
Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM D
ra

ft

Developer 's Guide

Validator for

OS/2 Version 1.0

Advanced 32-Bit OS/2® Application Development Support

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Information in this document is subject to change without notice and does not represent a
commitment on the part of Prominare Inc. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is against the law to copy the software on
magnetic tape, disk, or any other medium for any purpose other than the purchaser's personal
use. No part of this manual may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose without the
express written permission of Prominare Inc.

Borland® is a registered trademark of Borland International Inc..
IBM ® and OS/2® are registered trademarks of IBM Corp.
WATCOM ™ is a trademark of WATCOM Internation Corporation
Zortech® is a registered trademark of Symantec Corporation

Copyright © 1992, 1993, 1994 Prominare Inc.
All Rights Reserved.

Prominare Inc.
100 Front Street East
Toronto, Ontario
Canada
M5A 1E1

Document: 19940402-011-100-DG

T a b l e o f C o n t e n t s

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

Section One: Installation... 1

Introduction ...1
How to Begin...7
Conventions...8

Section Two: Overview ... 9

Validator methodology...10
Error code construction..10
OS/2 - Validator architecture11
Using Validator ...14
Logging file support...15
Dynamic initialization ...16
ViewPort..17
Application preparation ...20

Section 3: API's .. 27

ValFilterErr ...30
ValInitialize...55
ValLogging..57
ValQueryClassMsgMonitor..58
ValQueryLogging ..59
ValRegisterClassMsgMonitor59

Section 4: Using ViewPort ... 63

Menus..72
Action bar menu ..72
File menu...72
Find menu ...73
Filter menu ..73
Lookup menu...74
Window menu ...74
Help menu ...74
Window-list menu ...75
Configuring ViewPort..75
File support..79
Printing error and filter information.............................82
Finding errors or API's ..85
Filtering errors...88
Error lookup ..91

Section 5: Interpreting Results .. 95

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Introduction ...95
Basic logic example ...95
Repeatative search example..96
View results ...99
Adapting applications ..100

Appendix A: Technical Requirements 101

Appendix B: System Calling Conventions 102

Index 105

L i s t o f P l a t e s , F i g u r e s a n d T a b l e s

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

Plates

Plate 1.1 Welcome panel ... 2
Plate 1.2 Source Drive dialogue... 2
Plate 1.3 Target Directories ... 3
Plate 1.4 Installation Progress Window.. 5
Plate 1.5 Config.Sys Update dialogue .. 6
Plate 1.6 Reboot dialogue .. 6
Plate 1.7 Revise Config.Sys dialogue ... 7
Plate 1.8 View Documentation dialogue .. 7
Plate 1.9 Installation Complete dialogue.. 7
Plate 2.1 ViewPort window ... 18
Plate 2.2 Error info window... 19
Plate 2.3 Error information window showing a parameter error 20
Plate 4.1 ViewPort not running message ... 63
Plate 4.2 ViewPort window ... 64
Plate 4.3 Threads.Exe error window .. 65
Plate 4.4 Error Info window .. 67
Plate 4.5 ViewPort action bar .. 70
Plate 4.6 File menu.. 70
Plate 4.7 Find menu .. 71
Plate 4.8 Filter menu ... 71
Plate 4.9 Lookup menu.. 72
Plate 4.10 Window menu... 72
Plate 4.11 Help menu .. 73
Plate 4.12 Window-list menu... 73
Plate 4.13 ViewPort Configure dialogue showing Options notebook page.......................... 74
Plate 4.14 ViewPort Configure dialogue - Colours notebook page...................................... 75
Plate 4.15 ViewPort Configure dialogue - Alarms notebook page 76
Plate 4.16 File Open dialogue.. 77
Plate 4.17 File Save As dialogue.. 79
Plate 4.18 File Print dialogue showing Range notebook page... 80
Plate 4.19 File Print dialogue - Margins notebook page ... 81
Plate 4.20 File Print dialogue - Header/Footer notebook page .. 82
Plate 4.21 Printer Setup dialogue... 83
Plate 4.22 Find API dialogue... 83
Plate 4.23 Find Error dialogue... 85
Plate 4.24 Filter Preload dialogue .. 88
Plate 4.25 Lookup Error dialogue .. 89
Plate 4.26 Lookup Error Description dialogue ... 91
Plate 5.1 Rectangle drawing zone .. 93
Plate 5.2 Original dialogue .. 98
Plate 5.3 Revised dialogue ... 98

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Figures

Figure 2.1 DosOpen API ... 9
Figure 2.2 Error code layout Dos*, Prt*, some Spl*, Pen for OS/2 and

MMPM/2 calls .. 10
Figure 2.3 Error code layout Ddf*, Dev*, Drg*, Gpi*, Pic*, Prf*, some Spl*

and Win* calls .. 10
Figure 2.4 Adapted error code layout Dos*, Prt*, some Spl*, Pen for OS/2 and

MMPM/2 calls .. 10
Figure 2.5 Adapted error code layout Ddf*, Dev*, Drg*, Gpi*, Pic*, some Spl*

and Win* calls .. 10
Figure 2.6 OS/2 application architecture .. 11
Figure 2.7 OS/2 application architecture with validation support 11
Figure 2.8 DosCreateDir calling sequence .. 12
Figure 2.9 DosCreateDir calling sequence with validation support.................................... 12
Figure 2.10 WinInitialize calling sequence ... 13
Figure 2.11 WinInitialize calling sequence with validation support..................................... 14
Figure 2.12 ValInitialze definition .. 15
Figure 2.13 ASCII error log data ... 15
Figure 2.14 ASCII error log data ... 15
Figure 2.15 Dynamic initialization... 16
Figure 2.16 Dynamic initialization... 17
Figure 2.17 DosCreateDir calling sequence with validation and ViewPort support 17
Figure 2.18 Validation API usage .. 21
Figure 2.19 Simple example .. 21
Figure 2.20 Example.Def ... 22
Figure 2.21 Compile and link instructions ... 22
Figure 2.22 Revised compile and link instructions ... 22
Figure 2.23 Revised example ... 22
Figure 2.24 Revised compile and link instructions ... 23
Figure 2.25 Revised compile and link instructions ... 23
Figure 3.1 API usage ... 27
Figure 3.2 Logging file usage... 29
Figure 3.1 API usage ... 61
Figure 4.1 DosCreateDir API ... 62
Figure 4.3 DosCreateDir API preprocessed resultredefinition ... 62
Figure 5.1 Text drawing code... 93
Figure 5.2 Revised text drawing code... 94
Figure 5.3 Directory retrieval example - typical coding .. 95
Figure 5.4 Directory retrieval example - optimized coding ... 96
Figure 5.5 Prf* example... 97
Figure 5.6 DosFreeMem example ... 97
Figure 5.7 Original check box code.. 98
Figure B.1 C source code.. 101

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Figure B.2 Resultant assembler source code produced by the IBM C Set++
compiler.. 101

Figure B.3 Resultant assembler source code produced by the WATCOM C/C++³²
compiler.. 102

Tables

Table 1.1 Installation paths .. 3
Table 1.2 Compiler selections... 4
Table 1.3 Conventions.. 8
Table 2.1 Control DLL's... 23
Table 2.2 Validation DLL's .. 23
Table 2.3 Validation DLL's which include filename and line numbers.............................. 24
Table 2.4 Validation headers .. 24
Table 4.1 Colour options .. 64
Table 4.2 Error Info window general items... 67
Table 4.3 Error Info window error items... 69
Table 4.4 Action Bar menu items ... 70
Table 4.5 File menu items .. 71
Table 4.6 Find menu items ... 71
Table 4.7 Filter menu items.. 72
Table 4.8 Lookup menu items... 72
Table 4.9 Window menu items ... 72
Table 4.10 Help menu items ... 73
Table 4.11 Error window options.. 74
Table 4.12 App registration options.. 74
Table 4.13 Colour options .. 75
Table 4.14 Alarms.. 76
Table 4.15 File types .. 78
Table 4.16 File types .. 79
Table 4.17 Printout types.. 80
Table 4.18 API family types ... 83
Table 4.19 Error family types ... 85
Table 4.20 API family types ... 90
Table 4.21 Error family types ... 92

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

s e c t i o n o n e

Installation

Validator is a full functioning, professional programming analysis tool
specifically designed for your needs; that of a professional programmer
using the OS/2 2.x environment. Validator has been designed for speed
and ease of use in helping you locate problems within your applications
without having to utilize a debugger or writing specilized code.
Validator provides additional information on errors or possible errors
when you use the 32-bit OS/2 API's.

Validator allows you to monitor, through its ViewPort tool, error return
codes along with parameter violations. This allows you to run your
applications as you would normally while benefiting from the ability of
knowing when and where an OS/2 API failed with the exact error code.

You will find that by using Validator, your approach to building your
application is greatly simplified since you can receive exact information
why something failed including the line number within the source file.
Situations where you may have spent long hours tracking down a
problem can now be solved in a matter of minutes especially if that
problem involved an OS/2 API.

To install the Validator onto the hard disk of your computer, place the
first package diskette in Drive A:, start an OS/2 command prompt
session and type the following:

a: ↵↵ ENTER

install ↵↵ ENTER

2 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

The installation program will first display the welcoming panel, as
shown in Plate 1.1.

It will then display a dialogue, as shown in Plate 1.2, for the source drive
that will be used to read the program files from. You can change the
default drive to another diskette drive if you desire.

Again, you can press the ENTER key or click the mouse pointer on the
Continue push button. This will cause the Target Directories dialogue,
Plate 1.3, to be displayed. It is through this dialogue that you indicate
where you want to place the Validator files and will automatically
provide default locations. You can change them if you want to place the
files into different directories or on another drive on your hard disk. The
locations entered will be recorded so that the next time you update the
applications, the directories entered will be automatically selected.

Plate 1.1
Welcome panel

Plate 1.2
Source Drive dialogue

I n s t a l l a t i o n 3
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

The entry fields are labeled as:

Entry Field Purpose

ViewPort Location where the ViewPort application files
will be placed.
Default: C:\Validatr

Help Location where help files will be placed.
Default: C:\Validatr\Help

DLL Location where Validator .DLL files will be
placed.
Default: C:\Validatr\DLL

Include Location where include header files will be
placed. This should be the location where your
OS/2 toolkit include files are located.
Default: C:\Toolkt21\C\OS2H

Plate 1.3
Target Directories

dialogue

Table 1.1
Installation paths

4 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Entry Field Purpose

MMPM/2 include Location where include header files will be
placed utilized by the MMPM/2 toolkit. This
should be the location where the MMPM/2
include files are located.
Default: C:\MMOS2\MMToolkt\H

Pen for OS/2 include Location where include header files will be
placed utilized by the Pen for OS/2 toolkit. This
should be the location where the Pen for OS/2
include files are located.
Default: C:\TlktPPM\H

Library Location where the import libraries for Validator

are to be placed.
Default: C:\Toolkt21\OS2Lib

You can from this dialogue also instruct the installation program to
create a program folder
that will contain
ViewPort and the
example applications.
By selecting the Create
new folder option, the
program folder will be
created.

Also, you need specify
the compiler you are
using to allow the
proper .DLL's to be
installed. There are slight differences in how the different compilers
comply with the system API calling conventions which dictate different
versions of the validation .DLL's. These differences will be explained in
Appendix B (see page 102). The following options are provided:

Radio Button Compiler

IBM C Set/2 or IBM C Set/2 Version 1.0 or IBM C Set++
C Set++ Version 2.0.

Borland C++ for OS/2 Borland C++ for OS/2 Version 1.0 or 1.5

WATCOM C/386 or WATCOM C/386 Version 9.0 or WATCOM
C++³² C/C++³² Version 9.5.

Zortech C++ for OS/2 Zortech C++ for OS/2 Version 3.1.

N O T E
You do not require MMPM/2 or Pen

for OS/2 to be able to use Validator.

Validator has been designed to work

on OS/2 2.0, OS/2 2.1, OS/2 2.11 and

with or without MMPM/2 or Pen for

OS/2. If you are not using MMPM/2 or

Pen for OS/2, you should enter the

current OS/2 Toolkit header location

for either of the header areas.

Table 1.2
Compiler selections

I n s t a l l a t i o n 5
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Once you have finished entering or changing the destinations for the
Validator files and have selected the target compiler, you can click on
the Continue push button or press the ENTER key. This will start the
process of installing the files contained on the diskette. The installation
progress window, Plate 1.4, will display the source and destination of the
files that are being copied.

If a path cannot completely fit within the displayed area, it will show an
abbreviated form of the full path where it will substitute ... for some path
component or components. It will always try to display the filename that
is part of the path.

The progress of the installation will be displayed through a status
indicator which shows the percent complete. When all of the files have
been copied to your system from the diskettes, the installation program
will check your CONFIG.SYS file to see if needs to be updated for the
locations where you placed the files for the Validator. If the locations
within the PATH, LIBPATH, DPATH or HELP are not correct, the
Update CONFIG.SYS dialogue as shown in Plate 1.5 will be displayed.

Plate 1.4
Installation Progress

window

6 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

The dialogue allows you to specify how the configuration information
should be updated. The installation program can update the CONFIG.SYS

file to ensure that the required locations are correct so you can properly
use the Validator. For this to occur, you need to select the CONFIG .SYS

file option in the Save changes to group. When you select the File
named CONFIG.NEW, you will have transfer the changes from this
file to CONFIG.SYS manually otherwise Validator may not operate
correctly. A good indication of this is that the ViewPort tool will start.

By having the installation program update the CONFIG.SYS file, a
dialogue will be displayed reminding you to reboot your machine before
starting any of the applications installed for the Validator. This is
required due to the DLL's that are needed by the applications.

This dialogue, as shown in Plate 1.6, is just informational. It will not be
displayed if you choose to place the updated configuration information
within the CONFIG.NEW file. In place of the Reboot Advice dialogue
will be a dialogue, as shown in Plate 1.7, advising you to update your
CONFIG.SYS file. If you do not revise your CONFIG.SYS file, you may not
be able to use Validator since it will not be able to find required files,
specifically the DLL's files.

Plate 1.5
CONFIG.SYS Update

dialogue

Plate 1.6
Reboot dialogue

I n s t a l l a t i o n 7
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Before exiting, a dialogue will be displayed, as shown in Plate 1.8,
allowing you to read the on-line installation documentation which
includes the ReadMe.Doc and Packing.Lst files.

Once the Validator has been successfully installed, one last dialogue will
be displayed, as shown in Plate 1.9, stating that installation process is
complete.

Since the Validator applications have been designed for ease of use, you
can immediately begin to use them upon installation. Before beginning
to use the Validator full time, you should read Sections 2, Overview (see
page 9) and Section 3, API's (see page 27) before trying to utilize
features of ViewPort.

Plate 1.7
Revise CONFIG.SYS

dialogue

Plate 1.8
View Documentation

dialogue

Plate 1.9
Installation Complete

Dialogue

How to Begin

8 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

All of the applications within the Validator adhere to IBM's System

Application Architecture Common User Access Guide to User
Interface Design and Common User Access Advanced Interface
Design Reference.

This manual uses the following notational conventions in defining
program usage, revisions, references, etc. and in presenting examples:

Convention Meaning

Bold type Item of special interest, menu item, or program
name.

[] Option input values

drive: Drive designation

Esc Escape Key

↵ ENTER Enter/return key

OS/2 IBM OS/2 Operating System/2

Operating System OS/2 unless specifically stated

DLL Dynamic-Link Library

dirname Directory name

filename Filename

control Control type such as push button, button, action
bar menu or sub-menu

⇓ Input through parameter.

button 1 Refers to button 1 on the mouse. Generally, the
left mouse button is button 1 unless the buttons
have been swapped through the control panel.

button 2 Refers to button 2 on the mouse. Generally, the
right mouse button is button 2 unless the buttons
have been swapped through the control panel.

shred Equivalent to delete or erase.

text Keyboard input or program display output

Validator Design

Notational Conventions

Table 1.3
Conventions

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

s e c t i o n t w o

Overview

What is Validator? It is a set of DLL's and executables that work in
conjunction with the OS/2 API's providing additional and more detailed
error information regarding your usage of a given 32-bit OS/2 API. The
basic premise of Validator is to provide details indicating which
parameter you have passed to an OS/2 API that may be incorrect. The
result indicates exactly which parameter is in error. The OS/2 API's will
let you know that you have an invalid parameter but due to system
design where responsiveness is a high priority, each API cannot provide
the detail as to which parameter in the API is in error. Also, the API's
use fast determination of errant flag values, again, for responsiveness.

This can be seen with the DosOpen API which is defined as:

APIRET DosOpen(PSZ pszFileName, PHFILE pHf, PULONG pulAction,

ULONG cbFile, ULONG ulAttribute, ULONG fsOpenFlags,

ULONG fsOpenMode, PEAOP2 peaop2);

where there are reserved values defined for the open mode flags,
fsOpenMode. The API to validate these flags would use a value of
0xffff0c04 to isolate the reserved bits by AND'ing the value with the
fsOpenMode parameter value and if any of the resultant bits were set, it
would return an error of ERROR_INVALID_PARAMETER.
Unfortunately, you can't easily determine which parameter is in error
through the return code.

Figure 2.1
DosOpen API

1 0 D e v e l o p e r ' s G u i d e
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Validator solves this problem by masking out the reserved bits
individually and depending on which set of reserved bits has been set, it
will return a specific error code indicating which reserved bits are set
and in what parameter. Using the DosOpen again as the example, if bit
11 of fsOpenMode, which is a reserved bit, was set, the return code
returned by the DosOpen API would be a combination of
ERROR_INVALID_PARAMETER OR'ed with
PERR_DO07_INVALIDOPENMODEBITS11 (0x001a0057). The 07 of
the PERR_DO07 indicates that it was parameter 7, or the fsOpenMode

parameter. Each OS/2 API parametter error defined for Validator

operates in this manner. It is designed to allow you to quickly determine
the parameter in questions.

To be able to better understand how the error codes are formed denoting
a parameter error, you first need to understand the current error forms.
For Dos*, Prt*, some Spl*, Pen for OS/2 and MMPM/2 calls the normal
error form is:

31 15 0

Unused Error Code

and for the Ddf*, Dev*, Drg*, Gpi*, Pic*, Prf*, some Spl* and Win*
calls, the normal error form is:

31 23 15 0

Unused Severity Error Code

Validator makes use of the unused portion of the error codes to provide
the additional error information. In the case of the Dos*, Prt*, some
Spl*, Pen for OS/2 and MMPM/2 calls the parameter error form is:

31 23 15 0

Unused Parm Error Error Code

and for the Ddf*, Dev*, Drg*, Gpi*, Pic*, Prf*, some Spl* and Win*
calls, the parameter error form is:

Validator methodology

Error code construction

Figure 2.2
Error code layout Dos*,

Prt*, some Spl*, Pen for
OS/2 and MMPM/2 calls

Figure 2.3
Error code layout Ddf*,
Dev*, Drg*, Gpi*, Pic*,

Prf*, some Spl* and Win*
calls

Figure 2.4
Adapted error code layout

Dos*, Prt*, some Spl*,
Pen for OS/2 and

MMPM/2 calls

O v e r v i e w 1 1
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

31 23 15 0

Parm Error Severity Error Code

Therefore, to properly interpret the error codes returned to your
application, if the bytes where the parameter error would be stored is
zero (0), then the error code being returned is an actual error code from
the API used. When the value of the bytes where the parameter error is
stored is non-zero (>0), then the call was failed due to a problem
detected within the validation routines with one of the parameters. You
will need to view the return code in hexadecimal when using a debugger
such that you can isolate the bytes where the error information would be
returned. Then, using the Parameter Error Reference, you can
determine the problem by locating the function within the reference and
then matching the parameter error with the values listed within the table
corresponding table for the API.

If you are utilizing the ViewPort facility, then you can let ViewPort do
the hard work for you which will decode the information as well as
provide additional information such as the index within an array that
contained the failing element.

So, really how does Validator work? Figure 2.6 depicts the standard
architecture of an OS/2 application working in conjunction with the
system. You will notice that the application makes an API call which is
then handled by the appropriate DLL which then may repackage the call
to the kernel or handle it directly.

When you allow for Validator usage with an application, the architecture
is changed slightly, as shown in Figure 2.7.

Figure 2.5
Adapted error code layout

Ddf*, Dev*, Drg*, Gpi*,
Pic*, some Spl* and Win*

calls

OS/2 - Validator
architecture

Figure 2.6
OS/2 application

architecture

Figure 2.7
OS/2 application

architecture with validation
support

1 2 D e v e l o p e r ' s G u i d e
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Between your application and the system DLL's are the validation
support DLL's. If an error is detected through the validation DLL, the
appropriate return code is sent back to the application. If additional
levels of support are to be provided through the DLL's, then other factors
come into play. If ViewPort support has been requested, then the error
information is sent to it by the validation routines even if the error was a
normal API error. Also, if error logging was requested, the error
information would be written to a specified file in ASCII format or a
format that can be viewed through ViewPort.

Looking at an API in detail can make it easier to understand what is
happening. In Figure 2.8, the DosCreateDir API is being used to create
a new directory. The values of the call would be passed directly to the
entry point for the call within the DOSCALLS DLL. It would in turn
then pass the call to the operating system kernel for servicing.

Figure 2.9 shows how the validation process changes this mechanism.
The same call is used but in this case it is first passed to the entry point
within the validation DLL's. If the first parameter, which is for the
directory name is a valid pointer and the second parameter, which is for
the extended attributes of the directory is either NULL or a valid pointer,
the call is then passed to the entry point within the DOSCALLS DLL. It
would then pass the request to the kernel for servicing. If the kernel
detects an error condition, it returns an error code back as the return
value. The validation routines would then take the value and if error
logging was requested, the error information would be sent to the
logging file or if ViewPort support for the application was requested, the
error information would be sent to ViewPort. The error code would then
be returned back to the application which issued the DosCreateDir call.

Figure 2.8
DosCreateDir calling

sequence

O v e r v i e w 1 3
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

If the directory name or extended attribute parameters were determined
to be an invalid pointer, the validation routine would construct the
appropriate error return code indicating which parameter was in error
and for what reason. This return code would then be passed back to the
application that made the DosCreateDir call.

You will notice that this description of how the call works when a
parameter error is detected did not mention that the actual
DosCreateDir entry point is called. Well, since an error code would be
returned anyways and there is no good reason to tie up the system
indicating basically the same problem.

In the case of API's that rely on the WinGetLastError mechanism, the
sequence is similar except for the fact that an error code is not returned
back to the application but the value (such as a FALSE to indicate
failure) that is defined to indicate an error condition.

Figure 2.10 shows essentially the same calling sequencing as does Figure
2.8. The WinInitialize API is being used to initialize the PM facilities
for an application. The value of the call would be passed directly to the
entry point for the call within the PMWIN DLL. It would in turn then
pass the call to the operating system kernel for servicing if necessary.

Figure 2.11 shows how the validation process changes this mechanism.
The same call is used but in this case it is first passed to the entry point
within the validation DLL's. If the parameter for the initialization
option is valid, the call is then passed to the entry point within the

Figure 2.9
DosCreateDir calling

sequence with validation
support

Figure 2.10
WinInitialize calling

sequence

1 4 D e v e l o p e r ' s G u i d e
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

PMWIN DLL. It would then pass the request off to the kernel for
servicing if necessary. If an error condition is detected, a zero return
value is used instead of the anchor block handle which would be the
successful return value.

The validation routines would then take the value and if error logging
was requested, the error information would be determined and then sent
to the logging file or if ViewPort support for the application was
requested, the error information would be sent to ViewPort. The return
value would then be returned back to the application which issued the
WinInitialize call. If the application was interested in the error value, it
would then have to issue a WinGetLastError call to retrieve the error

value from PM.

If the parameter was not zero (0), which is the only valid value for the
parameter, the validation routine would construct the appropriate error
return code indicating which parameter was in error and for what reason
and inform PM of the error condition. This return value of zero (0)
would then be passed back to the application that made the
WinInitialize call. The application on receiving the failure indication
could then issue the WinGetLastError call to determine the problem.
It could then at this point see if it was a parameter error by checking the
high byte of the error code.

You may have noticed that this description of how the call works
operates in a similar manner to that of the DosCreateDir in that when a
parameter error is detected that the actual WinInitialize entry point is
not called.

Understanding how the validation routines do their job will allow you to
better understand how you can utilize the features of Validator. At its
most basic level, when you link an application with the VALIDATR.LIB
import library in place of the OS2386.LIB, you allow the additional
parameter return codes to be received by your application.

Figure 2.11
WinInitialize calling

sequence with validation
support

Using Validator

O v e r v i e w 1 5
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

This may be useful when debugging your application since the return
codes can be viewed through the debugger usually within a return code
variable or the EAX register. It should be noted that this is only true
with Dos*, Prt*, some Spl*, Pen for OS/2 and MMPM/2 calls. In the
case of the Ddf*, Dev*, Drg*, Gpi*, Pic*, some Spl* and Win* calls,
you will not be able to see the error information unless the debugger that
you are using can do a WinGetLastError on behalf of your application.

The next level of support, which essentially builds on this base feature,
allows you to log the error information to a log file. To allow this to
happen, one of the API's for Validator is used. ValInitialize (see page
55) has the following format:

HVAL ValInitialize (PSZ pszAppName, PSZ pszLogFile, ULONG ulSupport);

It is used to initialize the validation routines for the additional support
based on the support level requested through the ulSupport parameter.
The log file filename is defined through the pszLogFile parameter of the
call. Depending on the flags set within the ulSupport parameter, you
can specify that the logging file is to be in ASCII format
(VL_ERRORLOG), like that shown in Figure 2.13, or to be saved in a
format that ViewPort can read in for detailed viewing. You can also
through the ulSupport parameter reset the logging file such that it is
deleted with an option to insure that the deleted file is not saved to the
undelete directory if the user has allowed the undelete feature of OS/2 to
be active.

Jul-07-1993 07:52:55.94
 Application: DirList.Exe
 Failing API: DosFindNext
 Parameter: N/A
 Error: 0x00000012 (18)
 Process ID: 48
 Thread ID: 1
Jul-07-1993 07:52:56.13
 Application: DirList.Exe
 Failing API: DosFindNext
 Parameter: N/A
 Error: 0x00000012 (18)
 Process ID: 48
 Thread ID: 1
Jul-07-1993 07:52:56.19
 Application: DirList.Exe
 Failing API: DosFindNext
 Parameter: N/A
 Error: 0x00000012 (18)
 Process ID: 48
 Thread ID: 1
Jul-07-1993 07:52:56.32
 Application: DirList.Exe
 Failing API: DosFindNext
 Parameter: N/A
 Error: 0x00000012 (18)
 Process ID: 48
 Thread ID: 1

Another level of support provided, is where the source file filename and
line number where the API was invoked from is recorded. When you are

Logging file support

Figure 2.12
ValInitialize definition

Figure 2.13
ASCII error log data

1 6 D e v e l o p e r ' s G u i d e
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

using log file support in ASCII, the file and line number that the API
was called from is also shown with the information recorded like that
within Figure 2.14 below:

Jul-07-1993 08:06:33.66
 Application: DirList.Exe
 Failing API: DosFindNext
 Parameter: N/A
 File: Dialogs.C
 Line: 99
 Error: 0x00000012 (18)
 Process ID: 48
 Thread ID: 1
Jul-07-1993 08:06:34.10
 Application: DirList.Exe
 Failing API: DosFindNext
 Parameter: N/A
 File: Dialogs.C
 Line: 145
 Error: 0x00000012 (18)
 Process ID: 84
 Thread ID: 1
Jul-07-1993 08:06:34.16
 Application: DirList.Exe
 Failing API: DosFindNext
 Parameter: N/A
 File: Dialogs.C
 Line: 99
 Error: 0x00000012 (18)
 Process ID: 84
 Thread ID: 1
Jul-07-1993 08:06:34.38
 Application: DirList.Exe
 Failing API: DosFindNext
 Parameter: N/A
 File: Dialogs.C
 Line: 145
 Error: 0x00000012 (18)
 Process ID: 84
 Thread ID: 1

The other form of logging file is in a binary format that is readable by
ViewPort. The information recorded is in greater detail such that when
the information is loaded by ViewPort you can treat the information as
though ViewPort had been receiving it in real time.

These logging files are useful in that you can provide this support within
your applications while you are testing even with third parties.
Although the speed of your application will be up to 5 to 10% slower,
depending on the calls you are using, the information recorded regarding
the OS/2 API's that detected errors will greatly aid you in solving
problems that would be very difficult to try to determine exactly what
may be going wrong at the third party site.

You can design the test software to have different levels of support that
are activated when you provide a command line switch. For example,
you may want the logging file to be reset each time the user starts the
application but if problems are encountered within the application, you
may wish the user to activate a command line switch that causes the
logging information to be cumulative. Figure 2.15 shows an example of
this.

Figure 2.14
ASCII error log data

O v e r v i e w 1 7
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

INT main(INT argc, CHAR *argv[])

{
HVAL hval; /* Validator Handle */
ULONG ulSupport = VL_ERRORLOG; /* Validation Support Level */

if (argc == 2)
if (!stricmp(argv[1], "-C") && !stricmp(argv[1], "/C"))

ulSupport |= VL_LOGRESET;

hval = ValInitialize("Example.Exe", "Example.Log", ulSupport);

The most useful level of the logging information in the ASCII format is
when you allow the source file filename and line number to be recorded.
This will help you to localize the problem to the file and line within your
source code. Again, this can be handled through a command line switch
like that shown below:

INT main(INT argc, CHAR *argv[])

{
HVAL hval; /* Validator Handle */
ULONG ulSupport = VL_ERRORLOG; /* Validation Support Level */

if (argc == 2)
if (!stricmp(argv[1], "-F") || !stricmp(argv[1], "/F"))

ulSupport |= VL_FILELINE;

hval = ValInitialize("Example.Exe", "Example.Log", ulSupport);

By designing your support level during the test phase, you can provide a
level of support where your remote users can provide feedback almost
immediately without having to transmit a file back to your location as
would be the case if the logging file was in ViewPort format.

For in-house usage, you will probably want to utilize ViewPort to
monitor the activity of OS/2 API and parameter errors within the
application. ViewPort works in conjunction with the validation DLL's
where the validation DLL's send information to ViewPort when an OS/2
API or parameter error is detected. Figure 2.17 depicts the mechanism:

Figure 2.15
Dynamic initialization

Figure 2.16
Dynamic initialization

Figure 2.17
DosCreateDir calling

sequence with validation
and ViewPort support

1 8 D e v e l o p e r ' s G u i d e
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

When an OS/2 API error or a parameter validation error is detected,
Validator will, along with the return code sent back to the application
that issued the API call, send the information to ViewPort at the same
time. This will allow you to be able to see within a ViewPort error
window the error information recorded. The information provided to
ViewPort is in greater detail than the information recorded within the
ASCII logging files. Also, ViewPort when an entry within an error
window has been selected, will provide an explanation of the error
received, both in terms of the normal error code and if applicable, the
parameter error. Plate 2.1 shows ViewPort with two error windows and
Plates 2.2 and 2.3 show the error information in detail.

The detailed error information contained within the Error Info window
shows a variety of information about the application including the
process and thread ID's along with the date and time the error was
recorded. In conjunction with this, when you have compiled your
application to include source filename and line numbers with the API
calls, the source file from which the API call was made will be displayed
along with the line number. This helps you in correcting any non-
expected errors from the API.

In the example, shown in Plate 2.2, the error returned by the
DosFindNext call is expected. The ERROR_NO_MORE_FILES is used
by the API to indicate that there are no further directory entries
matching the original file search specification that was provided to the
DosFindFirst API.

Since this is an error returned by the actual API itself, you will notice
that the areas of the window for Parameter, Index , Parm error and
Parameter error description are blank. These areas will only contain
information when a parameter error has been detected by the validation

Plate 2.1
ViewPort window

O v e r v i e w 1 9
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

functions. An example of an error detected by the validation functions is
shown in Plate 2.3.

Within the detail error information area, you will notice that the symbol
used by OS/2 to denote the error is given in the Error area. The actual
numeric error value is displayed in the second Error area and the return
value, which in this case because of the API is the error value, is shown
in the area labeled Return value. When an error description that
provides further details on the error is available, it will be displayed in
the area below the OS/2 error description label.

When a parameter error is detected by the validation routines, additional
information is given to ViewPort. This information deals with such
things as the index of the parameter that is in error as well as the array
index of the item in error if the parameter was an array.

In the example shown in Plate 2.3, you notice that the thread ID, TID is
3. The example application, which is in the Threads directory of the
samples, invokes a thread which utilizes a loop with a time delay to
update the main client window of the application to show the number of
threads running. Through each iteration of the loop within the thread a
display rectangle (RECTL) is completed where on odd iterations the
rectangle is perfectly valid whereas on even iterations the xLeft and
xRight values are exchanged such that validation routines pick up the
discrepancy.

Plate 2.2
Error Info window

2 0 D e v e l o p e r ' s G u i d e
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

When the WinInvalidateRect function is called, the validation routines
check the parameters to ensure that they are valid for the function. This
includes making sure that the window handle is valid, the RECTL
structure is a valid pointer and that the values of the structure are within
the limits defined for the structure. It also checks to make sure that the
values are valid in terms of a value that should be greater than the other.
The example shows the case where the right edge of the rectangle having
a value less than the left edge. By definition the right edge of the
rectangle must always be greater than the left edge just like the top edge
of the rectangle must be greater in value than the bottom edge.

In addition to the standard error information as described in the example
above, the Parm error labeled area contains the symbol defined for the
error which is numerically the high byte of the Error value. Also, the
Parameter error description contains the explanation of the error.

For a complete description of how you use ViewPort, Section 4, Using

ViewPort (see page 63) should be consulted.

There are three ways of using Validator with your applications. The
first method does not require any re-compilation of your source code. It
only requires that you link your application with the VALIDATR.LIB
library.

The second method requires that you make a minor change to your
source code, usually in the module where your main() function is
located. Here you add the ValInitialize (see page 55) function which

Plate 2.3
Error information window

showing a parameter error

Preparing your source
code for validation

support

O v e r v i e w 2 1
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

allows you to utilize the advance features provided within the validation
routines for logging the error information to logging files or by passing
the information to ViewPort. This module would then have to be
recompiled such that the symbol INCL_VAL is defined before the
OS2.H file is included by the module. The following shows the general
structure of the module:

include <os2.h>

INT main(INT argc, CHAR *argv[])

{
HVAL hval; /* Validator Handle */

hval = ValInitialize("Example.Exe", "Example.Log", VL_ERRORLOG);
•
•
•
DosExit(EXIT_PROCESS, 0UL);
return(0);
}

When you compile the module, you would include the /DINCL_VAL
switch with the other compiler options such that when the module is
compiled, the necessary header files for the validation routines will be
included through the OS2.H header.

This second level also requires that you link your final application with
the VALIDATR.LIB library.

Depending on the options you used with the ValInitialize (see page 55)
function, you may or may not require ViewPort to be running when you
run your application after it has been linked.

The last method is similar to above, except that you need to recompile all
of your source modules such that they define the INCL_VALAPI before
the inclusion of the OS2.H header and you make changes to the main()
like that shown in Figure 2.18. Again, you would have to link your
application with the VALIDATR.LIB library.

To show you exactly what is required for each of the methods, the
following simple application will be used to illustrate exactly what is
required. It is assumed that the compiler to be used is the IBM C Set++
compiler. The linker is that provided by the OS/2 Toolkit. The starting
source code is:

#define INCL_WIN /* Include OS/2 PM Windows Interface */

#include <os2.h>

int main()

{
HAB hAB; /* Anchor Block Handle */
HMQ hmqExample; /* Message Queue Handle */

/* Initialize the program for PM and create the */

Figure 2.18
Validation API usage

Figure 2.19
Simple example

2 2 D e v e l o p e r ' s G u i d e
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

/* message queue */

hmqExample = WinCreateMsgQueue(hAB = WinInitialize(0UL), 0L);

WinMessageBox(HWND_DESKTOP, HWND_DESKTOP, "Hello world!!",
 "Validator Example", 0UL, MB_OK | MB_ICONEXCLAMATION | MB_MOVEABLE);

WinDestroyMsgQueue(hmqExample);

/* Notify PM that main program thread not needed */
/* any longer */

WinTerminate(hAB);
return(0);
}

The definition file will be the same for the normal and validation
enabled steps.

NAME Example WINDOWAPI

DESCRIPTION 'Validator Example'

CODE MOVEABLE
DATA MULTIPLE MOVEABLE

STACKSIZE 8192

PROTMODE

EXETYPE OS2

The compile and link instructions that would normally be used are:

icc -G3 -Ox -C -FoExample Example.C
link386 Example,Example, ,Example.Def;

For the first level of validation support, all you would need to do is
change the compile and link step to:

icc -G3 -Ox -C -FoExample Example.C
link386 Example,Example,Validatr.Lib,Example.Def;

This will permit the validation routines to check each OS/2 API and
return both normal API errors and parameter errors. This is useful when
debugging.

The second level requires that you compile the application after adding
the validation API's. The resulting source code would be:

#define INCL_WIN /* Include OS/2 PM Windows Interface */

#include <os2.h>

int main()

{
HAB hAB; /* Anchor Block Handle */
HMQ hmqExample; /* Message Queue Handle */
HVAL hval; /* Validation Handle */

hval = ValInitialize("Validation Example", "Example.Log",
 VL_ERRORLOG | VL_VIEWPORT);

/* Initialize the program for PM and create the */
/* message queue */

hmqExample = WinCreateMsgQueue(hAB = WinInitialize(0UL), 0L);

WinMessageBox(HWND_DESKTOP, HWND_DESKTOP, "Hello world!!",
 "Validator Example", 0UL, MB_OK | MB_ICONEXCLAMATION | MB_MOVEABLE);

Figure 2.20
Example.Def

Figure 2.21
Compile and link

instructions

Figure 2.22
Revised compile and link

instructions

Figure 2.23
Revised example

O v e r v i e w 2 3
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

WinDestroyMsgQueue(hmqExample);

/* Notify PM that main program thread not needed */
/* any longer */

WinTerminate(hAB);
return(0);
}

The compile and link instructions that would change to:
icc -G3 -Ox -C -DINCL_VAL -FoExample Example.C
link386 Example,Example,Validatr.Lib,Example.Def;

The support requested through ValInitialize was to have ASCII logging
to the Example.Log file and the error information also sent to ViewPort.
Although, the changes allowed for error logging and ViewPort, the
inclusion symbol only requested base support through the validation
routines. INCL_VAL does not enable the inclusion of the source
filename and line number with each OS/2 API. The third example
changes the compile and link instructions to be:

icc -G3 -Ox -C -DINCL_VALAPI -FoExample Example.C
link386 Example,Example,Validatr.Lib,Example.Def;

This last change would enable the inclusion of the filename and line
numbers such that when an error occurs, the filename of the source
module and the line number are included with the logging information
and are also provided to ViewPort.

The files provided with Validator beyond the sample files are for the
validation DLL's and the headers. The following DLL's are provided:

DLL Purpose

VALIDATR.DLL Validation controller.

API.DLL API List.

DLL Purpose

VALDDF.DLL Ddf* calls.

VALDEV.DLL Dev* calls.

VALDOS.DLL Dos* calls.

VALDOSP.DLL Dos* Version 2.1 only calls.

VALDRG.DLL Drg* calls.

VALGPI.DLL Gpi* calls.

VALMCI.DLL MMPM/2 calls where REXX is required.

Figure 2.24
Revised compile and link

instructions

Figure 2.25
Revised compile and link

instructions

Table 2.1
Control DLL's

Table 2.2
Validation DLL's

2 4 D e v e l o p e r ' s G u i d e
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

DLL Purpose

VALMMPM.DLL MMPM/2 calls.

VALPEN.DLL Pen for OS/2 calls.

VALPIC.DLL Pic* calls.

VALPRF.DLL Prf* calls.

ValPrt.DLL Prt* calls.

VALSPL.DLL Spl* calls.

VALWIN.DLL Win* calls.

VALWINX.DLL Win* Version 2.1 only calls.

DLL Purpose

VALDDFA.DLL Ddf* calls.

VALDEVA.DLL Dev* calls.

VALDOSA.DLL Dos* calls.

VALDOSPA.DLL Dos* Version 2.1 only calls

VALDRGA.DLL Drg* calls.

VALGPIA.DLL Gpi* calls.

VALMCIA.DLL MMPM/2 calls where REXX is required.

VALMMPMA.DLL MMPM/2 calls.

VALPENA.DLL Pen for OS/2 calls.

VALPICA.DLL Pic* calls.

VALPRFA.DLL Prf* calls.

VALPRTA.DLL Prt* calls.

VALSPLA.DLL Spl* calls.

VALWINA.DLL Win* calls.

VALWINXA.DLL Win* Version 2.1 only calls.

The following header files are provided:

Header Purpose

OS2.H Replacement for toolkit OS2.H allowing for
inclusion of validation headers.

Table 2.3
Validation DLL's which

include filename and line
numbers

Table 2.4
Validation headers

O v e r v i e w 2 5
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Header Purpose

OS2ME.H Replacement for MMPM/2 toolkit OS2ME.H
allowing for inclusion of validation headers.

PENPM.H Replacement for Pen for OS/2 toolkit PENPM.H
allowing for inclusion of validation headers.

VALAPI.H Validation API and OS/2 API indices.

VALERRS.H Validation parameter errors constants header.

VALFLINE.H Validation definition including source filename
and line numbers within OS/2 API prototypes.

VALREDEF.H Validation OS/2 API macro redefinition header
for inclusion of source filename and line within
OS/2 API call.

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

s e c t i o n t h r e e

API's

Validator provides a set of API's that allow you to select the level of
validation support and monitoring. You can utilize these features during
the development process as well as when you are beta testing with third
parties.

Six API calls are provided that allow you to setup the validation support
level along with the ability to dictate specific errors for specific API's
that should be filtered. The first API used is ValInitialize (see page 55)
which allows you to setup the level of validation support beyond the
additional parameter error information provided with the normal error
codes. The filtering API, ValFilterErr (see page 30), allows you to
specify which error codes to ignore for a given API. Logging is
controlled through ValLogging (see page 57) and ValQueryLogging
(see page 59). Monitoring of the message parameters within
WinSendDlgItemMsg and WinSendMsg API's is defined through the
ValRegisterClassMsgMonitor (see page 59) and
ValQueryClassMsgMonitor (see page 58).

Generally you would use API's as follows:

INT main(INT argc, CHAR *argv[])

{
QMSG qmsg; /* PM Message Queue Holder */
HVAL hval; /* Validator Handle */

hval = ValInitialize("Example.Exe", NULL, VL_VIEWPORT);

/* Initialize the program for PM and create the */
/* message queue */

hmqExample = WinCreateMsgQueue(hAB = WinInitialize(0UL), 0L);

Introduction

Figure 3.1
API usage

2 8 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

/* Register the window class */

if (!WinRegisterClass(hAB, pszExampleClassName, (PFNWP)ExampleWndProc,
 CS_SYNCPAINT | CS_SIZEREDRAW, 0UL))
 return(0);

/* Create the main program window */

if (!(hwndExampleFrame = CreateStdWindow(HWND_DESKTOP, WS_VISIBLE,
 FCF_NOBYTEALIGN | FCF_SHELLPOSITION |
 FCF_TITLEBAR | FCF_ICON |
 FCF_SYSMENU | FCF_MENU | FCF_MINMAX |
 FCF_ACCELTABLE | FCF_SIZEBORDER,
 pszExampleClassName,
 "Example Window", 0L,
 (HMODULE)NULL, ID_WINDOW,
 &hwndExample,
 10L, 23L, 337L, 196L)))
 return(0);
InitProg();

/* Get and dispatch the message to program */
/* windows */

while (WinGetMsg(hAB, &qmsg, (HWND)NULL, 0UL, 0UL))
 WinDispatchMsg(hAB, &qmsg);

/* Have received a WM_QUIT, start the program */
/* shutdown by destroying the program windows */
/* and destroying the message queue */

WinDestroyWindow(hwndExampleFrame);
WinDestroyMsgQueue(hmqExample);

/* Notify PM that main program thread not needed */
/* any longer */

WinTerminate(hAB);
/* Exit back to OS/2 cleanly */

DosExit(EXIT_PROCESS, 0UL);
return(0);
}

Upon entry into the main() function before you issue any calls, you
would use the ValInitialize function to register the application with the
validation DLL's. To allow the code to be easily adapted, you may want
to utilize the fact that the symbol INCL_VALAPI or INCL_VAL needs
to be defined. To allow the most flexibility, you would define it through
the command line to the compiler you are using with the /D or -D
switch. By bracketing the initialization and termination code with the
#ifdef INCL_VALAPI and #endif statements, you can easily allow the
source code to be used both for the final release versions and versions
that are to be monitored.

In the example shown in Figure 3.2, the definition of the validation
handle hval is placed within the #ifdef statement such that this is only
defined when validation is to be provided for the application. Also
within the #ifdef statement is the actual call to the ValInitialize
initialization function. In this case, only ViewPort support is being
requested.

If you were allowing for a beta release where the validation DLL's are
provided as part of the beta and you want the usage of the applications to
be monitored through logging files, you could do the following:

A P I ' s 2 9
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

INT main(INT argc, CHAR *argv[])

{
QMSG qmsg; /* PM Message Queue Holder */

#ifdef INCL_VALAPI

HVAL hval; /* Validator Handle */

hval = ValInitialize("Example.Exe", Example.Log, VL_VIEWPORTLOG);

#endif

Each time the application was run, the error information would be
appended to the logging file. In this example, the logging file is in
ViewPort format which means that the user would have to provide you
with the file whereby you would use ViewPort to retrieve the file from
disk for viewing. Alternately, if you use the VL_ERRORLOG in place
of the VL_VIEWPORTLOG, then the file produced would be in ASCII.

As you can see, the usage of the actual API's is not that difficult. The
following defines fully the usage of each of the validation API's
available.

When linking, you need to make sure that if you are using the /NOD
switch with the LINK386 linker provided with the IBM OS/2 Toolkit,
that you also in the OS2386.LIB after the Validatr.Lib otherwise you
will receive unresolved externals. The /NOD switch prevents the linker
from using the default libraries specified within the object modules
produced by the C Set/2 or C Set++ compilers. Figure 3.3 shows an
example of this:

icc -G3 -Ox -C -DINCL_VALAPI -FoExample Example.C
link386 Example,Example,Validatr.Lib+OS2386.Lib,
Example.Def;

Figure 3.2
Logging file usage

Linking considerations

Figure 3.2
Logging file usage

3 0 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

ValFilterErrValFilterErr
ULONG ValFilterErr (hval, ulAPIFamily, ulAPI, ulError, ulReturn)

HVAL hval; /* Validation Handle */
ULONG ulAPIFamily; /* API Family */
ULONG ulAPI; /* API Designation */
ULONG ulError; /* OS/2 Error Value */
ULONG ulReturn; /* API Return Value */

This function is used to add a specific API, error and return value to the
filter list which is used to prevent these errors from being logged to a
logging file or sent to ViewPort which could overload the system
message queue.

Parameters ⇓ HVAL hval

Validation handle.

⇓ ULONG ulAPIFamily

API family designation. It can be one of the following values:

Symbol Index API
APIFAMILY_DDF 0x00000000 Ddf* calls
APIFAMILY_DEV 0x00010000 Dev* calls
APIFAMILY_DOS 0x00020000 Dos* calls
APIFAMILY_DRG 0x00030000 Drg* calls
APIFAMILY_GPI 0x00040000 Gpi* calls
APIFAMILY_PIC 0x00060000 Pic* calls
APIFAMILY_PRF 0x00070000 Prf* calls
APIFAMILY_PRT 0x00080000 Prt* calls
APIFAMILY_SPL 0x00090000 Spl* calls
APIFAMILY_WIN 0x000a0000 Win* calls
APIFAMILY_MMPM 0x000b0000 MMPM/2 calls
APIFAMILY_PEN 0x000c0000 Pen for OS/2 calls

⇓ ULONG ulAPI

API designation. Each designation is contained within an API
family with each API having a designated value. The following are
the valid values for the API designations:

Ddf* Calls

Symbol Index API
API_DDFBEGINLIST 0x0 DdfBeginList
API_DDFBITMAP 0x1 DdfBitmap
API_DDFENDLIST 0x2 DdfEndList
API_DDFHYPERTEXT 0x3 DdfHyperText
API_DDFINFORM 0x4 DdfInform

A P I ' s 3 1
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Symbol Index API
API_DDFINITIALIZE 0x5 DdfInitialize
API_DDFLISTITEM 0x6 DdfListItem
API_DDFMETAFILE 0x7 DdfMetafile
API_DDFPARA 0x8 DdfPara
API_DDFSETCOLOR 0x9 DdfSetColor
API_DDFSETFONT 0xa DdfSetFont
API_DDFSETFONTSTYLE 0xb DdfSetFontStyle
API_DDFSETFORMAT 0xc DdfSetFormat
API_DDFSETTEXTALIGN 0xd DdfSetTextAlign
API_DDFTEXT 0xe DdfText

Dev* Calls

Symbol Index API
API_DEVCLOSEDC 0x0 DevCloseDC
API_DEVESCAPE 0x1 DevEscape
API_DEVOPENDC 0x2 DevOpenDC
API_DEVPOSTDEVICEMODES 0x3 DevPostDeviceModes
API_DEVQUERYCAPS 0x4 DevQueryCaps
API_DEVQUERYDEVICENAMES 0x5 DevQueryDeviceNames
API_DEVQUERYHARDCOPYCAPS 0x6 DevQuery-HardcopyCaps

Dos* Calls

Symbol Index API
API_DOSACKNOWLEDGESIGNALEXCEPTION 0x0 DosAcknowledge-

SignalException
API_DOSADDMUXWAITSEM 0x1 DosAddMuxWaitSem
API_DOSALLOCMEM 0x2 DosAllocMem
API_DOSALLOCSHAREDMEM 0x3 DosAllocSharedMem
API_DOSASYNCTIMER 0x4 DosAsyncTimer
API_DOSBEEP 0x5 DosBeep
API_DOSCALLNPIPE 0x6 DosCallNPipe
API_DOSCANCELLOCKREQUEST 0x7 DosCancelLockRequest
API_DOSCLOSE 0x8 DosClose
API_DOSCLOSEEVENTSEM 0x9 DosCloseEventSem
API_DOSCLOSEMUTEXSEM 0xa DosCloseMutexSem
API_DOSCLOSEMUXWAITSEM 0xb DosCloseMuxWaitSem
API_DOSCLOSEQUEUE 0xc DosCloseQueue
API_DOSCLOSEVDD 0xd DosCloseVDD
API_DOSCONNECTNPIPE 0xe DosConnectNPipe
API_DOSCOPY 0xf DosCopy
API_DOSCREATEDIR 0x10 DosCreateDir
API_DOSCREATEEVENTSEM 0x11 DosCreateEventSem
API_DOSCREATEMUTEXSEM 0x12 DosCreateMutexSem
API_DOSCREATEMUXWAITSEM 0x13 DosCreateMuxWaitSem
API_DOSCREATENPIPE 0x14 DosCreateNPipe
API_DOSCREATEPIPE 0x15 DosCreatePipe
API_DOSCREATEQUEUE 0x16 DosCreateQueue

3 2 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Index API
API_DOSCREATETHREAD 0x17 DosCreateThread
API_DOSDEBUG 0x18 DosDebug
API_DOSDELETE 0x19 DosDelete
API_DOSDELETEDIR 0x1a DosDeleteDir
API_DOSDELETEMUXWAITSEM 0x1b DosDeleteMuxWaitSem
API_DOSDEVCONFIG 0x1c DosDevConfig
API_DOSDEVIOCTL 0x1d DosDevIOCtl
API_DOSDISCONNECTNPIPE 0x1e DosDisConnectNPipe
API_DOSDUPHANDLE 0x1f DosDupHandle
API_DOSEDITNAME 0x20 DosEditName
API_DOSENTERCRITSEC 0x21 DosEnterCritSec
API_DOSENTERMUSTCOMPLETE 0x22 DosEnterMustComplete
API_DOSENUMATTRIBUTE 0x23 DosEnumAttribute
API_DOSERRCLASS 0x24 DosErrClass
API_DOSERROR 0x25 DosError
API_DOSEXECPGM 0x26 DosExecPgm
API_DOSEXIT 0x27 DosExit
API_DOSEXITCRITSEC 0x28 DosExitCritSec
API_DOSEXITLIST 0x29 DosExitList
API_DOSEXITMUSTCOMPLETE 0x2a DosExitMustComplete
API_DOSFSATTACH 0x2b DosFSAttach
API_DOSFSCTL 0x2c DosFSCtl
API_DOSFINDCLOSE 0x2d DosFindClose
API_DOSFINDFIRST 0x2e DosFindFirst
API_DOSFINDNEXT 0x2f DosFindNext
API_DOSFORCEDELETE 0x30 DosForceDelete
API_DOSFREEMEM 0x31 DosFreeMem
API_DOSFREEMODULE 0x32 DosFreeModule
API_DOSFREERESOURCE 0x33 DosFreeResource
API_DOSGETDATETIME 0x34 DosGetDateTime
API_DOSGETINFOBLOCKS 0x35 DosGetInfoBlocks
API_DOSGETMESSAGE 0x36 DosGetMessage
API_DOSGETNAMEDSHAREDMEM 0x37 DosGetNamed-

SharedMem
API_DOSGETRESOURCE 0x38 DosGetResource
API_DOSGETSHAREDMEM 0x39 DosGetSharedMem
API_DOSGIVESHAREDMEM 0x3a DosGiveSharedMem
API_DOSINSERTMESSAGE 0x3b DosInsertMessage
API_DOSKILLPROCESS 0x3c DosKillProcess
API_DOSKILLTHREAD 0x3d DosKillThread
API_DOSLOADMODULE 0x3e DosLoadModule
API_DOSMAPCASE 0x3f DosMapCase
API_DOSMOVE 0x40 DosMove
API_DOSOPEN 0x41 DosOpen
API_DOSOPENEVENTSEM 0x42 DosOpenEventSem
API_DOSOPENMUTEXSEM 0x43 DosOpenMutexSem
API_DOSOPENMUXWAITSEM 0x44 DosOpenMuxWaitSem
API_DOSOPENQUEUE 0x45 DosOpenQueue
API_DOSOPENVDD 0x46 DosOpenVDD
API_DOSPEEKNPIPE 0x47 DosPeekNPipe
API_DOSPEEKQUEUE 0x48 DosPeekQueue

A P I ' s 3 3
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Symbol Index API
API_DOSPHYSICALDISK 0x49 DosPhysicalDisk
API_DOSPOSTEVENTSEM 0x4a DosPostEventSem
API_DOSPURGEQUEUE 0x4b DosPurgeQueue
API_DOSPUTMESSAGE 0x4c DosPutMessage
API_DOSQUERYAPPTYPE 0x4d DosQueryAppType
API_DOSQUERYCOLLATE 0x4e DosQueryCollate
API_DOSQUERYCP 0x4f DosQueryCp
API_DOSQUERYCTRYINFO 0x50 DosQueryCtryInfo
API_DOSQUERYCURRENTDIR 0x51 DosQueryCurrentDir
API_DOSQUERYCURRENTDISK 0x52 DosQueryCurrentDisk
API_DOSQUERYDBCSENV 0x53 DosQueryDBCSEnv
API_DOSQUERYEVENTSEM 0x54 DosQueryEventSem
API_DOSQUERYFHSTATE 0x55 DosQueryFHState
API_DOSQUERYFSATTACH 0x56 DosQueryFSAttach
API_DOSQUERYFSINFO 0x57 DosQueryFSInfo
API_DOSQUERYFILEINFO 0x58 DosQueryFileInfo
API_DOSQUERYHTYPE 0x59 DosQueryHType
API_DOSQUERYMEM 0x5a DosQueryMem
API_DOSQUERYMESSAGECP 0x5b DosQueryMessageCP
API_DOSQUERYMODULEHANDLE 0x5c DosQueryModule-Handle
API_DOSQUERYMODULENAME 0x5d DosQueryModuleName
API_DOSQUERYMUTEXSEM 0x5e DosQueryMutexSem
API_DOSQUERYMUXWAITSEM 0x5f DosQueryMuxWaitSem
API_DOSQUERYNPHSTATE 0x60 DosQueryNPHState
API_DOSQUERYNPIPEINFO 0x61 DosQueryNPipeInfo
API_DOSQUERYNPIPESEMSTATE 0x62 DosQueryNPipe-

SemState
API_DOSQUERYPATHINFO 0x63 DosQueryPathInfo
API_DOSQUERYPROCADDR 0x64 DosQueryProcAddr
API_DOSQUERYPROCTYPE 0x65 DosQueryProcType
API_DOSQUERYQUEUE 0x66 DosQueryQueue
API_DOSQUERYRASINFO 0x67 DosQueryRASInfo
API_DOSQUERYRESOURCESIZE 0x68 DosQueryResourceSize
API_DOSQUERYSYSINFO 0x69 DosQuerySysInfo
API_DOSQUERYVERIFY 0x6a DosQueryVerify
API_DOSRAISEEXCEPTION 0x6b DosRaiseException
API_DOSRAWREADNPIPE 0x6c DosRawReadNPipe
API_DOSRAWWRITENPIPE 0x6d DosRawWriteNPipe
API_DOSREAD 0x6e DosRead
API_DOSREADQUEUE 0x6f DosReadQueue
API_DOSREGISTERPERFCTRS 0x70 DosRegisterPerfCtrs
API_DOSRELEASEMUTEXSEM 0x71 DosReleaseMutexSem
API_DOSREQUESTMUTEXSEM 0x72 DosRequestMutexSem
API_DOSREQUESTVDD 0x73 DosRequestVDD
API_DOSRESETBUFFER 0x74 DosResetBuffer
API_DOSRESETEVENTSEM 0x75 DosResetEventSem
API_DOSRESUMETHREAD 0x76 DosResumeThread
API_DOSSCANENV 0x77 DosScanEnv
API_DOSSEARCHPATH 0x78 DosSearchPath
API_DOSSELECTSESSION 0x79 DosSelectSession

3 4 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Index API
API_DOSSENDSIGNALEXCEPTION 0x7a DosSendSignal-Exception
API_DOSSETCURRENTDIR 0x7b DosSetCurrentDir
API_DOSSETDOSPROPERTY 0x7c DosSetDOSProperty
API_DOSSETDATETIME 0x7d DosSetDateTime
API_DOSSETDEFAULTDISK 0x7e DosSetDefaultDisk
API_DOSSETEXCEPTIONHANDLER 0x7f DosSetException-Handler
API_DOSSETFHSTATE 0x80 DosSetFHState
API_DOSSETFSINFO 0x81 DosSetFSInfo
API_DOSSETFILEINFO 0x82 DosSetFileInfo
API_DOSSETFILELOCKS 0x83 DosSetFileLocks
API_DOSSETFILEPTR 0x84 DosSetFilePtr
API_DOSSETFILESIZE 0x85 DosSetFileSize
API_DOSSETMAXFH 0x86 DosSetMaxFH
API_DOSSETMEM 0x87 DosSetMem
API_DOSSETNPHSTATE 0x88 DosSetNPHState
API_DOSSETNPIPESEM 0x89 DosSetNPipeSem
API_DOSSETPATHINFO 0x8a DosSetPathInfo
API_DOSSETPRIORITY 0x8b DosSetPriority
API_DOSSETPROCESSCP 0x8c DosSetProcessCp
API_DOSSETRELMAXFH 0x8d DosSetRelMaxFH
API_DOSSETSESSION 0x8e DosSetSession
API_DOSSETSIGNALEXCEPTIONFOCUS 0x8f DosSetSignal-

ExceptionFocus
API_DOSSETVERIFY 0x90 DosSetVerify
API_DOSSHUTDOWN 0x91 DosShutdown
API_DOSSLEEP 0x92 DosSleep
API_DOSSTARTSESSION 0x93 DosStartSession
API_DOSSTARTTIMER 0x94 DosStartTimer
API_DOSSTOPSESSION 0x95 DosStopSession
API_DOSSTOPTIMER 0x96 DosStopTimer
API_DOSSUBALLOCMEM 0x97 DosSubAllocMem
API_DOSSUBFREEMEM 0x98 DosSubFreeMem
API_DOSSUBSETMEM 0x99 DosSubSetMem
API_DOSSUBUNSETMEM 0x9a DosSubUnsetMem
API_DOSSUSPENDTHREAD 0x9b DosSuspendThread
API_DOSTMRQUERYFREQ 0x9c DosTmrQueryFreq
API_DOSTMRQUERYTIME 0x9d DosTmrQueryTime
API_DOSTRANSACTNPIPE 0x9e DosTransactNPipe
API_DOSUNSETEXCEPTIONHANDLER 0x9f DosUnset-

ExceptionHandler
API_DOSUNWINDEXCEPTION 0xa0 DosUnwindException
API_DOSWAITCHILD 0xa1 DosWaitChild
API_DOSWAITEVENTSEM 0xa2 DosWaitEventSem
API_DOSWAITMUXWAITSEM 0xa3 DosWaitMuxWaitSem
API_DOSWAITNPIPE 0xa4 DosWaitNPipe
API_DOSWAITTHREAD 0xa5 DosWaitThread
API_DOSWRITE 0xa6 DosWrite
API_DOSWRITEQUEUE 0xa7 DosWriteQueue

A P I ' s 3 5
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

OS/2 2.1 Dos* Calls

Symbol Index API
API_DOSPROTECTCLOSE 0xa8 DosProtectClose
API_DOSPROTECTENUMATTRIBUTE 0xa9 DosProtectEnum-

Attribute
API_DOSPROTECTOPEN 0xaa DosProtectOpen
API_DOSPROTECTQUERYFHSTATE 0xab DosProtectQuery-

FHState
API_DOSPROTECTQUERYFILEINFO 0xac DosProtectQuery-FileInfo
API_DOSPROTECTREAD 0xad DosProtectRead
API_DOSPROTECTSETFHSTATE 0xae DosProtectSetFHState
API_DOSPROTECTSETFILEINFO 0xaf DosProtectSetFileInfo
API_DOSPROTECTSETFILELOCKS 0xb0 DosProtectSetFileLocks
API_DOSPROTECTSETFILEPTR 0xb1 DosProtectSetFilePtr
API_DOSPROTECTSETFILESIZE 0xb2 DosProtectSetFileSize
API_DOSPROTECTWRITE 0xb3 DosProtectWrite

Drg* Calls

Symbol Index API
API_DRGACCEPTDROPPEDFILES 0x0 DrgAcceptDroppedFiles
API_DRGACCESSDRAGINFO 0x1 DrgAccessDraginfo
API_DRGADDSTRHANDLE 0x2 DrgAddStrHandle
API_DRGALLOCDRAGINFO 0x3 DrgAllocDraginfo
API_DRGALLOCDRAGTRANSFER 0x4 DrgAllocDragtransfer
API_DRGDELETEDRAGINFOSTRHANDLES 0x5 DrgDeleteDraginfo-

StrHandles
API_DRGDELETESTRHANDLE 0x6 DrgDeleteStrHandle
API_DRGDRAG 0x7 DrgDrag
API_DRGDRAGFILES 0x8 DrgDragFiles
API_DRGFREEDRAGINFO 0x9 DrgFreeDraginfo
API_DRGFREEDRAGTRANSFER 0xa DrgFreeDragtransfer
API_DRGGETPS 0xb DrgGetPS
API_DRGPOSTTRANSFERMSG 0xc DrgPostTransferMsg
API_DRGPUSHDRAGINFO 0xd DrgPushDraginfo
API_DRGQUERYDRAGITEM 0xe DrgQueryDragitem
API_DRGQUERYDRAGITEMCOUNT 0xf DrgQueryDragitem-

Count
API_DRGQUERYDRAGITEMPTR 0x10 DrgQueryDragitemPtr
API_DRGQUERYNATIVERMF 0x11 DrgQueryNativeRMF
API_DRGQUERYNATIVERMFLEN 0x12 DrgQueryNative-

RMFLen
API_DRGQUERYSTRNAME 0x13 DrgQueryStrName
API_DRGQUERYSTRNAMELEN 0x14 DrgQueryStrNameLen
API_DRGQUERYTRUETYPE 0x15 DrgQueryTrueType
API_DRGQUERYTRUETYPELEN 0x16 DrgQueryTrueTypeLen
API_DRGRELEASEPS 0x17 DrgReleasePS
API_DRGSENDTRANSFERMSG 0x18 DrgSendTransferMsg
API_DRGSETDRAGIMAGE 0x19 DrgSetDragImage

3 6 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Index API
API_DRGSETDRAGPOINTER 0x1a DrgSetDragPointer
API_DRGSETDRAGITEM 0x1b DrgSetDragitem
API_DRGVERIFYNATIVERMF 0x1c DrgVerifyNativeRMF
API_DRGVERIFYRMF 0x1d DrgVerifyRMF
API_DRGVERIFYTRUETYPE 0x1e DrgVerifyTrueType
API_DRGVERIFYTYPE 0x1f DrgVerifyType
API_DRGVERIFYTYPESET 0x20 DrgVerifyTypeSet

Gpi* Calls

Symbol Index API
API_GPIANIMATEPALETTE 0x0 GpiAnimatePalette
API_GPIASSOCIATE 0x1 GpiAssociate
API_GPIBEGINAREA 0x2 GpiBeginArea
API_GPIBEGINELEMENT 0x3 GpiBeginElement
API_GPIBEGINPATH 0x4 GpiBeginPath
API_GPIBITBLT 0x5 GpiBitBlt
API_GPIBOX 0x6 GpiBox
API_GPICALLSEGMENTMATRIX 0x7 GpiCallSegmentMatrix
API_GPICHARSTRING 0x8 GpiCharString
API_GPICHARSTRINGAT 0x9 GpiCharStringAt
API_GPICHARSTRINGPOS 0xa GpiCharStringPos
API_GPICHARSTRINGPOSAT 0xb GpiCharStringPosAt
API_GPICLOSEFIGURE 0xc GpiCloseFigure
API_GPICLOSESEGMENT 0xd GpiCloseSegment
API_GPICOMBINEREGION 0xe GpiCombineRegion
API_GPICOMMENT 0xf GpiComment
API_GPICONVERT 0x10 GpiConvert
API_GPICONVERTWITHMATRIX 0x11 GpiConvertWithMatrix
API_GPICOPYMETAFILE 0x12 GpiCopyMetaFile
API_GPICORRELATECHAIN 0x13 GpiCorrelateChain
API_GPICORRELATEFROM 0x14 GpiCorrelateFrom
API_GPICORRELATESEGMENT 0x15 GpiCorrelateSegment
API_GPICREATEBITMAP 0x16 GpiCreateBitmap
API_GPICREATELOGCOLORTABLE 0x17 GpiCreateLog-

ColorTable
API_GPICREATELOGFONT 0x18 GpiCreateLogFont
API_GPICREATEPS 0x19 GpiCreatePS
API_GPICREATEPALETTE 0x1a GpiCreatePalette
API_GPICREATEREGION 0x1b GpiCreateRegion
API_GPIDELETEBITMAP 0x1c GpiDeleteBitmap
API_GPIDELETEELEMENT 0x1d GpiDeleteElement
API_GPIDELETEELEMENTRANGE 0x1e GpiDeleteElementRange
API_GPIDELETEELEMENTSBETWEENLABELS 0x1f GpiDelete-

ElementsBetweenLabels
API_GPIDELETEMETAFILE 0x20 GpiDeleteMetaFile
API_GPIDELETEPALETTE 0x21 GpiDeletePalette
API_GPIDELETESEGMENT 0x22 GpiDeleteSegment
API_GPIDELETESEGMENTS 0x23 GpiDeleteSegments
API_GPIDELETESETID 0x24 GpiDeleteSetId

A P I ' s 3 7
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Symbol Index API
API_GPIDESTROYPS 0x25 GpiDestroyPS
API_GPIDESTROYREGION 0x26 GpiDestroyRegion
API_GPIDRAWBITS 0x27 GpiDrawBits
API_GPIDRAWCHAIN 0x28 GpiDrawChain
API_GPIDRAWDYNAMICS 0x29 GpiDrawDynamics
API_GPIDRAWFROM 0x2a GpiDrawFrom
API_GPIDRAWSEGMENT 0x2b GpiDrawSegment
API_GPIELEMENT 0x2c GpiElement
API_GPIENDAREA 0x2d GpiEndArea
API_GPIENDELEMENT 0x2e GpiEndElement
API_GPIENDPATH 0x2f GpiEndPath
API_GPIEQUALREGION 0x30 GpiEqualRegion
API_GPIERASE 0x31 GpiErase
API_GPIERRORSEGMENTDATA 0x32 GpiErrorSegmentData
API_GPIEXCLUDECLIPRECTANGLE 0x33 GpiExcludeClip-

Rectangle
API_GPIFILLPATH 0x34 GpiFillPath
API_GPIFLOODFILL 0x35 GpiFloodFill
API_GPIFRAMEREGION 0x36 GpiFrameRegion
API_GPIFULLARC 0x37 GpiFullArc
API_GPIGETDATA 0x38 GpiGetData
API_GPIIMAGE 0x39 GpiImage
API_GPIINTERSECTCLIPRECTANGLE 0x3a GpiIntersectClip-

Rectangle
API_GPILABEL 0x3b GpiLabel
API_GPILINE 0x3c GpiLine
API_GPILOADBITMAP 0x3d GpiLoadBitmap
API_GPILOADFONTS 0x3e GpiLoadFonts
API_GPILOADMETAFILE 0x3f GpiLoadMetaFile
API_GPILOADPUBLICFONTS 0x40 GpiLoadPublicFonts
API_GPIMARKER 0x41 GpiMarker
API_GPIMODIFYPATH 0x42 GpiModifyPath
API_GPIMOVE 0x43 GpiMove
API_GPIOFFSETCLIPREGION 0x44 GpiOffsetClipRegion
API_GPIOFFSETELEMENTPOINTER 0x45 GpiOffsetElement-Pointer
API_GPIOFFSETREGION 0x46 GpiOffsetRegion
API_GPIOPENSEGMENT 0x47 GpiOpenSegment
API_GPIOUTLINEPATH 0x48 GpiOutlinePath
API_GPIPAINTREGION 0x49 GpiPaintRegion
API_GPIPARTIALARC 0x4a GpiPartialArc
API_GPIPATHTOREGION 0x4b GpiPathToRegion
API_GPIPLAYMETAFILE 0x4c GpiPlayMetaFile
API_GPIPOINTARC 0x4d GpiPointArc
API_GPIPOLYFILLET 0x4e GpiPolyFillet
API_GPIPOLYFILLETSHARP 0x4f GpiPolyFilletSharp
API_GPIPOLYLINE 0x50 GpiPolyLine
API_GPIPOLYLINEDISJOINT 0x51 GpiPolyLineDisjoint
API_GPIPOLYMARKER 0x52 GpiPolyMarker
API_GPIPOLYSPLINE 0x53 GpiPolySpline
API_GPIPOLYGONS 0x54 GpiPolygons

3 8 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Index API
API_GPIPOP 0x55 GpiPop
API_GPIPTINREGION 0x56 GpiPtInRegion
API_GPIPTVISIBLE 0x57 GpiPtVisible
API_GPIPUTDATA 0x58 GpiPutData
API_GPIQUERYARCPARAMS 0x59 GpiQueryArcParams
API_GPIQUERYATTRMODE 0x5a GpiQueryAttrMode
API_GPIQUERYATTRS 0x5b GpiQueryAttrs
API_GPIQUERYBACKCOLOR 0x5c GpiQueryBackColor
API_GPIQUERYBACKMIX 0x5d GpiQueryBackMix
API_GPIQUERYBITMAPBITS 0x5e GpiQueryBitmapBits
API_GPIQUERYBITMAPDIMENSION 0x5f GpiQueryBitmap-

Dimension
API_GPIQUERYBITMAPHANDLE 0x60 GpiQueryBitmapHandle
API_GPIQUERYBITMAPINFOHEADER 0x61 GpiQueryBitmap-

InfoHeader
API_GPIQUERYBITMAPPARAMETERS 0x62 GpiQueryBitmap-

Parameters
API_GPIQUERYBOUNDARYDATA 0x63 GpiQueryBoundaryData
API_GPIQUERYCHARANGLE 0x64 GpiQueryCharAngle
API_GPIQUERYCHARBOX 0x65 GpiQueryCharBox
API_GPIQUERYCHARBREAKEXTRA 0x66 GpiQueryChar-

BreakExtra
API_GPIQUERYCHARDIRECTION 0x67 GpiQueryCharDirection
API_GPIQUERYCHAREXTRA 0x68 GpiQueryCharExtra
API_GPIQUERYCHARMODE 0x69 GpiQueryCharMode
API_GPIQUERYCHARSET 0x6a GpiQueryCharSet
API_GPIQUERYCHARSHEAR 0x6b GpiQueryCharShear
API_GPIQUERYCHARSTRINGPOS 0x6c GpiQueryCharStringPos
API_GPIQUERYCHARSTRINGPOSAT 0x6d GpiQueryChar-

StringPosAt
API_GPIQUERYCLIPBOX 0x6e GpiQueryClipBox
API_GPIQUERYCLIPREGION 0x6f GpiQueryClipRegion
API_GPIQUERYCOLOR 0x70 GpiQueryColor
API_GPIQUERYCOLORDATA 0x71 GpiQueryColorData
API_GPIQUERYCOLORINDEX 0x72 GpiQueryColorIndex
API_GPIQUERYCP 0x73 GpiQueryCp
API_GPIQUERYCURRENTPOSITION 0x74 GpiQueryCurrent-

Position
API_GPIQUERYDEFARCPARAMS 0x75 GpiQueryDefArcParams
API_GPIQUERYDEFATTRS 0x76 GpiQueryDefAttrs
API_GPIQUERYDEFCHARBOX 0x77 GpiQueryDefCharBox
API_GPIQUERYDEFTAG 0x78 GpiQueryDefTag
API_GPIQUERYDEFVIEWINGLIMITS 0x79 GpiQueryDef-

ViewingLimits
API_GPIQUERYDEFAULTVIEWMATRIX 0x7a GpiQueryDefault-

ViewMatrix
API_GPIQUERYDEVICE 0x7b GpiQueryDevice
API_GPIQUERYDEVICEBITMAPFORMATS 0x7c GpiQueryDevice-

BitmapFormats
API_GPIQUERYDRAWCONTROL 0x7d GpiQueryDrawControl
API_GPIQUERYDRAWINGMODE 0x7e GpiQueryDrawingMode

A P I ' s 3 9
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Symbol Index API
API_GPIQUERYEDITMODE 0x7f GpiQueryEditMode
API_GPIQUERYELEMENT 0x80 GpiQueryElement
API_GPIQUERYELEMENTPOINTER 0x81 GpiQueryElement-

Pointer
API_GPIQUERYELEMENTTYPE 0x82 GpiQueryElementType
API_GPIQUERYFACESTRING 0x83 GpiQueryFaceString
API_GPIQUERYFONTACTION 0x84 GpiQueryFontAction
API_GPIQUERYFONTFILEDESCRIPTIONS 0x85 GpiQueryFont-

FileDescriptions
API_GPIQUERYFONTMETRICS 0x86 GpiQueryFontMetrics
API_GPIQUERYFONTS 0x87 GpiQueryFonts
API_GPIQUERYFULLFONTFILEDESCS 0x88 GpiQueryFull-

FontFileDescs
API_GPIQUERYGRAPHICSFIELD 0x89 GpiQueryGraphicsField
API_GPIQUERYINITIALSEGMENTATTRS 0x8a GpiQueryInitial-

SegmentAttrs
API_GPIQUERYKERNINGPAIRS 0x8b GpiQueryKerningPairs
API_GPIQUERYLINEEND 0x8c GpiQueryLineEnd
API_GPIQUERYLINEJOIN 0x8d GpiQueryLineJoin
API_GPIQUERYLINETYPE 0x8e GpiQueryLineType
API_GPIQUERYLINEWIDTH 0x8f GpiQueryLineWidth
API_GPIQUERYLINEWIDTHGEOM 0x90 GpiQueryLine-

WidthGeom
API_GPIQUERYLOGCOLORTABLE 0x91 GpiQueryLog-

ColorTable
API_GPIQUERYLOGICALFONT 0x92 GpiQueryLogicalFont
API_GPIQUERYMARKER 0x93 GpiQueryMarker
API_GPIQUERYMARKERBOX 0x94 GpiQueryMarkerBox
API_GPIQUERYMARKERSET 0x95 GpiQueryMarkerSet
API_GPIQUERYMETAFILEBITS 0x96 GpiQueryMetaFileBits
API_GPIQUERYMETAFILELENGTH 0x97 GpiQueryMeta-

FileLength
API_GPIQUERYMIX 0x98 GpiQueryMix
API_GPIQUERYMODELTRANSFORMMATRIX 0x99 GpiQueryModel-

TransformMatrix
API_GPIQUERYNEARESTCOLOR 0x9a GpiQueryNearestColor
API_GPIQUERYNUMBERSETIDS 0x9b GpiQueryNumberSetIds
API_GPIQUERYPS 0x9c GpiQueryPS
API_GPIQUERYPAGEVIEWPORT 0x9d GpiQueryPageViewport
API_GPIQUERYPALETTE 0x9e GpiQueryPalette
API_GPIQUERYPALETTEINFO 0x9f GpiQueryPaletteInfo
API_GPIQUERYPATTERN 0xa0 GpiQueryPattern
API_GPIQUERYPATTERNREFPOINT 0xa1 GpiQueryPattern-

RefPoint
API_GPIQUERYPATTERNSET 0xa2 GpiQueryPatternSet
API_GPIQUERYPEL 0xa3 GpiQueryPel
API_GPIQUERYPICKAPERTUREPOSITION 0xa4 GpiQueryPick-

AperturePosition
API_GPIQUERYPICKAPERTURESIZE 0xa5 GpiQueryPick-

ApertureSize
API_GPIQUERYRGBCOLOR 0xa6 GpiQueryRGBColor

4 0 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Index API
API_GPIQUERYREALCOLORS 0xa7 GpiQueryRealColors
API_GPIQUERYREGIONBOX 0xa8 GpiQueryRegionBox
API_GPIQUERYREGIONRECTS 0xa9 GpiQueryRegionRects
API_GPIQUERYSEGMENTATTRS 0xaa GpiQuerySegmentAttrs
API_GPIQUERYSEGMENTNAMES 0xab GpiQuery-

SegmentNames
API_GPIQUERYSEGMENTPRIORITY 0xac GpiQuery-

SegmentPriority
API_GPIQUERYSEGMENTTRANSFORMMATRIX 0xad GpiQuerySegment-

TransformMatrix
API_GPIQUERYSETIDS 0xae GpiQuerySetIds
API_GPIQUERYSTOPDRAW 0xaf GpiQueryStopDraw
API_GPIQUERYTAG 0xb0 GpiQueryTag
API_GPIQUERYTEXTALIGNMENT 0xb1 GpiQueryText-Alignment
API_GPIQUERYTEXTBOX 0xb2 GpiQueryTextBox
API_GPIQUERYVIEWINGLIMITS 0xb3 GpiQueryViewingLimits
API_GPIQUERYVIEWINGTRANSFORMMATRIX 0xb4 GpiQueryViewing-

TransformMatrix
API_GPIQUERYWIDTHTABLE 0xb5 GpiQueryWidthTable
API_GPIRECTINREGION 0xb6 GpiRectInRegion
API_GPIRECTVISIBLE 0xb7 GpiRectVisible
API_GPIREMOVEDYNAMICS 0xb8 GpiRemoveDynamics
API_GPIRESETBOUNDARYDATA 0xb9 GpiResetBoundaryData
API_GPIRESETPS 0xba GpiResetPS
API_GPIRESTOREPS 0xbb GpiRestorePS
API_GPIROTATE 0xbc GpiRotate
API_GPISAVEMETAFILE 0xbd GpiSaveMetaFile
API_GPISAVEPS 0xbe GpiSavePS
API_GPISCALE 0xbf GpiScale
API_GPISELECTPALETTE 0xc0 GpiSelectPalette
API_GPISETARCPARAMS 0xc1 GpiSetArcParams
API_GPISETATTRMODE 0xc2 GpiSetAttrMode
API_GPISETATTRS 0xc3 GpiSetAttrs
API_GPISETBACKCOLOR 0xc4 GpiSetBackColor
API_GPISETBACKMIX 0xc5 GpiSetBackMix
API_GPISETBITMAP 0xc6 GpiSetBitmap
API_GPISETBITMAPBITS 0xc7 GpiSetBitmapBits
API_GPISETBITMAPDIMENSION 0xc8 GpiSetBitmap-Dimension
API_GPISETBITMAPID 0xc9 GpiSetBitmapId
API_GPISETCHARANGLE 0xca GpiSetCharAngle
API_GPISETCHARBOX 0xcb GpiSetCharBox
API_GPISETCHARBREAKEXTRA 0xcc GpiSetCharBreakExtra
API_GPISETCHARDIRECTION 0xcd GpiSetCharDirection
API_GPISETCHAREXTRA 0xce GpiSetCharExtra
API_GPISETCHARMODE 0xcf GpiSetCharMode
API_GPISETCHARSET 0xd0 GpiSetCharSet
API_GPISETCHARSHEAR 0xd1 GpiSetCharShear
API_GPISETCLIPPATH 0xd2 GpiSetClipPath
API_GPISETCLIPREGION 0xd3 GpiSetClipRegion

A P I ' s 4 1
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Symbol Index API
API_GPISETCOLOR 0xd4 GpiSetColor
API_GPISETCP 0xd5 GpiSetCp
API_GPISETCURRENTPOSITION 0xd6 GpiSetCurrentPosition
API_GPISETDEFARCPARAMS 0xd7 GpiSetDefArcParams
API_GPISETDEFATTRS 0xd8 GpiSetDefAttrs
API_GPISETDEFTAG 0xd9 GpiSetDefTag
API_GPISETDEFVIEWINGLIMITS 0xda GpiSetDef-

ViewingLimits
API_GPISETDEFAULTVIEWMATRIX 0xdb GpiSetDefault-

ViewMatrix
API_GPISETDRAWCONTROL 0xdc GpiSetDrawControl
API_GPISETDRAWINGMODE 0xdd GpiSetDrawingMode
API_GPISETEDITMODE 0xde GpiSetEditMode
API_GPISETELEMENTPOINTER 0xdf GpiSetElementPointer
API_GPISETELEMENTPOINTERATLABEL 0xe0 GpiSetElement-

PointerAtLabel
API_GPISETGRAPHICSFIELD 0xe1 GpiSetGraphicsField
API_GPISETINITIALSEGMENTATTRS 0xe2 GpiSetInitial-

SegmentAttrs
API_GPISETLINEEND 0xe3 GpiSetLineEnd
API_GPISETLINEJOIN 0xe4 GpiSetLineJoin
API_GPISETLINETYPE 0xe5 GpiSetLineType
API_GPISETLINEWIDTH 0xe6 GpiSetLineWidth
API_GPISETLINEWIDTHGEOM 0xe7 GpiSetLineWidthGeom
API_GPISETMARKER 0xe8 GpiSetMarker
API_GPISETMARKERBOX 0xe9 GpiSetMarkerBox
API_GPISETMARKERSET 0xea GpiSetMarkerSet
API_GPISETMETAFILEBITS 0xeb GpiSetMetaFileBits
API_GPISETMIX 0xec GpiSetMix
API_GPISETMODELTRANSFORMMATRIX 0xed GpiSetModel-

TransformMatrix
API_GPISETPS 0xee GpiSetPS
API_GPISETPAGEVIEWPORT 0xef GpiSetPageViewport
API_GPISETPALETTEENTRIES 0xf0 GpiSetPaletteEntries
API_GPISETPATTERN 0xf1 GpiSetPattern
API_GPISETPATTERNREFPOINT 0xf2 GpiSetPatternRefPoint
API_GPISETPATTERNSET 0xf3 GpiSetPatternSet
API_GPISETPEL 0xf4 GpiSetPel
API_GPISETPICKAPERTUREPOSITION 0xf5 GpiSetPick-

AperturePosition
API_GPISETPICKAPERTURESIZE 0xf6 GpiSetPickApertureSize
API_GPISETREGION 0xf7 GpiSetRegion
API_GPISETSEGMENTATTRS 0xf8 GpiSetSegmentAttrs
API_GPISETSEGMENTPRIORITY 0xf9 GpiSetSegmentPriority
API_GPISETSEGMENTTRANSFORMMATRIX 0xfa GpiSetSegment-

TransformMatrix
API_GPISETSTOPDRAW 0xfb GpiSetStopDraw
API_GPISETTAG 0xfc GpiSetTag
API_GPISETTEXTALIGNMENT 0xfd GpiSetTextAlignment
API_GPISETVIEWINGLIMITS 0xfe GpiSetViewingLimits

4 2 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Index API
API_GPISETVIEWINGTRANSFORMMATRIX 0xff GpiSetViewing-

TransformMatrix
API_GPISTROKEPATH 0x100 GpiStrokePath
API_GPITRANSLATE 0x101 GpiTranslate
API_GPIUNLOADFONTS 0x102 GpiUnloadFonts
API_GPIUNLOADPUBLICFONTS 0x103 GpiUnloadPublicFonts
API_GPIWCBITBLT 0x104 GpiWCBitBlt

Pen for OS/2 Calls

Symbol Index API
API_REDDEREGISTERRECOCOMMAND 0x0 RedDeregisterReco-

Command
API_REDQUERYRECOCOMMAND 0x1 RedQueryReco-

Command
API_REDQUERYRECOHANDLE 0x2 RedQueryRecoHandle
API_REDQUERYRECOSUBSYSTEM 0x3 RedQueryReco-

Subsystem
API_REDREADOBJECTEVENTMAP 0x4 RedReadObject-

EventMap
API_REDRECODATAFROMENV 0x5 RedRecoDataFromEnv
API_REDRECOIDFROMNAME 0x6 RedRecoIDFromName
API_REDRECONAMEFROMID 0x7 RedRecoNameFromID
API_REDREGISTERRECOCOMMAND 0x8 RedRegisterReco-

Command
API_REDWRITEOBJECTEVENTMAP 0x9 RedWriteObject-

EventMap
API_VKPCLOSEKB 0xa VkpCloseKb
API_VKPDELETEKEYBOARD 0xb VkpDeleteKeyboard
API_VKPHIDEKEYBOARD 0xc VkpHideKeyboard
API_VKPISKBHIDDEN 0xd VkpIsKbHidden
API_VKPISKBRUNNING 0xe VkpIsKbRunning
API_VKPLOADKEYBOARD 0xf VkpLoadKeyboard
API_VKPQUERYKBPOS 0x10 VkpQueryKbPos
API_VKPSETKBPOS 0x11 VkpSetKbPos
API_WRTCONTROLDISPLAYBACKLIGHT 0x12 WrtControlDisplay-

Backlight
API_WRTENUMINPUTDRIVERS 0x13 WrtEnumInputDrivers
API_WRTMAPPOINTLONG 0x14 WrtMapPointLong
API_WRTQUERYBUTTONCAPS 0x15 WrtQueryButtonCaps
API_WRTQUERYDISPLAYCAPS 0x16 WrtQueryDisplayCaps
API_WRTQUERYEVENTDATA 0x17 WrtQueryEventData
API_WRTQUERYINPUTDEVICENAMES 0x18 WrtQueryInput-

DeviceNames
API_WRTQUERYINPUTDEVICEVARIABLE 0x19 WrtQueryInput-

DeviceVariable
API_WRTQUERYLOCATORCAPS 0x1a WrtQueryLocatorCaps
API_WRTQUERYPOINTAUXDATA 0x1b WrtQueryPointAuxData
API_WRTQUERYSTROKEDATA 0x1c WrtQueryStrokeData
API_WRTQUERYSYSVALUE 0x1d WrtQuerySysValue
API_WRTQUERYSYSTEMCAPS 0x1e WrtQuerySystemCaps

A P I ' s 4 3
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Symbol Index API
API_WRTREADSYSVALUE 0x1f WrtReadSysValue
API_WRTSETINPUTDEVICEVARIABLE 0x20 WrtSetInputDevice-

Variable
API_WRTSETSTRICTEMULATION 0x21 WrtSetStrictEmulation
API_WRTSETSYSVALUE 0x22 WrtSetSysValue
API_WRTWAITACTIVE 0x23 WrtWaitActive
API_WRTWRITESYSVALUE 0x24 WrtWriteSysValue

Pic* Calls

Symbol Index API
API_PICICHG 0x0 PicIchg
API_PICPRINT 0x1 PicPrint

Prf* Calls

Symbol Index API
API_PRFADDPROGRAM 0x0 PrfAddProgram
API_PRFCHANGEPROGRAM 0x1 PrfChangeProgram
API_PRFCLOSEPROFILE 0x2 PrfCloseProfile
API_PRFDESTROYGROUP 0x3 PrfDestroyGroup
API_PRFOPENPROFILE 0x4 PrfOpenProfile
API_PRFQUERYDEFINITION 0x5 PrfQueryDefinition
API_PRFQUERYPROFILE 0x6 PrfQueryProfile
API_PRFQUERYPROFILEDATA 0x7 PrfQueryProfileData
API_PRFQUERYPROFILEINT 0x8 PrfQueryProfileInt
API_PRFQUERYPROFILESIZE 0x9 PrfQueryProfileSize
API_PRFQUERYPROFILESTRING 0xa PrfQueryProfileString
API_PRFQUERYPROGRAMTITLES 0xb PrfQueryProgramTitles
API_PRFREMOVEPROGRAM 0xc PrfRemoveProgram
API_PRFRESET 0xd PrfReset
API_PRFWRITEPROFILEDATA 0xe PrfWriteProfileData
API_PRFWRITEPROFILESTRING 0xf PrfWriteProfileString

Prt* Calls

Symbol Index API
API_PRTABORT 0x0 PrtAbort
API_PRTCLOSE 0x1 PrtClose
API_PRTDEVIOCTL 0x2 PrtDevIOCtl
API_PRTOPEN 0x3 PrtOpen
API_PRTWRITE 0x4 PrtWrite

Spl* Calls

Symbol Index API
API_SPLCONTROLDEVICE 0x0 SplControlDevice
API_SPLCOPYJOB 0x1 SplCopyJob
API_SPLCREATEDEVICE 0x2 SplCreateDevice

4 4 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Index API
API_SPLCREATEQUEUE 0x3 SplCreateQueue
API_SPLDELETEDEVICE 0x4 SplDeleteDevice
API_SPLDELETEJOB 0x5 SplDeleteJob
API_SPLDELETEQUEUE 0x6 SplDeleteQueue
API_SPLENUMDEVICE 0x7 SplEnumDevice
API_SPLENUMDRIVER 0x8 SplEnumDriver
API_SPLENUMJOB 0x9 SplEnumJob
API_SPLENUMPORT 0xa SplEnumPort
API_SPLENUMPRINTER 0xb SplEnumPrinter
API_SPLENUMQUEUE 0xc SplEnumQueue
API_SPLENUMQUEUEPROCESSOR 0xd SplEnumQueue-

Processor
API_SPLHOLDJOB 0xe SplHoldJob
API_SPLHOLDQUEUE 0xf SplHoldQueue
API_SPLMESSAGEBOX 0x10 SplMessageBox
API_SPLPURGEQUEUE 0x11 SplPurgeQueue
API_SPLQMABORT 0x12 SplQmAbort
API_SPLQMABORTDOC 0x13 SplQmAbortDoc
API_SPLQMCLOSE 0x14 SplQmClose
API_SPLQMENDDOC 0x15 SplQmEndDoc
API_SPLQMOPEN 0x16 SplQmOpen
API_SPLQMSTARTDOC 0x17 SplQmStartDoc
API_SPLQMWRITE 0x18 SplQmWrite
API_SPLQUERYDEVICE 0x19 SplQueryDevice
API_SPLQUERYJOB 0x1a SplQueryJob
API_SPLQUERYQUEUE 0x1b SplQueryQueue
API_SPLRELEASEJOB 0x1c SplReleaseJob
API_SPLRELEASEQUEUE 0x1d SplReleaseQueue
API_SPLSETDEVICE 0x1e SplSetDevice
API_SPLSETJOB 0x1f SplSetJob
API_SPLSETQUEUE 0x20 SplSetQueue
API_SPLSTDCLOSE 0x21 SplStdClose
API_SPLSTDDELETE 0x22 SplStdDelete
API_SPLSTDGETBITS 0x23 SplStdGetBits
API_SPLSTDOPEN 0x24 SplStdOpen
API_SPLSTDQUERYLENGTH 0x25 SplStdQueryLength
API_SPLSTDSTART 0x26 SplStdStart
API_SPLSTDSTOP 0x27 SplStdStop

Win* Calls

Symbol Index API
API_WINADDATOM 0x0 WinAddAtom
API_WINADDSWITCHENTRY 0x1 WinAddSwitchEntry
API_WINALARM 0x2 WinAlarm
API_WINASSOCIATEHELPINSTANCE 0x3 WinAssociateHelp-

Instance
API_WINBEGINENUMWINDOWS 0x4 WinBeginEnum-

Windows
API_WINBEGINPAINT 0x5 WinBeginPaint
API_WINBROADCASTMSG 0x6 WinBroadcastMsg

A P I ' s 4 5
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Symbol Index API
API_WINCALCFRAMERECT 0x7 WinCalcFrameRect
API_WINCALLMSGFILTER 0x8 WinCallMsgFilter
API_WINCANCELSHUTDOWN 0x9 WinCancelShutdown
API_WINCHANGESWITCHENTRY 0xa WinChangeSwitchEntry
API_WINCLOSECLIPBRD 0xb WinCloseClipbrd
API_WINCOMPARESTRINGS 0xc WinCompareStrings
API_WINCOPYACCELTABLE 0xd WinCopyAccelTable
API_WINCOPYRECT 0xe WinCopyRect
API_WINCPTRANSLATECHAR 0xf WinCpTranslateChar
API_WINCPTRANSLATESTRING 0x10 WinCpTranslateString
API_WINCREATEACCELTABLE 0x11 WinCreateAccelTable
API_WINCREATEATOMTABLE 0x12 WinCreateAtomTable
API_WINCREATECURSOR 0x13 WinCreateCursor
API_WINCREATEDLG 0x14 WinCreateDlg
API_WINCREATEFRAMECONTROLS 0x15 WinCreateFrame-

Controls
API_WINCREATEHELPINSTANCE 0x16 WinCreateHelpInstance
API_WINCREATEHELPTABLE 0x17 WinCreateHelpTable
API_WINCREATEMENU 0x18 WinCreateMenu
API_WINCREATEMSGQUEUE 0x19 WinCreateMsgQueue
API_WINCREATEOBJECT 0x1a WinCreateObject
API_WINCREATEPOINTER 0x1b WinCreatePointer
API_WINCREATEPOINTERINDIRECT 0x1c WinCreatePointer-

Indirect
API_WINCREATESTDWINDOW 0x1d WinCreateStdWindow
API_WINCREATESWITCHENTRY 0x1e WinCreateSwitchEntry
API_WINCREATEWINDOW 0x1f WinCreateWindow
API_WINDDEINITIATE 0x20 WinDdeInitiate
API_WINDDEPOSTMSG 0x21 WinDdePostMsg
API_WINDDERESPOND 0x22 WinDdeRespond
API_WINDEFDLGPROC 0x23 WinDefDlgProc
API_WINDEFFILEDLGPROC 0x24 WinDefFileDlgProc
API_WINDEFFONTDLGPROC 0x25 WinDefFontDlgProc
API_WINDEFWINDOWPROC 0x26 WinDefWindowProc
API_WINDELETEATOM 0x27 WinDeleteAtom
API_WINDELETELIBRARY 0x28 WinDeleteLibrary
API_WINDELETEPROCEDURE 0x29 WinDeleteProcedure
API_WINDEREGISTEROBJECTCLASS 0x2a WinDeregister-

ObjectClass
API_WINDESTROYACCELTABLE 0x2b WinDestroyAccelTable
API_WINDESTROYATOMTABLE 0x2c WinDestroyAtomTable
API_WINDESTROYCURSOR 0x2d WinDestroyCursor
API_WINDESTROYHELPINSTANCE 0x2e WinDestroyHelp-Instance
API_WINDESTROYMSGQUEUE 0x2f WinDestroyMsgQueue
API_WINDESTROYOBJECT 0x30 WinDestroyObject
API_WINDESTROYPOINTER 0x31 WinDestroyPointer
API_WINDESTROYWINDOW 0x32 WinDestroyWindow
API_WINDISMISSDLG 0x33 WinDismissDlg
API_WINDISPATCHMSG 0x34 WinDispatchMsg
API_WINDLGBOX 0x35 WinDlgBox

4 6 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Index API
API_WINDRAWBITMAP 0x36 WinDrawBitmap
API_WINDRAWBORDER 0x37 WinDrawBorder
API_WINDRAWPOINTER 0x38 WinDrawPointer
API_WINDRAWTEXT 0x39 WinDrawText
API_WINEMPTYCLIPBRD 0x3a WinEmptyClipbrd
API_WINENABLEPHYSINPUT 0x3b WinEnablePhysInput
API_WINENABLEWINDOW 0x3c WinEnableWindow
API_WINENABLEWINDOWUPDATE 0x3d WinEnableWindow-

Update
API_WINENDENUMWINDOWS 0x3e WinEndEnumWindows
API_WINENDPAINT 0x3f WinEndPaint
API_WINENUMCLIPBRDFMTS 0x40 WinEnumClipbrdFmts
API_WINENUMDLGITEM 0x41 WinEnumDlgItem
API_WINENUMOBJECTCLASSES 0x42 WinEnumObjectClasses
API_WINEQUALRECT 0x43 WinEqualRect
API_WINEXCLUDEUPDATEREGION 0x44 WinExcludeUpdate-

Region
API_WINFILEDLG 0x45 WinFileDlg
API_WINFILLRECT 0x46 WinFillRect
API_WINFINDATOM 0x47 WinFindAtom
API_WINFLASHWINDOW 0x48 WinFlashWindow
API_WINFOCUSCHANGE 0x49 WinFocusChange
API_WINFONTDLG 0x4a WinFontDlg
API_WINFREEERRORINFO 0x4b WinFreeErrorInfo
API_WINFREEFILEDLGLIST 0x4c WinFreeFileDlgList
API_WINFREEFILEICON 0x4d WinFreeFileIcon
API_WINGETCLIPPS 0x4e WinGetClipPS
API_WINGETCURRENTTIME 0x4f WinGetCurrentTime
API_WINGETDLGMSG 0x50 WinGetDlgMsg
API_WINGETERRORINFO 0x51 WinGetErrorInfo
API_WINGETKEYSTATE 0x52 WinGetKeyState
API_WINGETLASTERROR 0x53 WinGetLastError
API_WINGETMAXPOSITION 0x54 WinGetMaxPosition
API_WINGETMINPOSITION 0x55 WinGetMinPosition
API_WINGETMSG 0x56 WinGetMsg
API_WINGETNEXTWINDOW 0x57 WinGetNextWindow
API_WINGETPS 0x58 WinGetPS
API_WINGETPHYSKEYSTATE 0x59 WinGetPhysKeyState
API_WINGETSCREENPS 0x5a WinGetScreenPS
API_WINGETSYSBITMAP 0x5b WinGetSysBitmap
API_WININSENDMSG 0x5c WinInSendMsg
API_WININFLATERECT 0x5d WinInflateRect
API_WININITIALIZE 0x5e WinInitialize
API_WININTERSECTRECT 0x5f WinIntersectRect
API_WININVALIDATERECT 0x60 WinInvalidateRect
API_WININVALIDATEREGION 0x61 WinInvalidateRegion
API_WININVERTRECT 0x62 WinInvertRect
API_WINISCHILD 0x63 WinIsChild
API_WINISPHYSINPUTENABLED 0x64 WinIsPhysInputEnabled
API_WINISRECTEMPTY 0x65 WinIsRectEmpty
API_WINISTHREADACTIVE 0x66 WinIsThreadActive

A P I ' s 4 7
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Symbol Index API
API_WINISWINDOW 0x67 WinIsWindow
API_WINISWINDOWENABLED 0x68 WinIsWindowEnabled
API_WINISWINDOWSHOWING 0x69 WinIsWindowShowing
API_WINISWINDOWVISIBLE 0x6a WinIsWindowVisible
API_WINLOADACCELTABLE 0x6b WinLoadAccelTable
API_WINLOADDLG 0x6c WinLoadDlg
API_WINLOADFILEICON 0x6d WinLoadFileIcon
API_WINLOADHELPTABLE 0x6e WinLoadHelpTable
API_WINLOADLIBRARY 0x6f WinLoadLibrary
API_WINLOADMENU 0x70 WinLoadMenu
API_WINLOADMESSAGE 0x71 WinLoadMessage
API_WINLOADPOINTER 0x72 WinLoadPointer
API_WINLOADPROCEDURE 0x73 WinLoadProcedure
API_WINLOADSTRING 0x74 WinLoadString
API_WINLOCKVISREGIONS 0x75 WinLockVisRegions
API_WINLOCKWINDOWUPDATE 0x76 WinLockWindow-Update
API_WINMAKEPOINTS 0x77 WinMakePoints
API_WINMAKERECT 0x78 WinMakeRect
API_WINMAPDLGPOINTS 0x79 WinMapDlgPoints
API_WINMAPWINDOWPOINTS 0x7a WinMapWindowPoints
API_WINMESSAGEBOX 0x7b WinMessageBox
API_WINMULTWINDOWFROMIDS 0x7c WinMultWindow-

FromIDs
API_WINNEXTCHAR 0x7d WinNextChar
API_WINOFFSETRECT 0x7e WinOffsetRect
API_WINOPENCLIPBRD 0x7f WinOpenClipbrd
API_WINOPENWINDOWDC 0x80 WinOpenWindowDC
API_WINPEEKMSG 0x81 WinPeekMsg
API_WINPOPUPMENU 0x82 WinPopupMenu
API_WINPOSTMSG 0x83 WinPostMsg
API_WINPOSTQUEUEMSG 0x84 WinPostQueueMsg
API_WINPREVCHAR 0x85 WinPrevChar
API_WINPROCESSDLG 0x86 WinProcessDlg
API_WINPTINRECT 0x87 WinPtInRect
API_WINQUERYACCELTABLE 0x88 WinQueryAccelTable
API_WINQUERYACTIVEWINDOW 0x89 WinQueryActive-

Window
API_WINQUERYANCHORBLOCK 0x8a WinQueryAnchorBlock
API_WINQUERYATOMLENGTH 0x8b WinQueryAtomLength
API_WINQUERYATOMNAME 0x8c WinQueryAtomName
API_WINQUERYATOMUSAGE 0x8d WinQueryAtomUsage
API_WINQUERYCAPTURE 0x8e WinQueryCapture
API_WINQUERYCLASSINFO 0x8f WinQueryClassInfo
API_WINQUERYCLASSNAME 0x90 WinQueryClassName
API_WINQUERYCLASSTHUNKPROC 0x91 WinQueryClass-

ThunkProc
API_WINQUERYCLIPBRDDATA 0x92 WinQueryClipbrdData
API_WINQUERYCLIPBRDFMTINFO 0x93 WinQueryClipbrd-

FmtInfo
API_WINQUERYCLIPBRDOWNER 0x94 WinQueryClipbrdOwner

4 8 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Index API
API_WINQUERYCLIPBRDVIEWER 0x95 WinQueryClipbrd-

Viewer
API_WINQUERYCP 0x96 WinQueryCp
API_WINQUERYCPLIST 0x97 WinQueryCpList
API_WINQUERYCURSORINFO 0x98 WinQueryCursorInfo
API_WINQUERYDESKTOPBKGND 0x99 WinQueryDesktop-

Bkgnd
API_WINQUERYDESKTOPWINDOW 0x9a WinQueryDesktop-

Window
API_WINQUERYDLGITEMSHORT 0x9b WinQueryDlgItemShort
API_WINQUERYDLGITEMTEXT 0x9c WinQueryDlgItemText
API_WINQUERYDLGITEMTEXTLENGTH 0x9d WinQueryDlgItem-

TextLength
API_WINQUERYFOCUS 0x9e WinQueryFocus
API_WINQUERYHELPINSTANCE 0x9f WinQueryHelpInstance
API_WINQUERYMSGPOS 0xa0 WinQueryMsgPos
API_WINQUERYMSGTIME 0xa1 WinQueryMsgTime
API_WINQUERYOBJECT 0xa2 WinQueryObject
API_WINQUERYOBJECTWINDOW 0xa3 WinQueryObject-

Window
API_WINQUERYPOINTER 0xa4 WinQueryPointer
API_WINQUERYPOINTERINFO 0xa5 WinQueryPointerInfo
API_WINQUERYPOINTERPOS 0xa6 WinQueryPointerPos
API_WINQUERYPRESPARAM 0xa7 WinQueryPresParam
API_WINQUERYQUEUEINFO 0xa8 WinQueryQueueInfo
API_WINQUERYQUEUESTATUS 0xa9 WinQueryQueueStatus
API_WINQUERYSESSIONTITLE 0xaa WinQuerySessionTitle
API_WINQUERYSWITCHENTRY 0xab WinQuerySwitchEntry
API_WINQUERYSWITCHHANDLE 0xac WinQuerySwitchHandle
API_WINQUERYSWITCHLIST 0xad WinQuerySwitchList
API_WINQUERYSYSCOLOR 0xae WinQuerySysColor
API_WINQUERYSYSMODALWINDOW 0xaf WinQuerySysModal-

Window
API_WINQUERYSYSPOINTER 0xb0 WinQuerySysPointer
API_WINQUERYSYSVALUE 0xb1 WinQuerySysValue
API_WINQUERYSYSTEMATOMTABLE 0xb2 WinQuerySystem-

AtomTable
API_WINQUERYTASKSIZEPOS 0xb3 WinQueryTaskSizePos
API_WINQUERYTASKTITLE 0xb4 WinQueryTaskTitle
API_WINQUERYUPDATERECT 0xb5 WinQueryUpdateRect
API_WINQUERYUPDATEREGION 0xb6 WinQueryUpdateRegion
API_WINQUERYVERSION 0xb7 WinQueryVersion
API_WINQUERYWINDOW 0xb8 WinQueryWindow
API_WINQUERYWINDOWDC 0xb9 WinQueryWindowDC
API_WINQUERYWINDOWMODEL 0xba WinQueryWindow-

Model
API_WINQUERYWINDOWPOS 0xbb WinQueryWindowPos
API_WINQUERYWINDOWPROCESS 0xbc WinQueryWindow-

Process
API_WINQUERYWINDOWPTR 0xbd WinQueryWindowPtr
API_WINQUERYWINDOWRECT 0xbe WinQueryWindowRect

A P I ' s 4 9
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Symbol Index API
API_WINQUERYWINDOWTEXT 0xbf WinQueryWindowText
API_WINQUERYWINDOWTEXTLENGTH 0xc0 WinQueryWindow-

TextLength
API_WINQUERYWINDOWTHUNKPROC 0xc1 WinQueryWindow-

ThunkProc
API_WINQUERYWINDOWULONG 0xc2 WinQueryWindow-

ULong
API_WINQUERYWINDOWUSHORT 0xc3 WinQueryWindow-

UShort
API_WINREALIZEPALETTE 0xc4 WinRealizePalette
API_WINREGISTERCLASS 0xc5 WinRegisterClass
API_WINREGISTEROBJECTCLASS 0xc6 WinRegisterObjectClass
API_WINREGISTERUSERDATATYPE 0xc7 WinRegisterUser-

Datatype
API_WINREGISTERUSERMSG 0xc8 WinRegisterUserMsg
API_WINRELEASEHOOK 0xc9 WinReleaseHook
API_WINRELEASEPS 0xca WinReleasePS
API_WINREMOVEPRESPARAM 0xcb WinRemovePresParam
API_WINREMOVESWITCHENTRY 0xcc WinRemoveSwitchEntry
API_WINREPLACEOBJECTCLASS 0xcd WinReplaceObjectClass
API_WINREQUESTMUTEXSEM 0xce WinRequestMutexSem
API_WINRESTOREWINDOWPOS 0xcf WinRestoreWindowPos
API_WINSAVEWINDOWPOS 0xd0 WinSaveWindowPos
API_WINSCROLLWINDOW 0xd1 WinScrollWindow
API_WINSENDDLGITEMMSG 0xd2 WinSendDlgItemMsg
API_WINSENDMSG 0xd3 WinSendMsg
API_WINSETACCELTABLE 0xd4 WinSetAccelTable
API_WINSETACTIVEWINDOW 0xd5 WinSetActiveWindow
API_WINSETCAPTURE 0xd6 WinSetCapture
API_WINSETCLASSMSGINTEREST 0xd7 WinSetClassMsgInterest
API_WINSETCLASSTHUNKPROC 0xd8 WinSetClassThunkProc
API_WINSETCLIPBRDDATA 0xd9 WinSetClipbrdData
API_WINSETCLIPBRDOWNER 0xda WinSetClipbrdOwner
API_WINSETCLIPBRDVIEWER 0xdb WinSetClipbrdViewer
API_WINSETCP 0xdc WinSetCp
API_WINSETDESKTOPBKGND 0xdd WinSetDesktopBkgnd
API_WINSETDLGITEMSHORT 0xde WinSetDlgItemShort
API_WINSETDLGITEMTEXT 0xdf WinSetDlgItemText
API_WINSETFILEICON 0xe0 WinSetFileIcon
API_WINSETFOCUS 0xe1 WinSetFocus
API_WINSETHOOK 0xe2 WinSetHook
API_WINSETKEYBOARDSTATETABLE 0xe3 WinSetKeyboard-

StateTable
API_WINSETMSGINTEREST 0xe4 WinSetMsgInterest
API_WINSETMSGMODE 0xe5 WinSetMsgMode
API_WINSETMULTWINDOWPOS 0xe6 WinSetMultWindowPos
API_WINSETOBJECTDATA 0xe7 WinSetObjectData
API_WINSETOWNER 0xe8 WinSetOwner
API_WINSETPARENT 0xe9 WinSetParent
API_WINSETPOINTER 0xea WinSetPointer
API_WINSETPOINTEROWNER 0xeb WinSetPointerOwner

5 0 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Index API
API_WINSETPOINTERPOS 0xec WinSetPointerPos
API_WINSETPRESPARAM 0xed WinSetPresParam
API_WINSETRECT 0xee WinSetRect
API_WINSETRECTEMPTY 0xef WinSetRectEmpty
API_WINSETSYNCHROMODE 0xf0 WinSetSynchroMode
API_WINSETSYSCOLORS 0xf1 WinSetSysColors
API_WINSETSYSMODALWINDOW 0xf2 WinSetSysModal-

Window
API_WINSETSYSVALUE 0xf3 WinSetSysValue
API_WINSETWINDOWBITS 0xf4 WinSetWindowBits
API_WINSETWINDOWPOS 0xf5 WinSetWindowPos
API_WINSETWINDOWPTR 0xf6 WinSetWindowPtr
API_WINSETWINDOWTEXT 0xf7 WinSetWindowText
API_WINSETWINDOWTHUNKPROC 0xf8 WinSetWindow-

ThunkProc
API_WINSETWINDOWULONG 0xf9 WinSetWindowULong
API_WINSETWINDOWUSHORT 0xfa WinSetWindowUShort
API_WINSHOWCURSOR 0xfb WinShowCursor
API_WINSHOWPOINTER 0xfc WinShowPointer
API_WINSHOWTRACKRECT 0xfd WinShowTrackRect
API_WINSHOWWINDOW 0xfe WinShowWindow
API_WINSHUTDOWNSYSTEM 0xff WinShutdownSystem
API_WINSTARTAPP 0x100 WinStartApp
API_WINSTARTTIMER 0x101 WinStartTimer
API_WINSTOPTIMER 0x102 WinStopTimer
API_WINSTOREWINDOWPOS 0x103 WinStoreWindowPos
API_WINSUBCLASSWINDOW 0x104 WinSubclassWindow
API_WINSUBSTITUTESTRINGS 0x105 WinSubstituteStrings
API_WINSUBTRACTRECT 0x106 WinSubtractRect
API_WINSWITCHTOPROGRAM 0x107 WinSwitchToProgram
API_WINTERMINATE 0x108 WinTerminate
API_WINTERMINATEAPP 0x109 WinTerminateApp
API_WINTRACKRECT 0x10a WinTrackRect
API_WINTRANSLATEACCEL 0x10b WinTranslateAccel
API_WINUNIONRECT 0x10c WinUnionRect
API_WINUPDATEWINDOW 0x10d WinUpdateWindow
API_WINUPPER 0x10e WinUpper
API_WINUPPERCHAR 0x10f WinUpperChar
API_WINVALIDATERECT 0x110 WinValidateRect
API_WINVALIDATEREGION 0x111 WinValidateRegion
API_WINWAITEVENTSEM 0x112 WinWaitEventSem
API_WINWAITMSG 0x113 WinWaitMsg
API_WINWAITMUXWAITSEM 0x114 WinWaitMuxWaitSem
API_WINWINDOWFROMDC 0x115 WinWindowFromDC
API_WINWINDOWFROMID 0x116 WinWindowFromID
API_WINWINDOWFROMPOINT 0x117 WinWindowFromPoint

A P I ' s 5 1
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

OS/2 2.1 Win* Calls

Symbol Index API
API_WINCHECKINPUT 0x118 WinCheckInput
API_WINLOCKPOINTERUPDATE 0x119 WinLockPointerUpdate
API_WINLOCKUPSYSTEM 0x11a WinLockupSystem
API_WINQUERYSYSPOINTERDATA 0x11b WinQuerySys-

PointerData
API_WINSETPOINTEROWNER 0x11c WinSetPointerOwner
API_WINSETSYSPOINTERDATA 0x11d WinSetSysPointerData
API_WINUNLOCKSYSTEM 0x11e WinUnlockSystem

MMPM/2 Calls

Symbol Index API
API_SPIASSOCIATE 0x0 SpiAssociate
API_SPICREATESTREAM 0x1 SpiCreateStream
API_SPIDESTROYSTREAM 0x2 SpiDestroyStream
API_SPIDETERMINESYNCMASTER 0x3 SpiDetermineSync-

Master
API_SPIDISABLEEVENT 0x4 SpiDisableEvent
API_SPIDISABLESYNC 0x5 SpiDisableSync
API_SPIENABLEEVENT 0x6 SpiEnableEvent
API_SPIENABLESYNC 0x7 SpiEnableSync
API_SPIENUMERATEHANDLERS 0x8 SpiEnumerateHandlers
API_SPIENUMERATEPROTOCOLS 0x9 SpiEnumerateProtocols
API_SPIGETHANDLER 0xa SpiGetHandler
API_SPIGETPROTOCOL 0xb SpiGetProtocol
API_SPIGETTIME 0xc SpiGetTime
API_SPIINSTALLPROTOCOL 0xd SpiInstallProtocol
API_SPISEEKSTREAM 0xe SpiSeekStream
API_SPISENDMSG 0xf SpiSendMsg
API_SPISTARTSTREAM 0x10 SpiStartStream
API_SPISTOPSTREAM 0x11 SpiStopStream
API_MCIDELETEGROUP 0x12 mciDeleteGroup
API_MCIGETDEVICEID 0x13 mciGetDeviceID
API_MCIGETERRORSTRING 0x14 mciGetErrorString
API_MCIMAKEGROUP 0x15 mciMakeGroup
API_MCIPLAYFILE 0x16 mciPlayFile
API_MCIPLAYRESOURCE 0x17 mciPlayResource
API_MCIQUERYSYSVALUE 0x18 mciQuerySysValue
API_MCIRECORDAUDIOFILE 0x19 mciRecordAudioFile
API_MCISENDCOMMAND 0x1a mciSendCommand
API_MCISENDSTRING 0x1b mciSendString
API_MCISETSYSVALUE 0x1c mciSetSysValue
API_MDMDRIVERNOTIFY 0x1d mdmDriverNotify
API_MMIOADVANCE 0x1e mmioAdvance
API_MMIOASCEND 0x1f mmioAscend
API_MMIOCFADDELEMENT 0x20 mmioCFAddElement
API_MMIOCFADDENTRY 0x21 mmioCFAddEntry
API_MMIOCFCHANGEENTRY 0x22 mmioCFChangeEntry
API_MMIOCFCLOSE 0x23 mmioCFClose

5 2 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Index API
API_MMIOCFCOMPACT 0x24 mmioCFCompact
API_MMIOCFCOPY 0x25 mmioCFCopy
API_MMIOCFDELETEENTRY 0x26 mmioCFDeleteEntry
API_MMIOCFFINDENTRY 0x27 mmioCFFindEntry
API_MMIOCFGETINFO 0x28 mmioCFGetInfo
API_MMIOCFOPEN 0x29 mmioCFOpen
API_MMIOCFSETINFO 0x2a mmioCFSetInfo
API_MMIOCLOSE 0x2b mmioClose
API_MMIOCREATECHUNK 0x2c mmioCreateChunk
API_MMIODESCEND 0x2d mmioDescend
API_MMIODETERMINESSIOPROC 0x2e mmioDetermine-

SSIOProc
API_MMIOFINDELEMENT 0x2f mmioFindElement
API_MMIOFLUSH 0x30 mmioFlush
API_MMIOGETFORMATNAME 0x31 mmioGetFormatName
API_MMIOGETFORMATS 0x32 mmioGetFormats
API_MMIOGETHEADER 0x33 mmioGetHeader
API_MMIOGETINFO 0x34 mmioGetInfo
API_MMIOGETLASTERROR 0x35 mmioGetLastError
API_MMIOIDENTIFYFILE 0x36 mmioIdentifyFile
API_MMIOIDENTIFYSTORAGESYSTEM 0x37 mmioIdentifyStorage-

System
API_MMIOINIFILECODEC 0x38 mmioIniFileCODEC
API_MMIOINIFILEHANDLER 0x39 mmioIniFileHandler
API_MMIOINSTALLIOPROC 0x3a mmioInstallIOProc
API_MMIOLOADCODECPROC 0x3b mmioLoadCODECProc
API_MMIOOPEN 0x3c mmioOpen
API_MMIOQUERYCODECNAME 0x3d mmioQueryCODEC-

Name
API_MMIOQUERYCODECNAMELENGTH 0x3e mmioQueryCODEC-

NameLength
API_MMIOQUERYFORMATCOUNT 0x3f mmioQueryFormat-

Count
API_MMIOQUERYHEADERLENGTH 0x40 mmioQueryHeader-

Length
API_MMIOQUERYIOPROCMODULEHANDLE 0x41 mmioQueryIOProc-

ModuleHandle
API_MMIOREAD 0x42 mmioRead
API_MMIOREMOVEELEMENT 0x43 mmioRemoveElement
API_MMIOSEEK 0x44 mmioSeek
API_MMIOSENDMESSAGE 0x45 mmioSendMessage
API_MMIOSET 0x46 mmioSet
API_MMIOSETBUFFER 0x47 mmioSetBuffer
API_MMIOSETHEADER 0x48 mmioSetHeader
API_MMIOSETINFO 0x49 mmioSetInfo
API_MMIOSTRINGTOFOURCC 0x4a mmioStringToFOURCC
API_MMIOWRITE 0x4b mmioWrite
API_WINCREATESECONDARYWINDOW 0x4c WinCreateSecondary-

Window

A P I ' s 5 3
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Symbol Index API
API_WINDEFSECONDARYWINDOWPROC 0x4d WinDefSecondary-

WindowProc
API_WINDEFAULTSIZE 0x4e WinDefaultSize
API_WINDESTROYSECONDARYWINDOW 0x4f WinDestroy-

SecondaryWindow
API_WINDISMISSSECONDARYWINDOW 0x50 WinDismiss-

SecondaryWindow
API_WININSERTDEFAULTSIZE 0x51 WinInsertDefaultSize
API_WINLOADSECONDARYWINDOW 0x52 WinLoadSecondary-

Window
API_WINPROCESSSECONDARYWINDOW 0x53 WinProcess-

SecondaryWindow
API_WINQUERYSECONDARYHWND 0x54 WinQuerySecondary-

HWND
API_WINREGISTERCIRCULARSLIDER 0x55 WinRegisterCircular-

Slider
API_WINREGISTERGRAPHICBUTTON 0x56 WinRegisterGraphic-

Button
API_WINSECONDARYMESSAGEBOX 0x57 WinSecondary-

MessageBox
API_WINSECONDARYWINDOW 0x58 WinSecondaryWindow

⇓ ULONG ulError

OS/2 error value that is to be checked for. If the error is
encountered within the application and the ulReturn parameter
value matches the actual API return, the error will not be passed to
ViewPort or written to the logging files.

⇓ ULONG ulReturn

API return value. If the error ulError is encountered within the
application from the API, the ulReturn value is checked to make
sure that the desired error is prevented from being passed to
ViewPort or written to the logging files.

Return Value A return value of APIERR_NONE (0) indicates successful registering of
API for error filtering otherwise the following error values will be
returned:

Symbol Value Problem
APIERR_INVALID_API 1 Invalid API index used.
APIERR_INVALID_API_FAMILY 2 Invalid API family used.
APIERR_NO_MEM_AVAIL 3 No memory available to register

API.
APIERR_INVALID_HVAL 4 Invalid handle.

Comments When you encounter an API that due to its design returns frequent error
codes, you may decide that you want to prevent this message from being
sent to the log files or to ViewPort. A good example is the
DrgFreeDraginfo API which when you are dragging an object will

5 4 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

return 0 indicating an error. The error is
PMERR_SOURCE_SAME_AS_TARGET where the object you are
dragging is being dragged through its owner window which in this case
cannot accept the drop.

Similar such errors occur when you are in other modal-like operations.
Depending on the scenario, you may get thousands of error returns while
performing the operation and this can cause an overload condition to
occur where the system will have seemed to have hung but in reality, it
is trying to process the messages that have been generated.

The best method of determining when you have this kind of condition is
when you perform an operation and it seems sluggish. When you have
completed the operation, like releasing the mouse button in a drag
operation, a flurry of error messages will occur within the corresponding
ViewPort error window. Even though ViewPort provides error filtering,
this does not relieve the message flow from the application that you are
performing API validation on and since ViewPort will have still
received the error message before it was filtered.

Example When using the ValFilterErr function, it is best to first determine the
full error return. You can either use the value returned through the API
by using the debugging or some other method. Alternately, you can view
the full value within ViewPort.

It should be remembered that when you are using Validator, parameter
errors include additional error information. This must be included with
the ValFilterErr . Also, when dealing with OS/2 Presentation Manager
errors that are retrieved through WinGetLastError , not only is an error
value returned (PMERR_*) but also a severity is returned. This severity
is returned in bits 16 - 24. A macro, ERRORIDERROR(errid) , is used
to determine the PMERR_* value. A second macro,
ERRORIDSEV(errid) , is used to determine the severity value.

The following example shows how to use the function with a OS/2
Presentation Manager for a parameter return error for GpiBitBlt :

ValFilterErr(hval, APIFAMILY_GPI, API_GPIBITBLT, 0x01041003UL, 0UL);

The error value is comprised of:

PERR_GBB03_COUNTLT3
SEVERITY_WARNING
PMERR_PARAMETER_OUT_OF_RANGE

Another example is for a non-parameter error for DosPostEventSem:
ValFilterErr(hval, APIFAMILY_DOS, API_DOSPOSTEVENTSEM, ERROR_ALREADY_POSTED,
 ERROR_ALREADY_POSTED);

See Also ValInitialize (see page 55)

A P I ' s 5 5
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

ValInitializeValInitialize
HVAL ValInitialize (pszAppName, pszLogFile, ulSupport)

PSZ pszAppName; /* Application Name */
PSZ pszLogFile; /* Log File Filename */
ULONG ulSupport; /* Validation Support Level */

This function is used to register the application within the validation
session and to request the level of support that the validation routines are
to provide.

Parameters ⇓ PSZ pszAppName

Application filename or designation. The maximum size of the
string that can be registered is 255 bytes. When requesting logging
or ViewPort support, pszAppName cannot be NULL since the name
or designation is used to distinguish applications that may be either
logging to a common log file or tie into advanced filtering features
of ViewPort, otherwise the value can be NULL.

⇓ PSZ pszLogFile

Log file filename. The value is only used when you request log file
support through the ulSupport parameter by setting support for
either VL_ERRORLOG (0x01) or VL_VIEWPORTLOG (0x40).
The maximum size of the filename that can be used is 255 bytes.

⇓ ULONG ulSupport

Validation support level requested. It can be any combination of the
following values:

Symbol Value Meaning

VL_ERRORCODES 0x00 Provide validation return codes
(default).

VL_ERRORLOG 0x01 Write errors in ASCII to error log
specified in pszLogFile parameter.
If this flag is used, the
VL_VIEWPORTLOG (0x40)
cannot be used since only one log
file can be selected.

VL_FILELINE 0x02 Allow filename and line number to
be included with each API call
made. This is used in conjunction
with VL_ERRORLOG (0x01).
You must also make sure that
INCL_VALAPI is defined to make

5 6 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Symbol Value Meaning

VL_FILELINE (con’t) sure that the filename and
linenumber information is recorded
with each API. By not including
the filename and linenumber in the
ASCII log, the logging will be
faster.

VL_PAUSELOG 0x04 Prevent errors from being
immediately logged to the log file
specified in the pszLogFile

parameter. The ValLogging (see
page 57) function can be used to
turn on the logging at a later point.

VL_VIEWPORT 0x08 Send error information to
ViewPort.

VL_LOGRESET 0x10 Reset log file by deleting it. If you
have allowed undeletion support on
your machine, the file will be saved
within the deleted files directory
for the drive where the file is
located.

VL_FORCELOGRESET 0x20 Reset log file by deleting it and
preventing deleted file from being
saved to the deleted files directory
on the drive.

VL_VIEWPORTLOG 0x40 Write errors in ViewPort

format to error log specified in
pszLogFile parameter. If this
flag is used, the
VL_ERRORLOG (0x01)
cannot be used since only one
log file can be selected.

Return Value A return value of zero (0) indicates are error return and validation will
not occur to the level requested. Any other value is the handle for the
validation session.

Comments The routine is used to register the application formally with the
validation DLL's that are being used. Depending on the flags specified
within the ulSupport parameter, additional validation monitoring will be
provided beyond the standard error return values which occurs even if
the ValInitialize call is not used.

A P I ' s 5 7
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Example To create a logging file that is to record the error information in ASCII,
including filename and line numbers, you could use the following:

ValInitialize(“Sample Application”, “SAMPLE.LOG”, VL_FILELINE | VL_ERRORLOG);

If you wanted to allow the information to be also sent to ViewPort, you
would change the above to:

ValInitialize(“Sample Application”, “SAMPLE.LOG”, VL_FILELINE | VL_ERRORLOG |
 VL_VIEWPORT);

If you just wanted to have the error information sent to ViewPort, you
would use the following:

ValInitialize(“Sample Application”, NULL, VL_VIEWPORT);

See Also ValLogging (see page 57)

ValLoggingValLogging
ULONG ValLogging(hval, fLogActivate)

HVAL hval; /* Validation Handle */
BOOL fLogActivate; /* Logging Activate Flag */

This function is used to activate or deactivate logging.

Parameters ⇓ HVAL hval

Validation handle.

⇓ BOOL fLogActivate

When fLogActivate is a value of TRUE, any errors detected after the
return of the ValLogging function will be recorded within the
logging file specified in the ValInitialize function. If fLogActivate

is a value of FALSE, any errors detected after the return of the
ValLogging function will not be recorded within the logging file.
Calling ValLogging a subsequent time with fLogActivate set to
TRUE will reactivate the error logging to the log file.

Return Value A return value of LOGERR_NONE (0) indicates error logging has been
either activated or deactivated according to the value of fLogActivate

otherwise it can be the following:

Symbol Value Problem
LOGERR_NO_LOG_REQUESTED 1 No logging file was defined

through ValInitialize .
LOGERR_INVALID_HVAL 2 Invalid handle.

5 8 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Comments The routine is used to activate or deactivate error logging to the file
specified within the ValInitialize function. To determine if error
logging is active, use the ValQueryLogging function.

Example To activate logging, you would use the following:

ValLogging(hval, TRUE);

To pause the logging, you would use the following:

ValLogging(hval, FALSE);

See Also ValInitialize (see page 55), ValQueryLogging (see page 59)

ValQueryClassMsgMonitorValQueryClassMsgMonitor
ULONG ValQueryClassMsgMonitor(hval)

HVAL hval; /* Validation Handle */

This function is used to retrieve the class message monitor settings.

Parameters ⇓ HVAL hval

Validation handle.

Return Value A return value can be one of the following:

Symbol Value Meaning/Area
RCMMF_NONE 0x00000000UL No message monitored.
RCMMF_FRAME 0x00000001UL WM_* messages.
RCMMF_COMBOBOX 0x00000002UL CBM_* messages.
RCMMF_BUTTON 0x00000004UL BM_* messages.
RCMMF_MENU 0x00000008UL MM_* messages.
RCMMF_STATIC 0x00000010UL SM_* messages.
RCMMF_ENTRYFIELD 0x00000020UL EM_* messages.
RCMMF_LISTBOX 0x00000040UL LM_* messages.
RCMMF_SCROLLBAR 0x00000080UL SBM_* messages.
RCMMF_TITLEBAR 0x00000100UL TBM_* messages.
RCMMF_MLE 0x00000200UL MLM_* messages.
RCMMF_SPINBUTTON 0x00004000UL SPM_* messages.
RCMMF_CONTAINER 0x00008000UL CM_* messages.
RCMMF_SLIDER 0x00010000UL SLM_* messages.
RCMMF_VALUESET 0x00020000UL VSM_* messages.
RCMMF_NOTEBOOK 0x00040000UL BKM_* messages.
RCMMF_SKETCH 0x00100000UL SKM_* messages.
RCMMF_GRAPHICBUTTON 0x00200000UL GBM_* messages.
RCMMF_CIRCULARSLIDER 0x00400000UL CSM_* messages.
RCMMF_ALL 0x007fffffUL All messages.
REGMSG_INVALID_HVAL 0xffffffffUL Invalid handle.

Comments The routine is used to retrieve the class message monitor selections that
have been set through the ValRegisterClassMsgMonitor function. The

A P I ' s 5 9
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

value returned will be a combination of the flags from the table above.
The flags are OR'ed (|) together to complete the final value. You can
check for a particular value by AND'ing (&) the symbol with the return
value.

Example To determine the current class message monitor setting, you would use
the following:

ulMsgClass = ValQueryClassMsgMonitor(hval);

See Also ValInitialize (see page 55), ValRegisterClassMsgMonitor (see page
59)

ValQueryLoggingValQueryLogging
ULONG ValQueryLogging(hval)

HVAL hval; /* Validation Handle */

This function is used to determine if logging is active or inactive.

Parameters ⇓ HVAL hval

Validation handle.

Return Value A return value can be one of the following:

Symbol Value Status
QLOG_NONE 0 Error logging was not requested

through ValInitialize .
QLOG_ACTIVE 1 Error logging to logging file is

active.
QLOG_INACTIVE 2 Error logging to logging file

inactive.
QLOG_INVALID_HVAL 0xffffffffUL Invalid handle.

Comments The routine is used to determine the current status of error logging. The
function can be used in conjunction with ValLogging to activate or
deactivate logging to the log file.

Example To determine logging status, you would use the following:

ulLogging = ValQueryLogging(hval);

See Also ValInitialize (see page 55), ValLogging (see page 57)

ValRegisterClassMsgMonitorValRegisterClassMsgMonitor
ULONG ValRegisterClassMsgMonitor(hval, fl)

6 0 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

HVAL hval; /* Validation Handle */
ULONG fl; /* Class Message Area Flag */

This function is used to set the class message monitor selections.

Parameters ⇓ HVAL hval

Validation handle.

⇓ ULONG fl

The area or areas that should have extended validation performed
are defined through the fl flag. By combining the symbols below
using the or (|) operator, you can describe more than one class
message area. The value of fl used as the basis for checking the
message parameters and returns for those areas. These areas are:

Symbol Value Area
RCMMF_NONE 0x00000000UL No message monitored.
RCMMF_FRAME 0x00000001UL WM_* messages.
RCMMF_COMBOBOX 0x00000002UL CBM_* messages.
RCMMF_BUTTON 0x00000004UL BM_* messages.
RCMMF_MENU 0x00000008UL MM_* messages.
RCMMF_STATIC 0x00000010UL SM_* messages.
RCMMF_ENTRYFIELD 0x00000020UL EM_* messages.
RCMMF_LISTBOX 0x00000040UL LM_* messages.
RCMMF_SCROLLBAR 0x00000080UL SBM_* messages.
RCMMF_TITLEBAR 0x00000100UL TBM_* messages.
RCMMF_MLE 0x00000200UL MLM_* messages.
RCMMF_SPINBUTTON 0x00004000UL SPM_* messages.
RCMMF_CONTAINER 0x00008000UL CM_* messages.
RCMMF_SLIDER 0x00010000UL SLM_* messages.
RCMMF_VALUESET 0x00020000UL VSM_* messages.
RCMMF_NOTEBOOK 0x00040000UL BKM_* messages.
RCMMF_SKETCH 0x00100000UL SKM_* messages.
RCMMF_GRAPHICBUTTON 0x00200000UL GBM_* messages.
RCMMF_CIRCULARSLIDER 0x00400000UL CSM_* messages.
RCMMF_ALL 0x007fffffUL All messages.

Return Value A return value can be one of the following:

Symbol Value Meaning/Area
REGMSG_NONE 0UL Normal return
REGMSG_INVALID_FLAG 1UL Invalid flag value.
REGMSG_INVALID_HVAL 0xffffffffUL Invalid handle.

Comments The routine is used to set the class message monitor selections that will
have the message parameters validated along with the message return
for WinSendDlgItemMsg and WinSendMsg API's. By default, no
monitoring is performed since the monitor of the various messages can
have significant impact on performance. The value of the parameter fl

A P I ' s 6 1
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

is not cumulative. Therefore, the value that you provide is used to
replace the previous value. The current value can be determined by
ValQueryClassMsgMonitor.

Example To allow the monitoring of the messages sent to various controls, like an
entry field and list box, you would use the following:

ValRegisterClassMsgMonitor(hval, RCMMF_ENTRYFIELD | RCMMF_LISTBOX);

You can, if you so desire only provide the monitoring of messages in
specific areas of your code. To allow this to happen, you could use the
above example and when you want to disable the monitoring, you would
use the following:

ValRegisterClassMsgMonitor(hval, RCMMF_NONE);

See Also ValInitialize (see page 55), ValQueryClassMsgMonitor (see page 58)

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

s e c t i o n f o u r

Using ViewPort

This section describes how you use ViewPort to provide real-time
monitoring of errors returned through the validation routines and the
actual API's themselves. To allow the maximum potential of ViewPort

to help you during the development process, you need to compile your
source code such that the maximum validation information can be
provided to the validation DLL's.

To do this, you need to define the symbol INCL_VALAPI before the
OS2.H file is included in your source files. You can achieve this by
doing the following in your code:

#define INCL_DOS /* Include OS/2 DOS Kernel */
#define INCL_WIN /* Include OS/2 PM Windows Interface */

#define INCL_VALAPI /* Include Validator Support */

#include <os2.h>

#include "appdefs.h"
#include "threads.h"

Alternately, an easier method of defining the symbol is to include
/DINCL_VALAPI with your compiler switches. This will define the
symbol and you will not have to edit your source code to define the
symbol.

By defining the INCL_VALAPI symbol before the OS2.H file is
included in your source module, you will enable OS/2 API's to be
redefined such that they include two extra parameters in each call.
These two parameters will always be the last two parameters. The best
way understand this need is to see what happens with a typical OS/2
API.

Introduction

Figure 4.1
INCL_VALAPI definition

6 4 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

 The OS/2 API DosCreateDir is defined as:

APIRET DosCreateDir(PSZ pszDirName, PEAOP2 peaop2);

The redefinition components of the validation headers are conditionally
compiled and when the INCL_VALAPI symbol is defined, the
DosCreateDir is redefined to:

APIRET _DosCreateDir(PSZ pszDirName, PEAOP2 peaop2, PSZ pszFilename,

ULONG ulLine);

You don't have to worry about changing you source code to include the
last two parameters since the headers provided with Validator will do
this for you. The best way to see this is with the actual usage of the call:

DosCreateDir("NewDir", (PEAOP2)NULL);

Ultimately, when the actual DosCreateDir API is encountered within
your source code, the final result as produced by the preprocessor would
be:

_DosCreateDir("NewDir", (PEAOP2)((void *)0), "Test.C", 11);

Now that you understand what happens to your source code when it is
compiled with the INCL_VALAPI defined, it is only a matter of making
the connection between this and ViewPort.

When an error is detected through the validation routines either as a
parameter error or as returned through the normal processing of the API
call, the validation routines prepare a package of information that is then
transferred to ViewPort for processing. Two items within this package
are the name of the file where the API was called from and the actual
line number. This information is essentially the last two parameters as
defined above. And, when you see the error information recorded within
an error monitoring window of ViewPort, you can immediately see
which file and the line in that file where the error occurred.

But, this is not the only thing that you need to do within the source code
to enable ViewPort to be used. You also need to issue a call to the
validation routines essentially initializing the routines for the ViewPort

communication. This call, ValInitialize (see page 55), through the
ulSupport parameter allows you to request ViewPort support by
including the flag VL_VIEWPORT (0x08).

This causes the validation DLL's to start the communication process
with ViewPort, thereby informing ViewPort that an application is

Figure 4.1
DosCreateDir API

Figure 4.2
DosCreateDir API

redefinition

Figure 4.3
DosCreateDir API usage

example

Figure 4.4
DosCreateDir API

redefinition preprocessed
result

 U s i n g V i e w P o r t 6 5
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

utilizing validation support and wants it to be monitored real-time. This
implies that ViewPort must being running for this to be successful.
If you have requested ViewPort support through the ValInitialize
function and ViewPort is not running, the following message will be
displayed:

As the message states, by starting ViewPort and then clicking the mouse
pointer on the OK pushbutton, the communication link between the
validation DLL's and ViewPort can still occur.

Once the communication link is made, ViewPort opens an error window
unless you have asked for appending within existing error windows that
have the same application name. ViewPort then waits for packets from
the validation DLL's containing error information and when it receives
it, ViewPort then adds it to the list of errors recorded within the window
and then displays the information at the bottom of the list.

As described, you can see that ViewPort needs a little help from you for
it to successfully operate. Even if you don't provide the INCL_VALAPI
definition but instead use the INCL_VAL definition you can still request
ViewPort support through the ValInitialize function. Error information
will still be packaged and sent to ViewPort except that it won't have the
filename and line number from which the OS/2 API was called. This
may make it a little more difficult to track down the problem, but at least
you know that you have specific problem with a given API.

ViewPort is not an overly complicated tool from your perspective in that
you need to learn complex combinations of menus and accelerator keys
to make it operate successfully. All you need to do for the most part is
start it and wait.

This waiting does not necessarily have to be with only one of your
applications you are developing, it can be with many. As long as you
have used the ValInitialize with distinct application names, ViewPort

Plate 4.1
ViewPort not running

message

6 6 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

can monitor as many different applications you have created with
validation support. ViewPort, depending on how you have configured it,
will open a separate error monitoring window for each different
application you register through the ValInitialize call. When an error is
detected within any of the applications, the error information is sent
from the validation routines to the correct error monitoring window,
where again depending on how you have configured ViewPort, will
immediately display the error information within the window.

Plate 4.2 shows ViewPort with two error monitoring windows active and
with each have errors recorded within them.

The title bars of each error window will contain the name you used as
the application name within the ValInitialize call. Figure 4.3 shows an
individual error monitor window. You will notice that it is divided into
four columns. The first column contains the error symbol for the error
detected. Even if the error detected by the validation routines is a
parameter error, ViewPort will always show the returned system error
component. The method that is used to distinguish between parameter
errors and API return errors is through colour. The colours by default
are:

Option Default colour

Parameter error text Black

Parameter error
background Cyan

Plate 4.2
ViewPort window

Table 4.1
Colour options

 U s i n g V i e w P o r t 6 7
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Option Default colour

Return error text White

Return error
background Dark cyan

Invalid pointer text Black

Invalid pointer
background Pale gray

Filtered error text Black

Filtered error
background Yellow

They can be redefined through the ViewPort Configure dialogue (see
page 75) which not only allows you to define the colours used, but also
allows you to define whether or not applications using the same
application name are able to append to a window that is already open or
whether a new window must be opened, and to allow for certain types of
errors to have alarms.

The second column is used for the name of the file that used the API
call. If you did not compile the source code with the INCL_VALAPI
defined before the inclusion of the OS2.H file, this will be blank. It will
also be blank if a C or C++ runtime library routine called an OS/2 API
that either caused a parameter error or API return error.

The third column is used to denote the thread ID from which the API
call was made. It should be explained here how you interpret this
column. Thread 1 is always the first thread in the application. It is
associated with the main() function and it is from this thread that
secondary threads within the application will be started.

If you issue the ValInitialize call immediately upon entry into the
main() function of your application, a second thread will be started by
the ValInitialize call for the use of the validation routines. This is done

Plate 4.3
Threads.Exe error

window

6 8 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

specifically to allow the communication between the validation routines
and ViewPort such that it does not tie up your main thread and any
secondary threads that you start. This thread would always be thread 2.

Any secondary threads that you would start within your application
would begin from thread 3 and increment upwards. Therefore, if you
have two threads within your application and you see thread 1 and
thread 3 with errors, thread 2 is the thread used by the validation
routines and everything is within reason.

As you can see in Plate 4.2, the threads start at 3 and increment upwards
from there.

The only time this would be different is when you issue a ValInitialize
after you have started other threads within your application.

Therefore, if it appears as though the numbering of the threads is off by
one, it is only when you are using the validation DLL's with your
application.

The final column contains the line number from which the API call was
made in your source code. Again, like the filename column, if you did
not compile the source code with the INCL_VALAPI defined before the
inclusion of the OS2.H file, this will be blank. It will also be blank if a
C or C++ runtime library routine called an OS/2 API that either caused a
parameter error or API return error.

Although you think that the error monitor window supplies more than
enough information to allow you to correct problems within your source
code if they do exist, ViewPort has even more information for the entry
within the list. To view this information all you need to do is double
click the mouse pointer on the line in question within the error
monitoring window. This will cause the Error Info window to be
displayed, Plate 4.3.

Error Info window

 U s i n g V i e w P o r t 6 9
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

The information contained within this window is divided into two areas.
The first area is contained within the upper half of the window. It
contains the following pieces of information:

Area Contents

App Contains the application name as registered
through the ValInitialize call.

PID Contains the process ID of the application.

TID Contains the thread ID from which the API call
was made.

File Contains the name of the source code module
from which the call was made. This will only be
displayed if the source code was properly
compiled as described above. By defining the
symbol INCL_VALAPI before the inclusion of
the OS2.H file will enable this to occur.

Date Contains the date the error was detected on. The
purpose of this is when you have saved the error
information to a log file or have received a log
file from a user you can tell when the error
occurred.

Plate 4.4
Error Info window

Table 4.2
Error Info window general

items

7 0 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Area Contents

Time Contains the time the error was detected at. The
purpose of this is when you have saved the error
information to a log file or have received a log
file from a user you can tell when the error
occurred.

API Contains the proper name of the API that the
error was received for.

Line Contains the line within the source code module
from which the call was made. This will only be
displayed if the source code was properly
compiled as described above. By defining the
symbol INCL_VALAPI before the inclusion of
the OS2.H file will enable this to occur.

Parameter Contains the index of the parameter that was
detected to be in error by the validation routines.
When the error was returned by the actual API
call, this will contain N/A. The numbering of the
parameters is the first parameter from the left is
number 1, the second parameter from the left is
number 2, and so on. Also, if you are using the
IBM C Set/2 or C Set++ compilers, additional
parameter checking is performed (this can only

be done with the IBM compiler since it is the
only compiler that fully conforms with the system
linkage calling conventions as described on page
102). When too few parameters are detected for
the API call, it will denote the number of
parameters that are missing. When too many
parameters are detected, it will denote the number
extra that were found.

Index Contains the array index that was detected to be
in error for the parameter. For example, the third
parameter of the GpiPolyline call an array of
points (array of POINTL data types). If the
index value was 3 and you had defined the array
as POINTL aptl[5]; the error would be for aptl[3].

The second part of the window contains the detailed error information.
It contains the following pieces of information:

 U s i n g V i e w P o r t 7 1
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Area Contents

Error Contains the OS/2 defined error symbol for the
error returned.

Parm error Contains the parameter error symbol that is
defined within the ValErrs.H file. This field will
only contain information when a parameter error
is detected through the validation routines.

Severity Contains the severity for the error. This will only
contain a value for Ddf*, Dev*, Drg*, Gpi*, Pic*,
Prf*, some Spl* and Win* calls. The levels that
will be shown are: Warning , Error , Severe, and
Unrecoverable.

Error Contains the numeric error value for the error
being reported. The format of the error value will
conform to that as described on page 10 for the
API type.

Return value Contains the return value for the API call. In the
case of Dos*, Prt*, some Spl*, Pen for OS/2 and
MMPM/2 calls, the error value will be the same
as the return value.

OS/2 error Contains the OS/2 error description for the error
description The purpose of this is when you have saved the

error information to a log file or have received a
log file from a user.

Parameter error Contains the parameter error description for the
description error only if a parameter error was detected.

You can leave the window displayed and select another item within the
error list or for that matter, select a different error list and an item from
within it.

You will find that for the most part the information contained within the
error monitoring windows will be more than sufficient for helping you to
solve your problems. The Error Info window will most likely only be
used when you can't see what the problem is with the API call as you
have used it within your source code.

Even though the information provided is in as much detail as possible,
you will find that you will still have to utilize the services of the
debugger since some of the more difficult errors to track involve values

Table 4.3
Error Info window error

items

7 2 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

returned back to you by other OS/2 API's or your own functions or
calculations you make in the code preceding the call.
Having finished this short tour of the error monitoring windows, now
begins the tour around the actual ViewPort menu which you can use to
augment the usage of the above.

Through the action bar pull down menu's, you can perform commands
and view information. The action bar menus provided are:

Menu Contents

File Contains the file oriented commands such as
Open, Close, Save As, Print and Configure.
These commands allow you open and save log or
filter files along with the printing of them.

Find Contains the commands that allow you to search
for a specific error or API within one of the open
error windows.

Filter Contains the commands that allow you to enable
or disable error filtering and to select the filter
files that are to be preloaded when ViewPort

starts.

Lookup Contains the commands that allow you to lookup
the error descriptions for either an error value or
symbol.

Window Allows you to manage open error windows within
the ViewPort window.

Help Contains the commands to invoke the help
information for ViewPort.

The File menu is used in conjunction with file operations and the File
sub-menus provided are:

ViewPort action bar

Plate 4.5
ViewPort action bar

Table 4.4
Action bar menu items

File menu

Plate 4.6
File menu

 U s i n g V i e w P o r t 7 3
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Menu Item Purpose/Usage

Open Used to open an existing error log or filter file
(see page 79).

Close Used to close the current error window.

Save as Used to name and save an error log file or filter
file to disk as well as edit history, comments and
version information associated with the file (see
page 80).

Print Used to print the current error monitoring
window (see page 82).

Printer setup Used to select printer and/or setup printer (see
page 84).

Configure Used to configure ViewPort for the colours,
alarms and window handling methods (see page
75).

The Find menu is used in conjunction with find API and error
operations and the Find sub-menus provided are:

Menu Item Purpose/Usage

API Used to search for a selected API (see page 85).

Error Used to for a selected error (see page 87).

Next Used to search for either the last API or error
depending on the last search operation
performed.

The Filter menu is used in conjunction with error filtering and the
Filter sub-menus provided are:

Table 4.5
File menu items

Find menu

Plate 4.7
Find menu

Table 4.6
Find menu items

Filter menu

Plate 4.8
Filter menu

7 4 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Menu Item Purpose/Usage

Errors Used to enable or disable error filter for the error
window current displayed.

Preload Used to select the filter files that are to be
preloaded when ViewPort starts (see page 89).

The Lookup menu is used to lookup error descriptions for either an error
value or symbol and the Lookup sub-menus provided are:

Menu Item Purpose/Usage

Error Used to lookup the description of an error value
return by an API call (see page 91).

Error description Used to lookup the description of an OS/2 error
symbol (see page 93).

The Window menu is used in conjunction with monitoring window
selections and arrangements. The Window sub-menus provided are:

Menu Item Purpose/Usage

Close all Closes all open error windows..

Tiled Tiles source error windows.

Cascaded Cascades source error windows.

The Help menu provides you with access to on-line help for ViewPort.
The menu items available are:

Table 4.7
Filter menu items

Lookup menu

Plate 4.9
Lookup menu

Table 4.8
Lookup menu items

Window menu

Plate 4.10
Window menu

Table 4.9
Window menu items

Help menu

 U s i n g V i e w P o r t 7 5
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Menu Item Purpose/Usage

Help index Used to display the help index.

General help Used to display general help for the application.

Using help Used to display help for using the help.

Keys help Used to display help for keys.

Product information Used to display information dialogue on
ViewPort.

The Window-list menu allows you to select other applications that are
currently running along with any folders that you may have currently
open. The menu items could appear like:

Even though ViewPort is easy to use when you first run it, you still may
want to tailor some of the aspects of how it operates. For example, you
may want to use colours within the error monitoring windows that have
significant meaning to you instead of the defaults provided. You can
also set alarms for the major error types such that when an error occurs
of a specific type, you will receive an audible notification along with the
entry within the error monitoring window.

The ViewPort Configure dialogue, which allows you to configure
ViewPort, consists of a notebook with three pages of options. The first
page, Options, allows you to set the base options. The second page,
Colours, allows you to set the display colours of errors within the error
monitoring windows. The final page, Alarms, allows you to set the
error types in which you want to have audible indication they have
occurred.

The first page, Options, provides the following options which affect the
operation of the error monitoring window. It is divided into two parts:

Plate 4.11
Help menu

Table 4.10
Help menu items

Window-list menu

Plate 4.12
Window list menu

Configuring ViewPort

7 6 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Error window and App registration . The Error window component
provides the following option:

Option Purpose

Scroll window Used to allow the error monitoring windows to
automatically scroll the contents up when a new
error entry is added such that the entry is
immediately view able. The default is for the
window not to scroll.

The App registration group provides the following options:

Option Purpose

Append Used to cause ViewPort to search open error
monitoring windows for a matching application
name when a new application is registered
through the ValInitialize function (see page 55).
The first parameter of ValInitialize ,
pszAppName, is used as the matching criteria and
is case sensitive. If a match occurs, any errors
from the newly registered application will be
placed within the matched window, otherwise a
new window will be opened and the errors will be
placed within that window.

Table 4.11
Error window options

Plate 4.13
ViewPort Configure

dialogue showing Options
notebook page

Table 4.12
App registration options

 U s i n g V i e w P o r t 7 7
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Option Default colour

New window Used to cause ViewPort to open a new window
for each application registered through the
ValInitialize function. This is the default.

The Colours notebook page allows you to set the colours for the
following:

Option Default colour

Parameter error text Black

Parameter error
background Cyan

Return error text White

Return error
background Dark cyan

Invalid pointer text Black

Invalid pointer
background Pale gray

Filtered error text Black

Filtered error
background Yellow

You select the area to set the colour for from the drop-down list above
the colour grid. Below the colour grid is a sample of what the result
would appear as in the error monitoring window. The name of the
colour selected will appear beside the sample.

Changing the colour for the selected area is accomplished by clicking the
mouse pointer on the square with the desired colour. When you do select

Table 4.13
Colour options

Plate 4.14
ViewPort Configure
dialogue - Colours

notebook page

7 8 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

the desired colour, the sample area will reflect the change and the name
of the colour will be shown beside the sample.

The final page within the notebook, Alarms, allows you to set audible
indicators that are sounded when that particular error type is received
from the validation routines. The alarms that can be set are:

Option Alarm Type

Return errors Sounds an alarm when a return error is received.

Parameter errors Sounds an alarm when a parameter error is
received.

Invalid pointers Sounds an alarm when an invalid pointer is
passed as a parameter to an OS/2 API.

All alarms are off by default.

The sound that each alarm will make can be heard by clicking the mouse
pointer on the push button
beside each option. As you
will notice, each alarm
provides a distinct two-tone
sound.

The most useful alarm is
mostly likely going to be for
the invalid pointer. Not only
does it quickly alert you, it
will allow you to take
remedial action in case the
failure of the OS/2 API
causes your application to become unstable.

Plate 4.15
ViewPort Configure

dialogue - Alarms
notebook page

Table 4.14
Alarms

N O T E
Even though you can set alarms

for both return and parameter

errors, you may want to limit the

usage of each depending on the

number of errors you may expect

as your speaker may continually

be active and eventually may

cause you and others around you

some irritation.

 U s i n g V i e w P o r t 7 9
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Validator allows you to save the error information to a logging file when
you request logging support through the ValInitialize function.
ViewPort can read one of the logging file types as though the
information had been originally received by it. Also, ViewPort allows
you to save the information from an error monitoring window such that
it can be opened and viewed at a later point like that of a logging file. It
also allows you to select errors to filter out (see page 89) and save the
filtered errors to a file that can be used to automatically filter errors you
are not particularly interested in for that particular application.

Along with the ability to save and retrieve error information, ViewPort

allows you print the information in a variety of formats. It will allow
you to select the output device along with the fonts and sizes.

One of the file oriented dialogues is the File Open dialogue. From this
dialogue you can select the drive and directory where the error or filter
file is located, and to select the error or filter file to load.

You select a drive or directory to change to by double clicking the mouse
pointer on the entry within the Drives/Directories list box within the
dialogue. Upon changing to that drive or directory, a list of files

File support

Opening error logs and
filter files

Plate 4.16
File Open dialogue

8 0 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

contained within that directory will be displayed within the Files list
box. You can select the file to open by simply clicking on the entry
within the Files list box, typing in the name within the entry field
labeled File to view/append or by double clicking the mouse pointer on
the entry in the list box. This later operation is equivalent to clicking the
mouse pointer on the entry and then on the Open push button.

You can open one of two file types:

Option File Type

Error data File contains error data that was created either
through the validation routines logging facilities
in ViewPort data format or from a ViewPort error
monitoring window. The plain ASCII logging
files cannot be opened by this function.

Filter data File contains error filter data which is essentially
a list of errors that you do not want an error
monitoring window to display when it is received
from the validation routines when you have
allowed error filtering to occur (see page 89).

Before you either double click the mouse pointer on the file you wish to
open within the Files list box or click on the Open push button, you
should make sure that you have selected the file type. If you select the
wrong type, ViewPort will automatically read in the file for the correct
type recorded within the file instead of that you may have requested.

When you want to save the information contained with an error
monitoring window, you can use the File Save As dialogue. It is similar
in appearance to the File Open dialogue except here you save
information to the disk instead of retrieve information from the disk.

You select a drive or directory to change to by double clicking the mouse
pointer on the entry within the Drives/Directories list box within the
dialogue. Upon changing to that drive or directory, a list of files
contained within that directory will be displayed. You can select the
filename to save to by simply clicking on the entry within the Files list
box, typing in the name within the entry field labeled File to view/
append or by double clicking the mouse pointer on the entry in the list
box. This later operation is equivalent to clicking the mouse pointer on
the entry and then on the Save push button.

Table 4.15
File types

Saving error logs and
filter data

 U s i n g V i e w P o r t 8 1
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

You can save one of two file types:

Option File Type

Error data File contains error data.

Filter data File contains error filter data which is essentially
a list of errors that you do not want an error
monitoring window to display when it is received
from the validation routines when you have
allowed error filtering to occur (Filter Errors
menu item).

Before you either double click the mouse pointer on the file you wish to
save under within the Files list box or click on the Save push button, you
should make sure that you have selected the file type.

Unlike the File Open dialogue, you must ensure you have selected the
correct data type to save under since the information saved records the
file type within it. If you select the wrong type, the information will be
saved under the wrong format.

Plate 4.17
File Save As dialogue

Table 4.16
File types

8 2 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

If you need hard copy of the information within an error monitoring
window, you can use the File Print dialogue to print out the type of
information that you may require.

Through the dialogue you can set the font face name and size to print
under along with the error entry range, margins, header and footer titles.

You select the type of printout from options at the top of the dialogue
under the group labeled Printout type . These options are:

Option Printout Type

Errors Printout will contain all errors received within
the error monitoring window.

Filter list Printout will contain a list of errors that are being
filtered for within the error monitoring window.

Filtered errors Printout will contain only errors have been
filtered and are visible within the error
monitoring window.

Printing error and filter
information

Plate 4.18
File Print dialogue

showing Range notebook
page

Table 4.17
Printout types

 U s i n g V i e w P o r t 8 3
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Option Printout Type

Detailed This is used in combination with the above
options in that when this option is not selected,
the information printed will be similar to the
format contained within the error monitoring
windows where only the error, filename, thread
ID and line number will be printed. When the
option is selected, detailed error information like
that contained within the Error Info window (see
page 68) will be printed.

You select the font and font size to use through the drop-down lists that
are located within the Font group. The drop-down labeled Facename
will contain a list of all the fonts supported by the printer you have
selected. The current font selected will be displayed and the
corresponding sizes available for that face name will appear within the
drop-down list labeled Size.

Below the Font group are two fields which will show the error
monitoring window application name and the printer that will be used
for printing the information on. In the case of the printer, if you wish to
change the printer selection, you can use the Setup... push button in the
bottom right corner of the dialogue to select a new printer or, change the
printer options through the Printer Setup dialogue (see page 84).

Options for the error range, margins and header/footer titles are selected
through three pages contained within a notebook. The first page of the
notebook, Range, allows you to define the range of error lines that you
wish to print. Through the two spin buttons, you will be able to select
the line range.

Plate 4.19
File Print dialogue -

Margins notebook page

8 4 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

The second notebook page, Margins, allows you to set up the left, right,
top and bottom margins which the printout must be bounded to. The
measurement for the margins is in inches and you can enter fractions if
desired. For example, if you want the left margin to be one-half inch,
you would enter 0.5 in the entry field labeled Left .

The last notebook page, Header/Footer, is used to enter the header and
footer titles that will appear on each page printed. The text entered
within the entry field labeled Header will be printed within the top
margin of the page and the text entered within the entry field labeled
Footer will be printed within the bottom margin of the page. In both
cases, the maximum number of characters that can be entered is 255. If
the number of characters entered is greater than can be printed, as much
of the title that can be printed as possible within the header or footer area
will be printed.

The Printer Setup dialogue not only allows you to select the device in
which to send the printed output of the file selected to, but also allows
you to setup the device.

You select the printer or output device to use by simply selecting the
device from the list box. You can further set up the device by selecting
the Setup... push button after which device specific dialogues will be
displayed thereby allowing you to configure the device or select device
options.

Plate 4.20
File Print dialogue -

Header/Footer notebook
page

Printer setup

 U s i n g V i e w P o r t 8 5
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

ViewPort provides facilities to allow you to search an error monitoring
window for a specific error or API. This can be useful when you have an
error monitoring window that has hundreds or even thousands of entries.

To find an OS/2 API, you use the Find API dialogue. You pick the
OS/2 API by family and API name. The family is selected from the
drop-down list labeled Family.

The drop-down will contain the following family types:

Designation Family

Ddf All calls prefixed by Ddf. These calls belong to
the Dynamic Data Formatting API's.

Plate 4.21
Printer Setup dialogue

Finding errors or API's

Finding an API

Plate 4.22
Find API dialogue

Table 4.18
API family types

8 6 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Designation Family

Dev All calls prefixed by Dev. These calls belong to
the Device API's.

Drg All calls prefixed by Drg. These calls belong to
the Drag and Drop API's.

Dos All calls prefixed by Dos. These calls belong to
the kernel API's.

Gpi All calls prefixed by Gpi. These calls belong to
the Graphics Programming Interface API's.

Nls All calls prefixed by Nls. These calls belong to
the Nation Language Support API's. These calls
at the present time cannot be monitored through
Validator since they are still 16-bit.

Pic All calls prefixed by Pic. These calls belong to
the Picture Interchange API's.

Prf All calls prefixed by Prf . These calls belong to
the Profile API's.

Prt All calls prefixed by Prt . These calls belong to
the Print API's.

Spl All calls prefixed by Spl. These calls belong to
the Spooler API's.

Win All calls prefixed by Win . These calls belong to
the Window API's.

MMPM/2 All calls prefixed by Spi, mci and mmio. These
calls belong to the MMPM/2 API's.

Pen All calls prefixed by Red, Vkp and Wrt . These
calls belong to the Pen for OS/2 API's.

When you select an entry from the Family drop-down, the drop-down
labeled Call will be cleared of the current entries and replaced with the
valid API's for the family selected.

You then select the API to search from that list. Clicking the mouse
pointer on the Find button will cause ViewPort to search the current
window for the API and if it is found within the error monitoring
window, the first occurrence will be selected and displayed within the
window. If the API cannot be found, a message will be displayed
informing you.

 U s i n g V i e w P o r t 8 7
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

An alternate method of selecting the API and then clicking the mouse
pointer on the Find button is to double click the mouse pointer on the
entry within the Call drop-down.

To find an error, you use the Find Error dialogue. You pick the OS/2
error by family and value name. The family is selected from the drop-
down list labeled Family.

The drop-down will contain the following family types:

Designation Family

Base All errors prefixed by ERROR_. These errors
belong to the Dos*, Prt* and some Spl* API's.

Help All errors prefixed by HMERR_. These errors
are the result of the following API's:
WinAssociateHelpInstance,
WinCreateHelpInstance,
WinCreateHelpTable,
WinDestroyHelpInstance, WinLoadHelpTable,
and WinQueryHelpInstance.

PM All errors prefixed by PMERR_. These errors
belong to the Ddf*, Dev*, Drg*, Gpi*, Pic*, Prf*,
some Spl* and most Win* except those noted in
the Help family API's.

Finding errors

Plate 4.23
Find Error dialogue

Table 4.19
Error family types

8 8 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

Designation Family

MMPM/2 All errors prefixed by ERROR_, MCIERR_ AND
MMIOERR_. These errors belong to the
MultiMedia for PM/2 (MMPM/2) API's.

Pen All errors prefixed by REDERR_, VKPERR_ and
WRTERR_. These errors belong to the Pen for
OS/2 API's.

When you select an entry from the Family drop-down, the drop-down
labeled Value will be cleared of the current entries and replaced with the
valid error designations for the family selected.

You then select the error designation to search from that list. Clicking
the mouse pointer on the Find button will cause ViewPort to search the
current window for the error designation and if it is found within the
error monitoring window, the first occurrence will be selected and
displayed within the window. If the error designation cannot be found, a
message will be displayed informing you.

An alternate method of selecting the error designation and then clicking
the mouse pointer on the Find button is to double click the mouse
pointer on the entry within the Value drop-down.

When searching for either an error or API, the search starts from the
current selection within the error monitoring window. Searching for the
next occurrence of the error or API can be done by selecting the Find
Next menu item or pressing Ctrl+N on the keyboard. The search again
is started from the current selection.

ViewPort allows you to filter the input from the validation DLL's such
that only those errors that you may not be expecting are displayed. This
filtering process is not used in place of the filtering within the validation
DLL's where filtering there is performed to prevent overloading the
messaging between the validation DLL's and ViewPort.

The main purpose of filtering and usage is to select errors within a error
message window that you know you will always receive and are part of
your applications design. An example of this is the DosFindFirst,
DosFindNext API combination. When the search of the current
directory is complete, DosFindNext will return an error,
ERROR_NO_MORE_FILES, which your application would then
interpret as the end of the directory search. Your application would
most likely fall out of a loop and continue on.

Filtering errors

 U s i n g V i e w P o r t 8 9
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Since you expect this error, you may want ViewPort to prevent this error
from being displayed within the error monitoring window when it is
received. To allow this, you must perform the following actions.

First, you must allow the application you are monitoring to run at least
one time, having the application execute the API that issues the error in
the line and module where that error is expected. The error information
will be received by ViewPort in the normal manner and processed such
that it is displayed within the error monitoring window. When you have
finished running the application, you then locate the error within the
window and while pressing the Ctrl key on the keyboard, you also press
button 1 of the mouse while the mouse pointer is overtop the entry in the
list. It will then change to the filtered error colour allowing you to see
that you have selected the error entry for filtering purposes.

Once you have selected the errors you wish to filter for, you should then
select the File Save As dialogue (see page 80) to save the filter
information to your hard disk or network. Make sure that when you save
the information you select the Filter data radio button to save the filter
information.

Now, if you select the Errors menu item within the Filter menu, you
will now enable filtering within the error monitoring window for that
application. If you rerun the application, the errors that you selected for
filtering will have been prevented from being displayed within the
window when that particular error is received by ViewPort.

To better understand how to select errors for filtering, you should
understand the method that ViewPort uses when determining if an error
received should be displayed. ViewPort uses the basic information of the
error value (this includes parameter errors), the API for which the error
occurred, the filename from which the API call was made along with the
line number, API return value, and array index if relevant.

Therefore, when selecting an error for inclusion, you do not need to be
repeatedly select the same error which appears more than once within
the error monitoring window when it is a result of the same code being
executed at different times. Now if the code is executed in different
threads, then you would need to select it two or more times.

To maximize the usage of error filtering within ViewPort, you can have
ViewPort preload filter files that you have saved. This allows you to
define for a given application a working set of errors that you expect and
have the set loaded when ViewPort begins executing. Then when you

Filter preloading

9 0 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

start the application that you are monitoring, the information will have
already been preloaded and when the ValInitialize function is used
within the application, ViewPort will check the application name against
the windows that are filtering windows (the word [Filtered] will appear
within the title bar) and if it finds a window with the same application
name, the errors received from the validation routines will be directed to
that window.

You define the filter files to preload through the Filter Preload
dialogue. The dialogue contains two list boxes which allow you to select
the drive, directory and file to use as the preload. It also contains a
multiple-line entry field that allows you to enter the filter file names,
change the locations of existing ones or to delete ones no longer
required.

You select a drive or directory to change to by double clicking the mouse
pointer on the entry within the Drives/Directories list box within the
dialogue. Upon changing to that drive or directory, a list of files
contained within that directory will be displayed. You can select the file
to use by simply double-clicking on the entry within the Files list box
causing the file to be added to the Selected Files multiple line entry
field.

Plate 4.24
Filter Preload dialogue

 U s i n g V i e w P o r t 9 1
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

If you want to quickly edit the location of a file listed within the Selected
Files multiple line entry field, all you need to change is the appropriate
part of the path for the file. To delete the entry, you only need to select
the line containing the entry and then press the Del key on the keyboard.

The only restriction that applies to the Selected Files multiple line entry
field is that each filter file entry must be placed on a separate line
otherwise the full line will be treated as one entry. You cannot use tabs
to separate different filter files.

When you click the mouse pointer on the Set push button, the entries
within the Selected Files multiple line entry field will be placed within
the preload filter files index such that the next time ViewPort is started,
the filter files will be automatically loaded. If the list is empty, the
preload filter files index will be purged such that ViewPort when next
started will not preload any filter files.

ViewPort provides you with a lookup facility where you can lookup the
error symbol and error description for an error value you error for a
given API along with an error symbol description lookup.

The first is used primarily when you get an error value back from an
API. The Lookup Error dialogue is used to select the API family, API
and enter the error value such that when you request the explanation to
be displayed, the corresponding error symbol and description.

Error lookup

Lookup Error dialogue

Plate 4.25
Lookup Error dialogue

9 2 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

To be able to successfully lookup the error, you need to select the API
family and call. The Family drop-down will contain the following
family types:

Designation Family

Ddf All calls prefixed by Ddf. These calls belong to
the Dynamic Data Formatting API's.

Dev All calls prefixed by Dev. These calls belong to
the Device API's.

Drg All calls prefixed by Drg. These calls belong to
the Drag and Drop API's.

Dos All calls prefixed by Dos. These calls belong to
the kernel API's.

Gpi All calls prefixed by Gpi. These calls belong to
the Graphics Programming Interface API's.

Nls All calls prefixed by Nls. These calls belong to
the Nation Language Support API's. These calls
at the present time cannot be monitored through
Validator since they are still 16-bit.

Pic All calls prefixed by Pic. These calls belong to
the Picture Interchange API's.

Prf All calls prefixed by Prf. These calls belong to
the Profile API's.

Prt All calls prefixed by Prt . These calls belong to
the Print API's.

Spl All calls prefixed by Spl. These calls belong to
the Spooler API's.

Win All calls prefixed by Win . These calls belong to
the Window API's.

MMPM/2 All calls prefixed by Spi, mci and mmio. These
calls belong to the MMPM/2 API's.

Pen All calls prefixed by Red, Vkp and Wrt . These
calls belong to the Pen for OS/2 API's.

When you select an entry from the Family drop-down, the drop-down
labeled Call will be cleared of the current entries and replaced with the
valid API's for the family selected.

Table 4.20
API family types

 U s i n g V i e w P o r t 9 3
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

You then select the API to use from that list. The error value is then
entered within the entry field labeled Value. The number that you enter
can be either decimal or hexadecimal. You can then click the mouse
pointer on the Display explanation push button located in the bottom
right corner of the dialogue.

The error symbol will be displayed within the field labeled Error . If the
value that you entered was a parameter error, the corresponding
parameter error symbol as defined within ValErr.H file would be
displayed within the field labeled Parm error . If the error was from the
Ddf*, Dev*, Drg*, Gpi*, Pic*, some Spl* and Win* families, the
Severity field would show the severity level for the error. The levels that
will be shown are: Warning , Error , Severe, and Unrecoverable.

The hexadecimal value of the error is contained within the field labeled
Value. Any OS/2 error description will be displayed within the field
labeled OS/2 error description and if the error is a parameter error, the
description for the parameter error is contained within the field labeled
Parameter error description.

You can enter and display as many errors as you wish within this
dialogue.

When you know the error symbol but would like to see further
information on the error, you can use the Lookup Error Description
dialogue to retrieve an explanation of the error. The dialogue contains
two drop-down lists that are used to select the error family and error
symbol.

Lookup Error Description
dialogue

Plate 4.26
Lookup Error Description

dialogue

9 4 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

The Family drop-down will contain the following family types:

Designation Family

Base All errors prefixed by ERROR_. These errors
belong to the Dos*, Prt* and some Spl* API's.

Help All errors prefixed by HMERR_. These errors
are the result of the following API's:
WinAssociateHelpInstance,
WinCreateHelpInstance,
WinCreateHelpTable,
WinDestroyHelpInstance, WinLoadHelpTable,
and WinQueryHelpInstance.

PM All errors prefixed by PMERR_. These errors
belong to the Ddf*, Dev*, Drg*, Gpi*, Pic*, Prf*,
some Spl* and most Win* except those noted in
the Help family API's.

MMPM/2 All errors prefixed by ERROR_, MCIERR_ AND
MMIOERR_. These errors belong to the
MultiMedia for PM/2 (MMPM/2) API's.

Pen All errors prefixed by REDERR_, VKPERR_ and
WRTERR_. These errors belong to the Pen for
OS/2 API's.

When you select an entry from the Family drop-down, the drop-down
labeled Symbol will be cleared of the current entries and replaced with
the valid error designations for the family selected.

You then select the error symbol to search from that list upon which the
error symbol will be placed into the field labeled Error and the value of
the symbol will be placed in the field labeled Value. The description of
the error will be placed in the field labeled Error description .

Table 4.21
Error family types

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

s e c t i o n f i v e

Interpreting Results

Even though the usage of the Validator tools is quite straight forward,
and the error results usually are self apparent, you may want to look at
the logic surrounding the call anyways since it may yield some subtle,
yet effective changes in the logic of your application.

One aspect that is often forgotten when writing an application, you don't
know how many thousands of lines of code may be executed when you
use a system API. Therefore, if you don't need to use the system API and
you have to add a few lines of code to perform a test on whether a
specific API should be used, it may be worth while.

Consider the following situation. You have to calculate a rectangle that
will be filled with a particular colour. Plate 5.1 illustrates the problem.

The basic logic is such that the text is first drawn within a rectangle and
the remaining portion of the line is filled with the background colour.
The following code fragment shows the manner in which this could be
done:

rcl.xLeft = 0L;
rcl.xRight = strlen(pszText) * fm.lAveCharWidth;

WinDrawText(hPS, -1L, pszText, &rcl,
 CLR_BLACK, CLR_WHITE, DT_ERASERECT | DT_LEFT | DT_TOP);

rcl.xLeft = rcl.xRight + 1L;
rcl.xRight = rclWindow.xRight;
WinFillRect(hPS, &rcl, CLR_WHITE);

Introduction

Basic logic example

Plate 5.1
Rectangle drawing zone

Figure 5.1
Text drawing code

9 6 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

As you can see, the code for the drawing is quite simple. It may look
very innocent, but under certain circumstances, it will perform in a
manner such that an error will be generated which could have been
avoided.

For the first line shown in Plate 5.1, you will notice that the text is only
filling up part of the line. The remaining portion of the line, which is
shaded here to illustrate the rectangle area, would then be filled with the
white background colour. For this line, there would be no problems. It
is the next line that causes the error to be generated.

You will notice that the second line completely fills the window width.
Therefore when the rectangle for the fill is calculated, the xLeft will be
greater than xRight. Validator through its validation routines will detect
this problem and issue an error PMERR_INV_RECT with a parameter
error of PERR_WFR02_XRIGHTLTXLEFT.

This may seem very innocent, but you have to remember that no fill will
be done and who knows how many lines of code have to be executed by
the WinFillRect API before it determines that it has nothing to do and
that the rectangle is in error.

The revised code would look something like:

rcl.xLeft = 0L;
rcl.xRight = strlen(pszText) * fm.lAveCharWidth;

WinDrawText(hPS, -1L, pszText, &rcl,
 CLR_BLACK, CLR_WHITE, DT_ERASERECT | DT_LEFT | DT_TOP);

if ((rcl.xLeft = rcl.xRight + 1L) <= rclWindow.xRight)
 {
 rcl.xRight = rclWindow.xRight;
 WinFillRect(hPS, &rcl, CLR_WHITE);
 }

By adding one line of code, you have effectively sped up your application
under certain conditions. What may seem like an extra line of code may
in fact act as a sentinel preventing you from executing hundreds or
thousands of lines of code.

Another example is where you expect an error return to indicate an end
of condition. A good example of this is the DosFindFirst/FindNext pair
of API's. The DosFindNext API is expected to return the error code
ERROR_NO_MORE_FILES to indicate the directory search is complete.

By closely looking at both of the API's, you will see that the API has
been designed to allow for multiple entry requests where more than one
directory entry can be retrieved at one time. Therefore, by looking at the
normal code first and seeing that DosFindNext returns an error

Figure 5.2
Revised text drawing code

Repetitive search
example

 I n t e r p r e t i n g R e s u l t s 9 7
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

indicating the end of the search, is there another method of achieving the
same result but perhaps not using the DosFindNext API?
Starting with the following example code, you can see how this can be
done.

 /* Start directory search */

if (DosFindFirst("*.*", &hDir, MUST_HAVE_DIRECTORY | FILE_DIRECTORY,
 (PVOID)&findbuf, sizeof(FILEFINDBUF3),
 &ulFileCnt, FIL_STANDARD))
 {
 do
 /* If file found not a sub-directory, place */
 /* filename in list box */

 if (((findbuf.attrFile & FILE_DIRECTORY) == FILE_DIRECTORY) &&
 strcmp(findbuf.achName, "."))
 {
 sprintf(szStrBuf, "[%s]", findbuf.achName);
 WinSendMsg(hwndDir, LM_INSERTITEM,
 MPFROMSHORT(LIT_SORTASCENDING),
 MPFROMP(szStrBuf));
 }
 /* Search for remaining entries and place valid */
 /* entries in list box */

 while (!DosFindNext(hDir, &findbuf, sizeof(FILEFINDBUF3), &ulFileCnt));

 /* Close directory search handle */
 DosFindClose(hDir);
 }

First, the DosFindFirst API is used to start the directory search. The
value contained within the ulFileCnt is 1 and the buffer used for the
directory data is sized for one entry. The routine takes the values
returned by the API and places the formatted results within a list box. It
then at the bottom of the do while loop gets the next directory entry
using the DosFindNext API and repeats the process. This loop
continues until DosFindNext returns a non-zero value which will most
likely be ERROR_NO_MORE_FILES.

The logic to the search is very straight-forward and easy to follow. It
seems to be compact and fast. But again, you have to remember the
number of times you go into the DosFindNext API. If, as an example,
the directory contains 86 entries, DosFindNext would be used 86 times.
In 85 of the calls, it would return one directory entry and in the last call
made, it would return with an error code.

The call itself is defined as allowing for a buffer that can contain more
than one entry and that you can request through both the DosFindFirst
and DosFindNext API's the number of entries that should be returned if
found. Therefore, what you can do is minimize the number of times the
DosFindNext call is used while optimizing the number of entries that is
returned by either API.

Figure 5.4 shows the revised code such an implementation:

Figure 5.3
Directory retrieval example

- typical coding

9 8 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

DosAllocMem((PPVOID)(PVOID)&pfindbuf3, 64UL * sizeof(FILEFINDBUF3),
 PAG_READ | PAG_WRITE | PAG_COMMIT);
if (DosFindFirst("*.*", &hDir, MUST_HAVE_DIRECTORY,
 (PVOID)pfindbuf3, 64UL * sizeof(FILEFINDBUF3),
 &ulFileCnt, FIL_STANDARD)))
 {
 do
 for (i = 0, pfindbuf = pfindbuf3; i < ulFileCnt; i++)
 {
 /* If file found not a sub-directory, place */
 /* filename in list box */

 if (((pfindbuf->attrFile & FILE_DIRECTORY) == FILE_DIRECTORY) &&
 strcmp(pfindbuf->achName, "."))
 {
 sprintf(szStrBuf, "[%s]", pfindbuf->achName);
 WinSendMsg(hwndDir, LM_INSERTITEM,
 MPFROMSHORT(LIT_SORTASCENDING),
 MPFROMP(szStrBuf));
 }
 pfindbuf = (PFILEFINDBUF3)((PBYTE)pfindbuf +
 pfindbuf->oNextEntryOffset);
 }
 /* Search for remaining entries and place valid */
 /* entries in list box */

 while ((ulFileCnt == 64UL) &&
 !DosFindNext(hDir, pfindbuf3, 64UL * sizeof(FILEFINDBUF3),
 &ulFileCnt));

 /* Close directory search handle */
 DosFindClose(hDir);
 }
DosFreeMem((PVOID)pfindbuf3);

A buffer is allocated that is large enough to contain 64 entries. The
DosFindFirst call is given the address of the buffer and the ulFileCnt

variable is set to 64 before entry thereby instructing DosFindFirst to
return up to 64 directory entries if possible. The logic between the
DosFindFirst and the DosFindNext has been changed to loop through
the returned directory list and placing each entry found within the list
box. Once all of the entries found have been placed within the list box,
the returned count is checked within the while component of the do loop
to see if 64 entries were returned. When the ulFileCnt is 64, there is a
very good likelihood that there are more entries within the directory. If
the value within ulFileCnt is less than 64, there is no need to perform
the DosFindNext since all it will do is return an error code.

Using the example outlined above where there are 86 directory entries,
DosFindFirst would be called and it would return 64 entries. These
entries would then be processed and then, since the return count was 64,
DosFindNext would be called to try to get another 64 entries. This next
batch of entries would be processed after which the return count, 22,
would be seen not to equal the 64 and the do while loop would be exited.

In this case, DosFindNext was only called once instead of 86 times as
before. It can only be guessed as to the number of lines of code not
executed in this case, but no matter, there is a savings in not having to
perform the calls which do have an associated overhead.

Figure 5.4
Directory retrieval example

- optimized coding

 I n t e r p r e t i n g R e s u l t s 9 9
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

So, you may be asking how does this relate back to observing the results
of the validation routines? Simply, if you have a set of code that is
always being executed and is somewhere in its logic returning an error,
you may want to look at that code closely to determine if it can be
optimized such that the error is not returned, or the call is not made
where it will return the error code.

There are cases where you will always get an error code and there is
really nothing that you can do about it. A good example is the usage of
the PrfQuery* calls where you allow the user to configure the
application to their own preferences. If the user has not configured a
particular area, the Prf* call will always return an error code simply
because no value has been recorded, and because of program design, is
perfectly permissible. Figure 5.5 is such an example:

cbBuf = sizeof(BOOL);
if (!PrfQueryProfileData(HINI_USER, pszProgramName, pszLookupKey,
 &fViewOnly, &cbBuf))
 fViewOnly = FALSE;

When the key value for PrfQueryProfileData is not found, the return
value of the API is zero (0) indicating an error condition. By performing
a WinGetLastError , the error returned by the call is
PMERR_NOT_IN_IDX. Unless you implement the values recorded as a
structure that is always recorded within the OS2.INI file, there is no way
of getting around the error return. This is the only way that the
application can determine if the values have been recorded.

Another problem that you may encounter is where visually the logic of
the call may appear to be correct but a subtle problem is contained
within the call. The following is such an example:

DosFreeMem((PVOID)&pMem);

The call looks okay but it will indeed return an error. You may think
that you have freed the memory earlier but that is not really the problem.

The problem is a result of the address of (&) operator. DosFreeMem is
defined to have a PVOID parameter. The root of the problem would
most likely have been due to the usage of the DosAllocMem as the
template for the DosFreeMem where the line where DosAllocMem was
used was copied and pasted before being converted to DosFreeMem.
The only thing that was not adjusted properly was &.

The validation routines would correctly determine the problem and
report the error, but, you still have to be able to look at the error returned

Viewing results

Figure 5.5
Prf* example

Figure 5.6
DosFreeMem example

1 0 0 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 11 22-Apr-1994 5:00:21 PM

with the actual call itself sometimes to determine exactly where the
problem is.

An area where Validator is very useful is when you are adapting an
existing application for another use or for a functional sub-set and you
are removing controls from dialogues and windows. Because of the
design of OS/2 Presentation Manager, you communicate with controls
and windows using a message based mechanism. Also, each control has
a handle which is used by the system to identify it.

For example, consider Plate 5.2 which is a dialogue containing four
check boxes.

The normal logic for the setting the check boxes appears in Figure 5.7

WinSendDlgItemMsg(hWnd, CB_GRID, BM_SETCHECK, MPFROMSHORT(fGrid), 0L);
WinSendDlgItemMsg(hWnd, CB_HALFTONE, BM_SETCHECK, MPFROMSHORT(fHalftone), 0L);
WinSendDlgItemMsg(hWnd, CB_BORDER, BM_SETCHECK, MPFROMSHORT(fBorder), 0L);
WinSendDlgItemMsg(hWnd, CB_REVERSED, BM_SETCHECK, MPFROMSHORT(fReversed), 0L);

When the dialogue is being adapted, the Reversed check box is removed
such that the revised dialogue appears like that in Figure 5.3.

If the original code in Figure 5.7 is used with this new dialogue,
Validator will determine that there is no corresponding control for
CB_REVERSED and will denote an error for the function where the
parameter error issued will be PERR_WSDIM02_ITEMDOESNOTEXIST. This
will help you to determine where you have none functional code in the
source code you are adapting.

Adapting applications

Plate 5.2
Original dialogue

Figure 5.7
Original check box code

Plate 5.3
Revised dialogue

 D
ra

ft
Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

a p p e n d i x a

Technical

Requirements

Computer: Computer capable of running OS/2 2.x

Numeric Co-processor: Not required

Pointing Device: Required

Minimum Memory: 4 MBytes

Recommended Memory: 8 MBytes

Minimum Disk Drives: 1 Diskette Drive and Hard Disk Drive (Required)

Video Adapters: VGA

Super-VGA
IBM 8514/A
IBM XGA

Operating System: OS/2 2.x Series: IBM Operating System/2 Version 2.x.
OS/2 2.1 is highly recommended due to improvements made
in version like in debugging support.

Disk space required: 3.8 MBytes

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

a p p e n d i x b

System Calling

Conventions

The system calling convention that is used by the OS/2 API's is defined
as the following:

• Parameters are passed on the 80386 stack.
• Parameters are pushed onto the stack using the C parameter passing

convention of right to left order.
• The parameters are removed from the stack after the call has

returned by the calling function.
• Parameters are double word (4-byte) aligned.
• The parameter list size is passed in AL.
• All functions returning non-floating-point values pass a return value

back to the caller in EAX.

This affects the manner in which Validator utilizes the features as
designed by OS/2 and implemented by the various compiler vendors.
The implication that the number of parameters placed on the stack can
be validated is useful. The only problem is that only one compiler
vendor to date has adhered to the calling convention. All of the
compilers except for the IBM C Set/2 and IBM C Set++ compilers do
not completely follow the system calling convention. The only area that
they do not adhere to is the placing within the AL register the number of
parameters push on the stack.

Because of this, Validator provides two sets of validation DLL's: one set
that is used by the IBM compilers which can validate the number of

A p p e n d i x B 1 0 3
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

parameters on the stack; and, one set for the compilers which do not
place the number of parameters on the AL register.

Consider the following source code in Figure B.1. The code is used to
call the OS/2 API DosOpen.

VOID OpenFile()

{
HFILE hFile; /* File Handle Holder */
ULONG ulAction; /* Action Taken Holder */

DosOpen("Filename.Ext", &hFile, &ulAction, 0UL,
 FILE_HIDDEN | FILE_NORMAL | FILE_ARCHIVED,
 OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_FAIL_IF_NEW,
 OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE,
 NULL);
}

The assembler code in Figure B.2 is similar to that produced by the IBM
C Set++ compiler. You will notice that the instruction MOV AL,08H is
used to indicate to the calling function the number of parameters
contained on the stack.

ASSUME CS:FLAT, DS:FLAT, SS:FLAT, ES:FLAT
EXTRN DosOpen:PROC

DATA32 SEGMENT
@STAT1 DB "Filename.Ext",0H
DATA32 ENDS

CODE32 SEGMENT

;***** 11 VOID OpenFile()
;***** 13

ALIGN 010H

PUBLIC OpenFile
OpenFile PROC

SUB ESP,08H ; Stack allocation for hFile and ulAction

;***** 17 DosOpen("Filename.Ext", &hFile, &ulAction, 0UL,
;***** 18 FILE_HIDDEN | FILE_NORMAL | FILE_ARCHIVED,
;***** 19 OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_FAIL_IF_NEW,
;***** 20 OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE,
;***** 21 NULL);

MOV AL,08H ; Parameter Count
PUSH 0H ; NULL
PUSH 042H ; OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE
PUSH 01H ; OPEN_ACTION_OPEN_IF_EXISTS |

; OPEN_ACTION_FAIL_IF_NEW
PUSH 022H ; FILE_HIDDEN | FILE_NORMAL | FILE_ARCHIVED
PUSH 0H ; 0UL
LEA EDX,[ESP+04H] ; ulAction
PUSH EDX
LEA ECX,[ESP+0cH] ; hFile
PUSH ECX
PUSH OFFSET FLAT:@STAT1 ; "Filename.Ext"
CALL DosOpen

;***** 22 }
ADD ESP,028H
RET

OpenFile ENDP
CODE32 ENDS

END

The assembler code in Figure B.3 is similar to that produced by the IBM
C Set++ compiler except that it is produced by the WATCOM C/C++³²
compiler. You will notice that the instruction MOV AL,08H is not used
to indicate to the calling function the number of parameters contained on
the stack. Therefore, the validation routines cannot utilize this feature of

Figure B.1
C source code

Figure B.2
Resultant assembler

source code produced by
the IBM C Set++ compiler

1 0 4 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

the system calling convention to verify that the correct number of
parameters have been placed on the stack for the call.

EXTRN DosOpen :BYTE

CONST SEGMENT DWORD PUBLIC USE32 'DATA'
L1 DB 46H,69H,6cH,65H,6eH,61H,6dH,65H

DB 2eH,45H,78H,74H,00H
CONST ENDS

_TEXT SEGMENT BYTE PUBLIC USE32 'CODE'
ASSUME CS:_TEXT ,DS:DGROUP,SS:DGROUP
PUBLIC OpenFile

OpenFile: SUB esp,00000008H ; Stack allocation for hFile and ulAction

; DosOpen("Filename.Ext", &hFile, &ulAction, 0UL,
; FILE_HIDDEN | FILE_NORMAL | FILE_ARCHIVED,
; OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_FAIL_IF_NEW,
; OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE,
; NULL);

PUSH 00000000H ; NULL
PUSH 00000042H ; OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE
PUSH 00000001H ; OPEN_ACTION_OPEN_IF_EXISTS |

; OPEN_ACTION_FAIL_IF_NEW
PUSH 00000022H ; FILE_HIDDEN | FILE_NORMAL | FILE_ARCHIVED
PUSH 00000000H ; 0UL
LEA eax,+14H[esp] ; ulAction
PUSH eax
LEA eax,+1cH[esp] ; hFile
PUSH eax
PUSH OFFSET DGROUP:L1 : "Filename.Ext"
CALL NEAR PTR DosOpen
ADD esp,00000020H
ADD esp,00000008H
RET

_TEXT ENDS
END

Figure B.3
Resultant assembler

source code produced by
the WATCOM C/C++³²

compiler

I n d e x

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

/
/DINCL_VAL, 21
/DINCL_VALAPI, 63

A
Action bar

File, 72
Filter, 72
Find, 72
Help, 72
Lookup, 72
Windows, 72

Alarms, 78
API

ValFilterErr, 30
ValInitialize, 55
ValLogging, 57
ValQueryClassMsgMonitor, 58
ValQueryLogging, 59
ValRegisterClassMsgMonitor, 59

API.DLL, 23
APIERR_INVALID_API, 53
APIERR_INVALID_API_FAMILY, 53
APIERR_INVALID_HVAL, 53
APIERR_NO_MEM_AVAIL, 53
APIERR_NONE, 53
Architecture, 11
Audible Indicators, 78

B
Borland C++ for OS/2, 4

C
CONFIG.NEW, 6
CONFIG.SYS, 5, 6
Create new folder, 4

D
Dialogues

File Open, 79, 80, 81
File Print, 82

File Save As, 80, 89
Filter Preload, 90
Find API, 85
Find Error, 87
Lookup Error, 91
Lookup Error Description, 93
Printer Setup, 83, 84
Reboot Advise, 6
Revise CONFIG.SYS, 6
Source Drive, 2
Target Directories, 2
Update CONFIG.SYS, 5
View Documentation, 7
ViewPort Configure, 67, 75
Welcoming panel, 2

DosAllocMem, 99
DOSCALLS.DLL, 12
DosCreateDir, 12, 13, 14, 64
DosFindFirst, 18, 88, 96, 97, 98
DosFindNext, 18, 88, 96, 97, 98
DosFreeMem, 99
DosOpen, 9, 10, 103
DPATH, 5
DrgFreeDraginfo, 53

E
Error Data, 80, 81
Error Value, 71
ERROR_INVALID_PARAMETER, 9, 10
ERROR_NO_MORE_FILES, 18, 88, 96, 97

F
File menu, 72

Close, 73
Configure, 73
Open, 73
Print, 73
Printer setup, 73
Save as, 73

Filter Data, 80, 81, 89
Filter Files, 90
Filter menu, 73

Errors, 74, 81, 89
Preload, 74

1 0 6 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Filter preloading, 89
Find menu, 73

API, 73
Error, 73
Next, 73

Font, 83
Size, 83

Footer, 84
Footer Titles, 84

H
Header, 84
Header Titles, 84
HELP, 5
Help menu, 74

General help, 75
Help index, 75
Keys help, 75
Product information, 75
Using help, 75

I
IBM C Set++, 4, 70, 102, 103
IBM C Set++ compiler, 21
IBM C Set/2, 4, 70, 102
Import libraries, 4
INCL_VAL, 21, 23, 28, 65
INCL_VALAPI, 21, 28, 63, 64, 65, 67, 68,

69, 70
Include headers

MMPM/2, 4
OS/2 Toolkit, 3
Pen for OS/2, 4

Installation, 2
Installation program, 2
Invalid Pointer, 78

L
LIBPATH, 5
LOGERR_INVALID_HVAL, 57
LOGERR_NO_LOG_REQUESTED, 57
LOGERR_NONE, 57
Logging file, 15
Lookup menu, 74

Error, 74
Error description, 74

M
MMPM/2, 4, 10, 15, 23, 24, 86, 88, 92, 94

N
Notational conventions, 8
Notebook page

Alarms, 75, 78
Colours, 75, 77
Header/Footer, 84
Margins, 84
Options, 75
Range, 83

O
OS/2 - Validator architecture, 11
OS/2 Error Description, 93
OS/2 Error Symbol, 71
OS/2 Toolkit, 21
OS2.H, 21, 24, 63, 67, 68, 69, 70
OS2386.LIB, 14
OS2ME.H, 25

P
Packing.Lst, 7
Parameter Error, 78
Parameter Error Description, 93
Parameter Error Reference, 11
Parameter Error Symbol, 71
PATH, 5
Pen for OS/2, 4, 10, 15, 24, 86, 88, 92, 94
PENPM.H, 25
PID, 69
PMERR_NOT_IN_IDX, 99
PMERR_SOURCE_SAME_AS_TARGET,

54
PMWIN.DLL, 13
PrfQueryProfileData, 99
Printout

Detailed, 83
Errors, 82
Filter list, 82

I n d e x 1 0 7
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

Filtered errors, 82
Printout type, 82
Process ID, 69

Q
QLOG_ACTIVE, 59
QLOG_INACTIVE, 59
QLOG_INVALID_HVAL, 59
QLOG_NONE, 59

R
RCMMF_ALL, 58, 60
RCMMF_BUTTON, 58, 60
RCMMF_CIRCULARSLIDER, 58, 60
RCMMF_COMBOBOX, 58, 60
RCMMF_CONTAINER, 58, 60
RCMMF_ENTRYFIELD, 58, 60
RCMMF_FRAME, 58, 60
RCMMF_GRAPHICBUTTON, 58, 60
RCMMF_LISTBOX, 58, 60
RCMMF_MENU, 58, 60
RCMMF_MLE, 58, 60
RCMMF_NONE, 58, 60
RCMMF_NOTEBOOK, 58, 60
RCMMF_SCROLLBAR, 58, 60
RCMMF_SKETCH, 58, 60
RCMMF_SLIDER, 58, 60
RCMMF_SPINBUTTON, 58, 60
RCMMF_STATIC, 58, 60
RCMMF_TITLEBAR, 58, 60
RCMMF_VALUESET, 58, 60
ReadMe.Doc, 7
Reboot, 6
REGMSG_INVALID_FLAG, 60
REGMSG_INVALID_HVAL, 58, 60
REGMSG_NONE, 60
Return Error, 78
Return Value, 71

S
SAA CUA Guidelines, 8
System calling conventions, 102

T
Thread ID, 69
TID, 69

V
ValAPI.H, 25
VALDDF.DLL, 23
ValDdfA.DLL, 24
VALDEV.DLL, 23
VALDEVA.DLL, 24
VALDOS.DLL, 23
ValDosA.DLL, 24
VALDOSP.DLL, 23
ValDosPA.DLL, 24
VALDRG.DLL, 23
VALDRGA.DLL, 24
ValErrs.H, 25, 71
ValFilterErr, 27, 30
ValFLine.H, 25
VALGPI.DLL, 23
VALGPIA.DLL, 24
VALIDATR.DLL, 23
VALIDATR.LIB, 14, 20, 21
ValInitialize, 15, 20, 21, 23, 27, 28, 54, 55,

56, 57, 58, 59, 61, 64, 65, 66, 67, 68, 69,
76, 77, 79, 90

ValLogging, 27, 56, 57, 59
VALMMPM.DLL, 23, 24
VALMMPMA.DLL, 24
VALPEN.DLL, 24
VALPENA.DLL, 24
VALPIC.DLL, 24
VALPICA.DLL, 24
VALPRF.DLL, 24
VALPRFA.DLL, 24
ValPrt.DLL, 24
VALPRTA.DLL, 24
ValQueryClassMsgMonitor, 27, 58, 61
ValQueryLogging, 27, 58, 59
ValRedef.H, 25
ValRegisterClassMsgMonitor, 27, 58, 59
VALSPL.DLL, 24
ValSplA.DLL, 24
VALWIN.DLL, 24

1 0 8 D e v e l o p e r ' s G u i d e
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Version 1.0 Draft 10 22-Apr-1994 5:00:21 PM

VALWINA.DLL, 24
VALWINX.DLL, 24
VALWINXA.DLL, 24
ViewPort, 6, 7, 12, 14, 16, 17, 18, 21, 23, 28,

29, 63, 64, 65, 66, 68, 75
VL_ERRORCODES, 55
VL_ERRORLOG, 15, 29, 55, 56
VL_FILELINE, 55
VL_FORCELOGRESET, 56
VL_LOGRESET, 56
VL_PAUSELOG, 56
VL_VIEWPORT, 56, 64
VL_VIEWPORTLOG, 29, 55, 56

W
WATCOM C/386, 4
WATCOM C/C++³², 4, 103
Window

Error Info, 18, 68, 83
Installation Progress, 5

Window Cascaded, 74
Window Close all, 74
Window menu, 74

Cascaded, 74
Close all, 74
Tiled, 74

Window Tiled, 74
Window-list menu, 75
WinFillRect, 96
WinGetLastError, 13, 14, 15, 99
WinInitialize, 13, 14
WinInvalidateRect, 20
WinSendDlgItemMsg, 27, 60
WinSendMsg, 27, 60

Z
Zortech C++ for OS/2, 4

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

Validator was developed using IBM C Set++ for OS/2 Version 2.1 on IBM OS/2

Version 2.11 with an IBM Model 90-0KD.

This manual was prepared using Microsoft Word for Windows Version 2.0c on IBM

OS/2 Version 2.11 with an IBM Model 90-0KD. Proofs were printed on an IBM

LaserPrinter 4039 12R with 12 MBytes of memory and the Enhanced PostScript

Option.

Version 1.0 Draft 11 22-Apr-1994 5:00:22 PM

