dynamic
Access

Sequential Yes No No

Line sequential Yes No No

Indexed Yes Yes Yes

Relative Yes Yes Yes

File I/O Limitations:

� For line sequential files, the maximum record size is 64K.
� For VSAM files:

– Minimum record size: 1 byte
– Maximum record size: 64,000 bytes
– Maximum record key length: 255 bytes
– Maximum relative key value: 2**32-2
– Maximum number of bytes allocated for a file: 2**32

� For STL files:
– Minimum record size: 1 byte
– Maximum record size: 65536 bytes
– Maximum record key length: 255 bytes
– Maximum number or alternate keys: 253 bytes
– Maximum relative key value: 2**32-1
– Maximum number of bytes allocated for a file: 2**32-1

Additional or more restrictive limits might be applicable depending on the platform on which the
target file is located. See the appropriate books for the file system of the target platform for these
limits.

 File Organization
You can organize your files as sequential, line sequential, indexed, or relative.

Sequential File Organization
A sequential file contains records organized by the order in which they are entered.
The order of the records is fixed.

92 VisualAge COBOL Programming Guide

File Organization

Records in sequential files can only be read or written sequentially.

After you have placed a record into the file, you cannot shorten, lengthen, or delete it.
However, you can update (REWRITE) a record if the length does not change. New
records are added at the end of the file.

Line Sequential File Organization
Line sequential files are just like sequential files, except that the records can contain
only characters as data. Line sequential files are supported by the native byte stream
files of the operating system.

Line sequential files that are created with WRITE statements with the ADVANCING
phrase can be directed to a printer (as well as a disk).

Indexed File Organization
An indexed file contains records ordered by a record key. Each record contains a field
that contains the record key. The record key uniquely identifies the record and deter-
mines the sequence in which it is accessed with respect to other records. A record key
for a record might be, for example, an employee number or an invoice number.

An indexed file can also use alternate indexes—record keys that let you access the file
using a different logical arrangement of the records. For example, you could access
the file through employee department rather than through employee number.

The record transmission (access) modes allowed for indexed files are sequential,
random, or dynamic. When indexed files are read or written sequentially, the sequence
is that of the key values. For a description of random and dynamic record trans-
mission, see “File Access Modes” on page 94.

Relative File Organization
A relative record file contains records ordered by their relative key—the relative key
being the relative record number representing the record's location relative to where the
file begins. For example, the first record in the file has a relative record number of 1,
the tenth record has a relative record number of 10, and so forth. The relative record
number identifies the fixed-or variable-length record.

The record transmission modes allowed for relative files are sequential, random, or
dynamic. When relative files are read or written sequentially, the sequence is that of
the relative record number. For a description of random and dynamic record trans-
mission, see “File Access Modes” on page 94.

Figure 24 (Page 1 of 2). Comparison of Different Files

Sequential Line Sequential Indexed Relative

Records are in the
order in which they
are written.

Records are in the
order in which they
are written.

Records are in col-
lating sequence by
key field.

Records are in rela-
tive record number
order.

 Chapter 7. Processing Files 93

File Access Modes

Figure 24 (Page 2 of 2). Comparison of Different Files

Sequential Line Sequential Indexed Relative

Access is sequential. Access is sequen-
tial.

Access is by key
through an index.
Can have one or
more alternate
indexes.

Access is by relative
record number, which
is handled like a key.

A record cannot be
deleted, but you can
reuse its space for a
record of the same
length.

A record cannot be
deleted or replaced.

Records can be
deleted or replaced.

Records can be
deleted or replaced.

File Access Modes
You can access records in sequential and line sequential files sequentially only.

You can access records in indexed and relative files in three ways: sequentially, ran-
domly, or dynamically.

 Sequential Access
Code ACCESS IS SEQUENTIAL in the FILE-CONTROL entry.

For indexed files, records are accessed in the order of the key field selected (either
primary or alternate).

For relative files, records are accessed in the order of the relative record numbers.

 Random Access
Code ACCESS IS RANDOM in the FILE-CONTROL entry.

For indexed files, records are accessed according to the value you place in a key field.

For relative files, records are accessed according to the value you place in the relative
key.

 Dynamic Access
Code ACCESS IS DYNAMIC in the FILE-CONTROL entry.

Dynamic access is a mixed sequential-random access in the same program. Using
dynamic access, you can use one COBOL file definition to perform both sequential and
random processing, accessing some records in sequential order and others by their
keys.

For example, suppose you had an indexed file of employee records, and the employ-
ee's hourly wage formed the record key. Also, suppose your program was interested in
those employees earning between $7.00 and $9.00 per hour and those earning $15.00
per hour and above. To do this, retrieve the first record randomly (with a random-

94 VisualAge COBOL Programming Guide

COBOL Coding for Files

retrieval READ) based on the key of 0700. Next, begin reading sequentially (using
READ NEXT) until the salary field exceeds 0900. You would then switch back to a
random read, this time based on a key of 1500. After this random read, switch back to
reading sequentially until you reach the end of the file.

COBOL Coding for Files
Code your COBOL program according to the types of files you decide to use. The
general format of input/output coding is shown in Figure 25. Explanations of user-
supplied information (lowercase) follow the figure.

IDENTIFICATION DIVISION.

 .

 .

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT filename ASSIGN TO assignment-name .1/ .2/
ORGANIZATION IS org ACCESS MODE IS access .3/ .4/
FILE STATUS IS file-status .5/

 .

 .

DATA DIVISION.

 FILE SECTION.

 FD filename

 ð1 recordname .6/
nn . . . fieldlength & type .7/ .8/
nn . . . fieldlength & type

 .

 .

WORKING-STORAGE SECTION

 ð1 file-status PICTURE 99.

 .

 .

PROCEDURE DIVISION.

 .

 .

OPEN iomode filename .9/
 .

 .

 READ filename

 .

 .

 WRITE recordname

 .

 .

 CLOSE filename

 .

 .

 STOP RUN.

Figure 25. Overview of COBOL Input/Output Coding

The user-supplied information in Figure 25 can be explained as follows:

 Chapter 7. Processing Files 95

COBOL Coding for Files

.1/ filename
Any valid COBOL name. You must use the same filename on the SELECT and the
FD statements, and on the OPEN, READ, START, DELETE, and CLOSE statements.
This name is not necessarily the actual name of the file as known to the system.
Each file requires its own SELECT, FD, and input/output statements. For WRITE
and REWRITE, you specify a record defined for the file.

.2/ assignment-name
You can specify ASSIGN TO assignment-name to specify the target file-system ID
and the file of the name as known to the system directly, or you can set a value
indirectly by using an environment variable.

If you want to have the system file name identified at OPEN time, you can specify
ASSIGN USING data-name. The value of data-name at the time of the execution of
the OPEN statement for the file is used and has the system file identification
optionally preceded by the file-system type identification.

The following example illustrates how inventory-file is dynamically (by way of a
MOVE statement) associated with a file d:\inventory\parts.

SELECT inventory-file ASSIGN TO a-file
...

MOVE "d:\inventory\parts" TO a-file

OPEN INPUT inventory-file

For more information, see IBM COBOL Language Reference.

.3/ org
Indicates the organization: LINE SEQUENTIAL, SEQUENTIAL, INDEXED, or RELATIVE.
If this clause is omitted, the default is ORGANIZATION SEQUENTIAL.

.4/ access
Indicates the access mode, SEQUENTIAL, RANDOM, or DYNAMIC. If this clause is
omitted, the default is ACCESS SEQUENTIAL.

.5/ file-status
The 2-character COBOL FILE STATUS key.

.6/ recordname
The name of the record used in the WRITE and REWRITE statements. You can
specify more than one record for a file.

.7/ fieldlength
The logical length of the field.

.8/ type
Must match the file's record format. If you break the record description entry
beyond the level-01 description, each element should map accurately against the
record's fields.

.9/ iomode
Specifies the open mode. For example, if you are only reading from a file, code
INPUT. If you are only writing to it, code OUTPUT or EXTEND. If you are doing
both, code I-O.

96 VisualAge COBOL Programming Guide

COBOL Coding for Files

Line Sequential: I-O is not a valid parameter of OPEN for line sequential files.

 Accessing Files
Your programs are able to access STL, VSAM, and Btrieve (Btrieve Technologies, Inc.)
files.

 On Windows, only remote files are supported using VSAM.

Use assignment-name to specify both the file you want to access and the file system to
be used. For a detailed description of assignment-name, see the IBM COBOL Lan-
guage Reference.

The general syntax involved in making an assignment to a file stored in an alternate file
system is:

SELECT file ASSIGN TO FileSystemID-Filename

FileSystemID
Identifies the file system as one of the following:

STL For the STL file system.

VSAM For the VSAM file system. VSAM can be abbreviated to VSA.

 On Windows, Filename must start with "\\", indicating remote
file access.

BTR For the Btrieve file system.

If the file-system specification is not provided, then the run-time option FILESYS is
used to select the file system. If a file system is not specified using FILESYS, the
default is VSAM on OS/2 and STL on Windows.

Filename
| The file you want to access. Alternatively, you can specify an environment variable
| to allow you to specify the file name at run time. For details, see “Run-Time Envi-
| ronment Variables” on page 137, and the IBM COBOL Language Reference.

Usage Note: The following file status indicators are not set for Btrieve:

 02
 21
 39

Example—Accessing Btrieve Files
� To use the Btrieve file system, the following assignment would be valid:

SELECT file1 ASSIGN USING 'BTR-MyFile'

� If the run-time option FILESYS(BTRIEVE) was in effect, the following assignment
would be valid:

SELECT file1 ASSIGN TO 'MyFile'

 Chapter 7. Processing Files 97

COBOL Coding for Files

� Given that you have defined the environment variable MYFILE (for example, SET
MYFILE=BTR-MYFILE), the following assignment would be valid:

SELECT file1 ASSIGN TO MYFILE

Example—Accessing STL Files
� To use the STL file system, the following assignment would be valid:

SELECT file1 ASSIGN USING 'STL-MyFile'

� If the run-time option FILESYS(STL) was in effect, the following assignment would
be valid:

SELECT file1 ASSIGN TO 'MyFile'

� Given that you have defined the environment variable MYFILE , (for example, SET
MYFILE=STL-MYFILE), the following assignment would be valid:

SELECT file1 ASSIGN TO MYFILE

Distributed File Access
Using the Distributed File feature of the SMARTdata Utilities, you can access a remote
file (for example, OS/390 VSAM, SAM, or PDS) without any source program change.

In the following example, the SELECT clause is used to associate a file on OS/390 with
a file in your workstation program:

SELECT myfile ASSIGN TO TARGETFILE

| On OS/2, you can associate myfile to an OS/390 file called MVSMAST by
| setting the TARGETFILE environment variable:

| set TARGETFILE=m:MVSMAST

| where the drive m is set to point to the specific OS/390 system and MVSMAST is the
| data set name on the OS/390 system.

See VSAM in a Distributed Environment for more information.

Coding Input/Output Statements for Files
After identifying and describing the files in the ENVIRONMENT DIVISION and DATA DIVI-
SION, process the file records in the PROCEDURE DIVISION of your program.

Figure 26 shows the possible combinations of input/output statements for sequential
files. The 'X' indicates that the statement can be used with the open mode given at
the top of the column.

Figure 26 (Page 1 of 2). Valid COBOL Statements for Sequential Files

Access Mode
COBOL
Statement

OPEN
INPUT

OPEN
OUTPUT

OPEN
I-O

OPEN
EXTEND

Sequential OPEN X X X X

 WRITE X X

98 VisualAge COBOL Programming Guide

COBOL Coding for Files

Figure 27 shows the possible combinations of input/output statements for line sequen-
tial files. The 'X' indicates that the statement can be used with the open mode given
at the top of the column.

Figure 28 shows the possible combinations with indexed and relative files. The 'X'
indicates that the statement can be used with the open mode given at the top of the
column.

Figure 26 (Page 2 of 2). Valid COBOL Statements for Sequential Files

Access Mode
COBOL
Statement

OPEN
INPUT

OPEN
OUTPUT

OPEN
I-O

OPEN
EXTEND

 START

 READ X X

 REWRITE X

 DELETE

 CLOSE X X X X

Figure 27. Valid COBOL Statements for Line Sequential Files

Access Mode COBOL Statement
OPEN
INPUT

OPEN
OUTPUT

OPEN
I-O

OPEN
EXTEND

Sequential OPEN X X X

 WRITE X X

 START

 READ X

 REWRITE

 DELETE

 CLOSE X X X

Figure 28 (Page 1 of 2). Valid COBOL Statements with Indexed Files and Relative Files

Access Mode
COBOL
Statement

OPEN
INPUT

OPEN
OUTPUT

OPEN
I-O

OPEN
EXTEND

Sequential OPEN X X X X

 WRITE X X

 START X X

 READ X X

 REWRITE X

 DELETE X

 CLOSE X X X X

 Chapter 7. Processing Files 99

COBOL Coding for Files

Figure 28 (Page 2 of 2). Valid COBOL Statements with Indexed Files and Relative Files

Access Mode
COBOL
Statement

OPEN
INPUT

OPEN
OUTPUT

OPEN
I-O

OPEN
EXTEND

Random OPEN X X X

 WRITE X X

 START

 READ X X

 REWRITE X

 DELETE X

 CLOSE X X X

Dynamic OPEN X X X

 WRITE X X

 START X X

 READ X X

 REWRITE X

 DELETE X

 CLOSE X X X

File Position Indicator
The file position indicator marks the next record to be accessed for sequential COBOL
requests. You do not set the file position indicator anywhere in your program; it is set
by successful OPEN, START, READ, READ NEXT, and READ PREVIOUS statements. Sub-
sequent READ, READ NEXT, or READ PREVIOUS requests use the established file posi-
tion indicator location and update it.

The file position indicator is not used or affected by the output statements WRITE,
REWRITE, or DELETE. The file position indicator has no meaning for random proc-
essing.

Opening a File
Before your program can use any WRITE, START, READ, REWRITE, or DELETE state-
ments to process records in a file, it must first open the file with an OPEN statement.
The OPEN processing is affected by whether or not the file exists, and whether or not
the OPTIONAL attribute is specified on the file definition.

For example, an OPEN EXTEND of a file that is neither optional nor available results in
file status 35, and the OPEN statement fails. If the file is OPTIONAL, the OPEN EXTEND
will create the file and return file status 05.

100 VisualAge COBOL Programming Guide

COBOL Coding for Files

Figure 29 on page 101 shows the COBOL statements used when creating or
extending a new or existing file.

Figure 29. Statements Used when Writing Records to a File

Division Sequential Line Sequential Indexed Relative

Environment
 Division

SELECT
ASSIGN
FILE STATUS
ACCESS MODE

SELECT
ASSIGN
ORGANIZATION
IS LINE SEQUENTIAL

FILE STATUS
ACCESS MODE

SELECT
ASSIGN
ORGANIZATION
 IS INDEXED
RECORD KEY
ALTERNATE
 RECORD KEY
FILE STATUS
ACCESS MODE

SELECT
ASSIGN
ORGANIZATION
 IS RELATIVE
RELATIVE KEY
FILE STATUS
ACCESS MODE

Data
 Division

FD entry FD entry FD entry FD entry

Procedure
 Division

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

OPEN OUTPUT
OPEN EXTEND
WRITE
CLOSE

Opening a File with Records
To open a file that already contains records, use OPEN INPUT, OPEN I-O, or OPEN
EXTEND.

Line Sequential: OPEN I-O is not valid for line sequential files.

If you open a sequential, line sequential, or relative file as EXTEND, the added records
are placed after the last existing records in the file.

If you open an indexed file as EXTEND, each record you add must have a record key
higher than the highest record in the file.

Reading Records from a File
Use the READ statement to retrieve (read) records from a file. To read a record, you
must have opened the file INPUT or I-O. Check the file status key after each READ.

Line Sequential: OPEN I-O is not valid for line sequential

Records in sequential and line sequential files can be retrieved only in the sequence in
which they were written.

Records in indexed and relative record files can be retrieved:

Sequentially
According to the ascending order of the key you are using, the RECORD KEY or the
ALTERNATE RECORD KEY, beginning at the current position of the file position indi-

 Chapter 7. Processing Files 101

COBOL Coding for Files

cator for indexed files, or according to ascending relative record locations for rela-
tive files.

Randomly
In any order, depending on how you set the RECORD KEY or ALTERNATE RECORD
KEY or the RELATIVE KEY before your READ request.

Dynamically
Mixed sequential and random.

With dynamic access, you can switch between reading a specific record directly and
reading records sequentially, by using READ NEXT and READ PREVIOUS for sequential
retrieval, and READ for random retrieval (by key).

When you want to read sequentially, beginning at a specific record, use START before
the READ NEXT or the READ PREVIOUS statements to set the file position indicator to
point to a particular record (see “File Position Indicator” on page 100). When you code
START followed by READ NEXT, the next record is read and the file position indicator is
reset to the next record. When you code START followed by READ PREVIOUS, the
previous record is read and the file position indicator is reset to the previous record.
The file position indicator can be moved randomly by using START, but all reading is
done sequentially from that point.

You can continue to read records sequentially, or you can use the START statement to
move the file position indicator. For example:

START file-name KEY IS EQUAL TO ALTERNATE-RECORD-KEY

When a direct READ is performed for an indexed file, based on an alternate index for
which duplicates exist, only the first record in the file (base cluster) with that alternate
key value is retrieved. You need a series of READ NEXT statements to retrieve each of
the data set records with the same alternate key. A FILE STATUS value of '02' is
returned if there are more records with the same alternate key value to be read; a value
of '00' is returned when the last record with that key value has been read.

Updating Records in a File
The COBOL language statements that can be used to update a file in the ENVIRON-
MENT DIVISION and DATA DIVISION are the same as those shown in Figure 29 on
page 101.

Figure 30 shows the statements that you can use in the PROCEDURE DIVISION for
sequential, line sequential, indexed, and relative files.

102 VisualAge COBOL Programming Guide

COBOL Coding for Files

Figure 30. PROCEDURE DIVISION Statements Used to Update Files

Access Method Sequential
Line Sequen-
tial Indexed Relative

ACCESS IS
SEQUENTIAL

OPEN EXTEND
 WRITE
CLOSE

or

OPEN I-O
 READ
 REWRITE
CLOSE

OPEN EXTEND
 WRITE
CLOSE

OPEN EXTEND
 WRITE
CLOSE

or

OPEN I-O
 READ
 REWRITE
 DELETE
CLOSE

OPEN EXTEND
 WRITE
CLOSE

or

OPEN I-O
 READ
 REWRITE
 DELETE
CLOSE

ACCESS IS
RANDOM

Not
applicable

Not
applicable

OPEN I-O
 READ
 WRITE
 REWRITE
 DELETE
CLOSE

OPEN I-O
 READ
 WRITE
 REWRITE
 DELETE
CLOSE

ACCESS IS
DYNAMIC:
Sequential Proc-
essing

Not
applicable

Not
applicable

OPEN I-O
 READ NEXT
 READ PREVIOUS
 START
CLOSE

OPEN I-O
 READ NEXT
 READ PREVIOUS
 START
CLOSE

ACCESS IS
DYNAMIC:
Random Proc-
essing

Not
applicable

Not
applicable

OPEN I-O
 READ
 WRITE
 REWRITE
 DELETE
CLOSE

OPEN I-O
 READ
 WRITE
 REWRITE
 DELETE
CLOSE

Adding Records to a File
The COBOL WRITE statement adds a record to a file, without replacing any existing
records. The record to be added must not be larger than the maximum record size set
when the file was defined. Check the file status key after each WRITE statement.

Adding Records Sequentially
Use ACCESS IS SEQUENTIAL and code the WRITE statement to add records sequentially
to the end of a file that has been opened with either OUTPUT or EXTEND.

Sequential and line sequential files are always written sequentially.

For indexed files, new records must be written in ascending key sequence. If the file is
opened EXTEND, the record keys of the records to be added must be higher than the
highest primary record key on the file when the file was opened.

 Chapter 7. Processing Files 103

COBOL Coding for Files

For relative files, the records must be in sequence. If you include a RELATIVE KEY
data-item in the SELECT clause, the relative record number of the record to be written is
placed in that data item.

Adding Records Randomly or Dynamically
When you write records to an indexed data set and ACCESS IS RANDOM or ACCESS IS
DYNAMIC, the records can be written in any order.

Replacing Records in a File
To replace records in a file, use REWRITE on a file that you have opened for I-O. If you
try to use REWRITE on a file that is not opened I-O, the record is not rewritten and the
status key is set to 49. Check the file status key after each REWRITE statement.

� For sequential files, the length of the record you rewrite must be the same as the
length of the original record.

� For indexed files, you can change the length of the record you rewrite.

� For variable-length relative files, you can change the length of the record you
rewrite.

To replace records randomly or dynamically, the record to be rewritten need not be
read by the COBOL program. Instead, to position the record you want to update:

� For indexed files, move the record key to the RECORD KEY data item, and then
issue the REWRITE.

� For relative files, move the relative record number to the RELATIVE KEY data item,
and then issue the REWRITE.

Deleting Records from a File
Open the file I-O and use the DELETE statement to remove an existing record from an
indexed or relative file. You cannot use DELETE on a sequential file or a line sequential
file.

When ACCESS IS SEQUENTIAL, the record to be deleted must first be read by the
COBOL program. The DELETE then removes the record that was just read. If the
DELETE is not preceded by a successful READ, the deletion is not done and the status
key value is set to 92.

When ACCESS IS RANDOM or ACCESS IS DYNAMIC, the record to be deleted need not
be read by the COBOL program. To delete a record, the key of the record to be
deleted is moved to the RECORD KEY data item and the DELETE is issued. Check the
file status key after each DELETE statement.

File Sharing and Record Locking (OS/2 Only)
Sometimes data needs to be accessible by many users of your COBOL program at the
same time. If a file is to be accessed from multiple processes, you need to lock the file
and/or individual records of the file.

104 VisualAge COBOL Programming Guide

COBOL Coding for Files

The LOCK MODE clause is used to specify the locking technique used for a file. It is an
optional clause of the file control entry. When LOCK MODE is specified, the file that is
opened using the file connector4 can be shared when it is opened. When LOCK MODE
is omitted, opening the file causes it to become exclusive, unless the file is opened for
input. The LOCK MODE IS AUTOMATIC clause is only supported by the VSAM file
system running on OS/2. In all other cases, the LOCK MODE IS AUTOMATIC clause is
ignored.

For OS/2 VSAM files, record locking is not supported for files that reside on an OS/2
LAN server. Files residing on OS/2 LAN servers are opened shared read or exclusive
write.

When the LOCK MODE IS AUTOMATIC clause is specified for a file opened for I-O, a
record lock is acquired when the READ statement is processed. It is released when a
subsequent I/O statement for the file connector is processed.

Figure 31 shows the effect of using the LOCK MODE clause with other COBOL state-
ments.

Figure 31 (Page 1 of 2). Using LOCK MODE with Other COBOL Statements

COBOL
Statement Effect of LOCK MODE Clause

OPEN The file that is opened can be shared; that is, the file may be opened using more
than one file connector. If the OPEN statement fails due to locking constraints,
the file status value is set to 98 (file locked).

WRITE 1. If two or more file connectors for a sequential file add records by sharing the
file after opening it in extended mode, the records are in unspecified order.

2. If two or more file connectors for a relative file add records by sharing the
file after opening it in extended mode, the relative key values returned are
ascending by not necessarily consecutive.

3. If two or more file connectors for a indexed file add records by sharing the
file after opening it in extended mode, the order of alternate keys allowing
for duplicates is unspecified.

4. A successive WRITE statement releases an existing record lock.

START The START statement neither acquires nor detects a record lock. However, a
successful START statement releases an existing record lock.

4 You can think of a file connector as the connection of the COBOL declared file to the associated physical file.

 Chapter 7. Processing Files 105

Sorting and Merging

Figure 31 (Page 2 of 2). Using LOCK MODE with Other COBOL Statements

COBOL
Statement Effect of LOCK MODE Clause

READ 1. For files opened for INPUT, READ statements will not acquire a record lock.

2. The READ statement will only be successful if no other file connector holds
a lock on the record being accessed. If the record is locked, the statement
is unsuccessful and the file status value is set to 99 (record locked). The
file position indicator setting is unaffected for a sequential READ and
unspecified for a random READ.

3. When no next record exists when the READ statement is processed, the AT
END condition is returned regardless of whether the file is shared; for
example, if the file is opened in extend mode by another file connector.

4. If the file is opened for I-O, each record is locked as it is read and released
by the next I-O statement accessing the file connector.

REWRITE A successful REWRITE statement releases an existing record lock. REWRITE is
not successful when another file connector holds a lock on the record to be
deleted.

DELETE A successful DELETE statement releases an existing record lock. DELETE is
not successful when another file connector holds a lock on the record to be
deleted.

CLOSE A successful CLOSE statement releases any record locks or file locks.

Restriction for SORT/MERGE: The LOCK MODE IS AUTOMATIC clause must not be specified
if the file is specified in a USING or GIVING phrase of a SORT or MERGE statement.

File Sorting and Merging
Arranging records in a particular sequence, a common requirement in data processing,
can be done using sort or merge operations:

Sort operation Accepts input that is not in sequence and produces output in a
requested sequence.

Merge operation Compares records from two or more sequenced files and combines
them in order.

COBOL has special language features that assist in sort and merge operations. For
information on the COBOL sort and merge language, see IBM COBOL Language Ref-
erence.

Basics of Sorting and Merging
To sort or merge files, do the following:

106 VisualAge COBOL Programming Guide

Sorting and Merging

Figure 33 on page 108 is an example of the ENVIRONMENT DIVISION and DATA DIVI-
SION entries needed to describe sort files and an input file.

Figure 32. Preparing to Sort or Merge Files

Action Code

Describe sort files and merge
files.

SELECT statements in the FILE-CONTROL SECTION of the ENVI-
RONMENT DIVISION, and SD entries in the FILE SECTION of the
DATA DIVISION.

SELECT statements and SD entries are always needed for sort
files and merge files, even if you are only sorting or merging
data items from Working-Storage.

The files described in an SD entry is the working file used for a
sort or merge operation. You cannot perform any input/output
operations on this file.

Every SD entry must contain a record description. For
example:

SD SORT-WORK-1

RECORD CONTAINS 1ðð CHARACTERS.

ð1 SORT-WORK-1-AREA.

 ð5 SORT-KEY-1 PIC X(1ð).

 ð5 SORT-KEY-2 PIC X(1ð).

 ð5 FILLER PIC X(8ð).

Describe the input and output
files, if any, for sorting or
merging.

SELECT statements in the FILE-CONTROL SECTION of the ENVI-
RONMENT DIVISION, and FD entries in the FILE SECTION of the
DATA DIVISION.

Request the sort or merge
operation.

SORT or MERGE statements in the PROCEDURE DIVISION.

The SORT or MERGE statement specifies the key fields in the
record upon which the sort or merge is to be sequenced. You
can code a key or keys as ascending or descending, or when
you code more than one key, as a mixture of the two.

You can mix SORT and MERGE statements in the same
program. A COBOL program can contain any number of sort
or merge operations.

In your COBOL program, you can perform the same sort or
merge multiple times, or perform multiple sorts or merges.
However, one operation must be completed before another can
begin.

For more information,see “The SORT Statement” on page 108
and “The MERGE Statement” on page 112.

 Chapter 7. Processing Files 107

SORT Statement

 ID Division.

 Program-ID. SmplSort.

 Environment Division.

 Input-Output Section.

 File-Control.

 \

 \ Assign Name For A Sort File Is

 \ Treated As Documentation.

 \

Select Sort-Work-1 Assign To SortFile.

Select Sort-Work-2 Assign To SortFile.

Select Input-File Assign To InFile.

 Data Division.

 File Section.

 SD Sort-Work-1

Record Contains 1ðð Characters.

 ð1 Sort-Work-1-Area.

 ð5 Sort-Key-1 Pic X(1ð).

 ð5 Sort-Key-2 Pic X(1ð).

 ð5 Filler Pic X(8ð).

 SD Sort-Work-2

Record Contains 3ð Characters.

 ð1 Sort-Work-2-Area.

 ð5 Sort-Key Pic X(5).

 ð5 Filler Pic X(25).

 FD Input-File

 ð1 Input-Record Pic X(1ðð).

 .

 .

 .

 Working-Storage Section.

 ð1 EOS-Sw Pic X.

 ð1 Filler.

ð5 Table-Entry Occurs 1ðð Times

Indexed By X1 Pic X(3ð).

 .

 .

 .

Figure 33. ENVIRONMENT DIVISION and DATA DIVISION Entries for a Sort Program

The SORT Statement
You can use the SORT statement to do the following:

� Use input or output procedures to add, delete, change, edit, or otherwise change
records.

– To request that input procedures be performed on the sort records before they
are sorted, use SORT . . . INPUT PROCEDURE.

See “Coding the Input Procedure” on page 110 for more information on input
procedures.

108 VisualAge COBOL Programming Guide

SORT Statement

– To request that output procedures be performed on the sort records after they
are sorted, use SORT . . . OUTPUT PROCEDURE.

See “Coding the Output Procedure” on page 111 for more information on
output procedures.

� Sort data items (including tables) in Working-Storage.

� Read records directly into a new file without any preliminary processing (SORT . . .
USING).

� Transfer sorted records from the sort program directly to another file without any
further processing (SORT . . . GIVING).

SORT Program Organization
A COBOL program containing a sort operation can be organized so that one or more
input files are read and operated on by an input procedure. In the input procedure, a
RELEASE statement (analogous to the WRITE statement) releases a record to be sorted.
If you do not want to change or process the records in the files before the sorting oper-
ation begins, the SORT statement USING option releases the records in the files
unchanged to the new file.

The sort operation then arranges the entire set of records in the sequence specified by
the key(s).

After the sort, sorted records can be made available one at a time through a RETURN
statement to an output procedure. If you want to put the sorted records in files without
changing or processing these records, the SORT statement GIVING option names the
output files and writes the sorted records to the output files.

Setting the Sort Criteria
To set sort criteria:

1. In the record description of the file to be sorted, define the key or keys on which it
will be sorted.

The key used in the SORT statement cannot be variably located. (For more infor-
mation on variably located data items, see Appendix D, “Complex OCCURS
DEPENDING ON” on page 553.)

2. In the SORT statement, code the key on which the file will be sorted.

To sort on more than one key, list the keys in descending order of importance.

In the example below, SORT-GRID-LOCATION and SORT-SHIFT are defined in the DATA
DIVISION before they are used in the SORT statement.

The example also shows the use of an input and an output procedure. Use an input
procedure if you want to process the records before you sort them, and use an output
procedure if you want to further process the records after you sort them.

 Chapter 7. Processing Files 109

Coding the Input Procedure

DATA DIVISION.

 .

 .

 .

SD SORT-FILE

RECORD CONTAINS 115 CHARACTERS

DATA RECORD SORT-RECORD.

ð1 SORT-RECORD.

 ð5 SORT-KEY.

 1ð SORT-SHIFT PIC X(1).

 1ð SORT-GRID-LOCATION PIC X(2).

 1ð SORT-REPORT PIC X(3).

 ð5 SORT-EXT-RECORD.

 1ð SORT-EXT-EMPLOYEE-NUM PIC X(6).

 1ð SORT-EXT-NAME PIC X(3ð).

 1ð FILLER PIC X(73).

PROCEDURE DIVISION.

 .

 .

 .

 SORT SORT-FILE

ON ASCENDING KEY SORT-GRID-LOCATION SORT-SHIFT

INPUT PROCEDURE 6ðð-SORT3-INPUT

OUTPUT PROCEDURE 7ðð-SORT3-OUTPUT.

 .

 .

 .

Alternate Collating Sequences
You can sort records on a user specified collating sequence for single byte character
keys. The default collating sequence is the collating sequence specified by the locale
setting in effect at compile time. To override the PROGRAM COLLATING SEQUENCE
specified either explicitly or by the default, use the COLLATING SEQUENCE option of the
SORT statement. You can use different collating sequences for multiple sorts in your
program.

For DBCS keys, the collating sequence is that specified by the locale setting in effect at
execution time.

Coding the Input Procedure
If you want to process the records in an input file before they are released to the sort
program, use the INPUT PROCEDURE option of the SORT statement. You might use an
input procedure to:

� Release data items to the new file from Working-Storage.
� Release records that have already been read in elsewhere in the program.
� Read records from an input file, select or process them, and release them to the

new file.

110 VisualAge COBOL Programming Guide

Coding the Output Procedure

Each input procedure must be contained in either paragraphs or sections. For
example, to release records from Working-Storage (a table) to the new file:

 SORT SORT-WORK-2

ON ASCENDING KEY SORT-KEY

INPUT PROCEDURE 6ðð-SORT3-INPUT-PROC

 .

 .

 .

6ðð-SORT3-INPUT-PROC SECTION.

PERFORM WITH TEST AFTER

VARYING X1 FROM 1 BY 1 UNTIL X1 = 1ðð

RELEASE SORT-WORK-2-AREA FROM TABLE-ENTRY (X1)

 END-PERFORM.

Transferring Records to the Sort Program
To transfer records to the new file, all input procedures must contain at least one
RELEASE or RELEASE FROM statement. To release A from X, for example, you can
enter:

MOVE X TO A.

RELEASE A.

Figure 34 compares the RELEASE and RELEASE FROM statements.

Figure 34. Comparison of RELEASE and RELEASE FROM

RELEASE RELEASE FROM

MOVE EXT-RECORD

 TO SORT-EXT-RECORD

PERFORM RELEASE-SORT-RECORD

 .

 .

 .

RELEASE-SORT-RECORD.

 RELEASE SORT-RECORD

PERFORM RELEASE-SORT-RECORD

 .

 .

 .

RELEASE-SORT-RECORD.

RELEASE SORT-RECORD FROM SORT-EXT-RECORD

Coding the Output Procedure
If you want to select, edit, or otherwise change sorted records before writing them from
the sort work file into another file, use the OUTPUT PROCEDURE option of the SORT
statement.

Each output procedure must be contained in either a section or a paragraph and must
include:

� At least one RETURN or RETURN INTO statement.

The RETURN statement makes each sorted record available to your output proce-
dure (the RETURN statement for a sort file is similar to a READ statement for an
input file).

 Chapter 7. Processing Files 111

Success of Sort and Merge

You can use the AT END and END-RETURN phrases with the RETURN statement.
The imperative statements on the AT END phrase will be performed after all the
records have been returned from the sort file. The END-RETURN explicit scope ter-
minator serves to delimit the scope of the RETURN statement.

If you use the RETURN INTO statement, instead of RETURN, your records will be
returned to Working-Storage or to an output area.

� Any statements necessary to process the records that are made available, one at a
time, by the RETURN statement.

Restrictions on Input and Output Procedures
The following restrictions apply to the procedural statements in input and output
procedures:

� The input/output procedure must not contain any SORT or MERGE statements.

� The input/output procedure must not contain any STOP RUN, EXIT PROGRAM, or
GOBACK statements.

� You can use ALTER, GO TO, and PERFORM statements in the input/output proce-
dure to refer to procedure-names outside the input/output procedure. However,
you must return to the input/output procedure after a GO TO or PERFORM state-
ment.

� The remainder of the PROCEDURE DIVISION must not contain any transfers of
control to points inside the input/output procedure (with the exception of the return
of control from a Declarative Section).

� In a SORT or MERGE input or output procedure, calling a program is permitted, but
the called program cannot issue a SORT or MERGE statement and the called
program must return to the caller.

The MERGE Statement
You cannot specify an input procedure in the MERGE statement; use MERGE . . . USING.

The MERGE statement combines the files you name into one sequenced file. The files
to be merged must be already be in the same sorted sequence.

The merge operation compares keys in the records of the input files, and passes the
sequenced records one-by-one to the RETURN statement of an output procedure or to
the file named in the GIVING phrase.

Determining Whether the Sort or Merge Was Successful
The SORT or MERGE statement returns one of the following completion codes after a
sort is finished:

0 Successful completion of sort/merge

16 Unsuccessful completion of sort/merge

The return code or completion code is stored in a SORT-RETURN special register. The
contents of SORT-RETURN change after each SORT or MERGE statement is performed.

112 VisualAge COBOL Programming Guide

SORT Special Registers

You should test for successful completion after each SORT or MERGE statement:

 SORT SORT-WORK-2

ON ASCENDING KEY SORT-KEY

INPUT PROCEDURE IS 6ðð-SORT3-INPUT-PROC

OUTPUT PROCEDURE IS 7ðð-SORT3-OUTPUT-PROC.

IF SORT-RETURN NOT=ð

DISPLAY "SORT ENDED ABNORMALLY. SORT-RETURN = "

 SORT-RETURN.

 .

 .

 .

6ðð-SORT3-INPUT-PROC SECTION.

 .

 .

 .

7ðð-SORT3-OUTPUT-PROC SECTION.

 .

 .

 .

Prematurely Stopping a Sort or Merge Operation
To stop a sort or merge operation, use the SORT-RETURN special register. Move the
integer 16 into the register in:

� An input or output procedure.

Sort or merge processing will be stopped immediately after the next RELEASE or
RETURN statement is performed.

� A Declarative Section entered during processing of a USING or GIVING file.

Sort or merge processing will be stopped on exit from the declarative section.

Control then returns to the statement following the SORT or MERGE statement.

If you do not reference SORT-RETURN anywhere in your program, COBOL will test the
return code. If the code is 16, COBOL issues a run-time diagnostic message and ter-
minates the run unit (or the thread, in a multithread environment). If you test
SORT-RETURN for one or more (but not necessarily all) SORT or MERGE statements,
COBOL will not check the return code.

SORT Special Registers
You can use the SORT-RETURN and SORT-CONTROL special registers to get or test
values related to sort behavior.

The SORT-CONTROL special register is implicitly defined as

ð1 SORT-CONTROL GLOBAL PICTURE X(16ð) VALUE='file name'.

where file name is used as the system file identifier for the options file for the sort
product. You can assign to SORT-CONTROL the file name of a file that contains your

 Chapter 7. Processing Files 113

STL file system

sort control statements. See SMARTsort for OS/2 and AIX for information about the
SMARTsort options file.

The STL File System
The STL file system supports sequential, indexed, and relative files on the local system.
It provides the basic file facilities that you need for accessing local files. It gives con-
formance to ANSI standards, good performance, and the ability to port easily between
AIX, OS/2, and Windows systems.

Line sequential files are the only files not supported.

The file system is safe for use with threads; it is your responsibility to ensure that mul-
tiple threads do not access COBOL buffers at the same time. Multiple threads can
perform operations on the same STL file, but you must use an operating system call
(for example, DosRequestMuteSem on OS/2 or WaitForSingleObject on Windows) to
force all but one of them to wait for the file access to complete on the active thread.

With the STL file system you can easily read and write files to be shared with PL/I
programs.

File Status and the STL File System
In the FILE STATUS clause of the FILE-CONTROL paragraph, you can specify one or two
names:

FILE STATUS data-name-1

or

FILE STATUS data-name-1 data-name-2

After an input/output operation, data-name-1 will contain a status code which is inde-
pendent of the file system used. If you specify data-name-2, it will contain a status
code that is file-system specific. In the case of the STL file system, data-name-2 will
contain one of the STL file system return codes shown in Figure 35.

See IBM COBOL Language Reference for additional information on the FILE STATUS
clause.

Figure 35 (Page 1 of 3). The STL file system Return Codes

Code Meaning Notes

0 Successful completion The input/output operation completed success-
fully.

1 Invalid operation This return code should not occur; it indicates
an error in the file system.

2 I/O error A call to an operating system I/O routine
returned an error code.

3 File not open Attempt to do an operation (other than OPEN)
on a file that is not open.

114 VisualAge COBOL Programming Guide

STL file system

Figure 35 (Page 2 of 3). The STL file system Return Codes

Code Meaning Notes

4 Key value not found Attempt to read a record using key which is
not in the file.

5 Duplicate key value Attempt to use a key a second time for a key
which does not allow duplicates.

6 Invalid key number This return code should not occur; it indicates
an error in the file system.

7 Different key number This return code should not occur; it indicates
an error in the file system.

8 Invalid flag for the operation This return code should not occur; it indicates
an error in the file system.

9 End of file An end of file was detected. This is not an
error.

10 I/O operation must be preceed
by I/O GET op

The operation is looking for the current record
and the current record has not been defined.

11 Error return from get space
routine

The operating system indicates that not
enough memory is available.

12 Duplicate key accepted The operation specified a key and the key is a
duplicate. See the description of File Status 2
in IBM COBOL Language Reference.

13 Sequential access and key
sequence bad

Sequential access was specified but the
records are not in sequential order.

14 Record length < max key The record length does not allow enough
space for the all of the keys.

15 Access to file denied The operation system reported that it cannot
access the file. Either the file does not exist or
the user does not have the proper permission
of the operating system to access the file.

16 File Already exists You appempted to open a new file, but the
operating system reports that the file already
exists.

17 (Reserved)

18 File locked Attempt to open a file which is already open in
exclusive mode.

19 File table full The operating system reports that its file table
is full.

20 Handle table full The operating system reports that it cannot
allocate any more file handles.

21 Title does not say STL. Files opened for reading by the STL file
system must contain a header record that con-
tains “STL” at a certain offset in the file.

22 Bad indexcount arg for create This return code should not occur; it indicates
an error in the file system.

 Chapter 7. Processing Files 115

SMARTdata Utilities for OS/2

Figure 35 (Page 3 of 3). The STL file system Return Codes

Code Meaning Notes

23 Index or rel record > 64K Index and relative records are limted to a
length of 64K.

24 Error found in file header or
data in open of existing file

STL files begin with a header. The header or
its associated data has inconsistent values.

25 Indexed open on seq file Attempt to open a sequential file as an
indexed or relative file.

Note: The following are errors detected in the adapter open routines.

1000 Sequential open on indexed/rel
file

Attempt to open an indexed or relative file as a
sequential file.

1001 Relative open of indexed file Attempt to open a relative file as an indexed
file.

1002 Index open of rel file Attempt to open an indexed file as a sequen-
tial file.

1003 File does not exist The operating system reports that the file does
not exist.

1004 Number of keys differ Attempt to open a file with a different number
of keys.

1005 Record lengths differ Attempt to open a file with a different record
length.

1006 Record types differ Attempt to open a file with a different record
type.

1007 Key position or length differ Attempt to open a file with a different key posi-
tion or length.

SMARTdata Utilities for OS/2
This section gives you tips and hints for using the SMARTdata Utilities on OS/2. For
equivalent information under Windows, see SMARTdata Utilities for Windows User's
Guide.

Quick Start for Remote File Access
This section gives you the steps to get started quickly with accessing remote files.

1. Install and configure Communications Manager/2 (CM/2) on your OS/2 for APPC.
Define an LU alias for the remote host. You will need a user ID and password on
that host.

2. Copy the file CONFIG.DFM from the samples subdirectory to the directory defined
by the EHNDIR environmental variable in your CONFIG.SYS file.

3. Edit CONFIG.DFM as follows:

� Activate one of the target definitions by removing the appropriate semicolons.

116 VisualAge COBOL Programming Guide

SMARTdata Utilities for OS/2

� Edit the remote_lu line and replace the sample value with the LU alias defined
in CM/2 for the target you wish to access.

� Edit the line containing local_lu and replace the existing value with the LU
alias of your local machine as defined in CM/2.

4. From an OS/2 command line, issue the command STARTDFM.

5. Enter your user ID and password on the remote system when prompted.

6. Assign a drive to that host with the following command:

DFMDRIVE ASSIGN x: //lualias

Where x is a drive not currently accessed and lualias is the LU alias of the host
system.

7. You can now access files on the remote host both through OS/2 commands and
through VSAM applications through the drive letter assigned in the previous step.

Problems with Remote Files Access
The majority of problems that people encounter when installing Distributed File
Manager (DFM) are related to configuring communications between the workstation and
the host. Some of the common problems encountered when setting up DFM, and their
solutions are:

STARTDRM cannot find CONFIG.DFM . STARTDRM looks for the configuration file in
the following order:

1. Full path name, if provided on the command line

2. CONFIG.DFM in the current directory

3. CONFIG.DFM in the directory defined by the EHNDIR environmental variable

Problem in the configuration file .

� Ensure all semicolons are removed from the target definition.

� Ensure the remote_lu value for the target definition matches exactly the LU alias
assigned to the target system in CM/2.

� Ensure your local_lu value matches the local LU alias in CM/2.

� Check for case mismatches between configuration file values and CM/2 values.

ID and password . Ensure you entered the correct user ID and password at the
prompt.

Communication Manager setup problems . The most common problems are errors in
the CM/2 setup that prevent DFM/2 from initializing an APPC conversation with the
host. The APING utility available with the APPC Productivity Suite allows you to verify
that you are able to make an LU 6.2 connection to the target system.

The DFM target is not available on the host system . For OS/390, the target DFM is
part of the DFSMS/MVS Version 1.3 product. It is a startable procedure. Ask your

 Chapter 7. Processing Files 117

SMARTdata Utilities for OS/2

OS/390 administrator whether DFM/MVS is started. Also, have your administrator
ensure that the SNA mode of QPCSUPP is defined on the OS/390 system.

 Platform-Specific Behavior
It is important to remember that when accessing files on a remote system, you are
constrained by the limitations of the remote file access method.

To better understand the limitations of the remote access methods, refer to the fol-
lowing documents:

Distributed FileManager/MVS Guide and Reference, SC26-4915

AS/400 Distributed Data Management Guide, SC41-9600

A list of known restrictions :

OS/390 Target
The OS/390 file access method associated with the remote file will limit the type of
access you may use. For instance, if the remote file is a PDSE member, you can
only access it sequentially. The same holds for SAM and VSAM ESDS files. You
can only use keyed access if the remote file is a VSAM KSDS.

AS/400 Target
Specifying a SECURITY value other than the default PROGRAM will cause file space
allocation problems.

File names appear to be limited to 10 characters including periods.

File names must be specified in upper case.

AS/400 allocates direct files with three extents with 1000 records per extent. All
records are defined with unused records designated as inactive. This might cause
problems if you access the file the return inactive flag (DDM_RTNINA).

AS/400 requires upper case for user ID and password.

 Data Conversion
When accessing remote files, it is possible to have DFM convert the records between
their native format on the target system and a local format used on the workstation.
For instance, DFM can convert EBCDIC into ASCII or binary encoded decimal into
byte-reversed binary. Refer to the SMARTdata Utilities documentation for the details of
how to take advantage of this function. The following are some common problems that
you might encounter:

Data conversion does not occur.
Note that the data conversion function applies only when files are accessed
through the VSAM interface. This means when files are viewed or edited
from the command line, they will not be converted; however, if they are
opened and accessed by an application that invokes the VSAM APIs either
directly or through COBOL, the conversion should occur.

A case mismatch between the file name specified in the
FILE_DESCRIPTOR_MAP statement of the DFM configuration file and the file

118 VisualAge COBOL Programming Guide

SMARTdata Utilities for OS/2

name specified when accessing the file will also prevent conversion. While
specifying the file name user1.ddm.file1 might open the correct file on
OS/390, it will not match against USER1.DDM.FILE1 in the
FILE_DESCRIPTOR_MAP.

Data conversion does not work when the DFMDRIVE GUI is used to assign a
drive.

When using the directory mapping function of the DFMDRIVE GUI, the file
name is appended to the value entered for the directory with a slash sepa-
rating the directory name from the file name. The OS/390 target then
removes the slash and replaces it with a dot before accessing the file. If
the TARGET_FILENAME in the FILE_DESCRIPTOR_MAP definition contains a
dot instead of a slash, the comparison will fail.

Note: Data conversion is not necessary if the program is expecting System/390 host
data types and the appropriate compiler option, that is, BINARY(S390),
CHAR(EBCDIC), or FLOAT(HEX) is in effect.

For additional information about remote file access and System/390 host data
types, see Appendix B, “System/390 Host Data Type Considerations” on
page 543.

 File Conversion
When accessing a remote file, SdU converts the file name from the local character set
(as defined by the CODEPAGE environmental variable in CONFIG.SYS) into codepage
0500 used by DFM target systems. The current release of SMARTdata Utilities is
capable of converting between single-byte character sets only. If you are running the
Kanji or Simplified Chinese version of SMARTdata Utilities (Codepage 0932 and 1381
respectively), use only single-byte characters when specifying remote file names.

LAN-Installed SMARTdata Utilities
If you are using a LAN-installed SMARTdata Utilities and wish to use the remote file
access portion of SMARTdata Utilities when SMARTdata Utilities is installed on a LAN
disk then the following steps must be taken:

� Change directory to the subdirectory of the LAN disk where SMARTdata Utilities is
installed.

� Change directory into the DLL subdirectory.

� Copy the file DFMSFL0.DLL to a local disk.

� Locate the line of your CONFIG.SYS file that references the file DFMSFL0. Change
the full path name to point to its location on your local disk.

 Translation Tables
The environment variable FMTCDRA should be set to the name of the directory that
contains the CDRA translation tables. To set this variable, issue the command:
FMTCDRA=[Root_directory]\BIN\CONVTABL.

For example,

 Chapter 7. Processing Files 119

SMARTdata Utilities for OS/2

FMTCDRA=K:\IBMDDM\BIN\CONVTABL

Client Enhancement for Stream Data Conversion
The DFMDRIVE end user interface is modified to allow the specification of a parameter
list which will be attached to filenames passed to the DFM target server.

One specific use for passing a parameter list to the Distributed FileManager/MVS target
| server is to trigger Stream Data Conversion, that is, to access System/390 EBCDIC

data as ASCII data from the work station.

If the target server does not support Stream Data Conversion, the following message
appears when using the DFMDRIVE ASSIGN or DFMDRIVE SETPARM line command:

EHNð252E: Drive %1 target system does not support parameters

Similarly, if the Graphical User Interface is used to send a parameter list to the target
server, and it does not support a parameter list, a popup appears with the message:

Target system does not support parameters.

| For details of how to pass a parameter list to the target system, see VSAM in a Distrib-
| uted Environment.

120 VisualAge COBOL Programming Guide

STRING and UNSTRING

 Chapter 8. Error Handling

Anticipate the possibility of coding or system problems by putting code into your
program to handle them. Error handling code can be thought of as built-in distress
flares or lifeboats. If such code is not in your program, not only could output data and
files be corrupted, but you might not even be aware of the problem.

The action taken by your error-handling code can vary from trying to handle the situ-
ation and continue, to issuing a message, to halting the running of the program. In any
event, coding a warning message is a good idea.

You might be able to create your own error-detection routines for data-entry errors or
for errors as your installation defines them.

COBOL contains special elements to help you anticipate and correct error conditions.
These fall into the following main areas:

� “STRING and UNSTRING Operations.”
� “Arithmetic Operations” on page 122.
� “Input/Output Error Handling Techniques” on page 123.
� “CALL Statements” on page 131.

STRING and UNSTRING Operations
When stringing or unstringing data, the pointer might fall out of the range of the
receiving field. Here a potential overflow condition exists, but COBOL does not allow
the overflow to happen; the STRING/UNSTRING operation will not be completed and the
receiving field remains unchanged.

If you do not have an ON OVERFLOW clause on the STRING or UNSTRING statement,
control passes to the next sequential statement, and you are not notified of the incom-
plete operation.

Consider the following statement:

String Item-1 space Item-2 delimited by Item-3

 into Item-4

with pointer String-ptr

 on overflow

Display "A string overflow occurred"

 End-String

 Copyright IBM Corp. 1996, 1998 121

Arithmetic Operations

Because String-ptr has a value of zero that falls short of the receiving field, an over-
flow condition occurs and the STRING operation is not completed (a String-ptr greater
than nine would cause the same result). If ON OVERFLOW had not been specified, you
would not be notified that the contents of Item-4 remain unchanged.

Figure 36. Data Values before and after the Statement is Performed

Data
Item PICTURE

Value
Before

Value
After

Item-1 X(5) AAAAA AAAAA

Item-2 X(5) EEEAA EEEAA

Item-3 X(2) EA EA

Item-4 X(8) ␣␣␣␣␣␣␣␣ ␣␣␣␣␣␣␣␣

String-ptr 9(2) ð ð

Note: The symbol ␣ represents a blank space.

 Arithmetic Operations
When your program performs arithmetic operations, the results might be larger than the
fixed-point field that is to hold them, or you might have tried a division by 0. In either
case, the ON SIZE ERROR clause after the ADD, SUBTRACT, MULTIPLY, DIVIDE, or
COMPUTE statement can handle the situation.

For ON SIZE ERROR to work correctly for fixed-point overflow and decimal overflow, you
must specify the TRAP(ON) run-time option.

If you code the ON SIZE ERROR clause, the imperative statement of your clause will be
performed and your result field will not be changed in the following five cases:

 � Fixed-point overflow.
� Division by 0.
� Zero raised to the zero power.
� Zero raised to a negative number.
� A negative number raised to a fractional power.

Example of Checking for Division by Zero
Code your ON SIZE ERROR imperative statement so that it issues an informative
message. For example:

122 VisualAge COBOL Programming Guide

I/O Error Handling

 DIVIDE-TOTAL-COST.

DIVIDE TOTAL-COST BY NUMBER-PURCHASED

 GIVING ANSWER

ON SIZE ERROR

DISPLAY "ERROR IN DIVIDE-TOTAL-COST PARAGRAPH"

DISPLAY "SPENT " TOTAL-COST, " FOR " NUMBER-PURCHASED

 PERFORM FINISH

 END-DIVIDE

 .

 .

 .

 FINISH.

 STOP RUN.

In this example, if division by 0 occurs, the program will write out a message identifying
the trouble and halt program execution.

Input/Output Error Handling Techniques
When a program encounters an error in processing a file, whether logical errors in the
program or input/output errors on the disk, control returns to your COBOL program,
except in the following cases:

� There is no file status specified for the file
� There is no applicable EXCEPTION/ERROR declarative
� There is no INVALID KEY/AT END phrase specified for the error condition

In these cases, a COBOL run-time message is written and the run unit ends.

When an input/output statement operation fails, COBOL will not perform corrective
action for you. You choose whether your program will continue running after a less-
than-severe input/output error occurs.

COBOL offers five techniques for intercepting and handling certain input/output errors.

End-of-file phrase (AT END)
 EXCEPTION/ERROR declarative
 FILE STATUS key

File System Return Code
 INVALID KEY phrase

The most important thing to remember about input/output errors is that you choose
whether your program will continue running after a less-than-severe input/output error
occurs. COBOL does not perform corrective action. If you choose to have your
program continue (by incorporating error-handling code into your design), you must also
code the appropriate error-recovery procedure; for example, a procedure to check the
file status key value.

Figure 37 on page 124 shows the flow of logic after a file system input/output error
occurs:

 Chapter 8. Error Handling 123

I/O Error Handling

yes

End-of-File

Return to
COBOL Program

at the end of
the I/O statement

Severe
error

?

Set Status
Key (if

present)

Evaluate
error type

Issue error
message

Terminate
COBOL
Program

User
have EOF
imperative

?

E3 E3

E3

yes

no

All
Others

Invalid
Key

no no

yes
yes yes

no no

User
have inv.

Key Imper-
ative

?

User
have assoc.
Error Declar-

ative
?

file
status

specified
?

Execute
EOF

Imperative

Execute
Invalid Key
Imperative

Execute
Error

Declarative

Terminate the
run unit with
a message

Figure 37. Flow of Logic after a File System I/O Error

124 VisualAge COBOL Programming Guide

I/O Error Handling

End-of-File Phrase (AT END)
An end-of-file condition might or might not represent an error. In many designs,
reading sequentially to the end of a file is done intentionally, and the AT END condition
is expected.

For example, suppose you are processing a file containing transactions in order to
update a master file:

PERFORM UNTIL TRANSACTION-EOF = "TRUE"

READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD

 AT END

DISPLAY "END OF TRANSACTION UPDATE FILE REACHED"

MOVE "TRUE" TO TRANSACTION-EOF

 END READ

 .

 .

 END-PERFORM

Sometimes, however, the condition will reflect an error. You code the AT END phrase of
the READ statement to handle either case, according to your program design.

If you code an AT END phrase, on end-of-file the phrase is performed. If you do not
code an AT END phrase, the associated ERROR declarative is performed.

Any NOT AT END phrase you code is performed only if the READ statement completes
successfully. If the READ operation fails because of any condition other than end-of-file,
neither the AT END nor the NOT AT END phrase is performed. Instead, control passes
to the end of the READ statement after performing any associated declarative proce-
dure.

If you have coded neither an AT END phrase nor an EXCEPTION declarative procedure,
but have coded a status key clause for the file, control passes to the next sequential
instruction after the input/output statement that detected the end-of-file (where presum-
ably you have some coding to take appropriate action).

 EXCEPTION/ERROR Declarative
You can code one or more ERROR declarative procedures in your COBOL program that
will be given control if an input/output error occurs. You can have:

� A single, common procedure for the entire program.

� Group procedures for each file open mode (whether INPUT, OUTPUT, I-O, or
EXTEND).

� Individual procedures for each particular file.

Place each such procedure in the declaratives section of your PROCEDURE DIVISION.
(For the syntax detail, see IBM COBOL Language Reference.

 Chapter 8. Error Handling 125

I/O Error Handling

In your procedure, you can choose to try corrective action, retry the operation, continue,
or end execution. You can use the ERROR declaratives procedure in combination with
the file status key if you want a further analysis of the error.

If you continue processing a blocked file, you might lose the remaining records in a
block after the record that caused the error.

Write an ERROR declarative procedure if you want the system to return control to your
program after an error occurs. If you do not write an ERROR declarative procedure,
your job could be canceled or abnormally terminated after an error occurs.

File Status Key
The system updates the FILE STATUS key after each input/output statement is per-
formed on a file, placing values in the two digits of the file status key. In general, a
zero in the first digit indicates a successful operation, and a zero in both digits means
there is nothing abnormal to report. Possible file status codes are listed in the IBM
COBOL Language Reference. Establish a FILE STATUS key using the FILE STATUS
clause in the FILE-CONTROL paragraph and data definitions in the DATA DIVISION.

FILE STATUS IS data-name-1

data-name-1
Specifies the 2-character COBOL FILE STATUS key that should be defined in the
WORKING-STORAGE SECTION.

Restriction: The data-name in the FILE STATUS clause cannot be variably located.
(For more information on variably located data items, see Appendix D, “Complex
OCCURS DEPENDING ON” on page 553.)

Your program can check the COBOL FILE STATUS key to discover whether an error has
been made and, if so, what general type of error it is. For example, if a FILE STATUS
clause is coded like this:

FILE STATUS IS FS-CODE

FS-CODE is used by COBOL to hold status information like this:

 FS─CODE

 ┌──────────┬──────────┐

 │ 2 │ 1 │

 └──────────┴──────────┘

 & &

 │ └────────── Sequence error

 │

 └────────── Invalid key

Follow these rules for each file:

� Define a different FILE STATUS key for each file.

126 VisualAge COBOL Programming Guide

I/O Error Handling

This is especially important since it allows you to determine the cause of a file
input/output exception which might have occurred as a result of, for example, an
application logic error or a disk error.

� Check the FILE STATUS key after every input/output request.

After an input or output statement is performed, check the contents of the status
key; if it contains a value other than 0, your program can issue an error message,
or can act based on the value of the code placed in the status key.

You do not have to reset the status key code, because it is set following each
input/output attempt.

For VSAM, STL, and Btrieve files, in addition to the file status key, you can code a
second identifier in the FILE STATUS clause to get more detailed information on file
system input/output requests. For further details, see “File System Return Code”
on page 128.

You can use the status key alone, or in conjunction with the INVALID KEY option, or
to supplement the EXCEPTION/ERROR declarative. Using the status key in this way
gives you precise information about the results of each input/output operation.

File Status Key Example
Figure 38 shows an example of the COBOL coding that performs a simple check on
the status key after opening a file.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. SIMCHK.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT MASTERFILE ASSIGN TO AS-MASTERA

FILE STATUS IS MASTER-CHECK-KEY

 .

 .

 DATA DIVISION.

 .

 .

 WORKING-STORAGE SECTION.

 ð1 MASTER-CHECK-KEY PIC X(2).

 .

 .

 PROCEDURE DIVISION.

 .

 .

OPEN INPUT MASTERFILE

IF MASTER-CHECK-KEY NOT = "ðð"

DISPLAY "Non-zero file status returned from OPEN " MASTER-CHECK-KEY

 .

 .

Figure 38. Using the Status Key to Check an OPEN Statement

 Chapter 8. Error Handling 127

I/O Error Handling

File System Return Code
Often the 2-character FILE STATUS code is too general to pinpoint the disposition of a
request. You can get more detailed information about file system input/output requests
by coding a second status area:

FILE STATUS IS data-name-1 data-name-2

data-name-1
Specifies the 2-character COBOL FILE STATUS key.

data-name-2
Specifies a data item that contains the file system return code when the COBOL
FILE STATUS key is not 0. data-name-2 is at least 6 bytes long.

STL and Btrieve File Systems
If data-name-2 is 6 bytes in length, it will contain the return code. If it
is greater than 6 bytes in length, it will also contain a message with
further information. For example, given the definition

 ð1 my-file-status-2.

ð2 exception-return-value PIC 9(6).

ð2 additional-info PIC X(1ðð).

and an attempt to open a file with a different defintion than the one
with which it was created, return code 39 would be returned in
exception-return-value and a message telling you what keys you
need to perform the open would be returned in additional-info.

VSAM File System
data-name-2 must be defined as PICTURE X(n) and USAGE DISPLAY
attributes, where n is 6 or greater. The PICTURE string value repres-
ents the first n bytes of the VSAM reply message structure. If the size
of the reply message structure, m, is less than n, only the first m bytes
contain useful information.

For full details on the VSAM reply message structure, and VSAM file
handling in general, refer to the SMARTdata Utilities documentation for
your operating environment as listed in “Bibliography” on page 658.

See the IBM COBOL Language Reference for the rules for coding data-name-2.

For information about possible return codes from the STL file system, see “File Status
and the STL File System” on page 114.

For information on interpreting the codes for other file systems, refer to the relevant file
system documentation listed in “Bibliography” on page 658.

Checking File System Status Codes Example
Figure 39 on page 129 shows an example of a COBOL program that reads an indexed
file (starting on the fifth record), checks the file status key after each input/output
request, and displays the VSAM codes when the file status key is not zero. Figure 39
on page 129 also illustrates what the output from this program might look like,
assuming that the file being processed contains six records.

128 VisualAge COBOL Programming Guide

I/O Error Handling

 IDENTIFICATION DIVISION.

 PROGRAM-ID. EXAMPLE.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT FILESYSFILE ASSIGN TO FILESYSFILE

ORGANIZATION IS INDEXED

 ACCESS DYNAMIC

RECORD KEY IS FILESYSFILE-KEY

FILE STATUS IS FS-CODE, FILESYS-CODE.

 DATA DIVISION.

 FILE SECTION.

 FD FILESYSFILE

 RECORD 3ð.

 ð1 FILESYSFILE-REC.

 1ð FILESYSFILE-KEY PIC X(6).

 1ð FILLER PIC X(24).

 WORKING-STORAGE SECTION.

 ð1 RETURN-STATUS.

 ð5 FS-CODE PIC XX.

 ð5 FILESYS-CODE PIC X(6).

 PROCEDURE DIVISION.

 OPEN INPUT FILESYSFILE.

DISPLAY "OPEN INPUT FILESYSFILE FS-CODE: " FS-CODE.

IF FS-CODE NOT = "ðð"

 PERFORM FILESYS-CODE-DISPLAY

 STOP RUN

 END-IF.

MOVE "ððððð5" TO FILESYSFILE-KEY.

START FILESYSFILE KEY IS EQUAL TO FILESYSFILE-KEY.

DISPLAY "START FILESYSFILE KEY=" FILESYSFILE-KEY

" FS-CODE: " FS-CODE.

IF FS-CODE NOT = "ðð"

 PERFORM FILESYS-CODE-DISPLAY

 END-IF.

Figure 39 (Part 1 of 2). Getting File System Code Information on Input/Output Requests

 Chapter 8. Error Handling 129

I/O Error Handling

IF FS-CODE = "ðð"

PERFORM READ-NEXT UNTIL FS-CODE NOT = "ðð"

 END-IF.

 CLOSE FILESYSFILE.

 STOP RUN.

 READ-NEXT.

READ FILESYSFILE NEXT.

DISPLAY "READ NEXT FILESYSFILE FS-CODE: " FS-CODE.

IF FS-CODE NOT = "ðð"

 PERFORM FILESYS-CODE-DISPLAY

 END-IF.

 DISPLAY FILESYSFILE-REC.

 FILESYS-CODE-DISPLAY.

DISPLAY "FILESYS-CODE ==>", FILESYS-CODE.

Figure 39 (Part 2 of 2). Getting File System Code Information on Input/Output Requests

INVALID KEY Phrase
The INVALID KEY phrase will be given control if an input/output error occurs because of
a faulty index key. You can include INVALID KEY phrases on READ, START, WRITE,
REWRITE, and DELETE requests for indexed and relative files.

INVALID KEY and ERROR Declaratives
INVALID KEY phrases differ from ERROR declaratives in these ways:

� INVALID KEY phrases operate for only limited types of errors, whereas the ERROR
declarative encompasses all forms.

� INVALID KEY phrases are coded directly onto the input/output verb, whereas ERROR
declaratives are coded separately.

� INVALID KEY phrases are specific for one single input/output operation, whereas
ERROR declaratives are more general.

If you code INVALID KEY in a statement that causes an INVALID KEY condition, control is
transferred to the INVALID KEY imperative statement. Here, any ERROR declaratives
you have coded are not performed.

NOT INVALID KEY
Any NOT INVALID KEY phrase that you code is performed only if the statement com-
pletes successfully. If the operation fails because of any condition other than INVALID
KEY, neither the INVALID KEY nor the NOT INVALID KEY phrase is performed. Instead
control passes to the end of the statement after performing any associated ERROR
declaratives.

130 VisualAge COBOL Programming Guide

CALL Statements

Using FILE STATUS and INVALID KEY Example
Use the FILE STATUS clause with INVALID KEY to evaluate the status key and determine
the specific INVALID KEY condition.

For example, assume you have a file containing master customer records and need to
update some of these records with information in a transaction update file. You will
read each transaction record, find the corresponding record in the master file, and
make the necessary updates. The records in both files each contain a field for a cus-
tomer number, and each record in the master file has a unique customer number.

The FILE-CONTROL entry for the master file of customer records includes statements
defining indexed organization, random access, MASTER-CUSTOMER-NUMBER as the prime
record key, and CUSTOMER-FILE-STATUS as the file status key. The following example
shows how you can use FILE STATUS with the INVALID KEY to more specifically deter-
mine the cause of an I/O statement failure.

 .

. (read the update transaction record)

 .

MOVE "TRUE" TO TRANSACTION-MATCH

MOVE UPDATE-CUSTOMER-NUMBER TO MASTER-CUSTOMER-NUMBER

READ MASTER-CUSTOMER-FILE INTO WS-CUSTOMER-RECORD

 INVALID KEY

DISPLAY "MASTER CUSTOMER RECORD NOT FOUND"

DISPLAY "FILE STATUS CODE IS: " CUSTOMER-FILE-STATUS

MOVE "FALSE" TO TRANSACTION-MATCH

 END-READ

 CALL Statements
When dynamically calling a separately compiled program, the program that you call
might be unavailable to the system. For example, the system could run out of storage
or it could be unable to locate the load module. If you do not have an ON EXCEPTION
or ON OVERFLOW clause on the CALL statement, your application might abend.

Use the ON EXCEPTION clause to perform a series of statements and to perform your
own error handling. For example:

MOVE "REPORTA" TO REPORT-PROG

 CALL REPORT-PROG

 ON EXCEPTION

DISPLAY "Program REPORTA not available, using REPORTB.'

MOVE "REPORTB" TO REPORT-PROG

 CALL REPORT-PROG

 END-CALL

 END-CALL

If program REPORTA is unavailable, control will continue with the ON EXCEPTION clause.

ON EXCEPTION Limitation: The ON EXCEPTION clause applies only to the availability
of the called program. If an error occurs while the called program is running, the ON
EXCEPTION clause will not be performed.

 Chapter 8. Error Handling 131

CALL Statements

132 VisualAge COBOL Programming Guide

Part 2. Compiling, Linking, and Running Your Program

This part of the book provides instructions for compiling your program on the personal
workstation.

Chapter 9. Compiling, Linking, and Running Programs 134

Chapter 10. Compiler Options . 160

| Chapter 11. Setting Linker Options . 208

Chapter 12. Run-Time Options . 240

Chapter 13. Debugging Techniques . 244

 Copyright IBM Corp. 1996, 1998 133

Setting Environment Variables

Chapter 9. Compiling, Linking, and Running Programs

This chapter explains how to complete the following tasks:

� Set compiler and run-time environment variables
� Compile and link programs
� Specify compiler options
� Understand and respond to compiler errors and messages
� Run compiled programs

Setting Environment Variables
Environment variables are used to set values that can be read by programs. For
example, the COBOL run time reads the environment variable COBPATH when a
program dynamically CALLs another program.

To specify environment variables, use the SET command. There are two ways to set
environment variables:

� Temporarily, by defining the environment variable using the SET command at the
command prompt (or as part of a command (.cmd) file).

� Persistently, by defining the environment variable using the SET command.

The environment variable definition using the SET command applies to programs run
from the same window where the SET command is issued. For example, the following
command syntax sets the COBPATH environment variable (which defines the locations
in which the COBOL run time locates dynamically-accessed programs) to include two
directories:

 SET COBPATH=d:\cobdev\dll;d:\dev\dll;

However, if you open another window, programs run from the new window will not be
affected by the definition you have SET for COBPATH.

Steps required to set an environment variable persistently vary depending on your oper-
ating system.

To set an environment variable persistently, add the appropriate SET command to the
OS/2 file named CONFIG.SYS. If you SET environment variables in CONFIG.SYS, the
values of these variables are defined automatically whenever you boot your computer
and apply to all OS/2 windows and graphical applications.

134  Copyright IBM Corp. 1996, 1998

Definitions of COBOL Environment Variables

For example, the installation process sets up OS/2 environment variables to access the
compiler and libraries. These variables are listed in CONFIG.SYS.

The value that you assign to an environment variable can include other environment
variables or the variable itself. For example, to add a directory to the value of
COBPATH, which has already been set, issue the command

 SET COBPATH=%COBPATH%;d:\myown\dll;

In Windows 95, environment variables are set in the AUTOEXEC.BAT file. In Windows
NT, environment variables are set in the System window (to get there, in Main double-
click on Control Panel, then double-click on System.)

To SET an environment variable persistently, add it in the System window (Windows
NT) or add the appropriate SET command to the file named AUTOEXEC.BAT (Windows
95). If you set environment variables in this way, the values of these variables are
defined automatically whenever you boot your computer and apply to all Windows
windows and graphical applications.

On Windows NT changes made to user environment variables in the System window
are stored, but you must restart your computer to make the values available to proc-
esses, including the command prompt.

For example, the installation process sets up environment variables to access the com-
piler and libraries. These variables are listed in AUTOEXEC.BAT (Windows 95) or the
Registry (Windows NT).

The value that you assign to an environment variable can include other environment
variables or the variable itself. For example, to add a directory to the value of
COBPATH, which has already been set, issue the command

 SET COBPATH=%COBPATH%;d:\myown\dll;

SET Notation: Throughout this book, the setting of environment variables is illustrated
with a SET command. On Windows NT the setting is done in an analogous manner,
with the variable name and the value, separated by an equal sign in the SET command,
being entered on the two different fields in the System window.

Definitions of COBOL Environment Variables
If you do not specify environment variables, either a default value is applied or the vari-
able is not defined. Environment variables are used by both the compiler and the run-
time library.

 Chapter 9. Compiling, Linking, and Running Programs 135

COBOL Compiler Environment Variables

Compiler Environment Variables
The COBOL compiler uses the following environment variables:

COBOPT
Is one way of specifying COBOL compiler options. You can specify multiple
options. Separate each option by a space or comma. For example:

SET COBOPT=TRUNC(OPT) TERMINAL

Defaults: Individual compiler option defaults apply (see “Default Values for Com-
piler Options” on page 161).

COBPATH
Specifies PATHs to be used for locating user defined compiler exit programs
identified by the EXIT compiler option.

SYSLIB
Specifies paths to be used for COBOL COPY statements with text-names that are
unqualified by library names. For a description of how SYSLIB is used for COPY
statements, see the description of Library-name and text-name on page COPY
statement on page 204. See “SQL INCLUDE Statement” on page 408 for use
with SQL INCLUDE.

| TEMPMEM
| If TEMPMEM=ON, compiler work files will be memory files rather than disk files.
| This can significantly reduce compilation time.

| In some cases with very large source programs, insufficient memory errors can
| occur. In this event, reset TEMPMEM to null.

Library-name
A user-defined word that specifies the path for the library text. For example:

 SET MYLIB=D:\CPYFILES\COBCOPY

Defaults: If you do not specify a library-name, the compiler searches the library
path(s) in the following order, the search ending when the file is found:

1. The current directory

2. The path(s) specified by the -Ixxx option, if set (see “Options Supported by
cob2” on page 142)

3. The paths specified by the SYSLIB environment variable

See the COPY statement on page 204 for the search rules for copy files.

Text-name
A user-defined word that specifies the path for the copybook text.

Defaults: If you do not set text-name as an environment variable, the compiler
uses the default search described with the COPY statement on page 204.

DB2DBDFT
Is one way of specifying the database for compiling your programs with
embedded SQL statements. See “Compiling with the DB2 Co-Processor” on
page 406 for more information on connecting to the target database.

136 VisualAge COBOL Programming Guide

COBOL Run-Time Environment Variables

Object-Oriented Programming Environment Variables
When you create object-oriented programs, there are different environment variables
you need to set. System Object Model (SOM) requires you to set SOM-specific envi-
ronment variables. For more information on environment variables needed when using
SOM to create object-oriented COBOL programs, see Chapter 15, “Using System
Object Model (SOM)” on page 317.

Run-Time Environment Variables
The COBOL run-time library uses the following environment variables.

assignment-name
The assignment-name can be any COBOL file that you want to specify in an
ASSIGN clause. This use of assignment-name follows the rules for a COBOL
word. For example:

 SET OUTPUTFILE=d:\january\results.car

You can then use the environment variable as a COBOL user-defined word in an
ASSIGN clause. For example, based on the previous SET statement, your
COBOL source program could include the following:

SELECT CARPOOL ASSIGN TO OUTPUTFILE

Because OUTPUTFILE was defined in the environment, this statement would result
in data being written to the file d:\january\results.car.

Alternate File System: The general syntax involved in making an assignment
to a file stored in an alternate file system is:

ASSIGN TO FileSystemID-Filename

FileSystemID
Identifies the file system as one of the following:

STL For the STL file system.

VSAM For the VSAM file system. VSAM can be abbreviated to
VSA.

On Windows, Filename must start with "\\", indicating
remote file access.

BTR For the Btrieve file system.

If the file system specification is not provided, the run-time option
FILESYS is used to select the file system. If FILESYS is not set, the
default is VSAM for OS/2 and STL for Windows.

 Chapter 9. Compiling, Linking, and Running Programs 137

COBOL Run-Time Environment Variables

Filename
The file you want to access.

Alternatively, you can specify an environment variable (for details, see the
IBM COBOL Language Reference).

Defaults : None. You must set all assignment-names. If you make an assign-
ment to a user-defined word that was not set as an environment variable, the
assignment is made to a file with the literal name of the user-defined word
(OUTPUTFILE in our earlier example). If the assginment is valid, this file is written
to the current directory.

COBMSGS
Specifies the name of a file to which run-time error messages will be written. To
capture run-time error messages into a file, use the SET command to set
COBMSGS to a file name. If your program has a run-time error that terminates
the application, the file that COBMSGS is set to will contain the error message
indicating the reason for termination.

Defaults: None. If COBMSGS is not set, error messages are written to the ter-
minal.

COBPATH
Specifies directory path(s) to be used by the COBOL run time to locate dynam-
ically accessed programs, such as .DLL (Dynamic Link Library) files. This vari-
able must be set to run programs that require dynamic loading. For example:

 SET COBPATH=D:\pgmpath\pgmdll

Defaults: None.

COBRTOPT
Specifies the COBOL run-time options. The run-time options are separated by a
comma or a colon. Use parentheses or equal signs (=) as the delimiters for sub-
options. Options are not case sensitive.

For example:

 SET COBRTOPT=TRAP=ON:errcount

Is equivalent to:

 SET COBRTOPT=trap(on):ERRCOUNT

Defaults: Individual run-time option defaults apply (see Chapter 12, “Run-Time
Options” on page 240).

EBCDIC_CODEPAGE
Specifies an EBCDIC code set applicable to the EBCDIC data being processed
by programs compiled with the CHAR(EBCDIC) or CHAR(S390) compiler option.

To set the EBCDIC code set, issue the command:

 SET EBCDIC_CODEPAGE=codepage

where codepage is the name of the code set to be used.

If EBCDIC_CODEPAGE is not set, it will default to the EBCDIC code page of the
current locale. If multiple code pages are available for the current locale the

138 VisualAge COBOL Programming Guide

COBOL Run-Time Environment Variables

CHAR(EBCDIC) compiler option must be set, “CHAR” on page 165 discusses this
option.

Refer to “Locales and Code Sets Supported” on page 477 for the supported code
set translations.

LANG
Specifies the national language locale name in effect for message catalogs and
help files. LANG must always be set and is given an initial value during installa-
tion. The run-time library uses LANG to access the message catalog. For
example, the following command sets the language locale name to U.S. English:

 SET LANG=En_US

If LANG is not SET correctly, run-time messages appear in an abbreviated form.

Defaults: Set to EN_US at installation time.

LC_COLLATE
Determines the locale to be used to define the behaviour of ranges, equivalence
classes, and multicharacter collating elements.

Defaults: The locale specified by the LANG environment variable is used.

LC_MESSAGES
Determines the locale which defines the language in which messages are written.

Defaults: The locale specified by the LANG environment variable is used.

LC_TIME
Determines the locale for date and time formatting information.

Defaults: The locale specified by the LANG environment variable is used.

LIBPATH
Specifies the full path name for the COBOL run-time library.

Defaults: Set at installation.

LOCPATH
Specifies the search path where the locale information database exists. It is a
colon-separated list of directory names. It is used at the time of setting up locale
for a process. It is also used to locate conversion tables for EBCDIC data
support.

NLSPATH
Specifies the full path name of message catalogs and help files. NLSPATH must
always be set and is given an initial value during installation. The run-time library
uses NLSPATH to access the message catalog. If NLSPATH is not set correctly,
run-time messages appear in an abbreviated form.

For example:

 SET NLSPATH=C:\COBOL\MESSAGES\%L\%N;%NLSPATH%

 Chapter 9. Compiling, Linking, and Running Programs 139

COBOL Run-Time Environment Variables

Cautions: When you set NLSPATH, be sure to add to the NLSPATH, not replace
it. Other programs might use this environment variable. Also, note that %L and
%N must be upper case.

Defaults: Vary. Set at installation.

SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST, CONSOLE, SYSPUNCH, SYSPCH
These COBOL environment names are used as the environment variable names
corresponding to the mnemonic names used on ACCEPT and DISPLAY state-
ments. Set them equal to files, not existing directory names. For example, the
following command defines CONSOLE:

 SET CONSOLE=c:\mypath\terminal.txt

CONSOLE could then be used in conjunction with the following COBOL source
code:

 SPECIAL-NAMES.

CONSOLE IS terminal

 ...

DISPLAY 'Hello World' UPON terminal

If you set the environment variables SYSIN and SYSOUT to files which have write
permission, GUI applications can use ACCEPT and DISPLAY statements to com-
municate with the user.

Defaults: SYSIN and SYSIPT are directed to the logical input device (keyboard).
SYSOUT, SYSLIST, SYSLST, and CONSOLE are directed to the system logical
output device (screen). SYSPUNCH and SYSPCH are not assigned a value by
default and are not valid unless you explicitly define them.

TEMP
Specifies the location of temporary work files (if needed) for SORT and MERGE
functions. For example:

 SET TEMP=c:\shared\temp

Defaults: Vary. Set by the sort utility installation program.

TZ
This variable is used to describe the time zone information to be used by the
locale and has the following format:

 SET TZ=SSS[+|-]nDDD[,sm,sw,sd,st,em,ew,ed,et,shift]

The values for the TZ variable are defined below.

Figure 40 (Page 1 of 2). TZ Environment Variable Parameters

Variable Description Default Value

SSS Standard time zone identifier. This must be three
characters, must begin with a letter, and can contain
spaces.

EST

140 VisualAge COBOL Programming Guide

COBOL Run-Time Environment Variables

For example:

 SET TZ=CST6CDT

sets the standard time zone to CST, the daylight saving time to CDT, and sets a
difference of 6 hours between CST and UTC. It does not set any values for the
start and end of daylight saving time.

Other possible values are PST8PDT for Pacific United States and MST7MDT for
Mountain United States.

When TZ is not present, the default is EST5EDT, the default locale value. When
only the standard time zone is specified, the default value of n (difference in
hours from GMT) is 0 instead of 5.

If you give values for any of sm, sw, sd, st, em, ew, ed, et, or shift, you must give
values for all of them. If any of these values is not valid, the entire statement is
considered not valid, and the time zone information is not changed.

Defaults: Depends on the current locale. See Figure 40 on page 140 for the
default locale values.

Figure 40 (Page 2 of 2). TZ Environment Variable Parameters

Variable Description Default Value

n Difference (in hours) between the standard time zone
and coordinated universal time (UTC), formerly
Greenwich mean time (GMT). A positive number
denotes time zones west of the Greenwich meridian, a
negative number denotes time zones east of the
Greenwich meridian.

5

DDD Daylight saving time (DST) zone identifier. This must
be three characters, must begin with a letter, and can
contain spaces.

EDT

sm Starting month (1 to 12) of DST. 4

sw Starting week (-4 to 4) of DST. 1

sd Starting day of DST: 0 to 6 if sw is not zero; 1 to 31 if
sw is zero.

0

st Starting time (in seconds) of DST. 3600

em Ending month (1 to 12) of DST. 10

ew Ending week (-4 to 4) of DST. -1

ed Ending day of DST: 0 to 6 if ew is not zero; 1 to 31 if
ew is zero.

0

et Ending time (in seconds) of DST. 7200

shift Amount of time change (in seconds). 3600

 Chapter 9. Compiling, Linking, and Running Programs 141

Compiling and Linking Programs

Environment Variable Precedence
Some environment variables (such as COBPATH and NLSPATH) define directories in
which to search for files. If multiple directory paths are listed, they are delimited by
semi-colons. Paths defined by environment variables are evaluated in order, from the
first path to the last in the SET statement. Therefore, if you have multiple files with the
same name that are defined in the paths of an environment variable, be aware that the
first located copy of the file is used.

Compiling and Linking Programs
The command cob2 is the command-line utility which invokes the COBOL compiler and
linker. For compiling Visual Builder projects see Visual Builder User's Guide,
SC26-9053. For compiling using WorkFrame see the WorkFrame online help. cob2

accepts options to control the compilation and link-edit in any order on the command
line. Likewise, if you want to compile multiple files, the filenames can be specified at
any position in the command syntax. However, all options and filenames should be
separated by spaces.

Because OS/2 and Windows are not case-sensitive, cob2 and its options do not need to
be capitalized. The general syntax for cob2 is:

55──cob2─ ──┬ ┬───────── ─filenames──────────────────────────────────────5%
 └ ┘─options─

For example, the following command:

cob2 -g filea.cbl fileb.cbl -v -qflag(w)

is equivalent to:

cob2 filea.cbl -qflag(w) -g -v fileb.cbl

Usage Notes

1. Any options specified apply to all files on the command line.

2. cob2 passes all files with extensions named in “Filenames and Extensions
Supported” on page 145 to the linker; all other files are passed to the compiler.

3. The default location for compiler input and output is the current directory.

Options Supported by cob2
-b"xxx" Pass the xxx string to the linker as parameters. xxx is a list of linker

options separated by blank spaces. The cob2 default parameters are
also passed. There should be no spaces between -b and "xxx".

Alternatively, linker options can be specified directly as individual
cob2 options. For example, to pass the /DE option to the linker:

cob2 /DE myprog.cbl

142 VisualAge COBOL Programming Guide

Compiling and Linking Programs

For information on linker options, see Chapter 11, “Setting Linker
Options” on page 208.

-c Compile programs but do not link them.

-cmain Make a C or PL/I object file containing a main routine5 the main entry
point in the executable file (.EXE).

Warning: If a C or PL/I object file containing a main routine is linked
with one or more COBOL object files, -cmain must be used to desig-
nate the C or PL/I routine as the main entry point in the executable
file; a COBOL program cannot be the main entry point in an execut-
able file containing a C or PL/I main. Unpredictable execution
behavior will occur if this is attempted and no diagnostics are issued.

|

| Under OS/2, -cmain is only required if -host is also specified.

|

Example:

cob2 -cmain myCmain.obj myCOBOL.obj

and

cob2 -cmain myCOBOL.obj myCmain.obj -main:myCmain

both generate the executable file myCmain.exe with the main entry
point being the C main() function contained in the myCmain.obj

object file.

-comprc_ok= n Controls the cob2 behavior on the return code from the compiler. If
the return code returned by the compiler is less than or equal to n,
cob2 continues to the link step, or, in the compile only case, exits with
a zero return code. If the return code returned by the compiler is
greater than n, cob2 exits with the same return code returned by the
compiler.

The default is: -comprc_ok=4.

-dll[: xxx] Causes cob2 to produce linker files (.LIB and .EXP) to create a DLL

named xxx. If xxx is omitted, the name of the first object (.OBJ) or
COBOL source (usually .CBL or .PPR) file specified in the cob2
command is the name of the DLL (and .LIB and .EXP files).

-g Produce symbolic information used by the debugger. This option is
equivalent to compiling with the TEST compiler option and linking
with the /DEBUG linker option.

5 In C, a main routine is identified by the function name main(). In PL/I, a main routine is identified by the PROC OPTIONS(MAIN)

statement.

 Chapter 9. Compiling, Linking, and Running Programs 143

Compiling and Linking Programs

-host Set all host data compiler options:

 BINARY(S390)
 CHAR(EBCDIC)
 COLLSEQ(EBCDIC)
 FLOAT(S390)

Note: This option will present run-time command-line arguments in
host data format, that is, EBCDIC for character data, and “big endian”
for binary data.

-Ixxx Add a path xxx to the directories to be searched for COPY files if a
library-name is not specified (see “Compiler Environment Variables”
on page 136). Only a single path is allowed per -I option. To add
multiple paths, use multiple -I options. There should be no spaces
between -I and xxx. (This is upper-case “eye,” not lower-case “el.”)

Use LIB: If you use the COPY statement, you must ensure that the
LIB compiler option is in effect.

For a description of the manner in which the compiler evaluates
paths for COPY files, see the description of the Library-name environ-
ment variable in “Run-Time Environment Variables” on page 137.

-main: xxx Make object file xxx the COBOL main program of the executable
(.EXE) file. xxx must be the filename of an object (.OBJ) file or source
file specified to cob2. For example, cob2 -main:abc a1.cbl

d:\cats\abc.obj b2.cbl will result in abc being the main program.
xxx cannot appear in a linker response file.

If -main is not specified, the first object or source file specified will, in
the absence of a response file, be the COBOL main program.

If the syntax of -main:xxx is invalid, or xxx is not the filename of an
object or source file processed by cob2, cob2 will terminate.

-p Include the profile hooks that allow the Performance Analyzer to
monitor the application execution and create a trace file. This option
is equivalent to compiling with the PROFILE compiler option and
linking in the Performance Analyzer module IWZPAN40.OBJ.

-qxxx Use the option xxx (where xxx is any compiler option) when calling
the compiler. If a parenthesis is part of the compiler (sub)option, or a
series of options are specified, they should be included in quotes.
For multiple options, each option should be delimited by a blank or
comma. There should be no spaces between -q and xxx. For
example, you can use

 -qoptiona,optionb

or

 -q"optiona optionb"

144 VisualAge COBOL Programming Guide

Compiling and Linking Programs

Special Syntax

If you plan to use a batch or command file to automate your cob2
tasks, a special syntax is provided for the -qxxx option. Use the
following syntax to prevent the command shell from passing invalid
syntax to cob2:

� Use “=” (equal sign) and “:” (colon) rather than “()” (paren-
theses) to specify compiler suboptions. For example, use

-qBINARY=NATIVE:,ENTRYINT=OPTLINK:

rather than

-qBINARY(NATIVE),ENTRYINT(OPTLINK)

� Use “_” (underscore) rather than “ ' ” (apostrophe) where a com-
piler option requires a suboption to be delimited by apostrophes.
For example, use

-qEXIT=INEXIT=_String_,MYMODULE::

rather than

-qEXIT(INEXIT('String',MYMODULE))

� Do not use any blanks in the option string.

-v Display compile and link steps, and execute them.

-# Display compile and link steps, but do not execute them.

Filenames and Extensions Supported
Files with @ as the first character and files with the following extensions are assumed
to be linker parameters and are passed to the linker. Those with recognized file exten-
sions are processed as follows:

.DEF The name of the module definition file. For more information about module
definition files, see “Module Definition Files” on page 442.

.DLL The name of the generated dynamic link library (DLL). The default DLL is the
first source file listed in the cob2 command syntax with an extension of .DLL.

.EXP The name of the export file, if required. For more information about export
files, see “Export Files (Windows Only)” on page 442.

.EXE The name of the generated executable file. If not specified, the name
defaults to the name of the first COBOL source file listed in the cob2
command with the file extension .EXE.

.IMP The name of the import library associated with a .DLL that contains symbols
(usually names of external routines) referenced by your programs. This file is
used by the linker to resolve those references.

 Chapter 9. Compiling, Linking, and Running Programs 145

Compiling and Linking Programs

.LIB The name of the import or standard library, which contains symbols (usually
names of external routines) referenced by your programs. This file is used by
the linker to resolve those references.

.MAP The name of the map file. If not specified, no map file is generated.

.OBJ The name of the object file(s) to be passed to the linker.

All other files are processed by the compiler. The file extension .CBL is most commonly
used for COBOL source.

Examples using cob2
The following examples illustrate the use of cob2:

� To compile the file alpha.cbl, enter:

cob2 -c alpha.cbl

The compiler produces the files alpha.obj and alpha.lst.

� To compile alpha.cbl and beta.cbl, enter:

cob2 -c alpha.cbl c:\mydir\beta.cbl

The compiler produces the files alpha.obj, beta.obj, alpha.lst, and beta.lst in
the current directory.

� To link two files together, compile them without the -c option. For example, to
compile and link alpha.cbl and beta.cbl and generate alpha.exe, enter:

cob2 alpha.cbl beta.cbl

This command creates alpha.obj and beta.obj, then links alpha.obj, beta.obj,
and the COBOL libraries. If the link step is successful, it produces an executable
program named alpha.exe.

� In the following example:

cob2 alpha.obj beta.cbl mylib.lib gamma.exe

beta.cbl is compiled, and the string:

alpha.obj beta.obj mylib.lib /out:gamma.exe

is passed to the linker. If linking is successful, the executable gamma.exe is
produced.

� In the following example:

cob2 alpha.cbl alpha.def

alpha.dll will be produced (assuming a valid alpha.def file).

� To compile with the LIST and NOADATA options, enter:

cob2 -qlist,noadata alpha.cbl

Note: There is no space between the -q and the options list.

Options should be delimited by commas or blanks if enclosed in quotes:

cob2 -q"list noadata" alpha.cbl

146 VisualAge COBOL Programming Guide

Compiling and Linking Programs

Alternative Ways to Specify Compiler Options
“Compiling and Linking Programs” on page 142 explains how to specify compiler
options using the cob2 command. There are other ways to select the options used to
compile your programs. Here are three additional methods:

1. The COBOPT environment variable (See “Definitions of COBOL Environment
Variables” on page 135)

2. Command-line specification of compile environment variables and cob2 options,
such as an OS/2 command (.CMD) file

3. Specification by way of *CONTROL (synonym, *CBL) or PROCESS (synonym, CBL)
statements

These means of specification are listed in order of precedence. For example, an option
specified using PROCESS overrides every other option specification except for non-
overridable options selected during product installation.

Specifying Compiler Options with the PROCESS (CBL) Statement
You can code compiler options on the PROCESS statement in your COBOL source
(.CBL) programs. The PROCESS statement is placed before the IDENTIFICATION DIVI-
SION header and has the following format:

55─ ──┬ ┬─CBL───── ──┬ ┬────────────── ────────────────────────────────────5%
 └ ┘─PROCESS─ └ ┘─options-list─

PROCESS Statement Rules

� Your programming organization can inhibit the use of PROCESS statements with the
default options module of the COBOL compiler. When PROCESS statements are
found in a COBOL program where not allowed by the organization, the COBOL
compiler generates error diagnostics.

� One or more blanks must separate PROCESS and the first option in options-list.
Separate options with a comma or a blank. Do not insert spaces between indi-
vidual options and their suboptions.

� The PROCESS statement must be placed before any comment lines or compiler-
directing statements.

� PROCESS can start in columns 1 through 66. A sequence field is allowed in
columns 1 through 6. When used with a sequence field, PROCESS can start in
columns 8 through 66. If used, the sequence field must contain six characters, and
the first character must be numeric.

You can use CBL as a synonym for PROCESS. CBL can start in columns 1 through
70. When used with a sequence field, CBL can start in columns 8 through 70.

� You can use more than one PROCESS statement. If multiple PROCESS statements
are used, they must follow one another with no intervening statement of any other
type.

 Chapter 9. Compiling, Linking, and Running Programs 147

Compiler-Detected Errors and Messages

� Options cannot be continued across multiple PROCESS statements.

Compiler-Detected Errors and Messages
As the compiler processes your source program, it checks for COBOL language errors
you might have made. For each error discovered, the compiler issues a message.
These messages are included in the compilation listing (subject to the FLAG option).
The compiler listing file has the same name as the compiler source file, with the file
extension .LST. For example, the compiler listing for myfile.cbl would be myfile.lst.
The listing file is written to the directory from which cob2 was run.

Each message in the listing does the following:

� Explains the nature of your error
� Identifies the compiler phase that detected the error
� Identifies the severity level of the error

Wherever possible, the message provides specific instructions for correcting the error.

Compiler Error Messages
The messages for errors found during processing of compiler options, CBL and
PROCESS statements, or BASIS, COPY, and REPLACE statements are displayed near the
top of your listing.

The messages for compilation errors found in your program (ordered by line number)
are displayed near the end of the listing for each program.

A summary of all errors found during compilation is displayed near the bottom of your
listing. Each message issued by the compiler is of the following form:

 Format

nnnnnn IGYppxxxx-l message-text

nnnnnn
The number of the source statement of the last line the compiler was processing.
Source statement numbers are listed on the source printout of your program. If
you specified the NUMBER option at compile time, these are your original source
program numbers. If you specified NONUMBER, the numbers are those generated
by the compiler.

IGY
The prefix that identifies this message as coming from the COBOL compiler.

pp Two characters that identify which phase of the compiler discovered the error. As
an application programmer, you can ignore this information. If you are diagnosing
a suspected compiler error, contact IBM for support.

148 VisualAge COBOL Programming Guide

Compiler-Detected Errors and Messages

xxxx
A 4-digit number that identifies the error message.

l A character that indicates the severity level of the error: I, W, E, S, or U (see
“Compiler Error Message Codes”).

message-text
The message text itself which, in the case of an error message, is a short explana-
tion of the condition that caused the error.

Caution: If you used the FLAG option to suppress messages, there might be additional
errors in your program.

Compiler Error Message Codes
Errors the compiler can detect fall into five categories of severity:

In the following example, the part of the statement that caused the message to be
issued is enclosed in quotes.

I Informational
(Return Code=0)

An informational-level message is an aid to you. No action is
required and the program executes correctly as it stands.

W Warning
(Return Code=4)

A warning-level message calls attention to a possible error. It
is probable that the program executes correctly as written.

E Error
(Return Code=8)

An error-level message indicates a condition that is definitely
an error. The compiler has attempted to correct the error but
the results of program execution might not be what you expect.
You should correct the error.

S Severe
(Return Code=12)

A severe-level message indicates a condition that is a serious
error. The compiler was unable to correct the error. The
program does not execute correctly, and execution should not
be attempted. An .OBJ file might not be created.

U Unrecoverable
(Return Code=16)

An unrecoverable-level message indicates an error condition of
such magnitude that the compilation was terminated.

 Chapter 9. Compiling, Linking, and Running Programs 149

Compiler-Detected Errors and Messages

...

LineID Message code Message text

2 IGYDSððð9-E "PROGRAM" should not begin in area "A". It was processed as if found in area "B".

2 IGYDS1ð89-S "PROGRAM" was invalid. Scanning was resumed at the next area "A" item, level-number,

or the start of the next clause.

2 IGYDSðð17-E "ID" should begin in area "A". It was processed as if found in area "A".

2 IGYDS1ðð3-E A "PROGRAM-ID" paragraph was not found. Program name "CBLPGMð1" was assumed.

2 IGYSC1ð82-E A period was required. A period was assumed before "ID".

2 IGYDS11ð2-E Expected "DIVISION", but found "ALONGPRO". "DIVISION" was assumed before "ALONGPRO".

2 IGYDS1ð82-E A period was required. A period was assumed before "ALONGPRO".

2 IGYDS1ð89-S "ALONGPRO" was invalid. Scanning was resumed at the next area "A" item, level-number,

or the start of the next clause.

2 IGYDS1ðð3-E A "PROGRAM-ID" paragraph was not found. Program name "CBLPGMð2" was assumed.

3 IGYPSðð17-E "PROCEDURE" should begin in area "A". It was processed as if found in area "A".

34 IGYSCð137-E Program-name "ALONGPRO" did not match the name of any open program. The "END PROGRAM" statement

was assumed to have ended program "CBLPGMð2".

34 IGYSCð136-E Program "CBLPGMð1" required an "END PROGRAM" statement at this point in the program.

An "END PROGRAM" statement was assumed.

Messages Total Informational Warning Error Severe Terminating

Printed: 12 1ð 2
...

Correcting Errors in Your Source Program
Messages about source coding errors indicate where the error happened (LINEID) and
the text of the message tells you what the problem is. With this information, you can
correct the source program and re-compile.

Although you should try to correct errors, it is not necessary to fix all of them. A
W-level or I-level message can be left in a program without much risk, and you might
decide that the recoding and compilation needed to remove the error are not worth the
effort. On the other hand, S-level and E-level errors indicate probable program failure
and should be corrected.

U-level errors are in a class by themselves. Here, you have no choice but to correct
the error, because the compiler is forced to end early and does not produce complete
object code and listing. In contrast with the four lower levels of errors, a U-level error
might not result from a mistake in the source program. It could come from a flaw in the
compiler itself, or in the operating system.

After correcting the errors in your source program, re-compile the program. If this
second compilation is successful, go on to the link-editing step. If the compiler still
finds problems, repeat the above procedure until only informational messages are
returned.

150 VisualAge COBOL Programming Guide

Starting the Linker

Generating a List of All Compiler Error Messages
You can generate a complete listing of compiler diagnostic messages, with their expla-
nations, by compiling a program with a program-name of ERRMSG specified in the
PROGRAM-ID paragraph. The rest of the program can be omitted. For example:

 Identification Division.

 Program-ID. ErrMsg.

The listing that is produced includes messages from other IBM COBOL platforms, such
as AIX, OS/390, and VM. Some messages do not apply to OS/2 or Windows

| Starting the Linker
| Once the compiler has created object modules out of your source files, use the linker to
| link them together with the IBM VisualAge COBOL runtime libraries to create an .EXE
| file or .DLL file. By default, the IBM VisualAge COBOL compiler cob2 invokes the linker
| for you.

| There are several ways you can start the linker:

| � From the popup menu of an object file in a WorkFrame project, or from the project
| popup menu as part of the make or build process.

| � Through the compiler, which automatically invokes the linker.

| � From the command line.

| � Through a make file, which invokes both the compiler and the linker.

| Linking within WorkFrame
| To use the linker through WorkFrame, do the following:

| 1. Double-click on your project icon. The Project Window appears.

|

| At this point you can customize settings for the project, if the default settings for
| the project type are unacceptable. The Options menu contains choices that allow
| you to specify the actions available to the project, and compiler and linker options.
| Use Build Smarts to set options for a standard task. Use the Compiler and Linker
| Options dialogs to set options on an individual basis.

| 2. Select Build from the Actions menu. Your project is created, with the compiler
| and linker invoked as required.

|

|

| 3. Use the initial WorkFrame dialog to either open an existing project or create a new
| one. These actions are also choices on the Project pull-down menu. Once a
| project has been opened or created, its files are listed in the WorkFrame window.

 Chapter 9. Compiling, Linking, and Running Programs 151

Starting the Linker

| 4. Customize the linker options from the Options pull-down menu, if you do not want
| to use the defaults. The Options menu contains choices that allow you to specify
| options for other actions (for example, compile). You can also customize the
| project settings by selecting Settings from the View pull-down menu.

| 5. Select Build from either the Project pull-down menu or the project toolbar. Your
| project is built using the linker as required.

|

| Linking through the Compiler
| When you invoke the IBM VisualAge COBOL compiler, it compiles the object files from
| your source code and then automatically starts the linker, to link the object files into an
| .EXE or .DLL file. Use the cob2 option -b to pass options to the linker.

| If you do not want the compiler to start the linker, specify the cob2 option -c. You can
| then invoke the linker in a separate step.

|

| The compiler does not pass any default parameters to the linker.

|

|

| By default, the cob2 compiler invokes the linker with the following options:

| /FREEFORMAT Uses the free-format syntax, rather than the LINK386-compatible
| syntax.

| /NOLOGO Specify no logo.

| /BASE:65536 Specify the starting address of the program. For .DLL files, this
| results in a smaller and potentially faster executable, if the specified
| address is free when the .DLL is loaded. For .EXE files, the OS/2
| operating system always loads executable programs at 64K. You
| can give the linker the address 65536 (or ðx1ðððð) to let the linker
| know where the program will be loaded, so it can resolve relocation
| information at link time, resulting in a smaller .EXE file.

| /PMTYPE:VIO Create program with standard I/O that is compatible with Presenta-
| tion Manager.

| In addition, the following cob2 option generates the equivalent linker option:

| -g Generates debugger information. Passes /DEBUG to the linker.

| See “Linker Options for OS/2” on page 211 for more information on these linker
| options.

152 VisualAge COBOL Programming Guide

Optimized Linking

| Passing Additional Options to the Linker
| You can override these options, and pass additional options to the linker, using the
| cob2 option -b. For example, to generate a map file and override the default alignment,
| specify

| cob2 -.b"/AL:256 /MAP"

| If you do not want the compiler to start the linker, specify the cob2 option -c. You can
| then invoke the linker in a separate step.

|

| Linking from a Make File
| Use a make file to organize the sequence of actions (such as compiling and linking)
| required to build your project. You can then invoke all the actions in one step. The
| NMAKE utility saves you time by performing actions on only the files that have
| changed, and on the files that incorporate or depend on the changed files.

| You can write the make file yourself, or you can use WorkFrame to manage the make
| file. When you build through WorkFrame, a make file is created and maintained auto-
| matically.

| Optimized Linking (OS/2 Only)
|

| Removing Unreachable Functions
| Just as the compiler can optimize your source code by removing or replacing
| instructions, the linker can optimize your object code, including code in libraries you are
| linking in, by removing unreferenced functions. When the function is removed, any
| code that was required only by that function is also removed, including any other func-
| tions that were referenced only by that function. This reduces the size of your output
| file.

| Link with the option /OPTFUNC to remove functions that are:

| � Not referenced in any input file
| � Rendered unreferenced by the removal of other functions
| � Not exported for use in other files

| Performance Consideration
| Optimized linking generally takes longer than regular linking, because of the extra proc-
| essing that the linker performs. However, if the optimization is effective enough, it can
| actually speed up the linking process, because there is less information to write to file.
| Generally, you may want to link without the /OPTFUNC option, until your code is tested
| and stable.

 Chapter 9. Compiling, Linking, and Running Programs 153

Linker Input and Output

| Packing Executables
| Specify /EXEPACK to reduce the size of the executable by compressing pages in the file.
| The operating system automatically decompresses the pages when the program is
| loaded. If your program is intended to run only on OS/2 version 3.0 or later, then
| specify /EXEPACK:2 for best results. If your program is also intended to run on older
| versions of OS/2, specify /EXEPACK:1.

| Specify /PACKCODE to produce slightly faster and more compact code by grouping neigh-
| boring code segments that have similar attributes.

| Specify /PACKDATA to produce more compact files by grouping neighboring data seg-
| ments that have similar attributes.

| Specify /DBGPACK when you are debugging, to reduce the size of the executable file and
| potentially improve debugger performance.

| See “Linker Options for OS/2” on page 211 for more information on these and other
| linker options.

|

| Linker Input and Output Files
| The linker takes object files, links them with each other and with any library files you
| specify, and produces an executable output file. The executable output can be either
| an executable program (extension .EXE) file or a dynamic link library (extension .DLL).

| The linker optionally produces a map file, which provides information about the contents
| of the executable output.

| Input Output
| options executable file (.EXE or .DLL)
| object files (\.OBJ) map file (.MAP)
| library files (\.LIB) return code
| import libraries (\.LIB)
| module definition file (.DEF)

| Linker Search Rules
| When searching for an object (.OBJ), library (.LIB), or module definition (.DEF) file, the
| linker looks in the following locations in this order:

| 1. The directory you specified for the file, or the current directory, if you did not give a
| path. Default libraries do not include path specifications.

| Note: If you specify a path with the file, the linker searches only that path, and
| stops linking if the file cannot be found there.

| 2. Any directories entered by themselves on the command line must end with a slash
| (/) or backslash (\) character. See “Specifying Directories” on page 155 for more
| information.

154 VisualAge COBOL Programming Guide

Linker Input and Output

| If you specified /NOFREE, they must be in the libraries parameter.
|

| 3. Any directories listed in the LIB environment variable.

| If the linker cannot locate a file, it generates a fatal error message and stops linking.

| Example
| If you respond to linker prompts as follows:

|

| ILINK /NOFREE

| Object Modules [.obj]: FUN TEXT TABLE CARE

| Run File [fun.\]:

| List File [fun.map]:

| Libraries [.lib]: NEWLIBV2 C:\TESTLIB\

| Definitions File [nul.def]:

|

|

| FUN.OBJ TEXT.OBJ TABLE.OBJ CARE.OBJ

| NEWLIBV2.LIB

| C:\TESTLIB\

|

| The linker links four object files to create an executable file named FUN.EXE. The
| linker searches NEWLIBV2.LIB before searching the default libraries to resolve refer-
| ences.

| To locate NEWLIBV2.LIB and the default libraries, the linker searches the following
| locations in this order:

| 1. The current directory (because NEWLIBV2.LIB was entered without a path)
| 2. The C:\TESTLIB\ directory
| 3. The directories listed in the LIB environment variable

| Specifying Directories
| To have the linker search additional directories for input files, specify a drive or direc-
| tory by itself on the command line. Specify the drive or directory with a slash (/) or
| backslash (\) character at the end for the linker to recognize it as a path.

| The paths you specify are searched before the paths in the LIB environment variable.
| See “Linker Search Rules” on page 154 for more information.

 Chapter 9. Compiling, Linking, and Running Programs 155

Linker Input and Output

|

| Note: If you specified /NOFREE, then you can only specify directories in the library
| parameter at the command line, or in response to the Libraries [.LIB]: prompt. You
| must still end each directory with a slash (/) or or backslash (\) character.

|

| File Name Defaults
| If you do not enter a file name, the linker assumes the defaults shown below.

| If you specify /NOFREE, the linker also assumes default file extensions for
| files without extensions.

Figure 41. Linker Filename Defaults

File Default File Name Default Extension

| Object files| None. You must enter at least one object file name.| .OBJ

| Output file| The base name of the first object file.| .EXE

| Map file| The base name of the output file.| .MAP

| Library files| The default libraries defined in the object files. Use compiler
| options to define the default libraries. Any additional libraries
| you specify are searched before the default libraries.

| .LIB

| Module definition
| file
| None. The linker assumes you accept the default for all
| module statements.
| .DEF

| Specifying Object Files
| When you invoke the linker from the command line, the linker assumes that any input it
| cannot recognize as other files, options, or directories must be a object file. Use a
| space or tab character to separate files.

|

| If you specified /NOFREE to use the LINK386-compatible syntax, then the first set of file
| names you give it are taken as object files, up to the first comma. Use a plus (+),
| space, or tab as a separator between the file names. If you do not specify an exten-
| sion, the linker assumes the .OBJ extension.

|

| When you invoke the linker through the compiler, the compiler automatically passes the
| object files it creates to the linker, as well as passing any object files you specify on the
| compiler command line.

| You must enter at least one object file.

156 VisualAge COBOL Programming Guide

Linker Input and Output

| The linker accepts object files compiled or assembled:

|

| � In 32-bit OMF format
| � For Windows NT Version 3.5.1 (or higher) or Windows 95
| � For the 80386, 80486, and Pentium microprocessors

|

|

| � In 16- or 32-bit OMF format
| � For OS/2 version 1.0 or higher
| � For the 80286 (16-bit only), 80386, 80486, and Pentium microprocessors

| Entering Library Files As Object Files

| If you specify /NOFREE to use LINK386-compatible syntax, then you can enter library
| files in place of object files in the object parameter on the command line or at the
| Object Modules [.OBJ]:. prompt. Be sure to include the .LIB file name extension; oth-
| erwise, the linker assumes a .obj extension.

| When you enter a library as an object file, all the modules in the library are added to
| your output file, just as if you had entered all of the library's modules as object files in
| the object parameter.

| In contrast, when you enter a library in the library parameter, the linker links only to
| those modules needed to resolve external references.

| If you are linking with the /FREEFORMAT option (the default), you cannot enter library files
| as object files.

|

| Specifying Executable Output Type
| You can use the linker to produce executable modules (with the extension .EXE) or
| dynamic link libraries (with the extension .DLL). The linker produces .EXE files by
| default.

| Use linker options or statements in the module definition (.DEF) file, to specify what
| kind of output you want:

| � To produce an .EXE, specify the /EXEC option, or include the module statement
| NAME. See “Static Linking Overview” on page 439 for more information.

| � To produce a .DLL, specify the /DLL option, or include the module statement
| LIBRARY. See “Creating a DLL” on page 441 for more information.

 Chapter 9. Compiling, Linking, and Running Programs 157

Linker Errors

| Linker Return Codes
| The linker has the following return codes:

| Code Meaning

| 0 The link was completed successfully. The linker detected no errors, and issued
| no warnings.

| 4 Warnings issued. There may be problems with the output file.

| 8 Errors detected. The linking might have completed, but the output file cannot
| be run successfully.

| 12 Both warnings issued and errors detected (see return codes 4 and 8)

| 16 Severe errors detected. Linking ended abnormally, and the output file cannot
| be run successfully.

| 20 Both warnings issued and severe errors detected (see return codes 4 and 16)

| 24 Both errors and severe errors issued (see return codes 8 and 16)

| 28 The linker issued warnings, detected errors, and detected severe errors (see
| return codes 4, 8, and 16)

| If you invoke the linker through a makefile, you can force NMAKE to ignore warnings by
| putting -7 before the ILINK command. If you invoke the linker through the compiler,
| then a return code of zero is issued for warnings.

| Correcting Linker Errors
| If you use the PGMNAME(UPPER) compiler option, then the names of subprograms ref-
| erenced in CALL statements are translated to upper case. So, for example:

| Call "RexxStart"

| will be translated by the compiler to

| Call "REXXSTART"

| This affects the linker, which recognizes case-sensitive names. If the “real” name of
| the called program is RexxStart, the linker will not find it, and will produce an error
| message saying that REXXSTART is an unresolved external reference.

| This type of error typically happens when you are calling API routines supplied by
| another software product. If the API routines have mixed-case names, you must:

| � Use the PGMNAME(MIXED) compiler option, and

| � Ensure that your CALL statements specify the correct names, with the correct mix
| of upper and lower case characters, of the API routines.

158 VisualAge COBOL Programming Guide

Running COBOL Programs

| Windows Considerations
|

| Under Windows, the default linkage convention is SYSTEM(STDCALL), which is in effect
| when you use the compiler option CALLINT(SYSTEM). With this convention, the name of
| the called routine is expanded by:

| � prefixing an underscore character (_), and
| � suffixing an at symbol (@) and a one or two digit number signifying the length in
| bytes of the argument list.

| This convention is known as “name decoration”. For example, if you code:

| Call SubProg Using Parm-1 Parm-2.

| the name of the called routine will be _SubProg@8. If, however, the SubProg routine
| itself is coded as:

| Procedure Division Using Parm-1 Parm-2 Parm-3.

| its system-generated name will be _SubProg@12. This will cause an error in the linker
| because it will not be able to resolve the call to _SubProg@8.

| If you are using this linkage convention, you must ensure that the argument list in the
| calling program exactly matches the parameter list in the called subroutine.

|

Running COBOL programs
To run a COBOL program, first make sure that any needed environment variables are
SET (see “Setting Environment Variables” on page 134). Then type the name of the
executable module on the command line or execute a command file which invokes the
module. For example, if

cob2 alpha.cbl beta.cbl

is successful, you can execute the program by typing:

 alpha

If your program uses an environment variable name to assign a value to a system file
name, set the environment variable before typing the command which executes the
program.

If the run-time routines detect an error, they send a message to the error unit.

If run-time messages are abbreviated or incomplete, one or both of the following envi-
ronment variables might be incorrectly set:

 � LANG
 � NLSPATH

 Chapter 9. Compiling, Linking, and Running Programs 159

Compiler Options Summary

 Chapter 10. Compiler Options

You can direct and control compilation with the following:

 � Compiler options
� Compiler-directing statements (compile directives)

Compiler options are listed and described in alphabetical order in “Compiler Option
Descriptions” on page 162. Compiler-directing statements are listed at the end of this
chapter, on page 202.

Compiler Options Summary
Compiler options affect the aspects of your program listed in Figure 42.

Figure 42 (Page 1 of 2). List of Compiler Options

Aspect of Your Program
Compiler
Option Abbreviations

Found on
Page

Source language APOST None 188

CURRENCY CURR|NOCURR 168

LIB None 182

NUMBER NUM|NONUM 185

QUOTE Q 188

SEQUENCE SEQ|NOSEQ 190

SQL None 192

WORD WD|NOWD 199

| Date processing| DATEPROC| DP| 170

| YEARWINDOW| YW| 201

Maps and listings LINECOUNT LC 183

LIST None 183

MAP None 184

SOURCE S|NOS 191

SPACE None 192

TERMINAL TERM|NOTERM 193

VBREF None 198

XREF X|NOX 200

Object module generation COMPILE C|NOC 168

OPTIMIZE OPT|NOOPT 185

PGMNAME PGMN(U|M) 186

SEPOBJ None 189

160  Copyright IBM Corp. 1996, 1998

Compiler Options Summary

Figure 42 (Page 2 of 2). List of Compiler Options

Aspect of Your Program
Compiler
Option Abbreviations

Found on
Page

Object code control BINARY None 163

CHAR None 165

FLOAT None 180

TRUNC None 195

ZWB None 201

CALL statement behaviour DYNAM DYN|NODYN 171

Debugging and diagnostics FLAG F|NOF 177

FLAGSTD None 178

TEST None 194

SSRANGE SSR|NOSSR 193

Other ADATA None 162

ANALYZE None 162

CALLINT None 164

COLLSEQ None 167

ENTRYINT None 171

EXIT EX(INX,LIBX,PRTX,ADX) 172

IDLGEN IDL|NOIDL 181

PROBE None 188

PROFILE None 188

SIZE SZ 191

THREAD None 194

TYPECHK TC|NOTC 197

| WSCLEAR| None| 199

Default Values for Compiler Options
The default options that were set up when your compiler was installed are in effect for
your program unless you override them with other options. To find out the default com-
piler options in effect, run a test compilation without specifying any options; the output
listing lists the default options specified by your installation.

Non-overridable Options: In some installations, certain compiler options are set up
so that you cannot override them. If you have problems, see your system adminis-
trator.

 Performance Considerations
The BINARY, CHAR, DYNAM, FLOAT, OPTIMIZE, SSRANGE, TEST, and TRUNC compiler
options can all affect run-time performance.

 Chapter 10. Compiler Options 161

ANALYZE Compiler Option

Compiler Option Descriptions
The compiler option descriptions that follow are given in alphabetical order. For a list of
compiler options by effect, refer to Figure 42 on page 160.

Installation Defaults: The defaults listed with the options below are the defaults
shipped with the product. They might have been changed by your installation.

 ADATA

55─ ──┬ ┬─ADATA─── ──5%
 └ ┘─NOADATA─

Default is: ADATA

Abbreviations are: None

Use ADATA when you want the compiler to create a SYSADATA file, which contains
records of additional compilation information. This information is used by other tools,
which will set ADATA ON for their use. The size of this file generally grows with the size
of the associated program.

You cannot specify ADATA in a PROCESS (CBL) statement; it can be specified only:

� On invocation of the compiler using an option list
� As a command option
� As an installation default

See “EXIT” on page 172 for information on using SYSADATA with your compiler-exit
module.

 ANALYZE

55─ ──┬ ┬─ANALYZE─── ──5%
 └ ┘─NOANALYZE─

Default is: NOANALYZE

Abbreviations are: None

Use ANALYZE when you want the compiler to check the syntax of embedded SQL and
CICS statements in addition to native COBOL statements.

No executable code is generated when this compiler option is specified, regardless of
the COMPILE|NOCOMPILE setting. The ANALYZE option also enables
COPY/BASIS/REPLACE processing, regardless of the LIB|NOLIB setting.

162 VisualAge COBOL Programming Guide

BINARY Compiler Option

You can specify the ADATA option with this option to create a SYSADATA file for later
analysis by program understanding tools, such as the Year 2000 tool included with the
Professional Edition of IBM VisualAge COBOL.

This option may be set as the installation default option or as a compiler invocation
option, but may not be set on a CBL or PROCESS statement.

The specification of the ANALYZE option forces the handling of the following character
strings as reserved words:

 CICS
 EXEC
 END-EXEC
 SQL

 APOST
See “QUOTE/APOST” on page 188.

 BINARY

55─ ──BINARY(──┬ ┬─NATIVE─) ───5%
 ├ ┤─S37ð───
 └ ┘─S39ð───

Default is: NATIVE

Abbreviations are: None

Specifying NATIVE means that BINARY, COMP, and COMP-4 data items are represented
in the native format of the platform or product. For example, binary data on a PC
would be stored in Little-Endian format (least significant digit on the highest address).
Binary data on AIX would be stored in Big-Endian format (most significant digit on the
highest address).

Specifying S370 or S390 means that binary data is represented in the Big-Endian format.
However, COMP-5 binary data and data items defined with the NATIVE keyword on the
USAGE clause are not impacted by the BINARY(S390) option. These are always stored
in the native format of the platform.

| Visual Builder: Visual Builder applications require BINARY(NATIVE), which is the
| default specification in the GUI compile options notebook. Do not change this default
| setting.

| Object-oriented programs: Do not specify BINARY(S370) or BINARY(S390) in object-
| oriented programs.

 Chapter 10. Compiler Options 163

CALLINT Compiler Option

 CALLINT

55─ ──CALLINT(──┬ ┬─SYSTEM─── ──┬ ┬─────────────────────) ─────────────────5%
 ├ ┤─OPTLINK── └ ┘ ─,─ ──┬ ┬─DESC─────────
 ├ ┤─FAR16──── ├ ┤─DESCRIPTOR───
 ├ ┤─PASCAL16─ ├ ┤─NODESC───────
 └ ┘─CDECL──── └ ┘─NODESCRIPTOR─

Default is: CALLINT(SYSTEM,NODESC)

Abbreviations are: None

Use CALLINT to indicate the call interface convention applicable to CALLs.

This option may be overridden for specific call statements via the compiler directive
>>CALLINT (see “Compiler-Directing Statements” on page 202)

See “ENTRYINT” on page 171 for the compiler option, ENTRYINT. ENTRYINT is used
for the selection of the call interface convention for the program entry point or points.

� Selecting a call interface convention:

SYSTEM
The SYSTEM suboption specifies that the call convention is that of the standard
system linkage convention of the platform.

 On Windows, this is STDCALL, the linkage used by the system
Windows APIs.

Alert: This convention cannot be used in all cases when the called program
has multiple entry points. See “Multiple Entry Points on Windows” on
page 397 for details.

OPTLINK
The OPTLINK suboption specifies that the call convention is that of the
_OPTLINK convention of VisualAge for C++ for OS/2 and VisualAge for C++ for
Windows.

FAR16
The FAR16 suboption specifies that the call convention is that of the
_FAR16_Cdecl convention.

PASCAL16
The PASCAL16 suboption specifies that the call convention is that of the
_FAR16_Pascal convention.

CDECL

 The CDECL suboption specifies that the call interface convention is
that of the CDECL calling convention as defined by Microsoft Visual C++ for
Windows.

164 VisualAge COBOL Programming Guide

CHAR Compiler Option

� Specifying if the argument descriptors are to be generated or not:

DESC
The DESC suboption specifies that an argument descriptor is passed for each
argument on a CALL statement. See Figure 49 on page 203 for information
on the passing of descriptors.

| Note: Do not specify the DESC suboption in object-oriented programs.

DESCRIPTOR
The DESCRIPTOR suboption is synonymous with the DESC suboption.

NODESC
The NODESC suboption specifies that no argument descriptors are passed for
any arguments on a CALL statement.

NODESCRIPTOR
The NODESCRIPTOR suboption is synonymous with the NODESC suboption.

| Visual Builder: Visual Builder applications require CALLINT(SYSTEM,NODESCRIPTOR),
| which is the default specification in the GUI compile options notebook. Do not change
| this default setting.

 CHAR

55─ ──CHAR(──┬ ┬─NATIVE─) ───5%
 ├ ┤─EBCDIC─
 └ ┘─S39ð───

Default is: CHAR(NATIVE)

Abbreviations are: None

Specify CHAR(NATIVE) to use the native character representation format of the platform.
For VisualAge COBOL, this is ASCII.

CHAR(EBCDIC) and CHAR(S390) are synonymous and indicate that DISPLAY data items
are in the data representation of System/390 (EBCDIC).

The following are affected by the CHAR(EBCDIC) compiler option:

� USAGE DISPLAY items

– Single byte characters with USAGE DISPLAY, and double byte characters with
USAGE DISPLAY-1, are treated as EBCDIC:

- ASCII data is converted to EBCDIC on ACCEPT from the terminal.

- EBCDIC data is converted to ASCII on DISPLAY to the terminal.

- The EBCDIC equivalent of an ASCII literal is used for assignment to
EBCDIC character data. See Figure 43 on page 166 for the rules on the
compares of character data with the CHAR(EBCDIC) option in effect.

 Chapter 10. Compiler Options 165

CHAR Compiler Option

- Editing is also done with EBCDIC characters.

- Any padding is done using EBCDIC spaces. This includes alphanumeric
operations (For example, assignments and compares) on group items
regardless of the definition of the elementary items in the group items.

- Figurative constant SPACE/SPACES used in a VALUE clause for, an assign-
ment to, or in a relational condition with a DISPLAY item is treated as
single byte EBCDIC spaces (that is, X'40').

- CLASS tests are performed based on EBCDIC value ranges.

- The program name in CALL identifier, CANCEL identifier, or in the Format
6 SET statement is converted to ASCII characters if the identifier is
EBCDIC.

- The file name in the data name in ASSIGN USING data-name is con-
verted to ASCII characters if the data name is EBCDIC.

- The file name in SORT-CONTROL is converted to ASCII characters
before being passed to the Sort/Merge function.

Note that the SORT-CONTROL special register has the implicit USAGE
DISPLAY definition.

– Zoned decimal data (numeric picture with USAGE DISPLAY) and external
floating point data. For example, zoned decimal PIC S9 value “1” is treated as
X'C1' instead of X'31'.

 � Group items

Group items are treated similar to USAGE DISPLAY items. Note that any USAGE
clause on a group item applies to the elementary items within the group and not to
the group itself.

Hexadecimal literals are assumed to represent EBCDIC characters if the literals are
assigned to, or compared with, character data. For example, X'C1' will compare equal
to an alphanumeric item with the value “A.”

Figurative constants, HIGH-VALUE, LOW-VALUE, SPACE/SPACES, ZERO/ZEROS,
and QUOTE/QUOTES are treated logically as their EBCDIC character representations
for assignments and/or comparisons with EBCDIC characters.

In comparisons between non-numeric DISPLAY items, the collating sequence is the
ordinal sequence of the characters based on their binary (hexadecimal) values (as
modified by the alternate collating sequence for the single byte characters, if specified).
The collating sequence for EBCDIC characters is not affected by the locale setting or
the COLLSEQ compiler option.

Figure 43 summarizes the conversion and the collating sequence applicable based on
the types of data (ASCII, EBCDIC) and the COLLSEQ option in effect when PROGRAM
COLLATING SEQUENCE is not specified. If it is specified, the source specification has
precedence over the compiler option specification.

166 VisualAge COBOL Programming Guide

COLLSEQ Compiler Option

Figure 43. Collating Sequence Summary

Comparands COLLSEQ(BIN) COLLSEQ(NATIVE) COLLSEQ(EBCDIC)

Both ASCII No conversion is performed.
The comparison is based on
the binary value (ASCII).

No conversion is performed.
The comparison is based on
the current locale.

Both comparands are con-
verted to EBCDIC. The com-
parison is based on the binary
value (EBCDIC).

Mixed ASCII
and EBCDIC

The EBCDIC comparand is
converted to ASCII. The
comparison is based on the
binary value (ASCII).

The EBCDIC comparand is
converted to ASCII. The
comparison is based on the
current locale.

The ASCII comparand is con-
verted to EBCDIC. The com-
parison is based on the binary
value (EBCDIC).

Both EBCDIC No conversion is performed.
The comparison is based on
the binary value (EBCDIC).

The comparands are con-
verted to ASCII. The com-
parison is based on the
current locale.

No conversion is performed.
The comparison is based on
the binary value (EBCDIC).

| Visual Builder: Visual Builder applications require CHAR(NATIVE), which is the default
| specification in the GUI compile options notebook. Do not change this default setting.

| Object-oriented programs: Do not specify CHAR(EBCDIC) in object-oriented pro-
| grams.

For additional information about the CHAR compiler option, see Appendix B,
“System/390 Host Data Type Considerations” on page 543.

 COLLSEQ

55─ ──COLLSEQ(──┬ ┬─NATIVE─) ──5%
 ├ ┤─EBCDIC─
 └ ┘─BIN────

Default is: COLLSEQ(BIN)

Abbreviations are: None

Specify COLLSEQ(EBCDIC) to use the EBCDIC collating sequence rather than the ASCII
collating sequence.

Specify COLLSEQ(BIN) to use the hex values of the characters; the locale setting has no
effect. This setting will give better execution-time performance.

If you use the PROGRAM-COLLATING-SEQUENCE clause in your source with an
alphabet-name of STANDARD-1, STANDARD-2, or EBCDIC, the COLLSEQ option will be
ignored. If you specify PROGRAM COLLATING SEQUENCE IS NATIVE, the value of
NATIVE is taken from the COLLSEQ option.

Otherwise, when the alphabet-name specified on the PROGRAM-COLLATING-SEQUENCE
clause is defined with literals, the collating sequence used is that given by the COLLSEQ
option, modified by the user-defined sequence given by alphabet-name.

 Chapter 10. Compiler Options 167

CURRENCY Compiler Option

The PROGRAM-COLLATING-SEQUENCE clause has no effect on DBCS data.

| Visual Builder: Visual Builder applications require COLLSEQ(NATIVE), which is the
| default specification in the GUI compile options notebook. Do not change this default
| setting.

 COMPILE

55─ ──┬ ┬─COMPILE──────────── ───5%
 ├ ┤─NOCOMPILE──────────

└ ┘──NOCOMPILE(──┬ ┬─W─)
 ├ ┤─E─
 └ ┘─S─

Default is: NOCOMPILE(S)

Abbreviations are: C|NOC

Use the COMPILE option only if you want to force full compilation even in the presence
of serious errors. All diagnostics and object code will be generated. Do not try to run
the object code generated if the compilation resulted in serious errors—the results
could be unpredictable or an abnormal termination could occur.

Use NOCOMPILE without any suboption to request a syntax check (only diagnostics
produced, no object code).

Use NOCOMPILE with W, E, or S for conditional full compilation. For meanings of error
codes, see “Compiler-Detected Errors and Messages” on page 148. Full compilation
(diagnosis and object code) will stop when the compiler finds an error of the level you
specify (or higher), and only syntax checking will continue.

If you request an unconditional NOCOMPILE, the following options have no effect
because no object code will be produced:

 LIST
 SSRANGE
 OPTIMIZE
 TEST

 CURRENCY

55─ ──┬ ┬──CURRENCY(literal) ──5%
 └ ┘─NOCURRENCY────────

Default is: NOCURRENCY

The default currency symbol is the dollar sign ($). You can use the CURRENCY option
to provide an alternate default currency symbol to be used for the COBOL program.

168 VisualAge COBOL Programming Guide

CURRENCY Compiler Option

NOCURRENCY specifies that no alternate default currency symbol will be used.

To change the default currency symbol, use the CURRENCY(literal) option where literal
is a valid COBOL non-numeric literal (including a hex literal) representing a one-byte,
printable ASCII character that must not be any of the following:

� Digits zero (0) through nine (9)

� Uppercase alphabetic characters A B C D P R S V X Z

� Lowercase alphabetic characters a through z

 � The space

� Special characters * + - / , . ; () " =

� A figurative constant

� The uppercase alphabetic character G, if the COBOL program defines an MBCS
item with the PICTURE symbol G; the PICTURE clause will be invalid for that MBCS
item because the symbol G is considered to be a currency symbol in the PICTURE
clause.

� The uppercase alphabetic character N, if the COBOL program defines an MBCS
item with the PICTURE symbol N; the PICTURE clause will be invalid for that MBCS
item because the symbol N is considered to be a currency symbol in the PICTURE
clause.

� The uppercase alphabetic character E, if the COBOL program defines an external
floating-point item; the PICTURE clause will be invalid for the external floating-point
item because the symbol E is considered to be a currency symbol in the PICTURE
clause.

You can use the CURRENCY option as an alternative to the CURRENCY SIGN clause for
selecting the currency symbol you will use in the PICTURE clause of a COBOL program.

When both the CURRENCY option and the CURRENCY SIGN clause are used in a
program, the symbol coded in the CURRENCY SIGN clause will be considered the cur-
rency symbol in a PICTURE clause when that symbol is used.

When the NOCURRENCY option is in effect and you omit the CURRENCY SIGN clause,
the dollar sign ($) is used as the PICTURE symbol for the currency sign.

Delimiter Note: The CURRENCY option literal can be delimited by either the quote or
the apostrophe, regardless of the QUOTE|APOST compiler setting.

 Chapter 10. Compiler Options 169

DATEPROC Compiler Option

| DATEPROC
|

| 55─ ──┬ ┬──DATEPROC ──┬ ┬──────────────── ─────────────────────────────────5%
| │ │└ ┘──(──┬ ┬─FLAG───)
| │ │└ ┘─NOFLAG─
| └ ┘─NODATEPROC───────────────────

| Default is: NODATEPROC, or DATEPROC(FLAG) if only DATEPROC is specified

| Abbreviations are: DP|NODP

| Use the DATEPROC option to enable the millennium language extensions of the COBOL
| compiler. For information on using these extensions, see Chapter 31, “Using the
| Millennium Language Extensions” on page 520.

| DATEPROC(FLAG)
| With DATEPROC(FLAG), the millennium language extensions are enabled, and the
| compiler will produce a diagnostic message wherever a language element uses or
| is affected by the extensions. The message will usually be an information-level or
| warning-level message that identifies statements that involve date-sensitive proc-
| essing. Additional messages may be generated that identify errors or possible
| inconsistencies in the date constructs. For information on how to reduce these
| diagnostic messages, see “Eliminating Warning-Level Messages” on page 534.

| Production of diagnostic messges, and their appearance in or after the source
| listing, is subject to the setting of the FLAG compiler option.

| DATEPROC(NOFLAG)
| With DATEPROC(NOFLAG), the millennium language extensions are in effect, but
| the compiler will not produce any related messages unless there are errors or
| inconsistencies in the COBOL source.

| NODATEPROC
| NODATEPROC indicates that the extensions are not enabled for this compilation
| unit. This affects date-related program constructs as follows:

| � The DATE FORMAT clause is syntax-checked, but has no effect on the exe-
| cution of the program.

| � The DATEVAL and UNDATE intrinsic functions have no effect. That is, the
| value returned by the intrinsic function is exactly the same as the value of the
| argument.

| � The YEARWINDOW intrinsic function returns a value of zero.

| Notes:

| 1. Specification of the DATEPROC option requires that the NOCMPR2 option is also
| used.

| 2. NODATEPROC conforms to the COBOL 85 Standard.

170 VisualAge COBOL Programming Guide

ENTRYINT Compiler Option

 DYNAM

55─ ──┬ ┬─DYNAM─── ──5%
 └ ┘─NODYNAM─

Default is: NODYNAM

| Abbreviations are: DYN|NODYN

Use DYNAM to cause non-nested, separately compiled programs invoked through the
CALL literal statement to be loaded (for CALL) and deleted (for CANCEL) dynamically at
run time. CALL identifier statements always result in a run-time load of the target
program and are not impacted by this option.

The condition for the ON EXCEPTION phrase can occur for a CALL statement using the
literal name only when the DYNAM option is in effect.

With NODYNAM, the target program name is resolved through the linker.

With the DYNAM option, this statement

CALL "myprogram" ...

has the identical behavior to these statements:

MOVE "myprogram" to id-1

CALL id-1 ...

See “Static, Dynamic, and Run-time Linking” on page 376 for information on subpro-
gram calls.

DYNAM conforms to the COBOL 85 Standard.

 ENTRYINT

55─ ──ENTRYINT(──┬ ┬─SYSTEM──) ──5%
 ├ ┤─OPTLINK─
 └ ┘─CDECL───

Default is: ENTRYINT(SYSTEM)

Abbreviations are: None

Use ENTRYINT to indicate the call interface convention applicable to the program entry
point(s) in the USING phrase of either the PROCEDURE DIVISION or ENTRY statement.

See “CALLINT” on page 164 for the compiler option, CALLINT. CALLINT is used for the
selection of the call interface convention for CALLs.

 Chapter 10. Compiler Options 171

EXIT Compiler Option

SYSTEM
The SYSTEM suboption specifies that the call convention is that of the standard
system linkage convention of the platform.

 On Windows, this is STDCALL, the linkage used by the system
Windows APIs.

Alert: This convention cannot be used in all cases when the called program has
multiple entry points. See “Multiple Entry Points on Windows” on page 397 for
details.

OPTLINK
The OPTLINK suboption specifies that the call convention is that of the _OPTLINK
convention of VisualAge for C++ for OS/2 and VisualAge for C++ for Windows.

CDECL

 The CDECL suboption specifies that the call interface convention is that
of the CDECL calling convention as defined by Microsoft Visual C++ for Windows.

| Visual Builder: Visual Builder applications require ENTRYINT(SYSTEM), which is the
| default specification in the GUI compile options notebook. Do not change this default
| setting.

 EXIT

 ┌ ┐──────────────────────────────
55─ ──┬ ┬──EXIT(───

6
┴┬ ┬──INEXIT(──┬ ┬─────── mod1) ─) ───────────────────────5%

│ ││ │└ ┘──str1,
 │ │├ ┤─NOINEXIT─────────────────

│ │├ ┤──LIBEXIT(──┬ ┬─────── mod2)
│ ││ │└ ┘──str2,

 │ │├ ┤─NOLIBEXIT────────────────
│ │├ ┤──PRTEXIT(──┬ ┬─────── mod3)
│ ││ │└ ┘──str3,

 │ │├ ┤─NOPRTEXIT────────────────
│ │├ ┤──ADEXIT(──┬ ┬─────── mod4) ─
│ ││ │└ ┘──str4,

 │ │└ ┘─NOADEXIT─────────────────
 └ ┘─NOEXIT─────────────────────────────────

Default is: EXIT(ADEXIT(IWZRMGUX))

Abbreviations are: EX(INX|NOINX,LIBX|NOLIBX,PRTX|NOPRTX,ADX|NOADX)

If you specify the EXIT option without providing at least one suboption, NOEXIT will be in
effect. The suboptions can be specified in any order, separated by either commas or
spaces. If you specify both the positive and negative form of a suboption
(INEXIT|NOINEXT, LIBEXIT|NOLIBEXIT, PRTEXIT|NOPRTEXIT, OR ADEXIT|NOADEXIT), the
form specified last takes effect. If you specify the same suboption more than one time,
the one specified last takes effect.

172 VisualAge COBOL Programming Guide

EXIT Compiler Option

Use the EXIT option to allow the compiler to accept user-supplied modules in place of
SYSIN, SYSLIB (or copy library), and SYSPRINT. When creating your EXIT module,
ensure that the module is linked as a DLL module before you run it with the COBOL
compiler. EXIT modules are invoked with the system linkage convention of the platform.

For SYSADATA, the ADEXIT suboption provides a module that will be called for each
SYSADATA record immediately after the record has been written out to the file.

No PROCESS: The EXIT option cannot be specified in a PROCESS(CBL) statement; it
can be specified only via the environment variable COBOPT, via the cob2 command
option, or at installation time.

INEXIT(['str1 ',]mod1)
The compiler reads source code from a user-supplied load module (where mod1 is
the module name), instead of SYSIN.

LIBEXIT(['str2 ',]mod2)
The compiler obtains copy code from a user-supplied load module (where mod2 is
the module name), instead of library-name or SYSLIB. For use with either COPY or
BASIS statements.

PRTEXIT(['str3 ',]mod3)
The compiler passes printer-destined output to the user-supplied load module
(where mod3 is the module name), instead of SYSPRINT.

ADEXIT(['str4 ',]mod4)
The compiler passes the SYSADATA output to the user-supplied load module
(where mod4 is the module name).

The module names mod1, mod2, mod3, and mod4, can refer to the same module.

The suboptions 'str1', 'str2', 'str3', and 'str4', are character strings that are passed to the
load module. These strings are optional; if you use them, they can be up to 64 charac-
ters in length and must be enclosed in apostrophes. Any character is allowed, but
included apostrophes must be doubled, and lowercase characters are folded to upper-
case.

Character String Formats
If 'str1', 'str2', 'str3', or 'str4', is specified, the string is passed to the appropriate user-
exit module with the following format:

where LL is a halfword (on a halfword boundary) containing the length of the string.
See Figure 44 on page 174 for the location of the character string in the parameter list.

LL string

User-Exit Work Area
When an exit is used, the compiler provides a user-exit work area that can be used to
save the address of storage allocated by the exit module. This allows the module to be
reentrant.

 Chapter 10. Compiler Options 173

EXIT Compiler Option

The user-exit work area is four fullwords, residing on a fullword boundary, that is initial-
ized to binary zeroes before the first exit routine is invoked. The address of the work
area is passed to the exit module in a parameter list. After initialization, the compiler
makes no further reference to the work area. So, you will need to establish your own
conventions for using the work area if more than one exit is active during the compila-
tion. For example, the INEXIT module uses the first word in the work area, the LIBEXIT
module uses the second word, and the PRTEXIT module uses the third word.

 Linkage Conventions
Your EXIT modules should use standard linkage conventions between COBOL pro-
grams, between library routines, and between COBOL programs and library routines.
You need to be aware of these conventions in order to trace the call chain correctly.

Parameter List for Exit Modules
The following table shows the format of the parameter list used by the compiler to com-
municate with the exit module.

Figure 44 (Page 1 of 2). Parameter List for LIBEXIT

Offset
Contains
Address of Description of Item

00 User-exit type Halfword identifying which user exit is to perform the
operation.

1=INEXIT; 2=LIBEXIT; 3=PRTEXIT; 4=ADEXIT

02 Operation code Halfword indicating the type of operation.

0=OPEN; 1=CLOSE; 2=GET; 4=FIND

04 Return code Fullword, placed by the exit module, indicating status
of the requested operation.

0=Successful; 4=End-of-data; 12=Failed

08 Data length Fullword, placed by the exit module, specifying the
length of the record being returned by the GET opera-
tion.

12 Data Fullword, placed by the exit module, containing the
address of the record in a user-owned buffer, for the
GET operation.

or 'str2' 'str2' applies only to OPEN. The first halfword (on a
halfword boundary) contains the length of the string;
the string follows.

16 User-exit work area Four-fullword work area provided by the compiler for
use by user-exit module.

32 Text-name Fullword containing the address of a a null-terminated
string containing the fully qualified text-name. Applies
only to FIND.

174 VisualAge COBOL Programming Guide

EXIT Compiler Option

Figure 44 (Page 2 of 2). Parameter List for LIBEXIT

Offset
Contains
Address of Description of Item

36 User exit parameter
string

Fullword containing the address of a four-element
array, each element of which is a structure that
contain a two-byte length field followed by a 64 char-
acters string that contain the exit parameter string.

Note: Only the second element of the parameter string array is used for LIBEXIT, to store the
length of the LIBEXIT parameter string followed by the parameter string.

 Using INEXIT
When INEXIT is specified, the compiler loads the exit module (mod1) during initializa-
tion, and invokes the module using the OPEN operation code (op code). This allows the
module to prepare its source for processing and then pass the status of the OPEN
request back to the compiler. Subsequently, each time the compiler requires a source
statement, the exit module is invoked with the GET op code. The exit module then
returns either the address and length of the next statement or the end-of-data indication
(if no more source statements exist). When end-of-data is presented, the compiler
invokes the exit module with the CLOSE op code so that the module can release any
resources that are related to its input.

The compiler uses a parameter list to communicate with the exit module. The param-
eter list consists of 10 fullwords. The return code, data length, and data parameters
are placed by the exit module for return to the compiler; and the other items are passed
from the compiler to the exit module.

Figure 44 on page 174 shows the contents of the parameter list and a description of
each item.

 Using LIBEXIT
When LIBEXIT is specified, the compiler loads the exit module (mod2) during initializa-
tion. Calls are made to the module by the compiler to obtain copy text whenever
COPY or BASIS statements are encountered.

Use LIB: If LIBEXIT is specified, the LIB compiler option must be in effect.

The first call invokes the module with an OPEN op code. This allows the module to
prepare the specified library-name for processing. The OPEN op code is also issued
the first time a new library-name is specified. The exit module returns the status of the
OPEN request to the compiler by passing a return code.

Once the exit invoked with the OPEN op code returns, the exit module is then invoked
with a FIND op code. The exit module establishes positioning at the requested text-
name (or basis-name) in the specified library-name. This becomes the “active copy
source”. When positioning is complete, the exit module passes an appropriate return
code to the compiler.

 Chapter 10. Compiler Options 175

EXIT Compiler Option

The compiler then invokes the exit module with a GET op code, and the exit module
passes the compiler the length and address of the record to be copied from the active
copy source. The GET operation is repeated until the end-of-data indicator is passed to
the compiler.

When end-of-data is presented, the compiler will issue a CLOSE request so that the exit
module can release any resources related to its input.

Nested COPY Statements: Any record from the active copy source can contain a
COPY statement. (However, nested COPY statements cannot contain the REPLACING
phrase, and a COPY statement with the REPLACING phrase cannot contain nested copy
statements.) When a valid nested COPY statement is encountered, the compiler issues
a request based on the following:

� If the requested library-name from the nested COPY statement was not previously
opened, the compiler invokes the exit module with an OPEN op code, followed by a
FIND for the new text-name.

� If the requested library-name is already open, the compiler issues the FIND op
code for the new requested text-name (an OPEN is not issued here).

The compiler does not allow recursive calls to text-name. That is, a COPY member can
be named only once in a set of nested COPY statements until the end-of-data for that
copy member is reached.

When the exit module receives the OPEN or FIND request, it should push its control
information concerning the active copy source onto a stack and then complete the
requested action (OPEN or FIND). The newly requested text-name (or basis-name) now
becomes the active copy source.

Processing continues in the normal manner with a series of GET requests until the end-
of-data indicator is passed to the compiler.

At end-of-data for the nested active copy source, the exit module should pop its control
information from the stack. The next request from the compiler will be a FIND, so that
the exit module can reestablish positioning at the previous active copy source.

The compiler now invokes the exit module with a GET request, and the exit module
must pass the same record that was passed previously from this copy source. The
compiler verifies that the same record was passed, and then the processing continues
with GET requests until the end-of-data indicator is passed.

Figure 44 on page 174 shows the contents of the parameter list used for LIBEXIT and a
description of each item.

 Using PRTEXIT
When PRTEXIT is specified, the compiler loads the exit module (mod3) during initializa-
tion. The exit module is used in place of the SYSPRINT data set.

The compiler invokes the module using the OPEN operation code (op code). This
allows the module to prepare its output destination for processing and then pass the

176 VisualAge COBOL Programming Guide

FLAG Compiler Option

status of the OPEN request back to the compiler. Subsequently, each time the compiler
has a line to be printed, the exit module is invoked with the PUT op code. The compiler
supplies the address and length of the record that is to be printed, and the exit module
returns the status of the PUT request to the compiler by a return code. The first byte of
the record to be printed contains an ANSI printer control character.

Before the compilation is ended, the compiler invokes the exit module with the CLOSE
op code so that the module can release any resources that are related to its output
destination.

Figure 44 on page 174 shows the contents of the parameter list used for PRTEXIT and
a description of each item.

 Using ADEXIT
When ADEXIT is specified, the compiler loads the exit module (mod4) during initialization.
The exit module is called for each record written to the SYSADATA data set.

The compiler invokes the module using the OPEN operation code (op code). This
allows the module to prepare for processing and then pass the status of the OPEN
request back to the compiler. Subsequently, each time the compiler has written a
SYSADATA record, the exit module is invoked with the PUT op code. The compiler sup-
plies the address and length of the SYSADATA record, and the exit module returns the
status of the PUT request to the compiler by a return code.

Before the compilation is ended, the compiler invokes the exit module with the CLOSE
op code so that the module can release any resources.

Figure 44 on page 174 shows the contents of the parameter list used for ADEXIT and a
description of each item.

 FLAG

55─ ──┬ ┬──FLAG(x ──┬ ┬────) ──5%
│ │└ ┘──,y

 └ ┘─NOFLAG──────────

Default is: FLAG(I)

Abbreviations are: F|NOF

x and y can be either I, W, E, S, or U. (See “Compiler Error Message Codes” on
page 149 for descriptions of error codes.)

Use FLAG(x) to produce diagnostic messages for errors of a severity level x or above at
the end of the source listing.

Use FLAG(x,y) to produce diagnostic messages for errors of severity level x or above at
the end of the source listing, with error messages of severity y and above to be
embedded directly in the source listing. The severity coded for y must not be lower

 Chapter 10. Compiler Options 177

FLAGSTD Compiler Option

than the severity coded for x. To use FLAG(x,y), you must also specify the SOURCE
compiler option.

Error messages in the source listing are set off by embedding the statement number in
an arrow that points to the message code. The message code is then followed by the
message text. For example:

ððð413 MOVE CORR WS-DATE TO HEADER-DATE

==ððð413==> IGYPS2121-S " WS-DATE " was not defined as a data-name. ...

With FLAG(x,y) selected, messages of severity y and above will be embedded in the
listing following the line that caused the message. (Refer to the notes below for
exceptions.)

Use NOFLAG to suppress error flagging. NOFLAG will not suppress error messages for
compiler options.

Embedded Messages:

1. Specifying embedded level-U messages is accepted, but will not produce any mes-
sages in the source. Embedding a level-U message is not recommended.

2. The FLAG option does not affect diagnostic messages produced before the com-
piler options are processed.

3. Diagnostic messages produced during processing of compiler options, CBL and
PROCESS statements, or BASIS, COPY, and REPLACE statements, are never
embedded in the source listing. All such messages appear at the beginning of the
compiler output.

4. Messages produced during processing of the *CONTROL (*CBL) statement are not
embedded in the source listing.

 FLAGSTD

55─ ──┬ ┬──FLAGSTD(x ──┬ ┬──── ──┬ ┬────) ───────────────────────────────────5%
 │ │└ ┘─yy─ └ ┘─,O─
 └ ┘─NOFLAGSTD──────────────────

Default is: NOFLAGSTD

x specifies the level or subset of COBOL 85 Standard to be regarded as conforming:

M Language elements that are not from the minimum subset are to be flagged as
“nonconforming standard”.

I Language elements that are not from the minimum or the intermediate subset are
to be flagged as “nonconforming standard”.

178 VisualAge COBOL Programming Guide

FLAGSTD Compiler Option

H The high subset is being used and elements will not be flagged by subset. And,
elements in the IBM extension category will be flagged as “non-conforming
Standard, IBM extension”.

yy specifies, by a single character or combination of any two, the optional modules to
be included in the subset:

D Elements from Debug module level 1 are not flagged as “non-conforming
standard”.

N Elements from Segmentation module level 1 are not flagged as “non-conforming
standard”.

S Elements from Segmentation module level 2 are not flagged as “non-conforming
standard”.

If S is specified, N is included (N is a subset of S).

O specifies that obsolete language elements are flagged as “obsolete”.

Use FLAGSTD to get informational messages about the COBOL 85 Standard elements
included in your program. You can specify any of the following items for flagging:

� A selected Federal Information Processing Standard (FIPS) COBOL subset

� Any of the optional modules

� Obsolete language elements

� Any combination of subset and optional modules

� Any combination of subset and obsolete elements

� IBM extensions (these are flagged any time FLAGSTD is specified and are identified
as “non-conforming non-standard”)

This includes the new language syntax for object-oriented COBOL and for
| improved interoperability, the PGMNAME(MIXED) compiler option, and the
| Millennium Language Extensions.

The informational messages appear in the source program listing and contain the fol-
lowing information:

� Identify the element as “obsolete”, “non-conforming standard”, or “non-conforming
non-standard” (a language element that is both obsolete and non-conforming is
flagged as obsolete only).

� Identify the clause, statement, or header that contains the element.

� Identify the source program line and beginning location of the clause, statement, or
header that contains the element.

� Identify the subset or optional module to which the element belongs.

FLAGSTD requires the standard set of reserved words.

 Chapter 10. Compiler Options 179

FLOAT Compiler Option

In the following example, the line number and column where a flagged clause, state-
ment, or header occurred are shown, as well as the message code and text. At the
bottom is a summary of the total of the flagged items and their type.

LINE.COL CODE FIPS MESSAGE TEXT

IGYDS8211 Comment lines before "IDENTIFICATION DIVISION":

nonconforming nonstandard, IBM extension to

 ANS/ISO 1985.

11.14 IGYDS8111 "GLOBAL clause": nonconforming standard, ANS/ISO

1985 high subset.

59.12 IGYPS8169 "USE FOR DEBUGGING statement": obsolete element

in ANS/ISO 1985.

 FIPS MESSAGES TOTAL STANDARD NONSTANDARD OBSOLETE

 3 1 1 1

 FLOAT

55─ ──FLOAT(──┬ ┬─NATIVE─) ──5%
 ├ ┤─HEX────
 └ ┘─S39ð───

Default is: FLOAT(NATIVE)

Abbreviations are: None

Specify FLOAT(NATIVE) to use the native floating point data representation format of the
platform. For VisualAge COBOL, this is the IEEE format.

FLOAT(HEX) and FLOAT(S390) are synonymous and indicate that COMP-1 and COMP-2
data items are represented consistently with System/390 (that is, in the hex floating
point format):

� Hex floating point values are converted to IEEE format prior to any arithmetic oper-
ations (computations or comparisons).

� IEEE floating point values are converted to hex format prior to being stored in
floating point data fields.

� Assignment to a floating point item is done by converting the source floating point
data (for example, external floating point) to hex floating point as necessary.

| Object-oriented programs: Do not specify FLOAT(S390) in object-oriented programs.

For additional information about the FLOAT compiler option, see Appendix B,
“System/390 Host Data Type Considerations” on page 543.

180 VisualAge COBOL Programming Guide

IDLGEN Compiler Option

 IDLGEN

55─ ──┬ ┬─IDLGEN─── ───5%
 └ ┘─NOIDLGEN─

Default is: NOIDLGEN

Abbreviations are: IDL|NOIDL

Use the IDLGEN option to indicate whether SOM Interface Definition Language (IDL)
should be generated for COBOL class definitions contained in the COBOL source file.

Use IDLGEN to request that in addition to the normal compile of the COBOL source file,
IDL definitions for classes defined in the file are generated.

Use NOIDLGEN to request that no IDL definitions are generated.

The IDL file has the same name as the compiler source file, with the file extension IDL.
For example, IDL file generated for myfile.cbl would be myfile.idl. The IDL file is
written to the directory from which cob2 was run.

When a class definition includes references to other classes (such as on the INHERITS
or METACLASS IS phrases, or typed object references as method parameters) that are
defined in separate source files, the generated IDL will contain include statements for
the IDL files of the referenced classes. The COBOL compiler will attempt to obtain the
file name (referred to as the filestem in the SOM documentation) for a referenced class
from the SOM interface repository (IR). If the referenced class does not have an IR
entry, then the external class-name of the referenced class is assumed as the filestem.
An include is then generated of the form: #include <filestem..idl> This may be
adequate for classes where external class-names are the same as the original source
file name. However, in many cases this include statement will need to either be
updated to reflect the correct filestem or preferably, the entire IDL file should be re-
generated after the missing definition has been added to the IR.

When a COBOL source file contains more than one class definition (batch compile) and
the IDLGEN option is used, the COBOL class definitions must be sequenced in an
appropriate order within the source file. The generated IDL for such a batch compile
will contain multiple class interfaces with the IDL interfaces in the same order as the
COBOL classes were defined in the COBOL source file. The SOM IDL compiler
requires that interfaces be defined before they are referenced, so if there are refer-
ences between the classes in the COBOL batch compile, the referenced classes must
precede the referencing classes in the COBOL source file.

The mapping of COBOL to IDL is designed to balance two (conflicting) objectives,
namely enablement of object-oriented COBOL type checking and enabling COBOL
classes to operate with other SOM-based programming languages. At a high level:

� COBOL classes map to IDL interfaces.

� COBOL methods map to IDL operation declarations.

 Chapter 10. Compiler Options 181

LIB Compiler Option

� Where possible, the data types of COBOL method parameters are mapped to cor-
responding native IDL types. These cases include binary integer, floating point,
pointer, object reference, and character types.

All elementary USAGE DISPLAY types and fixed-length COBOL groups are mapped
to IDL as array of character.

Remaining COBOL types that do not naturally map to any native IDL data type are
mapped to COBOL-specific “foreign” IDL types. These cases include packed-
decimal, scaled binary, DBCS, and variable-length groups.

� Method formal-parameters that specify BY REFERENCE on the method PROCEDURE
DIVISION header are given the IDL parameter attribute inout and parameters that
specify BY VALUE are given the IDL parameter attribute in.

The IDL generated for the same COBOL class by the IBM COBOL compiler on OS/390,
OS/2, Windows, and AIX might differ; hence, the IDL should be regenerated for the
target platform rather than ported between platforms. For example, the procedure-
pointer data type in COBOL for OS/390 & VM is an 8-byte data item that does not map
to any native IDL type, hence a COBOL specific mapping is used. On OS/2, Windows,
and AIX, procedure-pointers are 4-byte data items that map to IDL pointers. Another
example is that on OS/390 or AIX, a PIC S9(8) BINARY data item maps naturally to an
IDL “long” type, while on OS/2 and Windows, the same data item may map either to an
IDL long or to a COBOL-specific data type that emulates System/390 binary format,
depending on the compilation options used.

No PROCESS: The IDLGEN options cannot be specified on the PROCESS(CBL) state-
ment.

See Chapter 14, “Writing Object-Oriented Programs” on page 270 and Chapter 16,
“Using SOM IDL-Based Class Libraries” on page 323 for more information on IDL and
SOM.

 LIB

55─ ──┬ ┬─LIB─── ──5%
 └ ┘─NOLIB─

Default is: LIB

Abbreviations are: None

If your program uses COPY, BASIS, or REPLACE statements, the LIB compiler option
must be in effect.

For more information, see the discussion of the library-name user-defined variable on
page 136.

In addition, for COPY and BASIS statements, you need to define the library or libraries
from which the compiler can take the copied code:

182 VisualAge COBOL Programming Guide

LIST Compiler Option

� If the library-name is specified with a user-defined word (not a literal), you must set
the corresponding environment variable to point to the desired directory/path for the
copy file.

� If the library-name is omitted for a COPY statement, the path to be searched can be
specified via the -Ixxx option on the cob2 command.

� If the library-name is specified with a literal, the literal value is treated as the actual
path name.

| Visual Builder: Visual Builder applications require LIB, which is the default specifica-
| tion in the GUI compile options notebook. Do not change this default setting.

LIB conforms to the COBOL 85 Standard.

 LINECOUNT

55─ ──LINECOUNT(nnn) ───5%

Default is: LINECOUNT(60)

Abbreviations are: LC

nnn must be an integer between 10 and 255, or 0.

Use LINECOUNT(nnn) to specify the number of lines to be printed on each page of the
compilation listing, or use LINECOUNT(0) to suppress pagination.

If you specify LINECOUNT(0), no page ejects are generated in the compilation listing.

The compiler uses three lines of nnn for titles. For example, if you specify
LINECOUNT(60), 57 lines of source code are printed on each page of the output listing.

 LIST

55─ ──┬ ┬─LIST─── ───5%
 └ ┘─NOLIST─

Default is: NOLIST

Abbreviations are: None

Use LIST to produce a listing of the assembler-language expansion of your source
code.

You will also get these in your output listing:

 � Global tables
 � Literal pools
� Information about Working-Storage

 Chapter 10. Compiler Options 183

MAP Compiler Option

� Size of the program's Working-Storage

If you want to limit the assembler listing output, use *CONTROL LIST or NOLIST state-
ments in your PROCEDURE DIVISION. Your source statements following a *CONTROL
NOLIST are not included in the listing until a *CONTROL LIST statement switches the
output back to normal LIST format. For a description of the *CONTROL (*CBL) statement,
see IBM COBOL Language Reference.

Batch Compiles: The number of and names of the resulting .asm files depend on the
SEPOBJ option:

SEPOBJ The file for the first program in the source file has the name of the
source file. The files for all subsequent programs in the source file have
the names of the corresponding PROGRAM IDs.

NOSEPOBJ The one file for all programs in the source file has the name of the
source file.

For information on using LIST output, see “Data Map Listing” on page 258.

 MAP

55─ ──┬ ┬─MAP─── ──5%
 └ ┘─NOMAP─

Default is: NOMAP

Abbreviations are: None

Use MAP to produce a listing of the items you defined in the DATA DIVISION. Map
output includes:

 � DATA DIVISION map
 � Global tables
 � Literal pools
� Nested program structure map, and program attributes
� Size of the program's Working-Storage

If you want to limit the MAP output, use *CONTROL MAP or NOMAP statements in the
PROCEDURE DIVISION. Source statements following a *CONTROL NOMAP are not
included in the listing until a *CONTROL MAP statement switches the output back to
normal MAP format. For a description of the *CONTROL (*CBL) statement, see the IBM
COBOL Language Reference.

For information on using LIST output, see “Data Map Listing” on page 258.

By selecting the MAP option, you can also print an embedded MAP report in the source
code listing. The condensed MAP information is printed to the right of data-name defi-
nitions in the FILE SECTION, WORKING-STORAGE SECTION, and LINKAGE SECTION of
the DATA DIVISION.

184 VisualAge COBOL Programming Guide

OPTIMIZE Compiler Option

 NUMBER

55─ ──┬ ┬─NUMBER─── ───5%
 └ ┘─NONUMBER─

Default is: NONUMBER

Abbreviations are: NUM|NONUM

Use NUMBER if you have line numbers in your source code and want those numbers to
be used in error messages and MAP, LIST, and XREF listings.

If you request NUMBER, columns 1 through 6 are checked to make sure that they
contain only numbers, and the sequence is checked according to numeric collating
sequence. (In contrast, SEQUENCE checks them according to ASCII collating
sequence.) When a line number is found to be out of sequence, the compiler assigns
to it a line number with a value one number higher than the line number of the pre-
ceding statement. Sequence-checking continues with the next statement, based on the
newly assigned value of the previous line.

If you use COPY statements and NUMBER is in effect, be sure that your source program
line numbers and the COPY member line numbers are coordinated.

Use NONUMBER if you do not have line numbers in your source code, or if you want the
compiler to ignore the line numbers you do have in your source code. With NONUMBER
in effect, the compiler generates line numbers for your source statements and uses
those numbers as references in listings.

NONUMBER conforms to the COBOL 85 Standard.

 OPTIMIZE

55─ ──┬ ┬──OPTIMIZE ──┬ ┬────────────── ───────────────────────────────────5%
 │ │└ ┘──(──┬ ┬─STD──)
 │ │└ ┘─FULL─
 └ ┘─NOOPTIMIZE─────────────────

Default is: NOOPTIMIZE

Abbreviations are: OPT|NOOPT

Use OPTIMIZE to reduce the run time of your object program; optimization might also
reduce the amount of storage your object program uses. Optimizations performed
include the propagation of constants and the elimination of computations whose results
are never used. Because OPTIMIZE increases compile time, and can change the order
of statements in your program, it should not be used when debugging.

If OPTIMIZE is specified without any suboptions, OPTIMIZE(STD) will be in effect.

 Chapter 10. Compiler Options 185

PGMNAME Compiler Option

The FULL suboption requests that in addition to the optimizations performed under
OPT(STD), that the compiler discard unreferenced data items from the DATA DIVISION,
and suppress generation of code to initialize these data items to their VALUE clauses. If
the OPT(FULL) and MAP options are specified, then a BL number of XXXX in the data
map information indicates that the data item was discarded.

Recomendation: Use OPTIMIZE(FULL) for database applications; it can make a huge
performace improvement, because unused constants included by the associated COPY
statements will be eliminated.

However:

Do not use OPT(FULL) if your programs depend on making use of unused data
items. Two common ways this has been done in the past are:

1. A technique sometimes used in OS/VS COBOL programs is to place an unrefer-
enced table after a referenced table and use out-of-range subscripts on the first
table to access the second table. To see if your programs have this problem, use
the SSRANGE compiler option with the CHECK(ON) run-time option. To work around
this problem, use the ability of COBOL to code large tables and use just one table.

2. The second technique utilizing unused data items is to place eyecatcher data items
in the WORKING-STORAGE section to identify the beginning and end of the program
data, or to mark a copy of a program for a library tool that uses the data to identify
a version of a program. To solve this problem, initialize these items with PROCE-
DURE DIVISION statements rather than VALUE clauses. With this method, the com-
piler will consider these items as used, and will not delete them.

The OPTIMIZE option is turned off in the case of a severe-level error or higher. The
OPTIMIZE and TEST options are mutually exclusive; if you use both, OPTIMIZE will be
ignored.

 PGMNAME

55─ ──PGMNAME(──┬ ┬─MIXED─) ───5%
 └ ┘─UPPER─

| Default is: PGMNAME(UPPER), or
| PGMNAME(MIXED) for Visual Builder GUI applications

Abbreviations are: PGMN(LU|LM)

For compatibility with IBM COBOL for OS/390 & VM, LONGMIXED and LONGUPPER are
also supported.

LONGUPPER can be abbreviated as UPPER, LU, or U. LONGMIXED can be abbreviated
as MIXED, LM, or M.

COMPAT: If you specify PGMNAME(COMPAT), PGMNAME(UPPER) will be set, and you
will receive a warning message.

186 VisualAge COBOL Programming Guide

PGMNAME Compiler Option

The PGMNAME option controls the handling of names used in the following contexts:

� Program names defined in the PROGRAM-ID paragraph.
� Program entry point names on the ENTRY statement.
� Program name references in:

 – CALL statements
 – CANCEL statements
– SET procedure-pointer TO ENTRY statements

 PGMNAME(UPPER)
With PGMNAME(UPPER), program names that are specified in the PROGRAM-ID para-
graph as COBOL user-defined words must follow the normal COBOL rules for forming
a user-defined word:

� The program name can be up to 30 characters in length.
� All the characters used in the name must be alphabetic, digits, or the hyphen.
� At least one character must be alphabetic.
� The hyphen cannot be used as the first or last character.

When a program or method name is specified as a literal, in either a definition or a
reference, then:

� The program name can be up to 160 characters in length.

� All the characters used in the name must be alphabetic, digits, or the hyphen.

� At least one character must be alphabetic.

� The hyphen cannot be used as the first or last character.

External program names are processed with alphabetic characters folded to upper
case.

 PGMNAME(MIXED)
With PGMNAME(MIXED), program names are processed as is, without truncation, trans-
lation, or folding to upper case.

With PGMNAME(MIXED), all program name definitions must be specified using the literal
format of the program name in the PROGRAM-ID paragraph or ENTRY statement.

| Visual Builder: Visual Builder applications require PGMNAME(MIXED), which is the
| default specification in the GUI compile options notebook. Do not change this default
| setting.

 Chapter 10. Compiler Options 187

QUOTE/APOST Compiler Option

 PROBE

55─ ──┬ ┬─PROBE─── ──5%
 └ ┘─NOPROBE─

Default is: PROBE

Abbreviations are: None

PROBE requests the generation of stack probes. This extra code causes a protection
exception if there is not enough storage available on the stack.

Use PROBE if the program might be executed in a multithreading environment. For
information about multithreading, see Chapter 26, “Preparing COBOL Programs for
Multithreading” on page 467.

NOPROBE produces more efficient code and is appropriate for non-threading environ-
ments.

 PROFILE

55─ ──┬ ┬─PROFILE─── ──5%
 └ ┘─NOPROFILE─

Default is: PROFILE

Abbreviations are: None

PROFILE instructs the compiler to generate the profile hooks that allow the Performance
Analyzer to monitor application execution and generate a trace file. This option should
be used with the -p option of the cob2 command (see “Compiling and Linking
Programs” on page 142 for details.)

 QUOTE/APOST

55─ ──┬ ┬─QUOTE─ ──5%
 └ ┘─APOST─

Default is: QUOTE

Abbreviations are: Q|APOST

Use QUOTE if you want the figurative constant [ALL] QUOTE or [ALL] QUOTES to repre-
sent one or more quotation mark (") characters. QUOTE conforms to the COBOL 85
Standard.

188 VisualAge COBOL Programming Guide

Batch Compilation

Use APOST if you want the figurative constant [ALL] QUOTE or [ALL] QUOTES to repre-
sent one or more apostrophe (') characters.

Delimiters: Either quotes or apostrophes can be used as literal delimiters, regardless
of whether the APOST or QUOTE option is in effect. The delimiter character used as the
opening delimiter for a literal must be used as the closing delimiter for that literal.

 SEPOBJ

55─ ──┬ ┬─SEPOBJ─── ───5%
 └ ┘─NOSEPOBJ─

| Default is: SEPOBJ, or
| NOSEPOBJ for Visual Builder GUI applications

Abbreviations are: None

The option specifies whether or not each of the outermost COBOL programs in a batch
compilation is to be generated as a separate object file rather than a single object file.

 Batch Compilation
When multiple outer-most programs (non-nested programs) are compiled with a single
invocation of the compiler (batch compiled), how many separate files are produced for
the object program output of the batch compilation varies on the compiler option
SEPOBJ.

Assume that the COBOL source file, pgm.cbl, contains three outer-most COBOL pro-
grams named pgm1, pgm2, and pgm3. The following figures illustrate whether the object
program output is generated as two (with NOSEPOBJ) or three (with SEPOBJ) files.

 pgm.obj

 pgm.cbl ┌───────┐

 ┌───────────────────┐ │ │

 │ │ ┌─────5 │ pgm1 │

│ PROGRAM-ID. pgm1. │ │ │ │

 │ ... │ │ └───────┘

│ END PROGRAM pgm1. │ │

 ├───────────────────┤ │ pgm.lib

 │ │ │ ┌───────┐

│ PROGRAM-ID. pgm2. │ ─────┤ │ │

 │ ... │ │ │ pgm1 │

│ END PROGRAM pgm2. │ │ │ │

 ├───────────────────┤ │ ├───────┤

 │ │ └─────5 │ pgm2 │

│ PROGRAM-ID. pgm3. │ │ │

 │ ... │ ├───────┤

│ END PROGRAM pgm3. │ │ pgm3 │

 └───────────────────┘ │ │

 └───────┘

Figure 45. Batch Compilation with NOSEPOBJ

 Chapter 10. Compiler Options 189

SEQUENCE Compiler Option

 pgm.cbl pgm.obj

 ┌───────────────────┐ ┌──────┐

│ │ ┌───────5 │ pgm1 │

│ PROGRAM-ID. pgm1. │ │ │ │

 │ ... │ │ └──────┘

│ END PROGRAM pgm1. │ │

 ├───────────────────┤ │ pgm2.obj

 │ │ │ ┌──────┐

│ PROGRAM-ID. pgm2. │ ─────┼───────5 │ pgm2 │

 │ ... │ │ │ │

│ END PROGRAM pgm2. │ │ └──────┘

 ├───────────────────┤ │

 │ │ │ pgm3.obj

│ PROGRAM-ID. pgm3. │ │ ┌──────┐

 │ ... │ └───────5 │ pgm3 │

│ END PROGRAM pgm3. │ │ │

 └───────────────────┘ └──────┘

Figure 46. Batch compilation with SEPOBJ

Considerations:

1. The SEPOBJ option is required to conform to the ANSI COBOL standard where
pgm2 or pgm3 in the above example is called via CALL identifier from another
program.

2. If the NOSEPOBJ option is in effect, the name(s) of object module file(s) are named
with the name of the source file with .o, .OBJ, and/or .LIB extensions. If the
SEPOBJ option is in effect, the names of the object files (except for the first one)
are based on the PROGRAM-ID name with the .o or .OBJ extension.

3. The programs called via CALL identifier must be referred to by the names of the
object files (rather than the PROGRAM ID names) where PROGRAM ID and the
object file name do not match.

You are responsible for giving the object file a valid file name for the platform and the
file system. For example, if the FAT file system is used for OS/2 or Windows, the
length of the PROGRAM ID name must be eight characters or fewer except when the
object file name(s) are created from the source file name (as in the case with
NOSEPOBJ option) as described above.

| Visual Builder: Visual Builder applications require NOSEPOBJ, which is the default
| specification in the GUI compile options notebook. Do not change this default setting.

 SEQUENCE

55─ ──┬ ┬─SEQUENCE─── ───5%
 └ ┘─NOSEQUENCE─

Default is: SEQUENCE

Abbreviations are: SEQ|NOSEQ

190 VisualAge COBOL Programming Guide

SOURCE Compiler Option

When you use SEQUENCE, the compiler examines columns 1 through 6 of your source
statements to check that the statements are arranged in ascending order according to
their ASCII collating sequence. The compiler issues a diagnostic message if any state-
ments are not in ascending sequence (source statements with blanks in columns 1
through 6 do not participate in this sequence check and do not result in messages).

If you use COPY statements and SEQUENCE is in effect, be sure that your source
program sequence fields and the copy member sequence fields are coordinated.

If you use NUMBER and SEQUENCE, the sequence is checked according to numeric,
rather than ASCII, collating sequence.

Use NOSEQUENCE to suppress this checking and the diagnostic messages.

NOSEQUENCE conforms to the COBOL 85 Standard.

 SIZE

55─ ──SIZE(──┬ ┬─nnnnn─) ──5%
└ ┘──nnnK ─

Default is: 2097152 bytes (approximately 2 Meg)

Abbreviations are: SZ

nnnnn specifies a decimal number that must be at least 778240.

nnnK specifies a decimal number in 1K increments. The minimum acceptable value is
782K.

Use SIZE to indicate the amount of main storage available for compilation (where 1K =
1024 bytes decimal).

 SOURCE

55─ ──┬ ┬─SOURCE─── ───5%
 └ ┘─NOSOURCE─

Default is: SOURCE

Abbreviations are: S|NOS

Use SOURCE to get a listing of your source program. This listing will include any state-
ments embedded by PROCESS or COPY statements.

SOURCE must be specified if you want embedded messages in the source listing.

Use NOSOURCE to suppress the source code from the compiler output listing.

 Chapter 10. Compiler Options 191

SQL Compiler Option

If you want to limit the SOURCE output, use *CONTROL SOURCE or NOSOURCE state-
ments in your PROCEDURE DIVISION. Your source statements following a *CONTROL
NOSOURCE are not included in the listing at all, unless a *CONTROL SOURCE statement
switches the output back to normal SOURCE format. For a description of the *CONTROL
(*CBL) statement, see IBM COBOL Language Reference.

For information on using LIST output, see “Data Map Listing” on page 258.

 SPACE

55─ ──SPACE(──┬ ┬─1─) ───5%
 ├ ┤─2─
 └ ┘─3─

Default is: SPACE(1)

Abbreviations are: None

Use SPACE to select single, double, or triple spacing in your source code listing.

SPACE has meaning only when the SOURCE compiler option is in effect.

 SQL

55─ ──SQL(──┬ ┬─"─ suboptions for DB2 SQL ──┬ ┬─"─) ────────────────────────5%
 └ ┘─'─ └ ┘─'─

Default is: SQL("")

Abbreviations are: None

Use this option when you have SQL statements embedded in your COBOL source. It
allows you to specify options to be used in handling the SQL statements in your
program and is required if the suboption string, which gives SQL options, is to be speci-
fied explicitly to DB2.

The syntax shown can be used on either the CBL or PROCESS statements. If the SQL
option is given on the cob2 command, only ' is allowed for the string delimiter:
-q"SQL('options')".

See Chapter 21, “Programming for a DB2 Environment” on page 406 for more informa-
tion.

192 VisualAge COBOL Programming Guide

TERMINAL Compiler Option

 SSRANGE

55─ ──┬ ┬─SSRANGE─── ──5%
 └ ┘─NOSSRANGE─

Default is: NOSSRANGE

Abbreviations are: SSR|NOSSR

Use SSRANGE to generate code that checks if subscripts (including ALL subscripts) or
indexes try to reference an area outside the region of the table. Each subscript or
index is not individually checked for validity; rather, the effective address is checked to
ensure that it does not cause a reference outside the region of the table. Variable-
length items will also be checked to ensure that the reference is within their maximum
defined length.

Reference modification expressions will be checked to ensure that:

� The reference modification starting position is greater than or equal to 1.

� The reference modification starting position is not greater than the current length of
the subject data item.

� The reference modification length value (if specified) is greater than or equal to 1.

� The reference modification starting position and length value (if specified) do not
reference an area beyond the end of the subject data item.

If SSRANGE is in effect at compile time, the range-checking code is generated; range
checking can be inhibited at run time by specifying CHECK(OFF) as a run-time option.
This leaves range-checking code dormant in the object code. The range-checking code
can then be optionally used to aid in resolving any unexpected errors without recompi-
lation.

If an out-of-range condition is detected, an error message will be displayed and the
program will be terminated.

Remember: You will get range-checking only if you compile your program with the
SSRANGE option and run it with the CHECK(ON) run-time option.

 TERMINAL

55─ ──┬ ┬─TERMINAL─── ───5%
 └ ┘─NOTERMINAL─

Default is: NOTERMINAL

Abbreviations are: TERM|NOTERM

Use TERMINAL to send progress and diagnostic messages to the terminal.

 Chapter 10. Compiler Options 193

THREAD Compiler Option

Use NOTERMINAL if this additional output is not desired.

 TEST

55─ ──┬ ┬─TEST─── ───5%
 └ ┘─NOTEST─

Default is: NOTEST

Abbreviations are: None

Use TEST to produce object code that contains symbol and statement information that
enables the debugger to perform symbolic source-level debugging.

Use NOTEST if you do not want to generate object code with debugging information.

Programs compiled with NOTEST execute with the debugger, but there is limited debug-
ging support.

The TEST option will be turned off if you use the WITH DEBUGGING MODE clause. The
TEST option will appear in the list of options, but a diagnostic message will be issued to
advise you that because of the conflict, TEST will not be in effect.

 THREAD

55─ ──┬ ┬─THREAD─── ───5%
 └ ┘─NOTHREAD─

Default is: NOTHREAD

Abbreviations are: None

THREAD indicates if the COBOL application is to be enabled for execution in a run unit
with multiple threads. All programs within a run unit must be compiled with either the
THREAD or NOTHREAD option.

When the THREAD option is in effect, the following language elements are not sup-
ported. If encountered, they are diagnosed as errors:

 � STOP RUN
 � ALTER statement
� DEBUG-ITEM special register
� GO TO statement without procedure-name

 � RERUN
� STOP literal statement

 � Segmentation module
� USE FOR DEBUGGING statement
� WITH DEBUGGING MODE clause

194 VisualAge COBOL Programming Guide

TRUNC Compiler Option

� INITIAL phrase in PROGRAM-ID paragraph

Caution: RERUN is flagged as an error with THREAD, but is accepted as a comment
with NOTHREAD.

| Visual Builder: Visual Builder applications require NOTHREAD, which is the default
| specification in the GUI compile options notebook. Do not change this default setting.

See Chapter 26, “Preparing COBOL Programs for Multithreading” on page 467 for a
discussion of COBOL support for multithreading.

 TRUNC

55─ ──TRUNC(──┬ ┬─STD─) ───5%
 ├ ┤─OPT─
 └ ┘─BIN─

Default is: TRUNC(STD)

Abbreviations are: None

TRUNC(STD) conforms to the COBOL 85 Standard, while TRUNC(OPT) and TRUNC(BIN)
are IBM extensions.

TRUNC has no effect on COMP-5 data items; COMP-5 items are handled as if
TRUNC(BIN) were in effect, regardless of the TRUNC option specified.

TRUNC(STD)
Use TRUNC(STD) to control the way arithmetic fields are truncated during MOVE
and arithmetic operations. TRUNC(STD) applies only to USAGE BINARY receiving
fields in MOVE statements and arithmetic expressions. When TRUNC(STD) is in
effect, the final result of an arithmetic expression, or the sending field in the MOVE
statement, is truncated to the number of digits in the PICTURE clause of the BINARY
receiving field.

TRUNC(OPT)
TRUNC(OPT) is a performance option. When TRUNC(OPT) is specified, the compiler
assumes that the data conforms to PICTURE and USAGE specifications of the
USAGE BINARY receiving fields in MOVE statements and arithmetic expressions.
The results are manipulated in the most optimal way, either truncating to the
number of digits in the PICTURE clause, or to the size of the binary field in storage
(halfword, fullword, or doubleword).

Caution: You should use the TRUNC(OPT) option only if you are sure that the data
being moved into the binary areas will not have a value with larger precision than
that defined by the PICTURE clause for the binary item. Otherwise, unpredictable
results might occur. This truncation is performed in the most efficient manner pos-
sible; therefore, the results will be dependent on the particular code sequence gen-
erated. It is not possible to predict the truncation without seeing the code
sequence generated for a particular statement.

 Chapter 10. Compiler Options 195

TRUNC Compiler Option

TRUNC(BIN)
The TRUNC(BIN) option applies to all COBOL language that processes USAGE
BINARY data. When TRUNC(BIN) is in effect:

� BINARY receiving fields are truncated only at halfword, fullword, or doubleword
boundaries.

� BINARY sending fields are handled as halfwords, fullwords, or doublewords
when the receiver is numeric; TRUNC(BIN) has no effect when the receiver is
not numeric.

� The full binary content of the field is significant.
� DISPLAY will convert the entire content of the binary field, with no truncation.

Recommendation: TRUNC(BIN) is the recommended option for programs that use
| binary values set by other products. These other products, such as C/C++,
| FORTRAN, and PL/I, might place values in COBOL binary data items that do not

conform to the PICTURE clause of the data item. For CICS considerations, see
“Selecting Compiler Options” on page 413.

TRUNC(BIN) should never be used as an install default, only for specific programs,
due to the performance cost. A better approach is to use COMP-5 for binary data
items passed to non-COBOL programs or other products and subsystems. The
use of COMP-5 is not affected by the TRUNC option in effect.

TRUNC Example 1
ð1 BIN-VAR PIC 99 USAGE BINARY.

 .

 .

MOVE 123451 to BIN-VAR

A halfword of storage is allocated for BIN-VAR. The result of this MOVE statement if the
program is compiled with the TRUNC(STD) option is 51; the field is truncated to conform
to the PICTURE clause.

If the program is compiled with the TRUNC(BIN) option, the result of the MOVE statement
is -7621. The reason for the unusual looking answer is that nonzero high-order digits
were truncated. Here, the generated code sequence would merely move the lower
halfword quantity X'E23B' to the receiver. Because the new truncated value over-
flowed into the sign bit of the binary halfword, the value becomes a negative number.

Figure 47. Values of the Data Items after the MOVE

 Decimal Hex 1 Display

Sender 123451 3B|E2|01|00 123451

Receiver
TRUNC(STD)

51 33|00 51

Receiver
TRUNC(OPT)

-7621 3B|E2 2J

Receiver TRUNC(BIN) -7621 3B|E2 762J

Note: 1 Values are shown using the default BINARY compiler option.

196 VisualAge COBOL Programming Guide

TYPECHK Compiler Option

This MOVE statement should not be compiled with the TRUNC(OPT) option because
123451 has greater precision than the PICTURE clause for BIN-VAR. If TRUNC(OPT) was
used, however, the results again would be -7621. This is because the best perform-
ance was gained by not doing a decimal truncation.

Assumption: The preceding example assumes that the BINARY(S390) option is in
effect.

TRUNC Example 2
 ð1 BIN-VAR PIC 9(6) USAGE BINARY

 .

 .

MOVE 1234567891 to BIN-VAR

When TRUNC(STD) is specified, the sending data is truncated to six integer digits to
conform to the PICTURE clause of the BINARY receiver.

When TRUNC(OPT) is specified, the compiler assumes the sending data is not larger
than the PICTURE clause precision of the BINARY receiver. The most efficient code
sequence in this case performed truncation as if TRUNC(STD) had been specified.

When TRUNC(BIN) is specified, no truncation occurs because all of the sending data will
fit into the binary fullword allocated for BIN-VAR.

Assumption: The preceding example assumes that the BINARY(S390) option is in
effect.

Figure 48. Values of the Data Items after the MOVE

 Decimal Hex 1 Display

Sender 1234567891 D3|02|96|49 1234567891

Receiver
TRUNC(STD)

567891 53|AA|08|00 567891

Receiver
TRUNC(OPT)

567891 00|08|AA|53 567891

Receiver TRUNC(BIN) 1234567891 D3|02|96|49 1234567891

Note: 1 Values are shown using the default BINARY compiler option.

 TYPECHK

55─ ──┬ ┬─TYPECHK─── ──5%
 └ ┘─NOTYPECHK─

Default is: NOTYPECHK

Abbreviations are: TC|NOTC

 Chapter 10. Compiler Options 197

VBREF Compiler Option

Use TYPECHK to have the compiler enforce the rules for object-oriented type checking,
and generate diagnostics for any violations.

Use NOTYPECHK to turn off the checking for typing violations.

The type conformance requirements are covered in the IBM COBOL Language Refer-
ence under the appropriate language elements. Type checking requirements include:

� The method being invoked on an INVOKE statement must be supported by the
class of the referenced object.

� Method parameters on an INVOKE and the corresponding method PROCEDURE
DIVISION USING must conform.

� The SET object-reference-1 TO object-reference-2 statement requires that the
classes of the objects be of appropriate derivation relationships.

� A method override must have a conforming interface to the corresponding method
in the parent class.

When TYPECHK is specified, there must be entries in the SOM Interface Repository (IR)
for each class that is referenced in the COBOL source being compiled.

For COBOL classes, these IR entries can be created by using the COBOL IDLGEN
option (see “IDLGEN” on page 181) when compiling the class definitions, to create an
IDL file that describes the interface of the COBOL class. Compile the IDL using the
SOM compiler with its "ir" emitter.

Note that if the COBOL program references classes that are provided by the SOM
product itself (such as the SOMObject class), then the pre-generated IR for these
classes that is provided as part of the OS/390 SOMobjects product may be used to
verify that the COBOL usage conforms to the class interfaces.

See Chapter 15, “Using System Object Model (SOM)” on page 317, SOMobjects
Developer's Toolkit User's Guide, and SOMobjects Developer's Toolkit Programmer's
Reference Manual (available online) for further details on interface repositories, SOM,
and type checking.

 VBREF

55─ ──┬ ┬─VBREF─── ──5%
 └ ┘─NOVBREF─

Default is: NOVBREF

Abbreviations are: None

Use VBREF to get a cross-reference among all verb types used in the source program
and the line numbers in which they are used. VBREF also produces a summary of how
many times each verb was used in the program.

198 VisualAge COBOL Programming Guide

WSCLEAR Compiler Option

Use NOVBREF for more efficient compilation.

 WORD

55─ ──┬ ┬──WORD(xxxx) ───5%
 └ ┘─NOWORD─────

Default is: NOWORD

Abbreviations are: WD|NOWD

xxxx specifies the ending characters of the name of the reserved-word table (IGYCxxxx)
to be used in your compilation. IGYC are the first 4 standard characters of the name,
and xxxx can be 1 to 4 characters in length.

Use WORD(xxxx) to specify that an alternate reserved-word table is to be used during
compilation.

NOWORD conforms to the COBOL 85 Standard.

| WSCLEAR
|

| 55─ ──┬ ┬─WSCLEAR─── ──5%
| └ ┘─NOWSCLEAR─

| Default is: NOWSCLEAR

| Abbreviations are: None

| Use WSCLEAR to clear your program's working storage to binary zeros when the
| program is initialized. The storage is cleared before any VALUE clauses are applied.

| Use NOWSCLEAR to bypass the storage clearing process.

| If you use WSCLEAR and you are concerned about the size or performance of the
| object program, then you should also use OPTIMIZE(FULL). This instructs the compiler
| to eliminate all unreferenced data items from the DATA DIVISION, which will speed up
| the initialization process.

 Chapter 10. Compiler Options 199

XREF Compiler Option

 XREF

55─ ──┬ ┬──XREF ──┬ ┬─────────────── ──────────────────────────────────────5%
 │ │└ ┘──(──┬ ┬─SHORT─)
 │ │└ ┘─FULL──
 └ ┘─NOXREF──────────────────

Default is: NOXREF

Abbreviations are: X|NOX

You can choose XREF, XREF(FULL), or XREF(SHORT).

Use XREF to get a sorted cross-reference listing. Names are listed in the order of the
collating sequence indicated by the locale setting. This applies whether the names are
in single-byte characters or contain multi-byte characters (such as DBCS).

Also included is a section listing all the program names that are referenced in your
program, and the line number where they are defined. External program names are
identified as such.

If you use XREF and SOURCE, cross-reference information will also be printed on the
same line as the original source in the listing. Line number references or other informa-
tion, will appear on the right hand side of the listing page. On the right of source lines
that reference intrinsic functions, the letters 'IFN' will appear with the line numbers of
the location where the function's arguments are defined. Information included in the
embedded references lets you know if an identifier is undefined or defined more than
once (UND or DUP will be printed); if an item is implicitly defined (IMP), such as special
registers or figurative constants; and if a program name is external (EXT).

If you use XREF and NOSOURCE, you'll get only the sorted cross-reference listing.

XREF(SHORT) will print only the explicitly referenced variables in the cross-reference
listing. XREF(SHORT) applies to MBCS data names and procedure-names as well as
ASCII names.

NOXREF suppresses this listing.

Observe:

1. Group names used in a MOVE CORRESPONDING statement are in the XREF listing.
In addition, the elementary names in those groups are also listed.

2. In the data-name XREF listing, line numbers preceded by the letter “M” indicate that
the data item is explicitly modified by a statement on that line.

3. XREF listings take additional storage.

See Chapter 13, “Debugging Techniques” on page 244 for sample listings.

200 VisualAge COBOL Programming Guide

ZWB Compiler Option

| YEARWINDOW
|

| 55─| ─YEARWINDOW─ ──(base-year) ──5%

| Default is: YEARWINDOW(1900)

| Abbreviation is: YW

| Use the YEARWINDOW option to specify the first year of the 100-year window (the
| century window) to be applied to windowed date field processing by the COBOL com-
| piler. For information on using windowed date fields, see Chapter 31, “Using the
| Millennium Language Extensions” on page 520.

| base-year represents the first year of the 100-year window, and must be specified as
| one of the following:

| � An unsigned decimal number between 1900 and 1999.

| This specifies the starting year of a fixed window. For example,
| YEARWINDOW(1930) indicates a century window of 1930-2029.

| � A negative integer from -1 through -99.

| This indicates a sliding window, where the first year of the window is calculated
| from the current run-time date. The number is subtracted from the current year to
| give the starting year of the century window. For example, YEARWINDOW(-80) indi-
| cates that the first year of the century window is 80 years before the current year
| at the time the program is run.

| Notes:

| 1. The YEARWINDOW option has no effect unless the DATEPROC option is also in
| effect.

| 2. At run time, two conditions must be true:

| � The century window must have its beginning year in the 1900s
| � The current year must lie within the century window for the compilation unit

| For example, running a program in 1998 with YEARWINDOW(-99) violates the first
| condition, and would result in a run-time error.

 ZWB

55─ ──┬ ┬─ZWB─── ──5%
 └ ┘─NOZWB─

Default is: ZWB

Abbreviations are: None

 Chapter 10. Compiler Options 201

Compiler-Directing Statements

With ZWB, the compiler removes the sign from a signed external decimal (DISPLAY)
field when comparing this field to an alphanumeric elementary field during execution.

If the external decimal item is a scaled item (contains the symbol 'P' in its PICTURE
character-string), its use in comparisons is not affected by ZWB. Such items always
have their sign removed before the comparison is made to the alphanumeric field.

ZWB affects how the program runs; the same COBOL source program can give different
results, depending on the option setting.

ZWB conforms to the COBOL 85 Standard.

Use NOZWB if you want to test input numeric fields for SPACES.

 Compiler-Directing Statements
Several statements help you to direct the compilation of your program. For the defi-
nition of these statements, see IBM COBOL Language Reference.

BASIS statement
This extended source program library statement provides a complete COBOL
program as the source for a compilation.

*CONTROL (*CBL) statement
This compiler-directing statement selectively suppresses or allows output to be
produced. The names *CONTROL and *CBL are synonymous. This statement is
described in the IBM COBOL Language Reference.

>>CALLINTERFACE statement
This compiler directing statement specifies the interface convention for calls,
including whether argument descriptors are to be generated. The convention spec-
ified using >>CALLINT is in effect until another >>CALLINT specification is made.
>>CALLINT can be used only in the PROCEDURE DIVISION.

The syntax and usage of the >>CALLINT statement is similar to the CALLINT com-
piler option. Exceptions are:

� CALLINT is a valid abbreviation in the statement syntax
� The statement syntax does not include parentheses
� The statement form can be used to apply to selective calls as described

below.
� The statement syntax includes the keyword DESCRIPTOR and its variants.

See the IBM COBOL Language Reference for the full syntax. See “CALLINT” on
page 164 for details of the option form.

If you specify >>CALLINT with no suboptions, the call convention used is determined
by the CALLINT compiler option. For example, if PROG1 is an IBM C program
whose default call interface convention is _OPTLINK, or it is a COBOL program
compiled with the ENTRYINT(OPTLINK) option, use the >>CALLINT directive to
change the interface for this call only:

202 VisualAge COBOL Programming Guide

Compiler-Directing Statements

>>CALLINT OPTLINK DESC
CALL "PROG1" USING PARM1 PARM2.

 >>CALLINT

CALL "PROG2" USING PARM1.

If you specify >>CALLINT with an invalid argument, the entire directive will be
ignored.

The >>CALLINT statement can be specified anywhere that a COBOL procedure
statement can be specified. For example, the following is valid COBOL syntax:

MOVE 3 TO

 >>CALLINTERFACE SYSTEM

 RETURN-CODE.

The effect of >>CALLINT is limited to the current program. A nested program or a
program compiled in the same batch inherits the calling convention specified with
the CALLINT compiler option, not the >>CALLINT compiler directive.

If you are writing a routine that is to be called with >>CALLINT SYSTEM,
DESCRIPTOR, this is the argument-passing mechanism:

CALL "PROGRAM1" USING arg-1, arg-2, ... arg-n

descriptor for arg-1

┌─5 ð ┌─────────┬──────────┬──────────┬──────────┐

│ │descType │ dataType │ descInf1 │ descInf2 │

 │ 4 ├─────────┴──────────┴──────────┴──────────┤

 │ │length-1 │

 │ 8 ├──┤

 │ │length-2 │

 │ └──┘

 │

┌───────────────┐ └──────────────────────┐

│ arg-1 │ │

├───────────────┤ -8 ┌────────────────────┐ │

│ arg-2 │ │ descriptor-ID │ │

├───────────────┤ ┌─5 ð │────────────────────│ │

│ ... │ │ │ pointer to descr-1─┼──┘

├───────────────┤ │ 4 ├────────────────────┤

│ arg-n │ │ │ pointer to descr-2─┼──5 descriptor for arg-2

├───────────────┤ │ 8 ├────────────────────┤

│ pointer to │ │ │ ... │ ...

│ descriptor ─┼─┘ ├────────────────────┤

│ pointer array │ │ pointer to descr-n─┼──5 descriptor for arg-n

└───────────────┘ └────────────────────┘

Figure 49. Argument Passing with SYSTEM(DESC)

pointer to descr-n Points to the descriptor for the specific argument; 0 if no
descriptor exists for the argument.

descriptor-ID Set to COBDESC0 to identify this version of the descriptor,
allowing for a possible change to the descriptor entry format
in the future.

descType Set to X'02' (descElmt) for an elementary data item of
USAGE DISPLAY with PICTURE X(n) or USAGE DISPLAY-1 with
PICTURE G(n) or N(n). For all others (numeric fields, struc-
tures, tables), set to X'00'.

 Chapter 10. Compiler Options 203

Compiler-Directing Statements

dataType Set as follows:

� descType = X'00': dataType = X'00'

� descType = X'02' and the USAGE is DISPLAY: dataType
= X'02' (typeChar)

� descType = X'02' and the USAGE is DISPLAY-1:
dataType = X'09' (typeGChar)

descInf1 Always set to X'00'

descInf2 Set as follows:

� If descType = X'00'; descInf2 = X'00'

� If descType = X'02':

– If the CHAR(EBCDIC) option is in effect and the argu-
ment is not defined with the NATIVE option in the
USAGE clause: descInf2 = X'40'

– Else: descInf2 = X'00'

length-1 In the argument descriptor is the length of the argument for a
fixed length argument or the current length for a variable
length item.

length-2 The maximum length of the argument, if the argument is a
variable length item.

For a fixed length argument length-2 is equal to length-1.

COPY statement

55─ ──COPY ──┬ ┬─text-name─ ──┬ ┬────────────── ────────────────────────5%
 └ ┘─literal-1─ ├ ┤─library-name─
 └ ┘─literal-2────

This library statement places pre-written text into a COBOL program.

The uniqueness of text-name and library-name is determined after the formation
and conversion rules for a system-dependent name have been applied. A user-
defined word can be the same as a text-name or a library-name. If more than one
COBOL library is available during compilation, text-name need not be qualified. If
text-name is not qualified, a library-name of SYSLIB is assumed. The following
affects library-name and text-name:

library-name
If you specify library-name as a literal (literal-2), it is treated as the actual path.
If you specify library-name with a user-defined word, the name is used as an
environment variable and the value of the environment variable is used for the
path to locate the COPY text. To specify multiple path names, delimit them by
using a a semicolon (;).

204 VisualAge COBOL Programming Guide

Compiler-Directing Statements

If you don't specify library-name, the path used is as described under text-
name.

text-name
The processing of text-name as a user-defined word depends on whether the
environment variable corresponding to the text-name is set. If the the environ-
ment variable is set, the value of the environment variable is used as the file
name, and possibly the path name, for the copybook.

A text-name is treated as both the path and file name if:

� library-name (or literal-2) is not given, and
� text-name is a literal (literal-1) or an environment variable, and
� The first character is '\' or the second character is ':'

For example,

COPY "\mycpylib\..." or COPY "d:\mycpylib\..."

If the environment variable corresponding to the text-name is not set, the copy
text is searched for as the following names:

1. The text-name with the extension of .cpy
2. The text-name with the extension of .cbl
3. The text-name with the extension of .cob
4. The text-name without an extension

For example, COPY MyCopy searches in the following order:

� MyCopy.cpy (in all the specified paths, as described above)
� MyCopy.cbl (in all the specified paths, as described above)
� MyCopy.cob (in all the specified paths, as described above)
� MyCopy (in all the specified paths, as described above)

-I option
For other cases (when neither a library-name nor text-name indicates the
path), the path searched is dependent on the -I option. For details, see
“Options Supported by cob2” on page 142.

To have COPY A be equivalent to COPY A OF MYLIB specify -I%MYLIB%.

Based on the above rules, COPY "\X\Y" will be searched in the root directory,
while COPY "X\Y" will be searched in the current directory.

COPY A OF SYSLIB is equivalent to COPY A. The -I option does not impact
COPY statements with explicit library-name qualifications besides those with
the library name of SYSLIB.

Environment Variable Notes If both library-name and text-name are environment
variables the compiler will insert a path separator (\) between the two values. For
example, COPY MYCOPY OF MYLIB with the settings of

SET MYCOPY=MYPDS(MYMEMBER)
SET MYLIB=MYFILE

results in MYFILE\MYPDS(MYMEMBER)

 Chapter 10. Compiler Options 205

Compiler-Directing Statements

Using a user-defined word as text-name enables you not only to access local files
but to access PDS members on OS/390 without changing your mainframe source.
For example:

COPY mycopybook

In this example, when the environment variable mycopybook is set to
H:mypds(mycopy), where:

H: is assigned to the specific host
mypds is the OS/390 PDS data set name
mycopy is the PDS member name

You can access OS/390 files from OS/2 using SdU (Smart Data Utilities), which
allows OS/390 files to be accessed using an OS/2 pathname. However, note that
it converts the path separator to “.” to follow OS/390 naming conventions. You
should keep this in mind when assigning values to your environment variables to
ensure proper name formation. For example, these settings

SET MYCOPY=(MYMEMBER)
SET MYLIB=M:MYFILE\MYPDS

do not work because what is created is

M:MYFILE\MYPDS\(MYMEMBER)
which becomes
M:MYFILE.MYPDS.(MYMEMBER)

See the VSAM SMARTdata Utilities documentation for details on using DFMDRIVE
to assign a drive letter to DFM.

For more information on the COPY statement, see the discussion of the COPY
statement in the IBM COBOL Language Reference.

DELETE statement
This extended source library statement removes COBOL statements from the
BASIS source program.

EJECT statement
This compiler-directing statement specifies that the next source statement is to be
printed at the top of the next page.

ENTER statement
The compiler handles this statement as a comment.

INSERT statement
This library statement adds COBOL statements to the BASIS source program.

PROCESS (CBL) statement
This statement, which is placed before the IDENTIFICATION DIVISION header of an
outermost program, indicates which compiler options are to be used during compi-
lation of the program. (See page 147 for the format of this statement).

206 VisualAge COBOL Programming Guide

Compiler-Directing Statements

For details on specifying compiler options with the PROCESS (CBL) statement and
with other methods, see the discussion under “Compiling and Linking Programs” on
page 142.

REPLACE statement
This statement is used to replace source program text.

SKIP1/2/3 statement
These statements indicate lines to be skipped in the source listing.

TITLE statement
This statement specifies that a title (header) be printed at the top of each page of
the source listing. (See “Changing Header of Source Listing” on page 13.)

USE statement
The USE statement provides declaratives to specify the following:

 Error-handling procedures—EXCEPTION/ERROR
Debugging lines and sections—DEBUGGING

 Chapter 10. Compiler Options 207

Options on the Command Line

| Chapter 11. Setting Linker Options

| Linker options vary depending on the operating system you are using. For a complete
| list of linker options on OS/2, see “Summary of OS/2 Linker Options” on page 211 For
| a complete list of linker options on Windows, see “Summary of Windows Linker
| Options” on page 226

| Linker options are not case sensitive, so you can specify them in lower-, upper-, or
| mixed case. You can also substitute a dash (-) for the slash (/) preceding the option.
| For example, -DEBUG is equivalent to /DEBUG. You can specify options in either a short
| or long form. For example, /DE, /DEB, and /DEBU are all equivalent to /DEBUG. See
| “Summary of OS/2 Linker Options” on page 211 or “Summary of Windows Linker
| Options” on page 226 for the shortest acceptable form for each option. Lower- and
| uppercase, short and long forms, dashes, and slashes can all be used on one
| command line, as in:

| ilink /de -DBGPACK -Map /NOI prog.obj

| Separate options with a space or tab character. You can specify linker options in the
| following ways:

| � On the command line
| � In the ILINK environment variable
| � In WorkFrame

| Options specified on the command line override the options in the ILINK environment
| variable.

| Some linker options take numeric arguments. You can enter numbers in decimal, octal,
| or hexadecimal format using standard C-language syntax. See “Specifying Numeric
| Arguments” on page 209 for more information.

| Setting Options on the Command Line
| Linker options specified on the command line override any previously specified in the
| ILINK environment variable (as described in “Setting Options in the ILINK Environment
| Variable” on page 209).

| You can specify options anywhere on the command line. Separate options with a
| space or tab character.

| For example, to link an object file with the /MAP option, enter:

| ilink /M myprog.obj

208  Copyright IBM Corp. 1996, 1998

Specifying Numeric Arguments

| Setting Options in the ILINK Environment Variable
| Store frequently used options in the ILINK environment variable. This method is useful
| if you find yourself repeating the same command-line options every time you link. You
| cannot specify file names in the environment variable, only linker options.

| The ILINK environment variable can be set either from the command line, in a
| command (.CMD) file, or in the CONFIG.SYS file. If it is set on the command line or by
| running a command file, the options will only be in effect for the current session (until
| you reboot your computer). If it is set in the CONFIG.SYS file, the options are set
| when you boot your computer, and are in effect every time you use the linker unless
| you override them using a .CMD file or by specifying options on the command line.

| Example
| In the following example, options on the command line override options in the environ-
| ment variable. If you enter the following commands:

| SET ILINK=/NOI /AL:256 /DE

| ILINK test

| ILINK /NODEF /NODEB prog

| The first command sets the environment variable to the options /NOIGNORECASE,
| /ALIGNMENT:256, and /DEBUG

| The second command links the file test.obj, using the options specified in the environ-
| ment variable, to produce test.exe

| The last command links the file prog.obj to produce prog.exe, using the option
| /NODEFAULTLIBRARYSEARCH, in addition to the options /NOIGNORECASE and
| /ALIGNMENT:256. The /NODEBUG option on the command line overrides the
| /DEBUG option in the environment variable, and the linker links without the /DEBUG
| option.

| Setting Options in the WorkFrame Environment
| If you have installed the WorkFrame product, you can set linker options using the
| options dialogs. You can use the dialogs when you create or modify a project.

| Options you select while creating or changing a project are saved with that project.

| Specifying Numeric Arguments
| Some linker options and module statements take numeric arguments. You can specify
| numbers in any of the following forms:

| Decimal Any number not prefixed with 0 or 0x is a decimal number. For
| example, 1234 is a decimal number.

| Octal Any number prefixed with 0 (but not 0x) is an octal number. For
| example, 01234 is an octal number.

 Chapter 11. Setting Linker Options 209

Specifying Numeric Arguments

| Hexadecimal Any number prefixed with 0x is a hexadecimal number. For example,
| 0x1234 is a hexadecimal number.

210 VisualAge COBOL Programming Guide

Linker Options

| Summary of OS/2 Linker Options

| Figure 50. OS/2 Linker Options Summary

| Option| Description| Default

| /?| Display help| None

| /ALIGNMENT| Set alignment factor| /A:512

| /BASE, /NOBASE| Set preferred loading address| /BAS:0x00010000

| /CODEVIEW, NOCODEVIEW| Include debugging information| /NOC

| /DBGPACK, /NODBGPACK| Pack debugging information| /NODB

| /DEBUG, /NODEBUG| Include debugging information| /NODEB

| /DEFAULTLIBRARYSEARCH,
| /NODEFAULTLIBRARYSEARCH
| Search default libraries| /DEF

| /DLL| Generate DLL| /EXEC

| /EXEC| Generate .EXE file| /EXEC

| /EXEPACK, /NOEXEPACK| Compress data| /NOEXE

| /EXTDICTIONARY, /NOEXTDICTIONARY| Use extended dictionary to search libraries| /EXT

| /FORCE| Create executable output file even if errors| /NOFO

| /FREEFORMAT, /NOFREEFORMAT| Use free format command line syntax| /FR

| /HELP| Display help| None

| /IGNORECASE, /NOIGNORECASE| Ignore capitalization in identifiers| /NOI

| /INFORMATION, /NOINFORMATION| Display status of linking process| /NOIN

| /LINENUMBERS, /NOLINENUMBERS| Include line numbers in map file| /NOLI

| /LOGO, /NOLOGO| Display logo, echo response file| /LO

| /MAP, /NOMAP| Generate map file| /NOM

| /OPTFUNC, /NOOPTFUNC| Remove unreferenced functions| /NOOPTF

| /OUT| Name output file| Name of first .OBJ file

| /PACKCODE, /NOPACKCODE| Pack neighboring code segments with similar
| attributes
| /PACKC: 0xFfffFfff

| /PACKDATA, /NOPACKDATA| Pack neighboring data segments with similar
| attributes
| /PACKD: 0xFfffFfff

| /PMTYPE| Specify application type| None

| /SECTION| Set attributes for segment| Accept default attributes

| /SEGMENTS| Set maximum number of segments| /SE:128

| /STACK| Set stack size of application| /ST:32768

| Linker Options for OS/2
| This section describes the linker options in alphabetical order.

| For each option, the description includes:

| � The syntax for specifying the option.

| � The default setting.

 Chapter 11. Setting Linker Options 211

/BAS, /NOBAS Options

| � Any accepted abbreviations.

| � A description of the option and its parameters, and any interaction it may have with
| other options.

| /?
|

| 55──/?──5%

| Use /? to display a list of valid linker options. This option is equivalent to /HELP.

| /ALIGNMENT
|

| 55─ ──/ALIGNMENT:factor ──5%

| Default is: /ALIGNMENT:512

| Abbreviation is: /A

| Use /ALIGNMENT to set the alignment factor in the .EXE or .DLL file.

| The alignment factor determines where pages in the .EXE or .DLL file start. From the
| beginning of the file, the start of each page is aligned at a multiple (in bytes) of the
| alignment factor. The alignment factor must be a power of 2, from 1 to 4096.

| /BASE, /NOBASE
|

| 55─ ──┬ ┬──/BASE:address ──5%
| └ ┘─/NOBASE───────

| Default is: /BASE:0X00010000

| Abbreviations are: /BAS

| Use /BASE to specify the preferred load address for the first load segment of a .DLL file.
| The number you specify in address is rounded up to the nearest multiple of 64K. The
| second load segment is then loaded at the next available multiple of 64K, and so on.

| If the file's load segments cannot be loaded beginning at this preferred address, then
| the preferred address is ignored and the objects are loaded according to the internal
| relocation records retained in the file data.

| For .EXE files, use the default base address of 64K (/BASE:ðxððð1ðððð). Specifying
| this address explicitly can slightly reduce the size of the executable. Any other address
| will result in a warning, and 64K will be used anyway.

212 VisualAge COBOL Programming Guide

/DB, /NODB Options

| This option has the same effect as the BASE module definition file statement. If you
| specify both the BASE statement and the /BASE option, the statement value overrides
| the option value.

| Specify /NOBASE to retain relocation records and emit internal fixups, when you generate
| an .EXE file. This does not affect the actual base address, or interfere with any value
| you specified with /BASE. You can specify both options.

| /CODEVIEW, NOCODEVIEW
|

| 55─ ──┬ ┬─/CODEVIEW─── ──5%
| └ ┘─/NOCODEVIEW─

| Default is: /NOCODEVIEW

| Abbreviations are: /C|/NOC

| Obsolete: These options will not be available in future releases of the linker. Use
| /DEBUG, /NODEBUG instead.

| Use /CODEVIEW to include debug information in the output file, so you can debug the file
| with the debugger, or trace its execution with the Performance Analyzer. The linker will
| embed symbolic data and line number information in the output file.

| For debugging, compile the object files with cob2 option -g.

| For the Performance Analyzer, compile the object files with cob2 option -p.

| /CODEVIEW provides the same functionality as /DEBUG and is provided only for purposes
| of compatibility.

| Note: Linking with /CODEVIEW or /DEBUG increases the size of the executable output
| file.

| /DBGPACK, /NODBGPACK
|

| 55─ ──┬ ┬─/DBGPACK─── ───5%
| └ ┘─/NODBGPACK─

| Default is: /NODBGPACK

| Abbreviations are: /DB|/NODB

| Use /DBGPACK to eliminate redundant debug type information. The linker takes the
| debug type information from all object files and needed library components, and
| reduces the information to one entry per type. This results in a smaller executable
| output file, and can improve debugger performance.

 Chapter 11. Setting Linker Options 213

/DEF, /NOD Options

| Performance Consideration: Generally, linking with /DBGPACK slows the linking
| process, because it takes time to pack the information. However, if there is enough
| redundant debug type information, /DBGPACK can actually speed up your linking,
| because there is less information to write to file.

| You can only pack debug information in objects created with version 3.0 of the compiler
| or later. If you use /DBGPACK with older object files, the linker generates a warning and
| does not pack the debug information.

| When you specify /DBGPACK, /DEBUG is turned on by default.

| /DEBUG, /NODEBUG
|

| 55─ ──┬ ┬─/DEBUG─── ───5%
| └ ┘─/NODEBUG─

| Default is: /NODEBUG

| Abbreviations are: /DE|/NODEB

| Use /DEBUG to include debug information in the output file, so you can debug the file
| with the debugger, or analyze its performance with the performance analyzer. The
| linker will embed symbolic data and line number information in the output file.

| For debugging, compile the object files with cob2 option -g.

| For the Performance Analyzer, compile the object files with cob2 option -p.

| Note: Linking with /DEBUG increases the size of the executable output file.

| /DEFAULTLIBRARYSEARCH, /NODEFAULTLIBRARYSEARCH
|

| 55─ ──┬ ┬─/DEFAULTLIBRARYSEARCH───────────────── ────────────────────────5%
| └ ┘| ─/NODEFAULTLIBRARYSEARCH─ ──┬ ┬──────────
| └ ┘──:library

| Default is: /DEFAULTLIBRARYSEARCH

| Abbreviations are: /DEF|/NOD

| Use /DEFAULTLIBRARYSEARCH to have the linker search the default libraries of object files
| when resolving references. The default libraries for an object file are defined at compile
| time, and embedded in the object file. The linker searches the default libraries by
| default.

| Use /NODEFAULTLIBRARYSEARCH to tell the linker to ignore default libraries when it
| resolves external references. If you specify a library with the option, the linker ignores
| that default library, but searches any others that are defined in the object files.

214 VisualAge COBOL Programming Guide

/E, /NOEXE Options

| If you specify /NODEFAULTLIBRARYSEARCH, then you must explicitly specify all the libraries
| you want to use, including IBM VisualAge COBOL runtime libraries and any OS/2
| libraries you need.

| /DLL
|

| 55─ ──┬ ┬─/DLL── ──5%
| └ ┘─/EXEC─

| Default is: /EXEC

| Abbreviations are: None

| Use /DLL to identify the output file as a dynamic link library (.DLL file). You can also
| identify the output file as a DLL with the LIBRARY statement in a module definition file.

| If you specify /DLL with /EXEC, then only the last specified of the options takes effect.

| If you do not specify /DLL, then by default the linker produces an .EXE file (/EXEC).

| /EXEC
|

| 55─ ──┬ ┬─/DLL── ──5%
| └ ┘─/EXEC─

| Default is: /EXEC

| Abbreviations are: None

| Use /EXEC to identify the output file as an executable program (.EXE file). The linker
| generates .EXE files by default. You can also identify the output as an .EXE file with
| the NAME statement in a module definition file. If you specify /EXEC with /DLL, only the
| last specified of the options takes effect.

| If you do not specify /EXEC, the linker produces an .EXE file by default.

| /EXEPACK, /NOEXEPACK
|

| 55─ ──┬ ┬| ─/EXEPACK─ ──┬ ┬──── ───5%
| │ │├ ┤──:1
| │ │└ ┘──:2
| └ ┘─/NOEXEPACK───────

| Default is: /NOEXEPACK

| Abbreviations are: /E|/NOEXE

 Chapter 11. Setting Linker Options 215

/EXT, /NOE Options

| Use /EXEPACK to reduce the size of the executable by compressing pages in the file.
| The operating system automatically decompresses the pages when the program runs.

| Specify /EXEPACK[:1] to compress data segments in your output file, using run-length
| encoding compression. If compression does not reduce the size of the segment, the
| linker does not compress that segment.

| Specify /EXEPACK:2 to compress both data and code segments, as follows:

| � For data segments, the linker tries both LZW compression and run-length encoding
| compression, and uses the method with the more efficient result.

| � For code segments, the linker uses LZW compression.

| Segments are evaluated one page at a time. If compression does not reduce the size
| of the page, the page is not compressed.

| OS/2 V3.0 only: Only set /EXEPACK:2 if you are developing for OS/2 version 3.0 or
| later. OS/2 version 2.1 or earlier cannot run programs that have been compressed with
| /EXEPACK:2.

| Linking and compressing generally takes longer than linking alone, because of the extra
| time spent compressing. However, if the compression is effective enough, it can actu-
| ally speed up the linking process, because there is less information to write to file.

| By default, the linker does not compress the output file.

| /EXTDICTIONARY, /NOEXTDICTIONARY
|

| 55─ ──┬ ┬─/EXTDICTIONARY─── ───5%
| └ ┘─/NOEXTDICTIONARY─

| Default is: /NOEXTDICTIONARY

| Abbreviations are: /EXT|/NOE

| Use /EXTDICTIONARY to have the linker search the extended dictionaries of libraries
| when it resolves external references. The extended dictionary is a list of module
| relationships within a library. When the linker pulls in a module from the library, it
| checks the extended dictionary to see if that module requires other modules in the
| library, and then pulls in the additional modules automatically.

| The linker searches the extended dictionary by default, to speed up the linking process.

| Use /NOEXTDICTIONARY if you are defining a symbol in your object code that is also
| defined in one of the libraries you are linking to. Otherwise the linker issues error
| L2044 because you have defined the same symbol in two different places. When you
| link with /NOEXTDICTIONARY, the linker searches the dictionary directly, instead of
| searching the extended dictionary. This results in slower linking, because references
| must be resolved individually.

216 VisualAge COBOL Programming Guide

/H Option

| /FORCE
|

| 55─ ──┬ ┬─/FORCE─── ───5%
| └ ┘─/NOFORCE─

| Default is: /NOFORCE

| Abbreviations are: /FO|/NOFO

| Use /FORCE to produce an executable output file even if there are errors during the
| linking process.

| By default, the linker does not produce an executable output file if it encounters an
| error.

| /FREEFORMAT, /NOFREEFORMAT
|

| 55─ ──┬ ┬─/FREEFORMAT─── ──5%
| └ ┘─/NOFREEFORMAT─

| Default is: /FREEFORMAT

| Abbreviations are: /FR|/NOFR

| Use /FREEFORMAT to allow free placement of files, options, and directories on the
| command line, separated by space or tab characters. Use the /OUT option to name the
| executable output file. Use the /MAP option to name the map file. Library and definition
| files are identified by their extension.

| /FREEFORMAT is in effect by default.

| Use /NOFREEFORMAT to allow a LINK386-compatible command line syntax, in which dif-
| ferent types of file are grouped and separated by commas. If you specify
| /NOFREEFORMAT, then you cannot specify /OUT. Instead, specify a name for the execut-
| able output file in the appropriate place in the command line syntax.

| /HELP
|

| 55──/HELP───5%

| Default is: None

| Abbreviation is: /H

| Use /HELP to display a list of valid linker options. This option is equivalent to /?.

 Chapter 11. Setting Linker Options 217

/L, /NOLI Options

| /IGNORECASE, /NOIGNORECASE
|

| 55─ ──┬ ┬─/IGNORECASE─── ──5%
| └ ┘─/NOIGNORECASE─

| Default is: /NOIGNORECASE

| Abbreviations are: /IG|/NOI

| Use /IGNORECASE to turn off case sensitivity, ignoring capitalization in identifiers. For
| example, with this option on, the linker treats ABC, abc, and Abc as equivalent.

| By default, the linker is case sensitive, and would treat ABC, abc, and Abc as unique
| names.

| /INFORMATION, /NOINFORMATION
|

| 55─ ──┬ ┬─/INFORMATION─── ───5%
| └ ┘─/NOINFORMATION─

| Default is: /NOINFORMATION

| Abbreviations are: /I|/NOIN

| Use /INFORMATION to have the linker display information about the linking process as it
| occurs, including the phase of linking and the names and paths of the object files being
| linked.

| If you are having trouble linking because the linker is finding the wrong files or finding
| them in the wrong order, use /INFORMATION to determine the locations of the object files
| being linked and the order in which they are linked.

| The output from this option is sent to stdout . You can redirect the output to a file using
| OS/2 redirection symbols.

| /LINENUMBERS, /NOLINENUMBERS
|

| 55─ ──┬ ┬─/LINENUMBERS─── ───5%
| └ ┘─/NOLINENUMBERS─

| Default is: /NOLINENUMBERS

| Abbreviations are: /L|/NOLI

218 VisualAge COBOL Programming Guide

/M, /NOM Options

| Use /LINENUMBERS to include source file line numbers and associated addresses in the
| map file. For this option to take effect, there must already be line number information
| in the object files you are linking.

| When you compile, use the cob2 option -qNUMBER to include line numbers in the
| object file (or the cob2 option -g, to include all debugging information).

| If you give the linker an object file without line number information, the /LINENUMBERS
| option has no effect.

| The /LINENUMBERS option forces the linker to create a map file, even if you specified
| /NOMAP.

| By default, the map file is given the same name as the output file, plus the extension
| .map. You can override the default name by specifying a map file name.

| /LOGO, /NOLOGO
|

| 55─ ──┬ ┬─/LOGO─── ──5%
| └ ┘─/NOLOGO─

| Default is: /LOGO

| Abbreviations are: /LO|/NOL

| Use /NOLOGO to suppress the product information that appears when the linker starts.
| /NOLOGO also stops the contents of the response file from being echoed to the screen.

| Specify /NOLOGO before the response file on the command line, or in the ILINK environ-
| ment variable. If the option appears in or after the response file, it is ignored.

| By default, the linker displays product information at the start of the linking process, and
| displays the contents of the response file as it reads the file.

| /MAP, /NOMAP
|

| 55─ ──┬ ┬──/MAP ──┬ ┬────────────────────── ───────────────────────────────5%
| │ │└ ┘| ─:─ ──┬ ┬───── ──┬ ┬──────
| │ │└ ┘─dir─ └ ┘─name─
| └ ┘─/NOMAP─────────────────────────

| Default is: /NOMAP

| Abbreviations are: /M|/NOM

| Use /MAP to generate a map file with the name name, and in the directory dir, that lists
| the composition of each segment, and the public (global) symbols defined in the object
| files. The symbols are listed twice: in order of name, and in order of address.

 Chapter 11. Setting Linker Options 219

/OUT Option

| If you do not specify dir, the map file is generated into the current working directory. If
| you do not specify name, the map file has the same name as the executable output file,
| with the extension .map.

| For compatibility with LINK386, you can specify /MAP:full. With the IBM VisualAge
| COBOL linker, this is the same as specifying /MAP.

| Note: If you are linking with the /NOFREE option, you can specify a name for the map
| file in the map parameter. Any name you specify with the /MAP option is ignored.

| By default, the linker does not produce a map file.

| /OPTFUNC, /NOOPTFUNC
|

| 55─ ──┬ ┬─/OPTFUNC─── ───5%
| └ ┘─/NOOPTFUNC─

| Default is: /NOOPTFUNC

| Abbreviations are: /OPTF|/NOOPTF

| Use /OPTFUNC to remove unreachable functions. The linker removes functions that are:

| � Not referenced anywhere in the object code
| � Rendered unreferenced by the removal of other functions
| � Not exported for use in other files

| When the function is removed, any additional functions that were required only by that
| function are also removed. Removing the functions and code reduces the size of your
| .EXE or .DLL output file.

| By default, the linker does not remove unreachable functions.

| Performance Consideration: Optimized linking generally takes longer than regular
| linking, because of the extra processing that the linker performs. However, if the opti-
| mization is effective enough, it can actually speed up the linking process, because there
| is less information to write to file. Generally, you may want to link without the /OPTFUNC

| option, until your code is tested and stable.

| /OUT
|

| 55─ ──/OUT:name ──5%

| Default is: Name of first .OBJ file with appropriate extension.

| Abbreviation is: /O

220 VisualAge COBOL Programming Guide

/PACKD, /NOPACKD Options

| Use /OUT to specify a name for the executable output file. To use /OUT, you must be
| using the default command line syntax (/FREEFORMAT). If you are using the /NOFREE
| (LINK386-compatible) format, then you cannot use the /OUT option.

| If you do not provide an extension with name, then the linker provides an extension
| based on the type of file you are producing:

| File produced Default extension
| Executable program .EXE
| Dynamic link library .DLL

| /PACKCODE, /NOPACKCODE
|

| 55─ ──┬ ┬| ─/PACKCODE─ ──┬ ┬───────── ───────────────────────────────────────5%
| │ │└ ┘──:number
| └ ┘─/NOPACKCODE────────────

| Default is: /PACKCODE:0XFFFFFFFF

| Abbreviations are: /PACKC|/NOP

| Use /PACKCODE to produce slightly faster and more compact code. The linker groups
| neighboring code segments that have similar attributes, and assigns them to the same
| load segment. The linker adjusts offsets to each routine upward as required.

| Specify number to set the maximum size for a load segment. The linker will start new
| load segments as necessary to avoid exceeding the maximum.

| For 16-bit segments, number is ignored, and 65500 is used instead.

| By default, the linker sets a maximum of ðxFfffFfff.

| Use /NOPACKCODE to turn off code segment packing.

| Use the /OPTFUNC option to reduce the size of your output files even further.

| /PACKDATA, /NOPACKDATA
|

| 55─ ──┬ ┬| ─/PACKDATA─ ──┬ ┬───────── ───────────────────────────────────────5%
| │ │└ ┘──:number
| └ ┘─/NOPACKDATA────────────

| Default is: /NOPACKDATA

| Abbreviations are: /PACKD|/NOPACKD

| Use /PACKDATA to produce more compact files by grouping neighboring data segments
| that have similar attributes, and assigning them to the same load segment.

 Chapter 11. Setting Linker Options 221

/SEC Option

| Specify number to set the maximum size for a load segment. The linker will start new
| load segments as necessary to avoid exceeding the maximum. By default, the linker
| sets a maximum of ðxFfffFfff.

| By default, the linker does not pack data segments.

| /PMTYPE
|

| 55─ ──/PMTYPE:type ───5%

| Default is: None

| Abbreviation is: /PM

| Use /PMTYPE to specify the type of .EXE file that the linker generates. Do not use this
| option when generating dynamic link libraries (DLLs). The option is equivalent to the
| NAME module statement, but uses different type names.

| Figure 51. /PMTYPE Parameters

| Type| Description| Equivalent NAME Statement
| Parameter

| PM| Presentation Manager application. The applica-
| tion uses the API provided by the Presentation
| Manager, and must run in the Presentation
| Manager environment.

| WINDOWAPI

| VIO| Application compatible with Presentation
| Manager. The application can run inside the
| Presentation Manager, or it can run in a separate
| screen group. An application can be of this type
| if it uses the proper subset of OS/2 video, key-
| board, and mouse functions supported in the
| Presentation Manager applications.

| WINDOWCOMPAT

| NOVIO| Application that is not compatible with the Presen-
| tation Manager and must run in a separate screen
| group from the Presentation Manager.

| NOTWINDOWCOMPAT

| /SECTION
|

| ┌ ┐─────────────
| 55─ ──/SECTION:name, ───

6
┴─attribute─ ────────────────────────────────────5%

| Default is: Depends on segment type

| Abbreviation is: /SEC

| Use /SECTION to specify memory-protection attributes for the name segment. You can
| specify the following attributes:

222 VisualAge COBOL Programming Guide

/SEC Option

| Letter Sets Attribute
| E EXECUTE
| R READ
| S SHARED
| W WRITE

| For example,

| /SEC:dseg1,RS

| sets the READ and SHARED attributes, but not the EXECUTE, or WRITE attributes, for
| the segment dseg1 in an .EXE file.

| Defaults

| Segments are assigned attributes by default, as follows:

| Segment Default Attributes

| Code segments EXECUTE, READ (ER)
| Correspond to the SEGMENTS attribute
| EXECUTEREAD.

| Data segments (in .EXE file) READ, WRITE (RW)
| Correspond to the SEGMENTS attribute
| READWRITE.

| Data segments (in .DLL file) READ, WRITE, SHARED (RWS)
| Correspond to the SEGMENTS attributes
| READWRITE and SHARED.

| CONST32_RO segment READ, SHARED (RS)
| Correspond to the SEGMENTS attributes
| READONLY and SHARED.

| You can also set these attributes, and other attributes, to segments using statements in
| a module definition file:

| CODE Sets default attributes for CODE segments
| DATA Sets default attributes for DATA segments
| SEGMENTS Sets attributes for specific segments

| Assignments given in a module definition file override any assignments made with
| /SECTION.

 Chapter 11. Setting Linker Options 223

/ST Option

| /SEGMENTS
|

| 55─ ──/SEGMENTS:number ───5%

| Default is: /SEGMENTS:256

| Abbreviation is: /SE

| Use /SEGMENTS to set the number of logical segments a program can have. You can
| set number to any value in the range 1 to 16375. See “Specifying Numeric Arguments”
| on page 209.

| For each logical segment, the linker must allocate space to keep track of segment infor-
| mation. By using a relatively low segment limit as a default (256), the linker is able to
| link faster and allocate less storage space.

| When you set the segment limit higher than 256, the linker allocates more space for
| segment information. This results in slower linking, but allows you to link programs with
| a large number of segments.

| For programs with fewer than 256 segments, you can improve link time and reduce
| linker storage requirements by setting number to the actual number of segments in the
| program.

| /STACK
|

| 55─ ──/STACK:size ──5%

| Default is: /STACK:32768 (32K)

| Abbreviation is: /ST

| Use /STACK to set the stack size (in bytes) of your program. The size must be an even
| number from ð to ðxFfffFffe. If you specify an odd number, it is rounded up to the
| next even number.

| You cannot specify a stack size in which the second most significant byte is either 02
| or 04 (in hex), because of a restriction in OS/2 2.0. The linker issues a warning, and
| adds 64k to the specified stack size to avoid this restriction.

| For example, if you specify /STACK:ðxððð2ðððð the linker adds 64k, which results in
| /STACK:ðxððð3ðððð

| Similarly, if you specify /STACK:ðx11ð41111 the linker adds 64k, which results in
| /STACK:ðx11ð51111

| If your program generates a stack-overflow message, use /STACK to increase the size of
| the stack.

224 VisualAge COBOL Programming Guide

/ST Option

| If your program uses very little stack space, you can save space by decreasing the
| stack size.

| If the executable is a visual application containing more than 10 windows, you should
| add about 10K to the stack size for each additional window.

| If your program uses a visual part containing more than 10 windows, then add about
| another 10K to the stack size for each additional window in that part. For example, if
| the most windows contained in any one part is 18, then specify /ST:1134688 (that is,
| (1024 × 10 × 8) + 32768).

| Note: Once the executable is produced, you can still change its stack size, using the
| EXEHDR utility in the Warp toolkit.

| /STACK is equivalent to the STACKSIZE statement in a module definition (.DEF) file. If
| you specify both the statement and the option, the statement value overrides the option
| value.

 Chapter 11. Setting Linker Options 225

Windows Linker Options

| Summary of Windows Linker Options

| Figure 52. Windows Linker Options Summary

| Option| Description| Default

| /?| Display help| None

| /ALIGNADDR| Set address alignment| /A:0x00010000

| /ALIGNFILE| Set file alignment| /A:512

| /BASE| Set preferred loading address| /BAS:0x00400000

| /CODE| Set section attributes for executable| /CODE:RX

| /DATA| Set section attributes for data| /DATA:RW

| /DBGPACK, /NODBGPACK| Pack debugging information| /NODB

| /DEBUG, /NODEBUG| Include debugging information| /NODEB

| /DEFAULTLIBRARYSEARCH,
| /NODEFAULTLIBRARYSEARCH
| Search default libraries| /DEF

| /DLL| Generate DLL| /EXEC

| /DLL| Specify an entry point in an executable file| None

| /EXECUTABLE| Generate .EXE file| /EXEC

| /EXTDICTIONARY, /NOEXTDICTIONARY| Use extended dictionary to search libraries| /EXT

| /EXTDICTIONARY, /NOEXTDICTIONARY| Do not relocate the file in memory| /NOFI

| /FORCE| Create executable output file even if errors are
| detected
| /NOFO

| /HEAP| Set the size of the progam heap| /HEAP:0x100000,0x1000

| /HELP| Display help| None

| /INCLUDE| Forces a reference to a symbol| None

| /INFORMATION, /NOINFORMATION| Display status of linking process| /NOIN

| /LINENUMBERS, /NOLINENUMBERS| Include line numbers in map file| /NOLI

| /LOGO, /NOLOGO| Display logo, echo response file| /LO

| /MAP, /NOMAP| Generate map file| /NOM

| /OUT| Name output file| Name of first .obj file

| /PMTYPE| Specify application type| /PMTYPE:VIO

| /SECTION| Set attributes for section| Set by /CODE and /DATA

| /SEGMENTS| Set maximum number of segments| /SE:256

| /STACK| Set stack size of application| /STACK:
| 0x100000,0x1000

| /STUB| Specify the name of the DOS stub file| None

| /SUBSYSTEM| Specify the required subsystem and version| /SUBSYSTEM:
| WINDOWS,4.0

| /VERBOSE| Display status of linking process| /NOV

| /VERSION| Write a version number in the run file| /VERSION:0.0

226 VisualAge COBOL Programming Guide

/A Option

| Windows Linker Options
| This section describes the linker options in alphabetical order.

| For each option, the description includes:

| � The syntax for specifying the option.

| � The default setting.

| � Any accepted abbreviations.

| � A description of the option and its parameters, and any interaction it may have with
| other options.

| /?
|

| 55──/?──5%

| Use /? to display a list of valid linker options. This option is equivalent to /HELP.

| /ALIGNADDR
|

| 55─ ──/ALIGNADDR:factor ──5%

| Default is: /ALIGNADDR:0X00010000

| Abbreviation is: /ALIGN

| Use /ALIGNADDR to set the address alignment for segments.

| The alignment factor determines where segments in the .EXE or .DLL file start. From
| the beginning of the file, the start of each segment is aligned at a multiple (in bytes) of
| the alignment factor. The alignment factor must be a power of 2, from 512 to 256M.

| /ALIGNFILE
|

| 55─ ──/ALIGNFILE:factor ──5%

| Default is: /ALIGNFILE:512

| Abbreviation is: /A

| Use /ALIGNFILE to set the file alignment for segments.

| The alignment factor determines where segments in the .EXE or .DLL file start. From
| the beginning of the file, the start of each segment is aligned at a multiple (in bytes) of
| the alignment factor. The alignment factor must be a power of 2, from 512 to 64K.

 Chapter 11. Setting Linker Options 227

/CODE Option

| /BASE
|

| 55─ ──/BASE: ──┬ ┬─address─────── ──5%
| └ ┘──@filename,key

| Default is: /BASE:0X00400000

| Abbreviations are: /BAS

| Use /BASE to specify the preferred load address for the first load segment of a .DLL file.

| Specifying @filename, key, in place of address, bases a set of programs (usually a set
| of DLLs) so they do not overlap in memory. filename is the name of a text file that
| defines the memory map for a set of files. key is a reference to a line in filename
| beginning with the specified key. Each line in the memory-map file has the syntax:

| key address maxsize

| Separate the elements with one or more spaces or tabs. The key is a unique name in
| the file. The address is the location of the memory image in the virtual address space.
| The maxsize is an amount of memory within which the image must fit. The linker will
| issue a warning when the memory image of the program exceeds the specified size. A
| comment in the memory-map file begins with a semicolon (;) and runs to the end of the
| line.

| /CODE
|

| ┌ ┐─────────────
| 55─ ──/CODE: ───

6
┴─attribute─ ──5%

| Default is: /CODE:RX

| CODE Description Abbreviations are: None

| Use /CODE to specify the default attributes for all code sections. Letters can be speci-
| fied in any order.

| Letter Attribute

| E or X EXECUTE

| R READ

| S SHARED

| W WRITE

| The default is /CODE:RX.

228 VisualAge COBOL Programming Guide

/DB, /NODB Options

| /DATA
|

| ┌ ┐─────────────
| 55─ ──/DATA: ───

6
┴─attribute─ ──5%

| Default is: /DATA:RW

| Abbreviations are: None

| Use /DATA to specify the default attributes for all data sections. Letters can be specified
| in any order.

| Letter Attribute

| E or X EXECUTE

| R READ

| S SHARED

| W WRITE

| The default is /DATA:RW.

| /DBGPACK, /NODBGPACK
|

| 55─ ──┬ ┬─/DBGPACK─── ───5%
| └ ┘─/NODBGPACK─

| Default is: /NODBGPACK

| Abbreviations are: /DB|/NODB

| Use /DBGPACK to eliminate redundant debug type information. The linker takes the
| debug type information from all object files and needed library components, and
| reduces the information to one entry per type. This results in a smaller executable
| output file, and can improve debugger performance.

| Performance Consideration: Generally, linking with /DBGPACK slows the linking
| process, because it takes time to pack the information. However, if there is enough
| redundant debug type information, /DBGPACK can actually speed up your linking,
| because there is less information to write to file.

| When you specify /DBGPACK, /DEBUG is turned on by default.

 Chapter 11. Setting Linker Options 229

/DEF, /NOD Options

| /DEBUG, /NODEBUG
|

| 55─ ──┬ ┬─/DEBUG─── ───5%
| └ ┘─/NODEBUG─

| Default is: /NODEBUG

| Abbreviations are: /D|/NODEB

| Use /DEBUG to include debug information in the output file, so you can debug the file
| with the debugger, or analyze its performance with Performance Analyzer. The linker
| will embed symbolic data and line number information in the output file.

| For debugging, specify the cob2 option -g.

| For the Performance Analyzer, compile the object files with the cob2 option -p.

| Note: Linking with /DEBUG increases the size of the executable output file.

| /DEFAULTLIBRARYSEARCH, /NODEFAULTLIBRARYSEARCH
|

| 55─ ──┬ ┬─/DEFAULTLIBRARYSEARCH─── ──┬ ┬────────── ────────────────────────5%
| └ ┘─/NODEFAULTLIBRARYSEARCH─ └ ┘──:library

| Default is: /DEFAULTLIBRARYSEARCH

| Abbreviations are: /DEF|/NOD

| Use /DEFAULTLIBRARYSEARCH to have the linker search the default libraries of object files
| when resolving references.

| If you specify a library with the option, the linker adds the library name to the list of
| default libraries. The default libraries for an object file are defined at compile time, and
| embedded in the object file. The linker searches the default libraries by default.

| Use /NODEFAULTLIBRARYSEARCH to tell the linker to ignore default libraries when it
| resolves external references. If you specify a library with the option, the linker ignores
| that default library, but searches the rest of the default libraries (and any others that are
| defined in the object files).

| If you specify /NODEFAULTLIBRARYSEARCH without specifying library, then you must explic-
| itly specify all the libraries you want to use, including IBM VisualAge COBOL runtime
| libraries.

230 VisualAge COBOL Programming Guide

/EXEC Option

| /DLL
|

| 55─ ──┬ ┬─/DLL──────── ──5%
| └ ┘─/EXECUTABLE─

| Default is: /EXECUTABLE

| Abbreviation is: /EXEC

| Use /DLL to identify the output file as a dynamic link library (.DLL file). The object files
| should be compiled with the cob2 option -dll.

| If you specify /DLL with /EXEC, only the last specified of the options takes effect.

| If you do not specify /DLL, or any of the other options above, then by default the linker
| produces an .EXE file (/EXEC).

| /ENTRY
|

| 55─ ──/ENTRY:name ──5%

| Default is: None

| Abbreviation is: /EN

| Use /ENTRY to specify an entry point (name of a routine or function) in an executable.

| /EXECUTABLE
|

| 55─ ──┬ ┬─/DLL──────── ──5%
| └ ┘─/EXECUTABLE─

| Default is: /EXECUTABLE

| Abbreviation is: /EXEC

| Use /EXEC to identify the output file as an executable program (.EXE file). The linker
| generates .EXE files by default.

| If you specify /EXEC with /DLL, only the last specified of the options takes effect.

| If you do not specify /EXEC or /DLL, then by default the linker produces an .EXE file.

 Chapter 11. Setting Linker Options 231

/FO Option

| /EXTDICTIONARY, /NOEXTDICTIONARY
|

| 55─ ──┬ ┬─/EXTDICTIONARY─── ───5%
| └ ┘─/NOEXTDICTIONARY─

| Default is: /EXTDICTIONARY

| Abbreviations are: /EXT|/NOE

| Use /EXTDICTIONARY to have the linker search the extended dictionaries of libraries
| when it resolves external references. The extended dictionary is a list of module
| relationships within a library. When the linker pulls in a module from the library, it
| checks the extended dictionary to see if that module requires other modules in the
| library, and then pulls in the additional modules automatically.

| The linker searches the extended dictionary by default, to speed up the linking process.

| Use /NOEXTDICTIONARY if you are defining a symbol in your object code that is also
| defined in one of the libraries you are linking to. Otherwise the linker issues an error
| because you have defined the same symbol in two different places. When you link with
| /NOEXTDICTIONARY, the linker searches the dictionary directly, instead of searching the
| extended dictionary. This results in slower linking, because references must be
| resolved individually.

| /FIXED, /NOFIXED
|

| 55─ ──┬ ┬─/FIXED─── ───5%
| └ ┘─/NOFIXED─

| Default is: /NOFIXED

| Abbreviations are: /FI|/NOFI

| Use /FIXED to tell the loader not to relocate a file in memory when the specified base
| address is not available.

| For more information on base addresses, see the /BASE linker option.

| /FORCE
|

| 55─ ──┬ ┬─/FORCE─── ───5%
| └ ┘─/NOFORCE─

| Default is: /NOFORCE

| Abbreviations are: /FO|/NOFO

232 VisualAge COBOL Programming Guide

/INC Option

| Use /FORCE to produce an executable output file even if there are errors during the
| linking process.

| By default, the linker does not produce an executable output file if it encounters an
| error.

| /HEAP
|

| 55─ ──/HEAP:reserve ──┬ ┬───────── ───────────────────────────────────────5%
| └ ┘──,commit

| Default is: /HEAP:0X100000,0X1000

| Abbreviation is: /HEA

| Use /HEAP to set the size of the program heap in bytes. The reserve argument sets the
| total virtual address space reserved. The commit sets the amount of physical memory
| to allocate initially. When commit is less than reserve, memory demands are reduced,
| but execution time can be slower.

| /HELP
|

| 55──/HELP───5%

| Default is: None

| Abbreviation is: /H

| Use /HELP to display a list of valid linker options. This option is equivalent to /?.

| /INCLUDE
|

| 55─ ──/INCLUDE:symbol ──5%

| Default is: None

| Abbreviation is: /INC

| Use /INCLUDE to force a reference to a symbol. The linker searches for an object
| module that defines the symbol.

 Chapter 11. Setting Linker Options 233

/LO, /NOL Options

| /INFORMATION, /NOINFORMATION

|

| 55─ ──┬ ┬─/INFORMATION─── ───5%
| └ ┘─/NOINFORMATION─

| Default is: /NOINFORMATION

| Abbreviations are: /I|/NOIN

| See the description of the /VERBOSE linker option.

| /LINENUMBERS, /NOLINENUMBERS
|

| 55─ ──┬ ┬─/LINENUMBERS─── ───5%
| └ ┘─/NOLINENUMBERS─

| Default is: /NOLINENUMBERS

| Abbreviations are: /L|/NOLI

| Use /LINENUMBERS to include source file line numbers and associated addresses in the
| map file. For this option to take effect, there must already be line number information
| in the object files you are linking.

| When you compile, use the cob2 option -qNUMBER to include line numbers in the
| object file (or the cob2 option -g, to include all debugging information).

| If you give the linker an object file without line number information, the /LINENUMBERS
| option has no effect.

| The /LINENUMBERS option forces the linker to create a map file, even if you specified
| /NOMAP.

| By default, the map file is given the same name as the output file, plus the extension
| .map. You can override the default name by specifying a map filename.

| /LOGO, /NOLOGO
|

| 55─ ──┬ ┬─/LOGO─── ──5%
| └ ┘─/NOLOGO─

| Default is: /LOGO

| Abbreviations are: /LO|/NOL

234 VisualAge COBOL Programming Guide

/OUT Option

| Use /NOLOGO to suppress the product information that appears when the linker starts.

| Specify /NOLOGO before the response file on the command line, or in the ILINK environ-
| ment variable. If the option appears in or after the response file, it is ignored.

| By default, the linker displays product information at the start of the linking process, and
| displays the contents of the response file as it reads the file.

| /MAP, /NOMAP
|

| 55─ ──┬ ┬| ─/MAP─ ──┬ ┬─────── ──5%
| │ │└ ┘──:name
| └ ┘─/NOMAP──────────

| Default is: /NOMAP

| Abbreviations are: /M|/NOM

| Use /MAP to generate a map file called name. The file lists the composition of each
| segment, and the public (global) symbols defined in the object files. The symbols are
| listed twice: in order of name and in order of address.

| If you do not specify a directory, the map file is generated into the current working
| directory. If you do not specify name, the map file has the same name as the execut-
| able output file, with the extension .map.

| By default, the linker does not produce a map file.

| /OUT
|

| 55─ ──/OUT:name ──5%

| Default is: Name of first .OBJ file with appropriate extension.

| Abbreviation is: /O

| Use /OUT to specify a name for the executable output file.

| If you do not provide an extension with name, then the linker provides an extension
| based on the type of file you are producing:

| File produced Default extension
| Executable program .EXE
| Dynamic link library .DLL

| If you do not use the /OUT option, then the linker uses the filename of the first object file
| you specified, with the appropriate extension.

 Chapter 11. Setting Linker Options 235

/SEC Option

| /PMTYPE
|

| 55─ ──/PMTYPE:type ───5%

| Default is: /PMTYPE:VIO

| Abbreviation is: /PM

| Use /PMTYPE to specify the type of .EXE file that the linker generates. Do not use this
| option when generating dynamic link libraries (DLLs).

| One of the following types must be specified:

| PM The executable must be run in a window.

| VIO The executable can be run either in a window or in a full screen.

| NOVIO The executable must not be run in a window; it must use a full screen.

| /SECTION
|

| ┌ ┐─────────────
| 55─ ──/SECTION:name, ───

6
┴─attribute─ ────────────────────────────────────5%

| Default is: Depends on segment type

| Abbreviation is: /SEC

| Use /SECTION to specify memory-protection attributes for the name section. name is
| case sensitive. You can specify the following attributes:

| Letter Sets Attribute
| E or X EXECUTE
| R READ
| S SHARED
| W WRITE

| For example,

| /SEC:dseg1,RS

| sets the READ and SHARED attributes, but not the EXECUTE, or WRITE attributes, for
| the section dseg1 in an .EXE file.

236 VisualAge COBOL Programming Guide

/ST Option

| Defaults

| Sections are assigned attributes by default, as follows:

| Segment Default Attributes

| Code sections EXECUTE, READ (ER)

| Data sections (in .EXE file) READ, WRITE (RW), not shared

| Data sections (in .DLL file) READ, WRITE, not shared

| CONST32_RO section READ, SHARED (RS)

| /SEGMENTS
|

| 55─ ──/SEGMENTS:number ───5%

| Default is: /SEGMENTS:256

| Abbreviation is: /SE

| Use /SEGMENTS to set the number of logical segments a program can have. You can
| set number to any value in the range 1 to 16375. See “Specifying Numeric Arguments”
| on page 209.

| For each logical segment, the linker must allocate space to keep track of segment infor-
| mation. By using a relatively low segment limit as a default (256), the linker is able to
| link faster and allocate less storage space.

| When you set the segment limit higher than 256, the linker allocates more space for
| segment information. This results in slower linking, but allows you to link programs with
| a large number of segments.

| For programs with fewer than 256 segments, you can improve link time and reduce
| linker storage requirements by setting number to the actual number of segments in the
| program.

| /STACK
|

| 55─ ──/STACK:reserve ──┬ ┬───────── ──────────────────────────────────────5%
| └ ┘──,commit

| Default is: /STACK:0X100000,0X1000

| Abbreviation is: /ST

| Use /STACK to set the stack size (in bytes) of your program. The size must be an even
| number from ð to ðxFfffFffe. If you specify an odd number, it is rounded up to the
| next even number.

 Chapter 11. Setting Linker Options 237

/VERB, /NOV Option

| reserve indicates the total virtual address space reserved. commit sets the amount of
| physical memory to allocate initially. When commit is less than reserve, memory
| demands are reduced, although execution time may be slower.

| /STUB
|

| 55─ ──/STUB:filename ───5%

| Default is: None

| Abbreviation is: /STU

| Use /STUB to specify the name of the DOS executable at the beginning of the output file
| created.

| By default, the linker defines its own stub.

| /SUBSYSTEM
|

| 55─ ──/SUBSYSTEM:subsystem ──┬ ┬──────────────────── ─────────────────────5%
| └ ┘──,major ──┬ ┬────────
| └ ┘──.minor

| Default is: /SUBSYSTEM:WINDOWS,4.0

| Abbreviation is: /SU

| Use /SUBSYSTEM to specify the subsystem and version required to run the program. The
| major and minor arguments are optional and specify the minimum required version of
| the subsystem. The major and minor arguments are integers in the range 0 to 65535.

| Subsystem| Major.Minor| Description
| WINDOWS| 3.10| A graphical application that uses the Graphical Device Interface
| (GDI) API.
| CONSOLE| 3.10| A character-mode application that uses the Console API.

| /VERBOSE
|

| 55─ ──┬ ┬─/VERBOSE─── ───5%
| └ ┘─/NOVERBOSE─

| Default is: /NOVERBOSE

| Abbreviations are: /VERB|/NOV

| Use /VERBOSE to have the linker display information about the linking process as it
| occurs, including the phase of linking and the names and paths of the object files being
| linked.

238 VisualAge COBOL Programming Guide

/VER Option

| If you are having trouble linking because the linker is finding the wrong files or finding
| them in the wrong order, use /VERBOSE to determine the locations of the object files
| being linked and the order in which they are linked.

| The output from this option is sent to stdout . You can redirect the output to a file using
| Windows redirection symbols.

| /VERBOSE is the same as /INFORMATION.

| /VERSION
|

| 55─ ──/VERSION:major ──┬ ┬──────── ───────────────────────────────────────5%
| └ ┘──.minor

| Default is: /VERSION:0.0

| Abbreviation is: /VER

| Use /VERSION to write a version number in the header of the run file. The major and
| minor arguments are integers in the range 0 to 65535.

 Chapter 11. Setting Linker Options 239

Syntax of Run-time Options

 Chapter 12. Run-Time Options

The following run-time options are supported:

 � CHECK
 � DEBUG
 � ERRCOUNT
 � FILESYS
 � TRAP
 � UPSI

 Syntax
Syntax of the run-time options follows. See “Definitions of COBOL Environment
Variables” on page 135 to see where to specify them.

 CHECK
CHECK flags checking errors in an application. In COBOL, index, subscript, and refer-
ence modification ranges are checking errors.

 ┌ ┐─ON──
55──CHECK──(─ ──┼ ┼───── ─)──5%
 └ ┘─OFF─

Default is: CHECK(ON).

Abbreviation is: CH

ON
Specifies that run-time checking is performed.

OFF
Specifies that run-time checking is not performed.

 Usage Note
CHECK(ON) has no effect if NOSSRANGE was in effect at compile time.

 Performance Consideration
If your COBOL program was compiled with SSRANGE, and you are not testing or
debugging an application, performance improves when you specify CHECK(OFF).

 DEBUG
DEBUG specifies whether the COBOL debugging sections specified by the USE FOR
DEBUGGING declarative are active.

240  Copyright IBM Corp. 1996, 1998

Syntax of Run-time Options

 ┌ ┐─DEBUG───
55─ ──┴ ┴─NODEBUG─ ──5%

Default is: NODEBUG.

DEBUG
Activates the debugging sections.

NODEBUG
Suppresses the debugging sections.

 Performance Consideration
To improve performance, use this option only while debugging.

 ERRCOUNT
ERRCOUNT specifies how many conditions of severity 1 (W-level) can occur before the
run-unit terminates abnormally. Any severity 2 (E-level) or higher will result in termi-
nation of the run-unit independent of the ERRCOUNT option.

55──ERRCOUNT──(─ ──┬ ┬──────── ─)──5%
 └ ┘─number─

Default: ERRCOUNT(20).

number
The number of severity 1 conditions per individual thread that can occur while this
run-unit is running. If the number of conditions exceeds number, the run-unit ter-
minates abnormally.

 FILESYS
FILESYS specifies the file system used for files for which no explicit file system
selections are made, either through an ASSIGN or an evironment variable. The option
applies to sequential, relative, and indexed files. For details about using FILESYS for
access to CICS files, see “Accessing Btrieve Data” on page 417.

 ┌ ┐─VSA─
55──FILESYS──(─ ──┼ ┼─BTR─ ─)──5%
 └ ┘─STL─

Default is : FILESYS(VSA) for OS/2 and FILESYS(STL) for Windows.

VSA The file system is VSAM.

BTR The file system is Btrieve.

 Chapter 12. Run-Time Options 241

Syntax of Run-time Options

STL The file system is STL.

Only the first three characters of the file system identifier are used and the identifier is
case insensitive. For example, the following examples are all valid specifications for
VSAM:

 � FILESYS(VSA)
 � FILESYS(vSAM)
 � FILESYS(vsa)

 TRAP
TRAP indicates whether COBOL intercepts exceptions.

 ┌ ┐─ON──
55──TRAP──(─ ──┼ ┼───── ─)───5%
 └ ┘─OFF─

Default is : TRAP(ON).

Note : If TRAP(OFF) is in effect and you do not supply your own trap handler to handle
exceptional conditions, the conditions will result in a default action by the operating
system. For example, if your program attempts to store into an illegal location, the
default system action is to issue a message and terminate the process.

ON
Activates COBOL interception of exceptions.

OFF
Deactivates COBOL interception of exceptions.

 Usage Notes
� Use TRAP(OFF) only when you need to analyze a program exception before

COBOL handles it.

� When you specify TRAP(OFF) in a non-CICS environment, no exception handlers
are established.

� Running with TRAP(OFF) (for exception diagnosis purposes) can cause many side
effects, because COBOL requires TRAP(ON). When you run with TRAP(OFF), you
can get side effects even if you do not encounter a software-raised condition,
program check, or abend. If you do encounter a program check or an abend with
TRAP(OFF) in effect, the following side effects can occur:

– Resources obtained by COBOL are not freed.

– Files opened by COBOL are not closed, so records might be lost.

– No messages or dump output are generated.

The run-unit terminates abnormally if such conditions are raised.

242 VisualAge COBOL Programming Guide

Syntax of Run-time Options

 UPSI
UPSI sets the eight UPSI switches on or off for applications that use COBOL routines.

55──UPSI──(─ ──┬ ┬────────── ─)──5%
 └ ┘─nnnnnnnn─

Default is : UPSI(00000000).

nnnnnnnn
n represents one UPSI switch between 0 and 7, the leftmost n representing the
first switch. Each n can either be 0 (off) or 1 (on).

 Chapter 12. Run-Time Options 243

Using Source Language to Debug

 Chapter 13. Debugging Techniques

COBOL provides several language elements and facilities to help you determine the
cause of problems in program behavior. This chapter focuses on how to use source
language for debugging and describes the compiler options that make debugging
easier.

This chapter describes only COBOL source language debugging techniques. The
IDBUG Debugger is a graphical debugging tool you will find useful for debugging pro-
grams. For help with the debugger, refer to its online help and information.

Using Source Language to Debug
You can use several COBOL language features to pinpoint the cause of a failure in
your program. If the program is part of a large application already in production, you
will not want to re-compile and run the program again to debug. Instead, you can write
a small test case to simulate the part of the program that failed and code some of these
debugging features of the COBOL language in the test case to help detect the exact
cause of the problem:

 � DISPLAY statements.
 � USE EXCEPTION/ERROR declaratives.
 � Class test.
� INITIALIZE or SET verbs.

 � Scope terminators.
� File status keys.
� USE FOR DEBUGGING declaratives.

The rules for using each of these language features are explained in IBM COBOL Lan-
guage Reference.

Tracing Program Logic (DISPLAY Statements)
You can use the interactive debugger available on your platform to step through your
program (compiled with the TEST option), or adding DISPLAY statements can help you
trace through the logic of the program. If, for example, you determine that the problem
appears in an EVALUATE statement or in a set of nested IF statements, DISPLAY state-
ments in each path will show you how the logic flow is working. If you determine that
the problem is being caused by the way a numeric value is calculated, you can use
DISPLAY statements to check the value of some of the interim results.

For example, to determine whether a particular routine started and finished you might
insert code like this into your program:

DISPLAY "ENTER CHECK PROCEDURE"

 .

. (checking procedure routine)

 .

DISPLAY "FINISHED CHECK PROCEDURE"

244  Copyright IBM Corp. 1996, 1998

Using Source Language to Debug

After you are sure that the routine works correctly, you can put asterisks in column 7 of
the DISPLAY statement lines, which converts them to comment lines. Alternatively, you
might put a 'D' in column 7 of your DISPLAY (or any other debugging) statements. If
you include the WITH DEBUGGING MODE clause in the ENVIRONMENT DIVISION, the 'D'
in column 7 will be ignored and the DISPLAY statements will be implemented. Without
the DEBUGGING MODE clause, the 'D' in column 7 makes the statement a comment.

Before you put the program into production, delete all the debugging aids you used and
re-compile the program. The program will run more efficiently and use less storage.

CICS: The DISPLAY statement cannot be used in programs running under CICS.

Handling Input/Output Errors (USE EXCEPTION/ERROR Declaratives)
If you have determined that the problem lies in one of the I/O procedures in your
program, you can include the USE EXCEPTION/ERROR declarative to help debug the
problem.

If the file fails to open for some reason, the appropriate EXCEPTION/ERROR declarative
will be performed. The appropriate declarative might be a specific one for the file or
one provided for the different open attributes—INPUT, OUTPUT, I/O, or EXTEND.

Each USE AFTER STANDARD ERROR statement must be coded in a separate section.
This section(s) must be coded immediately after the DECLARATIVE SECTION keyword of
the PROCEDURE DIVISION. The rules for coding these statements are provided in IBM
COBOL Language Reference.

Validating Data (Class Test)
If you suspect that your program is trying to perform arithmetic on non-numeric data or
is somehow receiving the wrong type of data on an input record, you can use the class
test to validate the type of data. The class test checks whether data is alphabetic,
alphabetic-lower, alphabetic-upper, MBCS, KANJI, or numeric.

Assessing Switch Problems (INITIALIZE or SET Statements)
Using INITIALIZE or SET statements to initialize a table or variable is useful when you
suspect that the problem might be caused by residual data left in those fields. If the
problem you are having happens intermittently and not always with the same data, the
problem could be that a switch is not initialized but generally is set to the right value (0
or 1) by accident. By including a SET statement to ensure that the switch is initialized,
you can either determine that the uninitialized switch is the problem or remove that as a
possible cause.

Improving Program Readability (Explicit Scope Terminators)
Scope terminators can help you in debugging because they indicate clearly the end of a
statement. The logic of your program will become more apparent, and therefore easier
to trace, if you use scope terminators.

 Chapter 13. Debugging Techniques 245

Using Source Language to Debug

Finding Input/Output Errors (File Status Keys)
File status keys can help you determine if your program errors are due to the logic of
your program or if they are I/O errors occurring on the storage media.

To use file status keys as a debugging aid, include a test after each I/O statement to
check for a value other than zero in the status key. If the value is other than zero, you
can expect that you will receive an error message. You can use a nonzero value as an
indication that you should look at the way the I/O procedures in the program were
coded. You can also include procedures to correct the error based on the value of the
status key.

The status key values and their associated meanings are described in the IBM COBOL
Language Reference.

Generating Information about Procedures (USE FOR DEBUGGING Declaratives)
USE FOR DEBUGGING declaratives are another way to generate information about your
program or test case and how it is running. The declarative allows you to include state-
ments in the program and indicate when they should be performed when you run your
compiled program. For example, if you want to check how many times a procedure is
run, you could include a debugging procedure in the USE FOR DEBUGGING declarative
and use a counter to keep track of the number of times control passes to that proce-
dure.

Rules for Debugging Statements and Debugging Lines
Each USE FOR DEBUGGING declarative must be coded in a separate section. This
section or these sections must be coded in the DECLARATIVES SECTION of the PROCE-
DURE DIVISION. The rules for coding them are provided in IBM COBOL Language Ref-
erence.

You can have either debugging lines or debugging statements or both in your program.
Debugging lines are statements in your program that are identified by a 'D' in column 7.
Debugging statements are the statements coded in the DECLARATIVES SECTION of the
PROCEDURE DIVISION.

� The debugging statements in a USE FOR DEBUGGING declarative must:

– Be only in a DECLARATIVE SECTION.
– Follow the header USE FOR DEBUGGING.
– Be only in the outermost program; they are not valid in nested programs.

Debugging sections are also never triggered by procedures contained in
nested programs.

� Debugging lines must have a D in column 7 to identify them.

To use debugging lines in your program, you must include the WITH DEBUGGING MODE
clause on the SOURCE-COMPUTER line in the ENVIRONMENT DIVISION.

To use debugging sections in your program, you must include both:

� The WITH DEBUGGING MODE clause

246 VisualAge COBOL Programming Guide

Using Source Language to Debug

� The DEBUG run-time option

See the IBM COBOL Language Reference appendix on source-language debugging for
more details.

Options Note: The TEST compiler option and the WITH DEBUGGING MODE phrase
are mutually exclusive, with the WITH DEBUGGING MODE phrase taking precedence.

USE FOR DEBUGGING Example
The program segments in Figure 53 on page 248 show what kind of statements are
needed to use a DISPLAY statement and a USE FOR DEBUGGING declarative to test a
program. The DISPLAY statement is used to generate information on the terminal or on
the output file The USE FOR DEBUGGING declarative is used with a counter to show
how many times a routine was actually run.

Use the adding-to-a-counter technique to check:

1. How many times a PERFORM was executed. You will know whether a particular
routine is being used and whether the control structure you are using is correct.

2. How many times a loop routine actually executes. This will tell you whether the
loop is executing and whether the number you have used for the loop is accurate.

 Chapter 13. Debugging Techniques 247

Using Source Language to Debug

 Environment Division

 .

 .

 .

 Data Division.

 .

 .

 .

 Working-Storage Section.

 .

. (other entries your program needs)
 .

 ð1 Trace-Msg PIC X(3ð) Value " Trace for Procedure-Name : ".

 ð1 Total PIC 9(9) Value 1.

 .

 .

 .

 Procedure Division.

 Declaratives.

 Debug-Declaratives Section.

Use For Debugging On Some-Routine.

 Debug-Declaratives-Paragraph.

Display Trace-Msg, Debug-Name, Total.

 End Declaratives.

 Main-Program Section.

 .

. (source program statements)
 .

 Perform Some-Routine.

 .

. (source program statements)
 .

 Stop Run.

 Some-Routine.

 .

. (whatever statements you need in this paragraph)
 .

Add 1 To Total.

 Some-Routine-End

Figure 53. Example of Using the USE FOR DEBUGGING EXAMPLE

In Figure 53, the DISPLAY statement coded in the DECLARATIVES SECTION will issue
this message:

Trace For Procedure-Name : Some-Routine 22

every time the procedure SOME-ROUTINE is run. The number at the end of the message,
22, is the value accumulated in the data-item, TOTAL; it shows the number of times
SOME-ROUTINE has been run. The statements in the debugging declarative are per-
formed before the named procedure is run.

248 VisualAge COBOL Programming Guide

Using Compiler Options for Debugging

Another Use for the DISPLAY Statement: You can also use the DISPLAY statement
technique shown above to trace program execution and show the flow through your
program. You do this by changing the USE FOR DEBUGGING declarative in the DECLAR-
ATIVES SECTION to:

USE FOR DEBUGGING ON ALL PROCEDURES.

and dropping the word TOTAL from the DISPLAY statement. Now, a message will be
displayed before every non-debugging procedure in the outermost program is run.

Using Compiler Options for Debugging

The FLAG Option
This section discusses the compiler options that generate information to help you find
coding mistakes and other errors in your program.

The FLAG option lets you select the level of error to be diagnosed during compilation
and indicate where the syntax-error messages appear in the listing. Use FLAG(I) or
FLAG(I,I) to be notified of all errors in your program.

Code in the first parameter the lowest severity level of the syntax-error messages to be
issued. You can code in the optional second parameter the lowest level of the syntax
messages to be embedded in the source listing.

If you specify:

I (informational)
You get all the messages. I-level messages generate a return code of zero; RC=0.

W (warning)
You get all the warning messages and those of a higher severity. W-level errors
generate a return code of four; RC=4.

E (error)
You get all error messages and those of a higher severity. E-level errors generate
a return code of eight; RC=8.

S (severe)
You get all severe and U (unrecoverable) messages. S-level errors generate a
return code of twelve; RC=12.

U (unrecoverable)
You get only unrecoverable messages. U-level errors generate a return code of
sixteen; RC=16.

When you specify the second parameter, the syntax-error messages are embedded in
the source listing at the point where the compiler had enough information available to
detect the error. All embedded messages, except those issued by the library compiler
phase, will directly follow the statement to which they refer. The number of the state-
ment containing the error is also included with the message. Embedded messages are
repeated with the rest of the diagnostic messages following the source listing.

 Chapter 13. Debugging Techniques 249

Using Compiler Options for Debugging

Embedded Messages:

1. If NOSOURCE is one of your options, the syntax-error messages are included only
in the list at the end of the listing.

2. U-level errors are not embedded in the source listing, as an error of this severity
terminates the compilation.

For an illustration of how messages identifying syntax errors are imbedded in the
source listing, see Figure 54 on page 250.

Note that some messages in the summary apply to more than one COBOL statement.

DATA VALIDATION AND UPDATE PROGRAM FLAGOUT Date ð2/27/1998 Time 12:26:53 Page 26

 LineID PL SL ----+-\A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Map and Cross Reference

.

.

.

 ððð977 /

 ððð978 \\\

ððð979 \\\ I N I T I A L I Z E P A R A G R A P H \\

ððð98ð \\\ Open files. Accept date, time and format header lines. \\

 ððð981 IA469ð\\\ Load location-table. \\

 ððð982 \\\

 ððð983 1ðð-initialize-paragraph.

ððð984 move spaces to ws-transaction-record IMP 339

ððð985 move spaces to ws-commuter-record IMP 315

ððð986 move zeroes to commuter-zipcode IMP 326

ððð987 move zeroes to commuter-home-phone IMP 327

ððð988 move zeroes to commuter-work-phone IMP 328

ððð989 move zeroes to commuter-update-date IMP 332

ððð99ð open input update-transaction-file 2ð3

==ððð99ð==> IGYPS2ð52-S An error was found in the definition of file "LOCATION-FILE". The

reference to this file was discarded.

 ððð991 location-file 192

 ððð992 i-o commuter-file 18ð

 ððð993 output print-file 216

ððð994 if loccode-file-status not = "ðð" or 248

ððð995 update-file-status not = "ðð" or 247

ððð996 updprint-file-status not = "ðð" 249

ððð997 1 display "Open Error ..."

ððð998 1 display " Location File Status = " loccode-file-status 248

ððð999 1 display " Update File Status = " update-file-status 247

ðð1ððð 1 display " Print File Status = " updprint-file-status 249

 ðð1ðð1 1 perform 9ðð-abnormal-termination 1433

 ðð1ðð2 end-if

ðð1ðð3 IA476ð if commuter-file-status not = "ðð" and not = "97" 24ð

 ðð1ðð4 1 display "1ðð-OPEN"

ðð1ðð5 1 move 1ðð to comp-code 23ð

 ðð1ðð6 1 perform 5ðð-vsam-error 1387

ðð1ðð7 1 display "Commuter File Status (OPEN) = "

 ðð1ðð8 1 commuter-file-status 24ð

 ðð1ðð9 1 perform 9ðð-abnormal-termination 1433

 ðð1ð1ð IA479ð end-if

Figure 54 (Part 1 of 3). FLAG(I,I) Output

250 VisualAge COBOL Programming Guide

Using Compiler Options for Debugging

ðð1ð11 accept ws-date from date UND

==ðð1ð11==> IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

ðð1ð12 IA481ð move corr ws-date to header-date UND 463

==ðð1ð12==> IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

ðð1ð13 accept ws-time from time UND

==ðð1ð13==> IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

ðð1ð14 IA483ð move corr ws-time to header-time UND 457

==ðð1ð14==> IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

 ðð1ð15 IA484ð read location-file 192

.

.

.

DATA VALIDATION AND UPDATE PROGRAM FLAGOUT Date ð2/27/1998 Time 12:26:53 Page 69

LineID Message code Message text

192 IGYDS1ð5ð-E File "LOCATION-FILE" contained no data record descriptions. The file definition was discarded.

899 IGYPS2ð52-S An error was found in the definition of file "LOCATION-FILE". The reference to this file was discarded.

Same message on line: 99ð

 1ð11 IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

Same message on line: 1ð12

 1ð13 IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

Same message on line: 1ð14

 1ð15 IGYPS2ð53-S An error was found in the definition of file "LOCATION-FILE". This input/output statement was discarded.

Same message on line: 1ð27

 1ð26 IGYPS2121-S "LOC-CODE" was not defined as a data-name. The statement was discarded.

 12ð9 IGYPS2121-S "COMMUTER-SHIFT" was not defined as a data-name. The statement was discarded.

Same message on line: 123ð

 121ð IGYPS2121-S "COMMUTER-HOME-CODE" was not defined as a data-name. The statement was discarded.

Same message on line: 1231

 1212 IGYPS2121-S "COMMUTER-NAME" was not defined as a data-name. The statement was discarded.

Same message on line: 1233

 1213 IGYPS2121-S "COMMUTER-INITIALS" was not defined as a data-name. The statement was discarded.

Same message on line: 1234

 1223 IGYPS2121-S "WS-NUMERIC-DATE" was not defined as a data-name. The statement was discarded.

Figure 54 (Part 2 of 3). FLAG(I,I) Output

 Chapter 13. Debugging Techniques 251

Using Compiler Options for Debugging

Messages Total Informational Warning Error Severe Terminating

Printed: 19 1 18

\ Statistics for COBOL program FLAGOUT:

\ Source records = 1755

\ Data Division statements = 279

\ Procedure Division statements = 479

End of compilation 1, program FLAGOUT, highest severity: Severe.

Return code 12

Figure 54 (Part 3 of 3). FLAG(I,I) Output

The NOCOMPILE Option
Use the NOCOMPILE option to produce a listing that will help you find your COBOL
coding mistakes, such as missing definitions, improperly defined data names, and dupli-
cate data names. You can use NOCOMPILE two ways: with or without parameters.

Using NOCOMPILE with Parameters
When you use NOCOMPILE(x), where x is one of the error levels, your program will be
compiled, if all the errors are of a lower severity than the x level. If an error of x level
or higher occurs, the compilation stops and your program will be syntax-checked only.
You will receive a source listing if you have specified the SOURCE option.

Using NOCOMPILE without Parameters
When you use NOCOMPILE without parameters, the compiler only syntax-checks the
source program. If you have also specified the SOURCE option, the compiler will
produce a listing after the syntax-checking is completed. The compiler does not
produce object code when NOCOMPILE without parameters is in effect.

The following compiler options are suppressed when you use NOCOMPILE without
parameters: LIST, OBJECT, OPTIMIZE, SSRANGE, and TEST.

The SEQUENCE Option
The SEQUENCE option tells the compiler to check your source program and flag state-
ments that are out of sequence. You can use this option to tell you if a section of your
source program was moved or deleted accidentally.

When you use SEQUENCE, the compiler checks the source statement numbers you
have supplied to see if they are in ascending order. Two asterisks are placed along-
side any statement numbers out of sequence, and the total number of these statements
is printed out as the first line of the diagnostics following the source listing.

The XREF Option
The XREF(FULL) option tells the compiler to generate a sorted cross-reference listing of
data-names, procedure-names, and program-names. The cross-reference will include
the line number where the data-name, procedure-name, or program-name was defined
as well as the line numbers of all references.

You can use the cross-reference listing produced by the XREF option to find out where
a data-name, procedure-name, or program-name was defined and referenced.

252 VisualAge COBOL Programming Guide

Using Compiler Options for Debugging

The XREF(SHORT) option allows you to control the cross-reference listing by printing
only the explicitly referenced variables.

When you use both the XREF (with FULL or SHORT) and the SOURCE options, you will
get a modified cross-reference printed to the right of the source listing. This embedded
cross-reference gives the line number where the data-name or procedure-name was
defined.

For more information on the XREF option and some example listings, see “A Data-
Name, Procedure-Name, and Program-Name Cross-Reference Listing” on page 263.

The MAP Option
Use the MAP option to produce a listing of the items you defined in the DATA DIVISION,
plus all items implicitly declared.

For more information on the MAP option, see “Data Map Listing” on page 258.

Embedded Map Summary
When you use the MAP option, an embedded MAP summary is generated to the right of
the COBOL source data declaration. An embedded MAP summary contains condensed
data MAP information. For more information, see “Embedded MAP Summary” on
page 259.

The SSRANGE Option
Use the SSRANGE compiler option to check:

� Subscripted or indexed data references.

The subscripted or indexed data reference is checked to determine if the effective
address of the desired element is within the maximum boundary of the specified
table.

� Variable-length data references (a reference to a data item that contains an
OCCURS DEPENDING ON clause).

The variable-length data reference is checked to determine if the actual length is
positive and within the maximum defined length for the group data item.

� Reference-modified data references.

The reference-modified data reference is checked to determine if the offset and
length are positive and the sum of the offset and length are within the maximum
length for the data item.

When the SSRANGE option is specified, checking is not performed until run time and
then, only if both of the following are true:

� The COBOL statement containing the indexed, subscripted, variable-length, or
reference-modified data item is actually performed.

� The CHECK run-time option is ON at run time.

 Chapter 13. Debugging Techniques 253

Getting Useful Listing Components

If any check finds that an address is generated that is outside of the address range of
the group data item containing the referenced data, an error message will be generated
and the program will stop running. The error message identifies the table or identifier
that was being referenced and the line number in the program where the error hap-
pened. Additional information is provided depending on the type of reference that
caused the error.

If all subscripts, indices, or reference modifiers are literals in a given data reference and
they result in a reference outside of the data item, the error will be diagnosed at
compile time, regardless of the setting of the SSRANGE compiler option.

Performance Note: SSRANGE can cause the performance of your program to diminish
somewhat because of the extra overhead needed to check each subscripted or indexed
item.

The TEST Option
On the mainframe, you select the TEST option to prepare your program for use with the
debugger. IBM VisualAge COBOL includes a graphical debugger. However, rather
than use the TEST option to prepare your executable COBOL program for use with the
debugger, you can use the -g option of the cob2 command (see “Compiling and Linking
Programs” on page 142).

Getting Useful Listing Components
This section introduces the different types of compiler listings produced by COBOL.
The type of listing produced by the compiler depends on which compiler options you
use.

Note: The listing produced by the compiler is not a programming interface and is
subject to change.

After reading this section you should be familiar with each type of output; you will know
how to request each type and what kind of information is provided in the output.

A Short Listing—the Bare Minimum
If you do not specify any compiler options and the default options are NOSOURCE,
NOXREF, NOVBREF, NOMAP, NOOFFSET, and NOLIST, or if all the compiler diagnostic
options have been turned off, you will get a short listing.

The short listing contains diagnostic messages about the compilation, a list of the
options in effect for the program, and statistics about the content of the program.
Figure 55 on page 255 is an example of a short listing.

The listing is explained after Figure 55, and the numbers used in the explanation corre-
spond to those in the figure. (For illustrative purposes, some errors that cause diag-
nostic messages to be issued were deliberately introduced.)

254 VisualAge COBOL Programming Guide

Getting Useful Listing Components

PP 5639-B92 IBM VisualAge COBOL (OS/2) 2.2 Date ð2/27/1998 Time 12:26:53 Page 1 .1/
Invocation parameters: .2/
quote

PROCESS(CBL) statements:

CBL FLAG(I,I),MAP,TEST

CBL NONUMBER,QUOTE,SEQ,XREF,VBREF .3/
Options in effect: .4/
 ADATA

 QUOTE

 BINARY(NATIVE)

 CALLINT(SYSTEM,NODESCRIPTOR)

 CHAR(NATIVE)

 NOCICS

 COLLSEQ(BINARY)

 NOCOMPILE(S)

 NOCURRENCY

| NODATEPROC

 NODYNAM

 ENTRYINT(SYSTEM)

 EXIT(NOINEXIT,NOPRTEXIT,NOLIBEXIT,ADEXIT(IWZRMGUX))

 FLAG(I,I)

 NOFLAGSTD

 FLOAT(NATIVE)

 NOIDLGEN

 LIB

 LINECOUNT(6ð)

 NOLIST

 MAP

 NONUMBER

 NOOPTIMIZE

 PGMNAME(LONGUPPER)

 PROBE

 NOPROFILE

 SEPOBJ

 SEQUENCE

 SIZE(2ð97152)

 SOURCE

 SPACE(1)

 SQL

 NOSSRANGE

 TERM

 TEST

 NOTHREAD

 NOTILED

 TRUNC(STD)

 NOTYPECHK

 VBREF

 NOWORD

 XREF(FULL)

| YEARWINDOW(19ðð)

 ZWB

Figure 55 (Part 1 of 2). Example of a Short Listing

 Chapter 13. Debugging Techniques 255

Getting Useful Listing Components

DATA VALIDATION AND UPDATE PROGRAM .5/ SLISTING Date ð2/27/1998 Time 12:26:53 Page 2

LineID Message code Message text .6/

IGYDSð139-W Diagnostic messages were issued during processing of compiler options. These messages are

located at the beginning of the listing.

193 IGYDS1ð5ð-E File "LOCATION-FILE" contained no data record descriptions. The file definition was discarded.

889 IGYPS2ð52-S An error was found in the definition of file "LOCATION-FILE". The reference to this file

 was discarded.

Same message on line: 983

993 IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.

Same message on line: 994

995 IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.

Same message on line: 996

997 IGYPS2ð53-S An error was found in the definition of file "LOCATION-FILE". This input/output statement

 was discarded.

Same message on line: 1ðð9

 1ðð8 IGYPS2121-S "LOC-CODE" was not defined as a data-name. The statement was discarded.

 1219 IGYPS2121-S "COMMUTER-SHIFT" was not defined as a data-name. The statement was discarded.

Same message on line: 124ð

 122ð IGYPS2121-S "COMMUTER-HOME-CODE" was not defined as a data-name. The statement was discarded.

Same message on line: 1241

 1222 IGYPS2121-S "COMMUTER-NAME" was not defined as a data-name. The statement was discarded.

Same message on line: 1243

 1223 IGYPS2121-S "COMMUTER-INITIALS" was not defined as a data-name. The statement was discarded.

Same message on line: 1244

 1233 IGYPS2121-S "WS-NUMERIC-DATE" was not defined as a data-name. The statement was discarded.

Messages Total Informational Warning Error Severe Terminating .7/

Printed: 21 2 1 18

\ Statistics for COBOL program SLISTING: .8/
Source records = 1765

Data Division statements = 277

Procedure Division statements = 513

End of compilation 1, program SLISTING, highest severity: Severe. .9/
Return code 12

Figure 55 (Part 2 of 2). Example of a Short Listing

.1/ COBOL default page header, including compiler level information from the
LVLINFO installation time compiler option.

.2/ Message about options passed to the compiler at compiler invocation. This
message does not appear if no options were passed.

.3/ Options coded in the PROCESS (or CBL) statement.

.4/ Status of options at the start of this compilation.

256 VisualAge COBOL Programming Guide

Getting Useful Listing Components

.5/ Customized page header resulting from the COBOL program TITLE statement.

.6/ Program diagnostics. The first message will refer you to the library phase diag-
nostics, if there were any. Diagnostics for the library phase are always pre-
sented at the beginning of the listing.

.7/ Count of diagnostic messages in this program, grouped by severity level.

.8/ Program statistics for the program SLISTING.

.9/ Program statistics for the compilation unit. When you perform a batch compila-
tion (multiple outermost COBOL programs in a single compilation), the return
code is the highest message severity level for the entire compilation.

A Listing of Your Source Code—for Historical Records
By using the SOURCE compiler option, you request a copy of your source code to be
included with the compiler output. You will want this output for testing and debugging
your program—and as an historical record when the program is completely debugged.
Figure 56 shows an example of SOURCE output.

Using Your Own Line Numbers
The NUMBER compiler option tells the compiler to use your line numbers in the com-
piled program. When you use the NUMBER option, the compiler does a sequence
check of your source statement line numbers in columns 1 through 6 as the statements
are read in. When a line number is found to be out of sequence, the compiler assigns
to it a number with a value one higher than the line number of the preceding statement.
The new value is flagged with two asterisks. A diagnostic message indicating an out of
sequence error is also included in the compilation listing.

Figure 56 shows an example of the output produced by the NUMBER compiler option.
In the portion of the listing shown, the programmer numbered two of the statements out
of sequence.

DATA VALIDATION AND UPDATE PROGRAM .1/ IGYTCARA Date ð2/27/1998 Time 12:26:53 Page 22

 LineID PL SL ----+-\A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Cross-Reference .2/
 .3/ .4/ .5/
 ð87ððð/\\

 ð871ðð\\\ D O M A I N L O G I C \\

 ð872ðð\\\ \\

ð873ðð\\\ Initialization. Read and process update transactions until \\

ð874ðð\\\ EOE. Close files and stop run. \\

 ð875ðð\\\

ð876ðð procedure division.

Figure 56 (Part 1 of 2). Example of SOURCE and NUMBER Output

 Chapter 13. Debugging Techniques 257

Getting Useful Listing Components

 ð877ðð ððð-do-main-logic.

ð878ðð display "PROGRAM SRCOUT - Beginning"

 ð879ðð perform ð5ð-create-vsam-master-file.

ð8815ð display "perform ð5ð-create-vsam-master finished".

 ð88151\\ ð88125 perform 1ðð-initialize-paragraph

ð882ðð display "perform 1ðð-initialize-paragraph finished"

ð883ðð read update-transaction-file into ws-transaction-record

 ð884ðð at end

1 ð885ðð set transaction-eof to true

 ð886ðð end-read

ð887ðð display "READ completed"

ð888ðð perform until transaction-eof

1 ð889ðð display "inside perform until loop"

 1 ð89ððð perform 2ðð-edit-update-transaction

1 ð891ðð display "After perform 2ðð-edit "

 1 ð892ðð if no-errors

 2 ð893ðð perform 3ðð-update-commuter-record

2 ð894ðð display "After perform 3ðð-update "

 1 ð8965ð else

 ð89651\\ 2 ð896ðð perform 4ðð-print-transaction-errors

2 ð897ðð display "After perform 4ðð-errors "

 1 ð898ðð end-if

 1 ð899ðð perform 41ð-re-initialize-fields

1 ð9ðððð display "After perform 41ð-reinitialize"

1 ð9ð1ðð read update-transaction-file into ws-transaction-record

 1 ð9ð2ðð at end

2 ð9ð3ðð set transaction-eof to true

 1 ð9ð4ðð end-read

1 ð9ð5ðð display "After '2nd READ' "

 ð9ð6ðð end-perform

Figure 56 (Part 2 of 2). Example of SOURCE and NUMBER Output

.1/ Customized page header resulting from the COBOL program TITLE statement.

.2/ The scale line labels Area A, Area B, and source code column numbers.

.3/ Source code line number assigned by compiler.

.4/ Program (PL) and statement (SL) nesting level.

.5/ Columns 1 through 6 of program (the sequence number area).

Data Map Listing
The MAP compiler option provides you with a mapping of all Data Division items, plus
all implicitly declared variables, of your program. You can see an example of MAP
output in Figure 57 on page 259. The numbers used in the explanation below corre-
spond to the numbers used in Figure 57. The terms and symbols used in MAP output
are described in Figure 59 on page 261.

258 VisualAge COBOL Programming Guide

Getting Useful Listing Components

DATA VALIDATION AND UPDATE PROGRAM IGYTCARA Date ð2/27/1998 Time 12:26:53 Page 22

Data Division Map

.1/
Data Definition Attribute codes (rightmost column) have the following meanings:

D = Object of OCCURS DEPENDING G = GLOBAL LSEQ= ORGANIZATION LINE SEQUENTIAL

E = EXTERNAL O = Has OCCURS clause SEQ= ORGANIZATION SEQUENTIAL

VLO=Variably Located Origin OG= Group has own length definition INDX= ORGANIZATION INDEXED

VL= Variably Located R = REDEFINES REL= ORGANIZATION RELATIVE

.2/ .3/ .4/ .5/ .6/ .7/ .8/
Source Hierarchy and Data Def

LineID Data Name Length(Displacement) Data Type Attributes

 4 PROGRAM-ID IGYTCARA--\

 18ð FD COMMUTER-FILE File INDX

 182 1 COMMUTER-RECORD 8ð Group

183 2 COMMUTER-KEY. 16(ððððððð) Display

184 2 FILLER. 64(ððððð16) Display

 186 FD COMMUTER-FILE-MST File INDX

 188 1 COMMUTER-RECORD-MST 8ð Group

189 2 COMMUTER-KEY-MST. 16(ððððððð) Display

19ð 2 FILLER. 64(ððððð16) Display

 192 FD LOCATION-FILE File SEQ

 2ð3 FD UPDATE-TRANSACTION-FILE File SEQ

 2ð8 1 UPDATE-TRANSACTION-RECORD 8ð Display

 216 FD PRINT-FILE. File SEQ

 221 1 PRINT-RECORD. 121 Display

 228 1 WORKING-STORAGE-FOR-IGYCARA 1 Display

Figure 57. Example of MAP Output

.1/ Explanations of the data definition attribute codes.

.2/ Source line number where the data item was defined.

.3/ Level definition or number. The compiler generates this number in the following
way:

� First level of any hierarchy is always 01. Increase 1 for each level— any
item you coded as 02 through 49.

� Level numbers 66, 77, and 88, and the indicators FD and SD, are not
changed.

.4/ Data-name that is used in the source module.

.5/ Length of data item. Base locator value.

.6/ Hexadecimal displacement from the beginning of the containing structure.

.7/ The data type and usage. These terms are explained in Figure 59 on
page 261.

.8/ Data definition attribute codes. The definitions are explained at the top of the
DATA DIVISION Map.

Embedded MAP Summary
An embedded MAP summary is printed by specifying the MAP option when generating a
listing. The summary appears in the right margin of the listing for lines in the DATA
DIVISION that contain data declarations. Figure 58 on page 260 describes the fields
included in the embedded map summary.

 Chapter 13. Debugging Techniques 259

Getting Useful Listing Components

When both XREF data and an embedded MAP summary exist on the same line, the
embedded MAP summary is printed first.

 ððððð2 Identification Division.

 ððððð3

 ððððð4 Program-id. EMBMAP.

...

 ððð176 Data division.

 ððð177 File section.

 ððð178

 ððð179

 ððð18ð FD COMMUTER-FILE

ððð181 record 8ð characters. .1/ .2/
 ððð182 ð1 commuter-record. 8ð

 ððð183 ð5 commuter-key PIC x(16). 16(ððððððð)

 ððð184 ð5 filler PIC x(64). 64(ððððð16)

...

 ððð221 IA162ð ð1 print-record pic x(121). 121

...

 ððð227 Working-storage section.

 ððð228 ð1 Working-storage-for-EMBMAP pic x. 1

 ððð229

ððð23ð 77 comp-code pic S9999 comp. 2

 ððð231 77 ws-type pic x(3) value spaces. 3

 ððð232

 ððð233

 ððð234 ð1 i-f-status-area. 2

 ððð235 ð5 i-f-file-status pic x(2). 2(ððððððð)

 ððð236 88 i-o-successful value zeroes. IMP

 ððð237

 ððð238

 ððð239 ð1 status-area. 8

 ððð24ð ð5 commuter-file-status pic x(2). .3/ 2(ððððððð)

 ððð241 88 i-o-okay value zeroes. IMP

 ððð242 ð5 commuter-vsam-status. 6(ðððððð2)

ððð243 1ð vsam-r15-return-code pic 9(2) comp. 2(ðððððð2)

ððð244 1ð vsam-function-code pic 9(1) comp. 2(ðððððð4)

ððð245 1ð vsam-feedback-code pic 9(3) comp. 2(ðððððð6)

 ððð246

 ððð247 77 update-file-status pic xx. 2

 ððð248 77 loccode-file-status pic xx. 2

 ððð249 77 updprint-file-status pic xx. 2

...

 ððð877 procedure division.

 ððð878 ððð-do-main-logic.

ððð879 display "PROGRAM EMBMAP - Beginning".

 ððð88ð perform ð5ð-create-vsam-master-file. 931

...

Figure 58. Example of an Embedded MAP Summary

.1/ Decimal length of data item

.2/ Hexadecimal displacement from the beginning of the base locator value

.3/ Special definition symbols. These symbols are:

UND The user-name is undefined

DUP The user-name is defined more than once

IMP An implicitly defined name, such as special registers and figurative con-
stants

260 VisualAge COBOL Programming Guide

Getting Useful Listing Components

IFN An intrinsic function reference

EXT An external reference

* The program-name is unresolved because the NOCOMPILE option is in
effect

Figure 59. Terms Used in MAP Output

Usage Description

ALPHA-EDIT Alphabetic-Edited

ALPHABETIC Alphabetic

AN-EDIT Alphanumeric-Edited

BINARY Binary (Computational)

COMP-1 Internal floating-point (single-precision)

COMP-2 Internal floating-point (double-precision)

DBCS DBCS (Display-1)

DBCS-EDIT DBCS Edited

DISP-NUM External Decimal

DISPLAY Alphanumeric

File processing method (VSAM) File (FD)

GROUP Group Fixed-Length

GRP-VARLEN Group Variable-Length

INDEX Index

INDX-NAME Index-name

Level name Condition (77)

Level name for condition name Condition (88)

Level name for RENAMES Condition (66)

NUM-EDIT Numeric-Edited

OBJECT REFERENCE Object reference

PACKED-DEC Internal Decimal (Computational-3)

POINTER Pointer

PROCEDURE-POINTER Pointer to an externally invocable program (or
function)

Sort file definition Sort Definition (SD)

Nested Program Map
The MAP compiler option also supplies you with a nested program map if your program
contains nested programs. The nested program map shows where the programs are
defined and provides program attribute information.

 Chapter 13. Debugging Techniques 261

Getting Useful Listing Components

Nested Program Map

 .1/

Program Attribute codes (rightmost column) have the following meanings:

C = COMMON

I = INITIAL

U = PROCEDURE DIVISION USING...

 .2/ .3/ .4/ .5/

Source Nesting Program

LineID Level Program Name from PROGRAM-ID paragraph Attributes

2 NESTED. .

12 1 X1. .

2ð 2 X11 .

27 2 X12 .

35 1 X2. .

Figure 60. Example of Nested Program Map

.1/ Explanations of the program attribute codes.

.2/ The source line number where the program was defined.

.3/ Depth of program nesting.

.4/ The program name.

.5/ The program attribute codes.

A PROCEDURE DIVISION Listing with Assembler Expansion (LIST Output)
The LIST compiler option provides you with a listing of the PROCEDURE DIVISION along
with the assembler coding produced by the COBOL compiler. This type of output can
be especially helpful when you are trying to find the failing verb in a program. You can
also use this output to find the address in storage of a data item that was moved during
the program.

Note: The listing produced by the compiler is not a programming interface and is
subject to change.

Getting LIST Output
You request LIST output from the compiler by using the LIST compiler option when you
compile your program.

The assembler listing will be written to a file with the same name as the source
program with the extension “.asm,” except for batch compiles with the SEPOBJ option;
see “LIST” on page 183 for the file names generated in that case.

A Verb Cross-Reference Listing
The VBREF compiler-time option produces an alphabetic listing of all the verbs in your
program and shows where each is referenced. The output includes each verb used, a
count of the number of times it is used, and the line numbers where the verb is used.
You can use VBREF output as a handy lookup when you need to find an instance of a
particular verb.

262 VisualAge COBOL Programming Guide

Getting Useful Listing Components

 .1/ .2/ .3/

2 ACCEPT 1ð1 1ð1

2 ADD. 129 13ð

1 CALL 14ð

5 CLOSE. 9ð 94 97 152 153

2ð COMPUTE. 15ð 164 164 165 166 166 166 166 167 168 168 169 169 17ð 171 171

171 172 172 173

2 CONTINUE 1ð6 1ð7

2 DELETE 96 119

47 DISPLAY. 88 9ð 91 92 92 93 94 94 94 95 96 96 97 99 99 1ðð 1ðð 1ðð 1ðð

1ð3 1ð9 117 117 118 119 138 139 139 139 139 139 139 14ð 14ð 14ð

14ð 143 148 148 149 149 149 152 152 152 153 162

2 EVALUATE 116 155

47 IF 88 9ð 93 94 94 95 96 96 97 99 1ðð 1ð3 1ð5 1ð5 1ð7 1ð7 1ð7 1ð9

11ð 111 111 112 113 113 113 113 114 114 115 115 116 118 119 124

124 126 127 129 132 133 134 135 136 148 149 152 152

183 MOVE 9ð 93 95 98 98 98 98 98 99 1ðð 1ð1 1ð1 1ð2 1ð4 1ð5 1ð5 1ð6 1ð6

1ð7 1ð7 1ð8 1ð8 1ð8 1ð8 1ð8 1ð8 1ð9 11ð 111 112 113 113 113 114

114 114 115 115 116 116 117 117 117 118 118 118 119 119 12ð 121

121 121 121 121 121 121 121 121 121 122 122 122 122 122 123 123

123 123 123 123 123 124 124 124 125 125 125 125 125 125 125 126

126 126 126 126 127 127 127 127 128 128 129 129 13ð 13ð 13ð 13ð

131 131 131 131 131 132 132 132 132 132 132 133 133 133 133 133

134 134 134 134 134 135 135 135 135 135 135 136 136 137 137 137

137 137 138 138 138 138 141 141 142 142 144 144 144 144 145 145

145 145 146 149 15ð 15ð 15ð 151 151 155 156 156 157 157 158 158

159 159 16ð 16ð 161 161 162 162 162 168 168 168 169 169 17ð 171

171 172 172 173 173

5 OPEN 93 95 99 144 148

62 PERFORM. 88 88 88 88 89 89 89 91 91 91 91 93 93 94 94 95 95 95 95 96

96 96 97 97 97 1ðð 1ðð 1ð1 1ð2 1ð4 1ð9 1ð9 111 116 116 117 117

117 118 118 118 118 119 119 119 12ð 12ð 124 125 127 128 133 134

135 136 136 137 15ð 151 151 153 153

8 READ 88 89 96 1ð1 1ð2 1ð8 149 151

1 REWRITE. 118

4 SEARCH 1ð6 1ð6 141 142

46 SET. 88 89 1ð1 1ð3 1ð4 1ð5 1ð6 1ð8 1ð8 136 141 142 149 15ð 151 152 154

155 156 156 156 156 157 157 157 157 158 158 158 158 159 159 159

159 16ð 16ð 16ð 16ð 161 161 161 161 162 162 164 164

2 STOP 92 143

4 STRING 123 126 132 134

33 WRITE. 94 116 129 129 129 129 129 13ð 13ð 13ð 13ð 145 146 146 146 146 147

147 151 165 165 166 166 167 174 174 174 174 174 174 174 175 175

Figure 61. Example of VBREF Compiler Output

The numbers in the explanation below correspond to Figure 61.

.1/ Number of times the verb is used in the program.

.2/ Verb.

.3/ Line numbers where verb is used.

A Data-Name, Procedure-Name, and Program-Name Cross-Reference Listing
The XREF compiler option provides you with sorted cross-reference listings of data-
names, procedure-names, and program-names. The listings also tell you the location
of all references to a particular data-, procedure-, or program-name. This output will
help you find, quickly, a reference to a particular data-, procedure-, or program-name in
your program.

User-defined words in your program are sorted using the locale that is active. Hence,
the collating sequence will determine the order for the cross-reference listing, including
MBCS words.

 Chapter 13. Debugging Techniques 263

Getting Useful Listing Components

Group Names: Group names in a MOVE CORRESPONDING statement are listed in the
XREF listing. The cross-reference listing includes the group names and all the elemen-
tary names involved in the move.

Using a Sorted Cross-Reference Listing
You can use XREF output to find where you have used a particular data- or procedure-
name. If you need to find all of the statements that modify a particular data item, you
can use the output to determine what line(s) referenced or modified a data item. With
the XREF output, you can also determine the context in which a procedure is referenced
in your program. For example, you can determine whether a verb was used in a
PERFORM block or as part of a USE FOR DEBUGGING declarative. (The context of the
procedure reference is indicated by the characters preceding the line number.)

An "M" preceding a data-name reference indicates that the data-name is modified by this reference.

 .1/ .2/ .3/

 Defined Cross-reference of data names References

 264 ABEND-ITEM1

 265 ABEND-ITEM2

347 ADD-CODE 1126 1192

381 ADDRESS-ERROR. M1156

28ð AREA-CODE. 1266 1291 1354 1375

382 CITY-ERROR M1159

 .4/

Context usage is indicated by the letter preceding a procedure-name reference.

These letters and their meanings are:

A = ALTER (procedure-name)

D = GO TO (procedure-name) DEPENDING ON

E = End of range of (PERFORM) through (procedure-name)

G = GO TO (procedure-name)

P = PERFORM (procedure-name)

T = (ALTER) TO PROCEED TO (procedure-name)

U = USE FOR DEBUGGING (procedure-name)

 .5/ .6/ .7/

 Defined Cross-reference of procedures References

 877 ððð-DO-MAIN-LOGIC

 943 ð5ð-CREATE-VSAM-MASTER-FILE. . P879

995 1ðð-INITIALIZE-PARAGRAPH . . . P881

1471 11ðð-PRINT-I-F-HEADINGS. . . . P926

1511 12ðð-PRINT-I-F-DATA. P928

1573 121ð-GET-MILES-TIME. P154ð

1666 122ð-STORE-MILES-TIME. P1541

1682 123ð-PRINT-SUB-I-F-DATA. . . . P1562

17ð6 124ð-COMPUTE-SUMMARY P1563

 1ð52 2ðð-EDIT-UPDATE-TRANSACTION. . P89ð

1154 21ð-EDIT-THE-REST. P1145

1189 3ðð-UPDATE-COMMUTER-RECORD . . P893

1237 31ð-FORMAT-COMMUTER-RECORD . . P1194 P12ð9

1258 32ð-PRINT-COMMUTER-RECORD. . . P1195 P12ð6 P1212 P1222

1318 33ð-PRINT-REPORT P12ð8 P1232 P1286 P131ð P137ð P1395 P1399

 1342 4ðð-PRINT-TRANSACTION-ERRORS . P896

Figure 62. Example of XREF Output—Data-Name Cross-References

The numbers used in explanation below correspond to the numbers in Figure 62.

Cross-Reference of Data-Names

264 VisualAge COBOL Programming Guide

Getting Useful Listing Components

.1/ Line number where the name was defined.

.2/ Data-name.

.3/ Line numbers where the name was used. If an “M” precedes the line
number, the data-item was explicitly modified at the location.

Cross-Reference of Procedure References

.4/ Explanations of the context usage codes for procedure references.

.5/ Line number where the procedure-name is defined.

.6/ Procedure-name.

.7/ Line numbers where the procedure is referenced and the context usage
code for the procedure.

The XREF compiler option also provides you with a sorted cross-reference listing of
program names in your main program.

PP 5639-B92 IBM VisualAge COBOL (OS/2) 2.2 Date ð2/27/1998 Time 12:26:53 Page 4

 .1/ .2/ .3/

 Defined Cross-reference of programs References

 EXTERNAL EXTERNAL1. 25

2 X. 41

12 X1 33 7

2ð X11. 25 16

27 X12. 32 17

35 X2 4ð 8

Figure 63. Example of XREF Output - Program Cross-Reference

.1/ The line number where the program-name was defined. If the program is
external, the word EXTERNAL will be displayed instead of a definition line
number.

.2/ The program name.

.3/ Line numbers where the program is referenced.

Using an Embedded Cross-Reference
The XREF compiler option also provides you with a modified cross-reference embedded
in the source listing. This embedded cross-reference provides the line number where
the data-name or procedure-name was defined.

 Chapter 13. Debugging Techniques 265

Getting Useful Listing Components

 LineID PL SL ----+-\A-1-B--+----2----+----3----+----4----+----5----+----6----+----7-|--+----8 Map and Cross Reference
...

 ððð878 procedure division.

 ððð879 ððð-do-main-logic.

ððð88ð display "PROGRAM IGYTCARA - Beginning".

 ððð881 perform ð5ð-create-vsam-master-file. 932 .1/
 ððð882 perform 1ðð-initialize-paragraph. 984

ððð883 read update-transaction-file into ws-transaction-record 2ð4 34ð

 ððð884 at end

ððð885 1 set transaction-eof to true 254

 ððð886 end-read.

...

 ððð984 1ðð-initialize-paragraph.

ððð985 move spaces to ws-transaction-record IMP 34ð .2/
ððð986 move spaces to ws-commuter-record IMP 316

ððð987 move zeroes to commuter-zipcode IMP 327

ððð988 move zeroes to commuter-home-phone IMP 328

ððð989 move zeroes to commuter-work-phone IMP 329

ððð99ð move zeroes to commuter-update-date IMP 333

ððð991 open input update-transaction-file 2ð4

 ððð992 location-file 193

 ððð993 i-o commuter-file 181

 ððð994 output print-file 217

...

 ðð1442 11ðð-print-i-f-headings.

 ðð1443

ðð1444 open output print-file. 217

 ðð1445

ðð1446 move function when-compiled to when-comp. IFN 698 .2/
ðð1447 move when-comp (5:2) to compile-month. 698 64ð

ðð1448 move when-comp (7:2) to compile-day. 698 642

ðð1449 move when-comp (3:2) to compile-year. 698 644

 ðð145ð

ðð1451 move function current-date (5:2) to current-month. IFN 649

ðð1452 move function current-date (7:2) to current-day. IFN 651

ðð1453 move function current-date (3:2) to current-year. IFN 653

 ðð1454

ðð1455 write print-record from i-f-header-line-1 222 635

 ðð1456 after new-page. 138

...

Figure 64. Example of an Embedded Cross-Reference

.1/ The line number of the definition of the data-name or procedure-name in the
program.

.2/ Special definition symbols. These symbols are:

UND The user-name is undefined

DUP The user-name is defined more than once

IMP An implicitly defined name, such as special registers and figurative con-
stants

IFN An intrinsic function reference

EXT An external reference

* The program-name is unresolved because the NOCOMPILE option is in
effect

266 VisualAge COBOL Programming Guide

Debugging Assembler

Debugging User Exit Modules
To debug a user exit routine, you must invoke the debugger on the main compiler
module rather than COB2.EXE. This is because the main compiler module is a separate
process started by cob2, and the debugger can debug only one process.

To do this, first invoke cob2 with the -# option to see how cob2 invokes the main com-
piler module and what options it passes. For example, given the following cob2 invoca-
tion for compiling PGMNAME.CBL with the IWZRMGUX user exit and linking it:

cob2 -q"EXIT(ADEXIT(IWZRMGUX))" pgmname.cbl

modify the cob2 invocation as follows:

cob2 -# -q"EXIT(ADEXIT(IWZRMGUX))" pgmname.cbl

This is what you'll see:

igyccob2 -q"EXIT(ADEXIT(IWZRMGUX))" pgmname.cbl

 ilink /free /nol /pm:vio pgmname.obj

You are interested in the IGYCCOB2 invocation because it is what actually calls your user
exit.

You can debug the user exit as follows:

idbug igyccob2 -q"EXIT(ADEXIT(IWZRMGUX))" pgmname.cbl

The debugger will automatically stop at the beginning of your user exit, assuming you
built the exit with debug information.

Debugging Assembler Routines
The debugger will automatically go to the Disassembly view if the module being
debugged does not have debug information. If the module is an assembler routine, of
course you can debug only in this view. You can set a breakpoint at a disassembled
statement in the Disassembly view by double clicking in the prefix area. It should be
noted that by default, during startup the debugger will run until it hits the first
debuggable statement it finds. If instead you would like the debugger to stop at the
very first instruction in the application (debuggable or not), you must use the "-i" option.
For example:

IDBUG -i progname

 Chapter 13. Debugging Techniques 267

Resolution to Common Problems

Resolution to Common Problems
This section outlines common problems that you might encounter and how to resolve
them.

System Message SYS1808

 Problem
During execution my program terminates with the following system message:

SYS1808: The process has stopped. The software diagnostic code (exception code)
is 0005.

When the program is run under the debugger, the exception XCPT_ACCESS_VIOLATION
occurs in the program initialization code (at the first step from the PROGRAM-ID state-
ment).

 Solution
Your program probably has a very large LOCAL-STORAGE SECTION or LINKAGE
SECTION which is causing a stack overflow. Recompile the program with the STACK
linker option. See “Compiling and Linking Programs” on page 142 for a full description.

 Example
cob2 -B"/STACK:4ðððððð" MYPROG.CBL

268 VisualAge COBOL Programming Guide

Part 3. Object-Oriented Programming Topics

This part of the book covers object-oriented programming topics. Object-oriented pro-
grams are built from some new syntax plus the basic programming topics covered in
Part 1, “Coding Your Program” on page 1.

Chapter 14. Writing Object-Oriented Programs 270

Chapter 15. Using System Object Model (SOM) 317

Chapter 16. Using SOM IDL-Based Class Libraries 323

Chapter 17. Converting Procedure-Oriented Programs to Object-Oriented
Programs . 358

 Copyright IBM Corp. 1996, 1998 269

Writing Object-Oriented Programs

Chapter 14. Writing Object-Oriented Programs

Object-oriented programs are based on classes and methods for objects. A class is a
template defining the data structure and capabilities of an object. The data structure is
commonly called instance data and the capabilities are commonly called methods.
Usually, a program creates and works with multiple object instances of a class. Each
instance has its own instance data and uses the methods defined for its class.

Consider a mail-order catalog business in which customers call service representatives
to place orders. The service representatives are working with a user interface on the
computer and creating an order. Therefore, in this situation there are two classes:
user interface and order. Because there are many service representatives each proc-
essing a different customer's order, there are multiple instances of the two classes
existing simultaneously.

Once classes are determined, the next step is to determine the methods the classes
need to do their work. The order class must provide the following services:

� Add items to the order
� Delete items from the order
� Calculate the cost of the order
� Provide the order number to the service representative
� Write the final order for later processing

The following methods for the order class meet the above need:

AddItem
Add an item to the order

DeleteItem
Delete an item from the order

CalculateCost
Calculate the cost of the order

GetOrderNumber
Provide the order number

WriteOrder
Write the final order

As you design your class and its methods, you discover the need for the class to keep
some instance data. Typically, an order class needs the following instance data:

 � Order number
 � Order date
� Number of items in the order
� Table of items ordered

Diagrams are very helpful when designing classes and their methods. The following
diagrams depict the order and user interface classes.

270  Copyright IBM Corp. 1996, 1998

Writing Object-Oriented Programs

┌────────────────┐ ┌──────────────────┐

│Order │ │UserInterface │

│ (order-number) │ │ (action) │

│ (order-date) │ │ (item) │

│ (order-count) │ ├──────────────────┤

│ (order-table) │ │1:ReadUserInput │

├────────────────┤ │2:WriteUserOutput │

│1:AddItem │ │3:WriteUserMessage│

│2:DeleteItem │ └──────────────────┘

│3:CalculateCost │

│4:GetOrderNumber│

│5:WriteOrder │

└────────────────┘

The words in parentheses are instance data and the words after the number and colon
are methods.

The class structure of this object-oriented system is a tree structure. This structure
shows how classes are related to each other and is known as the inheritance hierarchy.
Order and user interface are basic classes, so they inherit from the System Object
Model (SOM) base class, SOMObject.

Multiple Inheritance: All classes in COBOL inherit directly or indirectly from
SOMObject. When multiple inheritance is used, the class structure might not be a
tree—it may be an graph. However, the SOMObject class will always be at the root of
the tree or graph.

The complete class structure for the mail-order catalog system is diagramed as follows:

 ┌───────────┐

 │SOMObject │

 ├───────────┤

 │1:somNew │

 │2:somInit │

 │3:somFree │

 │4:somUninit│

 │5: ... │

 └────┬──────┘

 ┌─────────┴──────────┐

┌────────┴───────┐ ┌────────┴─────────┐

│Order │ │UserInterface │

│ (order-number) │ │ (action) │

│ (order-date) │ │ (item) │

│ (order-count) │ ├──────────────────┤

│ (order-table) │ │1:ReadUserInput │

├────────────────┤ │2:WriteUserOutput │

│1:AddItem │ │3:WriteUserMessage│

│2:DeleteItem │ └──────────────────┘

│3:CalculateCost │

│4:GetOrderNumber│

│5:WriteOrder │

└────────────────┘

More Methods: SOMObject has many methods other than the four listed here. See
SOMobjects Developer's Toolkit User's Guide and SOMobjects Developer's Toolkit Pro-
grammer's Reference Manual for a complete description of all the SOM methods.

 Chapter 14. Writing Object-Oriented Programs 271

Class ENVIRONMENT DIVISION

Writing a Class Definition
Like a COBOL program, a COBOL class definition consists of four divisions:

 � IDENTIFICATION DIVISION

The class name and class inheritance information are defined in this division.

 � ENVIRONMENT DIVISION

Associations between COBOL class names and SOM class names are defined in
this division.

 � DATA DIVISION

Instance data is defined in this division.

 � PROCEDURE DIVISION

Methods are defined in this division.

Class IDENTIFICATION DIVISION: Required
In the IDENTIFICATION DIVISION of a class, you name a class and provide inheritance
information for it. Optionally, you may give other identifying information. For example:

 Identification Division. Required
Class-Id. Order INHERITS SOMObject. Required

The AUTHOR, INSTALLATION, DATE-WRITTEN, and DATE-COMPILED paragraphs are
optional and are treated as documentation.

 CLASS-ID Paragraph
Use the CLASS-ID paragraph to:

� Name a class.

In the example above, Order is the class name.

� Specify the System Object Model (SOM) base class or user-written class from
which this class inherits its characteristics.

In the example above, INHERITS SOMObject indicates Order inherits its basic char-
acteristics from the base SOM class SOMObject.

� Name a metaclass.

Discussed in “Writing a Metaclass Definition” on page 306.

SOMObject must be specified in the REPOSITORY paragraph in the ENVIRONMENT DIVI-
SION (see “REPOSITORY Paragraph” on page 273). Order may optionally be speci-
fied in the REPOSITORY paragraph.

Class ENVIRONMENT DIVISION: Required
In the ENVIRONMENT DIVISION of a class, you describe the particular computer environ-
ment in which you are working and relate your class names to external SOM names.
For example:

272 VisualAge COBOL Programming Guide

Class DATA DIVISION

 Environment Division. Required
 Configuration Section. Required
 Repository. Required

Class SOMObject is 'SOMObject'

Class Order is 'Order'.

The SOURCE-COMPUTER, OBJECT-COMPUTER, and SPECIAL-NAMES paragraphs are
optional. If they are specified in a class CONFIGURATION SECTION, they apply to the
entire class definition, including all methods introduced by the class.

A class CONFIGURATION SECTION can consist of the same entries as a program CON-
FIGURATION SECTION, except the INPUT-OUTPUT SECTION. (See “CONFIGURATION
SECTION” on page 13.)

 REPOSITORY Paragraph
The REPOSITORY paragraph declares to the compiler that the specified user-defined
word is a class name and optionally relates the class name to an external class name
in the SOM interface repository. You must specify any class name you explicitly refer-
ence in your class definition in the REPOSITORY paragraph. For example:

� SOM base classes.

In the example above, CLASS SOMObject IS 'SOMObject' indicates what you are
calling SOMObject in your COBOL program is also called SOMObject in the SOM
interface repository. All SOM names are mixed-case, so SOMObject spelled in
mixed-case is required to properly handle SOM case sensitivity.

� User-written classes from which your class is inheriting.

Discussed in “Writing a Subclass Definition” on page 290.

� Metaclass to which your class belongs.

Discussed in “Writing a Metaclass Definition” on page 306.

� Any class referenced in methods introduced by the class.

You may optionally include the name of the class you are defining. If you do not
include the name of your class, it is treated as all upper-case regardless of how you
typed it on the CLASS-ID. In the example above, Order is stored in the SOM interface
repository in mixed-case.

Class DATA DIVISION: Optional
In the DATA DIVISION of a class, you describe the instance data the class needs. For
example:

 Chapter 14. Writing Object-Oriented Programs 273

Class PROCEDURE DIVISION

 Data Division.

 Working-Storage Section.

ð1 order-number PIC 9(5).

 ð1 order-date PIC X(8).

 ð1 order-count PIC 99.

 ð1 order-table.

ð2 order-entry OCCURS 1ð TIMES.

ð3 order-item PIC X(5).

A class DATA DIVISION contains only a WORKING-STORAGE SECTION.

 WORKING-STORAGE SECTION
A class WORKING-STORAGE SECTION describes instance data that is statically allocated
when the instance is created and exists until the instance is freed. By default, the data
is global to all the methods introduced by the class. Instance data in a COBOL class is
private. Thus, it cannot be referenced directly by any other class or subclass. See
“Special Methods” on page 279 for an example of how to share instance data in
COBOL.

Syntax of the class WORKING-STORAGE SECTION is generally the same as in a
program. (described in “WORKING-STORAGE SECTION and LOCAL-STORAGE
SECTION” on page 19).

Exceptions:

1. You cannot use the VALUE clause to initialize the data.

Class instance data is initialized by overriding the 'somInit' method. See “somInit”
on page 279 for an example using 'somInit'.

Level-88 Note: You can have 88 level numbers with the VALUE clause.

2. You cannot use the EXTERNAL attribute.

3. You can use the GLOBAL attribute, but it has no effect.

Class PROCEDURE DIVISION: Optional
The class PROCEDURE DIVISION contains only method definitions. See “Writing a
Method Definition” on page 276 for details about defining methods. A class definition
must be properly terminated with an END CLASS statement. For example:

End Class Order.

marks the end of the Order class.

274 VisualAge COBOL Programming Guide

Class Example

Complete Class Example
The class definition for the order class:

 IDENTIFICATION DIVISION.

\

\ Order is the name of the class

\ Order inherits from SOMObject (SOM base class)

\

 CLASS-ID. Order INHERITS SOMObject.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 REPOSITORY.

\

\ SOMObject is known as SOMObject in SOM repository

CLASS SOMObject IS 'SOMObject'

\

\ Order is known as Order in SOM repository

CLASS Order IS 'Order'.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

\

\ Instance data for Order class

\

ð1 order-number PIC 9(5).

 ð1 order-date PIC X(8).

 ð1 order-count PIC 99.

 ð1 order-table.

ð2 order-entry OCCURS 1ð TIMES.

ð3 order-item PIC X(5).

 PROCEDURE DIVISION.

\

\ method definitions in here

\

 END CLASS Order.

The class definition for the user interface class:

 IDENTIFICATION DIVISION.

\

\ UserInterface is the name of the class

\ UserInterface inherits from SOMObject (SOM base class)

\

 CLASS-ID. UserInterface INHERITS SOMObject.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 REPOSITORY.

\

\ SOMObject is known as SOMObject in SOM repository

CLASS SOMObject IS 'SOMObject'

\

\ UserInterface is known as UserInterface in SOM repository

CLASS UserInterface IS 'UserInterface'.

 Chapter 14. Writing Object-Oriented Programs 275

Method IDENTIFICATION DIVISION

 DATA DIVISION.

 WORKING-STORAGE SECTION.

\

\ Instance data for UserInterface class

\

ð1 uif-action PIC X(1ð).

 88 uif-add VALUE 'AddItem'.

88 uif-delete VALUE 'DeleteItem'.

 88 uif-quit VALUE 'Quit'.

 ð1 uif-item PIC X(5).

 PROCEDURE DIVISION.

\

\ method definitions in here

\

 END CLASS UserInterface.

Writing a Method Definition
A COBOL method can be defined only inside a class definition. Each method name
within a class must be unique.

Like a COBOL program, a COBOL method definition consists of four divisions:

 � IDENTIFICATION DIVISION

The method name and whether it is overriding another method are defined in this
division.

 � ENVIRONMENT DIVISION

Similar to a program ENVIRONMENT DIVISION.

 � DATA DIVISION

Similar to a program DATA DIVISION.

 � PROCEDURE DIVISION

Similar to a program PROCEDURE DIVISION.

Method IDENTIFICATION DIVISION: Required
Use the IDENTIFICATION DIVISION to name a method and indicate whether it is over-
riding another method from a superclass. Optionally, you can give other identifying
information. For example:

 Identification Division. Required
 Method-Id. WriteOrder. Required

The AUTHOR, INSTALLATION, DATE-WRITTEN, and DATE-COMPILED paragraphs are
optional and are handled as documentation. You can use them for descriptive informa-
tion about your method.

276 VisualAge COBOL Programming Guide

Method DATA DIVISION

 METHOD-ID Paragraph
Use the METHOD-ID paragraph to name the method. In the example above, WriteOrder
is the method name. Other methods or programs use this name to invoke the method.

 Method Override
Occasionally, a class defines a method whose name exists in a superclass. In this
case, the superclass method must be overridden with the OVERRIDE clause on the
METHOD-ID. System Object Model (SOM) provides two methods designed to be over-
ridden. These SOM methods allow you to initialize instance data when an instance is
created and save instance data when an instance is freed. The methods are called
'somInit' and 'somUninit' respectively. If you wish to override 'somInit', the IDENTIFICA-
TION DIVISION is coded as follows:

 Identification Division. Required
 Method-Id. "somInit" Override. Required

Method ENVIRONMENT DIVISION: Optional
The method ENVIRONMENT DIVISION has only one section, the INPUT-OUTPUT SECTION.
The INPUT-OUTPUT SECTION relates your method files to the external file names known
by the operating system. The syntax for a method INPUT-OUTPUT SECTION is the same
as for a program INPUT-OUTPUT SECTION (see “INPUT-OUTPUT SECTION:” on
page 16). For example:

 Environment Division.

 Input-Output Section.

 File-Control.

Select order-file Assign OrdrFile.

Method DATA DIVISION: Optional
A method DATA DIVISION consists of any of four sections:

 � FILE SECTION

A method FILE SECTION is the same as a program FILE SECTION except a method
FILE SECTION can define only EXTERNAL files.

(See “FILE SECTION (Using Data in Input/Output Operations)” on page 18 for
more information.)

 � LOCAL-STORAGE SECTION

A separate copy of the data defined in the method LOCAL-STORAGE SECTION is
allocated for each invocation of the method and is freed on the return from the
method.

If the VALUE clause is specified, the data item is initialized to the value on every
invocation of the method.

The method LOCAL-STORAGE SECTION is similar to a program LOCAL-STORAGE
SECTION, except that the GLOBAL attribute has no effect.

(See “WORKING-STORAGE SECTION and LOCAL-STORAGE SECTION” on
page 19 for more information.)

 Chapter 14. Writing Object-Oriented Programs 277

Method PROCEDURE DIVISION

 � WORKING-STORAGE SECTION

A single copy of the data defined in the method WORKING-STORAGE SECTION is
allocated when the run-unit begins and persists in its last-used state until the run-
unit terminates. The same single copy of the WORKING-STORAGE data is used
whenever the method is invoked, regardless of the invoking object.

If the VALUE clause is specified, the data item is initialized to the value on the first
invocation of the method. The EXTERNAL clause may be specified for method
WORKING-STORAGE data items (see “Sharing Data Using the EXTERNAL Clause”
on page 399).

A method WORKING-STORAGE SECTION is similar to a program
WORKING-STORAGE SECTION except the GLOBAL attribute has no effect.

(See “WORKING-STORAGE SECTION and LOCAL-STORAGE SECTION” on
page 19 for more information.)

 � LINKAGE SECTION

A method LINKAGE SECTION is the same as a program LINKAGE SECTION except
the GLOBAL attribute has no effect.

(See “LINKAGE SECTION (Using Data from Another Program)” on page 21 for
more information.)

See “Complete Class with Methods Example” on page 280 for a detailed example of a
method DATA DIVISION.

If the same data item is defined in both the class DATA DIVISION and the method DATA
DIVISION, a reference in the method to the data name refers to the data item in the
method DATA DIVISION. The method DATA DIVISION takes precedence.

Method PROCEDURE DIVISION: Optional
In the PROCEDURE DIVISION of a method, you code the executable statements to com-
plete the service the method is expected to provide. A method definition must be prop-
erly terminated with an END METHOD statement. For example:

 End Method WriteOrder.

marks the end of the 'WriteOrder' method.

The EXIT METHOD statement returns control to the invoking program or method.
GOBACK has the same effect as EXIT METHOD. If the RETURNING clause is specified
when the method is invoked, the EXIT METHOD or GOBACK returns the value of the data
item to the invoking program or method. STOP RUN MAY be specified in a method;
however, it terminates the run-unit.

An implicit EXIT METHOD is generated as the last statement of every method PROCE-
DURE DIVISION.

All COBOL statements that can be coded in a program PROCEDURE DIVISION can be
coded in a method PROCEDURE DIVISION except:

 � EXIT PROGRAM

278 VisualAge COBOL Programming Guide

Method PROCEDURE DIVISION

 � ENTRY statements

� The following obsolete elements of ANSI COBOL-85:

 – ALTER
– GOTO without a specified procedure name

 – SEGMENTATION
– USE FOR DEBUGGING

 Special Methods
Simulated Attribute Methods: Instance variables in COBOL are all private in the
sense that they are fully encapsulated by the class, and are accessible directly only by
the methods that are introduced by the class that defines them. Normally, a well-
designed object-oriented application does not need to access instance variables from
outside the class.

The concept of a public instance variable, as defined in other object-oriented lan-
guages, and the concept of a class attribute, as defined by SOM and CORBA, are not
directly supported by COBOL. (A CORBA attribute is an instance variable that has 'get'
and/or 'set' methods to access and modify the value of the instance variable from
outside the class definition.) A COBOL programmer can provide this capability by
coding 'getX' and/or 'setX' methods for any instance variables X for which direct access
from outside the class is required. The recommended naming convention for these
methods is either 'getX' and 'setX' or perhaps 'get_X' and 'set_X'. Direct specification of
method names (such as _get_X) is not recommended because such names are not
valid in IDL, and use of such method names with the COBOL IDLGEN compiler option
specified would result in an IDL file that will not compile with the SOM compiler. For
example, this method

 Identification Division.

 Method-Id. 'getOrderNumber'.

 Data Division.

 Linkage Section.

ð1 ord-num PIC 9(5).

 Procedure Division returning ord-num.

Move order-number To ord-num.

 Exit Method.

 End Method 'getOrderNumber'.

passes the order number to any program that invokes 'getOrderNumber'.

somInit: The 'somInit' method is automatically invoked when an object instance is
created. The default 'somInit' in SOM does nothing; however, you can override it to do
your own initialization of instance variables. For example:

 Chapter 14. Writing Object-Oriented Programs 279

Method Example

 Identification Division.

 Method-Id. "somInit" Override.

 Procedure Division.

Move Function Current-Date(1:8) To order-date.

Move ð To order-count.

 Initialize order-table.

 Exit Method.

 End Method "somInit".

somUninit: The 'somIninit' method is automatically invoked when an object instance is
freed. The default 'somUninit' in SOM does nothing; however, you can override it if you
wish. For example:

 Identification Division.

 Method-Id. "somUninit" Override.

 Data Division.

 Local-Storage Section.

ð1 sub Pic 99.

 Procedure Division.

 Display order-date.

Perform varying sub from 1 by 1 until sub > order-count

Display order-table (sub)

 End-Perform.

 Exit Method.

 End Method "somUninit".

The PROCEDURE DIVISION is discussed further in “PROCEDURE DIVISION” on
page 22.

Complete Class with Methods Example
The class and method definitions for the order class:

 IDENTIFICATION DIVISION.

 CLASS-ID. Orders INHERITS SOMObject.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

\ Declare classes used in class defintion

 REPOSITORY.

CLASS SOMObject IS 'SOMObject'

CLASS Orders IS 'Orders'.

 DATA DIVISION.

\ Define instance data

 WORKING-STORAGE SECTION.

ð1 order-number PIC 9(5).

 ð1 order-date PIC X(8).

 ð1 order-count PIC 99.

 ð1 order-table.

ð2 order-entry OCCURS 1ð TIMES.

ð3 order-item PIC X(5).

280 VisualAge COBOL Programming Guide

Method Example

 PROCEDURE DIVISION.

\ Method to initialize instance data

\ - this overrides the default 'somInit' method

 IDENTIFICATION DIVISION.

 METHOD-ID. 'somInit' OVERRIDE.

 PROCEDURE DIVISION.

MOVE FUNCTION CURRENT-DATE(1:8) TO order-date.

COMPUTE order-number = FUNCTION RANDOM (99999).

MOVE ð TO order-count.

 INITIALIZE order-table.

 EXIT METHOD.

 END METHOD 'somInit'.

\ Method to add an item to an order

 IDENTIFICATION DIVISION.

 METHOD-ID. AddItem.

 DATA DIVISION.

\ Use LOCAL-STORAGE for items that should be allocated

\ and initialized for each invocation of the method

 LOCAL-STORAGE SECTION.

77 sub PIC 99.

ð1 found-flag PIC 9 VALUE 1.

88 found VALUE ð.

 LINKAGE SECTION.

 ð1 in-item PIC X(5).

ð1 add-flag PIC 9.

 PROCEDURE DIVISION USING in-item

 RETURNING add-flag.

MOVE 1 TO add-flag.

PERFORM VARYING sub FROM 1 BY 1

UNTIL (sub > 1ð) OR (found)

IF order-item (sub) = SPACES

MOVE in-item TO order-item (sub)

ADD 1 TO order-count

MOVE ð TO add-flag

SET found TO TRUE

 END-IF

 END-PERFORM.

 EXIT METHOD.

 END METHOD AddItem.

\ Method to delete an item from an order

 IDENTIFICATION DIVISION.

 METHOD-ID. DeleteItem.

 DATA DIVISION.

\ Use LOCAL-STORAGE for items that should be allocated

\ and initialized for each invocation of the method

 Chapter 14. Writing Object-Oriented Programs 281

Method Example

 LOCAL-STORAGE SECTION.

77 sub PIC 99.

ð1 found-flag PIC 9 VALUE 1.

88 found VALUE ð.

 LINKAGE SECTION.

 ð1 out-item PIC X(5).

ð1 delete-flag PIC 9.

 PROCEDURE DIVISION USING out-item

 RETURNING delete-flag.

MOVE 1 TO delete-flag.

PERFORM VARYING sub FROM 1 BY 1

UNTIL (sub > 1ð) OR (found)

IF order-item (sub) = out-item

MOVE SPACES TO order-item (sub)

SUBTRACT 1 FROM order-count

MOVE ð TO delete-flag

SET found TO TRUE

 END-IF

 END-PERFORM.

 EXIT METHOD.

 END METHOD DeleteItem.

\ Method to compute the total cost of an order

 IDENTIFICATION DIVISION.

 METHOD-ID. ComputeCost.

 DATA DIVISION.

\ Use LOCAL-STORAGE for items that should be allocated

\ and initialized for each invocation of the method

 LOCAL-STORAGE SECTION.

 77 sub PIC 99.

77 cost PIC 9(5)V99.

 LINKAGE SECTION.

ð1 total-cost PIC 9(7)V99.

 PROCEDURE DIVISION USING total-cost.

MOVE ð TO total-cost.

PERFORM VARYING sub FROM 1 BY 1

UNTIL sub > order-count

\ Call a subroutine

\ NOTE: The subroutine code is not

\ included in this example.

 CALL 'InventoryGetCost'

USING order-item (sub) cost

ADD cost TO total-cost

 END-PERFORM.

 EXIT METHOD.

 END METHOD ComputeCost.

\ Method to return the order number

 IDENTIFICATION DIVISION.

282 VisualAge COBOL Programming Guide

Method Example

 METHOD-ID. 'getOrderNumber'.

 DATA DIVISION.

 LINKAGE SECTION.

ð1 ord-num PIC 9(5).

 PROCEDURE DIVISION RETURNING ord-num.

MOVE order-number TO ord-num.

 EXIT METHOD.

 END METHOD 'getOrderNumber'.

\ Method to write completed order to file

 IDENTIFICATION DIVISION.

 METHOD-ID. WriteOrder.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT order-file ASSIGN OrdrFile.

 DATA DIVISION.

 FILE SECTION.

\ Methods support only EXTERNAL files

FD order-file EXTERNAL.

ð1 order-record PIC X(8ð).

\ Use LOCAL-STORAGE for items that should be allocated

\ and initialized for each invocation of the method

 LOCAL-STORAGE SECTION.

 ð1 print-line.

ð2 print-order-number PIC 9(5).

 ð2 print-order-date PIC X(8).

 ð2 print-order-count PIC 99.

 ð2 print-order-table.

ð3 print-order-entry OCCURS 1ð TIMES.

ð4 print-order-item PIC X(5).

 PROCEDURE DIVISION.

OPEN OUTPUT order-file.

MOVE order-number TO print-order-number.

 MOVE order-date TO print-order-date.

 MOVE order-table TO print-order-table.

 MOVE order-count TO print-order-count.

WRITE order-record FROM print-line.

 CLOSE order-file.

 EXIT METHOD.

 END METHOD WriteOrder.

 END CLASS Orders.

The class and method definitions for the user interface class:

 Chapter 14. Writing Object-Oriented Programs 283

Method Example

 IDENTIFICATION DIVISION.

 CLASS-ID. UserInterface INHERITS SOMObject.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

\ Declare classes used in class definition

 REPOSITORY.

CLASS SOMObject IS 'SOMObject'

CLASS UserInterface IS 'UserInterface'.

 DATA DIVISION.

\ Define instance data

 WORKING-STORAGE SECTION.

ð1 uif-action PIC X(1ð).

 88 uif-add VALUE 'AddItem'.

88 uif-delete VALUE 'DeleteItem'.

 88 uif-quit VALUE 'Quit'.

 ð1 uif-item PIC X(5).

 PROCEDURE DIVISION.

\ Method to get input from customer - action and item

 IDENTIFICATION DIVISION.

 METHOD-ID. ReadUserInput.

 DATA DIVISION.

 LINKAGE SECTION.

ð1 action PIC X(1ð).

 ð1 item PIC X(5).

 PROCEDURE DIVISION USING item action.

DISPLAY 'Enter the action: add, delete, quit'.

ACCEPT action FROM SYSIN.

MOVE FUNCTION UPPER-CASE (action) TO action.

 EVALUATE TRUE

WHEN action = 'ADD'

SET uif-add TO TRUE

 PERFORM Get-Item

WHEN action = 'DELETE'

SET uif-delete TO TRUE

 PERFORM Get-Item

WHEN action = 'QUIT'

SET uif-quit TO TRUE

 END-EVALUATE.

MOVE uif-action TO action.

 EXIT METHOD.

 Get-Item.

DISPLAY 'Enter the item'.

ACCEPT item FROM SYSIN.

MOVE item TO uif-item.

284 VisualAge COBOL Programming Guide

Writing a Client Defintion

 END METHOD ReadUserInput.

\ Method to inform customer how action was completed

 IDENTIFICATION DIVISION.

 METHOD-ID. WriteUserMessage.

 DATA DIVISION.

 LINKAGE SECTION.

ð1 flag PIC 9.

 PROCEDURE DIVISION USING flag.

IF flag = ð

 DISPLAY uif-action

' successfully completed on '

 uif-item

 ELSE

 DISPLAY uif-action

' unsuccessfully completed on '

 uif-item

 END-IF.

 EXIT METHOD.

 END METHOD WriteUserMessage.

\ Method to display final order information

 IDENTIFICATION DIVISION.

 METHOD-ID. WriteUserOutput.

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

77 formated-cost PIC $Z,ZZZ,ZZ9.99.

 LINKAGE SECTION.

 ð1 total-cost PIC 9(7)V99.

ð1 order-number PIC 9(5).

 PROCEDURE DIVISION USING total-cost order-number.

MOVE total-cost TO formated-cost.

DISPLAY 'Your order costs ' formated-cost.

DISPLAY 'Your order number is ' order-number.

 EXIT METHOD.

 END METHOD WriteUserOutput.

 END CLASS UserInterface.

Writing a Client Definition
Any program that requests services from methods in a class is a client program. The
client program consists of the usual four divisions:

 � IDENTIFICATION DIVISION
 � ENVIRONMENT DIVISION

 Chapter 14. Writing Object-Oriented Programs 285

Client DATA DIVISION

 � DATA DIVISION
 � PROCEDURE DIVISION

Method Services: A method may request services from another method. Therefore,
a method can be a client and use the statements discussed in this section.

Client IDENTIFICATION DIVISION: Required
The client IDENTIFICATION DIVISION is coded as usual.

Client ENVIRONMENT DIVISION: Required
In the ENVIRONMENT DIVISION of a client, you describe the particular computer environ-
ment in which you are working and relate your class names to external System Object
Model (SOM) names. For example:

 Environment Division. Required
 Configuration Section. Required
 Repository. Required

Client UserInterface is 'UserInterface'

Client Orders is 'Orders'.

 REPOSITORY Paragraph
The REPOSITORY paragraph declares to the compiler that the specified user-defined
word is a class name and optionally relates the class name to an external class name
in the SOM interface repository. You must specify any class name you explicitly refer-
ence in your program in the REPOSITORY paragraph. In the example above, Orders
and UserInterface are the only two classes this program references.

Client DATA DIVISION: Optional
In the DATA DIVISION of a client, you describe the data the client needs. Since the
client is using classes, it needs one or more special data items called object references.
Object references are handles to instances of classes the program creates. All
requests to a method are handled through an object reference to the instance of the
class that defined the method. For example:

 Data Division.

 Working-Storage Section.

ð1 orderObj Usage Object Reference Orders.

ð1 userObj Usage Object Reference UserInterface.

ð1 univObj Usage Object Reference.

The phrase USAGE OBJECT REFERENCE indicates a data item is used as a handle for
an instance.

In the above example, three object references are defined. The first two, orderObj and
userObj are typed object references because a class name appears after the OBJECT
REFERENCE phrase. Thus, orderObj can only be used to reference instances of the
Orders class, or one of its subclasses. Likewise, userObj can only be used to refer-
ence instances of the UserInterface class, or one of its subclasses. The other object
reference, univObj, does not have a class name after its OBJECT REFERENCE phrase.
It is a universal object reference and can reference instances of any class.

286 VisualAge COBOL Programming Guide

Client PROCEDURE DIVISION

Remember: Class names used on the OBJECT REFERENCE phrase must be defined in
the REPOSITORY paragraph of the CONFIGURATION SECTION.

Client PROCEDURE DIVISION: Optional
The client PROCEDURE DIVISION contains code to create and free instances of classes,
manipulate object reference data items, and invoke methods.

Creating and Freeing Instances of Classes
Before anything can be done with methods in a class, an instance of the class must be
created. SOM provides a method, 'somNew', to create an instance of a class. For
example:

 Invoke Orders 'somNew' Returning orderObj.

creates an instance of the Orders class and assigns its handle to the object reference
orderObj.

When 'somNew' executes it automatically invokes 'somInit', another SOM method, that
you can override to initialize your instance data.

Remember: The class name, in this case Orders, must be defined in the REPOSITORY
paragraph of the CONFIGURATION SECTION. And the object reference, in this case
orderObj, must be defined as USAGE OBJECT REFERENCE in the DATA DIVISION.

When you finish with an instance of a class, you should free it. Again, SOM provides a
method, 'somFree', to free the instance. For example:

 Invoke orderObj 'somFree'.

frees the instance of orderObj; orderObj now has an undefined value. When 'somFree'
executes it automatically invokes 'somUninit', another SOM method that you can over-
ride to save or display your instance data.

Manipulating Object References
Object references can be compared in conditional statements. For example:

 If orderObj = Null ...

 If orderObj = Nulls ...

 If orderObj = univObj ...

are all valid uses of object references in an IF statement. The first and second IF state-
ments check whether orderObj is a null object reference (refers to no instance). The
third IF statement checks whether orderObj and univObj refer to the same instance.

Note: In a method there is a fourth form of object reference conditional:

 If orderObj = Self ...

This checks whether the instance on which the method was invoked, SELF,
refers to the same instance as orderObj.

It may be necessary to make an object reference null or make one object reference
refer to the same instance as another object reference. The SET statement takes care
of these situations:

 Chapter 14. Writing Object-Oriented Programs 287

Client PROCEDURE DIVISION

 Set orderObj To Null.

 Set univObj To orderObj.

In the first SET statement, orderObj is set to NULL.

In the second SET statement, univObj is made to refer to the instance to which
orderObj refers. In this syntax, if the receiver (univObj) is a universal object reference
then the sender (orderObj) can be either a universal or typed object reference.
However, if the receiver is a typed object reference the sender must also be a typed
object reference and typed to the same class or a subclass.

Note: In a method there is a third form of SET object reference:

 Set orderObj To Self.

This makes the receiver (orderObj) refer to the same instance on which the
method was invoked, SELF.

 Invoking Methods
To receive service from a method, the method must be invoked with the INVOKE state-
ment. For example:

 Invoke Orders 'somNew' Returning orderObj.

 Invoke orderObj 'AddItem' Using item Returning flag.

In the first INVOKE, a class name is used to create a new instance whose handle is
returned in the object reference orderObj. The class name, Orders, must be defined in
the REPOSITORY paragraph of the CONFIGURATION SECTION. The object reference,
orderObj, must be define as either an universal object reference or a typed to class
Orders object reference.

In the second INVOKE, an object reference, orderObj, is used to invoke the method
AddItem. The general syntax of this form of INVOKE is one of the following:

 Invoke objref 'literal-name'.

 Invoke objref identifier-name.

In both cases the invoked method must be defined in the class for which the object
reference, objref, is an instance. If the identifier-name form of the method is used, the
object reference, objref, must by an universal object reference.

Conformance between the invoked method and the object reference is checked at
compile time if the following three items are all true:

1. objref is a typed object reference.

2. The literal form of the method name is used in the INVOKE statement.

3. The TYPECHK compile option is specified.

Otherwise, conformance requirements are checked at run time. Run-time checking,
however, is not as thorough as compile-time checking.

INVOKE has the optional scope terminator END-INVOKE. The USING and RETURNING
phrases on the INVOKE work the same as they do on the CALL statement. Also,

288 VisualAge COBOL Programming Guide

Client Example

INVOKE has the optional ON EXCEPTION and NOT ON EXCEPTION phrases like the CALL
statement. See IBM COBOL Language Reference for a discussion of USING,
RETURNING, ON EXCEPTION, and NOT ON EXCEPTION.

The RETURN-CODE special register is not set by an INVOKE to a method.

Complete Client Example
A possible client program for the mail-order catalog using the Order and UserInterface
classes:

 IDENTIFICATION DIVISION.

 PROGRAM-ID. 'PhoneOrders'.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

\

\ Declare the classes used in the program

 REPOSITORY.

CLASS Orders IS 'Orders'

CLASS UserInterface IS 'UserInterface'.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

\

\ Declare the object references used in the program

77 orderObj USAGE OBJECT REFERENCE Orders.

77 userObj USAGE OBJECT REFERENCE UserInterface.

\

\ Declare other data items used in the program

77 order-number PIC 9(5).

77 total-cost PIC 9(7)V99.

77 item PIC X(5).

77 action PIC X(1ð).

77 flag PIC 9.

 PROCEDURE DIVISION.

\

\ Create an instance of the UserInterface class - userObj

INVOKE UserInterface 'somNew' RETURNING userObj.

\

\ Create an instance of the Orders class - orderObj

INVOKE Orders 'somNew' RETURNING orderObj.

\

\ Read customer input - action and item

INVOKE userObj 'ReadUserInput' USING item action.

\

\ Begin customer driven loop based on action

PERFORM UNTIL action = 'Quit'

\

\ Do appropriate action

 Chapter 14. Writing Object-Oriented Programs 289

Writing a Subclass Definition

IF action (1:3) = 'Add'

INVOKE orderObj 'AddItem' USING item

 RETURNING flag

 ELSE

INVOKE orderObj 'DeleteItem' USING item

 RETURNING flag

 END-IF

\

\ Display result of action

INVOKE userObj 'WriteUserMessage' USING flag

\

\ Read customer input - action and item

INVOKE userObj 'ReadUserInput' USING item action

 END-PERFORM.

\ End customer driven loop based on action

\

\

\ Calculate the total cost of the order

INVOKE orderObj 'ComputeCost' USING total-cost.

\

\ Determine the order number

INVOKE orderObj 'getOrderNumber'

 RETURNING order-number.

\

\ Display information about the order

INVOKE userObj 'WriteUserOutput'

USING total-cost order-number.

\

\ Write the order to a file

INVOKE orderObj 'WriteOrder'.

\

\ Free the object instances - orderObj and userObj

INVOKE orderObj 'somFree'.

INVOKE userObj 'somFree'.

 STOP RUN.

 END PROGRAM 'PhoneOrders'.

Writing a Subclass Definition
A subclass, sometimes called a child class, is a specialization of its superclass, some-
times called a parent class. The subclass is related to its superclass by an is-a type
relationship. This means the phrase “Subclass S is a type of superclass P” makes
sense within the application.

Subclassing has several advantages:

� Reuse of code.

290 VisualAge COBOL Programming Guide

Writing a Subclass Definition

A subclass can reuse methods already existing in another class through
inheritance.

� More specific class.

A subclass can add new methods to handle specific instances the superclass does
not handle.

� Change in action.

A subclass can override a method inherited from its superclass. Overriding can be
anything from a few minor changes in how the method works to a complete over-
haul of what the method does.

In the mail-order catalogue application, Order is a general class. One of the first things
you discover working with Order is there are two kinds of orders: new order and back
order. While both new order and back order have all the characteristics of order, back
order also has the characteristic of requiring the order be read from the file and
checking the status of the items. It might make sense to make new order and back
order subclasses of order, diagramed as follows:

 ┌───────────┐

 │SOMObject │

 ├───────────┤

 │1:somNew │

 │2:somInit │

 │3:somFree │

 │4:somUninit│

 │5: ... │

 └────┬──────┘

 ┌─────────┴──────────┐

┌────────┴───────┐ ┌────────┴─────────┐

│Order │ │UserInterface │

│ (order-number) │ │ (action) │

│ (order-date) │ │ (item) │

│ (order-count) │ ├──────────────────┤

│ (order-table) │ │1:ReadUserInput │

├────────────────┤ │2:WriteUserOutput │

│1:AddItem │ │3:WriteUserMessage│

│2:DeleteItem │ └──────────────────┘

│3:CalculateCost │

│4:GetOrderNumber│

│5:WriteOrder │

└────────────┬───┘

 ┌──────┴─────┐

┌─────┴─────┐ ┌────┴────┐

│BackOrder │ │NewOrder │

├───────────┤ ├─────────┤

│1: │ │1: │

│2: │ │2: │

│3: │ │3: │

│4: │ │4: │

│5: │ │5: │

│6:ReadOrder│ └─────────┘

│7:CheckItem│

└───────────┘

 Chapter 14. Writing Object-Oriented Programs 291

Subclass ENVIRONMENT DIVISION

A number and colon with nothing after then represent a method inherited from a super-
class.

In COBOL, a subclass inherits the methods from its superclass. A subclass may
change, or override, one or more methods inherited from its superclass using the OVER-
RIDE clause on the METHOD-ID. Also, a subclass may add new methods it needs to
perform its services.

In COBOL, instance data is private so the superclass must provide methods to allow
the subclass to access instance data. A subclass can retrieve values from or store
values in the instance data using the methods provided by the superclass. A subclass
may also introduce new instance data of its own.

Multiple inheritance, inheriting from more than one superclass, is allowed in COBOL.
Should there be a conflict in method names between two superclasses, the conflict is
resolved according to the System Object Model (SOM) rules. See SOMobjects Devel-
oper's Toolkit User's Guide for an example.

Subclass IDENTIFICATION DIVISION: Required
In the IDENTIFICATION DIVISION of a subclass, you name the subclass and provide
inheritance information for it. Optionally, you may give other identifying information.
For example:

 Identification Division. Required
Class-Id. BackOrder INHERITS Order. Required

 CLASS-ID Paragraph
The CLASS-ID paragraph names the subclass and indicates from what superclass or
superclasses the subclass inherits. In the example above, BackOrder is the class
name. It inherits all the methods from Order. Also, it can access Order instance data if
Order provides methods to get and set its instance data.

The name(s) of the superclass(es) must be specified in the REPOSITORY paragraph in
the ENVIRONMENT DIVISION (see “REPOSITORY Paragraph”). BackOrder may
optionally be specified in the REPOSITORY paragraph.

Subclass ENVIRONMENT DIVISION: Required
In the ENVIRONMENT DIVISION of a subclass, you relate your subclass and class names
to external System Object Model (SOM) names. For example:

 Environment Division. Required
 Configuration Section. Required
 Repository. Required

Class BackOrder is 'BackOrder'

Class Order is 'Order'.

 REPOSITORY Paragraph
The REPOSITORY paragraph relates your subclass and class names to the subclass
and class names in the SOM interface repository. You must include:

292 VisualAge COBOL Programming Guide

Subclass Method IDENTIFICATION DIVISION

� User-written classes from which your subclass is inheriting.

� Metaclass to which your subclass belongs.

Discussed in “Writing a Metaclass Definition” on page 306.

� Any class referenced in methods introduced by the subclass.

You may optionally include the name of the subclass you are defining. If you do not
include the name of your subclass, it is treated as all upper-case regardless of how you
typed it on the CLASS-ID. In the example above, BackOrder is stored in the SOM inter-
face repository in mixed-case.

Subclass DATA DIVISION: Optional
In the DATA DIVISION of a subclass, you describe any extra instance data the subclass
needs. For example:

 Data Division.

 Working-Storage Section.

ð1 order-status PIC X(3).

A subclass DATA DIVISION contains only a WORKING-STORAGE SECTION.

 WORKING-STORAGE SECTION
A subclass WORKING-STORAGE SECTION describes instance data that is statically allo-
cated when the instance is created and exists until the instance is freed. By default,
the data is global to all the methods introduced by the subclass. Instance data in a
COBOL subclass is private. Thus, it cannot be referenced directly by any other class
or subclass.

Subclass PROCEDURE DIVISION: Optional
The subclass PROCEDURE DIVISION contains only method definitions. A subclass defi-
nition must be properly terminated with an END CLASS statement. For example:

End Class BackOrder.

marks the end of the BackOrder subclass.

Subclass Method IDENTIFICATION DIVISION: Optional
Use the IDENTIFICATION DIVISION to name a method and to optionally give other identi-
fying information. The name of each method in a subclass must be unique. For
example:

 Identification Division.

 Method-ID. ReadOrder.

 METHOD-ID Paragraph
Use the METHOD-ID PARAGRAPH to name the method. Other methods or programs use
this name to invoke the method.

If the subclass defines a method whose name exists in a superclass the OVERRIDE
clause must be specified on the METHOD-ID. For example :

 Chapter 14. Writing Object-Oriented Programs 293

Subclass Example

 Identification Division.

 Method-Id. AddItem Override.

When an object reference that is a handle to the BackOrder subclass invokes AddItem,
this method is invoked rather than the method in the superclass Order.

Note: In a method, a subclass can invoke an overridden superclass method by using
the INVOKE form:

 Invoke Super 'AddItem'.

This invokes the method AddItem defined in the superclass rather than the
method AddItem defined in the subclass.

In the case of multiple inheritance, a subclass may inherit several methods with
the same name from different parents. To specify precisely which method from
which parent is invoked use the following INVOKE form:

 Invoke Class-A of Super 'AddItem'.

This invokes the method AddItem defined in the superclass Class-A rather than
the method AddItem defined in any other superclass or in the subclass.

Subclass Method ENVIRONMENT DIVISION: Optional
The subclass method ENVIRONMENT DIVISION is coded in the same way a class
method ENVIRONMENT DIVISION is coded. See “Method ENVIRONMENT DIVISION:
Optional” on page 277 for a discussion of the class method ENVIRONMENT DIVISION.

Subclass Method DATA DIVISION: Optional
The subclass method DATA DIVISION is coded in the same way a class method DATA
DIVISION is coded. See “Method DATA DIVISION: Optional” on page 277 for a dis-
cussion of the class method DATA DIVISION.

If the same data item is used in both the subclass DATA DIVISION and the method DATA
DIVISION, a reference in the method to the data name refers to the data item in the
method DATA DIVISION. The method DATA DIVISION takes precedence.

Subclass Method PROCEDURE DIVISION: Optional
In the PROCEDURE DIVISION of a subclass method, you code the executable state-
ments to complete the service the method is expected to provide. A subclass method
definition must be properly terminated with an END METHOD statement. See “Method
PROCEDURE DIVISION: Optional” on page 278 for information about coding a
method.

Complete Subclass with Methods Example
The new class and method definitions for the user interface class:

294 VisualAge COBOL Programming Guide

Subclass Example

 IDENTIFICATION DIVISION.

 CLASS-ID. UserInterface INHERITS SOMObject.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

\ Declare classes used in class definition

 REPOSITORY.

CLASS SOMObject IS 'SOMObject'

CLASS UserInterface IS 'UserInterface'.

 DATA DIVISION.

\ Define instance data

 WORKING-STORAGE SECTION.

ð1 uif-action PIC X(1ð).

 88 uif-add VALUE 'AddItem'.

88 uif-delete VALUE 'DeleteItem'.

 88 uif-quit VALUE 'Quit'.

 ð1 uif-item PIC X(5).

 PROCEDURE DIVISION.

\ Method to read customer input - request

 IDENTIFICATION DIVISION.

 METHOD-ID. ReadUserRequest.

 DATA DIVISION.

 LINKAGE SECTION.

ð1 request PIC X(6).

 PROCEDURE DIVISION USING request.

DISPLAY 'Enter the request: new, status'.

ACCEPT request FROM SYSIN.

MOVE FUNCTION UPPER-CASE (request) TO request.

 EXIT METHOD.

 END METHOD ReadUserRequest.

\ Method to read customer input for new request - action and item

 IDENTIFICATION DIVISION.

 METHOD-ID. ReadUserInput1.

 DATA DIVISION.

 LINKAGE SECTION.

ð1 action PIC X(1ð).

 ð1 item PIC X(5).

 PROCEDURE DIVISION USING item action.

DISPLAY 'Enter the action: add, delete, quit'.

ACCEPT action FROM SYSIN.

MOVE FUNCTION UPPER-CASE (action) TO action.

 EVALUATE TRUE

WHEN action = 'ADD'

SET uif-add TO TRUE

 PERFORM Get-Item

 Chapter 14. Writing Object-Oriented Programs 295

Subclass Example

WHEN action = 'DELETE'

SET uif-delete TO TRUE

 PERFORM Get-Item

WHEN action = 'QUIT'

SET uif-quit TO TRUE

 END-EVALUATE.

MOVE uif-action TO action.

 EXIT METHOD.

 Get-Item.

DISPLAY 'Enter the item'.

ACCEPT item FROM SYSIN.

MOVE item TO uif-item.

 END METHOD ReadUserInput1.

\ Method to read customer input for status request - order number

 IDENTIFICATION DIVISION.

 METHOD-ID. ReadUserInput2.

 DATA DIVISION.

 LINKAGE SECTION.

ð1 acct-numb PIC 9(5).

 PROCEDURE DIVISION USING acct-numb.

DISPLAY 'Enter the account number'.

ACCEPT acct-numb FROM SYSIN.

 EXIT METHOD.

 END METHOD ReadUserInput2.

\ Method to inform customer how action was completed

 IDENTIFICATION DIVISION.

 METHOD-ID. WriteUserMessage.

 DATA DIVISION.

 LINKAGE SECTION.

ð1 flag PIC 9.

 PROCEDURE DIVISION USING flag.

IF flag = ð

 DISPLAY uif-action

' successfully completed on '

 uif-item

 ELSE

 DISPLAY uif-action

' unsuccessfully completed on '

 uif-item

 END-IF.

 EXIT METHOD.

 END METHOD WriteUserMessage.

\ Method to display order information

 IDENTIFICATION DIVISION.

296 VisualAge COBOL Programming Guide

Subclass Example

 METHOD-ID. WriteUserOutput.

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

77 formated-cost PIC $Z,ZZZ,ZZ9.99.

 LINKAGE SECTION.

 ð1 total-cost PIC 9(7)V99.

ð1 order-number PIC 9(5).

 PROCEDURE DIVISION USING total-cost order-number.

MOVE total-cost TO formated-cost.

DISPLAY 'Your order costs ' formated-cost.

DISPLAY 'Your order number is ' order-number.

 EXIT METHOD.

 END METHOD WriteUserOutput.

\ Method to display out of stock items

 IDENTIFICATION DIVISION.

 METHOD-ID. WriteUserStatus.

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

77 sub PIC 99.

 LINKAGE SECTION.

 ð1 out-table.

ð2 out-entry OCCURS 1ð TIMES.

ð3 out-item PIC X(5).

ð1 out-count PIC 99.

 PROCEDURE DIVISION USING out-table out-count.

IF out-count > ð

PERFORM VARYING sub FROM 1 BY 1

UNTIL sub > out-count

DISPLAY 'Out of stock '

 out-item (sub)

 END-PERFORM

 END-IF.

 EXIT METHOD.

 END METHOD WriteUserStatus.

 END CLASS UserInterface.

The new class and method definitions for the order class:

 IDENTIFICATION DIVISION.

 CLASS-ID. Orders INHERITS SOMObject.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

\ Declare classes used in program

 REPOSITORY.

CLASS SOMObject IS 'SOMObject'

CLASS Orders IS 'Orders'.

 Chapter 14. Writing Object-Oriented Programs 297

Subclass Example

 DATA DIVISION.

\ Define instance data

 WORKING-STORAGE SECTION.

ð1 order-number PIC 9(5).

 ð1 order-date PIC X(8).

 ð1 order-count PIC 99.

 ð1 order-table.

ð2 order-entry OCCURS 1ð TIMES.

ð3 order-item PIC X(5).

 PROCEDURE DIVISION.

\ Method to intiialize instance data

\ - this overrides the default 'somInit' method

 IDENTIFICATION DIVISION.

 METHOD-ID. 'somInit' OVERRIDE.

 PROCEDURE DIVISION.

MOVE FUNCTION CURRENT-DATE(1:8) TO order-date.

COMPUTE order-number = FUNCTION RANDOM (99999).

MOVE ð TO order-count.

 INITIALIZE order-table.

 EXIT METHOD.

 END METHOD 'somInit'.

\ Method to set instance data read by subclass

 IDENTIFICATION DIVISION.

 METHOD-ID. 'setInstanceData'.

 DATA DIVISION.

 LINKAGE SECTION.

 ð1 in-order.

ð2 in-order-number PIC 9(5).

 ð2 in-order-date PIC X(8).

 ð2 in-order-count PIC 99.

 ð2 in-order-table.

ð3 in-order-entry OCCURS 1ð TIMES.

ð4 in-order-item PIC X(5).

 PROCEDURE DIVISION USING in-order.

MOVE in-order-number TO order-number.

 MOVE in-order-date TO order-date.

 MOVE in-order-count TO order-count.

 MOVE in-order-table TO order-table.

 EXIT METHOD.

 END METHOD 'setInstanceData'.

\ Method to get instance data and give it to subclass

 IDENTIFICATION DIVISION.

 METHOD-ID. 'getInstanceData'.

 DATA DIVISION.

 LINKAGE SECTION.

298 VisualAge COBOL Programming Guide

Subclass Example

 ð1 out-order.

ð2 out-order-number PIC 9(5).

 ð2 out-order-date PIC X(8).

 ð2 out-order-count PIC 99.

 ð2 out-order-table.

ð3 out-order-entry OCCURS 1ð TIMES.

ð4 out-order-item PIC X(5).

 PROCEDURE DIVISION USING out-order.

MOVE order-number TO out-order-number.

 MOVE order-date TO out-order-date.

 MOVE order-count TO out-order-count.

 MOVE order-table TO out-order-table.

 EXIT METHOD.

 END METHOD 'getInstanceData'.

\ Method to add an item to an order

 IDENTIFICATION DIVISION.

 METHOD-ID. AddItem.

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

77 sub PIC 99.

ð1 found-flag PIC 9 VALUE 1.

88 found VALUE ð.

 LINKAGE SECTION.

 ð1 in-item PIC X(5).

ð1 add-flag PIC 9.

 PROCEDURE DIVISION USING in-item

 RETURNING add-flag.

MOVE 1 TO add-flag.

PERFORM VARYING sub FROM 1 BY 1

UNTIL (sub > 1ð) OR (found)

IF order-item (sub) = SPACES

MOVE in-item TO order-item (sub)

ADD 1 TO order-count

MOVE ð TO add-flag

SET found TO TRUE

 END-IF

 END-PERFORM.

 EXIT METHOD.

 END METHOD AddItem.

\ Method to delete an item from an order

 IDENTIFICATION DIVISION.

 METHOD-ID. DeleteItem.

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

77 sub PIC 99.

ð1 found-flag PIC 9 VALUE 1.

 Chapter 14. Writing Object-Oriented Programs 299

Subclass Example

88 found VALUE ð.

 LINKAGE SECTION.

 ð1 out-item PIC X(5).

ð1 delete-flag PIC 9.

 PROCEDURE DIVISION USING out-item

 RETURNING delete-flag.

MOVE 1 TO delete-flag.

PERFORM VARYING sub FROM 1 BY 1

UNTIL (sub > 1ð) OR (found)

IF order-item (sub) = out-item

MOVE SPACES TO order-item (sub)

SUBTRACT 1 FROM order-count

MOVE ð TO delete-flag

SET found TO TRUE

 END-IF

 END-PERFORM.

 EXIT METHOD.

 END METHOD DeleteItem.

\ Method to compute the total cost of an order

 IDENTIFICATION DIVISION.

 METHOD-ID. ComputeCost.

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

 77 sub PIC 99.

77 cost PIC 9(5)V99.

 LINKAGE SECTION.

ð1 total-cost PIC 9(7)V99.

 PROCEDURE DIVISION USING total-cost.

MOVE ð TO total-cost.

PERFORM VARYING sub FROM 1 BY 1

UNTIL sub > order-count

\ Call a subroutine

\ NOTE: The subroutine code is not

\ included in this example.

 CALL 'InventoryGetCost'

USING order-item (sub) cost

ADD cost TO total-cost

 END-PERFORM.

 EXIT METHOD.

 END METHOD ComputeCost.

\ Method to return the order number

 IDENTIFICATION DIVISION.

 METHOD-ID. 'getOrderNumber'.

 DATA DIVISION.

 LINKAGE SECTION.

ð1 ord-num PIC 9(5).

300 VisualAge COBOL Programming Guide

Subclass Example

 PROCEDURE DIVISION RETURNING ord-num.

MOVE order-number TO ord-num.

 EXIT METHOD.

 END METHOD 'getOrderNumber'.

\ Method to write completed order to a file

 IDENTIFICATION DIVISION.

 METHOD-ID. WriteOrder.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT order-file ASSIGN OrdrFile.

 DATA DIVISION.

 FILE SECTION.

FD order-file EXTERNAL.

ð1 order-record PIC X(8ð).

 LOCAL-STORAGE SECTION.

 ð1 print-line.

ð2 print-order-number PIC 9(5).

 ð2 print-order-date PIC X(8).

 ð2 print-order-count PIC 99.

 ð2 print-order-table.

ð3 print-order-entry OCCURS 1ð TIMES.

ð4 print-order-item PIC X(5).

 PROCEDURE DIVISION.

OPEN OUTPUT order-file.

MOVE order-number TO print-order-number.

 MOVE order-date TO print-order-date.

 MOVE order-count TO print-order-count.

 MOVE order-table TO print-order-table.

WRITE order-record FROM print-line.

 CLOSE order-file.

 EXIT METHOD.

 END METHOD WriteOrder.

 END CLASS Orders.

The subclass and method definitions for the new order subclass:

 IDENTIFICATION DIVISION.

 CLASS-ID. NewOrders INHERITS Orders.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

\ Declare classes used in subclass defintion

 REPOSITORY.

CLASS NewOrders IS 'NewOrders'

CLASS Orders IS 'Orders'.

 Chapter 14. Writing Object-Oriented Programs 301

Subclass Example

 DATA DIVISION.

 PROCEDURE DIVISION.

\ All methods are inherited from superclass

 END CLASS NewOrders.

The subclass and method definitions for the back order subclass:

 IDENTIFICATION DIVISION.

 CLASS-ID. BackOrders INHERITS Orders.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

\ Declare classes used in subclass definition

 REPOSITORY.

CLASS BackOrders IS 'BackOrders'

CLASS Orders IS 'Orders'.

 DATA DIVISION.

 PROCEDURE DIVISION.

\ Method to read back order from file

 IDENTIFICATION DIVISION.

 METHOD-ID. ReadOrder.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT backorder-file ASSIGN BackFile.

 DATA DIVISION.

 FILE SECTION.

FD backorder-file EXTERNAL.

ð1 backorder-record PIC X(8ð).

 LOCAL-STORAGE SECTION.

 ð1 backorder.

ð2 backorder-number PIC 9(5).

 ð2 backorder-date PIC X(8).

 ð2 backorder-count PIC 99.

 ð2 backorder-table.

ð3 backorder-entry OCCURS 1ð TIMES.

ð4 backorder-item PIC X(5).

77 eof-flag PIC 9 VALUE 1.

88 eof VALUE ð.

 LINKAGE SECTION.

ð1 order-number PIC 9(5).

 PROCEDURE DIVISION USING order-number.

OPEN INPUT backorder-file.

302 VisualAge COBOL Programming Guide

Subclass Example

PERFORM UNTIL eof

READ backorder-file INTO backorder

 AT END

SET eof TO TRUE

NOT AT END

IF order-number = backorder-number

INVOKE SELF 'setInstanceData' USING backorder

 END-IF

 END-READ

 END-PERFORM.

 CLOSE backorder-file.

 EXIT METHOD.

 END METHOD ReadOrder.

\ Method to check whether item is still not in stock

 IDENTIFICATION DIVISION.

 METHOD-ID. CheckItem.

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

 ð1 backorder.

ð2 backorder-number PIC 9(5).

 ð2 backorder-date PIC X(8).

 ð2 backorder-count PIC 99.

 ð2 backorder-table.

ð3 backorder-entry OCCURS 1ð TIMES.

ð4 backorder-item PIC X(5).

77 sub PIC 99.

77 status-flag PIC 9.

 88 in-stock VALUE ð.

88 out-stock VALUE 1.

 LINKAGE SECTION.

 ð1 out-table.

ð2 out-entry OCCURS 1ð TIMES.

ð3 out-item PIC X(5).

ð1 out-count PIC 99.

 PROCEDURE DIVISION USING out-table out-count.

INVOKE SELF 'getInstanceData' USING backorder.

MOVE ð TO out-count.

PERFORM VARYING sub FROM 1 BY 1

UNTIL sub > backorder-count

\ Call a subroutine

\ NOTE: The subroutine code is not

\ included in this example.

 CALL 'InventoryGetItem'

USING backorder-item (sub) status-flag

 IF out-stock

ADD 1 TO out-count

MOVE backorder-item (sub) TO out-item (out-count)

 END-IF

 END-PERFORM.

 Chapter 14. Writing Object-Oriented Programs 303

Subclass Example

 EXIT METHOD.

 END METHOD CheckItem.

 END CLASS BackOrders.

A possible new client program:

 IDENTIFICATION DIVISION.

 PROGRAM-ID. 'PhoneOrders'.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

\

\ Declare the classes used in the program

 REPOSITORY.

CLASS NewOrders IS 'NewOrders'

CLASS BackOrders IS 'BackOrders'

CLASS UserInterface IS 'UserInterface'.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

\

\ Declare the object references used in the program

\ Note: univObj is a universal object reference

77 univObj USAGE OBJECT REFERENCE.

77 userObj USAGE OBJECT REFERENCE UserInterface.

\

\ Declare other data items used in the program

77 order-number PIC 9(5).

77 total-cost PIC 9(7)V99.

77 out-count PIC 9(2).

77 request PIC X(6).

77 action PIC X(1ð).

77 flag PIC 9.

77 item PIC X(5).

 ð1 item-table.

ð2 item-entry OCCURS 1ð TIMES.

ð3 item-element PIC X(5).

 PROCEDURE DIVISION.

\

\ Create an instance of the UserInterface class - userObj

INVOKE UserInterface 'somNew' RETURNING userObj.

\

\ Read customer input - request

INVOKE userObj 'ReadUserRequest' USING request.

\

\ What is the customer's request?

IF request = 'STATUS'

 PERFORM CheckBackOrder

 ELSE

 PERFORM CreateNewOrder

304 VisualAge COBOL Programming Guide

Subclass Example

 END-IF.

\

\ Free the instance of the UserInterface class - userObj

INVOKE userObj 'somFree'.

 STOP RUN.

 CreateNewOrder.

\

\ Create an instance of the NewOrders class - univObj

INVOKE NewOrders 'somNew' RETURNING univObj.

\

\ Read customer input - action and item

INVOKE userObj 'ReadUserInput1' USING item action.

\

\ Begin customer driven loop based on action

PERFORM UNTIL action = 'Quit'

\

\ Do appropriate action

IF action (1:3) = 'Add'

INVOKE univObj 'AddItem' USING item

 RETURNING flag

 ELSE

INVOKE univObj 'DeleteItem' USING item

 RETURNING flag

 END-IF

\

\ Display result of action

INVOKE userObj 'WriteUserMessage' USING OMITTED flag

\

\ Read customer input - action and item

INVOKE userObj 'ReadUserInput1' USING item action

 END-PERFORM.

\ End customer driven loop based on action

\

\

\ Calculate the total cost of the order

INVOKE univObj 'ComputeCost' USING total-cost.

\

\ Determine the order number

INVOKE univObj 'getOrderNumber'

 RETURNING order-number.

\

\ Display information about the order

INVOKE userObj 'WriteUserOutput'

USING total-cost order-number.

\

\ Write the order to a file

INVOKE univObj 'WriteOrder'.

 Chapter 14. Writing Object-Oriented Programs 305

Writing a Metaclass Definition

\

\ Free the NewOrders instance - univObj

INVOKE univObj 'somFree'.

 CheckBackOrder.

\

\ Create an instance of the BackOrders class - univObj

INVOKE BackOrders 'somNew' RETURNING univObj.

\

\ Read customer input - order number

INVOKE userObj 'ReadUserInput2' USING order-number.

\

\ Read the back-ordered information from a file

INVOKE univObj 'ReadOrder' USING order-number.

\

\ Check whether the back-ordered items are now in stock

INVOKE univObj 'CheckItem' USING item-table out-count.

\

\ Display the status of the back-ordered items

INVOKE userObj 'WriteUserStatus' USING item-table out-count.

\

\ Free the BackOrders instance - univObj

INVOKE univObj 'somFree'.

 END PROGRAM 'PhoneOrders'.

Writing a Metaclass Definition
A metaclass is a special type of class whose instances are called class-objects. Class-
objects are the run-time objects that represent SOM classes. Object-oriented COBOL
applications either use the default metaclasses provided automatically by the SOM
environment, or explicit metaclass definitions may be provided for specialized purposes.

Metaclasses have their own methods and can have their own instance data. The most
common use of a metaclass is to control how an instance of a class is created. The
method in the metaclass that creates the instance of a class is a constructor method.
Metaclasses are also useful when multiple instances of a class are created and data
must be gathered from all the instances. See the SOMobjects Developer's Toolkit
User's Guide and SOMobjects Developer's Toolkit Programmer's Reference Manual
(available online) for further details on metaclasses and their uses.

In the mail-order catalogue application, BackOrder required the reading of a file to
establish its instance data. Reading the file cannot be done by somInit because an
order number is needed as a parameter. This is a good place to use a metaclass with
a constructor method to create the instance of BackOrder and read the file.

306 VisualAge COBOL Programming Guide

Metaclass ENVIRONMENT DIVISION

Metaclass IDENTIFICATION DIVISION: Required
In the IDENTIFICATION DIVISION of a metaclass, you name the metaclass and
provide inheritance information for it. Optionally, you may give other identifying infor-
mation. For example:

 Identification Division. Required
Class-Id. MetaBackOrder INHERITS SOMClass. Required

 CLASS-ID Paragraph
The CLASS-ID paragraph names the metaclass and indicates from what base System
Object Model (SOM) class the metaclass inherits. In the example above,
MetaBackOrder is the class name. It inherits from the base SOM class SOMClass. All
metaclasses inherit directly or indirectly from SOMClass.

SOMClass must be specified in the REPOSITORY paragraph in the ENVIRONMENT DIVI-
SION (see “REPOSITORY Paragraph”). MetaBackOrder may optionally be specified in
the REPOSITORY paragraph.

Metaclass ENVIRONMENT DIVISION: Required
In the ENVIRONMENT DIVISION of a metaclass, you relate your metaclass names to
external SOM names. For example:

 Environment Division. Required
 Configuration Section. Required
 Repository. Required

Class MetaBackOrder is 'MetaBackOrder'

Class SOMClass is 'SOMClass'.

 REPOSITORY Paragraph
The REPOSITORY paragraph relates your metaclass and class names to the metaclass
and class names in the SOM interface repository. You must include:

� SOM base classes.

In the example above, CLASS SOMClass IS 'SOMClass' indicates what you are
calling SOMClass in your COBOL program is also called SOMClass in the SOM
repository.

� User-written classes from which your metaclass is inheriting.

Discussed in “Writing a Subclass Definition” on page 290.

� Any class referenced in methods introduced by the metaclass.

You may optionally include the name of the metaclass you are defining. If you do not
include the name of your metaclass, it is treated as all upper-case regardless of how
you typed it on the CLASS-ID. In the example above, MetaBackOrder is stored in the
SOM interface repository in mixed-case.

 Chapter 14. Writing Object-Oriented Programs 307

Metaclass Method PROCEDURE DIVISION

Metaclass DATA DIVISION: Optional
In THE DATA DIVISION of a metaclass, you describe any instance data the metaclass
needs. For example:

 Data Division.

 Working-Storage Section.

ð1 total-orders PIC X(3).

A metaclass DATA DIVISION contains only a WORKING-STORAGE SECTION.

 WORKING-STORAGE SECTION
A metaclass WORKING-STORAGE SECTION describes instance data that is statically allo-
cated when the first instance of an object in the metaclass is created and exists until
the COBOL run-unit terminates. By default, the data is global to all the methods intro-
duced by the metaclass. Instance data in a COBOL metaclass is private. Thus, it
cannot be referenced directly by any other class or metaclass.

Metaclass PROCEDURE DIVISION: Optional
The metaclass PROCEDURE DIVISION contains only method definitions. A metaclass
definition must be properly terminated with an END CLASS statement. For example:

End Class MetaBackOrder.

marks the end of the MetaBackOrder metaclass.

Metaclass Method IDENTIFICATION DIVISION: Optional
The metaclass method IDENTIFICATION DIVISION is coded in the same way a class
method IDENTIFICATION DIVISION is coded. See “Method IDENTIFICATION DIVISION:
Required” on page 276 for a discussion of the class method IDENTIFICATION DIVISION.

Metaclass Method ENVIRONMENT DIVISION: Optional
The metaclass method ENVIRONMENT DIVISION is coded in the same way a class
method ENVIRONMENT DIVISION is coded. See “Method ENVIRONMENT DIVISION:
Optional” on page 277 for a discussion of the class method ENVIRONMENT DIVISION.

Metaclass Method DATA DIVISION: Optional
The metaclass method DATA DIVISION is coded in the same way a class method DATA
DIVISION is coded. See “Method DATA DIVISION: Optional” on page 277 for a dis-
cussion of the class method DATA DIVISION.

If the same data item is used in both the metaclass DATA DIVISION and the method
DATA DIVISION, a reference in the method to the data name refers to the data item in
the method DATA DIVISION. The method DATA DIVISION takes precedence.

Metaclass Method PROCEDURE DIVISION: Optional
In the PROCEDURE DIVISION of a metaclass method, you code the executable state-
ments to complete the service the method is expected to provide. For the most part, a
metaclass method PROCEDURE DIVISION is coded in the same way a class method

308 VisualAge COBOL Programming Guide

Changes to Client Program

PROCEDURE DIVISION is coded. See “Method PROCEDURE DIVISION: Optional” on
page 278 for a discussion of the class method PROCEDURE DIVISION.

 Constructor Method
A metaclass constructor method is usually invoked with a class name so the use of the
following INVOKE form is needed in the constructor method to create an instance of the
class:

 Invoke Self 'somNew' Returning anObj.

This creates an instance of the class on which the method was invoked, SELF, and
returns the handle to that instance in the object reference anObj.

Method Only: SELF can be used only in a method.

Changes to Class or Subclass Definitions
When a class or subclass uses an explicit metaclass, the name of the metaclass must
be specified with the METACLASS IS clause in the CLASS-ID paragraph. For example:

 Identification Division.

 Class-Id. BackOrder Inherits Order

Metaclass is MetaBackOrder.

Also, the name of the metaclass must be specified in the REPOSITORY paragraph of the
CONFIGURATION SECTION. For example:

 Environment Division.

 Configuration Section.

 Repository.

Class MetaBackOrder Is 'MetaBackOrder'

Class BackOrder Is 'BackOrder'

Class Order Is 'Order'.

Changes to the Client Program
To use the metaclass constructor method, the client program invokes the constructor
method instead of 'somNew'. For example:

 Invoke BackOrder 'CreateObject' Using order-number Returning anObj.

The method CreateObject is defined in the metaclass for BackOrder. This method
invokes somNew to create an instance, reads the data from the file using the order
number, and returns the handle to the instance in the object reference anObj. See
“Complete Metaclass with Methods Example” on page 310 for a detailed example of
using a metaclass constructor method.

Any method in a metaclass can be invoked with the class name. For example:

 Invoke BackOrder 'CountOrders'.

Or, a metaclass object reference can be defined as a handle to the metaclass. For
example:

 Working-Storage Section.

 ð1 metaObj Usage Object Reference Metaclass BackOrder.

 Chapter 14. Writing Object-Oriented Programs 309

Metaclass Example

The object reference metaObj is a handle to the metaclass for BackOrder, not a handle
to BackOrder itself.

The metaclass object reference is used as follows:

Procedure Division.

 .

 .

Invoke backObj 'somGetClass' Returning metaObj.

Invoke metaObj 'CountOrders'.

The first INVOKE statement invokes a SOM method somGetClass which takes an object
reference, backObj, to an instance and returns an object reference, metaObj, for the
metaclass to which backObj belongs.

The second INVOKE statement uses the object reference to the metaclass, metaObj to
invoke the method CountOrders which is defined in the metaclass. See “Complete
Metaclass with Methods Example” for a detailed example of using a metaclass method.

Complete Metaclass with Methods Example
The metaclass and method definitions for the back order subclass:

 IDENTIFICATION DIVISION.

 CLASS-ID. MetaBackOrders INHERITS SOMClass.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

\ Declare classes used in metaclass definition

 REPOSITORY.

CLASS MetaBackOrders IS 'MetaBackOrders'

CLASS BackOrders IS 'BackOrders'

CLASS SOMClass IS 'SOMClass'.

 DATA DIVISION.

\ Define instance data

 WORKING-STORAGE SECTION.

ð1 status-count PIC 99.

 PROCEDURE DIVISION.

\ Method to initialize instance data

 IDENTIFICATION DIVISION.

 METHOD-ID. 'somInit' OVERRIDE.

 PROCEDURE DIVISION.

MOVE ð TO status-count.

 EXIT METHOD.

 END METHOD 'somInit'.

\ Method to create and initialize instances of BackOrders

 IDENTIFICATION DIVISION.

 METHOD-ID. CreateBackOrders.

310 VisualAge COBOL Programming Guide

Metaclass Example

 DATA DIVISION.

 LINKAGE SECTION.

ð1 order-number PIC 9(5).

ð1 anObj USAGE OBJECT REFERENCE.

 PROCEDURE DIVISION USING order-number RETURNING anObj.

INVOKE SELF 'somNew' RETURNING anObj.

INVOKE anObj 'ReadOrder' USING order-number.

ADD 1 TO status-count.

 EXIT METHOD.

 END METHOD CreateBackOrders.

\ Method to return the number of back orders processed

 IDENTIFICATION DIVISION.

 METHOD-ID. CountBackOrders.

 DATA DIVISION.

 LINKAGE SECTION.

ð1 out-count PIC 9(2).

 PROCEDURE DIVISION RETURNING out-count.

MOVE status-count TO out-count.

 EXIT METHOD.

 END METHOD CountBackOrders.

 END CLASS MetaBackOrders.

The new subclass and method definitions for the back order subclass:

 IDENTIFICATION DIVISION.

 CLASS-ID. BackOrders INHERITS Orders

 METACLASS MetaBackOrders.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

\ Declare classes used in subclass definition

 REPOSITORY.

CLASS MetaBackOrders IS 'MetaBackOrders'

CLASS BackOrders IS 'BackOrders'

CLASS Orders IS 'Orders'.

 DATA DIVISION.

 PROCEDURE DIVISION.

\ Method to read back order from file

 IDENTIFICATION DIVISION.

 METHOD-ID. ReadOrder.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 Chapter 14. Writing Object-Oriented Programs 311

Metaclass Example

 FILE-CONTROL.

SELECT backorder-file ASSIGN BackFile.

 DATA DIVISION.

 FILE SECTION.

FD backorder-file EXTERNAL.

ð1 backorder-record PIC X(8ð).

 LOCAL-STORAGE SECTION.

 ð1 backorder.

ð2 backorder-number PIC 9(5).

 ð2 backorder-date PIC X(8).

 ð2 backorder-count PIC 99.

 ð2 backorder-table.

ð3 backorder-entry OCCURS 1ð TIMES.

ð4 backorder-item PIC X(5).

77 eof-flag PIC 9 VALUE 1.

88 eof VALUE ð.

 LINKAGE SECTION.

ð1 order-number PIC 9(5).

 PROCEDURE DIVISION USING order-number.

OPEN INPUT backorder-file.

PERFORM UNTIL eof

READ backorder-file INTO backorder

 AT END

SET eof TO TRUE

NOT AT END

IF order-number = backorder-number

INVOKE SELF 'setInstanceData' USING backorder

 END-IF

 END-READ

 END-PERFORM.

 CLOSE backorder-file.

 EXIT METHOD.

 END METHOD ReadOrder.

\ Method to check whether item is still not in stock

 IDENTIFICATION DIVISION.

 METHOD-ID. CheckItem.

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

 ð1 backorder.

ð2 backorder-number PIC 9(5).

 ð2 backorder-date PIC X(8).

 ð2 backorder-count PIC 99.

 ð2 backorder-table.

ð3 backorder-entry OCCURS 1ð TIMES.

ð4 backorder-item PIC X(5).

77 sub PIC 99 VALUE ð.

77 status-flag PIC 9.

 88 in-stock VALUE ð.

312 VisualAge COBOL Programming Guide

Metaclass Example

88 out-stock VALUE 1.

 LINKAGE SECTION.

 ð1 out-table.

ð2 out-entry OCCURS 1ð TIMES.

ð3 out-item PIC X(5).

ð1 out-count PIC 99.

 PROCEDURE DIVISION USING out-table out-count.

INVOKE SELF 'getInstanceData' USING backorder.

MOVE ð TO out-count.

PERFORM VARYING sub FROM 1 BY 1

UNTIL sub > backorder-count

\ Call a subroutine

\ NOTE: The subroutine code is not

\ included in this example.

 CALL 'InventoryGetItem'

USING backorder-item (sub) status-flag

 IF out-stock

ADD 1 TO out-count

MOVE backorder-item (sub) TO out-item (out-count)

 END-IF

 END-PERFORM.

 EXIT METHOD.

 END METHOD CheckItem.

 END CLASS BackOrders.

A possible new client program:

 IDENTIFICATION DIVISION.

 PROGRAM-ID. 'PhoneOrders'.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

\

\ Declare the classes used in the program

 REPOSITORY.

CLASS NewOrders IS 'NewOrders'

CLASS BackOrders IS 'BackOrders'

CLASS UserInterface IS 'UserInterface'.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

\

\ Declare the object references used in the program

77 univObj USAGE OBJECT REFERENCE.

\ Note: metaObj is an object reference to a metaclass

77 metaObj USAGE OBJECT REFERENCE METACLASS BackOrders.

77 userObj USAGE OBJECT REFERENCE UserInterface.

\

\ Declare other data items used in the program

77 order-number PIC 9(5).

77 total-cost PIC 9(7)V99.

 Chapter 14. Writing Object-Oriented Programs 313

Metaclass Example

77 out-count PIC 9(2).

77 request PIC X(6).

77 action PIC X(1ð).

77 flag PIC 9.

77 item PIC X(5).

 ð1 item-table.

ð2 item-entry OCCURS 1ð TIMES.

ð3 item-element PIC X(5).

 PROCEDURE DIVISION.

\

\ Create an instance of the UserInterface class - userObj

INVOKE UserInterface 'somNew' RETURNING userObj.

\

\ Read customer input - request

INVOKE userObj 'ReadUserRequest' USING request.

\

\ What is the customer's request?

IF request = 'STATUS'

 PERFORM CheckBackOrder

 ELSE

 PERFORM CreateNewOrder

 END-IF.

\

\ Free the instance of the UserInterface class - userObj

INVOKE userObj 'somFree'.

 STOP RUN.

 CreateNewOrder.

\

\ Create an instance of the NewOrders class - univObj

INVOKE NewOrders 'somNew' RETURNING univObj.

\

\ Read customer input - action and item

INVOKE userObj 'ReadUserInput1' USING item action.

\

\ Begin customer driven loop based on action

PERFORM UNTIL action = 'Quit'

\

\ Do appropriate action

IF action (1:3) = 'Add'

INVOKE univObj 'AddItem' USING item

 RETURNING flag

 ELSE

INVOKE univObj 'DeleteItem' USING item

 RETURNING flag

 END-IF

\

\ Display result of action

314 VisualAge COBOL Programming Guide

Metaclass Example

INVOKE userObj 'WriteUserMessage' USING OMITTED flag

\

\ Read customer input - action and item

INVOKE userObj 'ReadUserInput1' USING item action

 END-PERFORM.

\ End customer driven loop based on action

\

\

\ Calculate the total cost of the order

INVOKE univObj 'ComputeCost' USING total-cost.

\

\ Determine the order number

INVOKE univObj 'getOrderNumber'

 RETURNING order-number.

\

\ Display information about the order

INVOKE userObj 'WriteUserOutput'

USING total-cost order-number.

\

\ Write the order to a file

INVOKE univObj 'WriteOrder'.

\

\ Free the NewOrders instance - univObj

INVOKE univObj 'somFree'.

 CheckBackOrder.

\

\ Read customer input - order number

INVOKE userObj 'ReadUserInput2' USING order-number.

\

\ Begin customer driven loop based order number

PERFORM UNTIL order-number < ð

\

\ Create an instance of the BackOrders class (univObj) and

\ read the back order from a file using a metaclass method

INVOKE BackOrders 'CreateBackOrders'

USING order-number RETURNING univObj

\

\ Check whether the back-ordered items are now in stock

INVOKE univObj 'CheckItem'

USING item-table out-count

\

\ Display the status of the back-ordered items

INVOKE userObj 'WriteUserStatus'

USING item-table out-count

\

\ Read customer input - order number

INVOKE userObj 'ReadUserInput2'

 Chapter 14. Writing Object-Oriented Programs 315

Metaclass Example

 USING order-number

 END-PERFORM.

\ End customer driven loop based on order number

\

\

\ Get an object reference to the metaclass

\ Note: 'somGetClass' is a SOM method

INVOKE univObj 'somGetClass' RETURNING metaObj.

\

\ How many back orders were processed?

\ Note: Metaclass object reference to invoke metaclass method

INVOKE metaObj 'CountBackOrders' RETURNING out-count.

\

\ Display number of back orders processed

INVOKE userObj 'WriteUserMessage' USING out-count OMITTED.

\

\ Free the metaclass instance - metaObj

\ Note: This also frees all BackOrders instances

INVOKE metaObj 'somFree'.

 END PROGRAM 'PhoneOrders'.

Others the Same: Other programs stay the same as the subclass example on page
294.

316 VisualAge COBOL Programming Guide

SOM Interface Repository

Chapter 15. Using System Object Model (SOM)

System Object Model (SOM) is an object-oriented programming technology that allows
class implementers to describe the interface for a class in a standard language called
the Interface Definition Language (IDL). Unlike the object model found in most other
object-oriented programming languages, SOM is language-neutral. It preserves the key
object-oriented programming characteristics of encapsulation, inheritance, and
polymorphism without requiring the implementer of a SOM class and user of a SOM
class to use the same programming language.

Note: The object-oriented COBOL language support is based on OS/390 SOMobjects.
This support is not available on VM/CMS.

SOM Interface Repository
The SOM Interface Repository (IR) is a database in which the SOM Compiler optionally
creates and maintains class interface definitions. The SOM IR is used by the COBOL
compiler when compiling object-oriented COBOL programs. When compiling a class
definition or client program with the IDLGEN or the TYPECHK option, the interface infor-
mation for referenced classes must be present in the IR. (All referenced classes are
declared in the REPOSITORY paragraph of the CONFIGURATION SECTION.)

Accessing the IR
The interface repository files to be used are specified outside the COBOL program
using a SOM environment variable. The environment variable that specifies the IR is
SOMIR. This environment variable is set as follows:

 set SOMIR=c:\mydir\mycls.ir

If you do not set the SOMIR environment variable, the IR emitter creates a file named
“som.ir” in the current directory.

 set SOMIR=c:\som\som.ir;c:\dept\dept.ir;c:\work\work.ir

In this case, som.ir is SOM's IR that is not updated, dept.ir is a stable department IR
that is not updated, and work.ir is the working IR that is updated.

Note: You may need to update the SOMIR environment variable if you delete and
reinstall IBM VisualAge COBOL, or install another product that updates it.

You may set SOMIR at the time you use it; however, it is easier to put the statement in
the above example into your CONFIG.SYS (OS/2) or AUTOEXEC.BAT (Windows 95) file
or set it in the System window (Windows NT). For more information see the Interface
Repository chapter of the SOMobjects Developer's Toolkit User's Guide (available
online).

Populating the IR
The IR can be populated with interface information from COBOL classes via the fol-
lowing procedure:

 Copyright IBM Corp. 1996, 1998 317

SOM Environment Variables

1. Compile the COBOL class definition with the COBOL compiler, specifying the
IDLGEN compiler option.

2. Compile the IDL source files with the SOM compiler, using the IR emitter.

Some COBOL class definitions with complex interdependencies may have to be com-
piled in two steps. For example, there may be circular compilation order dependencies,
such as when two class definitions each contain references to the other. Such complex
configurations may be compiled with the following procedure:

1. Compile all of the COBOL class definition source files with the IDLGEN,
NOTYPECHK, and NOCOMPILE compiler options. This generates IDL files for the
class interfaces, but does not perform type checking or generate an object file.

2. Compile the IDL files with the SOM compiler, using the IR emitter. This populates
the IR with the class interface information.

3. Compile the COBOL class definitions again, with the NOIDLGEN and TYPECHK
compiler options. This final compile performs full type checking and generates
object files.

Compiling IDL Files
Compile IDL files and populate the IR using the SOM Compiler (for example, SC
command or JCL procedure) with the -usir option. For example:

 sc -usir myclass.idl

The SOM Compiler, sc, is started with the file myclass.idl and -usir option, which
means update the IR. The rightmost IR file in the SOMIR list is the one updated.

SOM Environment Variables
The following environment variables specify information that is needed by the SOM
compiler, interface repository framework, and run time. For full details, see SOMobjects
Developer's Toolkit User's Guide (available online).

SMINCLUDE Specifies where to look for #include files included by the .idl file being
compiled.

 set SMINCLUDE=.;c:\toolkt2ð\include;c:\som\include

SMTMP Specifies where to put intermediate output files. This directory should
not be the same as the ones where input and output files are located.

 set SMTMP=c:\tmp\garbage

SMEMIT Specifies which emitters the SOM compiler runs.

For a COBOL class the most frequent emitter is the .h emitter which
produces a header file for use by a C client of the COBOL class.

 set SMEMIT="h"

For example, the following series of statements

 set SMEMIT="h"

 sc -usir myclass.idl

318 VisualAge COBOL Programming Guide

SOM Services

directs the SOM Compiler to produce 'myclass.h', and populate the IR
from the 'myclass.idl' input specification.

SOMIR Specifies the location of the interface repositories.

set SOMIR=c:\mydir\mycls.ir

As with the SOMIR environment variable, you can type these environment variables
when you need them. However, it is easier to put the above “set” statements in your
CONFIG.SYS file (OS/2) or AUTOEXEC.BAT (Windows 95) file or set them in the System
window (Windows NT). For more information see the SOM Compiler chapter of the
SOMobjects Developer's Toolkit User's Guide (available online).

System Object Model (SOM) Services
IBM COBOL implements a subset of the ANSI Object-Oriented COBOL syntax based
on the SOM object-oriented engine. Not all essential object-oriented capabilities are
implemented in native COBOL syntax. Instead, SOM application programming inter-
faces, methods and functions are used. For example, native COBOL syntax is avail-
able for class definitions, object-reference datatype, and method invocation. However
object creation, destruction, initialization, and termination are handled by invoking SOM
methods provided by the SOMObject and SOMClass classes. Many other SOM facilities
are available to COBOL programmers either for direct use or for overriding and custom-
izing. These are described in SOMobjects Developer's Toolkit User's Guide (available
online).

SOM Methods and Functions
The following SOM methods and function are especially important to COBOL
programmers:

somNew A method in SOMClass to create a new object instance of a class.
During creation, somInit is invoked for customized initialization of the
object.

somFree A method in SOMObject to free an object instance releasing the
storage used. Prior to freeing storage, “somUninit” is invoked for cus-
tomized uninitialization.

somFree must not be invoked to destroy an active object, that is, an
object upon which a method has been invoked that has not yet
returned control to the invoker.

somInit A method in SOMObject that has no default function, but may be over-
ridden explicitly in a COBOL class definition to perform customized
initializations when an object is created.

somUninit A method in SOMObject that has no default function, but may be over-
ridden explicitly in a COBOL class definition to perform customized
uninitialization (typically the inverse of the function performed by a
customized somInit).

 Chapter 15. Using System Object Model (SOM) 319

SOM Services

somGetClass A method in SOMObject that returns an object reference for the class-
object associated with the metaclass of an object.

somIsObj A function that determines whether an object-reference refers to a
valid object.

“somIsObj” returns a Boolean. While COBOL has no BOOLEAN data
type, COBOL programmers can declare the return value as PIC X and
test the value using a symbolic character or hex literal.

 ...

 Data Division.

 Working-Storage Section.

ð1 somBoolean Pic X.

88 invalid-obj Value X'ðð'.

 88 valid-obj Value X'ð1'.

 Procedure Division.

 ...

Call 'somIsObj' Using By Value anObj Returning somBoolean.

 If invalid-obj

Display 'Object reference does not refer to a valid object'

 End-if.

 ...

Function Note: When compiling a program that calls a SOM function, such as
somIsObj:

� The PGMNAME(MIXED) compiler option must be specified, because the API names
are case-sensitive. Otherwise, the compiler will translate somIsObj to SOMISOBJ,
and you will get an unresolved external reference.

� The SOM API functions use the SYSTEM linkage convention. Hence the
CALLINT(SYSTEM) compiler option or the >>CALLINT SYSTEM directive must be in
effect for the CALL statement.

Your invocations of SOM methods does not require any special considerations; the
correct linkage conventions are used automatically for method invocations.

 SOM Initialization
During initialization of programs using object-oriented features, the COBOL run-time
system automatically initializes the SOM environment and creates class-objects for
classes referenced in the application. Application programmers do not have to perform
these initializations manually.

 Class Initialization
The SOM architecture specifies that every SOM class exports an initialization function
<classname>NewClass. Normally COBOL programmers do not use this function directly,
but the function is available on all COBOL classes. The COBOL run-time system auto-
matically initializes all classes referenced within a COBOL program by calling their class
initialization functions prior to the execution of the first user-written COBOL statement in
the PROCEDURE DIVISION.

320 VisualAge COBOL Programming Guide

SOM Services

The class initialization function has a case-sensitive name, thus any COBOL program
that explicitly calls a class-initialization function must be compiled with
PGMNAME(LONGMIXED).

If an external class-name is specified in the REPOSITORY paragraph for a class, then
the external class-name is used to form the initialization function name. If an external
class-name is not specified in the REPOSITORY paragraph for a class, then the class-
name declared is processed to form a CORBA-compliant external class name and this
name is used to form the class initialization function. In a CORBA-compliant external
class-name:

� The name is folded to upper case

� Hyphens in the name are translated to zero (0)

� If the first character in the name is a digit

– 1 through 9 are translated to A through I

– 0 is translated to J

For example:

Identification Division.

Class-Id. Employee inherits SOMObject.

Environment Division.

Configuration Section.

Repository.

Class SOMObject is class "SOMObject".

 ...

End-Class Employee.

The class initialization function names in the above cases are:

 EMPLOYEENewClass

 SOMObjectNewClass

and

Identification Division.

Class-Id. Employee inherits SOMObject.

Environment Division.

Configuration Section.

Repository.

Class Employee is class "Employee"

Class SOMObject is class "SOMObject".

 ...

End-Class Employee.

The class initialization function names in the above cases are:

 EmployeeNewClass

 SOMObjectNewClass

Class Interface Evolution
One of the benefits of SOM is that classes can undergo changes over time and retain
backward binary compatibility, that is, not require recompilation of programs and
classes that reference the changed class. Changes that can be made to classes
without recompilation requirements include:

 Chapter 15. Using System Object Model (SOM) 321

SOM Services

1. Adding new methods.

2. Changing the size of an object by adding or deleting instance data.

3. Inserting new parent classes above a class in the inheritance hierarchy.

4. Relocating methods upward in the class hierarchy.

The SOM engine provides several alternative mechanisms for method resolution (see
SOMobjects Developer's Toolkit User's Guide (available online) for details). IBM
COBOL uses SOM name-lookup resolution to invoke methods. Thus when COBOL
methods are invoked from COBOL code, the somewhat more stringent recompilation
requirements of the SOM offset-resolution mechanism are not applicable. For example,
COBOL methods that are invoked with COBOL INVOKE statements are not subject to
the restriction in item four above. A COBOL method may be relocated anywhere in a
class hierarchy without requiring recompilation of the COBOL programs that invoke the
method.

Methods defined in COBOL classes may be invoked from other languages, such as C
code built with the SOM C emitter, that use offset-resolution. In this case, the standard
SOM requirements apply. Note that COBOL does not provide language comparable to
the SOM “release-order” mechanism, which is used to ensure methods can be added to
a class definition without requiring recompilation of code that invokes the methods using
offset-resolution. When adding methods to an existing COBOL class, it is recom-
mended that the new methods be added at the end of the PROCEDURE DIVISION of the
class definition, after all of the existing methods. This will ensure that any existing code
invoking the original methods does not require recompilation.

322 VisualAge COBOL Programming Guide

SOM Objects

Chapter 16. Using SOM IDL-Based Class Libraries

This chapter is intended for COBOL programmers who want to use SOM IDL-based6

class libraries, either as clients of the class, or by specializing the class using sub-
classing.

The chapter assumes that you understand the System Object Model (SOM), at least
conceptually, and know where to find more detailed documentation about SOM when
you need it. It also assumes that you have access to the documentation for the partic-
ular class library that you are intending to use.

To get started, you need one of the object-enabled IBM COBOL products, together with
the executables for the class library, plus its documentation, as above.

SOM Objects—a Refresher
A SOM class library consists of executable code and interface information that defines
the operations that the library supports, including the parameters for invoking the
operations—known as the operation “signatures.”

When the library is being used at run time, the components that are present in memory
are illustrated in Figure 65.

Figure 65. Run-time Components of a SOM Class Library. The example also shows the COBOL
components that are using the library.
 ┌───────────┐ ┌───────────────┐

│ COBOL app ├%─────5┤ Class library │

 └─────┬─────┘ └───────┬───────┘

 6 6

 └───┬───%──────5──┬───┘

 6 6

 ┌──────────┴───────┬─────┴────────────┐

│ SOM Kernel ┌─────┘ C/COBOL run-time │

 └──────┬─────┴────────┬──────┬────────┘

 6 6 6

 ┌───────────────┴──────────────┴──────┴──────────────────┐

 │ O p e r a t i n g S y s t e m │

 └──┘

6 There are various forms of Interface Definition Language (IDL), such as those for the Distributed Computing Environment (DCE) or
the Object Management Group's Common Object Request Broker Architecture (OMG CORBA), but in this chapter, we shall be
concerned only with IBM's System Object Model Interface Definition Language (SOM IDL). SOM IDL is consistent with CORBA but
also allows some additional data types, such as pointers, that are not included in CORBA.

 Copyright IBM Corp. 1996, 1998 323

Mapping IDL to COBOL

 SOM IDL
The interface information for a SOM class library may be in various forms:

 � IDL files;
� An Interface Repository (IR)—a machine-readable form of IDL, used during compi-

lation;
� A book or on-line documentation describing the interfaces in IDL, together with

operational descriptions of the methods.

IDL expresses the contract between the provider of object services, in this case the
class library, and the user of these services: the COBOL program, method or subclass.
The interface description is formally independent of the language in which either the
user of the service or the service itself is implemented. This property is known as
“language-neutrality.” The separation of the interface from the implementation also
allows flexibility in the deployment of the objects on the nodes of a network.

IDL data types have their origins in the C and C++ data model. Because many of them
do not have an exact counterpart in the COBOL language, there needs to be a trans-
lation or “mapping” between IDL and COBOL. The mapping recommended here makes
the explicit assumption that the data structures may be passed directly7 between the
COBOL and C/C++ mappings to SOM IDL.

Mapping IDL to COBOL
To use an IDL-based class library from COBOL, you must be able to map the elements
of IDL in which it is expressed into the COBOL language. Typically, you find the
description of the class library in a user's guide and reference, containing not only the
guidelines for using the class library, but also the calling sequences for the individual
methods expressed in SOM IDL. This, and the following sections, tell you how to map
these IDL definitions into COBOL:

� “IDL Identifiers” on page 325 describes how to map IDL identifiers to COBOL
names.

� “IDL Operations” on page 325 introduces IDL operations, which are described in
more detail in “Operation Example” on page 342.

� “IDL Attributes” on page 326 explains how to express IDL attributes in COBOL.

� “Common IDL Types” on page 327 covers the “normal” IDL elements that virtually
all interfaces use.

7 The standard CORBA model presumes a “stub” routine between the invoking and invoked object to do argument translation,
marshalling, and so on. Passing the structures directly yields very significant gains in efficiency, but it also means that some of the
mappings may not seem as “natural” to the COBOL programmer as they would be if the transfer were mediated by a stub routine. It
also means that you must ensure that you have the correct alignment and padding of any structures that are passed across an
interface. In general the recommended way to achieve this for IDL-based interfaces is to specify the SYNCHRONIZED clause for
COBOL mappings to any IDL structs or arrays that directly contain structs

324 VisualAge COBOL Programming Guide

Mapping IDL to COBOL

� “Complex Types” on page 332 is provided for completeness; most interfaces do
not use these complex IDL constructs.

� “Argument and Return Value Passing Conventions” on page 335 is a discussion of
argument passing mechanisms.

 IDL Identifiers
The only IDL names that must be identical in COBOL are the class (IDL interface) and
method (IDL operation) names. These may be specified exactly by using literals:

� For a class, in the REPOSITORY paragraph using the CLASS IS clause.

� For a method, by using the literal form of the method name in the METHOD-ID para-
graph. When you invoke a method, you use either the literal form of the name or a
data name initialized with the exact method name.

The other identifiers, such as parameter, constant, and exception names, are internal to
your program or class, and don't have to be identical to the IDL. However, it is a good
idea to keep the spelling of these close to that of the IDL originals to enhance the read-
ability and maintainability of your programs.

 IDL Operations
IDL operations correspond with COBOL methods, and represent the services that an
IDL interface provides. To use an operation, you code an INVOKE statement with the
appropriate USING and RETURNING phrases that correspond with the parameters and
the return value of the operation. If these parameters are all simple scalar types, the
operation definition is self-contained. But if an operation uses one of the so-called
“constructed” types, you may have to look elsewhere in the documentation for the defi-
nition of the parameter type in order to specify your INVOKE statement completely.

Consider the IDL operation definition:

void addColor(in color that);

The single input argument is of type color, which is not one of the basic scalar IDL
types. Suppose that color is an IDL enum (see “enum” on page 328) with the following
definition, typically found in a different section of the library documentation:

typedef enum color{red, white, blue};

Then the COBOL code to map the operation, adding the color blue to an object, could
be written as follows:

1 color binary pic 9(9).

88 red value 1.

88 white value 2.

88 blue value 3.

 ...

Set blue to true

Invoke anobject 'addColor' using by value evp color

 Chapter 16. Using SOM IDL-Based Class Libraries 325

Mapping IDL to COBOL

The evp argument is the environment pointer, which precedes the explicit operation
arguments. It is used for communicating back to the caller any exceptions that the
operation encounters. See “Errors and Exceptions” on page 345 for a more detailed
discussion.

 IDL Attributes
An IDL attribute behaves like instance data that you can see outside the class defi-
nition (but note that there need not be any actual instance variable corresponding with
it). Attributes are modeled as a pair of operations, one to set and one to get the attri-
bute value. Attribute operations return errors by means of standard exceptions.

The mapping for attributes is best explained through an example. Consider the fol-
lowing IDL specification:

interface foo {

struct position_t {

float x, y;

 };

attribute float radius;

readonly attribute position_t position;

 };

This is exactly equivalent to the following illegal8 IDL specification:

interface foo {

struct position_t {

float x, y;

 };

 float _get_radius();

void _set_radius(in float r);

 position_t _get_position();

 };

The COBOL code to use these operations is straightforward:

1 radius comp-1.

 1 position-t.

2 x comp-1.

2 y comp-1.

 ...

Invoke a-foo '_get radius' using by value evp returning radius

Invoke a-foo '_set_radius' using by value evp radius

Invoke a-foo '_get_position' using by value evp

 returning position-t

8 Illegal, because IDL identifiers are not permitted to start with an underscore (_) character.

326 VisualAge COBOL Programming Guide

Mapping IDL to COBOL

Common IDL Types
These are the IDL types that you normally encounter in SOM IDL interfaces. The
complex types are discussed in the next section.

 Reference Summary
Figure 66. IDL Type to COBOL Mapping

IDL Type COBOL Equivalent

boolean display picture x [+ level-88s...]

char display picture x

double computational-2

enum binary picture 9(9) [+ level-88s...]

float computational-1

interface object reference

long computational-5 or binary picture s9(9)1

octet display picture x

pointer pointer

short computational-5 or binary picture s9(4)1

string display pic x(n+1), z'value' or variable-length alphanumeric

table2

unsigned long computational-5 or binary picture 9(9)1

unsigned short computational-5 or binary picture 9(4)1

Note:

1. USAGE COMPUTATIONAL-5 data items are available only on the OS/2 and AIX versions of IBM
COBOL. But if you map this IDL type to USAGE BINARY rather than COMP-5, you must either
know that the expected range of values is accommodated by the PICTURE clause, or use the
TRUNC(BIN) compiler option and, on the workstation or PC, ensure that the BINARY(NATIVE)
compiler option is in effect.

Also be aware that there are significant performance effects associated with the use of
COMP-5 data items or the TRUNC(BIN) compiler option (which affects every USAGE BINARY data
item in your program). So if you know that the picture accommodates the expected range of
values, USAGE BINARY may be the better choice.

2. See “string” on page 330 for details.

 boolean
The SOM IDL boolean type is mapped to a one-byte alphanumeric data item, together
with suitable level-88 condition names. The condition names are recommended for
convenience, but are not essential. For example, the following IDL:

 boolean that;

could be written in COBOL as:

1 that display pic x.

88 that-false value x'ðð'.

88 that-true value x'ð1' thru x'ff'.

 Chapter 16. Using SOM IDL-Based Class Libraries 327

Mapping IDL to COBOL

 char
The SOM IDL char type maps to a one-byte alphanumeric data item. The IDL
declaration:

 char that;

could be written in COBOL as:

1 that display pic x.

 double
The SOM IDL double type represents 64-bit floating-point data, and is mapped to
USAGE COMPUTATIONAL-2 in IBM COBOL. The IDL definition:

 double that;

could be written in COBOL as:

1 that comp-2.

 enum
The closest COBOL equivalent to a SOM IDL enum9 is an unsigned binary full-word,
together with condition name entries for each of the enumeration members. For
example, the following IDL:

enum that{red, white, blue, green};

could be written in COBOL as:

1 that binary pic 9(9).

88 that-red value 1.

88 that-white value 2.

88 that-blue value 3.

88 that-green value 4.

In the unlikely event that any enumeration member exceeds 999,999,999, decimal
picture considerations may apply—see the note in Figure 66 on page 327.

The way that you refer to a particular enum value in your PROCEDURE DIVISION depends
on whether the value is supplied to an operation, or returned by it. See “Enum Type”
on page 337 for more details.

9 Note that a SOM IDL enum is different from a C/C++ enum:

1. it is always exactly four bytes long, whereas a C/C++ enum is one, two or four bytes long, depending on the maximum enum
value and on compiler options;

2. the members are numbered sequentially starting from one, whereas a C/C++ enum starts at zero by default, or may optionally
have specific values assigned to the enumeration members.

328 VisualAge COBOL Programming Guide

Mapping IDL to COBOL

 float
The SOM IDL float type represents 32-bit floating-point data and is mapped to
COMPUTATIONAL-1 in IBM COBOL. For IDL:

 float that;

you could write in COBOL:

1 that comp-1.

 interface
The use of an IDL interface as an argument to, or result of, an operation denotes an
object reference to an instance of the class to which the interface has been mapped.
In simple terms, if a method has an interface type as one of its parameters, specify an
OBJECT REFERENCE to an instance of a class that supports that interface. Suppose
you have the following skeletal IDL interface:

interface that {

 ...

 }

You would specify the corresponding class in the REPOSITORY paragraph as usual:

 Repository.

class that 'that'.

Then you declare an instance of the that class:

1 a-that object reference that.

and pass it according to the rules in “Argument and Return Value Passing Conventions”
on page 335.

 long
The SOM IDL long type describes 32-bit signed binary quantities, and is approximated
by USAGE BINARY data items with a PICTURE clause of S9(9) in COBOL. On the work-
station or PC, the type is exactly mapped by a USAGE COMPUTATIONAL-5 data item
with a PICTURE clause of S9(5) through S9(9). Whichever mapping you use, be aware
of the discussion in the note in Figure 66 on page 327.

For the IDL declaration:

 long that;

you could write in COBOL:

1 that binary pic s9(9).

or, on the workstation or PC:

1 that comp-5 pic s9(9).

 Chapter 16. Using SOM IDL-Based Class Libraries 329

Mapping IDL to COBOL

 octet
The SOM IDL octet type represents an 8-bit quantity that is guaranteed to be
unchanged during transmission between different objects. It is most closely matched in
COBOL by a one-byte alphanumeric data item. Thus for IDL:

 octet that;

you could write in COBOL:

1 that display pic x.

 pointer
A SOM IDL pointer corresponds with a COBOL POINTER data item. The IDL
declaration:

 pointer that;

would be written in COBOL as:

1 that pointer.

 short
The SOM IDL short type defines 16-bit signed binary data, and is most closely
matched by COBOL data items with USAGE BINARY and a PICTURE clause of S9(4). On
the workstation or PC, the type is exactly mapped by a USAGE COMPUTATIONAL-5 data
item with a PICTURE clause of S9(1) through S9(4). Whichever mapping you use, be
aware of the discussion in the note in Figure 66 on page 327.

The SOM IDL definition:

 short that;

could be written in COBOL as:

1 that binary pic s9(4).

or, on the workstation or PC:

1 that comp-5 pic s9(4).

 string
The SOM IDL type string is one of the most important types, since it is widely used in
operations and interfaces. It is also one of the most difficult to match in COBOL,
because SOM IDL strings are modeled on those of C and C++. These have a null
terminator to determine the length of the string, and are passed via a typed pointer.
IBM COBOL does not support such null-terminated strings as a native data type.
However, the null-terminated literal — Z'string-value' — alleviates some of the prob-
lems and, when it can be passed BY CONTENT, is an exact match to a SOM IDL in

330 VisualAge COBOL Programming Guide

Mapping IDL to COBOL

string.10 A null-terminated literal may also be used to set the initial VALUE of a data
item to be used as a string argument.

In general though, IDL strings are mapped to pointers to the appropriate character
string data or buffer. Except for in strings, what is actually passed in a method invoca-
tion is just the pointer. But, for this to work operationally, the pointer must be set to the
address of the underlying character string data or buffer in PICTURE X format. There
are several styles of data definition, depending on whether the parameter is an in,
inout, or out argument, or a return value. These are discussed in more detail under
“String Type” on page 338. For now, note that the declarations described below may
be used to represent both the COBOL and SOM IDL view of a variable-length string
simultaneously.

The main cases to distinguish are bounded and unbounded strings. Bounded strings
have a fixed upper limit on their size. The IDL declaration:

 string<1ðð> that;

represents a SOM IDL string of no more than 100 characters in length, and may be
approximated by the following COBOL data declarations:

1 that-l-max binary pic 9(9) value 1ð1.

1 that-l binary pic 9(9).

 1 that.

2 that-v pic x occurs 1 to 1ð1 depending that-l.

The “-l” suffix denotes the length of the string, the “-v” its value. Note the extra posi-
tion to allow for the null terminator, and note that the data item that, in addition to
being a valid SOM IDL string, is also variable-length in COBOL, because of the
OCCURS DEPENDING clause.

For unbounded strings, the maximum length must be inferred from ancillary information
about the interface and the semantics of its operations. Thus, for the IDL declaration:

 string that;

which represents an unbounded SOM IDL string, you may, for example, know that the
strings that are passed across the interface do not in practice exceed 4095 characters.
Then the following COBOL declarations would be appropriate:

1 that-l-max binary pic 9(9) value 4ð96.

1 that-l binary pic 9(9).

 1 that.

2 that-v pic x occurs 1 to 4ð96 depending that-l.

See “Helper Routines Source Code” on page 356 for the C source code for a pair of
“helper” routines to synchronize the two representations, for example, either the
bounded or unbounded that, above:

� 'IDLStringToCOBOL' using that that-l

10 See the note in Figure 68 on page 336 about some restrictions on the use of BY CONTENT.

 Chapter 16. Using SOM IDL-Based Class Libraries 331

Mapping IDL to COBOL

This routine sets the COBOL OCCURS subject that-l from the position of the man-
datory null terminator.

If you prefer, you can achieve the same result in COBOL:

Move that-l-max to that-l

Move zero to tally

Inspect that tallying tally for characters before x'ðð'

Move tally to that-l

� 'IDLStringFromCOBOL' using that that-l

This routine inserts the null terminator at the string position indicated by the
COBOL OCCURS object.

If you prefer, you can do this quite easily yourself in COBOL:

Move x'ðð' to that-v(that-l)

unsigned long and unsigned short
The unsigned forms of binary data are mapped as for SOM IDL types long and short,
above, except that the picture clause does not specify the character “S.” Thus for the
following IDL declarations:

unsigned long this;

unsigned short that;

you could write in COBOL:

1 this binary pic 9(9).

1 that binary pic 9(4).

or, on the workstation or PC:

1 this comp-5 pic 9(9).

1 that comp-5 pic 9(4).

 void
When used as a return type for an operation, the IDL type void means that the opera-
tion doesn't return anything. You map this in COBOL merely by omitting the
RETURNING phrase in the corresponding INVOKE statements or PROCEDURE DIVISION
headers.

 Complex Types
These are types that, although defined in SOM IDL, are rarely found as a type definition
or as an argument to or result of an operation.

 Reference Summary
Figure 67 (Page 1 of 2). IDL Type to COBOL Mapping

IDL Type COBOL Equivalent

any group + COBOL type

array table

332 VisualAge COBOL Programming Guide

Mapping IDL to COBOL

Figure 67 (Page 2 of 2). IDL Type to COBOL Mapping

IDL Type COBOL Equivalent

sequence group + variable-length table

struct group

union group + redefines

 any
The IDL any type is a self-describing representation of any of the IDL types, including
another IDL any. The descriptor is mapped to COBOL as a group item, which includes
a pointer to the actual data item of the particular type. Suppose you want to map the
following IDL declaration:

 any that;

In COBOL, this would be represented by the following COBOL group item:

 1 that.

2 that-type pointer.

2 that-value pointer.

The that-type field is a pointer to a “TypeCode” structure whose actual representation
is opaque. SOM provides a set of functions to create and interrogate “TypeCode”s. A
simple numeric type code is insufficient to describe an IDL type, because some types
have additional information. For example, the type information for an IDL bounded
string includes the size of the upper bound.

The that-value field points to the start of the data for the item that the any represents.

 array
IDL arrays map to COBOL tables—groups whose subordinate items contain the
OCCURS clause. The underlying IDL type can be any of the IDL types, including array
itself, and is mapped according to the rules in this or the preceding section.

A simple instance of the IDL array type:

 long that[4][5];

is represented in COBOL as:

 1 that.

2 occurs 4.

3 that-v binary pic s9(9) occurs 5.

The “-v” suffix denotes the individual element values. The un-suffixed name is used to
pass the entire array as an argument to a method; the suffixed name is used to refer to
individual elements of the array.

You must specify the SYNCHRONIZED clause on the group item if the array contains a
struct or union at any level of the array. This is to ensure that the subordinate items

 Chapter 16. Using SOM IDL-Based Class Libraries 333

Mapping IDL to COBOL

are aligned on their natural boundaries, in conformance with the default alignment of
SOM IDL structures.

 sequence
An IDL sequence is a one-dimensional array with a descriptor that specifies a maximum
and current size for the sequence. If the maximum size is explicitly declared, the
sequence is said to be “bounded.” Otherwise, the sequence is “unbounded,” and the
maximum size is determined at run time (in an application-specific way) and is set prior
to passing the sequence to an operation. There are no restrictions on the element type
of a sequence. In particular, it is possible to have a sequence of another sequence
type.

Let's look at a simple example, a bounded sequence of IDL type long:

 sequence<long,1ð> that;

The descriptor for the maximum and current size and address of this sequence is
represented in COBOL as a group item:

 1 that.

2 that-maximum binary pic 9(9).

2 that-length binary pic 9(9).

2 that-buffer pointer.

Then the element data are mapped as a variable-length table of the appropriate type, in
this case, an array of IDL longs:

 1 that-t.

2 that-v binary pic s9(9) occurs 1 to 1ð

 depending that-length.

 struct
An IDL struct type corresponds with a COBOL group item containing the individually
mapped components of the struct as subordinate data items. Thus the following IDL
struct:

struct that {

 long x;

 double y;

 };

could be represented in COBOL as:

1 that sync.

2 x binary pic s9(9).

2 y comp-2.

The SYNCHRONIZED clause is required so that the alignment of the subordinate items
approximates the default alignment of SOM IDL structures. In most practical cases, the
alignment would be correct either way, but specifying SYNCHRONIZED is a sensible pre-
caution.

334 VisualAge COBOL Programming Guide

Mapping IDL to COBOL

 union
A SOM IDL union has a discriminator that indicates which format variant to use. In
COBOL, this is mapped to a group item containing the discriminator, plus the union
itself represented by using the REDEFINES clause. Then, in the PROCEDURE DIVISION,
use an EVALUATE statement to determine which format is currently in effect.

An example should make all this more clear. Suppose you have the following IDL:

union that switch (long) {

case 2:char x;

case 5:long y;

 default:float z;

 };

The data declaration part of the COBOL mapping could be written as follows:

1 that sync.

2 that-d binary pic s9(9).

2 that-u display pic x(4).

2 that-x redefines that-u display pic x.

2 that-y redefines that-u binary pic s9(9).

2 that-z redefines that-u comp-1.

The SYNCHRONIZED clause makes sure that COBOL mimics the default SOM IDL
alignment rules. Thus, in the unlikely event that any IDL structures have “holes,”
COBOL would insert slack bytes in the record as appropriate.

Notice the extra member of the union, that-u, whose size is the maximum of the sizes
of the explicit union members. This is needed because of the COBOL restriction that a
data item being redefined must be at least as large as the item redefining it. Alterna-
tively, you could just declare the union members in order of decreasing size, although
that may lose the correspondence between the COBOL declaration and the original
IDL.

Whichever style you adopt, you can use an EVALUATE construct such as the following
to determine which of the union members is currently in effect:

 Evaluate that-d

 When 2

Display 'case 2:IDL-char: ' that-z

 When 5

Display 'case 5:IDL-long: ' that-x

 When other

Display 'default case:IDL-float: ' that-y

 End-evaluate

Argument and Return Value Passing Conventions
This section describes how to write COBOL argument-passing constructs, such as BY
REFERENCE or BY VALUE, to comply with the IDL access intent specifiers.

 Chapter 16. Using SOM IDL-Based Class Libraries 335

Mapping IDL to COBOL

Argument/Result Passing Summary
Figure 68. Argument/Result Passing Conventions

IDL Type in inout/out return value

any content1 reference1 type3

array content1 reference1 pointer4

boolean value reference1 type3

char value reference1 type3

double value reference1 type3

enum value reference1 type3

float value reference1 type3

long value reference1 type3

object ref value reference1 type3

octet value reference1 type3

pointer value reference1 type3

short value reference1 type3

sequence content1 reference1 type3

string content1 pointer2 pointer4

struct content1 reference1 type3

union content1 reference1 type3

unsigned long value reference1 type3

unsigned short value reference1 type3

Note:

1. For IBM COBOL for OS/390 & VM you can use BY CONTENT or BY REFERENCE only if the
argument is not the last. This is due to the System/390 linkage conventions of the high-order
bit of the last argument address being set ON to indicate the end of the argument list. This
confuses C and C++ programs that attempt to manipulate the address as a pointer. An alter-
native to BY REFERENCE (for this situation and in general) is to pass BY VALUE a pointer that
has previously been set to the address of the data item.

2. For inout and out strings, you must pass a pointer to the string data or buffer BY REFERENCE.

3. The term “type” means the COBOL equivalent of the IDL type, specified directly in the
RETURNING phrase of the INVOKE statement.

4. The term “pointer” means a COBOL POINTER that has been set to the address of the equiv-
alent data item or output buffer.

IDL Access Intent Specifiers
The IDL intent specifiers, in, inout, and out, do not correspond exactly with COBOL
BY VALUE, BY CONTENT, and BY REFERENCE phrases. The IDL access intent deter-
mines only the semantics of the parameter, without necessarily implying a particular
argument passing mechanism. In COBOL, both BY VALUE and BY CONTENT have
input-only semantics but use different mechanisms, while BY REFERENCE parameters
may have either input-output or output-only semantics, depending how they are used.

336 VisualAge COBOL Programming Guide

Mapping IDL to COBOL

Some kinds of output parameters, IDL strings for example, cannot be expressed
directly in COBOL, but must be mapped to pointers.

 Literal Arguments
For return values, and for inout and out arguments, you must pass a data item. For
input arguments however, you may be able to specify a literal, passed BY VALUE:

� Integer-valued fixed-point numeric literals and the figurative constant ZERO are
formally equivalent to full-word binary data items, and thus match signed or
unsigned long IDL types.

� Floating-point literals are formally equivalent to double-word floating-point
(COMPUTATIONAL-2) data items, and thus match the IDL double type.

� Single-byte alphanumeric literals, symbolic characters, and figurative constants
(other than ZERO) match boolean, char, and octet.

or BY CONTENT:

� Null-terminated literals of the form Z'value' match the IDL string type.

Note that literal arguments are not supported for enums, because of the risk of the
source getting out of sync with the enumeration list.

 Enum Type
The access intent of an enum parameter affects the way you refer to its value, not just
on the INVOKE statement, but also elsewhere in your program. Consider an operation
that expects an enum to be passed in both directions—as an input value and as the
operation result:

that changeColor(in that hue);

typedef enum that{red, white, blue};

To supply a particular color to the operation, you use the corresponding condition name
in a SET statement. For example, to pass the input value white, specify:

1 that-input binary pic 9(9).

88 that-red-input value 1.

88 that-white-input value 2.

88 that-blue-input value 3.

 ...

Set that-white-input to true

Invoke anObject 'changeColor' using by value evp that-input

 returning that-output

Then, to inspect the returned color, use conditional statements:

 Chapter 16. Using SOM IDL-Based Class Libraries 337

Mapping IDL to COBOL

1 that-output binary pic 9(9).

88 that-red-output value 1.

88 that-white-output value 2.

88 that-blue-output value 3.

 ...

 Evaluate true

 When that-red-output

 Perform red-stuff

 ...

 End-evaluate

 Complex Types
For the complex types (not including string, which is discussed separately below), you
pass the level-1 group item. In the examples above, this is always the COBOL data
name that. Where the conventions expect a pointer, this is set:

� For an argument, prior to executing the INVOKE statement

� For a return value, on return from the method

The rules for passing these types are quite involved and are described in some detail in
the SOMobjects Developer's Toolkit Programming Guide. Generally, you provide the
storage for all in and inout arguments, all modes of struct and union parameters,
and, curiously enough, for out array arguments. The called method allocates some or
all of the storage for all other out arguments and return values. You are not allowed to
modify this returned storage, though you can, of course, use it otherwise, to copy it, for
example. You must free it using OMMFree when you are finished with it. See “Helper
Routines Source Code” on page 356.

If you have to supply inout arguments of any of the complex types, you would do well
to allocate the storage dynamically, using OMMAllocate, and declare the COBOL equiv-
alent type in the LINKAGE SECTION.11 See “Memory Management” on page 352 for
more information about OMMAllocate and OMMFree.

 String Type
The examples in this section all presume the SOM IDL declaration:

 string<1ðð> that;

You pass in string types in several ways. Where the content is known, you could
specify it as a null-terminated literal, either directly or as the value of a data item:

11 This is because later versions of CORBA allow the called routine to re-allocate inout arguments when the output value is incon-
sistent with the type or size of the input data item. For this to work, a standard memory management protocol must be used by both
the caller and the called routine.

338 VisualAge COBOL Programming Guide

Mapping IDL to COBOL

1 that pic x(1ð1) value z'initial value'.

 ...

Invoke anObject 'method'

using by value evp by content z'this or that'

 ...

Invoke anObject 'method' using by value evp by content that

For variable-content strings, you may find it convenient to use a plain (PICTURE X)
alphanumeric data declaration for the string buffer. You can use reference modification
if you want to see the valid part of the string:

1 that-l binary pic 9(9).

1 that pic x(1ð1).

 ...

Display 'Content of "that" = "' that(1:that-l) '"'

However, if you want the string to behave naturally as a variable-length string in both
COBOL and the SOM IDL-based library, use the dual representations:

1 that-l binary pic 9(9).

 1 that.

2 that-v pic x occurs 1 to 1ð1 depending that-l.

You can synchronize either the reference modified or the OCCURS DEPENDING form of
the COBOL string representation with the IDL representation by using the
IDLStringToCOBOL and IDLStringFromCOBOL helper routines given in “Helper Routines
Source Code” on page 356.

For inout and out strings, you must pass the string buffer with an extra level of indi-
rection. The way that you express the extra level of indirection in COBOL is to pass a
pointer, which for inout strings has previously been set to the address of the string
data. As usual, you have a choice of passing this pointer BY REFERENCE, or declaring
a second pointer that you have set to the address of the first, then passing this second
pointer BY VALUE:

1 ptr1 pointer.

1 ptr2 pointer.

1 that-l binary pic 9(9).

 ...

 Linkage section.

 1 that.

2 that-v pic x occurs 1 to 1ð1 depending that-l.

 ...

Set ptr1 to address of that

Invoke anObject 'method' using by value evp by reference ptr1 ...

 ...

Set ptr2 to address of ptr1

Invoke anObject 'method' using by value evp ptr2

It's clear why the extra level of indirection is needed for out strings, given that they are
allocated by the method and may be arbitrarily long. But the output size of an inout

 Chapter 16. Using SOM IDL-Based Class Libraries 339

Mapping IDL to COBOL

string is limited by the input size: the upper bound for a bounded string, and the actual
input size for an unbounded string.12

For a return value, specify a pointer, which the method sets to the address of the
output string before it returns.

For all the output modes of string, including inout, declare the string buffer itself in the
LINKAGE SECTION, to allow the method to allocate, or re-allocate, the storage for the
string. Storage for an inout string should be acquired by calling OMMAllocate, so that
(in future) methods can re-size the string if necessary.

Be aware of your responsibilities for any storage allocated and returned by a SOM
IDL-based library method. You can look at the storage, by declaring appropriate
LINKAGE SECTION data items as usual, but do not attempt to modify it.13 If you want to
do that, make a copy of it and modify the copy. Also, note that you are responsible for
freeing the storage for the original returned string when you have finished with it, by
calling the OMMFree routine.

You can find the source code for OMMAllocate and OMMFree under “Helper Routines
Source Code” on page 356.

Given the IDL definition:

interface this {

string that (

in string in_string,

inout string inout_string,

out string out_string

);

 };

and assuming an arbitrary limit of 99 characters on the string sizes, the following
COBOL fragments illustrate these various techniques. This code is written in a very
simple style, does not check for errors, and might not be complete.

12 Because of this restriction, inout strings are not very useful, but you still need to pass the pointer rather than the string itself,
because later versions of the CORBA argument conventions do allow reallocation of the string if the output is larger than the input.

13 This is because the storage may be protected, and you cannot assume that you have appropriate write privileges.

340 VisualAge COBOL Programming Guide

Mapping IDL to COBOL

 Data division.

 Local-/Working-storage section.

1 inout-string-p pointer.

1 out-string-p pointer.

1 return-string-p pointer.

 ...

1 work-string-l binary pic 9(9).

1 inout-string-l binary pic 9(9).

1 out-string-l binary pic 9(9).

1 return-string-l binary pic 9(9).

 ...

1 work-string pic x(1ðð).

1 in-string pic(1ðð) value z'Nothing strange for in strings'.

1 evp pointer.

 ...

 Linkage section.

 1 inout-string.

2 inout-string-v pic x occurs 1 to 1ðð depending inout-string-l.

 1 out-string.

2 out-string-v pic x occurs 1 to 1ðð depending out-string-l.

 1 return-string.

2 return-string-v pic x occurs 1 to 1ðð depending return-string-l.

 1 ev.

2 major binary pic 9(9).

88 no-exception value ð.

 ...

 Chapter 16. Using SOM IDL-Based Class Libraries 341

Mapping IDL to COBOL

 Procedure division.

 ...

\ Acquire storage for, and initialize, inout-string:

Move 1ðð to inout-string-l

Call 'OMMAllocate' using content length of inout-string

 returning inout-string-p

Set address of inout-string to inout-string-p

Move z'Initial value for inout-string' to inout-string

Call 'IDLStringToCOBOL' using inout-string inout-string-l

\ Invoke method 'that' on an instance of the 'this' class:

Invoke a-this 'that' using by value evp

by reference in-string inout-string-p out-string-p

 returning return-string-p

\ De-reference the returned pointers and copy one string:

Set address of inout-string to inout-string-p

Call 'IDLStringToCOBOL' using inout-string inout-string-l

Set address of out-string to out-string-p

Call 'IDLStringToCOBOL' using out-string out-string-l

Set address of return-string to return-string-p

Call 'IDLStringToCOBOL' using return-string return-string-l

Move out-string to work-string

\ Operate on copy, and free allocated storage when done:

Move function reverse(work-string) to work-string

If work-string = out-string then

Display '"' out-string '" is palindromic.'

 End-if

 ...

Call 'OMMFree' using inout-string-p

Call 'OMMFree' using out-string-p

Call 'OMMFree' using return-string-p

 ...

 Operation Example
This section illustrates the COBOL coding to use a very simple class library.

Let us begin by looking at the “documentation” for our class library, which provides a
bucket class. A bucket is a container that lets you add or remove objects, and that can
report the number of objects it contains. Buckets have no special initializer methods,
and can thus be created and initialized correctly just by invoking the somNew method on
the class. Normally, the documentation would define and describe each operation sep-
arately, but for this simple example, we will give the complete interface definition of a
bucket:

interface Bucket {

readonly attribute unsigned long count;

void add(in SOMObject element) raises(BucketFull);

SOMObject remove() raises(BucketEmpty);

 };

The raises clause specifies the exceptions that the operation can incur.

342 VisualAge COBOL Programming Guide

Mapping IDL to COBOL

The things that we put into our buckets have no external behavior beyond their exist-
ence. That is, they can be created and destroyed, and are identifiable by their object
references, but they have no methods or attributes.

The COBOL program in Figure 69 shows how you might use this class library. It per-
forms the following steps:

1. It creates an instance of a bucket.
2. It creates and adds some things to the bucket.
3. It prints the number of things in the bucket.
4. It removes a thing from the bucket.
5. It again prints the number of things in the bucket.

.1/ Process pgmname(longmixed)

 \\

\ Client program for Bucket. \

 \\

 Identification division.

 Program-id. 'TryBucket'.

 Environment division.

 Configuration section.

 Repository.

class thing 'Thing'

class bucket 'Bucket'

class somobject 'SOMobject'.

 Data division.

 Working-storage section.

.2/ 1 evp pointer.

1 abucket object reference bucket.

1 athing object reference thing.

1 asomobject redefines athing object reference somobject.

1 cntnts binary pic 9(9).

 Linkage section.

.3/ 1 ev.

2 major binary pic 9(9).

88 no-exception value ð.

88 any-exception value 1 thru 999999999.

Figure 69 (Part 1 of 2). Complete Mapping Example

 Chapter 16. Using SOM IDL-Based Class Libraries 343

Mapping IDL to COBOL

 Procedure division.

display 'Trying Bucket...'

.4/ call 'somGetGlobalEnvironment' returning evp

set address of ev to evp

.5/ invoke bucket 'somNew' returning abucket

perform 5 times

.6/ invoke thing 'somNew' returning athing

.7/ invoke abucket 'add' using by value evp athing

 perform chkxcp

 end-perform

.8/ invoke abucket '_get_count' using by value evp returning cntnts

 perform chkxcp

display 'Our bucket now has ' cntnts ' things in it.'

.9/ invoke abucket 'remove' using by value evp returning asomobject

 perform chkxcp

invoke abucket '_get_count' using by value evp returning cntnts

 perform chkxcp

display 'We took one out, so now it has only ' cntnts

' things in it.'

.1ð/ invoke abucket 'somFree'

display 'Done with Bucket.'

 stop run.

 chkxcp.

 if any-exception

display 'An exception occurred; quitting the program!'

 stop run

 end-if.

End program 'TryBucket'.

Figure 69 (Part 2 of 2). Complete Mapping Example

Notice that the COBOL coding in this example is very simplistic. For example, it does
not check for errors realistically, or even free all the objects that it creates. But it does
cover most of the things that you have to do to start using a class library. Refer to the
numbered keys in Figure 69 on page 343:

.1/ Regardless of what you call your program, you need to specify the
PGMNAME(LONGMIXED) compiler option to be able to call SOM APIs such as
somGetGlobalEnvironment. The option doesn't affect INVOKE statements, but it
does apply to program names in CALL statements.

.2/, .3/, and .4/ If not stated otherwise, SOM IDL class libraries use callstyle idl.
With this convention, every operation has an implicit environment pointer pre-
ceding the explicit IDL arguments for the operation. Although this argument is
implicit in the IDL, you code it explicitly on your INVOKE statements.

You must, at a minimum, define the environment pointer in the
WORKING-STORAGE or LOCAL-STORAGE SECTION. If you want to examine any
exceptions that are returned, you must also define the exception type in the
LINKAGE SECTION, and set its base address to the value returned by

344 VisualAge COBOL Programming Guide

Other SOM Topics

somGetGlobalEnvironment. In the example, the exception type field is named
major.

.5/ The somNew method creates an instance of the bucket class, and returns an
object reference to the instance. Notice that this method does not take an envi-
ronment pointer as its first argument.

.6/ Each time through the loop, a new thing is returned in the same variable. This
is acceptable for the example, but normally, it would be very bad practice to
lose addressability to one's objects. Among other reasons, the storage they use
remains allocated and, without the object reference, cannot be freed.

.7/ For the methods that correspond to the IDL operations, the environment pointer
is included as the first argument, evp, in the argument list. It's important to
check for exceptions after invoking these methods. The ensuing PERFORM
statement shows one way of doing that.

.8/ This statement shows how attributes are mapped to get/set methods. In this
case, the attribute is readonly, so only the get method is defined.

.9/ It is a problem peculiar to container classes that they must allow arbitrary types
for the elements that they contain. Thus the return type of the remove operation
is specified as a SOMObject. We want to use the returned element with its
proper description, to assure type safety. But coding a thing as the
RETURNING value on the INVOKE statement would be a type violation. So the
returned value, asomobject, is specified as a redefinition of athing. This allows
the INVOKE statement to match the “signature” of the IDL operation. By using
the redefined variable, athing, for any subsequent operations on the object, we
can ensure that these operations are type safe.

.1ð/ This statement reminds us that all object instances that the program creates
should be freed to avoid memory leaks. However, in this example none of the
things in the bucket are freed.

Other SOM Topics
You will find it helpful to be familiar with the topics discussed in this section.

Errors and Exceptions
SOM uses two error or exception mechanisms: SOMError and CORBA-style exceptions.

SOMError is used for internal errors in the kernel classes, and is not really relevant to
the average user. Methods of the kernel classes are used to create an object (somNew
and somNewNoInit) or destroy it (somFree). The main implication of SOMError for these
methods is that you don't have to provide an environment argument when you invoke
them, and of course you don't have to check for exceptions after they return.

However you do need to know how to use the SOM exception mechanism, which is
used for most other methods. Exceptions aren't necessarily errors, but errors do use
the SOM exception mechanism.

 Chapter 16. Using SOM IDL-Based Class Libraries 345

Other SOM Topics

SOM exceptions are not the same as C++ exceptions, but instead set the value of an
exception structure, which you can think of as a special kind of “return code,” accessed
via the environment variable.

There are two ways of passing the environment variable, depending on the callstyle of
the method you want to invoke, and check. For each of them, provide a global (per
thread) environment variable, as shown in Figure 70 on page 347. For callstyle oidl

methods, there's no explicit environment variable parameter. Such methods just use
the global environment variable implicitly. Callstyle idl methods, on the other hand,
use the same global environment variable, but passed explicitly, as the first argument to
the method. Again, see Figure 70 on page 347 for an example of how this is accom-
plished in COBOL.

The environment variable is opaque, except for the exception type field (major) at the
beginning of the structure. This is a four-byte C/C++ enum, origin zero, with three
values: NO_EXCEPTION, USER_EXCEPTION and SYSTEM_EXCEPTION — and is coded in
COBOL as BINARY PIC 9(9), with suitable level-88 condition names as illustrated in
Figure 70 on page 347.

Every callstyle idl operation (that is, a method whose first parameter is an environment
structure) can return one of the standard system exceptions14, even if it does not
declare any explicit exceptions with a raises expression in the operation declaration.
This means that you must check the exception type field of the environment variable
after every invocation of a method of a class defined with callstyle idl.

When one of these callstyle idl methods that you've invoked detects a condition that is
to be expressed as an exception, it uses the somSetException function to supply the
exception name and an exception structure.

Then, if you decide to handle the exception, perhaps by printing a message and contin-
uing, you must reset the environment variable and free the associated exception struc-
ture by using the somExceptionFree function. Of course, there are other ways of
handling exceptions. You may want to change the state of one of the input arguments
to the method, then re-try it, or you might prefer to terminate your program rather than
attempting to continue.

But in every case, at a minimum, check the successful completion of each method. It's
not good programming practice to assume that a method completed successfully
without checking it. You will not get a reliable implementation of your application unless
you do so.

 COBOL Example
The program fragments in Figure 70 on page 347 show in some detail how you can
accomplish the foregoing in IBM COBOL. The data names are not mandatory; only
suggestions.

14 See the SOMobjects Developer's Toolkit Programming Guide for a list of the CORBA standard exceptions.

346 VisualAge COBOL Programming Guide

Other SOM Topics

In the WORKING-STORAGE or LOCAL-STORAGE SECTION:

 \\

\ Declare the environment variable pointer: \

 \\

1 evp pointer.

In the LINKAGE SECTION:

 \\

\ Declare the environment variable itself: \

 \\

 1 ev.

2 major binary pic 9(9).

88 no-exception value ð.

88 any-exception value 1 thru 999999999.

88 user-exception value 1.

88 system-exception value 2.

In the PROCEDURE DIVISION:

 \\

\ Acquire a global environment variable \

 \\

Call 'somGetGlobalEnvironment' returning evp

Set address of ev to evp

 ...

 \\

\ Check environment after invoking a method \

 \\

Invoke anObject 'op1' using by value evp other-args ...

If any-exception then

 \ respond to exception appropriately, perhaps by using:

Call 'Print-ev' using evp by content z'op1 on anObject'

 End-if

 ...

Figure 70 (Part 1 of 3). Checking SOM Exceptions in COBOL

 Chapter 16. Using SOM IDL-Based Class Libraries 347

Other SOM Topics

Here's a sample subroutine for printing out exceptions:

 \\

\ Subroutine for printing exceptions \

 \\

 Identification division.

 Program-id.

 'Print-ev'.

 Data division.

 Working-storage section.

1 counter binary pic 9(9) value ð.

 Local-storage section.

1 d pic x(13ð).

1 eip pointer.

1 i binary pic 9(9).

1 p binary pic 9(9).

1 s pic 9(9).

 Linkage section.

1 evp pointer.

1 kind pic x(4ð).

1 ev global.

2 major binary pic 9(9).

88 user-exception value 1.

88 system-exception value 2.

1 ei pic x(1ðð).

Procedure division using evp kind.

Add 1 to counter

Set address of ev to evp

Call 'SLZ' using counter s i

Move 1 to p

String 'Check #' s(i :) ': method invocation "'

delimited size into d pointer p

Move ð to i

Inspect kind tallying i for characters before initial x'ðð'

String kind(1 : i) '" returned '

delimited size into d pointer p

 Evaluate true

 When user-exception

String 'a user' delimited size into d pointer p

 When system-exception

String 'a system' delimited size into d pointer p

 When other

String 'an unknown' delimited size into d pointer p

 End-evaluate

Figure 70 (Part 2 of 3). Checking SOM Exceptions in COBOL

348 VisualAge COBOL Programming Guide

Other SOM Topics

Call 'SLZ' using major s i

String ' exception (major = ' s(i :) ')'

delimited size into d pointer p

Display d(1 : p - 1)

Call 'somExceptionId' using by value evp returning eip

Set address of ei to eip

Move ð to i

Inspect ei tallying i for characters before initial x'ðð'

Display ' Exception ID: <' ei(1 : i) '>'

Call 'somExceptionFree' using by value evp

 Goback

 .

End program 'Print-ev'.

 \\

\ Subroutine to strip leading zeroes \

 \\

 Identification division.

 Program-id.

 'SLZ'.

 Data division.

 Linkage section.

1 uint binary pic 9(9).

1 str pic x(9).

1 pos binary pic 9(9).

Procedure division using uint str pos.

Move uint to str

Move ð to pos

Inspect str(1 : length str - 1)

tallying pos for leading 'ð'

Add 1 to pos

 Goback

 .

End program 'SLZ'.

Figure 70 (Part 3 of 3). Checking SOM Exceptions in COBOL

 Initializers
IBM COBOL directly supports the existing somInit and somUninit protocols. For
classes that use somInit, and this includes all pure COBOL classes, you can use the
somNew method to create and initialize an object instance in one step. This is an appro-
priate technique when all instances have the same initial value, or do not have an
explicit initial value at all. If, on the other hand, you want to parameterize object initial-
ization, so that each object instance has a unique initial value, you may prefer the con-
venience of a metaclass; see the discussion of metaclasses later in this section.

You can execute the non-default initializer methods (as a client) of a class by using the
documented technique of first invoking somNewNoInit, then invoking the appropriate
initializer method explicitly. This is the recommended way of creating an instance of
one of the SOM-enabled collections, for example.

 Chapter 16. Using SOM IDL-Based Class Libraries 349

Other SOM Topics

You do need to know how to specify the so-called somInitCtrl structure that is used to
control the progress of the initializer as it traverses the class hierarchy. For a client of
a class initializer method (as opposed to a sub-class that provides its own initializer
methods), this structure is initially null, represented in COBOL as an OMITTED argu-
ment. Suppose that the IDL for the initialization method is:

void ISHeap_withNumber(inout somInitCtrl ctrl, in long number);

then COBOL code for invoking this initializer might be:

1 a-heap object reference isheap.

 ...

Invoke isheap 'somNewNoInit' returning a-heap

Invoke a-heap 'ISHeap_withNumber'

using by value evp by reference omitted by value 1ðððð

For COBOL subclasses of classes that use explicit initializers, the recommended tech-
nique is to use metaclass methods to instantiate and initialize the COBOL object. After
creating the instance, the metaclass method invokes the initializer for each parent (and
with multiple inheritance, there may be several), then initializes any instance data intro-
duced by the subclass itself. There is nothing to prevent you from doing this directly in
the client code; but where it is possible to encapsulate the logic in a metaclass method,
it is both more reliable and more convenient to do so, especially when the subclass
inherits from multiple parents.

Using a metaclass method is also a good way of creating and initializing your own pure
COBOL objects in a single step, particularly where each object may have a unique
initial value.

If You Need to Look at the IDL File
Generally, the documentation for a class library has all the information you need to use
(as a client) or specialize (subclass) the classes. In particular, you would expect to find
the interfaces (types and operations or methods) expressed in IDL, together with the
semantics of the operations and descriptions of the protocols for using the library. The
operation definitions would include the required data types and argument passing con-
ventions. The class library protocols are the rules for using the library: which objects
must be instantiated, and in what order; what methods must be invoked to initialize the
classes; what the relation between the classes is; and so on.

Sometimes, however, you may need more detailed information about a class library, for
example when you are specializing the library by subclasssing. To get this additional
information, you may need to look at the IDL or header files. It is then helpful to know
their structure: what is relevant and what you can ignore. Consider the sample IDL file
spred from the collection class library, shown in Figure 71 on page 351.

350 VisualAge COBOL Programming Guide

Other SOM Topics

#ifndef _ISPRED_IDL .1/
#define _ISPRED_IDL

#include <somobj.idl> .2/

interface ISPredicate : SOMObject { .3/

boolean evaluateFor (in SOMObject element); .4/

#ifdef __SOMIDL__ .5/
 implementation {

 releaseorder: evaluateFor;

 somDefaultInit: override,init;

 somDestruct: override;

 callstyle = idl;

 majorversion = 1;

 minorversion = ð;

 filestem = spred;

 dllname = "sccl.dll";

functionprefix = sISPredicate_;

#ifdef __PRIVATE__ .6/
passthru C_xh_before = "#include <ssglobal.xih>";

#endif

 };

#endif

};

#endif

Figure 71. Sample Collection Class IDL File

Typically, the IDL file consists of some IDL definitions, guarded so that they are proc-
essed only once per IDL compilation, plus some implementation-specific information,
also guarded so that it is conditionally included. Refer to the numbered keys in
Figure 71:

.1/ One of three conditional sections in the file; its purpose is to ensure that the IDL
definitions in the file are processed no more than once during the IDL compila-
tion. The matching #endif statement is at the end of the file.

.2/ The #include statement incorporates another IDL file that you may have to refer
to.

.3/ The compound statement specifies the IDL element that this file defines, the
ISPredicate interface.

.4/ This definition is for the (single) new operation evaluateFor that ISPredicate
introduces.

.5/ The start of some SOM-specific implementation information, which needn't
concern you; its matching #endif is the second to last.

.6/ A directive that is needed only by the implementation itself. Again it is not rele-
vant to you, as a client of the class.

 Chapter 16. Using SOM IDL-Based Class Libraries 351

Memory Management

 Memory Management
It is important to avoid memory leaks. This is particularly true with objects, because
there are typically so many individual object instances created and destroyed. The idea
is to ensure that, when an object is destroyed or assigned, all of its associated storage
is also freed. “Helper Routines Source Code” on page 356 contains the source code
for a pair of C routines that you can use to allocate and free dynamic storage for data
that is pointed to by an object, for an inout argument to a method, and so on:

� 'OMMAllocate' using storage-size returning a-pointer, to allocate storage,
where storage-size is the 4-byte unsigned binary number of bytes to allocate;

� 'OMMFree' using a-pointer, to free the previously allocated storage element that
a-pointer addresses.

You must use OMMFree to free output storage allocated and returned to you by SOM
class libraries. See “Complex Types” on page 338 and “String Type” on page 338 for
details of how and when to do this.

You can also use these routines to manage dynamic storage (as opposed to instance
data) for your own classes. Let's look at an example of a variable-length string class,
where the string data is not an explicit part of the instance, but is instead a separate
storage area that the instance refers to.

Here's the COBOL definition for the class:

 \\

\ COBOL variable-length string class definition. \

 \\

 Identification division.

 Class-id.

varstring inherits somobject.

 Environment division.

 Configuration section.

 Repository.

Class varstring 'VarString'

Class somobject 'SOMObject'

 .

Figure 72 (Part 1 of 4). COBOL Variable-Length String Class Example

352 VisualAge COBOL Programming Guide

Memory Management

 \\

\ Variable-length string class instance data. \

 \\

 Data division.

 Working-storage section.

1 vstlen binary pic 9(9).

1 vstptr pointer.

 \\

\ Variable-length string class method: default initialization; \

\ set the instance to a predictable state. \

 \\

 Identification division.

 Method-id.

 'somInit' override.

 Procedure division.

.1/ Set vstptr to null

Move ð to vstlen

 Goback

 .

End method 'somInit'.

Figure 72 (Part 2 of 4). COBOL Variable-Length String Class Example

 Chapter 16. Using SOM IDL-Based Class Libraries 353

Memory Management

 \\

\ Variable-length string class method: assignment from a literal\

 \\

 Identification division.

 Method-id.

 'SetVarstring'.

 Data division.

 Local-storage section.

1 strsze pic 9(9) binary.

 Linkage section.

1 valptr pointer.

1 setval pic x(1ðð).

1 vstval pic x(1ðð).

Procedure division using by value valptr.

.2/ If vstptr not = null then

Call 'OMMFree' using vstptr

 End-if

Move ð to vstlen

Set address of setval to valptr

Inspect setval tallying vstlen

for characters before initial x'ðð'

Add 1 to vstlen giving strsze

Call 'OMMAllocate' using strsze returning vstptr

Set address of vstval to vstptr

Move setval(1:strsze) to vstval(1:strsze)

 Goback

 .

End method 'SetVarstring'.

 \\

\ Variable-length string class method: return string (pointer). \

 \\

 Identification division.

 Method-id.

 'GetVarstring'.

 Data division.

 Linkage section.

1 valptr pointer.

Procedure division returning valptr.

Set valptr to vstptr

 Goback

 .

End method 'GetVarstring'.

Figure 72 (Part 3 of 4). COBOL Variable-Length String Class Example

354 VisualAge COBOL Programming Guide

Memory Management

 \\

\ Variable-length string class method: assign from another string\

 \\

 Identification division.

 Method-id.

 'AssignVarstring'.

 Data division.

 Local-storage section.

1 strsze binary pic 9(9).

1 valptr pointer.

 Linkage section.

1 str object reference varstring.

Procedure division using by value str.

.3/ If self not = str then

Invoke str 'GetVarstring' returning valptr

Invoke self 'SetVarstring' using by value valptr

 End-if

 Goback

 .

End method 'AssignVarstring'.

 \\

\ Variable-length string class method: free associated storage. \

 \\

 Identification division.

 Method-id.

 'somUninit' override.

 Procedure division.

.4/ If vstptr not = null then

Call 'OMMFree' using vstptr

Set vstptr to null

Move ð to vstlen

 End-if

 Goback

 .

End method 'somUninit'.

End class varstring.

Figure 72 (Part 4 of 4). COBOL Variable-Length String Class Example

There are several points to notice about the use of storage in this example:

.1/ All VarString instances are created in a predictable initial state, with the length
set to zero, and the string pointer set to null.

.2/ Before assigning a new value to an instance, the storage allocated for any
current value is freed. If this weren't done, the storage would be “orphaned,”
causing a memory leak.

.3/ When assigning one string to another, you have to check whether the sender is
identical to the receiver before doing the assignment and thereby prematurely
freeing the sender's storage.

 Chapter 16. Using SOM IDL-Based Class Libraries 355

.4/ Although somFree de-allocates the storage for the instance data, it does NOT
free storage that the instance refers to. Thus it is critical to free any such
storage when the instance is uninitialized.

Helper Routines Source Code
The C source in Figure 73 may be used to implement the helper functions for string
representation and memory management discussed in this chapter. You can either
statically link the functions into your application, or generate a dynamic load library
(DLL) for the functions and bind your application to the DLL.

/\\/

/\ Helper functions for using SOM IDL-based class libraries. \/

/\\/

/\ OS/39ð pragma to generate long, mixed-case names \/

#pragma longname

/\ Macro to clear the high-order bit of the argument address (OS/39ð \/

/\ and VM) \/

#define Clean(p,q) p=(void\)((int)q&ðx7fffffff)

#include <som.h>

/\ Object Memory Management: allocate memory. \/

somToken OMMAlloc(size_t \sze){

 size_t \s;

 Clean(s,sze);

 return SOMMalloc(\s);

}

/\ Object Memory Management: free allocated memory. \/

void OMMFree(somToken \ptr){

 somToken \p;

 Clean(p,ptr);

 SOMFree(\p);

 return;

}

/\ Set COBOL representation (ODO object) from IDL string length \/

void IDLStringToCOBOL(char \str, long \len) {

 char \s;

 long \l;

 Clean(s,str);

 Clean(l,len);

 (\l)=strlen(s);

 return;

}

Figure 73 (Part 1 of 2). C Source for IDL-based Library Helper Functions

356 VisualAge COBOL Programming Guide

/\ Set IDL string length (null byte) from COBOL (ODO) representation \/

void IDLStringFromCOBOL(char \str, long \len) {

 char \s;

 long \l;

 Clean(s,str);

 Clean(l,len);

 s[\l]=ð;

 return;

}

Figure 73 (Part 2 of 2). C Source for IDL-based Library Helper Functions

 Chapter 16. Using SOM IDL-Based Class Libraries 357

Wrapping

Chapter 17. Converting Procedure-Oriented Programs to
Object-Oriented Programs

Conventional COBOL programs belong to one of three types:

 � Batch
 � Online
 � Subprogram

Batch programs are often constructed to access files and/or databases and produce
reports. In the access files and/or databases case, the file or database is the object of
the action; however, the program is structured around the action—delete, insert, or
update. In the produce reports case, the report can be viewed as an object; however,
the program structure reflects the structure of the report.

Online transaction processing programs are built around the transactions which they
process and these are reflected in the user interface maps or panels which make up
the transaction. Online transactions may access several files or databases from one
panel. In this case, there is a one to many relationship between the source of the
action and the targets of the action, all of which can be viewed as objects.

Subprograms normally are called to provide a function too large or complex to include
in the main program. They are also used to implement general purpose functions
required by many other programs; in which case, they embody reusable code. In many
cases, the subprogram alters the values of some parameters based on the values of
other parameters. In other cases, the subprogram accesses files/databases or prints
reports. In this case, the parameter list can be viewed as a message to trigger some
action on a file or database object.

Wrapping a Procedure-Oriented Program
Wrapping is a technique to integrate existing procedure-oriented code with new object-
oriented code. Two of the definitions for wrap are:

1. To enclose as if with a protective covering.
2. To conceal as if by enveloping.

Wrappers are objects that provide an interface between object-oriented code and
procedure-oriented code. They enclose the procedure-oriented code in a package,
concealing its true nature and making it seem like object-oriented code.

Wrappers are useful in two situations:

 � Glass-top coordination

� Boundary interface coordination

358  Copyright IBM Corp. 1996, 1998

Boundary Wrappers

 Glass-top Coordination
This type of wrapper integrates the old and new code at the user interface or
“glass-top” level. As user interfaces move toward a object-oriented approach, you find
direct manipulation used more. This implies actions such as “dragging” and “dropping”
objects into or onto other objects. When this occurs, the objects involved must work
together to take the appropriate action. If one of the objects is really procedure-
oriented code, the wrapper is an interface to the true objects.

For example, you have a stable set of procedural code for updating a database.
However, you would like to include the database as part of a graphical user interface.
The goal is to drop a list object representing an update to the database on the data-
base object and have the update performed. You need to write a wrapper class to
accept messages from the list object; i. e. the list object invokes methods in the
wrapper. The methods in the wrapper class interpret the information from the list object
and use the CALL statement to call the appropriate subprogram in the old procedural
code.

┌────────────────────────────┐User

├────────────────────────────┤Interface

│┌───────┐ drop ┌────────┐│

││List of├────┬────5Database││

││Updates│ │ └────────┘│

│└───────┘ │ │

└─────────────┼──────────────┘

 ┌──────────┘

┌──6─┐ ┌───────┐ ┌──────────┐ Code

│True│INVOKE│Wrapper│CALL│Procedural│ Level

│O-O %──────5 O-O %────5 Code │

│Code│ │ Code │ └──────────┘

└────┘ └───────┘

Boundary Interface Coordination
Boundary interface wrappers create objects for procedural code outside the boundaries
of the new object-oriented subsystem. These wrappers allow the object-oriented part of
the system to deal with the procedure-oriented part of the system as if it were object-
oriented. Thus, you can phase in new object-oriented code and continue to use your
existing procedure-oriented code.

You can write a wrapper for each subprogram in the procedural code. Or if several
subprograms are working with the same object, processing the same file or producing
the same report, you can write a single wrapper for all the related subprograms. The
appropriate method in the wrapper is invoked from a true object and the method in turn
calls the appropriate subprogram.

 Chapter 17. Converting Procedure-Oriented Programs to Object-Oriented Programs 359

Converting

┌──────────┐

│O%──────5O│Object-Oriented

│& &│ Subsystem

││ ││(True Objects)

││ ││-----

│6 6│ |Boundary

│O%──────5O%─5O |Subsystem

└&────────&┘ & |(Wrappers)

|└─5O 6 └─|─────┐

| & O | │

----│-----&------ │

┌───6┐ ┌──6──────┐ ┌──6───┐

│Read│ │Calculate│ │Write │Procedural

│File│ │ Taxes │ │Report│Subsystem

└────┘ └─────────┘ └──────┘

Required Change to Procedural Code
If you decide to use wrappers, there is one change you must make to your procedural
code. Since methods are always recursive, it is possible to INVOKE method A which
CALLs program B. While program B is executing, method A could be invoked again
causing a second call to program B. This second call is considered a recursive call.
Therefore, any procedural code invoked from a method should have the RECURSIVE
clause on the PROGRAM-ID statement.

For example:

 Identification Division.

 Program-Id. ProgB recursive.

 Environment Division.

 .

 .

 Coexistence
The object-oriented and procedure-oriented parts of your system can exist quite well
together. Certainly, you want to reuse your existing code as long as it continues to
meet your needs. However, you can add new function to your system using object-
oriented implementations. Only if your existing code no longer meets your needs or its
maintenance cost is too high should you consider converting the entire procedure-
oriented system to an object-oriented system.

Converting a Procedure-Oriented Program
Taking as input a typical COBOL batch or online program, the goal is to produce a
formal specification of the program in object-oriented form. The conversion involves
four steps:

 � Identify objects
� Analyze data flow and usage
� Reallocate code to objects
� Write the object-oriented code

360 VisualAge COBOL Programming Guide

Step Three

 Identify Objects
First, partition the DATA DIVISION into potential objects by identifying every record as an
object and every field in the record as its instance data. You can start by taking record
structures that define files and making them objects called FffffFile, where Fffff is a
name of your choosing. Record structures that define database views become objects
called VvvvvView. Map or panel record structures become objects called
UuuuuInterface. Other record structures in the WORKING-STORAGE SECTION not
related to files, databases, maps, or panels become objects called WwwwWork. Finally,
record structures in the LINKAGE SECTION become objects called PppppParameter.

Now you have a lot of potential objects, some of which are redundant. Study the
potential objects and decide if two or more are slight variations of the same object.
Maybe you have two detail lines as potential objects that differ in only one or two of
their fields. If possible use REDEFINES or some other technique to combine the two
detail lines into one and, thus, combine the two potential objects into one object.

The result of this step is an object list with the name of each object and its instance
data.

Analyze Data Flow and Usage
Analyze the file and database accesses to collect the access operations, such as
SELECT, UPDATE, INSERT, DELETE, READ, and WRITE, for each object. The purpose is
to find the relationship between objects via access sequence. For example, if one
record read from the input file results in one detail line written to a report then a
relationship exists between the file and the report objects. The relationships are tied to
the source object and the target object.

Trace the data flow between objects to identify those objects which use instance data
from another object.

If the two objects share a superclass - subclass (parent - child) relationship, then the
subclass inherits methods from the superclass and shares instance data via 'get' and
'set' methods. (The get and set methods are written in the superclass definition.)

If the two objects are separate and distinct, then they are collaborators. Collaborators
do not inherit anything from each other. Instance data that needs to be shared
between two collaborators is typically passed as parameters on an INVOKE statement.

The result of this step is an object relationship table listing all the inheritance and col-
laboration relationships between objects.

Reallocate Code to Objects
For each object you identified, collect all references to it from the PROCEDURE
DIVISION. Look for procedural code that changes the state of the object's instance
data. If an instruction affects several data items in different objects, it must be changed
or duplicated and the proper form associated with the correct object.

 Chapter 17. Converting Procedure-Oriented Programs to Object-Oriented Programs 361

Step Four

For example:

 Move ð To input-z output-z.

must be changed to

 Move ð To input-z.

 Move ð To output-z.

The first MOVE is associated with the appropriate input object and the second with the
appropriated output object.

Now couple the procedural instructions from the PROCEDURE DIVISION with the objects
to form methods. Take the code you pulled from the program and organize it into task-
oriented methods.

Refer to the object relationship table from step two and determine if any new methods
must be written to facilitate passing data between two objects. See “Writing a Method
Definition” on page 276 for information about writing methods.

The result of this step is completed method definitions.

Write the Object-Oriented Code
Write a class definition using the object list from step one and the methods from step
three. See “Writing a Class Definition” on page 272 for information about writing
classes.

Also, write the client program to create instances of the classes and invoke methods.
See “Writing a Client Definition” on page 285 for information about writing client pro-
grams.

Your client program may be a modification of your original procedure-oriented program
with invokes and manipulation of object references added where needed in the proce-
dural code. This is the case when all the procedure-oriented code was not placed into
methods. However, if all the procedure-oriented code was placed into methods, then
your client program is a new program you write from scratch.

362 VisualAge COBOL Programming Guide

 Part 4. Advanced Topics

This part of the book covers advanced programming topics. Basic programming topics
are covered in Part 1, “Coding Your Program” on page 1.

Chapter 18. Porting Applications between Platforms 364

Chapter 19. Subprograms . 372

Chapter 20. Data Sharing . 387

Chapter 21. Programming for a DB2 Environment 406

Chapter 22. Programming for a CICS Environment 410

Chapter 23. Open Database Connectivity 418

Chapter 24. Building Dynamic Link Libraries 439

| Chapter 25. Creating Module Definition Files 448

Chapter 26. Preparing COBOL Programs for Multithreading 467

Chapter 27. National Language Support Considerations 477

Chapter 28. Pre-initializing the COBOL Run-Time Environment 489

Chapter 29. Productivity and Tuning Techniques 496

Chapter 30. The "Year 2000" Problem . 510

| Chapter 31. Using the Millennium Language Extensions 520

 Copyright IBM Corp. 1996, 1998 363

Getting Mainframe Applications to Compile on the PC

Chapter 18. Porting Applications between Platforms

Your personal computer (PC) has a different hardware and operating system architec-
ture than IBM mainframes or AIX workstations. Because of fundamental platform differ-
ences, some problems can arise as you move COBOL programs between the PC,
workstation, and mainframe environments.

The following information describes some of the differences between development plat-
forms and provides instructions to help you minimize portability problems.

Getting Mainframe Applications to Compile on the PC
As you move programs to the PC from the mainframe, one of your first goals is to get
the applications you have already been using to compile in the new environment
without errors.

Choosing the Right Compiler Options
Some mainframe COBOL compiler options are not applicable on the PC, and are
treated as comments. For a full list of differences between host COBOL and VisualAge
COBOL (including compiler options), see Appendix A, “Summary of Differences with
Host COBOL” on page 540.

Two compiler options might yield unpredictable results and are flagged by the compiler
with W-level messages:

CMPR2
This compiler option impacts the interpretation of language elements. The PC
compiler does not support VS COBOL II Release 2 language elements that are in
conflict with the ANSI 85 COBOL Standard. A program depending on the CMPR2
option is not portable.

NOADV
Programs that require the use of NOADV are sensitive to device control charac-
ters and almost certainly are not portable. If your program relies on NOADV,
revise it such that language specification does not assume a printer control char-
acter as the first character of the ð1 record for the file.

Differences from Mainframe COBOL Language Features
The following section describes some language features that are valid under mainframe
COBOL but can create errors or unpredictable results in your PC compilation. Where
possible, a solution to the potential problem is provided.

ACCEPT and DISPLAY statements
On the PC, the targets of DISPLAY or ACCEPT statements are determined by
checking COBOL environment variables (see “Run-Time Environment Variables” on
page 137). If your mainframe program assumes the use of host DDNAMEs as the
targets of ACCEPT or DISPLAY statements, ensure that these targets are defined by
equivalent environment variables with values set to appropriate PC filenames.

364  Copyright IBM Corp. 1996, 1998

Getting Mainframe Applications to Compile on the PC

ASSIGN clause
There is a different syntax and mapping to the system filename based on ASSIGN-
MENT name (see the IBM COBOL Language Reference).

CALL statement
A filename as a CALL argument is not supported.

CLOSE statement
The phrases FOR REMOVAL, WITH NO REWIND, and UNIT/REEL are treated as
comments. Avoid their use in portable programs.

LABEL RECORD clause
LABEL RECORD IS data-name, USE...AFTER...LABEL PROCEDURE, and GO TO
MORE-LABELS are treated as errors. Programs depending on user label processing
supported through OS/390 QSAM are not portable.

POINTER and PROCEDURE-POINTER data items
Under mainframe COBOL, a POINTER data item is defined as 4 bytes, and a
PROCEDURE-POINTER data item is defined as 8 bytes. On the PC, the size of
these data items are consistent with the native pointer definition of the platform (for
example, 4 bytes for a 32-bit machine).

RERUN clause
Treated as a comment.

SHIFT-IN, SHIFT-OUT special registers
Not applicable on the PC; results in an E-level message unless the CHAR(EBCDIC)
compiler option is in effect.

SORT-CONTROL special register
Because it identifies a system filename, this register is sensitive to the filename
conventions of the platform. Be aware of the differences in naming conventions
between the PC and the mainframe.

WRITE statement
If you specify WRITE...ADVANCING with the environment names C01-C12 or S01-S05,
the ADVANCING phrase is ignored.

Using the COPY Statement to Help Port Programs
In many cases, potential portability problems can be avoided by using the COPY state-
ment to isolate platform-specific code. For example, you can include platform-specific
code in a compilation for a given platform and exclude it from compilation for a different
platform. You can also use the COPY REPLACING phrase to globally change non-
portable source code elements, such as filenames.

For information about the COPY statement, see the IBM COBOL Language Reference.

 Chapter 18. Porting Applications between Platforms 365

Getting Mainframe Applications to Run on the PC

Getting Mainframe Applications to Run on the PC
Once you have downloaded your source program from the mainframe and compiled it
on the PC without errors, the next step is to run the program. In many cases, you can
get the same results from the PC run as from the mainframe COBOL run without
serious source-language modifications. In order to assess whether or not you should
make source-language modifications to you program, you need to know about elements
and behavior of the COBOL language that vary due to the underlying hardware or soft-
ware architectures.

Data Representations Causing Run-Time Differences
COBOL stores USAGE PACKED-DECIMAL data in the same manner on both the
mainframe and on the PC, but all other computational data is, by default, represented
differently. Most programs act the same on the PC as they do on the mainframe
regardless of the data representation. To ensure that this is true for your programs,
you should try to understand the differences described in the following sections.

ASCII vs EBCDIC
The PC uses the ASCII-based character set while the mainframe uses the EBCDIC
character set. This means that most characters have a different hexadecimal
value. For example, the hexadecimal value for a blank is X'20' in the ASCII char-
acter set and X'40' in the EBCDIC character set.

Code which is dependent on the EBCDIC hexadecimal values of character data
probably fails when run using ASCII. For example, code that tests whether or not
a character is a blank by comparing it with X'40' fails when run using the ASCII
collating sequence.

In the ASCII character set, characters '0' through '9' have the hexadecimal values
X'30' through X'39'. The ASCII lowercase letter 'a' has the hexadecimal value
X'61', and the uppercase letter 'A' has the hexadecimal value X'41'. In the
EBCDIC character set, characters '0' through '9' have the hexadecimal values
X'F0' through X'F9'. In EBCDIC, the lowercase letter 'a' has the hexadecimal
value X'81', and the uppercase letter 'A' has the hexadecimal value X'C1'.
These differences have some important consequences:

While 'a' < 'A' is true for EBCDIC, it is false for ASCII.

While 'A' < '1' is true for EBCDIC, it is false for ASCII.

While x >= '0' almost always means that x is a digit in EBCDIC, this is not
true for ASCII.

Because of the differences described, the results of sorting character strings are
different under EBCDIC and ASCII. For many programs, this has no effect, but
you should be aware of potential logic errors if your program depends on the exact
sequence in which some character strings are sorted. If your program is
dependent on the EBCDIC collating sequence and you are porting it to the PC, you
can obtain the EBCDIC collating sequence using PROGRAM COLLATING SEQUENCE
IS EBCDIC or the COLLSEQ(EBCDIC) compiler option.

366 VisualAge COBOL Programming Guide

Getting Mainframe Applications to Run on the PC

To avoid problems with the different data representation between ASCII and
EBCDIC characters, use the CHAR(EBCDIC) compiler option. For more information,
see “CHAR” on page 165.

NATIVE vs NONNATIVE
The PC holds integers in a form that is byte-reversed when compared to the form
in which they are held on the mainframe.

The mainframe representation is known as “Big Endian,” as in “big-end-in.” In other
words, the most significant digit of the number is stored first. The PC represen-
tation is known, conversely, as “Little Endian,” as in “little-end-in.” On the PC, the
least significant digit of the number is stored first.

For most programs this difference should create no problems. However, if your
program depends on the hexadecimal value that an integer has, you should be
aware of potential logic errors.

For programs that use mainframe binary data and rely on the internal represen-
tation of integer values, you should compile the entire program with the
BINARY(S390) compiler option. For such programs, you should avoid the USAGE
COMP-5 type, which is treated as the native binary data format regardless of
whether or not the BINARY(S390) option is specified.

For more information about the BINARY compiler option, see “BINARY” on
page 163.

IEEE vs HEXADEC
The PC represents floating-point data using the IEEE format while the mainframe
uses the hexadecimal format.

Figure 74 summarizes the differences between normalized floating-point IEEE and
hexadecimal for USAGE COMP-1 data:

Figure 75 summarizes the differences between normalized floating-point IEEE and
hexadecimal for USAGE COMP-2 data:

Figure 74. Normalized IEEE vs. Normalized Hexadecimal for COMP-1 Data

Specification IEEE Hexadecimal

Range ±1.17E-38 to
±3.37E+38

±5.4E-79 to
±7.2E+75

Exponent representation 8 bits 7 bits

Mantissa representation 23 bits 24 bits

Accuracy 6 digits 6 digits

Figure 75 (Page 1 of 2). Normalized IEEE vs. Normalized Hexadecimal for COMP-2 Data

Specification IEEE Hexadecimal

Range ±2.23E-308 to
±1.67E+308

±5.4E-79 to
±7.2E+75

Exponent representation 11 bits 7 bits

 Chapter 18. Porting Applications between Platforms 367

Getting Mainframe Applications to Run on the PC

For most programs these differences should create no problems. However, use
caution in porting if your program depends on hexadecimal representation of data.

To avoid most problems with the different representation between IEEE and
hexadecimal floating-point data, use the FLOAT(S390) compiler option. For more
information, see “FLOAT” on page 180.

EBCDIC DBCS vs ASCII multi-byte strings
Mainframe double-byte character strings (DBCS) are enclosed in shift codes, while
PC multi-byte character strings (including DBCS) are not enclosed in shift codes.
The hexadecimal values used to represent the same characters are also different.

For most programs this should not make porting difficult. However, if your program
depends on the hexadecimal value of a graphic string or on a character string con-
taining mixed character and graphic data, use caution in your coding practices.

Note: On the PC, DBCS data can contain single-byte characters as well as
double-byte characters.

Figure 75 (Page 2 of 2). Normalized IEEE vs. Normalized Hexadecimal for COMP-2 Data

Mantissa representation 52 bits 56 bits

Digits of accuracy 15 digits 16 digits

Environment Differences Affecting Portability
There are some differences, other than data representation, between the PC and
mainframe platforms that can also affect the portability of your programs. This section
describes some of these differences.

File names
File naming conventions on the PC are very different from those on the mainframe.
The following file name, for example, is valid on the PC but not on the mainframe:

 d:\programs\data\myfile.dat

This can have an effect on portability if you use file names in your COBOL source
programs.

Control codes
Some characters that have no particular meaning on the mainframe are interpreted
as control characters on the PC. This can lead to incorrect processing of ASCII
test files. Files should not contain any of the following characters:

X'0A' (“LF - line feed”)
X'0D' (“CR - carriage return”)
X'1A' (“EOF - end of file”)

Device-dependent control codes
Use of device-dependent (platform-specific) control codes in your programs or files
can cause problems when trying to port them to other platforms that do not neces-
sarily support the control codes.

368 VisualAge COBOL Programming Guide

Writing PC Code to Run on the Mainframe

As with all other very platform-specific code, it is best to isolate such code as much
as possible so that it can be replaced easily when you move the application to
another platform.

Language Elements Causing Run-Time Differences
In general, you can expect your portable COBOL programs to behave the same way on
the PC that they do on the mainframe. However, be aware of the differences in FILE
STATUS values use for I/O processing.

If your program is written to respond to status key data items, you should be concerned
with two issues, depending on whether the program is written to respond to the first
status key or the second status key:

1. If your program is written to respond to the first file status data item (data-name-1),
be aware that values returned in the 9X range are platform-dependent. If your
program depends on the interpretation of a particular 9X value (for example, 97),
do not expect the value to have the same meaning on the PC that it does on the
mainframe. Instead, revise your program so that it responds to any 9X value as a
generic I/O failure.

2. If your program is written to respond to the second file status data item
(data-name-8), be aware that the values returned are both platform and file system
dependent. For example, VSAM returns values with a different record structure on
the mainframe than it does on the PC. Also, different file systems (for example,
Btrieve rather than IBM's VSAM) return different values. If your program relies on
the interpretation of the second file status data item, it is probably not portable.

For more information about the FILE STATUS clause, see the IBM COBOL Language
Reference.

Writing PC Code to Run on the Mainframe
You can use VisualAge COBOL to write new applications, taking advantage of the pro-
ductivity gains and increased flexibility of using your PC. The purpose of this section is
to make you aware of how to avoid using VisualAge COBOL features not supported by
mainframe COBOL.

Language Features Supported Only by the PC Compiler
VisualAge COBOL supports several language features not supported by the mainframe
COBOL compiler. As you write code on your PC that is intended to run on the
mainframe, avoid using these features:

� ORGANIZATION LINE SEQUENTIAL

� Format 5 SET statement extension that allows setting of pointers or ADDRESS OF
special register to an address of level 01, 02-49, or 77 in the LINKAGE SECTION or
the WORKING-STORAGE SECTION

� LOCK MODE IS AUTOMATIC

� ASSIGN USING data-name

 Chapter 18. Porting Applications between Platforms 369

Portability between the PC and AIX

� READ statement using PREVIOUS phrase

� START statement using < or <= in the KEY PHRASE

� USAGE COMP-5 data items

Compiler Options Supported Only on the PC
A number of compile-time options are available with VisualAge COBOL. Do not use
any of the following options in your source code if you intend to port this code to the
mainframe COBOL compiler:

 � BINARY
� CALLINT (also a compiler directive)

 � CHAR
 � ENTRYINT
 � FLOAT
 � PROBE
 � PROFILE
 � THREAD

Names Supported Only on the PC
Be aware of the difference in naming conventions supported on the PC and mainframe
file systems. Try to avoid hard-coding the names of files in your source programs.
Instead, use mnemonic names (in turn, mapped to mainframe DDNAMEs or PC environ-
ment variables) which can be defined on each platform, allowing you to compile your
program without source code changes to accommodate the file name changes.

Specifically, consider how you refer to files in the following language elements:

� ACCEPT and DISPLAY target names
 � ASSIGN clause
� COPY statement (text-name and library-name)

Writing Applications That Are Portable between the PC and AIX
The PC and AIX COBOL environments are similar, and their language support is practi-
cally identical. However, there are two key differences between these platforms that
you should keep in mind when developing applications that are portable between the
PC and the AIX workstation:

1. As you can expect when porting programs between the PC and the mainframe,
hard-coded filenames in your source programs can lead to problems. See “Names
Supported Only on the PC” for a description of how and where to avoid using literal
file names in your source programs.

2. As noted in the discussion of NATIVE vs NONNATIVE on 367, the PC represents
integers in “Little Endian” format. Like the mainframe, AIX workstations maintain
integers in “Big Endian” format. Therefore, if your PC COBOL program depends
on the internal representation of an integer, the program is probably not portable to
AIX; avoid writing programs that rely on such internal representation. If your

370 VisualAge COBOL Programming Guide

Portability between the PC and AIX

program requires manipulating the internal representation of PC-format integers,
use the BINARY(S390) compiler option and avoid the USAGE COMP-5 type.

 Chapter 18. Porting Applications between Platforms 371

Main Programs and Subprograms

 Chapter 19. Subprograms

Often, an application will consist of several, separately compiled programs linked
together.

When a run unit consists of several, separately compiled programs that call each other,
the programs must be able to communicate with each other. They need to transfer
control and usually need to have access to common data. The following sections
describe the methods that allow separately compiled programs to communicate with
one another.

COBOL programs that are nested within each other can also communicate. All the
required subprograms for an application can be contained in one program and thereby
require only a single compilation. This method is explained in “Structure of Nested
Programs” on page 373.

Transferring Control to Another Program
In the PROCEDURE DIVISION, a program can call another program (generally called a
subprogram in COBOL terms), and this called program can itself call other programs.
The program that calls another program is referred to as the calling program, and the
program it calls is referred to as the called program. When the called program proc-
essing is completed, the program can either transfer control back to the calling program
or end the run unit.

The called COBOL program starts running at the top of the PROCEDURE DIVISION.

Not Recomended: You can specify another entry point where the program will begin
running by using the ENTRY label in the called program. However, this is not recom-
mended in a structured program.

 Recursive Calls
If a called program directly or indirectly executes its caller (such as program X calling
program Y; program Y calling program Z; and program Z then calling program X), this is
called a recursive call. Recursive calls are allowed if you code the RECURSIVE attribute
on the PROGRAM-ID paragraph of the recursively invoked program and/or if you specify
the THREAD compiler option. If you try to recursively call a COBOL program that does
not have the RECURSIVE attribute coded on its PROGRAM-ID paragraph, the run unit will
end abnormally.

For considerations in using the LINKAGE SECTION with recursive calls, see “With
Recursion or Multithreading” on page 22.

Main Programs and Subprograms
No specific source code statements or options identify a COBOL program to be a main
program or a subprogram. If a COBOL program is the first program in the run unit, that

372  Copyright IBM Corp. 1996, 1998

Calling COBOL Programs

COBOL program is the main program. Otherwise, it and all other COBOL programs in
the run unit are subprograms.

Whether a COBOL program is a main program or a subprogram can be significant for
either of two reasons:

� If execution ends in the main program, the main program must use a STOP RUN or
GOBACK statement. STOP RUN terminates the run unit, and closes all files opened
by the main program and its called subprograms. Control is returned to the caller
of the main program, which is often the operating system. GOBACK has the same
effect in the main program. An EXIT PROGRAM performed in a main program has
no effect.

A subprogram can end with an EXIT PROGRAM, a GOBACK, or a STOP RUN state-
ment. If the subprogram ends with an EXIT PROGRAM or a GOBACK statement,
control returns to its immediate caller without ending the run unit. An implicit EXIT
PROGRAM statement is generated if there is no next executable statement in a
called program. If the subprogram ends with a STOP RUN statement, the effect is
the same as it is in a main program: all COBOL programs in the run unit are termi-
nated, and control returns to the caller of the main program.

� A subprogram is usually left in its last-used state when it terminates with EXIT
PROGRAM or GOBACK. The next time it is called in the run unit, its internal values
will be as they were left, except that return values for PERFORM statements will be
reset to their first values. In contrast, a main program is initialized each time it is
called. There are three exceptions:

1. A subprogram that is called and then cancelled will be in the initial state the
next time it is called.

2. A program with the INITIAL attribute will be in the initial state each time it is
called.

3. Data defined in the LOCAL-STORAGE section is in initial state each time it is
called.

Making Calls between COBOL Programs
You can transfer control to nested and/or non-nested COBOL programs.

Calls to nested programs allow you to create applications using structured programming
techniques. They can also be used in place of PERFORM procedures to prevent unin-
tentional modification of data items. Calls to nested programs can be made using
either the CALL literal or CALL identifier statement. For more information on nested
programs, see “Structure of Nested Programs.”

Structure of Nested Programs
A COBOL program can contain or “nest” other COBOL programs. The nested pro-
grams can themselves nest yet other programs. A nested program can be directly or
indirectly nested in a program.

 Chapter 19. Subprograms 373

Calling COBOL Programs

Figure 76 describes a nested program structure with directly and indirectly nested pro-
grams.

 ┌──────────Id Division.

X is the outermost program │ Program─Id. X.

and directly contains X1 and ─────────5│ Procedure Division.

X2, and indirectly contains │ Display "I'm in X"

X11 and X12 │ Call "X1"

 │ Call "X2"

 │ Stop Run.

 │ ┌──────Id Division.

X1 is directly contained │ │ Program─Id. X1.

in X and directly ─────────│─5│ Procedure Division.

contains X11 and X12 │ │ Display "I'm in X1"

 │ │ Call "X11"

 │ │ Call "X12"

 │ │ Exit Program.

│ │ ┌───Id Division.

X11 is directly │ │ │ Program─Id. X11.

contained in X1 ────────│──│─5│ Procedure Division.

and indirectly │ │ │ Display "I'm in X11"

contained in X │ │ │ Exit Program.

│ │ └───End Program X11.

│ │ ┌───Id Division.

X12 is directly │ │ │ Program─Id. X12.

contained in X1 ────────│──│─5│ Procedure Division.

and indirectly │ │ │ Display "I'm in X12"

contained in X │ │ │ Exit Program.

│ │ └───End Program X12.

│ └──────End Program X1.

 │ ┌──────Id Division.

 │ │ Program─Id. X2.

X2 is directly ───────────────────│─5│ Procedure Division.

contained in X │ │ Display "I'm in X2"

 │ │ Exit Program.

│ └──────End Program X2.

└─────────End Program X.

Figure 76. Nested Program Structure with Directly and Indirectly Contained Programs

Conventions for Using Nested Program Structure
Follow these conventions when using nested program structures:

� The IDENTIFICATION DIVISION is required in each program. All other divisions are
optional.

� Nested program names must be unique.

� Nested program names can be any valid COBOL word or a non-numeric literal.

� Nested programs cannot have a CONFIGURATION SECTION. The outermost
program must set any CONFIGURATION SECTION options that might be required.

� Each nested program is included in the nesting program immediately before its End
Program header (see Figure 76).

� Nested and nesting programs must be terminated by an End Program header.

Calling nested Programs
A nested program can be called only by its directly nesting program, unless the nested
program is identified as COMMON in its PROGRAM-ID clause. In that case, the
common program can also be called by any program that is nested (directly or indi-

374 VisualAge COBOL Programming Guide

Calling COBOL Programs

rectly) in the same program as the common program. Only nested programs can be
identified as COMMON. Recursive calls are not allowed.

Figure 77 shows the outline of a nested structure with some nested programs identified
as COMMON.

┌───Program─Id. A.

│

│ ┌───Program─Id. A1.

│ │

│ │ ┌───Program─Id. A11.

│ │ │

│ │ │ ┌───Program─Id. A111.

│ │ │ │

│ │ │ └───End Program A111.

│ │ └───End Program A11.

│ │ ┌───Program─Id. A12 is Common.

│ │ │

│ │ └───End Program A12.

│ └───End Program A1.

│ ┌───Program─Id. A2 is Common.

│ │

│ └───End Program A2.

│ ┌───Program─Id. A3 is Common.

│ │

│ └───End Program A3.

└───End Program A.

Figure 77. A Nested Structure with COMMON Programs

The following table describes the calling hierarchy for the structure that is shown in
Figure 77. Programs A12, A2, and A3 are identified as COMMON, and t he calls associ-
ated with them differ.

Note that:

� A2 cannot call A1 because A1 is not common and is not contained in A2.
� A1 can call A2 because A2 is common.

Figure 78. Calling Hierarchy for Nested Structures with COMMON programs

This Program Can call these programs And can be called by these pro-
grams

A A1, A2, A3 None

A1 A11, A12, A2, A3 A

A11 A111, A12, A2, A3 A1

A111 A12, A2, A3 A11

A12 A2, A3 A1, A11, A111

A2 A3 A, A1, A11, A111, A12, A3

A3 A2 A, A1, A11, A111, A12, A2

 Chapter 19. Subprograms 375

Linker and Run-Time Resolution

Scope of Names
Names in nested programs are divided into two classes: local and global. The class
determines whether a name is known beyond the scope of the program that declares it.
A specific search sequence locates the declaration of a name after it is referenced in a
program.

Local Names: Names are local unless declared to be otherwise (except the program
name). Local names are not visible or accessible to any program outside of the one in
which they were declared; this includes both contained and containing programs.

Global Names: A name that is global (indicated using the GLOBAL clause) is visible
and accessible to the program in which it is declared, and to all the programs that are
directly and indirectly contained in that program. This allows the contained programs to
share common data and files from the containing program, simply by referencing the
name of the item.

Any item that is subordinate to a global item (including condition names and indexes) is
automatically global.

The same name can be declared with the GLOBAL clause more than one time, pro-
viding that each declaration occurs in a different program. Be aware that masking, or
hiding, a name in a nested program is possible by having the same name occur in
different programs of the same containing structure. This could possibly cause some
problems when a search for a name declaration is taking place.

Searching for Name Declarations: When a name is referenced in a program, a
search is made to locate the declaration for that name. The search begins in the
program that contains the reference and continues outward to containing programs until
a match is found. The search follows this process:

1. Declarations in the program are searched first.

2. If no match is found, only global declarations are searched in successive outer
containing programs.

3. The search ends when the first matching name is found; otherwise, an error exists
if no match is found.

Note that the search is for a global name, not for a particular type of object associated
with the name, such as a data item or file connector. The search stops when any
match is found, regardless of the type of object. If the object declared is of a different
type than that expected, an error condition exists.

Static, Dynamic, and Run-time Linking
COBOL calls can be made to a subprogram that is either linked into the same execut-
able module as the caller (static linking) or a subprogram that is provided in a DLL
(dynamic linking). IBM VisualAge COBOL also provides for run-time resolution of the
target subprogram from a DLL. If it is linked statically, it is part of the caller's execut-
able module and is loaded with the caller. If it is linked dynamically or resolved at run

376 VisualAge COBOL Programming Guide

Calling C/C ++

time, it is provided in a library and is loaded either when the caller is loaded or when it
is called.

Static linking and dynamic linking are done for COBOL CALL literal subprograms only.
See “Static Linking Overview” on page 439 for a discussion on static linking. See
“Dynamic Linking Overview” on page 439 for a discussion of dynamic linking.

Run-time resolution is always done for COBOL CALL identifier and is done for CALL
literal when the DYNAM option is in effect.

 CALL identifier
The COBOL CALL identifier, where identifier is a data item that contains the name of a
non-nested subprogram when the program is run, always results in the target subpro-
gram being loaded when it is called. Also, the name of the DLL must match the name
of the target entry point. See “Terminology Notes” on page 440 for a discussion of
COBOL terminology.

 CALL literal
The COBOL CALL literal, where literal is the explicit name of a non-nested subprogram
being called, can be resolved statically, dynamically or at run time. If the NODYNAM
compile-time option is in effect, either static or dynamic linking can be done. If DYNAM
is in effect, the CALL literal is resolved the same as CALL identifier: the target subpro-
gram is loaded when it is called, and the name of the DLL must match the name of the
target entry point.

These call definitions apply only in the case of a COBOL program calling a non-nested
program. When a COBOL program calls a nested program, the CALL is resolved by
the compiler without any system intervention.

For a detailed description of the CALL statement, see the IBM COBOL Language Refer-
ence. For more information on calling subprograms in DLLs see Chapter 24, “Building
Dynamic Link Libraries” on page 439.

Making Calls between COBOL and C/C ++ Programs
You can call functions written in C or C++ from your COBOL programs and vice versa.
This chapter describes how to perform such interlanguage calls from your COBOL and
C or C++ programs.

Rules and Guidelines for ILC Applications
The following are rules and guidelines for COBOL—C/C++ ILC applications:

� Run Unit/Process Termination and Stack Frame Collapsing

Functions invoked in one language which result in collapsing of program stack
frame(s) of other language(s) should be avoided. This includes:

 Chapter 19. Subprograms 377

Calling C/C ++

– Collapsing some active stack frames from one language with active stack
frames written in another language in the to-be-collapsed stack frames (C
longjmp()).

– Terminating run unit/process from one language while stack frames written in
another language are active: For example, COBOL STOP RUN and C exit() or
_exit().

Instead, the application should be structured in such a way that an invoked
program terminates by returning to its invoker.

These function can be used in an ILC environment as long as the use of such a
function does not result in collapsing of active stack frame(s) of a language other
than the one initiating such a function.

This is a guideline and will not be enforced. Potential adverse effects for the lan-
guages not initiating the collapsing/termination are:

– Normal clean-up/exit functions of the language might not be performed.

An example is the closing of files by COBOL on a run unit termination, or the
clean-up of dynamically acquired resources by the involuntarily terminated lan-
guage.

– User specified exits/functions for the exit/termination might not be invoked.
Examples are destructors and the C atexit() function.

 � Exception Handling

Exceptions incurred during the execution of a stack frame written in one language
might not be processed according to the rules of other languages active in the
invocation stack.

In general, such an exception will be handled according to the rules of the lan-
guage incurring the exception.

This COBOL product will save the exception environment on entry to the COBOL
run time environment and restores it on termination of the COBOL environment.
COBOL expects interfacing languages and tools to follow the same convention.

Since the COBOL implementation does not depend on the interception of
exceptions through system services for the support of ANSI COBOL language
semantics, the user can specify the run-time option, TRAP(OFF), to enable the
exception handling semantics of the non-COBOL language.

 � COBOL “main”

When C programs are invoked in an application where the main program is a
COBOL program, the C initialization routine, _CRT_init, should be invoked either
by the COBOL program before the first C function is called, or by the first C func-
tion called by COBOL.

Likewise, the C termination routine, _CRT_term, should be invoked when the C envi-
ronment is no longer required.

378 VisualAge COBOL Programming Guide

Calling C/C ++

Matching Data and Linkages
Some COBOL data types have C/C++ equivalents, but others do not. When you pass
data between COBOL and C/C++ functions, be sure to restrict data exchange to appro-
priate data types. For a detailed description of how COBOL programs can share data
with other programs, see Chapter 20, “Data Sharing” on page 387.

The following table shows the correspondence between the data types available in
COBOL and C/C++.

Figure 79. Correspondence between COBOL and C/C++ Data Types

C/C++ Data Types COBOL Data Types

wchar_t DISPLAY-1 (PICTURE N, G)

wchar_t is the processing code whereas DISPLAY-1 is the file code.

char PIC X

signed char No appropriate COBOL equivalent.

unsigned char No appropriate COBOL equivalent.

short signed int PIC S9-S9(4) COMP-5. Can be COMP, COMP-4, or BINARY if you use
the TRUNC(BIN) compiler option.

short unsigned int PIC 9-9(4) COMP-5. Can be COMP, COMP-4, or BINARY if you use the
TRUNC(BIN) compiler option.

long int PIC 9(5)-9(9) COMP-5. Can be COMP, COMP-4, or BINARY if you use the
TRUNC(BIN) compiler option.

long long int PIC 9(10)-9(18) COMP-5. Can be COMP, COMP-4, or BINARY if you use
the TRUNC(BIN) compiler option.

float COMP-1

double COMP-2

enumeration Equivalent to level 88, but not identical.

char(n) PICTURE X(n)

array pointer (*) to type No appropriate COBOL equivalent.

pointer(*) to function PROCEDURE-POINTER

Example - Calling C/C ++ Functions from a COBOL Program
The following COBOL program illustrates several concepts:

� C/C++ programs are called using the COBOL CALL statement. The CALL statement
does not indicate if the called program is written in COBOL or C/C++.

� COBOL supports calling programs with mixed-case names.

� Arguments can be passed to C/C++ programs in different ways (for example, CALL
BY REFERENCE, CALL BY VALUE, etc.).

� You must declare a function return value on the CALL statement that calls a C/C++

function.

� You must map COBOL data types to appropriate C/C++ data types.

These concepts are illustrated in the following COBOL source program, COBCALLC.CBL:

 Chapter 19. Subprograms 379

Calling C/C ++

CBL PGMNAME(MIXED) CALLINT(OPTLINK)

\ These compiler options allow for

\ case-sensitive names for called programs

\ and set the call interface/linking

\ convention to that of the IBM C/C++ default.

 \

 \

 \

 IDENTIFICATION DIVISION.

 PROGRAM-ID. "COBCALLC".

 \

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 \

 ð1 N4 PIC 9(4) COMP-5.

ð1 NS4 PIC S9(4) COMP-5.

 ð1 N9 PIC 9(9) COMP-5.

ð1 NS9 PIC S9(9) COMP-5.

 ð1 NS18 USAGE COMP-2.

 ð1 D1 USAGE COMP-2.

 ð1 D2 USAGE COMP-2.

 ð1 R1.

ð2 NR1 PIC 9(8) COMP-5.

ð2 NR2 PIC 9(8) COMP-5.

ð2 NR3 PIC 9(8) COMP-5.

 PROCEDURE DIVISION.

 \

\ Initialize C environment

 \

 CALL "initC".

 \

MOVE 123 TO N4

MOVE -567 TO NS4

MOVE 98765432 TO N9

MOVE -13579456 TO NS9

MOVE 222.22 TO NS18

DISPLAY "Call MyFun with n4=" N4 " ns4=" NS4 " N9=" n9

DISPLAY " ns9=" NS9 " ns18=" NS18

 \

\ The following CALL illustrates several ways to pass

 \ arguments.

 \

CALL "MyFun" USING N4 BY VALUE NS4 BY REFERENCE N9 NS9 NS18

MOVE 1ð24 TO N4

Figure 80 (Part 1 of 2). COBCALLC.CBL - A COBOL Program That Calls a C Program

380 VisualAge COBOL Programming Guide

Calling C/C ++

 \

\ The following CALL returns the C function return value.

 \

CALL "MyFunR" USING BY VALUE N4 RETURNING NS9

DISPLAY "n4=" N4 " and ns9= n4 times n4= " NS9

MOVE -35792568ð.25 TO D1

CALL "MyFunD" USING BY VALUE D1 RETURNING D2

DISPLAY "d1=" D1 " and d2= 2.ð times d2= " D2

MOVE 11111 TO NR1

MOVE 22222 TO NR2

MOVE 33333 TO NR3

CALL "MyFunV" USING R1

 \

\ Terminate C environment

 \

 CALL "termC".

 STOP RUN.

Figure 80 (Part 2 of 2). COBCALLC.CBL - A COBOL Program That Calls a C Program

The COBOL default is that arguments are passed BY REFERENCE. If an argument is
passed BY REFERENCE, C gets a pointer to the argument. If you pass an argument BY
VALUE in the CALL statement, COBOL passes the actual argument. BY VALUE can be
used only for the following data types:

� Alphanumeric DISPLAY items
 � BINARY
 � COMP
 � COMP-1
 � COMP-2
 � COMP-4
 � COMP-5
 � OBJECT REFERENCE
 � POINTER
 � PROCEDURE-POINTER

For a detailed description of the CALL statement, see the IBM COBOL Language Refer-
ence.

Linkage Conventions for CALLing C Programs from COBOL
There are important linkage considerations for COBOL programs that CALL C/C++ func-
tions. Because C/C++ and COBOL use different default linkage conventions, you may
need to use the >>CALLINT compiler directive or CALLINT compiler option for your
COBOL programs that call C/C++ functions.

For example, if your COBOL program calls a program which used the default C Set++
linkage convention, compile your program with the CALLINT(OPTLINK) option or use the
>>CALLINT OPTLINK compiler directive. Neither is the default.

Selective Change: The compiler directive format is useful where you want to change
the linkage convention for a particular call rather than the whole program.

 Chapter 19. Subprograms 381

Calling C/C ++

For details about CALLINT, see “CALLINT” on page 164.

Calling C/C ++ with a Variable Parameter List
C/C++ allows calls to a given program to be made with a varying number of parame-
ters. You need to know which of the following methods the called C/C++ program uses
to determine how many parameters have been passed to it.

The called C/C++ program may use the _parmdwords function to get the number of
parameters passed from the AL register (See the C Library Reference for details.).
Using SYSTEM linkage (that is, the CALLINT(SYSTEM) option) will cause COBOL to set
the AL register to the number of parameters passed.

Alternately, the called C/C++ program may use the va_start, va_arg and va_end
macros to manage the variable aspect of the parameter list. If so, you need to know
how the called program determines the end of the parameter list. For example, some
programs look for a null pointer to signify the end of the parameter list. COBOL does
not terminate the parameter list with a null; you can supply it yourself by passing BY
VALUE ð. as the last argument.

Example - C Programs That are Called by and Call COBOL Programs
The following C program illustrates that a CALLed C function receives arguments in the
order in which they were passed in the COBOL CALL statement. It also shows how a
C program can call a COBOL program (in this case, a program named TPROG1, see
Figure 82 on page 385).

The file MyFun.c contains the following C source code:

382 VisualAge COBOL Programming Guide

Calling C/C ++

#include <stdio.h>

extern int _CRT_init(void);

extern void _CRT_term(void);

extern void TPROG1(double \);

void

initC(void)

{

 int rc;

rc = _CRT_init();

 setbuf(stdout, NULL);

 if (rc)

printf("Error occurred during C initialization\n");

}

void

termC(void)

{

 _CRT_term();

}

void

MyFun(short \ps1, short s2, long \k1, long \k2, double \m)

{

 double x;

x = 2.ð\(\m);

printf("MyFun got s1=%d s2=%d k1=%d k2=%d x=%f\n",

\ps1, s2, \k1, \k2, x);

}

long

MyFunR(short s1)

{

return(s1 \ s1);

}

Figure 81 (Part 1 of 2). MyFun.C - A C Program That Calls and is Called by COBOL Programs

 Chapter 19. Subprograms 383

Calling C/C ++

double

MyFunD(double d1)

{

 double z;

/\ example of C calling COBOL \/

z = 1122.3344;

 (void) TPROG1(&z);

/\ example of C returning a value to COBOL \/

return(2.ð \ d1);

}

void

MyFunV(long \pn)

{

printf("MyFunV got %d %d %d\n", \pn, \(pn+1), \(pn+2));

}

Figure 81 (Part 2 of 2). MyFun.C - A C Program That Calls and is Called by COBOL Programs

MyFun.c consists of the following functions:

MyFun Illustrates passing a variety of arguments.

MyFunR Illustrates how to pass and return a long variable.

MyFunD Illustrates C calling a COBOL program and it also illustrates how to pass
and return a double variable.

MyFunV Illustrates passing a pointer to a record and accessing the items of the
record in a C program.

Example - COBOL Program Called by a C Program
In Figure 80 on page 380, you find a COBOL program that calls C functions. In
Figure 81 on page 383, you find a C program that is called by a COBOL program and
calls a COBOL program. The following example illustrates how to write COBOL pro-
grams that are called by C programs.

The file TPROG1.CBL is called by the C function MYFUND in the C program MyFun.c (see
Figure 81 on page 383). The called COBOL program contains the following source
code:

384 VisualAge COBOL Programming Guide

Calling C/C ++

 \

\ Sets the calling convention to that of IBM C/C++

 \

 CBL ENTRYINT(OPTLINK)

 \

 IDENTIFICATION DIVISION.

 PROGRAM-ID. TPROG1.

 \

 DATA DIVISION.

 LINKAGE SECTION.

 \

 ð1 X USAGE COMP-2.

 \

PROCEDURE DIVISION USING X.

DISPLAY "TPROG1 got x= " X

 GOBACK.

Figure 82. TPROG1.CBL - A COBOL Program Called by a C Program

Linkage Conventions for Called COBOL Programs
There are important linkage considerations for COBOL programs called by C functions.
Because C and COBOL use different default linkage conventions, you may need to
specify the ENTRYINT compiler option for your COBOL programs called by C/C++ pro-
grams.

For example, if your COBOL program is called by a C Set++ program, you should
compile your program with the ENTRYINT(OPTLINK) option. This option (not the default)
sets the linking convention to that of C Set++.

For details about ENTRYINT, see “ENTRYINT” on page 171.

Pre-Initializing the COBOL Environment
If your main program is written in C and makes multiple calls to a COBOL program, you
should pre-initialize the COBOL environment in your C program. For example, if your C
program repeatedly calls a COBOL program to carry out I/O tasks, you will probably
want the COBOL program to remain in its last-used state.

For additional information, see Chapter 28, “Pre-initializing the COBOL Run-Time
Environment” on page 489.

Results of Running COBCALLC
Compile and link the COBOL programs COBCALLC.CBL and TPROG.CBL and the C
program MyFun.c and run COBCALLC using the following commands:

1. icc -c MyFun.c

2. cob2 cobcallc MyFun.out tprog1.cbl -o cobcallc

Run the program by entering COBCALLC.

 Chapter 19. Subprograms 385

Calling C/C ++

The results are as follows:

call MyFun with n4=ðð123 ns4=-ðð567 n9=ðð13579456

 ns9=ðð98765432 ns18=ððððð123456789ð2468

MyFun got s1=123 s2=-567 k1=13579456 k2=98765432 x=123456789ð2468

n4=ð1ð24 and ns9= n4 times n4= ððð1ð48576

TPROG1 got x= .11223344ðððððððððE+ð4

d1=-.35792568ð25ððððððE+ð9 and d2= 2.ð times d2= -.71585136ð5ðððððððE+ð9

MyFunV got 11111 22222 33333

Figure 83. Result Compiling and Running the Examples in This Chapter

386 VisualAge COBOL Programming Guide

Passing Data

 Chapter 20. Data Sharing

When a run unit consists of several, separately-compiled programs that call each other,
the programs must be able to communicate with each other. They also usually need to
have access to common data.

This chapter will describe how to write programs that can share data with other pro-
grams. For the purposes of this discussion, a “subprogram” is any program called by
another program.

 Passing Data
Data can be passed between programs in three ways:

BY REFERENCE The subprogram refers to and processes the data items in
storage of the calling program rather than working on a copy of
the data.

BY CONTENT The calling program passes only the contents of the literal, or
identifier. With a CALL . . . BY CONTENT, the called program
cannot change the value of the literal or identifier in the calling
program, even if it modifies the variable in which it received the
literal or identifier.

BY VALUE The calling program or method is passing the value of the literal,
or identifier, not a reference to the sending data item.

Whether you pass data items BY REFERENCE, BY CONTENT, or BY VALUE depends on
what you want your program to do with the data:

� If you want the definition of the argument of the CALL statement in the calling
program and the definition of the parameter in the called program to share the
same memory, use:

CALL . . . BY REFERENCE identifier.

Any changes made by the subprogram to the parameter affects the argument in
the calling program.

� If you want to pass the address of a record area to a called program, use:

CALL . . . BY CONTENT ADDRESS OF record-name.

The subprogram receives the ADDRESS special register for the record-name you
specify.

You must define the record-name as a level-01 or level-77 item in the LINKAGE
SECTION of the called and calling programs. A separate ADDRESS special reg-
ister is provided for each record in the LINKAGE SECTION.

� If you do not want the definition of the argument of the CALL statement in the
calling program and the definition of the parameter in the called subprogram to
share the same memory, use:

 Copyright IBM Corp. 1996, 1998 387

Passing Data

CALL . . . BY CONTENT identifier.

� If you want to pass a literal value to a called program, use:

CALL . . . BY CONTENT literal.

The called program cannot change the value of the literal.

� If you want to pass the length of a data item, use:

CALL . . . BY CONTENT LENGTH OF identifier.

The calling program passes the length of the identifier from its LENGTH special reg-
ister.

� If you want to pass both a data item and its length to a subprogram, use a combi-
nation of BY REFERENCE and BY CONTENT, for example:

CALL 'ERRPROC' USING BY REFERENCE A
BY CONTENT LENGTH OF A

� If you want to pass data to C programs that expect the value of the arugment, use:

CALL . . . BY VALUE

that expect a reference (pointer) to the argument, use:

CALL . . . BY REFERENCE
 or

CALL . . . BY CONTENT

Use BY REFERENCE if you want the C program to be able to modify the value of
the argument. Use BY CONTENT if you do not want the C program to modify the
value of the argument.

Parameters must be of certain data types to be passed BY VALUE. See the IBM
COBOL Language Reference.

� If you want to return a value, use:

CALL . . . RETURNING

Describing Arguments in the Calling Program
In the calling program, the arguments are described in the DATA DIVISION in the same
manner as other data items in the DATA DIVISION. Data items in a calling program can
be described in the LINKAGE SECTION of all the programs it calls directly or indirectly.

Here, storage for these items is allocated in the highest outermost program. That is,
program A calls program B, which calls program C. Data items in program A can be
described in the LINKAGE sections of programs B and C, and the one set of data can
be made available to all three programs.

If you reference data in a file, the file must be open when the data is referenced.

Code the USING clause of the CALL statement to pass the arguments.

388 VisualAge COBOL Programming Guide

PROCEDURE DIVISION in Subprograms

Describing Parameters in the Called Program
You must know what is being passed from the calling program and describe it in the
LINKAGE SECTION of the called program.

Code the USING clause after the PROCEDURE-DIVISION header to receive the parame-
ters.

 LINKAGE SECTION
The number of data-names in the identifier list of a called program must not be greater
than the number of data-names in the identifier list of the calling program. There is a
one-to-one positional correspondence; that is, the first identifier of the calling program is
passed to the first identifier of the called program, and so forth. The compiler does not
try to match arguments and parameters.

See Figure 84 for an example.

 Calling Program Description Called Program Description

 WORKING─STORAGE SECTION. LINKAGE SECTION.

┌───────────────────────────┐ ┌──────────────────────────┐

│ð1 PARAM─LIST. │ │ð1 USING─LIST. │

│ ð5 PARTCODE PIC A. ├─────────5│ 1ð PART─ID PIC X(5). │

│ ð5 PARTNO PIC X(4). │ │ 1ð SALES PIC 9(5). │

│ ð5 U─SALES PIC 9(5). │ │ │

└──────────────────────┬────┘ └────────────────────┬─────┘

 . │ . │

 . │ . │

 . │ . │

 │ │

 PROCEDURE DIVISION. │ PROCEDURE DIVISION 6

 . │ ┌───────────┐

 . │ USING │USING─LIST.│

 . │ └───────────┘

 │

 CALL "CALLED─PROG" 6

 ┌───────────┐

USING │PARAM─LIST.│ In the called program, the code

 └───────────┘ for parts and the part number

are combined into one data item

In the calling program, the code (PART─ID). In the called

for parts (PARTCODE) and the part program, a reference to PART─ID

number (PARTNO) are referred to is the only valid reference to

separately. them.

Figure 84. Common Data Items in Subprogram Linkage

 PROCEDURE DIVISION
If an argument was passed BY VALUE, the PROCEDURE DIVISION header of the subpro-
gram must indicate that:

PROCEDURE DIVISION USING BY VALUE.

If an argument was passed BY REFERENCE or BY CONTENT, the PROCEDURE DIVISION
header does not need to indicate how the argument was passed.

 Chapter 20. Data Sharing 389

PROCEDURE DIVISION in Subprograms

The header can either be:

PROCEDURE DIVISION USING

or:

PROCEDURE DIVISION USING BY REFERENCE

Grouping Data to Be Passed
Think about grouping all the data items you want to pass between programs and
putting them under one level-01 item. If you do this, you can pass a single level-01
record between programs. For an example of this method, see Figure 84 on
page 389.

To make the possibility of mismatched records even smaller, put the level-01 record in
a COPY library, and copy it in both programs. (That is, copy it in the
WORKING-STORAGE SECTION of the calling program and in the LINKAGE SECTION of the
called program.)

 Null-Terminated Strings
Null-terminated strings are supported using syntax shown in the IBM COBOL Language
Reference. You can manipulate null-terminated strings passed from a C program, for
example, by using string handling mechanisms such as those found below:

ð1 L pic X(2ð) value z'ab'.

ð1 M pic X(2ð) value z'cd'.

ð1 N pic X(2ð).

ð1 N-Length pic 99 value zero.

ð1 Y pic X(13) value 'Hello, World!'.

\ Display null-terminated string

Inspect N tallying N-length

for characters before initial x'ðð'

Display 'N: ' N(1:N-length) ' Length: ' N-length

\ Move null-terminated string to alphanumeric, strip null

Unstring N delimited by X'ðð' into X

\ Create null-terminated string

String Y delimited by size

X'ðð' delimited by size

 into N.

\ Concatenate two null-terminated strings

String L delimited by x'ðð'

M delimited by x'ðð'

X'ðð' delimited by size

 into N.

390 VisualAge COBOL Programming Guide

PROCEDURE DIVISION in Subprograms

Using Pointers to Process a Chained List
You can manipulate pointer data items, which are a special type of data item to hold
addresses, when you want to pass and receive addresses of record areas. Pointer
data items are data items that are either defined with the USAGE IS POINTER clause, or
are ADDRESS special registers. A typical application for using pointer data items is in
processing a chained list (a series of records where each one points to the next).

For this example, picture a chained list of data that is composed of individual salary
records. Figure 85 shows one way to visualize how these records are linked in
storage:

 ┌─────────┐ ┌──────────┐

│ │ │ │

SALARY RECORD 6 │ 6 │ 6

 ┌───────────┴─┐ ┌──────────┴─┐ ┌─────────────┐

 PTR─NEXT─REC │addr of next │ │ │ │NULL invalid │

 │rec │ │ │ │addr │

NAME ├─────────────┤ ├────────────┤ . . . ├─────────────┤

 │ │ │ │ │ │

 SALARY ├─────────────┤ ├────────────┤ ├─────────────┤

 │ │ │ │ │ │

 └─────────────┘ └────────────┘ └─────────────┘

Figure 85. Representation of a Chained List Ending with NULL

The first item in each record points to the next record, except for the last record. The
first item in the last record contains a null value instead of an address, to indicate that it
is the last record.

The high-level logic of an application that processes these records might look some-
thing like this:

OBTAIN ADDRESS OF FIRST RECORD IN CHAINED LIST FROM ROUTINE

CHECK FOR END OF THE CHAINED LIST

DO UNTIL END OF THE CHAINED LIST

 PROCESS RECORD

GO ON TO THE NEXT RECORD

 END

Figure 86 on page 392 contains an outline of the processing program, LISTS, used in
this example of processing a chained list.

 Chapter 20. Data Sharing 391

PROCEDURE DIVISION in Subprograms

 IDENTIFICATION DIVISION.

 PROGRAM-ID. LISTS.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 \\\\\\

 WORKING-STORAGE SECTION.

77 PTR-FIRST POINTER VALUE IS NULL.

77 DEPT-TOTAL PIC 9(4) VALUE IS ð.

 \\\\\\

 LINKAGE SECTION.

 ð1 SALARY-REC.

 ð2 PTR-NEXT-REC POINTER.

 ð2 NAME PIC X(2ð).

 ð2 DEPT PIC 9(4).

 ð2 SALARY PIC 9(6).

 ð1 DEPT-X PIC 9(4).

 \\\\\\

PROCEDURE DIVISION USING DEPT-X.

 \\\\\\

\ FOR EVERYONE IN THE DEPARTMENT RECEIVED AS DEPT-X,

\ GO THROUGH ALL THE RECORDS IN THE CHAINED LIST BASED ON THE

\ ADDRESS OBTAINED FROM THE PROGRAM CHAIN-ANCH

\ AND CUMULATE THE SALARIES.

\ IN EACH RECORD, PTR-NEXT-REC IS A POINTER TO THE NEXT RECORD

\ IN THE LIST; IN THE LAST RECORD, PTR-NEXT-REC IS NULL.

\ DISPLAY THE TOTAL.

 \\\\\\

CALL "CHAIN-ANCH" USING PTR-FIRST

SET ADDRESS OF SALARY-REC TO PTR-FIRST

 \\\\\\

PERFORM WITH TEST BEFORE UNTIL ADDRESS OF SALARY-REC = NULL

IF DEPT = DEPT-X

THEN ADD SALARY TO DEPT-TOTAL

 ELSE CONTINUE

 END-IF

SET ADDRESS OF SALARY-REC TO PTR-NEXT-REC

 END-PERFORM

 \\\\\\

 DISPLAY DEPT-TOTAL

 GOBACK.

Figure 86. Program for Processing a Chained List

Passing Addresses between Programs
To obtain the address of the first SALARY-REC record area, the LISTS program calls the
program CHAIN-ANCH:

CALL "CHAIN-ANCH" USING PTR-FIRST

392 VisualAge COBOL Programming Guide

PROCEDURE DIVISION in Subprograms

PTR-FIRST is defined in WORKING-STORAGE in the calling program (LISTS) as a pointer
data item:

 WORKING-STORAGE SECTION.

ð1 PTR-FIRST POINTER VALUE IS NULL.

On return from the call to CHAIN-ANCH, PTR-FIRST contains the address of the first
record in the chained list.

PTR-FIRST is initially defined as having a null value as a logic check. If something goes
amiss with the call, and PTR-FIRST never receives the value of the address of the first
record in the chain, a null value remains in PTR-FIRST and, according to the logic of the
program, the records will not be processed.

NULL is a figurative constant used to assign the value of an invalid address (non-
numeric 0) to pointer items. It can be used in the VALUE IS NULL clause, in the SET
statement, and as one of the operands of a relation condition with a pointer data item.

The LINKAGE SECTION of the calling program contains the description of the records in
the chained list. It also contains the description of the department code that is passed,
using the USING clause of the CALL statement.

 LINKAGE SECTION.

 ð1 SALARY-REC.

 ð2 PTR-NEXT-REC POINTER.

 ð2 NAME PIC X(2ð).

 ð2 DEPT PIC 9(4).

 ð2 SALARY PIC 9(6).

 ð1 DEPT-X PIC 9(4).

To base the record description SALARY-REC on the address contained in PTR-FIRST,
use a SET statement:

CALL "CHAIN-ANCH" USING PTR-FIRST

SET ADDRESS OF SALARY-REC TO PTR-FIRST

Checking for the End of the Chained List
The chained list in this example is set up so the last record contains an invalid address.
To do this, the pointer data item in the last record would be assigned the value NULL.

A pointer data item can be assigned the value NULL in two ways:

� A pointer data item can be defined with a VALUE IS NULL clause in its data defi-
nition.

� NULL can be the sending field in a SET statement.

In the case of a chained list in which the pointer data item in the last record contains a
null value, the code to check for the end of the list would be:

 Chapter 20. Data Sharing 393

PROCEDURE DIVISION in Subprograms

IF PTR-NEXT-REC = NULL

 .

 .

.(logic for end of chain)

If you haven't reached the end of the list, process the record and move on to the next
record.

In the program LISTS, this check for the end of the chained list is accomplished with a
DO WHILE structure:

PERFORM WITH TEST BEFORE UNTIL ADDRESS OF SALARY-REC = NULL

IF DEPT = DEPT-X

THEN ADD SALARY TO DEPT-TOTAL

 ELSE CONTINUE

 END-IF

SET ADDRESS OF SALARY-REC TO PTR-NEXT-REC

 END-PERFORM

Continuing Processing the Next Record
To move on to the next record, set the address of the record in the LINKAGE-SECTION
to be equal to the address of the next record. This is accomplished through the pointer
data item sent as the first field in SALARY-REC:

SET ADDRESS OF SALARY-REC TO PTR-NEXT-REC

Then repeat the record-processing routine, which will process the next record in the
chained list.

A Variation: Incrementing Addresses Received from Another
Program
The data passed from a calling program might contain header information that you want
to ignore (for example, in data received from a CICS application that is not migrated to
the command level).

Because pointer data items are not numeric, you cannot directly perform arithmetic on
them. However, you can use the SET verb to increment the passed address in order to
bypass header information.

394 VisualAge COBOL Programming Guide

Using Procedure Pointers

You could set up the LINKAGE SECTION like this:

 LINKAGE SECTION.

 ð1 RECORD-A.

 ð2 HEADER PIC X(12).

ð2 REAL-SALARY-REC PIC X(3ð).

 .

 .

 .

 ð1 SALARY-REC.

 ð2 PTR-NEXT-REC POINTER.

 ð2 NAME PIC X(2ð).

 ð2 DEPT PIC 9(4).

 ð2 SALARY PIC 9(6).

Within the Procedure Division, “base” the address of SALARY-REC on the address of
REAL-SALARY-REC:

SET ADDRESS OF SALARY-REC TO ADDRESS OF REAL-SALARY-REC

SALARY-REC is now based on the address of RECORD-A + 12.

Using Procedure Pointers
Procedure pointers are data items defined with the USAGE IS PROCEDURE-POINTER
clause. You can set procedure-pointer data items to contain entry addresses of (or
pointers to) these entry points:

� Another COBOL program that is not nested.

� An alternate entry point in another COBOL program (as defined in an ENTRY
statement).

� A program written in another language. For example, to receive the entry address
of a C function, call the function with the CALL RETURNING format of the CALL
statement. It will return a pointer that you can convert to a procedure-pointer using
a form of the SET statement.

Rules for Using Procedure Pointers
A procedure-pointer data item can be set only using the SET statement. For example:

CALL 'MyCFunc' RETURNING ptr.

SET proc-ptr TO ptr.

CALL proc-ptr USING dataname.

Therefore, if you set your procedure-pointer item to an entry address in a load module
called using CALL-identifier and your program subsequently CANCELs that called
module, then your procedure-pointer item becomes undefined, and reference to it there-
after is not reliable.

For a complete definition of the USAGE IS PROCEDURE-POINTER clause and the SET
statement, refer to the IBM COBOL Language Reference.

 Chapter 20. Data Sharing 395

Using Procedure Pointers

 Windows Restriction

In general, SYSTEM (STDCALL) linkage cannot be used for programs that are called via
a procedure pointer if they have any arguments. This is due to the associated conven-
tion for forming names (also known as “name decoration”).

With STDCALL linkage, the name is formed by suffixing to the entry name the number of
bytes in the parameter list. For example, a program named abc that passes an argu-
ment by reference and a 4-byte integer by value would have 8 bytes in the parameter
list; the resulting name would be _abc@8. This creates a restriction on setting a proce-
dure pointer to the address of an entry point: because there is no syntactical way to
specify the arguments that are to be passed to the entry point on the SET statement,
the generated name will have '0' as the number of bytes in the parameter list. This will
cause the link to fail due to unresolved external references when the entry point has
arguments.

You can use the CALLINT compiler directive to ensure that calls to programs with argu-
ments, made using a procedure pointer, use the OPTLINK convention.

For example:

 CBL

 IDENTIFICATION DIVISION.

 PROGRAM-ID. XC.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 ð1 PP1 PROCEDURE-POINTER.

 ð1 HW PIC X(12).

PROCEDURE DIVISION USING XA.

\ Use OPTLINK linkage:

 >>CALLINT OPTLINK

SET PP1 TO ENTRY "X".

Figure 87 (Part 1 of 2). Using CALLINIT to Resolve References

396 VisualAge COBOL Programming Guide

Multiple Entry Points on Windows

\ Restore default linkage:

 >>CALLINT

MOVE "Hello World." to HW

DISPLAY "Calling X."

\ Use OPTLINK linkage:

 >>CALLINT OPTLINK

CALL PP1 USING HW.

\ Restore default linkage:

 >>CALLINT

 GOBACK.

END PROGRAM X.

\ Use OPTLINK linkage:

 CBL ENTRYINT(OPTLINK)

 IDENTIFICATION DIVISION.

 PROGRAM-ID. X.

 DATA DIVISION.

 LINKAGE SECTION.

 ð1 XA PIC 9(9).

PROCEDURE DIVISION USING XA.

 DISPLAY XA.

 GOBACK.

END PROGRAM X.

Figure 87 (Part 2 of 2). Using CALLINIT to Resolve References

Without the CALLINT compiler directives and the CALLINT compiler option, an unre-
solved reference to _X@ð would be found when the link was done.

Non-COBOL: If the program being called is C or PL/I and uses the STDCALL interface,
use the pragma statement in the called program to form the name without STDCALL
name decoration.

Multiple Entry Points on Windows

The call interface convention SYSTEM (STDCALL) cannot always be used for calling pro-
grams with multiple entry points (PROCEDURE DIVISION USING ... AND ENTRY XXX USING
...). If the number of parameters in each entry point is not the same or if the caller does
not pass the number of arguments expected by the called entry point, using the
STDCALL convention causes unpredictable results due to corruption of the stack.

The STDCALL convention requires the called program to clean up the stack, where the
calling program placed the arguments. Because it has no way of determining how
many arguments were actually pass to it, it uses the expected number of arguments.

 Chapter 20. Data Sharing 397

Passing Return Codes

When this does not accurately reflect the number passed, it is impossible to do the
clean up correctly.

Because a common exit point can be used for programs with multiple entry points, the
different entry points having a different number arguments also makes it impossible to
determine correctly how to clean up the stack.

Data Type: Because STDCALL linkage uses four bytes on the stack for each argu-
ment, differences in data type are immaterial.

Passing Return Code Information
You can use the RETURN-CODE special register to pass and receive return codes
between programs. Methods do not return information in the RETURN-CODE special
register, but they can check the register after a CALL to a program.

You can also use the RETURNING phrase on the PROCEDURE DIVISION header in your
method to return information to an invoking program or method. If you use PROCE-
DURE DIVISION. . .RETURNING with CALL. . .RETURNING, the RETURN-CODE register will
not be set.

RETURN-CODE Special Register
When a COBOL program returns to its caller, the contents of the RETURN-CODE special
register are set according to the value of the RETURN-CODE of the program returning to
the caller.

Setting of the RETURN-CODE by the called program is limited to calls between COBOL
programs. For example, if your COBOL program calls a C program, you can't expect
the calling program's RETURN-CODE to be set.

For equivalent functionality between COBOL and C programs, have your COBOL
program call the C program with the RETURNING option. If the C program (function)
correctly declares a function value, the RETURNING value of the calling COBOL
program will be set.

INVOKE Note: The RETURN-CODE special register is not set by use of the INVOKE
statement.

PROCEDURE DIVISION RETURNING . . .
You can use the RETURNING phrase on the PROCEDURE DIVISION header of you
program to return information to the calling program:

PROCEDURE DIVISION RETURNING dataname2

Upon successful return from the called program to its caller, the value in data-name-2 is
stored into the identifier specified in the CALL-RETURNING phrase:

CALL . . . RETURNING dataname2

398 VisualAge COBOL Programming Guide

Sharing Files between Programs

CALL . . . RETURNING
The RETURNING phrase on the CALL statement can be specified for calls to functions
written in C/C++ or subroutines written in COBOL.

It has the following format:

CALL . . . RETURNING dataname2

The return value of the called program is stored into dataname2.

dataname2 must be defined in the DATA DIVISION of the calling COBOL program. The
data type of the return value declared in the target function must be identical to the
data type of dataname2.

Sharing Data Using the EXTERNAL Clause
Separately compiled programs and methods (including programs in a batch sequence)
can share data items by using EXTERNAL clause.

EXTERNAL is coded on the 01-level data description in the WORKING-STORAGE
SECTION of a program or method, and the following rules apply:

� Items subordinate to an EXTERNAL group item are themselves EXTERNAL.

� The name used for the data item cannot be used on another EXTERNAL item in the
same program.

� The VALUE clause cannot be coded for any group item, or subordinate item, that is
EXTERNAL.

Any COBOL program or method in the run unit, having the same data description for
the item as the program containing the item, can access and process the data item.
For example, if program A had the following data description:

ð1 EXT-ITEM1 EXTERNAL PIC 99.

program B could access that data item by having the identical data description in its
WORKING-STORAGE SECTION.

Remember, any program that has access to an EXTERNAL data item can change its
value. Do not use this clause for data items you need to protect.

Sharing Files between Programs (EXTERNAL Files)
Using the EXTERNAL clause for files allows separately compiled programs or methods
in the run unit to have access to common files.

The rules for using EXTERNAL files are described in the IBM COBOL Language Refer-
ence. In addition, it is recommended that:

� The data-name in the FILE STATUS clause of all the programs that will check the
file status code must match.

 Chapter 20. Data Sharing 399

Sharing Files between Programs

� For all programs that want to check the same file status field, the EXTERNAL clause
should be coded on the level-01 data definition for the file status field in each
program.

Advantages of EXTERNAL Files
The example on page 401, shows some of the advantages of using EXTERNAL files:

� The main program can reference the record area of the file, although the main
program does not contain any I/O statements.

� Each subprogram can control a single I/O function, such as OPEN or READ.

� Each program has access to the file.

Example Using EXTERNAL Files
The following table gives the names and describes the function of the main program
and subprograms used in the example shown in Figure 89 on page 401.

Additionally, COPY statements ensure that each subprogram contains an identical
description of the file.

Each program in the example declares a data item with the EXTERNAL clause in its
WORKING-STORAGE SECTION. This item is used for checking file status codes, and is
also placed using the COPY statement.

Each program uses three copy library members:

� The first is named efselect and is placed in the File-Control paragraph.

 Select ef1

Assign To ef1

File Status Is efs1

Organization Is Sequential.

� The second is named effile and is placed in the FILE SECTION.

Figure 88. Program Names for Input-Output Using EXTERNAL Files

Name Function

ef1 This is the main program. It calls all the subprograms, and then verifies the
contents of a record area.

ef1openo This program opens the external file for output and checks the File Status
Code.

ef1write This program writes a record to the external file and checks the File Status
Code.

ef1openi This program opens the external file for input and checks the File Status Code.

ef1read This program reads a record from the external file and checks the File Status
Code.

ef1close This program closes the external file and checks the File Status Code.

400 VisualAge COBOL Programming Guide

Sharing Files between Programs

Fd ef1 Is External

Record Contains 8ð Characters

Recording Mode F.

 ð1 ef-record-1.

 ð2 ef-item-1 Pic X(8ð).

� The third is named efwrkstg and is placed in the WORKING-STORAGE SECTION.

ð1 efs1 Pic 99 External.

 Identification Division.

 Program-Id.

 ef1.

 \

\ This is the main program that controls the external file

 \ processing.

 \

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Call "ef1openo"

 Call "ef1write"

 Call "ef1close"

 Call "ef1openi"

 Call "ef1read"

If ef-record-1 = "First record" Then

Display "First record correct"

 Else

Display "First record incorrect"

Display "Expected: " "First record"

Display "Found : " ef-record-1

 End-If

 Call "ef1close"

 Goback.

End Program ef1.

Figure 89 (Part 1 of 4). Input-Output Using EXTERNAL Files

 Chapter 20. Data Sharing 401

Sharing Files between Programs

 Identification Division.

 Program-Id.

 ef1openo.

 \

\ This program opens the external file for output.

 \

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

Open Output ef1

If efs1 Not = ð

Display "file status " efs1 " on open output"

 Stop Run

 End-If

 Goback.

End Program ef1openo.

 Identification Division.

 Program-Id.

 ef1write.

 \

\ This program writes a record to the external file.

 \

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

Move "First record" to ef-record-1

 Write ef-record-1

If efs1 Not = ð

Display "file status " efs1 " on write"

 Stop Run

 End-If

 Goback.

End Program ef1write.

Figure 89 (Part 2 of 4). Input-Output Using EXTERNAL Files

402 VisualAge COBOL Programming Guide

Sharing Files between Programs

 Identification Division.

 Program-Id.

 ef1openi.

 \

\ This program opens the external file for input.

 \

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

Open Input ef1

If efs1 Not = ð

Display "file status " efs1 " on open input"

 Stop Run

 End-If

 Goback.

End Program ef1openi.

 Identification Division.

 Program-Id.

 ef1read.

 \

\ This program reads a record from the external file.

 \

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Read ef1

If efs1 Not = ð

Display "file status " efs1 " on read"

 Stop Run

 End-If

 Goback.

End Program ef1read.

Figure 89 (Part 3 of 4). Input-Output Using EXTERNAL Files

 Chapter 20. Data Sharing 403

Run-Time Arguments

 Identification Division.

 Program-Id.

 ef1close.

 \

\ This program closes the external file.

 \

 Environment Division.

 Input-Output Section.

 File-Control.

 Copy efselect.

 Data Division.

 File Section.

 Copy effile.

 Working-Storage Section.

 Copy efwrkstg.

 Procedure Division.

 Close ef1

If efs1 Not = ð

Display "file status " efs1 " on close"

 Stop Run

 End-If

 Goback.

End Program ef1close.

Figure 89 (Part 4 of 4). Input-Output Using EXTERNAL Files

Command Line Arguments
OS/2 and Windows call all main programs with a string that gives the command line
arguments. If the -host compiler option was specified this string will be in EBCDIC and
the length will be in “big endian” format. Figure 90 on page 405 shows how to read
the command line arguments:

404 VisualAge COBOL Programming Guide

Run-Time Arguments

...

 IDENTIFICATION DIVISION.

 PROGRAM-ID. "testarg".

 \

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 \

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 \

 linkage section.

 ð1 os-parm.

ð5 parm-len pic s999 comp.

 ð5 parm-string.

1ð parm-char pic x occurs ð to 1ðð times

depending on parm-len.

 \

PROCEDURE DIVISION using os-parm.

display "parm-len=" parm-len

display "parm-string='" parm-string "'"

 evaluate parm-string

when "ð1" display "case one"

when "ð2" display "case two"

when "95" display "case ninety five"

when other display "case unknown"

 end-evaluate

 GOBACK.

Figure 90. testarg — An Example of Command Line Arguments

The result of compiling and running the program:

cob2 testarg.cbl

testarg 95

is:

parm-len=ðð2

parm-string='95'

case ninety five

 Chapter 20. Data Sharing 405

Co-Processor Options

Chapter 21. Programming for a DB2 Environment

In general, the coding for your COBOL program will be the same whether or not you
want it to access a DB2 database. However, to retrieve, update, insert, and delete DB2
data and use other DB2 services, you must use SQL statements.

To communicate with DB2, you need to do the following:

� Delimit SQL statements with EXEC SQL and END-EXEC STATEMENTS

� Declare a communications area (SQLCA) in the WORKING-STORAGE SECTION

� Declare all host variables used in SQL statements in the WORKING-STORAGE OR
LINKAGE sections

� Code any SQL statements you need

� Start DB2 if it is not already started

� Compile with the SQL compiler option

� Check the return code from DB2 in the SQLCA to handle exceptional conditions that
are indicated

These basics of coding SQL in a COBOL program are described in detail in the DB2
Application Programming Guide and the DB2 SQL Reference.

Compiling with the DB2 Co-Processor
Your source program containing embedded SQL statements is handled by the compiler
without your having to use a separate pre-processor. When the compiler encounters
SQL statements and at significant points in the source program, it interfaces with the
DB2 co-processor, which processes the SQL statements by taking appropriate actions
and indicating to the compiler what native COBOL statements to generate at that point.

Because the compiler is working in conjunction with the DB2 co-processor, DB2 must
be started before you compile your program. To be connected to the target database
for the compile, you can connect before you start the compile or have the compiler
make the connection for you by specifying the database either using the DATABASE
suboption in the SQL option or by naming it in the DB2DBDFT environment variable.

Options for the DB2 Co-Processor
The option string that you provide on the SQL compiler option is made available to the
DB2 co-processor. The content of the string is viewed solely by the DB2 co-processor
and not by the compiler. The following cob2 command will pass the database name
“SAMPLE” and the DB2 option “BLOCKING ALL” to the co-processor:

cob2 -q"sql('database sample blocking all')" mysql.cbl...

The SQL options that you include in the suboption string are cumulative. See the DB2
Command Reference for information on these options.

406  Copyright IBM Corp. 1996, 1998

Co-Processor Options

How Options Are Accumulated
The options specified from multiple sources are concatenated in the order of the specifi-
cations.

For example, the command

cob2 mypgm.cbl -q"SQL('string')"

and the mypgm.cbl source file with

 cbl ... SQL("string2") ...

 cbl ... SQL("string3") ...

will result in the SQL option string passed to the DB2 co-processor to be

"string1 string2 string3"

Note that the concatenated strings are delimited with single spaces. When multiple
instances of the same SQL suboptions are found, the last specification of that sub-
option in the concatenated string will be in effect.

This concatenation of multiple SQL option specifications allows you to separate SQL
suboptions which may not fit into a single CBL statement into multiple CBL statements.

The compiler limits the length of the concatenated DB2 option string to 4K bytes.

Package and Bind File Names
Two of the suboptions that you can specify with the SQL option are package name and
bind file name. If you do not specify these options, default names are constructed for
them based on the source file name for a non-batch compilation and on the first
program for a batch compilation. For subsequent, non-nested, programs of a batch
compilation, the names are based on the PROGRAM ID of each program.

 Package Name
The base name (the source file name or the PROGRAM ID) is modified as follows:

� Names longer than eight characters are truncated to eight characters

� Letters are folded to upper case

� Any character other than A-Z, 0-9, or _ (under score) is changed to 0

� If the first character is not alphabetic, it is changed to A

Thus, if the base name is 9123aB-cd, the package name would be A123AB0C.

Bind File Name
The extension .BND is added to the base name.

Unless explicitly specified, the file name is relative to the current directory.

 Chapter 21. Programming for a DB2 Environment 407

SQL and COBOL

 Ignored Options
The following options, which were meaningful to and used by the pre-processor, are
ignored by the co-processor:

 MESSAGES
 NOLINEMACRO
 OPTLEVEL
 OUTPUT
 SQLCA
 TARGET
 WCHARTYPE

SQL INCLUDE Statement
An SQL INCLUDE statement is treated identically to a native COBOL COPY statement,
including the path search and the file extensions used.

For example,

EXEC SQL INCLUDE name

is treated identically to

 COPY name.

The name on an SQL INCLUDE statement follows the same rules as those for the copy
text-name and is processed identically to a COPY statement with that text-name without
a REPLACING clause. See “Compiler Environment Variables” on page 136 and the dis-
cussion on the COPY statement in the “Compiler-Directing Statements” on page 202
section for details.

COBOL does not use the DB2 environment variable DB2INCLUDE for SQL INCLUDE
processing. However, if you are using the standard DB2 copy files, there are no other
settings that you have to make. If the search rules call for using SYSLIB as the library
name, the compiler will find the copy files by using the DB2 environment variable
DB2PATH, which is set during DB2 install, to extend the setting of SYSLIB to include the
DB2 include directory. The SYSLIB string that is used is essentially
%SYSLIB%;%DB2PATH%\INCLUDE\COBOL_A.

COBOL Language Usage with SQL
Some restrictions on the use of COBOL language that applied when the pre-processor
was used are lifted with the use of the co-processor.

Specifically the following are permitted:

� EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION statements
are no longer required to identify host variables used on SQL statements

� Batch compilation is supported: the source file may contain multiple non-nested
COBOL programs

408 VisualAge COBOL Programming Guide

Testing the DB2 Return Code

� The source program may contain nested programs

� The source program may contain object-oriented COBOL language extensions

It is recommended that binary data items that are specified in an SQL statement be:

� Declared as USAGE COMP-5 or

� Used with the TRUNC(BIN) option and the BINARY(NATIVE) option if USAGE BINARY,
COMP or COMP-4 item is specified

If you specify a BINARY, COMP, or COMP-4 item with option TRUNC(OPT) or TRUNC(STD)
in effect, it will be accepted by the compiler but may invalidate the data due to the
application of the decimal truncation rule. It is your responsibility to insure that trun-
cation does not affect the validity of the data.

For information about using SQL with System/390 host data types, see Appendix B,
“System/390 Host Data Type Considerations” on page 543.

Level of SQL Support
SQL statements are supported at the level of DB2 for OS/2 Single-User, Version 2 on
OS/2 and DB2 for Windows 95 and Windows NT Version 2.1.1 on Windows, including:

� Large Objects (BLOB, CLOB, ...)

 � Compound SQL

Limit: The size of large objects is currently limited to 16M bytes for a group or ele-
mentary data item.

Testing the Return Code
In general, when DB2 finishes processing an SQL statement, DB2 sends back a return
code in the SQLCODE OF SQLCA and SQLSTATE OF SQLCA fields. Your program should
test the SQLCODE and/or SQLSTATE fields and take any necessary action depending on
whether the operation succeeded or failed.

 Chapter 21. Programming for a DB2 Environment 409

CICS Overview

Chapter 22. Programming for a CICS Environment

When you develop programs to run under the Customer Information Control System
(CICS), be aware of the steps you must take as well as certain COBOL language
restrictions. A discussion of these coding considerations follows. For additional infor-
mation about developing COBOL programs to run under CICS, consult the CICS Appli-
cation Programming Guide.

An Overview of COBOL in a CICS Environment
| CICS applications can be written in COBOL and run on the PC using any of the fol-
| lowing CICS environments:

| � VisualAge CICS Enterprise Application Development
| � CICS for OS/2
| � CICS for Windows NT

| VisualAge CICS Enterprise Application Development is available for both OS/2 and
| Windows NT, and is primarily intended for developing CICS applications that will ulti-
| mately run in a mainframe environment. (For convenience, this will be referred to as
| VisualAge CICS for the remainder of this chapter.)

| CICS for OS/2 and CICS for Windows NT are primarily intended for developing and
| running workstation-based applications, although CICS for OS/2 supports the host data
| type options, so it can also be used for developing mainframe-based applications.

| Where there are differences between the implementation and use of these CICS pro-
| ducts, the differences are indicated throughout this chapter.

| Installing and Running CICS Programs
| After having installed and configured CICS, there are a number of steps involved in
| preparing COBOL applications to run under CICS. In general, the process is the same
| regardless of which CICS system you use, but there are some differences in some of
| the detail. The steps are outlined here, and where there are differences between the
| CICS systems, the process for each CICS system is shown.

| 1. Initialize the environment.

| VisualAge CICS, CICS for OS/2
| Initialize the CICS environment using the CICSENV command file. You can

edit CICSENV.CMD to configure your CICS and COBOL environment vari-
ables (see CICS Customization for details on CICSENV). For example,
make sure that your programs, files, and copybooks are accessible by the
operating system.

Note that you do not normally need to run CICSENV before starting a CICS
application, because it will be run automatically on the first invocation of a

| CICS command. However, if you have both VisualAge CICS and CICS for
| Windows NT installed on your system, you should run CICSENV before

410  Copyright IBM Corp. 1996, 1998

CICS Overview

| building your program (that is, before the CICSTCL step) if you want
| VisualAge CICS to be used instead of CICS for Windows NT.

CICS for Windows NT
Initialize the CICS for Windows NT environment. Note that the environment
variables for CICS for Windows NT are set when the CICS region is
started. To set environment variables that are unique to a particular region,
they must be set in \var\cics_regions\xxx\environment (where xxx is the
name of the region). To set environment variables that are in effect for all
CICS regions, they must be set in the system environment variables section
of Windows NT. Environment variables set in the user environment vari-
ables section of Windows NT will not be seen by any CICS for Windows NT
region.

2. Create the application.

Create your COBOL application program. For CICS-specific COBOL programming
considerations, see “Preparing COBOL Applications to Run under CICS” on
page 412. Specifically, use an editor to do the following:

� Code your program using COBOL statements and CICS commands
� Create COBOL copybooks
� Create CICS screen maps used by your program

For a detailed description of COBOL programming under CICS, see the CICS
Application Programming Guide.

3. Process the maps.

Process the CICS screen maps using the CICSMAP command. Consult the CICS
Application Programming Guide for details on CICSMAP.

4. Compile the program.

Use the CICS command CICSTCL to:

Translate CICS commands will be translated into valid COBOL statements.

Compile The COBOL compiler will be invoked and the program will be com-
piled.

Link The compiled COBOL program will be linked using standard
linkage routines.

 5. Start CICS.

| VisualAge CICS, CICS for OS/2
| Start CICS using CICSRUN.

| CICS for Windows NT
| This step is deferred until later in the process.

6. Define the resources.

Define your application's resources, such as transactions, application programs,
and files.

 Chapter 22. Programming for a CICS Environment 411

CICS Application Prep

| VisualAge CICS, CICS for OS/2
| This is done using the CEDA transaction.

| CICS for Windows NT
| This is done through the CICS Administration Utility.

| 7. Activate the resources.

| VisualAge CICS, CICS for OS/2
| Activate CICS resources (such as PCT and FCT entries). You can do this in
| either of two ways:

| � By shutting down CICS using the CQIT transaction, then restart it using
| CICSRUN.
| � By using the Install action of the CEDA transaction.

| CICS for Windows NT
| The resources will be activated when the CICS region is started (in the next
| step).

 8. Start CICS.

| VisualAge CICS, CICS for OS/2
| Your CICS system should have already been started.

CICS for Windows NT
Start your CICS region using the CICS Administration Utility.

9. Run the application.

At your CICS terminal, run the application by entering the 4-character transaction-id
associated with the application.

If you want to execute code using CICS ECI (External Call Interface), you need to have
CICS Client installed. Otherwise, you will encounter an error due to a missing DLL.
You also need to start CICS Client before executing.

Preparing COBOL Applications to Run under CICS
In general, the COBOL language is supported in a CICS environment. However, there
are certain restrictions and considerations you should be aware of when preparing
COBOL applications to run on CICS.

Additional Language Restrictions
The following guidelines should be followed when coding COBOL programs that run
under CICS:

� Do not use EXEC, CICS, DLI, or END-EXEC for variable names.

� It is recommended that you do not use the FILE-CONTROL entry in the ENVIRON-
MENT DIVISION.

� It is recommended that you do not use the FILE SECTION of the DATA DIVISION.

� Do not use user-specified parameters to the main program.

412 VisualAge COBOL Programming Guide

CICS Application Prep

� It is recommended that you do not use USE declaratives (except USE FOR DEBUG-
GING).

� The following COBOL language statements are not recommended for use in a
CICS environment:

| – ACCEPT (Format 1 or 2— see “System Date under CICS” on page 414)
 – CLOSE
 – DELETE
 – DISPLAY
 – MERGE
 – OPEN
 – READ
 – REWRITE
 – SORT
 – START
 – STOP literal
 – WRITE

| Attention: Apart from some forms of the ACCEPT statement, mainframe CICS
does not support any of the COBOL language elements in the preceding
list. If you use any of these COBOL language elements, be aware that:

– The application is not completely portable to the mainframe CICS envi-
ronment.

– In the case of a CICS failure, a backout (restoring the resources asso-
ciated with the failed task) will not be possible.

� When coding nested (contained) programs, pass DFHEIBLK and DFHCOMMAREA as
parameters to any nested programs that contain EXEC commands and/or refer-
ences to the EIB. The same parameters must also be passed to any program that
forms part of the control hierarchy between such a program and its top level
program.

Selecting Compiler Options
TRUNC(BIN) is the recommended option under CICS. However, if you are certain that
the non-truncated values of BINARY, COMP, or COMP-4 data items conform to PICTURE
specifications, using TRUNC(OPT) may improve program performance.

COMP-5 can be used instead of BINARY, COMP, or COMP-4 as EXEC CICS command
arguments. COMP-5 is treated with the behavior of BINARY, COMP, or COMP-4 as if
BINARY(NATIVE) and TRUNC(BIN) were in effect, regardless of explicitly setting those
options.

The PGMNAME(MIXED) option must be used for applications that use CICS Client.

The following options should be avoided when compiling programs to run in a CICS
environment:

 NOLIB
TRUNC(STD) or TRUNC(OPT)

 Chapter 22. Programming for a CICS Environment 413

CICS Application Prep

All other COBOL compiler options are supported. For detailed information on individual
compiler options, see Chapter 10, “Compiler Options” on page 160.

For additional information about CICS access and System/390 host data types, see
Appendix B, “System/390 Host Data Type Considerations” on page 543.

EBCDIC-Enabled COBOL Programs on CICS
VisualAge CICS, CICS for OS/2

CICS provides support for running COBOL programs as EBCDIC-enabled pro-
grams. In order to prepare your IBM COBOL program to run on CICS as an
EBCDIC-enabled program, you must do the following:

� Translate the COBOL program using the BINARY(S370) and the EBCDIC
translator options.

| � Compile the program using the CHAR(EBCDIC), COLLSEQ(EBCDIC), and the
BINARY(S390) compiler options.

For more information about EBCDIC-enabled programs on CICS, see the CICS
Application Programming Guide.

| CICS for Windows NT
| CICS for Windows NT does not support the host data type options, so EBCDIC
| enablement is not supported.

Selecting Run-Time Options
Use the FILESYS run-time option to specify the file system used for files when no spe-
cific file selection has been made on the ASSIGNment name. For a detailed
description of FILESYS, see Chapter 12, “Run-Time Options” on page 240.

Planning for ASCII-EBCDIC Differences
If your CICS program is running on an ASCII platform (such as OS/2 or AIX), and you
access EBCDIC data, be aware that the neither CICS nor the COBOL run time will
automatically convert the data to the ASCII collating sequence.

Some data access methods (such as VSAM) can carry out such conversions automat-
ically, but you should not assume that the data will be converted. If your program is

| designed to access mainframe data and you do not build with the host data type
| options, you might want to add logic to your program to test whether or not the data is

EBCDIC and, if necessary, carry out an explicit collating sequence conversion.

| System Date under CICS
| You should not use a Format 1 ACCEPT statement in a CICS program. Format 2
| ACCEPT is supported with the four-digit year options; that is:

| ACCEPT identifier FROM DATE YYYYMMDD
| ACCEPT identifier FROM DAY YYYYDDD

| The recommended ways of retrieving the system date in a CICS program are these
| forms of the ACCEPT statement, and the CURRENT-DATE intrinsic function. These
| methods work in both CICS and non-CICS environments.

414 VisualAge COBOL Programming Guide

CICS Application Prep

| Note: The following forms of the ACCEPT statement to receive 2-digit year dates are
| not supported under CICS:

| ACCEPT identifier FROM DATE
| ACCEPT identifier FROM DAY

Dynamic Calls under CICS
Dynamic calls work in the CICS environment, however you have to be careful to set the
COBPATH environment correctly. Consider the following example.

The program contains

WORKING-STORAGE SECTION.

 ð1 WS-COMMAREA PIC 9 VALUE ZERO.

77 SUBPNAME PIC X(8) VALUE SPACES

 ...

PROCEDURE DIVISION.

MOVE 'alpha' TO SUBPNAME.

CALL SUBPNAME USING DFHEIBLK, DFHCOMMAREA, WS-COMMAREA.

 ...

Notice that since alpha is a COBOL program containing CICS statements, CICS control
blocks DFHEIBLK and DFHCOMMAREA must be passed to alpha. The source for alpha
is in the file alpha.ccp. The CICS command CICSTCL is used to translate, compile and
link alpha.ccp.

| VisualAge CICS, CICS for OS/2
| CICSTCL creates a DLL called alpha.dll. The directory where alpha.dll
| resides must be included in the COBPATH environment variable. CICS doc-

umentation describes how to set environment variables for CICS.

CICS for Windows NT
CICSTCL creates a DLL called alpha.ibmcob. The directory where alpha.ibmcob
resides must be included in the COBPATH environment variable.

Notes:

1. The -lIBMCOB option must be used with CICSTCL.

2. The COBPATH environment variable must be set in the system environ-
ment variables section because the CICS for Windows NT region does not
recognize environment variable settings from the user environment vari-
ables section.

Alternatively you could set COBPATH in the
\var\cics_regions\xxx\environment file in which case it would be effective
only for the xxx region.

| DLL Considerations
| The same DLL containing COBOL program(s) should not be used in more than one run
| unit within the same CICS transaction, or the results will be unpredictable. For
| example, Figure 91 on page 416 shows a CICS transaction where the same subpro-
| gram is called from two different run units.

 Chapter 22. Programming for a CICS Environment 415

CICS Application Prep

| ┌────────────────┐

| │ Program A │

| │ │

| │ │

| │ │

| │ CALL ──────────┼─────────────────────────────┐

| │ │ │

| │ │ │

| │ │ ┌────────────────┐ │

| │ EXEC CICS LINK ├──────5│ Program B │ │

| │ │ │ │ │

| └────────────────┘ │ │ │ ┌─────────────────┐

| │ │ │ │ C.DLL │

| │ │ │ ├──────────────┐ │

| │ │ └──────5│ Program C │ │

| │ CALL ──────────┼───────────5│ │ │

| │ │ │ │ │

| │ │ │ │ │

| │ │ ├──────────────┘ │

| └────────────────┘ │ │

| │ │

| │ │

| Figure 91. CICS Transaction with Two Run Units

| In this example:

| � Program A CALLs Program C (in C.DLL)
| � Program A LINKs to Program B using an EXEC CICS LINK command. This
| becomes a new run unit within the same transaction.
| � Program B CALLs Program C (in C.DLL)

| Programs A and B are sharing the same copy of Program C, and any changes to its
| state will affect both. In the CICS environment, programs in a DLL are initialized (both
| the WSCLEAR compiler option and VALUE clause initialization) only on the first call
| within a run unit. If a COBOL subprogram is called more than once, from either the
| same or different main programs, the subprogram will be initialized only on the first call.

| If you need the subprogram initialized on the first call from each main program, you
| should statically link a separate copy of the subprogram with each calling program.

| If you need the subprogram initialized on every call, you should use one of the following
| methods:

| � Put data to be reinitialized in the subprogram's Local-Storage Section, rather than
| Working-Storage. Note that this affects initialization by the VALUE clause only, not
| by the WSCLEAR compiler option.

| � CANCEL the subprogram after each use, so the next call will be to the program in
| its initial state.

| � Add the INITIAL attribute to the subprogram.

416 VisualAge COBOL Programming Guide

CICS Application Prep

Accessing Btrieve Data

Your non-CICS programs are able to access Btrieve files (the default file system used
| by both VisualAge CICS on OS/2 and CICS for OS/2). For more information, see

“Accessing Files” on page 97.

Calls between COBOL and C ++ under CICS
Be aware of three rules governing calls between COBOL and C/C++ programs under
CICS:

1. COBOL programs which contain CICS commands can call C/C++ programs as long
as the called C/C++ programs do not contain any CICS commands.

2. C/C++ Programs which contain CICS commands can call COBOL programs as
long as the called COBOL programs do not contain any CICS commands.

3. COBOL programs can EXEC CICS LINK or EXEC CICS XCTL to a C/C++ program
regardless of whether or not the C/C++ program contains CICS commands.

Therefore, if your COBOL program invokes a C/C++ program that contains CICS com-
mands (or vice versa), use EXEC CICS LINK or EXEC CICS XCTL rather than the COBOL
CALL statement.

Debugging CICS Programs
Before you debug your CICS programs, you need to translate them into COBOL. Then
you debug CICS programs the same way you would debug any other COBOL program.
For an overview of COBOL language-based debugging techniques, see Chapter 13,
“Debugging Techniques” on page 244.

Alternatively, you can debug CICS programs using the graphical debugger shipped with
the product. See your CICS Application Programming Guide for instructions about how
to invoke the graphical debugger under CICS. Be sure to instruct the compiler to
produce symbolic information used by the graphical debugger (see “Compiling and
Linking Programs” on page 142).

 Chapter 22. Programming for a CICS Environment 417

Introducing ODBC

Chapter 23. Open Database Connectivity

This chapter contains information to help you use the Open Database Connectivity
(ODBC) interface in your COBOL applications. With ODBC, not only can you access
data from a variety of databases and file systems that support the ODBC interface, but
you can do so dynamically.

Your COBOL applications that use embedded SQL for database access must be proc-
essed by a preprocessor or coprocessor for a particular database and have to be
recompiled if the target database changes. Because ODBC is a call interface, there is
no compile-time designation of the target database as there is with embedded SQL.
Not only can you avoid having multiple versions of your application for multiple data-
bases, but your application can dynamically determine which database to target.

 Introducing ODBC
ODBC is a specification for an application program interface (API) that enables applica-
tions to access multiple database management systems using Structured Query Lan-
guage (SQL).

ODBC permits maximum interoperability: a single application can access many dif-
ferent database management systems. This enables you to develop, compile, and ship
an application without targeting a specific type of data source. Users can then add the
database drivers, which link the application to the database management systems of
their choice.

 Background
The X/Open Company and the SQL Access Group jointly developed a specification for
a callable SQL interface, referred to as the X/Open Call Level Interface. The goal of
this interface is to increase portability of applications by enabling them to become inde-
pendent of any one database vendor's programming interface.

ODBC was originally developed by Microsoft for Microsoft operating systems based on
a preliminary draft of X/Open CLI. Since this time, other vendors have provided ODBC
drivers that run on other platforms, such as OS/2 and UNIX systems. The IBM
VisualAge COBOL package includes the DataDirect** ODBC drivers from
INTERSOLV**, Inc.

| The descriptions and examples in this chapter apply to ODBC Version 3.0. However,
| Version 2.x support is also provided. If you are developing your application for Version
| 2.x ODBC, you will need to use the Version 2.x copybooks instead of the Version 3.0
| copybooks listed here. For details, see “Using the Supplied Copybooks” on page 423.

ODBC Driver Manager
When you use the ODBC interface, your application makes calls through a Driver
Manager. The Driver Manager dynamically loads the necessary driver for the database

418  Copyright IBM Corp. 1996, 1998

server to which the application connects. The driver, in turn, accepts the call, sends
the SQL to the specified data source (database), and returns any result.

Choosing Embedded SQL or ODBC
Embedded SQL and ODBC have advantages particular to them. Some of the advan-
tages of embedded SQL are:

� Static SQL usually provides better performance than dynamic SQL. It does not
have to be prepared at run time, thus reducing both processing and network traffic.

� With static SQL, database administrators have to grant users access to a package
only rather than access to each table or view that will be used.

Some of the advantages of ODBC are:

� It provides a consistent interface regardless of what kind of database server is
used.

� You can have more than one concurrent connection.

� Applications do not have to be bound to each database on which they will execute.
Although IBM VisualAge COBOL does this bind for you automatically, it binds auto-
matically to only one database. If you want to choose which database to connect
to dynamically at run time, you must take extra steps to bind to a different data-
base.

Using the ODBC Drivers
IBM VisualAge COBOL provides an ODBC Driver Manager and a set of ODBC data-
base drivers under an agreement with INTERSOLV, Inc.

To enable ODBC for data access in IBM VisualAge COBOL, you must:

1. Install the ODBC Driver Manager and drivers by selecting the “ODBC Drivers” com-
ponent during IBM VisualAge COBOL installation.

2. Install the RDBMS client (for example, Oracle 7 SQL*NET, DB2 CAE, etc.).

Important: : During the installation process, a license file for the ODBC driver is
installed on your system.

File ivib.lic is installed in x:\cobdir\ODBC, where x and cobdir is the drive and direc-
tory respectively, where COBOL is installed. (cobdir defaults to IBMCOBOL for OS/2 and
IBMCOBW for Windows.)

You must keep this file installed in the install directory, because it will be used when
you run your application to verify that you are licensed to use the ODBC driver. In
“Setting Licensing Information for ODBC Driver Manager/Driver” on page 430 you learn
how to use a function call to trigger the verification.

 Chapter 23. Open Database Connectivity 419

 On-line Help
On-line help is available for the ODBC drivers, both as a reference book and as
context-sensitive help. The specific file names and so on may differ; you should note
the names given in this section for the file names for IBM VisualAge COBOL.

 Environment-Specific Information
The ODBC drivers are 32-bit drivers. The required network software supplied by your
database system vendors must be 32-bit compliant.

 OS/2

| The drivers shipped for OS/2 are at the ODBC 2.1 level.

ODBC.INI: OBDC.INI is an operating system binary file located in the directory speci-
fied by the USER_INI environment variable. Since this file is binary, you cannot edit it
with a text editor.

Configuring Data Sources: A data source consists of a DBMS and any remote
operating system and network necessary to access it. After the drivers have been
installed, the data source must be configured using the ODBC Administrator program.
Start the ODBC Administrator by double-clicking on the ODBC Administrator icon in the

| Tools folder.

Driver Names: The file names for the drivers that come with IBM VisualAge COBOL
start with IB and have a file extension of .DLL. (They are dynamic link libraries.) The
number in the name corresponds to the version level of the driver. When you install
the ODBC drivers, your CONFIG.SYS file is modified to add the correct path to the envi-
ronment variable LIBPATH.

 Windows

| The drivers shipped for Windows are at the ODBC 3.0 level.

ODBC.INI: ODBC.INI is a subkey of the HKEY_CURRENT_USER\\SOFTWARE\\ODBC
key in the Windows NT and Windows 95 registry. The ODBC.INI subkey is maintained
by the ODBC Administrator, which is located in the main COBOL program group.
Since Windows can support multiple users, the ODBC.INI subkey is stored under unique
user keys in the registry.

Configuring Data Sources: A data source consists of a DBMS and any remote
operating system and network necessary to access it. After the drivers have been
installed, the data source must be configured using the ODBC Administrator program,
which is located in the main COBOL program group. Because Windows 95 and
Windows NT can host multiple users, each user must configure their own data sources.

420 VisualAge COBOL Programming Guide

For detailed configuration information for the specific driver you wish to configure, refer
to the appropriate section of the on-line help.

Driver Names: The file names for the drivers that come with IBM VisualAge COBOL
start with IB and have a file extension of .DLL. (They are dynamic link libraries.) The
number in the name corresponds to the version level of the driver. When you install
the ODBC drivers, your Registry is modified to add the correct path to your environ-
ment.

Connecting to a Data Source
Your ODBC application will need to connect to the data source either using a logon
dialog box or a connection string, depending on the data source.

Using a Logon Dialog Box
Some ODBC applications display a logon dialog box when you are connecting to a data
source. In these cases, the data source name has already been specified.

In the logon dialog box, do the following:

1. Type the name of the remote database or select the name of the remote database
from the Database Name drop-down list.

You must have cataloged any database you want to access from the client.

2. If required, type your user name (authorization ID).

3. If required, type your password.

If you leave your user name and password blank, the ODBC application assumes
you have already logged on using SQLLOGN2 (under DOS) or using User Profile
Management (under OS/2). If you have not, the application returns an error. You
must either type your user name and password in the dialog box or log on using
SQLLOGN2 and STARTDRQ (under DOS) or using User Profile Management (under
OS/2).

4. Click OK to complete the logon and to update the values in ODBC.INI.

Using a Connection String
If your application requires a connection string to connect to a data source, you must
specify the data source name that tells the driver which ODBC.INI section to use for the
default connection information. Optionally, you may specify attribute=value pairs in
the connection string to override the default values stored in ODBC.INI. These values
are not written to ODBC.INI.

You can specify either long or short names in the connection string. The connection
string has the form:

 DSN=data_source_name[;attribute=value[;attribute=value]...]

 Chapter 23. Open Database Connectivity 421

An example of a connection string for INFORMIX 5 is

 DSN=INFORMIX TABLES;DB=PAYROLL

Supported ODBC Functions
| For a list of ODBC functions that are supported by the supplied drivers, see the ODBC

Conformance Level topic of the on-line help for each individual driver.

 Error Messages
Error messages may come from

� An ODBC driver
� The database system
� The Driver Manager

 Message Format
An error reported on an ODBC driver has the following format:

[vendor] [ODBC_component] message

ODBC_component is the component in which the error occurred. For example, an
error message from INTERSOLV's SQL Server driver would look like this:

[INTERSOLV] [ODBC SQL Server driver] Login incorrect.

If you get this type of error, check the last ODBC call your application made for pos-
sible problems or contact your ODBC application vendor.

An error that occurs in the data source includes the data source name, in the following
format:

[vendor] [ODBC_component] [data_source] message

With this type of message, ODBC_component is the component that received the error
from the data source indicated. For example, you may get the following message from
an Oracle data source:

[INTERSOLV] [ODBC Oracle driver] [Oracle] ORA-ð919: specified length too long for CHAR column

If you get this type of error, you did something incorrectly with the database system.
Check your database system documentation for more information or consult your data-
base administrator. In this example, you would check your Oracle documentation.

The Driver Manager is a DLL that establishes connections with drivers, submits
requests to drivers, and returns results to applications. An error that occurs in the
Driver Manager has the following format:

[vendor] [ODBC DLL] message

vendor can be Microsoft or INTERSOLV. For example, an error from the Microsoft
Driver Manager might look like this:

[Microsoft] [ODBC DLL] Driver does not support this

function

422 VisualAge COBOL Programming Guide

ODBC APIs from COBOL

ODBC APIs from COBOL
Included with IBM VisualAge COBOL are copybooks that make it easier for you to
access data bases with ODBC drivers using ODBC calls from your COBOL programs.
This section describes the supplied copybooks, how ODBC API argument types map to
COBOL data descriptions, and additional COBOL functions and considerations appli-
cable to ODBC APIs.

For details on the ODBC APIs, see the on-line help.

For specific information related to an ODBC driver, such as the ODBC level or exten-
sions supported by that driver, please refer to the specifications available with that
driver.

The following illustrate how to access ODBC from COBOL programs:

“CALL Interface Convention”

“Using the Supplied Copybooks”

“Mapping of ODBC C Types” on page 425

“Passing a Pointer as an Argument” on page 426

“Accessing Function Return Values” on page 428

“Testing Bits with a Bit Mask” on page 429

“Setting Licensing Information for ODBC Driver Manager/Driver” on page 430

LIB Files:

 When you link your ODBC applications, you must include the import
library ODBC.LIB, which is supplied with IBM VisualAge COBOL.

 When you link your ODBC applications, you must include the import
library ODBC32.LIB, which is included in the ODBC SDK (from Microsoft).

CALL Interface Convention
Programs making ODBC calls must be compiled with the CALLINT(SYSTEM) option or
use the >>CALLINT SYSTEM directive for ODBC calls.

| Programs making ODBC calls must be compiled with the PGMNAME(MIXED) compiler
| option.

Using the Supplied Copybooks
| The copybooks described and listed here are for ODBC Version 3.0. However, Version
| 2.x copybooks are also supplied, and you can substitute them for the Version 3.0
| copybooks if you need to develop applications for ODBC Version 2.x. The names of
| the copybooks are as listed in Figure 92.

 Chapter 23. Open Database Connectivity 423

ODBC APIs from COBOL

| The supplied copybook, ODBC3.CPY, defines the symbols for constant values described
for ODBC APIs, mapping constants used in calls to ODBC APIs to symbols specified in
ODBC guides so that argument (input and output) and function return values can be
specified and tested.

Some COBOL-specific adaptations have been made:

� Underscores, “_”, are replaced with hyphens, “-” in the copybook. For example,
SQL_SUCCESS is specified as SQL-SUCCESS.

| � Names longer than 30 characters are truncated or abbreviated to 30 characters.
| Figure 93 shows the names that are longer than 30 characters, and their corre-
| sponding COBOL names.

| Figure 92. Supplied copybooks for ODBC

| Version 3.0| Version 2.x| Description

| ODBC3.CPY| ODBC2.CPY| Symbols and constants

| ODBC3D.CPY| ODBC2D.CPY| Data Division definitions

| ODBC3P.CPY| ODBC2P.CPY| Procedure Division statements

| ODBC3EG.CBL| ODBC2EG.CBL| Sample program

| Figure 93 (Page 1 of 2). ODBC Names Truncated or Abbreviated for COBOL

| ODBC C #define symbol > 30 characters long| Corresponding COBOL name

| SQL_AD_ADD_CONSTRAINT_DEFERRABLE| SQL-AD-ADD-CONSTRAINT-DEFER

| SQL_AD_ADD_CONSTRAINT_INITIALLY_DEFERRED| SQL-AD-ADD-CONSTRAINT-INIT-DEF

| SQL_AD_ADD_CONSTRAINT_INITIALLY_IMMEDIATE| SQL-AD-ADD-CONSTRAINT-INIT-IMM

| SQL_AD_ADD_CONSTRAINT_NON_DEFERRABLE| SQL-AD-ADD-CONSTRAINT-NON-DEFE

| SQL_AD_CONSTRAINT_NAME_DEFINITION| SQL-AD-CONSTRAINT-NAME-DEFINIT

| SQL_AT_CONSTRAINT_INITIALLY_DEFERRED| SQL-AT-CONSTRAINT-INITIALLY-DE

| SQL_AT_CONSTRAINT_INITIALLY_IMMEDIATE| SQL-AT-CONSTRAINT-INITIALLY-IM

| SQL_AT_CONSTRAINT_NAME_DEFINITION| SQL-AT-CONSTRAINT-NAME-DEFINIT

| SQL_AT_CONSTRAINT_NON_DEFERRABLE| SQL-AT-CONSTRAINT-NON-DEFERRAB

| SQL_AT_DROP_TABLE_CONSTRAINT_CASCADE| SQL-AT-DROP-TABLE-CONSTRAINT-C

| SQL_AT_DROP_TABLE_CONSTRAINT_RESTRICT| SQL-AT-DROP-TABLE-CONSTRAINT-R

| SQL_C_INTERVAL_MINUTE_TO_SECOND| SQL-C-INTERVAL-MINUTE-TO-SECON

| SQL_CA_CONSTRAINT_INITIALLY_DEFERRED| SQL-CA-CONSTRAINT-INIT-DEFER

| SQL_CA_CONSTRAINT_INITIALLY_IMMEDIATE| SQL-CA-CONSTRAINT-INIT-IMMED

| SQL_CA_CONSTRAINT_NON_DEFERRABLE| SQL-CA-CONSTRAINT-NON-DEFERRAB

| SQL_CA1_BULK_DELETE_BY_BOOKMARK| SQL-CA1-BULK-DELETE-BY-BOOKMAR

| SQL_CA1_BULK_UPDATE_BY_BOOKMARK| SQL-CA1-BULK-UPDATE-BY-BOOKMAR

| SQL_CDO_CONSTRAINT_NAME_DEFINITION| SQL-CDO-CONSTRAINT-NAME-DEFINI

| SQL_CDO_CONSTRAINT_INITIALLY_DEFERRED| SQL-CDO-CONSTRAINT-INITIALLY-D

| SQL_CDO_CONSTRAINT_INITIALLY_IMMEDIATE| SQL-CDO-CONSTRAINT-INITIALLY-I

| SQL_CDO_CONSTRAINT_NON_DEFERRABLE| SQL-CDO-CONSTRAINT-NON-DEFERRA

| SQL_CONVERT_INTERVAL_YEAR_MONTH| SQL-CONVERT-INTERVAL-YEAR-MONT

| SQL_CT_CONSTRAINT_INITIALLY_DEFERRED| SQL-CT-CONSTRAINT-INITIALLY-DE

424 VisualAge COBOL Programming Guide

ODBC APIs from COBOL

A COPY statement to include this copybook should be specified in the DATA DIVISION as
follows:

� For a program, the COPY statement should be specified in the WORKING-STORAGE
SECTION, in the outer-most program if programs are nested.

� For a method, the COPY statement should be specified in the WORKING-STORAGE
SECTION of the method (not the WORKING-STORAGE SECTION of the CLASS defi-
nition). This must be done for each method that makes ODBC calls.

| Figure 93 (Page 2 of 2). ODBC Names Truncated or Abbreviated for COBOL

| ODBC C #define symbol > 30 characters long| Corresponding COBOL name

| SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE| SQL-CT-CONSTRAINT-INITIALLY-IM

| SQL_CT_CONSTRAINT_NON_DEFERRABLE| SQL-CT-CONSTRAINT-NON-DEFERRAB

| SQL_CT_CONSTRAINT_NAME_DEFINITION| SQL-CT-CONSTRAINT-NAME-DEFINIT

| SQL_DESC_DATETIME_INTERVAL_CODE| SQL-DESC-DATETIME-INTERVAL-COD

| SQL_DESC_DATETIME_INTERVAL_PRECISION| SQL-DESC-DATETIME-INTERVAL-PRE

| SQL_DL_SQL92_INTERVAL_DAY_TO_HOUR| SQL-DL-SQL92-INTERVAL-DAY-TO-H

| SQL_DL_SQL92_INTERVAL_DAY_TO_MINUTE| SQL-DL-SQL92-INTERVAL-DAY-TO-M

| SQL_DL_SQL92_INTERVAL_DAY_TO_SECOND| SQL-DL-SQL92-INTERVAL-DAY-TO-S

| SQL_DL_SQL92_INTERVAL_HOUR_TO_MINUTE| SQL-DL-SQL92-INTERVAL-HR-TO-M

| SQL_DL_SQL92_INTERVAL_HOUR_TO_SECOND| SQL-DL-SQL92-INTERVAL-HR-TO-S

| SQL_DL_SQL92_INTERVAL_MINUTE_TO_SECOND| SQL-DL-SQL92-INTERVAL-MIN-TO-S

| SQL_DL_SQL92_INTERVAL_YEAR_TO_MONTH| SQL-DL-SQL92-INTERVAL-YR-TO-MO

| SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1| SQL-FORWARD-ONLY-CURSOR-ATTR1

| SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2| SQL-FORWARD-ONLY-CURSOR-ATTR2

| SQL_GB_GROUP_BY_CONTAINS_SELECT| SQL-GB-GROUP-BY-CONTAINS-SELEC

| SQL_ISV_CONSTRAINT_COLUMN_USAGE| SQL-ISV-CONSTRAINT-COLUMN-USAG

| SQL_ISV_REFERENTIAL_CONSTRAINTS| SQL-ISV-REFERENTIAL-CONSTRAINT

| SQL_MAXIMUM_CATALOG_NAME_LENGTH| SQL-MAXIMUM-CATALOG-NAME-LENGT

| SQL_MAXIMUM_COLUMN_IN_GROUP_BY| SQL-MAXIMUM-COLUMN-IN-GROUP-B

| SQL_MAXIMUM_COLUMN_IN_ORDER_BY| SQL-MAXIMUM-COLUMN-IN-ORDER-B

| SQL_MAXIMUM_CONCURRENT_ACTIVITIES| SQL-MAXIMUM-CONCURRENT-ACTIVIT

| SQL_MAXIMUM_CONCURRENT_STATEMENTS| SQL-MAXIMUM-CONCURRENT-STAT

| SQL_SQL92_FOREIGN_KEY_DELETE_RULE| SQL-SQL92-FOREIGN-KEY-DELETE-R

| SQL_SQL92_FOREIGN_KEY_UPDATE_RULE| SQL-SQL92-FOREIGN-KEY-UPDATE-R

| SQL_SQL92_NUMERIC_VALUE_FUNCTIONS| SQL-SQL92-NUMERIC-VALUE-FUNCTI

| SQL_SQL92_RELATIONAL_JOIN_OPERATORS| SQL-SQL92-RELATIONAL-JOIN-OPER

| SQL_SQL92_ROW_VALUE_CONSTRUCTOR| SQL-SQL92-ROW-VALUE-CONSTRUCTO

| SQL_TRANSACTION_ISOLATION_OPTION| SQL-TRANSACTION-ISOLATION-OPTI

Mapping of ODBC C Types
The data types specified in ODBC APIs are defined in terms of ODBC C types in the
API definitions. The following table shows corresponding COBOL declarations for the
indicated ODBC C types of the arguments.

 Chapter 23. Open Database Connectivity 425

ODBC APIs from COBOL

| Figure 94. Mapping of ODBC C Type to COBOL Data Declarations

| ODBC C type| COBOL form| Description

| SQLSMALLINT| COMP-5 PIC
| S9(4)
| Signed short integer (2 byte binary)

| SQLUSMALLINT| COMP-5 PIC 9(4)| Unsigned short integer (2 byte binary)

| SQLINTEGER| COMP-5 PIC
| S9(9)
| Signed long integer (4 byte binary)

| SQLUINTEGER| COMP-5 PIC 9(9)| Unsigned long integer (4 byte binary)

| SQLREAL| COMP-1| Floating point (4 bytes)

| SQLFLOAT| COMP-2| Floating point (8 bytes)

| SQLDOUBLE| COMP-2| Floating point (8 bytes)

| SQLCHAR *| POINTER (See
| Note)
| Pointer to unsigned character.

| SQLHDBC| POINTER| Connection handle

| SQLHENV| POINTER| Environment handle

| SQLHSTMT| POINTER| Statement handle

| SQLHWND| POINTER| Window handle

| Note: This is a pointer to a null-terminated string. The target (of the pointer) item can be defined
| with PIC X(n), where n is large enough to represent the null terminated field. See “Manipulating
| Null-Terminated Strings” on page 79 for additional considerations on handling null terminated
| strings in COBOL.

Passing a Pointer as an Argument
If an argument is specified as a pointer to one of the above data types, then you need
to do one of the following:

� Pass the target item of the pointer BY REFERENCE, or

� Define a pointer data item that will point to the target item and pass that BY
VALUE, or

� Pass the ADDRESS OF the target item BY VALUE.

To illustrate, assume the function is defined as

RETCODE SQLSomeFunction(PSomeArgument)

where PSomeArgument is defined as an argument pointing to SomeArgument.

The argument may be passed to SQLSomeFunction in one of the following ways:

1. Pass SomeArgument BY REFERENCE:

CALL "SQLSomeFunction" USING BY REFERENCE SomeArgument

USING BY CONTENT SomeArgument, may be used instead if SomeArgument is an input
argument.

426 VisualAge COBOL Programming Guide

ODBC APIs from COBOL

2. Define a pointer data item PSomeArgument to point to SomeArgument:

SET PSomeArgument TO ADDRESSS OF SomeArgument

CALL "SQLSomeFunction" USING BY VALUE PSomeArgument

3. Pass ADDRESS OF SomeArgument BY VALUE:

CALL "SQLSomeFunction" USING BY VALUE ADDRESS OF SomeArgument

Note that the last approach can be used only if the target argument, SomeArgument, is a
level 01 item in the LINKAGE SECTION. If SomeArgument is a level 01 item in the
LINKAGE SECTION, the addressibility to SomeArgument can be set in one of the following
ways:

 1. Explicitly via

SET ADDRESS OF SomeArgument TO a-pointer-data-item

or

SET ADDRESS OF SomeArgument to ADDRESS OF an-identifier

or

2. Implicitly by having SomeArgument passed in as an argument to the program from
which the ODBC function call is being made.

| The following shows a fragment of a sample program invoking the SQLAllocHandle

| function:

| ...

| WORKING-STORAGE SECTION.

| COPY ODBC3.

| ...

| ð1 SQL-RC COMP-5 PIC S9(4).

| ð1 Henv POINTER.

| ...

| PROCEDURE DIVISION.

| ...

| CALL "SQLAllocHandle"

| USING

| By VALUE sql-handle-env

| sql-null-handle

| By REFERENCE Henv

| RETURNING SQL-RC

| IF SQL-RC NOT = (SQL-SUCCESS or SQL-SUCCESS-WITH-INFO)

| THEN

| DISPLAY "SQLAllocHandle failed."

| ...

| ELSE

| ...

The above is further illustrated using SQLConnect function. Any one of the following
| examples can be used for calling the SQLConnect function:

 Chapter 23. Open Database Connectivity 427

ODBC APIs from COBOL

| Example 1:

| ...

| CALL "SQLConnect" USING BY VALUE ConnectionHandle

| BY REFERENCE ServerName

| BY VALUE SQL-NTS

| BY REFERENCE UserIdentifier

| BY VALUE SQL-NTS

| BY REFERENCE AuthentificationString

| BY VALUE SQL-NTS

| RETURNING SQL-RC

| ...

| Example 2:

| ...

| SET Ptr-to-ServerName TO ADDRESS OF ServerName

| SET Ptr-to-UserIdentifier TO ADDRESS OF UserIdentifier

| SET Ptr-to-AuthentificationString TO ADDRESS OF AuthentificationString

| CALL "SQLConnect" USING BY VALUE ConnectionHandle

| Ptr-to-ServerName

| SQL-NTS

| Ptr-to-UserIdentifier

| SQL-NTS

| Ptr-to-AuthentificationString

| SQL-NTS

| RETURNING SQL-RC

| ...

| Example 3:

| ...

| CALL "SQLConnect" USING BY VALUE ConnectionHandle

| ADDRESS OF ServerName

| SQL-NTS

| ADDRESS OF UserIdentifier

| SQL-NTS

| ADDRESS OF AuthentificationString

| SQL-NTS

| RETURNING SQL-RC

| ...

| In Example 3 , Servername, UserIdentifier, and AuthentificationString must be
| defined as level 01 items in the LINKAGE SECTION.

Note that the BY REFERENCE or BY VALUE phrase applies to all arguments until over-
ridden by another BY REFERENCE, BY VALUE, or BY CONTENT phrase.

Accessing Function Return Values
The function return values for an ODBC call should be specified using the RETURNING
phrase on the CALL statement:

428 VisualAge COBOL Programming Guide

ODBC APIs from COBOL

CALL "SQLAllocEnv" USING BY VALUE Phenv RETURNING SQL-RC

IF SQL-RC NOT = SQL-SUCCESS

 THEN

DISPLAY "SQLAllocEnv failed."

 ...

 ELSE

 ...

 END-IF

 ...

Testing Bits with a Bit Mask
Some of the ODBC APIs require you to set bit masks and to query bits. A callable
library routine, iwzODBCTestBits, is supplied for your use for querying bits15.

This routine may be called as follows:

identifier-1
This is the field being tested. It must be a 2-or 4-byte binary number field, that is,
USAGE COMP-5 PIC 9(4) or PIC 9(9).

identifier-2
This is the bit mask field to select the bits to be tested. It must be defined with the
same USAGE and PICTURE as identifier-1.

identifier-3
This is the return value for the test and has the following return values:

0 None of the bits indicated by identifier-2 is ON in identifier-1.

1 All the bits selected by identifier-2 are ON in identifier-1.

-1 One or more bits are ON and one or more bits are OFF among the bits
selected by identifier-2 for identifier-1.

-100 Invalid input argument found (such as an 8-byte binary number field is
used as identifier-1).

It must be defined with USAGE COMP-5 with PIC S9(4).

Multiple bits can be set in a field using COBOL arithmetic expressions with the bit
masks defined in the ODBCCOB copybook. For example, the bits for SQL-CVT-CHAR,
SQL-CVT-NUMERIC, and SQL-CVT-DECIMAL can be set in the InfoValue field by:

COMPUTE InfoValue = SQL-CVT-CHAR + SQL-CVT-NUMERIC + SQL-CVT-DECIMAL

CALL "iwzODBCTestBits" USING identifier-1, identifier-2
 RETURNING identifier-3

15 The IWZODBC.LIB import library must be linked with any application that calls iwzODBCTestBits.

 Chapter 23. Open Database Connectivity 429

Sample Program

After setting InfoValue, it can be passed to the iwzTestBits function as the second
argument.

Note that the operands of the arithmetic expression above represent disjoint bits from
each other as defined for each of such bit mask symbols in ODBCCOB copybook. You
should be careful not to repeat the same bit in an arithmetic expression for this purpose
(since the operations are arithmetic additions not logical ORs). For example,

COMPUTE InfoValue = SQL-CVT-CHAR + SQL-CVT-NUMERIC + SQL-CVT-DECIMAL

 + SQL-CVT-CHAR

will result in InfoValue not having the SQL-CVT-CHAR bit on.

The call interface convention in effect at the time of the call must be CALLINT SYSTEM
DESCRIPTOR.

| Null-Terminated Character Strings
| Some ODBC APIs require you to pass null-terminated character strings as arguments.
| For information on how to construct and manipulate null-terminated strings in COBOL,
| see “Manipulating Null-Terminated Strings” on page 79.

Setting Licensing Information for ODBC Driver Manager/Driver
If you are using the ODBC Driver Manager/drivers shipped with IBM VisualAge COBOL,
you need to call iwzODBCLicInfo immediately following a call to the SQLConnect,
SQLDriverConnect, or SQLBrowseConnect function16. You need to pass the argument
hdbc to iwzODBCLicInfo:

CALL "iwzODBCLicInfo" USING BY VALUE Hdbc

See “Sample Program Using Supplied Copybooks” for the call.

Sample Program Using Supplied Copybooks
Two other copybooks are supplied for your optional use, if you want to use prepared
COBOL statements for commonly used functions for ODBC initialization, error handling,
and clean-up (SQLAllocEnv, SQLAllocConnect, iwzODBCLicInfo, SQLAllocStmt,
SQLFreeStmt, SQLDisconnect, SQLFreeConnect, and SQLFreeEnv). These
copybooks may be used with or without modifications.

| In addition to the ODBC3.CPY copybook, the two other copybooks are ODBC3D.CPY and
| ODBC3P.CPY. Also a skeleton sample program, ODBC3EG.CBL, illustrating the use of these

copybooks is included.

| ODBC3P.CPY includes COBOL procedure statements that can be performed for initializa-
tion, termination, and error processing.

16 The IWZODBC.LIB import library must be linked with any application that calls iwzODBCLicInfo.

430 VisualAge COBOL Programming Guide

Sample Program

| ODBC3D.CPY contains data declarations used by ODBC3P.CPY in the WORKING-STORAGE
SECTION (or LOCAL-STORAGE SECTION).

Example Notes:

1. The PGMNAME(MIXED) compiler option should be used; the ODBC entry points are
case sensitive.

2. System/390 host data type options should not be used; ODBC APIs expect their
parameters to be in native format.

| 3. The sample code (ODBC3EG.CBL, ODBC3P.CPY, and ODBC3D.CPY) is located in the
| SAMPLES\ODBC subdirectory under the main COBOL install directory.

| 4. ODBC3.CPY is in the INCLUDE subdirectory under the main COBOL install directory.

5. Including these two subdirectories in your SYSLIB environment variable will ensure
that the copybooks are available to the compiler.

The following illustrates the use of the copybooks:

| cbl pgmname(mixed)

| \\

| \ ODBC3EG.CBL \

| \--\

| \ Sample program using ODBC3, ODBC3D and ODBC3P COPY books \

| \\

| IDENTIFICATION DIVISION.

| PROGRAM-ID. "ODBC3EG".

| DATA DIVISION.

| WORKING-STORAGE SECTION.

| \ copy ODBC API constant definitions

| COPY "odbc3.cpy" SUPPRESS.

| \ copy additional definitions used by ODBC3P procedures

| COPY "odbc3d.cpy".

| \ arguments used for SQLConnect

| ð1 ServerName PIC X(1ð) VALUE Z"Oracle7".

| ð1 ServerNameLength COMP-5 PIC S9(4) VALUE 1ð.

| ð1 UserId PIC X(1ð) VALUE Z"TEST123".

| ð1 UserIdLength COMP-5 PIC S9(4) VALUE 1ð.

| ð1 Authentification PIC X(1ð) VALUE Z"TEST123".

| ð1 AuthentificationLength COMP-5 PIC S9(4) VALUE 1ð.

| Figure 95 (Part 1 of 2). Example of Using the ODBC Copybooks

 Chapter 23. Open Database Connectivity 431

Sample Program

| PROCEDURE DIVISION.

| Do-ODBC SECTION.

| Start-ODBC.

| DISPLAY "Sample ODBC 3.ð program starts"

| \ allocate henv & hdbc

| PERFORM ODBC-Initialization

| \ connect to data source

| CALL "SQLConnect" USING BY VALUE Hdbc

| BY REFERENCE ServerName

| BY VALUE ServerNameLength

| BY REFERENCE UserId

| BY VALUE UserIdLength

| BY REFERENCE Authentification

| BY VALUE AuthentificationLength

| RETURNING SQL-RC

| IF SQL-RC NOT = SQL-SUCCESS

| MOVE "SQLConnect" to SQL-stmt

| MOVE SQL-HANDLE-DBC to DiagHandleType

| SET DiagHandle to Hdbc

| PERFORM SQLDiag-Function

| END-IF

| \ set licensing informationm

| PERFORM SQL-SetLicInfo-Function

| \ allocate hstmt

| PERFORM Allocate-Statement-Handle

| \\\

| \ add application specific logic here \

| \\\

| \ clean-up environment

| PERFORM ODBC-Clean-Up.

| \ End of sample program execution

| DISPLAY "Sample COBOL ODBC program ended"

| GOBACK.

| \ copy predefined COBOL ODBC calls which are performed

| COPY "odbc3p.cpy".

| \\\

| \ End of ODBC3EG.CBL: Sample program for ODBC 3.ð \

| \\\

| Figure 95 (Part 2 of 2). Example of Using the ODBC Copybooks

| The following shows the copybook ODBC3D.CPY:

432 VisualAge COBOL Programming Guide

Sample Program

| \\

| \ ODBC3D.CPY (ODBC Ver 3.ð) \

| \--\

| \ Data definitions to be used with sample ODBC function calls \

| \ and included in WORKING-STORAGE or LOCAL-STORAGE SECTION \

| \\

| \ ODBC Handles

| ð1 Henv POINTER VALUE NULL.

| ð1 Hdbc POINTER VALUE NULL.

| ð1 Hstmt POINTER VALUE NULL.

| \ Arguments used for GetDiagRec calls

| ð1 DiagHandleType COMP-5 PIC 9(4).

| ð1 DiagHandle POINTER.

| ð1 DiagRecNumber COMP-5 PIC 9(4).

| ð1 DiagRecNumber-Index COMP-5 PIC 9(4).

| ð1 DiagSQLState.

| ð2 DiagSQLState-Chars PIC X(5).

| ð2 DiagSQLState-Null PIC X.

| ð1 DiagNativeError COMP-5 PIC S9(9).

| ð1 DiagMessageText PIC X(511) VALUE SPACES.

| ð1 DiagMessageBufferLength COMP-5 PIC S9(4) VALUE 511.

| ð1 DiagMessageTextLength COMP-5 PIC S9(4).

| \ Misc declarations used in sample function calls

| ð1 SQL-RC COMP-5 PIC S9(4) VALUE ð.

| ð1 Saved-SQL-RC COMP-5 PIC S9(4) VALUE ð.

| ð1 SQL-stmt PIC X(3ð).

| \\\\\\\\\\\\\\\\\\\\\\\\\

| \ End of ODBC3D.CPY \

| \\\\\\\\\\\\\\\\\\\\\\\\\

| Figure 96. Supplied Copybook ODBC3D.CPY

| The following shows the copybook ODBC3P.CPY:

 Chapter 23. Open Database Connectivity 433

Sample Program

| \\

| \ ODBC3P.CPY \

| \--\

| \ Sample ODBC initialization, clean-up and error handling \

| \ procedures (ODBC Ver 3.ð) \

| \\

| \\\ Initialization functions SECTION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| ODBC-Initialization SECTION.

| \

| Allocate-Environment-Handle.

| CALL "SQLAllocHandle" USING

| BY VALUE SQL-HANDLE-ENV

| BY VALUE SQL-NULL-HANDLE

| BY REFERENCE Henv

| RETURNING SQL-RC

| IF SQL-RC NOT = SQL-SUCCESS

| MOVE "SQLAllocHandle for Env" TO SQL-stmt

| MOVE SQL-HANDLE-ENV to DiagHandleType

| SET DiagHandle to Henv

| PERFORM SQLDiag-Function

| END-IF.

| \

| Set-Env-Attr-to-Ver3ð-Behavior.

| CALL "SQLSetEnvAttr" USING

| BY VALUE Henv

| BY VALUE SQL-ATTR-ODBC-VERSION

| BY VALUE SQL-OV-ODBC3

| \ or SQL-OV-ODBC2 \

| \ for Ver 2.x behavior \

| BY VALUE SQL-IS-UINTEGER

| RETURNING SQL-RC

| IF SQL-RC NOT = SQL-SUCCESS

| MOVE "SQLSetEnvAttr" TO SQL-stmt

| MOVE SQL-HANDLE-ENV to DiagHandleType

| SET DiagHandle to Henv

| PERFORM SQLDiag-Function

| END-IF.

| \

| Allocate-Connection-Handle.

| CALL "SQLAllocHandle" USING

| By VALUE SQL-HANDLE-DBC

| BY VALUE Henv

| BY REFERENCE Hdbc

| RETURNING SQL-RC

| Figure 97 (Part 1 of 5). Supplied Copybook ODBC3P.CPY:

434 VisualAge COBOL Programming Guide

Sample Program

| IF SQL-RC NOT = SQL-SUCCESS

| MOVE "SQLAllocHandle for Connection" to SQL-stmt

| MOVE SQL-HANDLE-ENV to DiagHandleType

| SET DiagHandle to Henv

| PERFORM SQLDiag-Function

| END-IF.

| \\\ SQL-SetLicInfo SECTION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| SQL-SetLicInfo-Function SECTION.

| SQL-SetLicInfo.

| CALL "iwzODBCLicInfo" USING BY VALUE Hdbc.

| \\\ SQLAllocHandle for statement function SECTION \\\\\\\\\\\\\\\

| Allocate-Statement-Handle SECTION.

| Allocate-Stmt-Handle.

| CALL "SQLAllocHandle" USING

| By VALUE SQL-HANDLE-STMT

| BY VALUE Hdbc

| BY REFERENCE Hstmt

| RETURNING SQL-RC

| IF SQL-RC NOT = SQL-SUCCESS

| MOVE "SQLAllocHandle for Stmt" TO SQL-stmt

| MOVE SQL-HANDLE-DBC to DiagHandleType

| SET DiagHandle to Hdbc

| PERFORM SQLDiag-Function

| END-IF.

| \\\ Cleanup Functions SECTION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| ODBC-Clean-Up SECTION.

| \

| Free-Statement-Handle.

| CALL "SQLFreeHandle" USING

| BY VALUE SQL-HANDLE-STMT

| BY VALUE Hstmt

| RETURNING SQL-RC

| IF SQL-RC NOT = SQL-SUCCESS

| MOVE "SQLFreeHandle for Stmt" TO SQL-stmt

| MOVE SQL-HANDLE-STMT to DiagHandleType

| SET DiagHandle to Hstmt

| PERFORM SQLDiag-Function

| END-IF.

| \

| Figure 97 (Part 2 of 5). Supplied Copybook ODBC3P.CPY:

 Chapter 23. Open Database Connectivity 435

Sample Program

| SQLDisconnect-Function.

| CALL "SQLDisconnect" USING

| BY VALUE Hdbc

| RETURNING SQL-RC

| IF SQL-RC NOT = SQL-SUCCESS

| MOVE "SQLDisconnect" TO SQL-stmt

| MOVE SQL-HANDLE-DBC to DiagHandleType

| SET DiagHandle to Hdbc

| PERFORM SQLDiag-Function

| END-IF.

| \

| Free-Connection-Handle.

| CALL "SQLFreeHandle" USING

| BY VALUE SQL-HANDLE-DBC

| BY VALUE Hdbc

| RETURNING SQL-RC

| IF SQL-RC NOT = SQL-SUCCESS

| MOVE "SQLFreeHandle for DBC" TO SQL-stmt

| MOVE SQL-HANDLE-DBC to DiagHandleType

| SET DiagHandle to Hdbc

| PERFORM SQLDiag-Function

| END-IF.

| \

| Free-Environment-Handle.

| CALL "SQLFreeHandle" USING

| BY VALUE SQL-HANDLE-ENV

| BY VALUE Henv

| RETURNING SQL-RC

| IF SQL-RC NOT = SQL-SUCCESS

| MOVE "SQLFreeHandle for Env" TO SQL-stmt

| MOVE SQL-HANDLE-ENV to DiagHandleType

| SET DiagHandle to Henv

| PERFORM SQLDiag-Function

| END-IF.

| \\\ SQLDiag function SECTION \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| SQLDiag-Function SECTION.

| SQLDiag.

| MOVE SQL-RC TO SAVED-SQL-RC

| DISPLAY "Return Value = " SQL-RC

| IF SQL-RC = SQL-SUCCESS-WITH-INFO

| THEN

| DISPLAY SQL-stmt " successful with information"

| ELSE

| DISPLAY SQL-stmt " failed"

| END-IF

| Figure 97 (Part 3 of 5). Supplied Copybook ODBC3P.CPY:

436 VisualAge COBOL Programming Guide

Sample Program

| \ - get number of diagnostic records - \

| CALL "SQLGetDiagField"

| USING

| BY VALUE DiagHandleType

| DiagHandle

| ð

| SQL-DIAG-NUMBER

| BY REFERENCE DiagRecNumber

| BY VALUE SQL-IS-SMALLINT

| BY REFERENCE OMITTED

| RETURNING SQL-RC

| IF SQL-RC = SQL-SUCCESS or SQL-SUCCESS-WITH-INFO

| THEN

| \ - get each diagnostic record - \

| PERFORM WITH TEST AFTER

| VARYING DiagRecNumber-Index FROM 1 BY 1

| UNTIL DiagRecNumber-Index > DiagRecNumber

| or SQL-RC NOT =

| (SQL-SUCCESS or SQL-SUCCESS-WITH-INFO)

| \ - get a diagnostic record - \

| CALL "SQLGetDiagRec"

| USING

| BY VALUE DiagHandleType

| DiagHandle

| DiagRecNumber-Index

| BY REFERENCE DiagSQLState

| DiagNativeError

| DiagMessageText

| BY VALUE DiagMessageBufferLength

| BY REFERENCE DiagMessageTextLength

| RETURNING SQL-RC

| Figure 97 (Part 4 of 5). Supplied Copybook ODBC3P.CPY:

 Chapter 23. Open Database Connectivity 437

Sample Program

| IF SQL-RC = SQL-SUCCESS OR SQL-SUCCESS-WITH-INFO

| THEN

| DISPLAY "Information from diagnostic record number"

| " " DiagRecNumber-Index " for "

| SQL-stmt ":"

| DISPLAY " SQL-State = " DiagSQLState-Chars

| DISPLAY " Native error code = " DiagNativeError

| DISPLAY " Diagnostic message = "

| DiagMessageText (1:DiagMessageTextLength)

| ELSE

| DISPLAY "SQLGetDiagRec request for " SQL-stmt

| " failed with return code of: " SQL-RC

| " from SQLError"

| PERFORM Termination

| END-IF

| END-PERFORM

| ELSE

| \ - indicate SQLGetDiagField failed - \

| DISPLAY "SQLGetDiagField failed with return code of: "

| SQL-RC

| END-IF

| MOVE Saved-SQL-RC to SQL-RC

| IF Saved-SQL-RC NOT = SQL-SUCCESS-WITH-INFO

| PERFORM Termination

| END-IF.

| \\\ Termination Section\\

| Termination Section.

| Termination-Function.

| DISPLAY "Application being terminated with rollback"

| CALL "SQLTransact" USING BY VALUE henv

| hdbc

| SQL-ROLLBACK

| RETURNING SQL-RC

| IF SQL-RC = SQL-SUCCESS

| THEN

| DISPLAY "Rollback successful"

| ELSE

| DISPLAY "Rollback failed with return code of: "

| SQL-RC

| END-IF

| STOP RUN.

| \\\\\\\\\\\\\\\\\\\\\\\\\

| \ End of ODBC3P.CPY \

| \\\\\\\\\\\\\\\\\\\\\\\\\

| Figure 97 (Part 5 of 5). Supplied Copybook ODBC3P.CPY:

438 VisualAge COBOL Programming Guide

Dynamic Linking

Chapter 24. Building Dynamic Link Libraries

By using linking you can have a program call another program which is not contained in
the calling program's source code. Before or during execution, the calling program's
object module is linked with the called program's object module.

Before you begin creating COBOL dynamic link libraries, you should understand the
differences between static and dynamic linking.

Static Linking Overview
Static linking involves a calling program being linked to a called program module,
resulting in a single executable module. The result of statically linking programs is an
.EXE file or DLL subprogram that contains the executable code for multiple programs.
This may include both the calling program and the called program. When the program
is loaded, the operating system attempts to place a single file containing the executable
code and data into memory.

The primary advantage of static linking is that you can create self-contained, inde-
pendent programs. In other words, the executable program consists of one part (the
.EXE file) that you need to keep track of. The disadvantages of static linking are as
follows:

� Linked external programs are built into the executable files, making these files
larger.

� The behavior of executable files cannot be changed without re-linking.

� External called programs cannot be shared, requiring duplicate copies of programs
to be loaded in memory if more than one calling program needs to access them.

To overcome these disadvantages, use dynamic linking.

Dynamic Linking Overview
Dynamic linking allows several programs to use a single copy of an executable module.
The executable module is completely separate from the programs that use it. Several
subprograms can be built into a dynamic link library (DLL), and calling programs can
use these subprograms as if they were part of the calling program's own executable
code. You can change the dynamically-linked subprograms without recompiling or
relinking the calling program.

DLLs are typically used to provide common functions that can be used by a number of
programs. For example, DLLs can be used to implement subprogram packages, sub-
systems, and interfaces to other programs. DLLs are also used to create object-
oriented class libraries (see Chapter 14, “Writing Object-Oriented Programs” on
page 270).

 Copyright IBM Corp. 1996, 1998 439

DLL Reference Resolution

You can dynamically link with the supplied run-time DLLs, as well as with your own
COBOL DLLs.

 For an in-depth discussion of static versus dynamic linking, refer to the
OS/2 Application Design Guide.

 Terminology Notes
If you are new to the PC, you might find the terminology used to discuss DLLs con-
fusing.

Keep in mind that a dynamic link library (DLL) is, above all, a library of functions. Even
if there is only one function provided by the DLL (as in the example provided in this
chapter), the purpose of a DLL is to serve as a repository of frequently-used functions.

In COBOL terms, a DLL is a collection of outermost programs. While these outermost
programs may contain nested programs, only the outermost programs (known as entry
points) are callable by programs external to the DLL. Just as you can compile and link
several COBOL programs together as a single executable (.EXE) you link one or more
compiled outermost COBOL programs together to create a DLL.

Because outermost programs in the DLL are part of a library of programs, each
program is referred to as a subprogram in the DLL. Even if a DLL provides only one
program, that program is considered a subprogram of the DLL.

How the Linker Resolves References to DLLs
When you compile a program, the compiler generates an object module for the code in
the program. If you use any subprograms (“functions” as described in C, “subroutines”
in other languages) that are in an external object module, the compiler adds an external
program reference to your program object module.

The linker resolves these external references. If it finds a reference to external subpro-
grams in an import library (see “Creating an Import Library” on page 444) or in a DLL's
module-definition file (see “Module Definition Files” on page 442), the code for the
external subprogram is in a DLL. To resolve external reference to DLLs, the linker
adds information to the executable file that tells the loader where to find the DLL code
when the executable file is loaded.

The DLLs that you reference can be created to load when the executable that calls
them is loaded (pre-load) or to load when they are first referenced (load on call).
However, not all references to DLLs by COBOL CALLs are resolved by the linker: CALL
identifier and CALL literal with the DYNAM option are resolved by COBOL when the
CALL is executed.

440 VisualAge COBOL Programming Guide

Creating a DLL

Creating a DLL
A DLL is built using compiled source code and a module-definition (.DEF) file (OS/2) or
export (.EXP) file (Windows).

Every DLL must have an accompanying .DEF file. The .DEF file contains information
that includes:

� The name of the DLL (limited to eight characters)
� When to load the DLL (pre-load or load on call)
� How to manage memory for the DLL
� When to initialize the DLL
� The names of subprograms included in the DLL

In every case, the first step is to construct your DLL. You write the source code for
DLL subprograms the way you write any other COBOL source programs.

Example of a DLL Source File
The following COBOL source code is a simple example of a DLL source subprogram.
When compiled, a DLL can contain numerous outermost programs, each of which is
considered a subprogram within the DLL.

In the case of the following example, the DLL contains only a single subprogram.
When the subprogram named MYDLL contained in the DLL named MYDLL.DLL, is called
by another program and executed, it will DISPLAY the text MYDLL Entered on the com-
puter screen.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. MYDLL.

 PROCEDURE DIVISION.

DISPLAY "MYDLL Entered".

 EXIT PROGRAM.

Figure 98. MYDLL.CBL— Example of a Simple COBOL DLL Source Program

The source code for the subprograms contained in the DLL is compiled and linked
using cob2 (for more details on how to compile and link DLLs, see Chapter 9, “Com-
piling, Linking, and Running Programs” on page 134). However, on OS/2, before you
are ready to build your DLL, you need to create its module definition file. This is dis-
cussed in the following section.

 Chapter 24. Building Dynamic Link Libraries 441

CALL identifier

| Module Definition Files
You must use a module definition file when you create any DLL. A module definition
(.DEF) file is a text file that describes the names, attributes, exports, imports, and other
characteristics of a program or dynamic link library.

When you create a DLL, its .DEF file must contain a list of all the subprograms in the
DLL that can be called by a program (or by another DLL). You specify these external
subprograms by using an EXPORTS statement in the file.

Example of a Module Definition File
The .DEF file for the compiled MYDLL.CBL source program (see Figure 98 on page 441)
is shown in the following figure. It illustrates the statements most frequently used in
module definition files that build DLLs.

;\\\

;\ MYDLL.DEF \

;\ Description: Provides the module definition \

;\ for MYDLL.DLL, a simple COBOL DLL \

;\\\

LIBRARY MYDLL INITINSTANCE TERMINSTANCE

PROTMODE

DATA MULTIPLE READWRITE LOADONCALL NONSHARED

CODE LOADONCALL EXECUTEREAD

EXPORTS

 MYDLL

Figure 99. MYDLL.DEF— DLL Module Definition File for MYDLL.DLL

| For a complete description of module definition files and their statement syntax, see
| Chapter 25, “Creating Module Definition Files” on page 448.

Export Files (Windows Only)

You must use an export file when you create any DLL. An export (.EXP) file is a binary
file that tells the linker what parts are exported by the DLL. It is built by the cob2
command when you compile and link the DLL.

Coding for CALL identifier
Your COBOL program can make a CALL to a user-defined identifier rather than to a
literal DLL subprogram name when the name of the target subprogram is not known
until execution time. For more information about the CALL statement, see the IBM
COBOL Language Reference.

442 VisualAge COBOL Programming Guide

CALL literal

For example, the following COBOL source program will call MYDLL in MYDLL.DLL (see
Figure 98 on page 441):

 IDENTIFICATION DIVISION.

 PROGRAM-ID. RTDLLRES.

 \

 \ THIS PROGRAM USES CALL identifier to call a subprogram

\ NAMED MYDLL in a DLL. IT REQUIRES A DLL

 \ NAMED MYDLL.DLL.

 \

 \

 DATA DIVISION.

 WORKING-STORAGE SECTION.

77 CALLNAM PIC IS X(8).

 PROCEDURE DIVISION.

DISPLAY "Start sample program RTDLLRES".

MOVE "MYDLL" TO CALLNAM.

 CALL CALLNAM.

DISPLAY "RTDLLRES successful".

 STOP RUN.

Figure 100. DYNAM.CBL— Run-Time DLL Reference Resolution

In the preceding example, the statement:

MOVE "MYDLL" TO CALLNAM.

is a reference to the single subprogram MYDLL of the DLL MYDLL.DLL.

Note: This DLL must be in a directory defined by the COBPATH environment variable
(see “Run-Time Environment Variables” on page 137).

Coding for CALL literal
Rather than using calls that are resolved at run time, you can use COBOL CALL literal.
By default, these calls are resolved by the linker.

DYNAM Setting: Whether these calls are resolved by the linker depends on the
setting of the DYNAM compile-time option:

� If the setting is DYNAM, the call is treated the same as CALL identifier and is
resolved at run time.

� If the setting is NODYNAM, CALL literal is resolved by the linker. With call
resolution by the linker, calls to subprograms in a DLL using CALL literal,
will not cause the DLL's object code to be included in the executable
module for your main program.

With CALL literal and NODYNAM, you can also statically link.

 Chapter 24. Building Dynamic Link Libraries 443

CALL literal

To make such a call to an entry point in a DLL, use an import library. The import
library tells the linker where to find the DLL subprograms used by your program.17

Unlike calls that result in run-time resolution, with link-time resolution you can have mul-
tiple entry points (outermost programs) in the DLL called.

Creating an Import Library

 On Windows the import library is created by the cob2 command when you
compile and link your DLL.

For call resolution to a DLL by the linker you need to explicitly create an import library.
To create an import library, use IMPLIB.EXE, the import library manager included with
VisualAge COBOL.

To create the import library for your DLL, first create its .DEF file (see “Module Definition
Files” on page 442). Then use IMPLIB to create the import library. For the sample
MYDLL previously discussed, we could create a library named MYDLL.LIB with the fol-
lowing syntax:

implib mydll.lib mydll.def

For IMPLIB syntax, enter the command at an OS/2 command prompt with no argu-
ments.

Once you have created the import library, convert the library to the new library format:

ILIB /CONV /NOE /NOBR mydll.lib

This improves linking performance.

An import library does not contain any object modules. Instead, the import library con-
tains information that tells the linker which DLLs are used by your program and which
individual subprograms are used within each DLL. When you link an executable
module, the linker uses this import library to resolve external references to DLLs.

You use import libraries every time you compile and link a program that uses the
system APIs. For example, all the OS/2 functions are implemented in DLLs, and
OS2386.LIB is an import library that tells the linker where to find each OS/2 function.

If you invoke the linker directly, give the name of the import library where you normally
specify library names.

17 Alternatively, you can use an IMPORTS statement in a .DEF file for your program.

 (Using .DEF files for stand-alone programs is not discussed here; see the OS/2 Application Design Guide).

444 VisualAge COBOL Programming Guide

Compiling and Linking Your DLL

Sample Program Using Call Resolution by the Linker
Figure 100 on page 443 shows a COBOL main program that makes a call to an entry
point in a DLL that is resolved at run time.

 If you have created an import library using IMPLIB, you can call the same
DLL, but have the entry resolved by the linker.

The following program is identical to RTDLLRES.CBL, except that the CALL is made
directly to a symbol exported in a .DEF file rather than to a user-defined word:

 IDENTIFICATION DIVISION.

 PROGRAM-ID. LTDLLRES.

 \

 \ THIS PROGRAM CALLS A SUBPROGRAM CALLED MYDLL WHICH

\ RESOLVES AT LINK-TIME. THE DLL IN WHICH "MYDLL"

\ IS FOUND IS NOT REQUIRED TO BE NAMED MYDLL.DLL

 \

 PROCEDURE DIVISION.

DISPLAY "Start sample program LTDLLRES".

 CALL "MYDLL"

DISPLAY "LTDLLRES successful".

 STOP RUN.

Figure 101. LTDLLRES.CBL— Link-Time DLL Reference Resolution

In this example, the CALL reference to MYDLL is not a direct reference to MYDLL.DLL
(although, in this case, the DLL happens to have the same name). The CALL is to the
symbolic name MYDLL, which was exported in the MYDLL.DEF file (see Figure 99 on
page 442). MYDLL, in turn, is the name of the only COBOL subprogram in MYDLL.DLL.
When LTDLLRES is built using cob2, the CALL to MYDLL in MYDLL.DLL will be resolved by
the linker.

Compiling and Linking Your DLL
Use cob2 to compile your source files and create a DLL (see Chapter 9, “Compiling,
Linking, and Running Programs” on page 134).

When you use cob2 to compile and link your DLL, specify the names of all the DLL
source files followed by the name of the module definition file (OS/2 only) on the
command line. The name of the first source file is used as the name of the DLL unless
you specify a filename with filetype .DLL, as in TEST.DLL on OS/2 or use the -dll
option, as in -dll:TEST on Windows.

For example, use cob2 to compile and link the DLL and main executable programs
described in this chapter. The DLL and programs that call it must be compiled in sepa-
rate steps.

 Chapter 24. Building Dynamic Link Libraries 445

Creating OO DLLs

� The following cob2 command will build the DLL named MYDLL.DLL (see Figure 98
on page 441):

cob2 mydll.cbl mydll.def

cob2 mydll.cbl -dll:mydll

� The following cob2 command will build the program RTDLLRES.EXE, which calls the
DLL subprogram MYDLL with run-time resolution (see Figure 100 on page 443):

 cob2 rtdllres.cbl

� The following cob2 command will build the program LTDLLRES.EXE, which calls the
DLL subprogram MYDLL with link-time resolution (see Figure 101 on page 445):

cob2 ltdllres.cbl mydll.lib

Creating Object-Oriented DLLs
COBOL supports the use of class programs as DLLs (for information about creating
class programs, see Chapter 14, “Writing Object-Oriented Programs” on page 270).

The procedure for creating class program DLLs is the same as that for creating proce-
dural program DLLs, with one exception. Class program DLLs require a different set of
entries in the EXPORTS section of the module definition file for the DLL

To build the definition file for a class:

1. Compile the COBOL class with the IDLGEN compiler option

2. Compile the IDL with the SOM compiler's def emitter

For example

cob2 -qidlgen ClassA.cbl

 sc -sdef ClassA.idl

See the SOMobjects Developer's Toolkit User's Guide (available online) for details.
(For more information about module definition files, see “Module Definition Files” on
page 442.)

Your class program is identified as a SOM subclass in the REPOSITORY paragraph of
the ENVIRONMENT DIVISION. In the .DEF file for the DLL, export the name of the class
program exactly as it is identified in the REPOSITORY paragraph, with 3 required strings
appended to the end of the class name. These strings are:

 1. class-nameNewCLass
 2. class-nameClassData
 3. class-nameCClassData

446 VisualAge COBOL Programming Guide

Creating OO DLLs

Mixed Case: The export specification is case-sensitive: specify the class name and
required strings in correct mixed case.

For example, suppose you have two class programs, CLASSA.CBL and CLASSB.CBL,
specified as ClassA and ClassB in their respective REPOSITORY paragraphs. If you
want to compile and link-edit these two class programs as a single DLL, the EXPORTS
section of the DLL's module definition file needs to specify the following:

EXPORTS

 ClassANewClass

 ClassAClassData

 ClassACClassData

 ClassBNewClass

 ClassBClassData

 ClassBCClassData

Note that a variation on each class name is exported verbatim, with three different
strings appended onto the class name. In the case of ClassA, the resulting export
statement includes:

 ClassANewCLass
 ClassAClassData
 ClassACClassData

This book does not address the details of creating SOM DLLs. If you would like a
detailed explanation of why these three entries are required in the EXPORTS para-
graph, see the SOMobjects Developer's Toolkit User's Guide (available online).

 Chapter 24. Building Dynamic Link Libraries 447

Module Definition Files

| Chapter 25. Creating Module Definition Files

| A module definition file contains one or more module statements. These statements:

| � Define various attributes of your executable output file
| � Define attributes of code and data segments in the file
| � Identify data and functions that are imported into or exported from your file

| If a module definition file is supplied, it is used. If not, the .DEF file is created by cob2
| as follows:

|

| The .DEF file is created by cob2 for OS/2 if the NOSEPOBJ compiler option is in effect.

|

|

| For Windows it is created if a .LIB file is supplied.

|

| In other cases (i.e. not the case where cob2 creates a .DEF file), if linking a DLL, the
| .DEF file must be supplied to cob2. cob2 will generate an .IMP file (OS/2, Windows)
| and an .EXP file (Windows).

| You can use module definition files when:

| � You are creating a DLL.

| � You are linking with a DLL, and are not using an import library to do so. You can
| use the IMPORTS module statement to define imports, instead of linking to an import
| library to resolve references to a DLL.

| � You need to define attributes of the executable output file more precisely than you
| can with options alone (for example, you want to define library initialization and
| termination behavior, with the LIBRARY statement).

| � You need to define segment attributes more precisely than you can with options
| alone

| When creating a module definition file, follow these rules:

| � Use a NAME or LIBRARY statement to define the type of executable output you
| want. You can only use one of these statements, and it must precede all other
| statements in the module definition file.

| � Begin comments with a semicolon (;). The linker ignores any line in the file that
| begins with a semicolon, and any portion of a line that follows a semicolon.

448  Copyright IBM Corp. 1996, 1998

Reserved Words

| � Enter all module definition keywords (for example, NAME, LIBRARY, and IOPL) in
| uppercase letters.

| � Do not use module definition keywords, or reserved words, as a text parameter to
| a statement (for example, you cannot use the LIBRARY statement to name a
| library SHARED, because SHARED is a keyword). See “Reserved Words” for a list
| of keywords and reserved words.

| Reserved Words
| The following words cannot be used as text parameters to a module statement. For
| example, you cannot use these words as the names of functions defined with the
| EXPORTS statement, or to name a stub file with the STUB statement.

| The words are either module definition keywords, or reserved by the linker.

| Note: Although module definition keywords should always be entered in uppercase
| letters, and only the uppercase forms are shown below, the mixed- and lower-case
| forms of these words are also reserved. For example, CONTIGUOUS, ContiGuous, and
| contiguous are all reserved.

| ALIAS
| BASE
| CODE
| CONFORMING
| CONTIGUOUS
| DATA
| DESCRIPTION
| DEV386
| DISCARDABLE
| DOS4
| DYNAMIC
| EXECUTEONLY
| EXECUTEREAD
| EXETYPE
| EXPANDDOWN
| EXPORTS
| FIXED
| HEAPSIZE
| HUGE
| IOPL
| IMPORTS
| IMPURE
| INCLUDE
| INITGLOBAL
| INITINSTANCE
| INVALID

| LIBRARY
| LOADONCALL
| LONGNAMES
| MAXVAL
| MIXED1632
| MOVABLE
| MOVEABLE
| MULTIPLES
| NAME
| NEWFILES
| NODATA
| NOEXPANDDOWN
| NOIOPL
| NONAME
| NONCONFORMING
| NONDISCARDABLE
| NONE
| NONPERMANENT
| NONSHARED
| NOTWINDOWCOMPAT
| OBJECTS
| OLD
| ORDER
| OS2
| PERMANENT
| PRELOAD

| PRIVATE
| PROTECT
| PURE
| READONLY
| READWRITE
| REALMODE
| RESIDENT
| RESIDENTNAME
| ROBASE
| SEGMENTS
| SHARED
| SINGLE
| STACKSIZE
| STUB
| SWAPPABLE
| SYSBASE
| TERMGLOBAL
| TERMINSTANCE
| UNKNOWN
| WINDOWAPI
| WINDOWCOMPAT
| WINDOWS

 Chapter 25. Creating Module Definition Files 449

Linker Module Statements

| Summary of Module Statements

| Figure 102. Linker Module Statements Summary. Default parameters are underlined. The defaults for
| NONE|SINGLE|MULTIPLE, SHARED|NONSHARED, INITGLOBAL|INITINSTANCE, and
| TERMGLOBAL|TERMINSTANCE are described in the detailed description of the option.

| Statement| Description| Parameters

| BASE| Set preferred loading address.| Loading address

| CODE| Give default attributes for code segments.| CONFORMING|NONCONFORMING
| EXECUTEONLY|EXECUTEREAD
| IOPL|NOIOPL
| PRELOAD|LOADONCALL

| DATA| Give default attributes for data segments.
| See detailed description for defaults of
| NONE|SINGLE|MULTIPLE,
| SHARED|NONSHARED.

| IOPL|NOIOPL
| NONE|SINGLE|MULTIPLES
| PRELOAD|LOADONCALL
| READONLY|READWRITE
| SHARED|NONSHARED

| DESCRIPTION| Describe the executable.| Descriptive text

| EXETYPE| Identify operating system.| OS2|WINDOWS|UNKNOWN

| EXPORTS| Define exported functions and data.| Entry name
| Internal name
| Ordinal position
| RESIDENTNAME|NONAME
| Parameter size

| HEAPSIZE| Specify local heap size.| bytes|MAXVAL

| IMPORTS| Define imported functions.| Internal name
| Name of exporting module
| Entry name or ordinal
| value

| LIBRARY| Identify output as dynamic link library
| (DLL). See detailed description for
| defaults of parameters.

| Library name
| INITGLOBAL|INITINSTANCE
| TERMGLOBAL|TERMINSTANCE

| NAME| Identify output as executable (EXE).| Application name
| WINDOWAPI|WINDOWCOMPAT
| |NOTWINDOWCOMPAT

| OLD| Preserve ordinal values from old DLL.| Name of old DLL

| SEGMENTS| Give attributes for specific segments. See
| detailed description for default of
| SHARED|NONSHARED.

| Segment name
| Class of the segment
| ALIAS
| CONFORMING|NONCOMFORMING
| EXECUTEONLY|EXECUTEREAD
| IOPL|NOIOPL
| MIXED1632
| PRELOAD|LOADONCALL
| READONLY|READWRITE
| SHARED|NONSHARED

| STACKSIZE| Specify local stack size.| Stack size (in bytes)

| STUB| Add DOS executable file to module.| File name to add

| Linker Module Statements
| The following linker module statements can be used to create module definition files.

450 VisualAge COBOL Programming Guide

| BASE
|

| 55──BASE──=──address──5%

| Use the BASE statement to specify the preferred load address for the first load
| segment of the module. The number you give for the option is rounded up to the
| nearest multiple of 64K. The second load segment is then loaded at the next available
| multiple of 64K, and so on.

| If the module's load segments cannot be loaded beginning at this preferred address,
| then the preferred address is ignored and the load segments are loaded according to
| the internal relocation records retained in the file data.

| For .EXE files, accept the default base address of 64K (BASE=0x00010000). Any other
| address will result in a warning, and 64K will be used anyway.

| This statement has the same effect as the /BASE linker option. If you specify both the
| statement and the option, the statement value overrides the option value.

| CODE
|

| 55──CODE─ ──┬ ┬─────────────── ──┬ ┬───────────── ──┬ ┬──────── ──────────────5
| ├ ┤─CONFORMING──── ├ ┤─EXECUTEONLY─ ├ ┤─IOPL───
| └ ┘─NONCONFORMING─ └ ┘─EXECUTEREAD─ └ ┘─NOIOPL─

| 5─ ──┬ ┬──────────── ──5%
| ├ ┤─PRELOAD────
| └ ┘─LOADONCALL─

| Defaults are: NONCONFORMING
| EXECUTEREAD
| NOIOPL
| LOADONCALL

| Use the CODE statement to define default attributes for code segments within the exe-
| cutable you are creating. You can override these default attributes for specific code
| segments by using the SEGMENTS statement (see “SEGMENTS” on page 462), or the
| /SECTION linker option.

| Attribute Rules
| � You can only specify one attribute from each pair. If you specify neither attribute,
| ILINK uses the default. See the description of the parameter for its default.

| � Attributes can appear in any order.

| CONFORMING|NONCONFORMING
| Use these attributes to specify whether a code segment is a 286-conforming segment.
| These attributes are relevant for device drivers, or system-level code. They apply to
| code segments only.

 Chapter 25. Creating Module Definition Files 451

CODE Example

| CONFORMING specifies that the segment is conforming, and uses a range of
| instructions that can be executed by a 286 (16-bit) processor. A CONFORMING
| segment can be called from either Ring 2 or Ring 3, and executes at the privilege
| level of the caller.

| � NONCONFORMING specifies that the segment is nonconforming, and uses
| instructions that require a 386 processor or higher. The segment is not guaranteed
| to be executable by a 286 processor.

| The default is NONCONFORMING.

| EXECUTEONLY|EXECUTEREAD
| Use these attributes to specify whether a code segment can be read as well as exe-
| cuted. These attributes apply to code segments only.

| � EXECUTEONLY specifies that the segment can only be executed.

| � EXECUTEREAD specifies that the segment can be both executed and read.

| The default is EXECUTEREAD.

| IOPL|NOIOPL
| Use these attributes to determine whether a segment has I/O privilege, that is, whether
| it can access the hardware directly.

| � IOPL specifies that the segment has I/O privilege.

| � NOIOPL specifies that the segment does not have I/O privilege.

| Note: 32-bit segments must be NOIOPL. You cannot specify a 32-bit segment as
| IOPL.

| PRELOAD|LOADONCALL
| Use these attributes to specify when the segment is loaded.

| Note: These attributes are ignored on OS/2 Version 2.0 or later.

| � PRELOAD specifies that the segment will be loaded automatically when the
| program starts.

| � LOADONCALL specifies that the segment will not be loaded until accessed.

| The default is LOADONCALL.

| Example
| Given the following line in a .DEF file,

| CODE LOADONCALL IOPL

| CODE segments are not loaded until accessed (LOADONCALL), and have I/O hard-
| ware privilege (IOPL). In addition, the linker assumes the following defaults:

| � EXECUTEREAD (can be read as well as executed)

452 VisualAge COBOL Programming Guide

| � NONCONFORMING (not guaranteed to run on a machine based on the 80286
| microprocessor)

| These attributes apply to all CODE segments, except when you override them with the
| SEGMENTS statement

| DATA
|

| 55──DATA─ ──┬ ┬──────── ──┬ ┬────────── ──┬ ┬──────────── ──┬ ┬─────────── ─────5
| ├ ┤─IOPL─── ├ ┤─NONE───── ├ ┤─PRELOAD──── ├ ┤─READONLY──
| └ ┘─NOIOPL─ ├ ┤─SINGLE─── └ ┘─LOADONCALL─ └ ┘─READWRITE─
| └ ┘─MULTIPLE─

| 5─ ──┬ ┬─────────── ───5%
| ├ ┤─SHARED────
| └ ┘─NONSHARED─

| Defaults are: NOIOPL
| SINGLE for .DLL files, MULTIPLE for .EXE files.
| LOADONCALL
| READWRITE
| SHARED for .DLL files, NONSHARED for .EXE files

| Use the DATA statement to define default attributes for data segments within the exe-
| cutable you are creating. You can override these default attributes for specific data
| segments by using the SEGMENTS statement (described on page 462), or the
| /SECTION linker option.

| Attribute Rules
| � You can only specify one attribute from each group. If you specify none of the
| attributes in a group, the linker uses the default. See the description of the param-
| eter for its default.

| � Attributes can appear in any order.

| IOPL|NOIOPL
| Use these attributes to determine whether a segment has I/O privilege, that is, whether
| it can access the hardware directly.

| � IOPL specifies that the segment has I/O privilege.

| � NOIOPL specifies that the segment does not have I/O privilege.

| Note: 32-bit segments must be NOIOPL. You cannot specify a 32-bit segment as
| IOPL.

| NONE|SINGLE|MULTIPLE
| Use these attributes to specify how the automatic data segment can be shared. The
| automatic data segment is the physical segment represented by the group name
| DGROUP. This segment group makes up the physical segment that contains the local
| stack and heap of the application.

 Chapter 25. Creating Module Definition Files 453

DATA Example

| � NONE specifies that no automatic data segment is created.

| � SINGLE specifies that a single automatic data segment is shared by all instances
| of the module. In this case, the module is said to have solo data. SINGLE is the
| default for .DLL files.

| � MULTIPLE specifies that the automatic data segment is copied for each instance of
| the module. In this case, the module is said to have instance data. MULTIPLE is
| the default for .EXE files.

| PRELOAD|LOADONCALL
| Use these attributes to specify when the segment is loaded.

| Note: These attributes are ignored on OS/2 Version 2.0 or later.

| � PRELOAD specifies that the segment will be loaded automatically whenthe
| program starts.

| � LOADONCALL specifies that the segment will not be loaded until accessed.

| The dafault is LOADONCALL

| READONLY|READWRITE
| Use these attributes to set the access rights to a data segment. These attributes apply
| to data segments only.

| � READONLY specifies that the segment can only be read.

| � READWRITE specifies that the segment can both be read and written to.

| The default is READWRITE.

| SHARED|NONSHARED
| Use these attributes to specify whether the segment can be shared by other processes.
| These attributes apply to data segments only.

| � SHARED specifies that one copy of the shared segment is loaded and shared
| among all processes accessing the module. SHARED is the default for dynamic
| link library (.DLL) files.

| � NONSHARED specifies that the segment cannot be shared, and must be loaded
| separately for each process. NONSHARED is the default for executable program
| (.EXE) files.

| Example
| Given the following line in a .DEF file,

| DATA LOADONCALL NONSHARED

| DATA segments are not loaded until they are accessed (LOADONCALL), and cannot
| be shared between multiple copies of the program (NONSHARED). In addition, the
| linker assumes the following defaults:

454 VisualAge COBOL Programming Guide

EXETYPE

| � READWRITE (DATA segments can be read and written to)
| � MULTIPLE (the automatic data segment is copied for each instance of the module)
| � NOIO (DATA segments have no I/O hardware privilege)

| These attributes apply to all DATA segments, except for the CONST32_RO segment,
| and any segments whose attributes you explicitly set with the SEGMENTS statement.

| DESCRIPTION
|

| 55──DESCRIPTION─ ──'text' ──5%

| Use the DESCRIPTION statement to insert the specified text into the .EXE or .DLL file
| you are creating. The DESCRIPTION statement is useful for embedding source control
| or copyright information into your program or DLL.

| The inserted text must be a one-line string enclosed in single quotation marks.

| Example
| Given the following line in a .DEF file,

| DESCRIPTION 'Template Program'

| the linker inserts the text Template Program into the .EXE or .DLL file.

| EXETYPE
|

| 55──EXETYPE─ ──┬ ┬─OS2───── ───5%
| ├ ┤─WINDOWS─
| └ ┘─UNKNOWN─

| Default is: OS2

| Use the EXETYPE statement to specify the operating system the .EXE or .DLL will run
| under. This statement is optional, and can provide an additional degree of protection
| against the program being run in an incorrect operating system.

| Specify one of the following operating systems:

| OS2 OS/2 .EXE and .DLL files (this is the default)

| WINDOWS Microsoft Windows applications

| UNKNOWN Other applications

| When you use EXETYPE, the linker sets bits in the header that identify operating-
| system type. Operating-system loaders can then check these bits before running the
| application.

 Chapter 25. Creating Module Definition Files 455

EXPORTS

| EXPORTS
|

| ┌ ┐──
| 55─| ─EXPORTS─ ───

6
┴─enm──=──inm─ ──┬ ┬──────────────────────── ──┬ ┬─────── ──5%

| └ ┘| ──@ord ──┬ ┬────────────── └ ┘| ─pwrds─
| ├ ┤─RESIDENTNAME─
| └ ┘─NONAME───────

| Use the EXPORT statement when you are creating a dynamic link library (DLL) to
| define the names and attributes of data and functions exported from the DLL, and of
| functions that run with I/O hardware privilege.

| Note: Exported data and functions are those available to other .EXE or .DLL files.
| Data and functions that are not exported can only be accessed within your DLL, and
| cannot be accessed by other .EXE or .DLL files.

| Give export definitions for functions and data in your DLL that you want to make avail-
| able to other .EXE or .DLL files.

| The EXPORTS keyword marks the beginning of the export definitions. Enter each defi-
| nition on a separate line. You can provide the following information for each export:

| enm The entry name of the data construct or function , which is the name other
| files use to access it. Always provide an entry name for each export.

| inm The internal name of the data construct or function, which is its actual name
| as it appears within the DLL. If you do not specify an internal name, the
| linker assumes it is the same as enm.

| ord The data construct or function's ordinal position in the module definition table.
| If you provide the ordinal position, the data construct or function can be refer-
| enced either by its entry name or by the ordinal. It is faster to access by
| ordinal positions, and may save space.

| You can specify one of two values:

| RESIDENTNAME Indicates that you want the data construct or function's
| name kept resident in memory at all times. You only
| need to specify RESIDENTNAME if you gave an ordinal
| position in ord. When a data construct or function does
| not have an ordinal position defined, OS/2 keeps the
| name of the exported data construct or function resident
| in memory by default.

| NONAME Indicates that you want the data construct or function to
| always be referenced by its ordinal number. If you
| specify NONAME, the data construct or function cannot
| be referenced by name: it can only be referenced by
| ordinal number.

| You cannot specify both values.

456 VisualAge COBOL Programming Guide

HEAPSIZE Example

| pwrds The total size of the function's parameters, as measured in words (bytes
| divided by two). This field is required only if the function executes with I/O
| privilege. When a function with I/O privilege is called, the operating system
| consults pwrds to determine how many words to copy from the caller's stack
| to the stack of the I/O-privileged function.

| Example
| The following example defines three exported functions:

| � SampleRead
| � StringIn
| � CharTest

| EXPORTS

| SampleRead = read2bin @8

| StringIn = str1 @4 RESIDENTNAME

| CharTest 6

| The first two functions can be accessed either by their exported names or by an ordinal
| number. Note that in the module's own source code, these functions are actually
| defined as read2bin and str1, respectively. The last function runs with I/O privilege,
| and so has pwrds (the total size of the parameters) defined for it: six words.

| HEAPSIZE
|

| 55──HEAPSIZE─ ──┬ ┬─size─── ───5%
| └ ┘─MAXVAL─

| Use the HEAPSIZE statement to define the size of the application's local heap in bytes.
| This value affects the size of the automatic data segment (DGROUP), which contains
| the local stack and heap of the application.

| You can enter any positive integer for the heap size.

| Instead of entering the number of bytes, you can enter the keyword MAXVAL. This
| increases the size of DGROUP to 64K, if it is smaller than 64K. MAXVAL is useful in
| bound applications, when you want to force a 64K requirement for DGROUP. MAXVAL
| is not generally useful for 32-bit programs.

| Example
| Given the following line in a .DEF file,

| HEAPSIZE 4ððð

| the linker sets the local heap to 4000 bytes.

 Chapter 25. Creating Module Definition Files 457

IMPORTS

| IMPORTS
|

| ┌ ┐─────────────────────────────────
| 55─| ─IMPORTS─ ───

6
┴──┬ ┬──────────── ──dllname.entry ───────────────────────5%

| └ ┘| ─intname──=─

| Use the IMPORT statement to define the names of the functions imported from a DLL
| for your .EXE or .DLL file to use.

| If your file references functions that are defined in a DLL, you must import the functions
| from the DLL before your file can use them. You must define them in the module defi-
| nition file, to give the name of the DLL the functions are defined in.

| Note: Instead of using the IMPORTS statement, you can use an import library
| (created by the IMPLIB utility) to resolve external references to DLL symbols.

| The IMPORTS keyword marks the beginning of the import definitions. Enter each defi-
| nition on a separate line. Each import definition corresponds to a particular function.
| The only limit on the number of import definitions is that the total amount of space
| required for their names must be less than 64K.

| You can provide the following information for each import definition:

| intname The internal name of the function, that is used within your module
| to call the function. This is the name used by the importing
| module, although the function can have a different name in the
| module where it is defined (the exporting module). If entry con-
| tains a name, then by default, intname uses the same name.

| dllname The name of the DLL that contains the function. You must provide
| this information for each import you define.

| entry The function to be imported, identified either by entry name or by
| ordinal value.

| You can only use an ordinal value if one is defined for the function
| in its export definition (see “EXPORTS” on page 456). If you use
| the ordinal value, then you must also define an intname for your
| module to use.

| The entry name for the function is always defined in its export defi-
| nition.

| By default, the exporting module and importing module both call the function by its
| entry name. However, each module can provide its own internal name for the function.
| It is possible for the function to have up to three distinct names:

| � The exporting module's internal name for the function (associated with the entry
| name by the export statement)

| � The function's entry name (and an optional ordinal value)

458 VisualAge COBOL Programming Guide

LIBRARY

| � The importing module's internal name for the function (associated with either the
| entry name or the ordinal value by the import statement)

| Example
| The following example defines three functions to be imported:

| � SampleRead
| � SampleWrite
| � A function that has been assigned an ordinal value of 1

| IMPORTS

| Sample.SampleRead

| SampleA.SampleWrite

| ReadChar = Read.1

| The functions are found in the modules Sample, SampleA, and Read, respectively.
| The SampleRead and SampleWrite functions are called by their entry names. The
| function from the Read module is called by the internal name ReadChar, which maps to
| the ordinal value 1. Its actual entry name is not shown, because it is called by ordinal
| value instead of by its entry name.

| LIBRARY
|

| 55──LIBRARY─ ──┬ ┬───────── ──┬ ┬────────────── ──┬ ┬────────────── ─────────5%
| └ ┘| ─libname─ ├ ┤─INITGLOBAL─── ├ ┤─TERMGLOBAL───
| └ ┘─INITINSTANCE─ └ ┘─TERMINSTANCE─

| Use the LIBRARY statement to identify the output file as a dynamic link library (DLL),
| and optionally define the name, library module initialization, and library module termi-
| nation.

| You can also identify the output file as a DLL with the /DLL option.

| The following table shows defaults for the fields, depending on whether the DLL has
| 16-bit entry points, or 32-bit entry points:

| If you use the LIBRARY statement in your module definition (.DEF) file, it must be the
| first statement in the .DEF file, and you cannot use the NAME statement.

| Figure 103. LIBRARY Default Values

| Attribute| Default for DLLs with 16-bit
| Entry Points
| Default for DLLs with 32-bit
| Entry Points

| libname| Name of output file with .DLL
| extension removed
| Name of output file with .DLL
| extension removed

| Initialization routine| INITGLOBAL| Matches term, if termination
| given. Otherwise INITGLOBAL.

| Termination routine| None (applies only to DLLs
| with 32-bit entry points)
| Matches initialization routine, if
| initialization given. Otherwise
| TERMGLOBAL.

 Chapter 25. Creating Module Definition Files 459

NAME

| If you provide a name in libname, it becomes the name of the library as it is known by
| OS/2. The name can be any valid file name.

| Specify one of the following library initialization routines to use:

| INITGLOBAL The library initialization routine is called only when the library
| module is initially loaded into memory.

| INITINSTANCE The library initialization routine is called each time a new process
| gains access to the library.

| If you are generating a DLL with 32-bit entry points, you can set the type of library
| termination you want:

| TERMGLOBAL The library termination routine is called only when the library
| module is unloaded from memory.

| TERMINSTANCE The library termination routine is called each time a process gives
| up access to the library.

| Example
| The following example assigns the name calendar to the dynamic link library (DLL),
| and specifies that library initialization be performed each time a new process gains
| access. If calendar has 32-bit entry points, the linker will assume TERMINSTANCE.

| LIBRARY calendar INITINSTANCE

| NAME
|

| 55──NAME─ ──┬ ┬───────── ──┬ ┬───────────────── ───────────────────────────5%
| └ ┘| ─appname─ ├ ┤─WINDOWAPI───────
| ├ ┤─WINDOWCOMPAT────
| └ ┘─NOTWINDOWCOMPAT─

| Use the NAME statement to identify the output file as an executable program (.EXE
| file), and optionally define the name and type of the .EXE file.

| You can also identify the output file as an .EXE file with the /EXEC option.

| If you use the NAME statement in your module definition (.DEF) file, it must be the first
| statement in the .DEF file, and you cannot use the LIBRARY statement.

| If you specify appname, it becomes the name of the .EXE as it is known by OS/2. The
| name can be any valid file name. If you do not provide a name, the name of the exe-
| cutable program is the same as the name of the output file, with the .EXE extension
| removed.

| The NAME statement also allows you to define the type of the program:

460 VisualAge COBOL Programming Guide

OLD

| You can also use the /PMTYPE option to set the type. If conflicting types are defined by
| the option and in the NAME statement, the type defined by the NAME statement over-
| rides the option value.

| Figure 104. NAME Statement Parameters

| Type| Description| /PMTYPE
| option
| equivalent

| WINDOWAPI| Presentation Manager application. The
| application uses the API provided by the
| Presentation Manager, and must run in the
| Presentation Manager environment.

| PM

| WINDOWCOMPAT| Application compatible with Presentation
| Manager. The application can run inside the
| Presentation Manager, or it can run in a
| separate screen group. An application can
| be of this type if it uses the proper subset of
| OS/2 video, keyboard, and mouse functions
| supported in the Presentation Manager
| applications.

| VIO

| NOTWINDOWCOMPAT| Application that is not compatible with the
| Presentation Manager and must run in a
| separate screen group from the Presentation
| Manager.

| NOVIO

| Example
| The following example assigns the name calendar to the executable program, and
| specifies it as compatible with PM.

| NAME calendar WINDOWCOMPAT

| OLD
|

| 55──OLD─ ──' ──┬ ┬───── name' ───5%
| └ ┘| ─dir─

| Use the OLD statement when you create a dynamic link library (DLL) to preserve com-
| patibility with an older version of the DLL. When you provide the name of the old DLL,
| specify the directory it is in as well, unless it is in the current working directory.

| The linker compares exported data constructs or functions in the old DLL with exported
| data constructs or functions in the current DLL. If the old data construct or function has
| an ordinal value assigned to it, the linker assigns the ordinal value to the equivalent
| data construct or function in the new DLL.

| If another run-time module called functions or referenced data from the old DLL by
| ordinal value, it can continue calling functions and referencing data from the new DLL
| using the same ordinal values.

 Chapter 25. Creating Module Definition Files 461

SEGMENTS

| The linker will only assign the old ordinal value to a data construct or function when:

| � The data construct or function name in the old DLL matches the data construct or
| function name in the new DLL exactly

| � The old data construct or function has an ordinal value assigned to it

| � The new data construct or function does not already have an ordinal value
| assigned to it.

| See “EXPORTS” on page 456 for more information on assigning ordinal values.

| SEGMENTS
|

| 55─| ─SEGMENTS───5

| ┌ ┐──
| 5─ ───

6
┴── ──┬ ┬─── segname ──┬ ┬─── ──┬ ┬──────────────── ─┤ Attribs ├─ ────────5%

| └ ┘─'─ └ ┘─'─ └ ┘| ─CLASS─ ──'class'

| Attribs:
| ├─ ──┬ ┬─────── ──┬ ┬─────────────── ──┬ ┬───────────── ──┬ ┬──────── ──────────5
| └ ┘─ALIAS─ ├ ┤─CONFORMING──── ├ ┤─EXECUTEONLY─ ├ ┤─IOPL───
| └ ┘─NONCONFORMING─ └ ┘─EXECUTEREAD─ └ ┘─NOIOPL─

| 5─ ──┬ ┬─────────── ──┬ ┬──────────── ──┬ ┬─────────── ──┬ ┬─────────── ────────┤
| └ ┘─MIXED1632─ ├ ┤─PRELOAD──── ├ ┤─READONLY── ├ ┤─SHARED────
| └ ┘─LOADONCALL─ └ ┘─READWRITE─ └ ┘─NONSHARED─

| Defaults are: NONCONFORMING
| EXECUTEREAD
| NOIOPL
| LOADONCALL
| READWRITE
| SHARED for .DLL files, NONSHARED for .EXE files.

| Use the SEGMENTS statement to define the attributes of one or more segments in the
| .EXE or .DLL file on a segment-by-segment basis. The attributes you specify in this
| statement override any defaults set in the CODE and DATA statements.

| You can also set some segment attributes with the /SECTION option.

| The SEGMENTS keyword marks the beginning of the segment definitions. Enter each
| definition on a separate line. You can enter up to 256 separate definitions.

| Each segment definition begins with its name (segname). If segname is the same as a
| module statement or keyword (such as DATA or IOPL), then you must enclose
| segname in single quotation marks (').

| You can specify the class of the segment with the CLASS keyword, followed by the
| class of the segment, enclosed in single quotation marks ('). If you do not specify a
| class for the segment, the linker assumes the segment is of class CODE.

462 VisualAge COBOL Programming Guide

| After the name and class, you can set attributes for the segment. If you do not specify
| attributes for a segment, the linker assumes a default set of attributes, as underlined in
| the parameters list above, or as set by the CODE and DATA statements. The default
| for SHARED|NONSHARED varies, depending on the type of output file.

| Attribute Rules
| � You can only specify one attribute from each pair. If you specify neither attribute,
| ILINK uses the default. See the description of the parameter for its default.

| � Attributes can appear in any order.

| ALIAS
| Use ALIAS to allow the segment to be addressed using both the 16-bit segmented
| method (_far16), and the 32-bit linear method. When you specify ALIAS, the loader
| prepares an additional segment selector for the segment that allows for 16-bit
| addressing of the segment. The segment can then be called using 16-bit far calls and
| 32-bit near calls.

| By default, segments are addressable only by the 32-bit linear method.

| CONFORMING|NONCONFORMING
| Use these attributes to specify whether a code segment is a 286-conforming segment.
| These attributes are relevant for device drivers, or system-level code. They apply to
| code segments only.

| CONFORMING specifies that the segment is conforming, and uses a range of
| instructions that can be executed by a 286 (16-bit) processor. A CONFORMING
| segment can be called from either Ring 2 or Ring 3, and executes at the privilege
| level of the caller.

| � NONCONFORMING specifies that the segment is nonconforming, and uses
| instructions that require a 386 processor or higher. The segment is not guaranteed
| to be executable by a 286 processor.

| The default is NONCONFORMING.

| EXECUTEONLY|EXECUTEREAD
| Use these attributes to specify whether a code segment can be read as well as exe-
| cuted. These attributes apply to code segments only.

| � EXECUTEONLY specifies that the segment can only be executed.

| � EXECUTEREAD specifies that the segment can be both executed and read.

| The default is EXECUTEREAD.

| IOPL|NOIOPL
| Use these attributes to determine whether a segment has I/O privilege, that is, whether
| it can access the hardware directly.

| � IOPL specifies that the segment has I/O privilege.

 Chapter 25. Creating Module Definition Files 463

SEGMENTS Example

| � NOIOPL specifies that the segment does not have I/O privilege.

| Note: 32-bit segments must be NOIOPL. You cannot specify a 32-bit segment as
| IOPL.

| MIXED1632
| Use MIXED1632 to specify that the segment is part of a group that allows a mix of
| 16-bit and 32-bit code. If you create a group that allows such mixing, you must declare
| each segment in the group as MIXED1632.

| PRELOAD|LOADONCALL
| Use these attributes to specify when the segment is loaded.

| Note: These attributes are ignored on OS/2 Version 2.0 or later.

| � PRELOAD specifies that the segment will be loaded automatically when the
| program starts.

| � LOADONCALL specifies that the segment will not be loaded until accessed.

| The default is LOADONCALL.

| READONLY|READWRITE
| Use these attributes to set the access rights to a data segment. These attributes apply
| to data segments only.

| � READONLY specifies that the segment can only be read.

| � READWRITE specifies that the segment can both be read and written to.

| The default is READWRITE.

| SHARED|NONSHARED
| Use these attributes to specify whether the segment can be shared by other processes.
| These attributes apply to data segments only.

| � SHARED specifies that one copy of the shared segment is loaded and shared
| among all processes accessing the module. SHARED is the default for dynamic
| link library (.DLL) files.

| � NONSHARED specifies that the segment cannot be shared, and must be loaded
| separately for each process. NONSHARED is the default for executable program
| (.EXE) files.

| Example
| The following example specifies segments named cseg1, cseg2, and dseg. The first
| segment is assigned class mycode, and the third segment is assigned class data. The
| second segment is assigned class CODE by default. Each segment is given different
| attributes.

464 VisualAge COBOL Programming Guide

STUB

| SEGMENTS

| cseg1 CLASS 'mycode' IOPL

| cseg2 EXECUTEONLY PRELOAD CONFORMING

| dseg CLASS 'data' LOADONCALL READONLY

| STACKSIZE
|

| 55──STACKSIZE──size───5%

| Use STACKSIZE to set the stack size (in bytes) of your program. The size must be an
| even number, from 0 to 0xFfffFffe. If you specify an odd number, it is rounded up to
| the next even number.

| You cannot specify a stack size in which the second most significant byte is either 02
| or 04 (in hex), because of a restriction in OS/2 2.0. The linker issues a warning, and
| adds 64k to the stack size to avoid the restriction.

| For example, if you specify STACKSIZE ðxððð2ðððð the linker adds 64k, which results in
| STACKSIZE ðxððð3ðððð

| Similarly, if you specify STACKSIZE ðx11ð41111 the linker adds 64k, which results in
| STACKSIZE ðx11ð51111

| If your program generates a stack-overflow message, use the STACKSIZE statement to
| increase the size of the stack.

| If your program uses the stack very little, you can save some space by decreasing the
| stack size.

| Note: Once the output file is produced, you can still change its stack size, using the
| EXEHDR utility in the Warp toolkit.

| The STACKSIZE statement is equivalent to the /STACK linker option. If you specify
| both the statement and the option, the statement value overrides the option value.

| Example
| The following example allocates 4 K of local-stack space:

| STACKSIZE 4ð96

| STUB
|

| 55──STUB─ ──'filename' ───5%

| Use the STUB statement to add a DOS .EXE file to the beginning of your .EXE or .DLL
| file. The stub function is then invoked whenever your .EXE or .DLL file is run under
| DOS. Typically, the stub displays the message that the program cannot run in DOS
| mode, and ends the program.

 Chapter 25. Creating Module Definition Files 465

STUB Example

| If you do not use the STUB statement, the linker adds its own standard stub for this
| purpose.

| The linker searches for the file name you specify as the stub as follows:

| 1. In the directory you specify, or in the current directory if you did not give a path

| 2. In the directories listed in the PATH environment variable

| Example
| The following example adds the DOS .EXE file STOPIT.EXE to the beginning of the file
| you are creating. STOPIT.EXE runs whenever your file is run under DOS.

| STUB 'STOPIT.EXE'

466 VisualAge COBOL Programming Guide

Multithreading

Chapter 26. Preparing COBOL Programs for Multithreading

In the PC environment, programs may run within the threads of processes. COBOL
supports multithreaded execution by means of the THREAD compiler option (see
“THREAD” on page 194). In order to understand this chapter's discussion of COBOL
support for multithreading, you need to be familiar with the following terms:

Process
The operating system and multithreading applications can handle execution flow
within a process. Multiple processes can run concurrently, and programs run
within a process can share resources. Processes can be manipulated (for
example, they can be given a high or low priority in terms of the amount of time
the system devotes to running the process).

Thread
Within a process, an application can initiate one or more threads. Within the
thread, control is transferred between executing programs.

Run-unit
In a multithreaded environment, a COBOL run-unit is defined as the portion of the
process including threads with actively executing COBOL programs. The COBOL
run-unit continues until no COBOL program is active in the execution stack for
any of the threads (for example, a called COBOL program contains a GOBACK
statement and returns control to a C program). Within the run-unit, COBOL pro-
grams can call non-COBOL programs, and vice versa.

Program Invocation Instance
Within a thread, control is transferred between separate COBOL and non-COBOL
programs. For example, a COBOL program can CALL another COBOL program
or a C program. Each separately invoked (as in, CALLed) program is a program
invocation instance. Program invocation instances of a particular program might
exist in multiple threads within a given process.

The following illustration shows the relationships between processes, threads, run-units,
and program invocation instances.

 Copyright IBM Corp. 1996, 1998 467

Multithreading

C
program

Thread 1 Thread 2

COBOL
program

A

COBOL
program

X

COBOL
program

B

COBOL
program

Y

•
•
•

C
program

C
program

PL/I
program

Thread 1 Thread 1

A Process Another Concurrent Process

Thread 2

COBOL
program A

COBOL
program A

PL/I
program

COBOL
program B

COBOL
program B

C
program

COBOL
program C

COBOL
program C

COBOL
program A

Program
invocation
instances

same
program
runs in

separate
threads

•
•
•

•
•
•

•
•
•

COBOL
run-unit

Figure 105. Schematic Illustration of Multithreading Concepts

COBOL does not directly support initiating or managing program threads. However,
COBOL programs can run as threads in multithreaded environments. In other words,
COBOL programs can be invoked by other applications such that they are running in
multiple threads within a process or as multiple program invocation instances within a
thread. This enables COBOL programs to run in multithreading environments like Pres-
entation Manager and MQSeries Three Tier applications.

This remainder of this chapter contains information that will help you prepare your
COBOL programs for multithreaded environments.

Caution: Do not confuse multiprocessing or multithreading with “multitasking,” which is
generally used to describe the external behavior of applications. That is, the operating
system appears to be running more than one application simultaneously. Multitasking
has no relevance in this discussion.

How Language Elements Are Interpreted in a Multithreaded Environment
Because your COBOL programs can be run as separate threads within a process, be
aware that language elements might be interpreted in two ways:

Run-unit scope
The language element persists for the duration of the COBOL run-unit execution
and is available to other programs within the thread.

468 VisualAge COBOL Programming Guide

Multithreading

Program invocation instance scope
The language element persists only within a particular program invocation
instance.

These two types of scope are important in two contexts:

Reference
Describes where an item can be referenced from. For example, if a data item
has run-unit reference scope, any program invocation instance in the run-unit can
reference the data item.

State
Describes how long an item persists in storage. For example, if a data item has
program invocation instance state scope, it will remain in storage only while the
program invocation instance is running.

The following table summarizes the reference and state scope of various COBOL lan-
guage elements.

Figure 106. Reference and State Scope for Language Elements in a Multithreading Environment

Language Element Reference Scope State Scope

ADDRESS-OF special register Same as associ-
ated record

Program invocation
instance

Files Run-unit Run-unit

Index data Program Program invocation
instance

LENGTH of special register Same as associ-
ated identifier

Same as associated
identifier

LINAGE-COUNTER special register Run-unit Run-unit

LINKAGE-SECTION data Run-unit Based on scope of
underlying data.

LOCAL-STORAGE data Within the thread Program invocation
instance

RETURN-CODE Run-unit Program invocation
instance

SORT-CONTROL, SORT-CORE-SIZE,
SORT-RETURN, TALLY special registers

Run-unit Program invocation
instance

WHEN-COMPILED special register Run-unit Run-unit

WORKING-STORAGE data Run-unit Run-unit

 Chapter 26. Preparing COBOL Programs for Multithreading 469

Multithreading

Working with Run-Unit Scoped Elements
If you have resources with run-unit scope (such as GLOBAL data declared in the
WORKING-STORAGE section), it is your responsibility to synchronize access to that
data from multiple threads using logic in the application. You can do one or both of the
following:

� Structure the application such that run-unit scoped resources are not accessed
simultaneously from multiple threads.

� If you are going to access resources simultaneously from separate threads, syn-
chronize access using facilities provided by C or by platform functions.

If you have resources with run-unit scope, and you want those resources to be isolated
within an individual program invocation instance (for example, programs with individual
copies of data), define the data in the local storage section so that it will have program
invocation instance scope.

Working with Program Invocation Instance Scoped Elements
With these language elements, storage is allocated for each individual program invoca-
tion instance. Therefore, even if a program is invoked multiple times among multiple
threads, each time it is invoked it will be allocated separate storage. For example, if
program X is invoked in two or more threads, each program invocation instance of X
gets its own set of resources, such as storage.

Because the storage associated with these language elements is program invocation
instance scoped, data is protected from access across threads and you do not have to
concern yourself with access synchronization. However, this data cannot be shared
between invocations of programs unless it is explicitly passed.

Choosing THREAD for Multithreading Support
Select the THREAD compiler option for multithreading support. Choose THREAD only if
you think your program will be invoked more than once in a single process by an appli-
cation (such as a MQSeries Three Tier application.) Compiling with THREAD prepares
the COBOL run-time environment for threading support. However, compiling with
THREAD may reduce program performance. You must compile all of the programs in
the run unit with THREAD; you cannot mix programs compiled with THREAD and those
compiled with NOTHREAD in one run unit.

The default option is NOTHREAD. For more information about the THREAD compiler
option, see “THREAD” on page 194.

Language Restrictions under THREAD
When THREAD is in effect, the following language elements are not supported and are
flagged by the compiler with error-level messages:

 � ALTER statement
� DEBUG-ITEM special register
� GO TO statement without a procedure name

470 VisualAge COBOL Programming Guide

Multithreading

 � INITIAL PROGRAM
 � RERUN
 � Segmentation module
� STOP literal statement

 � STOP RUN

Recursion with Threading
If a program is compiled with the THREAD compiler option, the program may be invoked
recursively in a threading or non-threading environment. This applies whether or not
the RECURSIVE phrase is specified in the PROGRAM-ID paragraph.

For considerations in using the LINKAGE SECTION with recursive calls, see “With
Recursion or Multithreading” on page 22.

Control Transfer within a Multithreaded Environment
Be aware of the following control transfer issues when writing COBOL programs for a
multithreaded environment:

CALL and CANCEL
As is the case in single-threaded environments, a program invoked is in its initial
state the first time it is called within a run unit and the first time it is called after a
CANCEL to the CALLED program.

EXIT PROGRAM
EXIT PROGRAM from the first program of a thread terminates that thread. EXIT
PROGRAM returns to the caller of the program without terminating the thread in all
other cases. EXIT PROGRAM from a main program is treated as a comment.

GOBACK
Same as EXIT PROGRAM, except that GOBACK from a main program terminates
the thread.

If it can be determined that there are no other COBOL programs active in the run
unit, the COBOL run unit termination process (including closing all open COBOL
files) is performed on the GOBACK from the first program of this thread. This
determination can be made if all COBOL programs invoked within the run unit
have returned to their invokers via GOBACK or EXIT PROGRAM.

Examples on when this determination cannot be made are:

� A thread with one or more active COBOL programs was terminated (for
example, because of an exception or via pthread_exit).

� A longjmp() was executed which resulted in collapsing active COBOL pro-
grams in the invocation stack.

In general, it is recommended that the programs initiating and managing multiple
threads use the COBOL pre-initialization interface.

Pre-initialization
If your program initiates multiple COBOL threads (for example, your C program
calls COBOL programs to carry out I/O), do not assume the COBOL programs

 Chapter 26. Preparing COBOL Programs for Multithreading 471

Multithreading

will “clean up” their environment. Particularly, do not assume that files will be
automatically closed. You should pre-initialize the COBOL environment so that
your application can control the COBOL “clean-up” (see Chapter 28, “Pre-
initializing the COBOL Run-Time Environment” on page 489).

STOP RUN: There is no COBOL function that effectively does a STOP RUN in a
threaded environment. If you need this behavior, consider invoking the C exit()
function from your COBOL program and using _iwzCOBOLTerm after the run-unit
termination exit.

Limitations on COBOL in a Multithreaded Environment
Some COBOL applications depend on subsystems or other applications. In a multi-
threaded environment, these dependencies result in some limitations on COBOL
programs:

DB2
The DB2 application may be run in multiple threads. However, any necessary
synchronization for DB2 data access is the responsibility of the application.

SORT/MERGE
SORT and MERGE should only be active in one thread at a time. However, this
is not enforced by the COBOL run-time environment— it must be controlled by
the application.

VSAM file I/O
I/O for VSAM files should be active from only one thread at a time. However,
this is not enforced by the COBOL run-time environment— it must be controlled
by the application.

In general, synchronizing access to resources visible to an application within a run unit
is the responsibility of the application. The exceptions to this are DISPLAY and ACCEPT,
which can be executed from multiple threads without any synchronization by applica-
tions.

Example of Using COBOL in a Multithreaded Environment
This example consists of a C main program that creates two COBOL threads, waits for
the COBOL threads to finish, then exits.

Sample Code for the Multithreading Example
The example has three code samples:

thrcob.c A C main program that creates the COBOL threads, waits for them to
finish, then exits.

subd.cbl A COBOL program that is run by the thread created by thrcob.c.

sube.cbl A second COBOL program that is run by the thread created by thrcob.c.

472 VisualAge COBOL Programming Guide

Multithreading

The sample code for thrcob.c is shown in Figure 107.

#define INCL_DOSPROCESS

#define INCL_DOSSEMAPHORES

#define LINKAGE _System

#define STACKSIZE 4ð96

#include <os2.h>

#include <stdio.h>

#include <setjmp.h>

#pragma handler(SUBD)

#pragma handler(SUBE)

long done;

jmp_buf Jmpbuf;

extern void _iwzCOBOLInit(int fcode, PFN StopFun, int \err_code, void \StopArg);

extern void _iwzCOBOLTerm(int fcode, int \err_code);

extern void LINKAGE SUBD(void);

extern void LINKAGE SUBE(void);

int LINKAGE

StopFun(long \stoparg)

{

printf("inside StopFun. Got stoparg = %d\n", \stoparg);

\stoparg = 123;

 longjmp(Jmpbuf,1);

}

long StopArg = ð;

void LINKAGE

testrc(int rc, const char \s)

{

if (rc != ð){

printf("%s: Fatal error rc=%d\n",s,rc);

 exit(-1);

 }

}

Figure 107 (Part 1 of 2). Source Code for thrcob.c

 Chapter 26. Preparing COBOL Programs for Multithreading 473

Multithreading

void LINKAGE

pgmy()

{

 TID t1, t2;

 int rc;

int parm1, parm2;

parm1 = 2ð;

parm2 = 1ð;

_iwzCOBOLInit(1, StopFun, &rc, &StopArg);

printf("_iwzCOBOLinit got %d\n",rc);

rc = DosCreateThread(&t1, (PFNTHREAD)SUBD,(ULONG)&parm1, ð, STACKSIZE);

 testrc(rc,"create 1");

rc = DosCreateThread(&t2, (PFNTHREAD)SUBE,(ULONG)&parm2, ð, STACKSIZE);

 testrc(rc,"create 2");

printf("threads are %x and %x\n",t1, t2);

 DosWaitThread(&t1, DCWW_WAIT);

 DosWaitThread(&t2, DCWW_WAIT);

printf("test gets done = %d \n",done);

 _iwzCOBOLTerm(1, &rc);

printf("_iwzCOBOLTerm got expect rc=ð, got rc=%d\n",rc);

}

LINKAGE

main()

{

if (setjmp(Jmpbuf) ==ð) {

 pgmy();

 }

}

Figure 107 (Part 2 of 2). Source Code for thrcob.c

The sample code for subd.cbl is shown in Figure 108 on page 475.

474 VisualAge COBOL Programming Guide

Multithreading

 IDENTIFICATION DIVISION.

 PROGRAM-ID. "subd".

 \

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 \

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

ð1 N2 PIC 9(8) comp-5 value ð.

 \

 LINKAGE SECTION.

ð1 N1 PIC 9(8) comp-5.

 \

PROCEDURE DIVISION using by reference n1.

perform n1 times

DISPLAY "subd gets " n1 " " n2

compute n2 = n2 + 1

 end-perform

DISPLAY "subd goback with " n1 " " n2

 GOBACK.

Figure 108. Source Code for subd.cbl

The sample code for sube.cbl is shown in Figure 109.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. "sube".

 \

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 \

 DATA DIVISION.

 LOCAL-STORAGE SECTION.

ð1 N2 PIC 9(8) comp-5 value ð.

 \

 LINKAGE SECTION.

ð1 N1 PIC 9(8) comp-5.

 \

PROCEDURE DIVISION using by reference n1.

perform n1 times

DISPLAY "sube gets " n1 " " n2

compute n2 = n2 + 1

 end-perform

DISPLAY "sube goback with " n1 " " n2

 GOBACK.

Figure 109. Source Code for sube.cbl

Compiling, Linking, and Running the Multithreading Example
To create and run the multithreading example, follow these steps:

1. To compile thrcob.c, enter icc /Gm+ /C+ thrcob.c at a command prompt

2. To compile subd.cbl, enter cob2 -qthread -c subd.cbl

 Chapter 26. Preparing COBOL Programs for Multithreading 475

Multithreading

3. To compile sube.cbl, enter cob2 -qthread -c sube.cbl

4. To generate the executable thrcob.exe, enter cob2 thrcob.obj subd.obj

sube.obj

5. To run the program thrcob, enter thrcob

476 VisualAge COBOL Programming Guide

National Language Support Considerations

Chapter 27. National Language Support Considerations

This chapter provides an overview of things you need to know about National Language
Support (NLS) when using IBM VisualAge COBOL.

The NLS support of this product includes the support for multiple code pages. The
characters represented in a supported code page can be used in COBOL names, data
definitions, literals, and in common entries.

The following list summarizes the double-byte character set (DBCS) code page support:

 � User-defined names

DBCS names are supported.

 � Data type

DBCS data type (with PICTURE N or G) is supported.

 � Literal

DBCS literals are supported.

 � Comments

DBCS comments are supported.

 � Collating sequence

Collating sequences for single-byte character set (ASCII and DBCS data are locale
sensitive: that is, based on the collating sequence indicated by the locale, except
for ASCII compares with a non-NATIVE collating sequence in effect).

This collating sequence rule applies to the single-byte characters whether the
single-byte characters are from an ASCII or DBCS code page.

Since the ANSI COBOL language elements dictate the knowledge of the collating
sequence at compile time, it is expected that the locale setting in effect at the
compile time and at the application execution time are consistent.

Locale: A locale is a collection of data that encodes information about a cultural envi-
ronment. Localization is an action that establishes a cultural environment for an appli-
cation by selecting the active locale. Only one locale can be active at one time. The
active locale affects the behavior on the locale-sensitive interfaces for the entire
program. This is called the global locale model.

The current locale is set using the LANG environment variable.

Locales and Code Sets Supported

Figure 110 shows the locales supported by VisualAge COBOL in an OS/2 environment.

 Copyright IBM Corp. 1996, 1998 477

National Language Support Considerations

Figure 110 (Page 1 of 2). Locales Supplied with VisualAge COBOL (OS/2)

Locale Name Lan-
guage

Country/Area ASCII
Code
Sets

EBCDIC
Code Sets

ar_AA Arabic Arabic Area IBM-864 IBM-420

bg_BG Bulgarian Bulgaria IBM-855 IBM-8801,
IBM-1025

cz_CZ Czech Czech Republic IBM-852 IBM-870

da_DK Danish Denmark IBM-850,
IBM-437

IBM-277

de_CH German Switzerland IBM-850,
IBM-437

IBM-500

de_DE German Germany IBM-850,
IBM-437

IBM-273

el_GR Greek Greece IBM-869 IBM-875

en_GB English United Kingdom IBM-850,
IBM-437

IBM-285

en_US English United States IBM-850,
IBM-437

IBM-037

es_ES Spanish Spain IBM-850,
IBM-437

IBM-284

fi_FI Finnish Finland IBM-850,
IBM-437

IBM-278

fr_BE French Belgium IBM-850,
IBM-437

IBM-500

fr_CA French Canada IBM-850,
IBM-437

IBM-037

fr_CH French Switzerland IBM-850,
IBM-437

IBM-500

fr_FR French France IBM-850,
IBM-437

IBM-297

hr_HR Croatian Croatia IBM-852 IBM-870

hu_HU Hungarian Hungary IBM-852 IBM-870

it_IT Italian Italy IBM-850,
IBM-437

IBM-280

iw_IL Hebrew Israel IBM-856 IBM-4241,
IBM-803

ja_JP Japanese Japan IBM-932,
IBM-942,
IBM-943

IBM-9301,
IBM-939

ko_KR Korean Korea IBM-949 IBM-933

478 VisualAge COBOL Programming Guide

National Language Support Considerations

Figure 111 shows the locales supported by VisualAge COBOL in a Windows environ-
ment.

Figure 110 (Page 2 of 2). Locales Supplied with VisualAge COBOL (OS/2)

Locale Name Lan-
guage

Country/Area ASCII
Code
Sets

EBCDIC
Code Sets

mk_MK Macedonian Macedonia,
former
Yugoslav
Republic of

IBM-855 IBM-8801,
IBM-1025

nl_BE Flemish Belgium IBM-850,
IBM-437

IBM-500

nl_NL Dutch Netherlands IBM-850,
IBM-437

IBM-037

no_NO Norwegian Norway IBM-850,
IBM-437

IBM-277

pl_PL Polish Poland IBM-852 IBM-870

pt_PT Portuguese Portugal IBM-850,
IBM-437

IBM-037

ru_RU Russian Russia IBM-855 IBM-8801,
IBM-1025

sh_SP Serbo-
Croation

Serbia IBM-852 IBM-870

sk_SK Slovak Slovakia IBM-852 IBM-870

sl_SI Slovene Slovenia IBM-852 IBM-870

sr_SP Serbian Serbia IBM-855 IBM-8801,
IBM-1025

sv_SE Swedish Sweden IBM-850,
IBM-437

IBM-278

tr_TR Turkish Turkey IBM-857 IBM-1026

zh_CN Simplified
Chinese

China IBM-1381,
IBM-1386

IBM-935

zh_TW Traditional
Chinese

Taiwan IBM-938,
IBM-948,
IBM-950

IBM-937

Note:

1. Indicates default EBCDIC code set

 Chapter 27. National Language Support Considerations 479

National Language Support Considerations

Figure 111 (Page 1 of 2). Locales Supplied with VisualAge COBOL (Windows)

Locale Name Lan-
guage

Country/Area ASCII
Code
Sets

EBCDIC
Code Sets

ar_AA Arabic Arabic Area IBM-1046 IBM-420

bg_BG Bulgarian Bulgaria IBM-1251 IBM-8801,
IBM-1025

cz_CZ Czech Czech Republic IBM-1250 IBM-870

da_DK Danish Denmark IBM-1252 IBM-277

de_CH German Switzerland IBM-1252 IBM-500

de_DE German Germany IBM-1252 IBM-273

el_GR Greek Greece IBM-875

en_GB English United Kingdom IBM-1252 IBM-285

en_US English United States IBM-1252 IBM-037

es_ES Spanish Spain IBM-1252 IBM-284

fi_FI Finnish Finland IBM-1252 IBM-278

fr_BE French Belgium IBM-1252 IBM-500

fr_CA French Canada IBM-1252 IBM-037

fr_CH French Switzerland IBM-1252 IBM-500

fr_FR French France IBM-1252 IBM-297

hr_HR Croatian Croatia IBM-1250 IBM-870

hu_HU Hungarian Hungary IBM-1250 IBM-870

it_IT Italian Italy IBM-1252 IBM-280

iw_IL Hebrew Israel IBM-1255 IBM-4241,
IBM-803

ja_JP Japanese Japan IBM-943 IBM-9301,
IBM-939

ko_KR Korean Korea IBM-1363 IBM-933

mk_MK Macedonian Macedonia,
former
Yugoslav
Republic of

IBM-1251 IBM-8801,
IBM-1025

nl_BE Flemish Belgium IBM-1252 IBM-500

nl_NL Dutch Netherlands IBM-1252 IBM-037

no_NO Norwegian Norway IBM-1252 IBM-277

pl_PL Polish Poland IBM-1250 IBM-870

pt_PT Portuguese Portugal IBM-1252 IBM-037

ru_RU Russian Russia IBM-1251 IBM-8801,
IBM-1025

480 VisualAge COBOL Programming Guide

National Language Support Considerations

Figure 112 shows the code set translations supported by VisualAge COBOL.

Note: Other code set translations are possible but might result in substitution charac-
ters (X'3F') being used for characters which are incompatible.

Figure 111 (Page 2 of 2). Locales Supplied with VisualAge COBOL (Windows)

Locale Name Lan-
guage

Country/Area ASCII
Code
Sets

EBCDIC
Code Sets

sh_SP Serbo-
Croation

Serbia IBM-1250 IBM-870

sk_SK Slovak Slovakia IBM-1250 IBM-870

sl_SI Slovene Slovenia IBM-1250 IBM-870

sr_SP Serbian Serbia IBM-1251 IBM-8801,
IBM-1025

sv_SE Swedish Sweden IBM-1252 IBM-278

tr_TR Turkish Turkey IBM-1254 IBM-1026

zh_CN Simplified
Chinese

China IBM-1386 IBM-935

zh_TW Traditional
Chinese

Taiwan IBM-950 IBM-937

Note:

1. Indicates default EBCDIC code set

Figure 112. Supported VisualAge COBOL ASCII to EBCDIC Code Set Translations

Language Group From ASCII Code Set To EBCDIC Code Set

Arabic IBM-864 IBM-420, IBM-8612

Cyrillic IBM-866 IBM-880, IBM-1025, IBM-1123

Latin-1 IBM-437, IBM-850,
IBM-860, IBM-861,
IBM-863, IBM-865

IBM-037, IBM-273, IBM-277, IBM-278,
IBM-280, IBM-284, IBM-285, IBM-297,
IBM-500, IBM-871

Latin-2 IBM-852, IBM-4948 IBM-870

Thai IBM-874 IBM-838, IBM-9030

Turkey IBM-857 IBM-905, IBM-1026

DBCS User-Defined Word Support
You can form user-defined words using double-byte characters.

 Chapter 27. National Language Support Considerations 481

National Language Support Considerations

 Usage Notes
A user-defined word containing double-byte characters must not contain more than 15
characters.

A DBCS user-defined word can contain both multi-byte and single-byte characters.
When a character exists in both single-byte and multi-byte forms, its single-byte and
multi-byte representations will not be regarded as equivalent. For example, “A” repres-
ented in double-bytes will not be considered to match “A” represented in a single byte.

Alphabet-names, class-names, condition-names, data-names, file-names, mnemonic-
names, record-names, and symbolic characters must contain at least one single-byte
alphabetic character or one multi-byte character.

A user-defined word containing multi-byte characters may not be continued.

Restrictions on Specific User-Defined Words
The IBM COBOL compiler supports the level-number user-defined word only when
represented in SBCS digits.

Support for the library-name, program-name, and text-name user-defined words with
DBCS depends on the DBCS name support of the platform. IBM COBOL will allow
double-byte or EUC characters in these names.

DBCS Literal Support
There are two literal types to represent double-byte character constants: N'dbcs charac-
ters' and G'dbcs characters'.

Additionally, you can specify any character in one of the supported code pages using
the alphanumeric literal syntax. However, such a literal is treated as alphanumeric in
COBOL language semantics (that is, semantics appropriated for single-byte characters).

The literal delimiters can be apostrophes or quotes depending on the APOST or QUOTE
compiler option setting.

A non-numeric literal containing double-byte characters cannot be continued. The
maximum length of a N or G literal is 28 double-byte characters. The maximum length
of a N or G literal is limited only by the available space in Area B on a single source
line.

Figurative constant [ALL]SPACE and [ALL]SPACES represent space characters in SBCS
or DBCS.

The ALL literal represents all or part of the string generated by successive concat-
enations of the single-byte characters or double-byte characters comprising the literal.
The literal must be a non-numeric literal or a DBCS literal. The literal must not be a
figurative constant.

482 VisualAge COBOL Programming Guide

National Language Support Considerations

DBCS Data Type Support
The DBCS class and category are defined as shown in the following table.

If a data item is declared with PICTURE N or G, the selected locale must indicate a
DBCS code page. In all other cases, the PICTURE characters N and G and USAGE
DISPLAY-1 are flagged as errors.

Level of Item Class Category

Elementary Alphabetic Alphabetic

Numeric Numeric

Alphanumeric Numeric edited

 Alphanumeric edited

 Alphanumeric

DBCS DBCS

Nonelementary (Group) Alphanumeric Alphabetic

 Numeric

 Numeric edited

 Alphanumeric edited

 Alphanumeric

 DBCS

Declaring DBCS Data
DBCS data is declared as follows:

PICTURE clause
A double-byte character position is represented by picture symbols N, G, or B.

A DBCS data item has the PICTURE character string with PICTURE symbols G, G and
B, or N. Each PICTURE symbol represents a DBCS character position. The number
of bytes occupied by each double-byte character is assumed to be two. That is,
single-byte characters of a DBCS code page should not be included in a DBCS data
item.

Operations on DBCS strings not conforming to this rule might produce unpredictable
results, such as the truncation of a string at a byte position in the middle of a double-
byte character.

This rule will not be enforced at run time. For a code page with characters repres-
ented in double bytes, the following padding and truncation rules apply where
COBOL language semantics specify truncation or padding with spaces:

 � Padding

For operations involving DBCS data items, the padding is done using the
double-byte space characters until the data area is filled. This is based on the
number of byte positions allocated for the data area.

 Chapter 27. National Language Support Considerations 483

National Language Support Considerations

Where the padding may not be in the multiple of the code page width (for
example, a group item moved to a DBCS data item), the padding is done with
single-byte space characters.

 � Truncation

The truncation is done based on the size of the target data area on the byte
boundary of the end of that data area. It is the application program's responsi-
bility to ensure that such a truncation does not result in truncation of bytes
representing a partial double-type character.

USAGE clause
A DBCS data item is specified with USAGE DISPLAY-1. When you use PICTURE
symbol G, you must specify USAGE DISPLAY-1. When you use PICTURE symbol N,
USAGE DISPLAY-1 is implied and the USAGE clause may be omitted.

VALUE clause
The associated VALUE clause (if specified) must specify a DBCS literal or the figura-
tive constants SPACE OR SPACES.

Reference modification
For the purpose of handling reference modifications, each character in a DBCS data
item is considered to occupy the number of bytes corresponding to the code page
width (that is, 2).

DBCS Class Test
Kanji and DBCS class test are defined to be consistent with their IBM System/390 defi-
nitions. Both class tests are internally performed by converting the double-byte charac-
ters to the double-byte characters defined for IBM System/390. The converted
double-byte characters are tested for DBCS and Japanese graphic characters.

Kanji class test results in testing for valid Japanese graphic characters. This includes
Katakana, Hiragana, Roman, and Kanji character sets.

The Kanji class test is done by checking the converted characters for X'41' - X'7E'
for the first byte and X'41' - X'FE' for the second byte plus the space character,
X'4040'.

DBCS class test results in testing for valid graphic characters for the code page.

The DBCS class test is done by checking the converted characters for X'41' - X'FE'
for both the first and second byte of each character plus the space character, X'4040'.

 Collating Sequence
Considerations for DBCS and ASCII collating sequence are as described below. Any
comparison involving a group item will be handled based on the comparison of the byte
for byte positions in hex.

484 VisualAge COBOL Programming Guide

National Language Support Considerations

The following clauses in the SPECIAL-NAMES paragraph may be specified only if the
code page in effect is an ASCII code page:

 � ALPHABET clause

� SYMBOLIC CHARACTER clause

 � CLASS clause

These clauses, if specified with a DBCS code page in effect, will be diagnosed and
treated as comments.

DBCS Collating Sequence
Data items and literals of class DBCS can be used in a relation condition with any
relational operator. Each operand must be either of class DBCS, alphabetic, or
alphanumeric (elementary or group). Note that this allows, for example, a compar-
ison of a DBCS item with an alphanumeric item. No conversion or editing is done.
No distinction is made between items of category DBCS and items of category DBCS
edited.

DBCS comparisons are performed based on the rules for non-numeric comparisons.
The comparison is based on the locale setting for the collating sequence if the oper-
ands are elementary DBCS or alphanumeric data items.

The PROGRAM COLLATING SEQUENCE clause has no effect on comparisons involving
data items of class DBCS or DBCS literals.

ASCII Collating Sequence
The ANSI COBOL rules on the PROGRAM COLLATING SEQUENCE clause and the
COLLATING SEQUENCE clause on SORT and MERGE apply.

If the collating sequence in effect is NATIVE (which is default if neither the COLLATING
SEQUENCE clause nor the PROGRAM COLLATING SEQUENCE clause is specified),
the collating sequence is based on the locale setting. This applies to SORT or
MERGE statements as well as to the program collating sequence.

Note that the collating sequence impacts the processing of the alphabetic clause (for
example, literal-1 THRU literal-2), SYMBOLIC CHARACTERS specifications, and VALUE
range specifications for Level 88 items as well as relation conditions and SORT and
MERGE statements.

Since the rules of the COBOL user-defined alphabet name and symbolic characters
assume a character-by-character collating sequence (not a collating sequence which
may depend on a sequence of multiple characters), the locale-sensitive collating is that
aspect that can be expressed by assigning a weight on each character in the code set.

Intrinsic Functions with Collating Sequence Sensitivity
The following intrinsic functions are dependent on the ordinal positions of characters.
These intrinsic functions are not supported for the DBCS data type (for example, sup-
ported for single-byte characters, alphabetic or numeric). For an ASCII code page,
these intrinsic functions are supported based on the collating sequence in effect. For a
DBCS code page, the ordinal positions of single-byte characters are assumed to corre-
spond to the hex representations of the single-byte characters. For example, the
ordinal positions for 'A' is 66 (X'41' + 1) and the ordinal position for '*' is 43 (X'2A' + 1).

 Chapter 27. National Language Support Considerations 485

National Language Support Considerations

 � CHAR

Returns the character of the ordinal position given.

 � MAX

Returns the contents of the argument that contains the maximum value. Note that
the arguments may be alphabetic or alphanumeric.

 � ORD

Returns the ordinal position of the given character.

 � ORD-MAX

Returns the highest ordinal position of the characters given. ORD-MAX with
numeric arguments are supported independent of the code page in effect.

 � ORD-MIN

Returns the lowest ordinal position of the characters given. ORD-MIN with numeric
arguments are supported independent of the code page in effect.

Any comparisons involving a group item will be handled based on the comparison of
the byte-for-byte positions in hex.

 Comments
Character strings that form comments may contain any characters, including DBCS
characters. A single DBCS character may not be split (and continued) across multiple
source lines.

Messages Enabled for NLS
The following messages are NLS enabled and appropriate message text and formats
are used based on the locale setting:

 � Compiler messages.

 � Run-time messages.

� Compiler listing headers. This includes locale-sensitive date and time formats.

� Debugger user interface.

Cross-Reference Output Sequence
The cross-reference output is ordered in the collating sequence indicated by the locale
setting.

 Locale Sensitivity
This product is sensitive to the locale setting for the following features:

� Code page selection

486 VisualAge COBOL Programming Guide

National Language Support Considerations

The locale in effect determines the code set for both compilation of source pro-
grams, including non-numeric literal values, and their execution. That is, the code
set used for compilation is based on the locale setting at compile time, and the
code set used for application program execution is based on the locale setting at
run time.

The EBCDIC code set is based on the current locale setting. Figure 110 on
page 477 shows the locales and code sets supported with VisualAge COBOL
under OS/2. Figure 111 on page 479 shows the locales and code sets supported
with VisualAge COBOL under Windows.

If more than one EBCDIC code set is applicable for the current locale, and you
want to use other than the default, then:

– Set the CHAR compiler option to EBCDIC; “CHAR” on page 165 discusses this
option.

– Set the EBCDIC_CODEPAGE to establish the EBCDIC code set applicable; see
page 138.

 � Messages

This applies to the message text, the date and time format, and order for XREF for
the compiler listing output and to run-time message text. The compile-time locale
is used for compiler output, the run-time setting for run-time output.

 � Collating sequence

Locale sensitivity for the collating sequence applies only when the collating
sequence is NATIVE; the locale has no impact on the collating sequence if
COLLSEQ(BIN) or COLLSEQ(EBCDIC) is in effect.

The collating sequence for single-byte alphanumeric characters for the program
collating sequence is based on the compile-time or run-time locale. If the PRO-
GRAMMING COLLATING SEQUENCE clause is specified in the source program, the
collating sequence is set at compile-time and is used regardless of the run-time
locale. If the collating sequence is not set using this clause, but is set using the
COLLSEQ compiler option, the run-time locale takes precedence.

The collating sequence for SORT or MERGE statements is always based on the
run-time locale.

The run-time locale-based collating sequence is always applicable to DBCS data,
independent of the COBOL source-level collating sequence specification (which
applies to single-byte alphanumeric data), except for comparisons of literals. Com-
parisons of DBCS literals are based on the compile-time locale. Thus, DBCS
literals should not be used in the source program within a statement with an
implied relational condition between two DBCS literals (such as VALUE G literal1
THRU G literal2) unless the intended run-time locale is the same as the compile-
time locale.

The compile-time and run-time locale settings are assumed to be the same for
other uses of the collating sequence.

 Chapter 27. National Language Support Considerations 487

National Language Support Considerations

The following are not affected by the locale setting, as the ANSI COBOL Standard
defines specific COBOL language elements for controlling these items:

� Decimal point and numeric separator

 � Currency sign

488 VisualAge COBOL Programming Guide

Preinitialization

Chapter 28. Pre-initializing the COBOL Run-Time Environment

Pre-initialization allows an application to initialize the COBOL run-time environment
once, perform multiple executions using the environment, and then explicitly terminate
the environment. Pre-initialization is used to invoke COBOL programs multiple times
from a non-COBOL (for example, C or C++) environment.

Note: Pre-initialization is not supported under CICS.

The pre-initialization has two primary benefits:

� Keeps the COBOL environment ready for program calls

Since the COBOL run unit is not terminated on return from first COBOL program in
the run unit, the COBOL programs invoked from a non-COBOL environment can
be invoked in its last-used state.

 � Performance

Creating and taking down the COBOL run-time environment repeatedly uses a
great deal of overhead and can slow down your application's performance.

Use pre-initialization services for multilanguage applications where non-COBOL pro-
grams need to use a non-COBOL program in its last-used state. For example, a file
may be opened on a first call to a COBOL program, and the invoking program expects
subsequent calls to that program to find the file left open.

Use the interfaces described below to initialize and terminate a persistent COBOL run-
| time environment. Any DLL that contains a COBOL program used in a pre-initialized
| environment cannot be deleted until the pre-initialized environment is terminated.

If you plan to run your program in an OS/390 or VM environment, use the pre-
initialization interfaces described in IBM Language Environment for OS/390 & VM Pro-
gramming Guide.

Initialize Persistent COBOL Environment

 Syntax

55──call──Init_routine──(──function_code──,──routine──,──error_code────5

5──,──token──)──5%

call
Invocation of Init_routine, using language elements appropriate to the language
from which the call is being made.

Init_routine
The name of the initialization routine: _iwzCOBOLInit or IWZCOBOLINIT for OS/2 and
Windows (using OPTLINK linkage convention); _IwzCOBOLInit for Windows (using
STDCALL linkage convention).

 Copyright IBM Corp. 1996, 1998 489

Terminate COBOL Environment

function_code (input) — A 4-byte binary number, passed by value
function_code can be:

1 The first COBOL program invoked following this function invocation is
treated as a subprogram.

routine (input)
Address of the routine to be invoked if the run unit terminates. The token argu-
ment passed to this function will be passed on to the run unit termination exit
routine. This routine, when invoked on the run unit termination, must not return to
the invoker of the routine but rather do a longjmp() or exit(). This routine will be
invoked with the SYSTEM linkage convention.

error_code (output) — A 4-byte binary number
error_code can be:

0 pre-initialization was successful.

1 pre-initialization failed.

token (input)
4 byte token to be passed on to the exit routine specified in the earlier argument
when that routine is invoked on the run unit termination.

Terminate Pre-initialized COBOL Environment

 Syntax

55──call──Term_routine──(──function_code──,──error_code──)────────────5%

call
Invocation of Term_routine, using language elements appropriate to the language
from which the call is being made.

Term_routine
The name of the initialization routine: _iwzCOBOLTerm or IWZCOBOLTERM for OS/2 or
Windows (using OPTLINK linkage convention); _IwzCOBOLTerm for Windows (using
STDCALL linkage convention)

function_code (input), a 4-byte binary number, passed by value
function_code can be:

1 Clean up the pre-initialized COBOL run-time environment as if a
COBOL STOP RUN statement had been performed; for example, all
COBOL files are closed. However, the control returns to the caller of
this service, not to the invoker of the COBOL main program; the
routine named in the call to the pre-initialization routine is not invoked.
(See Figure 114 on page 492. StopFun does not get called.)

error_code (output), a 4-byte binary number
error_code can be:

490 VisualAge COBOL Programming Guide

Example of Pre-initializing

0 termination was successful.

1 termination failed.

The first COBOL program called following the invocation of the pre-inialization routine is
treated as a subprogram. Thus, a GOBACK from this (initial) program does not trigger
run-unit termination semantics (such as the closing of files). Note that the run unit ter-
mination (such as with STOP RUN) does free the pre-initialized COBOL environment
prior to the invocation of the run unit exit routine.

If Not Active: If your program invokes the termination routine and the COBOL envi-
ronment is not already active, the termination routine invocation has no effect on the
execution and the control is returned to the invoker with an error code of 0.

Example of Pre-initializing the COBOL Environment
Figure 113 illustrates how the pre-initialized COBOL environment works. The example
shows a C program initializing the COBOL environment, calling COBOL programs, then
terminating the COBOL environment.

 ┌─5 C_PgmY

 C_PgmX │ ┌────────────────────────────────┐

┌─────────────────────────┐ │ │ ... │

│ ... │ │ │ _iwzCOBOLInit ─┼──┐

│ if (setjmp(here) !=ð │ │ │ (1, C_StopIt, fdbk, here) │ │

 │ { │ │ │ ... │ │

┌──┼──5 printf("STOP RUNed") │ │ │ COBOL-PgmA() ─┐ │ │

│ │ ... │ │ │ ... │ │ │

│ │ ... │ │ └───────────────┼────────────────┘ │

│ │ } │ │ │ 6

│ │ printf("setjmp done") │ │ COBOL-PgmA %──┘ _iwzCOBOLInit

│ │ C_PgmY(here) ─────────┼─┘ ┌────────────────────┐ ┌──────────────┐

│ │ ... │ │ ... │ │ ... │

│ └─────────────────────────┘ │ CALL COBOL-PgmB ─┼─┐ └──────────────┘

│ │ ... │ │

│ └────────────────────┘ │

│ COBOL-PgmB %─────────┘

│ ┌────────────┐

│ │ ... │

│ │ STOP RUN ──┼─┐

│ └────────────┘ │

│ │

│ C_StopIt %────────────────────┘

│ ┌───────────────┐

│ │ ... │

└───────────────┤ longjmp(here) │

 └───────────────┘

Figure 113. Illustration of Pre-Initialized COBOL Environment

The following example shows the use of COBOL pre-initialization. A C main program
calls the COBOL program XIO several times. The first call to XIO opens the file, the
second call writes one record, and so on. The final call closes the file. The C program
then uses C-stream I/O to open and read the file. It assumes the use of VisualAge for
C++.

 Chapter 28. Pre-initializing the COBOL Run-Time Environment 491

Example of Pre-initializing

To test and run the program, enter the following commands from a command window:

cob2 -c xio.cbl

icc testinit.c xio.obj

testinit

The result is:

_iwzCOBOLinit got ð

xio entered with x=ðððððððððð

xio entered with x=ððððððððð1

xio entered with x=ððððððððð2

xio entered with x=ððððððððð3

xio entered with x=ððððððððð4

xio entered with x=ðððððððð99

StopArg=ð

_iwzCOBOLTerm expects rc=ð and got rc=ð

FILE1 contains ----

11111

22222

33333

---- end of FILE1

Note that in this example, the run unit was not terminated by a COBOL STOP RUN; it
was terminated when the main program called _iwzCOBOLTerm.

The following C program is in the file testinit.c:

#ifdef _AIX

typedef int (\PFN)();

#define LINKAGE

#else

#include <os2.h>

#define LINKAGE _System

#endif

#include <stdio.h>

#include <setjmp.h>

Figure 114 (Part 1 of 2). Source Code for testinit.c

492 VisualAge COBOL Programming Guide

Example of Pre-initializing

extern void _iwzCOBOLInit(int fcode, PFN StopFun, int \err_code, void \StopArg);

extern void _iwzCOBOLTerm(int fcode, int \err_code);

extern void LINKAGE XIO(long \k);

jmp_buf Jmpbuf;

long StopArg = ð;

int LINKAGE

StopFun(long \stoparg)

{

 printf("inside StopFun\n");

\stoparg = 123;

 longjmp(Jmpbuf,1);

}

main()

{

 int rc;

 long k;

 FILE \s;

 int c;

if (setjmp(Jmpbuf) ==ð) {

_iwzCOBOLInit(1, StopFun, &rc, &StopArg);

printf("_iwzCOBOLinit got %d\n",rc);

for (k=ð; k <= 4; k++) XIO(&k);

k = 99; XIO(&k);

 }

else printf("return after STOP RUN\n");

 printf("StopArg=%d\n", StopArg);

 _iwzCOBOLTerm(1, &rc);

printf("_iwzCOBOLTerm expects rc=ð and got rc=%d\n",rc);

printf("FILE1 contains ---- \n");

s = fopen("FILE1", "r");

if (s) {

while ((c = fgetc(s)) != EOF) putchar(c);

 }

printf("---- end of FILE1\n");

}

Figure 114 (Part 2 of 2). Source Code for testinit.c. A C program that shows the use of pre-
initialization.

 Chapter 28. Pre-initializing the COBOL Run-Time Environment 493

Example of Pre-initializing

The following COBOL program is in the file xio.cbl:

 IDENTIFICATION DIVISION.

 PROGRAM-ID. xio.

 \\

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT file1 ASSIGN TO FILE1

ORGANIZATION IS LINE SEQUENTIAL

FILE STATUS IS file1-status.

 DATA DIVISION.

 FILE SECTION.

 FD FILE1.

ð1 file1-id pic x(5).

 WORKING-STORAGE SECTION.

ð1 file1-status pic xx value is zero.

 LINKAGE SECTION.

 \

ð1 x PIC S9(8) COMP-5.

PROCEDURE DIVISION using x.

display "xio entered with x=" x

if x = ð then

OPEN output FILE1

 end-if

Figure 115 (Part 1 of 2). Source Code for xio.cbl

494 VisualAge COBOL Programming Guide

Example of Pre-initializing

if x = 1 then

MOVE ALL "1" to file1-id

 WRITE file1-id

 end-if

if x = 2 then

MOVE ALL "2" to file1-id

 WRITE file1-id

 end-if

if x = 3 then

MOVE ALL "3" to file1-id

 WRITE file1-id

 end-if

if x = 99 then

 CLOSE file1

 end-if

 GOBACK.

Figure 115 (Part 2 of 2). Source Code for xio.cbl. A COBOL program that shows the use of
pre-initialization.

 Chapter 28. Pre-initializing the COBOL Run-Time Environment 495

Simplifying Coding

Chapter 29. Productivity and Tuning Techniques

This chapter provides techniques to improve programmer productivity using built-in
functions and services, and contains guidelines on performance optimization to help
you make the most of your COBOL applications.

Simplifying Complex Coding and Other Programming Tasks
By using COBOL intrinsic functions and Language Environment callable services, you
can avoid having to code a lot of arithmetic or other complex tasks.

 Intrinsic Functions
COBOL provides various string- and number-manipulation capabilities that can help you
simplify your coding. For more information, see “Numeric Intrinsic Functions” on
page 40.

Date and Time Callable Services
With the date and time callable services, you can get the current local time and date in
several formats, as well as perform date and time conversions. Two callable services,
CEEQCEN and CEESCEN, provide a predictable way to handle 2-digit years, such as
91 for 1991 or 02 for 2002.

The following lists the date and time callable services available:

| CEECBLDY Converts character date value to COBOL integer date format. Day one
is 01 January 1601 and the value is incremented by one for each subse-
quent day. This service is similar to CEEDAYS, except that it provides

| an answer in COBOL integer date format, so that it is compatible with
ANSI COBOL intrinsic functions. The returned value from this service
should not be used with other date and time callable services.

CEEDATE Converts dates in the Lilian format back to character values.

CEEDATM Convert number of seconds to character timestamp.

CEEDAYS Convert character date values to the Lilian format. Day one is 15
October 1582 and the value is incremented by one for each subsequent
day.

CEEDYWK Provides day of week calculation.

CEEGMT Gets current Greenwich Mean Time (date and time).

CEEGMTO Gets difference between Greenwich Mean Time and local time.

CEEISEC Converts binary year, month, day, hour, second, and millisecond to a
number representing the number of seconds since 00:00:00 15 October
1582.

CEELOCT Gets current date and time.

| CEEQCEN Queries the callable services century window.

496  Copyright IBM Corp. 1996, 1998

Simplifying Coding

| CEESCEN Sets the callable services century window.

CEESECI Converts a number representing the number of seconds since 00:00:00
15 October 1582 to seven separate binary integers representing year,
month, day, hour, minute, second, and millisecond.

CEESECS Converts character timestamps (a date and time) to the number of
seconds since 00:00:00 15 October 1582.

CEEUTC Same as CEEGMT.

For details on individual date and time callable services, see Appendix E, “Date and
Time Callable Services Reference” on page 558.

All of the above date and time callable services allow source code compatibility with
COBOL for OS/390 & VM and COBOL for MVS & VM. There are, however, significant
differences in the way conditions are handled. See “Condition Handling” on page 498
for details.

How to Invoke Date and Time Callable Services
To invoke a date and time callable service, use a CALL statement with the correct
parameters for that particular service, for example:

CALL "CEEDATE" using argument, format, result, feedback-code.

You define the variables in the CALL statement in the DATA DIVISION of your program
with the data definitions required by the particular function you are calling:

77 argument pic s9(9) comp.

 ð1 format.

ð5 format-length pic s9(4) comp.

 ð5 format-string pic x(8ð).

 77 result pic x(8ð).

77 feedback-code pic x(12) display.

In this example, the date and time callable service CEEDATE converts a number
representing a Lilian date in the variable argument to a date in character format which is
written to the variable result. The format of the conversion is controlled by the picture
string contained in the variable format. Information about the success or failure of the
call is returned in the variable feedback-code.

All of the date and time callable services allow the specification of a feedback code
parameter which is optional. Specify OMITTED for this parameter if you do not want the
date and time callable service to return information about the success or failure of the
call. However, if omitting this parameter, the program will abend if the callable service
does not complete successfully. See “Condition Handling” on page 498 for additional
information.

When calling a date and time callable service and you specify OMITTED for the feed-
back code, the RETURN-CODE special register is set to 0 if the service is successful but
is not altered if the service is unsuccessful. If the feedback code is not OMITTED, the
RETURN-CODE special register is always set to 0 regardless of whether the service
completed successfully.

 Chapter 29. Productivity and Tuning Techniques 497

Simplifying Coding

For a description of the OMITTED phrase, see IBM COBOL Language Reference.

The date and time callable services must be invoked using the standard system linkage
convention. This can be achieved by either compiling the program using the
CALLINT(SYSTEM) compiler option (this is the default), or by using the
>>CALLINTERFACE SYSTEM compiler-directing statement.

| Note: The CALL statements used to invoke the date and time callable services must
| use a literal for the program name as opposed to an identifier. See IBM COBOL Lan-

guage Reference for details on the CALL statement.

 Condition Handling
There is a significant difference in the condition handling between VisualAge COBOL
and IBM Language Environment on the host. VisualAge COBOL adheres to the native
COBOL condition handling scheme and does not provide the level of support in Lan-
guage Environment. If a feedback token is passed as an argument, it will simply be
returned after the appropriate information has been filled in. The caller can then
examine the contents and perform any actions, if necessary. The condition will not be
signaled. If a date and time callable service is called with the OMITTED phrase as a
substitute for the feedback code, the program will abend if the service does not com-
plete successfully.

A feedback token contains feedback information in the form of a condition token. The
condition token set by the service will be returned to the calling routine, indicating
whether the service was completed successfully or not. VisualAge COBOL uses the
same feedback token as Language Environment which is defined as follows:

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

| ð4 Severity PIC S9(4) COMP.

| ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

| ð4 Class-Code PIC S9(4) COMP.

| ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

| ð2 I-S-Info PIC S9(9) COMP.

498 VisualAge COBOL Programming Guide

Simplifying Coding

The following describes what each field will contain and identifies any differences with
IBM Language Environment on the host:

Severity This is the severity number with the following possible values:

0 Information only (or, if the entire token is zero, no information).

1 Warning - service completed, probably correctly.

2 Error detected - correction attempted; service completed, perhaps
incorrectly.

3 Severe error - service not completed.

4 Critical error - service not completed.

Msg-No This is the associated message number. See Appendix F, “Run-Time
Messages” on page 606 for additional information.

Case-Sev-Ctl This field will always contain the value 1.

Facility-ID This field will always contain the characters CEE.

I-S-Info This field will always contain the value 0.

| Sample COPY files are provided which define the condition tokens. The file
| CEEIGZCT.CPY contains the definitions of the condition tokens when you are using
| native data types in your program. The file CEEIGZCT.EBC contains the definitions of
| the condition tokens when you are using host data types. In order to use the COPY file
| with the host data type support, you need to rename the file to CEEIGZCT.CPY. These
| files can be found in the SAMPLES\CEE directory.

| The condition tokens contained in the files are equivalent to those provided with Lan-
| guage Environment, except that for native data types, the character representations are
| in ASCII instead of EBCDIC, and the bytes within binary fields are reversed.

The descriptions of the individual callable services include a listing of the possible sym-
bolic feedback codes that might be returned in the feedback code output field specified
on invocation of the service. In addition to these, the symbolic feedback code CEE0PD
might be returned for any callable service. See message IWZ0813S for details.

All date and time callable services are based on the Gregorian calendar. Date vari-
ables associated with this calendar have architectural limits. These limits are:

Starting Lilian date The beginning of the Lilian date range is Friday 15 October
1582, the date of adoption of the Gregorian calendar. Lilian
dates preceding this date are undefined. Therefore:

� Day zero is 00:00:00 14 October 1582
� Day one is 00:00:00 15 October 1582

All valid input dates must be after 00:00:00 15 October 1582.

End Lilian date The end Lilian date range is set to 31 December 9999. Lilian
dates following this date are undefined. The reason for this limit
is a 4-digit year.

 Chapter 29. Productivity and Tuning Techniques 499

Simplifying Coding

Picture Character Terms and Strings
Picture character terms and strings are used to define the format of a date and/or time
field used by several of the date and time callable services. A picture string is a tem-
plate that indicates the format of the input of the data or the desired format of the
output. Figure 116 and Figure 117 on page 501 define the supported picture char-
acter terms and string values.

Figure 116 (Page 1 of 2). Picture Character Terms Used in Picture Strings for Date and Time Services

Picture
Terms

Explanations

Valid Values

Notes

Y

YY

YYY

ZYY

YYYY

1-digit year
2-digit year
3-digit year
3-digit year within era
4-digit year

0-9
00-99
000-999
1-999
1582-9999

Y valid for output only.
YY assumes range set by
CEESCEN.
YYY/ZYY used with <JJJJ>, <CCCC>

and <CCCCCCCC>.

<JJJJ> Japanese era name in DBCS
characters

Heisei
(X'95BD9ðAC')
Showa
(X'8FBA9861')
Taisho
(X'91E59ðB3')
Meiji
(X'96BE8EA1')

Affects YY field: if <JJJJ> speci-
fied, YY means the year within
Japanese era, for example, 1988
equals Showa 63. See example
in Figure 117 on page 501.

<CCCC>

<CCCCCCCC>

Republic of China (ROC) era
name in DBCS characters

MinKow
(X'8D8196CD')
ChuHwaMinKow
(X'8C839ADC8D8196CD')

Affects YY field: if <CCCC> speci-
fied, YY means the year within
ROC era, for example, 1988
equals Minkow 77. See example
in Figure 117 on page 501.

MM

ZM

2-digit month
1- or 2-digit month

01-12
1-12

For output, leading zero sup-
pressed. For input, ZM treated as
MM.

RRRR

RRRZ

Roman numeral month I␣␣␣-XII␣ (Left justified) For input, source string is folded
to uppercase. For output, upper-
case only. I=Jan, II=Feb, ...,
XII=Dec.

MMM

Mmm

MMMM...M

Mmmm...m

MMMMMMMMMZ

Mmmmmmmmmz

3-char month, uppercase
3-char month, mixed case
3-20 char mo., uppercase
3-20 char mo., mixed case
trailing blanks suppressed
trailing blanks suppressed

JAN-DEC
Jan-Dec
JANUARY␣␣-DECEMBER␣

January␣␣-December␣
JANUARY-DECEMBER
January-December

For input, source string always
folded to uppercase. For output,
M generates uppercase and m gen-
erates lowercase. Output is
padded with blanks (␣) (unless Z
specified) or truncated to match
the number of Ms, up to 20.

DD

ZD

DDD

2-digit day of month
1- or 2-digit day of mo.
Day of year (Julian day)

01-31
1-31
001-366

For output, leading zero is always
suppressed. For input, ZD treated
as DD.

HH

ZH

2-digit hour
1- or 2-digit hour

00-23
0-23

For output, leading zero sup-
pressed. For input, ZH treated as
HH. If AP specified, valid values
are 01-12.

MI Minute 00-59

SS Second 00-59

500 VisualAge COBOL Programming Guide

Simplifying Coding

Figure 116 (Page 2 of 2). Picture Character Terms Used in Picture Strings for Date and Time Services

Picture
Terms

Explanations

Valid Values

Notes

9

99

999

Tenths of a second
Hundredths of a second
Thousandths of a second

0-9
00-99
000-999

No rounding.

AP

ap

A.P.

a.p.

AM/PM indicator AM or PM
am or pm
A.M. or P.M.
a.m. or p.m.

AP affects HH/ZH field. For input,
source string always folded to
uppercase. For output, AP gener-
ates uppercase and ap generates
lowercase.

W

WWW

Www

WWW...W

Www...w

WWWWWWWWWZ

Wwwwwwwwwz

1-char day-of-week
3-char day, uppercase
3-char day, mixed case
3-20 char day, uppercase
3-20 char day, mixed case
Trailing blanks suppressed
Trailing blanks suppressed

S, M, T, W, T, F, S
SUN-SAT
Sun-Sat
SUNDAY␣␣␣-SATURDAY␣
Sunday␣␣␣-Saturday␣
SUNDAY-SATURDAY
Sunday-Saturday

For input, Ws are ignored. For
output, W generates uppercase
and w generates lowercase.
Output padded with blanks
(unless Z specified) or truncated
to match the number of Ws, up to
20.

All others Delimiters X'01'-X'FF'
(X'00' is reserved for “internal”
use by the date and time callable
services)

For input, treated as delimiters
between the month, day, year,
hour, minute, second, and fraction
of a second. For output, copied
exactly as is to the target string.

Note:

Blank characters are indicated by the symbol ␣.

Figure 117 (Page 1 of 2). Examples of Picture Strings Recognized by Date and Time Services

Picture Strings Examples Notes

YYMMDD

YYYYMMDD

YYYY-MM-DD

<JJJJ> YY.MM.DD

<CCCC> YY.MM.DD

880516
19880516
1988-05-16
Showa 63.05.16

MinKow 77.05.16

1988-5-16 would also be valid input.
Showa is a Japanese Era name. Showa 63
equals 1988.
MinKow is an ROC Era name. MinKow 77
equals 1988.

MMDDYY

MM/DD/YY

ZM/ZD/YY

MM/DD/YYYY

MM/DD/Y

050688
05/06/88
5/6/88
05/06/1988
05/06/8

1-digit year format (Y) valid for output only

DD.MM.YY

DD-RRRR-YY

DD MMM YY

DD Mmmmmmmmmm YY

ZD Mmmmmmmmmz YY

Mmmmmmmmmz ZD, YYYY

ZDMMMMMMMMzYY

09.06.88
09-VI -88
09 JUN 88
09 June 88
9 June 88
June 9, 1988
9JUNE88

Z suppresses zeros/blanks

 Chapter 29. Productivity and Tuning Techniques 501

Simplifying Coding

Figure 117 (Page 2 of 2). Examples of Picture Strings Recognized by Date and Time Services

Picture Strings Examples Notes

YY.DDD

YYDDD

YYYY/DDD

88.137
88137
1988/137

Julian date

YYMMDDHHMISS

YYYYMMDDHHMISS

YYYY-MM-DD HH:MI:SS.999

WWW, ZM/ZD/YY HH:MI AP

Wwwwwwwwwz, DD Mmm YYYY,

ZH:MI AP

880516204229
19880516204229
1988-05-16 20:42:29.046
MON, 5/16/88 08:42 PM
Monday, 16 May 1988, 8:42 PM

Timestamp—valid only for CEESECS and
CEEDATM. If used with CEEDATE, time
positions are filled with zeros. If used with
CEEDAYS, HH, MI, SS, and 999 fields are
ignored.

Note: Lowercase characters must be used only for alphabetic picture terms.

Figure 118. Japanese Eras Used by Date/Time Services when <JJJJ> Specified

First Date of
Japanese Era

Era Name

Era Name in Japanese
DBCS Code

Valid Year Values

1868-09-08 Meiji X'96BE8EA1' 01-45

1912-07-30 Taisho X'91E59ðB3' 01-15

1926-12-25 Showa X'8FBA9861' 01-64

1989-01-08 Heisei X'95BD9ðAC' 01-999 (01 = 1989)

Figure 119. Republic of China Eras Used by Date/Time Services when <CCCC> or <CCCCCCCC> Specified

First Date of
ROC Era

Era Name

Era Name in Chinese
DBCS Code

Valid Year Values

1912-01-01 MinKow X'96BE8EA1' 01-999 (77 = 1988)

ChuHwaMinKow X'8C839ADC8D8196CD'

 Performing Calculations
The date and time callable services store dates as fullword binary integers and
timestamps as doubleword floating-point values, formats that permit you to perform
arithmetic calculations on date and time values in a simple and efficient manner. This
eliminates the need to write special subroutines that use services outside of the lan-
guage library for your application in order to perform these calculations. The following
is a generic example of how you can use date and time callable services to convert a
date to a different format and perform a simple calculation on the formatted date:

CALL CEEDAYS USING dateof_hire, 'YYMMDD', doh_lilian, fc.

CALL CEELOCT USING todayLilian, today_seconds, today_Gregorian, fc.

COMPUTE servicedays = today_Lilian - doh_Lilian.

COMPUTE serviceyears = service_days / 365.25.

In the example, you want to calculate the number of years of service for an employee
in your organization, and are using the original date of hire in the format YYMMDD to

502 VisualAge COBOL Programming Guide

Simplifying Coding

make the calculations. Use the CEEDAYS (Convert Date to Lilian Format) service to
convert these dates to a Lilian format.

The CEELOCT (Get Current Local Time) service is called next to get the current local
time. doh_Lilian is then subtracted from today_Lilian (the number of days from the
beginning of the Gregorian calendar to the current local time) to calculate the employ-
ee's total number of days of employment. The final calculation divides that number by
365.25 to get the number of service years.

The Century Window Concept
To process 2-digit years in the year 2000 and beyond, the date and time callable ser-
vices employ a sliding scheme by which all 2-digit years are assumed to lie within a
100-year interval starting 80 years before the current system date:

 1917 1997 2ð16

 │ │ │

 └───────────────────────┼──────────┘

 │

 System Date

One hundred years, in 1997 spanning from 1917 to 2016, is the default century window
for the date and time callable services. For example, in 1997 years 17 through 99 are
recognized as 1917-1999, and years 00 through 16 are recognized as 2000-2016. In
1998, years 18 through 99 are recognized as 1918-1999, and years 00 through 17 are
recognized as 2000-2017.

By year 2080, all 2-digit years would be recognized as 20xx. In 2081, 00 would be
recognized as year 2100.

Some applications may need to set up a different 100-year interval. For example,
banks often deal with 30-year bonds, which could be due 01/31/20. The CEESCEN
callable service (see Appendix E, “Date and Time Callable Services Reference” on
page 558) allows you to change the century window.

A companion service, CEEQCEN, queries the current century window. This allows a
subroutine, for example, to use a different interval for date processing than the parent
routine. Before returning, the subroutine would reset the interval back to the way it was
previously, as shown in Figure 120 on page 504.

 Chapter 29. Productivity and Tuning Techniques 503

Simplifying Coding

.

.

.

 WORKING-STORAGE SECTION

77 OLDCEN PIC S9(9) COMP.

77 TEMPCEN PIC S9(9) COMP.

77 QCENFC PIC X(12).

77 SCENFC1 PIC X(12).

77 SCENFC2 PIC X(12).

 PROCEDURE DIVISION.

\\ Call CEEQCEN to retrieve and save current century window

CALL "CEEQCEN" USING OLDCEN , QCENFC.

\\ Call CEESCEN to temporarily change century window to 3ð

MOVE 3ð TO TEMPCEN.

CALL "CEESCEN" USING TEMPCEN , SCENFC1.

\\ Perform date processing with 2-digit years...

.

.

.

\\ Call CEESCEN again to reset century window

CALL "CEESCEN" USING OLDCEN , SCENFC2.

 GOBACK.

Figure 120. Example of Querying and Changing the Century Window

Example Using Date and Time Callable Services
Many callable services offer the COBOL programmer entirely new function that would
require extensive coding using previous versions of COBOL. Two such services are
CEEDAYS and CEEDATE, which you can use effectively when you want to format
dates for output.

Figure 121 on page 505 shows a sample COBOL program that uses date and time
callable services to format and display a date from the results of a COBOL ACCEPT
statement.

504 VisualAge COBOL Programming Guide

Optimization

CBL QUOTE

 ID DIVISION.

 PROGRAM-ID. HOHOHO.

 \\

\ FUNCTION: DISPLAY TODAY'S DATE IN THE FOLLOWING FORMAT: \

\ WWWWWWWWW, MMMMMMMM DD, YYYY \

 \ \

\ For example: MONDAY, MARCH 1ð, 1997 \

 \ \

 \\

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 ð1 CHRDATE.

ð5 CHRDATE-LENGTH PIC S9(4) COMP VALUE 1ð.

 ð5 CHRDATE-STRING PIC X(1ð).

 ð1 PICSTR.

 ð5 PICSTR-LENGTH PIC S9(4) COMP.

 ð5 PICSTR-STRING PIC X(8ð).

 77 LILIAN PIC S9(9) COMP.

 77 FORMATTED-DATE PIC X(8ð).

 PROCEDURE DIVISION.

 \\\

\ USE DATE/TIME CALLABLE SERVICES TO PRINT OUT \

\ TODAY'S DATE FROM COBOL ACCEPT STATEMENT. \

 \\\

ACCEPT CHRDATE-STRING FROM DATE.

MOVE "YYMMDD" TO PICSTR-STRING.

MOVE 6 TO PICSTR-LENGTH.

CALL "CEEDAYS" USING CHRDATE , PICSTR , LILIAN , OMITTED.

MOVE " WWWWWWWWWZ, MMMMMMMMMZ DD, YYYY " TO PICSTR-STRING.

MOVE 5ð TO PICSTR-LENGTH.

CALL "CEEDATE" USING LILIAN , PICSTR , FORMATTED-DATE ,

 OMITTED.

 DISPLAY "\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\".

 DISPLAY FORMATTED-DATE.

 DISPLAY "\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\".

 STOP RUN.

Figure 121. Example with Date and Time Callable Services

 Optimization

 Chapter 29. Productivity and Tuning Techniques 505

Optimization

The OPTIMIZE Compiler Option
This section discusses the benefits of the OPTIMIZE compiler option as well as other
compiler features affecting optimization.

The COBOL optimizer is activated when you use the OPTIMIZE compiler option. The
purpose of the OPTIMIZE compiler option is to do the following:

� Eliminate unnecessary transfers of control or simplify inefficient branches, including
those generated by the compiler that are not evident from looking at the source
program.

� Simplify the compiled code for a CALL statement to a contained (nested) program.
Where possible, the optimizer places the statements inline, eliminating the need for
linkage code. This optimization, known as procedure integration, is further dis-
cussed in “Contained Program Procedure Integration.” If procedure integration
cannot be done, the optimizer uses the simplest linkage possible (perhaps as few
as two instructions) to get to and from the called program.

� Eliminate duplicate computations (such as subscript computations and repeated
statements) that have no effect on the results of the program.

� Eliminate constant computations by performing them when the program is com-
piled.

� Eliminate constant conditional expressions.

� Aggregate moves of contiguous items (such as those that often occur with the use
of MOVE CORRESPONDING) into a single move. Both the source and target must
be contiguous for the moves to be aggregated.

� The FULL suboption requests that the compiler discard any unreferenced data
items from the DATA DIVISION, and suppress generation of code to initialize these
data items to their VALUE clauses.

To see how the optimizer works on your program, compile it with and without the OPTI-
MIZE option and then compare the generated code. (Use the LIST compiler option to
request the assembler language listing of the generated code.)

For unit testing your programs, you might find it easier to debug code that has not been
optimized. But when the program is ready for final test, specify OPTIMIZE, so that the
tested code and the production code are identical. You might also want to use the
option during development, if a program is used frequently without recompilation.
However, the overhead for OPTIMIZE might outweigh its benefits if you re-compile fre-
quently, unless you are using the assembler language expansion (LIST option) to fine
tune your program.

Contained Program Procedure Integration
Contained program procedure integration is the process where a CALL to a contained
program is replaced by the program code. The advantage here is that the resulting
program runs faster without the overhead of CALL linkage and with more linear control
flow.

506 VisualAge COBOL Programming Guide

Compiler Options

Program Size: If the contained programs are invoked by several CALL statements and
replace each such CALL statement, the program may become larger. The optimizer
limits this increase to no more than 50 percent, after which it no longer uses procedure
integration. The optimizer then chooses the next best optimization for the CALL state-
ment; the linkage overhead can be as few as two instructions.

Unreachable Code Elimination: As a result of procedure integration, one contained
program might be repeated several times. As further optimization proceeds on each
copy of the program, portions might be found to be unreachable, depending on the
context into which the code was copied.

Other Compiler Features that Affect Optimization
Another compiler feature that might have a significant influence on the effects of the
optimizer option is the USE FOR DEBUGGING ON ALL PROCEDURES statement.

The ON ALL PROCEDURES option of the USE FOR DEBUGGING statement generates
extra code at each transfer to every procedure name. It can be very useful for debug-
ging, but can make the program significantly larger as well as substantially inhibit opti-
mization.

Additionally, compiler options can also have an effect (see “Compiler Options” for
details).

 Compiler Options
You might have a customized system that requires certain options for optimum perform-
ance. Check with your systems programmer to ensure that installed options are not
required before changing defaults. You can see what your system defaults are by
issuing ERRMSG. For instructions on issuing ERRMSG, see “Generating a List of All
Compiler Error Messages” on page 151.

The tuning methods and performance information discussed here are intended to help
you select from various COBOL options for compiling your programs.

 Important

Make sure that COBOL serves your needs. Please confer with system program-
mers on how you should tune your COBOL programs. Doing so will ensure that
the options you choose are appropriate for programs being developed at your site.

A brief description of each item is followed by performance advantages and disadvan-
tages, reference information, and usage notes where applicable. Refer to specified
pages for additional information.

DYNAM The DYNAM compiler option dynamically loads subprograms invoked
through the CALL statement at run time.

 Chapter 29. Productivity and Tuning Techniques 507

Compiler Options

Performance advantages
Using DYNAM means easier subprogram maintenance because
the application will not have to be link-edited again if the sub-
program is changed.

When using the DYNAM option, you can free virtual storage
that is no longer needed by issuing the CANCEL statement.

Performance disadvantages
You pay a slight performance penalty using DYNAM because
the call must go through a Language Environment routine.

Reference information
For a description of the DYNAM option, see “DYNAM” on
page 171.

OPTIMIZE Use the OPTIMIZE compiler option to ensure your code is optimized for
better performance.

Performance advantages
Generally results in more efficient run-time code.

Performance disadvantages
OPTIMIZE requires more processing time for compiles than
NOOPTIMIZE.

Reference information
For further description of OPTIMIZE, see “The OPTIMIZE Com-
piler Option” on page 506. See “OPTIMIZE” on page 185 for
the OPTIMIZE syntax.

Usage notes
NOOPTIMIZE is generally used during program development
when frequent compiles are necessary, and it also allows for
easier debugging. For production runs, however, using OPTI-
MIZE is recommended.

SSRANGE The SSRANGE option verifies that all table references and reference modifi-
cation expressions are in proper bounds.

Performance advantages
No performance advantages.

Performance disadvantages
SSRANGE generates additional code for verifying table refer-
ences.

Reference information
For SSRANGE syntax, see “SSRANGE” on page 193.

Usage notes
In general, if you only need to verify the table references a few
times in the application instead of at every reference, coding
your own checks may be faster than using the SSRANGE com-
piler option. SSRANGE can be turned off at run time with the
CHECK(OFF) run-time option. For performance-sensitive appli-

508 VisualAge COBOL Programming Guide

Compiler Options

cations, using the NOSSRANGE compiler option is recom-
mended.

TEST The TEST option produces object code that can take full advantage of the
Interactive Debugger.

Performance advantages
No performance advantages.

Performance disadvantages
The TEST option causes a significant increase in the size of
the object file because debugging information is added to the
object file. When linking the program, the linker can be
directed to exclude the debugging information, resulting in
approximately the same size executable as would be created if
the modules were compiled with NOTEST. However, if the
debugging information is included in the executable, a slight
performance degradation might occur because the increased
size of the executable will take longer to load and might cause
increased paging activity.

Reference information
For TEST syntax, see “TEST” on page 194.

Usage notes
TEST forces the NOOPTIMIZE compiler option into effect. For
production runs, using NOTEST is recommended.

TRUNC This compiler option creates code that will truncate the receiving fields of
arithmetic operations.

Performance advantages
TRUNC(OPT) does not generate extra code and generally
improves performance.

Performance disadvantages
Both TRUNC(BIN) and TRUNC(STD) generate extra code when-
ever a BINARY data item is changed. TRUNC(BIN) is usually
the slowest of these options.

Reference information
For syntax and a more detailed explanation of the TRUNC
option, see “TRUNC” on page 195.

Usage notes
TRUNC(STD) conforms to the COBOL 85 Standard, whereas
TRUNC(BIN) and TRUNC(OPT) do not. When using
TRUNC(OPT), the compiler assumes that the data conforms to
the PICTURE and USAGE specifications. TRUNC(OPT) is recom-
mended where possible.

 Chapter 29. Productivity and Tuning Techniques 509

Year 2000

Chapter 30. The "Year 2000" Problem

| This chapter provides some information on date processing problems associated with
| the year 2000, and recommends some solutions that you can adopt to help resolve
| them.

| Date Processing Problems
| Many applications use two digits rather than four to represent the year in date fields,
| and assume that these values represent years from 1900 to 1999. This compact date
| format works well for the 1900s, but it does not work for the year 2000 and beyond
| because these applications interpret “00” as 1900 rather than 2000, producing incorrect
| results.

| This chapter outlines a number of approaches you can adopt to resolve problems of
| this nature, and points to facilities available in the COBOL compiler and in the date and
| time callable services that can assist you.

| For more information on the new features of the COBOL language that can help
| resolve date-related problems, see Chapter 31, “Using the Millennium Language
| Extensions” on page 520.

| For more information about Year 2000 issues, and IBM software products that can help
| you identify and resolve their related problems, visit the website at:
| http://www.software.ibm.com/year2000.

Year 2000 Solutions
| There are several solutions to the Year 2000 problem. Many of these solutions refer to
| a “century window”. A century window is a 100-year interval, such as 1950–2049,
| within which any 2-digit year is unique. For example, with a century window of
| 1930–2029, 2-digit years would be interpreted as follows:

| Year values from 00 through 29 are interpreted as years 2000–2029
| Year values from 30 through 99 are interpreted as years 1930–1999

| The solutions outlined in this chapter are:

| � The Full Field Expansion Solution (the long-term approach)

| � The Internal Bridging Solution

� The Century Window Solution

� The Mixed Field Expansion and Century Window Solution

� The Century Encoding/Compression Solution

� The Integer Format Date Solution

Each of these is discussed in more detail below.

510  Copyright IBM Corp. 1996, 1998

Year 2000

The Full Field Expansion Solution
To take your programs through to the year 9999, you must eventually rewrite applica-
tions and rebuild databases and files to use 4-digit year fields rather than 2-digit year
fields.

The field expansion method is a long-term solution and is the recommended approach
| to addressing the Year 2000 problem. To achieve this field expansion, you need to
| develop a program to read in the old data, convert it, and write it back into a copy of
| the original file or data base that has been expanded to hold the 4-digit year data. All
| new data would then go into the new file or database. All of your application programs
| that use those files and databases need to be changed to act on the new 4-digit year
| date fields instead of the 2-digit year fields.

| Your conversion program needs to use a century window when expanding 2-digit years
| to 4 digits, to ensure that the output dates are correct.

| There are several ways to use VisualAge COBOL to help convert your databases or
| files from 2-digit year dates to 4-digit year dates, with a century window being taken
| into account:

| DATEPROC processing
| Use the DATEPROC compiler option and the DATE FORMAT clause to define
| date fields, and use MOVE statements to expand the dates based on the
| century window specified by the YEARWINDOW compiler option. For example:

| ð5 Date-Short Pic x(6) Date Format yyxxxx.
| .| .| .

| ð5 Date-Long Pic x(8) Date Format yyyyxxxx.
| .| .| .

| Move Date-Short to Date-Long.

| For more information, see Chapter 31, “Using the Millennium Language
| Extensions” on page 520.

| COBOL coding
| You can move a 2-digit year date field to an expanded receiving field, and “hard
| code” a century component as part of the move. For example:

| ð5 Date-Short Pic x(6) Date Format yyxxxx.
| .| .| .

| ð5 Date-Long Pic x(8) Date Format yyyyxxxx.
| .| .| .

| String "19" Date-Short Delimited by Size

| Into Date-Long.

| The hard-coded century component assumes a century window of 1900–1999 in
| this example, but you can add code to recognize different date ranges and
| assign a different century based on the value of Date-Short. For example, the
| following code expands the date based on a century window of 1930–2029:

 Chapter 30. The "Year 2000" Problem 511

Year 2000

| ð5 Date-Short Pic x(6) Date Format yyxxxx.
| .| .| .

| ð5 Date-Long Pic x(8) Date Format yyyyxxxx.
| .| .| .

| 77 Century Pic x(2).
| .| .| .

| If Date-Short Less than "3ððððð" Then

| Move "2ð" to Century

| Else

| Move "19" to Century

| End-If.

| String Century Date-Short Delimited by Size

| Into Date-Long.

| Intrinsic functions
| Three intrinsic functions are available to expand 2-digit year dates into 4-digit
| year dates, with the window being specified as an argument to the function.
| The functions are:

| DATE-TO-YYYYMMDD
| Expand a Gregorian date with a 2-digit year to the same date with a
| 4-digit year.

| DAY-TO-YYYYDDD
| Expand a Julian date with a 2-digit year to the same date with a 4-digit
| year.

| YEAR-TO-YYYY
| Expand a 2-digit year to a 4-digit year.

| With these functions, you specify the century window to be used when
| expanding the year. For full details and syntax of these functions, see IBM
| COBOL Language Reference.

| Callable services
| The date and time callable services can help you manipulate and convert dates.
| Some of these services can accept a date with a 2-digit year as input, and in
| this case, the callable services will apply their own century window. The fol-
| lowing services either affect or can be affected by this century window:

| CEECBLDY Convert a date to a COBOL integer number of days.

| CEEDAYS Convert a date to a Lilian integer number of days.

| CEEQCEN Query the callable services century window.

| CEESCEN Change the callable services century window.

| CEESECS Convert a date and time stamp into a number of Lilian seconds.

| For full details on these and other callable services, see Appendix E, “Date and
| Time Callable Services Reference” on page 558.

For additional information about the century window feature of the date and time
callable services, see “The Century Window Concept” on page 503.

512 VisualAge COBOL Programming Guide

Year 2000

Advantages:

� The code changes are straightforward.

� Minimum testing is required and possibly no need for simulation of future dates on
dedicated machines.

� Faster resulting code.

� The issue is addressed once and for all.

� Maintenance will become cheaper.

Disadvantages:

� Databases and files must be changed.

| The Internal Bridging Solution
| This solution involves keeping the dates in your files and databases as 2-digit year
| dates, and expanding them into other data items in your program.

| In your application progams, you need to add some data items to hold the 4-digit year
| dates, and some processing logic to expand and contract the date fields. The resultant
| program will be structured like this:

| 1. Read the input files with 2-digit year dates.

| 2. Declare “shadow” data items that contain 4-digit year dates, and expand the 2-digit
| year fields into these work fields.

| 3. Use the 4-digit year dates for all date processing in the program.

| 4. Copy (window) the 4-digit year date fields back to 2-digit format for the output
| process.

| 5. Write the 2-digit year dates to the output files.

| There are several ways to use VisualAge COBOL to achieve the field expansion and
| windowing needed for this solution.

| For date field expansion:

| � Use the DATEPROC compiler option and the DATE FORMAT clause to define the
| dates in the input records as windowed date fields, and the work fields as
| expanded date fields. Perform expanded MOVEs or stores using MOVE or
| COMPUTE statements.

| � Use the intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
| YEAR-TO-YYYY to copy and expand date fields from the input records to work
| fields.

| � Use the date and time callable services CEEDAYS and CEEDATE.

| For date windowing:

| � Simply MOVE the last 2 digits of the year back to the 2-digit year date fields. You
| should also add some code to check that the date is still within the century window,

 Chapter 30. The "Year 2000" Problem 513

Year 2000

| and take some error action if it is not. For example, if the 4-digit year field contains
| 2010 and the century window is 1905–2004, the date is outside the century
| window, and to simply store the last 2 digits would be incorrect.

| � With the DATEPROC compiler option and the DATE FORMAT clause, copy the
| expanded date fields back to windowed date fields. If you use a COMPUTE state-
| ment to do this, you can use the ON SIZE ERROR phrase to ensure that the date
| remains within the century window, or to take some action if it doesn't. For details,
| see “ON SIZE ERROR Phrase” on page 530.

| Advantages:

| � Databases and files need not be changed.

| � The code changes are straightforward.

| � Good interim step towards a full field expansion solution.

| � Faster resulting code.

| Disadvantages:

| � Some risk of data corruption.

| � Short- to medium-term solution only.

The Century Window Solution
The century window solution allows 2-digit years to be interpreted in a 100-year window
(because each 2-digit number can only occur once in any 100-year period).

| There are several ways to use VisualAge COBOL to help you achieve this:

| � Use the DATEPROC compiler option and the DATE FORMAT clause to define date
| fields. This provides an automated windowing capability using the century window
| defined by the YEARWINDOW compiler option.

| For more information, see Chapter 31, “Using the Millennium Language
| Extensions” on page 520.

| � Use the intrinsic functions DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
| YEAR-TO-YYYY to interpret date fields based on a century window. The century
| window is specified as an argument to the intrinsic function. For example:

| If Function YEAR-TO-YYYY (Current-Year, 48) Greater Than

| Function YEAR-TO-YYYY (Due-Year, 48) Then

| Display "Due date has passed."

| End-If.

| In this example, the century window begins 48 years prior to the year at the time
| the program is being run. If the program is running in 1998, then the century
| window is 1950–2049. This would allow a Current-Year value of 00 to be “greater”
| than a Due-Year value of 99.

| � Insert IF statements around the references to date fields in your program, to deter-
| mine how to apply a century component. For example, the following code imple-
| ments a century window of 1940–2039:

514 VisualAge COBOL Programming Guide

Year 2000

| If YY-1 less than "4ð" Then

| Move "2ð" to CC-1

| Else

| Move "19" to CC-1

| End-If.

| � Use the date and time callable services to manipulate date fields using a century
| window defined by the CEESCEN service.

You cannot use the century window forever because a 2-digit year can only be unique
in a given 100-year period. Over time you will need more than 100 years for your data
window—in fact, many companies need more than 100 years now. For example, the
century window cannot solve the problem of trying to figure out how old a customer is if
the customer is older than 100 years and you only have 2-digit year dates. Another
example is sorting. All of the records that you want to sort by date must have 4-digit

| year dates. For these issues and others you need to adopt The Full Field Expansion
| Solution.

Advantages:

� No database or file changes.

| Disadvantages: The following disadvantages apply to the Century Window solution
| regardless of which method you use to implement it:

| � Performance will be slower due to increased logic.

| � More testing is required to validate changes, and simulation of future dates on ded-
| icated machines is essential.

| � Very difficult to manage across applications.

| � The problem is not permanently solved and it will become necessary to change
| date programs and databases to use 4-digit years eventually.

| In addition, if you do not use the DATEPROC and DATE FORMAT method, the following
| disadvantages apply:

| � Risk of performing incorrect translations.

| � Code changes are more error-prone and require more expertise.

| � Increased maintenance costs.

| The Mixed Field Expansion and Century Window Solution
| You don't have to convert all of your files and databases at one time. Where a data
| base is shared by many applications, it might be more convenient to keep any dates
| that it contains in 2-digit year form. But where a file is used by a limited number of
| programs, it is best to eliminate the 2-digit year constraint as soon as possible.

| For those dates that are still in 2-digit year form, you can use internal bridging or
| century windowing, both of which are described in detail in “The Internal Bridging
| Solution” on page 513, and “The Century Window Solution” on page 514, respectively.

 Chapter 30. The "Year 2000" Problem 515

Year 2000

| You change the data descriptions for dates that you have expanded to 4-digit year
| form, and then use any of the techniques described in “The Full Field Expansion
| Solution” for processing them.

| The DATEPROC compiler option is a particularly convenient way of implementing this
| solution, since it directly supports the use of both expanded and windowed date fields
| within a single statement.

| The mixed solution has the advantages and disadvantages of the individual techniques
| that are discussed in these sections. In addition, the mixed solution has the advantage
| that files and databases can be changed as convenient, and kept unmodified otherwise.

The Century Encoding/Compression Solution
The century encoding/compression solution involves encoding/compressing numbers
greater than 99 into existing 2-byte date fields. (For example, using hexadecimal rather
than decimal digits.) This means rewriting applications to correctly interpret
encoded/compressed values in the database.

This solution is the least desirable way to address the Year 2000 problem.

Advantages:

� Uses existing 2-byte date fields.

Disadvantages:

� Performance will be slower due to increased logic.

� More testing is required to validate changes and simulation of future dates on dedi-
cated machines is essential.

� Very difficult to manage across applications.

� Code changes are more error-prone and require more expertise.

� Increased maintenance costs.

� The problem is not permanently solved and it will become necessary to change
date programs and databases to use 4-digit years eventually.

� Cannot be read in dumps or listings.

� Must be translated whenever externalized.

� Risk of performing incorrect translations.

The Integer Format Date Solution
Integer dates specify a number of days from some point in the past.

Integer dates are provided by COBOL intrinsic functions and by the date and time call-
able services.

This solution is not the recommended way to address the Year 2000 problem. Instead,
use the The Full Field Expansion Solution described on page 511.

516 VisualAge COBOL Programming Guide

Year 2000

Advantages:

� Uses only 4 bytes to store a date.

Disadvantages:

� Performance will be slower due to increased logic.

� More testing is required to validate changes and simulation of future dates on dedi-
cated machines is essential.

� Very difficult to manage across applications.

� Code changes are more error-prone and require more expertise.

� Increased maintenance costs.

� The problem is not permanently solved and it will become necessary to change
date programs and databases to use 4-digit years eventually.

� Cannot be read in dumps or listings.

� Must be translated whenever externalized.

� Risk of performing incorrect translations.

� There are too many different integer format starting dates:

– CICS, OS/390, and DB2 start with January 1, 1900
– PL/I does not support integer date values
– C starts with January 1, 1970
– COBOL starts with January 1, 1601
– Date and time callable services start with October 15, 1582 (Lilian integer

dates)

There will be no problems with integer dates if conversion to and from integer is
done using the same method in the same program. There will only be problems if
the integer values are stored or passed between programs. These problems could
still be avoided by:

– Not using the value returned by CEECBLDY as input to other date and time
callable services; CEECBLDY returns an ANSI COBOL integer date that can
be used with COBOL intrinsic functions.

– Only using date and time callable services, or only COBOL intrinsic functions,
for getting and manipulating 4-digit year dates.

Note: A program can be compiled on the host using the INTDATE(LILIAN) compiler
option to provide compatibility between the Lilian date returned by CEEDAYS and
COBOL intrinsic functions. However, VisualAge COBOL does not support the
INTDATE compiler option and such a program will therefore not produce correct
results on the workstation or PC.

 Chapter 30. The "Year 2000" Problem 517

How to Get 4-digit Year Dates

| Performance Considerations
| Any implementation of a solution to the year 2000 problem will have some impact on
| the performance of your application. This section discusses some of the performance
| aspects that you should consider.

| Performance Comparison
| The following implementation methods are listed in order of least performance impact to
| most performance impact.

| Full field expansion
| The best performance can be obtained by expanding all of the dates in your
| files as a one-time task, and thereafter using the 4-digit year date fields in all
| processing.

| Mixed field expansion and DATEPROC windowing
| If the dates in your files have not yet been expanded, the best performance can
| be obtained by expanding the date fields as they are read from the files, and
| using these expanded dates in the main processing body of the program. In
| this way, the expansion process is only performed once for each date field.

| Mixed field expansion and manual windowing
| You can expand your input date fields manually, using combinations of COBOL
| coding, intrinsic functions, and callable services to apply the century window.
| This has more performance impact than DATEPROC windowing, even though the
| expansion process is still only performed once for each date field.

| DATEPROC windowing
| The millennium language extensions provide a windowing method that is
| designed to be efficient. However, the action of viewing a windowed date field
| for a COBOL IF or MOVE statement still imposes some processor overhead.

| Manual windowing
| Date windowing using COBOL IF statements adds a level of complexity to the
| program, and adds some processor overhead because of the extra COBOL
| statements. Typically the overhead of an IF statement of this form is more than
| the overhead of the automatic DATEPROC windowing process.

| How to Get 4-digit Year Dates
| Many COBOL programs need to obtain the date at the time of execution, to use as
| “Date-Of-...” fields in output files or reports, or to compare against other dates read from
| input files. COBOL provides a number of methods of obtaining the current date with a
| 4-digit year. The simplest of these are:

| The intrinsic function CURRENT-DATE
| Retrieves the date in Gregorian form, and can also retrieve the current time and
| the offset from Greenwich Mean Time.

| ACCEPT identifier FROM DATE YYYYMMDD
| Retrieves the date in Gregorian form.

518 VisualAge COBOL Programming Guide

How to Get 4-digit Year Dates

| ACCEPT identifier FROM DAY YYYYDDD
| Retrieves the date in Julian form.

| The CEELOCT callable service
| Retrieves the date in three different forms, including Gregorian with a 4-digit
| year.

 Chapter 30. The "Year 2000" Problem 519

Description

| Chapter 31. Using the Millennium Language Extensions

| This chapter provides information on the millennium language extensions that have
| been incorporated into the IBM COBOL language to assist with Year 2000 processing.

| Description
| The term “Millennium Language Extensions” refers collectively to the features of
| VisualAge COBOL that are activated by the DATEPROC compiler option to help with
| Year 2000 date logic problems.

| The DATEPROC compiler option enables special date-oriented processing of identified
| date fields, and the YEARWINDOW compiler option specifies the 100-year window (the
| century window) to be used for the interpretation of 2-digit windowed years. For a
| description of the DATEPROC compiler option, see “DATEPROC” on page 170. For a
| description of the YEARWINDOW compiler option, see “YEARWINDOW” on page 201.

| The extensions, when enabled, include:

| � The DATE FORMAT clause. This is added to items in the Data Division to identify
| date fields, and to specify the location of the year component within the date.

| � The reinterpretation of the function return value as a date field, for the following
| intrinsic functions:

| DATE-OF-INTEGER
| DATE-TO-YYYYMMDD
| DAY-OF-INTEGER
| DAY-TO-YYYYDDD
| YEAR-TO-YYYY

| � The reinterpretation as a date field of the conceptual data items DATE, DATE
| YYYYMMDD, DAY, and DAY YYYYDDD in the following forms of the ACCEPT
| statement:

| ACCEPT identifier FROM DATE
| ACCEPT identifier FROM DATE YYYYMMDD
| ACCEPT identifier FROM DAY
| ACCEPT identifier FROM DAY YYYYDDD

| � The intrinsic functions UNDATE and DATEVAL, used for selective reinterpretation
| of date fields and non-dates.

| � The intrinsic function YEARWINDOW, which retrieves the starting year of the
| century window set by the YEARWINDOW compiler option.

| This chapter describes how you can use these new facilities to help solve date logic
| problems in your COBOL programs.

520  Copyright IBM Corp. 1996, 1998

Implementing Date Processing

| Getting Started
| With the millennium language extensions, you can make simple changes to your
| COBOL programs to define date fields, and the compiler recognizes and acts on those
| dates using a century window to ensure consistency.

| A century window is a 100-year interval, such as 1950–2049, within which any 2-digit
| year is unique. For windowed date fields, the century window start date is specified by
| the YEARWINDOW compiler option. When the DATEPROC option is in effect, the
| compiler applies this window to 2-digit year, or windowed, date fields in the program.
| For example, with a century window of 1930–2029, COBOL interprets 2-digit years as:

| Year values from 00 through 29 are interpreted as years 2000–2029
| Year values from 30 through 99 are interpreted as years 1930–1999

| To implement date windowing using COBOL date processing, you define the century
| window with the YEARWINDOW compiler option, and identify the date fields in your
| program with DATE FORMAT clauses. The compiler then automatically applies the
| century window to operations on those dates. It is often possible to implement a sol-
| ution in which the windowing process is fully automatic; that is, you simply identify the
| fields that contain windowed dates, and you do not need any extra program logic to
| implement the windowing.

| Implementing Date Processing
| Following is a list of simple steps that you need to follow in order to implement auto-
| matic date recognition in a COBOL program:

| � Use the DATEPROC compiler option to enable the process. You specify this as
| either DATEPROC(FLAG) to get some helpful diagnostic messages, or
| DATEPROC(NOFLAG). For full information, see “DATEPROC” on page 170.

| � Use the YEARWINDOW compiler option to set the century window. There are two
| ways of doing this:

| – For a fixed window, specify a 4-digit year between 1900 and 1999 as the
| YEARWINDOW option value. For example, YEARWINDOW(1950) defines a fixed
| window of 1950–2049.

| – For a sliding window, specify a negative integer from -1 through -99 as the
| YEARWINDOW option value. For example, YEARWINDOW(-48) defines a sliding
| window that starts 48 years before the year that the program is running. So if
| the program is running in 1998, the century window is 1950–2049, and in 1999
| it automatically becomes 1951–2050, and so on. For a full description and
| syntax, see “YEARWINDOW” on page 201.

| � Add the DATE FORMAT clause to the data description entries of those data items
| in the program that contain dates that you want the compiler to recognize as win-
| dowed or expanded dates. For a full description of the DATE FORMAT clause,
| see IBM COBOL Language Reference.

| � To expand dates, use MOVE or COMPUTE statements to copy the contents of
| windowed date fields to expanded date fields.

 Chapter 31. Using the Millennium Language Extensions 521

Basic Remediation

| � If necessary, use the DATEVAL and UNDATE intrinsic functions, to convert
| between date fields and non-dates. For a full description of these functions, see
| IBM COBOL Language Reference.

| � Compile the program with the DATEPROC(FLAG) option, and review the diagnostic
| messages to see if date processing has produced any unexpected side effects
| (see “Eliminating Warning-Level Messages” on page 534). When the compilation
| has only Information-level diagnostics, you can recompile with the
| DATEPROC(NOFLAG) option to produce a “clean” listing.

| This provides a simple implementation of date windowing and expansion capabilities in
| a COBOL program.

| Resolving Date-Related Logic Problems
| This section discusses three approaches that you can adopt to assist with date-related
| processing problems, and shows how you can use the millennium language extensions
| with each approach to achieve a solution.

| These and other approaches are discussed in conceptual terms in “Year 2000
| Solutions” on page 510. The description here concentrates on the application of
| COBOL date processing capabilities as a tool to implement the solutions.

| The approaches outlined here are:

| � Basic Remediation (the century window solution)

| � Internal Bridging

| � Full Field Expansion

| Basic Remediation
| The simplest method of ensuring that your programs will continue to function through
| the year 2000 is to implement a century window solution.

| With this method, you define a century window, and specify the fields that contain win-
| dowed dates. The compiler then interprets the 2-digit years in those date fields
| according to the century window.

| The following sample code shows how a program can be modified to use this automatic
| date windowing capability. The program checks whether a video tape was returned on
| time:

522 VisualAge COBOL Programming Guide

Internal Bridging

| CBL LIB,QUOTE,NOOPT,DATEPROC(FLAG),YEARWINDOW(-6ð)
| .| .| .

| ð1 Loan-Record.

| ð5 Member-Number Pic X(8).

| ð5 Tape-ID Pic X(8).

| ð5 Date-Due-Back Pic X(6) Date Format yyxxxx.
| ð5 Date-Returned Pic X(6) Date Format yyxxxx.
| .| .| .

| If Date-Returned Greater than Date-Due-Back Then

| Perform Fine-Member.

| In this example, there are no changes to the Procedure Division from the program's
| previous version. The addition of the DATE FORMAT clause on the two date fields
| means that the compiler recognizes them as windowed date fields, and therefore
| applies the century window when processing the IF statement. For example, if Date-
| Due-Back contains “000102” (January 2, 2000) and Date-Returned contains “991231”
| (December 31, 1999), Date-Returned is less than (earlier than) Date-Due-Back, so the
| program does not perform the Fine-Member paragraph.

| Advantages:

| � Fast and easy to implement.

| � No change to the program's logic, therefore less testing required.

| � This solution will allow your programs to function into and beyond the year 2000.

| Disadvantages:

| � This should be regarded as a short-term solution, not as a permanent fix.

| � There may be some performance degradation introduced by the date windowing
| functions.

| � Implementation of this solution is application-dependent. It will not suit all applica-
| tions.

| Internal Bridging
| If your files and databases have not yet been converted to 4-digit year dates, you can
| use an internal bridge technique to process the dates as 4-digit years. Your program
| will be structured as follows:

| 1. Read the input files with 2-digit year dates.

| 2. Declare these 2-digit dates as windowed date fields and move them to expanded
| date fields, so that the compiler automatically expands them to 4-digit year dates.

| 3. In the main body of the program, use the 4-digit year dates for all date processing.

| 4. Window the dates back to 2-digit years.

| 5. Write the 2-digit year dates to the output files.

 Chapter 31. Using the Millennium Language Extensions 523

Internal Bridging

| This process provides a convenient migration path to a full expanded-date solution, and
| also may have performance advantages over using windowed dates. For more infor-
| mation, see “Performance Considerations” on page 518.

| Using this technique, you do not change any of the logic in the main body of the
| program. You simply use the 4-digit year date fields in Working-Storage instead of the
| 2-digit year fields in the records.

| Because you are converting the dates back to 2-digit years for output, you should allow
| for the possibility of the year being outside the century window. For example, if a date
| field contains the year 2005, but the century window is 1905–2004, then the date is
| outside the window, and simply storing it as a 2-digit year would be incorrect. To
| protect against this, you can use a COMPUTE statement to store the date, with the ON
| SIZE ERROR phrase to detect whether or not the date is within the century window.
| For more details, see “ON SIZE ERROR Phrase” on page 530.

| The following example shows how a program can be changed to implement an internal
| bridge method:

| CBL LIB,QUOTE,NOOPT,DATEPROC(FLAG),YEARWINDOW(-6ð)
| .| .| .

| File Section.

| FD Customer-File.

| ð1 Cust-Record.

| ð5 Cust-Number Pic 9(9) Binary.
| .| .| .

| ð5 Cust-Date Pic 9(6) Date Format yyxxxx.
| Working-Storage Section.

| 77 Exp-Cust-Date Pic 9(8) Date Format yyyyxxxx.
| .| .| .

| Procedure Division.

| Open I-O Customer-File.

| Read Customer-File.

| Move Cust-Date to Exp-Cust-Date.
| .| .| .

| \===\

| \ Use expanded date in the rest of the program logic \

| \===\
| .| .| .

| Compute Cust-Date = Exp-Cust-Date
| On Size Error Display "Exp-Cust-Date outside
| century window"
| End-Compute
| Rewrite Cust-Record.

| Advantages:

| � Little change to the program logic, therefore testing is easy.

| � This solution will allow your programs to function into and beyond the year 2000.

| � This is a good incremental step towards a full expanded-year solution.

524 VisualAge COBOL Programming Guide

Full Field Expansion

| � Good performance.

| Disadvantages:

| � Some risk of data corruption.

| Full Field Expansion
| The full field expansion solution involves explicitly expanding 2-digit year date fields to
| contain full 4-digit years in your files and databases, and then using those fields in
| expanded form in your programs. This is the only method by which you can be
| assured of reliable date processing for all applications.

| The millennium language extensions allow you to progressively move towards a full
| date field expansion solution, using the following steps:

| 1. Apply the short-term (basic remediation) solution, and use this until you have the
| resources to implement a more permanent solution.

| 2. Apply the internal bridging scheme. This allows you to use expanded dates in your
| programs while your files continue to hold dates in 2-digit year form. This in turn
| will allow you to progress more easily to a full field expansion solution, because
| there will be no changes to the logic in the main body of the programs.

| 3. Change the file layouts and database definitions to use 4-digit year dates.

| 4. Change your COBOL copybooks to reflect these 4-digit year date fields.

| 5. Run a utility program (or special-purpose COBOL program) to copy from the old
| format files to the new format. For a sample program, see Figure 122 on
| page 526.

| 6. Recompile your programs and perform regression testing and date testing.

| After you have completed the first two steps, the remaining steps in the sequence can
| be repeated any number of times. You do not need to change every date field in every
| file at the same time. Using this method, you can select files for progressive conver-
| sion based on criteria such as business needs or interfaces with other applications.

| When you use this method, you will need to write special-purpose programs to convert
| your files to expanded-date form. Figure 122 on page 526 shows a simple program
| that copies from one file to another while expanding the date fields. Note that the
| record length of the output file is larger than that of the input file because the dates are
| expanded.

 Chapter 31. Using the Millennium Language Extensions 525

Full Field Expansion

| CBL LIB,QUOTE,NOOPT,DATEPROC(FLAG),YEARWINDOW(-8ð)

| \\

| \\ CONVERT - Read a file, convert the date \\

| \\ fields to expanded form, write \\

| \\ the expanded records to a new \\

| \\ file. \\

| \\

| IDENTIFICATION DIVISION.

| PROGRAM-ID. CONVERT.

| ENVIRONMENT DIVISION.

| INPUT-OUTPUT SECTION.

| FILE-CONTROL.

| SELECT INPUT-FILE

| ASSIGN TO INFILE

| FILE STATUS IS INPUT-FILE-STATUS.

| SELECT OUTPUT-FILE

| ASSIGN TO OUTFILE

| FILE STATUS IS OUTPUT-FILE-STATUS.

| DATA DIVISION.

| FILE SECTION.

| FD INPUT-FILE

| RECORDING MODE IS F.

| ð1 INPUT-RECORD.

| ð3 CUST-NAME.

| ð5 FIRST-NAME PIC X(1ð).

| ð5 LAST-NAME PIC X(15).

| ð3 ACCOUNT-NUM PIC 9(8).

| ð3 DUE-DATE PIC X(6) DATE FORMAT YYXXXX. .1/
| ð3 REMINDER-DATE PIC X(6) DATE FORMAT YYXXXX.

| ð3 DUE-AMOUNT PIC S9(5)V99 COMP-3.

| FD OUTPUT-FILE

| RECORDING MODE IS F.

| ð1 OUTPUT-RECORD.

| ð3 CUST-NAME.

| ð5 FIRST-NAME PIC X(1ð).

| ð5 LAST-NAME PIC X(15).

| ð3 ACCOUNT-NUM PIC 9(8).

| ð3 DUE-DATE PIC X(8) DATE FORMAT YYYYXXXX. .2/
| ð3 REMINDER-DATE PIC X(8) DATE FORMAT YYYYXXXX.

| ð3 DUE-AMOUNT PIC S9(5)V99 COMP-3.

| WORKING-STORAGE SECTION.

| ð1 INPUT-FILE-STATUS PIC 99.

| ð1 OUTPUT-FILE-STATUS PIC 99.

| PROCEDURE DIVISION.

| OPEN INPUT INPUT-FILE.

| OPEN OUTPUT OUTPUT-FILE.

| Figure 122 (Part 1 of 2). Expanding File Dates

526 VisualAge COBOL Programming Guide

Programming Techniques

| READ-RECORD.

| READ INPUT-FILE

| AT END GO TO CLOSE-FILES.

| MOVE CORRESPONDING INPUT-RECORD TO OUTPUT-RECORD. .3/
| WRITE OUTPUT-RECORD.

| GO TO READ-RECORD.

| CLOSE-FILES.

| CLOSE INPUT-FILE.

| CLOSE OUTPUT-FILE.

| EXIT PROGRAM.

| END PROGRAM CONVERT.

| Figure 122 (Part 2 of 2). Expanding File Dates

| The following notes apply to Figure 122 on page 526.

| .1/ The fields DUE-DATE and REMINDER-DATE in the input record are both
| Gregorian dates with 2-digit year components. They have been defined with a
| DATE FORMAT clause in this program so that the compiler will recognize them as
| windowed date fields.

| .2/ The output record contains the same two fields in expanded date format. They
| have been defined with a DATE FORMAT clause so that the compiler will treat
| them as 4-digit year date fields.

| .3/ The MOVE CORRESPONDING statement moves each item in INPUT-RECORD
| individually to its matching item in OUTPUT-RECORD. When the two windowed
| date fields are moved to the corresponding expanded date fields, the compiler will
| expand the year values using the current century window.

| Advantages:

| � This is a permanent solution; no more changes are required. This solution will
| allow your programs to function into and beyond the year 2000.

| � Best performance.

| � Maintenance will be easier.

| Disadvantages:

| � Need to ensure that changes to databases, copybooks, and programs are all syn-
| chronized.

| Programming Techniques
| This section describes the techniques you can use in your programs to take advantage
| of date processing, and the effects of using date fields on COBOL language elements.

| For full details of COBOL syntax and restrictions, see IBM COBOL Language Refer-
| ence.

 Chapter 31. Using the Millennium Language Extensions 527

Level 88 Condition-Name

| Date Comparisons
| When you compare two date fields, the two dates must be compatible; that is, they
| must have the same number of non-year characters (see “Compatible Dates” on
| page 536). The number of digits for the year component need not be the same. For
| example:

| 77 Todays-Date Pic X(8) Date Format yyyyxxxx.

| ð1 Loan-Record.

| ð5 Date-Due-Back Pic X(6) Date Format yyxxxx.
| .| .| .

| If Date-Due-Back Greater than Todays-Date Then...

| In this example, a windowed date field is compared to an expanded date field, so the
| century window is applied to Date-Due-Back.

| Note that Todays-Date must have a DATE FORMAT clause in this case to define it as
| an expanded date field. If it did not, it would be treated as a non-date field, and would
| therefore be considered to have the same number of year digits as Date-Due-Back.
| The compiler would apply the assumed century window to it, which would create an
| inconsistent comparison. For more information, see “The Assumed Window” on
| page 538.

| Level 88 Condition-Name
| If a windowed date field has an 88-level condition-name associated with it, the literal in
| the VALUE clause is windowed against the century window for the compilation unit
| rather than the assumed century window of 1900–1999. For example:

| ð5 Date-Due Pic 9(6) Date Format yyxxxx.

| 88 Date-Target Value ð5122ð.

| If the century window is 1950–2049 and the contents of Date-Due is 051220 (repres-
| enting December 20, 2005), then the condition

| If Date-Target

| would evaluate to TRUE, but the condition

| If Date-Due = ð5122ð

| would evaluate to FALSE. This is because the literal 051220 is treated as a non-date,
| and therefore windowed against the assumed century window of 1900–1999 to repre-
| sent December 20, 1905. But where the same literal is specified in the VALUE clause
| of an 88-level condition-name, it becomes part of the data item to which it is attached.
| Because this data item is a windowed date field, the century window is applied when-
| ever it is referenced.

| You can also use the DATEVAL intrinsic function in a comparison expression to convert
| a literal to a date field, and the output from the intrinsic function will then be treated as
| either a windowed or expanded date field to ensure a consistent comparison. For
| example, using the above definitions, both of these conditions

| If Date-Due = Function DATEVAL (ð5122ð "YYXXXX")

| If Date-Due = Function DATEVAL (2ðð5122ð "YYYYXXXX")

528 VisualAge COBOL Programming Guide

Windowed Date Fields

| would evaluate to TRUE. For more information on the DATEVAL intrinsic function, see
| “DATEVAL” on page 532.

| Restriction: With a level-88 condition name, you can also specify the THRU option on
| the VALUE clause, for example:

| ð5 Year-Field Pic 99 Date Format yy.

| 88 In-Range Value 98 Thru ð6.

| With this form, the windowed value of the second item must be greater than the win-
| dowed value of the first item. However, the compiler can only verify this if the
| YEARWINDOW compiler option specifies a fixed century window (for example,
| YEARWINDOW(1940) rather than YEARWINDOW(-60)).

| For this reason, if the YEARWINDOW compiler option specifies a sliding century window,
| you cannot use the THRU option on the VALUE clause of a level-88 condition name.

| Arithmetic Expressions
| You can perform arithmetic operations on numeric date fields in the same manner as
| any numeric data item, and, where appropriate, the century window will be used in the
| calculation. However, there are some restrictions on where date fields can be used in
| arithmetic expressions.

| Arithmetic operations that include date fields are restricted to:

| � Adding a non-date to a date field

| � Subtracting a non-date from a date field

| � Subtracting a date field from a compatible date field to give a non-date result

| The following arithmetic operations are not allowed:

| � Any operation between incompatible date fields

| � Adding two date fields

| � Subtracting a date field from a non-date

| � Unary minus, applied to a date field

| � Multiplication, division, or exponentiation of or by a date field

| Windowed Date Fields
| Where a windowed date field participates in an arithmetic operation, it is processed as
| if the value of the year component of the field were first incremented by 1900 or 2000,
| depending on the century window. For example:

| ð1 Review-Record.

| ð3 Last-Review-Year Pic 99 Date Format yy.

| ð3 Next-Review-Year Pic 99 Date Format yy.
| .| .| .

| Add 1ð to Last-Review-Year Giving Next-Review-Year.

 Chapter 31. Using the Millennium Language Extensions 529

| If the century window is 1910–2009, and the value of Last-Review-Year is 98, then the
| computation proceeds as if Last-Review-Year is first incremented by 1900 to give 1998.
| Then the ADD operation is performed, giving a result of 2008. This is stored in Next-
| Review-Year as 08.

| Order of Evaluation
| Because of the restrictions on date fields in arithmetic expressions, you may find that
| programs that previously compiled successfully now produce diagnostic messages
| when some of the data items are changed to date fields.

| Consider the following example:

| ð1 Dates-Record.

| ð3 Start-Year-1 Pic 99 Date Format yy.

| ð3 End-Year-1 Pic 99 Date Format yy.

| ð3 Start-Year-2 Pic 99 Date Format yy.

| ð3 End-Year-2 Pic 99 Date Format yy.
| .| .| .

| Compute End-Year-2 = Start-Year-2 + End-Year-1 - Start-Year-1.

| In this example, the first arithmetic expression evaluated is:

| Start-Year-2 + End-Year-1

| However, this is the addition of two date fields, which is not permitted. To resolve this,
| you should use parentheses to isolate those parts of the arithmetic expression that are
| allowed. For example:

| Compute End-Year-2 = Start-Year-2 + (End-Year-1 - Start-Year-1).

| In this case, the first arithmetic expression evaluated is:

| End-Year-1 - Start-Year-1

| This is the subtraction of one date field from another, which is permitted, and gives a
| non-date result. This non-date result is then added to the date field End-Year-1, giving
| a date field result which is stored in End-Year-2.

| ON SIZE ERROR Phrase
| In the example in “Windowed Date Fields” on page 529, the result of 2008 falls within
| the century window of 1910–2009, so a value of 08 in Next-Review-Year will be recog-
| nized as 2008 by subsequent statements in the program.

| However, the statement:

| Add 2ð to Last-Review-Year Giving Next-Review-Year.

| would give a result of 2018. As this falls outside the range of the century window, if the
| result is stored in Next-Review-Year it would be incorrect, because later references to
| Next-Review-Year would interpret it as 1918. In this case, the result of the operation
| depends on whether the ON SIZE ERROR phrase is specified on the ADD statement,
| as follows:

| � If SIZE ERROR is specified, the receiving field is not changed, and the SIZE
| ERROR imperative statement is executed.

530 VisualAge COBOL Programming Guide

Other Date Formats

| � If SIZE ERROR is not specified, the result is stored in the receiving field with the
| left-hand digits truncated.

| This is an important consideration when developing an internal bridging solution to
| resolve a date processing problem (see “Internal Bridging” on page 523). When you
| contract a 4-digit year date field back to 2 digits to write it to the output file, you need to
| ensure that the date falls within the century window, and that therefore the 2-digit year
| date will be represented correctly in the field.

| You can achieve this using a COMPUTE statement to do the contraction, with a SIZE
| ERROR phrase to handle the out-of-window condition. For example:

| Compute Output-Date-YY = Work-Date-YYYY

| On Size Error Go To Out-of-Window-Error-Proc.

| Note: SIZE ERROR processing for windowed date receivers recognizes any year
| value that falls outside the century window. That is, a year value less than the starting
| year of the century window raises the SIZE ERROR condition, as does a year value
| greater than the ending year of the century window.

| Other Date Formats
| To be eligible for automatic windowing, a date field must contain a 2-digit year as the
| first or only part of the field. The remainder of the field, if present, must be between 2
| and 4 characters, but its content is not important. For example, it can contain a 3-digit
| Julian day, or a 2-character identifier of some event specific to the enterprise.

| If there are date fields in your application that do not fit these criteria, it is not possible
| to define them as date fields with the DATE FORMAT clause. Some examples of
| unsupported date formats are:

| � A 3-character field consisting of a 2-digit year and a single character to represent
| the month (A–L representing 1–12). This is not supported because date fields can
| have only zero, 2, 3, or 4 non-year characters.

| � A Gregorian date of the form DDMMYY. This is not supported because the year
| component is not the first part of the date.

| If you need to use date windowing in cases like these, you will need to add some code
| to isolate the year portion of the date.

| In the following example, the two date fields contain dates of the form DDMMYY:

| ð3 Last-Review-Date Pic 9(6).

| ð3 Next-Review-Date Pic 9(6).
| .| .| .

| Add 1 to Last-Review-Date Giving Next-Review-Date.

| In this example, if Last-Review-Date contains 230197 (January 23, 1997), then Next-
| Review-Date will contain 230198 (January 23, 1998) after the ADD statement is exe-
| cuted. This is a simple method of setting the next date for an annual review. However,
| if Last-Review-Date contains 230199, then adding 1 gives 230200, which is not the
| desired result.

 Chapter 31. Using the Millennium Language Extensions 531

DATEVAL

| Because the year is not the first part of these date fields, the DATE FORMAT clause
| cannot be applied without some code to isolate the year component. In the next
| example, the year component of both date fields has been isolated so that COBOL can
| apply the century window and maintain consistent results:

| ð3 Last-Review-Date.

| ð5 Last-R-DDMM Pic 9(4).

| ð5 Last-R-YY Pic 99 Date Format yy.

| ð3 Next-Review-Date Pic 9(6).

| ð5 Next-R-DDMM Pic 9(4).

| ð5 Next-R-YY Pic 99 Date Format yy.
| .| .| .

| Move Last-R-DDMM to Next-R-DDMM.

| Add 1 to Last-R-YY Giving Next-R-YY.

| Controlling Date Processing Explicitly
| There may be times when you want COBOL data items to be treated as date fields only
| under certain conditions, or only in specific parts of the program. Or your application
| may contain 2-digit year date fields that cannot be declared as windowed date fields
| because of some interaction with another software product. For example, if a date field
| is used in a context where it is only recognized by its true binary contents without
| further interpretation, the date in this field cannot be windowed. This includes:

| � A key on a VSAM file
| � A search field in a database system such as DB2
| � A key field in a CICS command

| Conversely, there may be times when you want a date field to be treated as a non-date
| in specific parts of the program.

| COBOL provides two intrinsic functions to cater for these conditions:

| DATEVAL Converts a non-date into a date field.

| UNDATE Converts a date field into a non-date.

| DATEVAL
| You can use the DATEVAL intrinsic function to convert a non-date into a date field, so
| that COBOL will apply the relevant date processing to the field. The first argument to
| the function is the non-date to be converted, and the second argument specifies the
| date format. The second argument is a literal string with a specification similar to that
| of the date pattern in the DATE FORMAT clause.

| As an example, assume that a program contains a field Date-Copied, and that this field
| is referenced many times in the program, but most of these references simply move it
| between records or reformat it for printing. Only one reference relies on it containing a
| date, for comparison with another date.

| In this case, it is better to leave the field as a non-date, and use the DATEVAL intrinsic
| function in the comparison statement. For example:

532 VisualAge COBOL Programming Guide

UNDATE

| ð3 Date-Distributed Pic 9(6) Date Format yyxxxx.

| ð3 Date-Copied Pic 9(6).
| .| .| .

| If FUNCTION DATEVAL(Date-Copied "YYXXXX") Less than

| Date-Distributed ...

| In this example, the DATEVAL intrinsic function converts Date-Copied into a date field
| so that the comparison will be meaningful.

| In most cases, the compiler makes the correct assumption about the interpretation of a
| non-date, but accompanies this assumption with a warning-level diagnostic message.
| This typically happens when a windowed date is compared to a literal:

| ð3 When-Made Pic x(6) Date Format yyxxxx.
| .| .| .

| If When-Made = "85ð7ð1" Perform Warranty-Check.

| The literal is assumed to be a compatible windowed date but with a century window of
| 1900–1999, thus representing July 15, 1985. You can use the DATEVAL intrinsic func-
| tion to make the year of the literal date explicit, and eliminate the warning message:

| If When-Made = Function Dateval("1985ð7ð1" "YYYYXXXX")

| Perform Warranty-Check.

| For a full description and syntax of the DATEVAL intrinsic function, see IBM COBOL
| Language Reference.

| UNDATE
| The UNDATE intrinsic function converts a date field to a non-date, so that it can be
| referenced without any date processing.

| In the following example, the field Invoice-Date in Invoice-Record is a windowed Julian
| date. In some records, it contains a value of "00999" to indicate that this is not a “true”
| invoice record, but a record containing file control information.

| Invoice-Date has been given a DATE FORMAT clause because most of its references
| in the program are date-specific. However, in the instance where it is checked for the
| existence of a control record, the value of "00" in the year component will lead to some
| confusion. A year of "00" in Invoice-Date will represent a “true” year of either 1900 or
| 2000, depending on the century window. This is compared to a non-date (the literal
| "00999" in the example), which will always be windowed against the assumed century
| window and will therefore always represent the year 1900.

| To ensure a consistent comparison, you should use the UNDATE intrinsic function to
| convert Invoice-Date to a non-date. This means that the IF statement is not comparing
| any date fields, so it does not need to apply any windowing. For example:

| ð1 Invoice-Record.

| ð3 Invoice-Date Pic x(5) Date Format yyxxx.
| .| .| .

| If FUNCTION UNDATE(Invoice-Date) Equal "ðð999" ...

 Chapter 31. Using the Millennium Language Extensions 533

Eliminating Warning-Level Messages

| For a full description and syntax of the UNDATE intrinsic function, see IBM COBOL
| Language Reference.

| Eliminating Warning-Level Messages
| When the DATEPROC(FLAG) compiler option is in effect, the compiler produces diag-
| nostic messages for every statement that defines or references a date field. These
| should normally be information-level messages, but it is possible to get warning-level
| messages for COBOL code that appears to be correct, and even produces correct
| results.

| You should always eliminate error-level and severe-level messages from your program,
| and it is good programming practice to eliminate warning-level messages as much as
| possible. When the program is compiled and tested satisfactorily, you can then use the
| DATEPROC(NOFLAG) compiler option to produce a listing with as few diagnostic mes-
| sages as possible.

| To reduce or eliminate warning-level diagnostic messages when DATEPROC(FLAG) is
| in effect, you should follow these simple guidelines:

| � The diagnostic messages may indicate some date data items that should have had
| a DATE FORMAT clause but were missed. You should either add DATE FORMAT
| clauses to these items, or use the DATEVAL intrinsic function in references to
| them.

| � Don't specify a date field in a context where a date field doesn't make sense, such
| as a FILE STATUS, PASSWORD, ASSIGN USING, LABEL RECORD, or LINAGE
| item. If you do, you'll get a warning-level message and the date field will be
| treated as a non-date.

| � Ensure that implicit or explicit aliases for date fields are compatible, such as in a
| group item that consists solely of a date field, or when using the REDEFINES or
| RENAMES clauses.

| � Ensure that if a date field is defined with a VALUE clause, the value is compatible
| with the date field definition.

| � Use the DATEVAL intrinsic function if you want a non-date treated as a date field,
| such as when moving a non-date to a date field, or comparing a windowed date
| field with a non-date and you want a windowed date comparison. If you don't use
| DATEVAL, the compiler will make an assumption about the use of the non-date,
| and produce a warning-level diagnostic message. Even if the assumption is
| correct, you may want to use DATEVAL just to eliminate the message. For more
| information on the DATEVAL intrinsic function, see “DATEVAL” on page 532.

| � Use the UNDATE intrinsic function if you want a date field treated as a non-date,
| such as moving a date field to a non-date, or comparing a non-date and a win-
| dowed date field and you don't want a windowed comparison. For more informa-
| tion on the UNDATE intrinsic function, see “UNDATE” on page 533.

| � Don't subtract one date field from another unless the result field is a non-date. For
| more information, see “Arithmetic Expressions” on page 529.

534 VisualAge COBOL Programming Guide

Objectives

| Principles
| To gain the most benefit from the millennium language extensions, it is important to
| understand the reasons for their introduction into the COBOL language, and the
| rationale behind their design. In particular, there are some apparent inconsistencies
| that only make sense with an understanding of what the extensions are, and what they
| are not.

| You should not consider using the extensions in new applications, or in enhancements
| to existing applications, unless the applications are using old data that cannot be
| expanded until later.

| The extensions do not provide fully-specified or complete date-oriented data types, with
| semantics that recognize, for example, the month and day parts of Gregorian dates.
| They do however provide special semantics for the year part of dates.

| The millennium language extensions focus on a few key principles:

| 1. Programs to be re-compiled with date semantics are fully-tested and valuable
| assets of the enterprise. Their only relevant limitation is that any 2-digit years in
| the programs are restricted to the range 1900–1999.

| 2. No special processing is done for the non-year part of dates. That is why the non-
| year part of the supported date formats is denoted by Xs. To do otherwise might
| change the meaning of existing programs. The only date-sensitive semantics that
| are provided involve automatically expanding (and contracting) the 2-digit year part
| of dates with respect to the century window for the program.

| 3. Dates with 4-digit year parts are generally only of interest when used in combina-
| tion with windowed dates. Otherwise there is little difference between 4-digit year
| dates and non-dates.

| Objectives
| Based on these principles, the millennium language extensions are designed to meet a
| number of objectives. You should evaluate the objectives that you need to meet in
| order to resolve your date processing problems, and compare them against the objec-
| tives of the millennium language extensions, to determine how your application can
| benefit from them.

| The objectives of the millennium language extensions are as follows:

| 1. The primary objective is to extend the useful life of your application programs, as
| they are currently specified, into the twenty-first century.

| 2. Source changes to accomplish this must be held to the bare minimum, preferably
| limited to augmenting the declarations of date fields in the Data Division. To imple-
| ment basic remediation of date problems, you should not be required to make any
| changes to the program logic in the Procedure Division.

| 3. The existing semantics of the programs will not be changed by the addition of date
| fields. For example, where a date is expressed as a literal, as in:

 Chapter 31. Using the Millennium Language Extensions 535

Concepts

| If Expiry-Date Greater Than 98ð1ð1 ...

| the literal is considered to be compatible (windowed or expanded) with the date
| field to which it is compared. Further, because the existing program assumes that
| 2-digit year dates expressed as literals are in the range 1900–1999, the extensions
| do not change this assumption (see “The Assumed Window” on page 538).

| 4. The windowing feature is not intended for long-term use. Its intention is to extend
| the useful life of applications through the year 2000, as a start towards a long-term
| solution that can be implemented later.

| 5. The expanded date field feature is intended for long-term use, as an aid for
| expanding date fields in files and databases.

| Concepts
| With these principles and objectives in mind, you can better understand some of the
| concepts of the millennium language extensions, and how they interact with other parts
| of COBOL. This section describes some of these concepts.

| Date Semantics
| All arithmetic, whether performed on date fields or not, acts only on the numeric con-
| tents of the fields; date semantics for the non-year parts of date fields are not provided.
| For example, adding 1 to a windowed Gregorian date field that contains the value
| 980831 gives a result of 980832, not 980901.

| However, date semantics are provided for the year parts of date fields. For example, if
| the century window is 1950–2049, and the value of windowed date field TwoDigitYear
| is 49, then the following ADD statement will result in the SIZE ERROR imperative state-
| ment being executed:

| Add 1 to TwoDigitYear

| on Size Error Perform CenturyWindowOverflow

| End-Add

| Compatible Dates
| The meaning of the term compatible dates depends on the COBOL division in which
| the usage occurs, as follows:

| � The Data Division usage is concerned with the declaration of date fields, and the
| rules governing COBOL language elements such as subordinate data items and
| the REDEFINES clause. In the following example, Review-Date and Review-Year
| are compatible because Review-Year can be declared as a subordinate data item
| to Review-Date:

| ð1 Review-Record.

| ð3 Review-Date Date Format yyxxxx.

| ð5 Review-Year Pic XX Date Format yy.

| ð5 Review-M-D Pic XXXX.

| For full details, see IBM COBOL Language Reference.

536 VisualAge COBOL Programming Guide

Concepts

| � The Procedure Division usage is concerned with how date fields can be used
| together in operations such as comparisons, moves, and arithmetic expressions.
| To be considered compatible, date fields must have the same number of non-year
| characters. For example, a field with DATE FORMAT YYXXXX is compatible with
| another field that has the same DATE FORMAT, and with a YYYYXXXX field, but
| not with a YYXXX field.

| The remainder of this discussion relates to the Procedure Division usage of compatible
| dates.

| You can perform operations on date fields, or on a combination of date fields and non-
| dates, provided that the date fields in the operation are compatible. For example, with
| the following definitions:

| ð1 Date-Gregorian-Win Pic 9(9) Packed Date Format yyxxxx.

| ð1 Date-Julian-Win Pic 9(9) Packed Date Format yyxxx.

| ð1 Date-Gregorian-Exp Pic 9(9) Packed Date Format yyyyxxxx.

| The statement:

| If Date-Gregorian-Win Less than Date-Julian-Win ...

| is inconsistent because the number of non-year digits is different between the two
| fields. The statement:

| If Date-Gregorian-Win Less than Date-Gregorian-Exp ...

| is accepted because the number of non-year digits is the same for both fields. In this
| case the century window is applied to the windowed date field (Date-Gregorian-Win) to
| ensure that the comparison is meaningful.

| Where a non-date is used in conjunction with a date field, the non-date is either
| assumed to be compatible with the date field, or treated as a simple numeric value, as
| described in the following section.

| Treatment of Non-Dates
| The simplest kind of non-date is just a literal value. The following items are also
| non-dates:

| � A data item whose data description does not include a DATE FORMAT clause.

| � The results (intermediate or final) of some arithmetic expressions. For example,
| the difference of two date fields is a non-date, wheras the sum of a date field and a
| non-date is a date field.

| � The output from the UNDATE intrinsic function.

| When you use a non-date in conjunction with a date field, the compiler interprets the
| non-date as either a date whose format is compatible with the date field, or a simple
| numeric value. This interpretation depends on the context in which the date field and
| non-date are used, as follows:

 Chapter 31. Using the Millennium Language Extensions 537

Concepts

| Comparison
| Where a date field is compared to a non-date, the non-date is considered to be
| compatible with the date field in the number of year and non-year characters. In
| the following example:

| ð1 Date-1 Pic 9(6) Date Format yyxxxx.
| .| .| .

| If Date-1 Greater than 971231 ...

| Because the non-date literal 971231 is being compared to a windowed date
| field, it is treated as if it had the same DATE FORMAT as Date-1, but with a
| base year of 1900.

| Arithmetic operations
| In all supported arithmetic operations, non-date fields are treated as simple
| numeric values. In the following example:

| ð1 Date-2 Pic 9(6) Date Format yyxxxx.
| .| .| .

| Add 1ðððð to Date-2.

| the numeric value 10000 is added to the Gregorian date in Date-2, effectively
| adding one year to the date.

| MOVE statement
| Moving a date field to a non-date is not supported. However, you can use the
| UNDATE intrinsic function to achieve this. For more information, see “UNDATE”
| on page 533.

| When you move a non-date to a date field, the sending field is assumed to be
| compatible with the receiving field in the number of year and non-year charac-
| ters. For example, when you move a non-date to a windowed date field, the
| non-date field is assumed to contain a compatible date with a 2-digit year.

| The Assumed Window
| Where the program operates on windowed date fields, the compiler applies the century
| window for the compilation unit; that is, the one defined by the YEARWINDOW compiler
| option. Where a windowed date field is used in conjunction with a non-date, and the
| context demands that the non-date also be treated as a windowed date, the compiler
| uses an assumed century window to resolve the non-date field.

| The assumed century window is 1900–1999, which is typically not the same as the
| century window for the compilation unit.

| In many cases, particularly for literal non-dates, this assumed century window will be
| the correct choice. For example, in the construct:

| ð1 manufacturingRecord.

| ð3 makersDate Pic X(6) Date Format yyxxxx.
| .| .| .

| If makersDate Greater than "72ð1ð1" ...

| the literal should retain its original meaning of January 1, 1972, and not change to 2072
| if the century window is, for example, 1975–2074. Even if the assumption is correct, it

538 VisualAge COBOL Programming Guide

Concepts

| is better to make the year explicit, and also eliminate the warning-level diagnostic
| message that accompanies application of the assumed century window, by using the
| DATEVAL intrinsic function:

| If makersDate Greater than

| Function Dateval("1972ð1ð1" "YYYYXXXX") ...

| In other cases however, the asumption may not be correct. For example:

| ð1 Project-Controls.

| ð3 Date-Target Pic 9(6).
| .| .| .

| ð1 Progress-Record.

| ð3 Date-Complete Pic 9(6) Date Format yyxxxx.
| .| .| .

| If Date-Complete Less than Date-Target ...

| For this example, assume that Project-Controls is in a COPY member that is used by
| other applications that have not yet been upgraded for Year 2000 processing, and
| therefore Date-Target cannot have a DATE FORMAT clause. In the example, if:

| � The century window is 1910–2009,
| � Date-Complete is 991202 (Gregorian date: December 2, 1999), and
| � Date-Target is 000115 (Gregorian date: January 15, 2000),

| then:

| � Date-Complete is earlier than (less than) Date-Target.

| However, because Date-Target does not have a DATE FORMAT clause, it is a non-
| date, so the century window applied to it is the assumed century window of 1900–1999,
| which means that it is processed as January 15, 1900. So Date-Complete will be
| greater than Date-Target, which is not the desired result.

| In this case, you should use the DATEVAL intrinsic function to convert Date-Target to a
| date field for this comparison. For example:

| If Date-Complete Less than

| Function Dateval (Date-Target "YYXXXX") ...

| For more information on the DATEVAL intrinsic function, see “DATEVAL” on page 532.

 Chapter 31. Using the Millennium Language Extensions 539

Differences with Host COBOL

Appendix A. Summary of Differences with Host COBOL

This appendix gives an overview of the product function differences between IBM
COBOL for OS/390 & VM and IBM VisualAge COBOL.

Figure 123 lists the differences between IBM COBOL for OS/390 & VM and IBM
VisualAge COBOL. For information on COBOL language differences between the dif-

| ferent platforms, see the IBM COBOL Language Reference. For information on devel-
| oping applications that are portable between the different platforms, see Chapter 18,
| “Porting Applications between Platforms” on page 364.

Figure 123 (Page 1 of 3). Product Differences Between Mainframe and Workstation IBM COBOL

Product Function Workstation Implementation

Compiler Options The following compiler options are treated as comments: ADV, AWO,
BUFSIZE, DATA, DECK, DBCS, FASTSRT, FLAGMIG, INTDATE, LAN-
GUAGE, NAME, OUTDD, RENT, and suboptions of TEST. These options
are flagged with I-level messages.

The following compiler options are treated as comments; however, if speci-
fied, the application might yield unpredictable results: NOADV and CMPR2.
These options are flagged with W-level messages.

LIB is the IBM-supplied default on the PC; NOLIB is the IBM-supplied default
on the host.

Data Representation Binary data types are handled based on the specification of the BINARY
compiler option.

Sign representation for external decimal data are ASCII-based. Specifying
NUMPROC(NOPFD) allows the full range of valid sign values for the
numeric class test.

EBCDIC vs ASCII:

� You can specify the EBCDIC collating sequence using the following lan-
guage elements: ALPHABET clause, PROGRAM COLLATING
SEQUENCE clause, and the COLLATING SEQUENCE phrase of the
SORT and MERGE verbs.

� You can specify the CHAR(EBCDIC) compiler option to indicate that
DISPLAY data items are in the System/390 data representation
(EBCDIC).

You can use the FLOAT(S390) compiler option to indicate that floating point
data items are in the System/390 data representation (hexadecimal) as
opposed to the native (IEEE) format.

DBCS—Under AIX, OS/2, and Windows, you do not use shift-in or shift-out
delimiters for DBCS literals unless the CHAR(EBCDIC) compiler option is in
effect.

Within an alphanumeric literal, using control characters X'00' through
X'1F' can yield unpredictable results.

540  Copyright IBM Corp. 1996, 1998

Differences with Host COBOL

Figure 123 (Page 2 of 3). Product Differences Between Mainframe and Workstation IBM COBOL

Product Function Workstation Implementation

Environment Variables IBM VisualAge COBOL recognizes the following as environment variables:

 � ASSIGNment name
 � COBMSGS
 � COBOPT
 � COBPATH
 � COBRTOPT
 � DB2DBDFT
 � EBCDIC_CODEPAGE
 � LANG
 � LC_COLLATE
 � LC_MESSAGES
 � LC_TIME
 � LIBPATH
� library-name specified as a user-defined word

 � LOCPATH
 � NLSPATH
� SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST, CONSOLE,

SYSPUNCH, and SYSPCH
 � SYSLIB
 � TEMP
� text-name specified as a user-defined word

 � TZ

File Specification All files are treated as single volume files. All other file specifications are
treated as comments. This affects the following: REEL, UNIT, MULTIPLE
FILE TAPE clause, and CLOSE...UNIT/REEL.

Inter-Language Communication (ILC) ILC is available with C, C++, and PL/I programs.

The following is a list of differences in ILC behavior on the workstation com-
pared to using ILC on the host with Language Environment:

� There are differences in termination behavior when a COBOL STOP
RUN, a C exit(), or a PLI STOP is used.

� There is no coordinated condition handling on the workstation. Use of a
C longjmp() that crosses COBOL programs should be avoided on the
workstation.

� On the host, the first program which is invoked within the process and
which is enabled for Language Environment is considered to be the
“main” program. On the workstation, the first COBOL program invoked
within the process is considered to be the main program by COBOL.
This impacts the language semantics which is sensitive to the definition
of the run unit (the execution unit with starts with a main program). For
example, a STOP RUN will result in the return of the control to the
invoker of the main program, which in a mixed language environment
may be different as stated above.

 Appendix A. Summary of Differences with Host COBOL 541

Differences with Host COBOL

Figure 123 (Page 3 of 3). Product Differences Between Mainframe and Workstation IBM COBOL

Product Function Workstation Implementation

I-O I-O support for sequential, relative, and indexed files is provided using STL
file system, VSAM (only remote files supported on Windows), and Btrieve.
Sizes and values are different for the data-name returned from the file
system.

IBM VisualAge COBOL does not provide direct support for tape drives or
diskette drives.

Line Sequential I-O is supported using the native byte stream file support of
the platform. The following language elements are treated as comments for
Line Sequential files, as well as for Sequential, Relative, and Indexed files:

� ADVANCING phrase of WRITE statement
� APPLY WRITE ONLY clause
� AT END-OF-PAGE phrase of WRITE statement
� BLOCK CONTAINS clause

 � CODE-SET clause
� DATA RECORDS clause
� FILE STATUS value 39 (fixed file attribute conflict)
� LABEL RECORDS clause

 � LINAGE clause
� OPEN I-O option
� PADDING CHARACTER clause
� RECORD CONTAINS 0 clause
� RECORD CONTAINS clause (format 3)
� RECORD DELIMITER clause
� RECORDING MODE clause

 � RERUN clause
 � RESERVE clause
� REVERSED phrase of OPEN statement
� VALUE OF clause of file description entry

Run-Time Options The following run-time options are not recognized by IBM VisualAge COBOL
and will be treated as invalid options: AIXBLD, ALL31, CBLPSHPOP,
CBLQDA, COUNTRY, HEAP, MSGFILE, NATLANG, SIMVRD, and STACK.

| On the host, the STORAGE run-time option can be used to initialize COBOL
| working storage. With IBM VisualAge COBOL, this is achieved with the
| WSCLEAR compiler option.

Source Code Line A COBOL source line can be less than 72 characters. A line ends on
column 72 or where a carriage control character is found.

542 VisualAge COBOL Programming Guide

Appendix B. System/390 Host Data Type Considerations

The following are considerations, restrictions, and limitations which apply to the use of
System/390 host data types. The BINARY, CHAR, and FLOAT compiler options deter-
mine if System/390 host data types or native data types are used. See Chapter 10,
“Compiler Options” on page 160 for details on how to specify these options and for
specific information about how each option is used.

 CICS Access
CICS allows you to specify various data conversion choices at various places and at
various granularities. For example, client CICS translator option specifications on the
server for different resources (file, EIBLK, COMMAREA, transient data queue, etc.).
Your use of host versus native data depends on such selections. Refer to the appro-
priate CICS documentation for specific information about how such choices can best be
made.

| Note: System/390 host data type support is only allowed on the following CICS
| systems using the EBCDIC enablement support:

| � CICS for OS/2
| � VisualAge CICS Enterprise Application Development

It will not work for COBOL programs that are translated by the CICS translator and run
on CICS for Windows NT or CICS for AIX.

Date and Time Callable Services
| The date and time callable services can be used with the System/390 host data types.
| All of the parameters passed to the callable services must be in System/390 host data
| type format. You cannot mix native and host data types in the same call to a date and
| time service.

Floating Point Overflow Exceptions
Due to differences in the limits of floating point data representations on the workstation
and the System/390 host platform, it is possible that a floating point overflow exception
can occur during conversion between the two formats. For example, you might get the
following message on the workstation:

IWZð53S An overflow occurred on conversion to floating point

when running a program which executes successfully on the System/390 host platform.

To avoid this problem, you must be aware of the maximum floating point values sup-
ported on either platform for the respective data types. The limits are shown in
Figure 124

 Copyright IBM Corp. 1996, 1998 543

As shown above, the System/390 host can carry a larger COMP-1 value than the work-
station and the workstation can carry a larger COMP-2 value than the System/390 host.

Figure 124. Floating Point Value Limits

Data Type Maximum Workstation Value Maximum System/390 Host Value

COMP-1 ±(2\\128-2\\4)
(Approx. ±3.4028E+38)

±(16\\63-16\\57)
(Approx. ±7.2370E+75)

COMP-2 ±(2\\1024-2\\971)
(Approx. ±1.7977E+308)

±(16\\63-16\\49)
(Approx. ±7.2370E+75)

Note: \\ indicates “in the power of.”

 DB2
| The System/390 host data type compiler options can be used with DB2 programs.

 MQSeries
The System/390 host data type compiler options should not be used with MQSeries
programs.

Remote File Access
� If you are accessing remote host files using SMARTdata Utilities, (via COBOL file

I/O statements), you do not need to specify A Data Language (ADL) for data con-
version. You can access the data in the VSAM host files directly when you
compile with the host data options.

� If you are already using ADL for conversion of remote file data, do not use the host
data support.

� Note that file records (01 record under FD) implicitly take on the characteristics of
the CHAR compiler option.

 SORT
| All of the System/390 host data types can be used as sort keys.

544 VisualAge COBOL Programming Guide

Calculating Precision

Appendix C. Intermediate Results and Arithmetic Precision

The compiler handles arithmetic statements as a succession of operations, performed
according to operator precedence, and sets up an intermediate field to contain the
results of these operations.

Intermediate results are possible in the following cases:

� In an ADD or SUBTRACT statement containing more than one operand immediately
following the verb.

� In a COMPUTE statement specifying a series of arithmetic operations or multiple
result fields.

� In arithmetic expressions contained in conditional statements and reference modifi-
cation specifications.

� In the GIVING option with multiple result fields for the ADD, SUBTRACT, MULTIPLY,
or DIVIDE statements.

� In a statement with an intrinsic function used as an operand.

For a discussion on when the compiler uses fixed-point or floating-point arithmetic, refer
to “Fixed-Point versus Floating-Point Arithmetic” on page 43.

Calculating Precision of Intermediate Results
The compiler uses algorithms to determine the number of integer and decimal places
reserved for intermediate results.

In the following discussion of how the compiler determines the number of integer and
decimal places reserved for intermediate results, these abbreviations are used:

i The number of integer places carried for an intermediate result.

d The number of decimal places carried for an intermediate result.

ROUNDED
If the ROUNDED option is used, one more integer or decimal might be added
for accuracy, if necessary. Only the final results are rounded; the interme-
diate results are not rounded.

dmax In a particular statement, the largest of:

� The number of decimal places needed for the final result field(s).

� The maximum number of decimal places defined for any operand,
except divisors or exponents.

� The outer-dmax for any function operand.

 Copyright IBM Corp. 1996, 1998 545

Calculating Precision

inner-dmax
The inner-dmax for a function is the largest of:

� The number of decimal places defined for any of its elementary argu-
ments.

� The dmax for any of its arithmetic expression arguments.

� The outer-dmax for any of its embedded functions.

outer-dmax
The number that determines how a function result contributes to operations
outside of its own evaluation (for example, if the function is an operand in an
arithmetic expression or an argument to another function).

op1 The first operand in a generated arithmetic statement. For division, op1 is
the divisor.

op2 The second operand in a generated arithmetic statement. For division, op2
is the dividend.

i1,i2 The number of integer places in op1 and op2, respectively.

d1,d2 The number of decimal places defined for op1 and op2, respectively.

ir The intermediate result field obtained when a generated arithmetic statement
or operation is performed. ir1, ir2,. . ., represent successive intermediate
results. These intermediate results are generated either in registers or in
storage locations. Successive intermediate results might have the same
location.

The compiler handles each statement as a succession of operations. For example, the
following statement:

COMPUTE Y = A + B \ C - D / E + F \\ G

is calculated as:

** F BY G yielding ir1
MULTIPLY B BY C yielding ir2
DIVIDE E INTO D yielding ir3
ADD A TO ir2 yielding ir4
SUBTRACT ir3 FROM ir4 yielding ir5
ADD ir5 TO ir1 yielding Y

546 VisualAge COBOL Programming Guide

Fixed-Point Data

Fixed-Point Data and Intermediate Results
The number of integer and decimal places in an intermediate result can be determined
by using the following guidelines:

You must define the operands of any arithmetic statements with enough decimal places
to give the desired accuracy in the final result.

Figure 126 indicates the action of the compiler when handling intermediate results for
fixed-point numbers.

Figure 125. Determining the Precision of an Intermediate Result

Operation Integer Places Decimal Places

+ or - (i1 or i2) + 1, whichever is greater d1 or d2, whichever is greater

* i1 + i2 d1 + d2

/ i2 + d1 (d2 - d1) or dmax, whichever is greater

Figure 126. Determining When the Compiler Might Truncate Intermediate Results

Value of
i + d

Value of
d

Value of
i + dmax

Action Taken

<30
=30

Any value Any value i integer and d decimal places are carried for ir.

>30 <dmax
=dmax

Any value 30-d integer and d decimal places are carried for ir.

>dmax <30
=30

i integer and 30-i decimal places are carried for ir.

>30 30-dmax integer and dmax decimal places are carried
for ir.

Exponentiations Evaluated in Fixed-Point Arithmetic
Exponentiation is represented by the expression op1 ** op2. Based on the character-
istics of op2, the compiler handles exponentiation of fixed-point numbers in one of three
ways:

� When op2 is expressed with decimals, floating-point rules (see “Floating-Point Data
and Intermediate Results” on page 551) are used to calculate the exponentiation.

� When op2 is an integral literal or constant, the value d is computed as:

d = d1 \ |op2|

When op1 is a data-name or variable, the value i is computed as:

i = i1 \ |op2|

When op1 is a literal or constant, the actual value of op1 ** |op2| is computed and
i is set equal to the number of integers in that value.

 Appendix C. Intermediate Results and Arithmetic Precision 547

Fixed-Point Data

Having calculated i and d, the compiler takes the action indicated in the following
figure to handle intermediate results:

If op2 is negative, the value of 1 is divided by the result produced by the prelimi-
nary computation described above. The values of i and d that are used are calcu-
lated using the rules for division found in Figure 125 on page 547.

� When op2 is an integral data-name or a variable, dmax decimals and 3ð-dmax inte-
gers are used. Here, op1 is multiplied by itself (|op2| - 1) times. For example,
the following statement:

COMPUTE Y = A \\ B, where B has a value of 4

is calculated as:

The values of i and d that are used for the above multiplications are calculated
using the rules for multiplication found in Figure 125 on page 547.

If B is positive, Y = ir4.

If B is negative, however,

DIVIDE ir4 INTO 1 yielding ir5, which has dmax decimals
Y = ir5

If op2 is equal to zero, the answer is 1. Division-by-0 and exponentiation SIZE
ERROR conditions apply. For specific information on the SIZE ERROR option, see
the IBM COBOL Language Reference.

Fixed-point exponents with more than 9 significant digits are always truncated to 9
digits. If the exponent is a literal or constant, an E-level compiler diagnostic message is
issued; otherwise, an informational message is issued at run time.

Figure 127. Determining When the Compiler Might Truncate Intermediate Results for
Exponentiation

Value of
i + d

Other Conditions Action Taken

<30 Any i integer and d decimal places are carried for ir.

=30 op1 has an odd
number of digits

i integer and d decimal places are carried for ir.

op1 has an even
number of digits

The exponentiation is handled the same as it is when
op2 is an integral data-name or a variable, except in
the case of a 30-digit integer raised to the power of
literal 1, where the computation is done following the
rules for op1 with an odd number of digits.

>30 Any The exponentiation is handled the same as it is when
op2 is an integral data-name or a variable.

MULTIPLY A BY A yielding ir1
MULTIPLY ir1 BY A yielding ir2
MULTIPLY ir2 BY A yielding ir3
MOVE ir3 TO ir4 which has dmax decimals

548 VisualAge COBOL Programming Guide

Fixed-Point Data

Truncated Intermediate Results
Whenever the number of digits in a decimal is greater than 30, the field is truncated to
30 digits. You will get a warning message when you compile the program. If truncation
happens at run time, a message is issued and the program continues running.

If you think an intermediate result field might exceed 30 digits, you can use floating-
point operands (COMP-1 and COMP-2) to avoid truncation.

Binary Data and Intermediate Results
If an operation involving binary operands requires intermediate results greater than 18
digits, the compiler converts the operands to internal decimal before performing the
operation. If the result field is binary, the result will be converted from internal decimal
to binary.

Binary items are used most efficiently when the intermediate result is not greater than 9
digits.

Intrinsic Functions Evaluated in Fixed-Point Arithmetic
Integer functions and mixed functions can both return an integer result. The inner-
dmax and outer-dmax values are determined by the characteristics of the function.

 Integer Functions
These functions always return an integer, and the outer-dmax will always be zero. For
those functions whose arguments must be integer, the inner-dmax will also always be
zero.

The following table summarizes the precision of the function results:

Figure 128 (Page 1 of 2). Precision of Integer Intrinsic Functions

Function
Inner-
Dmax

Outer-
Dmax Function Result

DATE-OF-INTEGER 0 0 8-digit integer

DATE-TO-YYYYMMDD 0 0 8-digit integer

DAY-OF-INTEGER 0 0 7-digit integer

DAY-TO-YYYYDDD 0 0 7-digit integer

FACTORIAL 0 0 fixed-point, 30-digit integer

INTEGER-OF-DATE 0 0 7-digit integer

INTEGER-OF-DAY 0 0 7- digit integer

LENGTH n/a 0 9- digit integer

MOD 0 0 integer with as many digits as min(i1 i2)

ORD n/a 0 3-digit integer

ORD-MAX 0 9-digit integer

ORD-MIN 0 9-digit integer

 Appendix C. Intermediate Results and Arithmetic Precision 549

Fixed-Point Data

Figure 128 (Page 2 of 2). Precision of Integer Intrinsic Functions

Function
Inner-
Dmax

Outer-
Dmax Function Result

YEAR-TO-YYYY 0 0 4-digit integer

INTEGER 0 With a fixed-point argument, result will be fixed-
point integer with one more integer digit than the
argument. With a floating-point argument, result
will be fixed-point, 30-digit integer.

INTEGER-PART 0 With a fixed-point argument, result will be fixed-
point integer with the same number of integer
digits as the argument. With a floating-point
argument, result will be fixed-point, 30-digit
integer.

 Mixed Functions
When the compiler handles a mixed function as fixed-point arithmetic, the result will be
either integer or fixed-point with decimals (when any argument is floating-point, the
function becomes a floating-point function and will follow floating-point rules). For MAX,
MIN, RANGE, REM, and SUM, the outer-dmax is always equal to the inner-dmax. To
determine the precision of the result returned for these functions, apply the rules for
fixed-point arithmetic to each step in the algorithm used to calculate the function result.

MAX

1. Assign the first argument to your function result.
2. For each remaining argument:

a. Compare the algebraic value of your function result with the argument.
b. Assign the greater of the two to your function result.

MIN

1. Assign the first argument to your function result.
2. For each remaining argument:

a. Compare the algebraic value of your function result with the argument.
b. Assign the lesser of the two to your function result.

RANGE

1. Use the steps for MAX to select your maximum argument.
2. Use the steps for MIN to select your minimum argument.
3. Subtract the minimum argument from the maximum.
4. Assign the difference to your function result.

REM

1. Divide argument-1 by argument-2.
2. Remove all non-integer digits from the result of step 1.
3. Multiply the result of step 2 by argument-2.
4. Subtract the result of step 3 from argument-1.

550 VisualAge COBOL Programming Guide

Floating-Point Data

5. Assign the difference to your function result.

SUM

1. Assign the value 0 to your function result.
2. For each argument:

a. Add the argument to your function result.
b. Assign the sum to your function result.

Floating-Point Data and Intermediate Results
Floating-point instructions are used to compute an arithmetic expression if any of the
following conditions are true:

� A receiver or operand in the expression is COMP-1, COMP-2, external floating-point
data, or a floating-point literal.

� An exponent contains decimal places.

� An exponent is an expression that contains an exponentiation or divide operator
and dmax is greater than zero.

� An intrinsic numeric function is a floating-point function.

If any operation in an arithmetic expression is computed in floating-point, the entire
expression is computed as if all operands were converted to floating-point and the oper-
ations are evaluated using floating-point instructions.

If an expression is computed in floating-point, double-precision floating-point is used if
any receiver or operand in the expression is not COMP-1, or if a multiplication or
exponentiation operation appears in the expression. Whenever double-precision
floating-point is used for one operation in an arithmetic expression, all operations in the
expression are computed as if double-precision floating-point instructions were used.

Alert: If a floating-point operation has an intermediate result field in which exponent
overflow occurs, the job will be abnormally terminated.

Exponentiations Evaluated in Floating-Point Arithmetic
Floating-point exponentiations are always evaluated using double-precision floating-
point arithmetic.

The value of a negative number raised to a fractional power is undefined. For example,
(-2) ** 3 is equal to -8, but (-2) ** (3.000001) is not defined. When an exponentiation is
evaluated in floating-point and there is a possibility that the value of the exponentiation
will be undefined (as in the example above), then the value of the exponent is evalu-
ated at run time to determine if it is actually an integer.

Intrinsic Functions Evaluated in Floating-Point Arithmetic
The floating-point numeric functions will always return a double precision floating-point
value. For a list of the floating-point, fixed-point and mixed functions, see “Numeric
Intrinsic Functions” on page 40.

 Appendix C. Intermediate Results and Arithmetic Precision 551

Arithmetic Expressions

Mixed functions with floating-point arguments will be evaluated using floating-point arith-
metic.

Arithmetic Expressions in Non-arithmetic Statements
Arithmetic expressions can appear in contexts other than arithmetic statements. For
example, an arithmetic expression can be used with the IF statement. In such state-
ments, the rules for intermediate results, floating point, and double-precision floating-
point apply, with the following changes:

� Abbreviated IF statements are handled as though the statements were not abbrevi-
ated.

� An explicit relation condition exists when a required relational operator is used to
define the comparison between two operands (here referred to as comparands). In
an explicit relation condition where one or both of the comparands is an arithmetic
expression, the rules for intermediate results are determined taking into consider-
ation the attributes of both comparands. That is to say, dmax is defined to be the
maximum number of decimal places defined for any operand of either comparand,
except divisors and exponents. The rules for floating-point and double-precision
floating-point apply if any of the following conditions are true:

– Any operand in either comparand is COMP-1, COMP-2, external floating- point
data, or a floating-point literal.

– An exponent contains decimal places.

– An exponent is an expression that contains an exponentiation or divide oper-
ator and dmax is greater than zero.

For example, in the statement:

IF operand-1 = expression-1 THEN . . .

where operand-1 is a data-name defined to be COMP-2, and expression-1 contains
only fixed-point operands, the rules for floating-point arithmetic apply to
expression-1 because it is being compared to a floating-point operand.

� When the comparison between an arithmetic expression and either a data item or
another arithmetic expression is defined without using a relational operator, then no
explicit relation condition is said to exist. Here, the arithmetic expression is evalu-
ated without regard to the attributes of the operand with which the comparison is
being made. For example, in the statement:

 EVALUATE expression-1

WHEN expression-2 THRU expression-3

 WHEN expression-4

 .

 .

 END-EVALUATE

each arithmetic expression is evaluated in fixed-point or floating-point arithmetic
based on its own characteristics.

552 VisualAge COBOL Programming Guide

Complex OCCURS DEPENDING ON

Appendix D. Complex OCCURS DEPENDING ON

Complex OCCURS DEPENDING ON (ODO) is supported as an extension to the COBOL
85 Standard.

The basic forms of complex ODO permitted by the compiler are:

� A data item described by an OCCURS clause with the DEPENDING ON option is fol-
lowed by a non-subordinate element or group (a variably-located item).

� A data item described by an OCCURS clause with the DEPENDING ON option is fol-
lowed by a non-subordinate data item described by an OCCURS clause with the
DEPENDING ON option (variably-located table).

� A data item described by an OCCURS clause with the DEPENDING ON option is
nested within another data item described by an OCCURS clause with the
DEPENDING ON option (table with variable-length elements).

� Index-name for a table with variable-length elements.

Be Sure to Set Values of ODO Objects
Every ODO object in an 01-level must be set before any reference is made to a
complex ODO item in the 01-level. (Note: An ODO object cannot be variably located.)
For instance, in the following example, before EMPLOYEE-NUMBER can be referred to,
COUNTER-1 and COUNTER-2 must be set, even though EMPLOYEE-NUMBER does not directly
depend on either of the ODO objects for its value.

The length of the variable portions of each record is the product of the ODO object and
the length of the subject of the OCCURS clause. The length is calculated at the time of
a reference to one of the following:

� A data item following, and not subordinate to, a variable-length table in the same
level-01 record (variably-located item).

.1/ in the following example.

� A group item following, and not subordinate to, a variable-length table in the same
level-01 record (variably-located group).

.2/ in the following example.

� An index name for a table that has variable-length elements.

.3/ in the following example.

� An element of a table that has variable-length elements.

.4/ in the following example.

 Copyright IBM Corp. 1996, 1998 553

Complex OCCURS DEPENDING ON

Complex ODO Example
Any item that meets one of these four criteria is considered to be a “complex ODO
item.” The following example illustrates each of the possible occurrences of a complex
ODO item.

 ð1 FIELD-A.

 ð2 COUNTER-1 PIC S99.

 ð2 COUNTER-2 PIC S99.

 ð2 TABLE-1.

ð3 RECORD-1 OCCURS 1 TO 5 TIMES

DEPENDING ON COUNTER-1 PIC X(3).

ð2 EMPLOYEE-NUMBER PIC X(5). .1/
ð2 TABLE-2 OCCURS 5 TIMES .2/

INDEXED BY INDX. .3/
 ð3 TABLE-ITEM PIC 99. .4/

ð3 RECORD-2 OCCURS 1 TO 3 TIMES

DEPENDING ON COUNTER-2.

 ð4 DATA-NUM PIC S99.

How Length Will be Calculated
Whenever a reference is made to one of these four data items, the actual length, if
used, is computed as follows:

� The contents of COUNTER-1 are multiplied by 3 to calculate the length of TABLE-1.

� The contents of COUNTER-2 are multiplied by 2 and added to the length of
TABLE-ITEM to calculate the length of TABLE-2.

� The length of FIELD-A is calculated by adding the length of COUNTER-1, COUNTER-2,

TABLE-1, EMPLOYEE-NUMBER, and TABLE-2 times 5.

Changes in ODO Object Value
If a data item described by an OCCURS clause with the DEPENDING ON option is fol-
lowed in the same level-01 record by non-subordinate data items, a change in the value
of the ODO object, and a subsequent reference to a complex ODO item during the
course of program execution, will have the following effects:

� The size of any group containing the related OCCURS clause will reflect the new
value of the ODO object.

� Whenever a MOVE to a group containing an ODO object is executed, the MOVE is
made based on the current contents of the object of the DEPENDING ON option.

Caution: The value of the ODO object may change because a MOVE is made to it
or to the group in which it is contained. The value of the ODO object may also
change because the group in which it is contained is a record area that has been
changed by execution of a READ statement.

� The location of any non-subordinate items following the item described with the
OCCURS clause will be affected by the new value of the ODO object. If you wish
to preserve the contents of these items, the following procedure can be used:
Prior to the change in the ODO object, move all non-subordinate items following

554 VisualAge COBOL Programming Guide

Complex OCCURS DEPENDING ON

the variable item to a work area; after the change in the ODO object, move all the
items back.

Changing ODO Object with Complex-ODO Index Names
You must be careful when using complex-ODO index names. If you set an index name
(like 'INDX' in the previous example) for a table with variable-length entries
('TABLE-2'), and then change the value of the ODO object ('COUNTER-2'), be aware
that the offset in your index is no longer valid for the table, since the table has
changed. If, at this point, you were to code statements that used your index name,
thinking the index name had a valid value for the table, the statements would yield
unexpected results. This would apply to coding:

� A reference (using your index name) to an element of the table

� A format-1 SET statement of the type SET INTEGER-DATA-ITEM TO INDEX-NAME

� A format-2 SET statement of the type SET INDEX-NAME UP/DOWN BY INTEGER.

To avoid making this type of error, you can do the following:

1. Save the value of your index name (in the form of its integer occurrence number)
in an integer data-item before changing the ODO object.

2. Immediately after changing the ODO object, restore the value of your index name
from the integer data-item.

For example:

 77 INTEGER-DATA-ITEM-1 PIC 99.

SET INDX TO 5

\ INDX is valid at this point.

SET INTEGER-DATA-ITEM-1 TO INDX

MOVE NEW-VALUE TO COUNTER-2.

\ INDX is not valid at this point.

SET INDX TO INTEGER-DATA-ITEM-1.

\ INDX Is now valid and can be

\ used with expected results.

Changing ODO Object with Variable Occurrence Table
The following example applies to changing an ODO object by adding an element to a
variable occurrence table with variably-located items following it. The example updates
a record containing an OCCURS clause with the DEPENDING ON option and at least one
other subsequent entry. In this case, the subsequent entry is another OCCURS clause
with the DEPENDING ON option.

 Appendix D. Complex OCCURS DEPENDING ON 555

Complex OCCURS DEPENDING ON

 WORKING-STORAGE SECTION.

 ð1 VARIABLE-REC.

 ð5 FIELD-1 PIC X(1ð).

 ð5 CONTROL-1 PIC S99.

 ð5 CONTROL-2 PIC S99.

ð5 VARY-FIELD-1 OCCURS 1 TO 1ð TIMES

DEPENDING ON CONTROL-1 PIC X(5).

 ð5 GROUP-ITEM-1.

 1ð VARY-FIELD-2

OCCURS 1 TO 1ð TIMES

DEPENDING ON CONTROL-2 PIC X(9).

 ð1 STORE-VARY-FIELD-2.

 ð5 GROUP-ITEM-2.

 1ð VARY-FLD-2

OCCURS 1 TO 1ð TIMES

DEPENDING ON CONTROL-2 PIC X(9).

Assume that both CONTROL-1 and CONTROL-2 contain the value 3. In this situation,
storage for VARY-FIELD-1 and VARY-FIELD-2 would look like this:

 ┌──┬──┬──┬──┬──┐

VARY─FIELD─1(1) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┤

VARY─FIELD─1(2) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┤

VARY─FIELD─1(3) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┬──┬──┬──┐

VARY─FIELD─2(1) │ │ │ │ │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┤

VARY─FIELD─2(2) │ │ │ │ │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┤

VARY─FIELD─2(3) │ │ │ │ │ │ │ │ │ │

 └──┴──┴──┴──┴──┴──┴──┴──┴──┘

In order to add a fourth field to VARY-FIELD-1, the following steps are required to
prevent VARY-FIELD-1 from overlaying the first 5 bytes of VARY-FIELD-2:

MOVE GROUP-ITEM-1 TO GROUP-ITEM-2

ADD 1 TO CONTROL-1

MOVE "additional field" TO

 VARY-FIELD-1 (CONTROL-1)

MOVE GROUP-ITEM-2 TO GROUP-ITEM-1

556 VisualAge COBOL Programming Guide

Complex OCCURS DEPENDING ON

The updated storage for VARY-FIELD-1 and VARY-FIELD-2 would now look like this:

 ┌──┬──┬──┬──┬──┐

VARY─FIELD─1(1) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┤

VARY─FIELD─1(2) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┤

VARY─FIELD─1(3) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┤

VARY─FIELD─1(4) │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┬──┬──┬──┐

VARY─FIELD─2(1) │ │ │ │ │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┤

VARY─FIELD─2(2) │ │ │ │ │ │ │ │ │ │

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┤

VARY─FIELD─2(3) │ │ │ │ │ │ │ │ │ │

 └──┴──┴──┴──┴──┴──┴──┴──┴──┘

The intent of this last example is to emphasize that if you want to preserve the values
contained in data items that follow a variable-length item within the same record, you
must move them to another field prior to changing the length of the variable-length item,
and then move them back after the length indicator has been changed.

 Appendix D. Complex OCCURS DEPENDING ON 557

CEECBLDY

Appendix E. Date and Time Callable Services Reference

CEECBLDY—Convert Date to COBOL Integer Format
CEECBLDY converts a string representing a date into a COBOL Integer format, which
is the number of days since 31 December 1600. This service is similar to CEEDAYS,
except that it provides a string in COBOL Integer format, which is compatible with ANSI
intrinsic functions. Use CEECBLDY to access the century window of the date and time
callable services and to perform date calculations with ANSI intrinsic functions.

 Syntax

55──CALL──"CEECBLDY"──USING──input_char_date──,──picture_string──,─────5

5──output_Integer_date──,──fc──.──────────────────────────────────────5%

input_char_date (input)
A halfword length-prefixed character string, representing a date or timestamp, in a
format conforming to that specified by picture_string.

The character string must contain between 5 and 255 characters, inclusive.
input_char_date can contain leading or trailing blanks. Parsing for a date begins
with the first nonblank character (unless the picture string itself contains leading
blanks, in which case CEECBLDY skips exactly that many positions before parsing
begins).

After parsing a valid date, as determined by the format of the date specified in
picture_string, CEECBLDY ignores all remaining characters. Valid dates range
between and include 01 January 1601 to 31 December 9999.

See Figure 116 on page 500 for a list of valid picture character terms that can be
specified in input_char_date.

picture_string (input)
A halfword length-prefixed character string, indicating the format of the date speci-
fied in input_char_date.

Each character in the picture_string corresponds to a character in input_char_date.
For example, if you specify MMDDYY as the picture_string, CEECBLDY reads an
input_char_date of 060288 as 02 June 1988.

If delimiters such as the slash (/) appear in the picture string, leading zeros can be
omitted. For example, the following calls to CEECBLDY:

MOVE '6/2/88' TO DATEVAL-STRING.

MOVE 6 TO DATEVAL-LENGTH.

MOVE 'MM/DD/YY' TO PICSTR-STRING.

MOVE 8 TO PICSTR-LENGTH.

CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDTE, FC.

558  Copyright IBM Corp. 1996, 1998

CEECBLDY

MOVE 'ð6/ð2/88' TO DATEVAL-STRING.

MOVE 8 TO DATEVAL-LENGTH.

MOVE 'MM/DD/YY' TO PICSTR-STRING.

MOVE 8 TO PICSTR-LENGTH.

CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDTE, FC.

MOVE 'ð6ð288' TO DATEVAL-STRING.

MOVE 6 TO DATEVAL-LENGTH.

MOVE 'MMDDYY' TO PICSTR-STRING.

MOVE 6 TO PICSTR-LENGTH.

CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDTE, FC.

MOVE '88154' TO DATEVAL-STRING.

MOVE 5 TO DATEVAL-LENGTH.

MOVE 'YYDDD' TO PICSTR-STRING.

MOVE 5 TO PICSTR-LENGTH.

CALL CEECBLDY USING DATEVAL, PICSTR, COBINTDTE, FC.

would each assign the same value, 141502 (02 June 1988), to COBINTDTE.

Whenever characters such as colons or slashes are included in the picture_string
(such as HH:MI:SS YY/MM/DD), they count as placeholders but are otherwise
ignored.

See Figure 116 on page 500 for a list of valid picture character terms and
Figure 117 on page 501 for examples of valid picture strings.

If picture_string includes a Japanese Era symbol <JJJJ>, the YY position in
input_char_date is replaced by the year number within the Japanese Era. For
example, the year 1988 equals the Japanese year 63 in the Showa era. See
Figure 117 on page 501 for an additional example. See Figure 118 on page 502
for a list of Japanese Eras supported.

If picture_string includes an ROC (Republic of China) Era symbol <CCCC> or
<CCCCCCCC>, the YY position in input_char_date is replaced by the year number
within the ROC Era. For example, the year 1988 equals the ROC year 77 in the
MinKow Era. See Figure 117 on page 501 for an additional example. See
Figure 119 on page 502 for a list of ROC Eras supported.

output_Integer_date (output)
A 32-bit binary integer representing the COBOL Integer date, the number of days
since 31 December 1600. For example, 16 May 1988 is day number 141485.

If input_char_date does not contain a valid date, output_Integer_date is set to 0
and CEECBLDY terminates with a non-CEE000 symbolic feedback code.

Date calculations are performed easily on the output_Integer_date, because
output_Integer_date is an integer. Leap year and end-of-year anomalies do not
affect the calculations.

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

 Appendix E. Date and Time Callable Services Reference 559

CEECBLDY

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2EB 3 2507 Insufficient data was passed to CEEDAYS
or CEESECS. The Lilian value was not cal-
culated.

CEE2EC 3 2508 The date value passed to CEEDAYS or
CEESECS was invalid.

CEE2ED 3 2509 The Japanese or Republic of China Era
passed to CEEDAYS or CEESECS was not
recognized.

CEE2EH 3 2513 The input date passed in a CEEISEC,
CEEDAYS, or CEESECS call was not within
the supported range.

CEE2EL 3 2517 The month value in a CEEISEC call was not
recognized.

CEE2EM 3 2518 An invalid picture string was specified in a
call to a date/time service.

CEE2EO 3 2520 CEEDAYS detected non-numeric data in a
numeric field, or the date string did not
match the picture string.

CEE2EP 3 2521 The Japanese (<JJJJ>) or Chinese
(<CCCC>) year-within-Era value passed to
CEEDAYS or CEESECS was zero.

 Usage Notes
� Call CEECBLDY only from COBOL programs that use the returned value as input

to COBOL intrinsic functions. You should not use the returned value with other
date and time callable services, nor should you call CEECBLDY from any
non-COBOL programs. Unlike CEEDAYS, there is no inverse function of
CEECBLDY, because it is only for COBOL users who want to use the date and
time century window service together with COBOL intrinsic functions for date calcu-
lations. The inverse function of CEECBLDY is provided by the
DATE-OF-INTEGER and DAY-OF-INTEGER intrinsic functions.

� To perform calculations on dates earlier than 1 January 1601, add 4000 to the year
in each date, convert the dates to COBOL Integer format, then do the calculation.
If the result of the calculation is a date, as opposed to a number of days, convert
the result to a date string and subtract 4000 from the year.

� By default, 2-digit years lie within the 100-year range starting 80 years prior to the
system date. Thus, in 1997, all 2-digit years represent dates between 1917 and
2016, inclusive. You can change this default range by using the CEESCEN call-
able service.

560 VisualAge COBOL Programming Guide

CEECBLDY

 Example

CBL LIB,APOST

 \\\

 \\ \\

\\ Function: Invoke CEECBLDY callable service \\

\\ to convert date to COBOL Integer format. \\

\\ This service is used when using the \\

\\ Century Window feature of the date and time \\

\\ callable services mixed with COBOL \\

\\ Intrinsic Functions. \\

 \\ \\

 \\\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLDY.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 ð1 CHRDATE.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of CHRDATE.

 ð1 PICSTR.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of PICSTR.

ð1 INTEGER PIC S9(9) BINARY.

 ð1 NEWDATE PIC 9(8).

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 Appendix E. Date and Time Callable Services Reference 561

CEEDATE

 PROCEDURE DIVISION.

 PARA-CBLDAYS.

 \\\

\\ Specify input date and length \\

 \\\

MOVE 25 TO Vstring-length of CHRDATE.

MOVE '1 January ðð'

to Vstring-text of CHRDATE.

 \\\

\\ Specify a picture string that describes \\

\\ input date, and set the string's length. \\

 \\\

MOVE 23 TO Vstring-length of PICSTR.

MOVE 'ZD Mmmmmmmmmmmmmmz YY'

TO Vstring-text of PICSTR.

 \\\

\\ Call CEECBLDY to convert input date to a \\

\\ COBOL Integer date \\

 \\\

CALL 'CEECBLDY' USING CHRDATE, PICSTR,

 INTEGER, FC.

 \\\

\\ If CEECBLDY runs successfully, then compute \\

\\ the date of the 9ðth day after the \\

\\ input date using Intrinsic Functions \\

 \\\

IF CEEððð of FC THEN

COMPUTE INTEGER = INTEGER + 9ð

COMPUTE NEWDATE = FUNCTION

 DATE-OF-INTEGER (INTEGER)

 DISPLAY NEWDATE

' is Lilian day: ' INTEGER

 ELSE

DISPLAY 'CEEBLDY failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

CEEDATE—Convert Lilian Date to Character Format
CEEDATE converts a number representing a Lilian date to a date written in character
format. The output is a character string, such as 1996/ð4/23.

562 VisualAge COBOL Programming Guide

CEEDATE

 Syntax

55──CALL──"CEEDATE"──USING──input_Lilian_date──,──picture_string──,────5

5──output_char_date──,──fc──.───5%

input_Lilian_date (input)
A 32-bit integer representing the Lilian date. The Lilian date is the number of days
since 14 October 1582. For example, 16 May 1988 is Lilian day number 148138.
The valid range of Lilian dates is 1 to 3,074,324 (15 October 1582 to 31 December
9999).

picture_string (input)
A halfword length-prefixed character string, representing the desired format of
output_char_date, for example MM/DD/YY. Each character in picture_string repres-
ents a character in output_char_date. If delimiters such as the slash (/) appear in
the picture string, they are copied as is to output_char_date.

See Figure 116 on page 500 for a list of valid picture characters, and Figure 117
on page 501 for examples of valid picture strings.

If picture_string includes a Japanese Era symbol <JJJJ>, the YY position in
output_char_date is replaced by the year number within the Japanese Era. For
example, the year 1988 equals the Japanese year 63 in the Showa era. See
Figure 117 on page 501 for an additional example. See Figure 118 on page 502
for a list of Japanese Eras supported.

If picture_string includes an ROC (Republic of China) Era symbol <CCCC> or
<CCCCCCCC>, the YY position in output_char_date is replaced by the year number
within the ROC Era. For example, the year 1988 equals the ROC year 77 in the
MinKow Era. See Figure 117 on page 501 for an additional example. See
Figure 119 on page 502 for a list of ROC Eras supported.

output_char_date (output)
A fixed-length 80-character string that is the result of converting input_Lilian_date
to the format specified by picture_string. See Figure 129 on page 566 for sample
output dates. If input_Lilian_date is invalid, output_char_date is set to all blanks
and CEEDATE terminates with a non-CEE000 symbolic feedback code.

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2EG 3 2512 The Lilian date value passed in a call to
CEEDATE or CEEDYWK was not within the
supported range.

 Appendix E. Date and Time Callable Services Reference 563

CEEDATE

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE2EM 3 2518 An invalid picture string was specified in a
call to a date/time service.

CEE2EQ 3 2522 Japanese (<JJJJ>) or Republic of China
(<CCCC> or <CCCCCCCC>) Era was used
in a picture string passed to CEEDATE, but
the Lilian date value was not within the sup-
ported range. The era could not be deter-
mined.

CEE2EU 2 2526 The date string returned by CEEDATE was
truncated.

CEE2F6 1 2534 Insufficient field width was specified for a
month or weekday name in a call to
CEEDATE or CEEDATM. Output set to
blanks.

 Usage Notes
� The inverse of CEEDATE is CEEDAYS, which converts character dates to the

Lilian format.

 Example

CBL LIB,APOST

 \\

 \\ \\

\\ Function: CEEDATE - convert Lilian date to \\

 \\ character format \\

 \\ \\

\\ In this example, a call is made to CEEDATE \\

\\ to convert a Lilian date (the number of \\

\\ days since 14 October 1582) to a character \\

\\ format (such as 6/22/88). The result is \\

\\ displayed. The Lilian date is obtained \\

\\ via a call to CEEDAYS. \\

 \\ \\

 \\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLDATE.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 LILIAN PIC S9(9) BINARY.

564 VisualAge COBOL Programming Guide

CEEDATE

 ð1 CHRDATE PIC X(8ð).

 ð1 IN-DATE.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of IN-DATE.

 ð1 PICSTR.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of PICSTR.

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-CBLDAYS.

 \\\

\\ Call CEEDAYS to convert date of 6/2/88 to \\

 \\ Lilian representation \\

 \\\

MOVE 6 TO Vstring-length of IN-DATE.

MOVE '6/2/88' TO Vstring-text of IN-DATE(1:6).

MOVE 8 TO Vstring-length of PICSTR.

MOVE 'MM/DD/YY' TO Vstring-text of PICSTR(1:8).

CALL 'CEEDAYS' USING IN-DATE, PICSTR,

 LILIAN, FC.

 \\\

\\ If CEEDAYS runs successfully, display result\\

 \\\

IF CEEððð of FC THEN

DISPLAY Vstring-text of IN-DATE

' is Lilian day: ' LILIAN

 ELSE

DISPLAY 'CEEDAYS failed with msg '

 Appendix E. Date and Time Callable Services Reference 565

CEEDATE

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 \\\

\\ Specify picture string that describes the \\

\\ desired format of the output from CEEDATE, \\

\\ and the picture string's length. \\

 \\\

MOVE 23 TO Vstring-length OF PICSTR.

MOVE 'ZD Mmmmmmmmmmmmmmz YYYY' TO

Vstring-text OF PICSTR(1:23).

 \\\

\\ Call CEEDATE to convert the Lilian date \\

\\ to a picture string. \\

 \\\

CALL 'CEEDATE' USING LILIAN, PICSTR,

 CHRDATE, FC.

 \\\

\\ If CEEDATE runs successfully, display result\\

 \\\

IF CEEððð of FC THEN

DISPLAY 'Input Lilian date of ' LILIAN

' corresponds to: ' CHRDATE

 ELSE

DISPLAY 'CEEDATE failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

Figure 129 shows the sample output from CEEDATE.

Figure 129 (Page 1 of 2). Sample Output of CEEDATE

input_Lilian_date

picture_string

output_char_date

148138 YY

YYMM

YY-MM

YYMMDD

YYYYMMDD

YYYY-MM-DD

YYYY-ZM-ZD

<JJJJ> YY.MM.DD

<CCCC> YY.MM.DD

88
8805
88-05
880516
19880516
1988-05-16
1988-5-16
Showa 63.05.16 (in a DBCS
string)
MinKow 77.05.16 (in a DBCS
string)

566 VisualAge COBOL Programming Guide

CEEDATM

Figure 129 (Page 2 of 2). Sample Output of CEEDATE

input_Lilian_date

picture_string

output_char_date

148139 MM

MMDD

MM/DD

MMDDYY

MM/DD/YYYY

ZM/DD/YYYY

05
0517
05/17
051788
05/17/1988
5/17/1988

148140 DD

DDMM

DDMMYY

DD.MM.YY

DD.MM.YYYY

DD Mmm YYYY

18
1805
180588
18.05.88
18.05.1988
18 May 1988

148141 DDD

YYDDD

YY.DDD

YYYY.DDD

140
88140
88.140
1988.140

148142 YY/MM/DD HH:MI:SS.99

YYYY/ZM/ZD ZH:MI AP

88/05/20 00:00:00.00
1988/5/20 0:00 AM

148143 WWW., MMM DD, YYYY

Www., Mmm DD, YYYY

Wwwwwwwwww,

Mmmmmmmmmm DD, YYYY

Wwwwwwwwwz,

Mmmmmmmmmz DD, YYYY

SAT., MAY 21, 1988
Sat., May 21, 1988

Saturday ,
May 21, 1988

Saturday, May 21, 1988

CEEDATM—Convert Seconds to Character Timestamp
CEEDATM converts a number representing the number of seconds since 00:00:00 14
October 1582 to a character string format. The format of the output is a character
string timestamp, for example, 1988/ð7/26 2ð:37:ðð.

 Syntax

55──CALL──"CEEDATM"──USING──input_seconds──,──picture_string──,────────5

5──output_timestamp──,──fc──.───5%

input_seconds (input)
A 64-bit double floating-point number representing the number of seconds since
00:00:00 on 14 October 1582, not counting leap seconds.

For example, 00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 +
01). The valid range of input_seconds is 86,400 to 265,621,679,999.999
(23:59:59.999 31 December 9999).

 Appendix E. Date and Time Callable Services Reference 567

CEEDATM

picture_string (input)
A halfword length-prefixed character string, representing the desired format of
output_timestamp, for example, MM/DD/YY HH:MI AP.

Each character in the picture_string represents a character in output_timestamp. If
delimiters such as a slash (/) appear in the picture string, they are copied as is to
output_timestamp.

See Figure 116 on page 500 for a list of valid picture character terms and
Figure 117 on page 501 for examples of valid picture strings.

If picture_string includes the Japanese Era symbol <JJJJ>, the YY position in
output_timestamp represents the year within Japanese Era. See Figure 117 on
page 501 for an example. See Figure 118 on page 502 for a list of Japanese
Eras supported.

If picture_string includes the ROC (Republic of China) Era symbol <CCCC> or
<CCCCCCCC>, the YY position in output_timestamp represents the year within ROC
Era. See Figure 117 on page 501 for an example. See Figure 119 on page 502
for a list of ROC Eras supported.

output_timestamp (output)
A fixed-length 80-character string that is the result of converting input_seconds to
the format specified by picture_string.

If necessary, the output is truncated to the length of output_timestamp. See
Figure 130 on page 571 for sample output.

If input_seconds is invalid, output_timestamp is set to all blanks and CEEDATM
terminates with a non-CEE000 symbolic feedback code.

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2E9 3 2505 The input_seconds value in a call to
CEEDATM or CEESECI was not within the
supported range.

CEE2EA 3 2506 Japanese (<JJJJ>) or Republic of China
(<CCCC> or <CCCCCCCC>) Era was used
in a picture string passed to CEEDATM, but
the input number-of-seconds value was not
within the supported range. The era could
not be determined.

CEE2EM 3 2518 An invalid picture string was specified in a
call to a date/time service.

CEE2EV 2 2527 The timestamp string returned by
CEEDATM was truncated.

568 VisualAge COBOL Programming Guide

CEEDATM

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE2F6 1 2534 Insufficient field width was specified for a
month or weekday name in a call to
CEEDATE or CEEDATM. Output set to
blanks.

 Usage Notes
� The inverse of CEEDATM is CEESECS, which converts a timestamp to number of

seconds.

 Example

CBL LIB,APOST

 \\\

 \\ \\

\\ Function: CEEDATM - convert seconds to \\

 \\ character timestamp \\

 \\ \\

\\ In this example, a call is made to CEEDATM \\

\\ to convert a date represented in Lilian \\

\\ seconds (the number of seconds since \\

\\ ðð:ðð:ðð 14 October 1582) to a character \\

\\ format (such as ð6/ð2/88 1ð:23:45). The \\

\\ result is displayed. \\

 \\ \\

 \\\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLDATM.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 DEST PIC S9(9) BINARY VALUE 2.

 ð1 SECONDS COMP-2.

 ð1 IN-DATE.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of IN-DATE.

 ð1 PICSTR.

ð2 Vstring-length PIC S9(4) BINARY.

 Appendix E. Date and Time Callable Services Reference 569

CEEDATM

 ð2 Vstring-text.

 ð3 Vstring-char PIC X

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of PICSTR.

 ð1 TIMESTP PIC X(8ð).

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-CBLDATM.

 \\\

\\ Call CEESECS to convert timestamp of 6/2/88 \\

\\ at 1ð:23:45 AM to Lilian representation \\

 \\\

MOVE 2ð TO Vstring-length of IN-DATE.

MOVE 'ð6/ð2/88 1ð:23:45 AM'

TO Vstring-text of IN-DATE.

MOVE 2ð TO Vstring-length of PICSTR.

MOVE 'MM/DD/YY HH:MI:SS AP'

TO Vstring-text of PICSTR.

CALL 'CEESECS' USING IN-DATE, PICSTR,

 SECONDS, FC.

 \\\

\\ If CEESECS runs successfully, display result\\

 \\\

IF CEEððð of FC THEN

DISPLAY Vstring-text of IN-DATE

' is Lilian second: ' SECONDS

 ELSE

DISPLAY 'CEESECS failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 \\\

\\ Specify desired format of the output. \\

570 VisualAge COBOL Programming Guide

CEEDATM

 \\\

MOVE 35 TO Vstring-length OF PICSTR.

MOVE 'ZD Mmmmmmmmmmmmmmz YYYY at HH:MI:SS'

TO Vstring-text OF PICSTR.

 \\\

\\ Call CEEDATM to convert Lilian seconds to \\

\\ a character timestamp \\

 \\\

CALL 'CEEDATM' USING SECONDS, PICSTR,

 TIMESTP, FC.

 \\\

\\ If CEEDATM runs successfully, display result\\

 \\\

IF CEEððð of FC THEN

DISPLAY 'Input seconds of ' SECONDS

' corresponds to: ' TIMESTP

 ELSE

DISPLAY 'CEEDATM failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

Figure 130 shows the sample output of CEEDATM.

Figure 130 (Page 1 of 2). Sample Output of CEEDATM

input_seconds

picture_string

output_timestamp

12,799,191,601.000 YYMMDD

HH:MI:SS

YY-MM-DD

YYMMDDHHMISS

YY-MM-DD HH:MI:SS

YYYY-MM-DD HH:MI:SS

AP

880516
19:00:01
88-05-16
880516190001
88-05-16 19:00:01

1988-05-16 07:00:01
PM

12,799,191,661.986 DD Mmm YY

DD MMM YY HH:MM

WWW, MMM DD, YYYY

ZH:MI AP

Wwwwwwwwwz, ZM/ZD/YY

HH:MI:SS.99

16 May 88
16 MAY 88 19:01

MON, MAY 16, 1988
7:01 PM

Monday, 5/16/88
19:01:01.98

 Appendix E. Date and Time Callable Services Reference 571

CEEDAYS

Figure 130 (Page 2 of 2). Sample Output of CEEDATM

input_seconds

picture_string

output_timestamp

12,799,191,662.009 YYYY

YY

Y

MM

ZM

RRRR

MMM

Mmm

Mmmmmmmmmm

Mmmmmmmmmz

DD

ZD

DDD

HH

ZH

MI

SS

99

999

AP

WWW

Www

Wwwwwwwwww

Wwwwwwwwwz

1988

88

8

ð5

5

V␣␣␣

MAY

May

May␣␣␣␣␣␣

May

16

16

137

19

19

ð1

ð2

ðð

ðð9

PM

MON

Mon

Monday␣␣␣␣

Monday

CEEDAYS—Convert Date to Lilian Format
CEEDAYS converts a string representing a date into a Lilian format, which represents a
date as the number of days from the beginning of the Gregorian calendar. CEEDAYS
converts the specified input_char_date to a number representing the number of days
since day zero in the Lilian format: Friday, 14 October, 1582.

Do not use CEEDAYS in combination with COBOL intrinsic functions. Use CEECBLDY
for programs that use intrinsic functions.

 Syntax

55──CALL──"CEEDAYS"──USING──input_char_date──,──picture_string──,──────5

5──output_Lilian_date──,──fc──.───────────────────────────────────────5%

input_char_date (input)
A halfword length-prefixed character string, representing a date or timestamp, in a
format conforming to that specified by picture_string.

The character string must contain between 5 and 255 characters, inclusive.
input_char_date can contain leading or trailing blanks. Parsing for a date begins
with the first nonblank character (unless the picture string itself contains leading

572 VisualAge COBOL Programming Guide

CEEDAYS

blanks, in which case CEEDAYS skips exactly that many positions before parsing
begins).

After parsing a valid date, as determined by the format of the date specified in
picture_string, CEEDAYS ignores all remaining characters. Valid dates range
between and include 15 October 1582 to 31 December 9999.

See Figure 116 on page 500 for a list of valid picture character terms that can be
specified in input_char_date.

picture_string (input)
A halfword length-prefixed character string, indicating the format of the date speci-
fied in input_char_date.

Each character in the picture_string corresponds to a character in input_char_date.
For example, if you specify MMDDYY as the picture_string, CEEDAYS reads an
input_char_date of 060288 as 02 June 1988.

If delimiters such as a slash (/) appear in the picture string, leading zeros can be
omitted. For example, the following calls to CEEDAYS:

CALL CEEDAYS USING '6/2/88' , 'MM/DD/YY', lildate, fc.

CALL CEEDAYS USING 'ð6/ð2/88', 'MM/DD/YY', lildate, fc.

CALL CEEDAYS USING 'ð6ð288' , 'MMDDYY' , lildate, fc.

CALL CEEDAYS USING '88154' , 'YYDDD' , lildate, fc.

would each assign the same value, 148155 (02 June 1988), to lildate.

Whenever characters such as colons or slashes are included in the picture_string
(such as HH:MI:SS YY/MM/DD), they count as placeholders but are otherwise
ignored.

See Figure 116 on page 500 for a list of valid picture character terms, and
Figure 117 on page 501 for examples of valid picture strings.

If picture_string includes a Japanese Era symbol <JJJJ>, the YY position in
input_char_date is replaced by the year number within the Japanese Era. For
example, the year 1988 equals the Japanese year 63 in the Showa era. See
Figure 117 on page 501 for an additional example. See Figure 118 on page 502
for a list of Japanese Eras supported.

If picture_string includes an ROC (Republic of China) Era symbol <CCCC> or
<CCCCCCCC>, the YY position in input_char_date is replaced by the year number
within the ROC Era. For example, the year 1988 equals the ROC year 77 in the
MinKow Era. See Figure 117 on page 501 for an additional example. See
Figure 119 on page 502 for a list of ROC Eras supported.

output_Lilian_date (output)
A 32-bit binary integer representing the Lilian date, the number of days since 14
October 1582. For example, 16 May 1988 is day number 148138.

If input_char_date does not contain a valid date, output_Lilian_date is set to 0 and
CEEDAYS terminates with a non-CEE000 symbolic feedback code.

Date calculations are performed easily on the output_Lilian_date, because it is an
integer. Leap year and end-of-year anomalies do not affect the calculations.

 Appendix E. Date and Time Callable Services Reference 573

CEEDAYS

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2EB 3 2507 Insufficient data was passed to CEEDAYS
or CEESECS. The Lilian value was not cal-
culated.

CEE2EC 3 2508 The date value passed to CEEDAYS or
CEESECS was invalid.

CEE2ED 3 2509 The Japanese or Republic of China Era
passed to CEEDAYS or CEESECS was not
recognized.

CEE2EH 3 2513 The input date passed in a CEEISEC,
CEEDAYS, or CEESECS call was not within
the supported range.

CEE2EL 3 2517 The month value in a CEEISEC call was not
recognized.

CEE2EM 3 2518 An invalid picture string was specified in a
call to a date/time service.

CEE2EO 3 2520 CEEDAYS detected non-numeric data in a
numeric field, or the date string did not
match the picture string.

CEE2EP 3 2521 The Japanese (<JJJJ>) or Chinese
(<CCCC>) year-within-Era value passed to
CEEDAYS or CEESECS was zero.

 Usage Notes
� The inverse of CEEDAYS is CEEDATE, which converts output_Lilian_date from

Lilian format to character format.

� To perform calculations on dates earlier than 15 October 1582, add 4000 to the
year in each date, convert the dates to Lilian, then do the calculation. If the result
of the calculation is a date, as opposed to a number of days, convert the result to a
date string and subtract 4000 from the year.

� By default, 2-digit years lie within the 100-year range starting 80 years prior to the
system date. Thus, in 1997, all 2-digit years represent dates between 1917 and
2016, inclusive. This default range is changed by using the callable service
CEESCEN.

� Date calculations can be performed easily on the output_Lilian_date, because it is
an integer. Leap year and end-of-year anomalies are avoided.

574 VisualAge COBOL Programming Guide

CEEDAYS

 Example

CBL LIB,APOST

 \\\

 \\ \\

\\ Function: CEEDAYS - convert date to \\

 \\ Lilian format \\

 \\ \\

 \\\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLDAYS.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 ð1 CHRDATE.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of CHRDATE.

 ð1 PICSTR.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of PICSTR.

ð1 LILIAN PIC S9(9) BINARY.

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-CBLDAYS.

 \\\

\\ Specify input date and length \\

 Appendix E. Date and Time Callable Services Reference 575

CEEDYWK

 \\\

MOVE 16 TO Vstring-length of CHRDATE.

MOVE '1 January 2ððð'

TO Vstring-text of CHRDATE.

 \\\

\\ Specify a picture string that describes \\

\\ input date, and the picture string's length.\\

 \\\

MOVE 25 TO Vstring-length of PICSTR.

MOVE 'ZD Mmmmmmmmmmmmmmz YYYY'

TO Vstring-text of PICSTR.

 \\\

\\ Call CEEDAYS to convert input date to a \\

\\ Lilian date \\

 \\\

CALL 'CEEDAYS' USING CHRDATE, PICSTR,

 LILIAN, FC.

 \\\

\\ If CEEDAYS runs successfully, display result\\

 \\\

IF CEEððð of FC THEN

DISPLAY Vstring-text of CHRDATE

' is Lilian day: ' LILIAN

 ELSE

DISPLAY 'CEEDAYS failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

CEEDYWK—Calculate Day of Week from Lilian Date
CEEDYWK calculates the day of the week on which a Lilian date falls. The day of the
week is returned to the calling routine as a number between 1 and 7.

The number returned by CEEDYWK is useful for end-of-week calculations.

 Syntax

55──CALL──"CEEDYWK"──USING──input_Lilian_date──,──output_day_no──,─────5

5──fc──.──5%

input_Lilian_date (input)
A 32-bit binary integer representing the Lilian date, the number of days since 14
October 1582.

For example, 16 May 1988 is day number 148138. The valid range of
input_Lilian_date is between 1 and 3,074,324 (15 October 1582 and 31 December
9999).

576 VisualAge COBOL Programming Guide

CEEDYWK

output_day_no (output)
A 32-bit binary integer representing input_Lilian_date's day-of-week: 1 equals
Sunday, 2 equals Monday, ..., 7 equals Saturday.

If input_Lilian_date is invalid, output_day_no is set to 0 and CEEDYWK terminates
with a non-CEE000 symbolic feedback code.

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2EG 3 2512 The Lilian date value passed in a call to
CEEDATE or CEEDYWK was not within the
supported range.

 Example

CBL LIB,APOST

 \\

 \\ \\

\\ Function: Call CEEDYWK to calculate the \\

\\ day of the week from Lilian date \\

 \\ \\

\\ In this example, a call is made to CEEDYWK \\

\\ to return the day of the week on which a \\

\\ Lilian date falls. (A Lilian date is the \\

\\ number of days since 14 October 1582) \\

 \\ \\

 \\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLDYWK.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 LILIAN PIC S9(9) BINARY.

ð1 DAYNUM PIC S9(9) BINARY.

 ð1 IN-DATE.

 Appendix E. Date and Time Callable Services Reference 577

CEEDYWK

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X,

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of IN-DATE.

 ð1 PICSTR.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X,

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of PICSTR.

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-CBLDAYS.

\\ Call CEEDAYS to convert date of 6/2/88 to

 \\ Lilian representation

MOVE 6 TO Vstring-length of IN-DATE.

MOVE '6/2/88' TO Vstring-text of IN-DATE(1:6).

MOVE 8 TO Vstring-length of PICSTR.

MOVE 'MM/DD/YY' TO Vstring-text of PICSTR(1:8).

CALL 'CEEDAYS' USING IN-DATE, PICSTR,

 LILIAN, FC.

\\ If CEEDAYS runs successfully, display result.

IF CEEððð of FC THEN

DISPLAY Vstring-text of IN-DATE

' is Lilian day: ' LILIAN

 ELSE

DISPLAY 'CEEDAYS failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 PARA-CBLDYWK.

578 VisualAge COBOL Programming Guide

CEEGMT

\\ Call CEEDYWK to return the day of the week on

\\ which the Lilian date falls

CALL 'CEEDYWK' USING LILIAN , DAYNUM , FC.

\\ If CEEDYWK runs successfully, print results

IF CEEððð of FC THEN

DISPLAY 'Lilian day ' LILIAN

' falls on day ' DAYNUM

' of the week, which is a:'

\\ Select DAYNUM to display the name of the day

\\ of the week.

 EVALUATE DAYNUM

 WHEN 1

 DISPLAY 'Sunday.'

 WHEN 2

 DISPLAY 'Monday.'

 WHEN 3

 DISPLAY 'Tuesday'

 WHEN 4

 DISPLAY 'Wednesday.'

 WHEN 5

 DISPLAY 'Thursday.'

 WHEN 6

 DISPLAY 'Friday.'

 WHEN 7

 DISPLAY 'Saturday.'

 END-EVALUATE

 ELSE

DISPLAY 'CEEDYWK failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

CEEGMT—Get Current Greenwich Mean Time
CEEGMT returns the current Greenwich Mean Time (GMT) as both a Lilian date and as
the number of seconds since 00:00:00 14 October 1582. GMT is also known as Coor-
dinated Universal Time (UTC). The returned values are compatible with those gener-
ated and used by the other date and time callable services.

 Appendix E. Date and Time Callable Services Reference 579

CEEGMT

 Syntax

55──CALL──"CEEGMT"──USING──output_GMT_Lilian──,──output_GMT_seconds────5

5──,──fc──.───5%

output_GMT_Lilian (output)
A 32-bit binary integer representing the current date in Greenwich, England, in the
Lilian format (the number of days since 14 October 1582).

For example, 16 May 1988 is day number 148138. If GMT is not available from
the system, output_GMT_Lilian is set to 0 and CEEGMT terminates with a
non-CEE000 symbolic feedback code.

output_GMT_seconds (output)
A 64-bit double floating-point number representing the current date and time in
Greenwich, England, as the number of seconds since 00:00:00 on 14 October
1582, not counting leap seconds.

For example, 00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 +
01). 19:00:01.078 on 16 May 1988 is second number 12,799,191,601.078. If GMT
is not available from the system, output_GMT_seconds is set to 0 and CEEGMT
terminates with a non-CEE000 symbolic feedback code.

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2E6 3 2502 The UTC/GMT was not available from the
system.

 Usage Notes
� CEEDATE converts output_GMT_Lilian to a character date, and CEEDATM con-

verts output_GMT_seconds to a character timestamp.

� In order for the results of this service to be meaningful, your system's clock must
be set to the local time and the environment variable TZ must be set correctly.
See “Setting Environment Variables” on page 134 for details on how to set envi-
ronment variables and “Run-Time Environment Variables” on page 137 for specific
information about the TZ environment variable.

� The values returned by CEEGMT are handy for elapsed time calculations. For
example, you can calculate the time elapsed between two calls to CEEGMT by
calculating the differences between the returned values.

� CEEUTC is identical to this service.

580 VisualAge COBOL Programming Guide

CEEGMT

 Example

CBL LIB,APOST

 \\\

 \\ \\

\\ Function: Call CEEGMT to get current \\

\\ Greenwich Mean Time \\

 \\ \\

\\ In this example, a call is made to CEEGMT \\

\\ to return the current GMT as a Lilian date \\

\\ and as Lilian seconds. The results are \\

 \\ displayed. \\

 \\ \\

 \\\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. IGZTGMT.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 LILIAN PIC S9(9) BINARY.

 ð1 SECS COMP-2.

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-CBLGMT.

CALL 'CEEGMT' USING LILIAN , SECS , FC.

IF CEEððð of FC THEN

DISPLAY 'The current GMT is also '

'known as Lilian day: ' LILIAN

DISPLAY 'The current GMT in Lilian '

 Appendix E. Date and Time Callable Services Reference 581

CEEGMTO

'seconds is: ' SECS

 ELSE

DISPLAY 'CEEGMT failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

CEEGMTO—Get Offset from Greenwich Mean Time to Local Time
CEEGMTO returns values to the calling routine representing the difference between the
local system time and Greenwich Mean Time (GMT).

 Syntax

55──CALL──"CEEGMTO"──USING──offset_hours──,──offset_minutes──,─────────5

5──offset_seconds──,──fc──.───5%

offset_hours (output)
A 32-bit binary integer representing the offset from GMT to local time, in hours.

For example, for Pacific Standard Time, offset_hours equals -8.

The range of offset_hours is -12 to +13 (+13 = Daylight Savings Time in the +12
time zone).

If local time offset is not available, offset_hours equals 0 and CEEGMTO termi-
nates with a non-CEE000 symbolic feedback code.

offset_minutes (output)
A 32-bit binary integer representing the number of additional minutes that local time
is ahead of or behind GMT.

The range of offset_minutes is 0 to 59.

If the local time offset is not available, offset_minutes equals 0 and CEEGMTO
terminates with a non-CEE000 symbolic feedback code.

offset_seconds (output)
A 64-bit double floating-point number representing the offset from GMT to local
time, in seconds.

For example, Pacific Standard Time is eight hours behind GMT. If local time is in
the Pacific time zone during standard time, CEEGMTO would return -28,800 (-8 *
60 * 60). The range of offset_seconds is -43,200 to +46,800. offset_seconds can
be used with CEEGMT to calculate local date and time. See “CEEGMT—Get
Current Greenwich Mean Time” on page 579 for more information.

If the local time offset is not available from the system, offset_seconds is set to 0
and CEEGMTO terminates with a non-CEE000 symbolic feedback code.

582 VisualAge COBOL Programming Guide

CEEGMTO

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2E7 3 2503 The offset from UTC/GMT to local time was
not available from the system.

 Usage Notes
� CEEDATM is used to convert offset_seconds to a character timestamp.

� In order for the results of this service to be meaningful, your system's clock must
be set to the local time and the environment variable TZ must be set correctly.
See “Setting Environment Variables” on page 134 for details on how to set envi-
ronment variables and “Run-Time Environment Variables” on page 137 for specific
information about the TZ environment variable.

 Example

CBL LIB,APOST

 \\\

 \\ \\

\\ Function: Call CEEGMTO to get offset from \\

\\ Greenwich Mean Time to local \\

 \\ time \\

 \\ \\

\\ In this example, a call is made to CEEGMTO \\

\\ to return the offset from GMT to local time \\

\\ as separate binary integers representing \\

\\ offset hours, minutes, and seconds. The \\

\\ results are displayed. \\

 \\ \\

 \\\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. IGZTGMTO.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 Appendix E. Date and Time Callable Services Reference 583

CEEISEC

ð1 HOURS PIC S9(9) BINARY.

ð1 MINUTES PIC S9(9) BINARY.

 ð1 SECONDS COMP-2.

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-CBLGMTO.

CALL 'CEEGMTO' USING HOURS , MINUTES ,

SECONDS , FC.

IF CEEððð of FC THEN

DISPLAY 'Local time differs from GMT '

'by: ' HOURS ' hours, '

MINUTES ' minutes, OR '

SECONDS ' seconds. '

 ELSE

DISPLAY 'CEEGMTO failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

CEEISEC—Convert Integers to Seconds
CEEISEC converts separate binary integers representing year, month, day, hour,
minute, second, and millisecond to a number representing the number of seconds since
00:00:00 14 October 1582. Use CEEISEC instead of CEESECS when the input is in
numeric format rather than character format.

 Syntax

55──CALL──"CEEISEC"──USING──input_year──,──input_months──,─────────────5

5──input_day──,──input_hours──,──input_minutes──,──input_seconds──,────5

5──input_milliseconds──,──output_seconds──,──fc──.────────────────────5%

input_year (input)
A 32-bit binary integer representing the year.

The range of valid values for input_year is 1582 to 9999, inclusive.

584 VisualAge COBOL Programming Guide

CEEISEC

input_month (input)
A 32-bit binary integer representing the month.

The range of valid values for input_month is 1 to 12.

input_day (input)
A 32-bit binary integer representing the day.

The range of valid values for input_day is 1 to 31.

input_hours (input)
A 32-bit binary integer representing the hours.

The range of valid values for input_hours is 0 to 23.

input_minutes (input)
A 32-bit binary integer representing the minutes.

The range of valid values for input_minutes is 0 to 59.

input_seconds (input)
A 32-bit binary integer representing the seconds.

The range of valid values for input_seconds is 0 to 59.

input_milliseconds (input)
A 32-bit binary integer representing milliseconds.

The range of valid values for input_milliseconds is 0 to 999.

output_seconds (output)
A 64-bit double floating-point number representing the number of seconds since
00:00:00 on 14 October 1582, not counting leap seconds.

For example, 00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 +
01). The valid range of output_seconds is 86,400 to 265,621,679,999.999
(23:59:59.999 31 December 9999).

If any input values are invalid, output_seconds is set to zero.

To convert output_seconds to a Lilian day number, divide output_seconds by
86,400 (the number of seconds in a day).

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2EE 3 2510 The hours value in a call to CEEISEC or
CEESECS was not recognized.

 Appendix E. Date and Time Callable Services Reference 585

CEEISEC

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE2EF 3 2511 The day parameter passed in a CEEISEC
call was invalid for year and month speci-
fied.

CEE2EH 3 2513 The input date passed in a CEEISEC,
CEEDAYS, or CEESECS call was not within
the supported range.

CEE2EI 3 2514 The year value passed in a CEEISEC call
was not within the supported range.

CEE2EJ 3 2515 The milliseconds value in a CEEISEC call
was not recognized.

CEE2EK 3 2516 The minutes value in a CEEISEC call was
not recognized.

CEE2EL 3 2517 The month value in a CEEISEC call was not
recognized.

CEE2EN 3 2519 The seconds value in a CEEISEC call was
not recognized.

 Usage Notes
� The inverse of CEEISEC is CEESECI, which converts number of seconds to

integer year, month, day, hour, minute, second, and millisecond.

 Example

CBL LIB,APOST

 \\\

 \\ \\

\\ Function: Call CEEISEC to convert integers \\

 \\ to seconds \\

 \\ \\

 \\\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLISEC.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 YEAR PIC S9(9) BINARY.

ð1 MONTH PIC S9(9) BINARY.

ð1 DAYS PIC S9(9) BINARY.

586 VisualAge COBOL Programming Guide

CEEISEC

ð1 HOURS PIC S9(9) BINARY.

ð1 MINUTES PIC S9(9) BINARY.

ð1 SECONDS PIC S9(9) BINARY.

ð1 MILLSEC PIC S9(9) BINARY.

 ð1 OUTSECS COMP-2.

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-CBLISEC.

 \\\

\\ Specify seven binary integers representing \\

\\ the date and time as input to be converted \\

\\ to Lilian seconds \\

 \\\

MOVE 2ððð TO YEAR.

MOVE 1 TO MONTH.

MOVE 1 TO DAYS.

MOVE ð TO HOURS.

MOVE ð TO MINUTES.

MOVE ð TO SECONDS.

MOVE ð TO MILLSEC.

 \\\

\\ Call CEEISEC to convert the integers \\

\\ to seconds \\

 \\\

CALL 'CEEISEC' USING YEAR, MONTH, DAYS,

HOURS, MINUTES, SECONDS,

MILLSEC, OUTSECS , FC.

 \\\

\\ If CEEISEC runs successfully, display result\\

 \\\

IF CEEððð of FC THEN

DISPLAY MONTH '/' DAYS '/' YEAR

' AT ' HOURS ':' MINUTES ':' SECONDS

 Appendix E. Date and Time Callable Services Reference 587

CEELOCT

' is equivalent to ' OUTSECS ' seconds'

 ELSE

DISPLAY 'CEEISEC failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

CEELOCT—Get Current Local Date or Time
CEELOCT returns the current local date or time in three formats:

� Lilian date (the number of days since 14 October 1582)
� Lilian seconds (the number of seconds since 00:00:00 14 October 1582)
� Gregorian character string (in the form YYYYMMDDHHMISS999).

These values are compatible with other date and time callable services, and with
existing language intrinsic functions.

CEELOCT performs the same function as calling the CEEGMT, CEEGMTO, and
CEEDATM date and time services separately. CEELOCT, however, performs the same
services with much greater speed.

 Syntax

55──CALL──"CEELOCT"──USING──output_Lilian──,──output_seconds──,────────5

5──output_Gregorian──,──fc──.───5%

output_Lilian (output)
A 32-bit binary integer representing the current local date in the Lilian format, that
is, day 1 equals 15 October 1582, day 148,887 equals 4 June 1990.

If the local time is not available from the system, output_Lilian is set to 0 and
CEELOCT terminates with a non-CEE000 symbolic feedback code.

output_seconds (output)
A 64-bit double-floating point number representing the current local date and time
as the number of seconds since 00:00:00 on 14 October 1582, not counting leap
seconds. For example, 00:00:01 on 15 October 1582 is second number 86,401
(24*60*60 + 01). 19:00:01.078 on 4 June 1990 is second number
12,863,905,201.078.

If the local time is not available from the system, output_seconds is set to 0 and
CEELOCT terminates with a non-CEE000 symbolic feedback code.

output_Gregorian (output)
A 17-byte fixed-length character string in the form YYYYMMDDHHMISS999 repres-
enting local year, month, day, hour, minute, second, and millisecond.

588 VisualAge COBOL Programming Guide

CEELOCT

If the format of output_Gregorian does not meet your needs, you can use the
CEEDATM callable service to convert output_seconds to another format.

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2F3 3 2531 The local time was not available from the
system.

 Usage Notes
� You can use the CEEGMT callable service to determine Greenwich Mean Time

(GMT).

� You can use the CEEGMTO callable service to obtain the offset from GMT to local
time.

� The character value returned by CEELOCT is designed to match that produced by
existing intrinsic functions. The numeric values returned can be used to simplify
date calculations.

 Example

CBL LIB,APOST

 \\

 \\ \\

\\ Function: Call CEELOCT to get current \\

 \\ local time \\

 \\ \\

\\ In this example, a call is made to CEELOCT \\

\\ to return the current local time in Lilian \\

\\ days (the number of days since 14 October \\

\\ 1582), Lilian seconds (the number of \\

\\ seconds since ðð:ðð:ðð 14 October 1582), \\

\\ and a Gregorian string (in the form \\

\\ YYYMMDDMISS999). The Gregorian character \\

\\ string is then displayed. \\

 Appendix E. Date and Time Callable Services Reference 589

CEEQCEN

 \\ \\

 \\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLLOCT.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 LILIAN PIC S9(9) BINARY.

 ð1 SECONDS COMP-2.

 ð1 GREGORN PIC X(17).

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-CBLLOCT.

CALL 'CEELOCT' USING LILIAN, SECONDS,

 GREGORN, FC.

 \\

\\ If CEELOCT runs successfully, display \\

\\ Gregorian character string \\

 \\

IF CEEððð of FC THEN

DISPLAY 'Local Time is ' GREGORN

 ELSE

DISPLAY 'CEELOCT failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

CEEQCEN—Query the Century Window
CEEQCEN queries the century which is a 2-digit year value. When you want to change
the setting, use CEEQCEN to get the setting and then use CEESCEN to save and
restore the current setting.

590 VisualAge COBOL Programming Guide

CEEQCEN

 Syntax

55──CALL──"CEEQCEN"──USING──century_start──,──fc──.───────────────────5%

century_start (output)
An integer between 0 and 100 indicating the year on which the century window is
based.

For example, if the date and time callable services default is in effect, all 2-digit
years lie within the 100-year window starting 80 years prior to the system date.
CEEQCEN then returns the value 80. An 80 value indicates to the date and time
callable services that, in 1997, all 2-digit years lie within the 100-year window
starting 80 years before the system date (between 1917 and 2016, inclusive).

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

 Example

CBL LIB,APOST

 \\\

 \\ \\

\\ Function: Call CEEQCEN to query the \\

\\ date and time callable services \\

 \\ century window \\

 \\ \\

\\ In this example, CEEQCEN is called to query \\

\\ the date at which the century window starts \\

\\ The century window is the 1ðð-year window \\

\\ within which the date and time callable \\

\\ services assume all two-digit years lie. \\

 \\ \\

 \\\

 IDENTIFICATION DIVISION.

 Appendix E. Date and Time Callable Services Reference 591

CEESCEN

 PROGRAM-ID. CBLQCEN.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 STARTCW PIC S9(9) BINARY.

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-CBLQCEN.

 \\\

\\ Call CEEQCEN to return the start of the \\

 \\ century window \\

 \\\

CALL 'CEEQCEN' USING STARTCW, FC.

 \\\

\\ CEEQCEN has no non-zero feedback codes to \\

\\ check, so just display result. \\

 \\\

IF CEEððð of FC THEN

DISPLAY 'The start of the century '

'window is: ' STARTCW

 ELSE

DISPLAY 'CEEQCEN failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

CEESCEN—Set the Century Window
CEESCEN sets the century to a 2-digit year value for use by other date and time call-
able services. Use it in conjunction with CEEDAYS or CEESECS when:

� You process date values containing 2-digit years (for example, in the YYMMDD
format).

� The default century interval does not meet the requirements of a particular applica-
tion.

To query the century window, use CEEQCEN.

592 VisualAge COBOL Programming Guide

CEESCEN

 Syntax

55──CALL──"CEESCEN"──USING──century_start──,──fc──.───────────────────5%

century_start
An integer between 0 and 100, setting the century window.

A value of 80, for example, places all two-digit years within the 100-year window
starting 80 years before the system date. In 1997, therefore, all two-digit years are
assumed to represent dates between 1917 and 2016, inclusive.

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2E6 3 2502 The UTC/GMT was not available from the
system.

CEE2F5 3 2533 The value passed to CEESCEN was not
between 0 and 100.

 Example

CBL LIB,APOST

 \\

 \\ \\

\\ Function: Call CEESCEN to set the \\

\\ date and time callable services \\

 \\ century window \\

 \\ \\

\\ In this example, CEESCEN is called to change \\

\\ the start of the century window to 3ð years \\

\\ before the system date. CEEQCEN is then \\

\\ called to query that the change made. A \\

\\ message that this has been done is then \\

 \\ displayed. \\

 \\ \\

 \\

 Appendix E. Date and Time Callable Services Reference 593

CEESCEN

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLSCEN.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 STARTCW PIC S9(9) BINARY.

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-CBLSCEN.

 \\

\\ Specify 3ð as century start, and two-digit

\\ years will be assumed to lie in the

\\ 1ðð-year window starting 3ð years before

\\ the system date.

 \\

MOVE 3ð TO STARTCW.

 \\

\\ Call CEESCEN to change the start of the century

 \\ window.

 \\

CALL 'CEESCEN' USING STARTCW, FC.

IF NOT CEEððð of FC THEN

DISPLAY 'CEESCEN failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 PARA-CBLQCEN.

 \\

\\ Call CEEQCEN to return the start of the century

 \\ window

 \\

CALL 'CEEQCEN' USING STARTCW, FC.

 \\

\\ CEEQCEN has no non-zero feedback codes to

\\ check, so just display result.

594 VisualAge COBOL Programming Guide

CEESECI

 \\

DISPLAY 'The start of the century '

'window is: ' STARTCW

 GOBACK.

CEESECI—Convert Seconds to Integers
CEESECI converts a number representing the number of seconds since 00:00:00 14
October 1582 to seven separate binary integers representing year, month, day, hour,
minute, second, and millisecond. Use CEESECI instead of CEEDATM when the output
is needed in numeric format rather than in character format.

 Syntax

55──CALL──"CEESECI"──USING──input_seconds──,──output_year──,───────────5

5──output_month──,──output_day──,──output_hours──,──output_minutes─────5

5──,──output_seconds──,──output_milliseconds──,──fc──.────────────────5%

input_seconds
A 64-bit double floating-point number representing the number of seconds since
00:00:00 on 14 October 1582, not counting leap seconds.

For example, 00:00:01 on 15 October 1582 is second number 86,401 (24*60*60 +
01). The range of valid values for input_seconds is 86,400 to 265,621,679,999.999
(23:59:59.999 31 December 9999).

If input_seconds is invalid, all output parameters except the feedback code are set
to 0.

output_year (output)
A 32-bit binary integer representing the year.

The range of valid values for output_year is 1582 to 9999, inclusive.

output_month (output)
A 32-bit binary integer representing the month.

The range of valid values for output_month is 1 to 12.

output_day (output)
A 32-bit binary integer representing the day.

The range of valid values for output_day is 1 to 31.

output_hours (output)
A 32-bit binary integer representing the hour.

The range of valid values for output_hours is 0 to 23.

output_minutes (output)
A 32-bit binary integer representing the minutes.

The range of valid values for output_minutes is 0 to 59.

 Appendix E. Date and Time Callable Services Reference 595

CEESECI

output_seconds (output)
A 32-bit binary integer representing the seconds.

The range of valid values for output_seconds is 0 to 59.

output_milliseconds (output)
A 32-bit binary integer representing milliseconds.

The range of valid values for output_milliseconds is 0 to 999.

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2E9 3 2505 The input_seconds value in a call to
CEEDATM or CEESECI was not within the
supported range.

 Usage Notes
� The inverse of CEESECI is CEEISEC, which converts separate binary integers

representing year, month, day, hour, second, and millisecond to a number of
seconds.

� If the input value is a Lilian date instead of seconds, multiply the Lilian date by
86,400 (number of seconds in a day), and pass the new value to CEESECI.

 Example

CBL LIB,APOST

 \\\

 \\ \\

\\ Function: Call CEESECI to convert seconds \\

 \\ to integers \\

 \\ \\

\\ In this example a call is made to CEESECI \\

\\ to convert a number representing the number \\

\\ of seconds since ðð:ðð:ðð 14 October 1582 \\

596 VisualAge COBOL Programming Guide

CEESECI

\\ to seven binary integers representing year, \\

\\ month, day, hour, minute, second, and \\

\\ millisecond. The results are displayed in \\

\\ this example. \\

 \\ \\

 \\\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLSECI.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 ð1 INSECS COMP-2.

ð1 YEAR PIC S9(9) BINARY.

ð1 MONTH PIC S9(9) BINARY.

ð1 DAYS PIC S9(9) BINARY.

ð1 HOURS PIC S9(9) BINARY.

ð1 MINUTES PIC S9(9) BINARY.

ð1 SECONDS PIC S9(9) BINARY.

ð1 MILLSEC PIC S9(9) BINARY.

 ð1 IN-DATE.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X,

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of IN-DATE.

 ð1 PICSTR.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X,

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of PICSTR.

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-CBLSECS.

 \\\

\\ Call CEESECS to convert timestamp of 6/2/88

 Appendix E. Date and Time Callable Services Reference 597

CEESECI

\\ at 1ð:23:45 AM to Lilian representation

 \\\

MOVE 2ð TO Vstring-length of IN-DATE.

MOVE 'ð6/ð2/88 1ð:23:45 AM'

TO Vstring-text of IN-DATE.

MOVE 2ð TO Vstring-length of PICSTR.

MOVE 'MM/DD/YY HH:MI:SS AP'

TO Vstring-text of PICSTR.

CALL 'CEESECS' USING IN-DATE, PICSTR,

 INSECS, FC.

IF NOT CEEððð of FC THEN

DISPLAY 'CEESECS failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 PARA-CBLSECI.

 \\\

\\ Call CEESECI to convert seconds to integers

 \\\

CALL 'CEESECI' USING INSECS, YEAR, MONTH,

 DAYS, HOURS, MINUTES,

SECONDS, MILLSEC, FC.

 \\\

\\ If CEESECI runs successfully, display results

 \\\

IF CEEððð of FC THEN

DISPLAY 'Input seconds of ' INSECS

 ' represents:'

DISPLAY ' Year......... ' YEAR

DISPLAY ' Month........ ' MONTH

DISPLAY ' Day.......... ' DAYS

DISPLAY ' Hour......... ' HOURS

DISPLAY ' Minute....... ' MINUTES

DISPLAY ' Second....... ' SECONDS

DISPLAY ' Millisecond.. ' MILLSEC

 ELSE

DISPLAY 'CEESECI failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 GOBACK.

598 VisualAge COBOL Programming Guide

CEESECS

CEESECS—Convert Timestamp to Seconds
CEESECS converts a string representing a timestamp into the number of Lilian
seconds (number of seconds since 00:00:00 14 October 1582). This service makes it
easier to perform time arithmetic, such as calculating the elapsed time between two
timestamps.

 Syntax

55──CALL──"CEESECS"──USING──input_timestamp──,──picture_string──,──────5

5──output_seconds──,──fc──.───5%

input_timestamp (input)
A halfword length-prefixed character string, representing a date or timestamp in a
format matching that specified by picture_string.

The character string must contain between 5 and 80 picture characters, inclusive.
input_timestamp can contain leading or trailing blanks. Parsing begins with the first
nonblank character (unless the picture string itself contains leading blanks; in this
case, CEESECS skips exactly that many positions before parsing begins).

After a valid date is parsed, as determined by the format of the date you specify in
picture_string, all remaining characters are ignored by CEESECS. Valid dates
range between and including the dates 15 October 1582 to 31 December 9999. A
full date must be specified. Valid times range from 00:00:00.000 to 23:59:59.999.

If any part or all of the time value is omitted, zeros are substituted for the
remaining values. For example:

1992-ð5-17-19:ð2 is equivalent to 1992-ð5-17-19:ð2:ðð

1992-ð5-17 is equivalent to 1992-ð5-17-ðð:ðð:ðð

picture_string (input)
A halfword length-prefixed character string, indicating the format of the date or
timestamp value specified in input_timestamp.

Each character in the picture_string represents a character in input_timestamp.
For example, if you specify MMDDYY HH.MI.SS as the picture_string, CEESECS
reads an input_char_date of 060288 15.35.02 as 3:35:02 PM on 02 June 1988. If
delimiters such as the slash (/) appear in the picture string, leading zeros can be
omitted. For example, the following calls to CEESECS all assign the same value
to variable secs:

CALL CEESECS USING '92/ð6/ð3 15.35.ð3',

'YY/MM/DD HH.MI.SS', secs, fc.

CALL CEESECS USING '92/6/3 15.35.ð3',

'YY/MM/DD HH.MI.SS', secs, fc.

CALL CEESECS USING '92/6/3 3.35.ð3 PM',

'YY/MM/DD HH.MI.SS AP', secs, fc.

CALL CEESECS USING '92.155 3.35.ð3 pm',

'YY.DDD HH.MI.SS AP', secs, fc.

 Appendix E. Date and Time Callable Services Reference 599

CEESECS

If picture_string includes a Japanese era symbol <JJJJ>, the YY position in
input_timestamp represents the year number within the Japanese era. For
example, the year 1988 equals the Japanese year 63 in the Showa era. See
Figure 118 on page 502 for a list of Japanese Eras supported.

If picture_string includes a Republic of China (ROC) Era symbol <CCCC> or
<CCCCCCCC>, the YY position in input_timestamp represents the year number within
the ROC Era. For example, the year 1988 equals the ROC year 77 in the MinKow
Era.

See Figure 119 on page 502 for a list of ROC Eras supported.

See Figure 116 on page 500 for a list of valid picture characters, and Figure 117
on page 501 for examples of valid picture strings.

output_seconds (output)
A 64-bit double floating-point number representing the number of seconds since
00:00:00 on 14 October 1582, not counting leap seconds. For example, 00:00:01
on 15 October 1582 is second 86,401 (24*60*60 + 01) in the Lilian format.
19:00:01.12 on 16 May 1988 is second 12,799,191,601.12.

The largest value represented is 23:59:59.999 on 31 December 9999, which is
second 265,621,679,999.999 in the Lilian format.

A 64-bit double floating-point value can accurately represent approximately 16 sig-
nificant decimal digits without loss of precision. Therefore, accuracy is available to
the nearest millisecond (15 decimal digits).

If input_timestamp does not contain a valid date or timestamp, output_seconds is
set to 0 and CEESECS terminates with a non-CEE000 symbolic feedback code.

Elapsed time calculations are performed easily on the output_seconds, because it
represents elapsed time. Leap year and end-of-year anomalies do not affect the
calculations.

fc (output)
A 12-byte feedback code (optional), that indicates the result of this service.

The following symbolic conditions can result from this service:

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE000 0 — The service completed successfully.

CEE2EB 3 2507 Insufficient data was passed to CEEDAYS
or CEESECS. The Lilian value was not cal-
culated.

CEE2EC 3 2508 The date value passed to CEEDAYS or
CEESECS was invalid.

CEE2ED 3 2509 The Japanese or Republic of China Era
passed to CEEDAYS or CEESECS was not
recognized.

600 VisualAge COBOL Programming Guide

CEESECS

Symbolic
Feedback
Code Severity

Message
Number Message Text

CEE2EE 3 2510 The hours value in a call to CEEISEC or
CEESECS was not recognized.

CEE2EH 3 2513 The input date passed in a CEEISEC,
CEEDAYS, or CEESECS call was not within
the supported range.

CEE2EK 3 2516 The minutes value in a CEEISEC call was
not recognized.

CEE2EL 3 2517 The month value in a CEEISEC call was not
recognized.

CEE2EM 3 2518 An invalid picture string was specified in a
call to a date/time service.

CEE2EN 3 2519 The seconds value in a CEEISEC call was
not recognized.

CEE2EP 3 2521 The Japanese (<JJJJ>) or Chinese
(<CCCC>) year-within-Era value passed to
CEEDAYS or CEESECS was zero.

CEE2ET 3 2525 CEESECS detected non-numeric data in a
numeric field, or the timestamp string did not
match the picture string.

 Usage Notes
� The inverse of CEESECS is CEEDATM, which converts output_seconds to char-

acter format.

� By default, 2-digit years lie within the 100 year range starting 80 years prior to the
system date. Thus, in 1997, all 2-digit years represent dates between 1917 and
2016, inclusive. You can change this range by using the callable service
CEESCEN.

 Example

 Appendix E. Date and Time Callable Services Reference 601

CEESECS

CBL LIB,APOST

 \\

 \\ \\

\\ Function: Call CEESECS to convert \\

\\ timestamp to number of seconds \\

 \\ \\

\\ In this example, calls are made to CEESECS \\

\\ to convert two timestamps to the number of \\

\\ seconds since ðð:ðð:ðð 14 October 1582. \\

\\ The Lilian seconds for the earlier \\

\\ timestamp are then subtracted from the \\

\\ Lilian seconds for the later timestamp \\

\\ to determine the number of between the \\

\\ two. This result is displayed. \\

 \\ \\

 \\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLSECS.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 ð1 SECOND1 COMP-2.

 ð1 SECOND2 COMP-2.

 ð1 TIMESTP.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X,

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of TIMESTP.

 ð1 TIMESTP2.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X,

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of TIMESTP2.

 ð1 PICSTR.

ð2 Vstring-length PIC S9(4) BINARY.

 ð2 Vstring-text.

 ð3 Vstring-char PIC X,

OCCURS ð TO 256 TIMES

DEPENDING ON Vstring-length

 of PICSTR.

602 VisualAge COBOL Programming Guide

CEESECS

 ð1 FC.

 ð2 Condition-Token-Value.

 COPY CEEIGZCT.

 ð3 Case-1-Condition-ID.

ð4 Severity PIC S9(4) COMP.

ð4 Msg-No PIC S9(4) COMP.

 ð3 Case-2-Condition-ID

 REDEFINES Case-1-Condition-ID.

ð4 Class-Code PIC S9(4) COMP.

ð4 Cause-Code PIC S9(4) COMP.

 ð3 Case-Sev-Ctl PIC X.

 ð3 Facility-ID PIC XXX.

ð2 I-S-Info PIC S9(9) COMP.

 PROCEDURE DIVISION.

 PARA-SECS1.

 \\

\\ Specify first timestamp and a picture string

\\ describing the format of the timestamp

\\ as input to CEESECS

 \\

MOVE 25 TO Vstring-length of TIMESTP.

MOVE '1969-ð5-ð7 12:ð1:ðð.ððð'

TO Vstring-text of TIMESTP.

MOVE 25 TO Vstring-length of PICSTR.

MOVE 'YYYY-MM-DD HH:MI:SS.999'

TO Vstring-text of PICSTR.

 \\

\\ Call CEESECS to convert the first timestamp

\\ to Lilian seconds

 \\

CALL 'CEESECS' USING TIMESTP, PICSTR,

 SECOND1, FC.

IF NOT CEEððð of FC THEN

DISPLAY 'CEESECS failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 PARA-SECS2.

 \\

\\ Specify second timestamp and a picture string

\\ describing the format of the timestamp as

\\ input to CEESECS.

 \\

MOVE 25 TO Vstring-length of TIMESTP2.

MOVE '2ððð-ð1-ð1 ðð:ðð:ð1.ððð'

TO Vstring-text of TIMESTP2.

MOVE 25 TO Vstring-length of PICSTR.

 Appendix E. Date and Time Callable Services Reference 603

IGZEDT4

MOVE 'YYYY-MM-DD HH:MI:SS.999'

TO Vstring-text of PICSTR.

 \\

\\ Call CEESECS to convert the second timestamp

\\ to Lilian seconds

 \\

CALL 'CEESECS' USING TIMESTP2, PICSTR,

 SECOND2, FC.

IF NOT CEEððð of FC THEN

DISPLAY 'CEESECS failed with msg '

Msg-No of FC UPON CONSOLE

 STOP RUN

 END-IF.

 PARA-SECS2.

 \\

\\ Subtract SECOND2 from SECOND1 to determine the

\\ number of seconds between the two timestamps

 \\

SUBTRACT SECOND1 FROM SECOND2.

DISPLAY 'The number of seconds between '

Vstring-text OF TIMESTP ' and '

Vstring-text OF TIMESTP2 ' is: ' SECOND2.

 GOBACK.

CEEUTC—Get Coordinated Universal Time
CEEUTC is identical to CEEGMT. See “CEEGMT—Get Current Greenwich Mean
Time” on page 579.

IGZEDT4—Get Current Date
Note: In addition to the previous date and time callable services, VisualAge COBOL
supports the VS COBOL II callable service IGZEDT4.

IGZEDT4 returns the current date with a 4-digit year in the form YYYYMMDD.

 Syntax

55──CALL──"IGZEDT4"──USING──output_char_date──.───────────────────────5%

output_char_date (output)
An 8-byte fixed-length character string in the form YYYYMMDD representing
current year, month, and day.

604 VisualAge COBOL Programming Guide

IGZEDT4

 Usage Notes
� IGZEDT4 is not supported under CICS.

 Example

CBL LIB,APOST

 \\

\\ Function: IGZEDT4 - get current date in the \\

 \\ format YYYYMMDD. \\

 \\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CBLEDT4.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

ð1 CHRDATE PIC S9(8) USAGE DISPLAY.

 PROCEDURE DIVISION.

 PARA-CBLEDT4.

 \\

\\ Call IGZEDT4.

 \\

CALL 'IGZEDT4' USING BY REFERENCE CHRDATE.

 \\

\\ IGZEDT4 has no non-zero return code to

\\ check, so just display result.

 \\

DISPLAY 'The current date is: '

 CHRDATE

 GOBACK.

 Appendix E. Date and Time Callable Services Reference 605

IWZ006S �IWZ006S

 Appendix F. Run-Time Messages

Messages for VisualAge COBOL contain a message prefix, message number, severity
code, and descriptive text. The message prefix is always IWZ, followed by the

| message number. The severity code will be either I (Information), W (Warning), S
| (Severe), or C (Critical). The message text provides a brief explanation of the condi-

tion.

In the following example message:

IWZ2519S The seconds value in a CEEISEC call was not recognized.

� The message prefix is IWZ.

� The message number is 2519.

� The severity code is S.

� The message text is “The seconds value in a CEEISEC call was not recognized.”

The date and time callable services messages also contain a symbolic feedback code,
which represents the first 8 bytes of a 12-byte condition token. You can think of the
symbolic feedback code as the nickname for a condition. Note that the callable ser-
vices messages contain a 4-digit message number.

IWZ006S The reference to table table-name by verb number verb-number on line line-
number addressed an area outside the region of the table.

Explanation: When the SSRANGE option is in effect, this message is issued to indicate that a
fixed-length table has been subscripted in a way that exceeds the defined size of the table, or, for
variable-length tables, the maximum size of the table.

The range check was performed on the composite of the subscripts and resulted in an address
outside the region of the table. For variable-length tables, the address is outside the region of the
table defined when all OCCURS DEPENDING ON objects are at their maximum values; the ODO
object's current value is not considered. The check was not performed on individual subscripts.

Programmer Response: Ensure that the value of literal subscripts and/or the value of variable
subscripts as evaluated at run-time do not exceed the subscripted dimensions for subscripted data
in the failing statement.

System Action: The application was terminated.

606  Copyright IBM Corp. 1996, 1998

IWZ007S �IWZ026W

IWZ007S The reference to variable length group group-name by verb number verb-
number on line line-number addressed an area outside the maximum defined
length of the group.

Explanation: When the SSRANGE option is in effect, this message is issued to indicate that a
variable-length group generated by OCCURS DEPENDING ON has a length that is less than zero,
or is greater than the limits defined in the OCCURS DEPENDING ON clauses.

The range check was performed on the composite length of the group, and not on the individual
OCCURS DEPENDING ON objects.

Programmer Response: Ensure that OCCURS DEPENDING ON objects as evaluated at run-
time do not exceed the maximum number of occurrences of the dimension for tables within the
referenced group item.

System Action: The application was terminated.

IWZ012I Invalid run unit termination occurred while sort or merge is running.

Explanation: A sort or merge initiated by a COBOL program was in progress and one of the
following was attempted:

1. A STOP RUN was issued.

2. A GOBACK or an EXIT PROGRAM was issued within the input procedure or the output proce-
dure of the COBOL program that initiated the sort or merge. Note that the GOBACK and
EXIT PROGRAM statements are allowed in a program called by an input procedure or an
output procedure.

Programmer Response: Change the application so that it does not use one of the above
methods to end the sort or merge.

System Action: The application was terminated.

IWZ013S Sort or merge requested while sort or merge is running in a different thread.

Explanation: Running sort or merge in two or more threads at the same time is not supported.

Programmer Response: Always run sort or merge in the same thread. Alternatively, include
code before each call to the sort or merge that determines if sort or merge is running in another
thread. If sort or merge is running in another thread, then wait for that thread to finish. If it isn't,
then set a flag to indicate sort or merge is running and call sort or merge.

System Action: The thread is terminated.

IWZ026W The SORT-RETURN special register was never referenced, but the current
content indicated the sort or merge operation in program program-name on
line number line-number was unsuccessful. The sort or merge return code
was return code

Explanation: The COBOL source does not contain any references to the sort-return register.
The compiler generates a test after each sort or merge verb. A nonzero return code has been
passed back to the program by Sort/Merge.

Programmer Response: Determine why the Sort/Merge was unsuccessful and fix the problem.

 Appendix F. Run-Time Messages 607

IWZ029S �IWZ037I

System Action: No system action was taken.

IWZ029S Argument-1 for function function-name in program program-name at line line-
number was less than zero.

Explanation: An illegal value for argument-1 was used.

Programmer Response: Ensure that argument-1 is greater than or equal to zero.

System Action: The application was terminated.

IWZ030S Argument-2 for function function-name in program program at line line-number
was not a positive integer.

Explanation: An illegal value for argument-1 was used.

Programmer Response: Ensure that argument-2 is a positive integer.

System Action: The application was terminated.

IWZ036W Truncation of high order digit positions occurred in program program-name
on line number line-number .

Explanation: The generated code has truncated an intermediate result (that is, temporary
storage used during an arithmetic calculation) to 30 digits; some of the truncated digits were not 0.

Programmer Response: See Appendix C, “Intermediate Results and Arithmetic Precision” on
page 545 for a description of intermediate results.

System Action: No system action was taken.

IWZ037I The flow of control in program program-name proceeded beyond the last line
of the program. Control returned to the caller of the program program-name

Explanation: The program did not have a terminator (STOP, GOBACK, or EXIT), and control fell
through the last instruction.

Programmer Response: Check the logic of the program. Sometimes this error occurs because
of one of the following logic errors:

� The last paragraph in the program was only supposed to receive control as the result of a
PERFORM statement, but due to a logic error it was branched to by a GO TO statement.

� The last paragraph in the program was executed as the result of a “fall-through” path, and
there was no statement at the end of the paragraph to end the program.

System Action: The application was terminated.

608 VisualAge COBOL Programming Guide

IWZ038S �IWZ040S

IWZ038S A reference modification length value of reference-modification-value on line
line-number which was not equal to 1 was found in a reference to data item
data-item

Explanation: The length value in a reference modification specification was not equal to 1. The
length value must be equal to 1.

Programmer Response: Check the indicated line number in the program to ensure that any ref-
erence modified length values are (or will resolve to) 1.

System Action: The application was terminated.

IWZ039S An invalid overpunched sign was detected.

Explanation: The value in the sign position was not valid.

Given X'sd', where s is the sign representation and d represents the digit, the valid sign repres-
entations for external decimal (USAGE DISPLAY without the SIGN IS SEPARATE clause) are:

Positive: 0, 1, 2, 3, 8, 9, A, and B.

Negative: 4, 5, 6, 7, C, D, E, and F.

Signs generated internally are 3 for positive and unsigned, and 7 for negative.

Given X'ds', where d represents the digit and s is the sign representation, the valid sign repres-
entations for internal decimal (USAGE PACKED-DECIMAL) COBOL data are:

Positive: A, C, E, and F.

Negative: B and D.

Signs generated internally are C for positive and unsigned, and D for negative.

Programmer Response: This error might have occurred because of a REDEFINES clause
involving the sign position or a group move involving the sign position, or the position was never
initialized. Check for the above cases.

System Action: The application was terminated.

IWZ040S An invalid separate sign was detected.

Explanation: An operation was attempted on data defined with a separate sign. The value in the
sign position was not a plus (+) or a minus (-).

Programmer Response: This error might have occurred because of a REDEFINES clause
involving the sign position or a group move involving the sign position, or the position was never
initialized. Check for the above cases.

System Action: The application was terminated.

 Appendix F. Run-Time Messages 609

IWZ045S �IWZ049W

IWZ045S Unable to invoke method method-name on line number line number in
program program-name.

Explanation: The specific method is not supported for the class of the current object reference.

Programmer Response: Check the indicated line number in the program to ensure that the
class of the current object reference supports the method being invoked.

System Action: The application was terminated.

IWZ047S Unable to invoke method method-name on line number line number in class
class-name.

Explanation: The specific method is not supported for the class of the current object reference.

Programmer Response: Check the indicated line number in the class to ensure that the class
of the current object reference supports the method being invoked.

System Action: The application was terminated.

IWZ048W A negative base was raised to a fractional power in an exponentiation
expression. The absolute value of the base was used.

Explanation: A negative number raised to a fractional power occurred in a library routine.

The value of a negative number raised to a fractional power is undefined in COBOL. If a SIZE
ERROR clause had appeared on the statement in question, the SIZE ERROR imperative would
have been used. However, no SIZE ERROR clause was present, so the absolute value of the
base was used in the exponentiation.

Programmer Response: Ensure that the program variables in the failing statement have been
set correctly.

System Action: No system action was taken.

IWZ049W A zero base was raised to a zero power in an exponentiation expression.
The result was set to one.

Explanation: The value of zero raised to the power zero occurred in a library routine.

The value of zero raised to the power zero is undefined in COBOL. If a SIZE ERROR clause had
appeared on the statement in question, the SIZE ERROR imperative would have been used.
However, no SIZE ERROR clause was present, so the value returned was one.

Programmer Response: Ensure that the program variables in the failing statement have been
set correctly.

System Action: No system action was taken.

610 VisualAge COBOL Programming Guide

IWZ050S �IWZ058S

IWZ050S A zero base was raised to a negative power in an exponentiation
expression.

Explanation: The value of zero raised to a negative power occurred in a library routine.

The value of zero raised to a negative number is not defined. If a SIZE ERROR clause had
appeared on the statement in question, the SIZE ERROR imperative would have been used.
However, no SIZE ERROR clause was present.

Programmer Response: Ensure that the program variables in the failing statement have been
set correctly.

System Action: The application was terminated.

IWZ053S An overflow occurred on conversion to floating point.

Explanation: A number was generated in the program that is too large to be represented in
floating point.

Programmer Response: You need to modify the program appropriately to avoid an overflow.

System Action: The application was terminated.

IWZ054S A floating point exception occurred.

Explanation: A floating point calculation has produced an illegal result. Floating point calcu-
lations are done using IEEE floating point arithmetic, which can produce results called NaN (Not a
Number). For example, the result of 0 divided by 0 is NaN.

Programmer Response: Modify the program to test the arguments to this operation so that NaN
is not produced.

System Action: The application was terminated.

IWZ055W An underflow occurred on conversion to floating point. The result was set
to zero.

Explanation: On conversion to floating point, the negative exponent exceeded the limit of the
hardware. The floating point value was set to zero.

Programmer Response: No action is necessary, although you may want to modify the program
to avoid an underflow.

System Action: No system action was taken.

IWZ058S Exponent overflow occurred.

Explanation: Floating point exponent overflow occurred in a library routine.

Programmer Response: Ensure that the program variables in the failing statement have been
set correctly.

System Action: The application was terminated.

 Appendix F. Run-Time Messages 611

IWZ059W �IWZ063S

IWZ059W An exponent with more than nine digits was truncated.

Explanation: Exponents in fixed point exponentiations may not contain more than nine digits.
The exponent was truncated back to nine digits; some of the truncated digits were not 0.

Programmer Response: No action is necessary, although you may want to adjust the exponent
in the failing statement.

System Action: No system action was taken.

IWZ060W Truncation of high order digit positions occurred.

Explanation: Code in a library routine has truncated an intermediate result (that is, temporary
storage used during an arithmetic calculation) back to 30 digits; some of the truncated digits were
not 0.

Programmer Response: See Appendix C, “Intermediate Results and Arithmetic Precision” on
page 545 for a description of intermediate results.

System Action: No system action was taken.

IWZ061S Division by zero occurred.

Explanation: Division by zero occurred in a library routine. Division by zero is not defined. If a
SIZE ERROR clause had appeared on the statement in question, the SIZE ERROR imperative
would have been used. However, no SIZE ERROR clause was present.

Programmer Response: Ensure that the program variables in the failing statement have been
set correctly.

System Action: The application was terminated.

IWZ063S An invalid sign was detected in a numeric edited sending field in program-
name on line number line-number.

Explanation: An attempt has been made to move a signed numeric edited field to a signed
numeric or numeric edited receiving field in a MOVE statement. However, the sign position in the
sending field contained a character that was not a valid sign character for the corresponding
PICTURE.

Programmer Response: Ensure that the program variables in the failing statement have been
set correctly.

System Action: The application was terminated.

612 VisualAge COBOL Programming Guide

IWZ064S �IWZ071S

IWZ064S A recursive call to active program program-name in compilation unit
compilation-unit was attempted.

Explanation: COBOL does not allow reinvocation of an internal program which has begun exe-
cution, but has not yet terminated. For example, if internal programs A and B are siblings of a
containing program, and A calls B and B calls A, this message will be issued.

Programmer Response: Examine your program to eliminate calls to active internal programs.

System Action: The application was terminated.

IWZ065I A CANCEL of active program program-name in compilation unit compilation-
unit was attempted.

Explanation: An attempt was made to cancel an active internal program. For example, if internal
programs A and B are siblings in a containing program and A calls B and B cancels A, this
message will be issued.

Programmer Response: Examine your program to eliminate cancellation of active internal pro-
grams.

System Action: The application was terminated.

IWZ066S The length of external data record data-record in program program-name did
not match the existing length of the record.

Explanation: While processing External data records during program initialization, it was deter-
mined that an External data record was previously defined in another program in the run-unit, and
the length of the record as specified in the current program was not the same as the previously
defined length.

Programmer Response: Examine the current file and ensure the External data records are
specified correctly.

System Action: The application was terminated.

IWZ071S ALL subscripted table reference to table table-name by verb number verb-
number on line line-number had an ALL subscript specified for an OCCURS
DEPENDING ON dimension, and the object was less than or equal to 0.

Explanation: When the SSRANGE option is in effect, this message is issued to indicate that
there are 0 occurrences of dimension subscripted by ALL.

The check is performed against the current value of the OCCURS DEPENDING ON OBJECT.

Programmer Response: Ensure that ODO object(s) of ALL-subscripted dimensions of any sub-
scripted items in the indicated statement are positive.

System Action: The application was terminated.

 Appendix F. Run-Time Messages 613

IWZ072S �IWZ075S

IWZ072S A reference modification start position value of reference-modification-value
on line line-number referenced an area outside the region of data item data-
item.

Explanation: The value of the starting position in a reference modification specification was less
than 1, or was greater than the current length of the data item that was being reference modified.
The starting position value must be a positive integer less than or equal to the number of charac-
ters in the reference modified data item.

Programmer Response: Check the value of the starting position in the reference modification
specification.

System Action: The application was terminated.

IWZ073S A non-positive reference modification length value of reference-modification-
value on line line-number was found in a reference to data item data-item.

Explanation: The length value in a reference modification specification was less than or equal to
0. The length value must be a positive integer.

Programmer Response: Check the indicated line number in the program to ensure that any ref-
erence modified length values are (or will resolve to) positive integers.

System Action: The application was terminated.

IWZ074S A reference modification start position value of reference-modification-value
and length value of length on line line-number caused reference to be made
beyond the rightmost character of data item data-item.

Explanation: The starting position and length value in a reference modification specification
combine to address an area beyond the end of the reference modified data item. The sum of the
starting position and length value minus one must be less than or equal to the number of charac-
ters in the reference modified data item.

Programmer Response: Check the indicated line number in the program to ensure that any ref-
erence modified start and length values are set such that a reference is not made beyond the
rightmost character of the data item.

System Action: The application was terminated.

IWZ075S Inconsistencies were found in EXTERNAL file file-name in program program-
name. The following file attributes did not match those of the established
external file: attribute-1 attribute-2 attribute-3 attribute-4 attribute-5 attribute-6
attribute-7

Explanation: One or more attributes of an external file did not match between two programs that
defined it.

Programmer Response: Correct the external file. For a summary of file attributes which must
match between definitions of the same external file, see the COBOL Language Reference.

System Action: The application was terminated.

614 VisualAge COBOL Programming Guide

IWZ076W �IWZ078S

IWZ076W The number of characters in the INSPECT REPLACING CHARACTERS BY
data-name was not equal to one. The first character was used.

Explanation: A data item which appears in a CHARACTERS phrase within a REPLACING
phrase in an INSPECT statement must be defined as being one character in length. Because of a
reference modification specification for this data item, the resultant length value was not equal to
one. The length value is assumed to be one.

Programmer Response: You may correct the reference modification specifications in the failing
INSPECT statement to ensure that the reference modification length is (or will resolve to) 1; pro-
grammer action is not required.

System Action: No system action was taken.

IWZ077W The lengths of the INSPECT data items were not equal. The shorter length
was used.

Explanation: The two data items which appear in a REPLACING or CONVERTING phrase in an
INSPECT statement must have equal lengths, except when the second such item is a figurative
constant. Because of the reference modification for one or both of these data items, the resultant
length values were not equal. The shorter length value is applied to both items, and execution
proceeds.

Programmer Response: You may adjust the operands of unequal length in the failing INSPECT
statement; programmer action is not required.

System Action: No system action was taken.

IWZ078S ALL subscripted table reference to table table-name by verb number verb-
number on line line-number will exceed the upper bound of the table.

Explanation: When the SSRANGE option is in effect, this message is issued to indicate that a
multidimensional table with ALL specified as one or more of the subscripts will result in a reference
beyond the upper limit of the table.

The range check was performed on the composite of the subscripts and the maximum occur-
rences for the ALL subscripted dimensions. For variable-length tables the address is outside the
region of the table defined when all OCCURS DEPENDING ON objects are at their maximum
values; the ODO object's current value is not considered. The check was not performed on indi-
vidual subscripts.

Programmer Response: Ensure that OCCURS DEPENDING ON objects as evaluated at run-
time do not exceed the maximum number of occurrences of the dimension for table items refer-
enced in the failing statement.

System Action: The application was terminated.

 Appendix F. Run-Time Messages 615

IWZ096C �IWZ100S

IWZ096C Dynamic call of program program-name failed. Message variants include:

� A load of module module-name failed with an error code of error-code.

� A load of module module-name failed with a return code of return-code.

� Dynamic call of program program-name failed. Insufficient resources.

� Dynamic call of program program-name failed. COBPATH not found in
environment.

� Dynamic call of program program-name failed. Entry entry-name not
found.

� Dynamic call failed. The name of the target program does not contain
any valid characters.

� Dynamic call of program program-name failed. The load module load-
module could not be found in the directories identified in the COBPATH
environment variable.

Explanation: A dynamic call failed due to one of the reasons listed in the message variants
above. In the above, the value of error-code depends on the execution platform as follows:

AIX: The errno set by load.

OS/2: The return code from the DosLoadModule service.

Windows: The last-error code value set by LoadLibrary.

Programmer Response: Check that you have COBPATH defined. Check that the module
exists: AIX, OS/2, and Windows have graphical interfaces for showing directories and files. You
can also use the ls command on AIX or the dir command on OS/2 and Windows. Check that the
name of the module to be loaded matches the name of the entry called. Check that the module to
be loaded is built correctly using the appropriate cob2 options, for example, to build a DLL on
Windows, the -dll option must be used.

System Action: The application was terminated.

IWZ097S Argument-1 for function function-name contained no digits.

Explanation: Argument-1 for the indicated function must contain at least 1 digit.

Programmer Response: Adjust the number of digits in Argument-1 in the failing statement.

System Action: The application was terminated.

IWZ100S Argument-1 for function function was less than or equal to -1.

Explanation: An illegal value was used for Argument-1.

Programmer Response: Ensure that argument-1 is greater than -1.

System Action: The application was terminated.

616 VisualAge COBOL Programming Guide

IWZ151S �IWZ157S

IWZ151S Argument-1 for function function-name contained more than 18 digits.

Explanation: The total number of digits in argument-1 of the indicated function exceeded 18
digits.

Programmer Response: Adjust the number of digits in argument-1 in the failing statement.

System Action: The application was terminated.

IWZ152S Invalid character character was found in column column-number in
argument-1 for function function-name .

Explanation: A non-digit character other than a decimal point, comma, space or sign (+,-,CR,DB)
was found in argument-1 for NUMVAL/NUMVAL-C function.

Programmer Response: Correct argument-1 for NUMVAL or NUMVAL-C in the indicated state-
ment.

System Action: The application was terminated.

IWZ155S Invalid character character was found in column column-number in
argument-2 for function function-name .

Explanation: Illegal character was found in argument-2 for NUMVAL-C function.

Programmer Response: Check that the function argument does follow the syntax rules.

System Action: The application was terminated.

IWZ156S Argument-1 for function function-name was less than zero or greater than 28.

Explanation: Input argument to function FACTORIAL is greater than 28 or less than 0.

Programmer Response: Check that the function argument is only one byte long.

System Action: The application was terminated.

IWZ157S The length of Argument-1 for function function-name was not equal to 1.

Explanation: The length of input argument to ORD function is not 1.

Programmer Response: Check that the function argument is only one byte long.

System Action: The application was terminated.

 Appendix F. Run-Time Messages 617

IWZ159S �IWZ163S

IWZ159S Argument-1 for function function-name was less than 1 or greater than
3067671.

Explanation: The input argument to DATE-OF-INTEGER or DAY-OF-INTEGER function is less
than 1 or greater than 3067671.

Programmer Response: Check that the function argument is in the valid range.

System Action: The application was terminated.

IWZ160S Argument-1 for function function-name was less than 16010101 or greater
than 99991231.

Explanation: The input argument to function INTEGER-OF-DATE is less than 16010101 or
greater than 99991231.

Programmer Response: Check that the function argument is in the valid range.

System Action: The application was terminated.

IWZ161S Argument-1 for function function-name was less than 1601001 or greater
than 9999365.

Explanation: The input argument to function INTEGER-OF-DAY is less than 1601001 or greater
than 9999365.

Programmer Response: Check that the function argument is in the valid range.

System Action: The application was terminated.

IWZ162S Argument-1 for function function-name was less than 1 or greater than the
number of positions in the program collating sequence.

Explanation: The input argument to function CHAR is less than 1 or greater than the highest
ordinal position in the program collating sequence.

Programmer Response: Check that the function argument is in the valid range.

System Action: The application was terminated.

IWZ163S Argument-1 for function function-name was less than zero.

Explanation: The input argument to function RANDOM is less than 0.

Programmer Response: Correct the argument for function RANDOM in the failing statement.

System Action: The application was terminated.

618 VisualAge COBOL Programming Guide

IWZ165S �IWZ168W

IWZ165S A reference modification start position value of start-position-value on line
line number referenced an area outside the region of the function result of
function-result.

Explanation: The value of the starting position in a reference modification specification was less
than 1, or was greater than the current length of the function result that was being reference modi-
fied. The starting position value must be a positive integer less than or equal to the number of
characters in the reference modified function result.

Programmer Response: Check the value of the starting position in the reference modification
specification and the length of the actual function result.

System Action: The application was terminated.

IWZ166S A non-positive reference modification length value of length on line line-
number was found in a reference to the function result of function-result.

Explanation: The length value in a reference modification specification for a function result was
less than or equal to 0. The length value must be a positive integer.

Programmer Response: Check the length value and make appropriate correction.

System Action: The application was terminated.

IWZ167S A reference modification start position value of start-position and length
value of length on line line-number caused reference to be made beyond the
rightmost character of the function result of function-result.

Explanation: The starting position and length value in a reference modification specification
combine to address an area beyond the end of the reference modified function result. The sum of
the starting position and length value minus one must be less than or equal to the number of
characters in the reference modified function result.

Programmer Response: Check the length of the reference modification specification against the
actual length of the function result and make appropriate corrections.

System Action: The application was terminated.

IWZ168W SYSPUNCH/SYSPCH will default to the system logical output device. The
corresponding environment variable has not been set.

Explanation: COBOL environment names (such as SYSPUNCH/SYSPCH) are used as the envi-
ronment variable names corresponding to the mnemonic names used on ACCEPT and DISPLAY
statements. Set them equal to files, not existing directory names. To set environment variables:

� On OS/2 or Windows, use the SET command.
� On AIX, use the EXPORT command.

You can set environment variables either temporarily or persistently. For more information, see
“Setting Environment Variables” on page 134.

Programmer Response: If you do not want SYSPUNCH/SYSPCH to default to the screen, set
the corresponding environment variable.

System Action: No system action was taken.

 Appendix F. Run-Time Messages 619

IWZ170S �IWZ174I

IWZ170S Illegal data type for DISPLAY operand.

Explanation: An invalid data type was specified as the target of the DISPLAY statement.

Programmer Response: Specify a valid data type. The following data types are not valid:

� Data items defined with USAGE IS PROCEDURE-POINTER
� Data items defined with USAGE IS OBJECT REFERENCE
� Data items or index names defined with USAGE IS INDEX

System Action: The application was terminated.

IWZ171I string-name is not a valid run-time option.

Explanation: string-name is not a valid option.

Programmer Response: See Chapter 12, “Run-Time Options” on page 240 for valid run-time
options.

System Action: string-name is ignored.

IWZ172I The string string-name is not a valid suboption of the run-time option option-
name.

Explanation: string-name was not in the set of recognized values.

Programmer Response: Remove the invalid suboption string from the run-time option option-
name. See Chapter 12, “Run-Time Options” on page 240 for valid suboptions for run-time option
option-name.

System Action: The invalid suboption is ignored.

IWZ173I The suboption string string-name of the run-time option option-name must be
number of characters long. The default will be used.

Explanation: The number of characters for the suboption string string-name of run-time option
option-name is invalid.

Programmer Response: If you do not want to accept the default, specify a valid character
length. See Chapter 12, “Run-Time Options” on page 240

System Action: The default value will be used.

IWZ174I The suboption string string-name of the run-time option option-name contains
one or more invalid characters. The default will be used.

Explanation: At least one invalid character was detected in the specified suboption.

Programmer Response: If you do not want to accept the default, specify valid characters.

System Action: The default value will be used.

620 VisualAge COBOL Programming Guide

IWZ175S �IWZ180S

IWZ175S There is no support for routine routine-name on this system.

Explanation: routine-name is not supported.

Programmer Response:

System Action: The application was terminated.

IWZ176S Argument-1 for function function-name was greater than decimal-value.

Explanation: An illegal value for argument-1 was used.

Programmer Response: Ensure argument-1 is less than or equal to decimal-value.

System Action: The application was terminated.

IWZ177S Argument-2 for function function-name was equal to decimal-value.

Explanation: An illegal value for argument-2 was used.

Programmer Response: Ensure argument-1 is not equal to decimal-value.

System Action: The application was terminated.

IWZ178S Argument-1 for function function-name was less than or equal to decimal-
value.

Explanation: An illegal value for argument-1 was used.

Programmer Response: Ensure argument-1 is greater than decimal-value.

System Action: The application was terminated.

IWZ179S Argument-1 for function function-name was less than decimal-value.

Explanation: An illegal value for argument-1 was used.

Programmer Response: Ensure argument-1 is equal to or greater than decimal-value.

System Action: The application was terminated.

IWZ180S Argument-1 for function function-name was not an integer.

Explanation: An illegal value for argument-1 was used.

Programmer Response: Ensure argument-1 is an integer.

System Action: The application was terminated.

 Appendix F. Run-Time Messages 621

IWZ181I �IWZ200S

IWZ181I An invalid character was found in the numeric string string of the run-time
option option-name. The default will be used.

Explanation: string did not contain all decimal numeric characters.

Programmer Response: If you do not want the default value, correct the run-time option's string
to contain all numeric characters.

System Action: The default will be used.

IWZ182I The number number of the run-time option option-name exceeded the range
of min-range to max-range. The default will be used.

Explanation: number exceeded the range of min-range to max-range.

Programmer Response: Correct the run-time option's string to be within the valid range. See
Chapter 12, “Run-Time Options” on page 240 for valid ranges.

System Action: The default will be used.

IWZ183S The function name in _iwzCOBOLInit did a return.

Explanation: The run unit termination exit routine returned to the invoker of the routine (the func-
tion specified in function_code).

Programmer Response: Rewrite the function so that the run unit termination exit routine does a
longjump or exit() instead of return to the function.

System Action: The application was terminated.

IWZ200S Message variants include:

� Error detected during I/O operation for file file-name. File status is: file-
status.

� STOP or ACCEPT failed with an I/O error, error-code. The run unit is
terminated.

Explanation: See messages below.

IWZ200S Error detected during I/O operation for file file-name. File status is: file-status.

Explanation: An error was detected during a file I/O operation. No file status was specified for
the file and no applicable error declarative is in effect for the file.

Programmer Response: Correct the condition described in this message. You can specify the
FILE STATUS clause for the file if you want to detect the error and take appropriate actions within
your source program.

System Action: The application was terminated.

622 VisualAge COBOL Programming Guide

IWZ200S �IWZ200S

IWZ200S STOP or ACCEPT failed with an I/O error, error-code. The run unit is termi-
nated.

Explanation: A STOP or ACCEPT statement failed.

Programmer Response: Check that the STOP or ACCEPT refers to a legitimate file or terminal
device.

System Action: The application was terminated.

 Appendix F. Run-Time Messages 623

IWZ201C �IWZ203W

IWZ201C Message variants include:

Explanation: An error was detected during a file I/O operation for a VSAM file. No file status
was specified for the file and no applicable error declarative is in effect for the file.

Programmer Response: Correct the condition described in this message. For details, see the
SMARTdata Utilities VSAM manual for your platform:

� For OS/2: VSAM in a Distributed Environment
� For Windows: VSAM API Reference
� For AIX: VSAM in a Distributed Environment

System Action: The application was terminated.

IWZ203W The code page in effect is not a DBCS code page.

Explanation: References to DBCS data was made with a non-DBCS code page in effect.

Programmer Response: For DBCS data, specify a valid DBCS code page. Valid DBCS code
pages are:

Access Intent List Error.
Concurrent Opens Exceeds Maximum.
Cursor Not Selecting a Record Position.
Data Stream Syntax Error.
Duplicate Key Different Index.
Duplicate Key Same Index.
Duplicate Record Number.
File Temporarily Not Available.
File system cannot be found.
File Space Not Available.
File Closed with Damage.
Invalid Key Definition.
Invalid Base File Name.
Key Update Not Allowed by Different Index.
Key Update Not Allowed by Same Index.
No Update Intent on Record.
Not Authorized to Use Access Method.
Not Authorized to Directory.
Not Authorized to Function.
Not authorized to File.
Parameter Value Not Supported.
Parameter Not Supported.
Record Number Out of Bounds.
Record Length Mismatch.
Resource Limits Reached in Target System.
Resource Limits Reached in Source System.

Address Error.
Command Check.
Duplicate File Name.
End of File Condition.
Existing Condition.
File Handle Not Found.
Field Length Error.
File Not Found.
File Damaged.
File is Full.
File In Use.
Function Not Supported.
Invalid Access Method.
Invalid Data Record.
Invalid Key Length.
Invalid File Name.
Invalid Request.
Invalid Flag.
Object Not Supported.
Record Not Available.
Record Not Found.
Record Inactive.
Record Damaged.
Record In Use.
Update Cursor Error.

 OS/2 Windows (NT and 95) AIX

Japan IBM-932, IBM-942,
IBM-943

IBM-943 IBM-932

Korea IBM-942 IBM-1363

China (Simplified -
Mainland)

IBM-1381, IBM-1861 IBM-1386

624 VisualAge COBOL Programming Guide

IWZ204W �IWZ213S

Note: The code pages listed above might not be supported for a specific version or release of
that platform. For additional information, see “Locales and Code Sets Supported” on page 477.

System Action: No system action was taken.

IWZ204W An error occurred during conversion from ASCII DBCS to EBCDIC DBCS.

Explanation: A Kanji or DBCS class test failed due to an error detected during the ASCII char-
acter string EBCDIC string conversion.

Programmer Response: Verify that the locale in effect is consistent with the ASCII character
string being tested. No action is likely to be required if the locale setting is correct. The class test
is likely to indicate the string to be non-Kanji or non-DBCS correctly.

System Action: No system action was taken.

IWZ211S CBLTDLI detected a Remote DL/I error.

Explanation: The CBLTDLI routine invoked Remote DL/I and Remote DL/I returned with an
error.

Programmer Response: Look for Remote DL/I messages that provide information about the
error.

System Action: The application was terminated.

IWZ212S Too few arguments were passed to CBLTDLI.

Explanation: The CBLTDLI routine must be passed at least one argument.

Programmer Response: Add the missing arguments to the CBLTDLI call.

System Action: The application was terminated.

IWZ213S Too many arguments were passed to CBLTDLI.

Explanation: The CBLTDLI routine was passed more than 19 arguments.

Programmer Response: Remove the extra arguments from the CBLTDLI call.

System Action: The application was terminated.

 OS/2 Windows (NT and 95) AIX

China (Traditional -
Taiwan)

IBM-950 IBM-950

 Appendix F. Run-Time Messages 625

IWZ214S �IWZ230W

IWZ214S No function code was passed to CBLTDLI.

Explanation: The CBLTDLI routine recognized the first argument as a parm count field and a
second argument was was not provided.

Programmer Response: Add the extra arguments to the CBLTDLI call.

System Action: The application was terminated.

IWZ230x Message variants include:

� The conversion table for the current codeset, ASCII codeset-id, to the
EBCDIC codeset, EBCDIC codeset-id, is not available. The default ASCII
to EBCDIC conversion table will be used.

� The EBCDIC codepage specified, EBCDIC codepage, is not consistent
with the locale locale, but will be used as requested.

� The EBCDIC codepage specified, EBCDIC codepage, is not supported.
The default EBCDIC codepage, EBCDIC codepage, will be used.

� The EBCDIC conversion table cannot be opened.

� The EBCDIC conversion table cannot be built.

Explanation: See separate messages listed below.

IWZ230W The conversion table for the current codeset, ASCII codeset-id, to the
EBCDIC codeset, EBCDIC codeset-id, is not available. The default ASCII to
EBCDIC conversion table will be used.

Explanation: The application has a module which was compiled with the CHAR(EBCDIC) com-
piler option. At run-time a translation table will be built to handle the conversion from the current
ASCII code page to an EBCDIC code page specified by the EBCDIC_CODEPAGE environment
variable. This error occurred because either a conversion table is not available for the specified
code pages, or the specification of the EBCDIC_CODE page is invalid. Execution will continue
with a default conversion table based on ASCII code page IBM-850 and EBCDIC code page
IBM-037.

Programmer Response: Verify that the EBCDIC_CODEPAGE environment variable has a valid
value (see “Locales and Code Sets Supported” on page 477).

If EBCDIC_CODEPAGE is not set, the default value, IBM-037, will be used. This is the default
code page used by IBM COBOL for OS/390 & VM.

System Action: No system action was taken.

626 VisualAge COBOL Programming Guide

IWZ230W �IWZ230S

IWZ230W The EBCDIC codepage specified, EBCDIC codepage, is not consistent with
the locale locale, but will be used as requested.

Explanation: The application has a module which was compiled with the CHAR(EBCDIC) com-
piler option. This error occurred because the code page specified is not the same language as the
current locale.

Programmer Response: Verify that the EBCDIC_CODEPAGE environment variable is valid for
this locale (see “Locales and Code Sets Supported” on page 477).

System Action: No system action was taken.

IWZ230W The EBCDIC codepage specified, EBCDIC codepage, is not supported. The
default EBCDIC codepage, EBCDIC codepage, will be used.

Explanation: The application has a module which was compiled with the CHAR(EBCDIC) com-
piler option. This error occurred because the specification of the EBCDIC_CODE page is invalid.
Execution will continue with the default host code page that corresponds to the current locale.

Programmer Response: Verify that the EBCDIC_CODEPAGE environment variable has a valid
value (see “Locales and Code Sets Supported” on page 477).

System Action: No system action was taken.

IWZ230S The EBCDIC conversion table cannot be opened.

Explanation: The current system installation does not include the translation table for the default
ASCII and EBCDIC code pages.

Programmer Response: Reinstall the compiler and run time. If the problem still persists, call
your IBM representative.

System Action: The application was terminated.

IWZ230S The EBCDIC conversion table cannot be built.

Explanation: The ASCII to EBCDIC conversion table has been opened, but the conversion has
failed.

Programmer Response: Retry the execution from a new window.

System Action: The application was terminated.

 Appendix F. Run-Time Messages 627

IWZ231S �IWZ241S

IWZ231S Query of current locale setting failed.

Explanation: A query of the execution environment failed to identify a valid locale setting. The
current locale needs to be established to access appropriate message files and set the collating
order. It is also used by the date/time services and for EBCDIC character support.

Programmer Response: Check the settings for the following environment variables:

 � LOCPATH

– Not used on AIX.
– On OS/2 and Windows, this environment variable should include the IBMCOBOL\LOCALE

directory

 � LANG

– On OS/2, this environment variable should be set to the filename (without extension) of
one of the DLLs located in the IBM\LOCALE directory. The default value is en_US.

– On Windows this should be set to the name of one of the directories located in the
IBMCOBW\LOCALE directory. The default value is en_US.

– On AIX this should be set to a locale which has been installed on your machine. Type
"locale -a" to get a list of the valid values. The default value is en_US.

System Action: The application was terminated.

| IWZ240S The base year for program program-name was outside the valid range of
| 1900 through 1999. The sliding window value window-value resulted in a
| base year of base-year.

| Explanation: When the 100-year window was computed using the current year and the sliding
| window value specified with the YEARWINDOW compiler option, the base year of the 100-year
| window was outside the valid range of 1900 through 1999.

| For example, if a COBOL program had been compiled with YEARWINDOW(-99) and the COBOL
| program was run in the year 1998 this message would occur because the base year of the
| 100-year window would be 1899 (1998 - 99).

| Programmer Response: Examine the application design to determine if it will support a change
| to the YEARWINDOW option value. If the application can run with a change to the
| YEARWINDOW option value, then compile the program with an appropriate YEARWINDOW option
| value. If the application cannot run with a change to the YEARWINDOW option value, then
| convert all date fields to expanded dates and compile the program with NODATEPROC.

| System Action: The application was terminated.

| IWZ241S The current year was outside the 100-year window, year-start through
| year-end, for program program-name.

| Explanation: The current year was outside the 100-year fixed window specified by the
| YEARWINDOW compiler option value.

| For example, if a COBOL program is compiled with YEARWINDOW(1920), the 100-year window
| for the program is 1920 through 2019. When the program is run in the year 2020, this error
| message would occur since the current year is not within the 100-year window.

| Programmer Response: Examine the application design to determine if it will support a change

628 VisualAge COBOL Programming Guide

IWZ813S �IWZ907W

| to the YEARWINDOW option value. If the application can run with a change to the
| YEARWINDOW option value, then compile the program with an appropriate YEARWINDOW option
| value. If the application cannot run with a change to the YEARWINDOW option value, then
| convert all date fields to expanded dates and compile the program with NODATEPROC.

| System Action: The application was terminated.

IWZ813S Insufficient storage was available to satisfy a get storage request.

Explanation: There was not enough free storage available to satisfy a get storage or reallocate
request. This message indicates that storage management could not obtain sufficient storage from
the operating system.

Programmer Response: Ensure that you have sufficient storage available to run your applica-
tion.

System Action: No storage is allocated.

Symbolic Feedback Code: CEE0PD

IWZ901W Message variants include:

� Program exits due to severe or critical error.
� Program exits: more than ERRCOUNT errors occurred.

Explanation: Every severe or critical message is followed by an IWZ901 message. An IWZ901
message is also issued if you have used the ERRCOUNT run-time option and the number of
warning messages exceeds ERRCOUNT.

Programmer Response: See the severe or critical message, or increase ERRCOUNT.

System Action: The application was terminated.

IWZ902W The system detected a decimal-divide exception.

Explanation: An attempt to divide a number by 0 was detected.

Programmer Response: Modify the program. For example, add ON SIZE ERROR to the
flagged statement.

System Action: No system action was taken.

IWZ907W Message variants include:

 � Insufficient storage.
� Insufficient storage. Cannot get number-bytes bytes of space for

storage.

Explanation: The run-time library requested virtual memory space and the operating system
denied the request.

Programmer Response: Your program uses a large amount of virtual memory and it ran out of
space. The problem is usually not due to a particular statement, but is associated with the
program as a whole. Look at your use of OCCURS clauses and reduce the size of your tables.

System Action: No system action was taken.

 Appendix F. Run-Time Messages 629

IWZ993W �IWZ2502S

IWZ993W Insufficient storage. Cannot find space for message message-number.

Explanation: The run-time library requested virtual memory space and the operating system
denied the request.

Programmer Response: Your program uses a large amount of virtual memory and it ran out of
space. The problem is usually not due to a particular statement, but is associated with the
program as a whole. Look at your use of OCCURS clauses and reduce the size of your tables.

System Action: No system action was taken.

IWZ994W Cannot find message message-number in %s.

Explanation: The run-time library cannot find either the message catalog or a particular message
in the message catalog.

Programmer Response: Check that the COBOL library and messages were correctly installed
and that NLSPATH is specified correctly.

System Action: No system action was taken.

| IWZ995C Message variants include:

� system exception signal received while executing routine
� system exception signal received while executing code at location 0x

offset-value. routine-name at offset 0x offset-value.

Explanation: The operating system has detected an illegal action, such as an attempt to store
into a protected area of memory or the operating system has detected that you pressed the inter-
rupt key (typically the Control-C key, but it can be reconfigured).

Programmer Response: If the signal was due to an illegal action, run the program under the
debugger and it will give you more precise information as to where the error occurred. An
example of this type of error is a pointer with an illegal value.

System Action: The application was terminated.

IWZ2502S The UTC/GMT was not available from the system.

Explanation: A call to CEEUTC or CEEGMT failed because the system clock was in an invalid
state. The current time could not be determined.

Programmer Response: Notify systems support personnel that the system clock is in an invalid
state.

System Action: All output values are set to 0.

Symbolic Feedback Code: CEE2E6

630 VisualAge COBOL Programming Guide

IWZ2503S �IWZ2506S

IWZ2503S The offset from UTC/GMT to local time was not available from the system.

Explanation: A call to CEEGMTO failed because either (1) the current operating system could
not be determined, or (2) the time zone field in the operating system control block appears to
contain invalid data.

Programmer Response: Notify systems support personnel that the local time offset stored in the
operating system appears to contain invalid data.

System Action: All output values are set to 0.

Symbolic Feedback Code: CEE2E7

IWZ2505S The input_seconds value in a call to CEEDATM or CEESECI was not within
the supported range.

Explanation: The input_seconds value passed in a call to CEEDATM or CEESECI was not a
floating-point number between 86,400.0 and 265,621,679,999.999 The input parameter should rep-
resent the number of seconds elapsed since 00:00:00 on 14 October 1582, with 00:00:00.000 15
October 1582 being the first supported date/time, and 23:59:59.999 31 December 9999 being the
last supported date/time.

Programmer Response: Verify that input parameter contains a floating-point value between
86,400.0 and 265,621,679,999.999.

System Action: For CEEDATM, the output value is set to blanks. For CEESECI, all output
parameters are set to 0.

Symbolic Feedback Code: CEE2E9

IWZ2506S Japanese (<JJJJ>) or Republic of China (<CCCC> or <CCCCCCCC>) Era
was used in a picture string passed to CEEDATM, but the input number-of-
seconds value was not within the supported range. The era could not be
determined.

Explanation: In a CEEDATM call, the picture string indicates that the input value is to be con-
verted to a Japanese or Republic of China Era; however the input value that was specified lies
outside the range of supported eras.

Programmer Response: Verify that the input value contains a valid number-of-seconds value
within the range of supported eras.

System Action: The output value is set to blanks.

 Appendix F. Run-Time Messages 631

IWZ2507S �IWZ2510S

IWZ2507S Insufficient data was passed to CEEDAYS or CEESECS. The Lilian value
was not calculated.

Explanation: The picture string passed in a CEEDAYS or CEESECS call did not contain enough
information. For example, it is an error to use the picture string ‘MM/DD’ (month and day only) in
a call to CEEDAYS or CEESECS, because the year value is missing. The minimum information
required to calculate a Lilian value is either (1) month, day and year, or (2) year and Julian day.

Programmer Response: Verify that the picture string specified in a call to CEEDAYS or
CEESECS specifies, as a minimum, the location in the input string of either (1) the year, month,
and day, or (2) the year and Julian day.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EB

IWZ2508S The date value passed to CEEDAYS or CEESECS was invalid.

Explanation: In a CEEDAYS or CEESECS call, the value in the DD or DDD field is not valid for
the given year and/or month. For example, ‘MM/DD/YY’ with ‘02/29/90’, or ‘YYYY.DDD’ with
‘1990.366’ are invalid because 1990 is not a leap year. This code may also be returned for any
non-existent date value such as June 31st, January 0.

Programmer Response: Verify that the format of the input data matches the picture string spec-
ification and that input data contains a valid date.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EC

IWZ2509S The Japanese or Republic of China Era passed to CEEDAYS or CEESECS
was not recognized.

Explanation: The value in the <JJJJ>, <CCCC>, or <CCCCCCCC> field passed in a call to
CEEDAYS or CEESECS does not contain a supported Japanese or Republic of China Era name.

Programmer Response: Verify that the format of the input data matches the picture string spec-
ification and that the spelling of the Japanese or ROC Era name is correct. Note that the era
name must be a proper DBCS string where the '<' position must contain the first byte of the era
name.

System Action: The output value is set to 0.

IWZ2510S The hours value in a call to CEEISEC or CEESECS was not recognized.

Explanation: (1) In a CEEISEC call, the hours parameter did not contain a number between 0
and 23, or (2) in a CEESECS call, the value in the HH (hours) field does not contain a number
between 0 and 23, or the “AP” (a.m./p.m.) field is present and the HH field does not contain a
number between 1 and 12.

Programmer Response: For CEEISEC, verify that the hours parameter contains an integer
between 0 and 23. For CEESECS, verify that the format of the input data matches the picture
string specification, and that the hours field contains a value between 0 and 23, (or 1 and 12 if the
“AP” field is used).

632 VisualAge COBOL Programming Guide

IWZ2511S �IWZ2513S

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EE

IWZ2511S The day parameter passed in a CEEISEC call was invalid for year and
month specified.

Explanation: The day parameter passed in a CEEISEC call did not contain a valid day number.
The combination of year, month, and day formed an invalid date value. Examples: year=1990,
month=2, day=29; or month=6, day=31; or day=0.

Programmer Response: Verify that the day parameter contains an integer between 1 and 31,
and that the combination of year, month, and day represents a valid date.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EF

IWZ2512S The Lilian date value passed in a call to CEEDATE or CEEDYWK was not
within the supported range.

Explanation: The Lilian day number passed in a call to CEEDATE or CEEDYWK was not a
number between 1 and 3,074,324.

Programmer Response: Verify that the input parameter contains an integer between 1 and
3,074,324.

System Action: The output value is set to blanks.

Symbolic Feedback Code: CEE2EG

IWZ2513S The input date passed in a CEEISEC, CEEDAYS, or CEESECS call was not
within the supported range.

Explanation: The input date passed in a CEEISEC, CEEDAYS, or CEESECS call was earlier
than 15 October 1582, or later than 31 December 9999.

Programmer Response: For CEEISEC, verify that the year, month, and day parameters form a
date greater than or equal to 15 October 1582. For CEEDAYS and CEESECS, verify that the
format of the input date matches the picture string specification, and that the input date is within
the supported range.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EH

 Appendix F. Run-Time Messages 633

IWZ2514S �IWZ2517S

IWZ2514S The year value passed in a CEEISEC call was not within the supported
range.

Explanation: The year parameter passed in a CEEISEC call did not contain a number between
1582 and 9999.

Programmer Response: Verify that the year parameter contains valid data, and that the year
parameter includes the century, for example, specify year 1990, not year 90.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EI

IWZ2515S The milliseconds value in a CEEISEC call was not recognized.

Explanation: In a CEEISEC call, the milliseconds parameter (input_milliseconds) did not contain
a number between 0 and 999.

Programmer Response: Verify that the milliseconds parameter contains an integer between 0
and 999.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EJ

IWZ2516S The minutes value in a CEEISEC call was not recognized.

Explanation: (1) In a CEEISEC call, the minutes parameter (input_minutes) did not contain a
number between 0 and 59, or (2) in a CEESECS call, the value in the MI (minutes) field did not
contain a number between 0 and 59.

Programmer Response: For CEEISEC, verify that the minutes parameter contains an integer
between 0 and 59. For CEESECS, verify that the format of the input data matches the picture
string specification, and that the minutes field contains a number between 0 and 59.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EK

IWZ2517S The month value in a CEEISEC call was not recognized.

Explanation: (1) In a CEEISEC call, the month parameter (input_month) did not contain a
number between 1 and 12, or (2) in a CEEDAYS or CEESECS call, the value in the MM field did
not contain a number between 1 and 12, or the value in the MMM, MMMM, etc. field did not
contain a correctly spelled month name or month abbreviation in the currently active National Lan-
guage.

Programmer Response: For CEEISEC, verify that the month parameter contains an integer
between 1 and 12. For CEEDAYS and CEESECS, verify that the format of the input data matches
the picture string specification. For the MM field, verify that the input value is between 1 and 12.
For spelled-out month names (MMM, MMMM, etc.), verify that the spelling or abbreviation of the
month name is correct in the currently active National Language.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EL

634 VisualAge COBOL Programming Guide

IWZ2518S �IWZ2521S

IWZ2518S An invalid picture string was specified in a call to a date/time service.

Explanation: The picture string supplied in a call to one of the date/time services was invalid.
Only one era character string can be specified.

Programmer Response: Verify that the picture string contains valid data. If the picture string
contains more than one era descriptor, such as both Japanese (<JJJJ>) and Republic of China
(<CCCC>) being specified, then change the picture string to use only one era.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EM

IWZ2519S The seconds value in a CEEISEC call was not recognized.

Explanation: (1) In a CEEISEC call, the seconds parameter (input_seconds) did not contain a
number between 0 and 59, or (2) in a CEESECS call, the value in the SS (seconds) field did not
contain a number between 0 and 59.

Programmer Response: For CEEISEC, verify that the seconds parameter contains an integer
between 0 and 59. For CEESECS, verify that the format of the input data matches the picture
string specification, and that the seconds field contains a number between 0 and 59.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EN

IWZ2520S CEEDAYS detected non-numeric data in a numeric field, or the date string
did not match the picture string.

Explanation: The input value passed in a CEEDAYS call did not appear to be in the format
described by the picture specification, for example, non-numeric characters appear where only
numeric characters are expected.

Programmer Response: Verify that the format of the input data matches the picture string spec-
ification and that numeric fields contain only numeric data.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2EO

IWZ2521S The Japanese (<JJJJ>) or Chinese (<CCCC>) year-within-Era value passed
to CEEDAYS or CEESECS was zero.

Explanation: In a CEEDAYS or CEESECS call, if the YY or ZYY picture token is specified, and if
the picture string contains one of the era tokens such as <CCCC> or <JJJJ>, then the year value
must be greater than or equal to 1 and must be a valid year value for the era. In this context, the
YY or ZYY field means year within Era.

Programmer Response: Verify that the format of the input data matches the picture string spec-
ification and that the input data is valid.

System Action: The output value is set to 0.

 Appendix F. Run-Time Messages 635

IWZ2522S �IWZ2527S

IWZ2522S Japanese (<JJJJ>) or Republic of China (<CCCC> or <CCCCCCCC>) Era
was used in a picture string passed to CEEDATE, but the Lilian date value
was not within the supported range. The era could not be determined.

Explanation: In a CEEDATE call, the picture string indicates that the Lilian date is to be con-
verted to a Japanese or Republic of China Era, but the Lilian date lies outside the range of sup-
ported eras.

Programmer Response: Verify that the input value contains a valid Lilian day number within the
range of supported eras.

System Action: The output value is set to blanks.

IWZ2525S CEESECS detected non-numeric data in a numeric field, or the timestamp
string did not match the picture string.

Explanation: The input value passed in a CEESECS call did not appear to be in the format
described by the picture specification. For example, non-numeric characters appear where only
numeric characters are expected, or the a.m./p.m. field (AP, A.P., etc.) did not contain the strings
‘AM’ or ‘PM’.

Programmer Response: Verify that the format of the input data matches the picture string spec-
ification and that numeric fields contain only numeric data.

System Action: The output value is set to 0.

Symbolic Feedback Code: CEE2ET

| IWZ2526S The date string returned by CEEDATE was truncated.

Explanation: In a CEEDATE call, the output string was not large enough to contain the formatted
date value.

Programmer Response: Verify that the output string variable is large enough to contain the
entire formatted date. Ensure that the output parameter is at least as long as the picture string
parameter.

System Action: The output value is truncated to the length of the output parameter.

Symbolic Feedback Code: CEE2EU

| IWZ2527S The timestamp string returned by CEEDATM was truncated.

Explanation: In a CEEDATM call, the output string was not large enough to contain the for-
matted timestamp value.

Programmer Response: Verify that the output string variable is large enough to contain the
entire formatted timestamp. Ensure that the output parameter is at least as long as the picture
string parameter.

System Action: The output value is truncated to the length of the output parameter.

Symbolic Feedback Code: CEE2EV

636 VisualAge COBOL Programming Guide

IWZ2531S �IWZ2534W

IWZ2531S The local time was not available from the system.

Explanation: A call to CEELOCT failed because the system clock was in an invalid state. The
current time cannot be determined.

Programmer Response: Notify systems support personnel that the system clock is in an invalid
state.

System Action: All output values are set to 0.

Symbolic Feedback Code: CEE2F3

IWZ2533S The value passed to CEESCEN was not between 0 and 100.

Explanation: The century_start value passed in a CEESCEN call was not between 0 and 100,
inclusive.

Programmer Response: Ensure that the input parameter is within range.

System Action: No system action is taken; the 100-year window assumed for all 2-digit years is
unchanged.

Symbolic Feedback Code: CEE2F5

IWZ2534W Insufficient field width was specified for a month or weekday name in a call
to CEEDATE or CEEDATM. Output set to blanks.

Explanation: The CEEDATE or CEEDATM callable services issues this message whenever the
picture string contained MMM, MMMMMZ, WWW, Wwww, etc., requesting a spelled out month
name or weekday name, and the month name currently being formatted contained more charac-
ters than can fit in the indicated field.

Programmer Response: Increase the field width by specifying enough Ms or Ws to contain the
longest month or weekday name being formatted.

System Action: The month name and weekday name fields that are of insufficient width are set
to blanks. The rest of the output string is unaffected. Processing continues.

Symbolic Feedback Code: CEE2F6

 Appendix F. Run-Time Messages 637

 Appendix G. Remote DL/I

Remote DL/I provides access to IMS full function databases and GSAM databases from
programs using Data Language I (DL/I) calls running on workstations. Remote DL/I
provides the support to develop and test mainframe COBOL programs on workstations
that use DL/I calls in a subset of environments. Specifically, support for DL/I calls will
be provided for:

� IMS batch applications that access IMS full function databases and GSAM data-
bases

With Remote DL/I support and IBM VisualAge COBOL, customers that use CBLTDLI
can develop, compile and test on workstations the following:

� COBOL programs that run in an IMS batch environment that use CBLTDLI calls.

| � COBOL programs that run in an CICS environment that use CBLTDLI calls to
| access IMS full function databases.

Note:

� Remote DL/I does not provide access to IMS message queues or IMS fast path
databases.

� Remote DL/I runs using only S/390 data types as input and output. It does not
provide any data conversion function.

How Remote DL/I Works
Remote DL/I uses APPC and an IMS batch environment to provide the remote DL/I call
support. When Remote DL/I is first initialized on the workstation, it asks the user for
the OS/390 userid and password to be used when the remote job is started on OS/390.
Then APPC is used by Remote DL/I to start a job on OS/390 which brings up an IMS
batch environment. Once the IMS batch environment environment is available, then
remote DL/I calls can be processed. The DL/I calls on the workstation are sent to the
IMS batch environment environment and executed. The results of the DL/I calls are
then sent back to the program running on the workstation.

Remote DL/I Utilities
This section describes utility commands provided by Remote DL/I.

 DLICHECK Command
Remote DL/I provides a command called DLICHECK which is used to verify that your
Remote DL/I connection is working.

55──DLICHECK──5%

638  Copyright IBM Corp. 1996, 1998

 DLICHKP Command
Remote DL/I provides a command called DLICHKP which is used to verify that your
Remote DL/I connection is working and that a specific PSB can be succesfully sched-
uled and terminated.

55──DLICHKP──PSB_Name───5%

 DLILOGIN Command
Remote DL/I provides a command called DLILOGIN which is used to update the userid
and password used by Remote DL/I.

55──DLILOGIN──5%

IMS Batch Support
This section describes the support that allows a programmer to develop and test S/390
IMS Batch COBOL programs on workstations.

 DLIBATCH Command
Remote DL/I provides a command called DLIBATCH which is used to invoke IMS Batch
COBOL programs on workstations.

55──DLIBATCH─ ──┬ ┬────────────────── ──┬ ┬─────────────── ─────────────────5
└ ┘──/D:debugger_name └ ┘──/E:entry_name

5─ ──┬ ┬───────────── ─program_name──────────────────────────────────────5%
└ ┘──/P:PSB_name

 DLIBATCH Options

debugger_name Name of the debugger to give control before starting the program. If
this option is not specified, program execution begins at entry_name or its
default. When using COBOL, IDBUG is the only valid value for
debugger_name.

entry_name Name of the entry point in program_name where program execution
begins. If this option is not specified, it defaults to program_name.

PSB_name Name of the PSB to schedule. If this option is not specified, it defaults to
program_name.

Usage notes:

1. The program name must be the name of a DLL.

2. The DLIBATCH command supports PSBs with up to 100 PCBs.

 Appendix G. Remote DL/I 639

Preparing to use the DLIBATCH Command
In order to use the DLIBATCH command, the following need to be addressed:

� The programs that are going to be run have to be compiled and link edited with
certain options. For example, since Remote DL/I runs using S/390 data types as
input and output, specific compiler options that enable S/390 data type support
must be used. See “Preparing IBM VisualAge COBOL Programs” on what needs
to be done to prepare IBM VisualAge COBOL programs to run with Remote DL/I.

� The Remote DL/I Server Environment File or the JCL associated with the APPC
TP profile that is used to bring up the remote IMS batch environment may need to
be modified. For example, if a new PSB was created, the data set that contains
the new PSB must be included in the IMS DD statement. For information on the
Server Environment File, see “Remote DL/I Server Environment File” on page 642.

� The RMTDLI_PARTNER_LU and the RMTDLI_PARTNER_TP environment vari-
ables must be properly set.

� When the programs access files using native language (such as OPEN, READ,
WRITE, etc), the programmer has to set up access to those files. The files could
be set up as local files or remote files (remote file access is provided by
SMARTdata Utilities.).

Preparing IBM VisualAge COBOL Programs

Compiling IBM VisualAge COBOL Programs: When you want to use Remote DL/I with
IBM VisualAge COBOL, you must use certain COBOL compiler options. The following
compiler options are required:

 � CHAR(EBCDIC)
| � COLLSEQ(EBCDIC)

 � FLOAT(HEX)
 � BINARY(S390)
 � ENTRYINT(SYSTEM)
 � NOTHREAD

Linking IBM VisualAge COBOL Programs: The IBM VisualAge COBOL import library
IWZRLIB.LIB has the linkage information for CBLTDLI.

In order to use the DLIBATCH command, the IMS COBOL program it invokes must be
in a DLL.

|

| To create a DLL on Windows, use the -dll option on the cob2 command.

|

640 VisualAge COBOL Programming Guide

|

| To create a DLL on OS/2, you need to create a .DEF file for the program and specify
| the name of the .DEF file on the cob2 command. In the .DEF file, you need to
| EXPORT the program, and if the program uses the DLITCBL entry point, you also need
| to EXPORT DLITCBL.

| Figure 131 shows an example of a .DEF file for a COBOL program called RDLIC03
| that uses DLITCBL as its entry point.

| ;

| ; Link editor Module Definition file for Remote DL/I

| ; Cobol program RDLICð3 that has a DLITCBL entry point.

| ;

| LIBRARY RDLICð3

| PROTMODE

| DATA SINGLE NONSHARED READWRITE LOADONCALL

| CODE LOADONCALL

| EXPORTS

| RDLICð3

| DLITCBL

| Figure 131. Sample .DEF file for Remote DL/I DLL

| For information on the .DEF file statements and their meanings, see Chapter 25, “Cre-
| ating Module Definition Files” on page 448.

|

 Using DLIBATCH
This section discusses what you can expect when using the DLIBATCH command.

Once all of the preparation is complete, the DLIBATCH command can be used. There
are a number of items that will be discussed in this section about the DLIBATCH
command:

1. Obtaining the OS/390 userid and password

2. Invoking the target program

3. Supported IMS function codes

 4. Syncpoint coordination

 5. Diagnostics

6. Interaction with a debugger

OS/390 Userid and Password: If Remote DL/I is not already running, the DLIBATCH
command will cause Remote DL/I to become active. The first time Remote DL/I is used
on a workstation, Remote DL/I will prompt the user for the OS/390 userid and password

 Appendix G. Remote DL/I 641

that will be used to start the server job. The password information is saved until the
workstation is shutdown.

Note: The userid and password information can be updated using the DLILOGIN
command.

Invoking the Target Program: Once DLIBATCH has successfully started an IMS
batch environment on the host with the specified PSB name, it invokes the target
program on the workstation with the PCBs obtained from the IMS batch environment.

Supported Function Codes: All of the function codes that are supported in an IMS
batch environment are supported when using DLIBATCH except the following:

 � GSCD

Syncpoint Coordination: IMS/ESA provides syncpoint control with DB2 in an IMS
batch environment. When using the DLIBATCH command, Remote DL/I does not
provide any capability on the workstation to provide syncpoint coordination with DB2/2.

Diagnostics: Error messages produced by Remote DL/I have a prefix of IWZ. (See
Appendix H, “Remote DL/I Run-Time Messages” on page 650)

In some cases the error messages will indicate that there was some sort of problem on
the server (for example, there could be a JCL error). On the server, you will need to
look at the OS/390 message log and the Remote DL/I message log. The OS/390 mes-
sages are written to the message data set defined in the TP profile. The Remote DL/I
messages are written to the DD IWZRDOUT specified in the JCL in the TP profile.

Using a Debugger: DLIBATCH can be used with the IBM VisualAge COBOL
debugger IDBUG. To do this, use the /D: option of the DLIBATCH command.

Remote DL/I Server Environment File
This section describes how you can alter the Remote DL/I server environment using a
file on the workstation.

Within a Server Environment File you can specify DD names and the associated data
set names that you want the Remote DL/I server to allocate before bringing up the IMS
batch environment.

Remote DL/I gets the name of the Server Environment File from the environment vari-
able RMTDLI_SERVER_ENV.

The syntax for specifying a DD name and an associated data set name is:

DD=ddname DSN=data_set_name

642 VisualAge COBOL Programming Guide

Usage notes:

1. Both the DD name and the data set name must be on the same line.

2. DISP=SHR is used when the data set is allocated.

3. Concatenation is supported only when the DD name is IMS. If more than one
library is required for the IMS DD, then there needs to be one line per data set.

4. There is no support to provide anything but a data set name (that is, no support for
DD DUMMY or SYSOUT).

5. If the DD name specified in the Server Environment File is is also specified in the
JCL for the Remote DL/I TP profile, the dynamic allocation will fail.

Figure 132 shows an example Server Environment File.

DD=RDLIDSN DSN=IMS.DATABASE.RDLIDSN

DD=RDLIDSNO DSN=IMS.DATABASE.RDLIDSNO

DD=IMS DSN=MYTEST.PSBLIB

DD=IMS DSN=IMS.PSBLIB

DD=IMS DSN=IMS.DBDLIB

Figure 132. Example Remote DL/I Server Environment File

Checkpoint and Rollback Support
Remote DL/I can be set up to support the ability to checkpoint and rollback database
updates. In order to enable Remote DL/I to support checkpoint and rollback, the fol-
lowing has to be done:

� The IMS batch environment that is used must be enabled for checkpoint and
rollback calls. In order to enable the IMS batch environment for checkpoint and
rollback calls, the following must be done:

– The IEFRDER DD card must specify a system log that is on direct access
storage.

– Dynamic backout is specified using the IMS batch BKO execution parameter.

If the IMS batch environment is not set up as stated above, rollback calls will get an
“AL” status code from IMS.

There is no requirement that the PSB be generated with CMPAT=YES in order to get
checkpoint and rollback support.

See Figure 133 on page 644 for an example of the JCL used in a TP profile that
enables Remote DL/I for checkpoint and rollback.

 Appendix G. Remote DL/I 643

Preparing to use Remote DL/I with VisualAge CICS

//RMTDLI JOB

//\\

//\ Remote DL/I Server

//\

//\\

//RMTDLI EXEC PGM=IWZRDMð1,REGION=8M,

// PARM='DLI,PGMNAME,PSBNAME,,ðððð,,,,,,,,,N,N,,Y'

//\ |

//\ BKO parameter---------------------------------+

//\

//STEPLIB DD DISP=SHR,DSN=REMOTE.DLI.LOADLIB

// DD DISP=SHR,DSN=CEEV1R5ð.SCEERUN

// DD DISP=SHR,DSN=IMSVS.IMS5.RESLIB

//DFSRESLB DD DISP=SHR,DSN=IMSVS.IMS5.RESLIB

//IMS DD DISP=SHR,DSN=IMS.PSBLIB

// DD DISP=SHR,DSN=IMS.DBDLIB

//IEFRDER DD DSN=IMS.RMTDLI.LOG,DISP=SHR << System log to DASD

//IEFRDER2 DD DUMMY

//SYSUDUMP DD SYSOUT=\

//DFSVSAMP DD DISP=SHR,DSN=IMS.DFSVSAMP

//\ IMS databases

//RDLIDSN DD DISP=SHR,DSN=IMS.RDLI.RDLIDSN

//RDLIDSNO DD DISP=SHR,DSN=IMS.RDLI.RDLIDSNO

//\ DD Statements required by Remote IMS

//IWZRDOUT DD SYSOUT=\

Figure 133. Example JCL for a Remote DL/I TP Profile Enabled for Checkpoint and Rollback

| VisualAge CICS Support (OS/2 Only)

|

| This section describes the support that allows a programmer to develop and test S/390
| CICS COBOL programs on VisualAge CICS that use DL/I calls.

| Note: On OS/2, VisualAge CICS Enterprise Application Development is required to
| use Remote DL/I with CICS. On Windows, there is no support to use Remote DL/I with
| CICS.

| Preparing to use Remote DL/I with VisualAge CICS
| In order to use Remote DL/I with VisualAge CICS, the following things have to be done
| and/or considered:

| � Any required set up to use VisualAge CICS has to be done. The CICS set up
| must include setting the EBCDIC code page field in the SIT to a recognized code
| page.

| � A VisualAge CICS user exit program for user exit 15 (user task detach) must be
| provided which does two things:

644 VisualAge COBOL Programming Guide

Preparing COBOL

| 1. Ensures that if a PSB is still scheduled when the transaction ends, the PSB is
| terminated.

| 2. Ensures that the connection to the Remote DL/I server is ended when the
| transaction ends.

| A sample COBOL program that has the necessary code to do the above is pro-
| vided in SAMPLES\COBOL\FAAEXP15.CBL. See VisualAge CICS Customization
| on how to build and implement user exits.

| Note: When you link the user exit program, you will need to specify the
| IWZRDLI.LIB library to resolve the Remote DL/I API calls.

| � The programs that are going to be run have to be translated, compiled, and link
| edited with certain options. For example, since Remote DL/I runs using S/390 data
| types as input and output, specific translator and compiler options that enable
| S/390 data type support must be used. See “Preparing COBOL Programs” on
| what needs to be done to prepare COBOL programs to run with Remote DL/I.

| � When using VisualAge CICS the IMS batch environment that is used for the
| Remote DL/I calls must be enabled to do checkpoints and rollbacks. See “Check-
| point and Rollback Support” on page 643 on what needs to be done to enable the
| IMS batch environment to support checkpoint and rollback.

| � The Remote DL/I Server Environment File or the JCL associated with the APPC
| TP profile that is used to bring up the remote IMS batch environment may need to
| be modified. For example, if a new PSB was created, the dataset that contains the
| new PSB must be included in the IMS DD statement. For information on the
| Server Environment File, see “Remote DL/I Server Environment File” on page 642.

| If you want to use a specific setting of an environment variable when using
| VisualAge CICS, you can do this by setting the environment variable in the
| CICSENV.CMD file. You may need to do this for the environment variables
| RMTDLI_PARTNER_LU, RMTDLI_PARTNER_TP, and RMTDLI_SEVER_ENV.

| Preparing COBOL Programs
| There are steps that have to be taken to prepare a COBOL program to run with
| VisualAge CICS. The VisualAge CICS Programming Guide has information on what
| steps need to be done. This section discusses the additional information you need to
| know to enable COBOL programs to use CBLTDLI with VisualAge CICS.

| Translating COBOL Programs
| When you translate COBOL programs, you must use the BINARY(S370), EBCDIC, and
| the LOADCALL translator options.

| Compiling COBOL Programs
| When you want to use Remote DL/I with COBOL, you must use certain COBOL com-
| piler options. The following compiler options are required:

| CHAR(EBCDIC)
| COLLSEQ(EBCDIC)
| FLOAT(HEX)

 Appendix G. Remote DL/I 645

Supported Function Codes

| BINARY(S390)
| NOTHREAD

| A DLIUIB copy file is provided with Remote DL/I in SAMPLES\COBOL\DLIUIB.CBL.
| You will need ensure that this copy file is available to the COBOL compiler when com-
| piling a COBOL program that contains CBLTDLI calls.

| Linking COBOL Programs
| The COBOL import library IWZRLIB.LIB has the linkage information for CBLTDLI. No
| changes have to be done to the VisualAge CICS environment to link COBOL programs
| that have calls to CBLTDLI.

| User Interface Block
| Just like CICS on S/390, when running on VisualAge CICS, Remote DL/I provides a
| UIB when a PSB is scheduled. The UIBRCODE values returned by Remote DL/I are a
| subset of the values returned when running CICS on S/390. Figure 134 and
| Figure 135 show the return codes from Remote DL/I when running with VisualAge
| CICS.

| Figure 134. Return Codes in UIBFCTR

| Condition| Value

| NORESP (normal response)| X'00'

| INVREQ (invalid request)| X'08'

Figure 135. Return Codes in UIBDLTR if UIBFCTR=X'08' (INVREQ)

Condition Value

| Invalid argument passed to DL/I| X'00'

| PSBSCH (PSB already scheduled)| X'03'

| PSBFAIL (the PSB could not be scheduled)| X'05'

| TERMNS (termination not successful)| X'07'

| FUNCNS (function unscheduled)| X'08'

| Supported Function Codes
| When using Remote DL/I with VisualAge CICS, the function codes listed in Figure 136
| and in Figure 137 on page 647 are supported. When a function code is used that is
| not in the tables, UIBFCTR is set to X'08' (INVREQ), and UIBDLTR is set to X'00'.

| Figure 136 (Page 1 of 2). Supported IMS system service calls under VisualAge CICS

| Function
| Code
| Description| Comments

| INIT| Initialize. Application receives data
| availability and deadlock occurrence
| status codes.

| Requires that the PSB is scheduled
| with the sysserve parameter set to
| IOPCB.

646 VisualAge COBOL Programming Guide

Scheduling a PSB

| Figure 136 (Page 2 of 2). Supported IMS system service calls under VisualAge CICS

| Function
| Code
| Description| Comments

| LOG| Write a message to the system log.| Requires that the PSB is scheduled
| with the sysserve parameter set to
| IOPCB.

| PCB| Schedule a PSB.| Remote DL/I supports PSBs with up to
| 100 PCBs.

| STAT| Retrieve IMS system statistics.

| TERM| Terminate a PSB. Commit database
| changes.
| Causes a CICS syncpoint.

Figure 137. Supported IMS DB calls under VisualAge CICS

Function
Code

Description Comments

| DEQ| Release segments reserved by Q
| command code.

| DLET| Delete a segment.

| GHN| Get Hold Next.

| GHNP| Get Hold Next in Parent.

| GHU| Get Hold Unique.

| GN| Get Next.

| GNP| Get Next in Parent.

| GU| Get Unique.

| ISRT| Insert.

| Scheduling a PSB
| When you use a DL/I call to schedule a PSB, the PCB address list returned depends
| on the parameters used on the DL/I call.

| The PCB call formats supported are as shown in the following syntax diagram:

|

| 55──CALL──"CBLTDLI"──USING──function-PCB──,──PSB-name──,──uibptr───────5

| 5─ ──┬ ┬───────────── ─.───5%
| └ ┘| ─,──sysserve─

| When the sysserve parameter is not specified or if specified has the value NOIOPCB,
| then the PCB list will include only the database PCBs. When the sysserve parameter
| is provided and contains the value IOPCB, then the PCB list will include the I/O PCB,
| any alternate PCBs, and the database PCBs.

 Appendix G. Remote DL/I 647

Diagnostics

| The PCB list returned will not have any GSAM PCBs even if GSAM PCBs are in the
| PSB.

| Remote DL/I allows either a PSB name in the PSB name field or an asterisk. If the PSB
| name field is an asterisk, Remote DL/I will use the name of the program associated
| with the current transaction.

| Syncpoint Coordination
| Remote DL/I on VisualAge CICS supports syncpoint coordination that behaves like
| CICS and IMS on the S/390.

| Note: In order for commit and rollback processing against the IMS databases to com-
| plete successfully, the remote IMS job has to be set up to support rollback. See
| “Checkpoint and Rollback Support” on page 643 for more information on what has to
| be done to set up the server to enable the support to checkpoint and rollback database
| updates.

| In order to provide syncpoint coordination, Remote DL/I provides an external resource
| manager connection with VisualAge CICS. Having a resource manager connection with
| VisualAge CICS will cause Remote DL/I to get control from VisualAge CICS to process
| commit and rollback requests. The following list discuses the rollback and commit
| behavior when running Remote DL/I with VisualAge CICS:

| � When a PSB is terminated with a DL/I call, an EXEC CICS SYNCPOINT is issued
| by Remote DL/I and the IMS database changes are committed.

| � When a PSB is terminated implicitly due the normal termination of a CICS run unit
| (for example, due to an EXEC CICS RETURN), the IMS database changes are
| committed.

| � When an EXEC CICS SYNCPOINT command is used, the PSB is terminated and
| the IMS database changes are commited.

| � When there is an unhandled ABEND, the PSB is terminated and the IMS database
| changes are rolled back.

| � When an EXEC CICS SYNCPOINT command with the ROLLBACK option is used,
| the PSB is terminated and the the IMS database changes are rolled back.

| Diagnostics Using CBLTDLI
| If there are any errors while using CBLTDLI with VisualAge CICS, the Remote DL/I
| messages are written where the COBOL runtime messages are written. If there is a
| severe error, the transaction ends with abend code 1099. In some cases the error
| messages will point to some sort of problem on the server (for example, there could be
| a JCL error). On the server, you will need to look at the OS/390 message log and the
| Remote DL/I message log. The OS/390 messages are written to the message data set
| defined in the TP profile. The Remote DL/I messages are written to the DD IWZRDOUT
| specified in the JCL in the TP profile.

648 VisualAge COBOL Programming Guide

Using a Debugger

| Using a Debugger
| The COBOL debugger IDBUG can be used on VisualAge CICS with programs that
| contain DL/I calls. See VisualAge CICS Application Programming for how to use the
| debugger on VisualAge CICS.

|

 Appendix G. Remote DL/I 649

IWZ300S �IWZ303S

Appendix H. Remote DL/I Run-Time Messages

Messages for the Remote DL/I component of VisualAge COBOL contain a message
prefix, message number, severity code, and descriptive text. The message prefix is

| always IWZ, followed by the message number. The severity code will be either I (Infor-
| mation), W (Warning), S (Severe), or C (Critical). The message text provides a brief

explanation of the condition.

In the following example message:

IWZ3ð1S DL/I-command detected an error.

� The message prefix is IWZ.

� The message number is 301.

� The severity code is S.

� The message text is “DL/I-command detected an error.”

IWZ300S A communication error was encountered when processing a DL/I-function
request.

Explanation: Remote DL/I encountered a communication error and could not continue.

Programmer Response: Look for other messages that provide additional detail about the com-
munication error.

IWZ301S DL/I-command detected an error.

Explanation: The Remote DL/I command detected an error and could not continue.

Programmer Response: Look for other messages that provide additional detail about why the
command failed.

IWZ302S An incorrect number of arguments was passed to DL/I-command.

Explanation: The Remote DL/I command was passed too few or too many arguments.

Programmer Response: Invoke the command with the correct number of arguments.

IWZ303S Could not load DLL DLL-name. DLL-name2 failed to load.

Explanation: The DLIBATCH command was unable to load DLL DLL-name.

Programmer Response: Invoke the DLIBATCH command with a valid DLL name.

650  Copyright IBM Corp. 1996, 1998

IWZ304S �IWZ309S

IWZ304S Could not find the entry point in DLL DLL-name.

Explanation: The DLIBATCH command was unable to find the specified entry point in the DLL
DLL-name.

Programmer Response: Invoke the DLIBATCH command with a valid entry name for the DLL.
| Make sure the program has been compiled with the PGMNAME(UPPER) option.

IWZ305S Could not free DLL DLL-name.

Explanation: Remote DL/I was unable to free the DLL.

Programmer Response: Exit the process where Remote DL/I is being used and try again.

IWZ306S Could not schedule PSB PSB-name.

Explanation: Remote DL/I was unable to schedule PSB PSB-name.

Programmer Response: Look for other messages that provide additional detail about the error.

IWZ307S An error occured while trying to obtain a PCB.

Explanation: Remote DL/I encountered an error when it was getting the PCBs associated with
the currently scheduled PSB.

Programmer Response: Look for other messages that provide additional detail about the error.

IWZ308S Could not terminate the PSB.

Explanation: Remote DL/I was not able to terminate the PSB. The PSB may have been already
terminated due to an IMS abend.

Programmer Response: Look for other messages that provide additional detail about the error.
In addition, look at the Remote DL/I transaction program job log on the host system.

IWZ309S Could not allocate a connection with MVS.

Explanation: Remote DL/I was not able to establish a connection with the MVS or OS/390
system specified in the environment variable RMTDLI_PARTNER_TP.

Programmer Response: Look for other messages that provide additional detail about the error.

 Appendix H. Remote DL/I Run-Time Messages 651

IWZ310S �IWZ315S

IWZ310S Generic network communication error message. The CPI-C function is
CPI-C function. The CPI-C return code is CPI-C return code.

Explanation: Remote DL/I was not able to establish a connection with the host system due to a
non-zero return code from a CPI-C function.

Programmer Response: Look up the CPI-C return code and correct the problem.

IWZ311S Unable to successfully start the Remote DL/I transaction program on MVS.

Explanation: Remote DL/I was able to connect with the host system, but the Remote DL/I trans-
action program could not be started.

Programmer Response: This error can occur if there is a JCL error in the transaction program
definition. Look at the Remote DL/I transaction program job log on the host to determine the
problem.

IWZ312S The userid and password was rejected by MVS.

Explanation: The Remote DL/I transaction program would not start because the MVS or OS/390
userid and password was not accepted as valid by the host system.

Programmer Response: Update your userid and password using the DLILOGIN command.

IWZ313S The Remote DL/I transaction program TP-name could not be started.

Explanation: The Remote DL/I transaction program would not start.

Programmer Response: Look at the definition of the TP name on the host and make sure
ACTIVE is YES.

IWZ314S The Remote DL/I transaction program name TP-name is not defined on MVS.

Explanation: The Remote DL/I transaction program specified in the environment variable
RMTDLI_PARTNER_TP does not exist on the host system.

Programmer Response: Set the environment variable RMTDLI_SERVER_TP to a valid trans-
action program name.

IWZ315S The environment variable env-variable was not defined.

Explanation: The environment variable env-variable must be set to a valid value.

Programmer Response: Set the environment variable to a valid value.

652 VisualAge COBOL Programming Guide

IWZ316S �IWZ320S

IWZ316S Invalid value for environment variable env-variable.

Explanation: The environment variable env-variable has an invalid value. For example, it may
contain too many characters.

Programmer Response: Set the environment variable to a valid value.

IWZ317S The network software on the workstation is not active.

Explanation: Remote DL/I was unable to start communications because the network software on
the workstation is not active.

Programmer Response: Start the network software on the workstation.

IWZ318S The PARM= value in the Remote DL/I transaction program JCL is not valid.

Explanation: The PARM= value in the Remote DL/I transaction program JCL must start with
'DLI,PGMNAME,PSBNAME'.

Programmer Response: Correct the Remote DL/I transaction program definition.

IWZ319S System error. Service-name service failed. Return code: Service-rc

Explanation: Remote DL/I encountered a system service error.

Programmer Response: Determine the reason for the system service error.

IWZ320S Unexpected response from the Remote DL/I transaction program. Request:
request-name. Return code: return-code.

Explanation: The Remote DL/I transaction program sent an unexpected response. Possible
return codes are:

 Appendix H. Remote DL/I Run-Time Messages 653

IWZ330S �IWZ334S

1ðð ALLOCATION FAILED

2ðð CHECKPOINT FAILED

2ð1 ROLLBACK FAILED

3ðð PSB NOT FOUND

3ð1 BAD PARAMETER LIST

3ð2 PCB NOT ALLOWED

5ðð NO PCBS PASSED

5ð1 OPEN TRACE FILE FAILED

5ð2 UNSUPPORTED IMS ENVIRONMENT

6ðð COMMUNICATION PUT FAILED

997 IMS ABEND

998 ALLOCATION ERROR

999 UNRECOGNIZED REQUEST

1ððð TOO MANY PARMAMETERS

1ðð1 I/O AREA TOO BIG

2ðð1 LOCATE CONTROL BLOCK FAILED

2ðð2 COMMUNICATIONS LOAD FAILED

2ðð3 ALLOCATION IOAREA FAILED

2ðð4 ALLOCATION PCBI FAILED

2ðð5 ALLOCATION PCBR FAILED

Programmer Response: Determine the reason for the unexpected response.

IWZ330S A previously established connection is still active.

Explanation: There was an attempt to connect with Remote DL/I more than once.

Programmer Response: Exit the process where Remote DL/I is being used and try again.

IWZ331S A communication link failed.

Explanation: Remote DL/I lost the communication link with the host.

Programmer Response: Exit the process where Remote DL/I is being used and try again.

IWZ332S A connection does not exist.

Explanation: There was an attempt to use Remote DL/I without first establishing a connection.

Programmer Response: Determine the reason for the error.

IWZ333S A PSB is currently scheduled.

Explanation: There was an attempt to schedule a PSB when a PSB is currently scheduled.

Programmer Response: Exit the process where Remote DL/I is being used and try again.

IWZ334S A request to allocate memory failed.

Explanation: Remote DL/I was unable to allocate the memory it needed.

Programmer Response: End other processes that are using memory and try again.

654 VisualAge COBOL Programming Guide

IWZ335S �IWZ350S

IWZ335S A PSB is not currently scheduled.

Explanation: There was an attempt to perform a Remote DL/I request, but a PSB was not
scheduled.

Programmer Response: Schedule the PSB before attempting the Remote DL/I request.

IWZ336S The IMS standard checkpoint call failed.

Explanation: An IMS standard checkpoint failed.

Programmer Response: Look at the Remote DL/I transaction program job log on the host to
determine the problem.

IWZ337S The IMS rolllback call failed.

Explanation: An IMS rollback failed.

Programmer Response: Look at the Remote DL/I transaction program job log on the host to
determine the problem. Also, make sure the BKO parameter used to bring up the Remote DL/I
transaction program is set to 'Y'.

IWZ340S The IMS batch region ended with abend abend-code. Make sure the PSB
name you specified is correct.

Explanation: The Remote DL/I transaction program failed with start the IMS batch region.

Programmer Response: Make sure the PSB name is correct. If it is correct, look at the Remote
DL/I transaction program job log on the host to determine the problem.

IWZ341S The IMS batch region ended with abend abend-code.

Explanation: The IMS batch region used by the Remote DL/I transaction program ended with an
abend.

Programmer Response: Look at the Remote DL/I transaction program job log on the host to
determine the problem.

IWZ350S The I/O area provided on a DL/I call was number-bytes1 bytes long but
number-bytes2 bytes are required to contain the I/O area returned by IMS.

Explanation: The I/O area provided the caller is not big enough to hold the data returned by
IMS.

Programmer Response: Increase the size of the I/O area.

 Appendix H. Remote DL/I Run-Time Messages 655

IWZ351S �IWZ356S

IWZ351S The PCB passed is not a valid PCB.

Explanation: The PCB passed to Remote DL/I is not a valid PCB.

Programmer Response: Change the DL/I call to pass in a valid PCB.

IWZ352S Allocation on MVS failed for DD name DD-name with dataset name dataset-
name.

Explanation: Remote DL/I was unable to dynamically allocate a file specified in the server envi-
ronment file. Typical problems include data set not found.

Programmer Response: Look at the Remote DL/I transaction program job log on the host to
determine the problem.

IWZ353S Invalid specification of the DD name or the dataset name on line line-number
in file file-name.

Explanation: Remote DL/I found an invalid specification of a DD name or a dataset name. Both
DD= and DSN= are required on the same line.

Programmer Response: Update the server environment file using the correct specification.
Provide both the DD= and DSN= values in upper case on the same line.

IWZ354S Unable to open file file-name specified in the RMTDLI_SERVER_ENV envi-
ronment variable.

Explanation: Remote DL/I was unable to open the file.

Programmer Response: Make sure the file name specified in the environment variable
RMTDLI_SERVER_ENV is correct.

IWZ355S Unable to open the Remote DL/I server trace file.

Explanation: The Remote DL/I transaction program was unable to open the server trace file.

Programmer Response: Include a DD for IWZRDTRC in the Remote DL/I transaction program
definition.

IWZ356S The Xparm area provided on a DL/I call is not big enough to contain the
Xparm area returned by IMS.

Explanation: The caller to DLICall failed to provide an area big enough to hold the data returned
by IMS

Programmer Response: Increase the size of the Xparm area.

656 VisualAge COBOL Programming Guide

IWZ360S �IWZ391S

IWZ360S Could not disconnect.

Explanation: Remote DL/I was unable to successfully disconnect from the Remote DL/I trans-
action program. This may occur if the communications link was lost.

Programmer Response: Exit the process where Remote DL/I is being used and try again.

IWZ380S Error occured when trying to communicate with the Remote DL/I server
program.

Explanation: Remote DL/I encounted an error.

Programmer Response: Look for other messages that provide additional detail about the error.

IWZ382S Errors occured when scheduling PSB PSB-name

Explanation: Remote DL/I encounted an error when scheduling a PSB.

Programmer Response: Look for other messages that provide additional detail about the error.

IWZ383S Starting a process for DLIBATCH failed with errno error-number.

Explanation: Remote DL/I encounted an error when starting a process.

Programmer Response: Determine the reason for the error.

IWZ384S command was invoked with an invalid option, option-value.

Explanation: An invalid option was used in the specified command.

Programmer Response: Remove the incalide option.

IWZ390S An error occured while processing the parameter-type parameter.

Explanation: Invalid data or an invalid address of a parameter was passed to Remote DL/I.

Programmer Response: Validate that all the parameters passed are correct.

IWZ391S The parameter-type is invalid.

Explanation: Invalid data or an invalid address of a parameter was passed to Remote DL/I.

Programmer Response: Validate that all the parameters passed are correct.

 Appendix H. Remote DL/I Run-Time Messages 657

 Bibliography

 VisualAge COBOL
Building Parts for Fun and Profit, GC26-9038

COBOL Resource Catalog, GC26-8488

Fact Sheet, GC26-9052

Getting Started on OS/2, GC26-9051

Getting Started on Windows, GC26-8944

Introducing Redeveloper, SC26-9056

Language Reference, SC26-9046

Programming Guide, SC26-9050

Technology Brochure, GC26-9060

Visual Builder User's Guide, SC26-9053

 Related Publications

COBOL for OS/390 & VM
Compiler and Run-Time Migration Guide,
GC26-4764

Debug Tool User's Guide and Reference,
SC09-2137

Diagnosis Guide, GC26-9047

Fact Sheet, GC26-9048

Installation and Customization under OS/390,
GC26-9045

Language Reference, SC26-9046

Licensed Program Specifications, GC26-9044

Programming Guide, SC26-9049

COBOL Set for AIX
Fact Sheet, GC26-8484

Getting Started, GC26-8425

Language Reference, SC26-9046

LPEX User's Guide and Reference, SC09-2202

Program Builder User's Guide, SC09-2201

Programming Guide, SC26-8423

VisualAge CICS Enterprise Application
Development
 Installation, GC34-5356

 Customization, SC34-5357

 Operation, SC34-5358

Reference Summary, SX33-6109

 Intercommunication, SC34-5359

Problem Determination, GC34-5360

 Performance, SC34-5363

Application Programming, SC34-5361

Messages and Codes, GC34-5362

CICS for OS/2
Application Programming, SC33-1585

 Customization, SC33-1581

 Installation, GC33-1580

 Intercommunication, SC33-1583

Messages & Codes, SC33-1586

 Operation, SC33-1582

Problem Determination, SC33-1584

Reference Summary, SX33-6100

CICS for Windows NT
Application Programming Guide, SC33-1888

Installation Guide, GC33-1880

Intercommunication Guide, SC33-1882

Messages & Codes, SC33-1886

Problem Determination Guide, SC33-1883

 DB2
Application Programming Guide, S20H-4643

DATABASE 2 Command Reference for Common
Servers, S20H-4645

SQL Reference, S20H-4665

658  Copyright IBM Corp. 1996, 1998

SMARTdata Utilities for OS/2
Data Description and Conversion A Data Language
Reference, SC26-7092

Data Description and Conversion, SC26-7091

VSAM in a Distributed Environment, SC26-7063

SMARTdata Utilities for Windows
Data Description and Conversion A Data Language
Reference, SC26-7092

Data Description and Conversion, SC26-7091

User's Guide, SC26-7134

VSAM Reference, SC26-7133

SOMobjects Developer's Toolkit
SOMobjects Developer's Toolkit Programmer's Ref-
erence

SOMobjects Developer's Toolkit Programming Guide

SOMobjects Developer's Toolkit User's Guide

 Other
Btrieve Programmer's Manual

 Bibliography 659

 Glossary

The terms in this glossary are defined in accordance
with their meaning in COBOL. These terms may or may
not have the same meaning in other languages.

IBM is grateful to the American National Standards Insti-
tute (ANSI) for permission to reprint its definitions from
the following publications:

� American National Standard Programming Lan-
guage COBOL, ANSI X3.23-1985 (Copyright 1985
American National Standards Institute, Inc.), which
was prepared by Technical Committee X3J4, which
had the task of revising American National Standard
COBOL, X3.23-1974.

� American National Dictionary for Information Proc-
essing Systems (Copyright 1982 by the Computer
and Business Equipment Manufacturers Associ-
ation).

American National Standard definitions are preceded by
an asterisk (*).

A
* abbreviated combined relation condition . The com-
bined condition that results from the explicit omission of
a common subject or a common subject and common
relational operator in a consecutive sequence of relation
conditions.

abend . Abnormal termination of program.

* access mode . The manner in which records are to
be operated upon within a file.

* actual decimal point . The physical representation,
using the decimal point characters period (.) or comma
(,), of the decimal point position in a data item.

* alphabet-name . A user-defined word, in the
SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION, that assigns a name to a specific character
set and/or collating sequence.

* alphabetic character . A letter or a space character.

* alphanumeric character . Any character in the
computer’s character set.

alphanumeric-edited character . A character within an
alphanumeric character-string that contains at least one
B, 0 (zero), or / (slash).

* alphanumeric function . A function whose value is
composed of a string of one or more characters from the
computer's character set.

* alternate record key . A key, other than the prime
record key, whose contents identify a record within an
indexed file.

ANSI (American National Standards Institute) . An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

* argument . An identifier, a literal, an arithmetic
expression, or a function-identifier that specifies a value
to be used in the evaluation of a function.

* arithmetic expression . An identifier of a numeric ele-
mentary item, a numeric literal, such identifiers and
literals separated by arithmetic operators, two arithmetic
expressions separated by an arithmetic operator, or an
arithmetic expression enclosed in parentheses.

* arithmetic operation . The process caused by the
execution of an arithmetic statement, or the evaluation of
an arithmetic expression, that results in a mathematically
correct solution to the arguments presented.

* arithmetic operator . A single character, or a fixed
two-character combination that belongs to the following
set:

Character Meaning
 + addition
 - subtraction
 * multiplication
 / division
 ** exponentiation

* arithmetic statement . A statement that causes an
arithmetic operation to be executed. The arithmetic
statements are the ADD, COMPUTE, DIVIDE, MUL-
TIPLY, and SUBTRACT statements.

array . In Language Environment, an aggregate con-
sisting of data objects, each of which may be uniquely

660  Copyright IBM Corp. 1996, 1998

referenced by subscripting. Roughly analogous to a
COBOL table.

* ascending key . A key upon the values of which data
is ordered, starting with the lowest value of the key up to
the highest value of the key, in accordance with the
rules for comparing data items.

ASCII. American National Standard Code for Informa-
tion Interchange. The standard code, using a coded
character set consisting of 7-bit coded characters (8 bits
including parity check), used for information interchange
between data processing systems, data communication
systems, and associated equipment. The ASCII set con-
sists of control characters and graphic characters.

Extension: IBM has defined an extension to ASCII
code (characters 128-255).

assignment-name . A name that identifies the organiza-
tion of a COBOL file and the name by which it is known
to the system.

* assumed decimal point . A decimal point position
that does not involve the existence of an actual char-
acter in a data item. The assumed decimal point has
logical meaning with no physical representation.

* AT END condition . A condition caused:

1. During the execution of a READ statement for a
sequentially accessed file, when no next logical
record exists in the file, or when the number of sig-
nificant digits in the relative record number is larger
than the size of the relative key data item, or when
an optional input file is not present.

2. During the execution of a RETURN statement, when
no next logical record exists for the associated sort
or merge file.

3. During the execution of a SEARCH statement, when
the search operation terminates without satisfying
the condition specified in any of the associated
WHEN phrases.

B
big-endian . Default format used by the mainframe and
the AIX workstation to store binary data. In this format,
the least significant digit is on the highest address.
Compare with “little-endian.”

binary item . A numeric data item represented in binary
notation (on the base 2 numbering system). Binary
items have a decimal equivalent consisting of the

decimal digits 0 through 9, plus an operational sign. The
leftmost bit of the item is the operational sign.

binary search . A dichotomizing search in which, at
each step of the search, the set of data elements is
divided by two; some appropriate action is taken in the
case of an odd number.

* block . A physical unit of data that is normally com-
posed of one or more logical records. For mass storage
files, a block may contain a portion of a logical record.
The size of a block has no direct relationship to the size
of the file within which the block is contained or to the
size of the logical record(s) that are either contained
within the block or that overlap the block. The term is
synonymous with physical record.

breakpoint . A place in a computer program, usually
specified by an instruction, where its execution may be
interrupted by external intervention or by a monitor
program.

Btrieve . A key-indexed record management system
that allows applications to manage records by key value,
sequential access method, or random access method.
IBM COBOL supports COBOL sequential and indexed
file I-O language through Btrieve.

buffer . A portion of storage used to hold input or output
data temporarily.

built-in function . See “intrinsic function.”

byte . A string consisting of a certain number of bits,
usually eight, treated as a unit, and representing a char-
acter.

C
callable services . In Language Environment, a set of
services that can be invoked by a COBOL program
using the conventional Language Environment-defined
call interface, and usable by all programs sharing the
Language Environment conventions.

called program . A program that is the object of a
CALL statement.

* calling program . A program that executes a CALL to
another program.

case structure . A program processing logic in which a
series of conditions is tested in order to make a choice
between a number of resulting actions.

 Glossary 661

| century window . A century window is a 100-year
| interval within which any 2-digit year is unique. There
| are several types of century window available to COBOL
| programmers:

| 1. For windowed date fields, the YEARWINDOW com-
| piler option

| 2. For windowing intrinsic functions
| DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD, and
| YEAR-TO-YYYY, it is specified by argument-2

| 3. For date and time callable services, it is specified in
| CEESCEN

* character . The basic indivisible unit of the language.

character position . The amount of physical storage
required to store a single standard data format character
described as USAGE IS DISPLAY.

character set . All the valid characters for a program-
ming language or a computer system.

* character-string . A sequence of contiguous charac-
ters that form a COBOL word, a literal, a PICTURE
character-string, or a comment-entry. Must be delimited
by separators.

checkpoint . A point at which information about the
status of a job and the system can be recorded so that
the job step can be later restarted.

* class . The entity that defines common behavior and
implementation for zero, one, or more objects. The
objects that share the same implementation are consid-
ered to be objects of the same class.

* class condition . The proposition, for which a truth
value can be determined, that the content of an item is
wholly alphabetic, is wholly numeric, or consists exclu-
sively of those characters listed in the definition of a
class-name.

* Class Definition . The COBOL source unit that
defines a class.

* class identification entry . An entry in the CLASS-ID
paragraph of the IDENTIFICATION DIVISION which con-
tains clauses that specify the class-name and assign
selected attributes to the class definition.

* class-name . A user-defined word defined in the
SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION that assigns a name to the proposition for
which a truth value can be defined, that the content of a

data item consists exclusively of those characters listed
in the definition of the class-name.

class object . The run-time object representing a SOM
class.

* clause . An ordered set of consecutive COBOL
character-strings whose purpose is to specify an attri-
bute of an entry.

CMS (Conversational Monitor System) . A virtual
machine operating system that provides general interac-
tive, time-sharing, problem solving, and program devel-
opment capabilities, and that operates only under the
control of the VM/SP control program.

* COBOL character set . The complete COBOL char-
acter set consists of the characters listed below:

Character Meaning
 0,1...,9 digit
 A,B,...,Z uppercase letter
 a,b,...,z lowercase letter
 ␣ space
 + plus sign
 - minus sign (hyphen)
 * asterisk
 / slant (virgule, slash)
 = equal sign
 $ currency sign
 , comma (decimal point)
 ; semicolon
 . period (decimal point, full stop)
 " quotation mark
 (left parenthesis
) right parenthesis
 > greater than symbol
 < less than symbol
 : colon

* COBOL word . See “word.”

code page . An assignment of graphic characters and
control function meanings to all code points; for
example, assignment of characters and meanings to 256
code points for 8-bit code, assignment of characters and
meanings to 128 code points for 7-bit code.

* collating sequence . The sequence in which the char-
acters that are acceptable to a computer are ordered for
purposes of sorting, merging, comparing, and for proc-
essing indexed files sequentially.

* column . A character position within a print line. The
columns are numbered from 1, by 1, starting at the left-

662 VisualAge COBOL Programming Guide

most character position of the print line and extending to
the rightmost position of the print line.

* combined condition . A condition that is the result of
connecting two or more conditions with the AND or the
OR logical operator.

* comment-entry . An entry in the IDENTIFICATION
DIVISION that may be any combination of characters
from the computer’s character set.

* comment line . A source program line represented by
an asterisk (*) in the indicator area of the line and any
characters from the computer’s character set in area A
and area B of that line. The comment line serves only
for documentation in a program. A special form of
comment line represented by a slant (/) in the indicator
area of the line and any characters from the computer’s
character set in area A and area B of that line causes
page ejection prior to printing the comment.

* common program . A program which, despite being
directly contained within another program, may be called
from any program directly or indirectly contained in that
other program.

| compatible dates . The meaning of the term “compat-
| ible,” when applied to date fields, depends on the
| COBOL division in which the usage occurs:

| � Data Division

| Two date fields are compatible if they have identical
| USAGE and meet at least one of the following
| conditions:

| – They have the same date format.

| – Both are windowed date fields, where one con-
| sists only of a windowed year, date format YY.

| – Both are expanded date fields, where one con-
| sists only of an expanded year, date format
| YYYY.

| – One has date format YYXXXX, the other,
| YYXX.

| – One has date format YYYYXXXX, the other,
| YYYYXX.

| � Procedure Division

| Two date fields are compatible if they have the
| same date format except for the year part, which
| may be windowed or expanded. For example, a
| windowed date field with date format YYXXX is
| compatible with:

| – Another windowed date field with date format
| YYXXX
| – An expanded date field with date format
| YYYYXXX

* compile . (1) To translate a program expressed in a
high-level language into a program expressed in an
intermediate language, assembly language, or a com-
puter language. (2) To prepare a machine language
program from a computer program written in another
programming language by making use of the overall
logic structure of the program, or generating more than
one computer instruction for each symbolic statement, or
both, as well as performing the function of an assembler.

* compile time . The time at which a COBOL source
program is translated, by a COBOL compiler, to a
COBOL object program.

compiler . A program that translates a program written
in a higher level language into a machine language
object program.

compiler directing statement . A statement, beginning
with a compiler directing verb, that causes the compiler
to take a specific action during compilation.

compiler directing statement . A statement that speci-
fies actions to be taken by the compiler during proc-
essing of a COBOL source program. Compiler
directives are contained in the COBOL source program.
Thus, you can specify different suboptions of the direc-
tive within the source program by using multiple compiler
directive statements in the program.

* complex condition . A condition in which one or more
logical operators act upon one or more conditions. (See
also “negated simple condition,” “combined condition,”
and “negated combined condition.”)

* computer-name . A system-name that identifies the
computer upon which the program is to be compiled or
run.

condition . An exception that has been enabled, or
recognized, by Language Environment and thus is eli-
gible to activate user and language condition handlers.
Any alteration to the normal programmed flow of an
application. Conditions can be detected by the
hardware/operating system and results in an interrupt.
They can also be detected by language-specific gener-
ated code or language library code.

* condition . A status of a program at run time for
which a truth value can be determined. Where the term

 Glossary 663

‘condition’ (condition-1, condition-2,...) appears in these
language specifications in or in reference to ‘condition’
(condition-1, condition-2,...) of a general format, it is a
conditional expression consisting of either a simple con-
dition optionally parenthesized, or a combined condition
consisting of the syntactically correct combination of
simple conditions, logical operators, and parentheses, for
which a truth value can be determined.

* conditional expression . A simple condition or a
complex condition specified in an EVALUATE, IF,
PERFORM, or SEARCH statement. (See also “simple
condition” and “complex condition.”)

* conditional phrase . A conditional phrase specifies
the action to be taken upon determination of the truth
value of a condition resulting from the execution of a
conditional statement.

* conditional statement . A statement specifying that
the truth value of a condition is to be determined and
that the subsequent action of the object program is
dependent on this truth value.

* conditional variable . A data item one or more values
of which has a condition-name assigned to it.

* condition-name . A user-defined word that assigns a
name to a subset of values that a conditional variable
may assume; or a user-defined word assigned to a
status of an implementor defined switch or device.
When ‘condition-name’ is used in the general formats, it
represents a unique data item reference consisting of a
syntactically correct combination of a ‘condition-name’,
together with qualifiers and subscripts, as required for
uniqueness of reference.

* condition-name condition . The proposition, for
which a truth value can be determined, that the value of
a conditional variable is a member of the set of values
attributed to a condition-name associated with the condi-
tional variable.

* CONFIGURATION SECTION. A section of the ENVI-
RONMENT DIVISION that describes overall specifica-
tions of source and object programs and class
definitions.

CONSOLE. A COBOL environment-name associated
with the operator console.

* contiguous items . Items that are described by con-
secutive entries in the Data Division, and that bear a
definite hierarchic relationship to each other.

copybook . A file or library member containing a
sequence of code that is included in the source program
at compile time using the COPY statement. The file can
be created by the user, supplied by COBOL, or supplied
by another product.

CORBA . The Common Object Request Broker Archi-
tecture established by the Object Management Group.
IBM's Interface Definition Language used to describe the
interface for SOM classes is fully compliant with CORBA
standards.

* counter . A data item used for storing numbers or
number representations in a manner that permits these
numbers to be increased or decreased by the value of
another number, or to be changed or reset to zero or to
an arbitrary positive or negative value.

cross-reference listing . The portion of the compiler
listing that contains information on where files, fields,
and indicators are defined, referenced, and modified in a
program.

 currency sign . The character ‘$’ of the COBOL char-
acter set or that character defined by the CURRENCY
compiler option. If the NOCURRENCY compiler option
is in effect, the currency sign is defined as the character
‘$’.

currency symbol . The character defined by the CUR-
RENCY compiler option or by the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph. If the
NOCURRENCY compiler option is in effect for a COBOL
source program and the CURRENCY SIGN clause is
also not present in the source program, the currency
symbol is identical to the currency sign.

* current record . In file processing, the record that is
available in the record area associated with a file.

* current volume pointer . A conceptual entity that
points to the current volume of a sequential file.

D
* data clause . A clause, appearing in a data
description entry in the DATA DIVISION of a COBOL
program, that provides information describing a particular
attribute of a data item.

* data description entry . An entry in the DATA DIVI-
SION of a COBOL program that is composed of a level-
number followed by a data-name, if required, and then
followed by a set of data clauses, as required.

664 VisualAge COBOL Programming Guide

DATA DIVISION . One of the four main components of
a COBOL program, class definition, or method definition.
The DATA DIVISION describes the data to be processed
by the object program, class, or method: files to be
used and the records contained within them; internal
working-storage records that will be needed; data to be
made available in more than one program in the COBOL
run unit. (Note, the Class DATA DIVISION contains only
the WORKING-STORAGE SECTION.)

* data item . A unit of data (excluding literals) defined
by a COBOL program or by the rules for function evalu-
ation.

* data-name . A user-defined word that names a data
item described in a data description entry. When used
in the general formats, ‘data-name’ represents a word
that must not be reference-modified, subscripted or qual-
ified unless specifically permitted by the rules for the
format.

| date field . Any of the following:

| � A data item whose data description entry includes a
| DATE FORMAT clause.

| � A value returned by one of the following intrinsic
| functions:

| DATE-OF-INTEGER
| DATE-TO-YYYYMMDD
| DATEVAL
| DAY-OF-INTEGER
| DAY-TO-YYYYDDD
| YEAR-TO-YYYY
| YEARWINDOW

| � The conceptual data items DATE, DATE
| YYYYMMDD, DAY, and DAY YYYYDDD in the
| Format 2 ACCEPT statement.

| � The result of certain arithmetic operations.

| The term date field refers to both “expanded date field”
| and “windowed date field.” See also “non-date.”

| date format . The date pattern of a date field, specified
| either:

| � Explicitly, by the DATE FORMAT clause or
| DATEVAL intrinsic function

| or

| � Implicitly, by statements and intrinsic functions that
| return date fields.

DBCS (Double-Byte Character Set) . See “Double-
Byte Character Set (DBCS).”

* debugging line . A debugging line is any line with a
‘D’ in the indicator area of the line.

* debugging section . A section that contains a USE
FOR DEBUGGING statement.

* declarative sentence . A compiler directing sentence
consisting of a single USE statement terminated by the
separator period.

* declaratives . A set of one or more special purpose
sections, written at the beginning of the Procedure Divi-
sion, the first of which is preceded by the key word
DECLARATIVES and the last of which is followed by the
key words END DECLARATIVES. A declarative is com-
posed of a section header, followed by a USE compiler
directing sentence, followed by a set of zero, one, or
more associated paragraphs.

* de-edit . The logical removal of all editing characters
from a numeric edited data item in order to determine
that item's unedited numeric value.

* delimited scope statement . Any statement that
includes its explicit scope terminator.

* delimiter . A character or a sequence of contiguous
characters that identify the end of a string of characters
and separate that string of characters from the following
string of characters. A delimiter is not part of the string
of characters that it delimits.

* descending key . A key upon the values of which
data is ordered starting with the highest value of key
down to the lowest value of key, in accordance with the
rules for comparing data items.

digit . Any of the numerals from 0 through 9. In
COBOL, the term is not used in reference to any other
symbol.

* digit position . The amount of physical storage
required to store a single digit. This amount may vary
depending on the usage specified in the data description
entry that defines the data item.

* direct access . The facility to obtain data from storage
devices or to enter data into a storage device in such a
way that the process depends only on the location of
that data and not on a reference to data previously
accessed.

* division . A collection of zero, one or more sections or
paragraphs, called the division body, that are formed
and combined in accordance with a specific set of rules.

 Glossary 665

Each division consists of the division header and the
related division body. There are four (4) divisions in a
COBOL program: Identification, Environment, Data, and
Procedure.

* division header . A combination of words followed by
a separator period that indicates the beginning of a divi-
sion. The division headers are:

 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 PROCEDURE DIVISION.

DLL . See “dynamic link library.”

do construction . In structured programming, a DO
statement is used to group a number of statements in a
procedure. In COBOL, an in-line PERFORM statement
functions in the same way.

do-until . In structured programming, a do-until loop will
be executed at least once, and until a given condition is
true. In COBOL, a TEST AFTER phrase used with the
PERFORM statement functions in the same way.

do-while . In structured programming, a do-while loop
will be executed if, and while, a given condition is true.
In COBOL, a TEST BEFORE phrase used with the
PERFORM statement functions in the same way.

Double-Byte Character Set (DBCS) . A set of charac-
ters in which each character is represented by two
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require Double-Byte
Character Sets. Because each character requires two
bytes, entering, displaying, and printing DBCS charac-
ters requires hardware and supporting software that are
DBCS-capable.

* dynamic access . An access mode in which specific
logical records can be obtained from or placed into a
mass storage file in a nonsequential manner and
obtained from a file in a sequential manner during the
scope of the same OPEN statement.

dynamic link library . A file containing executable code
and data bound to a program at load time or run time,
rather than during linking. The code and data in a
dynamic link library can be shared by several applica-
tions simultaneously.

Dynamic Storage Area (DSA) . Dynamically acquired
storage composed of a register save area and an area

available for dynamic storage allocation (such as
program variables). DSAs are generally allocated within
STACK segments managed by Language Environment.

E
* EBCDIC (Extended Binary-Coded Decimal Inter-
change Code) . A coded character set consisting of
8-bit coded characters.

EBCDIC character . Any one of the symbols included in
the 8-bit EBCDIC (Extended Binary-Coded-Decimal
Interchange Code) set.

edited data item . A data item that has been modified
by suppressing zeroes and/or inserting editing charac-
ters.

* editing character . A single character or a fixed two-
character combination belonging to the following set:

Character Meaning
 ␣ space
 0 zero
 + plus
 - minus
 CR credit
 DB debit
 Z zero suppress
 * check protect
 $ currency sign

, comma (decimal point)
. period (decimal point)
/ slant (virgule, slash)

element (text element) . One logical unit of a string of
text, such as the description of a single data item or
verb, preceded by a unique code identifying the element
type.

* elementary item . A data item that is described as not
being further logically subdivided.

enclave . When running under the Language Environ-
ment product, an enclave is analogous to a run unit. An
enclave can create other enclaves on OS/390 and CMS
by a LINK, on CMS by CMSCALL, and the use of the
system () function of C.

*end class header . A combination of words, followed
by a separator period, that indicates the end of a
COBOL class definition. The end class header is:

END CLASS class-name.

666 VisualAge COBOL Programming Guide

*end method header . A combination of words, fol-
lowed by a separator period, that indicates the end of a
COBOL method definition. The end method header is:

END METHOD method-name.

* end of Procedure Division . The physical position of
a COBOL source program after which no further proce-
dures appear.

* end program header . A combination of words, fol-
lowed by a separator period, that indicates the end of a
COBOL source program. The end program header is:

END PROGRAM program-name.

* entry . Any descriptive set of consecutive clauses ter-
minated by a separator period and written in the IDEN-
TIFICATION DIVISION, ENVIRONMENT DIVISION, or
DATA DIVISION of a COBOL program.

* environment clause . A clause that appears as part
of an ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION. One of the four main com-
ponent parts of a COBOL program, class definition, or
method definition. The ENVIRONMENT DIVISION
describes the computers upon which the source program
is compiled and those on which the object program is
executed, and provides a linkage between the logical
concept of files and their records, and the physical
aspects of the devices on which files are stored.

environment-name . A name, specified by IBM, that
identifies system logical units, printer and card punch
control characters, report codes, and/or program
switches. When an environment-name is associated
with a mnemonic-name in the ENVIRONMENT DIVI-
SION, the mnemonic-name may then be substituted in
any format in which such substitution is valid.

environment variable . Any of a number of variables
that describe the way an operating system is going to
run and the devices it is going to recognize.

execution time . See “run time.”

execution-time environment . See “run-time environ-
ment.”

| expanded date field . A date field containing an
| expanded (4-digit) year. See also “date field” and
| “expanded year.”

| expanded year . Four digits representing a year,
| including the century (for example, 1998). Appears in
| expanded date fields. Compare with “windowed year.”

* explicit scope terminator . A reserved word that ter-
minates the scope of a particular Procedure Division
statement.

exponent . A number, indicating the power to which
another number (the base) is to be raised. Positive
exponents denote multiplication, negative exponents
denote division, fractional exponents denote a root of a
quantity. In COBOL, an exponential expression is indi-
cated with the symbol ‘**’ followed by the exponent.

* expression . An arithmetic or conditional expression.

* extend mode . The state of a file after execution of an
OPEN statement, with the EXTEND phrase specified for
that file, and before the execution of a CLOSE state-
ment, without the REEL or UNIT phrase for that file.

extensions . Certain COBOL syntax and semantics
supported by IBM compilers in addition to those
described in ANSI Standard.

* external data . The data described in a program as
external data items and external file connectors.

* external data item . A data item which is described as
part of an external record in one or more programs of a
run unit and which itself may be referenced from any
program in which it is described.

* external data record . A logical record which is
described in one or more programs of a run unit and
whose constituent data items may be referenced from
any program in which they are described.

external decimal item . A format for representing
numbers in which the digit is contained in bits 4 through
7 and the sign is contained in bits 0 through 3 of the
rightmost byte. Bits 0 through 3 of all other bytes
contain 1’s (hex F). For example, the decimal value of
+123 is represented as 1111 0001 1111 0010 1111
0011. (Also know as “zoned decimal item.”)

* external file connector . A file connector which is
accessible to one or more object programs in the run
unit.

external floating-point item . A format for representing
numbers in which a real number is represented by a pair
of distinct numerals. In a floating-point representation,
the real number is the product of the fixed-point part (the
first numeral), and a value obtained by raising the
implicit floating-point base to a power denoted by the
exponent (the second numeral).

 Glossary 667

For example, a floating-point representation of the
number 0.0001234 is: 0.1234 -3, where 0.1234 is the
mantissa and -3 is the exponent.

external program . The outermost program. A program
that is not nested.

* external switch . A hardware or software device,
defined and named by the implementor, which is used to
indicate that one of two alternate states exists.

F
* figurative constant . A compiler-generated value ref-
erenced through the use of certain reserved words.

* file . A collection of logical records.

* file attribute conflict condition . An unsuccessful
attempt has been made to execute an input-output oper-
ation on a file and the file attributes, as specified for that
file in the program, do not match the fixed attributes for
that file.

* file clause . A clause that appears as part of any of
the following DATA DIVISION entries: file description
entry (FD entry) and sort-merge file description entry
(SD entry).

* file connector . A storage area which contains infor-
mation about a file and is used as the linkage between a
file-name and a physical file and between a file-name
and its associated record area.

File-Control . The name of an ENVIRONMENT DIVI-
SION paragraph in which the data files for a given
source program are declared.

* file control entry . A SELECT clause and all its sub-
ordinate clauses which declare the relevant physical
attributes of a file.

* file description entry . An entry in the File Section of
the DATA DIVISION that is composed of the level indi-
cator FD, followed by a file-name, and then followed by
a set of file clauses as required.

* file-name . A user-defined word that names a file con-
nector described in a file description entry or a sort-
merge file description entry within the File Section of the
DATA DIVISION.

* file organization . The permanent logical file structure
established at the time that a file is created.

*file position indicator . A conceptual entity that con-
tains the value of the current key within the key of refer-
ence for an indexed file, or the record number of the
current record for a sequential file, or the relative record
number of the current record for a relative file, or indi-
cates that no next logical record exists, or that an
optional input file is not present, or that the at end condi-
tion already exists, or that no valid next record has been
established.

* File Section . The section of the DATA DIVISION that
contains file description entries and sort-merge file
description entries together with their associated record
descriptions.

file system . The collection of files and file management
structures on a physical or logical mass storage device,
such as a diskette or minidisk.

* fixed file attributes . Information about a file which is
established when a file is created and cannot subse-
quently be changed during the existence of the file.
These attributes include the organization of the file
(sequential, relative, or indexed), the prime record key,
the alternate record keys, the code set, the minimum
and maximum record size, the record type (fixed or vari-
able), the collating sequence of the keys for indexed
files, the blocking factor, the padding character, and the
record delimiter.

* fixed length record . A record associated with a file
whose file description or sort-merge description entry
requires that all records contain the same number of
character positions.

fixed-point number . A numeric data item defined with
a PICTURE clause that specifies the location of an
optional sign, the number of digits it contains, and the
location of an optional decimal point. The format may
be either binary, packed decimal, or external decimal.

floating-point number . A numeric data item containing
a fraction and an exponent. Its value is obtained by
multiplying the fraction by the base of the numeric data
item raised to the power specified by the exponent.

* format . A specific arrangement of a set of data.

* function . A temporary data item whose value is
determined at the time the function is referenced during
the execution of a statement.

* function-identifier . A syntactically correct combina-
tion of character-strings and separators that references a
function. The data item represented by a function is

668 VisualAge COBOL Programming Guide

uniquely identified by a function-name with its argu-
ments, if any. A function-identifier may include a
reference-modifier. A function-identifier that references
an alphanumeric function may be specified anywhere in
the general formats that an identifier may be specified,
subject to certain restrictions. A function-identifier that
references an integer or numeric function may be refer-
enced anywhere in the general formats that an arith-
metic expression may be specified.

function-name . A word that names the mechanism
whose invocation, along with required arguments, deter-
mines the value of a function.

G
* global name . A name which is declared in only one
program but which may be referenced from that program
and from any program contained within that program.
Condition-names, data-names, file-names, record-
names, report-names, and some special registers may
be global names.

* group item . A data item that is composed of subordi-
nate data items.

H
header label . (1) A file label or data set label that pre-
cedes the data records on a unit of recording media. (2)
Synonym for beginning-of-file label.

* high order end . The leftmost character of a string of
characters.

I
IBM COBOL extension . Certain COBOL syntax and
semantics supported by IBM compilers in addition to
those described in ANSI Standard.

IDENTIFICATION DIVISION. One of the four main
component parts of a COBOL program, class definition,
or method definition. The IDENTIFICATION DIVISION
identifies the program name, class name, or method
name. The IDENTIFICATION DIVISION may include the
following documentation: author name, installation, or
date.

* identifier . A syntactically correct combination of
character-strings and separators that names a data item.
When referencing a data item that is not a function, an

identifier consists of a data-name, together with its qual-
ifiers, subscripts, and reference-modifier, as required for
uniqueness of reference. When referencing a data item
which is a function, a function-identifier is used.

IGZCBSN. The COBOL/370 Release 1 bootstrap
routine. It must be link-edited with any module that con-
tains a COBOL/370 Release 1 program.

IGZCBSO. The COBOL for MVS & VM Release 2 and
IBM COBOL for OS/390 & VM bootstrap routine. It must
be link-edited with any module that contains a COBOL
for MVS & VM Release 2 or IBM COBOL for OS/390 &
VM program.

* imperative statement . A statement that either begins
with an imperative verb and specifies an unconditional
action to be taken or is a conditional statement that is
delimited by its explicit scope terminator (delimited scope
statement). An imperative statement may consist of a
sequence of imperative statements.

* implicit scope terminator . A separator period which
terminates the scope of any preceding unterminated
statement, or a phrase of a statement which by its
occurrence indicates the end of the scope of any state-
ment contained within the preceding phrase.

* index . A computer storage area or register, the
content of which represents the identification of a partic-
ular element in a table.

* index data item . A data item in which the values
associated with an index-name can be stored in a form
specified by the implementor.

indexed data-name . An identifier that is composed of a
data-name, followed by one or more index-names
enclosed in parentheses.

* indexed file . A file with indexed organization.

* indexed organization . The permanent logical file
structure in which each record is identified by the value
of one or more keys within that record.

indexing . Synonymous with subscripting using index-
names.

* index-name . A user-defined word that names an
index associated with a specific table.

* inheritance (for classes) . A mechanism for using the
implementation of one or more classes as the basis for
another class. A sub-class inherits from one or more

 Glossary 669

super-classes. By definition the inheriting class con-
forms to the inherited classes.

* initial program . A program that is placed into an
initial state every time the program is called in a run unit.

* initial state . The state of a program when it is first
called in a run unit.

inline . In a program, instructions that are executed
sequentially, without branching to routines, subroutines,
or other programs.

* input file . A file that is opened in the INPUT mode.

* input mode . The state of a file after execution of an
OPEN statement, with the INPUT phrase specified, for
that file and before the execution of a CLOSE statement,
without the REEL or UNIT phrase for that file.

* input-output file . A file that is opened in the I-O
mode.

* INPUT-OUTPUT SECTION. The section of the ENVI-
RONMENT DIVISION that names the files and the
external media required by an object program or method
and that provides information required for transmission
and handling of data during execution of the object
program or method definition.

* Input-Output statement . A statement that causes
files to be processed by performing operations upon indi-
vidual records or upon the file as a unit. The input-
output statements are: ACCEPT (with the identifier
phrase), CLOSE, DELETE, DISPLAY, OPEN, READ,
REWRITE, SET (with the TO ON or TO OFF phrase),
START, and WRITE.

* input procedure . A set of statements, to which
control is given during the execution of a SORT state-
ment, for the purpose of controlling the release of speci-
fied records to be sorted.

instance data . Data defining the state of an object.
The instance data introduced by a class is defined in the
WORKING-STORAGE SECTION of the DATA DIVISION
of the class definition. The state of an object also
includes the state of the instance variables introduced by
base classes that are inherited by the current class. A
separate copy of the instance data is created for each
object instance.

* integer . (1) A numeric literal that does not include
any digit positions to the right of the decimal point.

(2) A numeric data item defined in the DATA DIVISION
that does not include any digit positions to the right of
the decimal point.

(3) A numeric function whose definition provides that all
digits to the right of the decimal point are zero in the
returned value for any possible evaluation of the func-
tion.

integer function . A function whose category is numeric
and whose definition does not include any digit positions
to the right of the decimal point.

interface . The information that a client must know to
use a class—the names of its attributes and the signa-
tures of its methods. With direct-to-SOM compilers such
as COBOL, the interface to a class may be defined by
native language syntax for class definitions. Classes
implemented in other languages might have their inter-
faces defined directly in SOM Interface Definition Lan-
guage (IDL). The COBOL compiler has a compiler
option, IDLGEN, to automatically generate IDL for a
COBOL class.

Interface Definition Language (IDL) . The formal lan-
guage (independent of any programming language) by
which the interface for a class of objects is defined in a
IDL file, which the SOM compiler then interprets to
create an implementation template file and binding files.
SOM's Interface Definition Language is fully compliant
with standards established by the Object Management
Group's Common Object Request Broker Architecture
(CORBA).

interlanguage communication (ILC) . The ability of
routines written in different programming languages to
communicate. ILC support allows the application writer
to readily build applications from component routines
written in a variety of languages.

intermediate result . An intermediate field containing
the results of a succession of arithmetic operations.

* internal data . The data described in a program
excluding all external data items and external file con-
nectors. Items described in the LINKAGE SECTION of
a program are treated as internal data.

* internal data item . A data item which is described in
one program in a run unit. An internal data item may
have a global name.

internal decimal item . A format in which each byte in
a field except the rightmost byte represents two numeric
digits. The rightmost byte contains one digit and the
sign. For example, the decimal value +123 is repres-

670 VisualAge COBOL Programming Guide

ented as 0001 0010 0011 1111. (Also known as packed
decimal.)

* internal file connector . A file connector which is
accessible to only one object program in the run unit.

* intra-record data structure . The entire collection of
groups and elementary data items from a logical record
which is defined by a contiguous subset of the data
description entries which describe that record. These
data description entries include all entries whose level-
number is greater than the level-number of the first data
description entry describing the intra-record data struc-
ture.

intrinsic function . A pre-defined function, such as a
commonly used arithmetic function, called by a built-in
function reference.

* invalid key condition . A condition, at object time,
caused when a specific value of the key associated with
an indexed or relative file is determined to be invalid.

* I-O-CONTROL. The name of an ENVIRONMENT
DIVISION paragraph in which object program require-
ments for rerun points, sharing of same areas by several
data files, and multiple file storage on a single input-
output device are specified.

* I-O-CONTROL entry . An entry in the I-O-CONTROL
paragraph of the ENVIRONMENT DIVISION which con-
tains clauses that provide information required for the
transmission and handling of data on named files during
the execution of a program.

* I-O-Mode . The state of a file after execution of an
OPEN statement, with the I-O phrase specified, for that
file and before the execution of a CLOSE statement
without the REEL or UNIT phase for that file.

* I-O status . A conceptual entity which contains the
two-character value indicating the resulting status of an
input-output operation. This value is made available to
the program through the use of the FILE STATUS
clause in the file control entry for the file.

| ISPF. Interactive System Productivity Facility. An IBM
| software product that provides a menu-driven interface
| to the TSO or VM user. Includes library utilities, a pow-
| erful editor, and dialog management.

iteration structure . A program processing logic in
which a series of statements is repeated while a condi-
tion is true or until a condition is true.

K
K. When referring to storage capacity, two to the tenth
power; 1024 in decimal notation.

* key . A data item that identifies the location of a
record, or a set of data items which serve to identify the
ordering of data.

* key of reference . The key, either prime or alternate,
currently being used to access records within an indexed
file.

* key word . A reserved word or function-name whose
presence is required when the format in which the word
appears is used in a source program.

kilobyte (KB) . One kilobyte equals 1024 bytes.

L
* language-name . A system-name that specifies a par-
ticular programming language.

Language Environment-conforming . A characteristic
of compiler products (COBOL for OS/390 & VM, COBOL
for MVS & VM, COBOL/370, AD/Cycle C/370, C/C++ for
MVS and VM, PL/I for MVS and VM) that produce object
code conforming to the Language Environment format.

last-used state . A program is in last-used state if its
internal values remain the same as when the program
was exited (are not reset to their initial values).

* letter . A character belonging to one of the following
two sets:

1. Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L,
M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

2. Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n,
o, p, q, r, s, t, u, v, w, x, y, z

* level indicator . Two alphabetic characters that iden-
tify a specific type of file or a position in a hierarchy.
The level indicators in the DATA DIVISION are: CD, FD,
and SD.

* level-number . A user-defined word, expressed as a
two digit number, which indicates the hierarchical posi-
tion of a data item or the special properties of a data
description entry. Level-numbers in the range from 1
through 49 indicate the position of a data item in the
hierarchical structure of a logical record. Level-numbers

 Glossary 671

in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit.
Level-numbers 66, 77 and 88 identify special properties
of a data description entry.

* library-name . A user-defined word that names a
COBOL library that is to be used by the compiler for a
given source program compilation.

* library text . A sequence of text words, comment
lines, the separator space, or the separator pseudo-text
delimiter in a COBOL library.

LILIAN DATE . The number of days since the beginning
of the Gregorian calendar. Day one is Friday, October
15, 1582.

* LINAGE-COUNTER . A special register whose value
points to the current position within the page body.

LINKAGE SECTION . The section in the DATA DIVI-
SION of the called program that describes data items
available from the calling program. These data items
may be referred to by both the calling and called
program.

literal . A character-string whose value is specified
either by the ordered set of characters comprising the
string, or by the use of a figurative constant.

little-endian . Default format used by the PC to store
binary data. In this format, the most significant digit is
on the highest address. Compare with “big-endian.”

locale . A set of attributes for a program execution envi-
ronment indicating culturally sensitive considerations,
such as: character code page, collating sequence,
date/time format, monetary value representation,
numeric value representation, or language.

* LOCAL-STORAGE SECTION . The section of the
DATA DIVISION that defines storage that is allocated
and freed on a per-invocation basis, depending on the
value assigned in their VALUE clauses.

* logical operator . One of the reserved words AND,
OR, or NOT. In the formation of a condition, either
AND, or OR, or both can be used as logical connectives.
NOT can be used for logical negation.

* logical record . The most inclusive data item. The
level-number for a record is 01. A record may be either
an elementary item or a group of items. The term is
synonymous with record.

* low order end . The rightmost character of a string of
characters.

M
main program . In a hierarchy of programs and subrou-
tines, the first program to receive control when the pro-
grams are run.

* mass storage . A storage medium in which data may
be organized and maintained in both a sequential and
nonsequential manner.

* mass storage device . A device having a large
storage capacity; for example, magnetic disk, magnetic
drum.

* mass storage file . A collection of records that is
assigned to a mass storage medium.

* megabyte (M) . One megabyte equals 1,048,576
bytes.

* merge file . A collection of records to be merged by a
MERGE statement. The merge file is created and can
be used only by the merge function.

metaclass . A SOM class whose instances are SOM
class-objects. The methods defined in metaclasses are
executed without requiring any object instances of the
class to exist, and are frequently used to create
instances of the class.

method . Procedural code that defines one of the oper-
ations supported by an object, and that is executed by
an INVOKE statement on that object.

* Method Definition . The COBOL source unit that
defines a method.

* method identification entry . An entry in the
METHOD-ID paragraph of the IDENTIFICATION DIVI-
SION which contains clauses that specify the method-
name and assign selected attributes to the method
definition.

* method-name . A user-defined word that identifies a
method.

* mnemonic-name . A user-defined word that is associ-
ated in the ENVIRONMENT DIVISION with a specified
implementor-name.

| MLE. See “millennium language extensions.”

672 VisualAge COBOL Programming Guide

| millennium language extensions . IBM extension to
| COBOL, enabling compiler-assisted date processing for
| dates containing 2-digit and 4-digit years. Language ele-
| ments in support of the millennium language extensions
| are:

| � DATE FORMAT clause in data description entries

| � Intrinsic functions:

| DATEVAL
| UNDATE
| YEARWINDOW

multitasking . Mode of operation that provides for the
concurrent, or interleaved, execution of two or more
tasks. When running under the Language Environment
product, multitasking is synonymous with multithreading.

N
name . A word composed of not more than 30 charac-
ters that defines a COBOL operand.

* native character set . The implementor-defined char-
acter set associated with the computer specified in the
OBJECT-COMPUTER paragraph.

* native collating sequence . The implementor-defined
collating sequence associated with the computer speci-
fied in the OBJECT-COMPUTER paragraph.

* negated combined condition . The ‘NOT’ logical
operator immediately followed by a parenthesized com-
bined condition.

* negated simple condition . The ‘NOT’ logical oper-
ator immediately followed by a simple condition.

nested program . A program that is directly contained
within another program.

* next executable sentence . The next sentence to
which control will be transferred after execution of the
current statement is complete.

* next executable statement . The next statement to
which control will be transferred after execution of the
current statement is complete.

* next record . The record that logically follows the
current record of a file.

* noncontiguous items . Elementary data items in the
WORKING-STORAGE and LINKAGE SECTIONs that
bear no hierarchic relationship to other data items.

| non-date . Any of the following:

| � A data item whose data description entry does not
| include the DATE FORMAT clause

| � A literal

| � A reference-modified date field

| � The result of certain arithmetic operations that may
| include date field operands; for example, the differ-
| ence between two compatible dates.

| The value of a non-date may or may not represent a
| date.

* non-numeric item . A data item whose description
permits its content to be composed of any combination
of characters taken from the computer’s character set.
Certain categories of non-numeric items may be formed
from more restricted character sets.

* non-numeric literal . A literal bounded by quotation
marks. The string of characters may include any char-
acter in the computer’s character set.

null . Figurative constant used to assign the value of an
invalid address to pointer data items. NULLS can be
used wherever NULL can be used.

* numeric character . A character that belongs to the
following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric-edited item . A numeric item that is in such a
form that it may be used in printed output. It may
consist of external decimal digits from 0 through 9, the
decimal point, commas, the dollar sign, editing sign
control symbols, plus other editing symbols.

* numeric function . A function whose class and cate-
gory are numeric but which for some possible evaluation
does not satisfy the requirements of integer functions.

* numeric item . A data item whose description restricts
its content to a value represented by characters chosen
from the digits from ‘0’ through ‘9’; if signed, the item
may also contain a ‘+’, ‘-’, or other representation of an
operational sign.

* numeric literal . A literal composed of one or more
numeric characters that may contain either a decimal
point, or an algebraic sign, or both. The decimal point
must not be the rightmost character. The algebraic sign,
if present, must be the leftmost character.

 Glossary 673

O
object . An entity that has state (its data values) and
operations (its methods). An object is a way to
encapsulate state and behavior.

object code . Output from a compiler or assembler that
is itself executable machine code or is suitable for proc-
essing to produce executable machine code.

* OBJECT-COMPUTER . The name of an ENVIRON-
MENT DIVISION paragraph in which the computer envi-
ronment, within which the object program is executed, is
described.

* object computer entry . An entry in the
OBJECT-COMPUTER paragraph of the ENVIRONMENT
DIVISION which contains clauses that describe the com-
puter environment in which the object program is to be
executed.

object deck . A portion of an object program suitable as
input to a linkage editor. Synonymous with object
module and text deck.

object module . Synonym for object deck or text deck.

* object of entry . A set of operands and reserved
words, within a DATA DIVISION entry of a COBOL
program, that immediately follows the subject of the
entry.

* object program . A set or group of executable
machine language instructions and other material
designed to interact with data to provide problem sol-
utions. In this context, an object program is generally
the machine language result of the operation of a
COBOL compiler on a source program. Where there is
no danger of ambiguity, the word ‘program’ alone may
be used in place of the phrase ‘object program.’

* object time . The time at which an object program is
executed. The term is synonymous with execution time.

* obsolete element . A COBOL language element in
Standard COBOL that is to be deleted from the next
revision of Standard COBOL.

ODBC. Open Database Connectivity that provides you
access to data from a variety of databases and file
systems.

ODO object . In the example below,

WORKING-STORAGE SECTION

ð1 TABLE-1.

 ð5 X PICS9.

ð5 Y OCCURS 3 TIMES

DEPENDING ON X PIC X.

X is the object of the OCCURS DEPENDING ON clause
(ODO object). The value of the ODO object determines
how many of the ODO subject appear in the table.

ODO subject . In the example above, Y is the subject of
the OCCURS DEPENDING ON clause (ODO subject).
The number of Y ODO subjects that appear in the table
depends on the value of X.

* open mode . The state of a file after execution of an
OPEN statement for that file and before the execution of
a CLOSE statement without the REEL or UNIT phrase
for that file. The particular open mode is specified in the
OPEN statement as either INPUT, OUTPUT, I-O or
EXTEND.

* operand . Whereas the general definition of operand
is “that component which is operated upon,” for the pur-
poses of this document, any lowercase word (or words)
that appears in a statement or entry format may be con-
sidered to be an operand and, as such, is an implied ref-
erence to the data indicated by the operand.

* operational sign . An algebraic sign, associated with
a numeric data item or a numeric literal, to indicate
whether its value is positive or negative.

* optional file . A file which is declared as being not
necessarily present each time the object program is exe-
cuted. The object program causes an interrogation for
the presence or absence of the file.

* optional word . A reserved word that is included in a
specific format only to improve the readability of the lan-
guage and whose presence is optional to the user when
the format in which the word appears is used in a source
program.

OS/2 (Operating System/2*) . A multi-tasking operating
system for the IBM Personal Computer family that allows
you to run both DOS mode and OS/2 mode programs.

* output file . A file that is opened in either the
OUTPUT mode or EXTEND mode.

* output mode . The state of a file after execution of an
OPEN statement, with the OUTPUT or EXTEND phrase
specified, for that file and before the execution of a
CLOSE statement without the REEL or UNIT phrase for
that file.

674 VisualAge COBOL Programming Guide

* output procedure . A set of statements to which
control is given during execution of a SORT statement
after the sort function is completed, or during execution
of a MERGE statement after the merge function reaches
a point at which it can select the next record in merged
order when requested.

overflow condition . A condition that occurs when a
portion of the result of an operation exceeds the capacity
of the intended unit of storage.

P
packed decimal item . See “internal decimal item.”

* padding character . An alphanumeric character used
to fill the unused character positions in a physical record.

page . A vertical division of output data representing a
physical separation of such data, the separation being
based on internal logical requirements and/or external
characteristics of the output medium.

* page body . That part of the logical page in which
lines can be written and/or spaced.

* paragraph . In the Procedure Division, a paragraph-
name followed by a separator period and by zero, one,
or more sentences. In the IDENTIFICATION and ENVI-
RONMENT DIVISIONs, a paragraph header followed by
zero, one, or more entries.

* paragraph header . A reserved word, followed by the
separator period, that indicates the beginning of a para-
graph in the IDENTIFICATION and ENVIRONMENT
DIVISIONs. The permissible paragraph headers in the
IDENTIFICATION DIVISION are:

PROGRAM-ID. (Program IDENTIFICATION DIVISION)

CLASS-ID. (Class IDENTIFICATION DIVISION)

METHOD-ID. (Method IDENTIFICATION DIVISION)

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

The permissible paragraph headers in the ENVIRON-
MENT DIVISION are:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

REPOSITORY. (Program or Class CONFIGURATION SECTION)

FILE-CONTROL.

I-O-CONTROL.

* paragraph-name . A user-defined word that identifies
and begins a paragraph in the Procedure Division.

parameter . Parameters are used to pass data values
between calling and called programs.

password . A unique string of characters that a
program, computer operator, or user must supply to
meet security requirements before gaining access to
data.

* phrase . A phrase is an ordered set of one or more
consecutive COBOL character-strings that form a portion
of a COBOL procedural statement or of a COBOL
clause.

* physical record . See “block.”

pointer data item . A data item in which address values
can be stored. Data items are explicitly defined as
pointers with the USAGE IS POINTER clause.
ADDRESS OF special registers are implicitly defined as
pointer data items. Pointer data items can be compared
for equality or moved to other pointer data items.

portability . The ability to transfer an application
program from one application platform to another with
relatively few changes to the source program.

preloaded . In COBOL this refers to COBOL programs
that remain resident in storage under IMS instead of
being loaded each time they are called.

* prime record key . A key whose contents uniquely
identify a record within an indexed file.

* priority-number . A user-defined word which classifies
sections in the Procedure Division for purposes of seg-
mentation. Segment-numbers may contain only the
characters '0','1', ... , '9'. A segment-number may be
expressed either as a one- or two-digit number.

* procedure . A paragraph or group of logically succes-
sive paragraphs, or a section or group of logically suc-
cessive sections, within the Procedure Division.

* procedure branching statement . A statement that
causes the explicit transfer of control to a statement
other than the next executable statement in the
sequence in which the statements are written in the
source program. The procedure branching statements
are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO,
MERGE, (with the OUTPUT PROCEDURE phrase),
PERFORM and SORT (with the INPUT PROCEDURE or
OUTPUT PROCEDURE phrase).

 Glossary 675

Procedure Division . One of the four main component
parts of a COBOL program, class definition, or method
definition. The Procedure Division contains instructions
for solving a problem. The Program and Method Proce-
dure Divisions may contain imperative statements, condi-
tional statements, compiler directing statements,
paragraphs, procedures, and sections. The Class Pro-
cedure Division contains only method definitions.

procedure integration . One of the functions of the
COBOL optimizer is to simplify calls to performed proce-
dures or contained programs.

PERFORM procedure integration is the process whereby
a PERFORM statement is replaced by its performed pro-
cedures. Contained program procedure integration is
the process where a CALL to a contained program is
replaced by the program code.

* procedure-name . A user-defined word that is used to
name a paragraph or section in the Procedure Division.
It consists of a paragraph-name (which may be qualified)
or a section-name.

procedure-pointer data item . A data item in which a
pointer to an entry point can be stored. A data item
defined with the USAGE IS PROCEDURE-POINTER
clause contains the address of a procedure entry point.

* program identification entry . An entry in the
PROGRAM-ID paragraph of the IDENTIFICATION DIVI-
SION which contains clauses that specify the program-
name and assign selected program attributes to the
program.

* program-name . In the IDENTIFICATION DIVISION
and the end program header, a user-defined word that
identifies a COBOL source program.

* pseudo-text . A sequence of text words, comment
lines, or the separator space in a source program or
COBOL library bounded by, but not including, pseudo-
text delimiters.

* pseudo-text delimiter . Two contiguous equal sign
characters (==) used to delimit pseudo-text.

* punctuation character . A character that belongs to
the following set:

Character Meaning
 , comma
 ; semicolon
 : colon
 . period (full stop)
 " quotation mark

 (left parenthesis
) right parenthesis
 ␣ space
 = equal sign

Q
QSAM (Queued Sequential Access Method) . An
extended version of the basic sequential access method
(BSAM). When this method is used, a queue is formed
of input data blocks that are awaiting processing or of
output data blocks that have been processed and are
awaiting transfer to auxiliary storage or to an output
device.

* qualified data-name . An identifier that is composed
of a data-name followed by one or more sets of either of
the connectives OF and IN followed by a data-name
qualifier.

* qualifier .

1. A data-name or a name associated with a level indi-
cator which is used in a reference either together
with another data-name which is the name of an
item that is subordinate to the qualifier or together
with a condition-name.

2. A section-name that is used in a reference together
with a paragraph-name specified in that section.

3. A library-name that is used in a reference together
with a text-name associated with that library.

R
* random access . An access mode in which the
program-specified value of a key data item identifies the
logical record that is obtained from, deleted from, or
placed into a relative or indexed file.

* record . See “logical record.”

* record area . A storage area allocated for the purpose
of processing the record described in a record
description entry in the File Section of the DATA DIVI-
SION. In the File Section, the current number of char-
acter positions in the record area is determined by the
explicit or implicit RECORD clause.

* record description . See “record description entry.”

* record description entry . The total set of data
description entries associated with a particular record.
The term is synonymous with record description.

676 VisualAge COBOL Programming Guide

recording mode . The format of the logical records in a
file. Recording mode can be F (fixed-length), V
(variable-length), S (spanned), or U (undefined).

record key . A key whose contents identify a record
within an indexed file.

* record-name . A user-defined word that names a
record described in a record description entry in the
DATA DIVISION of a COBOL program.

* record number . The ordinal number of a record in
the file whose organization is sequential.

recursion . A program calling itself or being directly or
indirectly called by a one of its called programs.

recursively capable . A program is recursively capable
(can be called recursively) if the RECURSIVE attribute is
on the PROGRAM-ID statement.

reel . A discrete portion of a storage medium, the
dimensions of which are determined by each
implementor that contains part of a file, all of a file, or
any number of files. The term is synonymous with unit
and volume.

reentrant . The attribute of a program or routine that
allows more than one user to share a single copy of a
load module.

* reference format . A format that provides a standard
method for describing COBOL source programs.

reference modification . A method of defining a new
alphanumeric data item by specifying the leftmost char-
acter and length relative to the leftmost character of
another alphanumeric data item.

* reference-modifier . A syntactically correct combina-
tion of character-strings and separators that defines a
unique data item. It includes a delimiting left parenthesis
separator, the leftmost character position, a colon sepa-
rator, optionally a length, and a delimiting right paren-
thesis separator.

* relation . See “relational operator” or “relation condi-
tion.”

* relational operator . A reserved word, a relation char-
acter, a group of consecutive reserved words, or a group
of consecutive reserved words and relation characters
used in the construction of a relation condition. The per-
missible operators and their meanings are:

Operator Meaning
IS GREATER THAN Greater than
IS > Greater than
IS NOT GREATER THAN Not greater than
IS NOT > Not greater than

IS LESS THAN Less than
IS < Less than
IS NOT LESS THAN Not less than
IS NOT < Not less than

IS EQUAL TO Equal to
IS = Equal to
IS NOT EQUAL TO Not equal to
IS NOT = Not equal to

IS GREATER THAN OR EQUAL TO

Greater than or equal to
IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO

Less than or equal to
IS <= Less than or equal to

* relation character . A character that belongs to the
following set:

Character Meaning

 > greater than
 < less than
 = equal to

* relation condition . The proposition, for which a truth
value can be determined, that the value of an arithmetic
expression, data item, non-numeric literal, or index-name
has a specific relationship to the value of another arith-
metic expression, data item, non-numeric literal, or index
name. (See also “relational operator.”)

* relative file . A file with relative organization.

* relative key . A key whose contents identify a logical
record in a relative file.

* relative organization . The permanent logical file
structure in which each record is uniquely identified by
an integer value greater than zero, which specifies the
record’s logical ordinal position in the file.

* relative record number . The ordinal number of a
record in a file whose organization is relative. This
number is treated as a numeric literal which is an
integer.

 Glossary 677

* reserved word . A COBOL word specified in the list of
words that may be used in a COBOL source program,
but that must not appear in the program as user-defined
words or system-names.

* resource . A facility or service, controlled by the oper-
ating system, that can be used by an executing program.

* resultant identifier . A user-defined data item that is
to contain the result of an arithmetic operation.

reusable environment . A reusable environment is
when you establish an assembler program as the main
program by using either ILBOSTP0 programs, IGZERRE
programs, or the RTEREUS run-time option.

routine . A set of statements in a COBOL program that
causes the computer to perform an operation or series
of related operations. In Language Environment, refers
to either a procedure, function, or subroutine.

* routine-name . A user-defined word that identifies a
procedure written in a language other than COBOL.

* run time . The time at which an object program is
executed. The term is synonymous with object time.

run-time environment . The environment in which a
COBOL program executes.

* run unit . A stand-alone object program, or several
object programs, that interact via COBOL CALL state-
ments, which function at run time as an entity.

S
SBCS (Single Byte Character Set) . See “Single Byte
Character Set (SBCS).”

scope terminator . A COBOL reserved word that marks
the end of certain Procedure Division statements. It may
be either explicit (END-ADD, for example) or implicit
(separator period).

* section . A set of zero, one or more paragraphs or
entities, called a section body, the first of which is pre-
ceded by a section header. Each section consists of the
section header and the related section body.

* section header . A combination of words followed by
a separator period that indicates the beginning of a
section in the Environment, Data, and Procedure Divi-
sions. In the ENVIRONMENT and DATA DIVISIONs, a
section header is composed of reserved words followed

by a separator period. The permissible section headers
in the ENVIRONMENT DIVISION are:

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

The permissible section headers in the DATA DIVISION
are:

FILE SECTION.

WORKING-STORAGE SECTION.

LOCAL-STORAGE SECTION.

LINKAGE SECTION.

In the Procedure Division, a section header is composed
of a section-name, followed by the reserved word
SECTION, followed by a separator period.

* section-name . A user-defined word that names a
section in the Procedure Division.

selection structure . A program processing logic in
which one or another series of statements is executed,
depending on whether a condition is true or false.

* sentence . A sequence of one or more statements,
the last of which is terminated by a separator period.

* separately compiled program . A program which,
together with its contained programs, is compiled sepa-
rately from all other programs.

* separator . A character or two contiguous characters
used to delimit character-strings.

* separator comma . A comma (,) followed by a space
used to delimit character-strings.

* separator period . A period (.) followed by a space
used to delimit character-strings.

* separator semicolon . A semicolon (;) followed by a
space used to delimit character-strings.

sequence structure . A program processing logic in
which a series of statements is executed in sequential
order.

* sequential access . An access mode in which logical
records are obtained from or placed into a file in a con-
secutive predecessor-to-successor logical record
sequence determined by the order of records in the file.

* sequential file . A file with sequential organization.

* sequential organization . The permanent logical file
structure in which a record is identified by a

678 VisualAge COBOL Programming Guide

predecessor-successor relationship established when the
record is placed into the file.

serial search . A search in which the members of a set
are consecutively examined, beginning with the first
member and ending with the last.

* 77-level-description-entry . A data description entry
that describes a noncontiguous data item with the level-
number 77.

* sign condition . The proposition, for which a truth
value can be determined, that the algebraic value of a
data item or an arithmetic expression is either less than,
greater than, or equal to zero.

* simple condition . Any single condition chosen from
the set:

 Relation condition
 Class condition
 Condition-name condition
 Switch-status condition
 Sign condition

Single Byte Character Set (SBCS) . A set of charac-
ters in which each character is represented by a single
byte. See also "EBCDIC (Extended Binary-Coded
Decimal Interchange Code)."

slack bytes . Bytes inserted between data items or
records to ensure correct alignment of some numeric
items. Slack bytes contain no meaningful data. In some
cases, they are inserted by the compiler; in others, it is
the responsibility of the programmer to insert them. The
SYNCHRONIZED clause instructs the compiler to insert
slack bytes when they are needed for proper alignment.
Slack bytes between records are inserted by the pro-
grammer.

SOM. See “System Object Model”

* sort file . A collection of records to be sorted by a
SORT statement. The sort file is created and can be
used by the sort function only.

* sort-merge file description entry . An entry in the
File Section of the DATA DIVISION that is composed of
the level indicator SD, followed by a file-name, and then
followed by a set of file clauses as required.

* SOURCE-COMPUTER. The name of an ENVIRON-
MENT DIVISION paragraph in which the computer envi-
ronment, within which the source program is compiled, is
described.

* source computer entry . An entry in the
SOURCE-COMPUTER paragraph of the ENVIRON-
MENT DIVISION which contains clauses that describe
the computer environment in which the source program
is to be compiled.

* source item . An identifier designated by a SOURCE
clause that provides the value of a printable item.

source program . Although it is recognized that a
source program may be represented by other forms and
symbols, in this document it always refers to a syntac-
tically correct set of COBOL statements. A COBOL
source program commences with the IDENTIFICATION
DIVISION or a COPY statement. A COBOL source
program is terminated by the end program header, if
specified, or by the absence of additional source
program lines.

* special character . A character that belongs to the
following set:

Character Meaning

 + plus sign
- minus sign (hyphen)

 * asterisk
/ slant (virgule, slash)

 = equal sign
 $ currency sign

, comma (decimal point)
 ; semicolon

. period (decimal point, full stop)
 " quotation mark
 (left parenthesis
) right parenthesis
 > greater than symbol
 < less than symbol
 : colon

* special-character word . A reserved word that is an
arithmetic operator or a relation character.

SPECIAL-NAMES . The name of an ENVIRONMENT
DIVISION paragraph in which environment-names are
related to user-specified mnemonic-names.

* special names entry . An entry in the
SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION which provides means for specifying the cur-
rency sign; choosing the decimal point; specifying sym-
bolic characters; relating implementor-names to
user-specified mnemonic-names; relating alphabet-
names to character sets or collating sequences; and
relating class-names to sets of characters.

 Glossary 679

* special registers . Certain compiler generated storage
areas whose primary use is to store information
produced in conjunction with the use of a specific
COBOL feature.

* standard data format . The concept used in
describing the characteristics of data in a COBOL DATA
DIVISION under which the characteristics or properties
of the data are expressed in a form oriented to the
appearance of the data on a printed page of infinite
length and breadth, rather than a form oriented to the
manner in which the data is stored internally in the com-
puter, or on a particular external medium.

* statement . A syntactically valid combination of words,
literals, and separators, beginning with a verb, written in
a COBOL source program.

STL. Standard Language file system: native workstation
and PC file system for COBOL and PL/I. Supports
sequential, relative, and indexed files, including the full
ANSI 85 COBOL standard I/O language and all of the
extensions described in IBM COBOL Language Refer-
ence, unless exceptions are explicitly noted.

structured programming . A technique for organizing
and coding a computer program in which the program
comprises a hierarchy of segments, each segment
having a single entry point and a single exit point.
Control is passed downward through the structure
without unconditional branches to higher levels of the
hierarchy.

* sub-class . A class that inherits from another class.
When two classes in an inheritance relationship are con-
sidered together, the sub-class is the inheritor or inher-
iting class; the super-class is the inheritee or inherited
class.

* subject of entry . An operand or reserved word that
appears immediately following the level indicator or the
level-number in a DATA DIVISION entry.

* subprogram . See “called program.”

* subscript . An occurrence number represented by
either an integer, a data-name optionally followed by an
integer with the operator + or -, or an index-name
optionally followed by an integer with the operator + or -,
that identifies a particular element in a table. A subscript
may be the word ALL when the subscripted identifier is
used as a function argument for a function allowing a
variable number of arguments.

* subscripted data-name . An identifier that is com-
posed of a data-name followed by one or more sub-
scripts enclosed in parentheses.

* super-class . A class that is inherited by another
class. See also sub-class.

switch-status condition . The proposition, for which a
truth value can be determined, that an UPSI switch,
capable of being set to an ‘on’ or ‘off’ status, has been
set to a specific status.

* symbolic-character . A user-defined word that speci-
fies a user-defined figurative constant.

syntax . (1) The relationship among characters or
groups of characters, independent of their meanings or
the manner of their interpretation and use. (2) The
structure of expressions in a language. (3) The rules
governing the structure of a language. (4) The relation-
ship among symbols. (5) The rules for the construction
of a statement.

* system-name . A COBOL word that is used to com-
municate with the operating environment.

System Object Model (SOM) . IBM's object-oriented
programming technology for building, packaging, and
manipulating class libraries. SOM conforms to the
Object Management Group's (OMG) Common Object
Request Broker Architecture (CORBA) standards.

T
* table . A set of logically consecutive items of data that
are defined in the DATA DIVISION by means of the
OCCURS clause.

* table element . A data item that belongs to the set of
repeated items comprising a table.

text deck . Synonym for object deck or object module.

* text-name . A user-defined word that identifies library
text.

* text word . A character or a sequence of contiguous
characters between margin A and margin R in a COBOL
library, source program, or in pseudo-text which is:

� A separator, except for: space; a pseudo-text delim-
iter; and the opening and closing delimiters for non-
numeric literals. The right parenthesis and left
parenthesis characters, regardless of context within

680 VisualAge COBOL Programming Guide

the library, source program, or pseudo-text, are
always considered text words.

� A literal including, in the case of non-numeric
literals, the opening quotation mark and the closing
quotation mark that bound the literal.

� Any other sequence of contiguous COBOL charac-
ters except comment lines and the word ‘COPY’
bounded by separators that are neither a separator
nor a literal.

top-down design . The design of a computer program
using a hierarchic structure in which related functions
are performed at each level of the structure.

top-down development . See “structured
programming.”

trailer-label . (1) A file or data set label that follows the
data records on a unit of recording medium. (2)
Synonym for end-of-file label.

* truth value . The representation of the result of the
evaluation of a condition in terms of one of two values:
true or false.

U
* unary operator . A plus (+) or a minus (-) sign, that
precedes a variable or a left parenthesis in an arithmetic
expression and that has the effect of multiplying the
expression by +1 or -1, respectively.

unit . A module of direct access, the dimensions of
which are determined by IBM.

universal object reference . A data-name that can
refer to an object of any class.

* unsuccessful execution . The attempted execution of
a statement that does not result in the execution of all
the operations specified by that statement. The unsuc-
cessful execution of a statement does not affect any
data referenced by that statement, but may affect status
indicators.

UPSI switch . A program switch that performs the func-
tions of a hardware switch. Eight are provided: UPSI-0
through UPSI-7.

* user-defined word . A COBOL word that must be
supplied by the user to satisfy the format of a clause or
statement.

V
* variable . A data item whose value may be changed
by execution of the object program. A variable used in
an arithmetic expression must be a numeric elementary
item.

* variable length record . A record associated with a
file whose file description or sort-merge description entry
permits records to contain a varying number of character
positions.

* variable occurrence data item . A variable occur-
rence data item is a table element which is repeated a
variable number of times. Such an item must contain an
OCCURS DEPENDING ON clause in its data description
entry, or be subordinate to such an item.

* variably located group. . A group item following, and
not subordinate to, a variable-length table in the same
level-01 record.

* variably located item. . A data item following, and not
subordinate to, a variable-length table in the same
level-01 record.

* verb . A word that expresses an action to be taken by
a COBOL compiler or object program.

VM/SP (Virtual Machine/System Product) . An
IBM-licensed program that manages the resources of a
single computer so that multiple computing systems
appear to exist. Each virtual machine is the functional
equivalent of a “real” machine.

volume . A module of external storage. For tape
devices it is a reel; for direct-access devices it is a unit.

volume switch procedures . System specific proce-
dures executed automatically when the end of a unit or
reel has been reached before end-of-file has been
reached.

VSAM/2. A file system that supports COBOL sequen-
tial, relative, and indexed organizations. This file system
is available as part of IBM VisualAge COBOL.

 Glossary 681

W
| windowed date field . A date field containing a win-
| dowed (2-digit) year. See also “date field” and “win-
| dowed year.”

| windowed year . Two digits representing a year within
| a century window (for example, 98). Appears in win-
| dowed date fields. See also “century window.”

| Compare with “expanded year.”

* word . A character-string of not more than 30 charac-
ters which forms a user-defined word, a system-name, a
reserved word, or a function-name.

* WORKING-STORAGE SECTION . The section of the
DATA DIVISION that describes working storage data
items, composed either of noncontiguous items or
working storage records or of both.

Z
zoned decimal item . See “external decimal item.”

682 VisualAge COBOL Programming Guide

 Index

Special Characters
-# cob2 option 145
-b cob2 option 142
-c cob2 command 143
-cmain cob2 option 143
-comprc_ok cob2 option 143
-dll cob2 option 143
-g cob2 option
-host cob2 option
-I cob2 option
-main cob2 option
-p cob2 option
-q cob2 option 145
-v cob2 option 145
.CBL file extension 145
.DEF extension as linker parameter 145
.DLL extension as linker parameter 145
.EXE extension as linker parameter 145
.EXP extension as linker parameter 145
.exp file 143
.IMP extension as linker parameter 145
.LIB extension as linker parameter 146
.lib file 143
.MAP extension as linker parameter 146
.OBJ extension as linker parameter 146
.adt file 162
.asm file 183
*CBL statement 202
*CONTROL statement 202
>>CALLINT compiler directive

using when C/C++ called from COBOL 381
>>CALLINT statement 202

Numerics
2-digit years

querying within 100-year range (CEEQCEN) 590
example 591

setting within 100-year range (CEESCEN) 592
example 593

valid values for 500
3-digit years 500
4-digit years 500

A
abbreviations, compiler options 160
abends

using ERRCOUNT run-time option to induce 241
ACCEPT statement 7

using in GUI applications 140
ACCEPT statement, environment variables used

on 140
accessing files using environment variables 137
accessing local files 98
accessing remote files 98
ADATA compiler option 162
adding records

to files 103
adding stub files 465
ADDRESS special register, CALL statement 387
addresses

incrementing 394
NULL value 393
passing between programs 392
passing entry point addresses 395

ADEXIT suboption of EXIT compiler option 173, 177
AIX, porting to 370
ALIAS segment attribute 463
ALL subscript 40, 63
ALPHABET clause, establishing collating sequence 14
alternate collating sequence 15, 110
alternate file system

file system ID 137
using environment variables 137

alternate reserved-word table 199
ANALYZE compiler option 162
ANNUITY intrinsic function 42
APOST compiler option 188
applications, porting

architectural differences between platforms 364
language differences between the PC and the

mainframe 364
mainframe to the PC

choosing compiler options 364
running mainframe applications on the PC 366

PC to AIX 370
PC to mainframe

PC-only compiler options 370
PC-only language features 369
PC-only names 370

 Copyright IBM Corp. 1996, 1998 683

applications, porting (continued)
using COPY to isolate platform-specific code 365

argument
describing in calling program 388

arguments
IDL passing conventions 335
passing between C/C++ and COBOL 379
passing between COBOL and C/C++ 382, 384
passing BY VALUE 381
to main program 404

arithmetic
calculation on dates

convert date to COBOL Integer format
(CEECBLDY) 558

convert date to Lilian format (CEEDAYS) 572
convert timestamp to number of seconds

(CEESECS) 599
get current Greenwich Mean Time

(CEEGMT) 579
COMPUTE statement simpler to code 38
error handling 122
with intrinsic functions 40

arithmetic comparisons 44
arithmetic evaluation

data format conversion 35
examples 43, 45
fixed-point versus floating-point 43
intermediate results 545
precision 545

arithmetic expression
as reference modifier 82
description of 39
in non-arithmetic statement 552
in parentheses 39

arithmetic expressions
with MLE 529

arithmetic operations
with MLE 538

ASCII
DBCS portability 368
portability considerations 366

asm file 183
assembler language

LIST option 506
listing 506

assembler language programs
debugging 267
listing of 183

assigning values 4

ASSIGNment name, environment variable 137
assumed century window for non-dates 538
AT END (end-of-file) 125
autoexe.bat, defining environment variables 134

B
base locator 260
BASE statement 451
BASIS statement 202
Batch compilation 189
batch debugging, activating 240
big-endian format for data representation 163
Big-Endian representation of integers 367
BINARY

general description 32
synonyms 30
using efficiently 32

BINARY compiler option 163
binary data item

general description 32
intermediate results 549
using efficiently 32

binary data, data representation 163
binary search of a table 62
Btrieve (Btrieve Technologies, Inc.) files, accessing 97
Btrieve files

processing files 91
Btrieve files, accessing 417
BY VALUE, valid data types 381
byte-reversed integers 367

C
C/C++

and COBOL 377
called from COBOL, linkage conventions 381
communicating with COBOL 377
data types, correspondence with COBOL 379
functions called from COBOL, example 379
functions calling COBOL, example 382, 384
multiple calls to a COBOL program 385
variable parameter list 382

C++ call convention 164
call conventions 171
call interface conventions

C++ 164
CDECL 164
FAR16 164
OPTLINK 164

684 VisualAge COBOL Programming Guide

call interface conventions (continued)
PASCAL16 164
STDCALL 164
SYSTEM 164
with ODBC 423

CALL statement
. . . USING 388
BY CONTENT 387
BY REFERENCE 387
BY VALUE 387
CALL identifier 377
CALL literal 377
effect of CALLINT option 164
effect of DYNAM compiler option 171
exception condition 131
for error handling 131
handling of programs name in 187
overflow condition 131
to invoke date and time services 497
with ON EXCEPTION 131
with ON OVERFLOW 24, 131

CALL statement behaviour 160
callable services

CEECBLDY—convert date to COBOL Integer
format 558

CEEDATE—convert Lilian date to character
format 562

CEEDATM—convert seconds to character
timestamp 567

CEEDAYS—convert date to Lilian format 572
CEEDYWK—calculate day of week from Lilian

date 576
CEEGMT—get current Greenwich Mean Time 579
CEEGMTO—get offset from Greenwich Mean Time

to local time 582
CEEISEC—convert integers to seconds 584
CEELOCT—get current local time 588
CEEQCEN—query the century window 590
CEESCEN—set the century window 592
CEESECI—convert seconds to integers 595
CEESECS—convert timestamp to number of

seconds 599
CEEUTC—get Coordinated Universal Time 604
date processing 512, 515
IGZEDT4—get current date with 4-digit year 604

CALLINT compiler option 164
using when C/C++ called from COBOL 381

CALLINT statement 202, 396
calls

between COBOL programs 373

calls (continued)
 dynamic 376
exception condition 131
Linkage Section 389
overflow condition 131
passing arguments 388
passing data 387
receiving parameters 389
recursive 372
static 376
to date and time services 497

CANCEL statement
handling of programs name in 187

CBL file extension 145
CBL statement 147, 202
CDECL suboption of CALLINT compiler option 164
CEECBLDY—convert date to COBOL Integer format

example 558
syntax 558

CEEDATE—convert Lilian date to character format
example 564
syntax 562
table of sample output 566

CEEDATM—convert seconds to character timestamp
CEESECI callable service 595
example 569
syntax 567
table of sample output 571

CEEDAYS—convert date to Lilian format
example 575
syntax 572

CEEDYWK—calculate day of week from Lilian date
example 577
syntax 576

CEEGMT—get current Greenwich Mean Time
example 581
syntax 579

CEEGMTO—get offset from Greenwich Mean Time to
local time

example 583
syntax 582

CEEISEC—convert integers to seconds
example 586
syntax 584

CEELOCT—get current local time
example 589
syntax 588

CEEQCEN—query the century window
example 591
syntax 591

 Index 685

CEESCEN—set the century window
example 593
syntax 592

CEESECI—convert seconds to integers
example 596
syntax 595

CEESECS—convert timestamp to number of seconds
example 601
syntax 599

century encoding/compression
using as solution to the year 2000 problem 516

century window
assumed for non-dates 538
CEECBLDY callable service 560
CEEDAYS callable service 574
CEEQCEN callable service 591
CEESCEN callable service 592
CEESECS callable service 601
concept 503
fixed 521
sliding 521
using as solution to the year 2000 problem 514

chained list processing 391
changing

characters to numbers 86
file-name 17
title on source listing 13

CHAR compiler option 165
CHAR intrinsic function 87
character strings 173
character timestamp

converting Lilian seconds to (CEEDATM) 567
example 569

converting to COBOL Integer format
(CEECBLDY) 558

example 561
converting to Lilian seconds (CEESECS) 599

example 599
CHECK run-time option 240
CHECK(OFF) run-time option 508
checking errors, flagging at run time 240
checking for valid data 37
CICS

accessing CICS files from non-CICS
applications 417

ASCII-EBCDIC differences 414
coding restrictions 412
commands relevant to COBOL 410
compiler options, selecting 413
compiler restrictions 412

CICS (continued)
debugging programs 417
effect of TRAP run-time option 242
preparing COBOL applications to run under

CICS 412
programming considerations 410
programs 410
run-time, selecting 414
system date 414
using dynamic calls 415

CICSENV command 410
CICSMAP command 410
CICSRUN command 410
CICSTCL command 410
class condition 37, 67
class definition 272
class programs

use as dynamic link libraries (DLLs) 446
class test 37, 67, 245
client definition 285
cob2 command

description 142
examples using 146
file extensions supported 145
options 142

COBMSGS environment variable 138
COBOL 640, 645

and C/C++

called by C/C++ functions, example 382, 384
calling C/C++ functions, example 379
calling C/C++, linkage conventions 381
calling C/C++, parm list 382
data types, correspondence with C/C++ 379
Preparing to run with Remote DL/I 640, 645

COBOL 85 Standard
definition xxiii

COBOL language usage with SQL statements 408
COBOPT environment variable 136
COBPATH environment variable 136, 138
COBRTOPT environment variable 138
code

optimized 505
code pages 477
Code segments, defining attributes 451
CODE statement 451
coding

class definition 272
client definition 285
condition tests 68
DATA DIVISION 18

686 VisualAge COBOL Programming Guide

coding (continued)
decisions 65, 67
ENVIRONMENT DIVISION 13
file input/output overview 92
for files 95
IDENTIFICATION DIVISION 12
IF statement 65
input/output overview 95
loops 67, 71
metaclass definition 306
method definition 276
OO programs 270
PROCEDURE DIVISION 22
programs to run under CICS 410
restrictions for programs for CICS 412
subclass definition 290
tables 47
techniques 18, 19
test conditions 68

collating sequence
alternate 14, 15
ASCII 14
EBCDIC 14
HIGH-VALUE 14
ISO 7-bit code 14
LOW-VALUE 14
MERGE 14
NATIVE 14
non-numeric comparisons 14
SEARCH ALL 14
SORT 14
specifying 14
symbolic character in the 15
the ordinal position of a character 87

COLLSEQ compiler option 167
columns in tables 47
command line arguments 404
command prompt, defining environment variables 134
COMMON attribute 13, 374
COMP (COMPUTATIONAL) 32
COMP-1 (COMPUTATIONAL-1) 33
COMP-2 (COMPUTATIONAL-2) 33
COMP-3 (COMPUTATIONAL-3) 33
COMP-4 (COMPUTATIONAL-4) 32
compatible dates

with MLE 536
compilation

statistics 257
COMPILE compiler option 168

use NOCOMPILE to find syntax errors 252

compile-time considerations
calling the compiler 145
cob2 command options 142
compiler directed errors 148
compiling programs 143
compiling programs without linking 143
display compile and link steps 145
error message severity 149
executing compile and link steps after display 145
generating list of error messages 151
invoking the compiler 142

compile-time error messages
choosing severity to be flagged 249
embedding in source listing 249

compiler
calculation of intermediate results 545
limits 18

compiler error messages
determining what severity level to produce 177

compiler options
abbreviations 160
ADATA 162
ANALYZE 162
APOST 188
BINARY 163
CALLINT 164
CHAR 165
COBPATH 136
COLLSEQ 167
COMPILE 168
CURRENCY 168
DATEPROC 170
DYNAM 507
ENTRYINT 171
EXIT 172
FLAG 177, 249
FLAGSTD 178
FLOAT 180
for application portability 364
for debugging 249
IDLGEN 181
LIB 182
LINECOUNT 183
LIST 183, 262
MAP 184, 253, 258
NOCOMPILE 252
NUMBER 185, 257
on compiler invocation 256
OPTIMIZE 185, 506, 508
performance considerations 161

 Index 687

compiler options (continued)
PGMNAME 186
PROBE 188
PROFILE 188
QUOTE 188
selecting for CICS 413
SEPOBJ 189
SEQUENCE 190, 252
SIZE 191
SOURCE 191, 257
SPACE 192
specifying

methods 147
order of precedence 147
PROCESS (CBL) statement 147
using COBOPT 136

SQL 192, 406
SSRANGE 193, 253, 508
status 256
TERMINAL 193
TEST 194, 509
THREAD 194
TRUNC 195
TRUNC(STD|OPT|BIN) 509
TYPECHK 197
VBREF 198, 262
WORD 199
WSCLEAR 199
XREF 200, 252, 263
YEARWINDOW 201
ZWB 201

compiler-directing statements 202
assigning a NULL value 393
description 393
list 25
overview 25
SET statement, in 393
value to designate end of list 393

compiling
IDL files 318

completion code, sort 112
complex OCCURS DEPENDING ON

basic forms of 60, 553
complex ODO item 554
variably-located data item 553
variably-located group 553

compression, LZW 216
compression, run-length encoding 216
COMPUTATIONAL (COMP) 32

COMPUTATIONAL-1 (COMP-1) 33
COMPUTATIONAL-2 (COMP-2) 33
COMPUTATIONAL-3 (COMP-3) 33
COMPUTATIONAL-4 (COMP-4) 32
concatenating data items 74
condition handling 241

date and time services and 498
condition testing 68
conditional expression

EVALUATE statement 67
IF statement 65
PERFORM statement 67

conditional statement
in EVALUATE statement 67
list of 24
overview 24
with NOT phrase 24

config.sys, defining environment variables 134
CONFIGURATION SECTION 13
CONFORMING segment attribute 452, 463
considerations

system/390 host data type 543
constant

figurative 4
constructor method 309
contained program integration 506
continuation

of program 123
continuation, syntax checking 168
CONTINUE statement 65
control

in nested programs 374
program flow 65
transfer 372

CONTROL statement 202
conversion of data formats 35
convert character format to Lilian date (CEEDAYS) 572
convert Lilian date to character format (CEEDATE) 562
converting data items

characters to numbers 86
INSPECT statement 83
reversing order of characters 85
to integers 83
to uppercase or lowercase 85
with intrinsic functions 85

Coordinated Universal Time
See Greenwich Mean Time

copy code, obtaining from user-supplied module 173
COPY files

searching for 144

688 VisualAge COBOL Programming Guide

COPY files (continued)
specifying search path(s) with SYSLIB 136
with ODBC 423

COPY statement 202
form and definition 204
nested 176
uses for portability 365

copybook 136, 204
ODBC sample 430
search rules 204
with ODBC 423

counting data items 83
cross-reference

data- and procedure-names 263
embedded 265
program-name 265
special definition symbols 266
verbs 262

cross-reference list 198, 200
CURRENCY compiler option 168
current date

how to obtain 518
CURRENT-DATE intrinsic function 42
customizing

setting environment variables 134

D
data

See also numeric data
checking validity 38
concatenating 74
format conversion 35
format, numeric types 30
grouping 390
incompatible 38
joining 74
numeric 29
passing 387
splitting 76
validation 38

data areas, dynamic 171
data definition 259
data definition attribute codes 259
data description entry, description 18
DATA DIVISION

class 273, 274
client 286
coding 18
description 18

DATA DIVISION (continued)
FD entry 18
FILE SECTION 18
limits 18
LINKAGE SECTION 21
listing 258
mapping of items 258
method 277
OCCURS clause 47
restrictions 18
WORKING-STORAGE SECTION 19

DATA DIVISION items, mapping 184
data item

common, in subprogram linkage 389
concatenating 74
converting 83
converting characters to numbers 86
converting to uppercase/lowercase 85
converting with intrinsic functions 85
counting 83
evaluating with intrinsic functions 87
finding the smallest/largest in group 87
index 49
numeric 29
reference modification 80
referencing substrings 80
replacing 83
reversing characters 85
splitting 76
variably-located 553

data items
unused 185

data representation
compiler option affecting 163

data representations, portability 366
data segment attributes, defining 453
 DATA statement 453
data types

correspondence between COBOL and C/C++ 379
data- and procedure-name cross reference,

description 263
data-manipulation

non-numeric data 74
data-name

in MAP listing 259
reference modification 109

date and time
format

converting from character format to COBOL
Integer format (CEECBLDY) 558

converting from character format to Lilian format
(CEEDAYS) 572

 Index 689

date and time (continued)
format (continued)

converting from integers to seconds
(CEEISEC) 584

converting from Lilian format to character format
(CEEDATE) 562

converting from seconds to character timestamp
(CEEDATM) 567

converting from seconds to integers
(CEESECI) 595

converting from timestamp to number of seconds
(CEESECS) 599

getting date and time (CEELOCT) 588
services

CEECBLDY—convert date to COBOL Integer
format 558

CEEDATE—convert Lilian date to character
format 562

CEEDATM—convert seconds to character
timestamp 567

CEEDAYS—convert date to Lilian format 572
CEEDYWK—calculate day of week from Lilian

date 576
CEEGMT—get current Greenwich Mean

Time 579
CEEGMTO—get offset from Greenwich Mean

Time to local time 582
CEEISEC—convert integers to seconds 584
CEELOCT—get current local time 588
CEEQCEN—query the century window 591
CEESCEN—set the century window 592
CEESECI—convert seconds to integers 595
CEESECS—convert timestamp to number of

seconds 599
CEEUTC—get Coordinated Universal Time 604
condition handling 498
examples of using 504
feed-back code 497
invoking with a CALL statement 497
list of 496
overview 496
performing calculations with 502
picture strings 500
return code 497
RETURN-CODE special register 497

date arithmetic 536
date comparisons

with MLE 528
date field expansion 525

advantages 527

date field expansion (continued)
using intrinsic functions 512

DATE FORMAT clause 521
date information, formatting 139
date operations

intrinsic functions 10
date processing with internal bridges

advantages 524
date windowing

advantages 523
how to control 532
the MLE approach 521
using intrinsic functions 514
when not supported 531

DATE-COMPILED paragraph 12
DATE-OF-INTEGER intrinsic function 42
DATEPROC compiler option 170

eliminating warning-level diagnostic messages 534
DATEVAL intrinsic function 532
day of week, calculating with CEEDYWK 576
DB2

bind file name 407
bind file name, default 407
co-processor 406
COBOL language usage with SQL statements 408
coding considerations 406
DB2DBDFT environment variable 406
ignored options 408
in a multithreading environment 472
options 406
package name 407
package name, default 407
return codes 406
SQL INCLUDE statement 408
SQL statements 406
SQL statements supported 409

DB2DBDFT environment variable 136
DBCS user-defined words, listed in XREF output 263
DD statement

See environment variables, accessing files with
DEBUG run-time option 240, 247
debugging

activating batch features 240
assembler 267
CICS programs 417
producing symbolic information 143
useful compiler options 249
user exits 267
using COBOL language features 244

690 VisualAge COBOL Programming Guide

debugging, language features
class test 245
debugging declaratives 246
error declaratives 245
file status keys 246
INITIALIZE statements 245
scope terminators 245
SET statements 245

declarative procedures
EXCEPTION/ERROR 125, 245
USE FOR DEBUGGING 246

DEF extension as linker parameter 145
defining

files
in COBOL programs 95

files, overview 92
Defining code segments 451
DELETE statement 202
deleting records from file 104
delimited scope statement

description of 26
nested 27

depth in tables 48
DESC suboption of CALLINT compiler option 165
describing

data 19
files 18
the computer 13

DESCRIPTION statement 455
DESCRIPTOR suboption of CALLINT compiler

option 165
DGROUP 453, 457
diagnostic messages

from millennium language extensions 534
diagnostics, program 257
differences with host COBOL 540
direct-access

direct indexing 51
directories

adding a path to 144
specifying path 138
where error listing file is written 148

directories, for linker search 155
DISPLAY (USAGE IS) 31
DISPLAY statement

using in debugging 244
using in GUI applications 140

DISPLAY statement, environment variables used
on 140

DL/I
remote 638

DL/I run-time
messages 650

DLL extension as linker parameter 145
DLL files

setting directory path 138
DLLs (see dynamic link libraries)
documentation of program 13
DOS, running under 465
dumps, when not produced 242
DYNAM compiler option 171

description 171
performance considerations 507

dynamic calls
using in a CICS environment 415

dynamic link libraries
-dll cob2 option 143
building 439
CALL identifier

example 443
overview 442

CALL literal
overview 443

CICS considerations 415
compiling and linking using cob2 445
creating a module definition file

description 442
example of 442

creating an export file
description 442

creating DLL source files
example of 441

creating under Windows 143
export file, creating with cob2 143
import libraries, creating with cob2 143
link-time call reference resolution

example 445
import libraries, creating with IMPLIB 444

linker resolution of references 440
overview of dynamic linking 439
purpose 439
subprograms and outermost programs 440
terminology 440
use of class programs as DLLs 446

dynamic link library files
setting directory path 138

dynamic linking 376
advantages and disadvantages 439
linker resolution of DLL references 440

 Index 691

dynamic linking (continued)
overview 439
terminology 440

dynamic loading, requirements 138

E
E-level error message 149, 249
EBCDIC

DBCS portability 368
portability considerations 366

EBCDIC_CODEPAGE environment variable 138
echoing contents of linker response file 219
EJECT statement 202
embedded cross-reference 265, 266
embedded error messages 249
embedded MAP summary 253, 260
embedded SQL

advantages 419
emitting internal fixups 213
enclave 372
end-of-file phrase (AT END) 125
ENTER statement 202
entry point

ENTRY label 372
multiple, Windows restriction 397
passing entry addresses of 395
procedure-pointer data item 395

entry points, call convention 171
ENTRY statement

handling of programs name in 187
ENTRYINT compiler option 171

using when COBOL called from C/C++ 385
environment differences, System/390 and the PC 368
ENVIRONMENT DIVISION

class 272
client 286
collating sequence coding 14
CONFIGURATION SECTION 13
description 13
INPUT-OUTPUT SECTION 16
method 277
subclass 292

environment variables
accessing files with 137
ASSIGNment name 137
assignment-name 137
COBMSGS 138
COBOPT 136
COBPATH 138

environment variables (continued)
COBRTOPT 138
DB2DBDFT 136
EBCDIC_CODEPAGE 138
LANG 139
LC_TIME 139
LIBPATH 139
library-name 136, 204
LOCPATH 139
NLSPATH 139
search order precedence 142
setting 134
SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST,

CONSOLE, SYSPUNCH, SYSPCH 140
SYSLIB 136
System Object Model (SOM) 318
TEMP 140
TEMPMEM 136
text-name 136, 204
TZ 140
used by the compiler 136
used by the run time 137

environment-name 13
environment, pre-initializing 385
ERRCOUNT run-time options 241
ERRMSG, for generating list of error messages 151
error

arithmetic 122
example of message table 55
handling 121
messages, compiler

choosing severity to be flagged 249
embedding in source listing 249

error messages
appearing in abbreviated form 139
compiler-directed 148
correcting 150
determining what severity level to produce 177
format 148
generating a list of 151
location in listing 148
setting national language 139
severity levels 149

errors
compiler-directed 148

errors, flagging at run time 240
ESTAE exits, affected by TRAP run-time option 242
EVALUATE statement

case structure 67

692 VisualAge COBOL Programming Guide

evaluating data item contents
class test 37, 67
INSPECT statement 83
intrinsic functions 87

examples
CEECBLDY—convert date to COBOL Integer

format 561
CEEDATE—convert Lilian date to character

format 564
CEEDATM—convert seconds to character

format 569
CEEDAYS—convert date to Lilian format 575
CEEDYWK—calculate day of week from Lilian

date 577
CEEGMT—get current GMT 581
CEEGMTO—get offset from Greenwich Mean Time

to local time 583
CEEISEC—convert integers to seconds 586
CEELOCT—get current local time 589
CEEQCEN—query century window 591
CEESCEN—set century window 593
CEESECI—convert seconds to integers 596
CEESECS—convert timestamp to number of

seconds 601
IGZEDT4—get current date with 4-digit year 605

exception condition 131
EXCEPTION/ERROR declarative

description 125
file status key 127

exceptions, intercepting 242
EXE extension as linker parameter 145
EXECUTEONLY segment attribute 452, 463
EXECUTEREAD segment attribute 452, 463
EXETYPE statement 455
EXIT compiler option 172
exit modules

called for SYSADATA data set 177
debugging 267
loading and invoking 175
when used in place of library-name 175
when used in place of SYSLIB 175
when used in place of SYSPRINT 176

EXIT PROGRAM statement
in subprogram 373

EXP extension as linker parameter 145
exp file 143
expanded IF statement 65
explicit scope terminator 25
exponentiation

evaluated in fixed-point arithmetic 547

exponentiation (continued)
evaluated in floating-point arithmetic 551

EXPORTS statement 456
EXTERNAL clause

example for files 401—404
for data items 399
for files 19
used for input/output 399

external data
sharing 399

external decimal data item 31
external file 19, 399
external floating-point data item 31

F
FAR16 suboption of CALLINT compiler option 164
field expansion

using as solution to the year 2000 problem 511
figurative constant 4
file access mode

dynamic 94
for indexed files 94
for relative files 94
for sequential files 94
random 94
sequential 94
summary table of 92

file conversion
with millennium language extensions 525

file extensions
as linker parameters 145
for error messages listing 148

file organization
indexed 93
line sequential 93
overview 92
relative 93
sequential 92

file position indicator 100, 102
FILE SECTION

description 18
EXTERNAL clause 19
GLOBAL clause 19

FILE STATUS clause
file loading 101
using 126
with VSAM return code 128

file status key
checking for successful OPEN 126, 127

 Index 693

file status key (continued)
set for error handling 246
to check for I/O errors 126
used with VSAM return code 128

file system ID 137
file system support

Btrieve 241
STL 241
using FILESYS run-time option to access 241
VSAM 241

file-name
change 17

files
accessing local files 98
accessing remote files 98
accessing using environment variables 137
adding records to 103
affected by TRAP run-time option 242
associating program files to external files 13
Btrieve 417
Btrieve Technologies, Inc. 97
COBOL coding

overview 95
comparison of file organizations 93
deleting records from 104
extensions supported by cob2 145
file position indicator 100, 102
input/output error processing 123
multiple, compiling 142
opening 100
passed to compiler or linker 145
processing

Btrieve files 91
STL files 91
VSAM files 91

reading records from 101
replacing records in 104
RSD 97
STL 97
updating records 102
usage explanation 17
VSAM 97

FILESYS run-time options 241
finding the length of data items 89
finding the smallest or largest data item 87
fixed century window 521
fixed-point arithmetic

comparisons 44
evaluation 43
example evaluations 45

fixed-point data
binary 32
conversions between fixed- and floating-point

data 36
external decimal 31
intermediate results 547
packed decimal 33

fixed-point exponentiation 547
FLAG compiler option 177

compiler output 250
description 249

flags 68
FLAGSTD compiler option 178
FLOAT compiler option 180
floating-point arithmetic

comparisons 44
evaluation 43
example evaluations 45

floating-point data 367
conversions between fixed- and floating-point

data 36
external floating-point 31
intermediate results 551
internal 33

floating-point exponentiation 551
four-digit year dates 510
full date field expansion

advantages 527

G
GETMAIN, saving address of 173
GLOBAL clause for files 19
global names 376
GMT

See Greenwich Mean Time
GOBACK statement

in main program 373
in subprogram 373

Greenwich Mean Time (GMT)
getting offset to local time from (CEEGMTO) 582
return Lilian date and Lilian seconds

(CEEGMT) 579
Gregorian character string

returning local time as a (CEELOCT) 588
example 589

group item
variably-located 553

grouping data 390

694 VisualAge COBOL Programming Guide

H
header on listing 13
heap, defining size of 457
HEAPSIZE statement 457
help files

setting national language 139
specifying path name 139

HEXADECIMAL
portability considerations 367

host data type
See system/390 host data type

I
I-level error message 149, 249
IDENTIFICATION DIVISION

class 272
coding 12
DATE-COMPILED paragraph 12
errors 13
listing header example 13
method 276
PROGRAM-ID paragraph 12
required paragraphs 12
TITLE statement 13

IDL 323
access intent specifiers 336
attributes 326
common types 327
complex types 332
files 350
identifiers 325
literal arguments 337
mapping to COBOL 324
operations 325
parameter-passing conventions 335
passing complex types 338

IDL type
any 333
array 333
boolean 327
char 328
double 328
enum 328
float 329
interface 329
long 329
object reference

See IDL type, interface

IDL type (continued)
octet 330
pointer 330
sequence 334
short 330
string 330, 338
struct 334
union 335
unsigned long 332
unsigned short 332
void 332

IDLGEN compiler option 181
IEEE

portability considerations 367
IF statement

coding 65
nested 65
with null branch 65

IGZEDT4—get current date with 4-digit year 604
ILIB 444
ILINK environment variable 209
IMP extension as linker parameter 145
imperative statement, list 24
IMPLIB 444
implicit scope terminator 25
import libraries 444
IMPORTS statement 458
IMS Batch Support 639
incompatible data 38
incrementing addresses 394
index data item 52
index key, detecting faulty 130
index range checking 253
index-name subscripting 50
index, table 49
indexed file organization 93
Indexed files

file access mode 94
indexing

example 57
restrictions 51
tables 50

INEXIT suboption of EXIT option 173, 175
INITGLOBAL initialization of DLL 459
INITIAL attribute 13, 373
INITIALIZE statement

examples 4
loading table values 53
using for debugging 245

 Index 695

initializing
a table 53

INITINSTANCE initialization DLL 460
input

overview 92
input procedure

requires RELEASE or RELEASE FROM 111
restrictions 112
using 110

INPUT-OUTPUT SECTION 16
input/output

checking for errors 126
coding overview 95
GUI applications 140
introduction 92
logic flow after error 123
processing errors for files 123

input/output coding
AT END (end-of-file) phrase 125
checking for successful operation 126
checking VSAM return codes 128
detecting faulty index key 130
error handling techniques 123
EXCEPTION/ERROR declaratives 125

INSERT statement 202
INSPECT statement 83
inspecting data 83
integer format date

using as solution to the year 2000 problem 516
INTEGER intrinsic function 83
INTEGER-OF-DATE intrinsic function 42
integers

converting Lilian seconds to (CEESECI) 595
converting to Lilian seconds (CEEISEC) 584

Interface Repository (IR)
accessing 317
definition 317
populating 317

interlanguage communication
between COBOL and C/C++ 377

intermediate results 545
internal bridges

advantages 524
for date processing 523

internal bridging
date processing solution 513

internal fixups, emitting 213
internal floating-point data

bytes required 33
defining 33

internal floating-point data (continued)
uses for 33

intrinsic functions
as reference modifier 83
compatibility with CEELOCT callable service 588
converting character data items 85
DATEVAL 532
evaluating data items 87
example of

ANNUITY 42
CHAR 87
CURRENT-DATE 42
INTEGER 83
INTEGER-OF-DATE 42
LENGTH 41, 88, 89
LOG 43
LOWER-CASE 85
MAX 64, 87, 88
MEAN 43
MEDIAN 43, 64
MIN 83
NUMVAL 86
NUMVAL-C 41, 86
ORD 87
ORD-MAX 64, 88
PRESENT-VALUE 42
RANGE 43, 64
REM 43
REVERSE 85
SQRT 43
SUM 64
UPPER-CASE 85
WHEN-COMPILED 89

intermediate results 549, 551
introduction to 9
nesting 10
numeric functions

examples of 41
nested 40
special registers as arguments 40
table elements as arguments 40
type of—integer, floating-point, mixed 40
uses for 40

processing table elements 63
reference modification of 82
simplifies coding 496
UNDATE 533

INVALID KEY phrase 130
INVOKE statement

use with PROCEDURE DIVISION RETURNING 398

696 VisualAge COBOL Programming Guide

invoking
date and time services 497

invoking the compiler and linker 142
IOPL segment attribute 452, 453, 464

J
job stream 372

K
Kanji 67
keywords xxv

L
LANG environment variable 139
language features for debugging

See also debugging, language features
DISPLAY statements 244

last-used state 373
LC_COLLATE environment variable 139
LC_MESSAGES environment variable 139
LC_TIME environment variable 139
LENGTH intrinsic function

example 41, 89
variable length results 88
versus LENGTH OF special register 89

length of data items, finding 89
LENGTH OF special register 89, 388
level

88 item 67, 68
level definition 259
LIB compiler option

description and syntax 182
LIB extension as linker parameter 146
lib file 143
LIBEXIT suboption of EXIT option 173, 175
LIBPATH environment variable 139
LIBRARY statement 459
library text

specifying path for 136, 204
library-name

alternative if not specified 144
specifying path for library text 136, 204

library-name, when not used 175
Lilian date

calculate day of week from (CEEDYWK) 576
convert date to (CEEDAYS) 572
convert date to COBOL Integer format

(CEECBLDY) 558

Lilian date (continued)
convert output_seconds to (CEEISEC) 585
convert to character format (CEEDATE) 562
get current local date or time as a (CEELOCT) 588
get GMT as a (CEEGMT) 579
using as input to CEESECI callable service 596

limits of the compiler 18
line number 258
line numbers, on listing 257
line sequential file organization 93
Line sequential files

file access mode 94
LINECOUNT compiler option 183
LINK386 syntax linker option 217
linkage conventions

C/C++ called from COBOL 381
COBOL called from C/C++ 385
differences between COBOL and C/C++ 385

LINKAGE SECTION
description 389
GLOBAL clause 22
run unit 21
with recursive calls 21
with the THREAD option 21

linkages, data 379
linker

errors 158
files passed to 145
invoking 142
parameters 145
passing information to 142
resolution of references to DLLs 440
Windows considerations 159

linker options in WorkFrame 209
linking

dynamic 377
static 377, 439

LIST compiler option 183
conflict with OFFSET option 262
getting output 262
terms used in output 261

listings
See also SYSADATA
assembler expansion of procedure division 262
compiler options affecting 160
data- and procedure-name cross reference 263
embedded cross-reference 265
embedded MAP summary 259
generating a short listing 254
including your source code 257

 Index 697

listings (continued)
line numbers, user-supplied 257
mapping DATA DIVISION Items 258
sorted cross reference of program names 265
terms used in MAP output 261
verb cross-reference 262
with error messages embedded 249

little-endian format for data representation 163
Little-Endian representation of integers 367
load address 212, 451
load segment 212, 451
loading a table, dynamically 53
LOADONCALL segment attribute 452, 454, 464
local name 376
local time

getting (CEELOCT) 588
LOCAL-STORAGE section 20
locale 486
locale information database

specifying search path name 139
LOCPATH environment variable 139
LOG intrinsic function 43
loops

coding 71
conditional 72
in a table 72
performed a definite number of times 72

LOWER-CASE intrinsic function 85
lowercase 85
LST file extension 148
LZW compression 216

M
main program

and subprograms 372
arguments to 404
specifying with cob2 143, 144

maintaining compatibility 461
MAP compiler option 184, 253, 258

embedded MAP summary 259
example 258, 261
nested program map 261
terms used in output 261

MAP extension as linker parameter 146
mapping of DATA DIVISION items 258
maps and listings 160
mathematics

intrinsic functions 41, 43

MAX intrinsic function 64, 87, 88
MAXVAL attribute 457
MEAN intrinsic function 43, 64
MEDIAN intrinsic function 43, 64
memory-protection attributes of segments 223
merge

concepts 106
description 106
files, describing 106
successful 112

MERGE statement
description 112

MERGE work files 140
message catalogs

specifying path name 139
messages

appearing in abbreviated form 139
compile-time error

choosing severity to be flagged 249
embedding in source listing 249

compiler-directed 148
determining what severity level to produce 177
DL/I run-time 650
run-time 606
setting national language 139
severity levels 149
when not produced 242

messages, error
generating a list of 151

messages, run-time
incomplete abbreviated 159
SYS1808 268

metaclass definition 306
method definition 276
METHOD-ID paragraph 277
methods 288

PROCEDURE DIVISION RETURNING 398
millennium bug 520
millennium language extensions 520

assumed century window 538
compatible dates 536
compiler options affecting 160
concepts 536
date windowing 521
DATEPROC compiler option 170
non-dates 537
objectives 535
performance aspects 518
principles 535
YEARWINDOW compiler option 201

698 VisualAge COBOL Programming Guide

MIN intrinsic function 83, 87
MIXED suboption of PGMNAME 187
MIXED1632 segment attribute 464
MLE 520
mnemonic-name

SPECIAL-NAMES paragraph 13
module definition file (.DEF)

creating 442
module definition files

creating 448
module statements 450
reserved words 449
rules 448
when to use 448

module export file (.EXP)
creating under Windows 143

module export file (.EXP)
creating 442

module statements 450
modules, exit

loading and invoking 175
MOVE statement 7
MQSeries Three Tier applications 468
MULTIPLE segment attribute 453
multiple thread environment, running in 194
multitasking 468
multithread environment requirements 188
multithreading

control transfer issues 471
limitations on COBOL 472
overview 467
preparing COBOL programs for 467
scope of language elements

program invocation instance scoped
elements 470

run-unit scoped elements 470
synchronizing access to resources 472
terminology 467
THREAD compiler option

recursion 471
restrictions under 470
when to choose 470

N
name decoration 159, 396
NAME statement 460
naming

programs 12

national language setting 139
National Language Support (NLS)

code pages 477
considerations 477
locale sensitivity 486

NATIVE
portability considerations 367

nested COPY statement 176
nested delimited scope statements 27
nested IF statement

CONTINUE statement 65
description 65
EVALUATE statement preferred 65
with null branches 65

nested intrinsic functions 40
nested program integration 506
nested program map 261
nested programs

calling 374
conventions for using 374
map 261
scope of names 376
structure 373
transfer of control 374

nesting level
program 258, 262
statement 258

NLSPATH environment variable 139
NOCOMPILE compiler option

use of to find syntax errors 252
NODESC suboption of CALLINT compiler option 165
NODESCRIPTOR suboption of CALLINT compiler

option 165
NOIOPL segment attribute 452, 453, 464
non-dates

with MLE 537
NONAME attribute 456
NONCONFORMING segment attribute 452, 463
NONE segment attribute 453
NONSHARED segment attribute 454, 464
NOSSRANGE compiler option

affect on checking errors 240
NOTWINDOWCOMPAT attribute 461
NOVIO attribute 222
null branch 65
null-terminated strings 79, 390
NUMBER compiler option 257

syntax and description 185
numeric arguments for the linker 209

 Index 699

numeric class test 37
numeric data

binary 32
USAGE IS BINARY 32
USAGE IS COMPUTATIONAL (COMP) 32
USAGE IS COMPUTATIONAL-4 (COMP-4) 32

conversions between fixed- and floating-point
data 36

conversions between fixed-point data 36
editing symbols 30
external decimal 31

USAGE IS DISPLAY 31
external floating-point

USAGE IS DISPLAY 31
format conversions between fixed- and

floating-point 35
internal floating-point 33

USAGE IS COMPUTATIONAL-1 (COMP-1) 33
USAGE IS COMPUTATIONAL-2 (COMP-2) 33

internal storage formats 30
overview 29
packed-decimal 33

USAGE IS COMPUTATIONAL-3 (COMP-3) 33
USAGE IS PACKED-DECIMAL 33

PICTURE clause 29, 30
numeric editing symbol 30
numeric intrinsic functions

example of
ANNUITY 42
CURRENT-DATE 42
INTEGER 83
INTEGER-OF-DATE 42
LENGTH 41, 88
LOG 43
MAX 64, 87, 88
MEAN 43
MEDIAN 43, 64
MIN 83
NUMVAL 86
NUMVAL-C 41, 86
ORD 87
ORD-MAX 64
PRESENT-VALUE 42
RANGE 43, 64
REM 43
SQRT 43
SUM 64

nested 40
special registers as arguments 40
table elements as arguments 40

numeric intrinsic functions (continued)
types of—integer, floating-point, mixed 40
uses for 40

numeric-edited data item 30
NUMVAL intrinsic function 86
NUMVAL-C intrinsic function 41, 86

O
OBJ extension as linker parameter 146
object code

controlling 160
generating 168

object deck generation 160
object references 287
OBJECT-COMPUTER paragraph 13
object-oriented COBOL

generating IDL definitions 181
restrictions for DYNAM compiler option 171

objectives of millennium language extensions 535
OCCURS clause 47
OCCURS DEPENDING ON (ODO) clause

complex 60, 553
initializing ODO elements 54
simple 57
variable-length tables 57

ODBC 418
accessing return values 428
advantages 419
background 418
CALL interface convention 423
configuring OS/2 data sources 420
configuring Windows data sources 420
connecting 421
driver manager 418
driver names on OS/2 420
embedded SQL 419
environment-specific information 420
error messages 422
mapping of C data types 425
on-line help 420
OS/2 .ini file 420
passing a COBOL pointer to 426
sample program 430
setting licensing info 430
supplied copybooks 423
supplied ODBC3.CPY 430
supplied ODBC3D.CPY 430
supplied ODBC3P.CPY 430
supported functions 422

700 VisualAge COBOL Programming Guide

ODBC (continued)
using APIs from COBOL 423
using the drivers 419
Windows .ini file 420
Windows driver names 421

ODBC3.CPY 430
ODBC3D.CPY 430
ODBC3P.CPY 430
ODO (OCCURS DEPENDING ON) clause

simple 57
variable-length tables 57

OLD statement 461
OMITTED parameters 497
ON SIZE ERROR phrase

with windowed date fields 530
OO COBOL

generating IDL definitions 181
Open Database Connectivity (see ODBC) 418
OPEN operation code 175
OPEN statement

file availability 100
file status key 126

opening files 100
opening files using environment variables 137
operating system, defining target 455
optimization

contained program integration 506
effect of compiler options on 507
nested program integration 506
unused data items 185

OPTIMIZE compiler option 185
affect on performance 506
description 506
performance considerations 508

optimizer 505
optional words xxiv
OPTLINK suboption of CALLINT compiler option 164
ORD intrinsic function 87
ORD-MAX intrinsic function 64, 88
ORD-MIN intrinsic function 88
order of precedence, compiler option specification 147
ordinal position of data construct 456
ordinal position of function 456
ordinal values 461
output

overview 92
output procedure

requires RETURN or RETURN INTO statement 111
restrictions 112
using 111

overflow condition 121, 131

P
packed decimal data item

general description 33
using efficiently 33

PACKED-DECIMAL
general description 33
synonym 30
using efficiently 33

packing code segments 221
packing data segments 221
page header 256, 257, 258
paragraph

grouping 73
introduction 23

parameter
describing in called program 389
in main program 404

parameter list
address of with INEXIT 175
for ADEXIT 177
for PRTEXIT 176

PASCAL16 suboption of CALLINT compiler option 164
passing addresses between programs 392
passing data between programs

BY CONTENT 387
BY REFERENCE 387
BY VALUE 387
called program 388
calling program 388
EXTERNAL data 399
language used 388

path name
for COPY files search 144, 204
library text 136, 204
multiple, specifying 136, 204
search order precedence 142
specifying for catalogs and help files 139
specifying for COBOL run-time library 139
specifying for locale information database 139
specifying with LIB compiler option 182

PC and workstation COBOL
differences from host 540

PERFORM statement
. . .THRU 73
coding loops 71
for a table 55
indexing 52

 Index 701

PERFORM statement (continued)
performed a definite number of times 72
TIMES 72
UNTIL 72
VARYING 72
VARYING WITH TEST AFTER 72
WITH TEST AFTER . . . UNTIL 72
WITH TEST BEFORE . . . UNTIL 72

performance
coding tables 64
compiler option considerations 161
DYNAM compiler option 507
effect of compiler options on 507
OPTIMIZE compiler option 506, 508
optimizer 505
SSRANGE compiler option 508
TEST compiler option 509
TRUNC compiler option 195
TRUNC(STD|OPT|BIN) compiler option 509
using the TEMPMEM environment variable 136
variable subscript data format 50

Performance Analyzer support, PROFILE option
for 188

performance considerations
creating a trace file 144

performing calculations
date and time services and 502

period, as scope terminator 25
PGMNAME compiler option 186
PICTURE clause

determining symbol used 168
numeric data 29

picture strings
date and time services and 500

platform differences 368
PM attribute 222
pointer data item

incrementing addresses with 394
NULL value 393
used to pass addresses 392
used to process chained list 391

portability 364
environment differences 368
run-time differences between mainframe and the

PC 369
porting applications

architectural differences between platforms 364
language differences between the PC and the

mainframe 364
mainframe to the PC

choosing compiler options 364

porting applications (continued)
mainframe to the PC (continued)

running mainframe applications on the PC 366
PC to AIX 370
PC to mainframe

PC-only compiler options 370
PC-only language features 369
PC-only names 370

using COPY to isolate platform-specific code 365
porting your program 29
pre-initializing the COBOL environment 385
PRELOAD segment attribute 452, 454, 464
PRESENT-VALUE intrinsic function 42
Presentation Manager, support for 468
printer files 93
PROBE compiler option 188
procedure and data-name cross reference,

description 263
PROCEDURE DIVISION

client 287
description 22
in subprograms 389
method 278
RETURNING 23
statements

compiler-directing 25
conditional 24
delimited scope 26
imperative 24

terminology 22
USING 23

PROCEDURE DIVISION RETURNING
methods, use of 398

procedure-pointer data item
entry address for entry point 395
passing parameters to callable services 395
rules for using 395
SET statement and 395
SYSTEM interface convention 396
Windows restriction 396

PROCESS statement 147
processes 467
processing

chained list 391
tables 55
using indexing 57
using subscripting 56

PROFILE compiler option 188
program

attribute codes 262

702 VisualAge COBOL Programming Guide

program (continued)
decisions

EVALUATE statement 67
IF statement 65
loops 72
PERFORM statement 72
switches and flags 68

diagnostics 257
main 372
nesting level 258
source code samples

definition file 442
dynamic link library 441

statistics 257
structure 12
sub 372

PROGRAM COLLATING SEQUENCE clause 14
program entry points, call convention 171
program names, handling of case 187
PROGRAM-ID paragraph

COMMON attribute 13
description 12
INITIAL attribute 13

program-name cross-reference 265
programs, running 159
PRTEXIT suboption of EXIT option 173, 176

Q
QUOTE compiler option 188

R
RANGE intrinsic function 43, 64
reading records from files

dynamically 102
randomly 102
sequentially 101

READONLY segment attribute 454, 464
READWRITE segment attribute 454, 464
receiving field 76
record

description 18
format 92

records, affected by TRAP run-time option 242
recursive calls 12, 372

and the LINKAGE SECTION 21
reference modification

example 81
of an intrinsic function, example 82

reference modification (continued)
out-of-range values 81
tables 52, 83

reference modifier
arithmetic expression as 82
intrinsic function as 83
variables as 81

relate items to system-names 13
relation condition 67
relative file organization 93
Relative files

file access mode 94
RELEASE FROM statement

compared to RELEASE 111
example 111

RELEASE statement
compared to RELEASE FROM 111
with SORT 109, 111

relocation records, retaining 213
REM intrinsic function 43
removing unreferenced functions 220
REPLACE statement 202
replacing

data items 83
records in file 104

REPOSITORY paragraph 13, 273
representation

data 38
sign 37

required words xxiv
RESIDENTNAME attribute 456
restrictions

indexing 51
input/output procedures 112
subscripting 50

retaining relocation records 213
return code

feedback code from date and time services 497
from DB2 409
RETURN-CODE special register 398, 497
VSAM files 128
when control returns to operating system 398

return codes 149
return codes, linker 158
RETURN INTO statement 111
RETURN statement 111
RETURN-CODE special register

considerations for DB2 409
value after call to date and time service 497
when control returns to operating system 398

 Index 703

RETURNING phrase
methods, use of 398

REVERSE intrinsic function 85
reversing characters 85
rows in tables 48
RSD files, accessing 97
run time

changing file-name 17
run unit 372
run-length encoding compression 216
run-time

differences between platforms 366
messages 606

run-time arguments 404
run-time environment variables

LC_COLLATE 139
LC_MESSAGES 139

run-time error messages
setting national language 139

run-time library
specifying path name 139

run-time messages
appearing in abbreviated form 139
incomplete or abbreviated 159

run-time options
CHECK 240
CHECK(OFF) 508
DEBUG 240, 247
ERRCOUNT 241
FILESYS 241
selecting for CICS 414
specifying 138, 139
supported 240
TRAP 242

ON SIZE ERROR 122
UPSI 243

run-unit
role in multithreading 467

running programs 159
running under DOS 465

S
S-level error message 149, 249
scope terminator

aids in debugging 245
explicit 25, 26
implicit 25

SEARCH ALL statement
binary search 62

SEARCH ALL statement (continued)
indexing 50, 61
ordered table 62

search rules for linker 154
SEARCH statement

examples 62
indexing 50, 52
nesting 61
serial search 61

searching a table 61
searching extended dictionary 216
section

declarative 27
description of 23
grouping 73

segment attributes, defining 462
SEGMENTS statement 462
SELECT clause

vary input/output file 17
SELECT OPTIONAL 100
sending field 76
sentence 23
separate digit sign 29
SEPOBJ compiler option 189
SEQUENCE compiler option 190, 252
sequential file organization 92
Sequential files

file access mode 94
serial search 61
Server environment 642
SET command, defining environment variables 134
SET condition-name TO TRUE statement

description 70
example 72

SET statement
for procedure-pointer data items 395
handling of programs name in 187
using for debugging 245

SET statement, path search order 142
setting

switches and flags 69
setting linker options 208
SHARED segment attribute 454, 464
sharing

See also passing data
data 376, 399
files 19, 376, 399

sign condition 67
sign representation 37

704 VisualAge COBOL Programming Guide

SINGLE segment attribute 453
SIZE compiler option 191
SKIP1/2/3 statement 202
sliding century window 521
SMARTdata Utilities 98
SOM 323

CORBA-style exceptions 345
environment arguments 345
errors and exceptions 345

COBOL example 346
initializers 349
memory management with 352
SOMerror-style exceptions 345

sort
alternate collating sequence 110
concepts 106
criteria 109
description 106
files, describing 106
more than one 106
restrictions on input/output procedures 112
special registers 113
successful 112
terminating 113
using input procedures 110
using output procedures 111

Sort File Description (SD) entry
example 107

SORT statement
description 108

SORT work files 140
SORT-RETURN special register 113
source code

line number 258, 259, 262
listing, description 257

SOURCE compiler option 191, 257
SOURCE-COMPUTER paragraph 13
SPACE compiler option 192
special feature specification 13
special register

ADDRESS 387
arguments in intrinsic functions 40
LENGTH OF 89, 388
WHEN-COMPILED 89

special registers
SORT 113
SORT-CONTROL 113
SORT-RETURN 113

SPECIAL-NAMES paragraph 13
for collating sequence 14

splitting data items 76
SQL compiler option 192, 406
SQL INCLUDE statement 408
SQL statements 406
SQL statements supported 409
SQLCA 406
SQLCODE 409
SQLSTATE 409
SQRT intrinsic function 43
SSRANGE compiler option 193

CHECK(OFF) run-time option 508
description 253
performance considerations 508

stack probes, generating 188
stacked words xxiv
 STACKSIZE statement 465
statement

compiler-directing 25
conditional 24
definition 24
delimited scope 26
explicit scope terminator 25
imperative 24
implicit scope terminator 25

statement nesting level 258
static linking 376

advantages and disadvantages 439
overview 439
terminology 440

statistics
intrinsic functions 43

STL file system 114
STL files, accessing 97
STOP RUN statement

in main program 373
in subprogram 373

storage, stack 188
STRING statement

description 74
example of 74
overflow condition 121

strings
null-terminated 390

structured programming
PROCEDURE DIVISION 22

STUB statement 465
subclass definition 290
subprogram

and main program 372
definition of 372

 Index 705

subprogram (continued)
linkage 372
linkage, common data items 389

subprograms
Procedure Division in 389

subscript range checking 253
subscripting

example of processing a table 56
index-names 50
literal 49
reference modification 52
relative 50
restrictions 50
variable 50

substrings
See also reference modification
of data 80
referencing table items 83

SUM intrinsic function 64
switch-status condition 67
switches 68
SYMBOLIC CHARACTER clause 15
syntax errors

finding with NOCOMPILE compiler option 252
SYSADATA file 162
SYSADATA records

exit module called 177
supplying modules 172

SYSIN
supplying alternative modules 172

SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST,
CONSOLE, SYSPUNCH, SYSPCH environment vari-
ables 140

SYSLIB
supplying alternative modules 172
when not used 175

SYSLIB environment variable 136
SYSPRINT

supplying alternative modules 172
when not used 176

SYSTEM convention restriction (Windows) 397
system date

under CICS 414
System dialog, defining environment variables 134
System Object Model (see also "SOM") 323
System Object Model (SOM)

compiling IDL files 318
environment variables 318
initialization 320
Interface Repository (IR) 317

System Object Model (SOM) (continued)
methods and functions 319
services 319
somFree 287
somNEW 287

SYSTEM suboption of CALLINT compiler option 164
system-name 13
system/390 host data type

considerations 543

T
table

assigning values 53
columns 47
defining 47
depth 48
dynamically loading 53
efficient coding of 64
handling 47
index 49
initialize 53
intrinsic functions 63
loading values in 53
looping through 72
making reference 49
one-dimensional 47
reference modification 52
referencing table entry substrings 83
rows 48
searching 61
subscripts 49
three-dimensional 48
two-dimensional 48
variable-length 57

TALLYING option 83
TEMP environment variable 140
TEMPMEM environment variable 136
temporary work file location

specifying with TEMP 140
TERMGLOBAL termination of DLL 459
TERMINAL compiler option 193
terminal, sending messages to 193
terminology

introduction to COBOL terms 2
static and dynamic linking 440

TERMINSTANCE termination of DLL 460
terms used in MAP output 261
test

data 67

706 VisualAge COBOL Programming Guide

test (continued)
for values 67
numeric operand 67
UPSI switch 67

TEST compiler option 194
performance considerations 509

THREAD compiler option 194
and the LINKAGE SECTION 21

thread environment requirements 188
threading (see "multithreading")
time information, formatting 139
time zone information

specifying with TZ 140
time, getting local (CEELOCT) 588
timestamp 567, 599
TITLE statement 202

controlling header on listing 13
titles

controlling header on listing 13
transferring control

between COBOL programs 373
called program 372
calling program 372
main and subprograms 372

translating CICS into COBOL 410
TRAP run-time option 242

ON SIZE ERROR 122
TRUNC compiler option 32, 195
TRUNC(STD|OPT|BIN) compiler option 509
trunction, binary 32
tuning considerations, performance 507
TYPECHK compiler option 197
TZ environment variable 140

U
U-level error message 149, 249
UNDATE intrinsic function 533
unreachable functions, removing 153
unreferenced functions, removing 220
UNSTRING statement

description 76
example 76
overflow condition 121

updating records 102
UPPER suboption of PGMNAME 187
UPPER-CASE intrinsic function 85
uppercase 85
UPSI run-time options 243

UPSI switches, setting 243
USAGE clause

incompatible data 37
IS INDEX 52

USE EXCEPTION/ERROR declaratives 245
USE FOR DEBUGGING declarative 240
USE FOR DEBUGGING declaratives 246
USE statement 202
user-defined condition 67
user-exit work area 173
UTC (Coordinated Universal Time)

See Greenwich Mean Time
Utilities 638

V
valid data 37
VALUE clause

assigning table values 53
Data Description entry 55

VALUE IS NULL 393
variable

as reference modifier 81
COBOL term for 2

Variable parameter list (C/C++) 382
variable-length table 57
variables, environment

ASSIGNment name 137
assignment-name 137
COBMSGS 138
COBOPT 136
COBPATH 136, 138
COBRTOPT 138
EBCDIC_CODEPAGE 138
LANG 139
LC_TIME 139
LIBPATH 139
library-name 136, 204
LOCPATH 139
NLSPATH 139
setting 134
SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST,

CONSOLE, SYSPUNCH, SYSPCH 140
SYSLIB 136
TEMP 140
TEMPMEM 136
text-name 136, 204
TZ 140
used by the compiler 136
used by the run time 137

 Index 707

variably-located data item 553
variably-located group 553
VBREF compiler option 198, 262
verb cross-reference listing

description 262
verbs used in program 262
VIO attribute 222
visual applications, increasing stack size 225
VisualAge CICS support for remote DL/I 644
VisualAge COBOL

DL/I run-time messages 650
run-time messages 606

VSAM
accessing local files 98
accessing remote files 98
I/O in a multithreading environment 472

VSAM files
logic flow after I/O error 123
processing files 91
return codes 128

VSAM files, accessing 97

W
W-level error message 149, 249
WHEN phrase

SEARCH statement 61
WHEN-COMPILED intrinsic function

example 89
versus WHEN-COMPILED special register 89

WHEN-COMPILED special register 89
WINDOWAPI attribute 461
WINDOWCOMPAT attribute 461
windows, increasing stack size for 225
WITH DEBUGGING MODE clause 240
WORD compiler option 199
WorkFrame, linker options in 209
working storage

defining program data 19
initializing 199

WORKING-STORAGE SECTION
class 274
description 19
method 278

workstation and PC COBOL
differences from host 540

writing mainframe-compatible code 369
WSCLEAR compiler option 199

X
XREF compiler option 200, 252, 263

Y
year 2000 Problem

century encoding/compression solution 516
century window solution 514
explanation 510
field expansion solution 511
integer format date solution 516
internal bridging 513
mixed solution 515

year 2000 problem extensions 520
year expansion

using intrinsic functions 512
year field expansion 525
year windowing

advantages 523
how to control 532
the MLE approach 521
using intrinsic functions 514
when not supported 531

YEARWINDOW
compiler option 201

Z
ZWB compiler option 201

708 VisualAge COBOL Programming Guide

We'd Like to Hear from You

VisualAge COBOL
Programming Guide
Version 2.2

Publication No. SC26-9050-02

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form from a
country other than the United States, give it to your local IBM branch office or IBM represen-
tative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMMail: USIB2VVG at IBMMAIL
– IBMLink: COBPUBS at STLVM27

 – Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the information is
presented. To request additional publications, or to comment on other IBM information or the
function of IBM products, please give your comments to your IBM representative or to your IBM
authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

VisualAge COBOL
Programming Guide
Version 2.2

Publication No. SC26-9050-02

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? Ø Yes Ø No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø
Grammatically correct and con-
sistent Ø Ø Ø Ø Ø
Graphically well designed Ø Ø Ø Ø Ø
Overall satisfaction Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-9050-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department J58
International Business Machines Corporation
PO BOX 49023
SAN JOSE CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-9050-02

IBM

Program Number: 5639-B92

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

VisualAge COBOL

GC26-9038 Building Parts for Fun and Profit
GC26-8488 Resource Catalog
GC26-9052 Fact Sheet
GC26-9051 Getting Started on OS/2
GC26-8944 Getting Started on Windows
SC26-9056 Introducing Redeveloper
SC26-9046 Language Reference
SC26-9050 Programming Guide
GC26-9060 Technology Brochure
SC26-9053 Visual Builder User's Guide

SC26-9ð5ð-ð2

Spine information:

IBM VisualAge COBOL Programming Guide Version 2.2

