VisualAge COBOL

Programming Guide

Version 2.2

SC26-9050-02

VisualAge COBOL

Programming Guide

Version 2.2

SC26-9050-02

— Note!

Before using this information and the product it supports, be sure to read the general infor-
mation under “Notices” on page xX.

Third Edition (April 1998)

This edition applies to Version 2.2 of IBM VisualAge COBOL (program number 5639-B92) and to all subsequent
releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, W92/H3
P.O. Box 49023

San Jose, CA 95161-9023
U.S.A.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices e XX
Programming Interface Information XX
Trademarks L XXi
About This Book XXii
How This Book Will Help You XXii
Abbreviated Terms XXiii
Syntax Notation XXV
How Examples Are Shown XXV
Summary of Changes XXVi
Major Changes in Version 2.1 XXVi
Major Changes in Version 2.2 XXVi
Part 1. Coding Your Program 1
Chapter 1. Introduction to COBOL Terms 2
Variables, Structures, Literals, and Constants 2
Variables 2
Data Structure 2
Literals 3
Constants 4
Assignment and Terminal Interactions 4
Initializing a Variable (INITIALIZE Statement) 4
Initializing a Structure (INITIALIZE Statement) 6
Assigning Values to Variables or Structures (MOVE Statement) 7
Assigning Terminal/File Input to Variables (ACCEPT Statement) 7
Displaying Data Values on the Terminal/File (DISPLAY Statement) 8
Assigning Arithmetic Resultso 8
Built-in (Intrinsic) Functions 9
Introduction to Intrinsic Functions oL 9
Using Function References in Other Contexts 9
Types of Intrinsic Functions oL 10
Nesting Functions 10
Substrings of Function-ldentifierso 10
Arguments to Intrinsic Functionso 10
Arrays and Pointers 11
Pointers e 11
Procedure Pointers 11
Chapter 2. Program Structureo 12
IDENTIFICATION DIVISION e 12
PROGRAM-ID Paragraph 12
Avoiding Mismatches Between Names 13

© Copyright IBM Corp. 1996, 1998 iii

iv

Changing Header of Source Listing 13

ENVIRONMENT DIVISION e 13
CONFIGURATION SECTION oo o 13
INPUT-OUTPUT SECTION: e e 16
Identifying Files to the Operating System 17

DATADIVISION 18
Limits in the DATADIVISION 18
FILE SECTION (Using Data in Input/Output Operations) 18
Function and Use of FILE SECTION Entries 18
WORKING-STORAGE SECTION and LOCAL-STORAGE SECTION 19
LINKAGE SECTION (Using Data from Another Program) 21

PROCEDURE DIVISION e e e e 22
PROCEDURE DIVISION Headers 22
How Logic is Divided in the PROCEDURE DIVISION 23
Statements Used in the PROCEDURE DIVISION 24
Declaratives e 27

Chapter 3. Numbers and Arithmetic, 29

General COBOL View of Numbers (PICTURE clause) 29
Defining Numeric Items 29
Separate Sign Position (for Portability) 29
Extra Positions for Displayable Symbols (Numeric Editing) 30

Computational Data Representation (USAGE Clause) 30
External Decimal (USAGE DISPLAY) Items 31
External Floating-Point (USAGE DISPLAY) ltems 31
Binary Items 32
Packed Decimal (PACKED-DECIMAL or COMP-3) Items 33
Floating-Point (COMP-1 and COMP-2) ltems 33

Data Format Conversions 35
Conversion Takes Time 36
Conversions and Precision o 36

Sign Representation and Processing L. 37

Checking for Incompatible Data (Numeric Class Test) 37
How to Do a Numeric Class Test 38

Performing Arithmetic 38
COMPUTE and Other Arithmetic Statements 38
Arithmetic Expressions 39
Numeric Intrinsic Functions oL 40

Fixed-Point versus Floating-Point Arithmetic 43
Floating-Point Evaluations 44
Fixed-Point Evaluations 44
Arithmetic Comparisons (Relation Conditions) 44
Examples of Fixed-Point and Floating-Point Evaluations 45

Chapter 4. Handling Tables 47

Defining a Table (OCCURS Clause) 47
One DImension 47
Two Dimensions 48

VisualAge COBOL Programming Guide

Three Dimensions 48

Referringto anlteminaTable 49
Subscripting 49
Subscripting Using Index-Names (Indexing) 50
Referring to a Substring of a Table ltem 52

Putting Valuesintoa Table 53
Loading the Table Dynamically 53
Initializing the Table (INITIALIZE Statement) 53
Assigning Values When You Define the Table (VALUE Clause) 53

Creating Variable-Length Tables (DEPENDING ON Clause) 57
ODO Object and Subject Contained in Group Iltem 57
ODO Object outside the Group 59
Complex OCCURS DEPENDING ON 60

Searching a Table (SEARCH Statement) 61
Serial Search 61
Binary Search (SEARCH ALL Statement) 62

Processing Table Items (Intrinsic Functions) 63
Processing Multiple Table Items (ALL Subscript) 63

Efficient Coding for Tables 64

Chapter 5. Selection and lteration 65

Selection (IF and EVALUATE Statements) 65
IF Statement L 65
EVALUATE statement 67
Conditional Expressions 67

lterative Loops (PERFORM Statement) 71
Coding a Loop to Be Performed a Definite Number of Times 72
Conditional Looping 72
Looping through a Table, 72
Executing a Group of Paragraphs or Sections 73

Chapter 6. String Handling 74

Joining Data Items (STRING Statement) 74
STRING Statement Example 74

Splitting Data Items (UNSTRING Statement) 76
UNSTRING Statement Example 76

Manipulating Null-Terminated Strings 79

Referencing Substrings of Data Items (Reference Modifiers) 80
Common Reference Modification Mistakes 81
Benefits of Reference Modification 81
Using Arithmetic Expressions as Reference Modifiers 82
Referencing Substrings of Table Items 83

Tallying and Replacing Data Items (INSPECT Statement) 83
INSPECT Statement Examples 83

Converting Data ltems (Intrinsic Functions) 85
Converting to Uppercase or Lowercase (UPPER-CASE, LOWER-CASE) ... 85
Converting to Reverse Order (REVERSE) 85
Converting to Numbers (NUMVAL, NUMVAL-C) 86

Contents V

Evaluating Data Items (Intrinsic Functions)
Evaluating Single Characters for Collating Sequence (CHAR, ORD)
Finding the Largest or Smallest Data Item (MAX, MIN, ORD-MAX, ORD-MIN)
Finding the Length of Data ltems (LENGTH)
Finding the Date of Compilation (WHEN-COMPILED)

Chapter 7. Processing Files
File Input/Output Overview
File Organization
File Access Modes
COBOL Coding for Files
Accessing Fileso
Distributed File Access L
Coding Input/Output Statements for Files
File Position Indicator
OpeningaFile
Reading Records froma File
Updating Recordsina File
Adding RecordstoaFile o
Replacing Records ina File,
Deleting Records froma File
File Sharing and Record Locking (OS/20nly)
File Sorting and Mergingo
Basics of Sorting and Merging Lo
The SORT Statement
Coding the Input Procedure
Coding the Output Procedure
Restrictions on Input and Output Procedures
The MERGE Statement
Determining Whether the Sort or Merge Was Successful
Prematurely Stopping a Sort or Merge Operation
SORT Special Registers
The STL File System
File Status and the STL File System
SMARTdata Utilities for OS/2
Quick Start for Remote File Access L.
Problems with Remote Files Access
Platform-Specific Behavior
Data Conversion
File Conversion
LAN-Installed SMARTdata Utilities
Translation Tables
Client Enhancement for Stream Data Conversion

Chapter 8. Error Handling
STRING and UNSTRING Operations
Arithmetic Operations

Example of Checking for Division by Zero

VisualAge COBOL Programming Guide

Input/Output Error Handling Techniques 123

End-of-File Phrase (AT END), 125
EXCEPTION/ERROR Declarative 125
File Status Key 126
File System Return Code 128
INVALID KEY Phrase 130
CALL Statements 131
Part 2. Compiling, Linking, and Running Your Program 133
Chapter 9. Compiling, Linking, and Running Programs 134
Setting Environment Variables oL L. 134
Definitions of COBOL Environment Variables 135
Compiler Environment Variables 136
Object-Oriented Programming Environment Variables 137
Run-Time Environment Variables 137
Compiling and Linking Programs 142
Options Supported by cob2 o 142
Filenames and Extensions Supported 145
Examples usingcob2 146
Alternative Ways to Specify Compiler Options 147
Compiler-Detected Errors and Messages 148
Compiler Error Messages i e 148
Compiler Error Message Codes 149
Correcting Errors in Your Source Program 150
Generating a List of All Compiler Error Messages 151
Starting the Linker 151
Linking within WorkFrameo 151
Linking through the Compiler 152
Linking from a Make File 153
Optimized Linking (OS/2Only) 153
Linker Input and Output Fileso 154
Linker Search Rules 154
Specifying Object Files 156
Specifying Executable Output Type 157
Linker Return Codes e 158
Correcting Linker Errors 158
Running COBOL programs o v v i 159
Chapter 10. Compiler Options 160
Compiler Options Summary 160
Default Values for Compiler Options 161
Performance Considerations Lo 161
Compiler Option Descriptions 162
ADATA . . e 162
ANALYZE e 162
APOST . . . e 163
BINARY . . . 163

Contents Vii

CALLINT . . . 164

CHAR . e 165
COLLSEQ 167
COMPILE 168
CURRENCY e 168
DATEPROC 170
DYNAM . 171
ENTRYINT 171
EXIT 172
FLAG . . 177
FLAGSTD o e 178
FLOAT . . . 180
IDLGEN . . . e 181
LIB . . 182
LINECOUNT e e e e 183
LIST . o 183
MAP e 184
NUMBER e 185
OPTIMIZE e 185
PGMNAME 186
PROBE 188
PROFILE 188
QUOTE/APOST s e 188
SEPOBJ e 189
SEQUENCE 190
SIZE . . e 191
SOURCE e 191
SPACE e 192
SQL . e 192
SSRANGE e 193
TERMINAL . . . 193
TEST . o 194
THREAD e 194
TRUNC . . . 195
TYPECHK 197
VBREF . . . 198
WORD . . . 199
WSCLEAR 199
XREF o e 200
YEARWINDOW 201
ZWB 201
Compiler-Directing Statements 202
Chapter 11. Setting Linker Options 208
Setting Options on the Command Line 208
Setting Options in the ILINK Environment Variable 209
Setting Options in the WorkFrame Environment 209
Specifying Numeric Arguments 209

Viii VisualAge COBOL Programming Guide

Summary of OS/2 Linker Options 211

Linker Options for OS/2 211
L2 212
IALIGNMENT . . . o 212
/BASE, INOBASE 212
/CODEVIEW, NOCODEVIEW e 213
/IDBGPACK, INODBGPACK 213
/IDEBUG, INODEBUG 214
/DEFAULTLIBRARYSEARCH, /INODEFAULTLIBRARYSEARCH 214
IDLL . 215
TEXEC . . 215
[EXEPACK, INOEXEPACK 215
/[EXTDICTIONARY, /INOEXTDICTIONARY 216
IFORCE 217

/FREEFORMAT, INOFREEFORMAT 217
HELP . . e 217
/IGNORECASE, INOIGNORECASE 218
/INFORMATION, /NOINFORMATION 218
/LINENUMBERS, /NOLINENUMBERS 218
JLOGO, INOLOGO o e s 219
IMAP, INOMAP e 219

JOPTFUNC, INOOPTFUNC e 220
JOUT . . 220
/PACKCODE, INOPACKCODE o 221
[PACKDATA, INOPACKDATA e 221
IPMTYPE . . . e 222
ISECTION e 222
ISEGMENTS e 224
ISTACK . . 224

Summary of Windows Linker Options 226

Windows Linker Options 227
12 227
JIALIGNADDR e 227
JALIGNFILE e 227
IBASE . . . e 228
ICODE . . . 228
IDATA 229
/IDBGPACK, INODBGPACK 229
/DEBUG, INODEBUG 230
/DEFAULTLIBRARYSEARCH, /INODEFAULTLIBRARYSEARCH 230
IDLL . 231
IENTRY o 231
[EXECUTABLE 231
/[EXTDICTIONARY, /INOEXTDICTIONARY 232
[FIXED, INOFIXED e 232
[FORCE 232
HEAP . 233
HELP . o 233

Contents iX

/INCLUDE 233

/INFORMATION, /NOINFORMATION 234
/LINENUMBERS, /NOLINENUMBERS 234
JLOGO, INOLOGO e 234
IMAP, INOMAP 235
JOUT o 235
IPMTYPE . . 236
ISECTION 236
ISEGMENTS 237
ISTACK . 237
ISTUB . . 238
ISUBSYSTEM 238
IVERBOSE 238
IVERSION 239
Chapter 12. Run-Time Options o 240
Syntax ... 240
CHECK . . . e 240
DEBUG 240
ERRCOUNT s 241
FILESYS 241
TRAP 242
UPSI . . 243
Chapter 13. Debugging Techniques 244
Using Source Languageto Debug L 244
Tracing Program Logic (DISPLAY Statements) 244
Handling Input/Output Errors (USE EXCEPTION/ERROR Declaratives) 245
Validating Data (Class Test), 245
Assessing Switch Problems (INITIALIZE or SET Statements) 245
Improving Program Readability (Explicit Scope Terminators) 245
Finding Input/Output Errors (File Status Keys) 246
Generating Information about Procedures (USE FOR DEBUGGING
Declaratives) 246
Using Compiler Options for Debugging 249
The FLAG Option e 249
The NOCOMPILE Option 252
The SEQUENCE Option 252
The XREF Option 252
The MAP Option e 253
The SSRANGE Option 253
The TEST Option e 254
Getting Useful Listing Components 254
A Short Listing—the Bare Minimum 254
A Listing of Your Source Code—for Historical Records 257
Using Your Own Line Numbers 257
Data Map Listing 258

A PROCEDURE DIVISION Listing with Assembler Expansion (LIST Output) . 262

X VisualAge COBOL Programming Guide

A Verb Cross-Reference Listing 262
A Data-Name, Procedure-Name, and Program-Name Cross-Reference Listing 263

Debugging User Exit Modules 267
Debugging Assembler Routines 267
Resolution to Common Problemso 268
System Message SYS1808 268
Part 3. Object-Oriented Programming Topics 269
Chapter 14. Writing Object-Oriented Programs 270
Writing a Class Definition 272
Class IDENTIFICATION DIVISION: Required 272
Class ENVIRONMENT DIVISION: Required 272
Class DATA DIVISION: Optional 273
Class PROCEDURE DIVISION: Optional 274
Complete Class Example 275
Writing a Method Definition L 276
Method IDENTIFICATION DIVISION: Required 276
Method ENVIRONMENT DIVISION: Optional 277
Method DATA DIVISION: Optional 277
Method PROCEDURE DIVISION: Optional 278
Complete Class with Methods Example 280
Writing a Client Definition 285
Client IDENTIFICATION DIVISION: Required 286
Client ENVIRONMENT DIVISION: Required 286
Client DATA DIVISION: Optional 286
Client PROCEDURE DIVISION: Optional 287
Complete Client Example L 289
Writing a Subclass Definitiono 290
Subclass IDENTIFICATION DIVISION: Required 292
Subclass ENVIRONMENT DIVISION: Required 292
Subclass DATA DIVISION: Optional 293
Subclass PROCEDURE DIVISION: Optional 293
Subclass Method IDENTIFICATION DIVISION: Optional 293
Subclass Method ENVIRONMENT DIVISION: Optional 294
Subclass Method DATA DIVISION: Optional 294
Subclass Method PROCEDURE DIVISION: Optional 294
Complete Subclass with Methods Example 294
Writing a Metaclass Definition oo 306
Metaclass IDENTIFICATION DIVISION: Required 307
Metaclass ENVIRONMENT DIVISION: Required 307
Metaclass DATA DIVISION: Optional 308
Metaclass PROCEDURE DIVISION: Optional 308
Metaclass Method IDENTIFICATION DIVISION: Optional 308
Metaclass Method ENVIRONMENT DIVISION: Optional 308
Metaclass Method DATA DIVISION: Optional 308
Metaclass Method PROCEDURE DIVISION: Optional 308
Changes to Class or Subclass Definitons 309

Contents Xi

Changes to the Client Program 309

Complete Metaclass with Methods Example 310
Chapter 15. Using System Object Model (SOM) 317
SOM Interface Repository 317
Accessingthe IR 317
Populatingthe IR 317
SOM Environment Variables oo 318
System Object Model (SOM) Services 319
SOM Methods and Functions 319
SOM Initialization 320
Class Initialization 320
Class Interface Evolution 321
Chapter 16. Using SOM IDL-Based Class Libraries 323
SOM Objects—a Refresher oo 323
SOMIDL e 324
Mapping IDLto COBOL 324
IDL Identifiers 325
IDL Operations 325
IDL Attributes L 326
Common IDL Types 327
Complex TYPES e 332
Argument and Return Value Passing Conventions 335
Operation Example L 342
Other SOM TOpICS o 345
Errors and Exceptions L 345
Initializers 349
If You Need to Look atthe IDL File 350
Memory Management L 352
Helper Routines Source Code 356

Chapter 17. Converting Procedure-Oriented Programs to Object-Oriented

Programs 358
Wrapping a Procedure-Oriented Program 358
Glass-top Coordination 359
Boundary Interface Coordination 359
Required Change to Procedural Code 360
Coexistence 360
Converting a Procedure-Oriented Program 360
Identify Objects 361
Analyze Data Flowand Usage 361
Reallocate Code to Objects, 361
Write the Object-Oriented Code 362
Part 4. Advanced TopiCsS 363
Chapter 18. Porting Applications between Platforms 364

VisualAge COBOL Programming Guide

Getting Mainframe Applications to Compile onthe PC
Choosing the Right Compiler Options
Differences from Mainframe COBOL Language Features
Using the COPY Statement to Help Port Programs

Getting Mainframe Applications to Runonthe PC
Data Representations Causing Run-Time Differences
Environment Differences Affecting Portability
Language Elements Causing Run-Time Differences

Writing PC Code to Run on the Mainframe
Language Features Supported Only by the PC Compiler
Compiler Options Supported Only onthe PC
Names Supported Only onthe PC

Writing Applications That Are Portable between the PC and AIX

Chapter 19. Subprograms
Transferring Control to Another Program
Recursive Calls
Main Programs and Subprograms
Making Calls between COBOL Programs
Structure of Nested Programs
Static, Dynamic, and Run-time Linking
CALL identifier
CALL literal
Making Calls between COBOL and C/C++ Programs
Rules and Guidelines for ILC Applications
Matching Data and Linkages oo
Example - Calling C/C++ Functions from a COBOL Program
Example - C Programs That are Called by and Call COBOL Programs
Example - COBOL Program Called by a C Program
Results of Running COBCALLC

Chapter 20. Data Sharing
PassingData
Describing Arguments in the Calling Program
Describing Parameters in the Called Program
LINKAGE SECTION e
PROCEDURE DIVISION e
Grouping DatatoBe Passed,
Null-Terminated Strings
Using Pointers to Process a Chained List
Using Procedure Pointers
Rules for Using Procedure Pointers
Windows Restriction
Multiple Entry Points on Windows
Passing Return Code Information
RETURN-CODE Special Register
PROCEDURE DIVISION RETURNING
CALL ... RETURNING o o

Contents

Sharing Data Using the EXTERNAL Clause 399

Sharing Files between Programs (EXTERNAL Files) 399
Advantages of EXTERNAL Files 400
Example Using EXTERNAL Files 400

Command Line Arguments 404

Chapter 21. Programming for a DB2 Environment 406

Compiling with the DB2 Co-Processor 406

Options for the DB2 Co-Processor o v v 406
How Options Are Accumulated 407
Package and Bind File Names 407
Ignored Options L 408

SQL INCLUDE Statement 408

COBOL Language Usage with SQL 408

Level of SQL Support 409

Testing the Return Code 409

Chapter 22. Programming for a CICS Environment 410

An Overview of COBOL in a CICS Environment 410
Installing and Running CICS Programs 410

Preparing COBOL Applications to Run under CICS 412
Additional Language Restrictions Lo 412
Selecting Compiler Options 413
Selecting Run-Time Options 414
Planning for ASCII-EBCDIC Differences 414
System Date under CICS 414
Dynamic Calls under CICS 415
Accessing Btrieve Data 417
Calls between COBOL and C++under CICS 417
Debugging CICS Programs 417

Chapter 23. Open Database Connectivity 418

Introducing ODBC e 418
Background 418
ODBC Driver Manager o v i e 418
Choosing Embedded SQL orODBC 419

Using the ODBC Drivers e 419
On-line Help e 420
Environment-Specific Informationo 420
Connectingtoa Data Source 421
Supported ODBC Functions 422
Error Messages 422

ODBC APIs from COBOL e 423
CALL Interface Convention 423
Using the Supplied Copybooks, 423
Mapping of ODBC C Types v i i i it 425
Passing a Pointer as an Argument 426
Accessing Function Return Values 428

VisualAge COBOL Programming Guide

Testing Bits witha BitMask 429

Null-Terminated Character Strings 430
Setting Licensing Information for ODBC Driver Manager/Driver 430
Sample Program Using Supplied Copybooks 430
Chapter 24. Building Dynamic Link Libraries 439
Static Linking Overview 439
Dynamic Linking Overview 439
Terminology Notes 440
How the Linker Resolves Referencesto DLLs 440
Creatinga DLL e 441
Example of a DLL Source File 441
Module Definition Files 442
Example of a Module Definition File L. 442
Export Files (Windows Only) 442
Coding for CALL identifier 442
Coding for CALL literal 443
Creating an Import Library 444
Sample Program Using Call Resolution by the Linker 445
Compiling and Linking Your DLL L. 445
Creating Object-Oriented DLLS 446
Chapter 25. Creating Module Definition Files 448
Reserved Words 449
Summary of Module Statements L 450
Linker Module Statements Lo 450
BASE 451
CODE e 451
DATA . 453
DESCRIPTION 455
EXETYPE 455
EXPORTS 456
HEAPSIZE 457
IMPORTS 458
LIBRARY . . e 459
NAME . . 460
OLD . . e 461
SEGMENTS e 462
STACKSIZE e 465
STUB . e 465
Chapter 26. Preparing COBOL Programs for Multithreading 467
How Language Elements Are Interpreted in a Multithreaded Environment 468
Working with Run-Unit Scoped Elements 470
Working with Program Invocation Instance Scoped Elements 470
Choosing THREAD for Multithreading Support 470
Language Restrictions under THREAD 470
Recursion with Threading 471

Contents XV

Control Transfer within a Multithreaded Environment
Limitations on COBOL in a Multithreaded Environment

Example of Using COBOL in a Multithreaded Environment . .

Sample Code for the Multithreading Example
Compiling, Linking, and Running the Multithreading Example

Chapter 27. National Language Support Considerations .
Locales and Code Sets Supported
DBCS User-Defined Word Support

Usage Notes

Restrictions on Specific User-Defined Words

DBCS Literal Support
DBCS Data Type Support

DeclaringDBCS Data
DBCS ClassTest
Collating Sequence

Intrinsic Functions with Collating Sequence Sensitivity . . .
Comments
Messages Enabled for NLS L.
Cross-Reference Output Sequence
Locale Sensitivityo

Chapter 28. Pre-initializing the COBOL Run-Time Environment
Initialize Persistent COBOL Environment
Terminate Pre-initialized COBOL Environment
Example of Pre-initializing the COBOL Environment

Chapter 29. Productivity and Tuning Techniques

Simplifying Complex Coding and Other Programming Tasks .
Intrinsic Functionso
Date and Time Callable Services

Optimization
The OPTIMIZE Compiler Option

Other Compiler Features that Affect Optimization

Compiler Options

Chapter 30. The "Year 2000" Problem

Date Processing Problems
Year 2000 Solutions
The Full Field Expansion Solution
The Internal Bridging Solution
The Century Window Solution
The Mixed Field Expansion and Century Window Solution .

The Century Encoding/Compression Solution

The Integer Format Date Solution
Performance Considerations
Performance Comparison
How to Get 4-digit Year Dates

XVi VisualAge COBOL Programming Guide

Chapter 31. Using the Millennium Language Extensions 520

Description e 520
Getting Started 521
Implementing Date Processing 521
Resolving Date-Related Logic Problems 522
Basic Remediation 522
Internal Bridging 523
Full Field Expansion 525
Programming Techniques 527
Date Comparisons 528
Arithmetic Expressions L 529
Other Date Formats 531
Controlling Date Processing Explicitly 532
Eliminating Warning-Level Messages 534
Principles 535
Objectives e 535
Concepts 536
Date Semantics 536
Compatible Dates 536
Treatment of Non-Dates 537
Appendix A. Summary of Differences with Host COBOL 540
Appendix B. System/390 Host Data Type Considerations 543
CICS ACCESS e e e 543
Date and Time Callable Services 543
Floating Point Overflow Exceptions 543
DB2 . . 544
MQSeries 544
Remote File Access L 544
SORT . e 544
Appendix C. Intermediate Results and Arithmetic Precision 545
Calculating Precision of Intermediate Results 545
Fixed-Point Data and Intermediate Results 547
Exponentiations Evaluated in Fixed-Point Arithmetic 547
Truncated Intermediate Results 549
Binary Data and Intermediate Results 549
Intrinsic Functions Evaluated in Fixed-Point Arithmetic 549
Floating-Point Data and Intermediate Results 551
Exponentiations Evaluated in Floating-Point Arithmetic 551
Intrinsic Functions Evaluated in Floating-Point Arithmetic 551
Arithmetic Expressions in Non-arithmetic Statements 552
Appendix D. Complex OCCURS DEPENDING ON 553
Be Sure to Set Values of ODO Objects 553
Complex ODO Example 554
How Length Will be Calculated 554

Contents XVil

XViii

Changes in ODO Object Value
Changing ODO Object with Complex-ODO Index Names
Changing ODO Object with Variable Occurrence Table

Appendix E. Date and Time Callable Services Reference
CEECBLDY—Convert Date to COBOL Integer Format
CEEDATE—Convert Lilian Date to Character Format
CEEDATM—Convert Seconds to Character Timestamp
CEEDAYS—Convert Date to Lilian Format
CEEDYWK—Calculate Day of Week from Lilian Date
CEEGMT—Get Current Greenwich Mean Time
CEEGMTO—Get Offset from Greenwich Mean Time to Local Time
CEEISEC—Convert Integers to Seconds
CEELOCT—Get Current Local Date or Time
CEEQCEN—~Query the Century Window
CEESCEN—Set the Century Window
CEESECI—Convert Seconds to Integers
CEESECS—Convert Timestamp to Seconds
CEEUTC—Get Coordinated Universal Time
IGZEDT4—Get Current Date

Appendix F. Run-Time Messages

Appendix G. Remote DL/l
How Remote DL/l Works
Remote DL/l Utilities
IMS Batch Support
Remote DL/I Server Environment File
Checkpoint and Rollback Support

VisualAge CICS Support (OS/20nly)
Preparing to use Remote DL/I with VisualAge CICS
Preparing COBOL Programs
User Interface Block
Supported Function Codes
Schedulinga PSB
Syncpoint Coordination
Diagnostics Using CBLTDLI
Using a Debugger

Appendix H. Remote DL/l Run-Time Messages

Bibliography
VisualAge COBOL e
Related Publications
COBOL for OS/390 & VM
COBOL Setfor AIX
VisualAge CICS Enterprise Application Development
CICSfor OS/2 e

VisualAge COBOL Programming Guide

CICS for Windows NT e
DB2 . . s
SMARTdata Utilities for OS/2
SMARTdata Utilities for Windows
SOMobjects Developer's Toolkit
Other e

Glossary . . .

Index e

Contents

XiX

Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any of the intellectual property rights
of IBM may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling: (1) the exchange of information between independently created programs and
other programs (including this one) and (2) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation, W92/H3
P.O. Box 49023

San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming |

XX

nterface Information

This VisualAge COBOL Programming Guide is intended to help the user create,
compile, link, and run IBM VisualAge COBOL application programs. This book docu-
ments General-Use Programming Interface and Associated Guidance Information pro-
vided by IBM VisualAge COBOL.

General-Use programming interfaces allow the customer to write programs that obtain
the services of IBM VisualAge COBOL.

© Copyright IBM Corp. 1996, 1998

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other

countries or both:

AD/Cycle
AIX
AIX/6000
AS/400
C/370

CICs

CICS 0s/2
COBOL/370
DATABASE 2
DB2
DFSMS/MVS
DFSORT
IBM

IMS

Language Environment
MQSeries Three Tier
MVS/ESA

Operating System/2
0Ss/2

0S/390

Presentation Manager
RS/6000

System Object Model
System/390
SOMobjects
VisualAge

UNIX is a registered trademark in the United States and other countries licensed exclu-

sively through X/Open Company Limited.

Microsoft, Windows, Windows NT, the Windows 95 logo, and Open Database
Connectivity are trademarks or registered trademarks of Microsoft Corporation.

INTERSOLV is a registered trademark and DataDirect a trademark of INTERSOLYV,

Inc.

MQ/Series is the registered trademark of MQSoftware Inc.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Notices ~ XXI

About This Book

Welcome to IBM VisualAge COBOL!, IBM's new COBOL development environment for
0S/2, Windows 95, and Windows NT! VisualAge COBOL gives you a comprehensive
development environment designed specifically for mission-critical, client/server applica-
tions.

VisualAge COBOL supports local and remote access to DB2, CICS, and VSAM (remote
access only to VSAM using Windows), giving you access to data and transactions
nearly anywhere in your enterprise. And all the IBM COBOL family of solutions support
the high subset of ANSI 85 COBOL functions, so your applications can be ported
across supported platforms, whether they are running on a mainframe, an RS/6000, or
a personal computer with OS/2, Windows 95, or Windows NT.

VisualAge COBOL supports object-oriented extensions, allowing you to develop soft-
ware objects using COBOL and share objects created by other languages, like C++.

VisualAge COBOL provides a complete development environment. The environment
includes an editor, debugger, GUI designer, and performance analyzer, all integrated
with WorkFrame. WorkFrame integrates your tools and files, so selecting a file also

selects the application you need to control the execution of a program, examine and

modify data, and perform many other useful functions.

How This Book Will Help You

This book will help you write, compile, link-edit, and run your VisualAge COBOL pro-
grams. It will also help you define object-oriented classes and methods, invoke
methods, and refer to objects in your programs.

This book assumes experience in developing application programs and some know-
ledge of COBOL. It focuses on using COBOL to meet your programming objectives
and not on the definition of the COBOL language. For complete information on COBOL
syntax, refer to IBM COBOL Language Reference.

There are some differences between host and PC COBOL. For details on language
and system differences between VisualAge COBOL and IBM COBOL for OS/390 & VM,
see Appendix A, “Summary of Differences with Host COBOL” on page 540.

This book also assumes familiarity with OS/2 or Windows and the VisualAge COBOL
development environment. For information on OS/2 or Windows, see your operating
system documentation. To learn about the VisualAge COBOL development environ-
ment, see the Getting Started guide.

1 IBM VisualAge COBOL is referred to as VisualAge COBOL throughout this publication.

XXii © Copyright IBM Corp. 1996, 1998

Abbreviated Terms

Throughout this book, we use these indicators to identify platform-specific information:

Prefix the text with platform-specific text (for example, “Under OS/2..."”)
Add parenthetical qualifications (for example, “(Windows only)”)
Bracket the text with icons. We use the following icons:

Informs you of information specific to OS/2.
Informs you of information specific to Windows.

Abbreviated Terms

Certain terms are used in a shortened form in this book. Abbreviations for the product

nam

es used most frequently in this book are listed alphabetically in Figure 1. Abbrevi-

ations for other terms, if not commonly understood, are shown in italics the first time

they

appear, and are listed in the glossary in the back of this book.

Figure 1. Common Abbreviations in this Book

Term Used Long Form

CiCcs CICS for OS/2 or

CICS for Windows NT or
VisualAge CICS Enterprise Application Development

DB2

Database 2

0Ss/2

Operating System/2

SOM

System Object Model

STL

Standard Language file system

In addition to these abbreviated terms, the term “COBOL 85 Standard” is used in this
book to refer to the combination of the following standards:

The

1ISO 1989:1985, Programming languages - COBOL

ISO 1989/Amendment 1, Programming Languages - COBOL - Amendment 1:
Intrinsic function module

X3.23-1985, American National Standard for Information Systems - Programming
Language - COBOL

X3.23a-1989, American National Standard for Information Systems - Programming
Language - Intrinsic Function Module for COBOL

two ISO standards are identical to the American National Standards.

About This Book XXiii

Syntax Notation

Syntax Notation

XXiV

Throughout this book, syntax for the compiler options is described using the structure
defined below.

¢ Read the syntax diagrams from left to right, from top to bottom, following the path

of the line. The following table shows the meaning of symbols at the beginning
and end of syntax diagram lines.

Symbol Indicates

»— The syntax diagram starts here

—> The syntax diagram is continued on the next line

-— The syntax diagram is continued from the previous line
—r The syntax diagram ends here

Diagrams of syntactical units other than complete statements start with the »—
symbol and end with the — symbol.

¢ Required items appear on the horizontal line (the main path).

»»>—STATEMENT—required item

e Optional items appear below the main path.

A\
A

»»>—STATEMENT
|—opt1’ona1 1'tem—I

¢ When you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

A\
A

»—STATEMENT—Er‘equired choice 1
required choice 2—I

If choosing one of the items is optional, the entire stack appears below the main
path.

\ 4
A

\ 4
A

optional choice 1

»»>—STATEMENT t
optional choice 2

e An arrow returning to the left above the main line indicates an item that can be
repeated.

»—STATEMENT—LrepeataMe item |

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

VisualAge COBOL Programming Guide

A\
A

How Examples Are Shown

e Keywords appear in uppercase letters (for example, PRINT). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example, item).
They represent user-supplied names or values.

¢ If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

¢ Use at least one blank or comma to separate parameters.

How Examples Are Shown

This book shows numerous examples of sample COBOL statements, program frag-
ments, and small programs to help illustrate the concepts being discussed. The exam-
ples of program code are written in lowercase, uppercase, or mixed case to
demonstrate that you can write your programs in any of these three cases.

Where it helps to more clearly separate the examples from the explanatory text, they
are indented, presented in a different font style, or are shown in boxes.

Names of files, COBOL keywords, commands, and options appearing in text are gener-

ally shown in SMALL UPPER CASE, unless they are mixed-case, in which case they are
presented in a different font style.

About This Book XXV

Summary of Changes

This section lists the key changes that have been made to the IBM VisualAge COBOL
product since Version 2.0. Those documented in this publication have an associated
page reference for your convenience. The latest technical changes are marked in the
text by a change bar in the left margin.

Major Changes in Version 2.1

e New compiler option -host to facilitate setting of all host data compiler options
(“Options Supported by cob2” on page 142).

¢ New compiler option ANALYZE to check the syntax of embedded SQL and CICS
statements (“ANALYZE” on page 162).

¢ Host DBCS, removal of restriction “CHAR (EBCDIC) does not apply to DBCS
data.,” (removed from Appendix B, “System/390 Host Data Type Considerations”
on page 543).

e Default EBCDIC code page based on run time locale, (“Locale Sensitivity” on
page 486 and “Definitions of COBOL Environment Variables” on page 135).

e Enable Japanese Era and Chinese Era support in the date/time callable services.

e Remote workstation DL/I calls (Appendix G, “Remote DL/I" on page 638)
(Windows only).

e Extension of the ACCEPT statement to cover the recommendation in the Working
Draft for Proposed Revision of ISO 1989:1985 Programming Language COBOL
(“How to Get 4-digit Year Dates” on page 518).

¢ New intrinsic date functions.

Major Changes in Version 2.2

I

| ¢ The millennium language extensions, enabling compiler-assisted date processing
| for dates containing 2-digit and 4-digit years (Chapter 31, “Using the Millennium
| Language Extensions” on page 520).
I
I
I
I

¢ Remote workstation DL/I calls for OS/2 (Appendix G, “Remote DL/I" on page 638).
e Host data type support for DB2 and the date and time callable services.

e Support for Version 3 of the Open Database Connectivity (ODBC) interface
(Chapter 23, “Open Database Connectivity” on page 418).

XXVi © Copyright IBM Corp. 1996, 1998

Part 1. Coding Your Program

This part of the book explains how to do various programming tasks using the COBOL
language. It discusses the most common topics, starting with basic ones, then building
on those in succeeding chapters. Topics related to object-oriented COBOL are in

Part 3, “Object-Oriented Programming Topics” on page 269. More complex program-

ming topics are treated in Part 4, “Advanced Topics” on page 363.

For complete details on the COBOL language, see IBM COBOL Language Reference.

Chapter 1. Introduction to COBOL Terms 2
Chapter 2. Program Structure Lo 12
Chapter 3. Numbers and Arithmetic 29
Chapter 4. Handling Tables 47
Chapter 5. Selection and Iteration, 65
Chapter 6. String Handling 74
Chapter 7. Processing Files 91
Chapter 8. Error Handling 121

© Copyright IBM Corp. 1996, 1998 1

COBOL Terms for Data

Chapter 1. Introduction to COBOL Terms

This chapter is intended to help the non-COBOL programmer relate terms used in other
programming languages to COBOL terms.

This chapter introduces COBOL fundamentals for:

e Variables, Structures, Literals, and Constants
e Assignment and Terminal Interaction

e Built-In (Intrinsic) Functions

e Tables and Pointers

Variables, Structures, Literals, and Constants

Most high-level programming languages share the concept of data being represented
as variables, structures, literals, and constants. This section describes how these data
representations are defined in COBOL. You place all data-item definitions in the DATA
DIVISION of your program.

Variables
In COBOL you refer to a variable by a data-name. For example, if a customer name is
a variable in your program, code:

Data Division.

01 Customer-Name Pic X(20).
01 Original-Customer-Name Pic X(20).

Procedure Division.

Move Customer-Name to Original-Customer-Name

The data used in a COBOL program can be divided into three classes: alphabetic,
alphanumeric, and numeric. For complete details on the classes and categories of data
and the PICTURE clause rules for defining data, see IBM COBOL Language Reference.

Data Structure
Related data items are often parts of a larger, hierarchical data structure. A data item
that is composed of subordinated data items is called a group item. An elementary
data item is a data item that does not have any subordinate items. A record can be
either an elementary data item or a group of data items.

2 © Copyright IBM Corp. 1996, 1998

Literals

COBOL Terms for Data

Group Items Example

In the following example, Customer-Record is a group item composed of two group
items (Customer-Name and Part-Order) both of which contain elementary data items.
You can refer to the entire group item or to parts of the group item as shown in the
MOVE statements in the Procedure Division.

Data Division.
File Section.
FD Customer-File
Record Contains 45 Characters.
01 Customer-Record.
05 Customer-Name.

10 Last-Name Pic x(17).
10 Filler Pic x.
10 Initials Pic xx.

05 Part-Order.
10 Part-Name Pic x(15).
10 Part-Color Pic x(10).

Working-Storage Section.
01 Orig-Customer-Name.

05 Surname Pic x(17).
05 Initials Pic x(3).
01 Inventory-Part-Name Pic x(15).

Procedure Division.

Move Customer-Name to Orig-Customer-Name
Move Part-Name to Inventory-Part-Name

When you know the value you want to use for a data item, you don't need to define or
refer to a data-name; instead use a literal representation of the data value in the Proce-
dure Division.

For example, you might want to prepare an error message for an output file:

Move “Invalid Data” To Customer-Name

Or, you might want to compare a data item to a certain number:
01 Part-number Pic 9(5).

If Part-number = 03519 then display "Part number was found"

In these examples, "Invalid Data" is a non-numeric literal, and 03519 is a numeric
literal.

Chapter 1. Introduction to COBOL Terms 3

Assigning Values to Data

Constants
COBOL does not define a construct specifically for constants, but most programmers
define a data item with an initial VALUE (as opposed to initializing a variable using the
INITIALIZE statement):

Data Division.
01 Report-Header pic x(50) value "Company Sales Report".

01 Interest pic 9v9999 value 1.0265.

Figurative Constants

Certain commonly used constants and literals are provided as reserved words, called
figurative constants. Because they represent fixed values, figurative constants do not
require a data definition: ZERO, SPACE, HIGH-VALUE, LOW-VALUE, QUOTE, NULL, ALL.

For example: Move Spaces To Report-Header.

Assignment and Terminal Interactions

After you have defined a data item, you can assign a value to it at any time. Assign-
ment takes many forms in COBOL, depending on the purpose behind the assignment:

Figure 2. How to Assign Values to a Data ltem

What You Want to Do How to Do It

Assign values to a data item One of these ways:

or large data area INITIALIZE statement

MOVE statement

STRING or UNSTRING statement

VALUE clause (To set data items to the values you want
them to have when the program is in its initial state.)

Replace characters or groups INSPECT statement

of characters in a data item

Receive input values from the ACCEPT statement

terminal or a file

Receive input values from a READ (or READ INTO) statement
file

Assign the results of arith- COMPUTE statement

metic

Initializing a Variable (INITIALIZE Statement)
The following examples illustrate some uses of the INITIALIZE statement. (The symbol b
indicates a space.)

4 VisualAge COBOL Programming Guide

Assigning Values to Data

Initializing a Variable to Blanks or Zeroes
INITIALIZE identifier-1

IDENTIFIER-1 IDENTIFIER-1 IDENTIFIER-1
PICTURE Before After

9(5) 12345 00000

X(5) AB123 bbbbb

99XX9 12AB3 bbbbb
XXBX/XX ABbC/DE bbbb/bb
**99.9CR 1234.5CR *%00.0bb

A(5) ABCDE bbbbb
+99.99E+99 +12.34E+02 +00.00E+00

Initializing a Right-Justified Field

01 ANJUST PIC X(8) JUSTIFIED RIGHT.
01 ALPHABETIC-1 PIC A(4) VALUE "ABCD".

INITIALIZE ANJUST
REPLACING ALPHANUMERIC DATA BY ALPHABETIC-1

ALPHABETIC-1 ANJUST Before ANJUST After

ABCD bbbbbbbb bbbbABCD

Initializing an Alphanumeric Variable

01 ALPHANUMERIC-1 PIC X.
01 ALPHANUMERIC-3 PIC X(1) VALUE "A".

INITIALIZE ALPHANUMERIC-1
REPLACING ALPHANUMERIC DATA BY ALPHANUMERIC-3

ALPHANUMERIC-3 ALPHANUMERIC-1 ALPHANUMERIC-1
Before After
A y A

Initializing a Numeric Variable

01 NUMERIC-1 PIC 9(8).
01 NUM-INT-CMPT-3 PIC 9(7) COMP VALUE 1234567.

INITIALIZE NUMERIC-1
REPLACING NUMERIC DATA BY NUM-INT-CMPT-3

Chapter 1. Introduction to COBOL Terms

Assigning Values to Data

NUM-INT-CMPT-3 NUMERIC-1 NUMERIC-1
Before After
1234567 98765432 01234567

Initializing an Edited Alphanumeric Variable

01 ALPHANUM-EDIT-1 PIC XXBX/XXX.
01 ALPHANUM-EDIT-3 PIC X/BB VALUE "M/bb".

INITIALIZE ALPHANUM-EDIT-1
REPLACING ALPHANUMERIC-EDITED DATA BY ALPHANUM-EDIT-3

ALPHANUM-EDIT-3 ALPHANUM-EDIT-1 ALPHANUM-EDIT-1

Before After
M/bb ABHC/DEF M/bb /bbb

Initializing a Structure (INITIALIZE Statement)
You can reset the values of all subordinate items in a group by applying the INITIALIZE
statement to the group item. However, it is inefficient to initialize an entire group unless
you really need all the items in the group initialized.

The following example shows how you can reset fields in a transaction record produced
by a program to spaces and zeros. (Notice that the fields are not identical in each
record produced.)

01 TRANSACTION-OUT.

05 TRANSACTION-CODE PIC X.
05 PART-NUMBER PIC 9(6).
05 TRANSACTION-QUANTITY PIC 9(5).

05 PRICE-FIELDS.
10 UNIT-PRICE
10 DISCOUNT
10 SALES-PRICE

PIC 9(5)Vv9(2).
PIC V9(2).
PIC 9(5)v9(2).

INITIALIZE TRANSACTION-OUT

TRANSACTION-OUT Before TRANSACTION-OUT After

Record 1 R001383000240000000000000000 H000000000000000000000000000
Record 2 R001390000480000000000000000 H000000000000000000000000000
Record 3 5001410000120000000000000000 H000000000000000000000000000
Record 4 C001383000000000425000000000 H000000000000000000000000000
Record 5 €002016000000000000100000000 H000000000000000000000000000

Note: The symbol b represents a blank space.

6 VisualAge COBOL Programming Guide

Assigning Values to Data

Assigning Values to Variables or Structures (MOVE Statement)
Use the MOVE statement to assign values to variables or structures. For example, the
following statement:

Move Customer-Name to Orig-Customer-Name

assigns the contents of the variable Customer-Name to the variable Orig-Customer-Name.
If Customer-Name were longer than Orig-Customer-Name, truncation would occur on the
right. If it were shorter, the extra character positions on the right would be filled with
spaces.

When you move a group item to another group item, be sure the subordinate data
descriptions are compatible. The compiler performs all MOVE statements regardless of
whether items fit, even if that means a destructive overlap could occur at run time. In
such cases, you'll get a warning message when you compile your program.

Assigning Values to Numeric Variables

For variables containing numbers, moves can be more complicated because there are
several ways numbers are represented. In general, the algebraic values of humbers
are moved if possible (as opposed to the digit-by-digit move performed with character
data):

01 Item-x Pic 999v9.

Move 3.06 to Item-x

This move would result in Item-x containing the value 3.0, represented by 0030.

Assigning Terminal/File Input to Variables (ACCEPT Statement)
Another way to assign a value to a variable is to read the value from the terminal or a
file. To enter data from the terminal, first associate the terminal with a mnemonic-name
in the SPECIAL-NAMES Paragraph:

Environment Division.
Configuration Section.
Special-Names.
Console is Names-Input.
Then the statement:
Accept Customer-Name From Names-Input

assigns the line of input entered at the terminal to the variable Customer-Name.

To read from a file instead of the terminal, either:
¢ Change
Console is Names-Input
to

device is Names-Input

Chapter 1. Introduction to COBOL Terms 7

Assigning Values to Data

in the above example, where device is any valid system device (for example,
SYSIN).

-0r-

e Set the environment variable CONSOLE to a valid file specification using the SET
command. For example:

SET CONSOLE=\myfiles\myinput.rpt

Note that the environment variable must be the same as the system device used.
In the above example, the system device is Console, but the method of assigning
an environment variable to the system device name is supported for all valid
system devices. For example, if the system device is SYSIN, the environment vari-
able which must be assigned a file specification is SYSIN also).

For more information on setting environment variables, see “Setting Environment
Variables” on page 134.

Displaying Data Values on the Terminal/File (DISPLAY Statement)
In addition to assigning a variable a value read in from the terminal or a file, you can
also display the value of a variable on the terminal or write it to a file. For example, if
the contents of the variable Customer-Name is JOHNSON, then the following statement:

Display “No entry for surname '” Customer-Name “' found in the file.”
will display this message on the terminal:
No entry for surname 'JOHNSON' found in the file.

To write data to a destination other than the system logical output unit, the UPON
clause must be used on the DISPLAY statement. For example:

Display "Hello" UPON SYSOUT

writes to the system logical output device, or to the destination specified in the
SYSOUT environment variable, if defined.

Assigning Arithmetic Results
When assigning a number to a variable, it is sometimes better to use the COMPUTE
statement instead of the MOVE statement. For example, the following two statements
accomplish the same thing in most cases:

Move w to z
Compute z = w

However, when significant left-order digits would be lost in execution, the COMPUTE
statement can detect the condition and allow you to handle it. The MOVE statement
carries out the assignment with destructive truncation.

When you use the ON SIZE ERROR phrase of the COMPUTE statement, the compiler
generates code to detect a size-overflow condition. If the condition occurs, the code in
the ON SIZE ERROR phrase is performed, and the content of z remains unchanged. If
the ON SIZE ERROR phrase is not specified, the assignment is carried out with trun-
cation. There is no ON SIZE ERROR support for the MOVE statement.

8 VisualAge COBOL Programming Guide

Introducing Intrinsic Functions

Assigning Results of Computations (COMPUTE Statement)
The COMPUTE statement is also used to assign the result of an arithmetic expression
(or intrinsic function) to a variable. For example:

Compute z = y + (x ** 3)
Compute x = Function Max(x y z)

For information on intrinsic functions, see the IBM COBOL Language Reference.

Built-in (Intrinsic) Functions

Some high-level programming languages have built-in functions that you can reference
in your program as if they were variables having defined attributes and a predetermined
value. In COBOL, these are called intrinsic functions; they provide various string- and
number-manipulation capabilities.

Introduction to Intrinsic Functions
The groups of highlighted words in the following examples are referred to as function-
identifiers. A function-identifier is the combination of the COBOL reserved word FUNC-
TION followed by a function-name (such as Max), followed by any arguments to be
used in the evaluation of the function (such as x, v, 2):

Unstring Function Upper-case(Name) Delimited By Space Into Fname Lname

Compute A = 1 + Function Logl0(x)

Compute M = Function Max(x y z)

A function-identifier represents both the function's invocation and the data value
returned by the function. Because it actually represents a data item, a function-
identifier can be used in most places in the Procedure Division where a data item
having the attributes of the returned value can be used.

Because the value of an intrinsic function is derived automatically at the time of refer-
ence, you do not need to define functions in the Data Division. Define only the non-
literal data items that you use as arguments. Figurative constants are not allowed as
arguments.

Using Function References in Other Contexts
Function-identifiers are loosely referred to in this book as function references. Whereas
the COBOL word FUNCTION is a reserved word, the function-names are not reserved;
you can use them in other contexts, such as for the name of a variable, and without
references to a function.

For example, you could use SQRT to invoke an intrinsic function and/or to name a vari-
able in your program:

Chapter 1. Introduction to COBOL Terms 9

Introducing Intrinsic Functions

Working-Storage Section.

01 x Pic 99 value 2.
01 vy Pic 99 value 4.
01 z Pic 99 wvalue 0.

01 Sqrt Pic 99 value 0.

Compute Sqrt = 16 ** .5
Compute z = x + Function Sqrt(y)

Types of Intrinsic Functions
A function-identifier represents a value that is either a character string (alphanumeric
data class) or a number (numeric data class) depending on the type of function. The
functions MAX, MIN, DATEVAL, and UNDATE can return either type of value depending
on the type of arguments you supply.

Three functions, DATEVAL, UNDATE, and YEARWINDOW are provided with the
millennium language extensions to assist with manipulationg and converting windowed
date fields. For details on the millennium language extensions, see Chapter 31, “Using
the Millennium Language Extensions” on page 520. The three functions are described
individually in IBM COBOL Language Reference.

Numeric intrinsic functions are further classified according to the type of numbers they
return. See the IBM COBOL Language Reference for more details.

Nesting Functions
Functions can reference other functions as arguments as long as the results of the
nested functions meet the requirements for the arguments of the outer function. For
example:

Compute x = Function Max((Function Sqrt(5)) 2.5 3.5)

In this case, Function Sqrt(5) returns a numeric value. Thus, the three arguments to
the MAX function are all numeric, which are allowable argument types for this function.

Some of the examples in the next three chapters show nesting of functions.

Substrings of Function-Identifiers
You can include a substring specification (reference modifier) in your function-identifier
for alphanumeric functions.

Arguments to Intrinsic Functions
The ALL subscript, which enables you to easily reference all of the elements of an array
as function arguments, and allowable types of function arguments are discussed in IBM
COBOL Language Reference.

10 visualAge COBOL Programming Guide

Arrays and Pointers

Arrays and Pointers

In COBOL, arrays are called tables. The language constructs available for representing
and handling tables are discussed in Chapter 4, “Handling Tables” on page 47.

Pointers
Pointer data items can contain virtual storage addresses. You define them explicitly
with the USAGE IS POINTER clause in the Data Division or implicitly as ADDRESS OF
special registers.

Pointer data items can be:

¢ Passed between programs using the CALL ... BY REFERENCE statement
¢ Moved to other pointers using the SET statement

e Compared to other pointers for equality using a relation condition

¢ Initialized to contain an invalid address, using VALUE IS NULL

Use pointer data items to:

e Accomplish limited base addressing, particularly if you want to pass and receive
addresses of a variably located record area.

¢ Handle a chained list.

Procedure Pointers
A procedure pointer is a pointer to an entry point. Define the entry address for a proce-
dure entry point with the USAGE IS PROCEDURE-POINTER clause in the Data Divi-
sion.

Chapter 1. Introduction to COBOL Terms 11

IDENTIFICATION DIVISION

Chapter 2.

Program Structure

A COBOL program consists of four divisions, each with a specific logical function. Only
the IDENTIFICATION DIVISION is required.

e The IDENTIFICATION DIVISION, discussed on page 12.
e The ENVIRONMENT DIVISION, discussed on page 13.
e The DATA DIVISION, discussed on page 18.
¢ The PROCEDURE DIVISION, discussed on page 22.
To define a COBOL class or method, you need to define some divisions differently than

you would for a program. For detail on the differences, see “Writing a Class Definition”
on page 272 or “Writing a Method Definition” on page 276.

IDENTIFICATION DIVISION

Use the IDENTIFICATION DIVISION to hame your program and to optionally give other
identifying information. For example:

Identification Division.

Program-ID. Helloprog.

Author. A. Programmer.

Installation. Computing Laboratories.
Date-Written. 08/18/1997.
Date-Compiled. 02/27/1998.

You can use the optional AUTHOR, INSTALLATION, DATE-WRITTEN, and DATE-COMPILED
paragraphs for descriptive information about your program. The data you enter on the
DATE-COMPILED paragraph is replaced with the latest compilation date.

PROGRAM-ID Paragraph

12

Use the PROGRAM-ID paragraph to name your program. The program name you
assign is used in these ways:

e Other programs use the name to call your program.

e The name appears in the header on each page, except the first page, of the
program listing generated when the program is compiled. (See “Changing Header
of Source Listing” on page 13 for details.)

Marking Programs as RECURSIVE
Code the RECURSIVE attribute on the PROGRAM-ID clause so your program can be
recursively re-entered while a previous invocation is still active.

RECURSIVE can be coded only on the outermost program of a compilation unit. Neither
programs containing nested subprograms nor nested subprograms can be recursive.

© Copyright IBM Corp. 1996, 1998

ENVIRONMENT DIVISION

Marking Programs as COMMON

Use the COMMON attribute with the PROGRAM-ID clause so your program can be called
by the containing program or by any program in the containing program. However, the
COMMON program cannot be called by any program contained in itself. Only contained
programs can have the COMMON attribute. For more information, see “Structure of
Nested Programs” on page 373.

Marking Programs as INITIAL
Use the INITIAL attribute to specify that whenever a program is called, it is placed in its
initial state, and any of its contained programs are also placed in their initial states.

Definition of Initial State: Essentially, a program is in its initial state when data items
having VALUE clauses are set to the specified value, changed GO TO statements and
PERFORM statements are set to their initial states, and non-EXTERNAL files are closed.

Avoiding Mismatches Between Names
To avoid mistakes when the name is case-sensitive, verify that the appropriate setting
of the PGMNAME option is used.

Changing Header of Source Listing
The header on the first page of your source statement listing contains the identification
of the compiler and the current release level, plus the date and time of compilation and
the page number. For example:

PP 5639-B92 IBM VisualAge COBOL (0S/2) 2.2 Date 02/27/1998 Time 15:05:19 Page 1

The header indicates the compilation platform used as either OS/2 or Windows.
(Throughout this book, all sample headers show OS/2 as being the compilation plat-
form.)

You can customize the header on succeeding pages of the listing with the compiler-
directing TITLE statement. See the IBM COBOL Language Reference for details of the
TITLE statement.

ENVIRONMENT DIVISION

In the ENVIRONMENT DIVISION you can describe those aspects of your program that are
dependent upon the characteristics of the computing environment in which you are
working.

CONFIGURATION SECTION
You can use the CONFIGURATION SECTION to describe the computer for compiling your
program (in the SOURCE-COMPUTER paragraph); describe the computer for running
your program (in the OBJECT-COMPUTER paragraph); and specify such items as the
currency sign, symbolic characters (in the SPECIAL-NAMES paragraph), and user-

Chapter 2. Program Structure 13

ENVIRONMENT DIVISION

defined classes (in the REPOSITORY paragraph). Figure 3 on page 15 shows a
sample of some of the entries you might include in the CONFIGURATION SECTION.

Specify the Collating Sequence

Using the PROGRAM COLLATING SEQUENCE clause and the ALPHABET clause of the
SPECIAL-NAMES paragraph, you can establish the collating sequence used in the fol-
lowing operations:

¢ Non-numeric comparisons explicitly specified in relation conditions and condition-
name conditions

e HIGH-VALUE and LOW-VALUE settings
e SEARCH ALL
e SORT and MERGE unless overridden by a COLLATING SEQUENCE phrase on the
SORT or MERGE statement.
The sequence you use can be based on one of these alphabets:
¢ NATIVE

NATIVE is the collating sequence specified by the locale setting. The locale setting
refers to the national language locale name in effect at compile time. It is usually
set at installation. See “Locale Sensitivity” on page 486 for more information about
locale sensitivity.

e EBCDIC

e ASCII (use NATIVE if the native character set is ASCIl, STANDARD-12 if it is not).

e |SO 7-bit codes, International Reference Version (use STANDARD-2).

e An alteration of the ASCII sequence that you define in the SPECIAL-NAMES para-

graph.

You can also specify a collating sequence of your own definition.
Caution: If the code page is DBCS the ALPHABET-NAME clause is not allowed.
Specifying Collating Sequence Example: Figure 3 on page 15 shows the ENVIRON-
MENT DIVISION coding used to specify a collating sequence where uppercase and low-
ercase letters are similarly handled for comparisons and for sorting or merging. When
you change the ASCII sequence in the SPECIAL-NAMES paragraph, the overall collating

sequence is affected, not just the collating sequence of the characters included in the
SPECIAL-NAMES paragraph.

2 STANDARD-1 refers to American National Standard X3.4, Code for Information Interchange.

3 ISO 7-bit code, as defined in International 646, 7-Bit Coded Character Set for Information Processing Interchange, International

Reference.

14 visualAge COBOL Programming Guide

ENVIRONMENT DIVISION

Identification Division.

Environment Division.
Configuration Section.
Object-Computer.
Program Collating Sequence Special-Sequence.
Special-Names.

Alphabet Special-Sequence Is
"A" Also "a"
IIBII A'ISO Ilbll
IICII A'ISO "C"
IIDII A'ISO Ildll
IIEII A'Iso Ilell
IIFII A'Iso Ilfll
IIGII A'Iso Ilgll
"H" Also "h"
"I" Also "i"
IIJII A'ISO "j"
IIKII A'ISO Ilkll
IILII A'Iso II'|II
IIMII A'Iso IImII
IINII A'Iso Ilnll
IIOII A'Iso "0"
"P" Also "p"
IIQII A'ISO Ilqll
IIRII A'ISO IIY,II
IISII A'ISO "S"
IITII A'Iso Iltll
IIUII A'Iso Ilull
IIVII A'Iso IIVII
"W" Also "w"
"X" Also "x"
IIYII A'ISO Ilyll
IIZII A'ISO IIZII

Figure 3. Example of an Alternate Collating Sequence

Define Symbolic Characters

Use the SYMBOLIC CHARACTER clause to give symbolic names to any character of the
specified alphabet. For example, to give a name to the plus character (X'2B' in the
ASCII alphabet) code:

SYMBOLIC CHARACTERS PLUS IS 44

Use ordinal position to identify the character; position 1 corresponds to character
X'00'.

Define a User-Defined Class
Use the CLASS clause to give a name to a set of characters listed in the clause. For
example, name the set of digits by coding:

CLASS DIGIT IS "O0" THROUGH "9"

Chapter 2. Program Structure 15

ENVIRONMENT DIVISION

The class name can only be referenced in a class condition. (This user-defined class is
not the same concept as an object-oriented class.)

INPUT-OUTPUT SECTION:
Your IBM VisualAge COBOL programs can process files with line sequential, sequen-

tial, indexed, or relative organization.
Use the FILE-CONTROL and I-O-CONTROL paragraphs to:
¢ Identify and describe the characteristics of your program files.
* Associate your files with the corresponding system file name, directly or indirectly.

e Optionally identify the file system (for example, VSAM or STL file system) associ-
ated with the file. You can also do this at program execution time.

¢ Provide information on how the file is accessed.

FILE-CONTROL Paragraph
The FILE-CONTROL paragraph associates each file in the COBOL program with a phys-

ical file known to your file system. Figure 4 shows an example of a FILE-CONTROL
paragraph for a VSAM indexed file.

FILE-CONTROL Entries for a VSAM Indexed File

SELECT COMMUTER-FILE

ASSIGN TO COMMUTER H

ORGANIZATION IS INDEXED

ACCESS IS RANDOM A

RECORD KEY IS COMMUTER-KEY B

FILE STATUS IS H
COMMUTER-FILE-STATUS
COMMUTER-VSAM-STATUS.

Figure 4. Example of a FILE-CONTROL Paragraph

The SELECT clause chooses a file in the COBOL program to be associated with
a corresponding system file.

2] The ASSIGN clause associates the program's name for the file with the name of
the file as known to the system. COMMUTER may be the system file name or the
name of the environment variable whose value (at run time) is used as the
system file name with optional directory and path names.

Use the ORGANIZATION clause to describe the file's organization. If omitted, the
default is ORGANIZATION IS SEQUENTIAL.

Use the ACCESS MODE clause to define the manner in which the records in the
file will be made available for processing—sequential, random, or dynamic. If
you omit this clause, ACCESS IS SEQUENTIAL is assumed.

16 VisualAge COBOL Programming Guide

ENVIRONMENT DIVISION

B You might have additional statements in the FILE-CONTROL paragraph
depending on the type of file and file system you use. See the IBM COBOL
Language Reference for more information about the FILE-CONTROL paragraph.

Chapter 7, “Processing Files” on page 91 provides a general overview on files and file
processing.

Identifying Files to the Operating System
As stated in the previous example, the ASSIGN clause associates the program's name
for a file with the name of the file as known to the operating system.

You can use either an environment variable, a system file name, a literal, or a data
name in the ASSIGN clause. If you specify an environment variable, its value is evalu-
ated at run time and is used as the system file name with optional directory and path
names.

If you plan to use a file system other than the default file system, you need to select the
file system explicitly, for example, by specifying the file system identifier before the
system file name. For example, if the file MYFILE is a Btrieve file and you use F1 as the
file's name in your program, the ASSIGN clause would be

SELECT F1 ASSIGN TO BTR-MYFILE

Note that this assumes that MYFILE is a system file name and not an environment vari-
able. If MYFILE is an environment variable, then its value will be used. For example, if
it is set to MYFILE=VSAM-YOURFILE, the system file name in the ASSIGN clause becomes
YOURFILE at run time, and the file is treated as a VSAM file, overriding the file system ID
used in ASSIGN clause in the program.

Vary the Input/Output File at Run Time

The file-name you code in your SELECT sentence is used as a constant throughout your
COBOL program, while the name of the file in your SET command can be associated
with a different file at run time.

Changing a file-name in your COBOL program requires changing input/output state-
ments and recompiling the program. In contrast, you can change the assignment-name
in your SET command.

Example of Using Different Input Files: As an example, consider a COBOL program
that might be used in exactly the same way for several different master files. It con-
tains this SELECT sentence:

SELECT MASTER
ASSIGN TO MASTERA

For example, if you are accessing both checking and savings files using the same
MASTER file, you can set the MASTERA environment variable prior to the program exe-
cution as follows:

set MASTERA=d:\accounts\checking

to access the file named checking in the d:\accounts drive and directory and

Chapter 2. Program Structure 17

DATA DIVISION

set MASTERA=d:\accounts\savings
to do the same for the file named savings

The same program can be used to access both checking and savings files by way of
the COBOL MASTER file without source program changes or recompilation.

Environment variable values in effect at the time of the program invocation are used for
associating COBOL file names to the system file names (including any drive and path
specifications).

DATA DIVISION

Define the characteristics of your data and group your data definitions into one of the
sections in the DATA DIVISION:

¢ Define data used in input/output operations in the FILE SECTION (discussed in
“FILE SECTION (Using Data in Input/Output Operations)”).

¢ Define data developed for internal processing:

— To be statically allocated and exist for the life of the run-unit:
WORKING-STORAGE SECTION (discussed on page 19).

— To be allocated each time a program is called and deallocated when the
program ends: LOCAL-STORAGE SECTION (discussed on page 20).

e Describe data from another program in the LINKAGE SECTION (discussed on page
21).

Limits in the DATA DIVISION
The IBM VisualAge COBOL compiler limits the maximum size of data division elements.
For a complete list of these compiler limits, see IBM COBOL Language Reference.

FILE SECTION (Using Data in Input/Output Operations)
Define the data you use in input and output operations in the FILE SECTION:

e Name the input and output files your program will use.

Use the FD entry to give names to your files that the input/output statements in the
PROCEDURE DIVISION can refer to.

Caution: Data items defined in the FILE SECTION are not available to PROCEDURE
DIVISION statements until the file has been successfully opened.

¢ In the record description following the FD entry describe the records and their fields
in the file. The record-name established is the object of WRITE and REWRITE state-
ments.

Function and Use of FILE SECTION Entries
Entries in the FILE SECTION are summarized in Figure 5.

18 VisualAge COBOL Programming Guide

DATA DIVISION

Figure 5. FILE SECTION Entries

Clause

To Define

FD

The file-name to be referred to in PROCEDURE DIVISION input/output state-
ments (OPEN, CLOSE, READ, START, and DELETE). Must match file-name in
the SELECT clause. file-name is associated with the system file through the
assignment-name.

RECORD CONTAINS n

Size of logical records (fixed length)

RECORD IS VARYING

Size of logical records (variable length)

RECORD CONTAINS n TO m

Size of logical records (variable length)

VALUE OF

An item in the label records associated with file. Comments only.

DATA RECORDS

Names of records associated with file. Comments only.

RECORDING MODE

Record type for sequential files.

Sharing Files Using the EXTERNAL and GLOBAL Clauses
Programs in the same run unit can refer to the same COBOL file names. You can also
share physical files without using external or global file definitions in COBOL source

programs.

For example, if you specify:

SELECT F1 ASSIGN TO MYFILE.
SELECT F2 ASSIGN TO MYFILE.

The application has two COBOL file names, but these COBOL files are associated with
one system file.

EXTERNAL: |s used for separately compiled programs. A file that is defined as
EXTERNAL can be referenced by any program in the run unit that describes the file.
See “Sharing Files between Programs (EXTERNAL Files)” on page 399 for an
example.

GLOBAL: s used for programs in a nested, or contained, structure. If a program
contains another program (directly or indirectly), both programs can access a common
file by referencing a GLOBAL file name. For more information on contained programs
and the GLOBAL clause, see “Structure of Nested Programs” on page 373.

WORKING-STORAGE SECTION and LOCAL-STORAGE SECTION

You can write a program that processes data without performing any input/output oper-
ations. All the data would be defined in the WORKING-STORAGE SECTION or
LOCAL-STORAGE SECTION.

Most programs, however, have a combination of input and output file processing and
internal data manipulation; the data files are defined in the FILE SECTION, and the data
developed by the program is defined in the WORKING-STORAGE SECTION or
LOCAL-STORAGE section.

Chapter 2. Program Structure 19

DATA DIVISION

What is the WORKING-STORAGE SECTION?

When a program is invoked, the WORKING STORAGE associated with the program is
allocated. Any data items with VALUE clauses are initialized to the appropriate value at
that time. For the duration of the run-unit, Working-Storage items persist in their last-
used state. Exceptions are:

e A program with INITIAL specified on the PROGRAM-ID.

In this case, WORKING-STORAGE data items are reinitialized each time the program
is entered.

e A subprogram that is called and then cancelled.

In this case, WORKING-STORAGE DATA items are reinitialized on the first reentry
into the program following the CANCEL.

Working-Storage is deallocated at the termination of the run-unit.

What is the LOCAL-STORAGE SECTION?

Local-Storage is allocated each time the program is called and is deallocated when the
program returns via an EXIT PROGRAM, GOBACK, or STOP RUN. Any data items with
VALUE clauses are initialized to the appropriate value each time the program is called.
The value in the data items is lost when the program returns.

Storage Sections Example
The following is an example of a recursive program that uses both Working-Storage
and Local-Storage.

20 VisualAge COBOL Programming Guide

DATA DIVISION

CBL apost,pgmn(lu)

* Recursive Program - Factorials

Identification Division.
Program-Id. factorial recursive.
Environment Division.
Data Division.
Working-Storage Section.
01 numb pic 9(4) value 5.
01 fact pic 9(8) value 0.
Local-Storage Section.
01 num pic 9(4).
Procedure Division.

move numb to num.

if numb = 0
move 1 to fact
else

subtract 1 from numb

call 'factorial'

multiply num by fact
end-if.

display num '! = ' fact.
goback.
End Program factorial.

Figure 6. Storage Sections Example

Recursive
CALL's: Main 1 2 3 4 5

W-S numb 5 4 3 2 1 0
fact 06 0 0 0 0 O

Recursive
GOBACK's: 5 4 3 2 1 Main

W-S numb 06 0 0 0 0 0
fact 1 1 2 6 24 120

LINKAGE SECTION (Using Data from Another Program)
How you share data depends on whether the programs are separately compiled or are
nested.

Chapter 2. Program Structure 21

PROCEDURE DIVISION

Separately Compiled Programs

Many times an application's solution consists of many separately compiled programs
that call and pass data to one another. The LINKAGE SECTION in the called program
describes the data passed from another program. The calling program must use a
CALL ... USING or INVOKE ... USING statement to pass the data. For details on using
data from other programs, see “Passing Data” on page 387.

Nested Programs

An application's solution might consist of nested programs—programs that are con-
tained in other programs. Level-01 LINKAGE SECTION data items can include the
GLOBAL attribute. This allows any nested program that includes the declarations to
access these LINKAGE SECTION data items.

A nested program can also access data items in a sibling program (one at the same
nesting level in the same containing program) that is declared with the COMMON attri-
bute. For more details, see “Structure of Nested Programs” on page 373.

With Recursion or Multithreading
If you compile your program as recursive or with the THREAD option, data defined in the
LINKAGE SECTION may not be accessible between entries.

The ability to address a record in the LINKAGE SECTION is established by:

e Passing an argument to the program and specifying the record in an appropriate
position in the USING phrase in the program or

e Using the Format 5 SET statement.

If you compile your program as recursive or with the THREAD option, the address to that
record is valid for the particular instance of the program invocation. The address to the
record in another execution instance of the same program must be re-established for
that execution instance. Unpredictable results will occur if reference is made to a data
item whose address has not been established.

PROCEDURE DIVISION

In the PROCEDURE DIVISION of a program you code the executable statements that
process the data you have defined in the other divisions. The PROCEDURE DIVISION
contains one or two headers and the logic of your program.

PROCEDURE DIVISION Headers

The PROCEDURE DIVISION begins with the division header and a procedure-name
header. The division header for a program can simply be:

PROCEDURE DIVISION.

Or, you can code your division header to receive parameters with the USING phrase or
to return a value with the RETURNING Phrase.

22 VisualAge COBOL Programming Guide

PROCEDURE DIVISION

USING Phrase

To receive an argument that was passed by reference (the default) or by content, code
the division header for a program like this:

PROCEDURE DIVISION USING dataname

Or this:

PROCEDURE DIVISION USING BY REFERENCE dataname

Take Note: dataname in these examples would need to be defined in the LINKAGE
SECTION of the program.

To receive a parameter that was passed by value, code the division header for a
program like this:

PROCEDURE DIVISION USING BY VALUE dataname

See “Passing Data” on page 387 for more information on BY VALUE.
RETURNING Phrase

To return a value as a result, code the division header like this:
Procedure Division RETURNING dataname2

You can also combine USING AND RETURNING in a PROCEDURE DIVISION header:
Procedure Division USING dataname RETURNING dataname2

Take Note: dataname and dataname?2 in these examples would need to be defined in
the LINKAGE SECTION.

How Logic is Divided in the PROCEDURE DIVISION

The PROCEDURE DIVISION of a program is divided into sections, paragraphs, sen-
tences, and statements:

Section Logical subdivision of your processing logic.

A section can contain several paragraphs.

A section can be the subject of the PERFORM statement.
Paragraph Subdivides a section, procedure, or program.

It contains a set of related statements that provide a function and is one
of the basic building blocks of a structured program. A paragraph can be
the subject of a statement.

Sentence Series of one or more COBOL statements ending with a period.

Many structured programs do not have separate sentences. Each para-
graph can contain one sentence. Using scope terminators instead of
periods to show the logical end of a statement is preferred. Scope termi-
nators, both explicit and implicit, are discussed beginning on page 25.

Chapter 2. Program Structure 23

PROCEDURE DIVISION

Statement Performs a defined step of COBOL processing, such as adding two
numbers.

A statement is a valid combination of words, beginning with a COBOL
verb.

Statements Used in the PROCEDURE DIVISION
In the COBOL language, statements are imperative (indicating unconditional action),
conditional, or compiler-directing.

Imperative and conditional statements can be ended implicitly or explicitly. If you end a
conditional statement explicitly, it becomes a delimited scope statement (which is an
imperative statement).

Imperative Statements

An imperative statement indicates that an unconditional action is to be taken. Exam-
ples are ADD, MOVE, INVOKE, and CLOSE. A full list of imperative statements can be
found in IBM COBOL Language Reference.

Conditional Statements

A conditional statement is either a simple conditional statement (IF, EVALUATE,
SEARCH) or a conditional statement made up of an imperative statement that includes a
conditional phrase or option.

Examples of Conditional Phrases: For example, an arithmetic statement without ON
SIZE ERROR is an imperative statement. But an arithmetic statement with the condi-
tional option ON SIZE ERROR and without a scope terminator is a conditional statement.

The following are examples of conditional statements if they are coded without scope
terminators:

e Data-manipulation statements with ON OVERFLOW.

e CALL statements with ON OVERFLOW.

e 1/O statements with INVALID KEY, AT END, AT END-OF-PAGE.
e RETURN with AT END.

Using the NOT Phrase: For additional program control, the NOT phrase can also be
used with conditional statements. For example, you can provide instructions to be per-
formed when a particular exception does not occur, such as NOT ON SIZE ERROR. The
NOT phrase cannot be used with the ON OVERFLOW phrase of the CALL statement, but
it can be used with the ON EXCEPTION phrase.

Do Not Nest Conditional Statements: An unterminated conditional statement cannot
be contained by (nested within) another statement. Except for nesting statements
within IF statements, nested statements must be imperative statements and must follow
the rules for imperative statements.

24 VisualAge COBOL Programming Guide

PROCEDURE DIVISION

Compiler-Directing Statements

A compiler-directing statement is not part of the program logic. A compiler-directing
statement causes the compiler to take specific action about the program structure,
COPY processing, listing control, control flow, or CALL interface convention.

A description of compiler-directing statements can be found in IBM COBOL Language
Reference. See “Compiler-Directing Statements” on page 202 for usage notes.

Explicit Scope Terminators

Explicit scope terminators end certain conditional and imperative forms of PROCEDURE
DIVISION statements. Use an explicit scope terminator to make a conditional statement
imperative (see “Delimited Scope Statements” on page 26). Or use an explicit scope
terminator to clearly end an imperative statement. Explicit scope terminators are pro-
vided for certain COBOL verbs, such as scope terminator END-IF for the IF verb, and
can be found in IBM COBOL Language Reference.

Example of Using Explicit Scope Terminators

MOVE 0 TO TOTAL
PERFORM UNTIL X = 10
ADD 1 TO TOTAL
IF X =5
DISPLAY "HALFWAY THROUGH"
DISPLAY "TOTAL IS " TOTAL
END-IF
ADD 1 TO X
END-PERFORM
DISPLAY "FINAL TOTAL IS " TOTAL

Implicit Scope Terminators
An implicit scope terminator is a period (.) that ends the scope of all previous state-
ments not yet ended.

Example of Using Implicitly Terminated Statements:

IF CAT
DISPLAY "It is a cat."
ELSE
IF DOG
DISPLAY "It is a dog."
ELSE

DISPLAY "It is not a dog or cat.".

Each of the two periods in the above program fragment end the IF statements, making
the code equivalent to the following example that has explicit scope terminators:

Chapter 2. Program Structure 25

PROCEDURE DIVISION

IF CAT
DISPLAY "It is a cat."
ELSE
IF DOG
DISPLAY "It is a dog."
ELSE
DISPLAY "It is not a dog or cat."
END-IF
END-IF

If you use implicit terminators, it can be unclear where statements end. As a result,
you might end statements unintentionally, changing your program's logic. Explicit scope
terminators make a program easier to understand and prevent unintentional ending of
statements. For example, in the program fragment below, changing the location of the
first period in the first implicit scope example changes the meaning of the code:

IF ITEM = "A"

DISPLAY "VALUE OF ITEM IS " ITEM

ADD 1 TO TOTAL.

MOVE "C" TO ITEM

DISPLAY " VALUE OF ITEM IS NOW " ITEM
IF ITEM = "B"

ADD 2 TO TOTAL.

The two statements:

MOVE "C" TO ITEM
DISPLAY " VALUE OF ITEM IS NOW " ITEM

will be performed regardless of the value of ITEM, despite what the indentation indi-
cates, because the first period terminates the IF statement. For improved program
clarity and to avoid unintentional ending of statements, you should use explicit scope
terminators instead of implicit scope terminators, especially within paragraphs. Use
implicit scope terminators only at the end of a paragraph or the end of the program.

Delimited Scope Statements
A delimited scope statement is a conditional statement ended with an explicit scope
terminator. A delimited scope statement can be used in these ways:

e To delimit the range of operation for a COBOL conditional statement and to explic-
itly show the levels of nesting.

For example, use an END-IF statement instead of a period to end the scope of an
IF statement within a nested IF.

e To code a conditional statement where the COBOL syntax calls for an imperative
statement.

For example, code a conditional statement as the object of an inline PERFORM:

26 VisualAge COBOL Programming Guide

PROCEDURE DIVISION

PERFORM UNTIL TRANSACTION-EOF
PERFORM 200-EDIT-UPDATE-TRANSACTION
IF NO-ERRORS
PERFORM 300-UPDATE-COMMUTER-RECORD
ELSE
PERFORM 400-PRINT-TRANSACTION-ERRORS
END-IF
READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD
AT END
SET TRANSACTION-EOF TO TRUE
END-READ
END-PERFORM

An explicit scope terminator is required for the inline PERFORM statement, but it is
not valid for the out-of-line PERFORM statement.

Rules for Delimited Scope Statements: Because a period implicitly ends the scope
of all previous statements, do not use a period in a delimited scope statement.

In general, a delimited scope statement can be coded wherever an imperative state-
ment is allowed by language rules.

Using Nested Delimited Scope Statements: When nested within another delimited
scope statement with the same verb, each explicit scope terminator ends the statement
begun by the most recently preceding (and as yet unpaired) occurrence of that verb.

Be careful when coding an explicit scope terminator for an imperative statement that is
nested within a conditional statement. Ensure that the scope terminator is paired with
the statement for which it was intended. In the following example, the scope terminator
will be paired with the second READ statement, though the programmer intended it to
be paired with the first.

READ FILE1
AT END
MOVE A TO B
READ FILE2
END-READ

To ensure that the explicit scope terminator is paired with the intended statement, the
preceding example can be recoded in this way:

READ FILE1
AT END
MOVE A TO B
READ FILE2
END-READ
END-READ

Declaratives
Declaratives provide one or more special-purpose sections that are executed when an
exceptional condition occurs.

Chapter 2. Program Structure 27

PROCEDURE DIVISION

Each Declarative Section starts with a USE statement that identifies the function of the
section; the series of procedures that follow specify what actions are to be taken when
the condition occurs. See the IBM COBOL Language Reference for a complete
description of declaratives and Chapter 13, “Debugging Techniques” on page 244 and
“Input/Output Error Handling Techniques” on page 123 for instances of their use.

28 VisualAge COBOL Programming Guide

How COBOL Views Numbers

Chapter 3. Numbers and Arithmetic

This chapter explains how COBOL views numeric data and how you can best represent
numeric data and perform efficient arithmetic operations. The topics are:

e “General COBOL View of Numbers (PICTURE clause).”

¢ “Computational Data Representation (USAGE Clause)” on page 30.
e “Data Format Conversions” on page 35.

¢ “Sign Representation and Processing” on page 37.

e “Checking for Incompatible Data (Numeric Class Test)” on page 37.
¢ “Performing Arithmetic” on page 38.

¢ “Fixed-Point versus Floating-Point Arithmetic” on page 43.

General COBOL View of Numbers (PICTURE clause)

In general, you can view COBOL numeric data in a way similar to character-string
data—as a series of decimal digit positions. However, numeric items can have special
properties, such as an arithmetic sign.

Defining Numeric Items

Define numeric items using the character "9" in the data description to represent the
decimal digits of the number instead of using an "x" like with alphanumeric items:

05 Count-x Pic 9(4) Value 25.
05 Customer-name Pic x(20) Value "Johnson".

You can code up to 18 digits in the PICTURE clause, as well as various other characters
of special significance. The "s" in the following example means that the value is
signed:

05 Price Pic s99v99.

The field can hold a positive or negative value. The "v" indicates the position of an
implied decimal point. Neither "s" nor "v" are counted in the size of the item, nor do
they require extra storage positions, unless the item is coded as USAGE DISPLAY with
the SIGN IS SEPARATE clause. An exception is internal floating point data (COMP-1 or
COMP-2), for which there is no PICTURE clause.

Separate Sign Position (for Portability)

If you plan to port your program or data to a different machine, you might want to code
the sign as a separate digit position in storage:

05 Price Pic S99V99 Sign Is Leading, Separate.

This ensures that the convention your machine uses for storing a non-separate sign will
not cause strange results when you use a machine that uses a different convention.

© Copyright IBM Corp. 1996, 1998 29

How COBOL Stores Your Numbers

Extra Positions for Displayable Symbols (Numeric Editing)
You can also define numeric items with certain editing symbols (such as decimal points,
commas, and dollar signs) to make the data easier to read and understand when dis-
played or printed on reports. For example:

05 Price Pic 9(5)v99.
05 Edited-price Pic $zz,zz9v99.

Move Price To Edited-price
Display Edited-price

If the contents of Price were 0150099 (representing the value 1,500.99), then $
1,500.99 would be displayed after the code is run.

How to Use Numeric-Edited Items as Numbers

Numeric-edited items are classified as alphanumeric data items, not as numbers.
Therefore, they cannot be operands in arithmetic expressions or ADD, SUBTRACT, MUL-
TIPLY, DIVIDE, and COMPUTE statements.

Numeric-edited items can be moved to numeric and numeric-edited items. In the fol-
lowing example, the numeric-edited item is de-edited and its numeric value is moved to
the numeric data item.

Move Edited-price to Price
Display Price

If these two statements were to immediately follow the statements shown in the pre-
vious example, then Price would be displayed as 0150099, representing the value
1,500.99.

For complete information on the data descriptions for numeric data, refer to IBM
COBOL Language Reference.

Computational Data Representation (USAGE Clause)

Control how the computer internally stores your numeric data items by coding the
USAGE clause in your data description entries. The numeric data you use in your
program will be one of the formats available with COBOL:

External decimal (USAGE DISPLAY)

External floating-point (USAGE DISPLAY)

Internal decimal (USAGE PACKED-DECIMAL)

Binary (USAGE BINARY)

Binary (COMP-5).

Internal floating-point (USAGE COMP-1, USAGE COMP-2)

COMP and COMP-4 are synonymous with BINARY, and COMP-3 is synonymous with
PACKED-DECIMAL.

30 VisualAge COBOL Programming Guide

How COBOL Stores Your Numbers

Regardless of what USAGE clause you use to control the computer's internal represen-
tation of the value, you use the same PICTURE clause conventions and decimal value in
the VALUE clause except for floating point data.

External Decimal (USAGE DISPLAY) Items
When you code USAGE DISPLAY or omit the USAGE clause, each position (or byte) of
storage contains one decimal digit. This corresponds to the format used for printing or
displaying output, meaning the items are stored in displayable form.

What USAGE DISPLAY Items Are For

External decimal items are primarily intended for receiving and sending numbers
between your program and files, terminals, and printers. However, it is also acceptable
to use external decimal items as operands and receivers in your program's arithmetic
processing, and it is often convenient to program this way.

Should You Use Them for Arithmetic

If your program performs a lot of intensive arithmetic and efficiency is a high priority,
you might want to use one of COBOL's computational numeric data types for the data
items used in the arithmetic.

The compiler has to automatically convert displayable numbers to the internal represen-
tation of their numeric value before they can be used in arithmetic operations. There-
fore, it is often more efficient to define your data items as computational items to begin
with, rather than as DISPLAY items. For example:

05 Count-x Pic s9v9(5) Usage Comp Value 3.14159.

External Floating-Point (USAGE DISPLAY) Items
Displayable numbers coded in a floating-point format are called external floating-point
items. Like external decimal items, you define external floating-point items explicitly
with USAGE DISPLAY or implicitly by omitting the USAGE clause.

In the following example, Compute-Result is implicitly defined as an external floating-
point item. Each byte of storage contains one character (except for V).

05 Compute-Result Pic -9v9(9)E-99.

The VALUE clause is not allowed in the data description for external floating-point items.
Also, the minus signs (-) do not mean that the mantissa and exponent will always be
negative numbers, but that when displayed the sign will appear as a blank for positive
and a minus sign for negative. If a plus sign (+) were used, positive would be displayed
as a plus sign and negative as a minus sign.

Just as with external decimal numbers, external floating-point numbers have to be con-
verted (automatically by the compiler) to an internal representation of the numeric value
before they can be operated on.

Chapter 3. Numbers and Arithmetic 31

How COBOL Stores Your Numbers

Binary Items

BINARY, COMP, and COMP-4 are synonyms on all platforms. COMP-5 is a hew USAGE
type based on the X/OPEN COBOL specification.

Binary format occupies 2, 4, or 8 bytes of storage and is handled for arithmetic pur-
poses as a fixed-point number with the leftmost bit being the operational sign. For
byte-reversed binary data, the sign bit is the leftmost bit of the rightmost byte.

How Much Storage BINARY Occupies
A PICTURE description with 4 or fewer decimal digits occupies 2 bytes; with 5 to 9
decimal digits, 4 bytes; with 10 to 18 decimal digits, 8 bytes.

Why Use Binary
Binary items can, for example, contain subscripts, switches, and arithmetic operands or
results.

However, you might want to use packed decimal format instead of binary because:

e Binary format might not be as well suited for decimal alignment as packed decimal
format.

e Binary format is not converted to and from DISPLAY format as easily as packed
decimal format.

Truncation of Binary Data (TRUNC Compiler Option)
Use the TRUNC(STD|OPT|BIN) compiler option (described in “TRUNC” on page 195) to
indicate how binary data (BINARY, COMP, and COMP-4) is truncated.

COMP-5 Note: COMP-5 data is truncated according to TRUNC(BIN) regardless of
which suboption of TRUNC you set.

Byte-Reversal of Binary Data (BINARY Compiler Option)
On the PC you sometimes need to be concerned with byte reversal. How binary data
is stored depends on the platform you're running under or the products you're using.

For example, Intel platforms by default store binary data in little-endian format (most
significant digit is on the highest address). System/390 and AIX by default store binary
data in big-endian format (least significant digit is on the highest address).

The BINARY(NATIVE|S390) compiler option (described in “BINARY” on page 163) allows
you to indicate whether binary data types BINARY, COMP, and COMP-4 are to be
stored in big-endian or little-endian format.

COMP-5 is handled as the native binary data format regardless of the
BINARY(NATIVE|S390) option setting.

COMP-5 is the recommended data type to use when interfacing with other languages
(such as C or C++) or other products (such as CICS or DB2) that assume native binary
data formats. However, a SORT or MERGE statement must not contain both big-

32 VisualAge COBOL Programming Guide

How COBOL Stores Your Numbers

endian and little-endian binary keys. That is, if the BINARY(S390) option is in effect and
a SORT or MERGE key is a COMP-5 data item, no other SORT or MERGE key may
be a COMP, BINARY, or COMP-4 data item.

Packed Decimal (PACKED-DECIMAL or COMP-3) Items
Packed decimal format occupies 1 byte of storage for every two decimal digits you
code in the PICTURE description, except that the right-most byte contains only 1 digit
and the sign. Packed decimal format is handled as a fixed-point number for arithmetic
purposes.

Why Use Packed Decimal
Packed decimal format requires less storage per digit than DISPLAY format
requires.

e Packed decimal format might be better suited for decimal alignment than binary
format.

¢ Packed decimal format is converted to and from DISPLAY format more easily than
binary format.

¢ Packed decimal format can, for example, contain arithmetic operands or results.

Floating-Point (COMP-1 and COMP-2) Items
COMP-1 refers to short (single-precision) floating-point format, and COMP-2 refers to
long (double-precision) floating-point format, which occupy 4 and 8 bytes of storage,
respectively.

On the PC, COMP-1 and COMP-2 data items are represented in IEEE format if the
FLOAT(NATIVE) compiler option is in effect. See “FLOAT” on page 180 for additional
information.

A PICTURE clause is not allowed in the data description of floating-point data items,
but you can provide an initial value using a floating-point literal in the VALUE clause:

05 Compute-result Usage Comp-1 Value 06.23E-24.

The characteristics of conversions between floating-point format and other number
formats are discussed in the next section, “Data Format Conversions” on page 35.

Floating-point format is well suited for containing arithmetic operands and results and
for maintaining the highest level of accuracy in arithmetic.

For complete information on the data descriptions for numeric data, see IBM COBOL
Language Reference.

Chapter 3. Numbers and Arithmetic 33

How COBOL Stores Your Numbers

Figure 7. Internal Representation of Numeric ltems—Native Data Types. This table assumes that
the BINARY(NATIVE), CHAR(NATIVE), and FLOAT(NATIVE) compiler options are in effect.

Numeric PICTURE and USAGE and Optional
Type SIGN Clause Value Internal Representation
External PIC S9999 DISPLAY + 1234 31 32 33 34
Decimal - 1234 71 32 33 34
1234 31 32 33 34
PIC 9999 DISPLAY 1234 31 32 33 34
PIC S9999 DISPLAY + 1234 31 32 33 34
SIGN LEADING - 1234 71 32 33 34
PIC S9999 DISPLAY + 1234 2B 31 32 33 34
SIGN LEADING SEPARATE - 1234 2D 31 32 33 34
PIC S9999 DISPLAY + 1234 31 32 33 34 2B
SIGN TRAILING SEPARATE - 1234 31 32 33 342D
Binary PIC S9999 BINARY + 1234 D2 04
ComP - 1234 2E FB
COMP-4
COMP-5 + 1234 D2 04
- 1234 2E FB
PIC 9999 BINARY 1234 D2 04
CoMP
COMP-4
COMP-5 1234 D2 04
Internal PIC S9999 PACKED-DECIMAL + 1234 01 23 4C
Decimal CoMP-3 - 1234 01 23 4D
PIC 9999 PACKED-DECIMAL 1234 01 23 4F
COMP-3
Internal COMP-1 + 1234 00 40 9A 44
Floating - 1234 00 40 9A C4
Point
Internal COMP-2 + 1234 00 00 00 00 00 48 93 40
Floating - 1234 00 00 00 00 00 48 93 CO
Point
External PIC +9(2).9(2)E+99 DISPLAY + 1234 2B 31 32 2E 33
Floating 34 45 2B 30 32
Point

- 1234 2D 31 32 2E 33
34 45 2B 30 32

34 VisualAge COBOL Programming Guide

Data Format Conversions

Figure 8. Internal Representation of Numeric Items—System/390 Host Data Types. This table
assumes that the BINARY(S390), CHAR(EBCDIC), and FLOAT(HEX) compiler options are in effect.

Numeric PICTURE and USAGE and Optional
Type SIGN Clause Value Internal Representation
External PIC S9999 DISPLAY + 1234 F1 F2 F3 C4
Decimal - 1234 F1 F2 F3 D4
1234 F1 F2 F3 C4
PIC 9999 DISPLAY 1234 F1 F2 F3 F4
PIC S9999 DISPLAY + 1234 Cl F2 F3 F4
SIGN LEADING - 1234 D1 F2 F3 F4
PIC S9999 DISPLAY + 1234 4E F1 F2 F3 F4
SIGN LEADING SEPARATE - 1234 60 F1 F2 F3 F4
PIC S9999 DISPLAY + 1234 F1 F2 F3 F4 4E
SIGN TRAILING SEPARATE - 1234 F1 F2 F3 F4 60
Binary PIC S9999 BINARY + 1234 04 D2
Ccomp - 1234 FB 2E
COMP-4
COMP-5 + 1234 D2 04
- 1234 2E FB
PIC 9999 BINARY 1234 04 D2
COMP
COMP-4
COMP-5 1234 D2 04
Internal PIC S9999 PACKED-DECIMAL + 1234 01 23 4C
Decimal COMP-3 - 1234 01 23 4D
PIC 9999 PACKED-DECIMAL 1234 01 23 4F
COMP-3
Internal COMP-1 + 1234 43 4D 20 00
Floating - 1234 C3 4D 20 00
Point
Internal COMP-2 + 1234 43 4D 20 00 00 00 00 00
Floating - 1234 C3 4D 20 00 00 00 00 00
Point
External PIC +9(2).9(2)E+99 DISPLAY + 1234 4E F1 F2 4B F3
Floating F4 C5 4E FO F2
Point - 1234 60 F1 F2 48 F3
F4 C5 4E FO F2

Data Format Conversions

When the code in your program involves the interaction of items with different data

formats, the compiler converts these items:

e Temporarily, for comparisons and arithmetic operations.
¢ Permanently, for assignment to the receiver in a MOVE, COMPUTE, and other

arithmetic statement.

Chapter 3. Numbers and Arithmetic

35

Data Format Conversions

When possible, the compiler performs the move to preserve the numeric “value” as
opposed to a direct digit-for-digit move. (For more information on truncation and pre-
dicting the loss of significant digits, refer to Appendix C, “Intermediate Results and
Arithmetic Precision” on page 545.)

Conversion Takes Time
Conversion generally requires additional storage and processing time because data is
moved to an internal work area and converted before the operation is performed. The
results might also have to be moved back into a work area and converted again.

Conversions and Precision
Conversions between fixed-point data formats (external decimal, packed decimal, and
binary) are completed without loss of precision, as long as the target field can contain
all the digits of the source operand.

Conversions Where Loss of Precision Is Possible

A loss of precision is possible in conversions between fixed-point data formats and
floating-point data formats (short floating-point, long floating-point, and external floating-
point). These conversions happen during arithmetic evaluations that have a mixture of
both fixed-point and floating-point operands. (Because fixed-point and external floating-
point items both have decimal characteristics, reference to fixed-point items in the fol-
lowing examples includes external floating-point items as well, unless stated otherwise.)

When converting from fixed-point to internal floating-point format, fixed-point numbers in
base 10 are converted to the numbering system used internally, base 16.

Although the compiler converts short form to long form for comparisons, zeros are used
for padding the short number.

When a USAGE COMP-1 data item is moved to a fixed-point data item with more than
6 digits, the fixed-point data item will receive only 6 significant digits, and the remaining
digits will be zero.

Conversions that Preserve Precision: If a fixed-point data item with 6 or fewer digits
is moved to a USAGE COMP-1 data item and then returned to the fixed-point data
item, the original value is recovered.

If a USAGE COMP-1 data item is moved to a fixed-point data item of 6 or more digits
and then returned to the USAGE COMP-1 data item, the original value is recovered.

If a fixed-point data item with 15 or fewer digits is moved to a USAGE COMP-2 data
item and then returned to the fixed-point data item, the original value is recovered.

If a USAGE COMP-2 data item is moved to a fixed-point (not external floating-point)

data item of 18 digits and then returned to the USAGE COMP-2 data item, the original
value is recovered.

36 VisualAge COBOL Programming Guide

Numeric Class Test

Conversions that Result In Rounding: If a USAGE COMP-1 data item, a USAGE
COMP-2 data item, an external floating-point data item, or a floating-point literal is
moved to a fixed-point data item, rounding occurs in the low-order position of the target
data item.

If a USAGE COMP-2 data item is moved to a USAGE COMP-1 data item, rounding
occurs in the low-order position of the target data item.

If a fixed-point data item is moved to an external floating-point data item where the
PICTURE of the fixed-point data item contains more digit positions than the PICTURE
of the external floating-point data item, rounding occurs in the low-order position of the
target data item.

Sign Representation and Processing
Sign representation affects the processing and interaction of your numeric data.
Given X'sd', where s is the sign representation and d represents the digit, the valid

sign representations for external decimal (USAGE DISPLAY without the SIGN IS SEP-
ARATE clause) are :

Positive: 0,1,2,3,8,9 A, and B.
Negative: 4,5,6,7,C, D, E, and F.

When the CHAR(NATIVE) compiler option is in effect, signs generated internally are 3 for
positive and unsigned, and 7 for negative.

When the CHAR(EBCDIC) compiler option is in effect, signs generated internally are C
for positive, F for unsigned, and D for negative.

Given X'ds', where d represents the digit and s is the sign representation, the valid
sign representations for internal decimal (USAGE PACKED-DECIMAL) COBOL data
are:

Positive: A, C, E, and F.
Negative: B and D.

Signs generated internally are C for positive, F for unsigned, and D for negative.

Checking for Incompatible Data (Numeric Class Test)

The compiler assumes that the values you supply for a data item are valid for the item's
PICTURE and USAGE clauses and assigns the value you supply without checking for
validity. When an item is given a value that is incompatible with its data description,
references to that item in the PROCEDURE DIVISION will be undefined and your
results will be unpredictable.

Frequently, values are passed into your program and assigned to items that have
incompatible data descriptions for those values. For example, non-numeric data might

Chapter 3. Numbers and Arithmetic 37

Doing Math

be moved or passed into a field in your program that is defined as a numeric item. Or,
perhaps a signed number is passed into a field in your program that is defined as an
unsigned number. In either case, these fields contain invalid data. Ensure that the
contents of a data item conforms to its PICTURE and USAGE clauses before using the
data item in any further processing steps.

How to Do a Numeric Class Test
You can use the numeric class test to perform data validation. For example:

Linkage Section.
01 Count-x Pic 999.

Procedure Division Using Count-x.
If Count-x is numeric then display "Data is good"

The numeric class test checks the contents of a data item against a set of values that
are valid for the particular PICTURE and USAGE of the data item.

Performing Arithmetic
COBOL provides various language features to perform arithmetic:

e ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE statements (discussed in
“COMPUTE and Other Arithmetic Statements”).

e Arithmetic expressions (discussed in “Arithmetic Expressions” on page 39).
¢ Intrinsic functions (discussed in “Numeric Intrinsic Functions” on page 40).

For the complete details of syntax and usage for COBOL language constructs, refer to
IBM COBOL Language Reference.

COMPUTE and Other Arithmetic Statements
The general practice is to use the COMPUTE statement for most arithmetic evaluations
rather than ADD, SUBTRACT, MULTIPLY, and DIVIDE statements. This is because
one COMPUTE statement can often be coded instead of several individual statements.

The COMPUTE statement assigns the result of an arithmetic expression to a data item:
Compute z =a+hb /c*d-e

or to many data items:

Compute x y z=a+b / c*xd-e

When to Use Other Arithmetic Statements
Some arithmetic might be more intuitive using the other arithmetic statements. For
example:

Add 1 To Increment

38 VisualAge COBOL Programming Guide

Doing Math

instead of:

Compute Increment = Increment + 1

Or,

Subtract Overdraft From Balance

instead of:

Compute Balance = Balance - Overdraft

Or,

Add 1 To Increment-1, Increment-2, Increment-3
instead of:

Compute Increment-1 = Increment-1 + 1
Compute Increment-2 = Increment-2 + 1
Compute Increment-3 = Increment-3 + 1

You might also prefer to use the DIVIDE statement (with its REMAINDER phrase) for
division in which you want to process a remainder. The REM intrinsic function also
provides the ability to process a remainder. For an example of the REM function, see
“Mathematics” on page 43.

Arithmetic Expressions
In the examples of COMPUTE shown above, everything to the right of the equal sign
represents an arithmetic expression. Arithmetic expressions can consist of a single
numeric literal, a single numeric data item or a single intrinsic function reference. They
can also consist of several of these items connected by arithmetic operators. These
operators are evaluated in a hierarchic order:

Figure 9. Operator Evaluation

Operator Meaning Order of Evaluation
Unary + or - Algebraic Sign First

*x Exponentiation Second

/or* Division or multiplication Third

Binary + or - Addition or subtraction Last

Operators at the same level are evaluated from left to right; however, you can use
parentheses with these operators to change the order in which they are evaluated.
Expressions in parentheses are evaluated before any of the individual operators are
evaluated. Parentheses, necessary or not, make your program easier to read.

In addition to using arithmetic expressions in COMPUTE statements, you can also use
them in other places where numeric data items are allowed. For example, you can use
arithmetic expressions as comparands in relation conditions:

If (a+b) > (c-d+5) Then...

Chapter 3. Numbers and Arithmetic 39

Doing Math

Numeric Intrinsic Functions
Intrinsic functions can return an alphanumeric or numeric value.

Numeric intrinsic functions:
¢ Return a signed numeric value.
e Are considered to be temporary numeric data items.

e Can be used only in the places in the language syntax where expressions are
allowed.

e Can save you time because you don't have to provide the arithmetic for the many
common types of calculations that these functions cover.

For more information on the practical application of intrinsic functions, including
examples of their usage, refer to “Intrinsic Function Examples” on page 41.

Types of Numeric Functions
Numeric functions are classified into these categories:

Integer Those that return an integer
Floating-Point ~ Those that return a long floating-point value

Mixed Those that return an integer, a long floating-point value, or a fixed-
point number with decimal places, depending on the arguments

The numeric functions available in COBOL under these categories are described in IBM
COBOL Language Reference.

Nesting Functions and Arithmetic Expressions

Numeric functions can be nested; you can reference one function as the argument of
another. A nested function is evaluated independently of the outer function, except
when determining whether a mixed function should be evaluated with fixed-point or
floating-point procedures.

Because numeric functions and arithmetic expressions hold similar status syntactically
speaking, you can also nest an arithmetic expression as an argument to a numeric
function:

Compute x = Function Sum(a b (c / d))

In this example, there are only three function arguments: a, b and the arithmetic
expression (c / d).

ALL Subscripting and Special Registers
Two other useful features of intrinsic functions are the ALL subscript and special
registers:

¢ You can reference all the elements of an array as function arguments by using the
ALL subscript. This feature is used with tables, and examples of its use are shown
under “Processing Table Items (Intrinsic Functions)” on page 63.

40 VisualAge COBOL Programming Guide

Doing Math

¢ The integer-type special registers are allowed as arguments wherever integer argu-
ments are allowed.

Intrinsic Function Examples
You can use intrinsic functions to perform several different kinds of arithmetic, as out-
lined in Figure 10.

Figure 10. Types of Arithmetic that Numeric Intrinsic Functions Handle

Number Han-
dling Date/Time Finance Mathematics Statistics
LENGTH CURRENT-DATE ANNUITY ACOS MEAN
MAX DATE-OF-INTEGER PRESENT-VALUE ASIN MEDIAN
MIN DATE-TO-YYYYMMDD ATAN MIDRANGE
NUMVAL DAY-OF-INTEGER COSs RANDOM
NUMVAL-C DAY-TO-YYYYDDD FACTORIAL RANGE
ORD-MAX INTEGER-OF-DATE INTEGER STANDARD-DEVIATION
ORD-MIN INTEGER-OF-DAY INTEGER-PART VARIANCE
WHEN-COMPILED LOG
YEAR-TO-YYYY LOG10
MOD
REM
SIN
SQRT
SUM
TAN

The following examples and accompanying explanations show intrinsic functions in
each of the categories listed in the preceding table.

General Number-Handling: ~ Suppose you want to find the maximum value of two
prices (represented as alphanumeric items with dollar signs), put this value into a
numeric field in an output record, and determine the length of the output record. You
could use NUMVAL-C (a function that returns the numeric value of an alphanumeric
string) and the MAX function to do this:

01 X Pic 9(2).
01 Pricel Pic x(8) Value "$8000".
01 Price2 Pic x(8) Value "$2000.
01 Output-Record.

05 Product-Name Pic x(20).

05 Product-Number Pic 9(9).

05 Product-Price Pic 9(6).

Procedure Division.
Compute Product-Price =
Function Max (Function Numval-C(Pricel) Function Numval-C(Price2))
Compute X = Function Length(Output-Record)

Additionally, to ensure that the contents in Product-Name are in uppercase letters, you
could use the following statement:

Move Function Upper-case(Product-Name) to Product-Name

Chapter 3. Numbers and Arithmetic 41

Doing Math

Date/Time: The following example shows how to calculate a due date that is 90 days
from today. The first eight characters returned by the CURRENT-DATE function repre-
sent the date in a 4-digit year, 2-digit month, and 2-digit day format (YYYYMMDD). In

the example, this date is converted to its integer value. Then 90 is added to this value,
and the integer is converted back to the YYYYMMDD format.

01 YYYYMMDD Pic 9(8).
01 Integer-Form Pic S9(9).

Move Function Current-Date(1:8) to YYYYMMDD

Compute Integer-Form = Function Integer-of-Date(YYYYMMDD)
Add 90 to Integer-Form

Compute YYYYMMDD = Function Date-of-Integer(Integer-Form)
Display 'Due Date: ' YYYYMMDD

Finance: Business investment decisions frequently require computing the present
value of expected future cash inflows to evaluate the profitability of a planned invest-
ment. The present value of money is its value today. The present value of an amount
that you expect to receive at a given time in the future is that amount which if invested
today at a given interest rate would accumulate to that future amount.

For example, assume a proposed investment of $1,000 produces a payment stream of
$100, $200, and $300 over the next three years, one payment per year respectively.
The following COBOL statements show how to calculate the present value of those
cash inflows at a 10% interest rate:

01 Series-Amtl Pic 9(9)Vv99 Value 100.
01 Series-Amt2 Pic 9(9)Vv99 Value 200.
01 Series-Amt3 Pic 9(9)Vv99 Value 300.
01 Discount-Rate Pic S9(2)V9(6) Value .10.

01 Todays-Value Pic 9(9)Vv99.

Compute Todays-Value =
Function
Present-Value(Discount-Rate Series-Amtl Series-Amt2 Series-Amt3)

The ANNUITY function can be used in business problems that require you to determine
the amount of an installment payment (annuity) necessary to repay the principal and
interest of a loan. The series of payments is characterized by an equal amount each
period, periods of equal length, and an equal interest rate each period. The following
example shows how you could calculate the monthly payment required to repay a
$15,000 loan at 12% annual interest in three years (36 monthly payments, interest per
month = .12/12):

42 VisualAge COBOL Programming Guide

Fixed-Point vs. Floating-Point

01 Loan Pic 9(9)Vv99.
01 Payment Pic 9(9)Vv99.
01 Interest Pic 9(9)Vv99.

01 Number-Periods Pic 99.

Compute Loan = 15000
Compute Interest = .12
Compute Number-Periods = 36
Compute Payment =
Loan * Function Annuity((Interest / 12) Number-Periods)

Mathematics: The following COBOL statement demonstrates how intrinsic functions
can be nested, how arguments can be arithmetic expressions, and how previously
complex mathematical calculations can be simply performed:

Compute Z = Function Log(Function Sqrt (2 * X + 1)) + Function Rem(X 2)

Here, the remainder of dividing X by 2 is found with an intrinsic function instead of
using a DIVIDE statement with a REMAINDER clause.

Statistics: Intrinsic functions also make calculating statistical information on data
easier. Assume you are analyzing various city taxes and want to calculate the mean,
median, and range (the difference between the maximum and minimum taxes):

01 Tax-S Pic 99v999 value .045.
01 Tax-T Pic 99v999 value .02.
01 Tax-W Pic 99v999 value .035.
01 Tax-B Pic 99v999 value .03.
01 Ave-Tax Pic 99v999.
01 Median-Tax Pic 99v999.

01 Tax-Range Pic 99v999.

Compute Ave-Tax = Function Mean(Tax-S Tax-T Tax-W Tax-B)
Compute Median-Tax = Function Median(Tax-S Tax-T Tax-W Tax-B)
Compute Tax-Range = Function Range (Tax-S Tax-T Tax-W Tax-B)

Fixed-Point versus Floating-Point Arithmetic

Many statements in your program might involve arithmetic. For example, each of the
following COBOL statements requires some kind of arithmetic evaluation:

¢ General arithmetic.

compute report-matrix-col = (emp-count ** .5) + 1
add report-matrix-min to report-matrix-max giving report-matrix-tot

¢ Expressions and functions.

compute report-matrix-col = function sqrt(emp-count) + 1
compute whole-hours = function integer-part((average-hours) + 1)

e Arithmetic comparisons.

if report-matrix-col < function sqrt(emp-count) + 1
if whole-hours not = function integer-part((average-hours) + 1)

Chapter 3. Numbers and Arithmetic 43

Fixed-Point vs. Floating-Point

For each arithmetic evaluation in your program—whether it is a statement, an intrinsic
function, an expression, or some combination of these nested within each other—how
you code the arithmetic determines whether it will be floating-point or fixed-point evalu-
ation.

The following discussion explains when arithmetic and arithmetic comparisons are eval-
uated in fixed-point and floating-point. For details on the precision of arithmetic evalu-
ations, see Appendix C, “Intermediate Results and Arithmetic Precision” on page 545.

Floating-Point Evaluations

In general, if your arithmetic evaluation has either of the characteristics listed below, it
will be evaluated by the compiler in floating-point arithmetic:

e An operand or result field is floating-point.

A data item is floating-point if you code it as a floating-point literal, or if you define
it as USAGE COMP-1, USAGE COMP-2, or as external floating-point (USAGE
DISPLAY with a floating-point PICTURE).

An operand that is a nested arithmetic expression or a reference to numeric
intrinsic function results in floating-point when:

— An argument in an arithmetic expression results in floating-point.
— The function is a floating-point function.
— The function is a mixed-function with one or more floating-point arguments.

e An exponent contains decimal places.

This is true if you use a literal that contains decimal places, give the item a
PICTURE containing decimal places, or use an arithmetic expression or function
whose result has decimal places.

An arithmetic expression or numeric function yields a result with decimal places if
any operand or argument—excluding divisors and exponents—has decimal places.

Fixed-Point Evaluations
In general, if your arithmetic operation contains neither of the characteristics listed
above for floating-point, it will be evaluated by the compiler in fixed-point arithmetic. In
other words, your arithmetic evaluations will be handled by the compiler as fixed-point
only if all your operands are given in fixed-point, your result field is defined to be fixed-
point, and none of your exponents represent values with decimal places. Nested arith-
metic expression and function references must represent fixed-point values.

Arithmetic Comparisons (Relation Conditions)
If your arithmetic is a comparison (contains a relational operator), then the numeric
expressions being compared—whether they are data items, arithmetic expressions,
function references, or some combination of these—are really operands (comparands)
in the context of the entire evaluation. This is also true of abbreviated comparisons;
although one comparand might not explicitly appear, both are operands in the compar-
ison. For example, in the following statement:

if (a+d) = (b+e)andc

44 VisualAge COBOL Programming Guide

Fixed-Point vs. Floating-Point

there are two comparisons: (a + d) = (b + e) and (a + d) = c. Although (a + d)
does not explicitly appear in the second comparison, it is nevertheless an operand in
that comparison (and thus, evaluation of (a + d) is influenced by the attributes of c).

Implicit Note: Implicit comparisons (no relational operator used) are not handled as a
unit—the two expressions being compared are treated separately as to whether they
will be evaluated in floating-point or fixed-point. In the following example we actually
have five arithmetic expressions that are evaluated independent of one another's attri-
butes, and then are compared to each other.

Thus, the rules outlined so far for determining whether your evaluation will be done in
fixed-point or floating-point arithmetic apply to your comparison statement as a unit.

evaluate (a + d)
when (b + e) thru c
when (f / g) thru (h * i)

end-evaluate

Your comparison operation (and the evaluation of any arithmetic expressions nested in
your comparison) will be handled by the compiler as floating-point arithmetic if either of
your comparands is a floating-point value or resolves to a floating-point value.

Your comparison operation (and the evaluation of any arithmetic expressions nested in
your comparison) will be handled by the compiler as fixed-point arithmetic if both of
your comparands are fixed-point values or resolve to fixed-point values.

Examples of Fixed-Point and Floating-Point Evaluations
For the examples shown on page 43, if you define the data items in the following
manner:

01 employee-table.
05 emp-count pic 9(4).
05 employee-record occurs 1 to 1000 times
depending on emp-count.

10 hours pic +9(5)e+99.
01 report-matrix-col pic 9(3).
01 report-matrix-min pic 9(3).
01 report-matrix-max pic 9(3).
01 report-matrix-tot pic 9(3).
01 average-hours pic 9(3)vo9.
01 whole-hours pic 9(4).

¢ These evaluations would be done in floating-point arithmetic:

compute report-matrix-col = (emp-count ** .5) + 1
compute report-matrix-col = function sqrt(emp-count) + 1
if report-matrix-tot < function sqrt(emp-count) + 1

Chapter 3. Numbers and Arithmetic 45

Fixed-Point vs. Floating-Point

¢ These evaluations would be done in fixed-point arithmetic:

add report-matrix-min to report-matrix-max giving report-matrix-tot
compute report-matrix-max =

function max(report-matrix-max report-matrix-tot)
if whole-hours not = function integer-part((average-hours) + 1)

46 VisualAge COBOL Programming Guide

Defining a Table

Chapter 4. Handling Tables

A table is a collection of data items that have the same description. It is the COBOL
equivalent to an array of elements. This chapter explains the concepts and coding
techniques necessary for defining, referencing, initializing, searching, and processing
table items, including both fixed-length and variable-length items.

Defining a Table (OCCURS Clause)

You could define table items as separate, consecutive entries in the DATA DIVISION,
but this practice has disadvantages. First, the code does not clearly show the unity of
the items. Second, you cannot take advantage of subscripting and indexing for easy
reference to the table elements. (See “Referring to an Item in a Table” on page 49 for
information on subscripting and indexing.)

Use the COBOL OCCURS clause in the DATA DIVISION entry to define a table, and
you do not need separate entries for repeated data items. The OCCURS clause also
supplies the information necessary for the use of subscripts or indexes. (For more
information on the format of the OCCURS clause, refer to IBM COBOL Language Ref-
erence).

To code a table, give the table a group name and define a subordinate item (the table
element) that is to be repeated n times:
01 table-name.

05 element-name OCCURS n TIMES.

(subordinate items of the table element might follow)

The following figures show how to code tables:

¢ One-Dimensional Table—Figure 11 on page 48
¢ Two-Dimensional Table—Figure 12 on page 48
¢ Three-Dimensional Table—Figure 13 on page 49.

For all the tables, the table element definition (which includes the OCCURS clause) is
subordinate to the group item that contains the table; the OCCURS clause cannot
appear in a level-01 description.

To create tables of more than one dimension, use nested OCCURS clauses. Tables of
up to seven dimensions can be defined using this same method.

One Dimension
To create a one-dimensional table, use one OCCURS clause. For example:

© Copyright IBM Corp. 1996, 1998 47

Defining a Table

COBOL Code Graphic Representation

SAMPLE-TABLE-ONE

01 SAMPLE-TABLE-ONE.

05 TABLE-COLUMNOCCURSS3TIMES.
10 TABLE-ITEM-1 PIC X(2).
10 TABLE-ITEM-2 PIC X(1).

Figure 11. Coding a One-Dimensional Table

SAMPLE-TABLE-ONE is the group item that contains the table. TABLE-COLUMN names the
table element of a one-dimensional table that occurs three times.

Two Dimensions
To create a two-dimensional table, define a one-dimensional table in each occurrence
of another one-dimensional table. For example:

COBOL Code Graphic Representation

SAMPLE-TABLE-TWO

01 SAMPLE-TABLE-TWO.
05 TABLE-ROWOCCURS 2 TIMES.

10 TABLE-COLUMN OCCURS3TIMES.
15 TABLE-ITEM-1 PIC X(2).
15 TABLE-ITEM-2 PIC X(1). ‘ ‘ ‘ ‘ ‘ ‘

Figure 12. Coding a Two-Dimensional Table

SAMPLE-TABLE-TWO is the name of a two-dimensional table. TABLE-ROW is an element of
a one-dimensional table that occurs two times. TABLE-COLUMN is an element of a two-
dimensional table that occurs three times in each occurrence of TABLE-ROW.

Three Dimensions
To create a three-dimensional table, define a one-dimensional table in each occurrence
of another one-dimensional table, which is itself contained in each occurrence of
another one-dimensional table. For example:

48 VisualAge COBOL Programming Guide

Referring to a Table Item

Graphic Representation
COBOL Code

SAMPLE-TABLE-THREE

01 SAMPLE-TABLE-THREE.
05 TABLE-DEPTHOCCURS2TIMES. ‘ ‘ ‘ ‘ ‘ ‘
10 TABLE-ROWOCCURS 2 TIMES.

15 TABLE-COLUMN OCCURS 3 TIMES.
20 TABLE-ITEM-1 PICX(2).
20 TABLE-ITEM-2 PICX(1). ‘ ‘ ‘ ‘ ‘ ‘

Figure 13. Coding a Three-Dimensional Table

In SAMPLE-TABLE-THREE, TABLE-DEPTH is an element of a one-dimensional table that
occurs two times. TABLE-ROW is an element of a two-dimensional table that occurs two
times within each occurrence of TABLE-DEPTH. TABLE-COLUMN is an element of a three-
dimensional table that occurs three times within each occurrence of TABLE-ROW.

Referring to an Item in a Table

Subscripting

A table element has a collective name, but the individual occurrences within it do not
have unique data-names. To refer to them, use the data-name of the table element,
together with the occurrence number, called a subscript, of the desired item within the
element.

The technique of supplying the occurrence number of individual table elements is called
subscripting. See page 49. A related technique, called subscripting using index-names
(indexing) is also available for table references.

An index is a symbol used to locate an item in a table. An index differs from a sub-
script in that an index is a value to be added to the address of a table to locate an item
(the displacement from the beginning of the table). See page 50.

The lowest possible subscript value is 1, which points to the first occurrence of the
table-element. In a one-dimensional table, the subscript corresponds to the row
number. In a two-dimensional table, the two subscripts correspond to the column and
row numbers. In a three-dimensional table, the three subscripts correspond to the
depth, column, and row numbers.

You can use a literal subscript or a data-name for a variable subscript.

Chapter 4. Handling Tables 49

Referring to a Table Item

Literal Subscripts
The following are valid literal subscript references to SAMPLE-TABLE-THREE:

TABLE-COLUMN (2, 2, 1)
TABLE-COLUMN (2 2 1) (The spaces are required for subscripting.)

In the table reference TABLE-COLUMN (2, 2, 1), the first value (2) refers to the second
occurrence within TABLE-DEPTH, the second value (2) refers to the second occurrence
within TABLE-ROW, and the third value (1) refers to the first occurrence within
TABLE-COLUMN

If a subscript is represented by a literal and the subscripted item is of fixed length, then
the compiler resolves the location of the subscripted data item within the table at
compile time.

Variable Subscripts

The following is a valid, variable subscript reference to SAMPLE-TABLE-TWO, (assuming
that SUB1 and SUB2 are data-names containing positive integer values within the range
of the table):

TABLE-COLUMN (SUBL SUB2)

The data-name used as a variable subscript must be described as an elementary
numeric integer data item.

If a data-name is being used as a subscript or qualifier, it cannot itself be subscripted.

If a subscript is represented by a data-name, the code generated for the application
resolves the location at run time. The most efficient format for data used as a variable
subscript is COMPUTATIONAL (COMP) with a PICTURE size of less than five digits.

Relative Subscripts

In relative subscripting, the subscript can be incremented or decremented by a speci-
fied integer amount. Relative subscripting is valid with either literal or variable sub-
scripts. For example:

TABLE-COLUMN (SUBL - 1, SUB2 + 3)

Subscripting Using Index-Names (Indexing)
You can refer to table elements by using a subscript, an index, or both. An index is a
displacement from the start of the table, based on the length of the table element.

To reference a table by an index:

1. Define the index-name for a table in the INDEXED BY clause of the OCCURS
clause in the table definition.

2. Choose direct or relative indexing (described below).

3. Initialize the index-name with a SET, PERFORM VARYING, or SEARCH ALL
statement before using it in a table reference.

50 VisualAge COBOL Programming Guide

Referring to a Table Item

4. Use the index in SET, SEARCH, SEARCH ALL, PERFORM VARYING, or rela-
tional condition statements.

How the Index Value Is Determined
The compiler determines the index of an entry using the following formula:

I=L * (S1)

where:

/ is the index value.
L s the length of a table entry.
S is the subscript (occurrence number) of an entry.

To be valid during execution, an index value must correspond to a table element occur-
rence of not less than 1 nor greater than the highest permissible occurrence number.
This restriction applies to both direct and relative indexing.

Direct Indexing

In direct indexing, the index-name is in the form of a displacement. The value con-
tained in the index is then calculated as the occurrence number minus 1, multiplied by
the length of the individual table entry.

For example:
05 TABLE-ITEM OCCURS 10 INDEXED BY INX-A PIC X(8).

For the fifth occurrence of TABLE-ITEM, the binary value contained in INX-Ais (5-1)* 8
= 32.

Relative Indexing

In relative indexing, the index-name is followed by a space, followed by a + or a -,
followed by another space, followed by an unsigned numeric literal. The literal is con-
sidered to be an occurrence number, and is converted to an index value before being
added to or subtracted from the index-name.

Relative Indexing Example: If you code indexing for SAMPLE-TABLE-THREE as follows:

01 SAMPLE-TABLE-THREE
05 TABLE-DEPTH OCCURS 3 TIMES INDEXED BY INX-A.
10 TABLE-COLUMN OCCURS 4 TIMES INDEXED BY INX-B.
15 TABLE-ROW OCCURS 8 TIMES INDEXED BY INX-C PIC X(8).

a relative indexing reference to:
TABLE-ROW (INX-A + 1, INX-B + 2, INX-C - 1)
causes the following computation of the displacement:

(contents of INX-A) + (256 * 1)
+ (contents of INX-B) + (64 * 2)
+ (contents of INX-C) - (8 = 1)

Chapter 4. Handling Tables 51

Referring to a Table Item

That is,

e Each occurrence of TABLE-DEPTH is 256 characters in length.
e Each occurrence of TABLE-COLUMN is 64 characters in length.
e Each occurrence of TABLE-ROW is 8 characters in length.

More Ways to Use Index References
e An index can be modified using a PERFORM, SEARCH, or SET statement.

e To compare two different occurrences of a table element, use a direct indexing
reference together with a relative indexing reference, or use subscripting, which is
easier to read in your code.

e An index can be shared among different tables. That is, you can use the index
defined with one table to index another table if both table descriptions are identical.
To be identical, the tables must have the same number of occurrences, as well as
occurrences of the same length.

e Store index values in index data items you define with the USAGE IS INDEX
clause. Use the SET statement to assign to an index the value that you stored in
the index data item.

For example, when you read records to load a variable-length table, you can store
the index value of the last record in a data item defined as USAGE IS INDEX.
Then, when you use the table index to look through or process the variable-length
table, you can test for the end of the table by comparing the current index value
with the index value of the last record you stored in the index data item.

Because you're comparing a physical displacement, you can use index data items
only in SEARCH and SET statements or for comparisons with indexes or other
index data items. You cannot use index data items as subscripts or indexes.

Referring to a Substring of a Table Item
Both reference modification and subscripting can be coded for a table element in the
same statement. For example, if you define a table like this:

01 ANY-TABLE.
05 TABLE-ELEMENT PIC X(10)
OCCURS 3 TIMES
VALUE "ABCDEFGHIJ".

the statement
MOVE "??" TO TABLE-ELEMENT (1) (3 :2)

will move the value "??" into table element number 1, beginning at character position
3, for a length of 2.

52 VisualAge COBOL Programming Guide

Putting Values into a Table

So, if ANY-TABLE Tooked ANY-TABLE would look

like this before the change: like this after the change:
ABCDEFGHIJ AB??EFGHIJ
ABCDEFGHIJ ABCDEFGHIJ
ABCDEFGHIJ ABCDEFGHIJ

Putting Values into a Table
Use one of these methods to put values in a table:

¢ Load the table dynamically.
¢ Initialize the table (INITIALIZE statement).
¢ Assign values when you define the table (VALUE clause).

Loading the Table Dynamically
If the initial values of your table are different with each execution of your program, the
table can be defined without initial values, and the changed values can be read into the
table before your program refers to the table.

To load a table, use:

e The PERFORM . .. VARYING statement.
e Either subscripting or indexing.

When reading data to load your table, test to make sure that the data does not exceed
the space allocated for the table. Use a named value giving the item count, rather than
using a literal. Then, if you make the table bigger, you need to change only one value,
instead of all references to a literal.

Initializing the Table (INITIALIZE Statement)

You can also load your table with a value during execution with the INITIALIZE state-
ment. For example, to fill a table with 3s:

INITIALIZE TABLE-ONE REPLACING NUMERIC DATA BY 3.

The INITIALIZE statement cannot load a variable-length table (one that was defined
using OCCURS DEPENDING ON).

Assigning Values When You Define the Table (VALUE Clause)

If your table contains stable values (for example a table that contains the days and
months of the year), set the specific values your table holds when you define it.

Define static values in Working-Storage in one of the these ways:

¢ Initialize each table item individually.

Chapter 4. Handling Tables 53

Putting Values into a Table

¢ Initialize an entire table at the 01 level.
¢ Initialize all occurrences of a given table element to the same value.

Initializing Each Table Item Individually
¢ Describe the table storage area by arranging subordinate data description entries,
setting the initial value of each subordinate entry in a VALUE clause.
e Code a REDEFINES entry to describe the table as a record that contains a
repeating subordinate entry, defined with an OCCURS clause.

For an example of this method, see "Error Flag Table” and “Error Message Table” in
Figure 14 on page 55.

This technique is practical only for small tables. To initialize larger tables, use MOVE,
PERFORM, or INITIALIZE statements, as described above.

Initializing a Table at the 01 Level

Code a level-01 record and assign to it, through the VALUE clause, the contents of the
whole table. Then, in a subordinate level data item, use an OCCURS clause to define
the individual table items.

For example:
01 TABLE-ONE VALUE "1234".
05 TABLE-TWO OCCURS 4 TIMES PIC X.

Initializing a Variable-Size Table: A VALUE clause can also be present on a group
item that contains an OCCURS clause with the DEPENDING ON option. Each subordi-
nate structure that contains the DEPENDING ON option is initialized using the
maximum number of occurrences. If the entire table is defined with the DEPENDING
ON option, all the elements are initialized using the maximum defined value of the
DEPENDING ON object.

In both cases, if the ODO object has a VALUE clause, it is logically initialized after the
ODO subject has been initialized. For example:

01 TABLE-THREE VALUE "3ABCDE".
05 X PIC 9.
05 Y OCCURS 5 TIMES
DEPENDING ON X PIC X.

causes Y(1) to be initialized to A, Y(2) to B,... Y(5) to E, and finally the object of the
ODO (X) is initialized to 3. Any subsequent reference to TABLE-THREE (such as
DISPLAY) would refer to the first 3 elements, Y(1) through Y(3).

Initializing All Occurrences of a Table Element
You can use the VALUE clause on a table element to initialize the element to the indi-
cated value.

As an example, this code:

54 visualAge COBOL Programming Guide

Putting Values into a Table

01 T2.
05 T-0BJ PIC 9 VALUE 3.
05 T OCCURS 5 TIMES DEPENDING ON T-0BJ.
10 X PIC XX VALUE "AA".
10 Y PIC 99 VALUE 19.
10 Z PIC XX VALUE "BB".

causes all the X elements (1 through 5) to be initialized to AA, all the Y elements (1
through 5) to be initialized to 19, and all the Z elements (1 through 5) to be initialized to
BB. T-0BJ is then set to 3.

k ERROR FLAG TABLE *kk
01 Error-Flag-Table Value Spaces.
88 No-Errors Value Spaces.
05 Type-Error Pic X.
05 Shift-Error Pic X.
05 Home-Code-Error Pic X.
05 Work-Code-Error Pic X.
05 Name-Error Pic X.
05 Initials-Error Pic X.
05 Duplicate-Error Pic X.
05 Not-Found-Error Pic X.
05 Address-Error Pic X.
05 City-Error Pic X.
05 State-Error Pic X.
05 Zipcode-Error Pic X.
05 Home-Phone-Error Pic X.
05 Work-Phone-Error Pic X.
05 Home-Jdunction-Error Pic X.
05 Work-Jdunction-Error Pic X.
05 Driving-Status-Error Pic X.

01 Filler Redefines Error-Flag-Table.
05 Error-Flag Occurs 17 Times

Indexed By Flag-Index Pic X.
Hkx ERROR MESSAGE TABLE Hkx
01 Error-Message-Table.
05 Filler Pic X(25) Value
"Transaction Type Invalid".
05 Filler Pic X(25) Value
"Shift Code Invalid".
05 Filler Pic X(25) Value

"Home Location Code Inval.".

Figure 14 (Part 1 of 2). Table with Static Values Defined for Every Table Element

Chapter 4. Handling Tables 55

Putting Values into a Table

05 Filler Pic X(25) Value
"Work Location Code Inval.".

05 Filler Pic X(25) Value
"Last Name - Blanks".

05 Filler Pic X(25) Value
"Initials - Blanks".

05 Filler Pic X(25) Value
"Duplicate Record Found".

05 Filler Pic X(25) Value
"Commuter Record Not Found".

05 Filler Pic X(25) Value
"Address - Blanks".

05 Filler Pic X(25) Value
"City - Blanks".

05 Filler Pic X(25) Value
"State Is Not Alphabetic".

05 Filler Pic X(25) Value
"ZipCode Is Not Numeric".

05 Filler Pic X(25) Value
"Home Phone Number Error".

05 Filler Pic X(25) Value
"Work Phone Number Error".

05 Filler Pic X(25) Value
"Home Junction Is Blanks".

05 Filler Pic X(25) Value
"Work Junction Is Blanks".

05 Filler Pic X(25) Value

"Driving Status Invalid".
01 Filler Redefines Error-Message-Table.
05 Error-Message Occurs 17 Times
Indexed By Message-Index Pic X(25).

Figure 14 (Part 2 of 2). Table with Static Values Defined for Every Table Element

Processing a Table Using Subscripting and PERFORM...VARYING

The procedure shown in Figure 15 processes the entire table shown in Figure 14 on
page 55, using subscripting and the PERFORM...VARYING statement.

Perform
Varying Sub From 1 By 1
Until No-Errors
If Error-Flag (Sub) = Error-On
Move Space To Error-Flag (Sub)
Move Error-Message (Sub) To Print-Message
Perform 260-Print-Report
End-If
End-Perform

Figure 15. Processing the Sample Table, Using Subscripting

56 VisualAge COBOL Programming Guide

Variable-Length Tables

Processing a Table Using Indexing
The procedure shown in Figure 16 processes the entire table, using indexing.

Set Flag-Index To 1
Perform Until No-Errors
Search Error-Flag
When Error-Flag (Flag-Index) = Error-On
Move Space To Error-Flag (Flag-Index)
Set Message-Index To Flag-Index
Move Error-Message (Message-Index) To
Print-Message
Perform 260-Print-Report
End-Search
End-Perform

Figure 16. Processing the Sample Table, Using Indexing

Creating Variable-Length Tables (DEPENDING ON Clause)

If you don't know before execution how many occurrences of a table element there are,
you need to set up a variable-length table definition. To do this, use the OCCURS
DEPENDING ON (ODO) clause. For example:

X OCCURS 1 TO 10 TIMES DEPENDING ON Y
X is the ODO subiject, Y is the ODO object.

The cases to consider when using the ODO clause are:

e ODO object and subject are contained within the same group item, and that item is
a sending field or that item is a receiving field.

e ODO object is outside of the group item that contains the subject.
ODO Object and Subject Contained in Group Item

Whether Maximum Length or Actual Length Is Used

If a group item is not complex ODO, contains both the subject and object of the ODO,
and it is a receiving item, then the maximum length of the item is used. In this situation
it is not necessary to set the value of the ODO object before a reference is made.

If the receiving item is followed by a data-item which is in the same record but is not
subordinate to the receiver (is complex ODO), then the actual length is used and a
compiler message is issued to inform you that the actual length, not the maximum, will
be used. In this situation it is necessary to set the value of the ODO object before any
reference to the item.

The following example contrasts how the length is determined for a group item whose
subordinate items contain an OCCURS clause with the DEPENDING ON option and

Chapter 4. Handling Tables 57

Variable-Length Tables

the object of that DEPENDING ON option, depending on whether it is the sending
group item or the receiving group item.

WORKING-STORAGE SECTION.
01 MAIN-AREA.

03 REC-1.
05 FIELD-1 PIC S9.
05 FIELD-2 OCCURS 1 TO 5 TIMES
DEPENDING ON FIELD-1 PIC X(05).
01 REC-2.
05 REC-2-DATA PIC X(50).

Sending Group Item

If you want to move REC-1 to REC-2, the length of REC-1 is determined immediately prior
to the MOVE, using the current value in FIELD-1. If the contents of FIELD-1 do not
conform to its PICTURE, that is, if FIELD-1 does not contain an external decimal item,
the result is unpredictable. (See Chapter 3, “Numbers and Arithmetic” on page 29 for
more information on data and sign representation).

As you can see, you must be sure that you have the correct value placed in the ODO
object before the MOVE is initiated.

Receiving Group Item

If you want to do a MOVE to REC-1, the length of REC-1, for the purpose of the MOVE,
is determined using the maximum number of occurrences. In this example, that would
be 5 occurrences of FIELD-2 plus FIELD-1 for a length of 26.

In this case, the ODO object (FIELD-1) need not be set before referencing REC-1 as a
receiving item. However, the sending field's ODO object needs to be set to a valid
numeric value between 1 and 5 for the ODO object of the receiving field to be validly
set by the move.

Another Record Makes this Complex ODO

However, if REC-2 were followed by a data item which is in the same record but is not
subordinate to REC-2, then the actual length of REC-2 is used and the ODO object must
be set before the reference.

In the following example, REC-1 is followed by REC-2.
01 MAIN-AREA

03 REC-1.
05 FIELD-1 PIC S9.
05 FIELD-3 PIC S9.
05 FIELD-2 OCCURS 1 TO 5 TIMES
DEPENDING ON FIELD-1 PIC X(05).
03 REC-2.
05 FIELD-4 OCCURS 1 TO 5 TIMES
DEPENDING ON FIELD-3 PIC X(05).

58 VisualAge COBOL Programming Guide

Variable-Length Tables

If you do a MOVE to REC-1 in this case, the actual length of REC-1 is calculated imme-
diately prior to the move using the current value of the ODO object (FIELD-1), and a
compiler message is issued letting you know that the actual length, instead of the
maximum length, was used. This case requires that you set the value of the ODO
object (FIELD-1) prior to using the item as a receiving field.

ODO Object outside the Group
You must ensure that the object of the OCCURS DEPENDING ON clause contains a
value that correctly specifies the current number of occurrences of the table elements.
Figure 17 shows how to define a variable-length table.

DATA DIVISION.
FILE SECTION.

FD LOCATION-FILE.
01 LOCATION-RECORD.

05 LOC-CODE PIC XX.
05 LOC-DESCRIPTION PIC X(20).
05 FILLER PIC X(58).
WORKING-STORAGE SECTION.
01 FLAGS.
05 LOCATION-EOF-FLAG PIC X(5) VALUE SPACE.
88 LOCATION-EOF VALUE "FALSE".
01 MISC-VALUES.
05 LOCATION-TABLE-LENGTH PIC 9(3) VALUE ZERO.
05 LOCATION-TABLE-MAX PIC 9(3) VALUE 100.
o LOCATION TABLE -
- FILE CONTAINS LOCATION CODES. —

01 LOCATION-TABLE.
05 LOCATION-CODE OCCURS 1 TO 100 TIMES
DEPENDING ON LOCATION-TABLE-LENGTH PIC X(80).

Figure 17. Defining a Variable-Length Table
Figure 18 shows a do-until structure used to control loading of a variable-length table.

When initialization is complete, LOCATION-TABLE-LENGTH will contain the subscript of the
last item in the table. (This variable-length table is defined in Figure 17.)

Chapter 4. Handling Tables 59

Variable-Length Tables

Perform Test After
Varying Location-Table-Length From 1 By 1
Until Location-EOF
Or Location-Table-Length = Location-Table-Max
Move Location-Record To
Location-Code (Location-Table-Length)
Read Location-File
At End Set Location-EOF To True
End-Read
End-Perform

Figure 18. Loading a Variable-Length Table

Two factors that affect the successful manipulation of variable-length records are the
correct calculation of records lengths and the conformance of the data in the
OCCURS...DEPENDING ON object to its picture. If you are using variable-length group
items in either a READ...INTO or WRITE...FROM statement, in conjunction with an
OCCURS...DEPENDING ON statement, make sure that the receiver or intermediate
field length is correct. The length of the variable portions of a group item is the product
of the object of the DEPENDING ON option and the length of the subject of the
OCCURS clause.

If the content of the ODO object does not match its PICTURE clause, the program may
abnormally terminate. See Chapter 3, “Numbers and Arithmetic” on page 29 for more
information on data and sign representation.

Complex OCCURS DEPENDING ON

Complex OCCURS DEPENDING ON is supported as an extension to the COBOL 85
Standard.

The basic forms of complex ODO permitted by the compiler are:

e A data item described by an OCCURS clause with the DEPENDING ON option is
followed by a non-subordinate element or group (variably-located item).

e A data item described by an OCCURS clause with the DEPENDING ON option is
followed by a non-subordinate data item described by an OCCURS clause with the
DEPENDING ON option (variably-located table).

e A data item described by an OCCURS clause with the DEPENDING ON option is
nested within another data item described by an OCCURS clause with the
DEPENDING ON option (table with variable-length elements).

¢ Index-name for a table with variable-length elements.
Complex ODO is tricky to use and can make maintaining your code more difficult. If

you choose to use it in order to save disk space, follow the guidelines in Appendix D,
“Complex OCCURS DEPENDING ON” on page 553.

60 VisualAge COBOL Programming Guide

Searching a Table

Searching a Table (SEARCH Statement)

Serial Search

COBOL provides two search techniques for tables: serial and binary.

To perform serial searches:

¢ Use the PERFORM . .. VARYING statement with subscripting or indexing (dis-
cussed in “Creating Variable-Length Tables (DEPENDING ON Clause)” on
page 57).

¢ Use SEARCH and indexing.
To perform binary searches, use indexing and the SEARCH ALL statement.

The following discussion assumes you are familiar with the format of the SEARCH and
SEARCH ALL statements. If you are not, see IBM COBOL Language Reference.

Use the SEARCH statement to perform a serial search beginning at the current index
setting. To modify the index setting, use the SET statement.

The conditions in the WHEN option are evaluated in the order in which they are written.

¢ If none of the conditions is satisfied, the index is increased to correspond to the
next table element, and the WHEN conditions are evaluated again.

* If one of the WHEN conditions is satisfied, the search ends; the index remains
pointing to the table element that satisfied the condition.

* |f the entire table has been searched and no conditions were met, the AT END
imperative statement is executed, if there is one. If you do not use the AT END
option, control passes to the next statement in your program.

Searching More than One Level of a Table

Only one level of a table (a table element) can be referenced with each SEARCH state-
ment. SEARCH statements can be nested to search multiple levels of a table.
However, SEARCH statements can be nested only if you delimit each nested SEARCH
statement with END-SEARCH. The WHEN condition must be followed by an imper-
ative statement; the SEARCH statement is an imperative statement only when it is
delimited by END-SEARCH.

Speeding Up Your Search

It is important to know if the found condition comes after some intermediate point in the
table element. You can speed up the SEARCH by using the SET statement to set the
index to begin the search after that point.

Arranging the table so that the data used most often is at the beginning also enables
more efficient serial searching. If the table is large and is pre-sorted, a binary search is
more efficient. See “Binary Search (SEARCH ALL Statement)” on page 62 more infor-
mation on binary searches.

Chapter 4. Handling Tables 61

Searching a Table

Serial Search Example
01 TABLE-ONE.
05 TABLE-ENTRY1 OCCURS 10 TIMES
INDEXED BY TE1-INDEX.
10 TABLE-ENTRY2 OCCURS 10 TIMES
INDEXED BY TE2-INDEX.
15 TABLE-ENTRY3 OCCURS 5 TIMES
ASCENDING KEY IS KEY1
INDEXED BY TE3-INDEX.
20 KEY1 PIC X(5).
20 KEY2 PIC X(10).

PROCEDURE DIVISION.

SET TE1-INDEX TO 1
SET TE2-INDEX TO 4
SET TE3-INDEX TO 1
MOVE "A1234" TO KEY1 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)
MOVE "AAAAAAAAOO" TO KEY2 (TE1-INDEX, TE2-INDEX, TE3-INDEX + 2)
SEARCH TABLE-ENTRY3
AT END
MOVE 4 TO RETURN-CODE
WHEN TABLE-ENTRY3(TE1-INDEX, TE2-INDEX, TE3-INDEX)
= "A1234AAAAAAAA0Q"
MOVE 0 TO RETURN-CODE
END-SEARCH

Values after execution

TEL1-INDEX = 1

TE2-INDEX = 4

TE3-INDEX points to the TABLE-ENTRY3
that equals "A1234AAAAAAAAQOD"

RETURN-CODE = 0

Binary Search (SEARCH ALL Statement)

When you use SEARCH ALL to perform a binary search, you do not need to set the
index before you begin. The index used is always the one associated with the first
index-name in the OCCURS clause, and it varies during execution to maximize the
search efficiency.

To use the SEARCH ALL statement, your table must be ordered on the key or keys
coded in the OCCURS clause. You can use any key in the WHEN condition, but all
preceding data-names in the KEY option must also be tested. The test must be an
equal-to condition, and the KEY data-name must be either the subject of the condition
or the name of a conditional variable with which the tested condition-name is associ-
ated. The WHEN condition can also be a compound condition, formed from one of the
simple conditions listed above, with AND as the only logical connective. The KEY and
its object of comparison must be compatible, as stated in the relation test rules.

62 VisualAge COBOL Programming Guide

Referencing All Table Items

Binary Search Example
For example, a table defined like this:

01 TABLE-A.
05 TABLE-ENTRY OCCURS 90 TIMES
ASCENDING KEY-1, KEY-2
DESCENDING KEY-3
INDEXED BY INDX-1.

10 PART-1 PIC 99.

10 KEY-1 PIC 9(5).
10 PART-2 PIC 9(6).
10 KEY-2 PIC 9(4).
10 PART-3 PIC 9(18).
10 KEY-3 PIC 9(5).

can be searched using the following instructions:

SEARCH ALL TABLE-ENTRY
AT END
PERFORM NOENTRY

WHEN KEY-1 (INDX-1) = VALUE-1 AND
KEY-2 (INDX-1) = VALUE-2 AND
KEY-3 (INDX-1) = VALUE-3

MOVE PART-1 (INDX-1) TO OUTPUT-AREA
END-SEARCH

These instructions will execute a search on the given table that contains 90 elements of
40 bytes and 3 keys. The primary and secondary keys (KEY-1 and KEY-2) are in
ascending order, but the least significant key (KEY-3) is in descending order. If an entry
is found in which three keys are equal to the given values (VALUE-1, VALUE-2, and
VALUE-3), PART-1 of that entry will be moved to OUTPUT-AREA. If the matching keys are
not found in any of the entries in TABLEA, the NOENTRY routine is performed.

Processing Table Items (Intrinsic Functions)

You can process alphanumeric or numeric table items using intrinsic functions as long
as the table item's data description is compatible with the function's argument require-
ments. The IBM COBOL Language Reference describes the required data formats for
the arguments of the various intrinsic functions.

Use a subscript or index to reference an individual data item as a function argument.
Assuming Table-0ne is a 3x3 array of numeric items, you can find the square root of
the middle element with a statement such as:

Compute X = Function Sqrt(Table-One(2,2))

Processing Multiple Table Iltems (ALL Subscript)
You might often need to process the data in tables iteratively. For intrinsic functions
that accept multiple arguments, you can use the ALL subscript to reference all the
items in the table or single dimension of the table. The iteration is handled automat-
ically, making your code shorter and simpler.

Chapter 4. Handling Tables 63

Efficient Table Coding

Example 1
This example sums a cross section of TabTe-Two:

Compute Table-Sum = FUNCTION SUM (Table-Two(ALL, 3, ALL)))
Assuming that Table2 is a 2x3x2 array, the above statement would cause these ele-
ments to be summed:

Table-Two(1,3,1)
Table-Two(1,3,2)
Table-Two(2,3,1)
Table-Two(2,3,2)

Example 2
This example computes values for all employees.

01 Employee-Table.

05 Emp-Count Pic s9(4) wusage binary.
05 Emp-Record occurs 1 to 500 times
depending on Emp-Count.
10 Emp-Name Pic x(20).
10 Emp-Idme Pic 9(9).

10 Emp-Salary Pic 9(7)v99.

Procedure Division.
Compute Max-Salary = Function Max(Emp-Salary(ALL))
Compute I = Function Ord-Max(Emp-Salary(ALL))
Compute Avg-Salary = Function Mean(Emp-Salary(ALL))
Compute Salary-Range = Function Range(Emp-Salary(ALL))
Compute Total-Payroll = Function Sum(Emp-Salary(ALL))

Example 3
Scalars and array arguments can be mixed for functions that accept multiple
arguments:

Compute Table-Median = Function Median(Argl Table-One(ALL))

Efficient Coding for Tables
For efficient table-handling, follow these suggestions:

e If the table is searched sequentially, put the data values most likely to satisfy the
search criteria at the beginning of a table.

e Use index-names instead of subscripts. This method is more efficient, but sub-
scripting might be easier to understand and maintain. Relative index references
are executed as fast as direct index references. For additional details, see
“Subscripting” on page 49 and “Subscripting Using Index-Names (Indexing)” on
page 50.

¢ Use binary (COMP) data items with 8 or fewer digits for subscripts and OCCURS
DEPENDING ON objects. Use fewer than five digits, if possible.

¢ Avoid referencing errors by coding subscript and index checks into your program.

64 VisualAge COBOL Programming Guide

Selecting Program Actions

Chapter 5. Selection and Iteration

Selection (IF and EVALUATE Statements)

IF Statement

Use control structures to:

e Choose program actions based on the outcome of a decision.
e Control looping in your program.

Selection is providing for different program actions depending on the tested value of
some data item or data items.

The IF and EVALUATE statements are COBOL selection constructs. The testing of a
data item or data items is done in both of these statements by means of a conditional
expression.

Use IF . . . ELSE to code a choice between two processing actions. (The word THEN is
optional in a COBOL program.) For example:

IF condition-p
statement-1
ELSE
statement-2
END-IF

IF Statement with a Null Branch
There are two ways you can code an IF statement when one of the processing choices
is no action. Because the ELSE clause is optional, you can code the following:

IF condition-q
statement-1
END-IF

This coding is suitable for simple programming cases. However, if the logic in your
program is complex (for example, you have nested IF constructs with action for only
one of the processing choices), you might want to use the ELSE clause and code the
null branch of the IF statement with the CONTINUE statement:

IF condition-q
statement-1
ELSE
CONTINUE
END-IF

Nested IF Statements

When an IF statement has another IF statement as one of its possible processing
branches, these IF statements are said to be nested IFs. Theoretically, there is no limi-
tation on the depth of nested IF statements. However, when the program has to test a

© Copyright IBM Corp. 1996, 1998 65

Selecting Program Actions

variable for more than two values, EVALUATE is the better choice. (For more informa-
tion, see “EVALUATE statement” on page 67).

Use nested IF statements sparingly; the logic can be difficult to follow, although proper
indentation helps.

Logic of a Nested IF Statement: The following is pseudocode for a nested IF
statement:

IF condition-p
IF condition-q
statement-1
ELSE
statement-2
END-IF
statement-3
ELSE
statement-4
END-IF

Here an IF is nested, along with a sequential structure, in one branch of another IF.
The structure for this logic is shown in Figure 19 on page 66.

When you code a structure like the one in Figure 19, the END-IF closing the inner
nested IF becomes very important. Use END-IF instead of a period, because a period
would end the outer IF structure as well.

Statement 1 —»G—» Statement3
A

condition-q

condition-p Statement2

> /\\ <

»| Statement4

Figure 19. Control Logic Structure for Nested IF Statements

66 VisualAge COBOL Programming Guide

Selecting Program Actions

Good Coding Practice for Nested IFs: When you nest IF statements, readability and
debugging will be easier if each IF statement has its own END-IF scope-terminator and if
you use proper indentation. For example:
IFA=1
IF B =2
PERFORM C
ELSE PERFORM D.

The ELSE PERFORM D phrase is interpreted as the ELSE phrase of the last previous IF
which is, IF B = 2. If this is the intent, you can make the logic clearer with the fol-
lowing coding:
IFA=1
IF B =2
PERFORM C
ELSE
PERFORM D
END-IF
END-IF

If the intent is to have ELSE PERFORM D depend on IF A = 1, the code would look like
this:
IFA=1
IFB =2
PERFORM C
END-IF
ELSE
PERFORM D
END-IF

EVALUATE statement
The EVALUATE statement is an expanded form of the IF statement. An IF statement
allows your program to act on one of two conditions: true or false. If you had three or
more possible conditions instead of just two, and you were limited to using IF state-
ments, you would need to nest or cascade the IF statements. Such nested IF state-
ments are a common source of logic errors and debugging problems.

With the EVALUATE statement, you can test any number of conditions in a single state-
ment and have separate actions for each. In structured programming terms, this is a
case structure. It can also be thought of as a form of decision table.

Conditional Expressions
The IF and EVALUATE statements let you code different program actions that will be
performed depending on the true or false value of a condition expression. COBOL lets
you specify any of these simple conditions:

Chapter 5. Selection and Iteration 67

Selecting Program Actions

Figure 20. Conditions You Can Test For In COBOL

Condition Type What It Tests Where to Look for Information
Class Whether your data is uppercase “Checking for Incompatible Data
alphabetic, lowercase alphabetic, (Numeric Class Test)” on page 37.

numeric, MBCS Kaniji, or con-
sisting entirely of characters listed
in the definition of a user-defined
class-name.

NUMPROC(PFD), which
bypasses invalid sign processing,
might affect the outcome of a test
for numeric data.

User-defined A level-88 condition name, to dis- See “Condition-Names (Switches
cover whether a data item con- and Flags)” on page 68 for details
tains a particular value or range of on how to use level-88 items to
values. define condition-names that you can

test to control the processing of
switches and flags.

Relation Compares two items. IBM COBOL Language Reference.

Sign Whether a numeric operand is IBM COBOL Language Reference.
less than, greater than, or equal
to zero.

Switch-status Whether an UPSI switch is on or IBM COBOL Language Reference.
off.

You can create combined conditions by using logical connectives (AND, OR, or NOT),
and you can combine conditions. Rules for using conditions are given in IBM COBOL
Language Reference.

Condition-Names (Switches and Flags)

Some program decisions are based on whether the value of a data item is true or false,
on or off, yes or no. To control these two-way decisions in your program, define
level-88 items with meaningful names (a condition name) to act as switches.

Some program decisions are based not on an on or off condition of a data item, but
instead, depend on the particular value (or range of values) of a data item. When
condition-names are used to give more than just on or off values to a field, the field is
generally referred to as a flag, not a switch. For details on flags, see the section
“Flags” on page 69, below.

Flags and Switches Make Changing Code Easier: Flags and switches make your
code easier to change. If you need to change the values for a condition, you have to
change only the level-88 condition-name value.

For example, a program that uses a condition-name to test a field for a given numeric

range—a salary range—need not be changed. If the program must be changed to
check for a different salary range, you would need to change only the condition-name

68 VisualAge COBOL Programming Guide

Selecting Program Actions

value in the DATA DIVISION. You do not need to make changes in the PROCEDURE
DIVISION.

Switches: For example, to test for an end-of-file condition for an input file named
Transaction-File, you could use the following data definitions:

Working-Storage Section.
01 Switches.
05 Transaction-EOF-Switch Pic X value space.

88 Transaction-EOF value "y".

The level-88 description says a condition named Transaction-EOF is turned on when
Transaction-EOF-Switch has a value of "y". Referencing Transaction-EOF in your
PROCEDURE DIVISION expresses the same condition as testing for
Transaction-EQOF-Switch = "y". For example, the statement:

If Transaction-EOF Then Perform Print-Report-Summary-Lines

causes the report to be printed only if your program has read through to the end of the

Transaction-File and if the Transaction-EOF-Switch has been set to "y".

Flags: To test for more than two values, assign more than one condition-name to a
field by using multiple level-88 items.

Consider a program that updates a master file. The updates are read from a trans-
action file. The transaction file's records contain a field for the function to be per-

formed: add, change, or delete. In the input file's record description, code a field for the

function code using level-88 items:

01 Transaction-Input Record

05 Transaction-Type Pic X.
88 Add-Transaction Value "A".
88 Change-Transaction Value "C".
88 Delete-Transaction Value "D".

The code in the PROCEDURE DIVISION for testing these condition-names might look like

this:

Evaluate True
When Add-Transaction
Perform Add-Master-Record-Paragraph
When Change-Transaction
Perform Update-Exisitng-Record-Paragraph
When Delete-Transaction
Perform Delete-Master-Record-Paragraph
End-Evaluate

Resetting Condition-Names (Switches and Flags)

Throughout your program, you might need to reset your switches or change your flags
back to the original values they have in their data descriptions. To do so, you can use

either a SET statement or define your own data item to use.

Chapter 5. Selection and Iteration

69

Selecting Program Actions

SET condition-name TO TRUE: When you use the SET condition-name TO TRUE
statement, the switch or flag is set back to the original value it was assigned in its data
description.

This method makes it easy for the reader to follow your code if you choose meaningful
condition-names and if the value assigned has some association with a logical value of
True

The SET statement in the following example does the same thing as Move "y" to
Transaction-EOF-Flag:

01 Switches
05 Transaction-EOF-Switch Pic X Value space.
88 Transaction-EOF Value "y".

Procedure Division.
000-Do-Main-Logic.
Perform 100-Initialize-Paragraph
Read Update-Transaction-File
At End Set Transaction-EOF to True
End-Read

The following example shows how you can assign a value for a field in an output record
based on the transaction code of an input record.

01 Input-Record.
05 Transaction-Type Pic X(9).

01 Data-Record-Out.

05 Data-Record-Type Pic X.
88 Record-Is-Active Value "A".
88 Record-Is-Suspended Value "S".
88 Record-Is-Deleted Value "D".

05 Key-Field Pic X(5).

70 VisualAge COBOL Programming Guide

Repeating Program Actions

Procedure Division.

Evaluate Transaction-Type of Input-Record
When "ACTIVE"
Set Record-Is-Active to TRUE
When "SUSPENDED"
Set Record-Is-Suspended to TRUE
When "DELETED"
Set Record-Is-Deleted to TRUE
End-Evaluate

Level-88 Note: For a level-88 item with multiple values (such as 88
Record-is-Active Value "A" "0" "S"), SET condition-name TO TRUE assigns the first
value (here, A).

SWITCH-OFF: Establish a data item with this description:
01 SWITCH-OFF Pic X Value "n".

Then use SWITCH-OFF throughout your program to set on/off switches to off. With this
method, whoever reads your code can easily see what you are doing to a switch. From
this code:

01 Switches

05 Transaction-EOF-Switch Pic X Value space.
88 Transaction-EOF Value "y".
01 SWITCH-OFF Pic X Value "n".

Procedure Division.

Move SWITCH-OFF to Transaction-EOF-Switch

it is easy to see that you are setting the end-of-file switch to off. In other words, you
have reset the switch to indicate that the end of the file has not been reached.

Iterative Loops (PERFORM Statement)

For looping (repeating the same code), use one of the forms of the PERFORM state-
ment. You can use the PERFORM statement to loop a set number of times or to loop
based on the outcome of a decision.

PERFORM statements can be inline or out-of-line.

Use the PERFORM statement to run a paragraph and then implicitly return control to the
next executable statement. In effect, the PERFORM statement is a way of coding a
closed subroutine that you can enter from many different parts of the program.

Chapter 5. Selection and Iteration 71

Repeating Program Actions

Coding a Loop to Be Performed a Definite Number of Times
Use the PERFORM . . . TIMES statement to execute a paragraph a certain number of
times:

PERFORM 010-PROCESS-ONE-MONTH 12 TIMES
INSPECT . . .

When control reaches the PERFORM statement, the code for the paragraph
010-PROCESS-ONE-MONTH is executed 12 times before control is transferred to the
INSPECT statement.

Conditional Looping
Use the PERFORM . . . UNTIL statement to execute a paragraph until a condition you
choose is satisfied. You can use either of the following forms:

PERFORM ... WITH TEST AFTER . . . UNTIL . ..
PERFORM . .. [WITH TEST BEFORE] . .. UNTIL . ..

In the following example, the implicit WITH TEST BEFORE phrase provides a do-while
structure:

PERFORM 010-PROCESS-ONE-MONTH
UNTIL MONTH EQUAL DECEMBER
INSPECT . . .

When control reaches the PERFORM statement, the condition (MONTH EQUAL DECEMBER)
is tested. If the condition is satisfied, control is transferred to the INSPECT statement. If
the condition is not satisfied, 010-PROCESS-ONE-MONTH is executed, and the condition is
tested again. This cycle continues until the condition tests as true. (To make your
program easier to read, you might want to code the WITH TEST BEFORE clause.)

Use the PERFORM . .. WITH TEST AFTER . . . UNTIL if you want to execute the para-
graph at least once and then test before any subsequent execution. This is equivalent
to the do-until structure.

Looping through a Table
Use the PERFORM statement to control a loop through a table. You can use either of
the following forms:

PERFORM ... WITH TEST AFTER . . . VARYING .. . UNTIL . ..
PERFORM . .. [WITH TEST BEFORE] . .. VARYING ... UNTIL . ..

PERFORM. . .WITH TEST AFTER Example

You can use PERFORM . . . VARYING to initialize a table. In this form of the PERFORM
statement, a variable is increased or decreased and tested until a condition is satisfied.
The following code shows an example of looping through a table to check for invalid
data:

72 VisualAge COBOL Programming Guide

Repeating Program Actions

x%% BLANK FIELDS ARE NOT ALLOWED IN THE INPUT DATA #%*

PERFORM TEST AFTER VARYING WS-DATA-IX

FROM 1 BY 1

UNTIL WS-DATA-IX = 12

IF WS-DATA (WS-DATA-IX) EQUALS SPACES
SET SERIOUS-ERROR TO TRUE
DISPLAY ELEMENT-NUM-MSG5

END-IF

END-PERFORM

INSPECT . . .

In the code above, when control reaches the PERFORM statement, WS-DATA-IX is set
equal to 1 and the PERFORM statement is executed. Then the condition (WS-DATA-IX =
12) is tested. If the condition is true, control drops through to the INSPECT statement.

If it is false, WS-DATA-IX is increased by 1, the PERFORM statement is executed, and the
condition is tested again. This cycle of execution and testing continues until WS-DATA-IX
is equal to 12.

In terms of the application, this loop controls input-checking for the 12 fields of item
WS-DATA. Empty fields are not allowed, and this section of code loops through and
issues error messages, as appropriate.

Executing a Group of Paragraphs or Sections
In structured programming, the paragraph you execute is usually a single paragraph.
However, you can execute a group of paragraphs, a single section, or a group of
sections using the PERFORM . . . THRU. statement.

WHEN YOU USE PERFORM . .. THRU use a paragraph-EXIT statement to clearly indicate
the end point for the series of paragraphs.

Intrinsic functions can make the task of the iterative processing of tables simpler and
easier for you to code. For information on using the ALL subscript with intrinsic func-
tions to reference all the items in a table, see “Processing Table Items (Intrinsic
Functions)” on page 63.

Chapter 5. Selection and Iteration 73

Joining Data Items

Chapter 6. String Handling

COBOL provides language constructs for performing these operations associated with
string data items:

Figure 21. COBOL Data Constructs for Manipulating Strings

What You Want to Do What to Use Where to Look
Join data items STRING Statement On page 74
Split data items UNSTRING Statement On page 76
Manipulate null-terminated strings Usual string handling statements. On page 79
Reference substrings of data items Reference modifiers On page 80
Tally and replace data items INSPECT statement On page 83
Convert data items Intrinsic functions UPPER-CASE, On page 85

LOWER-CASE, REVERSE,
NUMVAL, and NUMVAL-C

Evaluate data items Intrinsic functions CHAR, ORD, On page 87
MAX, MIN, ORD-MAX, ORD-MIN,
LENGTH, and WHEN-COMPILED

Joining Data Items (STRING Statement)

Use the STRING statement to join all or parts of several data items into one data item.
One STRING statement can save you several MOVE statements.

The STRING statement transfers data into the receiving item in the order you indicate.
In the STRING statement you can also specify:

¢ Delimiters that cause a sending field to be ended and another to be started

e Special actions to be taken when an ON OVERFLOW condition occurs (when the
single receiving field is filled before all of the sending characters have been proc-
essed).

STRING Statement Example
In the following example, an input record is read, and the STRING statement is used to
select and format information as an output line consisting of a line number, customer
name and address, invoice number, next billing date, and balance due, truncated to the
dollar figure shown. (The symbol b indicates a blank space.)

In the FILE SECTION, the following records are defined:

74 © Copyright IBM Corp. 1996, 1998

01 RCD-01.

05 CUST-INFO.
10 CUST-NAME
10 CUST-ADDR

05 BILL-INFO.
10 INV-NO
10 INV-AMT
10 AMT-PAID
10 DATE-PAID
10 BAL-DUE
10 DATE-DUE

Joining Data Items

PIC X(15).
PIC X(35).

PIC X(6).
PIC $%,$$$.99.
PIC $$,$$%.99.
PIC X(8).
PIC $$,$$$.99.
PIC X(8).

In the WORKING-STORAGE SECTION, the following fields are defined:

77 RPT-LINE
77 LINE-POS
77 LINE-NO

77 DEC-POINT

PIC X(120).
PIC S9(3).
PIC 9(5) VALUE 1.
PIC X VALUE ".".

The record, as read, contains the following information:

J.B.bSMITHbbbbD

444HSPRINGDST. ,hCHICAGO,bILL.bbbbbb

A14275
$4,736.85
$2,400.00
09/22/76
$2,336.85
10/22/76

In the PROCEDURE DIVISION, the programmer initializes RPT-LINE to SPACES and sets
LINE-POS, the data item to be used as the POINTER field, to 4. (By coding the POINTER
phrase of the STRING statement, you can use the explicit pointer field to control place-
ment of data in the receiving field.) Then, the programmer issues this STRING
statement:

STRING Program Results

STRING

LINE-NO SPACE CUST-INFO INV-NO SPACE DATE-DUE SPACE

DELIMITED BY SIZE

BAL-DUE

DELIMITED BY DEC-POINT

INTO RPT-LINE

WITH POINTER LINE-POS.

When the statement is performed, the following steps take place:

oghwNpE

The field LINE-NO is moved into positions 4 through 8 of RPT-LINE .

A space is moved into position 9.

The group item CUST-INFO is moved into positions 10 through 59.
INV-NO is moved into positions 60 through 65.

A space is moved into position 66.

DATE-DUE is moved into positions 67 through 74.

Chapter 6. String Handling 75

Splitting Data Items

7. A space is moved into position 75.

8. The portion of BAL-DUE that precedes the decimal point is moved into positions 76
through 81.

9. The value of LINE-POS is 82 after the STRING statement is performed.

After the STRING statement is performed, RPT-LINE appears as shown in the following:

Column

4 10 60 67 76

00001 J.B. SMITH 444 SPRING ST., CHICAGO, ILL Al4275 10/22/76 $2,336

Splitting Data Items (UNSTRING Statement)

Use the UNSTRING statement to split one sending field into several receiving fields.
One UNSTRING statement can save you several MOVE statements.

You can indicate delimiters that, when encountered in the sending field, cause the
current receiving field to be switched to the next one indicated. You might have the
number of characters placed in each receiving field returned to you, and keep a count
of the total number of characters transferred. You might also specify special actions for
the program to take if all the receiving fields are filled before the end of the sending
item is reached.

UNSTRING Statement Example
In the following example, selected information is taken from the input record; some is
organized for printing and some for further processing.

In the FILE SECTION, the following records are defined:

76 VisualAge COBOL Programming Guide

*

01

*

01

*

01

*

77
77
77
77
77
77
77
77
77

Splitting Data Items

Record to be acted on by the UNSTRING statement:
INV-RCD.

05
05
05
05
05
05
05
05
05
05

CONTROL-CHARS
ITEM-INDENT
FILLER
INV-CODE
FILLER
NO-UNITS
FILLER
PRICE-PER-M
FILLER
RTL-AMT

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

XX.
X(20).
X.
X(10).
X.

9(6).

X.
99999.
X.
9(6).99.

UNSTRING receiving field for printed output:
DISPLAY-REC.

05
05
05
05
05

INV-NO
FILLER
ITEM-NAME
FILLER
DISPLAY-DOLS

PIC
PIC
PIC
PIC
PIC

X(6).
X VALUE SPACE.
X(20) .
X VALUE SPACE.
9(6) .

UNSTRING receiving field for further processing:
WORK-REC.

05
05
05
05

UNSTRING statement control fields

M-UNITS

FIELD-A

WK-PRICE REDEFINES FIELD-A
INV-CLASS

DBY-1

CTR-1

CTR-2

CTR-3

CTR-4
DLTR-1
DLTR-2
CHAR-CT
FLDS-FILLED

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

9(6) .
9(6) .
9999v99.
X(3).

X.

S9(3).
S9(3).
S9(3).
S9(3).
X.

X.
S9(3).
S9(3).

In the PROCEDURE DIVISION, the programmer writes the following UNSTRING

statement:

Chapter 6. String Handling

77

Splitting Data Items

* Move subfields of INV-RCD to the subfields of DISPLAY-REC
* and WORK-REC:
UNSTRING INV-RCD

DELIMITED BY ALL SPACES OR "/" OR DBY-1

INTO ITEM-NAME COUNT IN CTR-1
INV-NO DELIMITER IN DLTR-1 COUNT IN CTR-2
INV-CLASS
M-UNITS COUNT IN CTR-3
FIELD A

DISPLAY-DOLS DELIMITER IN DLTR-2 COUNT IN CTR-4
WITH POINTER CHAR-CT
TALLYING IN FLDS-FILLED
ON OVERFLOW GO TO UNSTRING-COMPLETE.

Before issuing the UNSTRING statement, the programmer places the value 3 in CHAR-CT
(the POINTER field) to avoid working with the two control characters in INV-RCD. A
period (.) is placed in DBY-1 for use as a delimiter, and the value O (zero) is placed in
FLDS-FILLED (the TALLYING field). The data is then read into INV-RCD, as shown in the
following:

CoTumn

1 10 20 30 40 50 60

ZYFOUR—PENNY-NAILS 707890/BBA 475120 00122 000379.50

UNSTRING Program Results
When the UNSTRING statement is performed, the following steps take place:

1. Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are placed in ITEM-NAME,
left-justified in the area, and the unused character positions are padded with
spaces. The value 16 is placed in CTR-1.

2. Because ALL SPACES is coded as a delimiter, the 5 contiguous SPACE characters
are considered to be one occurrence of the delimiter.

3. Positions 24 through 29 (707890) are placed in INV-NO. The delimiter character, /,
is placed in DLTR-1, and the value 6 is placed in CTR-2.

4. Positions 31 through 33 are placed in INV-CLASS. See Note at end of list.

5. Positions 35 through 40 (475120) are examined and placed in M-UNITS. The value
6 is placed in CTR-3. See Note at end of list.

6. Positions 42 through 46 (00122) are placed in FIELD-A and right-justified in the
area. The high-order digit position is filled with a 0 (zero). See Note at end of list.

7. Positions 48 through 53 (000379) are placed in DISPLAY-DOLS. The period (.)
delimiter character in DBY-1 is placed in DLTR-2, and the value 6 is placed in CTR-4.

78 VisualAge COBOL Programming Guide

Manipulating Null-Terminated Strings

8. Because all receiving fields have been acted on and 2 characters of data in
INV-RCD have not been examined, the ON OVERFLOW exit is taken, and execution
of the UNSTRING statement is completed.

SPACE Note: In steps 4, 5, and 6, the delimiter is a SPACE, but because no field has
been defined as a receiving area for delimiters, the SPACE is bypassed.
After the UNSTRING statement is performed, the fields contain:
e DISPLAY-REC contains:
707890 FOUR-PENNY-NAILS 000379
e WORK-REC contains:
475120000122BBA
e CHAR-CT (the POINTER field) contains the value 55.
e FLDS-FILLED (the TALLYING field) contains the value 6.

Manipulating Null-Terminated Strings

Null-terminated strings are supported using syntax shown in the IBM COBOL Language
Reference. You can construct and manipulate null-terminated strings passed to or from
a C program, for example, by using string handling mechanisms such as:

¢ Using null terminated literal constants (2" ... ").
¢ Using INSPECT statement to count number of characters in a null-terminated string:

MOVE ©@ TO char-count

INSPECT source-field TALLYING char-count
FOR CHARACTERS
BEFORE X"00"

¢ Using UNSTRING statement to move characters in a null-terminated string to a
target-field and get the character count:

WORKING-STORAGE SECTION.

01 source-field PIC X(1001).
01 char-count COMP-5 PIC 9(4).
01 target-area.
02 individual-char OCCURS 1 TO 1000 TIMES DEPENDING ON char-count
PIC X.

PROCEDURE DIVISION.
UNSTRING source-field DELIMITED BY X"00"
INTO target-area
COUNT IN char-count
ON OVERFLOW
DISPLAY "source not null terminated or target too short"

END-UNSTRING

Chapter 6. String Handling 79

Referencing Substrings

¢ Using a SEARCH statement to locate trailing null or space characters (Define the
string being examined as a table of single characters.)

e Checking each character in a field in a loop (PERFORM) looking at each character
of the field (Each character in the field can be examined using a reference modifier
such as source-field (I:1).)

The following example shows the use of several of these mechanisms:

01 L pic X(20) value z'ab'.

01 M pic X(20) value z'cd'.

01 N pic X(20).

01 N-Length pic 99 value zero.

01 Y pic X(13) value 'Hello, World!'.

* Display null-terminated string
Inspect N tallying N-length
for characters before initial x'00'
Display 'N: ' N(1:N-length) ' Length: ' N-length

* Move null-terminated string to alphanumeric, strip null
Unstring N delimited by X'00' into X

* Create null-terminated string
String Y delimited by size
X'00' delimited by size
into N.

* Concatenate two null-terminated strings
String L delimited by x'00'
M delimited by x'00'
X'00' delimited by size
into N.

Figure 22. Handling Null-Terminated Strings

Referencing Substrings of Data Items (Reference Modifiers)

Reference a substring of character-string data item items (including ASCII data items)
with reference modifiers. Intrinsic functions that return character-string values are also
considered alphanumeric data items, and can include a reference modifier.

The following example shows how to use a reference modifier to reference a substring
of a data item:

Move Customer-Record(1:20) to Orig-Customer-Name
As this shows, in parentheses immediately following the data item you code the ordinal

position (from the left) of the character you want the substring to start with and the
length of the desired substring, separated by a colon.

80 VisualAge COBOL Programming Guide

Referencing Substrings

The length is optional. If you omit the length, the substring created will automatically
extend to the end of the item. Omitting the length, when possible, is recommended as
a simpler, less error-prone coding technique.

These values can be variables or expressions.

Common Reference Modification Mistakes
If the leftmost character position or the length value is a fixed-point non-integer, trun-
cation will occur to create an integer; if it is a floating-point non-integer, rounding will
occur to create an integer.

Both numbers in the reference modifier must be at least 1, and their sum should not
exceed the total length of the data item.

The following options detect out-of-range reference modifiers and flag violations with a
run-time message:

e SSRANGE compiler option, discussed on page 193.
e CHECK run-time option, discussed on page “CHECK” on page 240.

For additional information on reference modification, see IBM COBOL Language Refer-
ence.

Benefits of Reference Modification
Assume that you want to retrieve the current time from the system and display its value
in an expanded format. You can retrieve the current time value from the system with
the ACCEPT statement, which returns the hours, minutes, seconds, and hundredths of
seconds in this format:

HHMMSSss
However, you might prefer to view the current time in this format:
HH:MM:SS
Without reference notification you would have to define data items for both formats, the

one from the system and the one you want, and write code to convert from one format
to the other.

With reference modification, you do not need to provide names for the subfields that
describe the TIME elements. The only data definition needed is:

01 REFMOD-TIME-ITEM PIC X(8).

The code to retrieve and expand the time value would appear as follows:

Chapter 6. String Handling 81

Referencing Substrings

ACCEPT REFMOD-TIME-ITEM FROM TIME.
DISPLAY "CURRENT TIME IS: "
* Retrieve the portion of the time value that corresponds to
* the number of hours:
REFMOD-TIME-ITEM (1:2)
* Retrieve the portion of the time value that corresponds to
the number of minutes:
REFMOD-TIME-ITEM (3:2)

*

* Retrieve the portion of the time value that corresponds to
the number of seconds:
REFMOD-TIME-ITEM (5:2).

*

Reference Modification of an Intrinsic Function

The simplest solution to our problem would be to reference a substring of the
CURRENT-DATE function, which requires no DATA DIVISION entries and fewer lines of
code.

Display "Current Date is: "
Function Current-Date(9:2)

Function Current-Date(11:2)

Function Current-Date(13:2).

Using Arithmetic Expressions as Reference Modifiers

You can also use an arithmetic expression as either of the integers in a reference modi-
fier. For example:

Suppose that a field contains some characters, right-justified, and you want to move the
characters to another field, but justified to the left instead of the right. Using reference
modification and an INSPECT statement, you could do that.

The program would have the following data:

01 LEFTY PIC X(30).
01 RIGHTY PIC X(30) JUSTIFIED RIGHT.
01 I PIC 9(9) USAGE BINARY.

The program would count the number of leading spaces and, using arithmetic
expressions in a reference modification expression, move the right-justified characters
into another field, left-justified:

MOVE SPACES TO LEFTY
MOVE ZERO TO I
INSPECT RIGHTY
TALLYING I FOR LEADING SPACE.
IF T IS LESS THAN LENGTH OF RIGHTY THEN
MOVE RIGHTY (I + 1 : LENGTH OF RIGHTY - I) TO LEFTY
END-IF

82 VisualAge COBOL Programming Guide

Counting and Replacing Data ltems

The MOVE statement transfers characters from RIGHTY, beginning at the position com-
puted in | + 1, for a length that is computed in LENGTH OF RIGHTY - I, into the field
LEFTY.

Using Intrinsic Functions as Reference Modifiers

Because a numeric function-identifier can be used anywhere an arithmetic expression is
allowed, it can be used as the leftmost character position and/or the length in the refer-
ence modifier.

For example:
05 WS-name Pic x(20).
05 Left-posn Pic 99.

05 I Pic 99.

Move Customer-Record(Function Min(Left-posn I):Function Length(WS-name)) to WS-name

When performed, this statement causes a substring of Customer-Record to be moved
into the variable WS-name; the substring is determined at run time.

If you want to use a numeric, non-integer function in a position requiring an integer
function, you can use the INTEGER or INTEGER-PART function to convert the result to an
integer. For example:

Move Customer-Record(Function Integer(Function Sqrt(I)):) to WS-name

For a list that shows which numeric functions return integer and non-integer results, see
IBM COBOL Language Reference.

Referencing Substrings of Table Items

You can also reference substrings of table entries, including variable-length entries.
This is discussed in Chapter 4, “Handling Tables” on page 47.

Tallying and Replacing Data Items (INSPECT Statement)

The INSPECT statement is useful for:
¢ Filling selective portions of a data item with a value.
¢ Replacing portions with a corresponding portion of another data item.

¢ Counting the number of times a specific character (zero, space, asterisk, for
example) occurs in a data item.

INSPECT Statement Examples

The following examples show some uses of the INSPECT statement. In all instances,
the programmer has initialized the COUNTR field to zero before the INSPECT statement is
performed.

Chapter 6. String Handling 83

Counting and Replacing Data Items

Example 1:
77 COUNTR PIC 9 VALUE ZERO.
01 DATA-2 PIC X(11).

INSPECT DATA-2
TALLYING COUNTR FOR LEADING "0"
REPLACING FIRST "A"™ BY "2" AFTER INITIAL "C"

DATA-2 Before COUNTR After DATA-2 After
OOACADEMY0O 2 0OAC2DEMY0O
0000ALABAMA 4 0000ALABAMA
CHATHAMOOOO 0 CH2THAMOOOO
Example 2:

77 COUNTR PIC 9 VALUE ZERO.

01 DATA-3 PIC X(8).

INSPECT DATA-3
REPLACING CHARACTERS BY ZEROS BEFORE INITIAL QUOTE

DATA-3 Before COUNTR After DATA-3 After
456"ABEL 0 000"ABEL
ANDES"12 0 00000"12
"TWAS BR 0 "TWAS BR
Example 3:

The following example shows the use of INSPECT CONVERTING with AFTER and
BEFORE phrases. The table shows examples of the contents of DATA-4 before and after
the conversion statement is performed.

01 DATA-4 PIC X(11).

INSPECT DATA-4
CONVERTING
"abcdefghijklmnopgrstuvwxyz" TO
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
AFTER INITIAL "/"
BEFORE INITIAL"?"

84 VisualAge COBOL Programming Guide

Converting Character Data Iltems

DATA-4 Before DATA-4 After
a/five/?six a/FIVE/?six
r/Rexx/RRRr r/REXX/RRRR
zfour?inspe zfour?inspe

Converting Data Items (Intrinsic Functions)
Intrinsic functions are available to convert character-string data items to the following:

e Upper or lower case
¢ Reverse order
¢ Numbers

Besides using intrinsic functions to convert characters, you can also use the INSPECT
statement. See the examples under “Tallying and Replacing Data Items (INSPECT
Statement)” on page 83.

Converting to Uppercase or Lowercase (UPPER-CASE, LOWER-CASE)

This code:
01 Item-1 Pic x(30) Value "Hello World!".
01 Item-2 Pic x(30).

Display Item-1

Display Function Upper-case(Item-1)
Display Function Lower-case(Item-1)

Move Function Upper-case(Item-1) to Item-2
Display Item-2

would display the following messages on the terminal:

Hello World!
HELLO WORLD!
hello world!
HELLO WORLD!

The DISPLAY statements do not change the actual contents of Item-1 and only affect
how the letters are displayed. However, the MOVE statement causes uppercase letters
to be moved to the actual contents of Item-2.

Converting to Reverse Order (REVERSE)
The following code:

Move Function Reverse(Orig-cust-name) To Orig-cust-name

would reverse the order of the characters in Orig-cust-name. For example, if the
starting value was “JOHNSONbbD,” the value after the statement is performed would be
“bHbbNOSNHOJ.”

Chapter 6. String Handling 85

Converting Character Data Items

Converting to Numbers (NUMVAL, NUMVAL-C)
The NUMVAL and NUMVAL-C functions convert character strings to numbers. Use these
functions to convert alphanumeric data items that contain free format character repre-
sentation numbers to numeric form and process them numerically. For example:

01 R Pic x(20) Value "- 1234.5678".
01 S Pic x(20) Value " $12,345.67CR".
01 Total Usage is Comp-1.

Compute Total = Function Numval(R) + Function Numval-C(S)

The difference between NUMVAL and NUMVAL-C is that NUMVAL-C is used when the
argument includes a currency symbol and/or comma, as shown in the example. You
can also place an algebraic sign in front or in the rear, and it will be processed. The
arguments must not exceed 18 digits (not including the editing symbols). For exact
syntax rules, see IBM COBOL Language Reference.

Numeric Result: Both NUMVAL and NUMVAL-C return long (double-precision) floating-
point values. A reference to either of these functions, therefore, represents a reference
to a numeric data item. For more information on characteristics of numeric data, see
Chapter 3, “Numbers and Arithmetic” on page 29.

Why Use NUMVAL and NUMVAL-C
When you use NUMVAL or NUMVAL-C you don't need to statically declare numeric data
in a fixed format and input data in a precise manner. For example, for this code:

01 X Pic S999V99 1leading sign is separate.

Accept X from Console

The user of the application must enter the numbers exactly as defined by the PICTURE
clause. For example:

+001.23
-300.00
However, using the NUMVAL function, you could code:

01 A Pic x(10).
01 B Pic S999v99.

Accept A from Console
Compute B = Function Numval(A)

and the input could be:

1.23
-300

86 VisualAge COBOL Programming Guide

Evaluating Data Items

Evaluating Data Items (Intrinsic Functions)

Several intrinsic functions can be used in evaluating data items:

Evaluating Single
If yo

CHAR and ORD for evaluating integers and single alphanumeric characters with
respect to the collating sequence used in your program.

MAX, MIN, ORD-MAX, and ORD-MIN for finding the largest and smallest items in a
series of data items.

LENGTH for finding the length of data items.
WHEN-COMPILED for finding the date and time the program was compiled.

Characters for Collating Sequence (CHAR, ORD)
u want to know the ordinal position of a certain character in the collating sequence,

reference the ORD function using the character in question as the argument, and ORD
will return an integer representing that ordinal position. One convenient way to do this

is to
I

use the substring of a data item as the argument to ORD:
F Function Ord(Customer-record(1:1)) Is > 194 THEN ...

On the other hand, if you know what position in the collating sequence you want but
don't know what character it corresponds to, then reference the CHAR function using

the i

nteger ordinal position as the argument, and CHAR will return the desired character:

INITIALIZE Customer-Name REPLACING ALPHABETIC BY Function Char(65)

Finding the Largest or Smallest Data Item (MAX, MIN, ORD-MAX, ORD-MIN)
If you have two or more alphanumeric data items and want to know which data item
contains the largest value (evaluated according to the collating sequence), use the MAX
or ORD-MAX function, supplying the data items in question as arguments. If you want to
know which item contains the smallest value, you would use the MIN or ORD-MIN func-

tion.
MAX and MIN
The MAX and MIN functions simply return the contents of one of the variables you
supply.
For example, with these data definitions:
05 Argl Pic x(10) Value "THOMASSON ".
05 Arg2 Pic x(10) Value "THOMAS ",
05 Arg3 Pic x(10) Value "VALLEJO ".

the following statement:

Move Function Max(Argl Arg2 Arg3) To Customer-record(1:10)

wou

Id assign “VALLEJObbbH” to the first ten character positions of Customer-record.

If MIN were used instead, then “THOMASbHbbb” would be returned.

Chapter 6. String Handling 87

Evaluating Data Items

ORD-MAX and ORD-MIN

The functions ORD-MAX and ORD-MIN return an integer that represents the ordinal posi-
tion of the argument with the largest or smallest value in the list of arguments you have
supplied (counting from the left).

If the ORD-MAX function were used in the example above, you would receive a syntax
error message at compile time, because you would be attempting to reference a
numeric function in an invalid place (see IBM COBOL Language Reference). The fol-
lowing is a valid example of the ORD-MAX function:

Compute x = Function Ord-max(Argl Arg2 Arg3)

This would assign the integer 3 to x, if the same arguments were used as in the pre-
vious example. If ORD-MIN were used instead, the integer 2 would be returned.

Notes on MAX, MIN, ORD-MAX, ORD-MIN

This group of functions can also be used for numbers, in which case the algebraic
values of the arguments are compared. For more information, see the appropriate
section of Chapter 3, “Numbers and Arithmetic” on page 29.

The above examples would probably be more realistic if Argl, Arg2 and Arg3 were

instead successive elements of an array (table). For information on using table ele-
ments as function arguments, see the section on “Processing Table Items (Intrinsic
Functions)” on page 63 in Chapter 4, “Handling Tables.”

Returning Variable-Length Results with Alphanumeric Functions
The results of alphanumeric functions might be of varying lengths and values
depending on the function arguments.

In the following example, the amount of data moved to R3 and the results of the
COMPUTE statement depend on the values and sizes of R1 and R2:

01 R1 Pic x(10) value "e".
01 R2 Pic x(05) value "f".
01 R3 Pic x(20) value spaces.
01 L Pic 99.

Move Function Max(R1 R2) to R3
Compute L = Function Length(Function Max(R1 R2))

Here, R2 is evaluated to be larger than R1. Therefore, assuming that the symbol b
represents a blank space, the string “fbbbb” would be moved to R3 (the unfilled char-
acter positions in R3 are padded with spaces), and L evaluates to the value 5. If R1
were the value “g” then R1 would be larger than R2, and the string “gbbbbbbbbb” would
be moved to R3 (the unfilled character positions in R3 would be padded with spaces);
the value 10 would be assigned to L.

You might be dealing with variable-length output from alphanumeric functions. Plan
your program code accordingly. For example, you might need to think about using

88 VisualAge COBOL Programming Guide

Evaluating Data Items

variable-length record files when it is possible that the records you will be writing might
be of different lengths:

File Section.
FD Output-File.
01 Customer-Record Pic X(80).

Working-Storage Section.
01 Rl Pic x(50).
01 R2 Pic x(70).

Write Customer-Record from Function Max(R1 R2)

Finding the Length of Data Items (LENGTH)
The LENGTH function is useful in many programming contexts for determining the
length of string items. The following COBOL statement shows moving a data item such
as a customer name into the particular field in a record that is for customer names:

Move Customer-name To Customer-record(l:Function Length(Customer-name))

Numeric & Table: The LENGTH function can also be used on a numeric data item or
a table entry. Numeric data and tables are discussed in Chapter 3, “Numbers and
Arithmetic” on page 29 and in Chapter 4, “Handling Tables” on page 47.

LENGTH OF Special Register

In addition to the LENGTH function, another technique to find the length of a data item is
to use the LENGTH OF special register. Coding either Function Length(Customer-Name)
or LENGTH OF Customer-Name would return the same result— the length of
Customer-Name in bytes.

Whereas the LENGTH function can only be used where arithmetic expressions are
allowed, the LENGTH OF special register can be used in a greater variety of contexts.
For example, the LENGTH OF special register can be used as an argument to an
intrinsic function that allows integer arguments. (An intrinsic function cannot be used as
an operand to the LENGTH OF special register.) The LENGTH OF special register can
also be used as a parameter in a CALL statement.

Finding the Date of Compilation (WHEN-COMPILED)
If you want to know the date and time the program was compiled as provided by the
system on which the program was compiled, you can use the WHEN-COMPILED func-
tion. The result returned has 21 character positions with the first 16 positions in the
format:

YYYYMMDDhhmmsshh

to show the 4-digit year, month, day, and time (in hours, minutes, seconds, and hun-
dredths of seconds) of compilation.

Chapter 6. String Handling 89

Evaluating Data Items

WHEN-COMPILED Special Register
The WHEN-COMPILED special register is another technique you can use to find the date
and time of compilation. It has the format:

MM/DD/YYhh.mm.ss

The WHEN-COMPILED special register supports only a two-digit year and carries the
time out only to seconds. This special register can only be used as the sending field in
a MOVE statement.

90 VisualAge COBOL Programming Guide

Processing Files

Chapter 7.

Processing Files

Reading and writing data to and from files is an essential part of every program. Your
program retrieves information, processes it as you request, and then produces the
results.

This chapter provides a brief introduction on file organization and access modes,
describes the coding your COBOL programs need to identify and process files, and
explains how files must be defined and identified to the operating system before your
program can process them.

The topics in this chapter are:

“File Input/Output Overview” on page 92

“COBOL Coding for Files” on page 95

“Input/Output Error Handling Techniques” on page 123

“File Sorting and Merging” on page 106

“The STL File System” on page 114
Record-oriented files that are organized as sequential, relative, indexed, or line sequen-
tial (byte stream) files are accessed through a file system. An application can use file-
system functions to create and manipulate the records in any of these types of files.
VisualAge COBOL supports the following file systems:

e The STL file system, which provides the basic facilities for local files. It is provided
with VisualAge COBOL and supports sequential, relative, and indexed files.

¢ The VSAM file system, which allows you to read and write files on remote systems
such as 0S/390. It is provided with VisualAge COBOL and supports sequential,
relative, and indexed files.

On 0S/2, the VSAM file system supports local files as well as remote.

¢ The Btrieve file system, which allows you to access Btrieve files. Btrieve is a sepa-
rate product available from Btrieve Technologies, Inc. (BTI).

Note: By using the Btrieve file system you can access files created by VisualAge
CICS Enterprise Application Development and CICS for OS/2.

Most programs will get the same results on all file systems. However, files written
using one file system cannot be read using a different file system.

Two ways you can select a file system are by setting the assignment-name environ-
ment variable or by using the FILESYS run-time option. See “Accessing Files” on
page 97 for futher details. All the file systems allow you to use COBOL statements to
read or write COBOL files.

© Copyright IBM Corp. 1996, 1998 91

File Organization

If you have more complex requirements which are not covered in this book, or are
going to be a frequent user of file systems, you should review the Btrieve Programmer's
Manual and the publications for the SMARTdata Utilities for OS/2 or Windows, which
are provided as part of the on-line documentation.

File Input/Output Overview

This section describes file organization and file access modes. You should decide on
the file types you will use when you design your program. Your file management
system handles the input/output requests and record retrieval from the input/output
devices.

Figure 23 summarizes file organization, access modes, and record lengths for COBOL
files.

Figure 23. File Organizations and Access Modes

Sequential Random Dynamic
File Organization Access Access Access
Sequential Yes No No
Line sequential Yes No No
Indexed Yes Yes Yes
Relative Yes Yes Yes

File 1/0O Limitations:

e For line sequential files, the maximum record size is 64K.
e For VSAM files:

— Minimum record size: 1 byte

— Maximum record size: 64,000 bytes

— Maximum record key length: 255 bytes

— Maximum relative key value: 2**32-2

— Maximum number of bytes allocated for a file: 2**32
e For STL files:

— Minimum record size: 1 byte

— Maximum record size: 65536 bytes

— Maximum record key length: 255 bytes

— Maximum number or alternate keys: 253 bytes

— Maximum relative key value: 2**32-1

— Maximum number of bytes allocated for a file: 2**32-1

Additional or more restrictive limits might be applicable depending on the platform on which the
target file is located. See the appropriate books for the file system of the target platform for these
limits.

File Organization
You can organize your files as sequential, line sequential, indexed, or relative.

Sequential File Organization
A sequential file contains records organized by the order in which they are entered.
The order of the records is fixed.

92 VisualAge COBOL Programming Guide

File Organization

Records in sequential files can only be read or written sequentially.

After you have placed a record into the file, you cannot shorten, lengthen, or delete it.
However, you can update (REWRITE) a record if the length does not change. New
records are added at the end of the file.

Line Sequential File Organization

Line sequential files are just like sequential files, except that the records can contain
only characters as data. Line sequential files are supported by the native byte stream
files of the operating system.

Line sequential files that are created with WRITE statements with the ADVANCING
phrase can be directed to a printer (as well as a disk).

Indexed File Organization

An indexed file contains records ordered by a record key. Each record contains a field
that contains the record key. The record key uniquely identifies the record and deter-
mines the sequence in which it is accessed with respect to other records. A record key
for a record might be, for example, an employee number or an invoice number.

An indexed file can also use alternate indexes—record keys that let you access the file
using a different logical arrangement of the records. For example, you could access
the file through employee department rather than through employee number.

The record transmission (access) modes allowed for indexed files are sequential,
random, or dynamic. When indexed files are read or written sequentially, the sequence
is that of the key values. For a description of random and dynamic record trans-
mission, see “File Access Modes” on page 94.

Relative File Organization

A relative record file contains records ordered by their relative key—the relative key
being the relative record number representing the record's location relative to where the
file begins. For example, the first record in the file has a relative record number of 1,
the tenth record has a relative record number of 10, and so forth. The relative record
number identifies the fixed-or variable-length record.

The record transmission modes allowed for relative files are sequential, random, or
dynamic. When relative files are read or written sequentially, the sequence is that of
the relative record number. For a description of random and dynamic record trans-
mission, see “File Access Modes” on page 94.

Figure 24 (Page 1 of 2). Comparison of Different Files

Sequential Line Sequential Indexed Relative

Records are in the Records are in the Records are in col- Records are in rela-
order in which they order in which they lating sequence by tive record number
are written. are written. key field. order.

Chapter 7. Processing Files 93

File Access Modes

Figure 24 (Page 2 of 2). Comparison of Different Files

Sequential Line Sequential Indexed Relative
Access is sequential. Access is sequen- Access is by key Access is by relative
tial. through an index. record number, which

Can have one or is handled like a key.
more alternate
indexes.

A record cannot be A record cannot be Records can be Records can be

deleted, but you can deleted or replaced. deleted or replaced. deleted or replaced.

reuse its space for a
record of the same
length.

File Access Modes
You can access records in sequential and line sequential files sequentially only.

You can access records in indexed and relative files in three ways: sequentially, ran-
domly, or dynamically.

Sequential Access
Code ACCESS IS SEQUENTIAL in the FILE-CONTROL entry.

For indexed files, records are accessed in the order of the key field selected (either
primary or alternate).

For relative files, records are accessed in the order of the relative record numbers.

Random Access
Code ACCESS IS RANDOM in the FILE-CONTROL entry.

For indexed files, records are accessed according to the value you place in a key field.

For relative files, records are accessed according to the value you place in the relative
key.

Dynamic Access
Code ACCESS IS DYNAMIC in the FILE-CONTROL entry.

Dynamic access is a mixed sequential-random access in the same program. Using
dynamic access, you can use one COBOL file definition to perform both sequential and
random processing, accessing some records in sequential order and others by their
keys.

For example, suppose you had an indexed file of employee records, and the employ-
ee's hourly wage formed the record key. Also, suppose your program was interested in
those employees earning between $7.00 and $9.00 per hour and those earning $15.00
per hour and above. To do this, retrieve the first record randomly (with a random-

94 VisualAge COBOL Programming Guide

COBOL Coding for Files

retrieval READ) based on the key of 0700. Next, begin reading sequentially (using
READ NEXT) until the salary field exceeds 0900. You would then switch back to a
random read, this time based on a key of 1500. After this random read, switch back to
reading sequentially until you reach the end of the file.

COBOL Coding for Files

Code your COBOL program according to the types of files you decide to use. The
general format of input/output coding is shown in Figure 25. Explanations of user-
supplied information (lowercase) follow the figure.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT filename ASSIGN TO assignment-name 2]
ORGANIZATION IS org ACCESS MODE IS access n
FILE STATUS IS file-status B

DATA DIVISION.
FILE SECTION.
FD filename
01 recordname
nn . . . fieldlength & type B
nn . . . fieldlength & type

WORKING-STORAGE SECTION
01 file-status PICTURE 99.

PROCI:ZDURE DIVISION.
OPEN fomode filename 9]
I.%EAD filename
b.\IRITE recordname
(ELOSE filename

STOP RUN.

Figure 25. Overview of COBOL Input/Output Coding

The user-supplied information in Figure 25 can be explained as follows:

Chapter 7. Processing Files 95

COBOL Coding for Files

filename

Any valid COBOL name. You must use the same filename on the SELECT and the
FD statements, and on the OPEN, READ, START, DELETE, and CLOSE statements.
This name is not necessarily the actual name of the file as known to the system.
Each file requires its own SELECT, FD, and input/output statements. For WRITE
and REWRITE, you specify a record defined for the file.

H assignment-name

You can specify ASSIGN TO assignment-name to specify the target file-system 1D
and the file of the name as known to the system directly, or you can set a value
indirectly by using an environment variable.

If you want to have the system file name identified at OPEN time, you can specify
ASSIGN USING data-name. The value of data-name at the time of the execution of
the OPEN statement for the file is used and has the system file identification
optionally preceded by the file-system type identification.

The following example illustrates how inventory-file is dynamically (by way of a
MOVE statement) associated with a file d:\inventory\parts.

SELECT inventory-file ASSIGN TO a-file

MOVE "d:\inventory\parts" TO a-file
OPEN INPUT inventory-file

For more information, see IBM COBOL Language Reference.

H org

Indicates the organization: LINE SEQUENTIAL, SEQUENTIAL, INDEXED, or RELATIVE.
If this clause is omitted, the default is ORGANIZATION SEQUENTIAL.

B access

Indicates the access mode, SEQUENTIAL, RANDOM, or DYNAMIC. If this clause is
omitted, the default is ACCESS SEQUENTIAL.

B file-status

The 2-character COBOL FILE STATUS key.

recordname
The name of the record used in the WRITE and REWRITE statements. You can
specify more than one record for a file.

fieldlength

The logical length of the field.

type

Must match the file's record format. If you break the record description entry
beyond the level-01 description, each element should map accurately against the
record's fields.

iomode

Specifies the open mode. For example, if you are only reading from a file, code
INPUT. If you are only writing to it, code OUTPUT or EXTEND. If you are doing
both, code I-O.

96 VisualAge COBOL Programming Guide

COBOL Coding for Files

Line Sequential: 1-O is not a valid parameter of OPEN for line sequential files.

Accessing Files

Your programs are able to access STL, VSAM, and Btrieve (Btrieve Technologies, Inc.)
files.

On Windows, only remote files are supported using VSAM.

Use assignment-name to specify both the file you want to access and the file system to
be used. For a detailed description of assignment-name, see the IBM COBOL Lan-
guage Reference.

The general syntax involved in making an assignment to a file stored in an alternate file
system is:

SELECT file ASSIGN TO FileSystemID-Filename

FileSystemID
Identifies the file system as one of the following:

STL For the STL file system.
VSAM For the VSAM file system. VSAM can be abbreviated to VSA.

On Windows, Filename must start with "\\", indicating remote
file access.

BTR For the Btrieve file system.

If the file-system specification is not provided, then the run-time option FILESYS is

used to select the file system. If a file system is not specified using FILESYS, the
default is VSAM on OS/2 and STL on Windows.

Filename
The file you want to access. Alternatively, you can specify an environment variable
to allow you to specify the file name at run time. For details, see “Run-Time Envi-
ronment Variables” on page 137, and the IBM COBOL Language Reference.

Usage Note: The following file status indicators are not set for Btrieve:

02
21
39

Example—Accessing Btrieve Files
¢ To use the Btrieve file system, the following assignment would be valid:

SELECT filel ASSIGN USING 'BTR-MyFile'

¢ |f the run-time option FILESYS(BTRIEVE) was in effect, the following assignment
would be valid:

SELECT filel ASSIGN TO 'MyFile'

Chapter 7. Processing Files 97

COBOL Coding for Files

¢ Given that you have defined the environment variable MYFILE (for example, SET
MYFILE=BTR-MYFILE), the following assignment would be valid:

SELECT filel ASSIGN TO MYFILE

Example—Accessing STL Files
e To use the STL file system, the following assignment would be valid:

SELECT filel ASSIGN USING 'STL-MyFile'

e If the run-time option FILESYS(STL) was in effect, the following assignment would
be valid:

SELECT filel ASSIGN TO 'MyFile'

e Given that you have defined the environment variable MYFILE , (for example, SET
MYFILE=STL-MYFILE), the following assignment would be valid:

SELECT filel ASSIGN TO MYFILE

Distributed File Access
Using the Distributed File feature of the SMARTdata Utilities, you can access a remote
file (for example, OS/390 VSAM, SAM, or PDS) without any source program change.

In the following example, the SELECT clause is used to associate a file on OS/390 with
a file in your workstation program:

SELECT myfile ASSIGN TO TARGETFILE

On 0S/2, you can associate myfile to an OS/390 file called MVSMAST by
setting the TARGETFILE environment variable:

set TARGETFILE=m:MVSMAST

where the drive m is set to point to the specific OS/390 system and MVSMAST is the
data set name on the OS/390 system.

See VSAM in a Distributed Environment for more information.

Coding Input/Output Statements for Files
After identifying and describing the files in the ENVIRONMENT DIVISION and DATA DIVI-
SION, process the file records in the PROCEDURE DIVISION of your program.

Figure 26 shows the possible combinations of input/output statements for sequential
files. The 'X' indicates that the statement can be used with the open mode given at
the top of the column.

Figure 26 (Page 1 of 2). Valid COBOL Statements for Sequential Files

COBOL OPEN OPEN OPEN OPEN
Access Mode Statement INPUT OUTPUT I-O EXTEND
Sequential OPEN X X X X

WRITE X X

98 VisualAge COBOL Programming Guide

COBOL Coding for Files

Figure 26 (Page 2 of 2). Valid COBOL Statements for Sequential Files

COBOL OPEN OPEN OPEN OPEN
Access Mode Statement INPUT OUTPUT -0 EXTEND

START

READ X

REWRITE X

DELETE

CLOSE X X X X

Figure 27 shows the possible combinations of input/output statements for line sequen-
tial files. The 'X' indicates that the statement can be used with the open mode given
at the top of the column.

Figure 27. Valid COBOL Statements for Line Sequential Files

OPEN OPEN OPEN OPEN

Access Mode COBOL Statement INPUT OUTPUT -0 EXTEND
Sequential OPEN X X X

WRITE X X

START

READ X

REWRITE

DELETE

CLOSE X X X

Figure 28 shows the possible combinations with indexed and relative files. The 'X'
indicates that the statement can be used with the open mode given at the top of the
column.

Figure 28 (Page 1 of 2). Valid COBOL Statements with Indexed Files and Relative Files

COBOL OPEN OPEN OPEN OPEN
Access Mode Statement INPUT OUTPUT -0 EXTEND
Sequential OPEN X X X X

WRITE X X

START X

READ X X

REWRITE X

DELETE X

CLOSE X X X X

Chapter 7. Processing Files 99

COBOL Caoding for Files

Figure 28 (Page 2 of 2). Valid COBOL Statements with Indexed Files and Relative Files

COBOL OPEN OPEN OPEN OPEN
Access Mode Statement INPUT OUTPUT -0 EXTEND
Random OPEN X

WRITE X

START

READ X X

REWRITE X

DELETE X

CLOSE X X X
Dynamic OPEN X X X

WRITE X

START X X

READ X

REWRITE X

DELETE X

CLOSE X X X

File Position Indicator
The file position indicator marks the next record to be accessed for sequential COBOL
requests. You do not set the file position indicator anywhere in your program; it is set
by successful OPEN, START, READ, READ NEXT, and READ PREVIOUS statements. Sub-
sequent READ, READ NEXT, or READ PREVIOUS requests use the established file posi-
tion indicator location and update it.

The file position indicator is not used or affected by the output statements WRITE,
REWRITE, or DELETE. The file position indicator has no meaning for random proc-
essing.

Opening a File
Before your program can use any WRITE, START, READ, REWRITE, or DELETE state-
ments to process records in a file, it must first open the file with an OPEN statement.
The OPEN processing is affected by whether or not the file exists, and whether or not
the OPTIONAL attribute is specified on the file definition.

For example, an OPEN EXTEND of a file that is neither optional nor available results in

file status 35, and the OPEN statement fails. If the file is OPTIONAL, the OPEN EXTEND
will create the file and return file status 05.

100 VisualAge COBOL Programming Guide

COBOL Coding for Files

Figure 29 on page 101 shows the COBOL statements used when creating or
extending a new or existing file.

Figure 29. Statements Used when Writing Records to a File

Division Sequential Line Sequential Indexed Relative
Environment SELECT SELECT SELECT SELECT
Division ASSIGN ASSIGN ASSIGN ASSIGN
FILE STATUS ORGANIZATION ORGANIZATION ORGANIZATION
ACCESS MODE IS LINE SEQUENTIAL IS INDEXED IS RELATIVE
FILE STATUS RECORD KEY RELATIVE KEY
ACCESS MODE ALTERNATE FILE STATUS
RECORD KEY ACCESS MODE
FILE STATUS
ACCESS MODE
Data FD entry FD entry FD entry FD entry
Division
Procedure OPEN OUTPUT OPEN OUTPUT OPEN OUTPUT OPEN OUTPUT
Division OPEN EXTEND OPEN EXTEND OPEN EXTEND OPEN EXTEND
WRITE WRITE WRITE WRITE
CLOSE CLOSE CLOSE CLOSE

Opening a File with Records
To open a file that already contains records, use OPEN INPUT, OPEN I-O, or OPEN
EXTEND.

Line Sequential: OPEN I-O is not valid for line sequential files.

If you open a sequential, line sequential, or relative file as EXTEND, the added records
are placed after the last existing records in the file.

If you open an indexed file as EXTEND, each record you add must have a record key
higher than the highest record in the file.

Reading Records from a File
Use the READ statement to retrieve (read) records from a file. To read a record, you
must have opened the file INPUT or I-O. Check the file status key after each READ.

Line Sequential: OPEN I-O is not valid for line sequential

Records in sequential and line sequential files can be retrieved only in the sequence in
which they were written.

Records in indexed and relative record files can be retrieved:

Sequentially
According to the ascending order of the key you are using, the RECORD KEY or the
ALTERNATE RECORD KEY, beginning at the current position of the file position indi-

Chapter 7. Processing Files 101

COBOL Coding for Files

cator for indexed files, or according to ascending relative record locations for rela-
tive files.

Randomly
In any order, depending on how you set the RECORD KEY or ALTERNATE RECORD
KEY or the RELATIVE KEY before your READ request.

Dynamically
Mixed sequential and random.

With dynamic access, you can switch between reading a specific record directly and
reading records sequentially, by using READ NEXT and READ PREVIOUS for sequential
retrieval, and READ for random retrieval (by key).

When you want to read sequentially, beginning at a specific record, use START before
the READ NEXT or the READ PREVIOUS statements to set the file position indicator to
point to a particular record (see “File Position Indicator” on page 100). When you code
START followed by READ NEXT, the next record is read and the file position indicator is
reset to the next record. When you code START followed by READ PREVIOUS, the
previous record is read and the file position indicator is reset to the previous record.
The file position indicator can be moved randomly by using START, but all reading is
done sequentially from that point.

You can continue to read records sequentially, or you can use the START statement to
move the file position indicator. For example:

START file-name KEY IS EQUAL TO ALTERNATE-RECORD-KEY

When a direct READ is performed for an indexed file, based on an alternate index for
which duplicates exist, only the first record in the file (base cluster) with that alternate
key value is retrieved. You need a series of READ NEXT statements to retrieve each of
the data set records with the same alternate key. A FILE STATUS value of '02' is
returned if there are more records with the same alternate key value to be read; a value
of '00" is returned when the last record with that key value has been read.

Updating Records in a File
The COBOL language statements that can be used to update a file in the ENVIRON-
MENT DIVISION and DATA DIVISION are the same as those shown in Figure 29 on
page 101.

Figure 30 shows the statements that you can use in the PROCEDURE DIVISION for
sequential, line sequential, indexed, and relative files.

102 vVisualAge COBOL Programming Guide

COBOL Coding for Files

Figure 30. PROCEDURE DIVISION Statements Used to Update Files

Access Method

Sequential

Line Sequen-

tial

Indexed

Relative

ACCESS IS OPEN EXTEND OPEN EXTEND OPEN EXTEND OPEN EXTEND
SEQUENTIAL WRITE WRITE WRITE WRITE
CLOSE CLOSE CLOSE CLOSE
or or or
OPEN I-O OPEN I-O OPEN I-O
READ READ READ
REWRITE REWRITE REWRITE
CLOSE DELETE DELETE
CLOSE CLOSE
ACCESS IS Not Not OPEN I-O OPEN I-O
RANDOM applicable applicable READ READ
WRITE WRITE
REWRITE REWRITE
DELETE DELETE
CLOSE CLOSE
ACCESS IS Not Not OPEN I-O OPEN I-O
DYNAMIC: applicable applicable READ NEXT READ NEXT
Sequential Proc- READ PREVIOUS READ PREVIOUS
essing START START
CLOSE CLOSE
ACCESS IS Not Not OPEN I-O OPEN I-O
DYNAMIC: applicable applicable READ READ
Random Proc- WRITE WRITE
essing REWRITE REWRITE
DELETE DELETE
CLOSE CLOSE

Adding Records to a File

The COBOL WRITE statement adds a record to a file, without replacing any existing

records. The record to be added must not be larger than the maximum record size set
when the file was defined. Check the file status key after each WRITE statement.

Adding Records Sequentially

Use ACCESS IS SEQUENTIAL and code the WRITE statement to add records sequentially
to the end of a file that has been opened with either OUTPUT or EXTEND.

Sequential and line sequential files are always written sequentially.

For indexed files, new records must be written in ascending key sequence. If the file is
opened EXTEND, the record keys of the records to be added must be higher than the

highest primary record key on the file when the file was opened.

Chapter 7. Processing Files

103

COBOL Coding for Files

For relative files, the records must be in sequence. If you include a RELATIVE KEY
data-item in the SELECT clause, the relative record number of the record to be written is
placed in that data item.

Adding Records Randomly or Dynamically
When you write records to an indexed data set and ACCESS IS RANDOM or ACCESS IS
DYNAMIC, the records can be written in any order.

Replacing Records in a File
To replace records in a file, use REWRITE on a file that you have opened for I-O. If you
try to use REWRITE on a file that is not opened I-O, the record is not rewritten and the
status key is set to 49. Check the file status key after each REWRITE statement.

e For sequential files, the length of the record you rewrite must be the same as the
length of the original record.

e For indexed files, you can change the length of the record you rewrite.

e For variable-length relative files, you can change the length of the record you
rewrite.

To replace records randomly or dynamically, the record to be rewritten need not be
read by the COBOL program. Instead, to position the record you want to update:

¢ For indexed files, move the record key to the RECORD KEY data item, and then
issue the REWRITE.

* For relative files, move the relative record number to the RELATIVE KEY data item,
and then issue the REWRITE.

Deleting Records from a File
Open the file I-O and use the DELETE statement to remove an existing record from an
indexed or relative file. You cannot use DELETE on a sequential file or a line sequential
file.

When ACCESS IS SEQUENTIAL, the record to be deleted must first be read by the
COBOL program. The DELETE then removes the record that was just read. If the
DELETE is not preceded by a successful READ, the deletion is not done and the status
key value is set to 92.

When ACCESS IS RANDOM or ACCESS IS DYNAMIC, the record to be deleted need not
be read by the COBOL program. To delete a record, the key of the record to be
deleted is moved to the RECORD KEY data item and the DELETE is issued. Check the
file status key after each DELETE statement.

File Sharing and Record Locking (OS/2 Only)
Sometimes data needs to be accessible by many users of your COBOL program at the
same time. If a file is to be accessed from multiple processes, you need to lock the file
and/or individual records of the file.

104 visualAge COBOL Programming Guide

COBOL Coding for Files

The LOCK MODE clause is used to specify the locking technique used for a file. Itis an
optional clause of the file control entry. When LOCK MODE is specified, the file that is
opened using the file connector4 can be shared when it is opened. When LOCK MODE
is omitted, opening the file causes it to become exclusive, unless the file is opened for
input. The LOCK MODE IS AUTOMATIC clause is only supported by the VSAM file
system running on OS/2. In all other cases, the LOCK MODE IS AUTOMATIC clause is
ignored.

For OS/2 VSAM files, record locking is not supported for files that reside on an OS/2
LAN server. Files residing on OS/2 LAN servers are opened shared read or exclusive
write.

When the LOCK MODE IS AUTOMATIC clause is specified for a file opened for I-0, a
record lock is acquired when the READ statement is processed. It is released when a
subsequent 1/O statement for the file connector is processed.

Figure 31 shows the effect of using the LOCK MODE clause with other COBOL state-
ments.

Figure 31 (Page 1 of 2). Using LOCK MODE with Other COBOL Statements

COBOL
Statement Effect of LOCK MODE Clause

OPEN The file that is opened can be shared; that is, the file may be opened using more
than one file connector. If the OPEN statement fails due to locking constraints,
the file status value is set to 98 (file locked).

WRITE 1. If two or more file connectors for a sequential file add records by sharing the
file after opening it in extended mode, the records are in unspecified order.

2. If two or more file connectors for a relative file add records by sharing the
file after opening it in extended mode, the relative key values returned are
ascending by not necessarily consecutive.

3. If two or more file connectors for a indexed file add records by sharing the
file after opening it in extended mode, the order of alternate keys allowing
for duplicates is unspecified.

4. A successive WRITE statement releases an existing record lock.

START The START statement neither acquires nor detects a record lock. However, a
successful START statement releases an existing record lock.

4 You can think of a file connector as the connection of the COBOL declared file to the associated physical file.

Chapter 7. Processing Files 105

Sorting and Merging

Figure 31 (Page 2 of 2). Using LOCK MODE with Other COBOL Statements

COBOL
Statement Effect of LOCK MODE Clause

READ 1. For files opened for INPUT, READ statements will not acquire a record lock.

2. The READ statement will only be successful if no other file connector holds
a lock on the record being accessed. If the record is locked, the statement
is unsuccessful and the file status value is set to 99 (record locked). The
file position indicator setting is unaffected for a sequential READ and
unspecified for a random READ.

3. When no next record exists when the READ statement is processed, the AT
END condition is returned regardless of whether the file is shared; for
example, if the file is opened in extend mode by another file connector.

4. If the file is opened for I-O, each record is locked as it is read and released
by the next I-O statement accessing the file connector.

REWRITE A successful REWRITE statement releases an existing record lock. REWRITE is
not successful when another file connector holds a lock on the record to be
deleted.

DELETE A successful DELETE statement releases an existing record lock. DELETE is
not successful when another file connector holds a lock on the record to be
deleted.

CLOSE A successful CLOSE statement releases any record locks or file locks.

Restriction for SORT/MERGE: The LOCK MODE IS AUTOMATIC clause must not be specified
if the file is specified in a USING or GIVING phrase of a SORT or MERGE statement.

File Sorting and Merging

Arranging records in a particular sequence, a common requirement in data processing,
can be done using sort or merge operations:

Sort operation Accepts input that is not in sequence and produces output in a
requested sequence.

Merge operation Compares records from two or more sequenced files and combines
them in order.

COBOL has special language features that assist in sort and merge operations. For
information on the COBOL sort and merge language, see IBM COBOL Language Ref-
erence.

Basics of Sorting and Merging
To sort or merge files, do the following:

106 VisualAge COBOL Programming Guide

Sorting and Merging

Figure 32. Preparing to Sort or Merge Files

Action

Code

Describe sort files and merge
files.

SELECT statements in the FILE-CONTROL SECTION of the ENVI-
RONMENT DIVISION, and SD entries in the FILE SECTION of the
DATA DIVISION.

SELECT statements and SD entries are always needed for sort
files and merge files, even if you are only sorting or merging
data items from Working-Storage.

The files described in an SD entry is the working file used for a
sort or merge operation. You cannot perform any input/output
operations on this file.

Every SD entry must contain a record description. For
example:

SD SORT-WORK-1

RECORD CONTAINS 100 CHARACTERS.
01 SORT-WORK-1-AREA.

05 SORT-KEY-1 PIC X(10).
05 SORT-KEY-2 PIC X(10).
05 FILLER PIC X(80).

Describe the input and output
files, if any, for sorting or
merging.

SELECT statements in the FILE-CONTROL SECTION of the ENVI-
RONMENT DIVISION, and FD entries in the FILE SECTION of the
DATA DIVISION.

Request the sort or merge
operation.

SORT or MERGE statements in the PROCEDURE DIVISION.

The SORT or MERGE statement specifies the key fields in the
record upon which the sort or merge is to be sequenced. You
can code a key or keys as ascending or descending, or when
you code more than one key, as a mixture of the two.

You can mix SORT and MERGE statements in the same
program. A COBOL program can contain any number of sort
or merge operations.

In your COBOL program, you can perform the same sort or
merge multiple times, or perform multiple sorts or merges.
However, one operation must be completed before another can
begin.

For more information,see “The SORT Statement” on page 108
and “The MERGE Statement” on page 112.

Figure 33 on page 108 is an example of the ENVIRONMENT DIVISION and DATA DIVI-
SION entries needed to describe sort files and an input file.

Chapter 7. Processing Files 107

SORT Statement

ID Division.
Program-ID. SmplSort.

Environment Division.
Input-Output Section.
File-Control.

Assign Name For A Sort File Is
Treated As Documentation.

* Ok Ok F

Select Sort-Work-1 Assign To SortFile.
Select Sort-Work-2 Assign To SortFile.
Select Input-File Assign To InFile.

Data Division.
File Section.
SD Sort-Work-1
Record Contains 100 Characters.
01 Sort-Work-1-Area.

05 Sort-Key-1 Pic X(10).
05 Sort-Key-2 Pic X(10).
05 Filler Pic X(80).

SD Sort-Work-2
Record Contains 30 Characters.

01 Sort-Work-2-Area.
05 Sort-Key Pic X(5).
05 Filler Pic X(25).

FD Input-File
01 Input-Record Pic X(100).

Working-Storage Section.

01 EOS-Sw Pic X.
01 Filler.
05 Table-Entry Occurs 100 Times
Indexed By X1 Pic X(30).

Figure 33. ENVIRONMENT DIVISION and DATA DIVISION Entries for a Sort Program

The SORT Statement
You can use the SORT statement to do the following:

e Use input or output procedures to add, delete, change, edit, or otherwise change
records.

— To request that input procedures be performed on the sort records before they
are sorted, use SORT ... INPUT PROCEDURE.

See “Coding the Input Procedure” on page 110 for more information on input
procedures.

108 VisualAge COBOL Programming Guide

SORT Statement

— To request that output procedures be performed on the sort records after they
are sorted, use SORT ... OUTPUT PROCEDURE.

See “Coding the Output Procedure” on page 111 for more information on
output procedures.

e Sort data items (including tables) in Working-Storage.

¢ Read records directly into a new file without any preliminary processing (SORT . . .
USING).

e Transfer sorted records from the sort program directly to another file without any
further processing (SORT . . . GIVING).

SORT Program Organization

A COBOL program containing a sort operation can be organized so that one or more
input files are read and operated on by an input procedure. In the input procedure, a
RELEASE statement (analogous to the WRITE statement) releases a record to be sorted.
If you do not want to change or process the records in the files before the sorting oper-
ation begins, the SORT statement USING option releases the records in the files
unchanged to the new file.

The sort operation then arranges the entire set of records in the sequence specified by
the key(s).

After the sort, sorted records can be made available one at a time through a RETURN
statement to an output procedure. If you want to put the sorted records in files without
changing or processing these records, the SORT statement GIVING option names the
output files and writes the sorted records to the output files.

Setting the Sort Criteria
To set sort criteria:

1. In the record description of the file to be sorted, define the key or keys on which it
will be sorted.

The key used in the SORT statement cannot be variably located. (For more infor-
mation on variably located data items, see Appendix D, “Complex OCCURS
DEPENDING ON” on page 553.)

2. In the SORT statement, code the key on which the file will be sorted.
To sort on more than one key, list the keys in descending order of importance.

In the example below, SORT-GRID-LOCATION and SORT-SHIFT are defined in the DATA
DIVISION before they are used in the SORT statement.

The example also shows the use of an input and an output procedure. Use an input

procedure if you want to process the records before you sort them, and use an output
procedure if you want to further process the records after you sort them.

Chapter 7. Processing Files 109

Coding the Input Procedure

DATA DIVISION.

SD SORT-FILE
RECORD CONTAINS 115 CHARACTERS
DATA RECORD SORT-RECORD.

01 SORT-RECORD.

05 SORT-KEY.
10 SORT-SHIFT PIC X(1).
10 SORT-GRID-LOCATION PIC X(2).
10 SORT-REPORT PIC X(3).

05 SORT-EXT-RECORD.
10 SORT-EXT-EMPLOYEE-NUM PIC X(6).
10 SORT-EXT-NAME PIC X(30).
10 FILLER PIC X(73).

PROCEDURE DIVISION.

SORT SORT-FILE
ON ASCENDING KEY SORT-GRID-LOCATION SORT-SHIFT
INPUT PROCEDURE 600-SORT3-INPUT
OUTPUT PROCEDURE 700-SORT3-OUTPUT.

Alternate Collating Sequences

You can sort records on a user specified collating sequence for single byte character
keys. The default collating sequence is the collating sequence specified by the locale
setting in effect at compile time. To override the PROGRAM COLLATING SEQUENCE
specified either explicitly or by the default, use the COLLATING SEQUENCE option of the
SORT statement. You can use different collating sequences for multiple sorts in your
program.

For DBCS keys, the collating sequence is that specified by the locale setting in effect at
execution time.

Coding the Input Procedure

If you want to process the records in an input file before they are released to the sort
program, use the INPUT PROCEDURE option of the SORT statement. You might use an
input procedure to:

¢ Release data items to the new file from Working-Storage.

¢ Release records that have already been read in elsewhere in the program.

¢ Read records from an input file, select or process them, and release them to the
new file.

110 VisualAge COBOL Programming Guide

Coding the Output Procedure

Each input procedure must be contained in either paragraphs or sections. For
example, to release records from Working-Storage (a table) to the new file:

SORT SORT-WORK-2
ON ASCENDING KEY SORT-KEY
INPUT PROCEDURE 600-SORT3-INPUT-PROC

600-SORT3-INPUT-PROC SECTION.
PERFORM WITH TEST AFTER
VARYING X1 FROM 1 BY 1 UNTIL X1 = 100
RELEASE SORT-WORK-2-AREA FROM TABLE-ENTRY (X1)
END-PERFORM.

Transferring Records to the Sort Program

To transfer records to the new file, all input procedures must contain at least one
RELEASE or RELEASE FROM statement. To release A from X, for example, you can
enter:

MOVE X TO A.
RELEASE A.

Figure 34 compares the RELEASE and RELEASE FROM statements.

Figure 34. Comparison of RELEASE and RELEASE FROM
RELEASE RELEASE FROM

MOVE EXT-RECORD
TO SORT-EXT-RECORD

PERFORM RELEASE-SORT-RECORD PERFORM RELEASE-SORT-RECORD
RELEASE-SORT-RECORD. RELEASE-SORT-RECORD.
RELEASE SORT-RECORD RELEASE SORT-RECORD FROM SORT-EXT-RECORD

Coding the Output Procedure
If you want to select, edit, or otherwise change sorted records before writing them from
the sort work file into another file, use the OUTPUT PROCEDURE option of the SORT
statement.

Each output procedure must be contained in either a section or a paragraph and must
include:
e At least one RETURN or RETURN INTO statement.

The RETURN statement makes each sorted record available to your output proce-
dure (the RETURN statement for a sort file is similar to a READ statement for an
input file).

Chapter 7. Processing Files 111

Success of Sort and Merge

You can use the AT END and END-RETURN phrases with the RETURN statement.
The imperative statements on the AT END phrase will be performed after all the
records have been returned from the sort file. The END-RETURN explicit scope ter-
minator serves to delimit the scope of the RETURN statement.

If you use the RETURN INTO statement, instead of RETURN, your records will be
returned to Working-Storage or to an output area.

e Any statements necessary to process the records that are made available, one at a
time, by the RETURN statement.

Restrictions on Input and Output Procedures
The following restrictions apply to the procedural statements in input and output
procedures:
e The input/output procedure must not contain any SORT or MERGE statements.

e The input/output procedure must not contain any STOP RUN, EXIT PROGRAM, or
GOBACK statements.

¢ You can use ALTER, GO TO, and PERFORM statements in the input/output proce-
dure to refer to procedure-names outside the input/output procedure. However,
you must return to the input/output procedure after a GO TO or PERFORM state-
ment.

e The remainder of the PROCEDURE DIVISION must not contain any transfers of
control to points inside the input/output procedure (with the exception of the return
of control from a Declarative Section).

e In a SORT or MERGE input or output procedure, calling a program is permitted, but
the called program cannot issue a SORT or MERGE statement and the called
program must return to the caller.

The MERGE Statement
You cannot specify an input procedure in the MERGE statement; use MERGE . . . USING.

The MERGE statement combines the files you name into one sequenced file. The files
to be merged must be already be in the same sorted sequence.

The merge operation compares keys in the records of the input files, and passes the
sequenced records one-by-one to the RETURN statement of an output procedure or to
the file named in the GIVING phrase.

Determining Whether the Sort or Merge Was Successful

The SORT or MERGE statement returns one of the following completion codes after a
sort is finished:

0 Successful completion of sort/merge

16 Unsuccessful completion of sort/merge

The return code or completion code is stored in a SORT-RETURN special register. The
contents of SORT-RETURN change after each SORT or MERGE statement is performed.

112 visualAge COBOL Programming Guide

SORT Special Registers

You should test for successful completion after each SORT or MERGE statement:

SORT SORT-WORK-2
ON ASCENDING KEY SORT-KEY
INPUT PROCEDURE IS 600-SORT3-INPUT-PROC
OUTPUT PROCEDURE IS 700-SORT3-OUTPUT-PROC.
IF SORT-RETURN NOT=0
DISPLAY "SORT ENDED ABNORMALLY. SORT-RETURN = "
SORT-RETURN.

600-SORT3-INPUT-PROC SECTION.

700-SORT3-0UTPUT-PROC SECTION.

Prematurely Stopping a Sort or Merge Operation

To stop a sort or merge operation, use the SORT-RETURN special register. Move the
integer 16 into the register in:

« An input or output procedure.

Sort or merge processing will be stopped immediately after the next RELEASE or
RETURN statement is performed.

e A Declarative Section entered during processing of a USING or GIVING file.

Sort or merge processing will be stopped on exit from the declarative section.
Control then returns to the statement following the SORT or MERGE statement.

If you do not reference SORT-RETURN anywhere in your program, COBOL will test the
return code. If the code is 16, COBOL issues a run-time diagnostic message and ter-
minates the run unit (or the thread, in a multithread environment). If you test
SORT-RETURN for one or more (but not necessarily all) SORT or MERGE statements,
COBOL will not check the return code.

SORT Special Registers

You can use the SORT-RETURN and SORT-CONTROL special registers to get or test
values related to sort behavior.

The SORT-CONTROL special register is implicitly defined as
01 SORT-CONTROL GLOBAL PICTURE X(160) VALUE='file name'.

where file name is used as the system file identifier for the options file for the sort
product. You can assign to SORT-CONTROL the file name of a file that contains your

Chapter 7. Processing Files 113

STL file system

sort control statements. See SMARTsort for OS/2 and AlX for information about the
SMARTSsort options file.

The STL File System

The STL file system supports sequential, indexed, and relative files on the local system.
It provides the basic file facilities that you need for accessing local files. It gives con-
formance to ANSI standards, good performance, and the ability to port easily between
AlX, OS/2, and Windows systems.

Line sequential files are the only files not supported.

The file system is safe for use with threads; it is your responsibility to ensure that mul-
tiple threads do not access COBOL buffers at the same time. Multiple threads can
perform operations on the same STL file, but you must use an operating system call
(for example, DosRequestMuteSem on OS/2 or WaitForSingleObject on Windows) to
force all but one of them to wait for the file access to complete on the active thread.

With the STL file system you can easily read and write files to be shared with PL/I
programs.

File Status and the STL File System

In the FILE STATUS clause of the FILE-CONTROL paragraph, you can specify one or two
names:

FILE STATUS data-name-1
or
FILE STATUS data-name-1 data-name-2

After an input/output operation, data-name-1 will contain a status code which is inde-
pendent of the file system used. If you specify data-name-2, it will contain a status
code that is file-system specific. In the case of the STL file system, data-name-2 will
contain one of the STL file system return codes shown in Figure 35.

See IBM COBOL Language Reference for additional information on the FILE STATUS
clause.

Figure 35 (Page 1 of 3). The STL file system Return Codes

Code Meaning Notes

0 Successful completion The input/output operation completed success-
fully.

1 Invalid operation This return code should not occur; it indicates

an error in the file system.

2 1/0O error A call to an operating system 1/O routine
returned an error code.

3 File not open Attempt to do an operation (other than OPEN)
on a file that is not open.

114 visualAge COBOL Programming Guide

STL file system

Figure 35 (Page 2 of 3). The STL file system Return Codes

Code Meaning Notes

4 Key value not found Attempt to read a record using key which is
not in the file.

5 Duplicate key value Attempt to use a key a second time for a key
which does not allow duplicates.

6 Invalid key number This return code should not occur; it indicates
an error in the file system.

7 Different key number This return code should not occur; it indicates
an error in the file system.

8 Invalid flag for the operation This return code should not occur; it indicates
an error in the file system.

9 End of file An end of file was detected. This is not an
error.

10 I/O operation must be preceed The operation is looking for the current record

by 1/0 GET op and the current record has not been defined.

11 Error return from get space The operating system indicates that not

routine enough memory is available.

12 Duplicate key accepted The operation specified a key and the key is a
duplicate. See the description of File Status 2
in IBM COBOL Language Reference.

13 Sequential access and key Sequential access was specified but the

sequence bad records are not in sequential order.

14 Record length < max key The record length does not allow enough
space for the all of the keys.

15 Access to file denied The operation system reported that it cannot
access the file. Either the file does not exist or
the user does not have the proper permission
of the operating system to access the file.

16 File Already exists You appempted to open a new file, but the
operating system reports that the file already
exists.

17 (Reserved)

18 File locked Attempt to open a file which is already open in
exclusive mode.

19 File table full The operating system reports that its file table
is full.

20 Handle table full The operating system reports that it cannot
allocate any more file handles.

21 Title does not say STL. Files opened for reading by the STL file
system must contain a header record that con-
tains “STL” at a certain offset in the file.

22 Bad indexcount arg for create This return code should not occur; it indicates

an error in the file system.

Chapter 7. Processing Files 115

SMARTdata Utilities for OS/2

Figure 35 (Page 3 of 3). The STL file system Return Codes

Code Meaning Notes
23 Index or rel record > 64K Index and relative records are limted to a
length of 64K.
24 Error found in file header or STL files begin with a header. The header or
data in open of existing file its associated data has inconsistent values.
25 Indexed open on seq file Attempt to open a sequential file as an

indexed or relative file.

Note: The following are errors detected in the adapter open routines.

1000 Sequential open on indexed/rel Attempt to open an indexed or relative file as a
file sequential file.

1001 Relative open of indexed file Attempt to open a relative file as an indexed
file.

1002 Index open of rel file Attempt to open an indexed file as a sequen-
tial file.

1003 File does not exist The operating system reports that the file does
not exist.

1004 Number of keys differ Attempt to open a file with a different number
of keys.

1005 Record lengths differ Attempt to open a file with a different record
length.

1006 Record types differ Attempt to open a file with a different record
type.

1007 Key position or length differ Attempt to open a file with a different key posi-

tion or length.

SMARTdata Utilities for OS/2

This section gives you tips and hints for using the SMARTdata Utilities on OS/2. For
equivalent information under Windows, see SMARTdata Ultilities for Windows User's
Guide.

Quick Start for Remote File Access
This section gives you the steps to get started quickly with accessing remote files.

1. Install and configure Communications Manager/2 (CM/2) on your OS/2 for APPC.
Define an LU alias for the remote host. You will need a user ID and password on
that host.

2. Copy the file CONFIG.DFM from the samples subdirectory to the directory defined
by the EHNDIR environmental variable in your CONFIG.SYS file.

3. Edit CONFIG.DFM as follows:

¢ Activate one of the target definitions by removing the appropriate semicolons.

116 VisualAge COBOL Programming Guide

SMARTdata Utilities for OS/2

¢ Edit the remote_lu line and replace the sample value with the LU alias defined
in CM/2 for the target you wish to access.

¢ Edit the line containing local_lu and replace the existing value with the LU
alias of your local machine as defined in CM/2.

4. From an OS/2 command line, issue the command STARTDFM.
5. Enter your user ID and password on the remote system when prompted.
6. Assign a drive to that host with the following command:

DFMDRIVE ASSIGN x: //lualias

Where x is a drive not currently accessed and lualias is the LU alias of the host
system.

7. You can now access files on the remote host both through OS/2 commands and
through VSAM applications through the drive letter assigned in the previous step.

Problems with Remote Files Access
The majority of problems that people encounter when installing Distributed File
Manager (DFM) are related to configuring communications between the workstation and
the host. Some of the common problems encountered when setting up DFM, and their
solutions are:

STARTDRM cannot find CONFIG.DFM . STARTDRM looks for the configuration file in
the following order:

1. Full path name, if provided on the command line

2. CONFIG.DFM in the current directory

3. CONFIG.DFM in the directory defined by the EHNDIR environmental variable

Problem in the configuration file
e Ensure all semicolons are removed from the target definition.

e Ensure the remote_lu value for the target definition matches exactly the LU alias
assigned to the target system in CM/2.

e Ensure your local_lu value matches the local LU alias in CM/2.
¢ Check for case mismatches between configuration file values and CM/2 values.

ID and password . Ensure you entered the correct user ID and password at the
prompt.

Communication Manager setup problems . The most common problems are errors in
the CM/2 setup that prevent DFM/2 from initializing an APPC conversation with the
host. The APING utility available with the APPC Productivity Suite allows you to verify
that you are able to make an LU 6.2 connection to the target system.

The DFM target is not available on the host system . For OS/390, the target DFM is
part of the DFSMS/MVS Version 1.3 product. It is a startable procedure. Ask your

Chapter 7. Processing Files 117

SMARTdata Utilities for OS/2

0S/390 administrator whether DFM/MVS is started. Also, have your administrator
ensure that the SNA mode of QPCSUPP is defined on the OS/390 system.

Platform-Specific Behavior

It is important to remember that when accessing files on a remote system, you are
constrained by the limitations of the remote file access method.

To better understand the limitations of the remote access methods, refer to the fol-
lowing documents:

Distributed FileManager/MVS Guide and Reference, SC26-4915
AS/400 Distributed Data Management Guide, SC41-9600

A list of known restrictions

0OS/390 Target
The OS/390 file access method associated with the remote file will limit the type of
access you may use. For instance, if the remote file is a PDSE member, you can
only access it sequentially. The same holds for SAM and VSAM ESDS files. You
can only use keyed access if the remote file is a VSAM KSDS.

AS/400 Target
Specifying a SECURITY value other than the default PROGRAM will cause file space
allocation problems.

File names appear to be limited to 10 characters including periods.
File names must be specified in upper case.

AS/400 allocates direct files with three extents with 1000 records per extent. All
records are defined with unused records designated as inactive. This might cause
problems if you access the file the return inactive flag (DDM_RTNINA).

AS/400 requires upper case for user ID and password.

Data Conversion
When accessing remote files, it is possible to have DFM convert the records between
their native format on the target system and a local format used on the workstation.
For instance, DFM can convert EBCDIC into ASCII or binary encoded decimal into
byte-reversed binary. Refer to the SMARTdata Utilities documentation for the details of
how to take advantage of this function. The following are some common problems that
you might encounter:

Data conversion does not occur.
Note that the data conversion function applies only when files are accessed
through the VSAM interface. This means when files are viewed or edited
from the command line, they will not be converted; however, if they are
opened and accessed by an application that invokes the VSAM APIs either
directly or through COBOL, the conversion should occur.

A case mismatch between the file name specified in the
FILE_DESCRIPTOR_MAP statement of the DFM configuration file and the file

118 VisualAge COBOL Programming Guide

SMARTdata Utilities for OS/2

name specified when accessing the file will also prevent conversion. While
specifying the file name userl.ddm.filel might open the correct file on
0S/390, it will not match against USER1.DDM.FILE1 in the
FILE_DESCRIPTOR_MAP.

Data conversion does not work when the DFMDRIVE GUI is used to assign a

drive.
When using the directory mapping function of the DFMDRIVE GUI, the file
name is appended to the value entered for the directory with a slash sepa-
rating the directory name from the file name. The OS/390 target then
removes the slash and replaces it with a dot before accessing the file. If
the TARGET_FILENAME in the FILE_DESCRIPTOR_MAP definition contains a
dot instead of a slash, the comparison will fail.

Note: Data conversion is not necessary if the program is expecting System/390 host
data types and the appropriate compiler option, that is, BINARY(S390),
CHAR(EBCDIC), or FLOAT(HEX) is in effect.

For additional information about remote file access and System/390 host data
types, see Appendix B, “System/390 Host Data Type Considerations” on
page 543.

File Conversion
When accessing a remote file, SAU converts the file name from the local character set
(as defined by the CODEPAGE environmental variable in CONFIG.SYS) into codepage
0500 used by DFM target systems. The current release of SMARTdata Utilities is
capable of converting between single-byte character sets only. If you are running the
Kaniji or Simplified Chinese version of SMARTdata Utilities (Codepage 0932 and 1381
respectively), use only single-byte characters when specifying remote file names.

LAN-Installed SMARTdata Utilities
If you are using a LAN-installed SMARTdata Utilities and wish to use the remote file
access portion of SMARTdata Utilities when SMARTdata Utilities is installed on a LAN
disk then the following steps must be taken:

¢ Change directory to the subdirectory of the LAN disk where SMARTdata Utilities is
installed.

¢ Change directory into the DLL subdirectory.
e Copy the file DFMSFLO.DLL to a local disk.

¢ Locate the line of your CONFIG.SYS file that references the file DFMSFLO. Change
the full path name to point to its location on your local disk.

Translation Tables

The environment variable FMTCDRA should be set to the name of the directory that
contains the CDRA translation tables. To set this variable, issue the command:
FMTCDRA= [Root_di rectory] \BIN\CONVTABL.

For example,

Chapter 7. Processing Files 119

SMARTdata Utilities for OS/2

FMTCDRA=K:\IBMDDM\BIN\CONVTABL

Client Enhancement for Stream Data Conversion

The DFMDRIVE end user interface is modified to allow the specification of a parameter
list which will be attached to filenames passed to the DFM target server.

One specific use for passing a parameter list to the Distributed FileManager/MVS target
server is to trigger Stream Data Conversion, that is, to access System/390 EBCDIC
data as ASCII data from the work station.

If the target server does not support Stream Data Conversion, the following message
appears when using the DFMDRIVE ASSIGN or DFMDRIVE SETPARM line command:

EHNO252E: Drive %1 target system does not support parameters

Similarly, if the Graphical User Interface is used to send a parameter list to the target
server, and it does not support a parameter list, a popup appears with the message:

Target system does not support parameters.

For details of how to pass a parameter list to the target system, see VSAM in a Distrib-
uted Environment.

120 VisualAge COBOL Programming Guide

STRING and UNSTRING

Chapter 8. Error Handling

Anticipate the possibility of coding or system problems by putting code into your
program to handle them. Error handling code can be thought of as built-in distress
flares or lifeboats. If such code is not in your program, not only could output data and
files be corrupted, but you might not even be aware of the problem.

The action taken by your error-handling code can vary from trying to handle the situ-
ation and continue, to issuing a message, to halting the running of the program. In any
event, coding a warning message is a good idea.

You might be able to create your own error-detection routines for data-entry errors or
for errors as your installation defines them.

COBOL contains special elements to help you anticipate and correct error conditions.
These fall into the following main areas:

¢ “STRING and UNSTRING Operations.”

e “Arithmetic Operations” on page 122.

¢ “Input/Output Error Handling Techniques” on page 123.
e “CALL Statements” on page 131.

STRING and UNSTRING Operations

When stringing or unstringing data, the pointer might fall out of the range of the
receiving field. Here a potential overflow condition exists, but COBOL does not allow
the overflow to happen; the STRING/UNSTRING operation will not be completed and the
receiving field remains unchanged.

If you do not have an ON OVERFLOW clause on the STRING or UNSTRING statement,
control passes to the next sequential statement, and you are not notified of the incom-
plete operation.

Consider the following statement:

String Item-1 space Item-2 delimited by Item-3
into Item-4
with pointer String-ptr
on overflow
Display "A string overflow occurred"
End-String

© Copyright IBM Corp. 1996, 1998 121

Arithmetic Operations

Figure 36. Data Values before and after the Statement is Performed

Data Value Value
Iltem PICTURE Before After
Item-1 X(5) AAAAA AAAAA
Iltem-2 X(5) EEEAA EEEAA
Item-3 X(2) EA EA
Item-4 X(8) bbbbbbbb bbbbbbbb
String-ptr 9(2) 0 0

Note: The symbol b represents a blank space.

Because String-ptr has a value of zero that falls short of the receiving field, an over-
flow condition occurs and the STRING operation is not completed (a String-ptr greater
than nine would cause the same result). If ON OVERFLOW had not been specified, you
would not be notified that the contents of Item-4 remain unchanged.

Arithmetic Operations

When your program performs arithmetic operations, the results might be larger than the
fixed-point field that is to hold them, or you might have tried a division by 0. In either
case, the ON SIZE ERROR clause after the ADD, SUBTRACT, MULTIPLY, DIVIDE, or
COMPUTE statement can handle the situation.

For ON SIZE ERROR to work correctly for fixed-point overflow and decimal overflow, you
must specify the TRAP(ON) run-time option.

If you code the ON SIZE ERROR clause, the imperative statement of your clause will be
performed and your result field will not be changed in the following five cases:

e Fixed-point overflow.

e Division by 0.

e Zero raised to the zero power.

e Zero raised to a negative number.

e A negative number raised to a fractional power.

Example of Checking for Division by Zero

Code your ON SIZE ERROR imperative statement so that it issues an informative
message. For example:

122 VisualAge COBOL Programming Guide

I/O Error Handling

DIVIDE-TOTAL-COST.
DIVIDE TOTAL-COST BY NUMBER-PURCHASED
GIVING ANSWER
ON SIZE ERROR
DISPLAY "ERROR IN DIVIDE-TOTAL-COST PARAGRAPH"
DISPLAY "SPENT " TOTAL-COST, " FOR " NUMBER-PURCHASED
PERFORM FINISH
END-DIVIDE

FINISH.
STOP RUN.

In this example, if division by 0 occurs, the program will write out a message identifying
the trouble and halt program execution.

Input/Output Error Handling Techniques

When a program encounters an error in processing a file, whether logical errors in the
program or input/output errors on the disk, control returns to your COBOL program,
except in the following cases:

¢ There is no file status specified for the file
¢ There is no applicable EXCEPTION/ERROR declarative
¢ There is no INVALID KEY/AT END phrase specified for the error condition

In these cases, a COBOL run-time message is written and the run unit ends.

When an input/output statement operation fails, COBOL will not perform corrective
action for you. You choose whether your program will continue running after a less-
than-severe input/output error occurs.

COBOL offers five techniques for intercepting and handling certain input/output errors.

End-of-file phrase (AT END)
EXCEPTION/ERROR declarative
FILE STATUS key

File System Return Code
INVALID KEY phrase

The most important thing to remember about input/output errors is that you choose
whether your program will continue running after a less-than-severe input/output error
occurs. COBOL does not perform corrective action. If you choose to have your
program continue (by incorporating error-handling code into your design), you must also
code the appropriate error-recovery procedure; for example, a procedure to check the
file status key value.

Figure 37 on page 124 shows the flow of logic after a file system input/output error
occurs:

Chapter 8. Error Handling 123

I/O Error Handling

Severe Issue error

error message
?

Terminate
COBOL
Program

Set Status
Key (if
present)

Evaluate
errortype

All
Others

End-of-File

Invalid
Key

User
have EOF
imperative

User
haveinv.
Key Imper-

User

have assoc.
Error Declar-

” ative ative
? ?
yes
yes
Execute Execute Execute
EOF Invalid Key Error
Imperative Imperative Declarative
COBOL Program
atthe end of

the I/O statement

Terminate the
rununitwith
amessage

!

Figure 37. Flow of Logic after a File System I/O Error

124 visualAge COBOL Programming Guide

I/O Error Handling

End-of-File Phrase (AT END)
An end-of-file condition might or might not represent an error. In many designs,

reading sequentially to the end of a file is done intentionally, and the AT END condition
is expected.

For example, suppose you are processing a file containing transactions in order to
update a master file:

PERFORM UNTIL TRANSACTION-EOF = "TRUE"
READ UPDATE-TRANSACTION-FILE INTO WS-TRANSACTION-RECORD
AT END
DISPLAY "END OF TRANSACTION UPDATE FILE REACHED"
MOVE "TRUE" TO TRANSACTION-EOF
END READ

END-PERFORM

Sometimes, however, the condition will reflect an error. You code the AT END phrase of
the READ statement to handle either case, according to your program design.

If you code an AT END phrase, on end-of-file the phrase is performed. If you do not
code an AT END phrase, the associated ERROR declarative is performed.

Any NOT AT END phrase you code is performed only if the READ statement completes
successfully. If the READ operation fails because of any condition other than end-of-file,
neither the AT END nor the NOT AT END phrase is performed. Instead, control passes
to the end of the READ statement after performing any associated declarative proce-
dure.

If you have coded neither an AT END phrase nor an EXCEPTION declarative procedure,
but have coded a status key clause for the file, control passes to the next sequential
instruction after the input/output statement that detected the end-of-file (where presum-
ably you have some coding to take appropriate action).

EXCEPTION/ERROR Declarative

You can code one or more ERROR declarative procedures in your COBOL program that
will be given control if an input/output error occurs. You can have:

¢ A single, common procedure for the entire program.

e Group procedures for each file open mode (whether INPUT, OUTPUT, I-O, or
EXTEND).

¢ Individual procedures for each particular file.

Place each such procedure in the declaratives section of your PROCEDURE DIVISION.
(For the syntax detail, see IBM COBOL Language Reference.

Chapter 8. Error Handling 125

I/O Error Handling

In your procedure, you can choose to try corrective action, retry the operation, continue,
or end execution. You can use the ERROR declaratives procedure in combination with
the file status key if you want a further analysis of the error.

If you continue processing a blocked file, you might lose the remaining records in a
block after the record that caused the error.

Write an ERROR declarative procedure if you want the system to return control to your
program after an error occurs. If you do not write an ERROR declarative procedure,
your job could be canceled or abnormally terminated after an error occurs.

File Status Key
The system updates the FILE STATUS key after each input/output statement is per-
formed on a file, placing values in the two digits of the file status key. In general, a
zero in the first digit indicates a successful operation, and a zero in both digits means
there is nothing abnormal to report. Possible file status codes are listed in the /IBM
COBOL Language Reference. Establish a FILE STATUS key using the FILE STATUS
clause in the FILE-CONTROL paragraph and data definitions in the DATA DIVISION.

FILE STATUS IS data-name-1
data-name-1

Specifies the 2-character COBOL FILE STATUS key that should be defined in the
WORKING-STORAGE SECTION.

Restriction: The data-name in the FILE STATUS clause cannot be variably located.
(For more information on variably located data items, see Appendix D, “Complex
OCCURS DEPENDING ON” on page 553.)

Your program can check the COBOL FILE STATUS key to discover whether an error has
been made and, if so, what general type of error it is. For example, if a FILE STATUS
clause is coded like this:

FILE STATUS IS FS-CODE
FS-CODE is used by COBOL to hold status information like this:

FS—CODE

2 1

; Sequence error

Invalid key

Follow these rules for each file:

e Define a different FILE STATUS key for each file.

126 VisualAge COBOL Programming Guide

I/O Error Handling

This is especially important since it allows you to determine the cause of a file
input/output exception which might have occurred as a result of, for example, an
application logic error or a disk error.

¢ Check the FILE STATUS key after every input/output request.

After an input or output statement is performed, check the contents of the status
key; if it contains a value other than O, your program can issue an error message,
or can act based on the value of the code placed in the status key.

You do not have to reset the status key code, because it is set following each
input/output attempt.

For VSAM, STL, and Btrieve files, in addition to the file status key, you can code a
second identifier in the FILE STATUS clause to get more detailed information on file
system input/output requests. For further details, see “File System Return Code”
on page 128.

You can use the status key alone, or in conjunction with the INVALID KEY option, or
to supplement the EXCEPTION/ERROR declarative. Using the status key in this way
gives you precise information about the results of each input/output operation.

File Status Key Example
Figure 38 shows an example of the COBOL coding that performs a simple check on
the status key after opening a file.

IDENTIFICATION DIVISION.

PROGRAM-ID. SIMCHK.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT MASTERFILE ASSIGN TO AS-MASTERA
FILE STATUS IS MASTER-CHECK-KEY

DATA DIVISION.

WORKING-STORAGE SECTION.
01 MASTER-CHECK-KEY PIC X(2).

PROCEDURE DIVISION.

OPEN INPUT MASTERFILE
IF MASTER-CHECK-KEY NOT = "00"
DISPLAY "Non-zero file status returned from OPEN " MASTER-CHECK-KEY

Figure 38. Using the Status Key to Check an OPEN Statement

Chapter 8. Error Handling 127

I/O Error Handling

File System Return Code
Often the 2-character FILE STATUS code is too general to pinpoint the disposition of a
request. You can get more detailed information about file system input/output requests
by coding a second status area:

FILE STATUS IS data-name-1 data-name-2

data-name-1
Specifies the 2-character COBOL FILE STATUS key.

data-name-2
Specifies a data item that contains the file system return code when the COBOL
FILE STATUS key is not 0. data-name-2 is at least 6 bytes long.

STL and Btrieve File Systems
If data-name-2 is 6 bytes in length, it will contain the return code. If it
is greater than 6 bytes in length, it will also contain a message with
further information. For example, given the definition

01 my-file-status-2.
02 exception-return-value PIC 9(6).
02 additional-info PIC X(100).

and an attempt to open a file with a different defintion than the one
with which it was created, return code 39 would be returned in
exception-return-value and a message telling you what keys you
need to perform the open would be returned in additional-info.

VSAM File System
data-name-2 must be defined as PICTURE X(n) and USAGE DISPLAY
attributes, where nis 6 or greater. The PICTURE string value repres-
ents the first n bytes of the VSAM reply message structure. If the size
of the reply message structure, m, is less than n, only the first m bytes
contain useful information.

For full details on the VSAM reply message structure, and VSAM file
handling in general, refer to the SMARTdata Utilities documentation for
your operating environment as listed in “Bibliography” on page 658.

See the IBM COBOL Language Reference for the rules for coding data-name-2.

For information about possible return codes from the STL file system, see “File Status
and the STL File System” on page 114.

For information on interpreting the codes for other file systems, refer to the relevant file
system documentation listed in “Bibliography” on page 658.

Checking File System Status Codes Example

Figure 39 on page 129 shows an example of a COBOL program that reads an indexed
file (starting on the fifth record), checks the file status key after each input/output
request, and displays the VSAM codes when the file status key is not zero. Figure 39
on page 129 also illustrates what the output from this program might look like,
assuming that the file being processed contains six records.

128 VisualAge COBOL Programming Guide

I/O Error Handling

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILESYSFILE ASSIGN TO FILESYSFILE
ORGANIZATION IS INDEXED
ACCESS DYNAMIC
RECORD KEY IS FILESYSFILE-KEY
FILE STATUS IS FS-CODE, FILESYS-CODE.

DATA DIVISION.
FILE SECTION.
FD FILESYSFILE

RECORD 30.

01 FILESYSFILE-REC.
10 FILESYSFILE-KEY PIC X(6).
10 FILLER PIC X(24).

WORKING-STORAGE SECTION.

01 RETURN-STATUS.
05 FS-CODE PIC XX.
05 FILESYS-CODE PIC X(6).

PROCEDURE DIVISION.
OPEN INPUT FILESYSFILE.
DISPLAY "OPEN INPUT FILESYSFILE FS-CODE: " FS-CODE.

IF FS-CODE NOT = "00"
PERFORM FILESYS-CODE-DISPLAY
STOP RUN

END-IF.

MOVE "000005" TO FILESYSFILE-KEY.

START FILESYSFILE KEY IS EQUAL TO FILESYSFILE-KEY.

DISPLAY "START FILESYSFILE KEY=" FILESYSFILE-KEY
" FS-CODE: " FS-CODE.

IF FS-CODE NOT = "00"
PERFORM FILESYS-CODE-DISPLAY
END-IF.

Figure 39 (Part 1 of 2). Getting File System Code Information on Input/Output Requests

Chapter 8. Error Handling 129

I/O Error Handling

IF FS-CODE = "00"
PERFORM READ-NEXT UNTIL FS-CODE NOT = "00"
END-IF.

CLOSE FILESYSFILE.
STOP RUN.

READ-NEXT.
READ FILESYSFILE NEXT.
DISPLAY "READ NEXT FILESYSFILE FS-CODE: " FS-CODE.
IF FS-CODE NOT = "00"
PERFORM FILESYS-CODE-DISPLAY
END-IF.
DISPLAY FILESYSFILE-REC.

FILESYS-CODE-DISPLAY.
DISPLAY "FILESYS-CODE ==>", FILESYS-CODE.

Figure 39 (Part 2 of 2). Getting File System Code Information on Input/Output Requests

INVALID KEY Phrase
The INVALID KEY phrase will be given control if an input/output error occurs because of
a faulty index key. You can include INVALID KEY phrases on READ, START, WRITE,
REWRITE, and DELETE requests for indexed and relative files.

INVALID KEY and ERROR Declaratives
INVALID KEY phrases differ from ERROR declaratives in these ways:

e INVALID KEY phrases operate for only limited types of errors, whereas the ERROR
declarative encompasses all forms.

e INVALID KEY phrases are coded directly onto the input/output verb, whereas ERROR
declaratives are coded separately.

e INVALID KEY phrases are specific for one single input/output operation, whereas
ERROR declaratives are more general.

If you code INVALID KEY in a statement that causes an INVALID KEY condition, control is
transferred to the INVALID KEY imperative statement. Here, any ERROR declaratives
you have coded are not performed.

NOT INVALID KEY

Any NOT INVALID KEY phrase that you code is performed only if the statement com-
pletes successfully. If the operation fails because of any condition other than INVALID
KEY, neither the INVALID KEY nor the NOT INVALID KEY phrase is performed. Instead
control passes to the end of the statement after performing any associated ERROR
declaratives.

130 VisualAge COBOL Programming Guide

CALL Statements

Using FILE STATUS and INVALID KEY Example
Use the FILE STATUS clause with INVALID KEY to evaluate the status key and determine
the specific INVALID KEY condition.

For example, assume you have a file containing master customer records and need to
update some of these records with information in a transaction update file. You will
read each transaction record, find the corresponding record in the master file, and
make the necessary updates. The records in both files each contain a field for a cus-
tomer number, and each record in the master file has a unique customer number.

The FILE-CONTROL entry for the master file of customer records includes statements
defining indexed organization, random access, MASTER-CUSTOMER-NUMBER as the prime
record key, and CUSTOMER-FILE-STATUS as the file status key. The following example
shows how you can use FILE STATUS with the INVALID KEY to more specifically deter-
mine the cause of an I/O statement failure.

(read the update transaction record)

MOVE "TRUE" TO TRANSACTION-MATCH
MOVE UPDATE-CUSTOMER-NUMBER TO MASTER-CUSTOMER-NUMBER
READ MASTER-CUSTOMER-FILE INTO WS-CUSTOMER-RECORD
INVALID KEY
DISPLAY "MASTER CUSTOMER RECORD NOT FOUND"
DISPLAY "FILE STATUS CODE IS: " CUSTOMER-FILE-STATUS
MOVE "FALSE" TO TRANSACTION-MATCH
END-READ

CALL Statements

When dynamically calling a separately compiled program, the program that you call
might be unavailable to the system. For example, the system could run out of storage
or it could be unable to locate the load module. If you do not have an ON EXCEPTION
or ON OVERFLOW clause on the CALL statement, your application might abend.

Use the ON EXCEPTION clause to perform a series of statements and to perform your
own error handling. For example:

MOVE "REPORTA" TO REPORT-PROG
CALL REPORT-PROG
ON EXCEPTION

DISPLAY "Program REPORTA not available, using REPORTB.'
MOVE "REPORTB" TO REPORT-PROG
CALL REPORT-PROG
END-CALL

END-CALL

If program REPORTA is unavailable, control will continue with the ON EXCEPTION clause.

ON EXCEPTION Limitation: The ON EXCEPTION clause applies only to the availability
of the called program. If an error occurs while the called program is running, the ON
EXCEPTION clause will not be performed.

Chapter 8. Error Handling 131

CALL Statements

132 VisualAge COBOL Programming Guide

Part 2. Compiling, Linking, and Running Your Program

This part of the book provides instructions for compiling your program on the personal

workstation.

Chapter 9. Compiling, Linking, and Running Programs 134
Chapter 10. Compiler Options 160
Chapter 11. Setting Linker Options 208
Chapter 12. Run-Time Options o 240
Chapter 13. Debugging Techniques 244

© Copyright IBM Corp. 1996, 1998 133

Setting Environment Variables

Chapter 9. Compiling, Linking, and Running Programs

This chapter explains how to complete the following tasks:

e Set compiler and run-time environment variables

e Compile and link programs

e Specify compiler options

e Understand and respond to compiler errors and messages
e Run compiled programs

Setting Environment Variables

134

Environment variables are used to set values that can be read by programs. For
example, the COBOL run time reads the environment variable COBPATH when a
program dynamically CALLS another program.

To specify environment variables, use the SET command. There are two ways to set
environment variables:

e Temporarily, by defining the environment variable using the SET command at the
command prompt (or as part of a command (.cmd) file).

e Persistently, by defining the environment variable using the SET command.

The environment variable definition using the SET command applies to programs run
from the same window where the SET command is issued. For example, the following
command syntax sets the COBPATH environment variable (which defines the locations
in which the COBOL run time locates dynamically-accessed programs) to include two
directories:

SET COBPATH=d:\cobdev\d11;d:\dev\d11;

However, if you open another window, programs run from the new window will not be
affected by the definition you have SET for COBPATH.

Steps required to set an environment variable persistently vary depending on your oper-
ating system.

To set an environment variable persistently, add the appropriate SET command to the
0OS/2 file named CONFIG.SYS. If you SET environment variables in CONFIG.SYS, the
values of these variables are defined automatically whenever you boot your computer
and apply to all OS/2 windows and graphical applications.

© Copyright IBM Corp. 1996, 1998

Definitions of COBOL Environment Variables

For example, the installation process sets up OS/2 environment variables to access the
compiler and libraries. These variables are listed in CONFIG.SYS.

The value that you assign to an environment variable can include other environment
variables or the variable itself. For example, to add a directory to the value of
COBPATH, which has already been set, issue the command

SET COBPATH=%COBPATH%;d:\myown\d11;

0S/2

In Windows 95, environment variables are set in the AUTOEXEC.BAT file. In Windows
NT, environment variables are set in the System window (to get there, in Main double-
click on Control Panel, then double-click on System.)

To SET an environment variable persistently, add it in the System window (Windows
NT) or add the appropriate SET command to the file named AUTOEXEC.BAT (Windows
95). If you set environment variables in this way, the values of these variables are
defined automatically whenever you boot your computer and apply to all Windows
windows and graphical applications.

On Windows NT changes made to user environment variables in the System window
are stored, but you must restart your computer to make the values available to proc-
esses, including the command prompt.

For example, the installation process sets up environment variables to access the com-
piler and libraries. These variables are listed in AUTOEXEC.BAT (Windows 95) or the
Registry (Windows NT).

The value that you assign to an environment variable can include other environment
variables or the variable itself. For example, to add a directory to the value of
COBPATH, which has already been set, issue the command

SET COBPATH=%COBPATH%;d:\myown\d11;

SET Notation: Throughout this book, the setting of environment variables is illustrated
with a SET command. On Windows NT the setting is done in an analogous manner,
with the variable name and the value, separated by an equal sign in the SET command,
being entered on the two different fields in the System window.

Definitions of COBOL Environment Variables

If you do not specify environment variables, either a default value is applied or the vari-
able is not defined. Environment variables are used by both the compiler and the run-
time library.

Chapter 9. Compiling, Linking, and Running Programs 135

COBOL Compiler Environment Variables

Compiler Environment Variables
The COBOL compiler uses the following environment variables:

COBOPT
Is one way of specifying COBOL compiler options. You can specify multiple
options. Separate each option by a space or comma. For example:

SET COBOPT=TRUNC(OPT) TERMINAL

Defaults: Individual compiler option defaults apply (see “Default Values for Com-
piler Options” on page 161).
COBPATH

Specifies PATHSs to be used for locating user defined compiler exit programs
identified by the EXIT compiler option.

SYSLIB
Specifies paths to be used for COBOL COPY statements with text-names that are
unqualified by library names. For a description of how SYSLIB is used for COPY
statements, see the description of Library-name and text-name on page COPY
statement on page 204. See “SQL INCLUDE Statement” on page 408 for use
with SQL INCLUDE.

TEMPMEM
If TEMPMEM=0N, compiler work files will be memory files rather than disk files.
This can significantly reduce compilation time.

In some cases with very large source programs, insufficient memory errors can
occur. In this event, reset TEMPMEM to null.

Library-name
A user-defined word that specifies the path for the library text. For example:

SET MYLIB=D:\CPYFILES\COBCOPY

Defaults: If you do not specify a library-name, the compiler searches the library
path(s) in the following order, the search ending when the file is found:

1. The current directory

2. The path(s) specified by the -Ixxx option, if set (see “Options Supported by
cob2” on page 142)

3. The paths specified by the SYSLIB environment variable
See the COPY statement on page 204 for the search rules for copy files.

Text-name
A user-defined word that specifies the path for the copybook text.

Defaults: If you do not set text-name as an environment variable, the compiler
uses the default search described with the COPY statement on page 204.

DB2DBDFT
Is one way of specifying the database for compiling your programs with
embedded SQL statements. See “Compiling with the DB2 Co-Processor” on
page 406 for more information on connecting to the target database.

136 VisualAge COBOL Programming Guide

COBOL Run-Time Environment Variables

Object-Oriented Programming Environment Variables
When you create object-oriented programs, there are different environment variables
you need to set. System Object Model (SOM) requires you to set SOM-specific envi-
ronment variables. For more information on environment variables needed when using
SOM to create object-oriented COBOL programs, see Chapter 15, “Using System
Object Model (SOM)” on page 317.

Run-Time Environment Variables
The COBOL run-time library uses the following environment variables.

assignment-name
The assignment-name can be any COBOL file that you want to specify in an
ASSIGN clause. This use of assignment-name follows the rules for a COBOL
word. For example:

SET OUTPUTFILE=d:\january\results.car

You can then use the environment variable as a COBOL user-defined word in an
ASSIGN clause. For example, based on the previous SET statement, your
COBOL source program could include the following:

SELECT CARPOOL ASSIGN TO OUTPUTFILE

Because OUTPUTFILE was defined in the environment, this statement would result
in data being written to the file d:\january\results.car.

Alternate File System: The general syntax involved in making an assignment
to a file stored in an alternate file system is:

ASSIGN TO FileSystemID-Filename

FileSystemID
Identifies the file system as one of the following:

STL For the STL file system.

VSAM For the VSAM file system. VSAM can be abbreviated to
VSA.

On Windows, Filename must start with "\\", indicating
remote file access.

BTR For the Btrieve file system.

If the file system specification is not provided, the run-time option
FILESYS is used to select the file system. If FILESYS is not set, the
default is VSAM for OS/2 and STL for Windows.

Chapter 9. Compiling, Linking, and Running Programs 137

COBOL Run-Time Environment Variables

Filename
The file you want to access.

Alternatively, you can specify an environment variable (for details, see the
IBM COBOL Language Reference).

Defaults : None. You must set all assignment-names. If you make an assign-
ment to a user-defined word that was not set as an environment variable, the
assignment is made to a file with the literal name of the user-defined word
(OUTPUTFILE in our earlier example). If the assginment is valid, this file is written
to the current directory.

COBMSGS
Specifies the name of a file to which run-time error messages will be written. To
capture run-time error messages into a file, use the SET command to set
COBMSGS to a file name. If your program has a run-time error that terminates
the application, the file that COBMSGS is set to will contain the error message
indicating the reason for termination.

Defaults: None. If COBMSGS is not set, error messages are written to the ter-
minal.

COBPATH
Specifies directory path(s) to be used by the COBOL run time to locate dynam-
ically accessed programs, such as .DLL (Dynamic Link Library) files. This vari-
able must be set to run programs that require dynamic loading. For example:

SET COBPATH=D:\pgmpath\pgmd11
Defaults: None.

COBRTOPT
Specifies the COBOL run-time options. The run-time options are separated by a
comma or a colon. Use parentheses or equal signs (=) as the delimiters for sub-
options. Options are not case sensitive.

For example:

SET COBRTOPT=TRAP=ON:errcount
Is equivalent to:

SET COBRTOPT=trap(on):ERRCOUNT

Defaults: Individual run-time option defaults apply (see Chapter 12, “Run-Time
Options” on page 240).

EBCDIC_CODEPAGE
Specifies an EBCDIC code set applicable to the EBCDIC data being processed
by programs compiled with the CHAR(EBCDIC) or CHAR(S390) compiler option.

To set the EBCDIC code set, issue the command:
SET EBCDIC_CODEPAGE=codepage
where codepage is the name of the code set to be used.

If EBCDIC_CODEPAGE is not set, it will default to the EBCDIC code page of the
current locale. If multiple code pages are available for the current locale the

138 VisualAge COBOL Programming Guide

COBOL Run-Time Environment Variables

CHAR(EBCDIC) compiler option must be set, “CHAR” on page 165 discusses this
option.

Refer to “Locales and Code Sets Supported” on page 477 for the supported code
set translations.

LANG
Specifies the national language locale name in effect for message catalogs and
help files. LANG must always be set and is given an initial value during installa-
tion. The run-time library uses LANG to access the message catalog. For
example, the following command sets the language locale name to U.S. English:

SET LANG=En_US
If LANG is not SET correctly, run-time messages appear in an abbreviated form.
Defaults: Set to EN_US at installation time.

LC_COLLATE
Determines the locale to be used to define the behaviour of ranges, equivalence
classes, and multicharacter collating elements.

Defaults: The locale specified by the LANG environment variable is used.

LC_MESSAGES
Determines the locale which defines the language in which messages are written.

Defaults: The locale specified by the LANG environment variable is used.

LC_TIME
Determines the locale for date and time formatting information.

Defaults: The locale specified by the LANG environment variable is used.

0S/2

LIBPATH
Specifies the full path name for the COBOL run-time library.

Defaults: Set at installation.

LOCPATH
Specifies the search path where the locale information database exists. Itis a
colon-separated list of directory names. It is used at the time of setting up locale
for a process. It is also used to locate conversion tables for EBCDIC data
support.

NLSPATH
Specifies the full path name of message catalogs and help files. NLSPATH must
always be set and is given an initial value during installation. The run-time library
uses NLSPATH to access the message catalog. If NLSPATH is not set correctly,
run-time messages appear in an abbreviated form.

For example:
SET NLSPATH=C:\COBOL\MESSAGES\%L\%N;%NLSPATH%

Chapter 9. Compiling, Linking, and Running Programs 139

COBOL Run-Time Environment Variables

Cautions: When you set NLSPATH, be sure to add to the NLSPATH, not replace
it. Other programs might use this environment variable. Also, note that %L and
%N must be upper case.

Defaults: Vary. Set at installation.

SYSIN, SYSIPT, SYSOUT, SYSLIST, SYSLST, CONSOLE, SYSPUNCH, SYSPCH
These COBOL environment names are used as the environment variable names
corresponding to the mnemonic names used on ACCEPT and DISPLAY state-
ments. Set them equal to files, not existing directory names. For example, the
following command defines CONSOLE:

SET CONSOLE=c:\mypath\terminal.txt

CONSOLE could then be used in conjunction with the following COBOL source
code:

SPECIAL-NAMES.
CONSOLE IS terminal

DISPLAY 'Hello World' UPON terminal

If you set the environment variables SYSIN and SYSOUT to files which have write
permission, GUI applications can use ACCEPT and DISPLAY statements to com-
municate with the user.

Defaults: SYSIN and SYSIPT are directed to the logical input device (keyboard).
SYSOUT, SYSLIST, SYSLST, and CONSOLE are directed to the system logical
output device (screen). SYSPUNCH and SYSPCH are not assigned a value by
default and are not valid unless you explicitly define them.

TEMP

Specifies the location of temporary work files (if needed) for SORT and MERGE
functions. For example:

SET TEMP=c:\shared\temp
Defaults: Vary. Set by the sort utility installation program.

TZ
This variable is used to describe the time zone information to be used by the
locale and has the following format:

SET TZ=SSS[+|-1nDDD[,sm,sw,sd,st ,em,ew,ed,et ,shift]

The values for the TZ variable are defined below.

Figure 40 (Page 1 of 2). TZ Environment Variable Parameters

Variable Description Default Value
SSS Standard time zone identifier. This must be three EST
characters, must begin with a letter, and can contain
spaces.

140 VisualAge COBOL Programming Guide

COBOL Run-Time Environment Variables

Figure 40 (Page 2 of 2). TZ Environment Variable Parameters

Variable Description Default Value

n

Difference (in hours) between the standard time zone 5
and coordinated universal time (UTC), formerly

Greenwich mean time (GMT). A positive number

denotes time zones west of the Greenwich meridian, a
negative number denotes time zones east of the

Greenwich meridian.

DDD Daylight saving time (DST) zone identifier. This must EDT
be three characters, must begin with a letter, and can
contain spaces.
sm Starting month (1 to 12) of DST. 4
sw Starting week (-4 to 4) of DST. 1
sd Starting day of DST: 0 to 6 if swis not zero; 1 to 31 if 0
sw is zero.
st Starting time (in seconds) of DST. 3600
em Ending month (1 to 12) of DST. 10
ew Ending week (-4 to 4) of DST. -1
ed Ending day of DST: 0 to 6 if ew is not zero; 1 to 31 if 0
ew is zero.
et Ending time (in seconds) of DST. 7200
shift Amount of time change (in seconds). 3600
For example:

SET TZ=CST6CDT

sets the standard time zone to CST, the daylight saving time to CDT, and sets a
difference of 6 hours between CST and UTC. It does not set any values for the
start and end of daylight saving time.

Other possible values are PST8PDT for Pacific United States and MST7MDT for
Mountain United States.

When TZ is not present, the default is ESTSEDT, the default locale value. When
only the standard time zone is specified, the default value of n (difference in
hours from GMT) is O instead of 5.

If you give values for any of sm, sw, sd, st, em, ew, ed, et, or shift, you must give
values for all of them. If any of these values is not valid, the entire statement is
considered not valid, and the time zone information is not changed.

Defaults: Depends on the current locale. See Figure 40 on page 140 for the
default locale values.

Chapter 9. Compiling, Linking, and Running Programs 141

Compiling and Linking Programs

Environment Variable Precedence

Some environment variables (such as COBPATH and NLSPATH) define directories in
which to search for files. If multiple directory paths are listed, they are delimited by
semi-colons. Paths defined by environment variables are evaluated in order, from the
first path to the last in the SET statement. Therefore, if you have multiple files with the
same name that are defined in the paths of an environment variable, be aware that the
first located copy of the file is used.

Compiling and Linking Programs

The command cob2 is the command-line utility which invokes the COBOL compiler and
linker. For compiling Visual Builder projects see Visual Builder User's Guide,
SC26-9053. For compiling using WorkFrame see the WorkFrame online help. cob2
accepts options to control the compilation and link-edit in any order on the command
line. Likewise, if you want to compile multiple files, the filenames can be specified at
any position in the command syntax. However, all options and filenames should be
separated by spaces.

Because OS/2 and Windows are not case-sensitive, cob2 and its options do not need to
be capitalized. The general syntax for cob? is:

\ 4
A

»—cobZ—L—_l—fi lenames
options

For example, the following command:

cob2 -g filea.cbhl fileb.chl -v -qflag(w)
is equivalent to:

cob2 filea.chl -gflag(w) -g -v fileb.chl

Usage Notes
1. Any options specified apply to all files on the command line.

2. cob2 passes all files with extensions named in “Filenames and Extensions
Supported” on page 145 to the linker; all other files are passed to the compiler.

3. The default location for compiler input and output is the current directory.

Options Supported by cob2
-b"xxx" Pass the xxx string to the linker as parameters. xxx is a list of linker
options separated by blank spaces. The cob2 default parameters are
also passed. There should be no spaces between -b and "xxx".

Alternatively, linker options can be specified directly as individual
cob2 options. For example, to pass the /DE option to the linker:

cob2 /DE myprog.chl

142 VisualAge COBOL Programming Guide

Compiling and Linking Programs

For information on linker options, see Chapter 11, “Setting Linker
Options” on page 208.

-C Compile programs but do not link them.

-cmain Make a C or PL/I object file containing a main routines the main entry
point in the executable file (. EXE).

Warning: If a C or PL/I object file containing a main routine is linked
with one or more COBOL object files, -cmain must be used to desig-
nate the C or PL/I routine as the main entry point in the executable
file; a COBOL program cannot be the main entry point in an execut-
able file containing a C or PL/I main. Unpredictable execution
behavior will occur if this is attempted and no diagnostics are issued.

Under OS/2, -cmain is only required if -host is also specified.

0S/2

Example:
cob2 -cmain myCmain.obj myCOBOL.obj
and
cob2 -cmain myCOBOL.obj myCmain.obj -main:myCmain

both generate the executable file myCmain.exe with the main entry
point being the C main() function contained in the myCmain.obj
object file.

-comprc_ok= n Controls the cob2 behavior on the return code from the compiler. If
the return code returned by the compiler is less than or equal to n,
cob2 continues to the link step, or, in the compile only case, exits with
a zero return code. If the return code returned by the compiler is
greater than n, cob2 exits with the same return code returned by the
compiler.

The default is: -comprc_ok=4.

-dlI[: xxx] Causes cob? to produce linker files (.LIB and .EXP) to create a DLL
named xxx. If xxx is omitted, the name of the first object (.0BJ) or
COBOL source (usually .CBL or .PPR) file specified in the cob2
command is the name of the DLL (and .LIB and .EXP files).

-0 Produce symbolic information used by the debugger. This option is
equivalent to compiling with the TEST compiler option and linking
with the /DEBUG linker option.

5 In C, a main routine is identified by the function name main(). In PL/I, a main routine is identified by the PROC OPTIONS(MAIN)
statement.

Chapter 9. Compiling, Linking, and Running Programs 143

Compiling and Linking Programs

-host

-Ixxx

-main:; xxx

- XXX

Set all host data compiler options:

BINARY/(S390)
CHAR(EBCDIC)
COLLSEQ(EBCDIC)
FLOAT(S390)

Note: This option will present run-time command-line arguments in
host data format, that is, EBCDIC for character data, and “big endian”
for binary data.

Add a path xxx to the directories to be searched for COPY files if a
library-name is not specified (see “Compiler Environment Variables”
on page 136). Only a single path is allowed per -1 option. To add
multiple paths, use multiple -1 options. There should be no spaces
between -1 and xxx. (This is upper-case “eye,” not lower-case “el.”)

Use LIB: If you use the COPY statement, you must ensure that the
LIB compiler option is in effect.

For a description of the manner in which the compiler evaluates
paths for COPY files, see the description of the Library-name environ-
ment variable in “Run-Time Environment Variables” on page 137.

Make object file xxx the COBOL main program of the executable
(.EXE) file. xxx must be the filename of an object (.0BJ) file or source
file specified to cob2. For example, cob2 -main:abc al.cbl
d:\cats\abc.obj b2.cbh1 will result in abc being the main program.
XXX cannot appear in a linker response file.

If -main is not specified, the first object or source file specified will, in
the absence of a response file, be the COBOL main program.

If the syntax of -main:xxx is invalid, or xxx is not the filename of an
object or source file processed by cob2, cob2 will terminate.

Include the profile hooks that allow the Performance Analyzer to
monitor the application execution and create a trace file. This option
is equivalent to compiling with the PROFILE compiler option and
linking in the Performance Analyzer module IWZPAN40.0BJ.

Use the option xxx (where xxx is any compiler option) when calling
the compiler. If a parenthesis is part of the compiler (sub)option, or a
series of options are specified, they should be included in quotes.

For multiple options, each option should be delimited by a blank or
comma. There should be no spaces between -q and xxx. For
example, you can use

-qoptiona,optionb
or

-q"optiona optionb"

144 visualAge COBOL Programming Guide

-V

-#

Compiling and Linking Programs

Special Syntax

If you plan to use a batch or command file to automate your cob2
tasks, a special syntax is provided for the -gqxxx option. Use the
following syntax to prevent the command shell from passing invalid
syntax to cob2:

e Use “=" (equal sign) and “:" (colon) rather than “()" (paren-
theses) to specify compiler suboptions. For example, use

-qBINARY=NATIVE:,ENTRYINT=OPTLINK:
rather than
-qBINARY (NATIVE) ,ENTRYINT (OPTLINK)

“won

e Use “_" (underscore) rather than “ ' ” (apostrophe) where a com-
piler option requires a suboption to be delimited by apostrophes.
For example, use

-qEXIT=INEXIT=_String_,MYMODULE::
rather than
-qEXIT(INEXIT('String',MYMODULE))
¢ Do not use any blanks in the option string.
Display compile and link steps, and execute them.

Display compile and link steps, but do not execute them.

Filenames and Extensions Supported
Files with @ as the first character and files with the following extensions are assumed
to be linker parameters and are passed to the linker. Those with recognized file exten-
sions are processed as follows:

.DEF

.DLL

EXP

.EXE

.IMP

The name of the module definition file. For more information about module
definition files, see “Module Definition Files” on page 442.

The name of the generated dynamic link library (DLL). The default DLL is the
first source file listed in the cob2 command syntax with an extension of .DLL.

The name of the export file, if required. For more information about export
files, see “Export Files (Windows Only)” on page 442.

The name of the generated executable file. If not specified, the name
defaults to the name of the first COBOL source file listed in the cob2
command with the file extension .EXE.

The name of the import library associated with a .DLL that contains symbols
(usually names of external routines) referenced by your programs. This file is
used by the linker to resolve those references.

Chapter 9. Compiling, Linking, and Running Programs 145

Compiling and Linking Programs

.LIB The name of the import or standard library, which contains symbols (usually
names of external routines) referenced by your programs. This file is used by
the linker to resolve those references.

.MAP The name of the map file. If not specified, no map file is generated.
.OBJ The name of the object file(s) to be passed to the linker.

All other files are processed by the compiler. The file extension .CBL is most commonly
used for COBOL source.

Examples using cob2
The following examples illustrate the use of cob2:

e To compile the file alpha.cbhl, enter:
cob2 -c alpha.chbl
The compiler produces the files alpha.obj and alpha.lst.
e To compile alpha.chl and beta.cbl, enter:
cob2 -c alpha.cbl c:\mydir\beta.cb]l

The compiler produces the files alpha.obj, beta.obj, alpha.1st, and beta.lst in
the current directory.

¢ To link two files together, compile them without the -c option. For example, to
compile and link alpha.cbl and beta.cbl and generate alpha.exe, enter:

cob2 alpha.cbl beta.cbl

This command creates alpha.obj and beta.obj, then links alpha.obj, beta.obj,
and the COBOL libraries. If the link step is successful, it produces an executable
program named alpha.exe.

¢ In the following example:
cob2 alpha.obj beta.cbl mylib.1lib gamma.exe
beta.cbl is compiled, and the string:
alpha.obj beta.obj mylib.1ib /out:gamma.exe

is passed to the linker. If linking is successful, the executable gamma.exe is
produced.

¢ In the following example:
cob2 alpha.cbl alpha.def
alpha.d11 will be produced (assuming a valid alpha.def file).
e To compile with the LIST and NOADATA options, enter:
cob2 -qlist,noadata alpha.cbl

Note: There is no space between the -q and the options list.

Options should be delimited by commas or blanks if enclosed in quotes:
cob2 -q"list noadata" alpha.cbl

146 VisualAge COBOL Programming Guide

Compiling and Linking Programs

Alternative Ways to Specify Compiler Options
“Compiling and Linking Programs” on page 142 explains how to specify compiler
options using the cob2 command. There are other ways to select the options used to
compile your programs. Here are three additional methods:

1. The COBOPT environment variable (See “Definitions of COBOL Environment
Variables” on page 135)

2. Command-line specification of compile environment variables and cob2 options,
such as an OS/2 command (.CMD) file

3. Specification by way of *CONTROL (synonym, *CBL) or PROCESS (synonym, CBL)
statements

These means of specification are listed in order of precedence. For example, an option
specified using PROCESS overrides every other option specification except for non-
overridable options selected during product installation.

Specifying Compiler Options with the PROCESS (CBL) Statement
You can code compiler options on the PROCESS statement in your COBOL source
(.CBL) programs. The PROCESS statement is placed before the IDENTIFICATION DIVI-
SION header and has the following format:

\ 4
A

> CBL
PROCESSJ |—optz’ons-lz’stJ

PROCESS Statement Rules

¢ Your programming organization can inhibit the use of PROCESS statements with the
default options module of the COBOL compiler. When PROCESS statements are
found in a COBOL program where not allowed by the organization, the COBOL
compiler generates error diagnostics.

¢ One or more blanks must separate PROCESS and the first option in options-list.
Separate options with a comma or a blank. Do not insert spaces between indi-
vidual options and their suboptions.

¢ The PROCESS statement must be placed before any comment lines or compiler-
directing statements.

e PROCESS can start in columns 1 through 66. A sequence field is allowed in
columns 1 through 6. When used with a sequence field, PROCESS can start in
columns 8 through 66. If used, the sequence field must contain six characters, and
the first character must be numeric.

You can use CBL as a synonym for PROCESS. CBL can start in columns 1 through
70. When used with a sequence field, CBL can start in columns 8 through 70.

e You can use more than one PROCESS statement. If multiple PROCESS statements
are used, they must follow one another with no intervening statement of any other

type.

Chapter 9. Compiling, Linking, and Running Programs 147

Compiler-Detected Errors and Messages

¢ Options cannot be continued across multiple PROCESS statements.

Compiler-Detected Errors and Messages

As the compiler processes your source program, it checks for COBOL language errors
you might have made. For each error discovered, the compiler issues a message.
These messages are included in the compilation listing (subject to the FLAG option).
The compiler listing file has the same name as the compiler source file, with the file
extension .LST. For example, the compiler listing for myfile.cbl would be myfile.lst.
The listing file is written to the directory from which cob2 was run.

Each message in the listing does the following:

e Explains the nature of your error
¢ Identifies the compiler phase that detected the error
¢ |dentifies the severity level of the error

Wherever possible, the message provides specific instructions for correcting the error.

Compiler Error Messages
The messages for errors found during processing of compiler options, CBL and
PROCESS statements, or BASIS, COPY, and REPLACE statements are displayed near the
top of your listing.

The messages for compilation errors found in your program (ordered by line number)
are displayed near the end of the listing for each program.

A summary of all errors found during compilation is displayed near the bottom of your
listing. Each message issued by the compiler is of the following form:

—— Format

nnnnnn 1GY ppxxxx-l message-text

nnnnnn
The number of the source statement of the last line the compiler was processing.
Source statement numbers are listed on the source printout of your program. If
you specified the NUMBER option at compile time, these are your original source
program numbers. If you specified NONUMBER, the numbers are those generated
by the compiler.

IGY
The prefix that identifies this message as coming from the COBOL compiler.

pp Two characters that identify which phase of the compiler discovered the error. As
an application programmer, you can ignore this information. If you are diagnosing
a suspected compiler error, contact IBM for support.

148 VisualAge COBOL Programming Guide

Compiler-Detected Errors and Messages

XXXX
A 4-digit number that identifies the error message.

I A character that indicates the severity level of the error: I, W, E, S, or U (see
“Compiler Error Message Codes”).

message-text
The message text itself which, in the case of an error message, is a short explana-
tion of the condition that caused the error.

Caution: If you used the FLAG option to suppress messages, there might be additional
errors in your program.

Compiler Error Message Codes
Errors the compiler can detect fall into five categories of severity:

| Informational An informational-level message is an aid to you. No action is
(Return Code=0) required and the program executes correctly as it stands.

W Warning A warning-level message calls attention to a possible error. It
(Return Code=4) is probable that the program executes correctly as written.

E Error An error-level message indicates a condition that is definitely
(Return Code=8) an error. The compiler has attempted to correct the error but

the results of program execution might not be what you expect.
You should correct the error.

S Severe A severe-level message indicates a condition that is a serious
(Return Code=12) error. The compiler was unable to correct the error. The
program does not execute correctly, and execution should not
be attempted. An .0BJ file might not be created.

U Unrecoverable An unrecoverable-level message indicates an error condition of
(Return Code=16) such magnitude that the compilation was terminated.

In the following example, the part of the statement that caused the message to be
issued is enclosed in quotes.

Chapter 9. Compiling, Linking, and Running Programs 149

Compiler-Detected Errors and Messages

LineID Message code
2 1GYDS0009-E

2 1GYDS1089-S

2 1GYDS0017-E
2 1GYDS1003-E
2 1GYSC1082-E
2 1GYDS1102-E
2 1GYDS1082-E

2 1GYDS1089-S

2 1GYDS1003-E
3 IGYPS0O17-E

34 1IGYSCO137-E

34 1GYSCO136-E
Messages Total

Printed: 12

Message text
"PROGRAM" should not begin in area "A". It was processed as if found in area "B".

"PROGRAM" was invalid. Scanning was resumed at the next area "A" item, level-number,
or the start of the next clause.

"ID" should begin in area "A". It was processed as if found in area "A".

A "PROGRAM-ID" paragraph was not found. Program name "CBLPGMO1" was assumed.

A period was required. A period was assumed before "ID".

Expected "DIVISION", but found "ALONGPRO". "DIVISION" was assumed before "ALONGPRO".
A period was required. A period was assumed before "ALONGPRO".

"ALONGPRO" was invalid. Scanning was resumed at the next area "A" item, level-number,
or the start of the next clause.

A "PROGRAM-ID" paragraph was not found. Program name "CBLPGMO2" was assumed.
"PROCEDURE" should begin in area "A". It was processed as if found in area "A".

Program-name "ALONGPRO" did not match the name of any open program. The "END PROGRAM" statement
was assumed to have ended program "CBLPGMO2".

Program "CBLPGMO1" required an "END PROGRAM" statement at this point in the program.
An "END PROGRAM" statement was assumed.
Informational Warning Error Severe Terminating

10 2

Correcting Errors in Your Source Program

Messages about source coding errors indicate where the error happened (LINEID) and
the text of the message tells you what the problem is. With this information, you can
correct the source program and re-compile.

Although you should try to correct errors, it is not necessary to fix all of them. A
W-level or I-level message can be left in a program without much risk, and you might
decide that the recoding and compilation needed to remove the error are not worth the
effort. On the other hand, S-level and E-level errors indicate probable program failure
and should be corrected.

U-level errors are in a class by themselves. Here, you have no choice but to correct
the error, because the compiler is forced to end early and does not produce complete
object code and listing. In contrast with the four lower levels of errors, a U-level error
might not result from a mistake in the source program. It could come from a flaw in the
compiler itself, or in the operating system.

After correcting the errors in your source program, re-compile the program. If this

second compilation is successful, go on to the link-editing step. If the compiler still
finds problems, repeat the above procedure until only informational messages are

returned.

150 VisualAge COBOL Programming Guide

Starting the Linker

Generating a List of All Compiler Error Messages
You can generate a complete listing of compiler diagnostic messages, with their expla-
nations, by compiling a program with a program-name of ERRMSG specified in the
PROGRAM-ID paragraph. The rest of the program can be omitted. For example:

Identification Division.
Program-ID. ErrMsg.

The listing that is produced includes messages from other IBM COBOL platforms, such
as AIX, 0S/390, and VM. Some messages do not apply to OS/2 or Windows

Starting the Linker

|

| Once the compiler has created object modules out of your source files, use the linker to
| link them together with the IBM VisualAge COBOL runtime libraries to create an .EXE

| file or .DLL file. By default, the IBM VisualAge COBOL compiler cob?2 invokes the linker
| for you.

| There are several ways you can start the linker:

| ¢ From the popup menu of an object file in a WorkFrame project, or from the project
| popup menu as part of the make or build process.

| ¢ Through the compiler, which automatically invokes the linker.
| * From the command line.

| ¢ Through a make file, which invokes both the compiler and the linker.

| Linking within WorkFrame
| To use the linker through WorkFrame, do the following:

| 1. Double-click on your project icon. The Project Window appears.
|

| At this point you can customize settings for the project, if the default settings for

| the project type are unacceptable. The Options menu contains choices that allow
| you to specify the actions available to the project, and compiler and linker options.

| Use Build Smarts to set options for a standard task. Use the Compiler and Linker
| Options dialogs to set options on an individual basis.

| 2. Select Build from the Actions menu. Your project is created, with the compiler
| and linker invoked as required.

|
|

| 3. Use the initial WorkFrame dialog to either open an existing project or create a hew
| one. These actions are also choices on the Project pull-down menu. Once a
| project has been opened or created, its files are listed in the WorkFrame window.

Chapter 9. Compiling, Linking, and Running Programs 151

Starting the Linker

4. Customize the linker options from the Options pull-down menu, if you do not want
to use the defaults. The Options menu contains choices that allow you to specify
options for other actions (for example, compile). You can also customize the
project settings by selecting Settings from the View pull-down menu.

5. Select Build from either the Project pull-down menu or the project toolbar. Your
project is built using the linker as required.

Linking through the Compiler

When you invoke the IBM VisualAge COBOL compiler, it compiles the object files from
your source code and then automatically starts the linker, to link the object files into an
.EXE or .DLL file. Use the cob2 option -b to pass options to the linker.

If you do not want the compiler to start the linker, specify the cob2 option -c. You can
then invoke the linker in a separate step.

The compiler does not pass any default parameters to the linker.

By default, the cob2 compiler invokes the linker with the following options:

/FREEFORMAT Uses the free-format syntax, rather than the LINK386-compatible
syntax.

/NOLOGO Specify no logo.

/BASE:65536 Specify the starting address of the program. For .DLL files, this

results in a smaller and potentially faster executable, if the specified
address is free when the .DLL is loaded. For .EXE files, the OS/2
operating system always loads executable programs at 64K. You
can give the linker the address 65536 (or 0x10000) to let the linker
know where the program will be loaded, so it can resolve relocation
information at link time, resulting in a smaller .EXE file.

/PMTYPE:VIO Create program with standard 1/O that is compatible with Presenta-
tion Manager.

In addition, the following cob2 option generates the equivalent linker option:

-g Generates debugger information. Passes /DEBUG to the linker.

See “Linker Options for OS/2” on page 211 for more information on these linker
options.

152 VisualAge COBOL Programming Guide

Optimized Linking

Passing Additional Options to the Linker
You can override these options, and pass additional options to the linker, using the
cob2 option -b. For example, to generate a map file and override the default alignment,

specify
cob2 -.b"/AL:256 /MAP"

If you do not want the compiler to start the linker, specify the cob2 option -c. You can
then invoke the linker in a separate step.

0S/2

Linking from a Make File

Use a make file to organize the sequence of actions (such as compiling and linking)
required to build your project. You can then invoke all the actions in one step. The
NMAKE utility saves you time by performing actions on only the files that have
changed, and on the files that incorporate or depend on the changed files.

You can write the make file yourself, or you can use WorkFrame to manage the make
file. When you build through WorkFrame, a make file is created and maintained auto-
matically.

Optimized Linking (OS/2 Only)

0S/2

Removing Unreachable Functions

Just as the compiler can optimize your source code by removing or replacing
instructions, the linker can optimize your object code, including code in libraries you are
linking in, by removing unreferenced functions. When the function is removed, any
code that was required only by that function is also removed, including any other func-
tions that were referenced only by that function. This reduces the size of your output
file.

Link with the option /OPTFUNC to remove functions that are:

¢ Not referenced in any input file
¢ Rendered unreferenced by the removal of other functions
¢ Not exported for use in other files

Performance Consideration

Optimized linking generally takes longer than regular linking, because of the extra proc-
essing that the linker performs. However, if the optimization is effective enough, it can
actually speed up the linking process, because there is less information to write to file.
Generally, you may want to link without the /OPTFUNC option, until your code is tested
and stable.

Chapter 9. Compiling, Linking, and Running Programs 153

Linker Input and Output

Packing Executables

Specify /EXEPACK to reduce the size of the executable by compressing pages in the file.
The operating system automatically decompresses the pages when the program is
loaded. If your program is intended to run only on OS/2 version 3.0 or later, then
specify /EXEPACK:2 for best results. If your program is also intended to run on older
versions of OS/2, specify /EXEPACK:1.

Specify /PACKCODE to produce slightly faster and more compact code by grouping neigh-
boring code segments that have similar attributes.

Specify /PACKDATA to produce more compact files by grouping neighboring data seg-
ments that have similar attributes.

Specify /DBGPACK when you are debugging, to reduce the size of the executable file and
potentially improve debugger performance.

See “Linker Options for OS/2” on page 211 for more information on these and other
linker options.

0S/2

Linker Input and Output Files

The linker takes object files, links them with each other and with any library files you
specify, and produces an executable output file. The executable output can be either
an executable program (extension .EXE) file or a dynamic link library (extension .DLL).

The linker optionally produces a map file, which provides information about the contents
of the executable output.

Input Output

options executable file (.EXE or .DLL)
object files (*.0BJ) map file (.MAP)

library files (*.LIB) return code

import libraries (*.LIB)
module definition file (.DEF)

Linker Search Rules

When searching for an object (.OBJ), library (.LIB), or module definition (.DEF) file, the
linker looks in the following locations in this order:

1. The directory you specified for the file, or the current directory, if you did not give a
path. Default libraries do not include path specifications.

Note: If you specify a path with the file, the linker searches only that path, and
stops linking if the file cannot be found there.

2. Any directories entered by themselves on the command line must end with a slash
(/) or backslash (\) character. See “Specifying Directories” on page 155 for more
information.

154 visualAge COBOL Programming Guide

Linker Input and Output

If you specified /NOFREE, they must be in the libraries parameter.

3. Any directories listed in the LIB environment variable.

If the linker cannot locate a file, it generates a fatal error message and stops linking.

Example
If you respond to linker prompts as follows:

0S/2

ILINK /NOFREE

Object Modules [.obj]: FUN TEXT TABLE CARE
Run File [fun.=]:

List File [fun.map]:

Libraries [.1ib]: NEWLIBV2 C:\TESTLIB\
Definitions File [nul.def]:

FUN.OBJ TEXT.OBJ TABLE.OBJ CARE.0BJ
NEWLIBVZ2.LIB
C:\TESTLIB\

The linker links four object files to create an executable file named FUN.EXE. The
linker searches NEWLIBV2.LIB before searching the default libraries to resolve refer-
ences.

To locate NEWLIBV2.LIB and the default libraries, the linker searches the following
locations in this order:

1. The current directory (because NEWLIBV2.LIB was entered without a path)
2. The CA\TESTLIB\ directory
3. The directories listed in the LIB environment variable

Specifying Directories

To have the linker search additional directories for input files, specify a drive or direc-
tory by itself on the command line. Specify the drive or directory with a slash (/) or
backslash (\) character at the end for the linker to recognize it as a path.

The paths you specify are searched before the paths in the LIB environment variable.
See “Linker Search Rules” on page 154 for more information.

Chapter 9. Compiling, Linking, and Running Programs 155

Linker Input and Output

Note: If you specified /NOFREE, then you can only specify directories in the library
parameter at the command line, or in response to the Libraries [.LIB]: prompt. You
must still end each directory with a slash (/) or or backslash (\) character.

0S/2

File Name Defaults
If you do not enter a file name, the linker assumes the defaults shown below.

(OS/23 |f you specify /NOFREE, the linker also assumes default file extensions for
files without extensions. 0S/2

Figure 41. Linker Filename Defaults

File Default File Name Default Extension
Object files None. You must enter at least one object file name. .0OBJ

Output file The base name of the first object file. .EXE

Map file The base name of the output file. .MAP

Library files The default libraries defined in the object files. Use compiler .LIB

options to define the default libraries. Any additional libraries
you specify are searched before the default libraries.

Module definition None. The linker assumes you accept the default for all .DEF
file module statements.

Specifying Object Files
When you invoke the linker from the command line, the linker assumes that any input it
cannot recognize as other files, options, or directories must be a object file. Use a
space or tab character to separate files.

0S/2

If you specified /NOFREE to use the LINK386-compatible syntax, then the first set of file
names you give it are taken as object files, up to the first comma. Use a plus (+),
space, or tab as a separator between the file names. If you do not specify an exten-
sion, the linker assumes the .OBJ extension.

0S/2

When you invoke the linker through the compiler, the compiler automatically passes the
object files it creates to the linker, as well as passing any object files you specify on the
compiler command line.

You must enter at least one object file.

156 VisualAge COBOL Programming Guide

Linker Input and Output

The linker accepts object files compiled or assembled:

¢ In 32-bit OMF format
e For Windows NT Version 3.5.1 (or higher) or Windows 95
e For the 80386, 80486, and Pentium microprocessors

0S/2

e |n 16- or 32-bit OMF format
e For OS/2 version 1.0 or higher
e For the 80286 (16-bit only), 80386, 80486, and Pentium microprocessors

Entering Library Files As Object Files

If you specify /NOFREE to use LINK386-compatible syntax, then you can enter library
files in place of object files in the object parameter on the command line or at the
Object Modules [.0BJ]:. prompt. Be sure to include the .LIB file name extension; oth-
erwise, the linker assumes a .obj extension.

When you enter a library as an object file, all the modules in the library are added to
your output file, just as if you had entered all of the library's modules as object files in
the object parameter.

In contrast, when you enter a library in the library parameter, the linker links only to
those modules needed to resolve external references.

If you are linking with the /FREEFORMAT option (the default), you cannot enter library files
as object files.

0S/2

Specifying Executable Output Type

You can use the linker to produce executable modules (with the extension .EXE) or
dynamic link libraries (with the extension .DLL). The linker produces .EXE files by
default.

Use linker options or statements in the module definition (.DEF) file, to specify what
kind of output you want:

¢ To produce an .EXE, specify the /EXEC option, or include the module statement
NAME. See “Static Linking Overview” on page 439 for more information.

e To produce a .DLL, specify the /DLL option, or include the module statement
LIBRARY. See “Creating a DLL" on page 441 for more information.

Chapter 9. Compiling, Linking, and Running Programs 157

Linker Errors

| Linker Return Codes
| The linker has the following return codes:

| Code Meaning

| 0 The link was completed successfully. The linker detected no errors, and issued
| no warnings.

| 4 Warnings issued. There may be problems with the output file.

| 8 Errors detected. The linking might have completed, but the output file cannot

| be run successfully.
| 12 Both warnings issued and errors detected (see return codes 4 and 8)

| 16 Severe errors detected. Linking ended abnormally, and the output file cannot
| be run successfully.

| 20 Both warnings issued and severe errors detected (see return codes 4 and 16)
| 24 Both errors and severe errors issued (see return codes 8 and 16)

| 28 The linker issued warnings, detected errors, and detected severe errors (see

| return codes 4, 8, and 16)

| If you invoke the linker through a makefile, you can force NMAKE to ignore warnings by
| putting -7 before the ILINK command. If you invoke the linker through the compiler,
| then a return code of zero is issued for warnings.

Correcting Linker Errors
If you use the PGMNAME(UPPER) compiler option, then the names of subprograms ref-
erenced in CALL statements are translated to upper case. So, for example:

Call "RexxStart"

will be translated by the compiler to
Call "REXXSTART"
This affects the linker, which recognizes case-sensitive names. If the “real” name of

the called program is RexxStart, the linker will not find it, and will produce an error
message saying that REXXSTART is an unresolved external reference.

| This type of error typically happens when you are calling API routines supplied by
| another software product. If the API routines have mixed-case hames, you must:

| e Use the PGMNAME(MIXED) compiler option, and

| e Ensure that your CALL statements specify the correct names, with the correct mix
| of upper and lower case characters, of the API routines.

158 VisualAge COBOL Programming Guide

Running COBOL Programs

Windows Considerations

Under Windows, the default linkage convention is SYSTEM(STDCALL), which is in effect
when you use the compiler option CALLINT(SYSTEM). With this convention, the name of
the called routine is expanded by:

¢ prefixing an underscore character (_), and
¢ suffixing an at symbol (@) and a one or two digit number signifying the length in
bytes of the argument list.

This convention is known as “name decoration”. For example, if you code:
Call SubProg Using Parm-1 Parm-2.

the name of the called routine will be _SubProg@8. If, however, the SubProg routine
itself is coded as:

Procedure Division Using Parm-1 Parm-2 Parm-3.
its system-generated name will be _SubProg@12. This will cause an error in the linker
because it will not be able to resolve the call to _SubProg@8.

If you are using this linkage convention, you must ensure that the argument list in the
calling program exactly matches the parameter list in the called subroutine.

Running COBOL programs

To run a COBOL program, first make sure that any needed environment variables are
SET (see “Setting Environment Variables” on page 134). Then type the name of the
executable module on the command line or execute a command file which invokes the
module. For example, if

cob2 alpha.cbl beta.cbl
is successful, you can execute the program by typing:
alpha
If your program uses an environment variable name to assign a value to a system file

name, set the environment variable before typing the command which executes the
program.

If the run-time routines detect an error, they send a message to the error unit.

If run-time messages are abbreviated or incomplete, one or both of the following envi-
ronment variables might be incorrectly set:

e LANG
e NLSPATH

Chapter 9. Compiling, Linking, and Running Programs 159

Compiler Options Summary

Chapter 10. Compiler Options

You can direct and control compilation with the following:

e Compiler options
e Compiler-directing statements (compile directives)

Compiler options are listed and described in alphabetical order in “Compiler Option
Descriptions” on page 162. Compiler-directing statements are listed at the end of this
chapter, on page 202.

Compiler Options Summary

Compiler options affect the aspects of your program listed in Figure 42.

Figure 42 (Page 1 of 2). List of Compiler Options

160

Compiler Found on
Aspect of Your Program Option Abbreviations Page
Source language APOST None 188
CURRENCY CURR|NOCURR 168
LIB None 182
NUMBER NUM|NONUM 185
QUOTE Q 188
SEQUENCE SEQINOSEQ 190
SQL None 192
WORD WD|NOWD 199
Date processing DATEPROC DP 170
YEARWINDOW YW 201
Maps and listings LINECOUNT LC 183
LIST None 183
MAP None 184
SOURCE S|NOS 191
SPACE None 192
TERMINAL TERM|NOTERM 193
VBREF None 198
XREF XINOX 200
Object module generation COMPILE C|NOC 168
OPTIMIZE OPT|NOOPT 185
PGMNAME PGMN(U|M) 186
SEPOBJ None 189

© Copyright IBM Corp. 1996, 1998

Compiler Options Summary

Figure 42 (Page 2 of 2). List of Compiler Options

Compiler Found on
Aspect of Your Program Option Abbreviations Page
Object code control BINARY None 163
CHAR None 165
FLOAT None 180
TRUNC None 195
ZWB None 201
CALL statement behaviour DYNAM DYN|NODYN 171
Debugging and diagnostics FLAG FINOF 177
FLAGSTD None 178
TEST None 194
SSRANGE SSR|NOSSR 193
Other ADATA None 162
ANALYZE None 162
CALLINT None 164
COLLSEQ None 167
ENTRYINT None 171
EXIT EX(INX,LIBX,PRTX,ADX) 172
IDLGEN IDLINOIDL 181
PROBE None 188
PROFILE None 188
SIZE Sz 191
THREAD None 194
TYPECHK TCINOTC 197
WSCLEAR None 199

Default Values for Compiler Options
The default options that were set up when your compiler was installed are in effect for
your program unless you override them with other options. To find out the default com-
piler options in effect, run a test compilation without specifying any options; the output
listing lists the default options specified by your installation.

Non-overridable Options: In some installations, certain compiler options are set up
so that you cannot override them. If you have problems, see your system adminis-
trator.

Performance Considerations
The BINARY, CHAR, DYNAM, FLOAT, OPTIMIZE, SSRANGE, TEST, and TRUNC compiler
options can all affect run-time performance.

Chapter 10. Compiler Options 161

ANALYZE Compiler Option

Compiler Option Descriptions

ADATA

ANALYZE

The compiler option descriptions that follow are given in alphabetical order. For a list of
compiler options by effect, refer to Figure 42 on page 160.

Installation Defaults: The defaults listed with the options below are the defaults
shipped with the product. They might have been changed by your installation.

ADATA
NOADATAJ

A\
A

Default is: ADATA
Abbreviations are: None

Use ADATA when you want the compiler to create a SYSADATA file, which contains
records of additional compilation information. This information is used by other tools,
which will set ADATA ON for their use. The size of this file generally grows with the size
of the associated program.

You cannot specify ADATA in a PROCESS (CBL) statement; it can be specified only:

e On invocation of the compiler using an option list
e As a command option
e As an installation default

See “EXIT” on page 172 for information on using SYSADATA with your compiler-exit
module.

\ 4
A

»—EANALYZE
NOAN/—\LYZEJ

Default is: NOANALYZE
Abbreviations are: None

Use ANALYZE when you want the compiler to check the syntax of embedded SQL and
CICS statements in addition to native COBOL statements.

No executable code is generated when this compiler option is specified, regardless of
the COMPILE|NOCOMPILE setting. The ANALYZE option also enables
COPY/BASIS/REPLACE processing, regardless of the LIB|NOLIB setting.

162 VisualAge COBOL Programming Guide

APOST

BINARY

BINARY Compiler Option

You can specify the ADATA option with this option to create a SYSADATA file for later
analysis by program understanding tools, such as the Year 2000 tool included with the
Professional Edition of IBM VisualAge COBOL.

This option may be set as the installation default option or as a compiler invocation
option, but may not be set on a CBL or PROCESS statement.

The specification of the ANALYZE option forces the handling of the following character
strings as reserved words:

cics
EXEC
END-EXEC
SQL

See “QUOTE/APOST" on page 188.

»»—BINARY (——NATIVE—)

\ 4
A

Default is: NATIVE
Abbreviations are: None

Specifying NATIVE means that BINARY, COMP, and COMP-4 data items are represented
in the native format of the platform or product. For example, binary data on a PC
would be stored in Little-Endian format (least significant digit on the highest address).
Binary data on AIX would be stored in Big-Endian format (most significant digit on the
highest address).

Specifying S370 or S390 means that binary data is represented in the Big-Endian format.
However, COMP-5 binary data and data items defined with the NATIVE keyword on the
USAGE clause are not impacted by the BINARY(S390) option. These are always stored
in the native format of the platform.

Visual Builder: Visual Builder applications require BINARY(NATIVE), which is the
default specification in the GUI compile options notebook. Do not change this default
setting.

Object-oriented programs: Do not specify BINARY(S370) or BINARY(S390) in object-
oriented programs.

Chapter 10. Compiler Options 163

CALLINT Compiler Option

CALLINT
»»—CALLINT (——SYSTEM 0 I) ><
OPTLINK— , DESC
FAR16— DESCRIPTOR—
PASCAL16— NODESC———
CDECL—— NODESCRIPTOR—

Default is: CALLINT(SYSTEM,NODESC)
Abbreviations are: None
Use CALLINT to indicate the call interface convention applicable to CALLS.

This option may be overridden for specific call statements via the compiler directive
>>CALLINT (see “Compiler-Directing Statements” on page 202)

See “ENTRYINT” on page 171 for the compiler option, ENTRYINT. ENTRYINT is used
for the selection of the call interface convention for the program entry point or points.

e Selecting a call interface convention:

SYSTEM
The SYSTEM suboption specifies that the call convention is that of the standard
system linkage convention of the platform.

On Windows, this is STDCALL, the linkage used by the system
Windows APIs.

Alert: This convention cannot be used in all cases when the called program
has multiple entry points. See “Multiple Entry Points on Windows” on

page 397 for details.

OPTLINK
The OPTLINK suboption specifies that the call convention is that of the
_OPTLINK convention of VisualAge for C++ for OS/2 and VisualAge for C++ for
Windows.

FAR16
The FAR16 suboption specifies that the call convention is that of the
_FAR16_Cdec1 convention.

PASCAL16
The PASCAL16 suboption specifies that the call convention is that of the
_FAR16_Pascal convention.

CDECL

The CDECL suboption specifies that the call interface convention is
that of the CDECL calling convention as defined by Microsoft Visual C++ for

Windows.

164 VisualAge COBOL Programming Guide

CHAR

CHAR Compiler Option

e Specifying if the argument descriptors are to be generated or not:

DESC
The DESC suboption specifies that an argument descriptor is passed for each
argument on a CALL statement. See Figure 49 on page 203 for information
on the passing of descriptors.

Note: Do not specify the DESC suboption in object-oriented programs.

DESCRIPTOR
The DESCRIPTOR suboption is synonymous with the DESC suboption.

NODESC
The NODESC suboption specifies that no argument descriptors are passed for
any arguments on a CALL statement.

NODESCRIPTOR
The NODESCRIPTOR suboption is synonymous with the NODESC suboption.

Visual Builder: Visual Builder applications require CALLINT(SYSTEM,NODESCRIPTOR),
which is the default specification in the GUI compile options notebook. Do not change
this default setting.

\4
A

»»—CHAR (——NATIVE——)
—EEBCDIC}
5390

Default is: CHAR(NATIVE)

Abbreviations are: None

Specify CHAR(NATIVE) to use the native character representation format of the platform.
For VisualAge COBOL, this is ASCII.

CHAR(EBCDIC) and CHAR(S390) are synonymous and indicate that DISPLAY data items
are in the data representation of System/390 (EBCDIC).
The following are affected by the CHAR(EBCDIC) compiler option:

¢ USAGE DISPLAY items

— Single byte characters with USAGE DISPLAY, and double byte characters with
USAGE DISPLAY-1, are treated as EBCDIC:

- ASCII data is converted to EBCDIC on ACCEPT from the terminal.
- EBCDIC data is converted to ASCIl on DISPLAY to the terminal.

- The EBCDIC equivalent of an ASCII literal is used for assignment to
EBCDIC character data. See Figure 43 on page 166 for the rules on the
compares of character data with the CHAR(EBCDIC) option in effect.

Chapter 10. Compiler Options 165

CHAR Compiler Option

- Editing is also done with EBCDIC characters.

- Any padding is done using EBCDIC spaces. This includes alphanumeric
operations (For example, assignments and compares) on group items
regardless of the definition of the elementary items in the group items.

- Figurative constant SPACE/SPACES used in a VALUE clause for, an assign-
ment to, or in a relational condition with a DISPLAY item is treated as
single byte EBCDIC spaces (that is, X'40").

- CLASS tests are performed based on EBCDIC value ranges.

- The program name in CALL identifier, CANCEL identifier, or in the Format
6 SET statement is converted to ASCII characters if the identifier is
EBCDIC.

- The file name in the data name in ASSIGN USING data-name is con-
verted to ASCII characters if the data name is EBCDIC.

- The file name in SORT-CONTROL is converted to ASCII characters
before being passed to the Sort/Merge function.

Note that the SORT-CONTROL special register has the implicit USAGE
DISPLAY definition.

— Zoned decimal data (numeric picture with USAGE DISPLAY) and external
floating point data. For example, zoned decimal PIC S9 value “1” is treated as
X'C1' instead of X'31"'.

e Group items

Group items are treated similar to USAGE DISPLAY items. Note that any USAGE
clause on a group item applies to the elementary items within the group and not to
the group itself.

Hexadecimal literals are assumed to represent EBCDIC characters if the literals are
assigned to, or compared with, character data. For example, X'C1' will compare equal
to an alphanumeric item with the value “A.”

Figurative constants, HIGH-VALUE, LOW-VALUE, SPACE/SPACES, ZERO/ZEROS,
and QUOTE/QUOTES are treated logically as their EBCDIC character representations
for assignments and/or comparisons with EBCDIC characters.

In comparisons between non-numeric DISPLAY items, the collating sequence is the
ordinal sequence of the characters based on their binary (hexadecimal) values (as
modified by the alternate collating sequence for the single byte characters, if specified).
The collating sequence for EBCDIC characters is not affected by the locale setting or
the COLLSEQ compiler option.

Figure 43 summarizes the conversion and the collating sequence applicable based on
the types of data (ASCII, EBCDIC) and the COLLSEQ option in effect when PROGRAM
COLLATING SEQUENCE is not specified. If it is specified, the source specification has
precedence over the compiler option specification.

166 VisualAge COBOL Programming Guide

COLLSEQ Compiler Option

Figure 43. Collating Sequence Summary

Comparands COLLSEQ(BIN) COLLSEQ(NATIVE) COLLSEQ(EBCDIC)

Both ASCII No conversion is performed. No conversion is performed. Both comparands are con-
The comparison is based on The comparison is based on verted to EBCDIC. The com-
the binary value (ASCII). the current locale. parison is based on the binary

value (EBCDIC).

Mixed ASCII The EBCDIC comparand is The EBCDIC comparand is The ASCII comparand is con-

and EBCDIC converted to ASCII. The converted to ASCII. The verted to EBCDIC. The com-
comparison is based on the comparison is based on the parison is based on the binary
binary value (ASCII). current locale. value (EBCDIC).

Both EBCDIC No conversion is performed. The comparands are con- No conversion is performed.
The comparison is based on verted to ASCIl. The com- The comparison is based on
the binary value (EBCDIC). parison is based on the the binary value (EBCDIC).

current locale.

Visual Builder: Visual Builder applications require CHAR(NATIVE), which is the default
specification in the GUI compile options notebook. Do not change this default setting.
Object-oriented programs: Do not specify CHAR(EBCDIC) in object-oriented pro-
grams.
For additional information about the CHAR compiler option, see Appendix B,
“System/390 Host Data Type Considerations” on page 543.

COLLSEQ

\4
A

EBCDIC

»»—COLLSEQ (~ENATIVE)
BIN

Default is: COLLSEQ(BIN)
Abbreviations are: None

Specify COLLSEQ(EBCDIC) to use the EBCDIC collating sequence rather than the ASCII
collating sequence.

Specify COLLSEQ(BIN) to use the hex values of the characters; the locale setting has no
effect. This setting will give better execution-time performance.

If you use the PROGRAM-COLLATING-SEQUENCE clause in your source with an
alphabet-name of STANDARD-1, STANDARD-2, or EBCDIC, the COLLSEQ option will be
ignored. If you specify PROGRAM COLLATING SEQUENCE IS NATIVE, the value of
NATIVE is taken from the COLLSEQ option.

Otherwise, when the alphabet-name specified on the PROGRAM-COLLATING-SEQUENCE
clause is defined with literals, the collating sequence used is that given by the COLLSEQ
option, modified by the user-defined sequence given by alphabet-name.

Chapter 10. Compiler Options 167

CURRENCY Compiler Option

COMPILE

CURRENCY

The PROGRAM-COLLATING-SEQUENCE clause has no effect on DBCS data.

Visual Builder: Visual Builder applications require COLLSEQ(NATIVE), which is the
default specification in the GUI compile options notebook. Do not change this default
setting.

A\
A

COMPILE
ENOCOMPILE*
NOCOMPILE (——W——)—

Default is: NOCOMPILE(S)
Abbreviations are: C|NOC

Use the COMPILE option only if you want to force full compilation even in the presence
of serious errors. All diagnostics and object code will be generated. Do not try to run
the object code generated if the compilation resulted in serious errors—the results
could be unpredictable or an abnormal termination could occur.

Use NOCOMPILE without any suboption to request a syntax check (only diagnostics
produced, no object code).

Use NOCOMPILE with W, E, or S for conditional full compilation. For meanings of error
codes, see “Compiler-Detected Errors and Messages” on page 148. Full compilation

(diagnosis and object code) will stop when the compiler finds an error of the level you
specify (or higher), and only syntax checking will continue.

If you request an unconditional NOCOMPILE, the following options have no effect
because no object code will be produced:

LIST
SSRANGE
OPTIMIZE
TEST

\ 4
A

> CURRENCY (literal)
L NOCURRENCY———]

Default is: NOCURRENCY

The default currency symbol is the dollar sign ($). You can use the CURRENCY option
to provide an alternate default currency symbol to be used for the COBOL program.

168 VisualAge COBOL Programming Guide

CURRENCY Compiler Option

NOCURRENCY specifies that no alternate default currency symbol will be used.

To change the default currency symbol, use the CURRENCY (literal) option where literal
is a valid COBOL non-numeric literal (including a hex literal) representing a one-byte,
printable ASCII character that must not be any of the following:

Digits zero (0) through nine (9)

Uppercase alphabetic characters ABCDPR SV X Z
Lowercase alphabetic characters a through z

The space

Special characters * + -/, .; ()" =

A figurative constant

The uppercase alphabetic character G, if the COBOL program defines an MBCS
item with the PICTURE symbol G; the PICTURE clause will be invalid for that MBCS
item because the symbol G is considered to be a currency symbol in the PICTURE
clause.

The uppercase alphabetic character N, if the COBOL program defines an MBCS
item with the PICTURE symbol N; the PICTURE clause will be invalid for that MBCS
item because the symbol N is considered to be a currency symbol in the PICTURE
clause.

The uppercase alphabetic character E, if the COBOL program defines an external
floating-point item; the PICTURE clause will be invalid for the external floating-point
item because the symbol E is considered to be a currency symbol in the PICTURE
clause.

You can use the CURRENCY option as an alternative to the CURRENCY SIGN clause for
selecting the currency symbol you will use in the PICTURE clause of a COBOL program.

When both the CURRENCY option and the CURRENCY SIGN clause are used in a
program, the symbol coded in the CURRENCY SIGN clause will be considered the cur-
rency symbol in a PICTURE clause when that symbol is used.

When the NOCURRENCY option is in effect and you omit the CURRENCY SIGN clause,
the dollar sign ($) is used as the PICTURE symbol for the currency sign.

Delimiter Note: The CURRENCY option literal can be delimited by either the quote or
the apostrophe, regardless of the QUOTEJAPOST compiler setting.

Chapter 10. Compiler Options 169

DATEPROC Compiler Option

DATEPROC

\4
A

DATEPROC
L (——FLa)
“TorLac]

NODATEPROC

Default is: NODATEPROC, or DATEPROC(FLAG) if only DATEPROC is specified
Abbreviations are: DP|NODP

Use the DATEPROC option to enable the millennium language extensions of the COBOL
compiler. For information on using these extensions, see Chapter 31, “Using the
Millennium Language Extensions” on page 520.

DATEPROC(FLAG)

With DATEPROC(FLAG), the millennium language extensions are enabled, and the
compiler will produce a diagnostic message wherever a language element uses or
is affected by the extensions. The message will usually be an information-level or
warning-level message that identifies statements that involve date-sensitive proc-
essing. Additional messages may be generated that identify errors or possible
inconsistencies in the date constructs. For information on how to reduce these
diagnostic messages, see “Eliminating Warning-Level Messages” on page 534.

Production of diagnostic messges, and their appearance in or after the source
listing, is subject to the setting of the FLAG compiler option.

DATEPROC(NOFLAG)
With DATEPROC(NOFLAG), the millennium language extensions are in effect, but
the compiler will not produce any related messages unless there are errors or
inconsistencies in the COBOL source.

NODATEPROC
NODATEPROC indicates that the extensions are not enabled for this compilation
unit. This affects date-related program constructs as follows:

e The DATE FORMAT clause is syntax-checked, but has no effect on the exe-
cution of the program.

e The DATEVAL and UNDATE intrinsic functions have no effect. That is, the
value returned by the intrinsic function is exactly the same as the value of the
argument.

e The YEARWINDOW intrinsic function returns a value of zero.

Notes:

1. Specification of the DATEPROC option requires that the NOCMPR2 option is also
used.

2. NODATEPROC conforms to the COBOL 85 Standard.

170 VisualAge COBOL Programming Guide

ENTRYINT Compiler Option

DYNAM

\4
A

DYNAM
NODYNAMJ

Default is: NODYNAM
Abbreviations are: DYN|NODYN

Use DYNAM to cause non-nested, separately compiled programs invoked through the
CALL literal statement to be loaded (for CALL) and deleted (for CANCEL) dynamically at
run time. CALL identifier statements always result in a run-time load of the target
program and are not impacted by this option.

The condition for the ON EXCEPTION phrase can occur for a CALL statement using the
literal name only when the DYNAM option is in effect.

With NODYNAM, the target program name is resolved through the linker.

With the DYNAM option, this statement
CALL "myprogram" ...
has the identical behavior to these statements:

MOVE "myprogram" to id-1
CALL id-1 ...

See “Static, Dynamic, and Run-time Linking” on page 376 for information on subpro-
gram calls.

DYNAM conforms to the COBOL 85 Standard.

ENTRYINT

\4
A

»»>—ENTRYINT (——SYST Mj)
NK

Default is: ENTRYINT(SYSTEM)
Abbreviations are: None

Use ENTRYINT to indicate the call interface convention applicable to the program entry
point(s) in the USING phrase of either the PROCEDURE DIVISION or ENTRY statement.

See “CALLINT” on page 164 for the compiler option, CALLINT. CALLINT is used for the
selection of the call interface convention for CALLS.

Chapter 10. Compiler Options 171

EXIT Compiler Option

EXIT

SYSTEM
The SYSTEM suboption specifies that the call convention is that of the standard
system linkage convention of the platform.

On Windows, this is STDCALL, the linkage used by the system
Windows APlIs.

Alert: This convention cannot be used in all cases when the called program has
multiple entry points. See “Multiple Entry Points on Windows” on page 397 for

details.

OPTLINK
The OPTLINK suboption specifies that the call convention is that of the _OPTLINK
convention of VisualAge for C++ for OS/2 and VisualAge for C++ for Windows.

CDECL

The CDECL suboption specifies that the call interface convention is that
of the CDECL calling convention as defined by Microsoft Visual C++ for Windows.

Visual Builder: Visual Builder applications require ENTRYINT(SYSTEM), which is the

default specification in the GUI compile options notebook. Do not change this default
setting.

—
\4
A

»——EXIT(—*——INEXIT(n a mod1)
strl,

—NOINEXIT

-—LIBEXIT(—m——modZ)—
str2,

—NOLIBEXIT

str3,

—NOPRTEXIT

—ADEXIT (—m—m0d4)—
str4,

—NOADEXIT

—NOEXIT

Default is: EXIT(ADEXIT(IWZRMGUX))
Abbreviations are: EX(INX|NOINX,LIBX|NOLIBX,PRTX|NOPRTX,ADX|NOADX)

If you specify the EXIT option without providing at least one suboption, NOEXIT will be in
effect. The suboptions can be specified in any order, separated by either commas or
spaces. If you specify both the positive and negative form of a suboption
(INEXIT|NOINEXT, LIBEXIT|NOLIBEXIT, PRTEXIT|INOPRTEXIT, OR ADEXITINOADEXIT), the
form specified last takes effect. If you specify the same suboption more than one time,
the one specified last takes effect.

172 VisualAge COBOL Programming Guide

EXIT Compiler Option

Use the EXIT option to allow the compiler to accept user-supplied modules in place of
SYSIN, SYSLIB (or copy library), and SYSPRINT. When creating your EXIT module,
ensure that the module is linked as a DLL module before you run it with the COBOL
compiler. EXIT modules are invoked with the system linkage convention of the platform.

For SYSADATA, the ADEXIT suboption provides a module that will be called for each
SYSADATA record immediately after the record has been written out to the file.

No PROCESS: The EXIT option cannot be specified in a PROCESS(CBL) statement; it
can be specified only via the environment variable COBOPT, via the cob2 command
option, or at installation time.

INEXIT(["strl ',]Jmod1)
The compiler reads source code from a user-supplied load module (where mod1 is
the module name), instead of SYSIN.

LIBEXIT(['str2 ',Jmod?2)
The compiler obtains copy code from a user-supplied load module (where mod2 is
the module name), instead of library-name or SYSLIB. For use with either COPY or
BASIS statements.

PRTEXIT(['str3 ',Jmod3)
The compiler passes printer-destined output to the user-supplied load module
(where mod3 is the module name), instead of SYSPRINT.

ADEXIT(['str4 ' ,Jmod4)
The compiler passes the SYSADATA output to the user-supplied load module
(where mod4 is the module name).

The module names mod1, mod2, mod3, and mod4, can refer to the same module.

The suboptions 'str1’, 'str2’, 'str3', and 'str4’, are character strings that are passed to the
load module. These strings are optional; if you use them, they can be up to 64 charac-
ters in length and must be enclosed in apostrophes. Any character is allowed, but
included apostrophes must be doubled, and lowercase characters are folded to upper-
case.

Character String Formats
If 'str1’, 'str2', 'str3', or 'str4’, is specified, the string is passed to the appropriate user-
exit module with the following format:

| LL | string |

where LL is a halfword (on a halfword boundary) containing the length of the string.
See Figure 44 on page 174 for the location of the character string in the parameter list.

User-Exit Work Area

When an exit is used, the compiler provides a user-exit work area that can be used to
save the address of storage allocated by the exit module. This allows the module to be
reentrant.

Chapter 10. Compiler Options 173

EXIT Compiler Option

The user-exit work area is four fullwords, residing on a fullword boundary, that is initial-
ized to binary zeroes before the first exit routine is invoked. The address of the work
area is passed to the exit module in a parameter list. After initialization, the compiler
makes no further reference to the work area. So, you will need to establish your own
conventions for using the work area if more than one exit is active during the compila-
tion. For example, the INEXIT module uses the first word in the work area, the LIBEXIT
module uses the second word, and the PRTEXIT module uses the third word.

Linkage Conventions

Your EXIT modules should use standard linkage conventions between COBOL pro-
grams, between library routines, and between COBOL programs and library routines.
You need to be aware of these conventions in order to trace the call chain correctly.

Parameter List for Exit Modules
The following table shows the format of the parameter list used by the compiler to com-
municate with the exit module.

Figure 44 (Page 1 of 2). Parameter List for LIBEXIT

Contains

Offset Address of Description of Item

00 User-exit type Halfword identifying which user exit is to perform the
operation.
1=INEXIT; 2=LIBEXIT; 3=PRTEXIT; 4=ADEXIT

02 Operation code Halfword indicating the type of operation.
0=0PEN; 1=CLOSE; 2=GET; 4=FIND

04 Return code Fullword, placed by the exit module, indicating status
of the requested operation.
0=Successful; 4=End-of-data; 12=Failed

08 Data length Fullword, placed by the exit module, specifying the
length of the record being returned by the GET opera-
tion.

12 Data Fullword, placed by the exit module, containing the
address of the record in a user-owned buffer, for the
GET operation.

or 'str2' 'str2' applies only to OPEN. The first halfword (on a

halfword boundary) contains the length of the string;
the string follows.

16 User-exit work area Four-fullword work area provided by the compiler for
use by user-exit module.

32 Text-name Fullword containing the address of a a null-terminated
string containing the fully qualified text-name. Applies
only to FIND.

174 vVisualAge COBOL Programming Guide

EXIT Compiler Option

Figure 44 (Page 2 of 2). Parameter List for LIBEXIT

Contains

Offset Address of Description of Item

36 User exit parameter Fullword containing the address of a four-element
string array, each element of which is a structure that

contain a two-byte length field followed by a 64 char-
acters string that contain the exit parameter string.

Note: Only the second element of the parameter string array is used for LIBEXIT, to store the
length of the LIBEXIT parameter string followed by the parameter string.

Using INEXIT

When INEXIT is specified, the compiler loads the exit module (mod1) during initializa-
tion, and invokes the module using the OPEN operation code (op code). This allows the
module to prepare its source for processing and then pass the status of the OPEN
request back to the compiler. Subsequently, each time the compiler requires a source
statement, the exit module is invoked with the GET op code. The exit module then
returns either the address and length of the next statement or the end-of-data indication
(if no more source statements exist). When end-of-data is presented, the compiler
invokes the exit module with the CLOSE op code so that the module can release any
resources that are related to its input.

The compiler uses a parameter list to communicate with the exit module. The param-
eter list consists of 10 fullwords. The return code, data length, and data parameters
are placed by the exit module for return to the compiler; and the other items are passed
from the compiler to the exit module.

Figure 44 on page 174 shows the contents of the parameter list and a description of
each item.

Using LIBEXIT

When LIBEXIT is specified, the compiler loads the exit module (mod2) during initializa-
tion. Calls are made to the module by the compiler to obtain copy text whenever
COPY or BASIS statements are encountered.

Use LIB: If LIBEXIT is specified, the LIB compiler option must be in effect.

The first call invokes the module with an OPEN op code. This allows the module to
prepare the specified library-name for processing. The OPEN op code is also issued
the first time a new library-name is specified. The exit module returns the status of the
OPEN request to the compiler by passing a return code.

Once the exit invoked with the OPEN op code returns, the exit module is then invoked
with a FIND op code. The exit module establishes positioning at the requested text-
name (or basis-name) in the specified library-name. This becomes the “active copy
source”. When positioning is complete, the exit module passes an appropriate return
code to the compiler.

Chapter 10. Compiler Options 175

EXIT Compiler Option

The compiler then invokes the exit module with a GET op code, and the exit module
passes the compiler the length and address of the record to be copied from the active
copy source. The GET operation is repeated until the end-of-data indicator is passed to
the compiler.

When end-of-data is presented, the compiler will issue a CLOSE request so that the exit
module can release any resources related to its input.

Nested COPY Statements: Any record from the active copy source can contain a
COPY statement. (However, nested COPY statements cannot contain the REPLACING
phrase, and a COPY statement with the REPLACING phrase cannot contain nested copy
statements.) When a valid nested COPY statement is encountered, the compiler issues
a request based on the following:

¢ If the requested library-name from the nested COPY statement was not previously
opened, the compiler invokes the exit module with an OPEN op code, followed by a
FIND for the new text-name.

e If the requested library-name is already open, the compiler issues the FIND op
code for the new requested text-name (an OPEN is not issued here).

The compiler does not allow recursive calls to text-name. That is, a COPY member can
be named only once in a set of nested COPY statements until the end-of-data for that
copy member is reached.

When the exit module receives the OPEN or FIND request, it should push its control
information concerning the active copy source onto a stack and then complete the
requested action (OPEN or FIND). The newly requested text-name (or basis-name) now
becomes the active copy source.

Processing continues in the normal manner with a series of GET requests until the end-
of-data indicator is passed to the compiler.

At end-of-data for the nested active copy source, the exit module should pop its control
information from the stack. The next request from the compiler will be a FIND, so that
the exit module can reestablish positioning at the previous active copy source.

The compiler now invokes the exit module with a GET request, and the exit module
must pass the same record that was passed previously from this copy source. The
compiler verifies that the same record was passed, and then the processing continues
with GET requests until the end-of-data indicator is passed.

Figure 44 on page 174 shows the contents of the parameter list used for LIBEXIT and a
description of each item.

Using PRTEXIT
When PRTEXIT is specified, the compiler loads the exit module (mod3) during initializa-
tion. The exit module is used in place of the SYSPRINT data set.

The compiler invokes the module using the OPEN operation code (op code). This
allows the module to prepare its output destination for processing and then pass the

176 VisualAge COBOL Programming Guide

FLAG

FLAG Compiler Option

status of the OPEN request back to the compiler. Subsequently, each time the compiler
has a line to be printed, the exit module is invoked with the PUT op code. The compiler
supplies the address and length of the record that is to be printed, and the exit module

returns the status of the PUT request to the compiler by a return code. The first byte of
the record to be printed contains an ANSI printer control character.

Before the compilation is ended, the compiler invokes the exit module with the CLOSE
op code so that the module can release any resources that are related to its output
destination.

Figure 44 on page 174 shows the contents of the parameter list used for PRTEXIT and
a description of each item.

Using ADEXIT
When ADEXIT is specified, the compiler loads the exit module (mod4) during initialization.
The exit module is called for each record written to the SYSADATA data set.

The compiler invokes the module using the OPEN operation code (op code). This
allows the module to prepare for processing and then pass the status of the OPEN
request back to the compiler. Subsequently, each time the compiler has written a
SYSADATA record, the exit module is invoked with the PUT op code. The compiler sup-
plies the address and length of the SYSADATA record, and the exit module returns the
status of the PUT request to the compiler by a return code.

Before the compilation is ended, the compiler invokes the exit module with the CLOSE
op code so that the module can release any resources.

Figure 44 on page 174 shows the contents of the parameter list used for ADEXIT and a
description of each item.

A\
A

FLAG (x)
L, yJ
NOFLAG———

Default is: FLAG(l)

Abbreviations are: F|NOF

x and y can be either I, W, E, S, or U. (See “Compiler Error Message Codes” on
page 149 for descriptions of error codes.)

Use FLAG(x) to produce diagnostic messages for errors of a severity level x or above at
the end of the source listing.

Use FLAG(x,y) to produce diagnostic messages for errors of severity level x or above at
the end of the source listing, with error messages of severity y and above to be
embedded directly in the source listing. The severity coded for y must not be lower

Chapter 10. Compiler Options 177

FLAGSTD Compiler Option

than the severity coded for x. To use FLAG(x,y), you must also specify the SOURCE
compiler option.

Error messages in the source listing are set off by embedding the statement number in
an arrow that points to the message code. The message code is then followed by the
message text. For example:

000413 MOVE CORR WS-DATE TO HEADER-DATE

==000413==> IGYPS2121-S " WS-DATE " was not defined as a data-name.

With FLAG(X,y) selected, messages of severity y and above will be embedded in the
listing following the line that caused the message. (Refer to the notes below for
exceptions.)

Use NOFLAG to suppress error flagging. NOFLAG will not suppress error messages for
compiler options.

Embedded Messages:

1. Specifying embedded level-U messages is accepted, but will not produce any mes-
sages in the source. Embedding a level-U message is not recommended.

2. The FLAG option does not affect diagnostic messages produced before the com-
piler options are processed.

3. Diagnostic messages produced during processing of compiler options, CBL and
PROCESS statements, or BASIS, COPY, and REPLACE statements, are never
embedded in the source listing. All such messages appear at the beginning of the
compiler output.

4. Messages produced during processing of the *CONTROL (*CBL) statement are not
embedded in the source listing.

FLAGSTD

A\
A

>>—[FLAGSTD(X ,—_yy—] L,o—])

NOFLAGSTD:

Default is: NOFLAGSTD

X specifies the level or subset of COBOL 85 Standard to be regarded as conforming:

M Language elements that are not from the minimum subset are to be flagged as
“nonconforming standard”.

I Language elements that are not from the minimum or the intermediate subset are
to be flagged as “nonconforming standard”.

178 VisualAge COBOL Programming Guide

H

FLAGSTD Compiler Option

The high subset is being used and elements will not be flagged by subset. And,
elements in the IBM extension category will be flagged as “non-conforming
Standard, IBM extension”.

yy specifies, by a single character or combination of any two, the optional modules to
be included in the subset:

D

Elements from Debug module level 1 are not flagged as “non-conforming
standard”.

Elements from Segmentation module level 1 are not flagged as “non-conforming
standard”.

Elements from Segmentation module level 2 are not flagged as “non-conforming
standard”.

If S is specified, N is included (N is a subset of S).

O specifies that obsolete language elements are flagged as “obsolete”.

Use FLAGSTD to get informational messages about the COBOL 85 Standard elements
included in your program. You can specify any of the following items for flagging:

A selected Federal Information Processing Standard (FIPS) COBOL subset
Any of the optional modules

Obsolete language elements

Any combination of subset and optional modules

Any combination of subset and obsolete elements

IBM extensions (these are flagged any time FLAGSTD is specified and are identified
as “non-conforming non-standard”)

This includes the new language syntax for object-oriented COBOL and for
improved interoperability, the PGMNAME(MIXED) compiler option, and the
Millennium Language Extensions.

The informational messages appear in the source program listing and contain the fol-
lowing information:

Identify the element as “obsolete”, “non-conforming standard”, or “non-conforming
non-standard” (a language element that is both obsolete and non-conforming is
flagged as obsolete only).

Identify the clause, statement, or header that contains the element.

Identify the source program line and beginning location of the clause, statement, or
header that contains the element.

Identify the subset or optional module to which the element belongs.

FLAGSTD requires the standard set of reserved words.

Chapter 10. Compiler Options 179

FLOAT Compiler Option

In the following example, the line number and column where a flagged clause, state-
ment, or header occurred are shown, as well as the message code and text. At the

bottom is a summary of the total of the flagged items and their type.

LINE.COL CODE

1GYDS8211

11.14 1IGYDS8111

59.12 1GYPS8169

FIPS MESSAGES TOTAL

3

FIPS MESSAGE TEXT

Comment Tlines before "IDENTIFICATION DIVISION":
nonconforming nonstandard, IBM extension to
ANS/ISO 1985.

"GLOBAL clause": nonconforming standard, ANS/ISO
1985 high subset.

"USE FOR DEBUGGING statement": obsolete element
in ANS/ISO 1985.
STANDARD NONSTANDARD 0BSOLETE

1 1 1

FLOAT

»»—FLOAT (——NATIVE—)

A\
A

Default is: FLOAT(NATIVE)

Abbreviations are: None

Specify FLOAT(NATIVE) to use the native floating point data representation format of the

platform. For VisualAge COBOL, this is the IEEE format.

FLOAT(HEX) and FLOAT(S390) are synonymous and indicate that COMP-1 and COMP-2
data items are represented consistently with System/390 (that is, in the hex floating

point format):

¢ Hex floating point values are converted to IEEE format prior to any arithmetic oper-

ations (computations or comparisons).

e |EEE floating point values are converted to hex format prior to being stored in

floating point data fields.

¢ Assignment to a floating point item is done by converting the source floating point

data (for example, external floating point) to hex floating point as necessary.

Object-oriented programs: Do not specify FLOAT(S390) in object-oriented programs.

For additional information about the FLOAT compiler option, see Appendix B,
“System/390 Host Data Type Considerations” on page 543.

180 VisualAge COBOL Programming Guide

IDLGEN

IDLGEN Compiler Option

\4
A

IDLGEN
NOIDLGENJ

Default is: NOIDLGEN
Abbreviations are: IDL|NOIDL

Use the IDLGEN option to indicate whether SOM Interface Definition Language (IDL)
should be generated for COBOL class definitions contained in the COBOL source file.

Use IDLGEN to request that in addition to the normal compile of the COBOL source file,
IDL definitions for classes defined in the file are generated.

Use NOIDLGEN to request that no IDL definitions are generated.

The IDL file has the same name as the compiler source file, with the file extension IDL.
For example, IDL file generated for myfile.cbl would be myfile.id1. The IDL file is
written to the directory from which cob2 was run.

When a class definition includes references to other classes (such as on the INHERITS
or METACLASS IS phrases, or typed object references as method parameters) that are
defined in separate source files, the generated IDL will contain include statements for
the IDL files of the referenced classes. The COBOL compiler will attempt to obtain the
file name (referred to as the filestem in the SOM documentation) for a referenced class
from the SOM interface repository (IR). If the referenced class does not have an IR
entry, then the external class-name of the referenced class is assumed as the filestem.
An include is then generated of the form: #include <filestem..id1> This may be
adequate for classes where external class-names are the same as the original source
file name. However, in many cases this include statement will need to either be
updated to reflect the correct filestem or preferably, the entire IDL file should be re-
generated after the missing definition has been added to the IR.

When a COBOL source file contains more than one class definition (batch compile) and
the IDLGEN option is used, the COBOL class definitions must be sequenced in an
appropriate order within the source file. The generated IDL for such a batch compile
will contain multiple class interfaces with the IDL interfaces in the same order as the
COBOL classes were defined in the COBOL source file. The SOM IDL compiler
requires that interfaces be defined before they are referenced, so if there are refer-
ences between the classes in the COBOL batch compile, the referenced classes must
precede the referencing classes in the COBOL source file.

The mapping of COBOL to IDL is designed to balance two (conflicting) objectives,
namely enablement of object-oriented COBOL type checking and enabling COBOL
classes to operate with other SOM-based programming languages. At a high level:

e COBOL classes map to IDL interfaces.

e COBOL methods map to IDL operation declarations.

Chapter 10. Compiler Options 181

LIB Compiler Option

¢ Where possible, the data types of COBOL method parameters are mapped to cor-
responding native IDL types. These cases include binary integer, floating point,
pointer, object reference, and character types.

All elementary USAGE DISPLAY types and fixed-length COBOL groups are mapped
to IDL as array of character.

Remaining COBOL types that do not naturally map to any native IDL data type are
mapped to COBOL-specific “foreign” IDL types. These cases include packed-
decimal, scaled binary, DBCS, and variable-length groups.

¢ Method formal-parameters that specify BY REFERENCE on the method PROCEDURE
DIVISION header are given the IDL parameter attribute inout and parameters that
specify BY VALUE are given the IDL parameter attribute in.

The IDL generated for the same COBOL class by the IBM COBOL compiler on OS/390,
0S/2, Windows, and AIX might differ; hence, the IDL should be regenerated for the
target platform rather than ported between platforms. For example, the procedure-
pointer data type in COBOL for OS/390 & VM is an 8-byte data item that does not map
to any native IDL type, hence a COBOL specific mapping is used. On OS/2, Windows,
and AlX, procedure-pointers are 4-byte data items that map to IDL pointers. Another
example is that on OS/390 or AlX, a PIC S9(8) BINARY data item maps naturally to an
IDL “long” type, while on OS/2 and Windows, the same data item may map either to an
IDL long or to a COBOL-specific data type that emulates System/390 binary format,
depending on the compilation options used.

No PROCESS: The IDLGEN options cannot be specified on the PROCESS(CBL) state-
ment.

See Chapter 14, “Writing Object-Oriented Programs” on page 270 and Chapter 16,
“Using SOM IDL-Based Class Libraries” on page 323 for more information on IDL and
SOM.

LIB

A\
A

>>—|:LIB
NOLIB—J

Default is: LIB
Abbreviations are: None

If your program uses COPY, BASIS, or REPLACE statements, the LIB compiler option
must be in effect.

For more information, see the discussion of the library-name user-defined variable on
page 136.

In addition, for COPY and BASIS statements, you need to define the library or libraries
from which the compiler can take the copied code:

182 VisualAge COBOL Programming Guide

LINECOUNT

LIST

LIST Compiler Option

¢ |If the library-name is specified with a user-defined word (not a literal), you must set
the corresponding environment variable to point to the desired directory/path for the
copy file.

¢ |If the library-name is omitted for a COPY statement, the path to be searched can be
specified via the -Ixxx option on the cob2 command.

¢ If the library-name is specified with a literal, the literal value is treated as the actual
path name.

Visual Builder: Visual Builder applications require LIB, which is the default specifica-
tion in the GUI compile options notebook. Do not change this default setting.

LIB conforms to the COBOL 85 Standard.

»»—| INECOUNT (nnn)

A\
A

Default is: LINECOUNT(60)
Abbreviations are: LC
nnn must be an integer between 10 and 255, or 0.

Use LINECOUNT(nnn) to specify the number of lines to be printed on each page of the
compilation listing, or use LINECOUNT(0) to suppress pagination.

If you specify LINECOUNT(0), no page ejects are generated in the compilation listing.

The compiler uses three lines of nnn for titles. For example, if you specify
LINECOUNT(60), 57 lines of source code are printed on each page of the output listing.

A\
A

LIST
NOLISTJ

Default is: NOLIST
Abbreviations are: None

Use LIST to produce a listing of the assembler-language expansion of your source
code.
You will also get these in your output listing:

¢ Global tables
¢ Literal pools
¢ Information about Working-Storage

Chapter 10. Compiler Options 183

MAP Compiler Option

MAP

e Size of the program's Working-Storage

If you want to limit the assembler listing output, use *CONTROL LIST or NOLIST state-
ments in your PROCEDURE DIVISION. Your source statements following a *CONTROL
NOLIST are not included in the listing until a *CONTROL LIST statement switches the
output back to normal LIST format. For a description of the *CONTROL (*CBL) statement,
see IBM COBOL Language Reference.

Batch Compiles: The number of and names of the resulting .asm files depend on the
SEPOBJ option:

SEPOBJ The file for the first program in the source file has the name of the
source file. The files for all subsequent programs in the source file have
the names of the corresponding PROGRAM IDs.

NOSEPOBJ The one file for all programs in the source file has the name of the
source file.

For information on using LIST output, see “Data Map Listing” on page 258.

\4
A

>>—|:MAP
NOMAPJ

Default is: NOMAP
Abbreviations are: None

Use MAP to produce a listing of the items you defined in the DATA DIVISION. Map
output includes:

¢ DATA DIVISION map

* Global tables

e Literal pools

¢ Nested program structure map, and program attributes
e Size of the program's Working-Storage

If you want to limit the MAP output, use *CONTROL MAP or NOMAP statements in the
PROCEDURE DIVISION. Source statements following a *CONTROL NOMAP are not
included in the listing until a *CONTROL MAP statement switches the output back to
normal MAP format. For a description of the *CONTROL (*CBL) statement, see the IBM
COBOL Language Reference.

For information on using LIST output, see “Data Map Listing” on page 258.

By selecting the MAP option, you can also print an embedded MAP report in the source
code listing. The condensed MAP information is printed to the right of data-name defi-
nitions in the FILE SECTION, WORKING-STORAGE SECTION, and LINKAGE SECTION of
the DATA DIVISION.

184 visualAge COBOL Programming Guide

NUMBER

OPTIMIZE

OPTIMIZE Compiler Option

\4
A

NUMBER:
NONUMBERJ

Default is: NONUMBER
Abbreviations are: NUM|NONUM

Use NUMBER if you have line numbers in your source code and want those numbers to
be used in error messages and MAP, LIST, and XREF listings.

If you request NUMBER, columns 1 through 6 are checked to make sure that they
contain only numbers, and the sequence is checked according to numeric collating
sequence. (In contrast, SEQUENCE checks them according to ASCII collating
sequence.) When a line number is found to be out of sequence, the compiler assigns
to it a line number with a value one number higher than the line number of the pre-
ceding statement. Sequence-checking continues with the next statement, based on the
newly assigned value of the previous line.

If you use COPY statements and NUMBER is in effect, be sure that your source program
line numbers and the COPY member line numbers are coordinated.

Use NONUMBER if you do not have line numbers in your source code, or if you want the
compiler to ignore the line numbers you do have in your source code. With NONUMBER
in effect, the compiler generates line numbers for your source statements and uses
those numbers as references in listings.

NONUMBER conforms to the COBOL 85 Standard.

\ 4
A

»>>- OPTIMIZE
L (—s10—)-
| e

NOOPTIMIZE

Default is: NOOPTIMIZE
Abbreviations are: OPT|NOOPT

Use OPTIMIZE to reduce the run time of your object program; optimization might also
reduce the amount of storage your object program uses. Optimizations performed
include the propagation of constants and the elimination of computations whose results
are never used. Because OPTIMIZE increases compile time, and can change the order
of statements in your program, it should not be used when debugging.

If OPTIMIZE is specified without any suboptions, OPTIMIZE(STD) will be in effect.

Chapter 10. Compiler Options 185

PGMNAME Compiler Option

PGMNAME

The FULL suboption requests that in addition to the optimizations performed under
OPT(STD), that the compiler discard unreferenced data items from the DATA DIVISION,
and suppress generation of code to initialize these data items to their VALUE clauses. If
the OPT(FULL) and MAP options are specified, then a BL number of XXXX in the data
map information indicates that the data item was discarded.

Recomendation: Use OPTIMIZE(FULL) for database applications; it can make a huge
performace improvement, because unused constants included by the associated COPY
statements will be eliminated.

However:

Do not use OPT(FULL) if your programs depend on making use of unused data
items. Two common ways this has been done in the past are:

1. A technique sometimes used in OS/VS COBOL programs is to place an unrefer-
enced table after a referenced table and use out-of-range subscripts on the first
table to access the second table. To see if your programs have this problem, use
the SSRANGE compiler option with the CHECK(ON) run-time option. To work around
this problem, use the ability of COBOL to code large tables and use just one table.

2. The second technique utilizing unused data items is to place eyecatcher data items
in the WORKING-STORAGE section to identify the beginning and end of the program
data, or to mark a copy of a program for a library tool that uses the data to identify
a version of a program. To solve this problem, initialize these items with PROCE-
DURE DIVISION statements rather than VALUE clauses. With this method, the com-
piler will consider these items as used, and will not delete them.

The OPTIMIZE option is turned off in the case of a severe-level error or higher. The
OPTIMIZE and TEST options are mutually exclusive; if you use both, OPTIMIZE will be
ignored.

\4
A

»»>—PGMNAME (TMIXED]—)
UPPER:

Default is: PGMNAME(UPPER), or
PGMNAME(MIXED) for Visual Builder GUI applications

Abbreviations are: PGMN(LU|LM)

For compatibility with IBM COBOL for OS/390 & VM, LONGMIXED and LONGUPPER are
also supported.

LONGUPPER can be abbreviated as UPPER, LU, or U. LONGMIXED can be abbreviated
as MIXED, LM, or M.

COMPAT: If you specify PGMNAME(COMPAT), PGMNAME(UPPER) will be set, and you
will receive a warning message.

186 VisualAge COBOL Programming Guide

PGMNAME Compiler Option

The PGMNAME option controls the handling of names used in the following contexts:

¢ Program names defined in the PROGRAM-ID paragraph.
¢ Program entry point names on the ENTRY statement.
¢ Program name references in:

— CALL statements

— CANCEL statements

— SET procedure-pointer TO ENTRY statements

PGMNAME(UPPER)
With PGMNAME(UPPER), program names that are specified in the PROGRAM-ID para-
graph as COBOL user-defined words must follow the normal COBOL rules for forming
a user-defined word:

e The program name can be up to 30 characters in length.

¢ All the characters used in the name must be alphabetic, digits, or the hyphen.
e At least one character must be alphabetic.

¢ The hyphen cannot be used as the first or last character.

When a program or method name is specified as a literal, in either a definition or a
reference, then:
¢ The program name can be up to 160 characters in length.
¢ All the characters used in the hame must be alphabetic, digits, or the hyphen.
¢ At least one character must be alphabetic.
e The hyphen cannot be used as the first or last character.

External program names are processed with alphabetic characters folded to upper
case.

PGMNAME(MIXED)
With PGMNAME(MIXED), program names are processed as is, without truncation, trans-
lation, or folding to upper case.

With PGMNAME(MIXED), all program name definitions must be specified using the literal
format of the program name in the PROGRAM-ID paragraph or ENTRY statement.

Visual Builder: Visual Builder applications require PGMNAME(MIXED), which is the
default specification in the GUI compile options notebook. Do not change this default
setting.

Chapter 10. Compiler Options 187

QUOTE/APOST Compiler Option

PROBE
PROBE ><
NOPROBEJ
Default is: PROBE
Abbreviations are: None
PROBE requests the generation of stack probes. This extra code causes a protection
exception if there is not enough storage available on the stack.
Use PROBE if the program might be executed in a multithreading environment. For
information about multithreading, see Chapter 26, “Preparing COBOL Programs for
Multithreading” on page 467.
NOPROBE produces more efficient code and is appropriate for non-threading environ-
ments.
PROFILE
PROFILE >
NOPROFILE
Default is: PROFILE
Abbreviations are: None
PROFILE instructs the compiler to generate the profile hooks that allow the Performance
Analyzer to monitor application execution and generate a trace file. This option should
be used with the -p option of the cob2 command (see “Compiling and Linking
Programs” on page 142 for details.)
QUOTE/APOST

\4
A

>>—|:QUOTE
APOST

Default is: QUOTE
Abbreviations are: Q|APOST
Use QUOTE if you want the figurative constant [ALL] QUOTE or [ALL] QUOTES to repre-

sent one or more quotation mark (") characters. QUOTE conforms to the COBOL 85
Standard.

188 VisualAge COBOL Programming Guide

SEPOBJ

Batch Compilation

Use APOST if you want the figurative constant [ALL] QUOTE or [ALL] QUOTES to repre-
sent one or more apostrophe (') characters.

Delimiters: Either quotes or apostrophes can be used as literal delimiters, regardless
of whether the APOST or QUOTE option is in effect. The delimiter character used as the
opening delimiter for a literal must be used as the closing delimiter for that literal.

v
A

SEPOBJ
NOSEPOBJJ

Default is: SEPOBJ, or
NOSEPOBJ for Visual Builder GUI applications

Abbreviations are: None

The option specifies whether or not each of the outermost COBOL programs in a batch
compilation is to be generated as a separate object file rather than a single object file.

Batch Compilation

When multiple outer-most programs (non-nested programs) are compiled with a single
invocation of the compiler (batch compiled), how many separate files are produced for
the object program output of the batch compilation varies on the compiler option
SEPOBJ.

Assume that the COBOL source file, pgm.cbh1, contains three outer-most COBOL pro-
grams named pgml, pgm2, and pgm3. The following figures illustrate whether the object
program output is generated as two (with NOSEPOBJ) or three (with SEPOBJ) files.

pgm.obj
pgm.chl

—> pgml

PROGRAM-ID. pgml.

END PROGRAM pgml.
pgm.1ib

PROGRAM-ID. pgm2. —

cee pgml

END PROGRAM pgm2.
— pgm2

PROGRAM-ID. pgm3.
END PROGRAM pgm3. pgm3

Figure 45. Batch Compilation with NOSEPOBJ

Chapter 10. Compiler Options 189

SEQUENCE Compiler Option

pgm.chbl pgm.obj
> pgml
PROGRAM-ID. pgml.
END PROGRAM pgml.
pgm2.obj
PROGRAM-ID. pgm2. —_—t pgm2
END PROGRAM pgm2.
pgm3.obj
PROGRAM-ID. pgm3.
——> | pgm3
END PROGRAM pgm3.

Figure 46. Batch compilation with SEPOBJ

Considerations:

1. The SEPOBJ option is required to conform to the ANSI COBOL standard where

pgm2 or pgm3 in the above example is called via CALL identifier from another

program.

2. If the NOSEPOBJ option is in effect, the name(s) of object module file(s) are named

with the name of the source file with .o, .0BJ, and/or .LIB extensions. If the

SEPOBJ option is in effect, the names of the object files (except for the first one)

are based on the PROGRAM-ID name with the .o or .0BJ extension.

3. The programs called via CALL identifier must be referred to by the names of the
object files (rather than the PROGRAM ID names) where PROGRAM ID and the

object file name do not match.

You are responsible for giving the object file a valid file name for the platform and the
file system. For example, if the FAT file system is used for OS/2 or Windows, the
length of the PROGRAM ID name must be eight characters or fewer except when the

object file name(s) are created from the source file name (as in the case with

NOSEPOBJ option) as described above.

Visual Builder: Visual Builder applications require NOSEPOBJ, which is the default
specification in the GUI compile options notebook. Do not change this default setting.

SEQUENCE

FF—ES EQUENCE __|
NOSEQUENCE

\4
A

Default is: SEQUENCE
Abbreviations are: SEQ|NOSEQ

190 VisualAge COBOL Programming Guide

SOURCE Compiler Option

When you use SEQUENCE, the compiler examines columns 1 through 6 of your source
statements to check that the statements are arranged in ascending order according to
their ASCII collating sequence. The compiler issues a diagnostic message if any state-
ments are not in ascending sequence (source statements with blanks in columns 1
through 6 do not participate in this sequence check and do not result in messages).

If you use COPY statements and SEQUENCE is in effect, be sure that your source
program sequence fields and the copy member sequence fields are coordinated.

If you use NUMBER and SEQUENCE, the sequence is checked according to numeric,
rather than ASCII, collating sequence.

Use NOSEQUENCE to suppress this checking and the diagnostic messages.

NOSEQUENCE conforms to the COBOL 85 Standard.

SIZE
»—SIZE(—EZZZT_—I—) ><
Default is: 2097152 bytes (approximately 2 Meg)
Abbreviations are: Sz
nnnnn specifies a decimal number that must be at least 778240.
nnnK specifies a decimal number in 1K increments. The minimum acceptable value is
782K.
Use SIZE to indicate the amount of main storage available for compilation (where 1K =
1024 bytes decimal).
SOURCE

\ 4
A

>>—|:SOURCE
NOSOURCEJ

Default is: SOURCE
Abbreviations are: S|NOS

Use SOURCE to get a listing of your source program. This listing will include any state-
ments embedded by PROCESS or COPY statements.

SOURCE must be specified if you want embedded messages in the source listing.

Use NOSOURCE to suppress the source code from the compiler output listing.

Chapter 10. Compiler Options 191

SQL Compiler Option

SPACE

SQL

If you want to limit the SOURCE output, use *CONTROL SOURCE or NOSOURCE state-
ments in your PROCEDURE DIVISION. Your source statements following a *CONTROL
NOSOURCE are not included in the listing at all, unless a *CONTROL SOURCE statement
switches the output back to normal SOURCE format. For a description of the *CONTROL
(*CBL) statement, see IBM COBOL Language Reference.

For information on using LIST output, see “Data Map Listing” on page 258.

\4
A

»—SPACE(~E§3~)

Default is: SPACE(1)

Abbreviations are: None
Use SPACE to select single, double, or triple spacing in your source code listing.

SPACE has meaning only when the SOURCE compiler option is in effect.

A\
A

»—SQL(—E'I'j—suboptions for DB2 SQL—E'I'j_)

Default is: sQL("")
Abbreviations are: None

Use this option when you have SQL statements embedded in your COBOL source. It
allows you to specify options to be used in handling the SQL statements in your
program and is required if the suboption string, which gives SQL options, is to be speci-
fied explicitly to DB2.

The syntax shown can be used on either the CBL or PROCESS statements. If the SQL
option is given on the cob2 command, only ' is allowed for the string delimiter:
-q"SQL('options')".

See Chapter 21, “Programming for a DB2 Environment” on page 406 for more informa-
tion.

192 VisualAge COBOL Programming Guide

TERMINAL Compiler Option

SSRANGE

\4
A

SSRANGE N
NOSSRANGE

Default is: NOSSRANGE
Abbreviations are: SSR|NOSSR

Use SSRANGE to generate code that checks if subscripts (including ALL subscripts) or
indexes try to reference an area outside the region of the table. Each subscript or
index is not individually checked for validity; rather, the effective address is checked to
ensure that it does not cause a reference outside the region of the table. Variable-
length items will also be checked to ensure that the reference is within their maximum
defined length.

Reference modification expressions will be checked to ensure that:

¢ The reference modification starting position is greater than or equal to 1.

¢ The reference modification starting position is not greater than the current length of
the subject data item.

e The reference modification length value (if specified) is greater than or equal to 1.

¢ The reference modification starting position and length value (if specified) do not
reference an area beyond the end of the subject data item.

If SSRANGE is in effect at compile time, the range-checking code is generated; range
checking can be inhibited at run time by specifying CHECK(OFF) as a run-time option.
This leaves range-checking code dormant in the object code. The range-checking code
can then be optionally used to aid in resolving any unexpected errors without recompi-
lation.

If an out-of-range condition is detected, an error message will be displayed and the
program will be terminated.

Remember: You will get range-checking only if you compile your program with the
SSRANGE option and run it with the CHECK(ON) run-time option.

TERMINAL

\ 4
A

TERMINAL]
NOTERMINAL

Default is: NOTERMINAL
Abbreviations are: TERM|NOTERM

Use TERMINAL to send progress and diagnostic messages to the terminal.

Chapter 10. Compiler Options 193

THREAD Compiler Option

TEST

THREAD

Use NOTERMINAL if this additional output is not desired.

A\
A

TEST
NOTEST—-|

Default is; NOTEST
Abbreviations are: None

Use TEST to produce object code that contains symbol and statement information that
enables the debugger to perform symbolic source-level debugging.

Use NOTEST if you do not want to generate object code with debugging information.

Programs compiled with NOTEST execute with the debugger, but there is limited debug-
ging support.

The TEST option will be turned off if you use the WiITH DEBUGGING MODE clause. The
TEST option will appear in the list of options, but a diagnostic message will be issued to
advise you that because of the conflict, TEST will not be in effect.

v
A

THREAD
NOTHREADJ

Default is: NOTHREAD
Abbreviations are: None

THREAD indicates if the COBOL application is to be enabled for execution in a run unit
with multiple threads. All programs within a run unit must be compiled with either the
THREAD or NOTHREAD option.

When the THREAD option is in effect, the following language elements are not sup-
ported. If encountered, they are diagnosed as errors:

e STOP RUN

e ALTER statement

e DEBUG-ITEM special register

e GO TO statement without procedure-name
* RERUN

e STOP literal statement

e Segmentation module

e USE FOR DEBUGGING statement

e WITH DEBUGGING MODE clause

194 visualAge COBOL Programming Guide

TRUNC

TRUNC Compiler Option

e [INITIAL phrase in PROGRAM-ID paragraph

Caution: RERUN is flagged as an error with THREAD, but is accepted as a comment
with NOTHREAD.

Visual Builder: Visual Builder applications require NOTHREAD, which is the default
specification in the GUI compile options notebook. Do not change this default setting.

See Chapter 26, “Preparing COBOL Programs for Multithreading” on page 467 for a
discussion of COBOL support for multithreading.

\ 4
A

OPT

»»>—TRUNC (STDI)
BIN

Default is: TRUNC(STD)
Abbreviations are: None

TRUNC(STD) conforms to the COBOL 85 Standard, while TRUNC(OPT) and TRUNC(BIN)
are IBM extensions.

TRUNC has no effect on COMP-5 data items; COMP-5 items are handled as if
TRUNC(BIN) were in effect, regardless of the TRUNC option specified.

TRUNC(STD)
Use TRUNC(STD) to control the way arithmetic fields are truncated during MOVE
and arithmetic operations. TRUNC(STD) applies only to USAGE BINARY receiving
fields in MOVE statements and arithmetic expressions. When TRUNC(STD) is in
effect, the final result of an arithmetic expression, or the sending field in the MOVE
statement, is truncated to the number of digits in the PICTURE clause of the BINARY
receiving field.

TRUNC(OPT)
TRUNC(OPT) is a performance option. When TRUNC(OPT) is specified, the compiler
assumes that the data conforms to PICTURE and USAGE specifications of the
USAGE BINARY receiving fields in MOVE statements and arithmetic expressions.
The results are manipulated in the most optimal way, either truncating to the
number of digits in the PICTURE clause, or to the size of the binary field in storage
(halfword, fullword, or doubleword).

Caution: You should use the TRUNC(OPT) option only if you are sure that the data
being moved into the binary areas will not have a value with larger precision than
that defined by the PICTURE clause for the binary item. Otherwise, unpredictable
results might occur. This truncation is performed in the most efficient manner pos-
sible; therefore, the results will be dependent on the particular code sequence gen-
erated. It is not possible to predict the truncation without seeing the code
sequence generated for a particular statement.

Chapter 10. Compiler Options 195

TRUNC Compiler Option

TRUNC(BIN)
The TRUNC(BIN) option applies to all COBOL language that processes USAGE
BINARY data. When TRUNC(BIN) is in effect:

e BINARY receiving fields are truncated only at halfword, fullword, or doubleword
boundaries.

¢ BINARY sending fields are handled as halfwords, fullwords, or doublewords
when the receiver is numeric; TRUNC(BIN) has no effect when the receiver is
not numeric.

e The full binary content of the field is significant.

e DISPLAY will convert the entire content of the binary field, with no truncation.

Recommendation: TRUNC(BIN) is the recommended option for programs that use
binary values set by other products. These other products, such as C/C++,
FORTRAN, and PL/I, might place values in COBOL binary data items that do not
conform to the PICTURE clause of the data item. For CICS considerations, see
“Selecting Compiler Options” on page 413.

TRUNC(BIN) should never be used as an install default, only for specific programs,
due to the performance cost. A better approach is to use COMP-5 for binary data
items passed to non-COBOL programs or other products and subsystems. The
use of COMP-5 is not affected by the TRUNC option in effect.

TRUNC Example 1
01 BIN-VAR PIC 99 USAGE BINARY.

MOVE 123451 to BIN-VAR

Figure 47. Values of the Data Items after the MOVE

Decimal Hex 1 Display
Sender 123451 3BJ|E2|01]|00 123451
Receiver 51 33|00 51
TRUNC(STD)
Receiver -7621 3B|E2 2]
TRUNC(OPT)
Receiver TRUNC(BIN) -7621 3B|E2 762J

Note: 1 Values are shown using the default BINARY compiler option.

A halfword of storage is allocated for BIN-VAR. The result of this MOVE statement if the
program is compiled with the TRUNC(STD) option is 51; the field is truncated to conform
to the PICTURE clause.

If the program is compiled with the TRUNC(BIN) option, the result of the MOVE statement
is -7621. The reason for the unusual looking answer is that nonzero high-order digits
were truncated. Here, the generated code sequence would merely move the lower
halfword quantity X'E23B' to the receiver. Because the new truncated value over-
flowed into the sign bit of the binary halfword, the value becomes a negative number.

196 VisualAge COBOL Programming Guide

TYPECHK

TYPECHK Compiler Option

This MOVE statement should not be compiled with the TRUNC(OPT) option because
123451 has greater precision than the PICTURE clause for BIN-VAR. If TRUNC(OPT) was
used, however, the results again would be -7621. This is because the best perform-
ance was gained by not doing a decimal truncation.

Assumption: The preceding example assumes that the BINARY(S390) option is in
effect.

TRUNC Example 2
01 BIN-VAR PIC 9(6) USAGE BINARY

MOVE 1234567891 to BIN-VAR

Figure 48. Values of the Data Items after the MOVE

Decimal Hex 1 Display
Sender 1234567891 D3|02|96]49 1234567891
Receiver 567891 53|AA|08]00 567891
TRUNC(STD)
Receiver 567891 00]|08|AA|53 567891
TRUNC(OPT)
Receiver TRUNC(BIN) 1234567891 D3]02]|96]49 1234567891

Note: 1 Values are shown using the default BINARY compiler option.

When TRUNC(STD) is specified, the sending data is truncated to six integer digits to
conform to the PICTURE clause of the BINARY receiver.

When TRUNC(OPT) is specified, the compiler assumes the sending data is not larger
than the PICTURE clause precision of the BINARY receiver. The most efficient code
sequence in this case performed truncation as if TRUNC(STD) had been specified.

When TRUNC(BIN) is specified, no truncation occurs because all of the sending data will
fit into the binary fullword allocated for BIN-VAR.

Assumption: The preceding example assumes that the BINARY(S390) option is in
effect.

\ 4
A

> TYPECHK N
NOTYPECHK

Default is: NOTYPECHK

Abbreviations are: TC|NOTC

Chapter 10. Compiler Options 197

VBREF Compiler Option

VBREF

Use TYPECHK to have the compiler enforce the rules for object-oriented type checking,
and generate diagnostics for any violations.

Use NOTYPECHK to turn off the checking for typing violations.

The type conformance requirements are covered in the IBM COBOL Language Refer-
ence under the appropriate language elements. Type checking requirements include:

¢ The method being invoked on an INVOKE statement must be supported by the
class of the referenced object.

¢ Method parameters on an INVOKE and the corresponding method PROCEDURE
DIVISION USING must conform.

e The SET object-reference-1 TO object-reference-2 statement requires that the
classes of the objects be of appropriate derivation relationships.

e A method override must have a conforming interface to the corresponding method
in the parent class.

When TYPECHK is specified, there must be entries in the SOM Interface Repository (IR)
for each class that is referenced in the COBOL source being compiled.

For COBOL classes, these IR entries can be created by using the COBOL IDLGEN
option (see “IDLGEN” on page 181) when compiling the class definitions, to create an
IDL file that describes the interface of the COBOL class. Compile the IDL using the
SOM compiler with its "ir" emitter.

Note that if the COBOL program references classes that are provided by the SOM
product itself (such as the SOMObject class), then the pre-generated IR for these
classes that is provided as part of the OS/390 SOMobjects product may be used to
verify that the COBOL usage conforms to the class interfaces.

See Chapter 15, “Using System Object Model (SOM)” on page 317, SOMobjects
Developer's Toolkit User's Guide, and SOMobjects Developer's Toolkit Programmer'’s
Reference Manual (available online) for further details on interface repositories, SOM,
and type checking.

A\
A

PP—EVBREF
NOVBREFJ

Default is: NOVBREF
Abbreviations are: None
Use VBREF to get a cross-reference among all verb types used in the source program

and the line numbers in which they are used. VBREF also produces a summary of how
many times each verb was used in the program.

198 VisualAge COBOL Programming Guide

WSCLEAR Compiler Option

Use NOVBREF for more efficient compilation.

WORD
>>—|:WORD (xxxx) >
NOWORD—J
Default is: NOWORD
Abbreviations are: WD|NOWD
xxxx specifies the ending characters of the name of the reserved-word table (IGYCxxxx)
to be used in your compilation. IGYC are the first 4 standard characters of the name,
and xxxx can be 1 to 4 characters in length.
Use WORD(xxxx) to specify that an alternate reserved-word table is to be used during
compilation.
NOWORD conforms to the COBOL 85 Standard.

| WSCLEAR

\ 4
A

I WSCLEAR]
I NOWSCLEAR

| Default is: NOWSCLEAR
| Abbreviations are: None

| Use WSCLEAR to clear your program's working storage to binary zeros when the
| program is initialized. The storage is cleared before any VALUE clauses are applied.

| Use NOWSCLEAR to bypass the storage clearing process.

If you use WSCLEAR and you are concerned about the size or performance of the
object program, then you should also use OPTIMIZE(FULL). This instructs the compiler
to eliminate all unreferenced data items from the DATA DIVISION, which will speed up
the initialization process.

Chapter 10. Compiler Options 199

XREF Compiler Option

XREF

\4
A

XREF:
L (——sHorT——)
—[FULLJ_
NOXREF:

Default is: NOXREF

Abbreviations are: X|NOX
You can choose XREF, XREF(FULL), or XREF(SHORT).

Use XREF to get a sorted cross-reference listing. Names are listed in the order of the
collating sequence indicated by the locale setting. This applies whether the names are
in single-byte characters or contain multi-byte characters (such as DBCS).

Also included is a section listing all the program names that are referenced in your
program, and the line number where they are defined. External program names are
identified as such.

If you use XREF and SOURCE, cross-reference information will also be printed on the
same line as the original source in the listing. Line number references or other informa-
tion, will appear on the right hand side of the listing page. On the right of source lines
that reference intrinsic functions, the letters 'IFN' will appear with the line numbers of
the location where the function's arguments are defined. Information included in the
embedded references lets you know if an identifier is undefined or defined more than
once (UND or DUP will be printed); if an item is implicitly defined (IMP), such as special
registers or figurative constants; and if a program name is external (EXT).

If you use XREF and NOSOURCE, you'll get only the sorted cross-reference listing.

XREF(SHORT) will print only the explicitly referenced variables in the cross-reference
listing. XREF(SHORT) applies to MBCS data names and procedure-names as well as
ASCIl names.

NOXREF suppresses this listing.

Observe:

1. Group names used in a MOVE CORRESPONDING statement are in the XREF listing.
In addition, the elementary names in those groups are also listed.

2. In the data-name XREF listing, line numbers preceded by the letter “M” indicate that
the data item is explicitly modified by a statement on that line.

3. XREF listings take additional storage.

See Chapter 13, “Debugging Techniques” on page 244 for sample listings.

200 VisualAge COBOL Programming Guide

| YEARWINDOW

Z\WB

ZWB Compiler Option

\4
A

»»—YEARWINDOW— (base-year)

Default is: YEARWINDOW(1900)
Abbreviation is: YW

Use the YEARWINDOW option to specify the first year of the 100-year window (the
century window) to be applied to windowed date field processing by the COBOL com-
piler. For information on using windowed date fields, see Chapter 31, “Using the
Millennium Language Extensions” on page 520.

base-year represents the first year of the 100-year window, and must be specified as
one of the following:
¢ An unsigned decimal number between 1900 and 1999.

This specifies the starting year of a fixed window. For example,
YEARWINDOW(1930) indicates a century window of 1930-2029.

¢ A negative integer from -1 through -99.

This indicates a sliding window, where the first year of the window is calculated
from the current run-time date. The number is subtracted from the current year to
give the starting year of the century window. For example, YEARWINDOW(-80) indi-
cates that the first year of the century window is 80 years before the current year
at the time the program is run.

Notes:

1. The YEARWINDOW option has no effect unless the DATEPROC option is also in
effect.

2. At run time, two conditions must be true:

e The century window must have its beginning year in the 1900s
e The current year must lie within the century window for the compilation unit

For example, running a program in 1998 with YEARWINDOW(-99) violates the first
condition, and would result in a run-time error.

A\
A

ZWB:
NOZWB—|

Default is: zwB

Abbreviations are: None

Chapter 10. Compiler Options 201

Compiler-Directing Statements

With zwB, the compiler removes the sign from a signed external decimal (DISPLAY)
field when comparing this field to an alphanumeric elementary field during execution.

If the external decimal item is a scaled item (contains the symbol 'P' in its PICTURE
character-string), its use in comparisons is not affected by ZwB. Such items always
have their sign removed before the comparison is made to the alphanumeric field.

zwB affects how the program runs; the same COBOL source program can give different
results, depending on the option setting.

ZWB conforms to the COBOL 85 Standard.

Use NOzWB if you want to test input numeric fields for SPACES.

Compiler-Directing Statements

202

Several statements help you to direct the compilation of your program. For the defi-
nition of these statements, see IBM COBOL Language Reference.

BASIS statement
This extended source program library statement provides a complete COBOL
program as the source for a compilation.

*CONTROL (*CBL) statement
This compiler-directing statement selectively suppresses or allows output to be
produced. The names *CONTROL and *CBL are synonymous. This statement is
described in the IBM COBOL Language Reference.

>>CALLINTERFACE statement
This compiler directing statement specifies the interface convention for calls,
including whether argument descriptors are to be generated. The convention spec-
ified using >>CALLINT is in effect until another >>CALLINT specification is made.
>>CALLINT can be used only in the PROCEDURE DIVISION.

The syntax and usage of the >>CALLINT statement is similar to the CALLINT com-
piler option. Exceptions are:

e CALLINT is a valid abbreviation in the statement syntax

¢ The statement syntax does not include parentheses

e The statement form can be used to apply to selective calls as described
below.

e The statement syntax includes the keyword DESCRIPTOR and its variants.

See the IBM COBOL Language Reference for the full syntax. See “CALLINT” on
page 164 for details of the option form.

If you specify >>CALLINT with no suboptions, the call convention used is determined
by the CALLINT compiler option. For example, if PROG1 is an IBM C program
whose default call interface convention is _OPTLINK, or it is a COBOL program
compiled with the ENTRYINT(OPTLINK) option, use the >>CALLINT directive to
change the interface for this call only:

VisualAge COBOL Programming Guide

Compiler-Directing Statements

>>CALLINT OPTLINK DESC

CALL "PROG1" USING PARM1 PARMZ2.
>>CALLINT

CALL "PROG2" USING PARMI1.

If you specify >>CALLINT with an invalid argument, the entire directive will be
ignored.

The >>CALLINT statement can be specified anywhere that a COBOL procedure
statement can be specified. For example, the following is valid COBOL syntax:

MOVE 3 TO
>>CALLINTERFACE SYSTEM
RETURN-CODE.

The effect of >>CALLINT is limited to the current program. A nested program or a
program compiled in the same batch inherits the calling convention specified with
the CALLINT compiler option, not the >>CALLINT compiler directive.

If you are writing a routine that is to be called with >>CALLINT SYSTEM,
DESCRIPTOR, this is the argument-passing mechanism:

CALL "PROGRAM1" USING arg-1, arg-2, ... arg-n

descriptor for arg-1

descType ‘ dataType ‘ descInfl ‘ descInf2

length-1
8
length-2
arg-1
-8
arg-2 descriptor-ID
0 S —
pointer to descr-1—
4
arg-n pointer to descr-2—— descriptor for arg-2
8
pointer to
descriptor —
pointer array pointer to descr-n—— descriptor for arg-n

Figure 49. Argument Passing with SYSTEM(DESC)

pointer to descr-n Points to the descriptor for the specific argument; 0 if no
descriptor exists for the argument.

descriptor-1D Set to COBDESCO to identify this version of the descriptor,
allowing for a possible change to the descriptor entry format
in the future.

descType Set to X'02' (descElmt) for an elementary data item of
USAGE DISPLAY with PICTURE X(n) or USAGE DISPLAY-1 with
PICTURE G(n) or N(n). For all others (numeric fields, struc-
tures, tables), set to X'00'.

Chapter 10. Compiler Options 203

Compiler-Directing Statements

dataType

descinfl

desclInf2

length-1

length-2

COPY statement

Set as follows:
e descType = X'00': dataType = X'00"'

e descType = X'02' and the USAGE is DISPLAY: dataType
=X'02' (typeChar)

e descType = X'02' and the USAGE is DISPLAY-1:
dataType = X'09' (typeGChar)

Always set to X'00'

Set as follows:
e If descType = X'00'; descInf2 = X'00'
e If descType = X'02":

— If the CHAR(EBCDIC) option is in effect and the argu-
ment is not defined with the NATIVE option in the
USAGE clause: descInf2 = X'40'

— Else: descInf2 = X'00"

In the argument descriptor is the length of the argument for a
fixed length argument or the current length for a variable
length item.

The maximum length of the argument, if the argument is a
variable length item.

For a fixed length argument Tength-2 is equal to length-1.

»»—COPY——text-name
Tliteral-l——l tlibrary-name—

\4
A

literal-2

This library statement places pre-written text into a COBOL program.

The uniqueness of text-name and library-name is determined after the formation
and conversion rules for a system-dependent name have been applied. A user-
defined word can be the same as a text-name or a library-name. If more than one
COBOL library is available during compilation, text-name need not be qualified. If
text-name is not qualified, a library-name of SYSLIB is assumed. The following
affects library-name and text-name:

library-name

If you specify library-name as a literal (/iteral-2), it is treated as the actual path.
If you specify library-name with a user-defined word, the name is used as an
environment variable and the value of the environment variable is used for the
path to locate the COPY text. To specify multiple path names, delimit them by
using a a semicolon (;).

204 vVisualAge COBOL Programming Guide

Compiler-Directing Statements

If you don't specify library-name, the path used is as described under text-
name.

text-name
The processing of text-name as a user-defined word depends on whether the
environment variable corresponding to the text-name is set. If the the environ-
ment variable is set, the value of the environment variable is used as the file
name, and possibly the path name, for the copybook.

A text-name is treated as both the path and file name if:

¢ library-name (or literal-2) is not given, and
e text-name is a literal (literal-1) or an environment variable, and
e The first character is '\' or the second character is "'

For example,
COPY "\mycpylib\..." or COPY "d:\mycpylib\..."

If the environment variable corresponding to the text-name is not set, the copy
text is searched for as the following names:

1. The text-name with the extension of .cpy
2. The text-name with the extension of .cbl
3. The text-name with the extension of .cob
4. The text-name without an extension

For example, COPY MyCopy searches in the following order:

e MyCopy.cpy (in all the specified paths, as described above)
e MyCopy.chl (in all the specified paths, as described above)
e MyCopy.cob (in all the specified paths, as described above)
e MyCopy (in all the specified paths, as described above)

-| option
For other cases (when neither a library-name nor text-name indicates the
path), the path searched is dependent on the -I option. For details, see
“Options Supported by cob2” on page 142.

To have COPY A be equivalent to COPY A OF MYLIB specify -I1%MYLIB%.

Based on the above rules, COPY "\X\Y" will be searched in the root directory,
while COPY "X\y" will be searched in the current directory.

COPY A OF SYSLIB is equivalent to COPY A. The -I option does not impact
COPY statements with explicit library-name qualifications besides those with
the library name of SYSLIB.

Environment Variable Notes If both library-name and text-name are environment
variables the compiler will insert a path separator (\) between the two values. For
example, COPY MYCOPY OF MYLIB with the settings of

SET MYCOPY=MYPDS(MYMEMBER)
SET MYLIB=MYFILE

results in MYFILE\MYPDS(MYMEMBER)

Chapter 10. Compiler Options 205

Compiler-Directing Statements

0S/2

Using a user-defined word as text-name enables you not only to access local files
but to access PDS members on OS/390 without changing your mainframe source.
For example:

COPY mycopybook

In this example, when the environment variable mycopybook is set to
H:mypds (mycopy), where:

H: is assigned to the specific host
mypds is the OS/390 PDS data set name
mycopy is the PDS member name

You can access 0S/390 files from OS/2 using SdU (Smart Data Utilities), which
allows OS/390 files to be accessed using an OS/2 pathname. However, note that
it converts the path separator to “.” to follow OS/390 naming conventions. You
should keep this in mind when assigning values to your environment variables to
ensure proper name formation. For example, these settings

SET MYCOPY=(MYMEMBER)

SET MYLIB=M:MYFILE\MYPDS

do not work because what is created is

M:MYFILE\MYPDS\(MYMEMBER)
which becomes
M:MYFILE.MYPDS.(MYMEMBER)

See the VSAM SMARTdata Utilities documentation for details on using DFMDRIVE
to assign a drive letter to DFM.

For more information on the COPY statement, see the discussion of the COPY
statement in the IBM COBOL Language Reference.

DELETE statement
This extended source library statement removes COBOL statements from the
BASIS source program.

EJECT statement
This compiler-directing statement specifies that the next source statement is to be
printed at the top of the next page.

ENTER statement
The compiler handles this statement as a comment.

INSERT statement
This library statement adds COBOL statements to the BASIS source program.

PROCESS (CBL) statement
This statement, which is placed before the IDENTIFICATION DIVISION header of an
outermost program, indicates which compiler options are to be used during compi-
lation of the program. (See page 147 for the format of this statement).

206 VisualAge COBOL Programming Guide

Compiler-Directing Statements

For details on specifying compiler options with the PROCESS (CBL) statement and
with other methods, see the discussion under “Compiling and Linking Programs” on
page 142.

REPLACE statement
This statement is used to replace source program text.

SKIP1/2/3 statement
These statements indicate lines to be skipped in the source listing.

TITLE statement
This statement specifies that a title (header) be printed at the top of each page of
the source listing. (See “Changing Header of Source Listing” on page 13.)

USE statement
The USE statement provides declaratives to specify the following:

Error-handling procedures—EXCEPTION/ERROR
Debugging lines and sections—DEBUGGING

Chapter 10. Compiler Options 207

Options on the Command Line

| Chapter 11. Setting Linker Options

Linker options vary depending on the operating system you are using. For a complete
list of linker options on OS/2, see “Summary of OS/2 Linker Options” on page 211 For
a complete list of linker options on Windows, see “Summary of Windows Linker
Options” on page 226

Linker options are not case sensitive, so you can specify them in lower-, upper-, or
mixed case. You can also substitute a dash (-) for the slash (/) preceding the option.
For example, -DEBUG is equivalent to /DEBUG. You can specify options in either a short
or long form. For example, /DE, /DEB, and /DEBU are all equivalent to /DEBUG. See
“Summary of OS/2 Linker Options” on page 211 or “Summary of Windows Linker
Options” on page 226 for the shortest acceptable form for each option. Lower- and
uppercase, short and long forms, dashes, and slashes can all be used on one
command line, as in:

ilink /de -DBGPACK -Map /NOI prog.obj

Separate options with a space or tab character. You can specify linker options in the
following ways:

¢ On the command line
¢ In the ILINK environment variable
¢ In WorkFrame

Options specified on the command line override the options in the ILINK environment
variable.

Some linker options take numeric arguments. You can enter numbers in decimal, octal,
or hexadecimal format using standard C-language syntax. See “Specifying Numeric
Arguments” on page 209 for more information.

Setting Options on the Command Line

Linker options specified on the command line override any previously specified in the
ILINK environment variable (as described in “Setting Options in the ILINK Environment
Variable” on page 209).

You can specify options anywhere on the command line. Separate options with a
space or tab character.

For example, to link an object file with the /MAP option, enter:
ilink /M myprog.obj

© Copyright IBM Corp. 1996, 1998

Specifying Numeric Arguments

| Setting Options in the ILINK Environment Variable

| Store frequently used options in the ILINK environment variable. This method is useful
| if you find yourself repeating the same command-line options every time you link. You
| cannot specify file names in the environment variable, only linker options.

| The ILINK environment variable can be set either from the command line, in a

| command (.CMD) file, or in the CONFIG.SYS file. If it is set on the command line or by
| running a command file, the options will only be in effect for the current session (until

| you reboot your computer). If it is set in the CONFIG.SYS file, the options are set

| when you boot your computer, and are in effect every time you use the linker unless

| you override them using a .CMD file or by specifying options on the command line.
Example

In the following example, options on the command line override options in the environ-
ment variable. If you enter the following commands:

SET ILINK=/NOI /AL:256 /DE

ILINK test
ILINK /NODEF /NODEB prog

| The first command sets the environment variable to the options /INOIGNORECASE,
| /ALIGNMENT:256, and /DEBUG

| The second command links the file test.obj, using the options specified in the environ-
| ment variable, to produce test.exe

| The last command links the file prog.obj to produce prog.exe, using the option

| /NODEFAULTLIBRARYSEARCH, in addition to the options /NOIGNORECASE and

| /ALIGNMENT:256. The /NODEBUG option on the command line overrides the

| /DEBUG option in the environment variable, and the linker links without the /DEBUG
| option.

| Setting Options in the WorkFrame Environment
| If you have installed the WorkFrame product, you can set linker options using the
| options dialogs. You can use the dialogs when you create or modify a project.

| Options you select while creating or changing a project are saved with that project.

Specifying Numeric Arguments

Some linker options and module statements take numeric arguments. You can specify
numbers in any of the following forms:

example, 1234 is a decimal number.

Octal Any number prefixed with O (but not Ox) is an octal number. For

|

I

I

| Decimal Any number not prefixed with 0 or Ox is a decimal number. For
|

I

| example, 01234 is an octal number.

Chapter 11. Setting Linker Options 209

Specifying Numeric Arguments

Hexadecimal Any number prefixed with Ox is a hexadecimal number. For example,
0x1234 is a hexadecimal number.

210 VisualAge COBOL Programming Guide

Linker Options

Summary of OS/2 Linker Options

Figure 50. OS/2 Linker Options Summary

Option Description Default
? Display help None
/ALIGNMENT Set alignment factor /A:512
IBASE, /INOBASE Set preferred loading address /BAS:0x00010000
/CODEVIEW, NOCODEVIEW Include debugging information /NOC
/DBGPACK, /INODBGPACK Pack debugging information /NODB
/DEBUG, /NODEBUG Include debugging information /NODEB
/DEFAULTLIBRARYSEARCH, Search default libraries /DEF
/NODEFAULTLIBRARYSEARCH

/DLL Generate DLL JEXEC
/EXEC Generate .EXE file JEXEC
/IEXEPACK, INOEXEPACK Compress data INOEXE
/EXTDICTIONARY, /NOEXTDICTIONARY Use extended dictionary to search libraries JEXT
/FORCE Create executable output file even if errors INOFO
/FREEFORMAT, /INOFREEFORMAT Use free format command line syntax IFR
IHELP Display help None
/IGNORECASE, /INOIGNORECASE Ignore capitalization in identifiers /NOI
/INFORMATION, /NOINFORMATION Display status of linking process /NOIN
/LINENUMBERS, /NOLINENUMBERS Include line numbers in map file /NOLI
/LOGO, /NOLOGO Display logo, echo response file /LO
IMAP, INOMAP Generate map file /NOM
/OPTFUNC, /NOOPTFUNC Remove unreferenced functions /INOOPTF

/OUT

Name output file

Name of first .OBJ file

/PACKCODE, /INOPACKCODE

Pack neighboring code segments with similar

attributes

/PACKC: OxFfffFfff

/PACKDATA, /INOPACKDATA

Pack neighboring data segments with similar

/PACKD: OxFfffFfff

attributes
IPMTYPE Specify application type None
/SECTION Set attributes for segment Accept default attributes
ISEGMENTS Set maximum number of segments ISE:128
ISTACK Set stack size of application /ST:32768

Linker Options for OS/2

This section describes the linker options in alphabetical order.

For each option, the description includes:

¢ The syntax for specifying the option.

¢ The default setting.

Chapter 11. Setting Linker Options

211

/IBAS, INOBAS Options

1?

/ALIGNMENT

¢ Any accepted abbreviations.

e A description of the option and its parameters, and any interaction it may have with
other options.

»»—/?

A\
A

Use /? to display a list of valid linker options. This option is equivalent to /HELP.

»—/ALIGNMENT : factor

\4
A

Default is: /ALIGNMENT:512

Abbreviation is: /A

Use /ALIGNMENT to set the alignment factor in the .EXE or .DLL file.

The alignment factor determines where pages in the .EXE or .DLL file start. From the

beginning of the file, the start of each page is aligned at a multiple (in bytes) of the
alignment factor. The alignment factor must be a power of 2, from 1 to 4096.

/IBASE, INOBASE

\4
A

»—E/BASE:address
/ NOBASE—J

Default is: /BASE:0X00010000
Abbreviations are: /BAS

Use /BASE to specify the preferred load address for the first load segment of a .DLL file.
The number you specify in address is rounded up to the nearest multiple of 64K. The
second load segment is then loaded at the next available multiple of 64K, and so on.

If the file's load segments cannot be loaded beginning at this preferred address, then
the preferred address is ignored and the objects are loaded according to the internal
relocation records retained in the file data.

For .EXE files, use the default base address of 64K (/BASE:0x00010000). Specifying
this address explicitly can slightly reduce the size of the executable. Any other address
will result in a warning, and 64K will be used anyway.

212 VisualAge COBOL Programming Guide

/DB, /INODB Options

This option has the same effect as the BASE module definition file statement. If you
specify both the BASE statement and the /BASE option, the statement value overrides
the option value.

Specify /NOBASE to retain relocation records and emit internal fixups, when you generate
an .EXE file. This does not affect the actual base address, or interfere with any value
you specified with /BASE. You can specify both options.

/CODEVIEW, NOCODEVIEW

\4
A

>>——T:/CODEVIE
/NOCODEVIEW

Default is: /NOCODEVIEW

Abbreviations are: /C|/NOC
Obsolete: These options will not be available in future releases of the linker. Use
/DEBUG, /NODEBUG instead.

Use /CODEVIEW to include debug information in the output file, so you can debug the file
with the debugger, or trace its execution with the Performance Analyzer. The linker will
embed symbolic data and line number information in the output file.

For debugging, compile the object files with cob2 option -g.
For the Performance Analyzer, compile the object files with cob2 option -p.

/CODEVIEW provides the same functionality as /DEBUG and is provided only for purposes
of compatibility.

Note: Linking with /CODEVIEW or /DEBUG increases the size of the executable output
file.

/IDBGPACK, INODBGPACK

\4
A

>>—|:/DBGPACK
/NODBGPACK

Default is: /NODBGPACK

Abbreviations are: /DB|/NODB

Use /DBGPACK to eliminate redundant debug type information. The linker takes the
debug type information from all object files and needed library components, and

reduces the information to one entry per type. This results in a smaller executable
output file, and can improve debugger performance.

Chapter 11. Setting Linker Options 213

/DEF, INOD Options

Performance Consideration: Generally, linking with /DBGPACK slows the linking
process, because it takes time to pack the information. However, if there is enough
redundant debug type information, /DBGPACK can actually speed up your linking,
because there is less information to write to file.

You can only pack debug information in objects created with version 3.0 of the compiler
or later. If you use /DBGPACK with older object files, the linker generates a warning and
does not pack the debug information.

When you specify /DBGPACK, /DEBUG is turned on by default.

/DEBUG, /INODEBUG

\ 4
A

»—E/DEBUG
/NODEBUG.J

Default is: /NODEBUG

Abbreviations are: /DE|/NODEB

Use /DEBUG to include debug information in the output file, so you can debug the file
with the debugger, or analyze its performance with the performance analyzer. The
linker will embed symbolic data and line number information in the output file.

For debugging, compile the object files with cob2 option -g.

For the Performance Analyzer, compile the object files with cob2 option -p.

Note: Linking with /DEBUG increases the size of the executable output file.

/DEFAULTLIBRARYSEARCH, /INODEFAULTLIBRARYSEARCH

\4
A

>>—|:/DEFAULTLIBRARYSEARCH |
/NODEFAULTLIBRARYSEARCH

l—:libraryJ

Default is: /DEFAULTLIBRARYSEARCH
Abbreviations are: /DEF|/NOD

Use /DEFAULTLIBRARYSEARCH to have the linker search the default libraries of object files
when resolving references. The default libraries for an object file are defined at compile
time, and embedded in the object file. The linker searches the default libraries by
default.

Use /NODEFAULTLIBRARYSEARCH to tell the linker to ignore default libraries when it

resolves external references. If you specify a library with the option, the linker ignores
that default library, but searches any others that are defined in the object files.

214 vVisualAge COBOL Programming Guide

/E, INOEXE Options

If you specify /NODEFAULTLIBRARYSEARCH, then you must explicitly specify all the libraries
you want to use, including IBM VisualAge COBOL runtime libraries and any OS/2
libraries you need.

A\
A

>>—‘|:/DLL
/EXEC—|

Default is: /EXEC
Abbreviations are: None

Use /DLL to identify the output file as a dynamic link library (.DLL file). You can also
identify the output file as a DLL with the LIBRARY statement in a module definition file.

If you specify /DLL with /EXEC, then only the last specified of the options takes effect.

If you do not specify /DLL, then by default the linker produces an .EXE file (/EXEC).

\ 4
A

>>—|:/DLL
/EXECJ

Default is: /EXEC

Abbreviations are: None

Use /EXEC to identify the output file as an executable program (.EXE file). The linker
generates .EXE files by default. You can also identify the output as an .EXE file with
the NAME statement in a module definition file. If you specify /EXEC with /DLL, only the
last specified of the options takes effect.

If you do not specify /EXEC, the linker produces an .EXE file by default.

/IEXEPACK, INOEXEPACK

A\
A

/EXEPACK
]
12
/NOEXEPACK————

Default is: /NOEXEPACK

Abbreviations are: /E|/NOEXE

Chapter 11. Setting Linker Options 215

/EXT, INOE Options

Use /EXEPACK to reduce the size of the executable by compressing pages in the file.
The operating system automatically decompresses the pages when the program runs.

Specify /EXEPACK[:1] to compress data segments in your output file, using run-length
encoding compression. If compression does not reduce the size of the segment, the
linker does not compress that segment.

Specify /EXEPACK:2 to compress both data and code segments, as follows:

¢ For data segments, the linker tries both LZW compression and run-length encoding
compression, and uses the method with the more efficient result.

e For code segments, the linker uses LZW compression.
Segments are evaluated one page at a time. If compression does not reduce the size
of the page, the page is not compressed.

0S/2 V3.0 only: Only set /EXEPACK:2 if you are developing for OS/2 version 3.0 or
later. OS/2 version 2.1 or earlier cannot run programs that have been compressed with
/EXEPACK:2.

Linking and compressing generally takes longer than linking alone, because of the extra
time spent compressing. However, if the compression is effective enough, it can actu-

ally speed up the linking process, because there is less information to write to file.

By default, the linker does not compress the output file.

/EXTDICTIONARY, /INOEXTDICTIONARY

\4
A

>>—|:/ EXTDICTIONARY 7
/NOEXTDICTIONARY

Default is: /NOEXTDICTIONARY
Abbreviations are: /EXT|/NOE

Use /EXTDICTIONARY to have the linker search the extended dictionaries of libraries
when it resolves external references. The extended dictionary is a list of module
relationships within a library. When the linker pulls in a module from the library, it
checks the extended dictionary to see if that module requires other modules in the
library, and then pulls in the additional modules automatically.

The linker searches the extended dictionary by default, to speed up the linking process.

Use /NOEXTDICTIONARY if you are defining a symbol in your object code that is also
defined in one of the libraries you are linking to. Otherwise the linker issues error
L2044 because you have defined the same symbol in two different places. When you
link with /NOEXTDICTIONARY, the linker searches the dictionary directly, instead of
searching the extended dictionary. This results in slower linking, because references
must be resolved individually.

216 VisualAge COBOL Programming Guide

| /FORCE

/H Option

\4
A

>>—|:/ FORCE
/NOFORCEJ

Default is: /NOFORCE
Abbreviations are: /FO|/NOFO

Use /FORCE to produce an executable output file even if there are errors during the
linking process.

By default, the linker does not produce an executable output file if it encounters an
error.

/[FREEFORMAT, INOFREEFORMAT

\4
A

>>—|:/FREEFORMAT a
/NOFREEFORMAT

Default is: /FREEFORMAT
Abbreviations are: /FR|/NOFR

Use /FREEFORMAT to allow free placement of files, options, and directories on the
command line, separated by space or tab characters. Use the /0UT option to name the
executable output file. Use the /MAP option to name the map file. Library and definition
files are identified by their extension.

/FREEFORMAT is in effect by default.

Use /NOFREEFORMAT to allow a LINK386-compatible command line syntax, in which dif-
ferent types of file are grouped and separated by commas. If you specify
/NOFREEFORMAT, then you cannot specify /0UT. Instead, specify a name for the execut-
able output file in the appropriate place in the command line syntax.

»>—/HELP

\é
A

Default is: None
Abbreviation is: /H

Use /HELP to display a list of valid linker options. This option is equivalent to /7.

Chapter 11. Setting Linker Options 217

/L, INOLI Options

| /IGNORECASE, /INOIGNORECASE

\4
A

»»—E/IGNORECASE 7
/NOIGNORECASE

Default is: /NOIGNORECASE
Abbreviations are: /IG|/NOI

Use /IGNORECASE to turn off case sensitivity, ignoring capitalization in identifiers. For
example, with this option on, the linker treats ABC, abc, and Abc as equivalent.

By default, the linker is case sensitive, and would treat ABC, abc, and Abc as unique
names.

/INFORMATION, /NOINFORMATION

\4
A

>>—|:/INFORMATION .
/NOINFORMATION

Default is: /NOINFORMATION

Abbreviations are: /I|/NOIN

Use /INFORMATION to have the linker display information about the linking process as it
occurs, including the phase of linking and the names and paths of the object files being
linked.

If you are having trouble linking because the linker is finding the wrong files or finding
them in the wrong order, use /INFORMATION to determine the locations of the object files
being linked and the order in which they are linked.

The output from this option is sent to stdout . You can redirect the output to a file using
OS/2 redirection symbols.

/LINENUMBERS, /NOLINENUMBERS

\ 4
A

>>—|:/LINENUMBERS a
/NOLINENUMBERS

Default is: /NOLINENUMBERS

Abbreviations are: /L|/NOLI

218 VisualAge COBOL Programming Guide

/M, INOM Options

Use /LINENUMBERS to include source file line numbers and associated addresses in the
map file. For this option to take effect, there must already be line number information
in the object files you are linking.

When you compile, use the cob2 option -gNUMBER to include line numbers in the
object file (or the cob2 option -g, to include all debugging information).

If you give the linker an object file without line number information, the /LINENUMBERS
option has no effect.

The /LINENUMBERS option forces the linker to create a map file, even if you specified
/NOMAP.

By default, the map file is given the same name as the output file, plus the extension
.map. You can override the default name by specifying a map file name.

| /LOGO, /INOLOGO

\4
A

>>—|:/ LOGO
/NOLOGOJ

Default is: /LOGO
Abbreviations are: /LO|/NOL

Use /NOLOGO to suppress the product information that appears when the linker starts.
/NOLOGO also stops the contents of the response file from being echoed to the screen.

Specify /NOLOGO before the response file on the command line, or in the ILINK environ-
ment variable. If the option appears in or after the response file, it is ignored.

By default, the linker displays product information at the start of the linking process, and
displays the contents of the response file as it reads the file.

> /MAP B T
. |—d i r'J |—nameJ
/NOMAP

Default is: /NOMAP

IMAP, INOMAP

\ 4
A

Abbreviations are: /M|/NOM
Use /MAP to generate a map file with the name name, and in the directory dir, that lists

the composition of each segment, and the public (global) symbols defined in the object
files. The symbols are listed twice: in order of name, and in order of address.

Chapter 11. Setting Linker Options 219

/OUT Option

If you do not specify dir, the map file is generated into the current working directory. If
you do not specify name, the map file has the same name as the executable output file,
with the extension .map.

For compatibility with LINK386, you can specify /MAP:full. With the IBM VisualAge
COBOL linker, this is the same as specifying /MAP.

Note: If you are linking with the /NOFREE option, you can specify a name for the map
file in the map parameter. Any name you specify with the /MAP option is ignored.

By default, the linker does not produce a map file.

/OPTFUNC, /INOOPTFUNC

/OUT

A\
A

>>—l:/()PTFUNC .
/NOOPTFUNC

Default is: /NOOPTFUNC
Abbreviations are: /OPTF|/NOOPTF

Use /OPTFUNC to remove unreachable functions. The linker removes functions that are:

¢ Not referenced anywhere in the object code
¢ Rendered unreferenced by the removal of other functions
¢ Not exported for use in other files

When the function is removed, any additional functions that were required only by that
function are also removed. Removing the functions and code reduces the size of your
.EXE or .DLL output file.

By default, the linker does not remove unreachable functions.

Performance Consideration: Optimized linking generally takes longer than regular
linking, because of the extra processing that the linker performs. However, if the opti-
mization is effective enough, it can actually speed up the linking process, because there
is less information to write to file. Generally, you may want to link without the /OPTFUNC
option, until your code is tested and stable.

\ 4
A

»»—/0UT :name

Default is: Name of first .0OBJ file with appropriate extension.

Abbreviation is: /O

220 VisualAge COBOL Programming Guide

/PACKD, /INOPACKD Options

Use /0UT to specify a name for the executable output file. To use /0UT, you must be
using the default command line syntax (/FREEFORMAT). If you are using the /NOFREE
(LINK386-compatible) format, then you cannot use the /0UT option.

If you do not provide an extension with name, then the linker provides an extension
based on the type of file you are producing:

File produced Default extension
Executable program EXE
Dynamic link library .DLL

/PACKCODE, /INOPACKCODE
> /PACKCODE
|—:numberJ
/NOPACKCODE———

Default is: /PACKCODE:0XFFFFFFFF

\4
A

Abbreviations are: /PACKC|/NOP

Use /PACKCODE to produce slightly faster and more compact code. The linker groups
neighboring code segments that have similar attributes, and assigns them to the same
load segment. The linker adjusts offsets to each routine upward as required.

Specify number to set the maximum size for a load segment. The linker will start new
load segments as necessary to avoid exceeding the maximum.

For 16-bit segments, number is ignored, and 65500 is used instead.
By default, the linker sets a maximum of OxFfffFfff.
Use /NOPACKCODE to turn off code segment packing.

Use the /OPTFUNC option to reduce the size of your output files even further.

/PACKDATA, INOPACKDATA
/PACKDATA
|—:numberJ
/NOPACKDATA——m—

Default is: /NOPACKDATA

\4
A

Abbreviations are: /PACKD|/NOPACKD

Use /PACKDATA to produce more compact files by grouping neighboring data segments
that have similar attributes, and assigning them to the same load segment.

Chapter 11. Setting Linker Options 221

/SEC Option

/PMTYPE

/SECTION

Specify number to set the maximum size for a load segment. The linker will start new
load segments as necessary to avoid exceeding the maximum. By default, the linker
sets a maximum of OxFfffFfff.

By default, the linker does not pack data segments.

\ 4
A

»>—/PMTYPE: type

Default is: None
Abbreviation is: /PM

Use /PMTYPE to specify the type of .EXE file that the linker generates. Do not use this
option when generating dynamic link libraries (DLLs). The option is equivalent to the
NAME module statement, but uses different type names.

Figure 51. /PMTYPE Parameters

Type Description Equivalent NAME Statement
Parameter
PM Presentation Manager application. The applica- WINDOWAPI

tion uses the API provided by the Presentation
Manager, and must run in the Presentation
Manager environment.

VIO Application compatible with Presentation WINDOWCOMPAT
Manager. The application can run inside the
Presentation Manager, or it can run in a separate
screen group. An application can be of this type
if it uses the proper subset of OS/2 video, key-
board, and mouse functions supported in the
Presentation Manager applications.

NOVIO Application that is not compatible with the Presen- NOTWINDOWCOMPAT
tation Manager and must run in a separate screen
group from the Presentation Manager.

»»—/SECTION :name,—[attributc

\ 4
A

Default is: Depends on segment type
Abbreviation is: /SEC

Use /SECTION to specify memory-protection attributes for the name segment. You can
specify the following attributes:

222 VisualAge COBOL Programming Guide

/ISEC Option

Letter Sets Attribute
E EXECUTE

R READ

S SHARED

w WRITE

For example,

/SEC:dsegl,RS

sets the READ and SHARED attributes, but not the EXECUTE, or WRITE attributes, for
the segment dsegl in an .EXE file.

Defaults

Segments are assigned attributes by default, as follows:

Segment Default Attributes

Code segments EXECUTE, READ (ER)
Correspond to the SEGMENTS attribute
EXECUTEREAD.

Data segments (in .EXE file) READ, WRITE (RW)
Correspond to the SEGMENTS attribute
READWRITE.

Data segments (in .DLL file) READ, WRITE, SHARED (RWS)

Correspond to the SEGMENTS attributes
READWRITE and SHARED.

CONST32_RO segment READ, SHARED (RS)
Correspond to the SEGMENTS attributes
READONLY and SHARED.

You can also set these attributes, and other attributes, to segments using statements in
a module definition file:

CODE Sets default attributes for CODE segments
DATA Sets default attributes for DATA segments
SEGMENTS Sets attributes for specific segments

Assignments given in a module definition file override any assignments made with
/SECTION.

Chapter 11. Setting Linker Options 223

/ST Option

| ISEGMENTS

| »>—/SEGMENTS : number

\4
A

| Default is: /SEGMENTS:256
| Abbreviation is: /SE

| Use /SEGMENTS to set the number of logical segments a program can have. You can
| set number to any value in the range 1 to 16375. See “Specifying Numeric Arguments”
| on page 209.

| For each logical segment, the linker must allocate space to keep track of segment infor-
| mation. By using a relatively low segment limit as a default (256), the linker is able to
| link faster and allocate less storage space.

| When you set the segment limit higher than 256, the linker allocates more space for
| segment information. This results in slower linking, but allows you to link programs with
| a large number of segments.

| For programs with fewer than 256 segments, you can improve link time and reduce

| linker storage requirements by setting number to the actual number of segments in the
| program.

| ISTACK

[»»—/STACK:size

\ 4
A

| Default is: /STACK:32768 (32K)
| Abbreviation is: /ST

| Use /STACK to set the stack size (in bytes) of your program. The size must be an even
| number from 0 to OxFfffFffe. If you specify an odd number, it is rounded up to the
[next even number.

| You cannot specify a stack size in which the second most significant byte is either 02
| or 04 (in hex), because of a restriction in OS/2 2.0. The linker issues a warning, and
| adds 64k to the specified stack size to avoid this restriction.

[For example, if you specify /STACK:0x00020000 the linker adds 64k, which results in
| /STACK:0x00030000

| Similarly, if you specify /STACK:0x11041111 the linker adds 64k, which results in
[/STACK:0x11051111

[If your program generates a stack-overflow message, use /STACK to increase the size of
[the stack.

224 VisualAge COBOL Programming Guide

/ST Option

If your program uses very little stack space, you can save space by decreasing the
stack size.

If the executable is a visual application containing more than 10 windows, you should
add about 10K to the stack size for each additional window.

If your program uses a visual part containing more than 10 windows, then add about
another 10K to the stack size for each additional window in that part. For example, if
the most windows contained in any one part is 18, then specify /ST:1134688 (that is,
(1024 x 10 x 8) + 32768).

Note: Once the executable is produced, you can still change its stack size, using the
EXEHDR utility in the Warp toolkit.

/STACK is equivalent to the STACKSIZE statement in a module definition (.DEF) file. If
you specify both the statement and the option, the statement value overrides the option
value.

Chapter 11. Setting Linker Options 225

Windows Linker Options

Summary of Windows Linker Options

Figure 52. Windows Linker Options Summary

Option Description Default

? Display help None

/ALIGNADDR Set address alignment /A:0x00010000

JALIGNFILE Set file alignment IA:512

IBASE Set preferred loading address /BAS:0x00400000

/CODE Set section attributes for executable /CODE:RX

IDATA Set section attributes for data /IDATA:RW

/DBGPACK, /INODBGPACK Pack debugging information /NODB

/DEBUG, /NODEBUG Include debugging information /NODEB

/DEFAULTLIBRARYSEARCH, Search default libraries /DEF

/NODEFAULTLIBRARYSEARCH

/DLL Generate DLL JIEXEC

/DLL Specify an entry point in an executable file None

JEXECUTABLE Generate .EXE file IEXEC

JIEXTDICTIONARY, /NOEXTDICTIONARY Use extended dictionary to search libraries JEXT

/EXTDICTIONARY, /INOEXTDICTIONARY Do not relocate the file in memory INOFI

/FORCE Create executable output file even if errors are INOFO
detected

IHEAP Set the size of the progam heap /HEAP:0x100000,0x1000

IHELP Display help None

/INCLUDE Forces a reference to a symbol None

/INFORMATION, /NOINFORMATION Display status of linking process INOIN

/LINENUMBERS, /NOLINENUMBERS Include line numbers in map file INOLI

/LOGO, /INOLOGO Display logo, echo response file /ILO

IMAP, INOMAP Generate map file /NOM

/oUT Name output file Name of first .obj file

IPMTYPE Specify application type IPMTYPE:VIO

/SECTION Set attributes for section Set by /CODE and /DATA

ISEGMENTS Set maximum number of segments ISE:256

ISTACK Set stack size of application ISTACK:
0x100000,0x1000

/ISTUB Specify the name of the DOS stub file None

ISUBSYSTEM Specify the required subsystem and version ISUBSYSTEM:
WINDOWS,4.0

IVERBOSE Display status of linking process INOV

/VERSION Write a version number in the run file /VERSION:0.0

226 VisualAge COBOL Programming Guide

/A Option

| Windows Linker Options

| /IALIGNADDR
|

| /ALIGNFILE
|

This section describes the linker options in alphabetical order.

For each option, the description includes:
¢ The syntax for specifying the option.
¢ The default setting.

e Any accepted abbreviations.

¢ A description of the option and its parameters, and any interaction it may have with
other options.

»—/?

A\
A

Use /7 to display a list of valid linker options. This option is equivalent to /HELP.

\ 4
A

»>—/ALIGNADDR: factor

Default is: /ALIGNADDR:0X00010000

Abbreviation is: /ALIGN

Use /ALIGNADDR to set the address alignment for segments.

The alignment factor determines where segments in the .EXE or .DLL file start. From

the beginning of the file, the start of each segment is aligned at a multiple (in bytes) of
the alignment factor. The alignment factor must be a power of 2, from 512 to 256M.

\ 4
A

»»—/ALIGNFILE: factor

Default is: /ALIGNFILE:512

Abbreviation is: /A

Use /ALIGNFILE to set the file alignment for segments.

The alignment factor determines where segments in the .EXE or .DLL file start. From

the beginning of the file, the start of each segment is aligned at a multiple (in bytes) of
the alignment factor. The alignment factor must be a power of 2, from 512 to 64K.

Chapter 11. Setting Linker Options 227

/CODE Option

/IBASE

/CODE

\4
A

»»—/BASE:——address
—E@fi lename ,keyJ

Default is: /BASE:0X00400000
Abbreviations are: /BAS
Use /BASE to specify the preferred load address for the first load segment of a .DLL file.

Specifying @filename, key, in place of address, bases a set of programs (usually a set
of DLLs) so they do not overlap in memory. filename is the name of a text file that
defines the memory map for a set of files. key is a reference to a line in filename
beginning with the specified key. Each line in the memory-map file has the syntax:

key address maxsize

Separate the elements with one or more spaces or tabs. The key is a unique name in
the file. The address is the location of the memory image in the virtual address space.
The maxsize is an amount of memory within which the image must fit. The linker will
issue a warning when the memory image of the program exceeds the specified size. A
comment in the memory-map file begins with a semicolon (;) and runs to the end of the
line.

»—/CODE:—Eattributc

\ 4
A

Default is: /CODE:RX
CODE Description Abbreviations are: None

Use /CODE to specify the default attributes for all code sections. Letters can be speci-
fied in any order.

Letter Attribute

E or X EXECUTE
R READ

S SHARED
W WRITE

The default is /CODE:RX.

228 VisualAge COBOL Programming Guide

/DB, /INODB Optio

ns

»—/DATA:—[attributc

A\
A

Default is: /DATA:RW

Abbreviations are: None

Use /DATA to specify the default attributes for all data sections. Letters can be specified

in any order.

Letter Attribute

E or X EXECUTE
R READ

S SHARED
W WRITE

The default is /DATA:RW.

| /IDBGPACK, /INODBGPACK

\4
A

>>—|:/DBG PACK]
/NODBGPACK

Default is: /NODBGPACK
Abbreviations are: /DB|/NODB

Use /DBGPACK to eliminate redundant debug type information. The linker takes the
debug type information from all object files and needed library components, and
reduces the information to one entry per type. This results in a smaller executable
output file, and can improve debugger performance.

Performance Consideration: Generally, linking with /DBGPACK slows the linking
process, because it takes time to pack the information. However, if there is enough
redundant debug type information, /DBGPACK can actually speed up your linking,
because there is less information to write to file.

When you specify /DBGPACK, /DEBUG is turned on by default.

Chapter 11. Setting Linker Options

229

/DEF, INOD Options

| /DEBUG, /NODEBUG

\4
A

| »—[/DEBUG
[/NODEBUGJ

| Default is: /NODEBUG

| Abbreviations are: /D|/NODEB

| Use /DEBUG to include debug information in the output file, so you can debug the file

| with the debugger, or analyze its performance with Performance Analyzer. The linker
| will embed symbolic data and line number information in the output file.

| For debugging, specify the cob2 option -g.

| For the Performance Analyzer, compile the object files with the cob2 option -p.

| Note: Linking with /DEBUG increases the size of the executable output file.

| /IDEFAULTLIBRARYSEARCH, /INODEFAULTLIBRARYSEARCH

A\
A

| >>—[/DEFAULTLIBRARYSEARCH
| /NODEFAULTLIBRARYSEARCHJ |—:Zibr‘ar‘yJ

| Default is: /DEFAULTLIBRARYSEARCH
| Abbreviations are: /DEF|/NOD

| Use /DEFAULTLIBRARYSEARCH to have the linker search the default libraries of object files
| when resolving references.

| If you specify a library with the option, the linker adds the library name to the list of
| default libraries. The default libraries for an object file are defined at compile time, and
| embedded in the object file. The linker searches the default libraries by default.

| Use /NODEFAULTLIBRARYSEARCH to tell the linker to ignore default libraries when it

| resolves external references. If you specify a library with the option, the linker ignores

| that default library, but searches the rest of the default libraries (and any others that are
| defined in the object files).

| If you specify /NODEFAULTLIBRARYSEARCH without specifying library, then you must explic-

| itly specify all the libraries you want to use, including IBM VisualAge COBOL runtime
| libraries.

230 VisualAge COBOL Programming Guide

| /[ENTRY
|

| /IEXECUTABLE

/EXEC Option

\4
A

>>—|:/DLL
/EXECUT/-\BLEJ

Default is: /EXECUTABLE
Abbreviation is: /EXEC

Use /DLL to identify the output file as a dynamic link library (.DLL file). The object files
should be compiled with the cob2 option -d11.

If you specify /DLL with /EXEC, only the last specified of the options takes effect.

If you do not specify /DLL, or any of the other options above, then by default the linker
produces an .EXE file (/EXEC).

»»—/ENTRY :name

\{
A

Default is: None
Abbreviation is: /EN

Use /ENTRY to specify an entry point (hame of a routine or function) in an executable.

S~
mo
>x<r—
mr—
()
[y
=
=
0o
—
ji
v
A

Default is: /EXECUTABLE
Abbreviation is: /EXEC

Use /EXEC to identify the output file as an executable program (.EXE file). The linker
generates .EXE files by default.

If you specify /EXEC with /DLL, only the last specified of the options takes effect.

If you do not specify /EXEC or /DLL, then by default the linker produces an .EXE file.

Chapter 11. Setting Linker Options 231

/FO Option

| /EXTDICTIONARY, INOEXTDICTIONARY

\4
A

| >>—|:/ EXTDICTIONARY
| /NOEXTDICTIONARYJ

| Default is: /EXTDICTIONARY
| Abbreviations are: /EXT|/NOE

Use /EXTDICTIONARY to have the linker search the extended dictionaries of libraries
when it resolves external references. The extended dictionary is a list of module
relationships within a library. When the linker pulls in a module from the library, it
checks the extended dictionary to see if that module requires other modules in the
library, and then pulls in the additional modules automatically.

| The linker searches the extended dictionary by default, to speed up the linking process.

Use /NOEXTDICTIONARY if you are defining a symbol in your object code that is also
defined in one of the libraries you are linking to. Otherwise the linker issues an error
because you have defined the same symbol in two different places. When you link with
/NOEXTDICTIONARY, the linker searches the dictionary directly, instead of searching the
extended dictionary. This results in slower linking, because references must be
resolved individually.

| [FIXED, INOFIXED

A\
A

| >>——I:/FIXED
| /NOFIXED

[Default is: /NOFIXED
| Abbreviations are: /FI|/NOFI

| Use /FIXED to tell the loader not to relocate a file in memory when the specified base
| address is not available.

| For more information on base addresses, see the /BASE linker option.

| /FORCE

\4
A

| >>——I:/FORCF
[/NOFORCE

| Default is: /NOFORCE

| Abbreviations are: /FO|/NOFO

232 VisualAge COBOL Programming Guide

IHEAP

/HELP

/INCLUDE

/INC Option

Use /FORCE to produce an executable output file even if there are errors during the
linking process.

By default, the linker does not produce an executable output file if it encounters an
error.

\ 4
A

»»—/HEAP:reserve
|_ 7 J
scommit

Default is: /HEAP:0X100000,0X1000
Abbreviation is: /HEA

Use /HEAP to set the size of the program heap in bytes. The reserve argument sets the
total virtual address space reserved. The commit sets the amount of physical memory
to allocate initially. When commit is less than reserve, memory demands are reduced,
but execution time can be slower.

»>—/HELP

\é
A

Default is: None
Abbreviation is: /H

Use /HELP to display a list of valid linker options. This option is equivalent to /?.

\4
A

»»—/INCLUDE:symbol

Default is: None
Abbreviation is: /INC

Use /INCLUDE to force a reference to a symbol. The linker searches for an object
module that defines the symbol.

Chapter 11. Setting Linker Options 233

/LO, /INOL Options

| /INFORMATION, /NOINFORMATION

\4
A

| >>—/INFORMATION
| /NOINFORMAT 1ON—

| Default is: /NOINFORMATION
| Abbreviations are: /I|/NOIN

| See the description of the /VERBOSE linker option.

| /LINENUMBERS, /NOLINENUMBERS

| >>—/LINENUMBERS
| /NOLINENUMBERS—

A\
A

| Default is: /NOLINENUMBERS

| Abbreviations are: /L|/NOLI

| Use /LINENUMBERS to include source file line numbers and associated addresses in the
| map file. For this option to take effect, there must already be line number information

| in the object files you are linking.

| When you compile, use the cob2 option -gNUMBER to include line numbers in the
| object file (or the cob2 option -g, to include all debugging information).

| If you give the linker an object file without line number information, the /LINENUMBERS
| option has no effect.

| The /LINENUMBERS option forces the linker to create a map file, even if you specified
| /NOMAP.

| By default, the map file is given the same name as the output file, plus the extension
| .map. You can override the default name by specifying a map filename.

| /LOGO, /INOLOGO

A\
A

| »—[/LOGO
| /NOLOGOJ

| Default is: /LOGO

| Abbreviations are: /LO|/NOL

234 VisualAge COBOL Programming Guide

/OUT Option

Use /NOLOGO to suppress the product information that appears when the linker starts.

Specify /NOLOGO before the response file on the command line, or in the ILINK environ-
ment variable. If the option appears in or after the response file, it is ignored.

By default, the linker displays product information at the start of the linking process, and
displays the contents of the response file as it reads the file.

IMAP, INOMAP

/OUT

\ 4
A

> /MAP
p—
/NOMAP——

Default is: /NOMAP

Abbreviations are: /M|/NOM

Use /MAP to generate a map file called name. The file lists the composition of each
segment, and the public (global) symbols defined in the object files. The symbols are
listed twice: in order of name and in order of address.

If you do not specify a directory, the map file is generated into the current working
directory. If you do not specify name, the map file has the same name as the execut-

able output file, with the extension .map.

By default, the linker does not produce a map file.

\4
A

»»—/0UT :name

Default is: Name of first .OBJ file with appropriate extension.
Abbreviation is: /0
Use /0UT to specify a name for the executable output file.

If you do not provide an extension with name, then the linker provides an extension
based on the type of file you are producing:

File produced Default extension
Executable program .EXE
Dynamic link library .DLL

If you do not use the /0UT option, then the linker uses the filename of the first object file
you specified, with the appropriate extension.

Chapter 11. Setting Linker Options 235

/SEC Option

| /PMTYPE

| »»—/PMTYPE: type >

| Default is: /PMTYPE:VIO

| Abbreviation is: /PM

| Use /PMTYPE to specify the type of .EXE file that the linker generates. Do not use this
| option when generating dynamic link libraries (DLLS).

| One of the following types must be specified:

| PM The executable must be run in a window.

| VIO The executable can be run either in a window or in a full screen.

| NOVIO The executable must not be run in a window; it must use a full screen.

| /SECTION

A\
A

I
[»—/SECTION:name,—[attributc

| Default is: Depends on segment type
| Abbreviation is: /SEC

Use /SECTION to specify memory-protection attributes for the name section. name is
case sensitive. You can specify the following attributes:

I

I

| Letter Sets Attribute
| Eor X EXECUTE

| R READ

| S SHARED

| w WRITE

| For example,

| /SEC:dsegl,RS

| sets the READ and SHARED attributes, but not the EXECUTE, or WRITE attributes, for
| the section dsegl in an .EXE file.

236 VisualAge COBOL Programming Guide

ISEGMENTS

ISTACK

/ST Option

Defaults

Sections are assigned attributes by default, as follows:

Segment Default Attributes

Code sections EXECUTE, READ (ER)

Data sections (in .EXE file) READ, WRITE (RW), not shared
Data sections (in .DLL file) READ, WRITE, not shared
CONST32_RO section READ, SHARED (RS)

»»—/SEGMENTS : number

A\
A

Default is: /SEGMENTS:256
Abbreviation is: /SE

Use /SEGMENTS to set the number of logical segments a program can have. You can
set number to any value in the range 1 to 16375. See “Specifying Numeric Arguments”
on page 209.

For each logical segment, the linker must allocate space to keep track of segment infor-
mation. By using a relatively low segment limit as a default (256), the linker is able to
link faster and allocate less storage space.

When you set the segment limit higher than 256, the linker allocates more space for
segment information. This results in slower linking, but allows you to link programs with
a large number of segments.

For programs with fewer than 256 segments, you can improve link time and reduce
linker storage requirements by setting number to the actual number of segments in the
program.

\4
A

»»—/STACK:reserve
|_ 7 J
,commit

Default is: /STACK:0X100000,0X1000
Abbreviation is: /ST
Use /STACK to set the stack size (in bytes) of your program. The size must be an even

number from 0 to OxFfffFffe. If you specify an odd number, it is rounded up to the
next even number.

Chapter 11. Setting Linker Options 237

/VERB, /NOV Option

/ISTUB

/ISUBSYSTEM

/VERBOSE

reserve indicates the total virtual address space reserved. commit sets the amount of
physical memory to allocate initially. When commit is less than reserve, memory
demands are reduced, although execution time may be slower.

A\
A

»»—/STUB: filename

Default is: None
Abbreviation is: /STU

Use /STUB to specify the name of the DOS executable at the beginning of the output file
created.

By default, the linker defines its own stub.

\4
A

»>—/SUBSYSTEM: subsystem B
major————
.minor

Default is: /SUBSYSTEM:WINDOWS,4.0

Abbreviation is: /SU

Use /SUBSYSTEM to specify the subsystem and version required to run the program. The
major and minor arguments are optional and specify the minimum required version of
the subsystem. The major and minor arguments are integers in the range 0 to 65535.

Subsystem Major.Minor Description
WINDOWS 3.10 A graphical application that uses the Graphical Device Interface
(GDI) API.
CONSOLE 3.10 A character-mode application that uses the Console API.
>>—|:/ VERBOSE . >«
/NOVERBOSE

Default is: /NOVERBOSE
Abbreviations are: /VERB|/NOV
Use /VERBOSE to have the linker display information about the linking process as it

occurs, including the phase of linking and the names and paths of the object files being
linked.

238 VisualAge COBOL Programming Guide

| /VERSION

/IVER Option

If you are having trouble linking because the linker is finding the wrong files or finding
them in the wrong order, use /VERBOSE to determine the locations of the object files
being linked and the order in which they are linked.

The output from this option is sent to stdout . You can redirect the output to a file using
Windows redirection symbols.

/VERBOSE is the same as /INFORMATION.

\ 4
A

»»—/VERSION:major T n
.minor

Default is: /VERSION:0.0
Abbreviation is: /VER

Use /VERSION to write a version number in the header of the run file. The major and
minor arguments are integers in the range 0 to 65535.

Chapter 11. Setting Linker Options 239

Syntax of Run-time Options

Chapter 12. Run-Time Options

The following run-time options are supported:

e CHECK
e DEBUG
¢ ERRCOUNT
e FILESYS
e TRAP
e UPSI
Syntax
Syntax of the run-time options follows. See “Definitions of COBOL Environment
Variables” on page 135 to see where to specify them.
CHECK
CHECK flags checking errors in an application. In COBOL, index, subscript, and refer-
ence modification ranges are checking errors.
ON
»»>—CHECK—([—|J >
OFF
Default is: CHECK(ON).
Abbreviation is: CH
ON
Specifies that run-time checking is performed.
OFF
Specifies that run-time checking is not performed.
Usage Note
CHECK(ON) has no effect if NOSSRANGE was in effect at compile time.
Performance Consideration
If your COBOL program was compiled with SSRANGE, and you are not testing or
debugging an application, performance improves when you specify CHECK(OFF).
DEBUG

DEBUG specifies whether the COBOL debugging sections specified by the USE FOR
DEBUGGING declarative are active.

240 © Copyright IBM Corp. 1996, 1998

ERRCOUNT

FILESYS

Syntax of Run-time Options

DEBUG—l
>>—£NODEBUG

\4
A

Default is: NODEBUG.

DEBUG
Activates the debugging sections.

NODEBUG
Suppresses the debugging sections.

Performance Consideration
To improve performance, use this option only while debugging.

ERRCOUNT specifies how many conditions of severity 1 (W-level) can occur before the
run-unit terminates abnormally. Any severity 2 (E-level) or higher will result in termi-
nation of the run-unit independent of the ERRCOUNT option.

\4
A

»»—FRRCOUNT—(C ;])
numper:

Default: ERRCOUNT(20).

number
The number of severity 1 conditions per individual thread that can occur while this
run-unit is running. If the number of conditions exceeds number, the run-unit ter-
minates abnormally.

FILESYS specifies the file system used for files for which no explicit file system
selections are made, either through an ASSIGN or an evironment variable. The option
applies to sequential, relative, and indexed files. For details about using FILESYS for
access to CICS files, see “Accessing Btrieve Data” on page 417.

\4
A

VSA
»»>—FILESYS—(|—BTR])
STL

Default is : FILESYS(VSA) for OS/2 and FILESYS(STL) for Windows.
VSA The file system is VSAM.

BTR The file system is Btrieve.

Chapter 12. Run-Time Options 241

Syntax of Run-time Options

TRAP

STL The file system is STL.

Only the first three characters of the file system identifier are used and the identifier is
case insensitive. For example, the following examples are all valid specifications for
VSAM:

e FILESYS(VSA)
o FILESYS(VSAM)
e FILESYS(vsa)

TRAP indicates whether COBOL intercepts exceptions.

—TRAP—([‘;:Fj

A\
A

Default is : TRAP(ON).

Note: If TRAP(OFF) is in effect and you do not supply your own trap handler to handle
exceptional conditions, the conditions will result in a default action by the operating
system. For example, if your program attempts to store into an illegal location, the
default system action is to issue a message and terminate the process.

ON
Activates COBOL interception of exceptions.

OFF
Deactivates COBOL interception of exceptions.

Usage Notes
e Use TRAP(OFF) only when you need to analyze a program exception before
COBOL handles it.

¢ When you specify TRAP(OFF) in a non-CICS environment, no exception handlers
are established.

¢ Running with TRAP(OFF) (for exception diagnosis purposes) can cause many side
effects, because COBOL requires TRAP(ON). When you run with TRAP(OFF), you
can get side effects even if you do not encounter a software-raised condition,
program check, or abend. If you do encounter a program check or an abend with
TRAP(OFF) in effect, the following side effects can occur:

— Resources obtained by COBOL are not freed.
— Files opened by COBOL are not closed, so records might be lost.
— No messages or dump output are generated.

The run-unit terminates abnormally if such conditions are raised.

242 VisualAge COBOL Programming Guide

Syntax of Run-time Options

UPSI
UPSI sets the eight UPSI switches on or off for applications that use COBOL routines.

»»—UPSI—()

\4
A

LnnnnnnnnJ

Default is : UPSI(00000000).

nnnnnnnn
n represents one UPSI switch between 0 and 7, the leftmost n representing the
first switch. Each n can either be 0 (off) or 1 (on).

Chapter 12. Run-Time Options 243

Using Source Language to Debug

Chapter 13. Debugging Techniques

COBOL provides several language elements and facilities to help you determine the
cause of problems in program behavior. This chapter focuses on how to use source
language for debugging and describes the compiler options that make debugging
easier.

This chapter describes only COBOL source language debugging techniques. The
IDBUG Debugger is a graphical debugging tool you will find useful for debugging pro-
grams. For help with the debugger, refer to its online help and information.

Using Source Language to Debug

You can use several COBOL language features to pinpoint the cause of a failure in
your program. If the program is part of a large application already in production, you
will not want to re-compile and run the program again to debug. Instead, you can write
a small test case to simulate the part of the program that failed and code some of these
debugging features of the COBOL language in the test case to help detect the exact
cause of the problem:

e DISPLAY statements.

e USE EXCEPTION/ERROR declaratives.
¢ Class test.

¢ INITIALIZE or SET verbs.

e Scope terminators.

¢ File status keys.

e USE FOR DEBUGGING declaratives.

The rules for using each of these language features are explained in IBM COBOL Lan-
guage Reference.

Tracing Program Logic (DISPLAY Statements)

244

You can use the interactive debugger available on your platform to step through your
program (compiled with the TEST option), or adding DISPLAY statements can help you
trace through the logic of the program. If, for example, you determine that the problem
appears in an EVALUATE statement or in a set of nested IF statements, DISPLAY state-
ments in each path will show you how the logic flow is working. If you determine that
the problem is being caused by the way a numeric value is calculated, you can use
DISPLAY statements to check the value of some of the interim results.

For example, to determine whether a particular routine started and finished you might
insert code like this into your program:

DISPLAY "ENTER CHECK PROCEDURE"
(checking procedure routine)

DISPLAY "FINISHED CHECK PROCEDURE"

© Copyright IBM Corp. 1996, 1998

Using Source Language to Debug

After you are sure that the routine works correctly, you can put asterisks in column 7 of
the DISPLAY statement lines, which converts them to comment lines. Alternatively, you
might put a 'D' in column 7 of your DISPLAY (or any other debugging) statements. If
you include the WITH DEBUGGING MODE clause in the ENVIRONMENT DIVISION, the 'D'
in column 7 will be ignored and the DISPLAY statements will be implemented. Without
the DEBUGGING MODE clause, the 'D' in column 7 makes the statement a comment.

Before you put the program into production, delete all the debugging aids you used and
re-compile the program. The program will run more efficiently and use less storage.

CICS: The DISPLAY statement cannot be used in programs running under CICS.

Handling Input/Output Errors (USE EXCEPTION/ERROR Declaratives)
If you have determined that the problem lies in one of the I/O procedures in your
program, you can include the USE EXCEPTION/ERROR declarative to help debug the
problem.

If the file fails to open for some reason, the appropriate EXCEPTION/ERROR declarative
will be performed. The appropriate declarative might be a specific one for the file or
one provided for the different open attributes—INPUT, OUTPUT, 1/0O, or EXTEND.

Each USE AFTER STANDARD ERROR statement must be coded in a separate section.
This section(s) must be coded immediately after the DECLARATIVE SECTION keyword of
the PROCEDURE DIVISION. The rules for coding these statements are provided in IBM
COBOL Language Reference.

Validating Data (Class Test)
If you suspect that your program is trying to perform arithmetic on non-numeric data or
is somehow receiving the wrong type of data on an input record, you can use the class
test to validate the type of data. The class test checks whether data is alphabetic,
alphabetic-lower, alphabetic-upper, MBCS, KANJI, or numeric.

Assessing Switch Problems (INITIALIZE or SET Statements)
Using INITIALIZE or SET statements to initialize a table or variable is useful when you
suspect that the problem might be caused by residual data left in those fields. If the
problem you are having happens intermittently and not always with the same data, the
problem could be that a switch is not initialized but generally is set to the right value (0
or 1) by accident. By including a SET statement to ensure that the switch is initialized,
you can either determine that the uninitialized switch is the problem or remove that as a
possible cause.

Improving Program Readability (Explicit Scope Terminators)
Scope terminators can help you in debugging because they indicate clearly the end of a
statement. The logic of your program will become more apparent, and therefore easier
to trace, if you use scope terminators.

Chapter 13. Debugging Techniques 245

Using Source Language to Debug

Finding Input/Output Errors (File Status Keys)
File status keys can help you determine if your program errors are due to the logic of
your program or if they are 1/0 errors occurring on the storage media.

To use file status keys as a debugging aid, include a test after each 1/0 statement to
check for a value other than zero in the status key. If the value is other than zero, you
can expect that you will receive an error message. You can use a honzero value as an
indication that you should look at the way the 1/0 procedures in the program were
coded. You can also include procedures to correct the error based on the value of the
status key.

The status key values and their associated meanings are described in the /IBM COBOL
Language Reference.

Generating Information about Procedures (USE FOR DEBUGGING Declaratives)
USE FOR DEBUGGING declaratives are another way to generate information about your
program or test case and how it is running. The declarative allows you to include state-
ments in the program and indicate when they should be performed when you run your
compiled program. For example, if you want to check how many times a procedure is
run, you could include a debugging procedure in the USE FOR DEBUGGING declarative
and use a counter to keep track of the number of times control passes to that proce-
dure.

Rules for Debugging Statements and Debugging Lines

Each USE FOR DEBUGGING declarative must be coded in a separate section. This
section or these sections must be coded in the DECLARATIVES SECTION of the PROCE-
DURE DIVISION. The rules for coding them are provided in IBM COBOL Language Ref-
erence.

You can have either debugging lines or debugging statements or both in your program.
Debugging lines are statements in your program that are identified by a 'D' in column 7.
Debugging statements are the statements coded in the DECLARATIVES SECTION of the
PROCEDURE DIVISION.

e The debugging statements in a USE FOR DEBUGGING declarative must:

— Be only in a DECLARATIVE SECTION.

— Follow the header USE FOR DEBUGGING.

— Be only in the outermost program; they are not valid in nested programs.
Debugging sections are also never triggered by procedures contained in
nested programs.

¢ Debugging lines must have a D in column 7 to identify them.

To use debugging lines in your program, you must include the WiITH DEBUGGING MODE
clause on the SOURCE-COMPUTER line in the ENVIRONMENT DIVISION.

To use debugging sections in your program, you must include both:

e The WITH DEBUGGING MODE clause

246 VisualAge COBOL Programming Guide

Using Source Language to Debug

¢ The DEBUG run-time option

See the IBM COBOL Language Reference appendix on source-language debugging for
more details.

Options Note: The TEST compiler option and the WITH DEBUGGING MODE phrase
are mutually exclusive, with the WITH DEBUGGING MODE phrase taking precedence.

USE FOR DEBUGGING Example

The program segments in Figure 53 on page 248 show what kind of statements are
needed to use a DISPLAY statement and a USE FOR DEBUGGING declarative to test a
program. The DISPLAY statement is used to generate information on the terminal or on
the output file The USE FOR DEBUGGING declarative is used with a counter to show
how many times a routine was actually run.

Use the adding-to-a-counter technique to check:

1. How many times a PERFORM was executed. You will know whether a particular
routine is being used and whether the control structure you are using is correct.

2. How many times a loop routine actually executes. This will tell you whether the
loop is executing and whether the number you have used for the loop is accurate.

Chapter 13. Debugging Techniques 247

Using Source Language to Debug

Environment Division
Data Division.

Working-Storage Section.

(other entries your program needs)

01 Trace-Msg PIC X(30) Value " Trace for Procedure-Name :
01 Total PIC 9(9) Value 1.

Procedure Division.
Declaratives.
Debug-Declaratives Section.

Use For Debugging On Some-Routine.
Debug-Declaratives-Paragraph.

Display Trace-Msg, Debug-Name, Total.
End Declaratives.

Main-Program Section.
(source program statements)
Pérform Some-Routine.
(source program statements)

Stop Run.
Some-Routine.

(whatever statements you need in this paragraph)

Add 1 To Total.
Some-Routine-End

Figure 53. Example of Using the USE FOR DEBUGGING EXAMPLE

In Figure 53, the DISPLAY statement coded in the DECLARATIVES SECTION will issue
this message:

Trace For Procedure-Name : Some-Routine 22
every time the procedure SOME-ROUTINE is run. The number at the end of the message,
22, is the value accumulated in the data-item, TOTAL; it shows the number of times

SOME-ROUTINE has been run. The statements in the debugging declarative are per-
formed before the named procedure is run.

248 VisualAge COBOL Programming Guide

Using Compiler Options for Debugging

Another Use for the DISPLAY Statement: You can also use the DISPLAY statement
technique shown above to trace program execution and show the flow through your
program. You do this by changing the USE FOR DEBUGGING declarative in the DECLAR-
ATIVES SECTION to:

USE FOR DEBUGGING ON ALL PROCEDURES.

and dropping the word TOTAL from the DISPLAY statement. Now, a message will be
displayed before every non-debugging procedure in the outermost program is run.

Using Compiler Options for Debugging

The FLAG Option

This section discusses the compiler options that generate information to help you find
coding mistakes and other errors in your program.

The FLAG option lets you select the level of error to be diagnosed during compilation
and indicate where the syntax-error messages appear in the listing. Use FLAG(l) or
FLAG(l,I) to be notified of all errors in your program.

Code in the first parameter the lowest severity level of the syntax-error messages to be
issued. You can code in the optional second parameter the lowest level of the syntax
messages to be embedded in the source listing.

If you specify:

| (informational)
You get all the messages. I-level messages generate a return code of zero; RC=0.

W (warning)
You get all the warning messages and those of a higher severity. W-level errors
generate a return code of four; RC=4.

E (error)
You get all error messages and those of a higher severity. E-level errors generate
a return code of eight; RC=8.

S (severe)
You get all severe and U (unrecoverable) messages. S-level errors generate a
return code of twelve; RC=12.

U (unrecoverable)
You get only unrecoverable messages. U-level errors generate a return code of
sixteen; RC=16.

When you specify the second parameter, the syntax-error messages are embedded in
the source listing at the point where the compiler had enough information available to
detect the error. All embedded messages, except those issued by the library compiler
phase, will directly follow the statement to which they refer. The number of the state-
ment containing the error is also included with the message. Embedded messages are
repeated with the rest of the diagnostic messages following the source listing.

Chapter 13. Debugging Techniques 249

Using Compiler Options for Debugging

Embedded Messages:

1. If NOSOURCE is one of your options, the syntax-error messages are included only
in the list at the end of the listing.

2. U-level errors are not embedded in the source listing, as an error of this severity
terminates the compilation.

For an illustration of how messages identifying syntax errors are imbedded in the
source listing, see Figure 54 on page 250.

Note that some messages in the summary apply to more than one COBOL statement.

DATA VALIDATION AND UPDATE PROGRAM FLAGOUT Date 02/27/1998 Time 12:26:53 Page 26
LineID PL SL ---=-+=#A-1-Bomtmmo-2emmtomoo3mmmodom b boo o5 d oo - o—t--=-7- | --+----8 Map and Cross Reference
000977 /

000978

000979 Hk INITIALIZE PARAGRAPH *k

000980 %% Open files. Accept date, time and format header Tines. *k

000981 TA4690+** Load location-table. *

000982

000983 100-initialize-paragraph.

000984 move spaces to ws-transaction-record IMP 339
000985 move spaces to ws-commuter-record IMP 315
000986 move zeroes to commuter-zipcode IMP 326
000987 move zeroes to commuter-home-phone IMP 327
000988 move zeroes to commuter-work-phone IMP 328
000989 move zeroes to commuter-update-date IMP 332
000990 open input update-transaction-file 203

==000990==> IGYPS2052-S An error was found in the definition of file "LOCATION-FILE". The
reference to this file was discarded.

000991 Tocation-file 192
000992 i-0 commuter-file 180
000993 output print-file 216
000994 if loccode-file-status not = "00" or 248
000995 update-file-status not = "00" or 247
000996 updprint-file-status not = "00" 249
000997 1 display "Open Error ..."

000998 1 display " Location File Status = " Toccode-file-status 248
000999 1 display " Update File Status = " update-file-status 247
001000 1 display " Print File Status = " updprint-file-status 249
001001 1 perform 900-abnormal-termination 1433
001002 end-if

001003 TA4760 if commuter-file-status not = "00" and not = "97" 240
001004 1 display "100-OPEN"

001005 1 move 100 to comp-code 230
001006 1 perform 500-vsam-error 1387
001007 1 display "Commuter File Status (OPEN) = "

001008 1 commuter-file-status 240
001009 1 perform 900-abnormal-termination 1433
001010 1A4790 end-if

Figure 54 (Part 1 of 3). FLAG(l,l) Output

250 VisualAge COBOL Programming Guide

Using Compiler Options for Debugging

001011

==001011==> IGYPS2121-S "WS-DATE" was not defined as a data-name.

001012

==001012==> IGYPS2121-S "WS-DATE" was not defined as a data-name.

001013

==001013==> IGYPS2121-S "WS-TIME" was not defined as a data-name.

001014

==001014==> IGYPS2121-S "WS-TIME" was not defined as a data-name.

001015

accept ws-date from date

1A4810 move corr ws-date to header-date

accept ws-time from time

1A4830 move corr ws-time to header-time

1A4840 read location-file

DATA VALIDATION AND UPDATE PROGRAM
LineID Message code Message text

192

899

1011

1013

1015

1026

1209

1210

1212

1213

1223

I1GYDS1050-E

1GYPS2052-S

IGYPS2121-S

1GYPS2121-S

IGYPS2053-S

IGYPS2121-S

IGYPS2121-S

1GYPS2121-S

IGYPS2121-S

IGYPS2121-S

1GYPS2121-S

UND
The statement was discarded.

UND 463
The statement was discarded.

UND
The statement was discarded.

UND 457
The statement was discarded.

192

FLAGOUT

Date 02/27/1998 Time 12:26:53 Page 69

File "LOCATION-FILE" contained no data record descriptions. The file definition was discarded.

An error was found in the definition of file "LOCATION-FILE". The reference to this file was discarded.

Same message on line: 990
"WS-DATE" was not defined as a data-name.
Same message on line: 1012
"WS-TIME" was not defined as a data-name.

Same message on line: 1014

The statement was discarded.

The statement was discarded.

An error was found in the definition of file "LOCATION-FILE". This input/output statement was discarded.

Same message on line: 1027

"LOC-CODE" was not defined as a data-name.

"COMMUTER-SHIFT" was not defined as a data-

Same message on line: 1230

"COMMUTER-HOME-CODE" was not defined as a data-name.

Same message on line: 1231

"COMMUTER-NAME" was not defined as a data-name.

Same message on line: 1233

"COMMUTER-INITIALS" was not defined as a data-name.

Same message on line: 1234

The statement was discarded.

name.

"WS-NUMERIC-DATE" was not defined as a data-name.

The statement was discarded.

The statement was discarded.

The statement was discarded.

The statement was discarded.

The statement was discarded.

Figure 54 (Part 2 of 3). FLAG(l,l) Output

Chapter 13. Debugging Techniques

251

Using Compiler Options for Debugging

Messages Total Informational Warning Error Severe Terminating
Printed: 19 1 18

* Statistics for COBOL program FLAGOUT:

* Source records = 1755

* Data Division statements = 279

* Procedure Division statements = 479

End of compilation 1, program FLAGOUT, highest severity: Severe.

Return code 12

Figure 54 (Part 3 of 3). FLAG(l,l) Output

The NOCOMPILE Option

Use the NOCOMPILE option to produce a listing that will help you find your COBOL
coding mistakes, such as missing definitions, improperly defined data names, and dupli-
cate data names. You can use NOCOMPILE two ways: with or without parameters.

Using NOCOMPILE with Parameters

When you use NOCOMPILE(X), where x is one of the error levels, your program will be
compiled, if all the errors are of a lower severity than the x level. If an error of x level
or higher occurs, the compilation stops and your program will be syntax-checked only.
You will receive a source listing if you have specified the SOURCE option.

Using NOCOMPILE without Parameters

When you use NOCOMPILE without parameters, the compiler only syntax-checks the
source program. If you have also specified the SOURCE option, the compiler will
produce a listing after the syntax-checking is completed. The compiler does not
produce object code when NOCOMPILE without parameters is in effect.

The following compiler options are suppressed when you use NOCOMPILE without
parameters: LIST, OBJECT, OPTIMIZE, SSRANGE, and TEST.

The SEQUENCE Option

The SEQUENCE option tells the compiler to check your source program and flag state-
ments that are out of sequence. You can use this option to tell you if a section of your
source program was moved or deleted accidentally.

When you use SEQUENCE, the compiler checks the source statement numbers you
have supplied to see if they are in ascending order. Two asterisks are placed along-
side any statement numbers out of sequence, and the total number of these statements
is printed out as the first line of the diagnostics following the source listing.

The XREF Option
The XREF(FULL) option tells the compiler to generate a sorted cross-reference listing of
data-names, procedure-names, and program-names. The cross-reference will include
the line number where the data-name, procedure-name, or program-name was defined
as well as the line numbers of all references.

You can use the cross-reference listing produced by the XREF option to find out where
a data-name, procedure-name, or program-name was defined and referenced.

252 VisualAge COBOL Programming Guide

Using Compiler Options for Debugging

The XREF(SHORT) option allows you to control the cross-reference listing by printing
only the explicitly referenced variables.

When you use both the XREF (with FULL or SHORT) and the SOURCE options, you will
get a modified cross-reference printed to the right of the source listing. This embedded
cross-reference gives the line number where the data-name or procedure-name was
defined.

For more information on the XREF option and some example listings, see “A Data-
Name, Procedure-Name, and Program-Name Cross-Reference Listing” on page 263.

The MAP Option

Use the MAP option to produce a listing of the items you defined in the DATA DIVISION,
plus all items implicitly declared.

For more information on the MAP option, see “Data Map Listing” on page 258.

Embedded Map Summary

When you use the MAP option, an embedded MAP summary is generated to the right of
the COBOL source data declaration. An embedded MAP summary contains condensed
data MAP information. For more information, see “Embedded MAP Summary” on

page 259.

The SSRANGE Option
Use the SSRANGE compiler option to check:

e Subscripted or indexed data references.

The subscripted or indexed data reference is checked to determine if the effective
address of the desired element is within the maximum boundary of the specified
table.

¢ Variable-length data references (a reference to a data item that contains an
OCCURS DEPENDING ON clause).

The variable-length data reference is checked to determine if the actual length is
positive and within the maximum defined length for the group data item.

+« Reference-modified data references.

The reference-modified data reference is checked to determine if the offset and
length are positive and the sum of the offset and length are within the maximum
length for the data item.

When the SSRANGE option is specified, checking is not performed until run time and
then, only if both of the following are true:

¢ The COBOL statement containing the indexed, subscripted, variable-length, or
reference-modified data item is actually performed.

¢ The CHECK run-time option is ON at run time.

Chapter 13. Debugging Techniques 253

Getting Useful Listing Components

If any check finds that an address is generated that is outside of the address range of
the group data item containing the referenced data, an error message will be generated
and the program will stop running. The error message identifies the table or identifier
that was being referenced and the line number in the program where the error hap-
pened. Additional information is provided depending on the type of reference that
caused the error.

If all subscripts, indices, or reference modifiers are literals in a given data reference and
they result in a reference outside of the data item, the error will be diagnosed at
compile time, regardless of the setting of the SSRANGE compiler option.

Performance Note: SSRANGE can cause the performance of your program to diminish
somewhat because of the extra overhead needed to check each subscripted or indexed
item.

The TEST Option

On the mainframe, you select the TEST option to prepare your program for use with the
debugger. IBM VisualAge COBOL includes a graphical debugger. However, rather
than use the TEST option to prepare your executable COBOL program for use with the
debugger, you can use the -g option of the cob2 command (see “Compiling and Linking
Programs” on page 142).

Getting Useful Listing Components

This section introduces the different types of compiler listings produced by COBOL.
The type of listing produced by the compiler depends on which compiler options you
use.

Note: The listing produced by the compiler is not a programming interface and is
subject to change.

After reading this section you should be familiar with each type of output; you will know
how to request each type and what kind of information is provided in the output.

A Short Listing—the Bare Minimum
If you do not specify any compiler options and the default options are NOSOURCE,
NOXREF, NOVBREF, NOMAP, NOOFFSET, and NOLIST, or if all the compiler diagnostic
options have been turned off, you will get a short listing.

The short listing contains diagnostic messages about the compilation, a list of the
options in effect for the program, and statistics about the content of the program.
Figure 55 on page 255 is an example of a short listing.

The listing is explained after Figure 55, and the numbers used in the explanation corre-

spond to those in the figure. (For illustrative purposes, some errors that cause diag-
nostic messages to be issued were deliberately introduced.)

254 VisualAge COBOL Programming Guide

Getting Useful Listing Components

PP 5639-B92 IBM VisualAge COBOL (0S/2) 2.2 Date 02/27/1998 Time 12:26:53 Page 1
Invocation parameters:
quote
PROCESS (CBL) statements:
CBL FLAG(I,I),MAP,TEST
CBL NONUMBER,QUOTE,SEQ, XREF, VBREF
Options in effect:
ADATA
QUOTE
BINARY (NATIVE)
CALLINT(SYSTEM,NODESCRIPTOR)
CHAR(NATIVE)
NOCICS
COLLSEQ(BINARY)
NOCOMPILE(S)
NOCURRENCY
NODATEPROC
NODYNAM
ENTRYINT(SYSTEM)
EXIT(NOINEXIT,NOPRTEXIT,NOLIBEXIT,ADEXIT(IWZRMGUX))
FLAG(I,I)
NOFLAGSTD
FLOAT (NATIVE)
NOIDLGEN
LIB
LINECOUNT (60)
NOLIST
MAP
NONUMBER
NOOPTIMIZE
PGMNAME (LONGUPPER)
PROBE
NOPROFILE
SEPOBJ
SEQUENCE
SIZE(2097152)
SOURCE
SPACE(1)
SQL
NOSSRANGE
TERM
TEST
NOTHREAD
NOTILED
TRUNC(STD)
NOTYPECHK
VBREF
NOWORD
XREF (FULL)
YEARWINDOW(1900)
ZWB

Figure 55 (Part 1 of 2). Example of a Short Listing

Chapter 13. Debugging Techniques 255

Getting Useful Listing Components

DATA VALIDATION AND UPDATE PROGRAM E SLISTING Date 02/27/1998 Time 12:26:53 Page 2
LineID Message code Message text ﬂ

IGYDS0139-W Diagnostic messages were issued during processing of compiler options. These messages are
located at the beginning of the listing.

193 IGYDS1050-E File "LOCATION-FILE" contained no data record descriptions. The file definition was discarded.

889 IGYPS2052-S An error was found in the definition of file "LOCATION-FILE". The reference to this file
was discarded.

Same message on line: 983

993 IGYPS2121-S "WS-DATE" was not defined as a data-name. The statement was discarded.
Same message on line: 994

995 IGYPS2121-S "WS-TIME" was not defined as a data-name. The statement was discarded.
Same message on line: 996

997 IGYPS2053-S An error was found in the definition of file "LOCATION-FILE". This input/output statement
was discarded.

Same message on line: 1009

1008 IGYPS2121-S "LOC-CODE" was not defined as a data-name. The statement was discarded.

1219 IGYPS2121-S "COMMUTER-SHIFT" was not defined as a data-name. The statement was discarded.
Same message on line: 1240

1220 IGYPS2121-S "COMMUTER-HOME-CODE" was not defined as a data-name. The statement was discarded.
Same message on line: 1241

1222 1GYPS2121-S "COMMUTER-NAME" was not defined as a data-name. The statement was discarded.
Same message on line: 1243

1223 1GYPS2121-S "COMMUTER-INITIALS" was not defined as a data-name. The statement was discarded.
Same message on line: 1244

1233 IGYPS2121-S "WS-NUMERIC-DATE" was not defined as a data-name. The statement was discarded.

Messages Total Informational Warning Error Severe Terminating
Printed: 21 2 1 18

* Statistics for COBOL program SLISTING: a
Source records = 1765
Data Division statements = 277
Procedure Division statements = 513

End of compilation 1, program SLISTING, highest severity: Severe. ﬂ
Return code 12

Figure 55 (Part 2 of 2). Example of a Short Listing
COBOL default page header, including compiler level information from the
LVLINFO installation time compiler option.

2] Message about options passed to the compiler at compiler invocation. This
message does not appear if no options were passed.

Options coded in the PROCESS (or CBL) statement.

4] Status of options at the start of this compilation.

256 VisualAge COBOL Programming Guide

Getting Useful Listing Components

5
6
sented at the beginning of the listing.
Count of diagnostic messages in this program, grouped by severity level.
B Program statistics for the program SLISTING.
9

A Listing of Your Source Code—for Historical Records

Customized page header resulting from the COBOL program TITLE statement.

Program diagnostics. The first message will refer you to the library phase diag-
nostics, if there were any. Diagnostics for the library phase are always pre-

Program statistics for the compilation unit. When you perform a batch compila-

tion (multiple outermost COBOL programs in a single compilation), the return
code is the highest message severity level for the entire compilation.

By using the SOURCE compiler option, you request a copy of your source code to be
included with the compiler output. You will want this output for testing and debugging
your program—and as an historical record when the program is completely debugged.

Figure 56 shows an example of SOURCE output.

Using Your Own Line Numbers
The NUMBER compiler option tells the compiler to use your line numbers in the com-

piled program. When you use the NUMBER option, the compiler does a sequence

check of your source statement line numbers in columns 1 through 6 as the statements
are read in. When a line number is found to be out of sequence, the compiler assigns

to it a number with a value one higher than the line number of the preceding statement.
The new value is flagged with two asterisks. A diagnostic message indicating an out of
sequence error is also included in the compilation listing.

Figure 56 shows an example of the output produced by the NUMBER compiler option.
In the portion of the listing shown, the programmer numbered two of the statements out
of sequence.

DATA VALIDATION AND UPDATE

087000/

PROGRAM IGYTCARA Date 02/27/1998 Time 12:26:53 Page 22
LineID PL SL ==-—#-%A-1-Boo#mmo-emoatomoo3mmmctomcBooobooo bt oo ot-——-7-| -—+----8 (Cross-Reference H

087100%**
087200%*x
087300%*x
087400%x*
087500

DO MAIN LOGIC

Initialization. Read and process update transactions until
EOE. Close files and stop run.

*k
*k
*k
ok

087600 procedure division.

Figure 56 (Part 1 of 2). Example of SOURCE and NUMBER Output

Chapter 13. Debugging Techniques

257

Getting Useful Listing Components

087700 000-do-main-Togic.
087800 display "PROGRAM SRCOUT - Beginning"

087900 perform 050-create-vsam-master-file.
088150 display "perform 050-create-vsam-master finished".
088151%* 088125 perform 100-initialize-paragraph
088200 display "perform 100-initialize-paragraph finished"
088300 read update-transaction-file into ws-transaction-record
088400 at end
1 088500 set transaction-eof to true

088600 end-read
088700 display "READ completed"

088800 perform until transaction-eof
1 088900 display "inside perform until Toop"
1 089000 perform 200-edit-update-transaction
1 089100 display "After perform 200-edit "
1 089200 if no-errors
2 089300 perform 300-update-commuter-record
2 089400 display "After perform 300-update "
1 089650 else
089651+* 2 089600 perform 400-print-transaction-errors
2 089700 display "After perform 400-errors "
1 089800 end-if
1 089900 perform 410-re-initialize-fields
1 090000 display "After perform 410-reinitialize"
1 090100 read update-transaction-file into ws-transaction-record
1 090200 at end
2 090300 set transaction-eof to true
1 090400 end-read
1 090500 display "After '2nd READ' "

090600 end-perform

Figure 56 (Part 2 of 2). Example of SOURCE and NUMBER Output

Customized page header resulting from the COBOL program TITLE statement.

ﬂ The scale line labels Area A, Area B, and source code column numbers.

Source code line number assigned by compiler.

4] Program (PL) and statement (SL) nesting level.

Data Map Listing

Columns 1 through 6 of program (the sequence number area).

The MAP compiler option provides you with a mapping of all Data Division items, plus
all implicitly declared variables, of your program. You can see an example of MAP
output in Figure 57 on page 259. The numbers used in the explanation below corre-
spond to the numbers used in Figure 57. The terms and symbols used in MAP output
are described in Figure 59 on page 261.

258 VisualAge COBOL Programming Guide

Getting Useful Listing Components

DATA VALIDATION AND UPDATE PROGRAM IGYTCARA Date 02/27/1998 Time 12:26:53 Page 22

Data Division Map

Data Definition Attribute codes (rightmost column) have the following meanings:

D=
E =

VLO=

VL=

Source
LineID
4

180
182
183
184
186
188
189
190
192
203
208
216
221
228

Object of OCCURS DEPENDING G = GLOBAL LSEQ= ORGANIZATION LINE SEQUENTIAL
EXTERNAL 0 = Has OCCURS clause SEQ= ORGANIZATION SEQUENTIAL
Variably Located Origin 0G= Group has own Tength definition INDX= ORGANIZATION INDEXED
Variably Located R = REDEFINES REL= ORGANIZATION RELATIVE
a 5] a a
Hierarchy and Data Def
Data Name Length(Displacement) Data Type Attributes
PROGRAM=-ID IGYTCARA- == = = = = o o o o o o o e e e e e e e e *
FD COMMUTER-FILE o o o o . . File INDX
1 COMMUTER-RECORD 80 Group
2 COMMUTER-KEY. 16(0000000) Display
2 FILLER. o o o v v v v b oo 64(0000016) Display
FD COMMUTER-FILE-MST File INDX
1 COMMUTER-RECORD-MST 80 Group
2 COMMUTER-KEY-MST. 16(0000000) Display
2 FILLER. & v v v e e e e e e e 64(0000016) Display
FD LOCATION-FILE File SEQ
FD UPDATE-TRANSACTION-FILE File SEQ
1 UPDATE-TRANSACTION-RECORD 80 Display
FD PRINT-FILE. o o o o oo File SEQ
1 PRINT-RECORD. . . . v v v v v v v v v v v v 121 Display
1 WORKING-STORAGE-FOR-IGYCARA 1 Display

Figure 57. Example of MAP Output

1] Explanations of the data definition attribute codes.
2] Source line number where the data item was defined.

Level definition or number. The compiler generates this number in the following
way:

¢ First level of any hierarchy is always 01. Increase 1 for each level— any
item you coded as 02 through 49.

¢ Level numbers 66, 77, and 88, and the indicators FD and SD, are not
changed.

Data-name that is used in the source module.
Length of data item. Base locator value.

Hexadecimal displacement from the beginning of the containing structure.

(SN~

The data type and usage. These terms are explained in Figure 59 on
page 261.

Data definition attribute codes. The definitions are explained at the top of the
DATA DIVISION Map.

Embedded MAP Summary

An embedded MAP summary is printed by specifying the MAP option when generating a
listing. The summary appears in the right margin of the listing for lines in the DATA
DIVISION that contain data declarations. Figure 58 on page 260 describes the fields
included in the embedded map summary.

Chapter 13. Debugging Techniques 259

Getting Useful Listing Components

When both XREF data and an embedded MAP summary exist on the same line, the
embedded MAP summary is printed first.

000002 Identification Division.

000003

000004 Program-id. EMBMAP.

000176 Data division.

000177 File section.

000178

000179

000180 FD COMMUTER-FILE

000181 record 80 characters. A
000182 01 commuter-record. 80

000183 05 commuter-key PIC x(16). 16(0000000)
000184 05 filler PIC x(64). 64(0000016)
000221 IA1620 01 print-record pic x(121). 121

000227 Working-storage section.

000228 01 Working-storage-for-EMBMAP pic x. 1

000229

000230 77 comp-code pic S9999 comp. 2

000231 77 ws-type pic x(3) value spaces. 3

000232

000233

000234 01 i-f-status-area. 2

000235 05 i-f-file-status pic x(2). 2(0000000)
000236 88 i-o0-successful value zeroes. IMP

000237

000238

000239 01 status-area. 8

000240 05 commuter-file-status pic x(2). B 2(0000000)
000241 88 i-o0-okay value zeroes. IMP

000242 05 commuter-vsam-status. 6(0000002)
000243 10 vsam-r15-return-code pic 9(2) comp. 2(0000002)
000244 10 vsam-function-code pic 9(1) comp. 2(0000004)
000245 10 vsam-feedback-code pic 9(3) comp. 2(0000006)
000246

000247 77 update-file-status pic xx. 2

000248 77 Toccode-file-status pic xx. 2

000249 77 updprint-file-status pic xx. 2

000877 procedure division.

000878 000-do-main-Togic.

000879 display "PROGRAM EMBMAP - Beginning".

000880 perform 050-create-vsam-master-file. 931

Figure 58. Example of an Embedded MAP Summary

Decimal length of data item
2] Hexadecimal displacement from the beginning of the base locator value
Special definition symbols. These symbols are:

UND The user-name is undefined

DUP The user-name is defined more than once

IMP An implicitly defined name, such as special registers and figurative con-
stants

260 VisualAge COBOL Programming Guide

Getting Useful Listing Components

IFN An intrinsic function reference

EXT An external reference

* The program-name is unresolved because the NOCOMPILE option is in

effect

Figure 59. Terms Used in MAP Output

Usage Description

ALPHA-EDIT Alphabetic-Edited

ALPHABETIC Alphabetic

AN-EDIT Alphanumeric-Edited

BINARY Binary (Computational)

COMP-1 Internal floating-point (single-precision)
COMP-2 Internal floating-point (double-precision)
DBCS DBCS (Display-1)

DBCS-EDIT DBCS Edited

DISP-NUM External Decimal

DISPLAY Alphanumeric

File processing method (VSAM)

File (FD)

GROUP

Group Fixed-Length

GRP-VARLEN Group Variable-Length
INDEX Index

INDX-NAME Index-name

Level name Condition (77)

Level name for condition name

Condition (88)

Level name for RENAMES

Condition (66)

NUM-EDIT Numeric-Edited

OBJECT REFERENCE Object reference

PACKED-DEC Internal Decimal (Computational-3)
POINTER Pointer

PROCEDURE-POINTER

Pointer to an externally invocable program (or
function)

Sort file definition

Sort Definition (SD)

Nested Program Map

The MAP compiler option also supplies you with a nested program map if your program
contains nested programs. The nested program map shows where the programs are
defined and provides program attribute information.

Chapter 13. Debugging Techniques 261

Getting Useful Listing Components

Nested Program Map

Program Attribute codes (rightmost column) have the following meanings:

C = COMMON
I = INITIAL
U = PROCEDURE DIVISION USING...

B B 4]

Source Nesting

LineID Level Program Name from PROGRAM-ID paragraph

2 NESTED. . . . & v v ot e e e e e e e e e e e

12
20
27
35

=N
><
=
jan

Program
Attributes

Figure 60. Example of Nested Program Map

Explanations of the program attribute codes.

2] The source line number where the program was defined.
Depth of program nesting.

B The program name.

B The program attribute codes.

A PROCEDURE DIVISION Listing with Assembler Expansion (LIST Output)

The LIST compiler option provides you with a listing of the PROCEDURE DIVISION along
with the assembler coding produced by the COBOL compiler. This type of output can
be especially helpful when you are trying to find the failing verb in a program. You can
also use this output to find the address in storage of a data item that was moved during
the program.

Note: The listing produced by the compiler is not a programming interface and is
subject to change.

Getting LIST Output
You request LIST output from the compiler by using the LIST compiler option when you
compile your program.

The assembler listing will be written to a file with the same name as the source
program with the extension “.asm,” except for batch compiles with the SEPOBJ option;
see “LIST” on page 183 for the file names generated in that case.

A Verb Cross-Reference Listing

The VBREF compiler-time option produces an alphabetic listing of all the verbs in your

program and shows where each is referenced. The output includes each verb used, a
count of the number of times it is used, and the line numbers where the verb is used.

You can use VBREF output as a handy lookup when you need to find an instance of a
particular verb.

262 VisualAge COBOL Programming Guide

Getting Useful Listing Components

B
2 ACCEPT
2 ADD.
1 CALL
5 CLOSE.
20 COMPUTE.
2 CONTINUE
2 DELETE
47 DISPLAY.
2 EVALUATE
47 IF . . o o o 000 s 0.
183 MOVE
5 OPEN
62 PERFORM.
8 READ
1 REWRITE.
4 SEARCH
46 SET. .« « v v v v v oo
2 STOP
4 STRING
33 WRITE.

155
159
92
123
94
147

101
130

94 97
164
172
107

119

90 91
109
143
155

90 93 94

111
126

93 95 98

107
114
121
123
126
131
134
137
145
159
172

95 99 144
88 83 88 89 89 89 91

152

164
172

153

165
173

92 92

117
148

111
127

108
115
121
123
126
131
134
138
146
160
172

117
148

94
112
129

98
108
115
121
123
126
131
134
138
149
160
173

148

9 97 97 97

118
136

89 96 101

106
89 10
156
160
143
126

118
136

141
1

156
160

132

118
137

102 108

142

156
160

134

116 129 129

151

165

165

166

93 94 94 94

118
149

95 96 96 97

113
132

98 98 98 99

108
116
121
123
127
131
134
138
150
161
173

100
118
150

103 104

156
160

166

166

119
149

113
133

108
116
121
124
127
132
135
138
150
161

100
119
151

149 151

157
161

129 129

166

166

138
149

113
134

108
117
121
124
127
132
135
141
150
162

91

101
119
151

105 106

157
161

167

166

95
139
152

99
113
135

100
108
117
121
124
127
132
135
141
151
162

91
102
119
153

108 108

157
161

129 130

174

167

168

168

96 96 97 99

139
152

100
114
136
101
109
117
121
125
128
132
135
142
151
162

91

104
120
153

157
161

174

139
152

103
114
148

139
153

105
115
149

101 102

110
118
122
125
128
132
135
142
155
168

111
118
122
125
129
132
135
144
156
168

93 93 94

109
120

136 141

158
162

130 130

174

109
124

158
162

169

99
139
162

105
115
152
104
112
118
122
125
129
133
136
144
156
168

94
111
125

142 149

158
164

130 145

174

174

169

100
139

107
116
152
105
113
119
122
125
130
133
136
144
157
169

170

100
140

107
118

105
113
119
122
125
130
133
137
144
157
169

171

100
140

107
119

106
113
120
123
125
130
133
137
145
158
170

95 95 95 95

116
127

158
164

174

116
128

150 151

159

146 146

174

117
133

159

175

171

100
140

109
124

106
114
121
123
126
130
133
137
145
158
171

96
117
134

152 154

159

146 146

175

Figure 61. Example of VBREF Compiler Output

The numbers in the explanation below correspond to Figure 61.

2]

A Data-Name, Procedure-Name, and Program-Name Cross-Reference Listing
The XREF compiler option provides you with sorted cross-reference listings of data-

Line numbers where verb is used.

Number of times the verb is used in the program.

names, procedure-names, and program-names. The listings also tell you the location
of all references to a particular data-, procedure-, or program-name. This output will
help you find, quickly, a reference to a particular data-, procedure-, or program-name in
your program.

User-defined words in your program are sorted using the locale that is active. Hence,
the collating sequence will determine the order for the cross-reference listing, including
MBCS words.

Chapter 13. Debugging Techniques

263

Getting Useful Listing Components

Group Names: Group names in a MOVE CORRESPONDING statement are listed in the
XREF listing. The cross-reference listing includes the group names and all the elemen-
tary names involved in the move.

Using a Sorted Cross-Reference Listing

You can use XREF output to find where you have used a particular data- or procedure-
name. If you need to find all of the statements that modify a particular data item, you
can use the output to determine what line(s) referenced or modified a data item. With
the XREF output, you can also determine the context in which a procedure is referenced
in your program. For example, you can determine whether a verb was used in a
PERFORM block or as part of a USE FOR DEBUGGING declarative. (The context of the
procedure reference is indicated by the characters preceding the line number.)

An "M" preceding a data-name reference indicates that the data-name is modified by this reference.

2] 3]
Defined Cross-reference of data names References
264 ABEND-ITEM1
265 ABEND-ITEM2
347 ADD-CODE 1126 1192
381 ADDRESS-ERROR. M1156
280 AREA-CODE. 1266 1291 1354 1375
382 CITY-ERROR M1159
a

Context usage is indicated by the letter preceding a procedure-name reference.
These Tetters and their meanings are:

ALTER (procedure-name)

GO TO (procedure-name) DEPENDING ON

End of range of (PERFORM) through (procedure-name)

GO TO (procedure-name)

PERFORM (procedure-name)

(ALTER) TO PROCEED TO (procedure-name)

USE FOR DEBUGGING (procedure-name)

A

E
G
P
T
U

5]
Defined

877

943

995
1471
1511
1573
1666
1682
1706
1052
1154
1189
1237
1258
1318
1342

a
Cross-reference of procedures References
000-D0-MAIN-LOGIC
050-CREATE-VSAM-MASTER-FILE. . P879
100-INITIALIZE-PARAGRAPH . . . P88l
1100-PRINT-I-F-HEADINGS. . . . P926
1200-PRINT-I-F-DATA. P928
1210-GET-MILES-TIME. P1540
1220-STORE-MILES-TIME. P1541
1230-PRINT-SUB-I-F-DATA. . . . P1562
1240-COMPUTE-SUMMARY P1563
200-EDIT-UPDATE-TRANSACTION. . P890
210-EDIT-THE-REST. P1145
300-UPDATE-COMMUTER-RECORD . . P893
310-FORMAT-COMMUTER-RECORD . . P1194 P1209
320-PRINT-COMMUTER-RECORD. . . P1195 P1206 P1212 P1222
330-PRINT-REPORT P1208 P1232 P1286 P1310 P1370 P1395 P1399

400-PRINT-TRANSACTION-ERRORS . P896

Figure 62. Example of XREF Output—Data-Name Cross-References

The numbers used in explanation below correspond to the numbers in Figure 62.

Cross-Reference of Data-Names

264 VisualAge COBOL Programming Guide

Getting Useful Listing Components

H Line number where the name was defined.
H Data-name.

Line numbers where the name was used. If an “M” precedes the line
number, the data-item was explicitly modified at the location.

Cross-Reference of Procedure References
Explanations of the context usage codes for procedure references.
Line number where the procedure-name is defined.

Procedure-name.

(S ol

Line numbers where the procedure is referenced and the context usage
code for the procedure.

The XREF compiler option also provides you with a sorted cross-reference listing of
program names in your main program.

PP 5639-B92 IBM VisualAge COBOL (0S/2) 2.2 Date 02/27/1998 Time 12:26:53 Page 4
2] 3]
Defined Cross-reference of programs References
EXTERNAL ~ EXTERNALL. 25
2 41
L O 337
20 X11l. . ..o 25 16
27 X12. . ..o oo 3217
35 X2 ..o 40 8

Figure 63. Example of XREF Output - Program Cross-Reference

H The line number where the program-name was defined. If the program is
external, the word EXTERNAL will be displayed instead of a definition line
number.

H The program name.

Line numbers where the program is referenced.

Using an Embedded Cross-Reference

The XREF compiler option also provides you with a modified cross-reference embedded
in the source listing. This embedded cross-reference provides the line number where
the data-name or procedure-name was defined.

Chapter 13. Debugging Techniques 265

Getting Useful Listing Components

LineID PL SL =--=+=%A-1-Bemtmm=-2emmmtmmo3mmmtomcaboombom a5 e b oo efmmemtoao-7- | -=+----8 Map and Cross Reference
000878 procedure division.

000879 000-do-main-logic.

000880 display "PROGRAM IGYTCARA - Beginning".

000881 perform 050-create-vsam-master-file. 932
000882 perform 100-initialize-paragraph. 984
000883 read update-transaction-file into ws-transaction-record 204 340
000884 at end

000885 1 set transaction-eof to true 254
000886 end-read.

000984 100-initialize-paragraph.

000985 move spaces to ws-transaction-record M 340 H
000986 move spaces to ws-commuter-record IMP 316
000987 move zeroes to commuter-zipcode IMP 327
000988 move zeroes to commuter-home-phone IMP 328
000989 move zeroes to commuter-work-phone IMP 329
000990 move zeroes to commuter-update-date IMP 333
000991 open input update-transaction-file 204
000992 Tocation-file 193
000993 i-0 commuter-file 181
000994 output print-file 217
001442 1100-print-i-f-headings.

001443

001444 open output print-file. 217
001445

001446 move function when-compiled to when-comp. IFN 698 ﬂ
001447 move when-comp (5:2) to compile-month. 698 640
001448 move when-comp (7:2) to compile-day. 698 642
001449 move when-comp (3:2) to compile-year. 698 644
001450

001451 move function current-date (5:2) to current-month. IFN 649
001452 move function current-date (7:2) to current-day. IFN 651
001453 move function current-date (3:2) to current-year. IFN 653
001454

001455 write print-record from i-f-header-1line-1 222 635
001456 after new-page. 138

Figure 64. Example of an Embedded Cross-Reference
The line number of the definition of the data-name or procedure-name in the
program.
2] Special definition symbols. These symbols are:
UND The user-name is undefined
DUP The user-name is defined more than once

IMP An implicitly defined name, such as special registers and figurative con-
stants

IFN An intrinsic function reference
EXT An external reference

* The program-name is unresolved because the NOCOMPILE option is in
effect

266 VisualAge COBOL Programming Guide

Debugging Assembler

Debugging User Exit Modules

To debug a user exit routine, you must invoke the debugger on the main compiler
module rather than COB2.EXE. This is because the main compiler module is a separate
process started by cob2, and the debugger can debug only one process.

To do this, first invoke cob2 with the -# option to see how cob2 invokes the main com-
piler module and what options it passes. For example, given the following cob2 invoca-
tion for compiling PGMNAME.CBL with the IWZRMGUX user exit and linking it:

cob2 -q"EXIT(ADEXIT(IWZRMGUX))" pgmname.cb]l
modify the cob2 invocation as follows:

cob2 -# -q"EXIT(ADEXIT(IWZRMGUX))" pgmname.chl
This is what you'll see:

igyccob2 -q"EXIT(ADEXIT(IWZRMGUX))" pgmname.cb]l

ilink /free /nol /pm:vio pgmname.obj

You are interested in the IGYCCOB2 invocation because it is what actually calls your user
exit.
You can debug the user exit as follows:

idbug igyccob2 -q"EXIT(ADEXIT(IWZRMGUX))" pgmname.cb]l

The debugger will automatically stop at the beginning of your user exit, assuming you
built the exit with debug information.

Debugging Assembler Routines

The debugger will automatically go to the Disassembly view if the module being
debugged does not have debug information. If the module is an assembler routine, of
course you can debug only in this view. You can set a breakpoint at a disassembled
statement in the Disassembly view by double clicking in the prefix area. It should be
noted that by default, during startup the debugger will run until it hits the first
debuggable statement it finds. If instead you would like the debugger to stop at the
very first instruction in the application (debuggable or not), you must use the "-i* option.
For example:

IDBUG -i progname

Chapter 13. Debugging Techniques 267

Resolution to Common Problems

Resolution to Common Problems

This section outlines common problems that you might encounter and how to resolve
them.

System Message SYS1808

Problem
During execution my program terminates with the following system message:

SYS1808: The process has stopped. The software diagnostic code (exception code)
is 0005.

When the program is run under the debugger, the exception XCPT_ACCESS_VIOLATION
occurs in the program initialization code (at the first step from the PROGRAM-ID state-
ment).

Solution

Your program probably has a very large LOCAL-STORAGE SECTION or LINKAGE
SECTION which is causing a stack overflow. Recompile the program with the STACK
linker option. See “Compiling and Linking Programs” on page 142 for a full description.

Example
cob2 -B"/STACK:4000000" MYPROG.CBL

268 VisualAge COBOL Programming Guide

Part 3. Object-Oriented Programming Topics

This part of the book covers object-oriented programming topics. Object-oriented pro-
grams are built from some new syntax plus the basic programming topics covered in
Part 1, “Coding Your Program” on page 1.

Chapter 14.
Chapter 15.
Chapter 16.

Chapter 17.
Programs

© Copyright IBM Corp. 1996, 1998

Writing Object-Oriented Programs 270
Using System Object Model (SOM) 317
Using SOM IDL-Based Class Libraries 323
Converting Procedure-Oriented Programs to Object-Oriented
..................................... 358

269

Writing Object-Oriented Programs

Chapter 14. Writing Object-Oriented Programs

270

Object-oriented programs are based on classes and methods for objects. A class is a
template defining the data structure and capabilities of an object. The data structure is
commonly called instance data and the capabilities are commonly called methods.
Usually, a program creates and works with multiple object instances of a class. Each
instance has its own instance data and uses the methods defined for its class.

Consider a mail-order catalog business in which customers call service representatives
to place orders. The service representatives are working with a user interface on the
computer and creating an order. Therefore, in this situation there are two classes:
user interface and order. Because there are many service representatives each proc-
essing a different customer's order, there are multiple instances of the two classes
existing simultaneously.

Once classes are determined, the next step is to determine the methods the classes
need to do their work. The order class must provide the following services:

e Add items to the order

¢ Delete items from the order

e Calculate the cost of the order

e Provide the order number to the service representative
e Write the final order for later processing

The following methods for the order class meet the above need:

Addltem
Add an item to the order

Deleteltem
Delete an item from the order

CalculateCost
Calculate the cost of the order

GetOrderNumber
Provide the order number

WriteOrder
Write the final order

As you design your class and its methods, you discover the need for the class to keep
some instance data. Typically, an order class needs the following instance data:

e Order number

¢ Order date

¢ Number of items in the order
¢ Table of items ordered

Diagrams are very helpful when designing classes and their methods. The following
diagrams depict the order and user interface classes.

© Copyright IBM Corp. 1996, 1998

Writing Object-Oriented Programs

Order UserInterface
(order-number) (action)
(order-date) (item)
(order-count)

(order-table) 1:ReadUserInput
2:WriteUserOutput
1:AddItem 3:WriteUserMessage
2:Deleteltem

3:CalculateCost
4:GetOrderNumber
5:WriteOrder

The words in parentheses are instance data and the words after the number and colon
are methods.

The class structure of this object-oriented system is a tree structure. This structure
shows how classes are related to each other and is known as the inheritance hierarchy.
Order and user interface are basic classes, so they inherit from the System Object
Model (SOM) base class, SOMObject.

Multiple Inheritance: All classes in COBOL inherit directly or indirectly from
SOMObject. When multiple inheritance is used, the class structure might not be a
tree—it may be an graph. However, the SOMObject class will always be at the root of
the tree or graph.

The complete class structure for the mail-order catalog system is diagramed as follows:

SOMObject

1:somNew
2:somlnit
3:somFree
4:somUninit
5:

I I

Order UserInterface
(order-number) (action)
(order-date) (item)
(order-count)
(order-table) 1:ReadUserInput

2:WriteUserQutput

1:AddItem 3:WriteUserMessage
2:Deleteltem
3:CalculateCost
4:GetOrderNumber
5:WriteOrder

More Methods: SOMObject has many methods other than the four listed here. See
SOMobjects Developer's Toolkit User's Guide and SOMobjects Developer's Toolkit Pro-
grammer's Reference Manual for a complete description of all the SOM methods.

Chapter 14. Writing Object-Oriented Programs 271

Class ENVIRONMENT DIVISION

Writing a Class Definition
Like a COBOL program, a COBOL class definition consists of four divisions:
e |IDENTIFICATION DIVISION
The class name and class inheritance information are defined in this division.
¢ ENVIRONMENT DIVISION

Associations between COBOL class hames and SOM class names are defined in
this division.

e DATA DIVISION
Instance data is defined in this division.
¢ PROCEDURE DIVISION

Methods are defined in this division.

Class IDENTIFICATION DIVISION: Required
In the IDENTIFICATION DIVISION of a class, you name a class and provide inheritance
information for it. Optionally, you may give other identifying information. For example:

Identification Division. Required
Class-Id. Order INHERITS SOMObject. Required

The AUTHOR, INSTALLATION, DATE-WRITTEN, and DATE-COMPILED paragraphs are
optional and are treated as documentation.

CLASS-ID Paragraph
Use the CLASS-ID paragraph to:

* Name a class.
In the example above, Order is the class name.

e Specify the System Object Model (SOM) base class or user-written class from
which this class inherits its characteristics.

In the example above, INHERITS SOMObject indicates Order inherits its basic char-
acteristics from the base SOM class SOMObject.

¢ Name a metaclass.
Discussed in “Writing a Metaclass Definition” on page 306.
SOMObject must be specified in the REPOSITORY paragraph in the ENVIRONMENT DIVI-

SION (see “REPOSITORY Paragraph” on page 273). Order may optionally be speci-
fied in the REPOSITORY paragraph.

Class ENVIRONMENT DIVISION: Required

In the ENVIRONMENT DIVISION of a class, you describe the particular computer environ-
ment in which you are working and relate your class names to external SOM names.
For example:

272 VisualAge COBOL Programming Guide

Class DATA DIVISION

Environment Division. Required
Configuration Section. Required
Repository. Required

Class SOMObject is 'SOMObject'
Class Order is 'Order'.

The SOURCE-COMPUTER, OBJECT-COMPUTER, and SPECIAL-NAMES paragraphs are
optional. If they are specified in a class CONFIGURATION SECTION, they apply to the
entire class definition, including all methods introduced by the class.

A class CONFIGURATION SECTION can consist of the same entries as a program CON-
FIGURATION SECTION, except the INPUT-OUTPUT SECTION. (See “CONFIGURATION
SECTION” on page 13.)

REPOSITORY Paragraph

The REPOSITORY paragraph declares to the compiler that the specified user-defined
word is a class name and optionally relates the class name to an external class name
in the SOM interface repository. You must specify any class hame you explicitly refer-
ence in your class definition in the REPOSITORY paragraph. For example:

¢ SOM base classes.

In the example above, CLASS SOMObject IS 'SOMObject' indicates what you are
calling SOMObject in your COBOL program is also called SOMObject in the SOM
interface repository. All SOM names are mixed-case, so SOMObject spelled in
mixed-case is required to properly handle SOM case sensitivity.

e User-written classes from which your class is inheriting.
Discussed in “Writing a Subclass Definition” on page 290.
e Metaclass to which your class belongs.
Discussed in “Writing a Metaclass Definition” on page 306.
¢ Any class referenced in methods introduced by the class.
You may optionally include the name of the class you are defining. If you do not
include the name of your class, it is treated as all upper-case regardless of how you

typed it on the CLASS-ID. In the example above, Order is stored in the SOM interface
repository in mixed-case.

Class DATA DIVISION: Optional

In the DATA DIVISION of a class, you describe the instance data the class needs. For
example:

Chapter 14. Writing Object-Oriented Programs 273

Class PROCEDURE DIVISION

Data Division.
Working-Storage Section.
01 order-number PIC 9(5).
01 order-date PIC X(8).
01 order-count PIC 99.
01 order-table.
02 order-entry OCCURS 10 TIMES.
03 order-item PIC X(5).

A class DATA DIVISION contains only a WORKING-STORAGE SECTION.

WORKING-STORAGE SECTION

A class WORKING-STORAGE SECTION describes instance data that is statically allocated
when the instance is created and exists until the instance is freed. By default, the data
is global to all the methods introduced by the class. Instance data in a COBOL class is
private. Thus, it cannot be referenced directly by any other class or subclass. See
“Special Methods” on page 279 for an example of how to share instance data in
COBOL.

Syntax of the class WORKING-STORAGE SECTION is generally the same as in a
program. (described in “WORKING-STORAGE SECTION and LOCAL-STORAGE
SECTION" on page 19).

Exceptions:

1. You cannot use the VALUE clause to initialize the data.

Class instance data is initialized by overriding the 'sominit' method. See “somInit”
on page 279 for an example using 'sominit'.

Level-88 Note: You can have 88 level numbers with the VALUE clause.
2. You cannot use the EXTERNAL attribute.
3. You can use the GLOBAL attribute, but it has no effect.

Class PROCEDURE DIVISION: Optional

The class PROCEDURE DIVISION contains only method definitions. See “Writing a
Method Definition” on page 276 for details about defining methods. A class definition
must be properly terminated with an END CLASS statement. For example:

End Class Order.

marks the end of the Order class.

274 VisualAge COBOL Programming Guide

Class Example

Complete Class Example
The class definition for the order class:
IDENTIFICATION DIVISION.

Order is the name of the class
Order inherits from SOMObject (SOM base class)

* ok %k F

CLASS-ID. Order INHERITS SOMObject.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY.

* *

SOMObject is known as SOMObject in SOM repository
CLASS SOMObject IS 'SOMObject'

* F

Order is known as Order in SOM repository
CLASS Order IS 'Order'.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Instance data for Order class

01 order-number PIC 9(5).
01 order-date PIC X(8).
01 order-count PIC 99.
01 order-table.
02 order-entry OCCURS 10 TIMES.
03 order-item PIC X(5).
PROCEDURE DIVISION.

*

* method definitions in here
*

END CLASS Order.

The class definition for the user interface class:
IDENTIFICATION DIVISION.

UserInterface is the name of the class
UserInterface inherits from SOMObject (SOM base class)

ECE

CLASS-ID. UserInterface INHERITS SOMObject.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

REPOSITORY.

*
* SOMObject is known as SOMObject in SOM repository
CLASS SOMObject IS 'SOMObject'

* UserInterface is known as UserInterface in SOM repository
CLASS UserlInterface IS 'UserInterface'.

Chapter 14. Writing Object-Oriented Programs 275

Method IDENTIFICATION DIVISION

DATA DIVISION.
WORKING-STORAGE SECTION.

* Instance data for UserInterface class

01 wuif-action PIC X(10).
88 wuif-add VALUE 'AddItem'.
88 uif-delete VALUE 'Deleteltem'.
88 uif-quit VALUE 'Quit'.

01 uif-item PIC X(5).

PROCEDURE DIVISION.

*
* method definitions in here
*

END CLASS UserlInterface.

Writing a Method Definition
A COBOL method can be defined only inside a class definition. Each method name
within a class must be unique.
Like a COBOL program, a COBOL method definition consists of four divisions:
e [IDENTIFICATION DIVISION
The method name and whether it is overriding another method are defined in this
division.
¢ ENVIRONMENT DIVISION
Similar to a program ENVIRONMENT DIVISION.
e DATA DIVISION
Similar to a program DATA DIVISION.
¢ PROCEDURE DIVISION
Similar to a program PROCEDURE DIVISION.

Method IDENTIFICATION DIVISION: Required
Use the IDENTIFICATION DIVISION to nhame a method and indicate whether it is over-
riding another method from a superclass. Optionally, you can give other identifying
information. For example:

Identification Division. Required
Method-Id. WriteOrder. Required

The AUTHOR, INSTALLATION, DATE-WRITTEN, and DATE-COMPILED paragraphs are
optional and are handled as documentation. You can use them for descriptive informa-
tion about your method.

276 VisualAge COBOL Programming Guide

Method DATA DIVISION

METHOD-ID Paragraph
Use the METHOD-ID paragraph to name the method. In the example above, WriteOrder
is the method name. Other methods or programs use this name to invoke the method.

Method Override

Occasionally, a class defines a method whose name exists in a superclass. In this
case, the superclass method must be overridden with the OVERRIDE clause on the
METHOD-ID. System Object Model (SOM) provides two methods designed to be over-
ridden. These SOM methods allow you to initialize instance data when an instance is
created and save instance data when an instance is freed. The methods are called
‘'somlnit' and 'somUninit' respectively. If you wish to override 'sominit’, the IDENTIFICA-
TION DIVISION is coded as follows:

Identification Division. Required
Method-Id. "somInit" Override. Required

Method ENVIRONMENT DIVISION: Optional

The method ENVIRONMENT DIVISION has only one section, the INPUT-OUTPUT SECTION.
The INPUT-OUTPUT SECTION relates your method files to the external file names known
by the operating system. The syntax for a method INPUT-OUTPUT SECTION is the same
as for a program INPUT-OUTPUT SECTION (see “INPUT-OUTPUT SECTION:” on
page 16). For example:

Environment Division.

Input-Output Section.

File-Control.

Select order-file Assign OrdrFile.

Method DATA DIVISION: Optional
A method DATA DIVISION consists of any of four sections:

e FILE SECTION

A method FILE SECTION is the same as a program FILE SECTION except a method
FILE SECTION can define only EXTERNAL files.

(See “FILE SECTION (Using Data in Input/Output Operations)” on page 18 for
more information.)

e LOCAL-STORAGE SECTION

A separate copy of the data defined in the method LOCAL-STORAGE SECTION is
allocated for each invocation of the method and is freed on the return from the
method.

If the VALUE clause is specified, the data item is initialized to the value on every
invocation of the method.

The method LOCAL-STORAGE SECTION is similar to a program LOCAL-STORAGE
SECTION, except that the GLOBAL attribute has no effect.

(See “WORKING-STORAGE SECTION and LOCAL-STORAGE SECTION” on
page 19 for more information.)

Chapter 14. Writing Object-Oriented Programs 277

Method PROCEDURE DIVISION

e WORKING-STORAGE SECTION

A single copy of the data defined in the method WORKING-STORAGE SECTION is
allocated when the run-unit begins and persists in its last-used state until the run-
unit terminates. The same single copy of the WORKING-STORAGE data is used
whenever the method is invoked, regardless of the invoking object.

If the VALUE clause is specified, the data item is initialized to the value on the first
invocation of the method. The EXTERNAL clause may be specified for method
WORKING-STORAGE data items (see “Sharing Data Using the EXTERNAL Clause”
on page 399).

A method WORKING-STORAGE SECTION is similar to a program
WORKING-STORAGE SECTION except the GLOBAL attribute has no effect.

(See “WORKING-STORAGE SECTION and LOCAL-STORAGE SECTION” on
page 19 for more information.)

e LINKAGE SECTION

A method LINKAGE SECTION is the same as a program LINKAGE SECTION except
the GLOBAL attribute has no effect.

(See “LINKAGE SECTION (Using Data from Another Program)” on page 21 for
more information.)

See “Complete Class with Methods Example” on page 280 for a detailed example of a
method DATA DIVISION.

If the same data item is defined in both the class DATA DIVISION and the method DATA
DIVISION, a reference in the method to the data name refers to the data item in the
method DATA DIVISION. The method DATA DIVISION takes precedence.

Method PROCEDURE DIVISION: Optional
In the PROCEDURE DIVISION of a method, you code the executable statements to com-
plete the service the method is expected to provide. A method definition must be prop-
erly terminated with an END METHOD statement. For example:

End Method WriteOrder.

marks the end of the 'WriteOrder' method.

The EXIT METHOD statement returns control to the invoking program or method.
GOBACK has the same effect as EXIT METHOD. If the RETURNING clause is specified
when the method is invoked, the EXIT METHOD or GOBACK returns the value of the data
item to the invoking program or method. STOP RUN MAY be specified in a method;
however, it terminates the run-unit.

An implicit EXIT METHOD is generated as the last statement of every method PROCE-
DURE DIVISION.

All COBOL statements that can be coded in a program PROCEDURE DIVISION can be
coded in a method PROCEDURE DIVISION except:

e EXIT PROGRAM

278 VisualAge COBOL Programming Guide

Method PROCEDURE DIVISION

¢ ENTRY statements
¢ The following obsolete elements of ANSI COBOL-85:

— ALTER

— GOTO without a specified procedure name
SEGMENTATION

USE FOR DEBUGGING

Special Methods

Simulated Attribute Methods: Instance variables in COBOL are all private in the
sense that they are fully encapsulated by the class, and are accessible directly only by
the methods that are introduced by the class that defines them. Normally, a well-
designed object-oriented application does not need to access instance variables from
outside the class.

The concept of a public instance variable, as defined in other object-oriented lan-
guages, and the concept of a class attribute, as defined by SOM and CORBA, are not
directly supported by COBOL. (A CORBA attribute is an instance variable that has 'get'
and/or 'set' methods to access and modify the value of the instance variable from
outside the class definition.) A COBOL programmer can provide this capability by
coding 'getX' and/or 'setX' methods for any instance variables X for which direct access
from outside the class is required. The recommended naming convention for these
methods is either 'getX' and 'setX' or perhaps 'get_X' and 'set_X'. Direct specification of
method names (such as _get_X) is not recommended because such names are not
valid in IDL, and use of such method names with the COBOL IDLGEN compiler option
specified would result in an IDL file that will not compile with the SOM compiler. For
example, this method

Identification Division.

Method-Id. 'getOrderNumber'.

Data Division.

Linkage Section.

01 ord-num PIC 9(5).

Procedure Division returning ord-num.
Move order-number To ord-num.
Exit Method.

End Method 'getOrderNumber'.

passes the order number to any program that invokes 'getOrderNumber'.
sominit: The 'somlnit' method is automatically invoked when an object instance is

created. The default 'somlnit' in SOM does nothing; however, you can override it to do
your own initialization of instance variables. For example:

Chapter 14. Writing Object-Oriented Programs 279

Method Example

Identification Division.
Method-Id. "somInit" Override.
Procedure Division.
Move Function Current-Date(1:8) To order-date.
Move 0 To order-count.
Initialize order-table.
Exit Method.
End Method "somInit".

somUninit: The 'somlninit' method is automatically invoked when an object instance is
freed. The default 'somUninit' in SOM does nothing; however, you can override it if you
wish. For example:

Identification Division.
Method-Id. "somUninit" Override.
Data Division.
Local-Storage Section.
01 sub Pic 99.
Procedure Division.
Display order-date.
Perform varying sub from 1 by 1 until sub > order-count
Display order-table (sub)
End-Perform.
Exit Method.
End Method "somUninit".

The PROCEDURE DIVISION is discussed further in “PROCEDURE DIVISION” on
page 22.

Complete Class with Methods Example

The class and method definitions for the order class:

IDENTIFICATION DIVISION.
CLASS-ID. Orders INHERITS SOMObject.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
* Declare classes used in class defintion
REPOSITORY.
CLASS SOMObject IS 'SOMObject'
CLASS Orders IS 'Orders'.

DATA DIVISION.
* Define instance data
WORKING-STORAGE SECTION.
01 order-number PIC 9(5).
01 order-date PIC X(8).
01 order-count PIC 99.
01 order-table.
02 order-entry OCCURS 10 TIMES.
03 order-item PIC X(5).

280 VisualAge COBOL Programming Guide

Method Example

PROCEDURE DIVISION.

* Method to initialize instance data
* - this overrides the default 'somInit' method
IDENTIFICATION DIVISION.

METHOD-ID. ‘'somInit' OVERRIDE.

PROCEDURE DIVISION.
MOVE FUNCTION CURRENT-DATE(1:8) TO order-date.
COMPUTE order-number = FUNCTION RANDOM (99999).
MOVE O TO order-count.
INITIALIZE order-table.
EXIT METHOD.

END METHOD 'somInit'.

* Method to add an item to an order
IDENTIFICATION DIVISION.
METHOD-ID. AddItem.

DATA DIVISION.
* Use LOCAL-STORAGE for items that should be allocated
* and initialized for each invocation of the method
LOCAL-STORAGE SECTION.

77 sub PIC 99.

01 found-flag PIC 9 VALUE 1.

88 found VALUE 0.

LINKAGE SECTION.

01 din-item PIC X(5).

01 add-flag PIC 9.

PROCEDURE DIVISION USING in-item
RETURNING add-fTlag.
MOVE 1 TO add-flag.
PERFORM VARYING sub FROM 1 BY 1
UNTIL (sub > 10) OR (found)
IF order-item (sub) = SPACES
MOVE in-item TO order-item (sub)
ADD 1 TO order-count
MOVE O TO add-flag
SET found TO TRUE
END-IF
END-PERFORM.
EXIT METHOD.
END METHOD AddItem.

* Method to delete an item from an order
IDENTIFICATION DIVISION.
METHOD-ID. Deleteltem.

DATA DIVISION.

* Use LOCAL-STORAGE for items that should be allocated
* and initialized for each invocation of the method

Chapter 14. Writing Object-Oriented Programs

281

Method Example

LOCAL-STORAGE SECTION.

77 sub PIC 99.

01 found-flag PIC 9 VALUE 1.
88 found VALUE 0.

LINKAGE SECTION.

01 out-item PIC X(5).

01 delete-flag PIC 9.

PROCEDURE DIVISION USING out-item
RETURNING delete-flag.
MOVE 1 TO delete-flag.
PERFORM VARYING sub FROM 1 BY 1
UNTIL (sub > 10) OR (found)
IF order-item (sub) = out-item
MOVE SPACES TO order-item (sub)
SUBTRACT 1 FROM order-count
MOVE O TO delete-flag
SET found TO TRUE
END-IF
END-PERFORM.
EXIT METHOD.
END METHOD Deleteltem.

* Method to compute the total cost of an order
IDENTIFICATION DIVISION.
METHOD-ID. ComputeCost.

DATA DIVISION.
* Use LOCAL-STORAGE for items that should be allocated
* and initialized for each invocation of the method
LOCAL-STORAGE SECTION.

77 sub PIC 99.

77 cost PIC 9(5)V99.

LINKAGE SECTION.

01 total-cost PIC 9(7)Vv99.

PROCEDURE DIVISION USING total-cost.
MOVE @ TO total-cost.
PERFORM VARYING sub FROM 1 BY 1
UNTIL sub > order-count
* Call a subroutine
* NOTE: The subroutine code is not
* included in this example.
CALL 'InventoryGetCost'
USING order-item (sub) cost
ADD cost TO total-cost
END-PERFORM.
EXIT METHOD.
END METHOD ComputeCost.

* Method to return the order number
IDENTIFICATION DIVISION.

282 VisualAge COBOL Programming Guide

METHOD-ID. 'getOrderNumber'.

DATA DIVISION.
LINKAGE SECTION.
01 ord-num PIC 9(5).

PROCEDURE DIVISION RETURNING ord-num.
MOVE order-number TO ord-num.
EXIT METHOD.

END METHOD 'getOrderNumber'.

* Method to write completed order to file
IDENTIFICATION DIVISION.
METHOD-ID. WriteOrder.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT order-file ASSIGN OrdrFile.

DATA DIVISION.
FILE SECTION.
* Methods support only EXTERNAL files
FD order-file EXTERNAL.
01 order-record PIC X(80).
* Use LOCAL-STORAGE for items that should be allocated
* and initialized for each invocation of the method
LOCAL-STORAGE SECTION.
01 print-line.
02 print-order-number PIC 9(5).
02 print-order-date PIC X(8).
02 print-order-count PIC 99.
02 print-order-table.
03 print-order-entry OCCURS 10 TIMES.
04 print-order-item PIC X(5).

PROCEDURE DIVISION.
OPEN OUTPUT order-file.
MOVE order-number TO print-order-number.
MOVE order-date TO print-order-date.
MOVE order-table TO print-order-table.
MOVE order-count TO print-order-count.
WRITE order-record FROM print-line.
CLOSE order-file.
EXIT METHOD.

END METHOD WriteOrder.

END CLASS Orders.

The class and method definitions for the user interface class:

Method Example

Chapter 14. Writing Object-Oriented Programs 283

Method Example

IDENTIFICATION DIVISION.
CLASS-ID. UserInterface INHERITS SOMObject.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
* Declare classes used in class definition
REPOSITORY.
CLASS SOMObject IS 'SOMObject'
CLASS UserlInterface IS 'UserInterface'.

DATA DIVISION.

* Define instance data

WORKING-STORAGE SECTION.

01 uif-action PIC X(10).
88 uif-add VALUE 'AddItem'.
88 uif-delete VALUE 'Deleteltem'.
88 wuif-quit VALUE 'Quit'.

01 uif-item PIC X(5).

PROCEDURE DIVISION.

* Method to get input from customer - action and item
IDENTIFICATION DIVISION.
METHOD-ID. ReadUserlInput.

DATA DIVISION.

LINKAGE SECTION.

01 action PIC X(10).
01 item PIC X(5).

PROCEDURE DIVISION USING item action.
DISPLAY 'Enter the action: add, delete, quit'.
ACCEPT action FROM SYSIN.
MOVE FUNCTION UPPER-CASE (action) TO action.
EVALUATE TRUE
WHEN action = 'ADD'
SET uif-add TO TRUE
PERFORM Get-Item
WHEN action = 'DELETE'
SET uif-delete TO TRUE
PERFORM Get-Item
WHEN action = 'QUIT'
SET uif-quit TO TRUE
END-EVALUATE.
MOVE uif-action TO action.
EXIT METHOD.

Get-Item.
DISPLAY 'Enter the item'.
ACCEPT item FROM SYSIN.
MOVE item TO uif-item.

284 VisualAge COBOL Programming Guide

Writing a Client Defintion

END METHOD ReadUserInput.

* Method to inform customer how action was completed
IDENTIFICATION DIVISION.
METHOD-ID. WriteUserMessage.

DATA DIVISION.
LINKAGE SECTION.
01 flag PIC 9.

PROCEDURE DIVISION USING flag.
IF flag = 0
DISPLAY uif-action
" successfully completed on '
uif-item
ELSE
DISPLAY uif-action
" unsuccessfully completed on '
uif-item
END-IF.
EXIT METHOD.

END METHOD WriteUserMessage.

* Method to display final order information
IDENTIFICATION DIVISION.
METHOD-ID. WriteUserOutput.

DATA DIVISION.

LOCAL-STORAGE SECTION.

77 formated-cost PIC $Z,777,779.99.
LINKAGE SECTION.

01 total-cost PIC 9(7)V99.

01 order-number PIC 9(5).

PROCEDURE DIVISION USING total-cost order-number.
MOVE total-cost TO formated-cost.
DISPLAY 'Your order costs ' formated-cost.
DISPLAY 'Your order number is ' order-number.
EXIT METHOD.

END METHOD WriteUserQutput.

END CLASS UserlInterface.

Writing a Client Definition

Any program that requests services from methods in a class is a client program. The
client program consists of the usual four divisions:

e IDENTIFICATION DIVISION
¢ ENVIRONMENT DIVISION

Chapter 14. Writing Object-Oriented Programs 285

Client DATA DIVISION

e DATA DIVISION
* PROCEDURE DIVISION

Method Services: A method may request services from another method. Therefore,
a method can be a client and use the statements discussed in this section.

Client IDENTIFICATION DIVISION: Required
The client IDENTIFICATION DIVISION is coded as usual.

Client ENVIRONMENT DIVISION: Required
In the ENVIRONMENT DIVISION of a client, you describe the particular computer environ-
ment in which you are working and relate your class names to external System Object
Model (SOM) names. For example:

Environment Division. Required
Configuration Section. Required
Repository. Required

Client UserInterface is 'UserlInterface'
Client Orders is 'Orders'.

REPOSITORY Paragraph

The REPOSITORY paragraph declares to the compiler that the specified user-defined
word is a class name and optionally relates the class name to an external class name
in the SOM interface repository. You must specify any class name you explicitly refer-
ence in your program in the REPOSITORY paragraph. In the example above, Orders
and UserInterface are the only two classes this program references.

Client DATA DIVISION: Optional
In the DATA DIVISION of a client, you describe the data the client needs. Since the
client is using classes, it needs one or more special data items called object references.
Object references are handles to instances of classes the program creates. All
requests to a method are handled through an object reference to the instance of the
class that defined the method. For example:

Data Division.

Working-Storage Section.

01 orderObj Usage Object Reference Orders.

01 wuserObj Usage Object Reference UserInterface.
01 univObj Usage Object Reference.

The phrase USAGE OBJECT REFERENCE indicates a data item is used as a handle for
an instance.

In the above example, three object references are defined. The first two, orderObj and
userObj are typed object references because a class name appears after the OBJECT
REFERENCE phrase. Thus, orderObj can only be used to reference instances of the
Orders class, or one of its subclasses. Likewise, userObj can only be used to refer-
ence instances of the UserInterface class, or one of its subclasses. The other object
reference, univ0bj, does not have a class name after its OBJECT REFERENCE phrase.
It is a universal object reference and can reference instances of any class.

286 VisualAge COBOL Programming Guide

Client PROCEDURE DIVISION

Remember: Class names used on the OBJECT REFERENCE phrase must be defined in
the REPOSITORY paragraph of the CONFIGURATION SECTION.

Client PROCEDURE DIVISION: Optional

The client PROCEDURE DIVISION contains code to create and free instances of classes,
manipulate object reference data items, and invoke methods.

Creating and Freeing Instances of Classes

Before anything can be done with methods in a class, an instance of the class must be
created. SOM provides a method, 'somNew', to create an instance of a class. For
example:

Invoke Orders 'somNew' Returning orderObj.

creates an instance of the Orders class and assigns its handle to the object reference
order0Obj.

When 'somNew' executes it automatically invokes 'somlnit’, another SOM method, that
you can override to initialize your instance data.

Remember: The class name, in this case Orders, must be defined in the REPOSITORY
paragraph of the CONFIGURATION SECTION. And the object reference, in this case
orderObj, must be defined as USAGE OBJECT REFERENCE in the DATA DIVISION.

When you finish with an instance of a class, you should free it. Again, SOM provides a
method, 'somFree’, to free the instance. For example:

Invoke orderObj 'somFree'.

frees the instance of order0Obj; orderObj now has an undefined value. When 'somFree'
executes it automatically invokes 'somUninit', another SOM method that you can over-
ride to save or display your instance data.

Manipulating Object References
Object references can be compared in conditional statements. For example:
If orderObj = Null

If orderObj = Nulls ...
If orderObj = univObj ...

are all valid uses of object references in an IF statement. The first and second IF state-
ments check whether orderObj is a null object reference (refers to no instance). The
third IF statement checks whether order0Obj and univObj refer to the same instance.

Note: In a method there is a fourth form of object reference conditional:
If orderObj = Self ...
This checks whether the instance on which the method was invoked, SELF,
refers to the same instance as order0bj.

It may be necessary to make an object reference null or make one object reference
refer to the same instance as another object reference. The SET statement takes care
of these situations:

Chapter 14. Writing Object-Oriented Programs 287

Client PROCEDURE DIVISION

Set orderObj To Null.
Set univObj To orderObj.

In the first SET statement, order0Obj is set to NULL.

In the second SET statement, univ0Obj is made to refer to the instance to which
orderObj refers. In this syntax, if the receiver (univ0bj) is a universal object reference
then the sender (order0Obj) can be either a universal or typed object reference.
However, if the receiver is a typed object reference the sender must also be a typed
object reference and typed to the same class or a subclass.

Note: In a method there is a third form of SET object reference:
Set orderObj To Self.

This makes the receiver (order0bj) refer to the same instance on which the
method was invoked, SELF.

Invoking Methods
To receive service from a method, the method must be invoked with the INVOKE state-
ment. For example:

Invoke Orders 'somNew' Returning orderObj.
Invoke orderObj 'AddItem' Using item Returning flag.

In the first INVOKE, a class name is used to create a new instance whose handle is
returned in the object reference orderObj. The class name, Orders, must be defined in
the REPOSITORY paragraph of the CONFIGURATION SECTION. The object reference,
orderObj, must be define as either an universal object reference or a typed to class
Orders object reference.

In the second INVOKE, an object reference, orderObj, is used to invoke the method
AddItem. The general syntax of this form of INVOKE is one of the following:

Invoke objref 'literal-name'.
Invoke objref identifier-name.

In both cases the invoked method must be defined in the class for which the object
reference, objref, is an instance. If the identifier-name form of the method is used, the
object reference, objref, must by an universal object reference.

Conformance between the invoked method and the object reference is checked at
compile time if the following three items are all true:

1. objref is a typed object reference.

2. The literal form of the method name is used in the INVOKE statement.

3. The TYPECHK compile option is specified.
Otherwise, conformance requirements are checked at run time. Run-time checking,
however, is not as thorough as compile-time checking.

INVOKE has the optional scope terminator END-INVOKE. The USING and RETURNING
phrases on the INVOKE work the same as they do on the CALL statement. Also,

288 VisualAge COBOL Programming Guide

Client Example

INVOKE has the optional ON EXCEPTION and NOT ON EXCEPTION phrases like the CALL
statement. See IBM COBOL Language Reference for a discussion of USING,
RETURNING, ON EXCEPTION, and NOT ON EXCEPTION.

The RETURN-CODE special register is not set by an INVOKE to a method.

Complete Client Example

A possible client program for the mail-order catalog using the Order and Userinterface
classes:

IDENTIFICATION DIVISION.
PROGRAM-ID. 'PhoneOrders'.

EN

VIRONMENT DIVISION.

CONFIGURATION SECTION.

*

RE

Declare the classes used in the program
POSITORY.

CLASS Orders IS 'Orders'

CLASS UserInterface IS 'UserInterface'.

DATA DIVISION.
WORKING-STORAGE SECTION.

*

77
77

*
77
77
77
77
77

Declare the object references used in the program
orderObj USAGE OBJECT REFERENCE Orders.
userObj USAGE OBJECT REFERENCE UserInterface.

Declare other data items used in the program
order-number PIC 9(5).
total-cost PIC 9(7)V99.
item PIC X(5).
action PIC X(10).
flag PIC 9.

PROCEDURE DIVISION.

*

*

Create an instance of the UserInterface class - userObj
INVOKE UserInterface 'somNew' RETURNING userObj.

Create an instance of the Orders class - orderObj
INVOKE Orders 'somNew' RETURNING orderObj.

Read customer input - action and item

INVOKE userObj 'ReadUserInput' USING item action.
Begin customer driven loop based on action

PERFORM UNTIL action = 'Quit'

Do appropriate action

Chapter 14. Writing Object-Oriented Programs

289

Writing a Subclass Definition

IF action (1:3) = 'Add'
INVOKE orderObj 'AddItem' USING item
RETURNING fTlag
ELSE
INVOKE orderObj 'Deleteltem' USING item
RETURNING fTag
END-IF

Display result of action
INVOKE userObj 'WriteUserMessage' USING flag

Read customer input - action and item
INVOKE userObj 'ReadUserInput' USING item action
END-PERFORM.
End customer driven loop based on action

Calculate the total cost of the order
INVOKE orderObj 'ComputeCost' USING total-cost.

Determine the order number
INVOKE orderObj 'getOrderNumber'
RETURNING order-number.

Display information about the order
INVOKE userObj 'WriteUserQutput'
USING total-cost order-number.

Write the order to a file
INVOKE orderObj 'WriteOrder'.

Free the object instances - orderObj and userObj
INVOKE orderObj 'somFree'.
INVOKE userObj 'somFree'.

STOP RUN.
END PROGRAM 'PhoneOrders'.

Writing a Subclass Definition

A subclass, sometimes called a child class, is a specialization of its superclass, some-
times called a parent class. The subclass is related to its superclass by an is-a type
relationship. This means the phrase “Subclass S is a type of superclass P” makes
sense within the application.

Subclassing has several advantages:

¢ Reuse of code.

290 VisualAge COBOL Programming Guide

Writing a Subclass Definition

A subclass can reuse methods already existing in another class through
inheritance.

¢ More specific class.

A subclass can add new methods to handle specific instances the superclass does
not handle.

¢ Change in action.

A subclass can override a method inherited from its superclass. Overriding can be
anything from a few minor changes in how the method works to a complete over-
haul of what the method does.

In the mail-order catalogue application, Order is a general class. One of the first things
you discover working with Order is there are two kinds of orders: new order and back
order. While both new order and back order have all the characteristics of order, back
order also has the characteristic of requiring the order be read from the file and
checking the status of the items. It might make sense to make new order and back
order subclasses of order, diagramed as follows:

SOMObject

1:somNew
2:somlnit
3:somFree
4:somUninit
5:

Order UserInterface
(order-number) (action)
(order-date) (item)
(order-count)
(order-table) 1:ReadUserInput

2:WriteUserOutput

1:AddItem 3:WriteUserMessage
2:Deleteltem
3:CalculateCost
4:GetOrderNumber
5:WriteOrder

T—‘—I

BackOrder NewOrder
1: 1:

2: 2:

3: 3:

4. 4.

5: 5:
6:ReadOrder
7:CheckItem

Chapter 14. Writing Object-Oriented Programs 291

Subclass ENVIRONMENT DIVISION

A number and colon with nothing after then represent a method inherited from a super-
class.

In COBOL, a subclass inherits the methods from its superclass. A subclass may
change, or override, one or more methods inherited from its superclass using the OVER-
RIDE clause on the METHOD-ID. Also, a subclass may add new methods it needs to
perform its services.

In COBOL, instance data is private so the superclass must provide methods to allow
the subclass to access instance data. A subclass can retrieve values from or store
values in the instance data using the methods provided by the superclass. A subclass
may also introduce new instance data of its own.

Multiple inheritance, inheriting from more than one superclass, is allowed in COBOL.
Should there be a conflict in method names between two superclasses, the conflict is
resolved according to the System Object Model (SOM) rules. See SOMobjects Devel-
oper's Toolkit User's Guide for an example.

Subclass IDENTIFICATION DIVISION: Required

In the IDENTIFICATION DIVISION of a subclass, you name the subclass and provide
inheritance information for it. Optionally, you may give other identifying information.
For example:

Identification Division. Required
Class-Id. BackOrder INHERITS Order. Required

CLASS-ID Paragraph

The CLASS-ID paragraph names the subclass and indicates from what superclass or
superclasses the subclass inherits. In the example above, BackOrder is the class
name. It inherits all the methods from Order. Also, it can access Order instance data if
Order provides methods to get and set its instance data.

The name(s) of the superclass(es) must be specified in the REPOSITORY paragraph in
the ENVIRONMENT DIVISION (see “REPOSITORY Paragraph”). BackOrder may
optionally be specified in the REPOSITORY paragraph.

Subclass ENVIRONMENT DIVISION: Required

292

In the ENVIRONMENT DIVISION of a subclass, you relate your subclass and class names
to external System Object Model (SOM) names. For example:

Environment Division. Required
Configuration Section. Required
Repository. Required

Class BackOrder is 'BackOrder'
Class Order is 'Order'.

REPOSITORY Paragraph
The REPOSITORY paragraph relates your subclass and class names to the subclass
and class names in the SOM interface repository. You must include:

VisualAge COBOL Programming Guide

Subclass Method IDENTIFICATION DIVISION

e User-written classes from which your subclass is inheriting.
¢ Metaclass to which your subclass belongs.
Discussed in “Writing a Metaclass Definition” on page 306.

¢ Any class referenced in methods introduced by the subclass.

You may optionally include the name of the subclass you are defining. If you do not
include the name of your subclass, it is treated as all upper-case regardless of how you
typed it on the CLASS-ID. In the example above, BackOrder is stored in the SOM inter-
face repository in mixed-case.

Subclass DATA DIVISION: Optional
In the DATA DIVISION of a subclass, you describe any extra instance data the subclass
needs. For example:

Data Division.
Working-Storage Section.
01 order-status PIC X(3).

A subclass DATA DIVISION contains only a WORKING-STORAGE SECTION.

WORKING-STORAGE SECTION

A subclass WORKING-STORAGE SECTION describes instance data that is statically allo-
cated when the instance is created and exists until the instance is freed. By default,
the data is global to all the methods introduced by the subclass. Instance data in a
COBOL subclass is private. Thus, it cannot be referenced directly by any other class
or subclass.

Subclass PROCEDURE DIVISION: Optional

The subclass PROCEDURE DIVISION contains only method definitions. A subclass defi-
nition must be properly terminated with an END CLASS statement. For example:

End Class BackOrder.

marks the end of the BackOrder subclass.

Subclass Method IDENTIFICATION DIVISION: Optional

Use the IDENTIFICATION DIVISION to nhame a method and to optionally give other identi-
fying information. The name of each method in a subclass must be unique. For
example:

Identification Division.
Method-ID. ReadOrder.

METHOD-ID Paragraph
Use the METHOD-ID PARAGRAPH to name the method. Other methods or programs use
this name to invoke the method.

If the subclass defines a method whose name exists in a superclass the OVERRIDE
clause must be specified on the METHOD-ID. For example :

Chapter 14. Writing Object-Oriented Programs 293

Subclass Example

Identification Division.
Method-Id. AddItem Override.

When an object reference that is a handle to the BackOrder subclass invokes AddItem,
this method is invoked rather than the method in the superclass Order.

Note:

In a method, a subclass can invoke an overridden superclass method by using
the INVOKE form:

Invoke Super 'AddItem'.

This invokes the method AddItem defined in the superclass rather than the
method AddItem defined in the subclass.

In the case of multiple inheritance, a subclass may inherit several methods with
the same name from different parents. To specify precisely which method from
which parent is invoked use the following INVOKE form:

Invoke Class-A of Super 'AddItem'.

This invokes the method AddItem defined in the superclass Class-A rather than
the method AddItem defined in any other superclass or in the subclass.

Subclass Method ENVIRONMENT DIVISION: Optional
The subclass method ENVIRONMENT DIVISION is coded in the same way a class
method ENVIRONMENT DIVISION is coded. See “Method ENVIRONMENT DIVISION:
Optional” on page 277 for a discussion of the class method ENVIRONMENT DIVISION.

Subclass Method DATA DIVISION: Optional
The subclass method DATA DIVISION is coded in the same way a class method DATA
DIVISION is coded. See “Method DATA DIVISION: Optional” on page 277 for a dis-
cussion of the class method DATA DIVISION.

If the same data item is used in both the subclass DATA DIVISION and the method DATA
DIVISION, a reference in the method to the data name refers to the data item in the
method DATA DIVISION. The method DATA DIVISION takes precedence.

Subclass Method PROCEDURE DIVISION: Optional
In the PROCEDURE DIVISION of a subclass method, you code the executable state-
ments to complete the service the method is expected to provide. A subclass method
definition must be properly terminated with an END METHOD statement. See “Method
PROCEDURE DIVISION: Optional” on page 278 for information about coding a
method.

Complete Subclass with Methods Example

The new class and method definitions for the user interface class:

294 VisualAge COBOL Programming Guide

Subclass Example

IDENTIFICATION DIVISION.
CLASS-ID. UserInterface INHERITS SOMObject.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
* Declare classes used in class definition
REPOSITORY.
CLASS SOMObject IS 'SOMObject'
CLASS UserlInterface IS 'UserInterface'.

DATA DIVISION.

* Define instance data

WORKING-STORAGE SECTION.

01 wuif-action PIC X(10).
88 uif-add VALUE 'AddItem'.
88 uif-delete VALUE 'Deleteltem'.
88 wuif-quit VALUE 'Quit'.

01 uif-item PIC X(5).

PROCEDURE DIVISION.

* Method to read customer input - request
IDENTIFICATION DIVISION.
METHOD-ID. ReadUserRequest.

DATA DIVISION.
LINKAGE SECTION.
01 request PIC X(6).

PROCEDURE DIVISION USING request.
DISPLAY 'Enter the request: new, status'.
ACCEPT request FROM SYSIN.
MOVE FUNCTION UPPER-CASE (request) TO request.
EXIT METHOD.

END METHOD ReadUserRequest.

* Method to read customer input for new request - action and item
IDENTIFICATION DIVISION.
METHOD-ID. ReadUserInputl.

DATA DIVISION.

LINKAGE SECTION.

01 action PIC X(10).
01 item PIC X(5).

PROCEDURE DIVISION USING item action.
DISPLAY 'Enter the action: add, delete, quit'.
ACCEPT action FROM SYSIN.
MOVE FUNCTION UPPER-CASE (action) TO action.
EVALUATE TRUE
WHEN action = 'ADD'
SET uif-add TO TRUE
PERFORM Get-Item

Chapter 14. Writing Object-Oriented Programs

295

Subclass Example

WHEN action = 'DELETE'
SET uif-delete TO TRUE
PERFORM Get-Item
WHEN action = 'QUIT'
SET uif-quit TO TRUE
END-EVALUATE.
MOVE uif-action TO action.
EXIT METHOD.

Get-Item.
DISPLAY 'Enter the item'.
ACCEPT item FROM SYSIN.
MOVE item TO uif-item.
END METHOD ReadUserInputl.

* Method to read customer input for status request - order number
IDENTIFICATION DIVISION.
METHOD-ID. ReadUserInput2.

DATA DIVISION.
LINKAGE SECTION.
01 acct-numb PIC 9(5).

PROCEDURE DIVISION USING acct-numb.
DISPLAY 'Enter the account number'.
ACCEPT acct-numb FROM SYSIN.

EXIT METHOD.
END METHOD ReadUserInput2.

* Method to inform customer how action was completed
IDENTIFICATION DIVISION.
METHOD-ID. WriteUserMessage.

DATA DIVISION.
LINKAGE SECTION.
01 flag PIC 9.

PROCEDURE DIVISION USING flag.
IF flag = 0
DISPLAY uif-action
" successfully completed on
uif-item

ELSE
DISPLAY uif-action
" unsuccessfully completed on
uif-item

END-IF.
EXIT METHOD.
END METHOD WriteUserMessage.

* Method to display order information
IDENTIFICATION DIVISION.

296 VisualAge COBOL Programming Guide

Subclass Example

METHOD-ID. WriteUserOutput.

DATA DIVISION.

LOCAL-STORAGE SECTION.

77 formated-cost PIC $7,777,779.99.

LINKAGE SECTION.

01 total-cost PIC 9(7)Vv99.

01 order-number PIC 9(5).

PROCEDURE DIVISION USING total-cost order-number.
MOVE total-cost TO formated-cost.
DISPLAY 'Your order costs ' formated-cost.
DISPLAY 'Your order number is ' order-number.
EXIT METHOD.

END METHOD WriteUserQutput.

* Method to display out of stock items
IDENTIFICATION DIVISION.
METHOD-ID. WriteUserStatus.

DATA DIVISION.

LOCAL-STORAGE SECTION.

77 sub PIC 99.

LINKAGE SECTION.

01 out-table.

02 out-entry OCCURS 10 TIMES.
03 out-item PIC X(5).
01 out-count PIC 99.

PROCEDURE DIVISION USING out-table out-count.
IF out-count > 0
PERFORM VARYING sub FROM 1 BY 1
UNTIL sub > out-count
DISPLAY 'Out of stock '
out-item (sub)
END-PERFORM
END-IF.
EXIT METHOD.
END METHOD WriteUserStatus.

END CLASS UserlInterface.

The new class and method definitions for the order class:

IDENTIFICATION DIVISION.
CLASS-ID. Orders INHERITS SOMObject.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
* Declare classes used in program
REPOSITORY.
CLASS SOMObject IS 'SOMObject'
CLASS Orders IS 'Orders'.

Chapter 14. Writing Object-Oriented Programs

297

Subclass Example

DATA DIVISION.

* Define instance data
WORKING-STORAGE SECTION.

01 order-number PIC 9(5).

01 order-date PIC X(8).

01 order-count PIC 99.

01 order-table.

02 order-entry OCCURS 10 TIMES.
03 order-item PIC X(5).

PROCEDURE DIVISION.

* Method to intiialize instance data
* - this overrides the default 'somInit' method
IDENTIFICATION DIVISION.

METHOD-ID. ‘'somInit' OVERRIDE.

PROCEDURE DIVISION.
MOVE FUNCTION CURRENT-DATE(1:8) TO order-date.
COMPUTE order-number = FUNCTION RANDOM (99999).
MOVE © TO order-count.
INITIALIZE order-table.
EXIT METHOD.

END METHOD 'somInit'.

* Method to set instance data read by subclass
IDENTIFICATION DIVISION.
METHOD-ID. 'setlInstanceData'.

DATA DIVISION.
LINKAGE SECTION.
01 in-order.
02 in-order-number PIC 9(5).
02 in-order-date PIC X(8).
02 in-order-count PIC 99.
02 in-order-table.
03 in-order-entry OCCURS 10 TIMES.
04 din-order-item PIC X(5).

PROCEDURE DIVISION USING in-order.
MOVE in-order-number TO order-number.
MOVE in-order-date TO order-date.
MOVE in-order-count TO order-count.
MOVE in-order-table TO order-table.
EXIT METHOD.

END METHOD 'setInstanceData'.

* Method to get instance data and give it to subclass
IDENTIFICATION DIVISION.
METHOD-ID. ‘'getlInstanceData'.

DATA DIVISION.
LINKAGE SECTION.

298 VisualAge COBOL Programming Guide

01 out-order.
02 out-order-number PIC 9(5).
02 out-order-date PIC X(8).
02 out-order-count PIC 99.
02 out-order-table.

03 out-order-entry OCCURS 10 TIMES.

04 out-order-item PIC X(5).

PROCEDURE DIVISION USING out-order.
MOVE order-number TO out-order-number.
MOVE order-date TO out-order-date.
MOVE order-count TO out-order-count.
MOVE order-table TO out-order-table.
EXIT METHOD.

END METHOD 'getInstanceData'.

* Method to add an item to an order
IDENTIFICATION DIVISION.
METHOD-ID. AddItem.

DATA DIVISION.

LOCAL-STORAGE SECTION.

77 sub PIC 99.

01 found-flag PIC 9 VALUE 1.
88 found VALUE 0.

LINKAGE SECTION.

01 din-item PIC X(5).

01 add-flag PIC 9.

PROCEDURE DIVISION USING in-item
RETURNING add-flag.
MOVE 1 TO add-flag.
PERFORM VARYING sub FROM 1 BY 1
UNTIL (sub > 10) OR (found)
IF order-item (sub) = SPACES
MOVE in-item TO order-item (sub)
ADD 1 TO order-count
MOVE O TO add-flag
SET found TO TRUE
END-IF
END-PERFORM.
EXIT METHOD.
END METHOD AddItem.

* Method to delete an item from an order
IDENTIFICATION DIVISION.
METHOD-ID. Deleteltem.

DATA DIVISION.
LOCAL-STORAGE SECTION.

77
01

sub PIC 99.
found-flag PIC 9 VALUE 1.

Subclass Example

Chapter 14. Writing Object-Oriented Programs 299

Subclass Example

88 found VALUE 0.
LINKAGE SECTION.
01 out-item PIC X(5).
01 delete-flag PIC 9.

PROCEDURE DIVISION USING out-item
RETURNING delete-flag.
MOVE 1 TO delete-flag.
PERFORM VARYING sub FROM 1 BY 1
UNTIL (sub > 10) OR (found)
IF order-item (sub) = out-item
MOVE SPACES TO order-item (sub)
SUBTRACT 1 FROM order-count
MOVE 0 TO delete-flag
SET found TO TRUE
END-IF
END-PERFORM.
EXIT METHOD.
END METHOD Deleteltem.

* Method to compute the total cost of an order
IDENTIFICATION DIVISION.
METHOD-ID. ComputeCost.

DATA DIVISION.

LOCAL-STORAGE SECTION.

77 sub PIC 99.

77 cost PIC 9(5)V99.
LINKAGE SECTION.

01 total-cost PIC 9(7)V99.

PROCEDURE DIVISION USING total-cost.
MOVE O TO total-cost.
PERFORM VARYING sub FROM 1 BY 1
UNTIL sub > order-count
* Call a subroutine
* NOTE: The subroutine code is not
included in this example.
CALL 'InventoryGetCost'
USING order-item (sub) cost
ADD cost TO total-cost
END-PERFORM.
EXIT METHOD.
END METHOD ComputeCost.

* Method to return the order number
IDENTIFICATION DIVISION.
METHOD-ID. 'getOrderNumber'.

DATA DIVISION.

LINKAGE SECTION.
01 ord-num PIC 9(5).

300 VisualAge COBOL Programming Guide

Subclass Example

PROCEDURE DIVISION RETURNING ord-num.
MOVE order-number TO ord-num.
EXIT METHOD.

END METHOD 'getOrderNumber'.

* Method to write completed order to a file
IDENTIFICATION DIVISION.
METHOD-ID. WriteOrder.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT order-file ASSIGN OrdrFile.

DATA DIVISION.
FILE SECTION.
FD order-file EXTERNAL.
01 order-record PIC X(80).
LOCAL-STORAGE SECTION.
01 print-line.
02 print-order-number PIC 9(5).
02 print-order-date PIC X(8).
02 print-order-count PIC 99.
02 print-order-table.
03 print-order-entry OCCURS 10 TIMES.
04 print-order-item PIC X(5).

PROCEDURE DIVISION.
OPEN OUTPUT order-file.
MOVE order-number TO print-order-number.
MOVE order-date TO print-order-date.
MOVE order-count TO print-order-count.
MOVE order-table TO print-order-table.
WRITE order-record FROM print-line.
CLOSE order-file.
EXIT METHOD.

END METHOD WriteOrder.

END CLASS Orders.

The subclass and method definitions for the new order subclass:

IDENTIFICATION DIVISION.
CLASS-ID. NewOrders INHERITS Orders.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
* Declare classes used in subclass defintion
REPOSITORY.
CLASS NewOrders IS 'NewOrders'
CLASS Orders IS 'Orders'.

Chapter 14. Writing Object-Oriented Programs

301

Subclass Example

DATA DIVISION.

PROCEDURE DIVISION.
* AT1 methods are inherited from superclass
END CLASS NewOrders.

The subclass and method definitions for the back order subclass:

IDENTIFICATION DIVISION.
CLASS-ID. BackOrders INHERITS Orders.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
* Declare classes used in subclass definition
REPOSITORY.
CLASS BackOrders IS 'BackOrders'
CLASS Orders IS 'Orders'.
DATA DIVISION.

PROCEDURE DIVISION.

* Method to read back order from file
IDENTIFICATION DIVISION.
METHOD-ID. ReadOrder.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT backorder-file ASSIGN BackFile.

DATA DIVISION.
FILE SECTION.
FD backorder-file EXTERNAL.
01 backorder-record PIC X(80).
LOCAL-STORAGE SECTION.
01 backorder.

02 backorder-number PIC 9(5).

02 backorder-date PIC X(8).

02 backorder-count PIC 99.

02 backorder-table.

03 backorder-entry OCCURS 10 TIMES.
04 backorder-item PIC X(5).

77 eof-flag PIC 9 VALUE 1.

88 eof VALUE 0.
LINKAGE SECTION.
01 order-number PIC 9(5).

PROCEDURE DIVISION USING order-number.
OPEN INPUT backorder-file.

302 VisualAge COBOL Programming Guide

Subclass Example

PERFORM UNTIL eof
READ backorder-file INTO backorder
AT END
SET eof TO TRUE
NOT AT END
IF order-number = backorder-number
INVOKE SELF 'setInstanceData' USING backorder
END-IF
END-READ
END-PERFORM.
CLOSE backorder-file.
EXIT METHOD.

END METHOD ReadOrder.

* Method to check whether item is still not in stock
IDENTIFICATION DIVISION.
METHOD-ID. CheckItem.

DATA DIVISION.
LOCAL-STORAGE SECTION.

01

77
77

backorder.
02 backorder-number PIC 9(5).
02 backorder-date PIC X(8).
02 backorder-count PIC 99.
02 backorder-table.
03 backorder-entry OCCURS 10 TIMES.
04 backorder-item PIC X(5).
sub PIC 99.
status-flag PIC 9.
88 in-stock VALUE 0.
88 out-stock VALUE 1.

LINKAGE SECTION.

01

01

out-table.

02 out-entry OCCURS 10 TIMES.
03 out-item PIC X(5).

out-count PIC 99.

PROCEDURE DIVISION USING out-table out-count.

*

*

INVOKE SELF 'getInstanceData' USING backorder.
MOVE 0 TO out-count.
PERFORM VARYING sub FROM 1 BY 1

UNTIL sub > backorder-count

Call a subroutine

NOTE: The subroutine code is not

included in this example.

CALL 'InventoryGetItem'
USING backorder-item (sub) status-flag

IF out-stock
ADD 1 TO out-count
MOVE backorder-item (sub) TO out-item (out-count)

END-IF

END-PERFORM.

Chapter 14. Writing Object-Oriented Programs

303

Subclass Example

EXIT METHOD.
END METHOD CheckItem.

END CLASS BackOrders.

A possible new client program:

IDENTIFICATION DIVISION.
PROGRAM-ID. 'PhoneOrders'.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

* Declare the classes used in the program
REPOSITORY.
CLASS NewOrders IS 'NewOrders'
CLASS BackOrders IS 'BackOrders'
CLASS UserInterface IS 'UserInterface'.

DATA DIVISION.
WORKING-STORAGE SECTION.

*

* Declare the object references used in the program
* Note: univObj is a universal object reference

77 univObj USAGE OBJECT REFERENCE.

77 userObj USAGE OBJECT REFERENCE UserInterface.

* Declare other data items used in the program
77 order-number PIC 9(5).
77 total-cost PIC 9(7)V99.
77 out-count PIC 9(2).
77 request PIC X(6).
77 action PIC X(10).
77 flag PIC 9.
77 item PIC X(5).
01 item-table.
02 item-entry OCCURS 10 TIMES.
03 item-element PIC X(5).

PROCEDURE DIVISION.

* Create an instance of the UserInterface class - userObj
INVOKE UserInterface 'somNew' RETURNING userObj.

* %

Read customer input - request
INVOKE userObj 'ReadUserRequest' USING request.

* F

What is the customer's request?
IF request = 'STATUS'
PERFORM CheckBackOrder
ELSE
PERFORM CreateNewOrder

304 VisualAge COBOL Programming Guide

Subclass Example

END-IF.

*
* Free the instance of the UserInterface class - userObj
INVOKE userObj 'somFree'.

STOP RUN.
CreateNewOrder.

* Create an instance of the NewOrders class - univObj
INVOKE NewOrders 'somNew' RETURNING univObj.

Read customer input - action and item
INVOKE userObj 'ReadUserInputl' USING item action.

Begin customer driven loop based on action
PERFORM UNTIL action = 'Quit'

Do appropriate action

IF action (1:3) = 'Add'

INVOKE univObj 'AddItem' USING item

RETURNING flag

ELSE

INVOKE univObj 'Deleteltem' USING item

RETURNING flag

END-IF

Display result of action
INVOKE userObj 'WriteUserMessage' USING OMITTED flag

* Read customer input - action and item
INVOKE userObj 'ReadUserInputl' USING item action
END-PERFORM.
End customer driven Toop based on action

* Calculate the total cost of the order
INVOKE univObj 'ComputeCost' USING total-cost.

Determine the order number
INVOKE univObj 'getOrderNumber'
RETURNING order-number.

* Display information about the order

INVOKE userObj 'WriteUserOutput'
USING total-cost order-number.

Write the order to a file
INVOKE univObj 'WriteOrder'.

Chapter 14. Writing Object-Oriented Programs

305

Writing a Metaclass Definition

* Free the NewOrders instance - univObj
INVOKE univObj 'somFree'.

CheckBackOrder.

*

* Create an instance of the BackOrders class - univObj
INVOKE BackOrders 'somNew' RETURNING univObj.

Read customer input - order number
INVOKE userObj 'ReadUserInput2' USING order-number.

Read the back-ordered information from a file
INVOKE univObj 'ReadOrder' USING order-number.

Check whether the back-ordered items are now in stock
INVOKE univObj 'CheckItem' USING item-table out-count.

Display the status of the back-ordered items
INVOKE userObj 'WriteUserStatus' USING item-table out-count.

Free the BackOrders instance - univObj
INVOKE univObj 'somFree'.

END PROGRAM 'PhoneOrders'.

Writing a Metaclass Definition

A metaclass is a special type of class whose instances are called class-objects. Class-
objects are the run-time objects that represent SOM classes. Object-oriented COBOL
applications either use the default metaclasses provided automatically by the SOM
environment, or explicit metaclass definitions may be provided for specialized purposes.

Metaclasses have their own methods and can have their own instance data. The most
common use of a metaclass is to control how an instance of a class is created. The
method in the metaclass that creates the instance of a class is a constructor method.
Metaclasses are also useful when multiple instances of a class are created and data
must be gathered from all the instances. See the SOMobjects Developer's Toolkit
User's Guide and SOMobjects Developer's Toolkit Programmer's Reference Manual
(available online) for further details on metaclasses and their uses.

In the mail-order catalogue application, BackOrder required the reading of a file to
establish its instance data. Reading the file cannot be done by somInit because an
order number is needed as a parameter. This is a good place to use a metaclass with
a constructor method to create the instance of BackOrder and read the file.

306 VisualAge COBOL Programming Guide

Metaclass ENVIRONMENT DIVISION

Metaclass IDENTIFICATION DIVISION: Required
In the IDENTIFICATION DIVISION of a metaclass, you name the metaclass and
provide inheritance information for it. Optionally, you may give other identifying infor-
mation. For example:

Identification Division. Required
Class-Id. MetaBackOrder INHERITS SOMClass. Required

CLASS-ID Paragraph

The CLASS-ID paragraph names the metaclass and indicates from what base System
Object Model (SOM) class the metaclass inherits. In the example above,
MetaBackOrder is the class name. It inherits from the base SOM class SOMClass. All
metaclasses inherit directly or indirectly from SOMClass.

SOMClass must be specified in the REPOSITORY paragraph in the ENVIRONMENT DIVI-
SION (see “REPOSITORY Paragraph”). MetaBackOrder may optionally be specified in
the REPOSITORY paragraph.

Metaclass ENVIRONMENT DIVISION: Required
In the ENVIRONMENT DIVISION of a metaclass, you relate your metaclass names to
external SOM names. For example:

Environment Division. Required
Configuration Section. Required
Repository. Required

Class MetaBackOrder is 'MetaBackOrder'
Class SOMClass is 'SOMClass'.

REPOSITORY Paragraph
The REPOSITORY paragraph relates your metaclass and class names to the metaclass
and class names in the SOM interface repository. You must include:

¢ SOM base classes.

In the example above, CLASS SOMClass IS 'SOMClass' indicates what you are
calling SOMClass in your COBOL program is also called SOMClass in the SOM
repository.

e User-written classes from which your metaclass is inheriting.
Discussed in “Writing a Subclass Definition” on page 290.
e Any class referenced in methods introduced by the metaclass.
You may optionally include the name of the metaclass you are defining. If you do not
include the name of your metaclass, it is treated as all upper-case regardless of how

you typed it on the CLASS-ID. In the example above, MetaBackOrder is stored in the
SOM interface repository in mixed-case.

Chapter 14. Writing Object-Oriented Programs 307

Metaclass Method PROCEDURE DIVISION

Metaclass DATA DIVISION: Optional
In THE DATA DIVISION of a metaclass, you describe any instance data the metaclass
needs. For example:

Data Division.
Working-Storage Section.
01 total-orders PIC X(3).

A metaclass DATA DIVISION contains only a WORKING-STORAGE SECTION.

WORKING-STORAGE SECTION
A metaclass WORKING-STORAGE SECTION describes instance data that is statically allo-
cated when the first instance of an object in the metaclass is created and exists until
the COBOL run-unit terminates. By default, the data is global to all the methods intro-
duced by the metaclass. Instance data in a COBOL metaclass is private. Thus, it
cannot be referenced directly by any other class or metaclass.

Metaclass PROCEDURE DIVISION: Optional
The metaclass PROCEDURE DIVISION contains only method definitions. A metaclass
definition must be properly terminated with an END CLASS statement. For example:

End Class MetaBackOrder.

marks the end of the MetaBackOrder metaclass.

Metaclass Method IDENTIFICATION DIVISION: Optional
The metaclass method IDENTIFICATION DIVISION is coded in the same way a class
method IDENTIFICATION DIVISION is coded. See “Method IDENTIFICATION DIVISION:
Required” on page 276 for a discussion of the class method IDENTIFICATION DIVISION.

Metaclass Method ENVIRONMENT DIVISION: Optional
The metaclass method ENVIRONMENT DIVISION is coded in the same way a class
method ENVIRONMENT DIVISION is coded. See “Method ENVIRONMENT DIVISION:
Optional” on page 277 for a discussion of the class method ENVIRONMENT DIVISION.

Metaclass Method DATA DIVISION: Optional
The metaclass method DATA DIVISION is coded in the same way a class method DATA
DIVISION is coded. See “Method DATA DIVISION: Optional” on page 277 for a dis-
cussion of the class method DATA DIVISION.

If the same data item is used in both the metaclass DATA DIVISION and the method
DATA DIVISION, a reference in the method to the data name refers to the data item in
the method DATA DIVISION. The method DATA DIVISION takes precedence.

Metaclass Method PROCEDURE DIVISION: Optional

In the PROCEDURE DIVISION of a metaclass method, you code the executable state-
ments to complete the service the method is expected to provide. For the most part, a
metaclass method PROCEDURE DIVISION is coded in the same way a class method

308 VisualAge COBOL Programming Guide

Changes to Client Program

PROCEDURE DIVISION is coded. See “Method PROCEDURE DIVISION: Optional” on
page 278 for a discussion of the class method PROCEDURE DIVISION.

Constructor Method

A metaclass constructor method is usually invoked with a class name so the use of the
following INVOKE form is needed in the constructor method to create an instance of the
class:

Invoke Self 'somNew' Returning anObj.

This creates an instance of the class on which the method was invoked, SELF, and
returns the handle to that instance in the object reference an0Obj.

Method Only: SELF can be used only in a method.

Changes to Class or Subclass Definitions
When a class or subclass uses an explicit metaclass, the name of the metaclass must
be specified with the METACLASS IS clause in the CLASS-ID paragraph. For example:

Identification Division.
Class-Id. BackOrder Inherits Order
Metaclass is MetaBackOrder.

Also, the name of the metaclass must be specified in the REPOSITORY paragraph of the
CONFIGURATION SECTION. For example:

Environment Division.

Configuration Section.

Repository.
Class MetaBackOrder Is 'MetaBackOrder'
Class BackOrder Is 'BackOrder'
Class Order Is 'Order'.

Changes to the Client Program
To use the metaclass constructor method, the client program invokes the constructor
method instead of 'somNew'. For example:

Invoke BackOrder 'CreateObject' Using order-number Returning anObj.

The method CreateObject is defined in the metaclass for BackOrder. This method
invokes somNew to create an instance, reads the data from the file using the order
number, and returns the handle to the instance in the object reference anObj. See
“Complete Metaclass with Methods Example” on page 310 for a detailed example of
using a metaclass constructor method.

Any method in a metaclass can be invoked with the class name. For example:

Invoke BackOrder 'CountOrders'.

Or, a metaclass object reference can be defined as a handle to the metaclass. For
example:

Working-Storage Section.
01 metaObj Usage Object Reference Metaclass BackOrder.

Chapter 14. Writing Object-Oriented Programs 309

Metaclass Example

The object reference metaObj is a handle to the metaclass for BackOrder, not a handle
to BackOrder itself.

The metaclass object reference is used as follows:

Procedure Division.

Invoke backObj 'somGetClass' Returning metaObj.
Invoke metaObj 'CountOrders'.

The first INVOKE statement invokes a SOM method somGetClass which takes an object
reference, backObj, to an instance and returns an object reference, metaObj, for the
metaclass to which back0Obj belongs.

The second INVOKE statement uses the object reference to the metaclass, metaObj to
invoke the method CountOrders which is defined in the metaclass. See “Complete
Metaclass with Methods Example” for a detailed example of using a metaclass method.

Complete Metaclass with Methods Example
The metaclass and method definitions for the back order subclass:

IDENTIFICATION DIVISION.
CLASS-ID. MetaBackOrders INHERITS SOMClass.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
* Declare classes used in metaclass definition
REPOSITORY.
CLASS MetaBackOrders IS 'MetaBackOrders'
CLASS BackOrders IS 'BackOrders'
CLASS SOMClass IS 'SOMClass'.

DATA DIVISION.

* Define instance data
WORKING-STORAGE SECTION.
01 status-count PIC 99.
PROCEDURE DIVISION.

* Method to initialize instance data
IDENTIFICATION DIVISION.
METHOD-ID. ‘'somInit' OVERRIDE.

PROCEDURE DIVISION.
MOVE 0 TO status-count.
EXIT METHOD.

END METHOD 'somInit'.

* Method to create and initialize instances of BackOrders

IDENTIFICATION DIVISION.
METHOD-ID. CreateBackOrders.

310 VisualAge COBOL Programming Guide

Metaclass Example

DATA DIVISION.

LINKAGE SECTION.

01 order-number PIC 9(5).

01 anObj USAGE OBJECT REFERENCE.

PROCEDURE DIVISION USING order-number RETURNING anObj.
INVOKE SELF 'somNew' RETURNING anObj.
INVOKE anObj 'ReadOrder' USING order-number.
ADD 1 TO status-count.
EXIT METHOD.
END METHOD CreateBackOrders.

* Method to return the number of back orders processed
IDENTIFICATION DIVISION.
METHOD-ID. CountBackOrders.

DATA DIVISION.
LINKAGE SECTION.
01 out-count PIC 9(2).

PROCEDURE DIVISION RETURNING out-count.
MOVE status-count TO out-count.
EXIT METHOD.

END METHOD CountBackOrders.

END CLASS MetaBackOrders.

The new subclass and method definitions for the back order subclass:

IDENTIFICATION DIVISION.
CLASS-ID. BackOrders INHERITS Orders
METACLASS MetaBackOrders.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
* Declare classes used in subclass definition
REPOSITORY.
CLASS MetaBackOrders IS 'MetaBackOrders'
CLASS BackOrders IS 'BackOrders'
CLASS Orders IS 'Orders'.

DATA DIVISION.

PROCEDURE DIVISION.
* Method to read back order from file
IDENTIFICATION DIVISION.

METHOD-ID. ReadOrder.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.

Chapter 14. Writing Object-Oriented Programs

311

Metaclass Example

FILE-CONTROL.
SELECT backorder-file ASSIGN BackFile.

DATA DIVISION.
FILE SECTION.
FD backorder-file EXTERNAL.
01 backorder-record PIC X(80).
LOCAL-STORAGE SECTION.
01 backorder.

02 backorder-number PIC 9(5).

02 backorder-date PIC X(8).

02 backorder-count PIC 99.

02 backorder-table.

03 backorder-entry OCCURS 10 TIMES.
04 backorder-item PIC X(5).

77 eof-flag PIC 9 VALUE 1.

88 eof VALUE 0.
LINKAGE SECTION.
01 order-number PIC 9(5).

PROCEDURE DIVISION USING order-number.
OPEN INPUT backorder-file.
PERFORM UNTIL eof
READ backorder-file INTO backorder
AT END
SET eof TO TRUE
NOT AT END
IF order-number = backorder-number
INVOKE SELF 'setInstanceData' USING backorder
END-IF
END-READ
END-PERFORM.
CLOSE backorder-file.
EXIT METHOD.
END METHOD ReadOrder.

* Method to check whether item is still not in stock
IDENTIFICATION DIVISION.
METHOD-ID. CheckItem.

DATA DIVISION.
LOCAL-STORAGE SECTION.
01 backorder.

02 backorder-number PIC 9(5).

02 backorder-date PIC X(8).

02 backorder-count PIC 99.

02 backorder-table.

03 backorder-entry OCCURS 10 TIMES.
04 backorder-item PIC X(5).

77 sub PIC 99 VALUE 0.
77 status-flag PIC 9.

88 in-stock VALUE 0.

312 VisualAge COBOL Programming Guide

Metaclass Example

88 out-stock VALUE 1.
LINKAGE SECTION.
01 out-table.
02 out-entry OCCURS 10 TIMES.
03 out-item PIC X(5).
01 out-count PIC 99.

PROCEDURE DIVISION USING out-table out-count.
INVOKE SELF 'getInstanceData' USING backorder.
MOVE @ TO out-count.
PERFORM VARYING sub FROM 1 BY 1
UNTIL sub > backorder-count
* Call a subroutine
* NOTE: The subroutine code is not
* included in this example.
CALL 'InventoryGetItem'
USING backorder-item (sub) status-flag
IF out-stock
ADD 1 TO out-count
MOVE backorder-item (sub) TO out-item (out-count)
END-IF
END-PERFORM.
EXIT METHOD.
END METHOD CheckItem.

END CLASS BackOrders.

A possible new client program:

IDENTIFICATION DIVISION.
PROGRAM-ID. 'PhoneOrders'.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

* Declare the classes used in the program
REPOSITORY.
CLASS NewOrders IS 'NewOrders'
CLASS BackOrders IS 'BackOrders'
CLASS UserInterface IS 'UserInterface'.

DATA DIVISION.
WORKING-STORAGE SECTION.

*
* Declare the object references used in the program
77 univObj USAGE OBJECT REFERENCE.
* Note: metaObj is an object reference to a metaclass
77 metaObj USAGE OBJECT REFERENCE METACLASS BackOrders.
77 userObj USAGE OBJECT REFERENCE UserInterface.
*

* Declare other data items used in the program
77 order-number PIC 9(5).
77 total-cost PIC 9(7)Vv99.

Chapter 14. Writing Object-Oriented Programs

313

Metaclass Example

77
77
77
77
77
01

out-count PIC 9(2).

request PIC X(6).

action PIC X(10).

flag PIC 9.

item PIC X(5).

item-table.

02 item-entry OCCURS 10 TIMES.
03 item-element PIC X(5).

PROCEDURE DIVISION.

*

*

* o

*

Cr
*
*

Create an instance of the UserInterface class - userObj

INVOKE UserInterface 'somNew' RETURNING userObj.

Read customer input - request
INVOKE userObj 'ReadUserRequest' USING request.

What is the customer's request?
IF request = 'STATUS'
PERFORM CheckBackOrder
ELSE
PERFORM CreateNewOrder
END-IF.

Free the instance of the UserInterface class - userObj

INVOKE userObj 'somFree'.
STOP RUN.
eateNewOrder.

Create an instance of the NewOrders class - univObj
INVOKE NewOrders 'somNew' RETURNING univObj.

Read customer input - action and item
INVOKE userObj 'ReadUserInputl' USING item action.

Begin customer driven loop based on action
PERFORM UNTIL action = 'Quit'

Do appropriate action

IF action (1:3) = 'Add'

INVOKE univObj 'AddItem' USING item

RETURNING flag

ELSE

INVOKE univObj 'Deleteltem' USING item

RETURNING flag

END-IF

Display result of action

314 visualAge COBOL Programming Guide

Metaclass Example

INVOKE userObj 'WriteUserMessage' USING OMITTED flag

Read customer input - action and item
INVOKE userObj 'ReadUserInputl' USING item action
END-PERFORM.
End customer driven Toop based on action

Calculate the total cost of the order
INVOKE univObj 'ComputeCost' USING total-cost.

Determine the order number
INVOKE univObj 'getOrderNumber'
RETURNING order-number.

Display information about the order
INVOKE userObj 'WriteUserOutput'
USING total-cost order-number.

Write the order to a file
INVOKE univObj 'WriteOrder'.

* Free the NewOrders instance - univObj
INVOKE univObj 'somFree'.

CheckBackOrder.

* Read customer input - order number
INVOKE userObj 'ReadUserInput2' USING order-number.

Begin customer driven loop based order number
PERFORM UNTIL order-number < 0

* Create an instance of the BackOrders class (univObj) and
* read the back order from a file using a metaclass method
INVOKE BackOrders 'CreateBackOrders'
USING order-number RETURNING univObj

Check whether the back-ordered items are now in stock
INVOKE univObj 'CheckItem'
USING item-table out-count

Display the status of the back-ordered items
INVOKE userObj 'WriteUserStatus'
USING item-table out-count

Read customer input - order number
INVOKE userObj 'ReadUserInput2’

Chapter 14. Writing Object-Oriented Programs 315

Metaclass Example

USING order-number
END-PERFORM.
End customer driven loop based on order number

Get an object reference to the metaclass
Note: 'somGetClass' is a SOM method
INVOKE univObj 'somGetClass' RETURNING metaObj.

How many back orders were processed?
Note: Metaclass object reference to invoke metaclass method
INVOKE metaObj 'CountBackOrders' RETURNING out-count.

Display number of back orders processed
INVOKE userObj 'WriteUserMessage' USING out-count OMITTED.

Free the metaclass instance - metaObj
Note: This also frees all BackOrders instances
INVOKE metaObj 'somFree'.

END PROGRAM 'PhoneQOrders'.

Others the Same: Other programs stay the same as the subclass example on page
294.

316 VisualAge COBOL Programming Guide

SOM Interface Repository

Chapter 15. Using System Object Model (SOM)

System Object Model (SOM) is an object-oriented programming technology that allows
class implementers to describe the interface for a class in a standard language called
the Interface Definition Language (IDL). Unlike the object model found in most other
object-oriented programming languages, SOM is language-neutral. It preserves the key
object-oriented programming characteristics of encapsulation, inheritance, and
polymorphism without requiring the implementer of a SOM class and user of a SOM
class to use the same programming language.

Note: The object-oriented COBOL language support is based on OS/390 SOMobjects.
This support is not available on VM/CMS.

SOM Interface Repository

The SOM Interface Repository (IR) is a database in which the SOM Compiler optionally
creates and maintains class interface definitions. The SOM IR is used by the COBOL
compiler when compiling object-oriented COBOL programs. When compiling a class
definition or client program with the IDLGEN or the TYPECHK option, the interface infor-
mation for referenced classes must be present in the IR. (All referenced classes are
declared in the REPOSITORY paragraph of the CONFIGURATION SECTION.)

Accessing the IR
The interface repository files to be used are specified outside the COBOL program
using a SOM environment variable. The environment variable that specifies the IR is
SOMIR. This environment variable is set as follows:

set SOMIR=c:\mydir\mycls.ir

If you do not set the SOMIR environment variable, the IR emitter creates a file named
“som.ir” in the current directory.

set SOMIR=c:\som\som.ir;c:\dept\dept.ir;c:\work\work.ir

In this case, som.ir is SOM's IR that is not updated, dept.ir is a stable department IR
that is not updated, and work.ir is the working IR that is updated.

Note: You may need to update the SOMIR environment variable if you delete and
reinstall IBM VisualAge COBOL, or install another product that updates it.

You may set SOMIR at the time you use it; however, it is easier to put the statement in
the above example into your CONFIG.SYS (OS/2) or AUTOEXEC.BAT (Windows 95) file
or set it in the System window (Windows NT). For more information see the Interface
Repository chapter of the SOMobjects Developer's Toolkit User's Guide (available
online).

Populating the IR

The IR can be populated with interface information from COBOL classes via the fol-
lowing procedure:

© Copyright IBM Corp. 1996, 1998 317

SOM Environment Variables

1. Compile the COBOL class definition with the COBOL compiler, specifying the
IDLGEN compiler option.

2. Compile the IDL source files with the SOM compiler, using the IR emitter.

Some COBOL class definitions with complex interdependencies may have to be com-
piled in two steps. For example, there may be circular compilation order dependencies,
such as when two class definitions each contain references to the other. Such complex
configurations may be compiled with the following procedure:

1. Compile all of the COBOL class definition source files with the IDLGEN,
NOTYPECHK, and NOCOMPILE compiler options. This generates IDL files for the
class interfaces, but does not perform type checking or generate an object file.

2. Compile the IDL files with the SOM compiler, using the IR emitter. This populates
the IR with the class interface information.

3. Compile the COBOL class definitions again, with the NOIDLGEN and TYPECHK
compiler options. This final compile performs full type checking and generates

object files.

Compiling IDL Files
Compile IDL files and populate the IR using the SOM Compiler (for example, SC
command or JCL procedure) with the -usir option. For example:

sc -usir myclass.idl

The SOM Compiler, sc, is started with the file myclass.idl and -usir option, which
means update the IR. The rightmost IR file in the SOMIR list is the one updated.

SOM Environment Variables

The following environment variables specify information that is needed by the SOM
compiler, interface repository framework, and run time. For full details, see SOMobjects
Developer's Toolkit User's Guide (available online).

SMINCLUDE

SMTMP

SMEMIT

Specifies where to look for #include files included by the .idl file being
compiled.

set SMINCLUDE=.;c:\toolkt20\include;c:\som\include

Specifies where to put intermediate output files. This directory should
not be the same as the ones where input and output files are located.

set SMTMP=c:\tmp\garbage
Specifies which emitters the SOM compiler runs.

For a COBOL class the most frequent emitter is the .h emitter which
produces a header file for use by a C client of the COBOL class.

set SMEMIT="h"
For example, the following series of statements

set SMEMIT="h"
sc -usir myclass.idl

318 VisualAge COBOL Programming Guide

SOM Services

directs the SOM Compiler to produce 'myclass.h’, and populate the IR
from the 'myclass.idl' input specification.

SOMIR Specifies the location of the interface repositories.

set SOMIR=c:\mydir\mycls.ir

As with the SOMIR environment variable, you can type these environment variables
when you need them. However, it is easier to put the above “set” statements in your
CONFIG.SYS file (OS/2) or AUTOEXEC.BAT (Windows 95) file or set them in the System
window (Windows NT). For more information see the SOM Compiler chapter of the
SOMobjects Developer's Toolkit User's Guide (available online).

System Object Model (SOM) Services

IBM COBOL implements a subset of the ANSI Object-Oriented COBOL syntax based
on the SOM object-oriented engine. Not all essential object-oriented capabilities are
implemented in native COBOL syntax. Instead, SOM application programming inter-
faces, methods and functions are used. For example, native COBOL syntax is avail-
able for class definitions, object-reference datatype, and method invocation. However
object creation, destruction, initialization, and termination are handled by invoking SOM
methods provided by the SOMObject and SOMClass classes. Many other SOM facilities
are available to COBOL programmers either for direct use or for overriding and custom-
izing. These are described in SOMobjects Developer's Toolkit User's Guide (available
online).

SOM Methods and Functions

The following SOM methods and function are especially important to COBOL
programmers:

somNew A method in SOMClass to create a new object instance of a class.
During creation, somInit is invoked for customized initialization of the
object.

somFree A method in SOMObject to free an object instance releasing the
storage used. Prior to freeing storage, “somUninit” is invoked for cus-
tomized uninitialization.

somFree must not be invoked to destroy an active object, that is, an
object upon which a method has been invoked that has not yet
returned control to the invoker.

somlnit A method in SOMObject that has no default function, but may be over-
ridden explicitly in a COBOL class definition to perform customized
initializations when an object is created.

somUninit A method in SOMObject that has no default function, but may be over-
ridden explicitly in a COBOL class definition to perform customized
uninitialization (typically the inverse of the function performed by a
customized somInit).

Chapter 15. Using System Object Model (SOM) 319

SOM Services

somGetClass A method in SOMObject that returns an object reference for the class-
object associated with the metaclass of an object.

somlsObj A function that determines whether an object-reference refers to a
valid object.

“somlsObj” returns a Boolean. While COBOL has no BOOLEAN data
type, COBOL programmers can declare the return value as PIC X and
test the value using a symbolic character or hex literal.

Data Division.
Working-Storage Section.
01 somBoolean Pic X.
88 invalid-obj Value X'00'.
88 valid-obj Value X'01'.
Procedure Division.

Call 'somIsObj' Using By Value anObj Returning somBoolean.
If invalid-obj

Display 'Object reference does not refer to a valid object'
End-if.

Function Note: When compiling a program that calls a SOM function, such as
somlsObj:

¢ The PGMNAME(MIXED) compiler option must be specified, because the APl names
are case-sensitive. Otherwise, the compiler will translate somIsObj to SOMISOBJ,
and you will get an unresolved external reference.

e The SOM API functions use the SYSTEM linkage convention. Hence the
CALLINT(SYSTEM) compiler option or the >>CALLINT SYSTEM directive must be in
effect for the CALL statement.

Your invocations of SOM methods does not require any special considerations; the
correct linkage conventions are used automatically for method invocations.

SOM lInitialization
During initialization of programs using object-oriented features, the COBOL run-time
system automatically initializes the SOM environment and creates class-objects for
classes referenced in the application. Application programmers do not have to perform
these initializations manually.

Class Initialization
The SOM architecture specifies that every SOM class exports an initialization function
<classname>NewClass. Normally COBOL programmers do not use this function directly,
but the function is available on all COBOL classes. The COBOL run-time system auto-
matically initializes all classes referenced within a COBOL program by calling their class
initialization functions prior to the execution of the first user-written COBOL statement in
the PROCEDURE DIVISION.

320 VisualAge COBOL Programming Guide

SOM Services

The class initialization function has a case-sensitive name, thus any COBOL program
that explicitly calls a class-initialization function must be compiled with
PGMNAME(LONGMIXED).

If an external class-name is specified in the REPOSITORY paragraph for a class, then
the external class-name is used to form the initialization function name. If an external
class-name is not specified in the REPOSITORY paragraph for a class, then the class-
name declared is processed to form a CORBA-compliant external class name and this
name is used to form the class initialization function. In a CORBA-compliant external
class-name:

e The name is folded to upper case
¢ Hyphens in the name are translated to zero (0)
¢ |[f the first character in the name is a digit

— 1 through 9 are translated to A through |

— O s translated to J

For example:

Identification Division.
Class-Id. Employee inherits SOMObject.
Environment Division.
Configuration Section.
Repository.
CTass SOMObject is class "SOMObject".

End-Class Employee.

The class initialization function names in the above cases are:
EMPLOYEENewClass
SOMObjectNewClass

and

Identification Division.
Class-Id. Employee inherits SOMObject.
Environment Division.
Configuration Section.
Repository.
Class Employee is class "Employee"
Class SOMObject is class "SOMObject".

End-Class Employee.

The class initialization function names in the above cases are:
EmployeeNewClass
SOMObjectNewClass

Class Interface Evolution
One of the benefits of SOM is that classes can undergo changes over time and retain
backward binary compatibility, that is, not require recompilation of programs and
classes that reference the changed class. Changes that can be made to classes
without recompilation requirements include:

Chapter 15. Using System Object Model (SOM) 321

SOM Services

1. Adding new methods.

2. Changing the size of an object by adding or deleting instance data.

3. Inserting new parent classes above a class in the inheritance hierarchy.
4

. Relocating methods upward in the class hierarchy.

The SOM engine provides several alternative mechanisms for method resolution (see
SOMobjects Developer's Toolkit User's Guide (available online) for details). 1BM
COBOL uses SOM name-lookup resolution to invoke methods. Thus when COBOL
methods are invoked from COBOL code, the somewhat more stringent recompilation
requirements of the SOM offset-resolution mechanism are not applicable. For example,
COBOL methods that are invoked with COBOL INVOKE statements are not subject to
the restriction in item four above. A COBOL method may be relocated anywhere in a
class hierarchy without requiring recompilation of the COBOL programs that invoke the
method.

Methods defined in COBOL classes may be invoked from other languages, such as C
code built with the SOM C emitter, that use offset-resolution. In this case, the standard
SOM requirements apply. Note that COBOL does not provide language comparable to
the SOM “release-order” mechanism, which is used to ensure methods can be added to
a class definition without requiring recompilation of code that invokes the methods using
offset-resolution. When adding methods to an existing COBOL class, it is recom-
mended that the new methods be added at the end of the PROCEDURE DIVISION of the
class definition, after all of the existing methods. This will ensure that any existing code
invoking the original methods does not require recompilation.

322 VisualAge COBOL Programming Guide

SOM Objects

Chapter 16. Using SOM IDL-Based Class Libraries

This chapter is intended for COBOL programmers who want to use SOM IDL-based®
class libraries, either as clients of the class, or by specializing the class using sub-
classing.

The chapter assumes that you understand the System Object Model (SOM), at least
conceptually, and know where to find more detailed documentation about SOM when
you need it. It also assumes that you have access to the documentation for the partic-
ular class library that you are intending to use.

To get started, you need one of the object-enabled IBM COBOL products, together with
the executables for the class library, plus its documentation, as above.

SOM Objects—a Refresher

A SOM class library consists of executable code and interface information that defines
the operations that the library supports, including the parameters for invoking the
operations—known as the operation “signatures.”

When the library is being used at run time, the components that are present in memory
are illustrated in Figure 65.

Figure 65. Run-time Components of a SOM Class Library. The example also shows the COBOL
components that are using the library.

l COBOL app l«—»—{ Class library l
‘ SOM Kernel ’—‘ C/COBOL run-time '

‘ Operating System ‘

6 There are various forms of Interface Definition Language (IDL), such as those for the Distributed Computing Environment (DCE) or
the Object Management Group's Common Object Request Broker Architecture (OMG CORBA), but in this chapter, we shall be
concerned only with IBM's System Object Model Interface Definition Language (SOM IDL). SOM IDL is consistent with CORBA but
also allows some additional data types, such as pointers, that are not included in CORBA.

© Copyright IBM Corp. 1996, 1998 323

Mapping IDL to COBOL

SOM IDL
The interface information for a SOM class library may be in various forms:
* |DL files;
¢ An Interface Repository (IR)—a machine-readable form of IDL, used during compi-
lation;

e A book or on-line documentation describing the interfaces in IDL, together with
operational descriptions of the methods.

IDL expresses the contract between the provider of object services, in this case the
class library, and the user of these services: the COBOL program, method or subclass.
The interface description is formally independent of the language in which either the
user of the service or the service itself is implemented. This property is known as
“language-neutrality.” The separation of the interface from the implementation also
allows flexibility in the deployment of the objects on the nodes of a network.

IDL data types have their origins in the C and C++ data model. Because many of them
do not have an exact counterpart in the COBOL language, there needs to be a trans-
lation or “mapping” between IDL and COBOL. The mapping recommended here makes
the explicit assumption that the data structures may be passed directly’” between the
COBOL and C/C++ mappings to SOM IDL.

Mapping IDL to COBOL

To use an IDL-based class library from COBOL, you must be able to map the elements
of IDL in which it is expressed into the COBOL language. Typically, you find the
description of the class library in a user's guide and reference, containing not only the
guidelines for using the class library, but also the calling sequences for the individual
methods expressed in SOM IDL. This, and the following sections, tell you how to map
these IDL definitions into COBOL:

e “IDL Identifiers” on page 325 describes how to map IDL identifiers to COBOL
names.

e “IDL Operations” on page 325 introduces IDL operations, which are described in
more detail in “Operation Example” on page 342.

e “IDL Attributes” on page 326 explains how to express IDL attributes in COBOL.

e “Common IDL Types” on page 327 covers the “normal” IDL elements that virtually
all interfaces use.

7 The standard CORBA model presumes a “stub” routine between the invoking and invoked object to do argument translation,
marshalling, and so on. Passing the structures directly yields very significant gains in efficiency, but it also means that some of the
mappings may not seem as “natural” to the COBOL programmer as they would be if the transfer were mediated by a stub routine. It
also means that you must ensure that you have the correct alignment and padding of any structures that are passed across an
interface. In general the recommended way to achieve this for IDL-based interfaces is to specify the SYNCHRONIZED clause for
COBOL mappings to any IDL structs or arrays that directly contain structs

324 VisualAge COBOL Programming Guide

