
Chapter 9. The Replication Framework

Contents

9.1 Introduction 9 – 1.

9.2 Principles of the Replication Framework 9 – 2.

Steps in using Replication 9 – 3.

9.3 Components of the Framework 9 – 4.

 9.4 Making a “replicated” Class that provides Operation Logging 9 – 5.

9.5 Making a “replicated” Class that provides Value Logging 9 – 8.

9.6 Handling Directives 9 – 10.

9.7 Repdraw: A Complete Example 9 – 12.

Main program for “repdraw” (first part) 9 – 13.

IDL specification of the “tablet” class 9 – 15.

Implementation of the “tablet” class (first part) 9 – 16.

9.8 Miscellaneous Considerations 9 – 18.

Composition and nesting 9 – 18.

Choosing the type of logging 9 – 18.

Replication and databases 9 – 19.

Aborting a method 9 – 20.

Readers and writers 9 – 20.

Storage considerations 9 – 20.

Performance considerations 9 – 20.

How to handle slow networks 9 – 20.

Fault-tolerance 9 – 20.

Thread safety 9 – 21.

Persistent objects 9 – 21.

Deadlock avoidance 9 – 21.

Environment variables 9 – 21.

Return codes 9 – 22.

Messages 9 – 23.

Operating system considerations 9 – 23.

Dependence on sockets DLL 9 – 24.

Client events used by the framework 9 – 24.

Writing X/MOTIF applications 9 – 24.

Tips on using Replication 9 – 25.

9.9 Limitations 9 – 25.

ii SOMobjects Developer Toolkit Users Guide

Chapter 9. The Replication Framework

9.1 Introduction
The continuing integration of electronic computation and electronic communication has gener-
ated a new kind of application. Whether called “a multiparty application,” “groupware,” or
“computer-supported cooperative work,” this kind of application includes a dimension well
beyond that of traditional distributed computing. Rather than merely placing a user in contact
with a remote database (as in transaction processing — a common experience when people
use an automatic teller machine), this new kind of application places a person in direct contact
with other people.

Currently, the most common multiparty applications consist of two-player games where the
players are located in the same room using one computer. In the future, however, multiparty
applications will commonly coordinate more than two people who are not necessarily located
together. For example, there are a number of group editors in the computer science literature. In
addition, decision support systems for meeting rooms are beginning to emerge.

An essential aspect of successful multiparty applications is that participants must really feel
they are touching one another. To facilitate the implementation of an application that meets this
requirement, the SOMobjects Toolkit provides the Replication Framework.

The Replication Framework enables an object to be replicated (copied) in the address spaces of
several processes distributed about a network. This provides the fast response times necessary
for cooperative interactive applications. Each replica of the object can be updated, and the
framework guarantees that the updates are serialized. (That is, there is a specific order in which
updates will be performed, despite the fact that the updates originate from different processes.)

Release 2.1 note: Many of the examples in this chapter make use of the somInit and
somUninit methods. Although these methods have been superseded by the somDefaultInit
and somDestruct methods, which are more efficient, be assured that somInit still executes
correctly. When developing your own applications, however, you may wish to override
somDefaultInit instead of somInit to customize object initialization.

9 – 2 SOMobjects Developer Toolkit Users Guide

9.2 Principles of the Replication Framework
Figure 1 depicts a simple but typical situation using the Replication Framework. Notice that
there are multiple processes running on possibly different nodes of the network, and each
process has a copy of a replicated object. Here, the object Lassie is an instance of the class
“ReplicatedDog”, which is a subclass of “Dog”. “ReplicatedDog” obtains its ability to replicate
objects by being a subclass of the SOM-provided class SOMRReplicbl.

The Replication Framework provides the following properties:

1. The number of replicas and their location in the network is hidden from the application
program.

2. Updates (changes in value for instance variables) are communicated from the
originating process to the other participants without the use of secondary storage.

3. The updates are serialized by the framework.

4. A participant is free at any time to join or leave the group of processes holding a
replica.

5. The framework is tolerant of a single failure resulting from either a process crash or a
network partition.

SOMRReplicbl

process 1

Lassie
replica
 1

process 2

Lassie

replica

 2

process n

where

Dog

Lassie

replica

 n

Lassie

Legend:
subclass–ofinstance–of

metaclass class simple object

. . .

Replicated
 Dog

Figure 1. Multiple processes running replicas of a simple object.

9 – 39. The Replication Framework

Steps in using Replication

The Replication Framework can be exploited only if the applications are structured appropriate-
ly. The required structure is similar to the “Model–View–Controller” paradigm used by Smalltalk
programmers. The Replication Framework proposes a View–Data paradigm. The Data object
has whatever ‘state’ information the application desires to store in it. The View object has no
state. It has methods to show a rendition of the state contained in the Data object. It may have
some data that purely pertains to the image being displayed to the user. For example, in a visual
presentation, the colors used for different regions may be in the View object, but the content
information comes from the Data object.

Further, the View and Data must have a protocol between them such that whenever the Data
object changes, a “signal” is sent to the View object to take note of the change and refresh the
display (if necessary). This protocol can be extended to multiple Views on the same Data object,
whereby an update to the Data object is automatically seen in all visual presentations. Effective-
ly, the Views “observe” the Data.

The Replication Framework is concerned with Data objects only. It is the responsibility of the
application developer to implement the “observation” protocol between the Views and Data. The
Replication Framework requires the Data objects to be derived from a distinguished framework
class SOMRReplicbl.

The recommended steps in building a replicated application are as follows:

� Structure the application to follow the View–Data paradigm, build the View and Data as
SOMObjects, build a driver main program, and test the application as a stand-alone
program.

� Convert the Data object (it is possible to have multiple replicated objects in a given
program) to be a replicated object by making it a subclass of SOMRReplicbl. Do all the
necessary method overrides to be a subclass of SOMRReplicbl. Again, test it as a
stand-alone program.

� Enable replication by doing the appropriate replication initialization in the application’s
main program, and test it with multiple copies of the application running.

9 – 4 SOMobjects Developer Toolkit Users Guide

9.3 Components of the Framework
The Replication Framework consists of three components, the:

� SOMRReplicbl class,

� SOMR class, and

� .scf file.

The SOMRReplicbl class is used to make subclasses that can create replicated objects. In
Figure 1, for example, the class “ReplicatedDog” (a subclass of “Dog”) obtains its ability to
replicate the object “Lassie” by also being a subclass of SOMRReplicbl. Techniques for making
a “replicated” class (that is, a class that can create replicated objects) are discussed in the
subsequent paragraphs.

The SOMR class provides a number of services for replicated objects. It is not necessary to
know what they are; it is only necessary to create one instance of SOMR during the initialization
of your program. [This is one of only two requirements imposed by the Replication Framework
on the main program. The other one is the use of the Event Management Framework (see
Section 9.7 for an example program).]

All replicated objects have names; it is this name by which the replicas locate each other on the
network. That is, all objects initialized for replication under the same name (given during object
initialization) are replicas of each other. Note that replicas must be instances of the same class,
and that the name of the object is a null-terminated string.

Like all distributed systems, the Replication Framework needs a way to establish communica-
tion among the various participating processes. This is accomplished with the .scf files. (scf
stands for share control file.) By convention, the .scf file corresponding to a set of replicas is
named by appending “.scf” to the object’s name. Because the object’s name is just a string, the
name may represent a path in the file system. If the name is a path, all the directories in the path
must exist.

For example, in Figure 1 the processes initially locate each other by reading the “Lassie.scf” file.
The Replication Framework creates such files automatically in the distributed file system. (Note:
This is not a contradiction to the earlier statement that updates are communicated without the
use of secondary storage. The .scf file is only used by replicas to establish communication
channels among them. Once they are established, the updates are propagated on these
channels without the help of secondary storage.)

Important: The .scf files are an artifact of the implementation that are visible to the user but are
not part of the interface. As such, IBM reserves the right to eliminate them in the future. Do not
make any programming decisions based on their content or even on their existence.

There are two ways in which changes can be propagated among replicas: operation logging and
value logging:

� In operation logging, each method invocation that modifies a replica also executes at the
site of the other replicas.

� In value logging, the change in value of a replica is encoded after a method invocation, and
subsequently the values of the other replicas are upgraded to reflect this change.

The following two subsections give examples for subclassing an existing class to create a
“replicated” class (a class capable of creating replicated objects) that uses either operation
logging or value logging. Each of these subsections explains a recipe for creating either an
operation-logged or a value-logged replicable class. If an application has no special needs, you
can use the SOMRReplicable metaclass to create a replicable object instead of using the
recipe. The SOMRReplicable metaclass is described in Chapter 10, “The Metaclass Frame-
work.”

9 – 59. The Replication Framework

9.4 Making a “replicated” Class that provides Operation Logging
Following are the steps used to create a “replicated” class (for example, to create the class
“ReplicatedDog” from the parent class “Dog”) whose replicated instances will be updated using
operation logging. This example shows the C implementation; the C++ implementation is done
similarly.

Step 1. Create a new class whose parents are both SOMRReplicbl and the original class
(here, “Dog”) whose instances are to be replicated. Alternatively, you can directly derive
“ReplicatedDog” from SOMRReplicbl.

Step 2. In the new class, override all the methods that change the value of instance variables (of
“Dog”), override somrDoDirective, somrGetState and somrSetState. What to do in
each overriding method is explained in the following steps.

Step 3. Each overriding method from the original class (here, “Dog”) should be coded as
follows:

#include <somrerrd.h>

dogMethod(ReplicatedDog somSelf, <parameters>) {
ReplicatedDogData *somThis = ReplicatedDogGetData(somSelf);
Environment *Env = SOM_CreateLocalEnvironment();
_somrLockNlogOp(somSelf,

 Env,
 ”ReplicatedDog”,
 ”dogMethod”,
 <parameters>);

if (Env–>_major == NO_EXCEPTION) {
parent_dogMethod(somSelf, <parameters>);
... <any other additional code> ...
_somrReleaseNPropagateOperation(somSelf, Env);
}

else {
/* code to handle failure to obtain a lock */
switch (somriGetErrorCode(Env)){
case SOMR_MASTER_UNREACHABLE: ...
case SOMR_UNAUTHORIZED: ...
case SOMR_TIMEOUT: ...
case SOMR_TRYLATER ...
default: ...
}

}

where <parameters> represents the explicit formal parameters of “dogMethod”. Note

that for IDL call style the environment is listed among the <parameters> to
somrLockNLogOp. The parameters to somrLockNlogOp must be one of the follow-
ing types:

� one of the following primitive types: short, long, unsigned short, unsigned long,
float, double, char, octet, boolean, and string.

� a pointer to a primitive type, or

� an object pointer.

If an object parameter is used, it must be an instance of one of the following classes:

� SOMRReplicbl

� SOMPPersistentObject

� SOMRLinearizable

9 – 6 SOMobjects Developer Toolkit Users Guide

There is an essential difficulty for the Replication Framework when using operation
logging with methods that have objects as parameters — that is, the problem of how to
repeat the operation in another address space where the object (to which the parameter
refers) may not exist. The preceding restriction on object parameters deals with this
difficulty in one of three ways:

� If the object is SOMRReplicbl, it is assumed that the object is already in the other
address space and only the name of the object is passed.

� If the object is SOMPPersistent, the object name (used by the Persistence
Framework) is passed and the object is restored (activated), if necessary.

� If the object is SOMRLinearizable, the object is copied to the other address
space. A linearizable object must support the methods somrGetState and
somrSetState; the class SOMRLinearizable contains the specification of both of
these methods.

Passing any other object as a parameter to somrLockNlogOp can produce unpredict-
able results. If this constraint cannot be satisfied, then the application program should
use value logging rather than operation logging to achieve replication, as described in
the next section.

Note: If the “ReplicatedDog” class uses “callstyle = idl” in its interface definition, then the
first parameter in <parameters> is always an Environment parameter, which is neither a
primitive CORBA type nor an object of the right class. Currently the Replication Frame-
work ignores the Environment parameter. However, it must be included in the parame-
ter list <parameters> in order to match the number of arguments expected for the
method. Also, currently “Context” object parameters are not supported. These restric-
tions on Environment and Context parameters apply only to those methods that need to
be replicated.

Step 4. Initialize the object (replica) for replicated operation as follows (either in the main
program or from inside of somInit of “ReplicatedDog”, if somInit is overridden):

#include <somrerrd.h>

ReplicatedDog dog
Environment *Env;
int rc;
dog = ReplicatedDogNew();
Env = SOM_CreateLocalEnvironment();

 _somrSetObjName(dog, Env, ”Lassie”);
 rc = _somrRepInit(dog, Env, ’o’, ’w’);
 if (Env–>_major == NO_EXCEPTION) {
 somPrintf(
 ”Successfully initialized for replication. rc = %d\n”,
 rc);
 ...
 }
 else {
 somPrintf(”Initialization for replication failed\n”);
 switch(somriGetErrorCode(Env)) {
 case SOMR_MASTER_UNREACHABLE: ...
 case SOMR_UNAUTHORIZED: ...
 case SOMR_TRYLATER: ...
 default: ...
 }

The somrRepInit parameter ‘o’ indicates operation logging, while ‘w’ indicates this
replica is a writer.

9 – 79. The Replication Framework

Step 5. Override somrGetState and somrSetState to format the state of the object as a byte
string and to set the state of the object from such a string. Both methods require that the
first four bytes of the string contain its length in binary. (Note that for a persistent object,
you might use the Encoder/Decoder of the Persistence Framework, described in the
previous chapter, with a Media Interface that returns a buffer.) The Replication Frame-
work calls these methods on the replicated object to synchronize new replicas with the
existing ones (somrGetState on existing replicas and somrSetState on new replicas).
For help in implementing these two methods, refer to the sample programs shipped with
the SOMobjects Developer Toolkit.

Step 6. To have a replicated object respond to directives, override the somrDoDirective meth-
od. See the subsequent section entitled “Handling Directives.”

9 – 8 SOMobjects Developer Toolkit Users Guide

9.5 Making a “replicated” Class that provides Value Logging
This example is similar to the previous one, except that this new class will use value logging to
propagate updates among its replicas.

Step 1. Create a new class whose parents are both SOMRReplicbl and the original class
(“Dog”) whose instances are like those that will be replicated.

Step 2. In the new class, override all the methods that change the value of instance variables
(of “Dog”) and override the following methods of SOMRReplicbl: somInit,
somrApplyUpdates, somrDoDirective, somrGetState and somrSetState. What
to do in each overriding method is explained in the following steps.

Step 3. Each overridden method from the original class (such as “Dog”) should be coded as
follows:

dogMethod(ReplicatedDog somSelf, <parameters>) {
char *buf;
Environment *Env = SOM_CreateLocalEnvironment();
_somrLock(somSelf, Env);
if (Env–>_major == NO_EXCEPTION) {

parent_dogMethod(somSelf, <parameters>)
buf = <some algorithm to capture the change

in the state of the object>;
_somrReleaseNPropagateUpdate(somSelf

Env,
”ReplicatedDog”,
buf,
<buf length in bytes>,
0);

}
else {

/* code to handle failure to obtain a lock */
switch (somriGetErrorCode(Env)){
case SOMR_MASTER_UNREACHABLE: ...
case SOMR_UNAUTHORIZED: ...
case SOMR_TIMEOUT: ...
case SOMR_TRYLATER ...
default: ...
}

}

where <parameters> represents the explicit formal parameters of “dogMethod”.

Note that somrGetState may be used to capture the value of the object. However, you

could propagate updates by differentials in the object value. This point reveals the
subtle difference between value logging and merely capturing the value; that is, with
value logging you have the possibility of computing and propagating differentials.

Step 4. Override somInit to initialize the object for replicated operation as follows:

SOM_Scope void SOMLINK somInit(ReplicatedDog somSelf)
{
 ReplicatedDogData *somThis = ReplicatedDogGetData(somSelf);
 /* make somInit calls on all parents */
 _somrSetObjName (somSelf, Env, ”Lassie”);
 _somrRepInit (somSelf, Env, ’v’, ’w’);
}

The somrRepInit parameter ‘v’ indicates value logging, whereas ‘w’ indicates this
replica is a writer.

9 – 99. The Replication Framework

Note that if the application will create more that one distinct instance of “ReplicatedDog”
(for example, other names besides “Lassie”), this initialization cannot be done by
overriding somInit, because there is no way to pass the different object names to the
somInit method. Instead, the methods somrSetObjName and somrRepInit must be
called separately after the replica is created (for instance, after the call to “Replicated-
DogNew”) as follows:

varLassie = ReplicatedDogNew();
_somrSetObjName (varLassie, Env, ”Lassie”);
_somrRepInit (varLassie, Env, ’o’, ’w’);

Step 5. Override somrGetState and somrSetState to format the state of the object as a byte
string and to set the state of the object from such a string. Both methods require that the
first four bytes of the string contain its length. (Note that for a persistent object, you might
use the Encoder/Decoder of the Persistence Framework (described in the previous
chapter) with a Media Interface that returns a buffer.)

Step 6. To have a replicated object respond to directives, override the somrDoDirective meth-
od. See the subsequent section entitled “Handling Directives.”

9 – 10 SOMobjects Developer Toolkit Users Guide

9.6 Handling Directives
A directive is a message from the Replication Framework to a replica (or more specifically, to the
application using the replica). A directive indicates that some condition has arisen asynchro-
nously (not as a reaction to any request by the local replica). The somrDoDirective method is
provided by the framework to interpret directives sent to a replica. To enable replicated objects
to handle directives appropriately for the application, override the somrDoDirective method.
The overriding method might be coded as follows:

SOM_Scope void SOMLINK somrDoDirective(ReplicatedDog somSelf,
Environment *env,
string directive)

{
if (!strcmp(directive, ”BECOME_STAND_ALONE”) {

... }
else if (!strcmp(directive, ”CONNECTION_LOST”) {

... }
else if (!strcmp(directive, ”CONNECTION_REESTABLISHED”) {

... }
}

where the ellipses represent application-dependent code. Currently defined directives are as
follows:

BECOME_STAND_ALONE — The replica has lost its connection to other replicas and the
Replication Framework has given up trying to reconnect to
the set of replicas. An application may subsequently try to
reconnect by invoking first somrRepUninit and then
somrRepInit.

LOST_CONNECTION — The replica has lost its connection to the other replicas, but
the Replication Framework is trying to reconnect; the direc-
tive below will be issued after connection is reestablished.
You should not attempt to update the object at this time.

CONNECTION_REESTABLISHED— The connection between the replica and its cohorts has
been reestablished; processing may continue normally.

LOST_RECOVERABILITY — This directive is issued by the framework when the .scf file
cannot be updated to reflect the current state of the
framework (due to network or file errors). Hence, because
the framework uses the .scf files for recovery, recovery
may be impacted adversely.

Figure 2 depicts the states of a replica and how transitions are made. Note that from the
stand-alone state, somrRepUninit should be invoked before trying to invoke somrRepInit and
that neither somrRepInit nor somrRepUninit should be invoked inside of the method
somrDoDirective (because doing so deletes the object on which somrDoDirective is in-
voked). In addition, bear in mind that the BECOME_STAND_ALONE directive is received because
something is amiss out in the network; it is prudent to wait a bit before trying to reconnect.

Note that in the stand-alone and isolated states the methods somrLockNLogOp and
somrLock cannot succeed. Attempts to invoke these methods yield a return code of
SOMR_TRYLATER.

Because of their passive nature, read-only replicas do not receive BECOME_STAND_ALONE direc-
tives, but can receive LOST_CONNECTION directives.

9 – 119. The Replication Framework

unreplicated

normal

isolated

stand–alone

somrRepUninit

somrRepUninit

somrRepInit

BECOME_STAND_ALONE

BECOME_STAND_ALONE

somrRepUninit

LOST_CONNECTION

Possible states of a replica and transitions among them

CONNECTION_REESTABLISHED

Figure 2. Possible states of a replica and transitions among them.

9 – 12 SOMobjects Developer Toolkit Users Guide

9.7 Repdraw: A Complete Example
This section presents a complete program using the Replication Framework (implemented in
C). This program, called repdraw, enables a group of people to share a tablet on which they may
draw simultaneously. This program is based on the program “xmdraw.c” in the IBM AIX Win-
dows Programming Guide by Ian J. Charters (IBM UK) and Mark Connell (IBM Australia).

This example does the following two things:

� First, the drawing surface is made into a SOM object (an instance of the “tablet” class), and

� Second, each user will receive a replica of the “tablet” object.

Operation logging is illustrated in this example.

For brevity, the example creates a replicated object directly (rather than subclassing an existing
class, as described earlier). Figure 3 contains the main program. Figure 4 contains the .idl file for
the “tablet” class, and Figure 5 contains the implementation of the “tablet” class.

The following notes explain certain statements in the program. The number corresponding to
each note also appears along the right margin of the code at the relevant point.

Note 1. This statement includes the header file, “somr.h”, for initializing the Replication Frame-
work. (C++ users should include “somr.xh”.)

Note 2. This statement includes the header file, “eman.h”, for initializing the Event Management
Framework. (C++ users should include “eman.xh”.)

Note 3. This statement creates and initializes the Replication Framework.

Note 4. This statement creates and initializes the Event Management Framework.

Note 5. This statement registers the callback for X events with the Event Management Frame-
work.

Note 6. This statement flushes the X events before turning control over to the Event Manager.

Note 7. This statement turns over control to the Event Manager(EMan).

Note 8. Because SOMRReplicbl is a parent of the “tablet” class, file “tablet.ih” includes the
appropriate header files for implementing a replicated class.

Note 9. In this simple example, no action is taken if the process fails to get a lock.

Note 10. In this simple example, no attempt is made to recover from an unsuccessful return from
initialization for replication.

9 – 139. The Replication Framework

#include <tablet.h>
#include <somr.h> /*01*/
#include <eman.h> /*02*/

void begin (Widget, caddr_t, XEvent *);
void paint (Widget, caddr_t, XEvent *);
void ProcessXEvent (SOMEEvent ,void *);
void RegisterXfd (SOMEEMan);

tablet myTablet;
Widget toplevel;
XEvent *tabletEvent;

main(int argc, char **argv, char **envp)
{
 Widget drawarea;
 GC myGC;
 int n = 0;
 Arg args[10];
 XGCValues val;
 SOMR myOwnSelf;
 SOMEEMan EManPtr;
 Environment *tabletEnv = somGetGlobalEnvironment();

 myOwnSelf = SOMRNew(); /*03*/
 EManPtr = SOMEEManNew(); /*04*/
 toplevel = XtInitialize(argv[0],”RepDraw”, NULL,0, &argc, argv);
 XtSetArg (args[n], XmNwidth, 500); n++;
 XtSetArg (args[n], XmNheight, 500); n++;
 drawarea = XmCreateDrawingArea (toplevel, ”DrawArea”, args, n);
 XtManageChild (drawarea);
 XtAddEventHandler (drawarea, ButtonPressMask, False, begin, NULL);
 XtAddEventHandler (drawarea, ButtonMotionMask, False, paint, NULL);

 XtRealizeWidget ((Widget)toplevel);

 n = 0;
 XtSetArg(args[n], XmNforeground, &val.foreground); n++;
 XtSetArg(args[n], XmNbackground, &val.background); n++;
 XtGetValues(drawarea, args, n);
 val.foreground = val.foreground ^ val.background;
 val.function = GXxor;
 myGC = XtGetGC (drawarea, GCForeground|GCBackground|GCFunction, &val);
 myTablet = tabletNew();
 _setTablet (myTablet, drawarea, myGC);

 RegisterXfd(EManPtr); /*05*/
 ProcessXEvent(NULL, NULL); /*06*/
 _someProcessEvents(EManPtr, tabletEnv); /*07*/
}

Main program for “repdraw” (first part)

Figure 3. The main program for “repdraw” (first part)

9 – 14 SOMobjects Developer Toolkit Users Guide

/* =========================== Event Handlers ===========================
*/

void begin (Widget w, caddr_t client_data, XEvent *event)
{
 _beginLine (myTablet, event–>xbutton.x, event–>xbutton.y);
}

void paint (Widget w, caddr_t client_data, XEvent *event)
{
 switch (event–>xmotion.state) {
 case Button1MotionMask:

_drawLine (myTablet, event–>xbutton.x, event–>xbutton.y);
break;

 case Button3MotionMask:
_clearAll (myTablet);
break;

 }
}

void ProcessXEvent(SOMEEvent foo, void *bar)
{
while (XPending (XtDisplay(toplevel))) {

XtNextEvent(&tabletEvent);
XtDispatchEvent(&tabletEvent);

 }
}

void RegisterXfd(SOMEEMan EManPtr)
{
SOMEEMRegisterData regData = SOMEEMRegisterDataNew();
Environment *tabletEnv = somGetGlobalEnvironment();
int Xfd;
 Xfd = XConnectionNumber(XtDisplay(toplevel));
 _someClearRegData(regData,tabletEnv);
 _someSetRegDataEventMask(regData, tabletEnv, EMSinkEvent, NULL);
 _someSetRegDataSink(regData, tabletEnv, Xfd);
 _someSetRegDataSinkMask(regData, tabletEnv, EMInputReadMask |
 EMInputExceptMask);
 _someRegisterProc(EManPtr, tabletEnv, regData, ProcessXEvent, NULL);
}

Main program for “repdraw” (second part)

Figure 3. The main program for “repdraw” (second part)

9 – 159. The Replication Framework

IDL specification of the “tablet” class

#include <replicbl.idl>

interface tablet : SOMRReplicbl
{
 void setTablet(in void* clientDA, in void* clientGC);
 void beginLine(in long x, in long y);
 void drawLine(in long x, in long y);
 void clearAll();

#ifdef __SOMIDL__

implementation {
 callstyle = oidl;
 releaseorder: setTablet, beginLine, drawLine, clearAll;

 filestem = tablet;
 passthru C_h =
 ”#include <X11/Intrinsic.h>”

”#include <Xm/Xm.h>”
”#include <Xm/DrawingA.h>”;

 int x1;
 int y1;
 int x2;
 int y2;
 void *gc;
 void *da;

 somInit: override;

 };

#endif /* __SOMIDL__ */
};

Figure 4. The IDL specification of the “tablet” class.

9 – 16 SOMobjects Developer Toolkit Users Guide

Implementation of the “tablet” class (first part)
#define tablet_Class_Source
#include ”tablet.ih” /*08*/
Environment *tabletEnv;

SOM_Scope void SOMLINK setTablet(tablet somSelf,void *clientDA,void *clientGC)
{
 tabletData *somThis = tabletGetData(somSelf);
 _da = (Widget)clientDA; _gc = (GC)clientGC;
}

SOM_Scope void SOMLINK beginLine(tablet somSelf, long x, long y)
{
 char *buf;
 int buflen;

 tabletData *somThis = tabletGetData(somSelf);
 _somrLockNlogOp(somSelf,tabletEnv,”tablet”,”beginLine”,x,y); /*09*/
 if (tabletEnv–>_major == NO_EXCEPTION) {

_x1 = x; _y1 = y; _x2 = x; _y2 = y;
_somrReleaseNPropagateOperation (somSelf, tabletEnv); }

}

SOM_Scope void SOMLINK drawLine(tablet somSelf, long x, long y)
{
 char *buf;
 int buflen;

 tabletData *somThis = tabletGetData(somSelf);
 _somrLockNlogOp(somSelf,tabletEnv,”tablet”,”drawLine”,x,y); /*09*/
 if (tabletEnv–>_major == NO_EXCEPTION) {

_x2 = x; _y2 = y;
XDrawLine(XtDisplay((Widget)_da), XtWindow((Widget)_da),

(GC)_gc, _x1, _y1, _x2, _y2);
XDrawPoint (XtDisplay((Widget)_da), XtWindow((Widget)_da),

(GC)_gc, _x2, _y2);
XFlush (XtDisplay((Widget)_da));
_x1 = _x2; _y1 = _y2;
_somrReleaseNPropagateOperation(somSelf, tabletEnv);}

}

SOM_Scope void SOMLINK clearAll(tablet somSelf)
{
 char *buf;
 int buflen;
 tabletData *somThis = tabletGetData(somSelf);
 _somrLockNlogOp(somSelf, ”tablet”, ”clearAll”); /*09*/
 if (tabletEnv–>_major == NO_EXCEPTION) {

XClearWindow (XtDisplay((Widget)_da), XtWindow((Widget)_da));
XFlush (XtDisplay((Widget)_da));
_somrReleaseNPropagateOperation (somSelf, tabletEnv); }

}

Figure 5. Implementation of the “tablet” class (first part)

9 – 179. The Replication Framework

Implementation of the “tablet” class (second part)

SOM_Scope void SOMLINK somInit(tablet somSelf)
{
 char *strname = ”tablet”;
 tabletData *somThis = tabletGetData(somSelf);
 parent_somInit (somSelf);
 tabletEnv = somGetGlobalEnvironment();
 _somrSetObjName (somSelf, tabletEnv, ”Tablet”);
 _somrRepInit (somSelf, tabletEnv, ’o’, ’w’); /*10*/
}

Figure 5. Implementation of the “tablet” class.

9 – 18 SOMobjects Developer Toolkit Users Guide

9.8 Miscellaneous Considerations

Composition and nesting
The Replication Framework does compose with itself. That is, the situation depicted in Figure 6
does work, because the SOM model uses graph inheritance. The situation shown here is
unusual, because it is unlikely that the implementors of classes “Collie” and “ReplicatedCollie”
would not know that “ReplicatedDog” is derived from SOMRReplicbl. Beware: if the class
“Collie” introduces additional update methods, they must be constructed according to the
examples given earlier for making a class “replicated”.

Dog SOMRReplicbl

Legend:
subclass-ofinstance-of

metaclass class simple object

Collie SOMRReplicbl

Replication of a subclass of a replicated class

Replicated
 Dog

Replicated
 Collie

Figure 6. Replication of a subclass of a replicated class.

Furthermore, methods within a replicated object may call other such methods. That is, when
doing operation logging, it does no harm to nest the method pair somrLockNlogOp/
somrReleaseNPropagateOperation with another such pair (because of a method invocation).
A similar situation exists for value logging.

Choosing the type of logging
To operation log, or not to operation log — that is the question (for which there is no simple
answer). Figure 7 depicts the basic heuristic for making this decision: The x axis represents the
duration of the average update to a replicated object. The y axis represents the amount of

9 – 199. The Replication Framework

change made by the average update (which might be measured in the number of bits that
change in the object representation).

Operation logging has advantages when updates run quickly or make large changes to large
objects. For long-running updates, it may be better to use value logging, which in effect transfers
only the result of the operation to the replicas. On the other hand, for a very large object,
transferring the result among the replicas might take longer than having the replicas repeat the
execution of the method.

Size of

Duration of Update

Operation
Logging

Value
Logging

Update

Determining the type of logging

Figure 7. A heuristic on how to determine the type of logging.

Replication and databases

It is common to initialize a replicated object from a database. A problem arises, however, when
considering how to update the database when the replicated object changes. This may not
seem like a problem, but without a proper design all replicas could be updating the database.
Consider a technique that avoids this problem: First, note that a method need not log its own
name when invoking somrLockNlogOp. Thus, a user can separate a method to change a
replicated object into two methods: one that is called by the application and one that is propa-
gated and called by the Replication Framework. The first method might look like this:

changeReplicaAndDatabase(replicaType *somSelf, ...)
{

somrLockNLogOp(somSelf, ”changeReplicaOnly”, ...);
changeReplicaOnly(somSelf, ...);
<update database from changed replica>;
somrReleaseNPropagateOperation(somSelf);

}

9 – 20 SOMobjects Developer Toolkit Users Guide

In this way the database is updated only from the site of the replica where the change originated.
Replicas that receive the change from the Replication Framework only modify the replica, not
the database.

Aborting a method
Suppose it is necessary to abort a method. That is, after somrLockNlogOp (for operation
logging) or somrLock (for value logging), it is not desirable to communicate the effects of the
method to the other replicas. Before aborting the method, first restore the object to its state at the
time that the lock was obtained. Then, to execute the abort, call somrReleaseLockNAbortOp
(for operation logging) or somrReleaseLockNAbortUpdate (for value logging).

Readers and writers
The Replication Framework supports reader and writer replicas. The readers, as the name
implies, should not attempt updates on the replicated object. If they do, they fail to get the replica
lock. The .scf files mentioned in section 9.3 are also used to enforce the access control policy for
replicated objects. For example, processes that have “write” access to the shared control file
can become writer replicas, and processes with “read” access can only become reader replicas.
Processes with no access to the .scf cannot participate in replication.

You can control the file access permission mask by overriding the somrGetSecurityPolicy
method of SOMRReplicbl class. (The value returned by somrGetSecurityPolicy becomes the
third parameter of a file “open”; the interpretation is operating-system dependent.) The Replica-
tion Framework checks the access permissions of a process (reader or writer) when a replica
registers itself by calling somrRepInit, and subsequently enforces the appropriate access
control. If a replica wants to change its mode from read to write or vice versa, it must do a
somrRepUninit followed by a somrRepInit with the appropriate mode.

Storage considerations
When using operation logging, you should avoid logging operations that return dynamically

allocated storage (this includes SOM objects). When such methods are invoked at replicas,

return values are discarded; thus, any dynamically allocated storage is lost. This situation also
applies to methods in which dynamically allocated storage is returned in parameters. This
observation demonstrates that not all classes are equally amenable to operation logging. (The
parameters to a replicated method are essentially passed ”by value” only. Any values returned
through reference parameters are lost.)

If a replicated object uses CORBA style method calls (i.e., its class has the SOM IDL modifier
callstyle=idl), then the exceptions returned through the environment parameter are ignored
when the log is replayed at replicas.

Performance considerations
With regard to performance, consider the number of messages required to perform a single
update of an object with n replicas: In the best case, n–1 messages are required. In the worst
case, n+3 messages are required.

How to handle slow networks
The Replication Framework timeout is defined in the environment variable SOMR_RPCTIMEOUT.
If the network is slow, this timeout may be exceeded, which in turn causes replicas to begin
working without coordination with the others. If this happens, increase the timeout setting.
Remember that time is given in milliseconds.

Fault-tolerance
The Replication Framework tolerates process crashes and network partitions. When the net-
work partitions, the issue arises as to which subset of replicas will continue. For the Replication

9 – 219. The Replication Framework

Framework, it is the subset that still has access to the .scf file. Each replica in the other partition
receives the BECOME_STAND_ALONE directive.

The case of process crashes is somewhat more complicated. The excellent performance of the
framework is achieved by designating one replica as the master (with the other replicas called
shadows). If a shadow crashes, the set of replicas continue to operate with no problem. If the
master crashes, however, some time is required before the shadows recognize this and elect a
new master.

The duration of this recovery is controlled by two environment variables: SOMR_HEARTBEAT and
SOMR_INTERBEATLIMIT. These two are set as positive integers that represent times in millisec-
onds. The times control failure detection and recovery algorithms. SOMR_INTERBEATLIMIT must
be greater than SOMR_HEARTBEAT (typically two or three times greater). The framework provides

default values of 30 and 90 seconds. Setting SOMR_INTERBEATLIMIT too high lengthens the

recovery period while deceasing the possibility of falsely declaring a process to be dead. Setting
SOMR_HEARTBEAT too low can degrade performance.

In addition, SOMR_INTERBEATLIMIT and SOMR_HEARTBEAT should be set greater than the maxi-
mum difference of the clock readings of the computers on which the replicas are running. For
example, if the clocks of the computers cannot be synchronized closer than two minutes do not
set SOMR_INTERBEATLIMIT and SOMR_HEARTBEAT less than two minutes.

Thread safety
The Replication Framework does not provide thread safety. You should never call methods of
the framework concurrently. If this is a problem in a multi-threaded application, consider
constructing an atomic replicated object using Before/After Metaclasses (see Chapter 10).

Persistent objects
Because a replicated object may be updated in response to changes at other sites, you should
take care when saving a replicated object that is also persistent. The recommended way is to
lock the object (use somrLockNlogOp for operation logging or somrLock for value logging),
save the object, and then abort the operation (with somrReleaseLockNAbortOp for operation
logging or with somrReleaseLockNAbortUpdate for value logging).

Deadlock avoidance
Because replicas lock the replicated object (with somrLock and somrLockNlogOp), dead-
locks are possible if methods that change an object invoke other methods on replicated objects.
To avoid deadlocks, use any of the standard techniques to break circular waits. For example,
impose a linear order on the objects and never lock a lower precedence object until all required
higher precedence objects have been locked.

Environment variables
Following is a summary of the environment variables that control operation of the Replication
Framework. The framework assumes default values if these variables are not set in the user
environment.

SOMR_HEARTBEAT — The time in milliseconds that some processes use to an-
nounce that they are still alive. The default value is 30
seconds.

SOMR_INTERBEATLIMIT ���� �������� ����� ��� �������
����� ��� ����� ��� �� ������ 	���

������ ���
�� �� ���
���� ���� 	�� ��
������ ������� ���� ������

������ ��� ��� ��
�����

SOMR_RPCTIMEOUT ���� ����� ��� �������
����� ����� ��� ����� ��� ����� ��� ���� �
�

�������������� �� �� �������� The default value is 30
seconds.

9 – 22 SOMobjects Developer Toolkit Users Guide

SOMR_SCFDIRECTORY — A prefix that is added to object names to make a file name
for the .scf file.

SOMR_SCFDURATION — The maximum time, in milliseconds, that the .scf file is
locked for a single operation. The Replication framework
uses a default value. However, the framework can detect
that this value is not appropriate (for example, in a slow file
system) and may ask you to increase it. The default value is
3000.

SOMR_DOSNFS — This environment variable is only applicable on a Windows
platform, with the .scf files being created on a DOSNFS

directory. In such an environment, set SOMR_DOSNFS=1
for error-free operation.

SOMSOCKETS — The name of the socket implementation class used for a
given application. This variable is usually fixed at the
SOMobjects Toolkit installation time. (There is no default
setting.)

SOMIR — The path name(s) of the interface repository. It must include
a definition of the socket implementation class indicated
by SOMSOCKETS.

MALLOCTYPE=3.1 — This is only for AIX. It tells the malloc/free routines in the AIX
standard C library to use the memory management algo-
rithms from AIX Version 3.1, versus the algorithms used in
Version 3.2. The later algorithms apparently sometimes
cause problems. Setting MALLOCTYPE=3.1 usually fixes
the problems the Replication Framework occasionally ex-
periences with malloc/free on AIX 3.2.

Return codes
Given below are the codes returned by Replication Framework methods; the reference manual
page on each method states which code a method may return. After a Replication Framework
method call, these error codes can be accessed from the Environment parameter. For conve-
nience, these codes are also listed in Appendix A, “Customer Support and Error Codes,” along
with the codes of the entire SOMobjects Developer Toolkit. A brief list of possible actions is
provided wherever appropriate.

Description Value Explanation

SOMR_TIMEOUT 500 — Possible actions are (1) to retry or (2) to

terminate.

SOMR_OK 501

SOMR_GRANTED 501

SOMR_UNAUTHORIZED 502 — The likely cause is that the .scf file is inacces-

sible. Or it could be a reader trying to update

the replicated object. Recovery action is to

ensure proper access.

SOMR_TRYLATER 503 — Possible action is to wait for a while and retry

the failed operation.

SOMR_DENIED 504 — The likely cause is that the .scf file is inacces-

sible. Or it could be a reader trying to update

the replicated object. Recovery action is to

ensure proper access.

9 – 239. The Replication Framework

Description Value Explanation

SOMR_MASTER_UNREACHABLE 508 — The likely cause is that either the network is

down or too slow. Possible actions are (1)

Change the time constants through environ-

ment variables mentioned earlier. (2) Wait

for a while and retry. (3) Ensure that the .scf

file is accessible.

Messages

It is possible to receive the following messages from the Replication Framework while an
application is running. All but the last indicates a misuse of the framework interface or a timing
problem.

Replication operation not logged. Probable invalid parameter.

Check the reference manual and rewrite program with appropriate parameters.

somrApplyUpdates in class SOMRReplicbl called. Method must be overridden.

You are using value logging but have not overridden somrApplyUpdates.

Warning: Trying to UnPin a replicated object that is not Pinned.

Each call to somrUnPin must be preceded by a call to somrPin; check your program.

Waiting for Network Transport to be ready...

This message usually appears when the communication buffers are full. When the target

application consumes the pending messages, the problem goes away. Occasionally, this

can also happen due to a programming error (for example, if a process containing a repli-

ca that is the target of update messages blocks indefinitely or enters an infinite loop).

Shutting down listener until some replicas terminate.

This message indicates that the number of replicas reached the permitted maximum.

Listening to connections again.

SOMRERROR Replication Framework Error: N.N.N. Refer to IBM Customer Service.

This message is issued by an internal consistency check in the framework and should

never appear. Because of the fault-tolerance of the framework, your application may con-

tinue to run correctly. However, the message should be reported so that IBM can provide

improvements to the framework.

Environment variable SOMSOCKETS is not defined.

See the subsection “Dependence on Sockets DLL” in this chapter.

Unable to locate the class <class name> in SOMIR or failed to load the associated dll.

The specified class name is either not found in the implementation repository (indicated

by the environment variable SOMIR) or the corresponding dynamic load library could not

be found.

Operating system considerations

Although the Replication Framework tries to present the same interface for all platforms, this is
not possible in one circumstance — the manner in which the main loop of an application is
written. This is because each operating system provides different primitives for process control
(for example, currently OS/2 has threads while AIX and Windows do not). Sample code is
provided to demonstrate applications for all operating systems; you should study them carefully.

9 – 24 SOMobjects Developer Toolkit Users Guide

Dependence on sockets DLL

The Replication Framework uses sockets for inter-process communication. It also uses the
services of EMan (of the Event Management Framework), which also uses sockets. The
SOMobjects Toolkit abstracts socket facilities through the Sockets class. There are multiple
concrete implementations of this class. For example, TCPIPSockets class uses the underlying
TCPIP implementation. Both the Replication Framework and the Event Management Frame-
work must be bound to a concrete implementation for any application to run.

Each socket implementation is provided in a separate DLL. The interface repository contains
the information regarding which DLL contains the implementation of a given class. You can bind
a concrete socket implementation to your application by setting the environment variable
SOMSOCKETS to name the appropriate implementation class. Current choices are
TCPIPSockets, NBSockets, and IPXSockets. Alternatively, you can specify your own socket
implementation class that supports the abstract interface defined in Sockets class. (See Ap-
pendix E for a description of the Sockets class and requirements for implementing your own.)

Note that regardless of whether replication is used among processes on a single workstation or
processes on a network of workstations, there must be a socket implementation. The availability
of particular Socket implementation subclasses and their transport prerequisites differ depend-
ing on the SOMobjects package you have purchased.

Client events used by the framework

The Replication Framework uses clients events of the Event Management Framework. If an
application also intends to use client events, then care must be taken to avoid name collisions
with respect to client event types. The Replication Framework uses a client event type named
“deferred”.

Writing X/MOTIF applications

When the Replication Framework is used in an X/MOTIF application, the subsequent instruc-
tions must be followed.

1. The MOTIF toolkit must be initialized (for example, via XtInitialize) and the X connec-
tion number obtained using the macro “ConnectionNumber” or a function call to
“XConnectionNumber”. This connection number should then be registered with
EMan (see Chapter 12, “The Event Management Framework”) with a callback
method/procedure for X events. In the callback, you can process X events appropri-
ately. After all necessary registrations are complete, control must be turned over to
EMan by calling someProcessEvents.

2. Before turning control over to someProcessEvents, the callback for X events must
be called once to process all the X events generated until then.

3. In the callback, you should process all available X events, rather than processing just
one (that is, loop until XPending returns zero).

4. Inside of each replicated method that updates data objects that are being displayed, a
call to XFlush must be made to refresh the display. Without this call to XFlush, the
display may lag behind the actual state of the data objects.

All three points above are illustrated in the sample program shown previously in section 9.7,
“Repdraw: A complete example.”

9 – 259. The Replication Framework

Tips on using Replication

The following are some do’s and don’ts for the Replication Framework:

� Design your applications with clear view–data separation.

� Design your data objects so that they can work with multiple views (that is, multiple views
can “observe” them).

� Any application using replication must use the Event Manager (EMan). (Refer to “Tips on
using EMan” in Chapter 12, “The Event Management Framework.”)

� Don’t have very large composite objects as a single replicated object. This may be easier
to program, but it leads to very coarse replica locks and hence poor performance.

� Replicated-object methods that acquire and release replica locks should not block for long
periods of time.

� While designing applications with multiple replicated objects making method calls among
them, ensure that there are no circular dependencies. Otherwise, deadlocks are possible.

� Do check for error return codes from replica lock calls. Proceeding with the update and
calling the somrReleaseNPropagateUpdate, somrReleaseNPropagateOperation,
somrReleaseLockNAbortOp, or somrReleaseLockNAbortUpdate method without
successfully obtaining the replica lock can produce unpredictable results.

� Do not attempt a second somrRepInit call on a given replicated object without doing a
somrRepUninit to nullify the first call. Doing so may terminate the program.

9.9 Limitations
Check the file “README” in the SOM root directory for limitations of the Replication Framework.

9 – 26 SOMobjects Developer Toolkit Users Guide

Chapter 10. The Metaclass Framework

Contents

Chapter 10. The Metaclass Framework 10 – 1.

10.1 Framework Metaclasses for “Before/After” Behavior 10 – 3.

The ‘SOMMBeforeAfter’ metaclass 10 – 3.

Composition of before/after metaclasses 10 – 5.

Notes and advantages of ‘before/after’ usage 10 – 7.

10.2 The ‘SOMMSingleInstance’ Metaclass 10 – 8.

10.3 The ‘SOMMTraced’ Metaclass 10 – 9.

10.4 The ‘SOMRReplicable’ Metaclass 10 – 11.

10.5 Error Codes 10 – 14.

ii SOMobjects Developer Toolkit Users Guide

Chapter 10. The Metaclass Framework

In SOM, classes are objects. Metaclasses are classes and thus are objects, too. Figure 1
depicts the relationship of these sets of objects. Included are the three primitive class objects of
the SOM run time: SOMClass, SOMObject, and SOMClassMgr.

SOMClassMgrObject

Primitive objects of the SOM run time

SOMClass

SOMClassMgr SOMObject

Set of Metaclasses

Set of Classes

Set of Objects

Legend:
subclass–ofinstance–of

metaclass class ordinary object

Figure 1. The primitive objects of the SOM run time.

The important point to observe here is that any class that is a subclass of SOMClass is a
metaclass. This chapter describes metaclasses that are available in SOMobjects Toolkit. There
are two kinds of metaclasses:

Framework metaclasses — metaclasses for building new metaclasses, and
Utility metaclasses — metaclasses to help you write applications.

Briefly, the SOMobjects Toolkit provides the following metaclasses of each category for use by
programmers:

• Framework metaclasses:

SOMMBeforeAfter — Used to create a metaclass that has “before” and “after”
methods for all methods (inherited or introduced) invoked
on instances of its classes.

10 – 2 SOMobjects Developer Toolkit Users Guide

• Utility metaclasses:

SOMMSingleInstance — Used to create a class that may have at most one instance.

SOMMTraced — Provides tracing for every invocation of all methods on
instances of its classes.

SOMRReplicableObject — Provides an encapsulation of the Replication Framework
(see Chapter 9).

SOMRReplicable — Provides the Before/After method required by SOMRRepli-
cableObject.

The diagram in Figure 2 depicts the relationship of these metaclasses to SOMClass (for
completeness, the figure includes the metaclasses that are derived). The following sections
describe each metaclass more fully. The ellipses indicate that there are additional metaclasses
being used that are not part of the public interface.

Metaclass Framework class organization

Legend:
subclass–ofinstance–of

metaclass class ordinary object

SOMClass

�

�

�

SOMMSingleInstance

SOMMBeforeAfter
SOMMTraced

SOMRReplicable

SOMRReplicableObject

SOMRReplicbl

Figure 2. Class organization of the Metaclass Framework.

A note about metaclass programming

SOM metaclasses are carefully constructed so that they compose (see Section 10.1 below). If
you need to create a metaclass, you can introduce new class methods, and new class variables,
but you should not override any of the methods introduced by SOMClass. If you need more than
this, request access to the experimental Cooperation Framework used to implement the Meta-
class Framework metaclasses described in this chapter.

10 – 310. Metaclass Framework

10.1 Framework Metaclasses for “Before/After” Behavior

The ‘SOMMBeforeAfter’ metaclass

SOMMBeforeAfter is a metaclass that allows the user to create a class for which a particular
method is invoked before each invocation of every method, and for which a second method is
invoked after each invocation. SOMMBeforeAfter defines two methods: sommBeforeMethod
and sommAfterMethod. These two methods are intended to be overridden in the child of
SOMMBeforeAfter to define the particular “before” and “after” methods needed for the client
application.

As further depicted in Figure 3, the “Barking” metaclass overrides the sommBeforeMethod
and sommAfterMethod with a method that emits one bark when invoked. Thus, one can create
the “BarkingDog” class, whose instances (such as “Lassie”) bark twice when “disturbed” by a
method invocation.

Legend:
subclass–ofinstance–of

metaclass class ordinary object

“BarkingDog”

SOMMBeforeAfter
A hierarchy of metaclasses

“Barking”“Dog”

“Lassie”

Figure 3. A hierarchy of metaclasses

The SOMMBeforeAfter metaclass is designed to be subclassed; a subclass (or child) of
SOMMBeforeAfter is also a metaclass. The subclass overrides sommBeforeMethod or
sommAfterMethod or both. These (redefined) methods are invoked before and after any
method supported by instances of the subclass (these methods are called primary methods).
That is, they are invoked before and after methods invoked on the ordinary objects that are
instances of the class objects that are instances of the subclass of SOMMBeforeAfter.

The sommBeforeMethod returns a boolean value. This allows the “before” method to control
whether the “after” method and the primary method get invoked. If sommBeforeMethod
returns TRUE, normal processing occurs. If FALSE is returned, neither the primary method nor
the corresponding sommAfterMethod is invoked. In addition, no more deeply nested before/
after methods are invoked (see “Composition of before/after metaclasses” below). This facility
can be used, for example, to allow a before/after metaclass to provide secure access to an
object. The implication of this convention is that, if sommBeforeMethod is going to return
FALSE, it must do any post-processing that might otherwise be done in the “after” method.

Caution: somInit and somFree are among the methods that get before/after behavior. This
implies the following two obligations are imposed on the programmer of a SOMMBeforeAfter

10 – 4 SOMobjects Developer Toolkit Users Guide

class. First, the implementation must guard against sommBeforeMethod being called before
somInit has executed, and the object is not yet fully initialized. Second, the implementation
must guard against sommAfterMethod being called after somFree, at which time the object no
longer exists (see the example “C implementation for ‘Barking’ metaclass” below).

The following example shows the IDL needed to create a Barking metaclass. Just run the
appropriate emitter to get an implementation binding, and then provide the appropriate “before”
behavior and “after” behavior.

SOM IDL for ‘Barking’ metaclass

#ifndef Barking_idl
#define Barking_idl

#include <sombacls.idl>
interface Barking : SOMMBeforeAfter
{
#ifdef __SOMIDL__
implementation
{
 //# Class Modifiers
 filestem = barking;
 callstyle = idl;

 //# Method Modifiers
 sommBeforeMethod : override;
 sommAfterMethod : override;
};
#endif /* __SOMIDL__ */
};
#endif /* Barking_idl */

The next example shows an implementation of the Barking metaclass in which no barking
occurs when somFree is invoked.

C implementation for ‘Barking’ metaclass

#define Barking_Class_Source
#include <barking.ih>

static char *somMN_somFree = ”somFree”;
static somId somId_somFree = &somMN_somFree;

SOM_Scope boolean SOMLINK sommBeforeMethod(Barking somSelf,
 Environment *ev,
 SOMObject object,
 somId methodId,
 va_list ap)
{
 if (!somCompareIds(methodId, somId_somFree)
 printf(”WOOF”);
}

10 – 510. Metaclass Framework

SOM_Scope void SOMLINK sommAfterMethod(Barking somSelf,
 Environment *ev,
 SOMObject object,
 somId methodId,
 somId descriptor,
 somToken returnedvalue,
 va_list ap)
{
 if (!somCompareIds(methodId, somId_somFree)
 printf(”WOOF”);
}

Composition of before/after metaclasses

Consider Figure 4 in which there are two before/after metaclasses — “Barking” (as before) and
“Fierce”, which has a sommBeforeMethod and sommAfterMethod that both growl (that is,
both methods make a “grrrr” sound when executed). The preceding discussion demonstrated
how to create a “FierceDog” or a “BarkingDog”, but has not yet addressed the question of how to
compose these properties of fierce and barking. Composability means having the ability to
easily create either a “FierceBarkingDog” that goes “grrr woof woof grrr” when it responds to a
method call or a “BarkingFierceDog” that goes “woof grrr grrr woof” when it responds to a
method call.

Fierce Barking

SOMMBeforeAfter

FierceDog BarkingDog

Dog

Figure 4. Example for composition of before/after metaclasses.

Example for composition of
before/after metaclasses

Legend:
subclass–ofinstance–of

metaclass class ordinary object

There are several ways to express such compositions. Figure 5 depicts SOM IDL fragments for
three techniques in which composition can be indicated by a programmer. These are denoted as
Technique 1, Technique 2, and Technique 3, each of which creates a “FierceBarkingDog” class,
named “FB-1”, “FB-2”, and “FB-3”, respectively, as follows:

� In Technique 1, a new metaclass (“FierceBarking”) is created with both the “Fierce” and
“Barking” metaclasses as parents. An instance of this new metaclass (that is, “FB-1”) is a
“FierceBarkingDog” (assuming “Dog” is a parent).

� In Technique 2, a new class is created which has parents that are instances of “Fierce” and
“Barking” respectively. That is, “FB-2” is a “FierceBarkingDog” also (assuming
“FierceDog” and “BarkingDog” do not further specialize “Dog”).

� In Technique 3, “FB-3”, which also is a “FierceBarkingDog”, is created by declaring that its
parent is a “BarkingDog” and that its explicit (syntactically declared) metaclass is “Fierce”.

10 – 6 SOMobjects Developer Toolkit Users Guide

Technique 1 Technique 2 Technique 3

interface FB-1 : Dog

{

 ...

 implementation

 {

 metaclass = FierceBarking;

 ...

 };

};

interface FB-2 : FierceDog,

 BarkingDog

{

 ...

 implementation

 {

 ...

 };

};

interface FB-3 : BarkingDog

{

 ...

 implementation

 {

 metaclass = Fierce;

 ...

 };

};

Figure 5. Three techniques for composing before/after metaclasses.

Figure 6 combines the diagrams for the techniques in Figure 5 and shows the actual class
relationships. Note that the explicit metaclass in the SOM IDL of “FB-1” is its derived class,
“FierceBarking”. The derived metaclass of “FB-2” is also “FierceBarking”. Lastly, the
derived metaclass of “FB-3” is not the metaclass explicitly specified in the SOM IDL; rather, it
too is “FierceBarking.”

Fierce

SOMMBeforeAfter

Barking

 FB-3

Dog

BarkingDog

FierceBarking

 FB-1

Dog

FierceDog BarkingDog

 FB-2

1 2

1 2

Figure 6. The combined diagram depicting the three techniques for creating a “FierceBarkingDog”.

10 – 710. Metaclass Framework

Notes and advantages of ‘before/after’ usage
Notes on the dispatching of before/after methods:

• A before (after) method is invoked just once per primary method invocation.

• The dispatching of before/after methods is thread-safe.

• The dispatching of before/after methods is fast. The time overhead for dispatching a primary
method is on the order of N times the time to invoke a before/after method as a procedure,
where N is the total number of before/after methods to be applied.

In conclusion, consider an example that clearly demonstrates the power of the composition of
before/after metaclasses. Suppose you are creating a class library that will have n classes.
Further suppose there are p properties that must be included in all combinations for all classes.
Potentially, the library must have n2p classes. Let us hypothesize that (fortunately) all these
properties can be captured by before/after metaclasses. In this case, the size of the library is
n+p.

The user of such a library need only produce those combinations necessary for a given applica-
tion. In addition, note that there is none of the usual programming. Given the IDL for a combina-
tion of before/after metaclasses, the SOM compiler generates the implementation of the com-
bination (in either C or C++) with no further manual intervention.

10 – 8 SOMobjects Developer Toolkit Users Guide

10.2 The ‘SOMMSingleInstance’ Metaclass
Sometimes it is necessary to define a class for which only one instance can be created. This is
easily accomplished with the SOMMSingleInstance metaclass. Suppose the class “Collie” is
an instance of SOMMSingleInstance. The first call to CollieNew creates the one possible
instance of “Collie”; hence, subsequent calls to CollieNew return the first (and only) instance.

Any class whose metaclass is SOMMSingleInstance gets this requisite behavior; nothing
further needs to be done. The first instance created is always returned by the <className>New
macro.

Alternatively, the method sommGetSingleInstance does the same thing as the
<className>New macro. This method invoked on a class object (for example, “Collie”) is
useful because the call site explicitly shows that something special is occurring and that a new
object is not necessarily being created. For this reason, one might prefer the second form of
creating a single-instance object to the first.

Instances of SOMMSingleInstance keep a count of the number of times somNew and
sommGetSingleInstance are invoked. Each invocation of somFree decrements this count. An
invocation of somFree does not actually free the single instance until the count reaches zero.

SOMMSingleInstance overrides somRenew, somRenewNoInit, somRenewNoInitNoZero,
and somRenewNoZero so that a proxy is created in the space indicated in the somRenew*
call. This proxy redispatches all methods to the single instance, which is always allocated in
heap storage. Note that all of these methods (somRenew*) increment the reference count;
therefore, somFree should be called on these objects, too. In this case, somFree decrements
the reference and frees the single instance (and, of course, takes no action with respect to the
storage indicated in the original somRenew* call).

If a class is an instance of SOMMSingleInstance, all of its subclasses are also instances of
SOMMSingleInstance. Be aware that this also means that each subclass is allowed to have
only a single instance. (This may seem obvious. However, it is a common mistake to create a
framework class that must have a single instance, while at the same time expecting users of the
framework to subclass the single instance class. The result is that two single-instance objects
are created: one for the framework class and one for the subclass. One technique that can
mitigate this scenario is based on the use of somSubstituteClass. In this case, the creator of
the subclass must substitute the subclass for the framework class — before the instance of the
framework class is created.)

10 – 910. Metaclass Framework

10.3 The ‘SOMMTraced’ Metaclass
SOMMTraced is a metaclass that facilitates tracing of method invocations. If class “Collie” is an
instance of SOMMTraced (if SOMMTraced is the metaclass of “Collie”), any method invoked on
an instance of “Collie” is traced. That is, before the method begins execution, a message prints
(to standard output) giving the actual parameters. Then, after the method completes execution,
a second message prints giving the returned value. This behavior is attained merely by being an
instance of the SOMMTraced metaclass.

If the class being traced is contained in the Interface Repository, actual parameters are printed
as part of the trace. If the class is not contained in the Interface Repository, an ellipsis is printed.

To be more concrete, consider Figure 7. Here, the class “Collie” is a child of “Dog” and is an
instance of SOMMTraced. Because SOMMTraced is the metaclass of “Collie,” any method
invoked on “Lassie” (an instance of “Collie”) is traced.

SOMMBeforeAfter

All methods invoked on “Collie”
are traced

“Dog”

“Lassie”

“Collie”

SOMMTraced

Legend:
subclass–ofinstance–of

metaclass class ordinary object

Figure 7. All methods (inherited or introduced) that are invoked on “Collie” are traced.

It is easy to use SOMMTraced: Just make a class an instance of SOMMTraced in order to get
tracing.

There is one more step for using SOMMTraced: Nothing prints unless the environment variable
SOMM_TRACED is set. If it is set to the empty string, all traced classes print. If SOMM_TRACED is
not the empty string, it should be set to the list of names of classes that should be traced. For
example, the following command turns on printing of the trace for “Collie”, but not for any other
traced class:

export SOMM_TRACED=Collie (on AIX)
SET SOMM_TRACED=Collie (on OS/2 or Windows)

10 – 10 SOMobjects Developer Toolkit Users Guide

The example below shows the IDL needed to create a traced dog class: Just run the appropriate
emitter to get an implementation binding.

SOM IDL for ‘TracedDog’ class

#include ”dog.idl”
#include <somtrcls.idl>
interface TracedDog : Dog
{
#ifdef __SOMIDL__
implementation
{
 //# Class Modifiers
 filestem = trdog;
 metaclass = SOMMTraced;
};
#endif /* __SOMIDL__ */
};

10 – 1110. Metaclass Framework

10.4 The ‘SOMRReplicable’ Metaclass
A second testimonial to the usefulness of before/after metaclasses is the encapsulation of the
Replication Framework. If you reflect on the recipe for converting a class into a replicable class
(see Chapter 9, “The Replication Framework”), you will observe that the basic idea is to wrap
each method between calls to the Replication Framework. This is accomplished with a com-
bination of the metaclass SOMRReplicable and the class SOMRReplicableObject.

Figure 8 depicts the way in which the Replication Framework is encapsulated by these two new
classes and how they are used to create a replicable class “ReplicableDog.” Observe that
the creator of “ReplicableDog” is only obligated to make “ReplicableDog” a subclass of
SOMRReplicableObject. The remainder of the structure is shown for the benefit of those
readers who intend to create their own before/after metaclasses.

 Fido3 Fido2 Fido1

Creating a replicable class

Legend:
subclass–ofinstance–of

metaclass class ordinary object

SOMMBeforeAfter

SOMRReplicable

SOMRReplicableObject

SOMRReplicbl

Dog

ReplicableDog

Figure 8. Creating a replicable class.

The examples that follow show the IDL and the C implementation for creating the class
“ReplicableDog” of Figure 8 (the implementation of methods inherited from SOMRReplicbl are
omitted). There are several points about these examples that should be noted:

• The class SOMRReplicableObject is used as a parent and the SOMRReplicable meta-
class is not directly referenced.

• The somrSetObjName method must still be a invoked on an object to assign it a name and
somrRepInit must still be invoked on a replica to indicate the type of logging and the type of
access.

• When using operation logging, you might not want all methods logged and propagated.
For example, a method that returns a value without modifying the replica should not be
logged and propagated. To prevent this, the SOMRReplicableObject class has the method
somrReplicableExemptMethod with signature:

boolean somrReplicableExemptMethod (in somId methodId);

The programmer of a replicable class can override somrReplicableExemptMethod so that
it returns TRUE if methodId (the somId of the primary method) matches that of any method

10 – 12 SOMobjects Developer Toolkit Users Guide

you wish to exempt. The somrReplicableExemptMethod should return FALSE otherwise.
Note that all methods supported by SOMRReplicbl are automatically exempted (this in-
cludes the methods supported by SOMObject).

• The implementation still must override somrGetState and somrSetState. In fact, when
value logging is employed, somrGetState and somrSetState are used to get and set the
value (which is not necessarily the case when using the Replication Framework directly).

• The sommBeforeMethod and sommAfterMethod in SOMRReplicable metaclass extend
the set of directives with which SOMRDoDirectives is invoked. In addition to the directives
defined in Chapter 9, there are four more: MASTER_UNREACHABLE, UNAUTHORIZED,

TIMEOUT, and TRYLATER. These correspond to the return codes in the environment parame-
ter when invoking somrLock, somrLockNLogOp, somrReleaseNPropagateOperation,
and somrReleaseNPropagateUpdate.

• You can still create larger atomic operations by using the somrPin and somrUnPin methods.

SOM IDL for a ‘ReplicableDog’ class

#include ”dog.idl”
#include <somrcls.idl>
interface ReplicableDog : SOMRReplicableObject, Dog
{
#ifdef __SOMIDL__
implementation
{
 //# Class Modifiers
 filestem = repdog;
 somrGetState: override;
 somrSetState: override;
 somrDoDirective: override;
 somrReplicableExemptMethod: override;

 };
#endif /* __SOMIDL__ */
};

C implementation for a ‘ReplicableDog’ class

#define ReplicableDog_Class_Source
#include <repdog.ih>

static char *somMN_stealthyMove = ”stealthyMove”;
static somId somId_stealthyMove = &somMN_stealthyMove;

SOM_Scope void SOMLINK somrGetState(ReplicableDog somSelf,
 Environment *ev,
 string* buf)
{
 ...
}

SOM_Scope void SOMLINK somrSetState(ReplicableDog somSelf,
 Environment *ev,
 string buf)
{
 ...
}

10 – 1310. Metaclass Framework

SOM_Scope void SOMLINK somrDoDirective(
 ReplicableDog somSelf,
 Environment *ev,
 string str)
{
 ...
}

SOM_Scope boolean SOMLINK somrReplicableExemptMethod(
 ReplicableDog somSelf,
 Environment *ev,
 somId methodId)
{
 return somCompareIds(methodId, somId_stealthyMove);
}

10 – 14 SOMobjects Developer Toolkit Users Guide

10.5 Error Codes
It is possible to receive the following messages from the Metaclass Framework while an
application is running.

60001 An attempt was made to construct a class with SOMMSingleInstance as a
metaclass constraint. (This may occur indirectly because of the construction of
a derived metaclass). The initialization of the class failed because
somInitMIClass defined by SOMMSingleInstance is in conflict with another
metaclass that has overridden somNew. That is, some other metaclass has
already claimed the right to return the value for somNew.

60002 An attempt was made to construct a class with SOMMSingleInstance as a
metaclass constraint. (This may occur indirectly because of the construction of
a derived metaclass). The initialization of the class failed because
somInitMIClass defined by SOMMSingleInstance is in conflict with another
metaclass that has overridden somFree. That is, some other metaclass has
already claimed this right to override somFree.

60004 An invocation of somrRepInit was made with a logging type other than ‘o’ or ‘v’.

60005 The sommBeforeMethod or the sommAfterMethod was invoked on a
SOMRReplicableObject whose logging type is other than ‘o’ or ‘v’. This error
cannot occur normally. The likely cause is that some method invoked on another
object has overwritten this object’s memory.

60006 A Before/After Metaclass must override both sommBeforeMethod and
sommAfterMethod. This message indicates an attempt to create a Before/
After Metaclass where only one of the above methods is overridden.

Chapter 11. Collection Classes

Contents

11.1 Categories of Collection Classes 11 – 1.

IsSame vs. IsEqual comparisons 11 – 1.

Class inheritance vs. element inheritance 11 – 2.

Object-initializer methods 11 – 2.

Naming conventions 11 – 2.

11.2 Abstract Classes 11 – 3.

11.3 Main Collection Classes 11 – 4.

Hash table class — somf_THashTable 11 – 4.

Dictionary class — somf_TDictionary 11 – 5.

Set class — somf_TSet 11 – 5.

Deque, queue, and stack class — somf_TDeque 11 – 6.

Linked list class — somf_TPrimitiveLinkedList 11 – 6.

Sorted sequence class — somf_TSortedSequence 11 – 6.

Priority queue class — somf_TPriorityQueue 11 – 7.

Choosing the best class 11 – 7.

11.4 Iterator Classes 11 – 9.

11.5 Mixin Classes 11 – 10.

11.6 Supporting Classes 11 – 11.

11.7 Inheritance Hierarchy of the Collection Classes 11 – 12.

11.8 Utility Collection Classes by Category 11 – 13.

ii SOMobjects Developer Toolkit Users Guide

Chapter 11. Collection Classes

The Collection Classes described in this chapter constitute a large group of classes and
methods provided for the programmer’s convenience. Collection Classes — sometimes also
called Foundation Classes — are a set of classes whose purpose is to contain other objects.
These classes and their related methods implement most of the common data structures
encountered in programming, thus relieving the programmer of those coding tasks. The collec-
tion classes can be used in client code “as is,” or they can be used as the basis for deriving new
classes.

Reference documentation for these classes and their related methods is contained the
SOMobjects Developer Toolkit Collection Classes Reference Manual.

11.1 Categories of Collection Classes
The collection classes are organized into the following categories:

• Abstract classes Define the conceptual operations that are implemented by
methods in other (sub)classes.

• Main collection classes Represent each of the implemented data structures for col-
lecting elements into a group.

• Iterator classes Define an iterator class corresponding to each of the main
collection classes, enabling clients to iterate through each of
the objects in the collection.

• Mixin classes Define characteristics that apply to more than one kind of
collection class, such as ordering or linking. A collection class
may also require certain mixin characteristics in objects that it
collects. To facilitate this, a mixin class can be “mixed in” with
an existing user class to derive a new “collectible” class.

• Supporting classes Provides additional capabilities used internally by collection
classes; is of interest primarily to those deriving new collection
classes.

Each group of the foregoing classes is discussed more thoroughly in subsequent topics, with
particular emphasis on the main collection classes.

IsSame vs. IsEqual comparisons

The distinction between the IsSame vs. IsEqual operation is an important concept when
making comparisons. The various collection classes use one or the other of these approaches
to compare contained objects. The operations are defined as follows:

1. IsSame is true when two objects are really the same object. This means “both”
objects are literally the same object; that is, both parts of a comparison are testing the
same instantiation.

2. IsEqual is true when two objects are equivalent objects. This would occur when two
different instantiations contain the same values, or at least values which, for the sake
of the comparison, can be considered the same. Stated differently, the two instantia-
tions are isomorphic.

11 – 2 SOMobjects Developer Toolkit Users Guide

Class inheritance vs. element inheritance

There are two distinct aspects of inheritance that pertain to each class:

1. The inheritance of the collection class itself that is derived from its parent or base
class.

2. The inheritance of the elements or objects that can be inserted into a collection class
as a value.

Do not assume that these two inheritances are the same. There are times when a collection
class has one parent, but the objects to be inserted into the collection class may have a totally
different parent. Further, a collection class may mandate that elements (or values) meet certain
inheritance requirements before the elements can be stored in that collection container.

The subsequent topics describing each collection class also discuss any pertinent inheritance
restrictions of the class and its contained elements.

Object-initializer methods

Most of the collection classes provide optional initializers. These are methods with which a
newly created instance can be initialized to some state other than its default. All initializer
methods use the following format:

somf<className>Init<optional postfix to distinguish between initializers>

The initializers can also be used to reset certain default properties of the collection classes.
For example, although the somf_THashTable class uses an IsSame approach for comparing
objects, the initializer method could be used to cause an instance of somf_THashTable to
compare using IsEqual instead.

Some initializer methods cannot be overridden by inheriting classes. That is, the initializer
methods can be used, but they cannot be redefined.

Naming conventions

The class names for Mixin classes all begin with the prefix somf_M. All other collection classes
have names beginning with the prefix somf_T.

The method names of methods defined by the collection classes all begin with the prefix somf,
without an underscore after the prefix.

11 – 311. Collection Classes

11.2 Abstract Classes
The Annotated C++ Reference Manual1 describes an abstract class as follows: “The abstract
class mechanism supports the notion of a general concept, such as a shape, of which only
more concrete variants, such as circle and square, can actually be used. An abstract class
can also be used to define an interface for which derived classes provide a variety of imple-
mentations.”

The concept of an abstract base class, which was briefly discussed earlier in this manual, is a
C++ variation on the abstract class. An abstract base class is a class that not only describes the
general concept, it also can not be instantiated. Another aspect of the abstract base class is the
notion of pure virtual function. Any child of the parent abstract base class must override each
pure virtual function (method) in order to use the function.

While the idea of a pure virtual function is primarily a C++ concept, it is a valid concept in SOM as
well. This is especially true when defining basic behavior in a parent class that applies for all
children of that class. This concept allows class implementors the flexibility to use either of two
approaches:

1. Declare an interface in the parent class to a method that all children must override
and redefine. If the method is not overridden, the parent class will print a correspond-
ing message and processing will halt.

2. Declare and define an interface in the parent to a method that the children can either
accept as their base definition or can override and redefine.

The somf_TIterator class provides an example of an abstract class which declares a method
interface in the parent that all children must override and redefine. Specifically, the somf_TIter-
ator class declares the methods somfFirst and somfNext, which all children derived from
somf_TIterator must override. The somf_TIterator class is discussed in the topic “Iterator
classes,” as well as in the SOMobjects Developer Toolkit Collection Classes Reference Manual.

The Abstract Classes include the following classes:

somf_TCollection — Represents a group of objects.

somf_TIterator — Declares the behavior common to all iterator classes. An
iterator for a particular collection class will iterate over
each element contained in an object of that class.

somf_TSequence — Declares the behavior common to all collections whose
elements are ordered.

somf_TSequenceIterator — Declares the behavior of all iterators for children of the
somf_TSequence class. This class is also a child of the
somf_TIterator class.

1. Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual (Addison–Wesley
Publishing Company, 1992).

11 – 4 SOMobjects Developer Toolkit Users Guide

11.3 Main Collection Classes
The set of main collection classes contains data structure classes for the following kinds of data
structures, as described in the subsequent topics:

Hash table
Dictionary
Set
Deque, queue, and stack
Linked list
Sorted sequence
Priority queue

Hash table class — somf_THashTable

A hash table is a table consisting of (key, value) pairs. The “key” provides the means for map-
ping into the table, and the “value” is the data element to be stored in the hash table. A hash
table data structure is implemented by the somf_THashTable class.

somf_THashTable

.

.

.

key value

key value

key value

key value

01

02

03

n

A class “C1” that inherits from
somf_MCollectible

A class “C2” that inherits from
somf_MCollectible

somfHash method

Format of the somf_THashTable class

Figure 1. somf_THashTable format

11 – 511. Collection Classes

The “key” is not used directly to map into the table, because the key could be any sort of class
containing a wide variety of data. Rather, the key must have a corresponding somfHash
method (inherited from the somf_MCollectible class), which provides a hashing algorithm to
compute the hash value (or hash probe) used to map directly into the table.

For example, if the key were a character string, the hashing algorithm could be either the
number of characters in the string or the sum of the ASCII code for each letter. The programmer
can choose which algorithm to use, but that algorithm must be consistent. Since the somfHash
method will probably determine its hashing probe based on the state of a particular instance of
the class, a specific state must consistently mean that somfHash returns the same hashing
probe. If the state of the object changes, somfHash could return a different hashing probe, but
that algorithm must then remain consistent until the state changes again. In short, once a
method is used, it should consistently map to the same location thereafter, provided nothing
else changes.

Both the “keys” and the “values” inserted into the somf_THashTable must inherit from the
somf_MCollectible class. When the key inherits from the somf_MCollectible class, it over-
rides the somfHash method to provide the hashing algorithm for the table. The
somf_MCollectible class is discussed further in the topic “Mixin classes,” as well as in the
SOMobjects Developer Toolkit Collection Classes Reference Manual, which also provides
additional information about the somf_THashTable class.

Objects of the somf_THashTable class use the IsSame operation to compare objects (see the
earlier topic “IsSame vs. IsEqual”). This means that a single instance of the “key” can map into
the hash table only once. Keys that are equal can be used without a problem, but the same key
can only appear in the hash table once.

Note: In the event that multiple “values” are needed for the same key, you might consider storing
a deque, a set, or a list as the “value.” Then, the value in the (key, value) pair would be a pointer
to another collection.

Dictionary class — somf_TDictionary

A dictionary is an unordered data structure with (key, value) pairs. It can be thought of as the
‘cousin’ of the hash table, because they are so similar. The dictionary’s primary difference from
the hash table is that the dictionary uses an IsEqual operation to compare objects (see the
earlier topic “IsSame vs. IsEqual”). This means equal keys can only appear in the dictionary
once.

The dictionary data structure is implemented by the somf_TDictionary class. Both the keys
and values that are inserted into the somf_TDictionary inherit from the somf_MCollectible
class. Just as for the hash table, when a key inherits from the somf_MCollectible class, it
overrides the somfHash method to provide the hashing algorithm for the dictionary. See the
descriptions of the somf_TDictionary and somf_MCollectible classes in the SOMobjects
Developer Toolkit Collection Classes Reference Manual for more details.

Note: In the event that multiple “values” are needed for keys that are equal, you might consider
storing a deque, a set, or a list as the “value.” Then, the value in the (key, value) pair would be a
pointer to another collection.

Set class — somf_TSet

A set is an unordered collection of objects where the objects can only appear once. Note that a
set does not contain (key,value) pairs; it only contains objects. A set is different from a deque or
list, because sets involve a unique group of methods: intersections, unions, exclusive or, and
differences. These are common concepts in set theory.

Set structures are implemented by the somf_TSet class, and the objects you can insert into
them inherit from the somf_MCollectible class.

11 – 6 SOMobjects Developer Toolkit Users Guide

Deque, queue, and stack class — somf_TDeque
This class encompasses three kinds of lists:

� A queue is a list where the elements are inserted and removed using a first-in, first-out
(FIFO) approach.

� A stack is a list where the elements are inserted and removed using a last-in, first-out
(LIFO) approach.

� A deque is a double-ended queue, which permits insertion and removal at either end of
the list.

All three of these data structures are implemented in the somf_TDeque class, with different
methods processing the logically different structures. However, the somf_TDeque class is
more than all three data structures combined, because elements can be inserted and removed
from any point in the somf_TDeque. In addition, the somf_TDeque is probably the most
flexible of the data structures, because an element can appear in it more than once, and the only
ordering in the data structure is determined by how elements are inserted into it.

All elements inserted into the somf_TDeque inherit from the somf_MCollectible class. See
the descriptions of the somf_TDeque and somf_MCollectible classes in the SOMobjects
Developer Toolkit Collection Classes Reference Manual for more details.

Linked list class — somf_TPrimitiveLinkedList
A linked list is a collection where each element in the list is linked to the element in front of it and
also to the element behind it. Insertion into the list is relative to the elements that are already in
the list.

A linked list is implemented by the somf_TPrimitiveLinkedList class. This is probably one of
the simplest of data structures, but consequently it is also one of the most restrictive:

� The somf_TPrimitiveLinkedList class is the only main collection class that does not
inherit from somf_MCollectible. This cuts down on processing overhead, but it also
means that an instance of somf_TPrimitiveLinkedList cannot be inserted into any other
main collection class.

� Elements in the somf_TPrimitiveLinkedList class inherit from somf_MLinkable, which
means the ‘linkability’ of each object is inherent in the object itself. Hence, each object
can be inserted into the somf_TPrimitiveLinkedList only once, because it has only one
set of unalterable forward/backward links.

For more information, see the descriptions of the classes somf_TPrimitiveLinkedList and
somf_MLinkable in the SOMobjects Developer Toolkit Collection Classes Reference Manual.

Note: As discussed, although the somf_TPrimitiveLinkedList class carries no baggage from
the other classes and is as compact as possible, that also means it is not very flexible. If more
flexibility is needed for a linked list, you should probably consider the somf_TDeque class.

Sorted sequence class — somf_TSortedSequence
A sorted sequence is a collection where the order of its elements is determined by how those
elements relate to each other. A sorted sequence data structure is implemented by the
somf_TSortedSequence class.

Before elements can be inserted, the somf_TSortedSequence first must determine the rela-
tionship of the elements to each other. Therefore, elements eligible for insertion into a
somf_TSortedSequence data structure must inherit from the somf_MOrderableCollectible
class and must override methods somfIsEqual, somfIsLessThan, and somfIsGreaterThan,
so that somf_TSortedSequence will be able to position them properly.

For more information, see the descriptions of the classes somf_TSortedSequence and
somf_MOrderableCollectible in the SOMobjects Developer Toolkit Collection Classes Refer-
ence Manual.

11 – 711. Collection Classes

Priority queue class — somf_TPriorityQueue

A priority queue is a special case of the sorted sequence. Its ordering is also based on how the
elements relate to each other, but it is geared more toward holding larger volumes of data.

Robert Sedgewick2 describes a priority queue as follows:

In many applications, records with keys must be processed in order, but not neces-
sarily in full sorted order and not necessarily all at once. Often a set of records must
be collected, then the largest processed, then perhaps more records collected, then
the next largest processed, and so forth. An appropriate data structure in such an
environment is one that supports the operations of inserting a new element and
deleting the largest element. Such a data structure, which can be contrasted with
queues (delete the oldest) and stacks (delete the newest) is called a priority queue.

The priority queue is implemented by the somf_TPriorityQueue class. The unique purpose of
the somf_TPriorityQueue is to provide a high-performance sorted sequence, to accommo-
date a large volume of data. A drawback is that the somf_TPriorityQueue class defines
slightly fewer methods than does the somf_TSortedSequence class.

Before elements can be inserted into it, the somf_TPriorityQueue must first determine the
relationship of those elements to each other. Thus, to be eligible for insertion into the
somf_TPriorityQueue, elements must inherit from the somf_MOrderableCollectible class
and must override the methods somfIsEqual, somfIsLessThan, and somfIsGreaterThan,
so that the somf_TPriorityQueue will be able to position them correctly.

See the descriptions of the somf_TPriorityQueue and somf_MOrderableCollectible
classes in the SOMobjects Developer Toolkit Collection Classes Reference Manual for more
details.

Choosing the best class

If you are unsure which main collection class you should use, the following selection chart may
prove helpful.

2. Robert Sedgewick, Algorithms in C++ (Addison–Wesley Publishing Company, 1992), p. 145.

11 – 8 SOMobjects Developer Toolkit Users Guide

Do you plan to insert
 an element into the
collection more than

once?

no yes

yes

Consider either a
somf_THashTable (pg 11 – 4)

or a
somf_TDictionary (pg 11 – 5)

no

Will the elements in the collection
 be ordered based on how they

relate to each other?
(for example: A >= B >= C)

yesno

Consider using a
somf_TDeque (pg 11 – 6)

Do you plan to use
(key,value) pairs where the
key is another element, not

an index?

Consider either a
somf_TPrimitiveLinkedList (pg 11 – 6)

or a
somf_TSet (pg 11 – 5)

Consider either a
somf_TPriorityQueue (pg 11 – 7)

or a
somf_TSortedSequence (pg 11 – 6)

Selection chart for the Main Collection Classes

Figure 2. Collection class selection chart

11 – 911. Collection Classes

11.4 Iterator Classes
Each of the main collection classes discussed previously has a corresponding iterator class
defined for it. An iterator for a particular object will iterate over each contained object in the
collection. To illustrate, the following example uses an iterator of class somf_TSetIterator to
iterate over each element in an object of the somf_TSet class.

 somf_TSet set;
 somf_TSetIterator itr;
 somf_MCollectible obj;
 Environment *ev;

 set = somf_TSetNew();
 ev = somGetGlobalEnvironment();

 /* A bunch of stuff happens to set */

 itr = somf_TSet_somfCreateIterator(set,ev);
 obj = _somfFirst(itr,ev);
 while (obj != SOMF_NIL)
 {
 /* do something to obj */
 obj = _somfNext(itr,ev);
 }

The somfFirst method is used to get the first element in the collection, and the somfNext
method is used thereafter to get each “next” element. Using an iterator allows you to sequen-
tially look at each element in the collection and do some appropriate processing on it.

Notice that the iterator was initialized using the method somfCreateIterator. All classes that
inherit from somf_TCollection must provide a somfCreateIterator method. This shows one of
the two ways to initialize an iterator; the other way is to use the constructor-initializer associated
with the iterator. For example, itr could have been declared using:

 somf_TSetIterator itr;
 itr = somf__TSetIteratorNew();
 somf_TSetIterator_somfTSetIteratorInit(itr, ev, set);

Note: Some people may wonder why the iterator logic was not included in the main collection
classes, rather than being in a separate class. One reason was done so the user can create
multiple iterators for a single instance of a collection class. If the methods were part of the main
collection classes, each instance would be limited to the one iterator that came with it.

If a collection changes while the iterator is in use, the iterator becomes invalid and will issue a
notice that it cannot continue to the next element. So, for example, if a client program calls the
collection’s somfAdd method after starting to iterate through the collection, the iterator will not
allow processing to continue. The iterator will have to be reset, and the easiest way to do that is
to call the iterator’s somfFirst method and start over.

If a collection is ordered, the iterator returns its elements in the correct order. If the collection is
unordered or partially ordered (like somf_TPriorityQueue), the iterator returns its elements in
some random order. This is discussed in more detail in the SOMobjects Developer Toolkit
Collection Classes Reference Manual.

11 – 10 SOMobjects Developer Toolkit Users Guide

11.5 Mixin Classes
A Mixin class is a class designed “to be mixed in together with other classes to produce new
subclasses.”3 Mixin classes do not necessarily describe stand-alone characteristics — just
characteristics that may be common to more than one kind of class. For example, classes
describing a “car” or a “dress” might both inherit from a Mixin class describing “red.”

Another characteristic of mixin classes is that they inherit only from other mixin classes (not
including SOMObject). A mixin class can not inherit from some other base class without a
somf_M prefix.

For any object to be eligible for insertion into one of the main collection classes, that object
must inherit from a Mixin class (see the table below). This is necessary because the mixin
class declares certain behavior that the main collection class requires in the object in order to
process it. For example, the somf_MCollectible mixin class declares the somfIsEqual
method that is needed to compare objects in almost every collection.

To utilize a collection class for storing their own objects, programmers must first define a class
whose instances will contain the required mixin characteristics. By using multiple inheritance, a
class can inherit from zero or more mixin classes, as well as from its logical parent (if it has a
logical parent). For example, if you want to store objects in a sorted sequence structure of class
somf_TSortedSequence, those objects must be instances of a class defined to inherit charac-
teristics from the somf_MOrderableCollectible mixin class, such as:

interface MySortSeqData : MyData, somf_MOrderableCollectible

The SOMobjects Developer Toolkit Collection Classes Reference Manual includes a “Descrip-
tion” topic for each class, and it is vital that the user read this before using each main collection
class. This topic describes what methods of a mixin class must be overridden in any objects that
will be inserted into the collection class, if the collection class is to work properly.

There are three important mixin classes used by the main collection classes:

somf_MCollectible — Defines the generic methods needed by objects inserted
into any of the collections classes. It provides the profile for
the methods somfIsEqual, somfIsSame, and somfHash.

somf_MLinkable — Defines the general characteristics of objects that contain
links.

somf_MOrderableCollectible
— Defines the general characteristics of objects that are

ordered.

The following table maps each main collection class to the mixin class from which an object
must inherit in order for that object to be eligible for insertion into the corresponding main
collection class:

Mixin Class from which an
Main Collection Class inserted object must inherit

somf_TDeque somf_MCollectible
somf_TDictionary somf_MCollectible
somf_THashTable somf_MCollectible
somf_TPrimitiveLinkedList somf_MLinkable
somf_TPriorityQueue somf_MOrderableCollectible
somf_TSet somf_MCollectible
somf_TSortedSequence somf_MOrderableCollectible

3. Grady Booch, Object Oriented Design with Applications (Redwood City, California: The Benjamin/
Cummings Publishing Company, 1991), pg. 58

11 – 1111. Collection Classes

11.6 Supporting Classes
Many of the main collection classes use supporting classes. The somf_TSortedSequence
class, for example, uses the supporting class somf_TSortedSequenceNode to define the
behavior of a single node in a sorted sequence collection.

Included are the following supporting classes:

somf_TAssoc — Is used to hold a pair of objects.

somf_TDequeLinkable — Inherits from somf_MLinkable and provides a generic ver-
sion of somf_MLinkable containing a long value. The
somf_TDequeLinkable class is used by somf_TDeque.

somf_TSortedSequenceNode
— Represents a node in a tree containing elements of the

somf_MOrderableCollectible class. It contains a key (the
somf_MOrderableCollectible) and a link to a left child
and a right child.

somf_TCollectibleLong — Provides a generic somf_MCollectible class containing a
long value.

somf_TDequeLinkable and somf_TSortedSequenceNode will probably not be of particular
interest unless you plan to derive a new collection class. somf_TAssoc may only be of interest
if you are working with somf_THashTable or somf_TDictionary, since these two classes store
key, value pairs. somf_TCollectibleLong will be of interest if you need a generic somf_MCol-
lectible containing a long. somf_TCollectibleLong is not used by any of the other Collection
Classes.

11 – 12 SOMobjects Developer Toolkit Users Guide

11.7 Inheritance Hierarchy of the Collection Classes
The inheritance hierarchy for the collection classes is depicted in the following chart. Note that
this diagram does not illustrate all of the classes, only those which have some position in the
inheritance hierarchy of the set.

somf_MCollectible somf_MOrderableCollectible

somf_TAssoc

somf_TCollectibleLong

somf_THashTable

somf_TIterator

somf_TSequenceIterator

somf_THashTableIterator

somf_TCollection somf_TSet

somf_TSetIterator

somf_TDictionary

somf_TDictionaryIterator

somf_TSequence somf_TDeque

somf_TDequeIterator

somf_MLinkable somf_TDequeLinkable

somf_TSortedSequence

somf_TSortedSequenceIterator

somf_TPriorityQueue

somf_TPriorityQueueIterator

Inheritance hierarchy of collection classes

Figure 3. Collection classes inheritance hierarchy

11 – 1311. Collection Classes

11.8 Utility Collection Classes by Category
Following is the entire list of utility collection classes. Each class is described previously in this
chapter, as well as in the SOMobjects Developer Toolkit Collection Classes Reference Manual.

Abstract Classes

somf_TCollection
somf_TIterator
somf_TSequence
somf_TSequenceIterator

Main Collection Classes

somf_TDeque
somf_TDictionary
somf_THashTable
somf_TPrimitiveLinkedList
somf_TPriorityQueue
somf_TSet
somf_TSortedSequence

Iterator Classes

somf_TDequeIterator
somf_TDictionaryIterator
somf_THashTableIterator
somf_TPrimitiveLinkedListIterator
somf_TPriorityQueueIterator
somf_TSetIterator
somf_TSortedSequenceIterator

Mixin Classes

somf_MCollectible
somf_MLinkable
somf_MOrderableCollectible

Supporting Classes

somf_TAssoc
somf_TCollectibleLong
somf_TDequeLinkable
somf_TSortedSequenceNode

11 – 14 SOMobjects Developer Toolkit Users Guide

Chapter 12. The Event Management Framework

Contents

 12.1 Event Management Basics 12 – 1.

Model of EMan usage 12 – 1.

Event types 12 – 1.

Registration 12 – 2.

Callbacks 12 – 2.

Event classes 12 – 2.

EMan parameters 12 – 3.

Registering for events 12 – 3.

Unregistering for events 12 – 4.

An example callback procedure 12 – 4.

Generating client events 12 – 4.

Examples of using other events 12 – 5.

Processing events 12 – 5.

Interactive applications 12 – 6.

 12.2 Event Manager Advanced Topics 12 – 7.

Threads and thread safety 12 – 7.

Writing an X or MOTIF application 12 – 7.

Extending EMan 12 – 7.

Using EMan from C++ 12 – 8.

Using EMan from other languages 12 – 8.

Tips on using EMan 12 – 8.

12.3 Limitations 12 – 9.

Use of EMan DLL 12 – 9.

ii SOMobjects Developer Toolkit Users Guide

Chapter 12. The Event Management Framework

The Event Management Framework is a central facility for registering all events of an applica-
tion. Such a registration facilitates grouping of various application events and waiting on multiple
events in a single event-processing loop. This facility is used by the Replication Framework and
by DSOM to wait on their respective events of interest. The Event Management Framework
must also be used by any interactive application that contains DSOM or replicated objects.

12.1 Event Management Basics
The Event Management Framework consists of an Event Manager (EMan) class, a Registration
Data class and several Event classes. It provides a way to organize various application events
into groups and to process all events in a single event-processing loop. The need for this kind of
facility is seen very clearly in interactive applications that also need to process some back-
ground events (say, messages arriving from a remote process). Such applications must main-
tain contact with the user while responding to events coming from other sources.

One solution in a multi-threaded environment is to have a different thread service each different
source of events. For a single-threaded environment it should be possible to recognize and
process all events of interest in a single main loop. EMan offers precisely this capability. EMan
can be useful even when multiple threads are available, because of its simple programming
model. It avoids contention for common data objects between EMan event processing and other
main-loop processing activity.

Model of EMan usage

The programming model of EMan is similar to that of many GUI toolkits. The main program
initializes EMan and then registers interest in various types of events. The main program ends
by calling a non-returning function of EMan that waits for events and dispatches them as and
when they occur. In short, the model includes steps that:

1. Initialize the Event Manager,
2. Register with EMan for all events of interest, and
3. Hand over control to EMan to loop forever and to dispatch events.

The Event Manager is a SOM object and is an instance of the SOMEEMan class. Since any
application requires only one instance of this object, the SOMEEMan class is an instance of the
SOMMSingleInstance class. Creation and initialization of the Event Manager is accomplished
by a function call to SOMEEmanNew.

Currently, EMan supports the four kinds of events described in the following topic. An application
can register or unregister for events in a callback routine (explained below) even after control
has been turned over to EMan.

Note: Under Windows, a single event processing loop must necessarily incorporate the pro-
gram’s message processing loop. See “Processing Events” below for a description of how this is
accomplished by EMan.

Event types

Event types are categorized as follows:

� Timer events

These can be either one-time timers or interval timers.

12 – 2 SOMobjects Developer Toolkit Users Guide

� Sink events (sockets, file descriptors, and message queues)

On AIX, this includes file descriptors for input/output files, sockets, pipes, and message
queues. On OS/2 and Windows, only TCP/IP sockets are supported.

Note: On OS/2 and Windows, the Sockets classes for NetBIOS (NBSockets) and Novell
IPX/SPX (IPXSockets) are primarily intended for use by DSOM and the Replication
Framework, not for general application programming.

� Client events (any event that the application wants to queue with EMan)

These events are defined, created, processed, and destroyed by the application. EMan
simply acts as a place to queue these events for processing. EMan dispatches these client
events whenever it sees them. Typically, this happens immediately after the event is
queued.

� Work procedure events (procedures that can be called when there is no other event)

These are typically background procedures that the application intends to execute when
there are spare processor cycles. When there are no other events to process, EMan calls
all registered work procedures.

The Event Management Framework is extendible (that is, other event types can be added to it)
through subclassing. The event types currently supported by EMan are at a sufficiently low level
so as to enable building other higher level application events on top of them. For example, you
can build an X-event handler by simply registering the file descriptor for the X connection with
EMan and getting notified when any X-event occurs.

Registration
This topic illustrates how to register for an event type.

Callbacks
The programmer decides what processing needs to be done when an event occurs and then
places the appropriate code either in a procedure or in a method of an object. This procedure
or method is called a callback. (The callback is provided to EMan at the time of registration and is
called by EMan when a registered event occurs.) The signature of a callback is fixed by the
framework and must have one of the following three signatures:

void SOMLINK EMRegProc(SOMEEvent, void *);
void SOMLINK EMMethodProc(SOMObject, SOMEEvent, void *);
void SOMLINK EMMethodProcEv(SOMObject, Environment *Ev,
 SOMEEvent, void *);
/* On OS/2, they all use ”system” linkage. */
/* On Windows, the SOMLINK keyword is NOT included if the
 * application is intended to support multiple instances. */

The three specified prototypes correspond to a simple callback procedure, a callback method
using OIDL call style, and a callback method using IDL call style. The parameter type
SOMEEvent refers to an event object passed by EMan to the callback. Event objects are
described below.
Note: When the callbacks are methods, EMan calls these methods using Name–lookup
Resolution (see Chapter 5, Section 5.3 on Method Resolution). One of the implications is that
at the time of registration EMan queries the target object’s class object to provide a method
pointer for the method name supplied to it. Eman uses this pointer for making event callbacks.

Event classes
All event objects are instances of either the SOMEEvent class or a subclass of it. The hierar-
chy of event classes is as follows:

SOMObject –––––– SOMEEvent ––––– |––––––– SOMETimerEvent
 |––––––– SOMEClientEvent
 |––––––– SOMESinkEvent
 |––––––– SOMEWorkProcEvent

12 – 312. The Event Management Framework

When called by EMan, a callback expects the appropriate event instance as a parameter. For
example, a callback registered for a timer event expects a SOMETimerEvent instance from
EMan.

EMan parameters
Several method calls in the Event Management Framework make use of bit masks and
constants as parameters (for example, EMSinkEvent or EMInputReadMask). These methods
are defined in the include file “eventmsk.h”. When a user plans to extend the Event Management
Framework, care must be taken to avoid name and value collisions with the definitions in
“eventmsk.h”. For convenience, the contents of the “eventmsk.h” file are shown below.

#ifndef H_EVENTMASKDEF
#define H_EVENTMASKDEF

/* Event Types */
#define EMTimerEvent 54
#define EMSignalEvent 55
#define EMSinkEvent 56

#define EMWorkProcEvent 57

#define EMClientEvent 58

#define EMMsgQEvent 59

/* Sink input/output condition mask */

#define EMInputReadMask (1L<<0)
#define EMInputWriteMask (1L<<1)
#define EMInputExceptMask (1L<<2)

/* Process Event mask */

#define EMProcessTimerEvent (1L<<0)
#define EMProcessSinkEvent (1L<<1)
#define EMProcessWorkProcEvent (1L<<2)
#define EMProcessClientEvent (1L<<3)
#define EMProcessAllEvents (1L<<6)

#endif /* H_EVENTMASKDEF */

Registering for events
In addition to the event classes, the Event Management Framework uses a registration data
class (SOMEEMRegisterData) to capture all event-related registration information. The proce-
dure for registering interest in an event is as follows:

1. Create an instance of the SOMEEMRegisterData class (this will be referred to as
a “RegData” object).

2. Set the event type of “RegData.”

3. Set the various fields of “RegData” to supply information about the particular event for
which an interest is being registered.

4. Call the registration method of EMan, using “RegData” and the callback method
information as parameters. The callback information varies, depending upon whether
it is a simple procedure, a method called using OIDL call style, or a method called
using IDL call style.

The following code segment illustrates how to register input interest in a socket “sock” and
provide a callback procedure “ReadMsg”.

12 – 4 SOMobjects Developer Toolkit Users Guide

data = SOMEEMRegisterDataNew(); /* create a RegData object */
_someClearRegData(data, Ev);
_someSetRegDataEventMask(data,Ev,EMSinkEvent,NULL); /* Event type */
_someSetRegDataSink(data, Ev, sock); /* provide the socket id */
_someSetRegDataSinkMask(data,Ev, EMInputReadMask);
 /*input interest */
regId = _someRegisterProc(some_gEMan, Ev, data,
 (EMRegProc *) ReadMsg, ”UserData”);
/* some_gEMan points to EMan. The last parameter ”userData” is any
 * data the user wants to be passed to the callback procedure as a
 * second parameter */

Unregistering for events

You can unregister interest in a given event type at any time. To unregister, you must provide
the registration id returned by EMan at the time of registration. Unregistering a non-existent
event (such as, an invalid registration id) is a no-op. The following example unregisters the
socket registered above:

_someUnRegister(some_gEMan, Ev, regId);

An example callback procedure

The following code segment illustrates how to write a callback procedure:

void SOMLINK ReadMsg(SOMEEvent event, void *targetData)
{
int sock;
 printf(”Data = %s\n”, targetData);
 switch(_somevGetEventType(event)) {
 case EMSinkEvent:
 printf(”callback: Perceived Sink Event\n”);
 sock = _somevGetEventSink(event);
 /* code to read the message off the socket */
 break;
 default: printf(”Unknown Event type in socket callback\n”);
 }
}
 /* On OS/2, ”system” linkage is also required. */
 /* On Windows, callbacks do not use the SOMLINK keyword if
 * the application is intended to support multiple instances. */

Generating client events

While the other events are caused by the operating system (for example, Timer), by I/O devices,
or by external processes, client events are caused by the application itself. The application
creates these events and enqueues them with EMan. When client events are dispatched, they
are processed in a callback routine just like any other event. The following code segment
illustrates how to create and enqueue client events.

clientEvent1 = SOMEClientEventNew(); /* create a client event */
_somevSetEventClientType(clientEvent1, Ev, ”MyClientType”);
_somevSetEventClientData(clientEvent1, Ev,
 ”I can give any data here”);
/* assuming that ”MyClientType” is already registered with EMan */
/* enqueue the above event with EMan */
_someQueueEvent(some_gEMan, Ev, clientEvent1);

12 – 512. The Event Management Framework

Examples of using other events
The sample program shipped with the Event Management Framework illustrates the tasks listed
below. (Due to its large size, the source code is not included here.)

� Registering and unregistering for Timer events.

� Registering and unregistering for Workproc events.

� Registering an AIX Message Queue, sending messages on it, and unregistering the
Message Queue.

� Registering a stream socket that listens to incoming connection requests. Also, sockets
connecting, accepting a connection, and sending/receiving messages through EMan.

� Registering a file descriptor on AIX and reading one line of the file at a time in a callback.

Processing events
After all registrations are finished, an application typically turns over control to EMan and is
completely event driven thereafter. Typically, an application main program ends with the follow-
ing call to EMan:

_someProcessEvents(some_gEMan, Ev);

An equivalent way to process events is to write a main loop and call someProcessEvent from
inside the main loop, as indicated:

while (1) { /* do forever */
 _someProcessEvent(some_gEMan, Ev, EMProcessTimerEvent |
 EMProcessSinkEvent |
 EMProcessClientEvent |
 EMProcessWorkProcEvent);
 /*** Do other main loop work, as needed. ***/
 }

The second way allows more precise control over what type of events to process in each call.
The example above enables all four types to be processed. The required subset is formed by
logically OR’ing the appropriate bit constants (these are defined in “eventmsk.h)”. Another
difference is that the second way is a non-blocking call to EMan. That is, if there are no events to
process, control returns to the main loop immediately, whereas someProcessEvents is a
non-returning blocking call. For most applications, the first way of calling EMan is better, since it
does not waste processor cycles when there are no events to process.

For Windows:
The _someProcessEvents method incorporates a standard window-message-processing
loop into its event processing loop. In order to allow timer events to operate, messages are
retrieved using PeekMessage rather than GetMessage. If you do not wish to use timer events,
or if you want to perform other processing in your message loop (such as, translating accelera-
tors), then you should use _someProcessEvent, as follows:

while (GetMessage(&msg, NULL, NULL, NULL))
{
 if (!TranslateAccelerator(hwndMain, haccel, &msg))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 _someProcessEvent(some_gEMan, Ev, EMProcessTimerEvent |
 EMProcessSinkEvent |
 EMProcessClientEvent |
 EMProcessWorkProcEvent);
 ...
}

12 – 6 SOMobjects Developer Toolkit Users Guide

Interactive applications

Note: This topic does not apply to SOMobjects For Windows, as user input is processed in
the message loop that is incorporated into EMan.

Interactive applications need special attention when coupled with EMan. Once control is turned
over to EMan by calling someProcessEvents, a single-threaded application (for example, on
AIX) has no way of responding to keyboard input. The user must register interest in “stdin” with
EMan and provide a callback function that handles keyboard input. In a multi-threaded environ-
ment (for example, OS/2), this problem can be solved by spawning a thread to execute
someProcessEvents and another to handle keyboard input. (These two options are illustrated
in the sample program shipped with the Event Management Framework.)

12 – 712. The Event Management Framework

12.2 Event Manager Advanced Topics

Threads and thread safety
As indicated earlier, on OS/2, interactive programs call someProcessEvents in one thread and
process keyboard input in a separate thread. (This recommended usage is illustrated in the
sample program). The event manager object (EMan) is thread safe in the sense that concurrent
method invocations on EMan are serialized. Even when someProcessEvents is invoked in a
thread and other methods of EMan are invoked from other threads, EMan still preserves its data
integrity. However, when Eman dispatches an event, a callback can call methods on the same
data objects as the other interactive thread(s). The user must protect such data objects using
appropriate concurrency control techniques (for example by using semaphores).

One must also be aware of some deadlock possibilities. Consider the following situation. EMan
code holds some SOMobjects Toolkit semaphores while it is running (for example, while in
someProcessEvents). A user-defined object protects its data by requiring its methods to
acquire and release a sempahore on the object. If a separate thread running in this object were
to call an operation that requires a SOMobjects Toolkit semaphore (which is currently held by
EMan) and if concurrently EMan dispatches an event whose callback invokes a method of this
object, a deadlock occurs. Two possibilities exist to cope with such a situation: One is to acquire
all needed semaphores ahead of time, and the other is to abort the operation when you fail to
obtain a semaphore. To achieve mutual exclusion with EMan, you can call the methods
someGetEManSem and someReleaseEmanSem. These methods acquire and release the
SOMobject Developer Toolkit semaphores that EMan uses.

Writing an X or MOTIF application
Although the Event Manager does not recognize X events, an X or MOTIF application can be
integrated with EMan as follows. First, the necessary initialization of X or MOTIF should be
performed. Next, using the Xlib macro “ConnectionNumber” or the “XConnectionNumber”
function, you can obtain the file descriptor of the X connection. This file descriptor can be
registered with EMan as a sink. It can be registered for both input events and exception events.
When there is any activity on this X file descriptor, the developer-provided callback is invoked.
The callback can receive the X-event, analyze it, and do further dispatching. See the example
program in Chapter 9, “The Replication Framework” (section 9.7).

Extending EMan
The current event manager can be extended without having access to the source code. The use
of EMan in an X or MOTIF application mentioned above is just one such example. Several other
extensions are possible. For example, new event types can be defined by subclassing either
directly from SOMEEvent class or from any of its subclasses in the framework. There are three
main problems to solve in adding a new event type:

� How to register a new event type with EMan?

� How to make EMan recognize the occurrence of the new event?

� How to make EMan create and send the new event object (a subclass of SOMEEvent) to
the callback when the event is dispatched?

Because the registration information is supplied with appropriate “set” methods of a RegData
object, the RegData object should be extended to include additional methods. This can be
achieved by subclassing from SOMEEMRegisterData and building a new registration data
class that has methods to “set” and “get” additional fields of information that are needed to
describe the new event types fully. To handle registrations with instances of new registration
data subclass, we must also subclass from SOMEEMan and override the someRegister and

12 – 8 SOMobjects Developer Toolkit Users Guide

the someUnRegister methods. These methods should handle the information in the new fields
introduced by the new registration data class and call parent methods to handle the rest.

Making EMan recognize the occurrence of the new event is primarily limited by the primitive
events EMan can wait on. Thus the new event would have to be wrapped in a primitive event that
EMan can recognize. For example, to wait on a message queue on OS/2 concurrently with other
EMan events, a separate thread can be made to wait on the message queue and to enqueue a
client event with EMan when a message arrives on this message queue. We can thus bring
multiple event sources into the single EMan main loop.

The third problem of creating new event objects unknown to EMan can be easily done by
applying the previous technique of wrapping the new event in terms of a known event. In a
callback routine of the known event, we can create and dispatch the new event unknown to
EMan. Of course, this does introduce an intermediate callback routine which would not be
needed if EMan directly understood the new event type.

A general way of extending EMan is to look for newly defined event types by overriding
someProcessEvent and someProcessEvents in a subclass of EMan.

Using EMan from C++

The Event Management framework can be used from C++ just like any other framework in the
SOMobjects Toolkit. You must ensure that the C++ usage bindings (that is, the .xh files) are
available for the Event Management Framework classes. These .xh files are generated by the
SOM Compiler in the SOMobjects Toolkit when the -s option includes an xh emitter.

Using EMan from other languages
The event manager and the other classes can be used from other languages, provided usage
bindings are available for them. These usage bindings are produced from .idl files of the
framework classes by the appropriate language emitter.

Tips on using EMan
The following are some do’s and don’ts for EMan:

� Eman callback procedures or methods must return quickly. You cannot wait for long
periods of time to return from the callbacks. If such long delays occur, then the applica-
tion may not notice some subsequent events in time to process them meaningfully (for
example, a timer event may not be noticed until long after it occurred).

� It follows from the previous tip that you should not do independent “select” system calls on
file descriptors while inside a callback. (This applies to sockets and message queues, as
well.) In general, a callback should not do any blocking of system calls. If an application
must do this, then it must be done with a small timeout value.

� Since EMan callbacks must return quickly, no callback should wait on a semaphore
indefinitely. If a callback has to obtain some semaphores during its processing, then the
callback should try to acquire all of them at the very beginning, and should be prepared
to abort and return to EMan if it fails to acquire the necessary semaphores.

� EMan callback methods are called using name-lookup resolution. Therefore, the parame-
ters to an EMan registration call must be such that the class object of the object parameter
must be able to provide a pointer to the method indicated by the method parameter.
Although this requirement is satisfied in a majority of cases, there are exceptions. For
example, if the object is a proxy (in the DSOM sense) to a remote object, then the “real”
class object cannot provide a meaningful method pointer. Also note that, when
somDispatch is overridden, the effect of such an override will not apply to the callback
from EMan. Do not use a method callback in these situations; instead, use a procedure
callback.

12 – 912. The Event Management Framework

12.3 Limitations
The present implementation of the Event Management framework has the limitations described
below. For a more up-to-date list of limitations, refer to the README file on EMan in the
SOMobjects Developer Toolkit.

� EMan supports registering a maximum of 64 AIX message queues.

� EMan can only wait on file descriptors (including files, pipes, sockets, and message
queues) on AIX, and socket identifiers on OS/2 and Windows.

� EMan supports registering a maximum of FILENO (the AIX limit on maximum number of
open files) file descriptors on AIX. On OS/2 and Windows, the maximum number of socket
identifiers depends on the underlying Sockets class.

Use of EMan DLL

The Event Manager Framework uses a Sockets “select” call to wait on multiple sockets. At the
time of EMan creation, the SOMEEMan class object loads one of the Sockets subclass DLLs,
based on the value of the environment variable SOMSOCKETS. This environment variable
should name the implementation class of sockets (see Appendix E describing the Sockets
abstract class and the specific implementation DLLs available with the SOMobjects Toolkit.)
The current choices for this environment variable are TCPIPSockets (and TCPIPSockets32
for OS/2), NBSockets, and IPXSockets.

12 – 10 SOMobjects Developer Toolkit Users Guide

