

September 3, 1993

 Direct Manipulation

The User Interface Class Library provides four types of objects to support direct

manipulation:

� An event handler (IDMSourceHandler or IDMTargetHandler)

� A renderer (IDMSourceRenderer or IDMTargetRenderer)

� A drag item (IDMItem)

� A drag item provider (IDMItemProvider)

IDMSourceHandler and IDMTargetHandler are derived from IHandler. They handle the

Presentation Manager direct manipulation window messages. Objects from these

classes pick off the WM_* and DM_* messages for the source and target windows and

translate them to virtual function calls to the handler.

In addition to translating messages to virtual function calls, these handlers also manage

the second type of objects, the renderers. Renderers transfer the representation of the

object being manipulated between the source and target windows. Direct manipulation

renderers are objects of classes IDMSourceRenderer and IDMTargetRenderer.

The third type of objects are the drag items, represented by objects of class IDMItem.

These objects encapsulate the logic that serves as the bridge between the

context-insensitive handlers and renderers and the application-specific behavior of

particular source and target windows. Put another way, the drag items provide the

application-specific semantics of the direct manipulation operation. For example, the

handler and renderer classes can manipulate IString objects, but the entry field items

know how to extract the source IString from the source entry field and convert it to a

customer object in the target window.

Objects of the IDMItemProvider class allow generic controls like an entry field to

generate context-sensitive drag items; for example, an entry field that contains

customer names can generate a "customer" item; a bit map can provide an item that

can extract the picture from a .bmp file.

User Interface Class Library provides direct manipulation for:

 � Entry field

 � Multiple-line edit

 Copyright IBM Corp. 1993 1

September 3, 1993

Enabling Direct Manipulation

To enable direct manipulation for an entry field or multiple-line edit control, create

instances of IDMSourceHandler and IDMTargetHandler and attach each to a control.

The following sample code enables direct manipulation of text between two entry fields

in the same process.
...

 9 void main()

10 {

11 IFrameWindow

12 frame("ICLUI Direct Manipulation Sample 1");

13

14 IEntryField //Create window with two

15 client(0, &frame, &frame), //entry fields, client and ext.

16 ext (0, &frame, &frame);

17

18 IDMSourceHandler //Define a source handler for
19 srcHandler(&client); //the entry field client.
20 IDMTargetHandler //Define a target handler for
21 tgtHandler(&client); //the entry field client.
22
23 ext.setItemProvider(client.itemProvider(-));//Add drag item
24 //provider for ext.
25 srcHandler.handleEventsFor(&ext);//Add source handler for ext.
26 tgtHandler.handleEventsFor(&ext);//Add target handler for ext.
27

28 frame

29 .setClient(&client)

30 .addExtension(&ext, IFrameWindow::belowClient, 0.5)

31 .setFocus()

32 .show();

33

34 IApplication::current().run();

35

36 }

Lines 18 and 19 create an instance of IDMSourceHandler and attach it to the client

entry field. IDMSourceHandler creates a drag item provider for the entry field if one

has not already been created.

Lines 20 and 21 create an instance of IDMTargetHandler and attach it to the client

entry field.

Line 23 attaches the drag item provider to the ext entry field. The drag item provider

was created by the IDMSourceHandler constructor that was invoked on lines 18 and

19.

Lines 25 and 26 attach the source and target handlers that were created on lines 18

through 20 to the ext entry field.

Adding Direct Manipulation to an Object

To add direct manipulation to other controls, you must specifically create the handlers,

renderers, and item providers that IBM Class Library generates automatically for entry

field and multiple-line edit controls. You must:

2 User Interface Class Library Guide

September 3, 1993

� Add IDMItem as the base class for the current application object and override the

member function dropped.

� Write a drag item provider for the customized object using IDMItemProvider.

� Create the drag item providers, the renderers, and the handlers for the customized

object.

The following example adds drop support to a bit-map control. The header file defines

two classes, ABitmapItem and ABitmapProvider, and overrides the member functions

dropped and provideTargetItemFor. The .cpp file adds the drag item provider, the

target handler, and the target renderer.

01 #include <idmprov.hpp>

02

03 #include <idmitem.hpp>

04

05 class ABitmapItem : public IDMItem {

06 public:

07 ABitmapItem (const IDMItemHandle &item);

08

09 virtual Boolean

10 dropped (IWindow \target, IDMTargetDropEvent &);

11 };

12

13 class ABitmapProvider : public IDMItemProvider {

14 public:

15 virtual IDMItemHandle

16 provideTargetItemFor (const IDMItemHandle item);

17 };

Lines 5 through 11 declare IDMItem as the base class for objects of a specialized class

named ABitmapItem. Objects of this class provide bit-map control drop behavior when

a source bit-map file is dropped on a bit-map control that is properly configured with a

target handler and an ABitmapProvider.

Lines 12 through 17 define a drag item provider for a bit-map control and override

provideTargetItemFor so it returns an ABitmapItem to replace the argument item.

 Direct Manipulation 3

September 3, 1993

...

19 void main()

20 {

21 IFrameWindow

22 frame ("C Set ++ Direct Manipulation - Sample 2");

23

24 IBitmapControl // Create an empty bit-map control.

25 bmpControl (0, &frame, &frame);

26

27 IDMTargetHandler // Create target handler

28 handler; // for the bit-map control.

29

30 handler.handleEventsFor(&bmpControl);// Add target handler on bit-map control.

31

32 ABitmapProvider // Create a bit-map drag item provider.

33 itemProvider;

34

35 bmpControl.setDragItemProvider(&itemProvider);// Attach provider to the bit-map control.

36

37 IDMTargetRenderer //Create renderer to render items.

38 renderer;

39

40 renderer.setSupportedRMFs("<DRM_OS2FILE,DRF_TEXT>")// Set up renderer

41 .setSupportedTypes("Bitmap"); // to accept .bmp files.

42

43 handler.addRenderer(&renderer);

44

45 bmpControl.setText("Drop .bmp files here.");// Set the bit-map control

46 frame.setClient(&bmpControl) // as the frame's client and

47 .showModally(); // display the frame.

48 }

First, the .cpp file creates an empty bit-map control object called bmpControl and then

creates and attaches the handler, provider, and renderer.

Lines 24 and 25 create the bit-map control object.

Lines 27 and 28 construct a target handler without passing a parameter. The

constructor for IDMTargetHandler accepts one parameter, a pointer to an instance of

IEntryField or IMultiLineEdit or NULL. The default is NULL.

Line 30 attaches the target handler created on line 27 to bmpControl.

Lines 32 and 33 construct a drag item provider named itemprovider.

Line 35 attaches the drag item provider to bmpControl.

Line 37 constructs a renderer.

Lines 40 and 41 define the rendering mechanisms and formats (RMFs) and the type

that the renderer will support.

Line 43 attaches the renderer to the target handler.

4 User Interface Class Library Guide

September 3, 1993

 49

 50 ABitmapItem :: ABitmapItem (const IDMItemHandle &item)

 51 : IDMItem(\item)

 52 {

 53 }

 54

 55 Boolean ABitmapItem :: dropped (IWindow \target, IDMTargetDropEvent &)

 56 {

 57 IBitmapControl // Get pointer to target bitmap control.

 58 \bmpControl = (IBitmapControl\)target;

 59

 60 IString // Construct dropped .bmp file name from this item.

 61 fname = this->containerName() + "\\" + this->sourceName();

 62

 63 struct stat // Get file size.

 64 buf;

 65 stat(fname, &buf);

 66

 67 FILE // Open and read the file.

 68 \fileptr = fopen(fname, "rb");

 69 char

 70 \buffer = new char[buf.st_size];

 71 fread(buffer, sizeof(char), buf.st_size, fileptr);

 72

 73 BITMAPARRAYFILEHEADER2 // Construct the bitmap from the file.

 74 \array = (BITMAPARRAYFILEHEADER2 \)buffer;

 75 BITMAPFILEHEADER2

 76 \header;

 77

 78 if (array->usType == BFT_BITMAPARRAY) { // First, see if file holds array of bitmaps.

 79 header = &array->bfh2; // It is, point to first file header in array.

 80 } else {

 81 header = (BITMAPFILEHEADER2 \)buffer; // It isn't, point to file header at start of file.

 82 }

 83 if (header->usType == BFT_BMAP) { // Now check to see if this is a bitmap.

 84

 85 IPresSpaceHandle // We can proceed, first get a presentation space.

 86 hps = bmpControl -> presSpace();

 87

 88 if (hps) {

 89 IBitmapHandle // Now create the bit map from the file contents.

 90 hbm = GpiCreateBitmap(hps,

 91 &header->bmp2,

 92 CBM_INIT,

 93 buffer + header->offBits,

 94 (BITMAPINFO2\)&header->bmp2);

 95 if (hbm) {

 96 IBitmapHandle // Get previously dropped bit map.

 97 old = bmpControl -> bitmap();

 98

 99 bmpControl -> setBitmap(hbm); // Set new one.

100

 Direct Manipulation 5

September 3, 1993

101 GpiDeleteBitmap(old); // Destroy old because we no longer need it.

102

103 bmpControl -> setText(fname); // Indicate name of dropped file.

104 } else {

105 bmpControl -> setText("Couldn't create bit map!");

106 }

107 bmpControl -> releasePresSpace(hps);// Release the presentation space.

108 } else {

109 bmpControl -> setText ("Couldn't get PS!");

110 }

111 } else {

112 bmpControl -> setText(fname + " isn't a bit map!");

113 }

114

115 delete [] buffer; // Free buffer.

116

117 return true;

118 }

119

120 IDMItemHandle ABitmapProvider :: provideTargetItemFor (const IDMItemHandle item)

121 {

122 return new ABitmapItem (item);

123 }

The rest of the .cpp file defines the overridden member functions, dropped and

provideTargetItemFor, for the classes that were declared in the .hpp file.

Lines 50 through 118 define dropped. This member function gets the dropped file,

creates the bitmap, and displays the bitmap in the new space.

Lines 120 through 122 use provideTargetItemFor to replace the generic IDMItem that

was created during the initial target enter event (IDMTargetEnterEvent) with the derived

class. This function is called when a drop event (IDMTargetDropEvent) occurs on a

target window.

6 User Interface Class Library Guide

