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Chapter 4.  SOM IDL and the SOM Compiler

This chapter first discusses how to define SOM classes and then describes the SOM Compiler.
To allow a class of objects to be implemented in one programming language and used in
another (that is, to allow a SOM class to be language neutral), the interface to objects of this
class must be specified separately from the objects’ implementation.

To summarize:  As a first step, a file known as the .idl file is used to declare classes and their
methods, using SOM’s language-neutral Interface Definition Language (IDL). Next, the SOM
Compiler is run on the .idl file to produce a template implementation file that contains stub
method procedures for the new and overridden methods; this preliminary code corresponds to
the computer language that will implement the class. Then, the class implementor fills in the
stub procedures with code that implements the methods (or redefines overridden methods) and
sets instance data. (This implementation process is the subject of Chapter 5, “Implementing
Classes in SOM.”) At this point, the implementation file can be compiled and linked with a client
program that uses it (as described in Chapter 3, “Using SOM Classes in Client Programs”).

Syntax for SOM IDL and the SOM Compiler are presented in this chapter, along with helpful
information for using them correctly.

4.1  Interface vs Implementation  
The interface  to a class of objects contains the information that a client must know to use an
object — namely, the names of its attributes and the signatures of its methods. The interface is
described in a formal language independent of the programming language used to implement
the object’s methods. In SOM, the formal language used to define object interfaces is the
Interface Definition Language (IDL), standardized by CORBA.  

The implementation  of a class of objects  (that is, the procedures that implement methods and
the variables used to store an object’s state) is written in the implementor’s preferred program-
ming language. This language can be object-oriented (for instance, C++) or procedural (for
instance, C).

A completely implemented class definition, then, consists of two main files:  

� An IDL specification of the interface to instances of the class — the interface definition file
(or .idl file) and

� Method procedures written in the implementor’s language of choice — the implementation
file.

The interface definition file has a .idl extension, as noted. The implementation file, however, has
an extension specific to the language in which it is written. For example, implementations written
in C have a .c extension, and implementations written in C++ have a .C (for AIX) or .cpp (for OS/2
or Windows) extension.

To assist users in implementing SOM classes, the SOMobjects Toolkit provides a SOM Compil-
er. The SOM Compiler takes as input an object interface definition file (the .idl file) and produces
a set of binding files  that make it convenient to implement and use a SOM class whose
instances are objects that support the defined interface. The binding files and their purposes are
as follows:

� An implementation template  that serves as a guide for how the implementation file for the
class should look. The class implementor fills in this template file with language-specific
code to implement the methods that are available on the class’ instances.

� Header files  to be included (a) in the class’s implementation file and (b) in client programs
that use the class.



4 – 2 SOMobjects Developer Toolkit Users Guide

These binding files produced by the SOM Compiler bridge the gap between  SOM and the object
model used in object-oriented languages (such as C++), and they allow SOM to be used with
non-object-oriented languages (such as C). The SOM Compiler currently produces binding files
for the C and C++ programming languages. SOM can also be used with other programming
languages; the bindings simply offer a more convenient programmer’s interface to SOM.
Vendors of other languages may also offer SOM bindings; check with your language vendor for
possible SOM support.

The subsequent sections of this chapter provide full syntax for SOM IDL and the SOM Compiler.
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4.2  SOM Interface Definition Language  
This section describes the syntax of SOM’s Interface Definition Language (SOM IDL).
SOM IDL complies with CORBA’s standard for IDL; it also adds constructs specific to SOM. (For
more information on the CORBA standard for IDL, see The Common Object Request Broker:
Architecture and Specification, published by Object Management Group and x/Open.) The full
grammar for SOM IDL is given in Appendix C. Instructions for converting existing OIDL-syntax
files to IDL are given in Appendix B. The current section describes the syntax and semantics of
SOM IDL using the following conventions:

Constants (words to be used literally, such as keywords) appear in bold.
User-supplied elements appear in italics.
{ } Groups related items together as a single item.
[ ] Encloses an optional item.
*   Indicates zero or more repetitions of the preceding item.
+   Indicates one or more repetitions of the preceding item.
|    Separates alternatives. 
_  Within a set of alternatives, an underscore indicates the default, if defined.

IDL is a formal language used to describe object interfaces. Because, in SOM, objects are
implemented as instances of classes, an IDL object interface definition specifies for a class of
objects what methods (operations) are available, their return types, and their parameter types.
For this reason, we often speak of an IDL specification for a class (as opposed to simply an
object interface). Constructs specific to SOM discussed below further strengthen this connec-
tion between SOM classes, and the IDL language.

IDL generally follows the same lexical rules as C and C++, with some exceptions. In particular:

� IDL uses the ISO Latin-1 (8859.1) character set (as per the CORBA standard).
� White space is ignored except as token delimiters.
� C and C++ comment styles are supported.
� IDL supports standard C/C++ preprocessing, including macro substitution, conditional

compilation, and source file inclusion.
� Identifiers (user-defined names for methods, attributes, instance variables, and so on) are

composed of alphanumeric and underscore characters (with the first character alphabet-
ic) and can be of arbitrary length, up to an operating-system limit of about 250 characters.

� Identifiers must be spelled consistently with respect to case throughout a specification.
� Identifiers that differ only in case yield a compilation error.
� There is a single name space for identifiers (thus, using the same identifier for a constant

and a class name within the same naming scope, for example, yields a compilation error).
� Integer, floating point, character, and string literals are defined just as in C and C++.

The terms listed in Table 1 on the following page are reserved keywords and may not be used
otherwise. Keywords must be spelled using upper- and lower-case characters exactly as shown
in the table. For example, “void” is correct, but “Void” yields a compilation error.

A typical IDL specification for a single class, residing in a single .idl file, has the following form.
(Also see the later section, “Defining multiple interfaces in a .idl file.”) The order is unimportant,
except that names must be declared (or forward referenced) before they are referenced. The
subsequent topics of this section describe the requirements for these specifications:

Include directives  (optional) 
Type declarations     (optional) 
Constant declarations (optional) 
Exception declarations   (optional) 
Interface declaration (optional) 
Module declaration (optional)
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Table 1.  KEYWORDS FOR SOM IDL

any
attribute
boolean
case
char
class
const
context
default
double
enum
exception

FALSE
float
implementation
in
inout
interface
long
module
octet
oneway
out
raises

readonly
sequence
short
string
struct
switch
TRUE
TypeCode
typedef
unsigned
union
void

 

Include directives  
The IDL specification for a class normally contains #include statements that tell the SOM
Compiler where to find the interface definitions (the .idl files) for:

� Each of the class’s parent (direct base) classes, and
� The class’s metaclass (if specified).

The #include statements must appear in the above order. For example, �
if class “C” has parents “foo” and “bar” and metaclass “meta”, 
then file “C.idl” must begin with the following #include statements:

#include <foo.idl>

#include <bar.idl>

#include <meta.idl>

As in C and C++, if a filename is enclosed in angle brackets (< >), the search for the file will begin
in system-specific locations. If the filename appears in double quotation marks (“”), the search
for the file will begin in the current working directory, then move to the system-specific locations.

Type and constant declarations  
IDL specifications may include type declarations and constant declarations as in C and C++, with
the restrictions/extensions described below. [Note: Readers unfamiliar with C might wish to
consult The C Programming Language (2nd edition, 1988, Prentice Hall) by Brian W. Kernighan
and Dennis M. Ritchie. See pages 36–40 for a discussion of type and constant declarations.]

IDL supports the following basic types (these basic types are also defined for C and C++ client
and implementation programs, using the SOM bindings):

Integral types  
IDL supports only the integral types short, long, unsigned short, and unsigned long, which
represent the following value ranges:

short –215 .. 215–1
long –231 .. 231–1
unsigned short 0 .. 216–1
unsigned long 0 .. 232–1

Floating point types  
IDL supports the float and double floating-point types. The float type represents the IEEE

single-precision floating-point numbers; double represents the IEEE double-precision floating-
point numbers. Note for Windows: Since returning floats and doubles by value may not be
compatible across Windows compilers, client programs should return floats and doubles by
reference.
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Character type  
IDL supports a char type, which represents an 8-bit quantity. The ISO Latin-1 (8859.1) charac-
ter set defines the meaning and representation of graphic characters. The meaning and repre-
sentation of null and formatting characters is the numerical value of the character as defined in
the ASCII (ISO 646) standard. Unlike C/C++, type char cannot be qualified as signed or
unsigned. (The octet type, below, can be used in place of unsigned char.)

Boolean type  
IDL supports a boolean type for data items that can take only the  values TRUE and FALSE.

Octet type  
IDL supports an octet type, an 8-bit quantity guaranteed not to undergo conversion when
transmitted by the communication system. The octet type can be used in place of the unsigned
char type.

Any type  
IDL supports an any type, which permits the specification of values of any IDL type. In the SOM
C and C++ bindings, the any type is mapped onto the following struct:

typedef struct any {

    TypeCode _type;

    void *_value;

} any;

The “_value” member for an any type is a pointer to the actual value. The “_type” member is a
pointer to an instance of a TypeCode that represents the type of the value. The TypeCode
provides functions for obtaining information about an IDL type. Chapter 7, “The Interface
Repository Framework,” describes TypeCodes and their associated functions. 

Constructed types  
In addition to the above basic types, IDL also supports three constructed types: struct, union,
and enum. The structure and enumeration types are specified in IDL the same as they are in C
and C++ [Kernighan–Ritchie references: struct, p. 128; union, p. 147; enum, p. 39], with the
following restrictions:

Unlike C/C++, recursive type specifications are allowed only through the use of the
sequence template type (see below).

Unlike C/C++, structures, discriminated unions, and enumerations in IDL must be tagged.
For example, “struct { int a; ... }” is an invalid type specification. The tag introduces a new type
name.

In IDL, constructed type definitions need not be part of a typedef statement; furthermore, if
they are part of a typedef statement, the tag of the struct must differ from the type name
being defined by the typedef. For example, the following are valid IDL struct and enum
definitions:

struct myStruct {

   long x;

   double y;

};                               /* defines type name myStruct */

enum colors { red, white, blue };  /* defines type name colors */

By contrast, the following IDL definitions are not valid:

typedef struct myStruct {        /*  NOT VALID  */

   long x;

   double y;

} myStruct;                      /* myStruct has been redefined */

typedef enum colors { red, white, blue } colors;  /* NOT VALID */
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The valid IDL struct and enum definitions shown above are translated by the SOM Compiler
into the following definitions in the C and C++ bindings, assuming they were declared within the
scope of interface “Hello”:

typedef struct Hello_myStruct {  /* C/C++ bindings for IDL struct */

   long x;

   double y;

} Hello_myStruct;   

typedef unsigned long Hello_colors; /* C/C++ bindings for IDL enum */

#define Hello_red 1UL

#define Hello_white 2UL

#define Hello_blue 3UL

When an enumeration is defined within an interface statement for a class, then within C/C++
programs, the enumeration names must be referenced by prefixing the class name. For exam-
ple, if the colors enum, above, were defined within the interface statement for class Hello, then
the enumeration names would be referenced as Hello_red, Hello_white, and Hello_blue. Notice
the first identifier in an enumeration is assigned the value 1.

Note for Windows: Since returning structs may not be compatible across all compilers, client
programs should, in general, return an object that contains a struct. For more information, see
“General guidelines for class library designers” in Chapter 5, “Implementing Classes in SOM.”

All types and constants generated by the SOM Compiler are fully qualified. That is, prepended
to them is the fully qualified name of the interface or module in which they appear.  For example,
consider the following fragment of IDL:

    module M {

typedef long long_t;

module  N {

    typedef long long_t;

    interface I {

typedef long long_t;

    };

};

    };

That specification would generate the following three types:

    typedef long  M_long_t;

    typedef long  M_N_long_t;

    typedef long  M_N_I_long_t;

For programmer convenience, the SOM Compiler also generates shorter bindings, without the
interface qualification. Consider the next IDL fragment:

    module M {

typedef long long_t;

module  N {

    typedef short short_t;

    interface I {

typedef char char_t;

    };

};

    };

In the C/C++ bindings of the preceding fragment, you can refer to “M_long_t” as “long_t”,
to “M_N_short_t” as “short_t”, and to “M_N_I_char_t” as “char_t”. However, these shorter
forms are available only  when their interpretation is not ambiguous. Thus, in the first example
the shorthand for “M_N_I_long_t” would not be allowed, since it clashes with “M_long_t” and
“M_N_long_t”. If these shorter forms are not required, they can be ignored by setting
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#define SOM_DONT_USE_SHORT_NAMES before including the public header files, or by using
the SOM Compiler option –mnouseshort so that they are not generated in the header files.

In the SOM documentation and samples, both long and short forms are illustrated, for both type
names and method calls. It is the responsibility of each user to adopt a style according to
personal preference. It should be noted, however, that CORBA specifies that only the long forms
must be present.

Union type  

IDL also supports a union type, which is a cross between the C union and switch statements.
The syntax of a union type declaration is as follows:

union identifier switch ( switch–type )
       { case+ }

The “identifier” following the union keyword defines a new legal type. (Union types may also be
named using a typedef declaration.) The “switch–type” specifies an integral, character,
boolean, or enumeration type, or the name of a previously defined integral, boolean, character,
or enumeration type. Each “case” of the union is specified with the following syntax:

case–label+   type–spec   declarator ;

where “type-spec” is any valid type specification; “declarator” is an identifier, an array declarator
(such as, foo[3][5]), or a pointer declarator (such as, *foo); and each “case-label” has one of
the following forms:

case const–expr:
default:

The “const-expr” is a constant expression that must match or be automatically castable to the
“switch-type”. A default case can appear no more than once.

Unions are mapped onto C/C++ structs. For example, the following IDL declaration:

union Foo switch (long) {

  case 1: long x;

  case 2: float y;

  default: char z;

};

is mapped onto the following C struct:

typedef Hello_struct {

  long _d;

  union {

    long x;

    float y;

    char z;

  } _u;

} Hello_foo;

The discriminator is referred to as “_d”, and the union in the struct is referred to as “_u”. Hence,
elements of the union are referenced just as in C:

Foo v;

/* get a pointer to Foo in v: */

switch(v–>_d) {

  case 1: printf(”x = %ld\n”, v–>_u.x); break;

  case 2: printf(”y = %f\n”, v–>_u.y); break;

  default: printf(”z = %c\n”, v–>_u.z); break;

}

Note: This example is from The Common Object Request Broker: Architecture and Specifi-
cation, revision 1.1, page 90.
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Template types (sequences and strings)  
IDL defines two template types not found in C and C++: sequences and strings. A sequence is
a one-dimensional array with two characteristics:  a maximum size (specified at compile time)
and a length (determined at run time). Sequences permit passing unbounded arrays between
objects. Sequences are specified as follows:

sequence < simple–type [, positive–integer–const] >

where “simple-type” specifies any valid IDL type, and the optional “positive-integer-const”  is a
constant expression that specifies the maximum size of the sequence (as a positive integer).

Note: The “simple–type” cannot have a ‘*’ directly in the sequence statement. Instead, a
typedef for the pointer type must be used. For example, instead of:

typedef sequence<long *> seq_longptr; // Error: ’*’ not allowed.

use:

typedef long * longptr;

typedef sequence<longptr> seq_longptr;  // Ok.

In SOM’s C and C++ bindings, sequences are mapped onto structs with the following mem-
bers:

unsigned long _maximum;
unsigned long _length;
simple–type *_buffer;

where “simple-type” is the specified type of the sequence. For example, the IDL declaration

typedef sequence<long, 10> vec10;

results in the following C struct:

#ifndef _IDL_SEQUENCE_long_defined

#define _IDL_SEQUENCE_long_defined

typedef struct {

    unsigned long _maximum;

    unsigned long _length;

    long *_buffer;

} _IDL_SEQUENCE_long;

#endif /* _IDL_SEQUENCE_long_defined */ 

typedef _IDL_SEQUENCE_long vec10;

and an instance of this type is declared as follows:

vec10 v = {10L, 0L, (long *)NULL};

The “_maximum” member designates the actual size of storage allocated for the sequence,
and the “_length” member designates the number of values contained in the “_buffer” member.
For bounded sequences, it is an error to set the “_length” or “_maximum” member to a value
larger than the specified bound of the sequence.

Before a sequence is passed as the value of an “in” or “inout” method parameter, the “_buffer”
member must point to an array of elements of the appropriate type, and the “_length” member
must contain the number of elements to be passed. (If the parameter is “inout” and the
sequence is unbounded, the “_maximum” member must also be set to the actual size of the
array. Upon return, “_length” will contain the number of values copied into “_buffer”, which must
be less than “_maximum”.) When a sequence is passed as an “out” method parameter or
received as the return value, the method procedure allocates storage for “_buffer” as needed,
the “_length” member contains the number of elements returned, and the “_maximum” member
contains the number of elements allocated. (The client is responsible for subsequently freeing
the memory pointed to by  “_buffer”.)
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C and C++ programs using SOM’s language bindings can refer to sequence types as:

_IDL_SEQUENCE_type

where “type” is the effective type of the sequence members. For example, the IDL type
sequence<long,10> is referred to in a C/C++ program by the type name _IDL_SEQUENCE_long.
If longint is defined via a typedef to be type long, then the IDL type sequence<longint,10> is
also referred to by the type name _IDL_SEQUENCE_long.

If the typedef is for a pointer type, then the effective type is the name of the pointer type. For
example, the following statements define a C/C++ type _IDL_SEQUENCE_longptr and not
_IDL_SEQUENCE_long:

typedef long * longptr;

typedef sequence<longptr> seq_longptr;

A string is similar to a sequence of type char. It can contain all possible 8-bit quantities except
NULL. Strings are specified as follows:

string  [ < positive–integer–const > ]

where the optional “positive-integer-const” is a constant expression that specifies the maximum
size of the string (as a positive integer, which does not include the extra byte to hold a NULL as
required in C/C++). In SOM’s C and C++ bindings, strings are mapped onto zero-byte termi-
nated character arrays. The length of the string is encoded by the position of the zero-byte. For
example, the following IDL declaration:

typedef string<10> foo;

is converted to the following C/C++ typedef:

typedef char *foo;

A variable of this type is then declared as follows:

foo s = (char *) NULL;

C and C++ programs using SOM’s language bindings can refer to string types by the type name
string.

When an unbounded string is passed as the value of an “inout” method parameter, the returned
value is constrained to be no longer than the input value. Hence, using unbounded strings as
“inout” parameters is not advised.

Arrays  
Multidimensional, fixed-size arrays can be declared in IDL as follows:

identifier { [ positive–integer–const ] }+

where the “positive-integer-const” is a constant expression that specifies the array size, in each
dimension, as a positive integer. The array size is fixed at compile time.

Pointers  
Although the CORBA standard for IDL does not include them, SOM IDL offers pointer types.
Declarators of a pointer type are specified as in C and C++:

type *declarator

where “type” is a valid IDL type specification and “declarator” is an identifier or an array
declarator.
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Object types  
The name of the interface to a class of objects can be used as a type. For example, if an IDL
specification includes an interface declaration (described below) for a class (of objects)  “C1”,
then “C1” can be used as a type name within that IDL specification. When used as a type, an
interface name indicates a pointer to an object that supports that interface. An interface name
can be used as the type of a method argument, as a method return type, or as the type of a
member of a constructed type (a struct, union, or enum). In all cases, the use of an interface
name implicitly indicates a pointer to an object that supports that interface.

As explained in Chapter 3, SOM’s C usage bindings for SOM classes also follow this conven-
tion. However, within SOM’s C++ bindings, the pointer is made explicit, and the use of an
interface name as a type refers to a class instance itself, rather than a pointer to a class
instance. For example, to declare a variable “myobj” that is a pointer to an instance of class
“Foo” in an IDL specification and in a C program, the following declaration is required:

Foo myobj;

However, in a C++ program, the following declaration is required:

Foo *myobj;

If a C programmer uses the SOM Compiler option –maddstar, then the bindings generated for
C will also require an explicit ‘*’ in declarations. Thus,

Foo myobj; in IDL requires 

Foo *myobj; in both C and C++ programs.

This style of bindings for C is permitted for two reasons:

� It more closely resembles the bindings for C++, thus making it easier to change to the C++

bindings at a later date; and

� It is required for compatibility with existing SOM OIDL code.

Note: The same C and C++ binding emitters should not  be run in the same SOM Compiler
command. For example,

sc ”–sh;xh” cls.idl    // Not valid.

If you wish to generate both C and C++ bindings, you should issue the commands separately:

sc –sh cls.idl

sc –sxh cls.idl

Exception declarations  
IDL specifications may include exception declarations, which define data structures to be
returned when an exception occurs during the execution of a method. (IDL exceptions are
implemented by simply passing back error information after a method call, as opposed to the
“catch/throw” model where an exception is implemented by a long jump or signal.)  Associated
with each type of exception is a name and, optionally, a struct-like data structure for holding error
information. Exceptions are declared as follows:

exception  identifier { member* };

The “identifier” is the name of the exception, and each “member” has the following form:

type–spec declarators ;

where “type-spec” is a valid IDL type specification and “declarators” is a list of identifiers, array
declarators, or pointer declarators, delimited by commas. The members of an exception struc-
ture should contain information to help the caller understand the nature of the error. The
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exception declaration can be treated like a struct definition; that is, whatever you can access in
an IDL struct, you can access in an exception declaration.  Alternatively, the structure can be
empty, whereby the exception is just identified by its name.

If an exception is returned as the outcome of a method, the exception “identifier” indicates
which exception occurred. The values of the members of the exception provide additional
information specific to the exception. The topic “Method declarations” below describes how to
indicate that a particular method may raise a particular exception, and Chapter 3, “Using SOM
Classes in Client Programs,” describes how exceptions are handled, in the section entitled
“Exceptions and error handling.”

Following is an example declaration of a 	��������� exception:

   exception BAD_FLAG { long ErrCode; char Reason[80]; };

The SOM Compiler will map the above exception declaration to the following C language
constructs:

#define ex_BAD_FLAG ”::BAD_FLAG”

typedef struct BAD_FLAG {

    long  ErrCode;

    char  Reason[80];

} BAD_FLAG;

Thus, the ex_BAD_FLAG symbol can be used as a shorthand for naming the exception.

An exception declaration within an interface “Hello”, such as this:

interface Hello {

    exception LOCAL_EXCEPTION { long ErrCode; };

};

would map onto:

#define ex_Hello_LOCAL_EXCEPTION ”::Hello::LOCAL_EXCEPTION”

typedef struct Hello_LOCAL_EXCEPTION {

    long  ErrCode;

} Hello_LOCAL_EXCEPTION;

#define ex_LOCAL_EXCEPTION ex_Hello_LOCAL_EXCEPTION

In addition to user-defined exceptions, there are several predefined exceptions for system
run-time errors. The standard exceptions as prescribed by CORBA are shown in Table 2. These
exceptions correspond to standard run-time errors that may occur during the execution of any
method (regardless of the list of exceptions listed in its IDL specification).

Each of the standard exceptions has the same structure: an error code (to designate the
subcategory of the exception) and a completion status code. For example, the NO_MEMORY
standard exception has the following definition:

enum completion_status {YES, NO, MAYBE};

exception NO_MEMORY { unsigned long minor;

                      completion_status completed; };

The “completion_status” value indicates whether the method was never initiated (NO), com-
pleted its execution prior to the exception (YES), or the completion status is indeterminate
(MAYBE).

Since all the standard exceptions have the same structure, somcorba.h (included by som.h)
defines a generic StExcep typedef which can be used instead of the specific typedefs:

typedef struct StExcep {

     unsigned long minor;

     completion_status completed;

} StExcep;
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The standard exceptions shown in Table 2 are defined in an IDL module called StExcep, in the
file called stexcep.idl, and the C definitions can be found in stexcep.h.

Table 2.  STANDARD EXCEPTIONS DEFINED BY CORBA  

module StExcep {

#define ex_body { unsigned long minor; completion_status completed; }

enum completion_status { YES, NO, MAYBE };
enum exception_type {NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION};

exception UNKNOWN  ex_body;   // the unknown exception
exception BAD_PARAM  ex_body;   // an invalid parameter was passed
exception NO_MEMORY  ex_body;   // dynamic memory allocation failure
exception IMP_LIMIT  ex_body;   // violated implementation limit
exception COMM_FAILURE  ex_body;   // communication failure
exception INV_OBJREF  ex_body;   // invalid object reference
exception NO_PERMISSION  ex_body;   // no permission for attempted op.
exception INTERNAL  ex_body;   // ORB internal error
exception MARSHAL  ex_body;   // error marshalling param/result
exception INITIALIZE  ex_body;   // ORB initialization failure
exception NO_IMPLEMENT  ex_body;   // op. implementation unavailable
exception BAD_TYPECODE  ex_body;   // bad typecode
exception BAD_OPERATION  ex_body;   // invalid operation
exception NO_RESOURCES  ex_body;   // insufficient resources for request
exception NO_RESPONSE  ex_body;   // response to req. not yet available
exception PERSIST_STORE  ex_body;   // persistent storage failure
exception BAD_INV_ORDER  ex_body;   // routine invocations out of order
exception TRANSIENT  ex_body;   // transient failure – reissue request
exception FREE_MEM  ex_body;   // cannot free memory
exception INV_IDENT  ex_body;   // invalid identifier syntax
exception INV_FLAG  ex_body;   // invalid flag was specified
exception INTF_REPOS  ex_body;   // error accessing interface repository
exception CONTEXT  ex_body;   // error processing context object
exception OBJ_ADAPTER  ex_body;   // failure detected by object adapter
exception DATA_CONVERSION  ex_body;   // data conversion error

};

Interface declarations  

The IDL specification for a class of objects must contain a declaration of the  interface these
objects will support. Because, in SOM, objects are implemented using classes, the interface
name is always used as a class name as well. Therefore, an interface declaration can be
understood to specify a class name, and its parent (direct base) class names. This is the
approach used in the following description of an interface declaration. In addition to the class
name and its parents names, an interface indicates new methods (operations), and any
constants, type definitions, and exception structures that the interface exports. An interface
declaration has the following syntax:
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interface  class–name [: parent–class1, parent–class2, ...] 
{
constant declarations  (optional)
type declarations       (optional)
exception declarations  (optional)
attribute declarations  (optional)
method declarations  (optional)
implementation statement (optional)
};

Many class implementors distinguish a “class-name” by using an initial capital letter, but that is
optional. The “parent-class” (or base-class) names specify the interfaces from which the
interface of “class-name” instances is derived. Parent-class names are required only for the
immediate parent(s). Each parent class must have its own IDL specification (which must be
#included in the subclass’s .idl file). A parent class cannot be named more than once in the
interface statement header.

Note: In general, an “interface <className>” header must precede any subsequent imple-
mentation that references <className>. For more discussion of multiple interface state-
ments, refer to the later topic “Defining multiple interfaces in a .idl file.”

The following topics describe the various declarations/statements that can be specified within
the body of an interface declaration. The order in which these declarations are specified is
usually optional, and declarations of different kinds can be intermixed. Although all of the
declarations/statements are listed above as “optional,” in some cases using one of them may
mandate another. For example, if a method raises an exception, the exception structure must
be defined beforehand. In general, types, constants, and exceptions, as well as interface
declarations, must be defined before they are referenced, as in C/C++.

Constant, type, and exception declarations  
The form of a constant, type, or exception declaration within the body of an interface
declaration is the same as described previously in this chapter. Constants and types defined
within an interface for a class are transferred by the SOM Compiler to the binding files it
generates for that class, whereas constants and types defined outside of an interface are not.

Global types (such as, those defined outside of an interface and module) can be emitted by
surrounding them with the following #pragmas:

#pragma somemittypes on

    typedef sequence <long,10> vec10;

    exception BAD_FLAG { long ErrCode; char Reason[80]; };

    typedef long long_t;

#pragma somemittypes off

Types, constants, and exceptions defined in a parent class are also accessible to the child
class. References to them, however, must be unambiguous. Potential ambiguities can be
resolved by prefacing a name with the name of the class that defines it, separated by the
characters “::” as illustrated below:

MyParentClass::myType

The child class can redefine any of the type, constant, and exception names that have been
inherited, although this is not advised. The derived class cannot, however, redefine attributes
or methods. It can only replace the implementation of methods through overriding (as in
example 3 of the Tutorial). To refer to a constant, type, or exception “name” defined by a
parent class and redefined by “class-name,” use the “parent-name::name” syntax as before.

Note: A name reference such as MyParentClass::myType required in IDL syntax is equiva-
lent to MyParentClass_myType in C/C++. For a full discussion of name recognition in SOM,
see “Scoping and name resolution” later in this chapter.
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Attribute declarations  
Declaring an attribute as part of an interface is equivalent to declaring two accessor methods:
one to retrieve the value of the attribute (a “get” method, named “_get_<attributeName>”) and
one to set the value of the attribute (a “set” method, named “_set_<attributeName>”).

Attributes are declared as follows:

[ readonly ]  attribute  type–spec   declarators ;

where “type-spec” specifies any valid IDL type and “declarators” is a list of identifiers or pointer
declarators, delimited by commas. (An array declarator cannot be used directly when declaring
an attribute, but the type of an attribute can be a user-defined type that is an array.) The optional
readonly keyword specifies that the value of the attribute can be accessed but not modified by
client programs.  (In other words, a readonly attribute has no “set” method.) Below are
examples of attribute declarations, which are specified within the body of an interface state-
ment for a class:

interface Goodbye: Hello, SOMObject

{

  void  sayBye();

  attribute short xpos;

  attribute char c1, c2;

  readonly attribute float xyz;

};

The preceding attribute declarations are equivalent to defining the following methods:

short _get_xpos();

void  _set_xpos(in short xpos);

char  _get_c1();

void  _set_c1(in char c1);

char  _get_c2();

void  _set_c2(in char c2);

float _get_xyz();

Note: Although the preceding attribute declarations are equivalent to the explicit method decla-
rations above, these method declarations are  not legal IDL, because the method names begin
with an ‘_’. All IDL identifiers must begin with an alphabetic character, not including ‘_’.

Attributes are inherited from ancestor classes (indirect base classes). An inherited attribute
name cannot be redefined to be a different type.

Method (operation) declarations  
Method (operation) declarations define the interface of each method introduced by the class. A
method declaration is similar to a C/C++ function definition:

[ oneway ]  type–spec  identifier  ( parameter–list )   [ raises–expr ]  [ context–expr ] ;

where “identifier” is the name of the method and “type-spec” is any valid IDL type (or the
keyword void, indicating that the method returns no value). Unlike C and C++ procedures,
methods that do not return a result must specify void as their return type. The remaining syntax
of a method declaration is elaborated in the following subtopics.

Note: Although IDL does not allow methods to receive and return values whose type is a pointer
to a function, it does allow methods to receive and return method names (as string values).
Thus, rather than defining methods that pass pointers to functions (and that subsequently
invoke those functions), programmers should instead define methods that pass method names
(and subsequently invoke those methods using one of the SOM-supplied method-dispatching
or method-resolution methods or functions, such as somDispatch).
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Oneway keyword  
The optional oneway keyword specifies that when a client invokes the method, the invocation
semantics are “best-effort”, which does not guarantee delivery of the call. “Best-effort” implies
that the method will be invoked at most once. A oneway method should not have any output
parameters and should have a return type of void. A oneway method also should not include a
“raises expression” (see below), although it may raise a standard exception.

If the oneway keyword is not specified, then the method has “at-most-once” invocation seman-
tics if an exception is raised, and it has “exactly-once” semantics if the method succeeds. This
means that a method that raises an exception has been executed zero or one times, and a
method that succeeds has been executed exactly once.

Note: Currently the “oneway” keyword, although accepted, has no effect on the C/C++ bind-
ings that are generated.

Parameter list  
The “parameter-list” contains zero or more parameter declarations for the method, delimited by
commas. (The target object for the method is not explicitly specified as a method parameter in
IDL, nor are the Environment or Context parameters.) If there are no explicit parameters, the
syntax “( )” must be used, rather than “(void)”. A parameter declaration has the following syntax:

{ in | out | inout }  type–spec  declarator

where “type-spec” is any valid IDL type and “declarator” is an identifier, array declarator, or
pointer declarator.

In, out, inout parameters:  The required in|out|inout directional attribute indicates whether the
parameter is to be passed from client to server (in), from server to client (out), or in both
directions (inout). A method must not modify an in parameter. If a method raises an exception,
the values of the return result and the values of the out and inout parameters (if any) are
undefined. When an unbounded string or sequence is passed as an inout parameter, the
returned value must be no longer than the input value.

The following are examples of valid method declarations in SOM IDL:

short meth1(in char c, out float f);

oneway void meth2(in char c);

float meth3();

Classes derived from SOMObject can declare methods that take a pointer to a block of memory
containing a variable number of arguments, using a final parameter of type va_list. The va_list
must use the parameter name “ap”, as in the following example:

void MyMethod(in short numArgs, in va_list ap);

For in parameters of type array, C and C++ clients must pass the address of the first element of
the array.  For in parameters of type struct, union, sequence or any, C/C++ clients must pass
the address of a variable of that type, rather than the variable itself.

For all IDL types except arrays, if a parameter of a method is out or inout, then C/C++ clients
must pass the address of a variable of that type (or the value of a pointer to that variable) rather
than the variable itself. (For example, to invoke method “meth1” above, a pointer to a variable of
type float must be passed in place of parameter “f”.) For arrays, C/C++ clients must pass the
address of the first element of the array.

If the return type of a method is a struct, union, sequence, or any type, then for C/C++ clients,
the method returns the value of the C/C++ struct representing the IDL struct, union, sequence,
or any. If the return type is string, then the method returns a pointer to the first character of the
string. If the return type is array, then the method returns a pointer to the first element of the
array.
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The pointers implicit in the parameter types and return types for IDL method declarations are
made explicit in SOM’s C and C++ bindings. Thus, the stub procedure that the SOM Compiler
generates for method “meth1”, above, has the following signature:

SOM_Scope short  SOMLINK meth1(char c, float *f)

For C and C++ clients, if a method has an out parameter of type string, sequence, or any, then
the method must allocate the storage for the string, for the “_buffer” member of the struct that
represents the sequence, or for the “_value” member of the struct that represents the any. It is
then the responsibility of the client program to free the storage when it is no longer needed.
Similarly, if the return type of a method is string, sequence, any, or array, then storage must be
allocated by the method, and the client program is responsible for subsequently freeing it.

Note: The foregoing description also applies for the _get_<attributeName> method associated
with an attribute of type string, sequence, any, or array. Hence, the attribute should be
specified with a “noget” modifier to override automatic implementation of the attribute’s “get”
method. Then, needed memory can be allocated by the developer’s “get” method implementa-
tion and subsequently deallocated by the caller. (The “noget” modifier is described under the
topic “Modifier statements” later in this section.)   

Raises expression   
The optional raises expression (“raises-expr”) in a method declaration indicates which excep-
tions the method may raise. (IDL exceptions are implemented by simply passing back error
information after a method call, as opposed to the “catch/throw” model where an exception is
implemented by a long jump or signal.) A raises expression is specified as follows:

raises ( identifier1, identifier2, ... )

where each “identifier” is the name of a previously defined exception. In addition to the
exceptions listed in the raises expression, a method may also signal any of the standard
exceptions. Standard exceptions, however, should not appear in a raises expression. If no
raises expression is given, then a method can raise only the standard exceptions. (See the
earlier topic “Exception declarations” for information on defining exceptions and for the list of
standard exceptions. See Chapter 3, the section entitled “Exceptions and error handling,” for
information on using exceptions.)

Context expression  
The optional context expression (“context-expr”) in a method declaration indicates which
elements of the client’s context the method may consult. A context expression is specified as
follows:

context ( identifier1, identifier2, ... )

where each “identifier” is a string literal made up of alphanumeric characters, periods, under-
scores, and asterisks. (The first character must be alphabetic, and an asterisk can only appear
as the last character, where it serves as a wildcard matching any characters. If convenient,
identifiers may consist of period-separated valid identifier names, but that form is optional.)

The Context is a special object that is specified by the CORBA standard. It contains a property
list — a set of property-name/string-value pairs that the client can use to store information about
its environment that methods may find useful. It is used in much the same way as environment
variables. It is passed as an additional (third) parameter to CORBA-compliant methods that are
defined as “context-sensitive” in IDL, along with the CORBA-defined Environment structure.

The context expression of a method declaration in IDL specifies which property names the
method uses. If these properties are present in the Context object supplied by the client, they
will be passed to the object implementation, which can access them via the get_values method



4 – 174.  SOM IDL and the SOM Compiler

of the Context object. However, the argument that is passed to the method having a context
expression is a Context object, not  the names of the properties. The client program must either
create a Context object and use the set_values or set_one_value method of the Context
class to set the context properties, or use the get_default_context method. The client program
then passes the Context object in the method invocation. Note that the CORBA standard also
allows properties in addition to those in the context expression to be passed in the Context
object.

In Chapter 3, “Using SOM Classes in Client Programs,” the topic “Invoking Methods” describes
the placement of a context parameter in a method call. See also chapter 6 of The Common
Object Request Broker: Architecture and Specification for a discussion of how clients associate
values with context identifiers. A description of the Context class and its methods is contained
in the SOMobjects Developer Toolkit: Programmers Reference Manual.

Implementation statements  

A SOM IDL interface statement for a class may contain an implementation statement, which
specifies information about how the class will be implemented (version numbers for the class,
overriding of inherited methods, what resolution mechanisms the bindings for a particular
method will support, and so forth). If the implementation statement is omitted, default informa-
tion is assumed.

Because the implementation statement is specific to SOM IDL (and is not part of the CORBA

standard), the implementation statement should be preceded by an “#ifdef _ _SOMIDL_ _”
directive and followed by an “#endif” directive. (See Example 3 in the SOM IDL Tutorial
presented earlier.)

The syntax for the implementation statement is as follows:

#ifdef __SOMIDL__
implementation  
{
    implementation*
};
#endif

where each “implementation” can be a modifier statement, a passthru statement, or a declar-
ator of an instance variable, terminated by a semicolon. These constructs are described
below. An interface statement may not  contain multiple implementation statements.

Modifier statements  
A modifier statement gives additional implementation information about IDL definitions, such
as interfaces, attributes, methods, and types. Modifiers can be unqualified or qualified:
An unqualified modifier is associated with the interface it is defined in. An unqualified modifier
statement has the following two syntactic forms:

modifier
modifier = value

where “modifier” is either a SOM Compiler-defined identifier or a user-defined identifier, and
where “value” is an identifier, a string enclosed in double quotes (“ ”), or a number.

For example:

filestem = foo;

nodata;

persistent;

dllname = ”E:/som/dlls”;
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A qualified modifier is associated with a qualifier. The qualified modifier has the syntax:

qualifier : modifier

qualifier : modifier = value

#pragma modifier qualifier : modifier     

#pragma modifier qualifier : modifier = value

where “qualifier” is the identifier of an IDL definition or is user defined. If the “qualifier” is an IDL
definition introduced in the current interface, module, or global scope, then the modifier is
attached to that definition. Otherwise, if the qualifier is user defined, the modifier is attached to
the interface it occurs in. If a user-defined modifier is defined outside of an interface body (by
using #pragma modifier), then it is ignored.

For example, consider the following IDL file. (Notice that qualified modifiers can be defined with
the “qualifier” and “modifier[=value]” in either order. Also observe that additional modifiers can
be included by separating them with commas.)

    #include <somobj.idl>

    #include <somcls.idl>

    typedef long newInt;

    #pragma somemittypes on

    #pragma modifier newInt : nonportable;

    #pragma somemittypes off

    module M {

typedef long long_t;

module  N {

    typedef short short_t;

    interface M_I : SOMClass {

implementation {

    somInit : override;

};

    };

    interface I : SOMObject {

void op ();

#pragma modifier op : persistent;

typedef char char_t;

implementation {

    releaseorder : op;

    metaclass = M_I;

    callstyle = oidl;

    mymod : a, b;

    mymod : c, d;

    e     : mymod;

    f     : mymod;

    op : persistent;

};

    };

};

    };
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From the preceding IDL file, modifiers are associated with the following definitions:

TypeDef ”::newInt”         1  modifier: nonportable

InterfaceDef ”::M::N::M_I” 1  modifier: override = somInit

InterfaceDef ”::M::N::I”   9 modifiers: metaclass = M_I,

                                             releaseorder = op

                                             callstyle = oidl

     mymod = a,b,c,d,e,f

     a = mymod

     b = mymod

     c = mymod

     d = mymod

     e = mymod

     f = mymod

OperationDef ”::M::N::I::op” 1  modifier: persistent

Notice how the modifiers for the user-defined qualifier “mymod”:

    mymod : a, b;

    mymod : c, d;

    e     : mymod;

    f     : mymod;

map onto:

    mymod = a,b,c,d,e,f

    a     = mymod

    b     = mymod

    c     = mymod

    d     = mymod

    e     = mymod

    f     = mymod

This enables users to look up the modifiers with “mymod”, either by looking for “mymod” or by
using each individual value that uses “mymod”. These user-defined modifiers are available for
Emitter writers (see the Emitter Framework Guide and Reference) and from the Interface
Repository (see Chapter 7, “The Interface Repository Framework”).

SOM Compiler unqualified modifiers  

Unqualified modifiers (described below) include the SOM Compiler-defined identifiers:
abstract, baseproxyclass, callstyle, classinit, directinitclasses, dllname, filestem,
functionprefix,  majorversion,  metaclass,   memory_management,  minorversion,
somallocate, and somdeallocate.

abstract     — Specifies that the class is intended for use as a parent for
subclass derivations, but not for creating instances.

baseproxyclass = class   — Specifies the base proxy class to be used by DSOM when
dynamically creating a proxy class for the current class.
The base proxy class must be derived from the class
SOMDClientProxy. The SOMDClientProxy class will be
used if the baseproxyclass modifier is unspecified. (See
Chapter 6, “Distributed SOM,” for a discussion on custom-
izing proxy classes.)

callstyle = oidl    — Specifies that the method stub procedures generated by
SOM’s C/C++ bindings will not include the CORBA-specified
(Environment *ev) and (context *ctx) parameters.
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classinit = procedure    — Specifies a user-written procedure that will be executed to
initialize the class object when it is created.  If the classinit
modifier is specified in the .idl file for a class, the SOM
Compiler will provide a template for the procedure in the
implementation file it generates. The class implementor
can then fill in the body of this procedure template.

directinitclasses = “ancestor1, ancestor2, ...”    
— Specifies the ancestor class(es) whose initializers (and

destructors) will be directly invoked by this class’s initializa-
tion (and destruction) routines. If this modifier is not explicit-
ly specified, the default setting is the parents of the class.
For further information, see “Initializing and Uninitializing
Objects” in Chapter 5, “Implementing Classes in SOM.”

dllname = filename    — Specifies the name of the library file that will contain the
class’s implementation. If filename contains special char-
acters (e.g., periods, backslashes), then filename should
be surrounded by double quotes (“”). The filename speci-
fied can be either a full pathname, or an unqualified (or
partially qualified) filename. In the latter cases, the environ-
ment variable LIBPATH (on AIX or OS/2) or PATH (on
Windows) is used to locate the file.

filestem  = stem    — Specifies how the SOM Compiler will construct file names
for the binding files it generates (<stem>.h, <stem>.c,
etc.). The default stem is the file stem of the .idl file for the
class.

functionprefix  = prefix  — Directs the SOM Compiler to construct method-procedure
names by prefixing method names with “prefix”. For exam-
ple, “functionprefix = xx;”  within an implementation state-
ment would result in a procedure name of xxfoo for method
foo. The default for this attribute is the empty string. If an
interface is defined in a module, then the default func-
tion prefix is the fully scoped interface name.  Tip:  Us-
ing a function prefix with the same name as the class
makes it easier to remember method-procedure names
when debugging.

When an .idl file defines multiple interfaces not contained
within a module, use of a function prefix for each interface is
essential to avoid name collisions. For example, if one
interface introduces a method and another interface in the
same .idl file overrides it, then the implementation file for
the classes will contain two method procedures of the
same name (unless function prefixes are defined for one of
the classes), resulting in a name collision at compile time.

majorversion = number   — Specifies the major version number of the current class
definition. The major version  number of a class definition
usually changes only  when a significant enhancement or
incompatible change is made to the class. The “number”
must be a positive integer less than 232–1. If a non-zero
major version number is specified, SOM will verify that any
code that purports to implement the class has the same
major version number. The default major version number is
zero.
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memory_management = corba  
— Specifies that all methods introduced by the class follow

the CORBA specification for parameter memory manage-
ment, except where a particular method has an explicit
modifier indicating otherwise (either “object_owns_result”
or “object_owns_parameters”). See the section in Chapter
6 entitled “Memory Management” for a discussion of the
CORBA memory-management requirements.

metaclass = class    — Specifies the class’s metaclass. The specified metaclass
(or one automatically derived from it at run time) will be
used to create the class object for the class. If a metaclass
is specified, its .idl file (if separate) must be included in the
include section of the class’s .idl file. If no metaclass is
specified, the metaclass will be defined automatically.

minorversion = number  — Specifies the minor version number of the current class
definition. The minor version number of a class definition
changes whenever minor enhancements or fixes are made
to a class. Class implementors usually maintain backward
compatibility across changes in the minor version number.
The “number” must be a positive integer less than 232–1. If
a non-zero minor version number is specified, SOM will
verify that any code that purports to implement the class
has the same or a higher minor version number. The default
minor version number is zero.

somallocate = procedure    — Specifies a user-written procedure that will be executed
to  allocate memory for class instances when the
somAllocate class method is invoked.

somdeallocate = procedure   
— Specifies a user-written procedure that will be executed to

deallocate memory for class instances when the
somDeallocate class method is invoked.

The following example illustrates the specification of unqualified interface modifiers:

implementation

{

  filestem = hello;

  functionprefix = hel;

  majorversion = 1;

  minorversion = 2;

  classinit = helloInit;

  metaclass = M_Hello;

};

SOM Compiler qualified modifiers   

Qualified modifiers are categorized according to the IDL component (class, attribute, method,
or type) to which each modifier applies. Listed below are the SOM Compiler-defined identifiers
used as qualified modifiers, along with the IDL component to which it applies. Descriptions of all
qualified modifiers are then given in alphabetical order. Recall that qualified modifiers are
defined using the syntax  qualifier : modifier[=value].

For classes:
    releaseorder

For attributes:
     indirect,  nodata,  noget,  noset,  and  persistent  
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For methods:
caller_owns_parameters,  caller_owns_result,    
const,  init,  method,  migrate,  namelookup,  
nocall,  noenv,  nonstatic,  nooverride,  noself,  
object_owns_parameters,  object_owns_result,  
offset,  override,  procedure,  reintroduce,  and  select

For variables:
     staticdata

For types:
     impctx 

The following paragraphs describe each qualified modifier.

caller_owns_parameters  = “p1, p2, ..., pn”    
— Specifies the names of the method’s parameters whose

ownership is retained by (in the case of “in” parameters) or
transferred to (for “inout” or “out” parameters) the caller.
This modifier is only valid in the interface specification of
the method’s introducing class. This modifier only makes
sense for parameters whose IDL type is a data item that
can be freed (string, object, array, pointer, or TypeCode), or
a data item containing memory that can be freed (for exam-
ple, a sequence or any), or a struct or union.

For parameters whose type is an object, ownership applies
to the object reference  rather than to the object (that is, the
caller should invoke release on the parameter, rather than
somFree).

caller_owns_result     — Specifies that ownership of the return result of  the method
is transferred to the caller, and that the caller is responsible
for freeing the memory. This modifier is only valid in the
interface specification of the method’s introducing class.
This modifier only makes sense when the method’s return
type is a data type that can be freed (string, object, array,
pointer, or TypeCode), or a data item containing memory
that can be freed (for example, a sequence or any). For
methods that return an object, ownership applies to the
object reference rather than to the object (that is, the caller
should invoke release on the result, rather than somFree).

const    — Indicates that implementations of the related method
should not modify their target argument. SOM provides no
way to verify or guarantee that implementations do not
modify the targets of such methods, and the information
provided by this modifier is not currently of importance to
any of the Toolkit emitters. However, the information may
prove useful in the future. For example, since modifiers are
available in the Interface Repository, there may be future
uses of this information by DSOM.

impctx   — Supports types that cannot be fully defined using IDL. For
full information, see “Using the tk_foreign TypeCode” in
Chapter 7, “The Interface Repository Framework.”

indirect     — Directs the SOM Compiler to generate “get” and “set”
methods for the attribute that take and return a pointer to
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the attribute’s value, rather than the attribute value itself.
For example, if an attribute x of type float is declared to be
an indirect attribute, then the “_get_x” method will return a
pointer to a float, and the input to the “_set_x” method must
be a pointer to a float. (This modifier is provided for OIDL
compatibility only.)

init    — Indicates that a method is an initializer method. For in-
formation concerning the use of this modifier, see “Initializ-
ing and Uninitializing Objects” in Chapter 5, “Implementing
Classes in SOM.”

method or  nonstatic or procedure      
— Indicates the category of method implementation. Refer to

the topic “The four kinds of SOM methods” in Chapter 5,
“Implementing Classes in SOM,” for an explanation of the
meanings of these different method modifiers. If none of
these modifiers is specified, the default is method. Meth-
ods with the procedure modifier cannot be invoked re-
motely using DSOM.

migrate  = ancestor  — Indicates that a method originally introduced by this inter-
face has been moved upward to a specified <ancestor>
interface. When this is done, the method introduction must
be removed from this interface (because the method is now
inherited). However, the original releaseorder entry for the
method should be retained, and migrate should be used to
assure that clients compiled based on the original interface
will not require recompilation. The ancestor interface is
specified using a C–scoped interface name. For example,
“Module_InterfaceName”, not “Module::InterfaceName”.
See the later topic “Name usage in client programs” for an
explanation of C-scoped names.

namelookup — See “offset or namelookup.”

nocall     — Specifies that the related method should not be invoked on
an instance of this class even though it is supported by the
interface.

nodata     — Directs the SOM Compiler not to define an instance vari-
able corresponding to the attribute. For example, a “time”
attribute would not require an instance variable to maintain
its value, because the value can be obtained from the
operating system.  The “get” and “set” methods for “nodata”
attributes must be defined by the class implementor; stub
method procedures for them are automatically generated
in the implementation template for the class by the SOM
Compiler.

noenv     — Indicates that a direct-call procedure does not receive an
environment as an argument.

noget     — Directs the SOM Compiler not  to automatically generate a
“get” method procedure for the attribute in the .ih/.xih bind-
ing file for the class. Instead, the “get” method must be
implemented by the class implementor. A stub method
procedure for the “get” method is automatically generated
in the implementation template for the class by the SOM
Compiler, to be filled in by the implementor.
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nonstatic — See “method or nonstatic or procedure.”

nooverride    — Indicates that the method should not be overridden by
subclasses. The SOM Compiler will generate an error if this
method is overridden.

noself    — Indicates that a direct-call procedure does not receive a
target object as an argument.

noset     — Directs the SOM Compiler not  to automatically generate a
“set” method procedure for the attribute in the .ih/.xih bind-
ing file for the class. Instead, the “set” method must be
implemented by the class implementor. A stub method
procedure for the “set” method is automatically generated
in the implementation template for the class by the SOM
Compiler.

Note: The “set” method procedure that the SOM Compiler
generates by default for an attribute in the .h/.xh binding file
(when the noset modifier is not used) does a shallow copy
of the value that is passed to the attribute. For some attrib-
ute types, including strings and pointers, this may not be
appropriate. For instance, the “set” method for an attribute
of type string should perform a string copy, rather than a
shallow copy, if the attribute’s value may be needed after
the client program has freed the memory occupied by the
string. In such situations, the class implementor should
specify the noset attribute modifier and implement the
attribute’s “set” method manually, rather than having SOM
implement the “set” method automatically.

object_owns_parameters  = “p1, p2, ..., pn” 
— Specifies the names of the method’s parameters whose

ownership is transferred to (in the case of “in” parameters)
or is retained by (for “inout” or “out” parameters) the object.
For “in” parameters, the object can free the parameter at
any time after receiving it. (Hence, the caller should not
reuse the parameter or pass it as any other object-owned
parameter in the same method call.) For “inout” and “out”
parameters, the object is responsible for freeing the param-
eter sometime before the object is destroyed. This modifier
is only valid in the interface specification of the method’s
introducing class. This modifier only makes sense for pa-
rameters whose IDL type is a data item that can be freed
(string, object, array, pointer, or TypeCode), or a data item
containing memory that can be freed (for example, a
sequence or any), or a struct or union.

For parameters whose type is an object, ownership applies
to the object reference  rather than to the object (that is, the
object will invoke release on the parameter, rather than
somFree). For “in” and “out” parameters whose IDL-to-
C/C++ mapping introduces a pointer, ownership applies
only to the data item itself, and not to the introduced pointer.
(For example, even if an “out string” IDL parameter (which
becomes a “string *” C/C++ parameter) is designated as
“object-owned,” the object assumes ownership of the
string, but not of the pointer to the string.)



4 – 254.  SOM IDL and the SOM Compiler

object_owns_result     — Specifies that the object retains ownership of the return
result of the method, and that the caller must not free the
memory. The object is responsible for freeing the memory
sometime before the object is destroyed. This modifier is
only valid in the interface specification of the method’s
introducing class. This modifier only makes sense when
the method’s return type is a data type that can be freed
(string, object, array, pointer, or TypeCode), or a data item
containing memory that can be freed (for example, a
sequence or any). For methods that return an object, own-
ership applies to the object reference rather than to the
object (that is, the object will be responsible for invoking
release on the result, rather than somFree).

offset or namelookup      — Indicates whether the SOM Compiler should generate
bindings for invoking the method using offset resolution or
name lookup. Offset resolution requires that the class of
the method’s target object be known at compile time. When
different methods of the same name are defined by several
classes, namelookup is a more appropriate technique for
method resolution than is offset resolution. (See Chapter 3,
the section entitled “Invoking Methods.”) The default modi-
fier is offset.

override     — Indicates that the method is one introduced by an ancestor
class and that this class will re-implement the method. See
also the related modifier, select.

persistent     — Indicates a persistent attribute of a persistent object. (See
Chapter 8, “Persistence Framework,” for a discussion of
persistent objects.)

procedure — See “method or nonstatic or procedure.”

reintroduce     — Indicates that this interface will “hide” a method introduced
by some ancestor interface, and will replace it with another
implementation. Methods introduced as direct-call proce-
dures or nonstatic methods can be reintroduced.  However,
static methods (the default implementation category for
SOM methods) cannot be reintroduced.

releaseorder: a, b, c, ...  — Specifies the order in which the SOM Compiler will place
the class’s methods in the data structures it builds to repre-
sent the class. Maintaining a consistent release order for a
class allows the implementation of a class to change with-
out requiring client programs to be recompiled.

The release order should contain every method name
introduced by the class (private and nonprivate), but should
not include any inherited methods, even if they are overrid-
den by  the class. The “get” and “set” methods defined  au-
tomatically for each new attribute (named
“_get_<attributeName>” and “_set_<attributeName>”)
should also be included in the release order list. The order
of the names on the list is unimportant except that once a
name is on the list and the class has client programs, it
should not be reordered or removed, even if the method is
no longer supported by the class, or the client programs will
require recompilation. New methods should be added only
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to the end of the list. If a method named on the list is to be
moved up in the class hierarchy, its name should remain on
the current list, but it should also be added to the release
order list for the class that will now introduce it.

If not explicitly specified, the release order will be deter-
mined by the SOM Compiler, and a warning will be issued
for each missing method. If new methods or attributes are
subsequently added to the class, the default release order
might change; programs using the class would then require
recompilation. Thus, it is advisable to explicitly give a re-
lease order.

select = parent     — Used in conjunction with the override modifier, this indi-
cates that an inherited static method will use the implemen-
tation inherited from the indicated <parent> class. The par-
ent is specified using the C-scoped name. For example,
“Module_InterfaceName”, not “Module::InterfaceName”.
See the later topic “Name usage in client programs” for an
explanation of C-scoped names.

staticdata    — Indicates that the declared variable is not stored within
objects, but, instead, that the ClassData structure for the
implementing class will contain a pointer to the staticdata
variable. This is similar in concept to C++ static data mem-
bers. The staticdata variable must also be included in the
releaseorder. The class implementor has responsibility
for loading the ClassData pointer during class initialization.
This can be facilitated by  writing a special class initializa-
tion function and indicating its name using the classinit
unqualified modifier. Note: attributes can be declared as
staticdata. This is an important implementation technique
that allows classes to introduce attributes whose backing
storage is not inherited by subclasses.

The following example illustrates the specification of qualified modifiers:

implementation

{

  releaseorder : op1, op3, op2, op5, op6, x, y;

  op1 : persistent;

  somDefaultInit : override, init;

  op2: reintroduce, procedure;

  op3: reintroduce, nonstatic;

  op4: override, select = ModuleName_parentInterfaceName;

  op5: migrate = ModuleName_ancestorInterfaceName;

  op6: procedure, noself, noenv;

  long x;

  x: staticdata;

  y: staticdata; // y is an attribute

  mymod : a, b;

};

Passthru statements  
A passthru statement (used within the body of an implementation statement, described
above) allows a class implementor to specify blocks of code (for C/C++ programmers, usually
only #include directives) that the SOM compiler will pass into the header files it generates.

Passthru statements are included in SOM IDL primarily for backward compatibility with the
SOM OIDL language, and their use by C and C++ programmers should be limited to #include
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directives. C and C++ programmers should use IDL type and constant declarations rather than
passthru statements when possible. (Users of other languages, however, may require
passthru statements for type and constant declarations.)

The contents of the passthru lines are ignored by the SOM compiler and can contain anything
that needs to placed near the beginning of a header file for a class. Even comments contained in
passthru lines are processed without modification. The syntax for specifying passthru lines is
one of the following forms:

passthru  language_suffix   = literal+ ;
passthru  language_suffix_before = literal+ ;
passthru  language_suffix_after  = literal+ ;

where “language” specifies the programming language and “suffix” indicates which header files
will be affected. The SOM Compiler supports suffixes h, ih, xh, and xih. For both C and C++,
“language” is specified as C.

Each “literal” is a string literal (enclosed in double quotes) to be placed verbatim into the
specified header file. [Double quotes within the passthru literal should be preceded by a
backslash. No other characters escaped with a backslash will be interpreted, and formatting
characters (newlines, tab characters, etc.) are passed through without processing.] The last
literal for a passthru statement must not end in a backslash (put a space or other character
between a final backslash and the closing double quote).

When either of the first two forms is used, passthru lines are placed before the #include
statements in the header file. When the third form is used, passthru lines are placed just after
the #include statements in the header file.

For example, the following passthru statement

implementation

{

  passthru C_h = ”#include <foo.h>”;

};

results in the directive #include <foo.h> being placed at the beginning of the .h C binding file
that the SOM Compiler generates.

Declaring instance variables and staticdata variables    
Declarators are used within the body of an implementation statement (described above) to
specify the instance variables that are introduced by a class, and the staticdata variables
pointed to by the class’s ClassData structure. These variables are declared using ANSI C
syntax for variable declarations, restricted to valid SOM IDL types (see “Type and constant
declarations,” above). For example, the following implementation statement declares two
instance variables, x and y, and a staticdata variable, z, for class “Hello,” :

implementation

{

  short x;

  long y;

  double z;

  z: staticdata;

};

Instance variables are normally intended to be accessed only by the class’s methods and not  by
client programs or subclasses’ methods. For data to be accessed by client programs or sub-
class methods, attributes should be used instead of instance variables. (Note, however, that
declaring an attribute has the effect of also declaring an instance variable of the same name,
unless the “nodata” attribute modifier is specified.)

Staticdata variables, by contrast, are publicly available and are associated specifically with their
introducing class. They are, however, very different in concept from class variables. Class
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variables are really instance variables introduced by a metaclass, and are therefore present in
any class that is an instance of the introducing metaclass (or of any metaclass derived from this
metaclass). As a result, class variables present in any given class will also be present in any
class derived from this class (that is, class variables are inherited). In contrast, staticdata
variables are introduced by a class (not a metaclass) and are (only) accessed from the class’s
ClassData structure — they are not inherited.

To declare an instance variable that is not  a valid IDL type, a dummy typedef can be declared
before the interface declaration and a passthru statement then used to pass the real typedef
to  the language-specific binding file(s). See also the section “Using the tk_foreign TypeCode”
in Chapter 7, “The Interface Repository Framework.” In the following example, the generic SOM
type somToken is used in the IDL file for the user’s type “myRealType”. The passthru state-
ment then causes an appropriate #include statement to be emitted into the C/C++ binding file,
so that the file defining type “MyRealType” will be included when the binding file processes:

typedef somToken myRealType;

interface myClass : SOMObject {

. . .

  implementation {

     myRealType myInstVar;

     passthru C_h = ”#include <myTypes.h>”;

  };

};

Comments within a SOM IDL file  

SOM IDL supports both C and C++ comment styles. The characters “//” start a line comment,
which finishes at the end of the current line. The characters “/*” start a block comment that
finishes with the “*/”. Block comments do not nest. The two comment styles can be used
interchangeably.

Comments in a SOM IDL specification must be strictly associated with particular syntactic
elements, so that the SOM Compiler can put them at the appropriate place in the header and
implementation files it generates. Therefore, comments may appear only in these locations (in
general, following the syntactic unit being commented):

� At the beginning of the IDL specification
� After a semicolon
� Before or after the opening brace of a module, interface statement, 
   implementation statement, structure definition, or union definition
� After a comma that separates parameter declarations or enumeration members
� After the last parameter in a prototype (before the closing parenthesis)
� After the last enumeration name in an enumeration definition 
   (before the closing brace)
� After the colon following a case label of a union definition
� After the closing brace of an interface statement

Numerous examples of the use of comments can be found in the Tutorial of Chapter 2.

Because comments appearing in a SOM IDL specification are transferred to the files that the
SOM Compiler generates, and because these files are often used as input to a programming
language compiler, it is best within the body of comments to avoid using characters that are not
generally allowed in comments of most programming languages. For example, the C language
does not allow “*/” to occur within a comment, so its use is to be avoided, even when using C++

style comments in the .idl file.

SOM IDL also supports throw-away comments. They may appear anywhere in an IDL specifica-
tion, because they are ignored by the SOM Compiler and are not transferred to any file it



4 – 294.  SOM IDL and the SOM Compiler

generates. Throw-away comments start with the string “//#” and end at the end of the line.
Throw-away comments can be used to “comment out” portions of an IDL specification.

To disable comment processing (that is, to prevent the SOM Compiler from transferring com-
ments from the IDL specification to the binding files it generates), use the –c option of the sc or
somc command when running the SOM Compiler (See Section 4.3, “The SOM Compiler”).
When comment processing is disabled, comment placement is not restricted, and comments
can appear anywhere in the IDL specification.

Designating ‘private’ methods and attributes  

To designate methods or attributes within an IDL specification as “private,” the declaration
of  the  method or attribute must be surrounded with the preprocessor commands
#ifdef __PRIVATE__ (with two leading underscores and two following underscores) and #endif.
For example, to declare a method “foo” as a private method, the following declaration would
appear within the interface statement:

#ifdef __PRIVATE__

void foo();

#endif

Any number of methods and attributes can be designated as private, either within a single #ifdef
or in separate ones. [Kernighan–Ritchie reference for the C preprocessor: pages 88-92.]

When compiling a .idl file, the SOM Compiler normally recognizes only public (nonprivate)
methods and attributes, as that is generally all that is needed. To generate header files for client
programs that do need to access private methods and attributes, the –p option should be
included when running the SOM Compiler. The resulting .h or .xh header file will then include
bindings for private, as well as public, methods and attributes. The –p option is described in the
topic “Running the SOM Compiler” later in this chapter.

The SOMobjects Toolkit also provides a pdl (Public Definition Language) emitter that can be
used with the SOM Compiler to generate a copy of a .idl file which has the portions designated
as private removed. The next main section of this chapter describes how to invoke the SOM
Compiler and the various emitters.

Defining multiple interfaces in a .idl file  

A single .idl file can define multiple interfaces. This allows, for example, a class and its meta-
class to be defined in the same file. When a file defines two (or more) interfaces that reference
one another, forward declarations can be used to declare the name of an interface before it is
defined. This is done as follows:

interface className ;

The actual definition of the interface for “className” must appear later in the same .idl file.

If multiple interfaces are defined in the same .idl file,  and the classes are not a class–metaclass
pair, they can be grouped into modules, by using the following syntax:   

module moduleName { definition+ };

where each “definition” is a type declaration, constant declaration, exception declaration,
interface statement, or nested module statement. Modules are used to scope identifiers (see
below).

Alternatively, multiple interfaces can be defined in a single .idl file without using a module to
group the interfaces. Whether or not a module is used for grouping multiple interfaces, the
languages bindings produced from the .idl file will include support for all of the defined inter-
faces.
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Note: When multiple interfaces are defined in a single .idl file and a module statement is not
used for grouping these interfaces, it is necessary to use the functionprefix modifier to assure
that  different names exist for functions that provide different implementations for a method. In
general, it is a good idea to always use the functionprefix modifier, but in this case it is
essential.

Scoping and name resolution   
A .idl file forms a naming scope (or scope). Modules, interface statements, structures,
unions, methods, and exceptions form nested scopes. An identifier can only be defined once
in a particular scope. Identifiers can be redefined in nested scopes.

Names can be used in an unqualified form within a scope, and the name will be resolved by
successively searching the enclosing scopes. Once an unqualified name is defined in an
enclosing scope, that name cannot be redefined.

Fully qualified names are of the form:

scoped–name::identifier

For example, method name “meth” defined within interface “Test” of module “M1” would have
the fully qualified name:

M1::Test::meth

A qualified name is resolved by first resolving the “scoped-name” to a particular scope, S, and
then locating the definition of “identifier” within that scope. Enclosing scopes of S are not
searched.

Qualified names can also take the form:

::identifier

These names are resolved by locating the definition of “identifier” within the smallest enclosing
module.

Every name defined in an IDL specification is given a global name, constructed as follows:

• Before the SOM Compiler scans a .idl file, the name of the current root and the name of the
current scope are empty. As each module is encountered, the string “::” and the module name
are appended to the name of the current root. At the end of the module, they are removed.

• As each interface, struct, union, or exception definition is encountered, the string “::” and the
associated name are appended to the name of the current scope. At the end of the definition,
they are removed. While parameters of a method declaration are processed, a new unnamed
scope is entered so that parameter names can duplicate other identifiers.

• The global name of an IDL definition is then the concatenation of the current root, the current
scope, a “::”, and the local name for the definition.

The names of types, constants, and exceptions defined by the parents of a class are accessible
in the child class. References to these names must be unambiguous. Ambiguities can be
resolved  by using a scoped name (prefacing the name with the name of the class that defines it
and the characters “::”, as in “parent-class::identifier”). Scope names can also be used to refer
to a constant, type, or exception name defined by a parent class but redefined by the child class.

Name usage in client programs
Within a C or C++ program, the global name for a type, constant, or exception corresponding
to an IDL scoped name is derived by converting the string “::” to an underscore (“_”) and
removing the leading underscore. Such names are referred to as C–scoped names. This means
that types, constants, and exceptions defined within the interface statement for a class can be
referenced in a C/C++ program by prepending the class name to the name of the type, constant,
or exception. For example, consider the types defined in the following IDL specification:
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typedef sequence<long,10> mySeq;

interface myClass : SOMObject 

{

   enum color {red, white, blue};

   typedef string<100> longString;

   ...

}

These types could be accessed within a C or C++ program with the following global names: 

mySeq, 

myClass_color, 

myClass_red, 

myClass_white, 

myClass_blue, and 
myClass_longString

Type, constant, and exception names defined within modules similarly have the module name
prepended. When using SOM’s C/C++ bindings, the short form of type, constant, and exception
names (such as, color, longString) can also be used where unambiguous, except that
enumeration names must be referred to using the long form (for example:  myClass_red and
not simply red).

Because replacing “::” with an underscore to create global names can lead to ambiguity if an IDL
identifier contains underscores, it is best to avoid the use of underscores when defining IDL
identifiers.

Extensions to CORBA IDL permitted by SOM IDL  

The following topics describe several SOM-unique extensions of the standard CORBA syntax
that are permitted by SOM IDL for convenience. These constructs can be used in a .idl file
without generating a SOM Compiler error.

If you want to verify that an IDL file contains only standard CORBA specifications, the SOM
Compiler option –mcorba turns off each of these extensions and produces compiler errors
wherever non-CORBA specifications are used. (The SOM Compiler command and options are
described in the topic “Running the SOM Compiler” later in this chapter.)

Pointer ‘*’ types
In addition to the base CORBA types, SOM IDL permits the use of pointer types (‘*’). As well as
increasing the range of base types available to the SOM IDL programmer, using pointer types
also permits the construction of more complex data types, including self-referential and mutual-
ly recursive structures and unions.

If self-referential structures and unions are required, then, instead of using the CORBA approach
for IDL sequences, such as the following:

struct X {

    ...

    sequence <X> self;

    ...

};

it is possible to use the more typical C/C++ approach. For example:

struct X {

    ...

    X *self;

    ...

};
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SOM IDL does not permit an explicit ‘*’ in sequence declarations. If a sequence is required for a
pointer type, then it is necessary to typedef the pointer type before use. For example:

sequence <long *> long_star_seq;        // error.

typedef long * long_star;

sequence <long_star> long_star_seq;      // OK.

Unsigned types
SOM IDL permits the syntax “unsigned <type>”, where <type> is a previously declared type
mapping onto “short” or “long”. (Note that CORBA permits only “unsigned short” and “un-
signed long”.

Implementation section
SOM IDL permits an implementation section in an IDL interface specification to allow the
addition of instance variables, method overrides, metaclass information, passthru information,
and “pragma–like” information, called modifiers, for the emitters. See the topic “Implementa-
tion statements” earlier in this chapter.

Comment processing
The SOM IDL Compiler by default does not remove comments in the input source; instead, it
attaches them to the nearest preceding IDL statement. This facility is useful, since it allows
comments to be emitted in header files, C template files, documentation files, and so forth.
However, if this capability is desired, this does mean that comments cannot be placed with quite
as much freedom as with an ordinary IDL compiler. To turn off comment processing so that you
can compile .idl files containing comments placed anywhere, you can use the compiler option –c
or use “throw-away” comments throughout the .idl file (that is, comments preceded by //#); as a
result, no comments will be included in the output files.

Generated header files
CORBA expects one header file, <file>.h, to be generated from <file>.idl. However, SOM IDL
permits use of a class modifier, filestem, that changes this default output file name. (See
“Running the SOM Compiler” later in this chapter.)
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4.3  The SOM Compiler   
The SOM Compiler translates the IDL definition of a SOM class into a set of “binding files”
appropriate for the language that will implement the class’s methods and the language(s) that
will use the class. These bindings make it more convenient for programmers to implement and
use SOM classes. The SOM Compiler currently produces binding files for the C and C++

languages.

Important Note: C and C++ bindings cannot both be generated during the same execution of
the SOM compiler.

Generating binding files  
The SOM Compiler operates in two phases:

� A precompile phase, in which a precompiler analyzes an OIDL or IDL class definition, and

� An emission phase, in which one or more emitter programs produce binding files.

Each binding file is generated by a separate emitter program. Setting the SMEMIT environment
variable determines which emitters will be used, as described below. Note: In the discussion
below, the <filestem> is determined by default from the name of the source .idl file with the
“.idl”extension removed. Otherwise, a “filestem” modifier can be defined in the .idl file to specify
another file name (see “Modifier statements” above).

Note: When changes to definitions in the .idl file later become necessary, the SOM Compiler
should be rerun to update the current implementation template file, provided that the c or xc
emitter is specified (either with the –s option or the SMEMIT environment variable, as described
below). For more information on generating updates, see “Running incremental updates of the

implementation template file” in Chapter 5, “Implementing Classes in SOM.”   

The emitters for the C language produce the following binding files:  

<filestem>.c — (produced by the c emitter)
This is a template for a C source program that implements
a class’s methods. This will become the primary source file
for the class. (The other binding files can be generated
from the .idl file as needed.) This template implementation
file contains “stub” procedures for each method introduced
or overridden by the class. (The stub procedures are empty
of code except for required initialization and debugging
statements.)

After the class implementor has supplied the code for the
method procedures, running the c emitter again will update
the implementation file to reflect changes made to the class
definition (in the .idl file). These updates include adding
new stub procedures, adding comments, and changing
method prototypes to reflect changes made to the method
definitions in the IDL specification. Existing code within
method procedures is not  disturbed, however.

The .c file contains an #include directive for the .ih file, de-
scribed below.

The contents of the C source template is controlled by the
Emitter Framework file <SOMBASE>/include/ctm.efw. This
file can be customized to change the template produced.
For detailed information on changing the template file see
the Emitter Framework Guide and Reference.
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<filestem>.h — (produced by the h emitter)
This is the header file to be included by C client programs
(programs that use the class). It contains the C usage bind-
ings for the class, including macros for accessing the
class’s methods and a macro for creating new instances of
the class. This header file includes the header files for the
class’s parent classes and its metaclass, as well as the
header file that defines SOM’s generic C bindings, som.h.

<filestem>.ih — (produced by the ih emitter)
This is the header file to be included in the implementation
file (the file that implements the class’s methods — the .c
file). It contains the implementation bindings for the class,
including:

� a struct defining the class’s instance variables,
� macros for accessing instance variables,
� macros for invoking parent methods the class overrides,
� the <className>GetData macro used by the method

procedures in the <filestem>.c file  (see “Stub proce-
dures for methods” in Section 5.4 of Chapter 5),

� a <className>NewClass procedure for constructing 
the class object at run time, and

� any IDL types and constants defined in the IDL interface.

The emitters for the C++ language produce the following binding files:  

<filestem>.C (for AIX)  or  <filestem>.cpp (for OS/2 or Windows)
— (produced by the xc emitter)

This is a template for a C++ source program that imple-
ments a class’s methods. This will become the primary
source file for the class. (The other binding files can be gen-
erated from the .idl file as needed.) This template imple-
mentation file contains “stub” procedures for each method
introduced or overridden by the class. (The stub proce-
dures are empty of code except for required initialization
and debugging statements.)

After the class implementor has supplied the code for the
method procedures, running the xc emitter again will up-
date this file to reflect changes made to the class definition
(in the .idl file). These updates include adding new stub
procedures, adding comments, and changing method pro-
totypes to reflect changes made to the method definitions
in the IDL specification. Existing code within method proce-
dures is not  disturbed, however.

The C++ implementation file contains an #include directive
for the .xih file, described below.

The contents of the C++ source template is controlled by the
Emitter Framework file <SOMBASE>/include/ctm.efw. This
file can be customized to change the template produced.
For detailed information on changing the template file see
the Emitter Framework Guide and Reference.
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<filestem>.xh — (produced by the xh emitter)
This is the header file to be included by C++ client programs
that use the class. It contains the usage bindings for the
class, including a C++ definition of the class, macros for
accessing the class’s methods, and the new operator for
creating new instances of the class. This header file in-
cludes the header files for the class’s parent classes and its
metaclass, as well as the header file that defines SOM’s
generic C++ bindings, som.xh.

<filestem>.xih — (produced by the xih emitter)
This is the header file to be included in the implementation
file (the file that implements the class’s methods). It con-
tains the implementation bindings for the class, including:

� a struct defining the class’s instance variables,
� macros for accessing instance variables,
� macros for invoking parent methods the class overrides,
� the <className>GetData macro  (see “Stub proce-

dures for methods” in Section 5.4 of Chapter 5),
� a <className>NewClass procedure for constructing 

the class object at run time, and
� any IDL types and constants defined in the IDL interface.

Other files the SOM Compiler generates:  

<filestem>.hh — (produced by the hh emitter)
This file is a DirectToSOM C++ header file that describes
a SOMobjects class in a way appropriate for DTS C++.
When running this emitter, you must include the
noqualifytypes command-line modifier for the –m option
of the SOM Compiler command sc or somc.

<filestem>.pdl — (produced by the pdl emitter)
This file is the same as the .idl file from which it is produced
except that all items within the .idl file that are marked as
“private” have been removed. (An item is marked as private
by surrounding it with “#ifdef __PRIVATE__” and “#endif”
directives.) Thus, the pdl (Public Definition Language)
emitter can be used to generate a “public” version of the .idl
file.

<filestem>.def   (for OS/2 or Windows)
— (produced by the def emitter)  

This file is used by the linker to package a class as a library.
To combine several classes into a single library, you must
merge the exports statements from each of their .def files
into a single .def file for the entire library. When packaging
multiple classes in a single library, you must also write a
simple C procedure named SOMInitModule and add it to
the export list. This procedure should call the routine
<className>NewClass for each class packaged in the li-
brary. The SOMInitModule procedure is called by the
SOM Class Manager when the library is dynamically
loaded.
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<filestem>.exp  (for AIX) — (produced by the exp emitter)  
This file is used by the linker to package a class as a library.
To combine several classes into a single library, you must
merge the exports statements from each of their .exp files
into a single .exp file for the entire library. When packaging
multiple classes in a single library, you must also write a
simple C procedure named SOMInitModule and add it to
the export list. This procedure should call the routine
<className>NewClass for each class packaged in the li-
brary. The SOMInitModule procedure is called by the
SOM Class Manager when the library is dynamically
loaded.

The Interface Repository    (produced by the ir emitter)   
See Chapter 7 for a discussion on the Interface Repository.

Note: The C/C++ bindings generated by the SOM Compiler have the following limitation: If two
classes named “ClassName” and “ClassNameC” are defined, the bindings for these two
classes will clash. That is, if a client program uses the C/C++ bindings (includes the .h/.xh header
file) for both classes, a name conflict will occur. Thus, class implementors should keep this
limitation in mind when naming their classes.

SOM users can extend the SOM Compiler to generate additional files by writing their own
emitters. To assist users in extending the SOM Compiler, SOM provides an Emitter Framework
— a collection of classes and methods useful for writing object-oriented emitters that the SOM
Compiler can invoke. For more information, see the Emitter Framework Guide and Reference.

Note re: porting SOM classes:  The header files (binding files) that the SOM Compiler
generates will only work on the platform (operating system) on which they were generated.
Thus, when porting SOM classes from the platform where they were developed to another
platform, the header files must be regenerated from the .idl file by the SOM Compiler on that
target platform.

Environment variables affecting the SOM Compiler   
To execute the SOM Compiler on one or more files that contain IDL specifications for one or
more classes, use the sc or somc command, as follows:

sc [–options]  files                (on AIX or OS/2)
somc [–options]  files         (on Windows)

where “files” specifies one or more .idl files.

Available “–options” for the command are detailed in the next topic. The operation of the SOM
Compiler (whether it produces C binding files or C++ binding files, for example) is also controlled
by certain environment variables that can be set before the sc or somc command is issued. The
applicable environment variables are as follows:

SMEMIT      — Determines which output files the SOM Compiler pro-
duces. Its value consists of a list of items separated by
semicolons for OS/2, or by semicolons or colons for AIX.
Each item designates an emitter to execute. For example,
the statement:

    SET SMEMIT=c;h;ih  (for OS/2)
    export SMEMIT=”c;h;ih”  (for AIX)

directs the SOM Compiler to produce the C binding files
“hello.c”, “hello.h”, and“hello.ih”  from the “hello.idl” input
specification. By comparison,

    SET SMEMIT=xc;xh;xih   (for OS/2)
    export SMEMIT=”xc;xh;xih” (for AIX)
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directs the SOM Compiler to produce C++ binding files
“hello.C” (for AIX) or “hello.cpp” (for OS/2), “hello.xh”, and
“hello.xih”  from the “hello.idl” input specification.

By default, all output files are placed in the same directory
as the input file. If the SMEMIT environment variable is not
set, then a default value of “h;ih” is assumed.

Windows note: The SMEMIT environmental variable can be
set by using the SET command before the somc command
is issued. For example:

    SET SMEMIT=“c;h;ih” (for Windows)

If you are running the SOM Compiler from a DOS box under
Windows, make sure to define SMEMIT before Windows is
started.

SMINCLUDE     — Specifies where the SOM Compiler should look for .idl files
#included by the .idl file being compiled. Its value should be
one or more directory names separated by a semicolon
when using OS/2 or Windows, or separated by a semicolon
or colon when using AIX. Directory names can be specified
with absolute or relative pathnames. For example:

                      SET SMINCLUDE=.;..\MYSCDIR;C:\TOOLKT20\C\INCLUDE;

                                                 (for OS/2 or Windows)

                         export SMINCLUDE=.:myscdir:/u/som/include

                                                                                                     (for AIX)

The default value of the SMINCLUDE environment variable
is the “include” subdirectory of the directory into which
SOM has been installed.

SMTMP     — Specifies the directory that the SOM Compiler should use
to hold intermediate output files. This directory should not
coincide with the directory of the input or output files. For
AIX, the default setting of SMTMP is  /tmp; for OS/2 or
Windows, the default setting of SMTMP is the root directory
of the current drive.

OS/2 or Windows example:

    SET SMTMP=..\MYSCDIR\GARBAGE

tells the SOM Compiler to place the temporary files in the
GARBAGE directory.

Or, on OS/2 only:  

    SET SMTMP=%TMP% 

tells the SOM Compiler to use the same directory for tem-
porary files as given by the setting of the TMP environment
variable (the default location for temporary system files).
(On Windows, you cannot set one variable to another.)

AIX example:   
 
    export SMTMP=$TMP

    export SMTMP=../myscdir/garbage
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SMKNOWNEXTS   — Specifies additional emitters to which the SOM Compiler
should add a header. For example, if you were to write a
new emitter for Pascal, called “emitpas”, then by default the
SOM Compiler would not add any header comments to it.
However, by setting SMKNOWNEXTS=pas, as shown:

    set SMKNOWNEXTS=pas    (for OS/2 or 
                                                                              Windows)
    export SMKNOWNEXTS=pas (for AIX)

the SOM Compiler will add a header to files generated
with the “emitpas” emitter. The “header” added is a SOM
Compiler-generated message plus any comments, such
as copyright statements, that appear at the head of your .idl
input file. For details on writing your own emitter, see the
Emitter Framework Guide and Reference.

SOMIR    — Specifies the name (or list of names) of the Interface Re-
pository file. The ir emitter, if run, creates the Interface
Repository, or checks it for consistency if it already exists.
If the –u option is specified when invoking the SOM Com-
piler, the ir emitter also updates an existing Interface Re-
pository.

SMADDSTAR    — When defined, causes all interface references to have a “*”
added to them for the C bindings. The command-line op-
tions –maddstar and –mnoaddstar supercede and over-
ride the SMADDSTAR setting, however.

Running the SOM Compiler   

The syntax of the command for running the SOM Compiler takes the forms:

sc  [–options]  files                (on AIX or OS/2)
somc [–options]  files         (on Windows)

The “files” specified in the sc or somc command denote one or more files containing the IDL
class definitions to be compiled. If no extension is specified, .idl is assumed. By default, the
<filestem> of the .idl file determines the filestem of each emitted file. Otherwise, a “filestem”
modifier can be defined in the .idl file to specify another name (see “Modifier statements”
discussed earlier).

Selected “–options” can be specified individually, as a string of option characters, or as a
combination of both. Any option that takes an argument either must be specified individually or
must appear as the final option in a string of option characters. Available options and their
purposes are as follows:

–C n Sets the maximum allowable size for a simple comment in the .idl file (default:
32767). This is only needed for very large single comments.

–D  name[=def]
Defines name as in a #define directive. The default def  is 1. This option is the
same as the –D option for the C compiler. Note: This option can be used to
define __PRIVATE__ so that the SOM Compiler will also compile any methods
and attributes that have been defined as private using the directive #ifdef
__PRIVATE__; however, the –p option does the same thing more easily.
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–E variable=value
Sets an environment variable. (See the previous topic for a discussion of the
available environment variables: SMEMIT, SMINCLUDE, SMTMP, and SMNOIR.)

–I dir When looking for #included files, looks first in dir, then in the standard
directories (same as the C compiler –I option).

–S n Sets the total allowable amount of unique string space used in the IDL
specification for names and passthru lines (default: 32767). This is only
needed for very large .idl files.

–U name Removes any initial definition (via a #define preprocessor directive) of symbol
name.

–V Displays version information about the SOM Compiler.

–c Turns off comment processing. This allows comments to appear anywhere
within an IDL specification (rather than in restricted places), and it causes
comments not to be transferred to the output files that the SOM Compiler
produces.

–d  directory Specifies a directory where all output files should be placed. If the –d option is
not used, all output files are placed in the same directory as the input file.

–h or –? Produces a listing of this option list. (This option is typically used in an sc or
somc command that does not include a .idl file name).

–i filename Specifies the name of the class definition file. Use this option to override the
built-in assumption that the input file will have a .idl extension. Any filename
supplied with the –i option is used exactly as it is specified.

–m name[=value] 
Adds a global modifier. The currently supported global modifiers are as follows:

        addprefixes   
Adds ‘functionprefixes’ to the method procedure prototypes during an
incremental update of the implementation template file. This option applies
only when rerunning the c or xc emitter on an IDL file that previously did not
specify a functionprefix. A class implementor who later decides to use prefixes
should add a line in the ‘implementation’ section of the .idl file containing the
specification:

functionprefix = prefix

(as described earlier in the topic “Modifier statements”) and then rerun the c or
xc emitter using the –maddprefixes option. The method procedure prototypes
in the implementation file will then be updated so that each method name
includes the assigned prefix. (This option does not support changes to existing
prefix names, nor does it apply for OIDL files.)

        addstar This option causes all interface references to have a ‘*’ added to them for the

C bindings. See the earlier section entitled “Object types” for further details.

        comment=comment string
where comment string  can be either of the designations:  “/*”  or “//”. This option
indicates that comments marked in the designated manner in the .idl file are to
be completely ignored by the SOM Compiler and will not  be included in the
output files. Note: Comments on lines beginning with “//#” are always ignored
by the SOM Compiler.



4 – 40 SOMobjects Developer Toolkit Users Guide

–m name[=value]   (modifier options continued from the previous page)

        corba This option directs the SOM Compiler to compile the input definition according
to strict CORBA-defined IDL syntax. This means, for example, that comments
may appear anywhere and that pointers are not allowed. When the –mcorba
option is used, parts of a .idl file surrounded by #ifdef __SOMIDL__ and #endif
directives are ignored. This option can be used to determine whether all
nonstandard constructs (those specific to SOM IDL) are properly protected by
#ifdef __SOMIDL__ and #endif directives.

        csc This option forces the OIDL compiler to be run. This is required only if you
want to compile an OIDL file that does not have an extension of .csc or .sc.

        emitappend
This option causes emitted files to be appended at the end of existing files of
the same name.

        noaddstar
This option ensures that interface references will not have a “*” added to them
for the C bindings. This is the default setting; it is the opposite of the –m
compiler option addstar.

        noheader
This option ensures that the SOM Compiler does not add a header to the
beginning of an emitted file.

        noint This option directs the SOM Compiler not to warn about the portability
problems of using int’s in the source.

        nolock This option causes the Interface Repository Emitter emitir (see Chapter 7,
“Interface Repository Framework”) to leave the IR unlocked when updates are
made to it. This can improve performance on networked file systems. By not
locking the IR, however, there is the risk of multiple processes attempting to
write to the same IR, with unpredictable results. This option should only be
used when you know that only one process is updating an IR at once.

        nopp This option directs the SOM Compiler not to run the SOM preprocessor on
the .idl input file.

        noqualifytypes
This option prevents the use of C-scoped names in emitter output, and is used
in conjunction with the .hh emitter.

        notc This option directs the SOM Compiler not to create TypeCode information
when emitting files. This is required only when the .idl files contain some
undeclared types. This option is typically used when compiling converted .csc
files that have not had typing information added.

        nouseshort
This option directs the SOM Compiler not to generate short forms for type
names in the .h and .xh public header files. This can be useful to save disk
space.

        pp=preprocessor
This option directs the SOM Compiler to use the specified preprocessor as the
SOM preprocessor, rather than the default “somcpp”. Any standard C/C++

preprocessor can be used as a preprocessor for IDL specifications.

        tcconsts This option directs the SOM Compiler to generate TypeCode constants in the
.h and .xh public header files. Please refer to the Interface Repository
(described in Chapter 7) for more details.
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Note: All command-line –m modifier options can be specified in the environment by chang-
ing them to UPPERCASE and prepending “SM” to them. For example, if you want to always
set the options “–mnotc” and “–maddstar”, set corresponding environment variables as
follows:

On OS/2 or Windows:
    set SMNOTC=1

    set SMADDSTAR=1

On AIX:
    export SMNOTC=1

    export SMADDSTAR=1

–p Causes the “private” sections of the IDL file to be included in the compilation
(that is, sections preceded by #ifdef __PRIVATE__ that contain private methods
and attributes). Note: The –p option is equivalent to the earlier option
–D__PRIVATE__.

–r Checks that all names specified in the release order statement are valid
method names (default: FALSE).

–s string Substitutes string in place of the contents of the SMEMIT environment variable
for the duration of the current sc or somc command. This determines which
emitters will be run and, hence, which output files will be produced. (If a list of
values is given, on OS/2 only  the list must be enclosed in double quotes.)

The –s option is a convenient way to override the SMEMIT environment
variable. In OS/2 for example, the command:

> SC –s”h;c” EXAMPLE

is equivalent to the following sequence of commands:

> SET OLDSMEMIT=%SMEMIT%

> SET SMEMIT=H;C

> SC EXAMPLE

> SET SMEMIT=%OLDSMEMIT%

Similarly, in AIX the command:

> sc –sh”;”c example

is equivalent to the following sequence of commands:

> export OLDSMEMIT=$SMEMIT

> export SMEMIT=h”;”c

> sc example

> export SMEMIT=$OLDSMEMIT

Windows users: You should not  use quotes in substitution strings of the –s
option for the somc command:

> somc –sh;ih *.idl     Correct

> somc –s”h;ih” *.idl   Incorrect

–u Updates the Interface Repository (default: no update). With this option, the
Interface Repository will be updated even if the ir emitter is not explicitly
requested in the SMEMIT environment variable or the –s option.

–v Uses verbose mode to display informational messages (default: FALSE).
This option is primarily intended for debugging purposes and for writers of
emitters.

–w Suppresses warning messages (default: FALSE).
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The following sample commands illustrate various options for the sc command  (or similarly with
somc):

sc –sc hello.idl Generates file “hello.c”.

sc –hV      Generates a help message and displays the 

  version of the SOM Compiler currently available.

sc –vsh”;”ih hello.idl Generates “hello.h” and “hello.ih” with

  informational messages. Note: On Windows, 

  omit the quotes (”) when issuing this command.

sc –sxc –doutdir hello.idl

Generates “hello.xc”   in directory “outdir”.
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4.4  The ‘pdl’ Facility  
As discussed earlier in this chapter, the SOM Compiler provides a pdl (Public Definition
Language) emitter. This emitter generates a file that is the same as the .idl file from which it is
produced, except that it removes all items within the .idl file that are marked as “private.” An item
is marked as private by surrounding it with “#ifdef _ _PRIVATE_ _” and “#endif” directives. Thus,
the pdl emitter can be used to generate a “public” version of a .idl file.  (Generally, client
programs will need only the “public” methods and attributes.)

The SOMobjects Toolkit also provides a separate program, pdl, which performs the same
function as the pdl emitter, but can be invoked independently of the SOM Compiler. In addition,
the pdl program can remove any kind of items in the .idl file that are preceded by a user-speci-
fied “#ifdef” directive and followed by an “#endif” directive. The pdl program is invoked as
follows:

     pdl  [  –c | d | f | h | s | /  ]  files

where “files” specifies one or more .idl files whose specified “#ifdef” sections are to be removed.
Filenames must be completely specified (with the .idl extension). If no “#ifdef” directive is
specified (by including a –/<string> option), then the “#ifdef _ _PRIVATE_ _” sections will be
removed by default.

The pdl command supports the following options. (Selected options can be specified individual-
ly, as a string of option characters, or as a combination of both. Any option that takes an
argument either must be specified individually or must appear as the final option in a string of
option characters.)

–c cmd Specifies that, for each .idl file, the pdl program is to run the specified system
command. This command may contain a single occurrence of the string “%s”,
which will be replaced with the source file name before the command is
executed. For example the option –c“sc –sh %s” has the same effect as issuing
the sc command with the –sh option.

–d dir Specifies a directory in which the output files are to be placed. (The output files
are given the same name as the input files.) If no directory is specified, the
output files are named <fileStem>.pdl (where fileStem is the file stem of the
input file) and are placed in the current working directory.

–h Requests this description of the pdl command syntax and options.

–f Specifies that output files are to replace existing files with the same name,
even if the existing files are read–only. By default, files are replaced only if they
have write access.

–s smemit Specifies the SMEMIT variable with which the pdl program is to invoke the SOM
Compiler.

–/ <string> Specifies the “#ifdef” pattern for which the pdl program will strip out .idl
statements. The default is “#ifdef _ _PRIVATE_ _”.

For example, to install public versions of the .idl files in the directory “pubinclude”, type:

   pdl –d pubinclude *.idl
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Chapter 5.  Implementing Classes in SOM

This chapter begins with a more in-depth discussion of SOM concepts and the SOM run-time
environment than was appropriate in Chapter 2, “Tutorial for Implementing SOM Classes.”
Subsequent sections then provide information about completing an implementation template
file, updating the template file, compiling and linking, packaging classes in libraries, and other
useful topics for class implementors. During this process, you can refer to Chapter 4, “SOM IDL
and the SOM Compiler,” if you want to read the reference information or see the full syntax
related to topics discussed in this chapter. The current chapter ends with topics describing how
to customize SOMobjects execution in various ways.

5.1  The SOM Run-time Environment  
As discussed in Chapter 1, the SOMobjects Developer Toolkit provides

� The SOM Compiler, used when creating SOM class libraries, and

� The SOM run-time library, for using SOM classes at execution time.

The SOM run-time library provides a set of functions  used primarily for creating objects and
invoking methods on them. The data structures  and objects  that are created, maintained, and
used by the functions in the SOM run-time library constitute the SOM run-time environment.

A distinguishing characteristic of the SOM run-time environment is that SOM classes are
represented by run-time objects; these objects are called class objects. By contrast, other
object-oriented languages such as C++ treat classes strictly as compile-time structures that
have no properties at run time. In SOM, however, each class has a corresponding run-time
object. This has three advantages:  First, application programs can access information about a
class at run time, including its relationships with other classes, the methods it supports, the size
of its instances, and so on. Second, because much of the information about a class is estab-
lished at run time rather than at compile time, application programs needn’t be recompiled when
this information changes. Finally, because class objects can be instances of user-defined
classes in SOM, users can adapt the techniques for subclassing and inheritance in order to build
object-oriented solutions to problems that are otherwise not easily addressed within an OOP
context.

Run-time environment initialization 

When the SOM run-time environment is initialized, four primitive SOM objects are automatically
created. Three of these are class objects (SOMObject, SOMClass, and SOMClassMgr), and
one is an instance of SOMClassMgr, called the SOMClassMgrObject. Once loaded, applica-
tion programs can invoke methods on these class objects to perform tasks such as creating
other objects, printing the contents of an object, freeing objects, and the like. These four
primitive objects are discussed below.

In addition to creating the four primitive SOM objects, initialization of the SOM run-time environ-
ment also involves initializing global variables to hold data structures that maintain the state of
the environment. Other functions in the SOM run-time library rely on these global variables.

For application programs written in C or C++ that use the language-specific bindings provided by
SOM, the SOM run-time environment is automatically initialized the first time any object is
created. Programmers using other languages must initialize the run-time environment explicitly
by calling the somEnvironmentNew function (provided by the SOM run-time library) before
using any other SOM functions or methods.
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SOMObject class object  

SOMObject is the root class for all SOM classes. It defines the essential behavior  common to
all SOM objects. All user-defined SOM classes are derived, directly or indirectly, from this class.
That is, every SOM class is a subclass of SOMObject or of some other class derived from
SOMObject. SOMObject has no instance variables, thus objects that inherit from SOMObject
incur no size increase. They do inherit a suite of methods that provide the behavior required of all
SOM objects.

SOMClass class object  

Because SOM classes are run-time objects, and since all run-time objects are instances of
some class, it follows that a SOM class object must also be an instance of some class.
The class of a class is called a metaclass. Hence, the instances of an ordinary class are
individuals (nonclasses), while the instances of a metaclass are class objects.

In the same way that the class of an object defines the “instance methods” that the object can
perform, the metaclass of a class defines the “class methods” that the class itself can perform.
Class methods  (sometimes called factory methods  or constructors) are performed by class
objects. Class methods perform tasks such as creating new instances of a class, maintaining a
count of the number of instances of the class, and other operations of a “supervisory” nature.
Also, class methods facilitate inheritance of instance methods from parent classes.

The distinction between instance methods and class methods, as well as that between objects,
classes, and metaclasses, is illustrated in Figure 1. For information on the distinction between
parent classes and metaclasses, see the section “Parent class vs. metaclass,” below.

Instance Methods
defined in 
class “C” are 
performed by
O1 ... O5

Class Methods
defined in meta-
class “M” are per-
formed by class
“C” to produce
instances.

O2
O3

O4
O5

    Class
      “C”

  Object
         “O1”

Metaclass
     “M”

(“is an instance of”)

Class methods vs. instance methods

Figure 1. Class methods vs. instance methods.

SOMClass is the root class for all SOM metaclasses. That is, all SOM metaclasses must be
subclasses of SOMClass or of some metaclass derived from SOMClass. SOMClass defines
the essential behavior common to all SOM class objects. In particular, SOMClass provides:

� Six class methods for creating new class instances: somNew, somNewNoInit,
somRenew, somRenewNoInit, somRenewNoZero, and somRenewNoInitNoZero.

� A number of class methods that dynamically obtain or update information about a class
and its methods at run time, including: 
– somInitMIClass, for implementing multiple inheritance from parent classes, 
– somOverrideSMethod, for overriding inherited methods, and 
– somAddStaticMethod and somAddDynamicMethod, for introducing new methods.
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SOMClass is a subclass (or child) of SOMObject. Hence, SOM class objects  can also perform
the same set of basic instance methods common to all SOM objects. This is what allows SOM
classes to be real objects in the SOM run-time environment. SOMClass also has the unique
distinction of being its own metaclass (that is, SOMClass defines its own class methods).

A user-defined class can designate as its metaclass either SOMClass or another user-written
metaclass descended from SOMClass. If a metaclass is not explicitly specified, SOM deter-
mines one automatically.

SOMClassMgr class object and SOMClassMgrObject  

The third primitive SOM class is SOMClassMgr. A single instance of the SOMClassMgr
class is created automatically during SOM initialization. This instance is referred to as the
SOMClassMgrObject, because it is pointed to by the global variable SOMClassMgrObject.
The object SOMClassMgrObject has the responsibility to

� Maintain a registry (a run-time directory) of all SOM classes that exist within the current
process, and to

� Assist in the dynamic loading and unloading of class libraries.

For C/C++ application programs using the SOM C/C++ language bindings, the
SOMClassMgrObject automatically loads the appropriate library file and constructs a run-time
object for the class the first time an instance of a class is created. For programmers using other
languages, SOMClassMgr provides a method, somFindClass, for directing the
SOMClassMgrObject to load the library file for a class and create its class object.

Relationships among the four primitive SOM run-time objects are illustrated in Figure 2.
Again, the primitive classes supplied with SOM are SOMObject, SOMClass, and
SOMClassMgr. During SOM initialization, the latter class generates an instance called
SOMClassMgrObject. The left-hand side of Figure 2 shows parent-class relationships be-
tween the built-in SOM classes, and the right-hand side shows instance/class relationships.
That is, on the left SOMObject is the parent class of SOMClass and SOMClassMgr. On the
right SOMClass is the metaclass of itself, of SOMObject, and of SOMClassMgr, which are all
class objects at run time. SOMClassMgr is the class of SOMClassMgrObject.
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Primitive classes supplied
              with SOM

Objects created during SOM
initialization

 SOMClass
      class

SOMObject
      class

SOMClass
class object

SOMClassMgr
  class object

 SOMObject
 class object

SOMClassMgr
        class

SOMClassMgrObject
              object

Legend:
subclass–ofinstance–of

metaclass      class     simple object

Figure 2.  The SOM run-time environment provides four primitive objects, three of them class objects.

Parent class vs. metaclass 
There is a distinct difference between the notions of “parent” (or base) class and “metaclass.”
Both notions are related to the fact that a class defines the methods and variables of its
instances, which are therefore called instance methods and instance variables.

A parent of a given class is a class from which the given class is derived  by subclassing. (Thus,
the given class is called a child  or a subclass  of the parent.) A parent class is a class from which
instance methods and instance variables are inherited. For example, the parent of class “Dog”
might be class “Animal”. Hence, the instance methods and variables introduced by “Animal”
(such as methods for breathing and eating, or a variable for storing an animal’s weight) would
also apply to instances of “Dog”,  because “Dog” inherits these from “Animal”, its parent class.
As a result, any given dog instance would be able to breath and eat, and would have a weight.

A metaclass is a class whose instances are class objects, and whose instance methods and
instance variables (as described above) are therefore the methods and variables of class
objects. For this reason, a metaclass is said to define class methods — the methods that a class
object performs. For example, the metaclass of “Animal” might be “AnimalMClass”, which
defines the methods that can be invoked on class “Animal”  (such as, to create Animal instances
— objects that are not classes, like an individual pig or cat or elephant or dog).

Note: It is important to distinguish the methods of a class object (that is, the methods that can be
invoked on the class object, which are defined by its metaclass) from the methods that the class
defines for its instances.

To summarize: the parent of a class provides inherited methods that the class’s instances can
perform; the metaclass of a class provides class methods that the class itself can perform.  The
distinctions between parent class and metaclass are summarized in Figure 3.
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Any class “C” has both a metaclass  and one or more parent  class(es).

� The parent  class(es) of “C” provide the inherited instance methods  that individual
instances (objects “Oi”) of class “C” can perform. Instance methods that an instance
“Oi” performs might include (a) initializing itself, (b) performing computations using its
instance variables, (c) printing its instance variables, or (d) returning its size. New
instance methods are defined by “C” itself, in addition to those inherited from C’s
parent classes.

� The metaclass “M” defines the class methods  that class “C” can perform. For exam-
ple, class methods defined by metaclass “M” include those that allow “C” to (a) inherit
its parents’s instance methods and instance variables, (b) tell its own name, (c)
create new instances, and (d) tell how many instance methods it supports. These
methods are inherited from SOMClass. Additional methods supported by “M” might
allow “C” to count how many instances it creates.

� Each class “C” has one or more parent classes and exactly one metaclass. (The
single exception is SOMObject, which has no parent class.) Parent class(es) must
be explicitly identified in the IDL declaration of a class. (SOMObject is given as a
parent if no subsequently-derived class applies.) If a metaclass is not explicitly listed,
the SOM run time will determine an applicable metaclass.

� An instance of a metaclass is always another class object. For example, class “C” is
an instance of metaclass “M”. SOMClass is the SOM-provided metaclass from which
all subsequent metaclasses are derived.

Parent
 class
   “P”

Class
   “C”

O2

On
  Object
         “O1”

...

Characteristics of parent class vs. metaclass

Metaclass
     “M”

Legend:
subclass–ofinstance–of

metaclass      class     simple object

Figure 3. A class has both parent classes and a metaclass.   
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A metaclass has its own inheritance hierarchy (through its parent classes) that is independent of
its instances’ inheritance hierarchies. In Figure 4, a sequence of classes is defined (or derived),
stemming from SOMObject. The child class (or subclass) at the end of this line (“C2”) inherits
instance methods from all of its ancestor classes (here, SOMObject and “C1”). An instance
created by “C2” can perform any of these instance methods.  In an analogous manner, a line of
metaclasses is defined, stemming from SOMClass. Just as a new class is derived from an
existing class (such as SOMObject), a new metaclass is derived from an existing metaclass
(such as SOMClass). In this example, both SOMObject and class “C1” are instances of the
SOMClass metaclass, whereas class “C2” is an instance of metaclass “M2”, which inherits
from SOMClass.

SOMObject
    

Class
  “C1”

Class
  “C2”

Object
  “O1”

Object
  “O2”

Derivation of parent classes and metaclasses

SOMClass

Metaclass
     “M2”

Legend:
subclass–ofinstance–of

metaclass      class     simple object

Figure 4. Parent classes and metaclasses each have their own independent inheritance hierarchies.
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SOM-derived metaclasses   

As previously discussed, a class object can perform any of the class methods that its metaclass
defines. New metaclasses are typically created to modify existing class methods or introduce
new class method(s). Chapter 10, “Metaclass Framework,” discusses metaclass programming.

Three factors are essential for effective use of metaclasses in SOM:

• First, every class in SOM is an object that is implemented by a metaclass.

• Second, programmers can define and name new metaclasses, and can use these meta-
classes when defining new SOM classes.

• Finally, and most importantly, metaclasses cannot interfere with the fundamental guarantee
required of every OOP system: specifically, any code that executes without method-resolu-
tion error on instances of a given class will also execute without method-resolution errors on
instances of any subclass of this class.

Surprisingly, SOM is currently the only OOP system that can make this final guarantee while
also allowing programmers to explicitly define and use named metaclasses. This is possible
because SOM automatically determines an appropriate metaclass that supports this guaran-
tee, automatically deriving new metaclasses by subclassing at run time when this is necessary.

To better understand this concept, consider the situation in Figure 5. Here, class “A” is an
instance of metaclass “AMeta”. Assume that “AMeta” supports a method “bar” and that “A”
supports a method “foo” that uses the expression “_bar( _somGetClass( somSelf ) ).” That is,
method “foo” invokes “bar” on the class of the object on which “foo” is invoked. For example,
when method “foo” is invoked on an instance of class “A” (say, object “O1”), this in turn invokes
“bar” on class “A” itself.

interface B:A {

...

 implementation {

  metaclass = BMeta;

   ...

 };

}:

BMetaAMeta

Legend:
subclass–ofinstance–of

metaclass      class      simple object

Example of metaclass incompatibility 
(This cannot occur in SOM)

B

bar

Figure 5. Example of Metaclass Incompatibility.

O1

foo

O2

A

Now consider what happens when “A” is subclassed by “B”, a class that has the explicit
metaclass “BMeta” declared in its SOM IDL source file, as shown by the code in Figure 5. If the
class hierarchy were formed as in Figure 5, then an invocation of “foo” on “O2”  would fail,
because metaclass “BMeta” does not support the “bar”  method introduced by “AMeta”.
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There is only one way that “BMeta” can support this specific method — by inheriting it from
“AMeta” (“BMeta” could introduce another method named “bar”, but this would be a different
method from the one introduced by “AMeta”). Therefore, in this example, because “BMeta” is
not a subclass of “AMeta”, “BMeta” cannot be allowed to be the metaclass of “B”. That is,
“BMeta” is not compatible with the requirements placed on “B” by the fundamental principle of
OOP referred to above. This situation is referred to as metaclass incompatibility.   

SOM does not allow hierarchies with metaclass incompatibilities. Instead, SOM automatically
builds derived metaclasses when this is necessary. The resulting class hierarchy in this exam-
ple is depicted in Figure 6, where SOM has automatically built the metaclass
“DerivedMetaclass”. This ensures that the invocation of method “foo” on instances of class “B”
will not fail, and also ensures that the desired class methods provided by “BMeta” will be
available on class “B”.

BMetaAMeta

Legend:
subclass–ofinstance–of

metaclass      class    simple object

Example of a derived metaclass

A

B

DerivedMetaclass

Figure 6. Example of a Derived Metaclass.

bar

foo

There are three important aspects of SOM’s approach to derived metaclasses:

• First, the creation of SOM-derived metaclasses is integrated with programmer-specified
metaclasses. If a programmer-specified metaclass already supports all the class methods
and variables needed by a new class, then the programmer-specified metaclass will be used
as is.

• Second, if SOM must derive a different metaclass than the one explicitly indicated by the
programmer (in order to support all the necessary class methods and variables), then the
SOM-derived metaclass inherits from the explicitly indicated metaclass first. As a result, the
method procedures defined by the specified metaclass take precedence over other possibili-
ties (see the following section on inheritance and the discussion of resolution of ambiguity in
the case of multiple inheritance).

• Finally, the class methods defined by the derived metaclass invoke the appropriate initializa-
tion methods of its parents to ensure that the class variables of its instances are correctly
initialized.
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As further explanation for the automatic derivation of metaclasses, consider the following
multiple-inheritance example. In Figure 7, class “C” does not have an explicit metaclass decla-
ration in its SOM IDL, yet its parents do. As a result, class “C” requires a derived metaclass.
(If you still have trouble following the reasoning behind derived metaclasses, ask yourself the
following question: What class should “C” be an instance of?  After a bit of reflection, you will
conclude that, if SOM did not build the derived metaclass, you would have to do so yourself.)

BMetaAMeta

Legend:
subclass–ofinstance–of

metaclass      class    simple object

Multiple inheritance in SOM requires derived metaclasses

A

C

Figure 7. Multiple Inheritance requires Derived Metaclasses.

B

interface C : A,B {

 ...

 implementation {

   ...

 };

}:

DerivedMetaclass

In summary, SOM allows and encourages the definition and explicit use of named metaclasses.
With named metaclasses, programmers can not only affect the behavior of class instances by
choosing the parents of classes, but they can also affect the behavior of the classes themselves
by choosing their metaclasses. Because the behavior of classes in SOM includes the imple-
mentation of inheritance itself, metaclasses in SOM provide an extremely flexible and powerful
capability allowing classes to package solutions to problems that are otherwise very difficult to
address within an OOP context.

At the same time, SOM is unique in that it relieves programmers of the responsibility for avoiding
metaclass incompatibility when defining a new class. At first glance, this might seem to be
merely a useful (though very important) convenience. But, in fact, it is absolutely essential,
because SOM is predicated on binary compatibility with respect to changes in class imple-
mentations.

A programmer might, at one point in time, know the metaclasses of all ancestor classes of a new
subclass, and, as a result, be able to explicitly derive an appropriate metaclass for the new
class. Nevertheless, SOM must guarantee that this new class will still execute and perform
correctly when any of its ancestor class’s implementations are changed (which could even
include specifying different metaclasses). Derived metaclasses allow SOM to make this guar-
antee.  A SOM programmer need never worry about the problem of metaclass incompatibility;
SOM does this for the programmer. Instead, explicit metaclasses can simply be used to “add in”
whatever behavior is desired for a new class. SOM automatically handles anything else that is
needed. Chapter 10 provides useful examples of such metaclasses. A SOM programmer
should find numerous applications for the techniques that are illustrated there.
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5.2  Inheritance  
One of the defining aspects of an object model is its characterization of inheritance. This section
describes SOM’s model for inheritance.

A class in SOM defines an implementation for objects that support a specific interface:

� The interface  defines the methods supported by objects of the class, and is specified
using SOM IDL.

� The implementation  defines what instance variables implement an object’s state and what
procedures implement its methods.

New classes are derived (by subclassing) from previously existing classes through inheritance,
specialization, and addition. Subclasses inherit interface from their parent classes: any method
available on instances of a class is also available on instances of any class derived from it (either
directly or indirectly). Subclasses also inherit implementation (the procedures that implement
the methods) from their parent classes unless the methods are overridden (redefined or
specialized). In addition, a subclass may introduce new instance methods and instance vari-
ables that will be inherited by other classes derived from it.

SOM also supports multiple inheritance. That is, a class may be derived from (and may inherit
interface and implementation from) multiple parent classes. Note: Multiple inheritance is avail-
able only to SOM classes whose interfaces are specified in IDL, and not to SOM classes whose
interfaces are specified in SOM’s earlier interface definition language, OIDL. See Appendix B
for information on how to automatically convert existing OIDL files to IDL.

It is possible under multiple inheritance to encounter potential conflicts or ambiguities with
respect to inheritance. All multiple inheritance models must face these issues, and resolve the
ambiguities in some way. For example, when multiple inheritance is allowed, it is possible that a
class will inherit the same method or instance variable from different parents (because each of
these parents has some common ancestor that introduces the method or instance variable). In
this situation, a SOM subclass inherits only one implementation of the method or instance
variable. (The implementation of an instance variable within an object is just the location where it
is stored. The implementation of a method is a procedure pointer, stored within a method table.)
The following illustration addresses the question of which method implementation would be
inherited.

Consider the situation in Figure 8. Class “W” defines a method “foo”, implemented by procedure
“proc1”. Class “W” has two subclasses, “X” and “Y”. Subclass “Y” overrides the implementation
of “foo” with procedure “proc2”. Subclass “X” does not override “foo”. In addition, classes “X”
and “Y” share a common subclass, “Z”. That is, the IDL interface statement for class “Z” lists its
parents as “X” and “Y” in that order.

The question is thus: which implementation of method “foo” does class “Z” inherit — procedure
“proc1” defined by class “W”, or procedure “proc2” defined by class “Y”? The procedure for
performing inheritance that is defined by SOMClass resolves this ambiguity by using the left
path precedence rule: when the same method is inherited from multiple ancestors, the proce-
dure used to support the method is the one used by the leftmost ancestor  from which the
method is inherited. (The ordering of parent classes is determined by the order in which the
class implementor lists the parents in the IDL specification for the class.)

In Figure 8, then, class “Z” inherits the implementation of method “foo” defined by class “W”
(procedure “proc1”), rather than the implementation defined by class “Y” (procedure “proc2”),
because “X” is the leftmost ancestor of “Z” from which the method  “foo” is inherited. This rule
may be interpreted as giving priority to classes whose instance interfaces are mentioned first in
IDL interface definitions.
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Class
  “W”

Class
  “X”

Class
  “Y”

Class
  “Z”

Resolution of multiple-inheritance ambiguities

foo              proc1

foo              proc2

Method resolution in class “Z”:
foo  ⇒   left path precedence:  proc1 (not proc2)
 

foo              ??

foo              proc1

Figure 8. SOMClass uses the left path precedence rule to resolve some multiple inheritance

ambiguities.  

If a class implementor decides that the default inherited implementation is not appropriate (for
example, procedure “proc2” is desired), then SOM IDL allows the class designer to select the
parent whose implementation is desired. For more information concerning this approach, see
the select modifier, which is documented in the topic “Modifier statements” in Chapter 4, “SOM
IDL and the SOM Compiler.”

Note: Alternatively, an explicit metaclass for class “Z” could be introduced to change the way
methods are inherited. However, this would be a fairly serious step to take — it would also affect
the semantics of inheritance for all of Z’s descendant classes. Also, this would be done by
overriding somInitMIClass, which is strongly discouraged until such time that SOMobjects
includes the Cooperative Metaclass among its officially supported interface to the Metaclass
Framework.
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Class
  “X”

Class
  “Y”

Class
  “Z”

Resolution of multiple-inheritance ambiguities

bar (of type T1) bar (of type T2)

? bar ?

Figure 9. Some multiple inheritance ambiguities are illegal in IDL.

Another conflict that may arise with the use of multiple inheritance is when two ancestors of a
class define different methods (in general, with different signatures) with the same name. For
example, consider Figure 9. Class “X” defines a method “bar” with type T1, and class “Y” defines
a method “bar” with type T2. Class “Z” is derived from both “X” and “Y”, and “Z” does not override
method “bar”.

This example illustrates a method name that is “overloaded” — that is, used to name two entirely
different methods (note that overloading is completely unrelated to overriding). This is not
necessarily a difficult problem to handle. Indeed, the run-time SOM API allows the construction
of a class that supports the two different “bar” methods illustrated in FIgure 9. (They are
implemented using two different method-table entries, each of which is associated with its
introducing class.)

However, the interface to instances of such classes cannot  be defined using IDL. IDL specifical-
ly forbids the definition of interfaces in which method names are overloaded. Furthermore,
within SOM itself, the use of such classes can lead to anomalous behavior unless care is taken
to avoid the use of name-lookup method resolution (discussed in the following section), since, in
this case, a method name alone does not identify a unique method. For this reason, (statically
declared) multiple-inheritance classes in SOM are currently restricted to those whose instance
interfaces can be defined using IDL. Thus, the above example cannot be constructed with the
aid of the SOM Compiler.
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5.3  Method Resolution 
Method resolution is the step of determining which procedure to execute in response to a
method invocation. For example, consider this scenario:

� Class “Dog” introduces a method “bark”, and

� A subclass of “Dog”, called “BigDog”, overrides “bark”, and

� A client program creates an instance of either “Dog” or “BigDog” (depending on some
run-time criteria) and invokes method “bark” on that instance.

Method resolution is the process of determining, at run time, which method procedure to
execute in response to the method invocation (either the method procedure for “bark” defined by
“Dog”, or the method procedure for “bark” defined by “BigDog”). This determination depends on
whether the receiver of the method (the object on which it is invoked) is an instance of “Dog” or
“BigDog” (or perhaps depending on some other criteria).

SOM allows class implementors and client programs considerable flexibility in deciding how
SOM performs method resolution. In particular, SOM supports three mechanisms for method
resolution, described in order of increased flexibility and increased computational cost: offset
resolution, name-lookup resolution, and dispatch-function resolution.

Offset resolution  
When using SOM’s C and C++ language bindings, offset resolution is the default way of
resolving methods, because it is the fastest. For those familiar with C++, this is roughly equiva-
lent to the C++ “virtual function” concept.

Although offset resolution is the fastest technique for method resolution, it is also the most
constrained. Specifically, using offset resolution requires these constraints:

� The name of the method to be invoked must be known at compile time,

� The name of the class that introduces the method must be known at compile time
(although not necessarily by the programmer), and

� The method to be invoked must be part of the introducing class’s static (IDL) interface
definition.

To perform offset method resolution, SOM first obtains a method token  from a global data
structure associated with the class that introduced the method. This data structure is called the
ClassData structure. It includes a method token for each method the class introduces. The
method token is then used as an “index” into the receiver’s method table, to access the
appropriate method procedure. Because it is known at compile time which class introduces the
method and where in that class’s ClassData structure the method’s token is stored, offset
resolution is quite efficient. The cost of offset method resolution is currently about twice the cost
of calling a C function using a pointer loaded with the function address.

An object’s method table is a table of pointers to the procedures that implement the methods
that the object supports. This table is constructed by the object’s class and is shared among the
class instances. The method table built by class (for its instances) is referred to as the class’s
instance method table. This is useful terminology, since, in SOM, a class is itself an object with a
method table (created by its metaclass) used to support method calls on the class.

Usually, offset method resolution is sufficient; however, in some cases, the more flexible
name-lookup resolution is required.

Name-lookup resolution  
Name-lookup resolution is similar to the method resolution techniques employed by Objec-
tive-C and Smalltalk. It is currently about five times slower than offset resolution. It is more
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flexible, however. In particular, name-lookup resolution, unlike offset resolution, can be used
when:

� The name of the method to be invoked isn’t known until run time, or

� The method is added to the class interface at run time, or

� The name of the class introducing the method isn’t known until run time.

For example, a client program may use two classes that define two different methods of the
same name, and it might not be known until run time which of the two methods should be
invoked (because, for example, it will not be known until run time which class’s instance the
method will be applied to).

Name-lookup resolution is performed by a class, so it requires a method call. (Offset resolution,
by contrast, requires no method calls.) To perform name-lookup method resolution, the class of
the intended receiver object obtains a method procedure pointer for the desired method that is
appropriate for its instances. In general, this will require a name-based search through various
data structures maintained by ancestor classes.

Offset and name-lookup resolution achieve the same net effect (that is, they select the same
method procedure); they just achieve it differently (via different mechanisms for locating the
method’s method token). Offset resolution is faster, because it does not require searching for
the method token, but name-lookup resolution is more flexible.

When defining (in SOM IDL) the interface to a class of objects, the class implementor can
decide, for each method, whether the SOM Compiler will generate usage bindings that support
name-lookup resolution for invoking the method. Regardless of whether this is done, however,
application programs using the class can have SOM use either technique, on a per-method-call
basis. Chapter 3, “Using SOM Classes in Client Programs,” describes how client programs
invoke methods.“

Dispatch-function resolution  
Dispatch-function resolution is the slowest, but most flexible, of the three method-resolution
techniques. Dispatch functions permit method resolution to be based on arbitrary rules asso-
ciated with the class of which the receiving object is an instance. Thus, a class implementor has
complete freedom in determining how methods invoked on its instances are resolved.

With both offset and name-lookup resolution, the net effect is the same — the method proce-
dure that is ultimately selected is the one supported by the class of which the receiver is an
instance. For example, if the receiver is an instance of class “Dog”, then Dog’s method proce-
dure will be selected; but if the receiver is an instance of class “BigDog”, then BigDog’s method
procedure will be selected.

By contrast, dispatch-function resolution allows a class of instances to be defined such that the
method procedure is selected using some other criteria. For example, the method procedure
could be selected on the basis of the arguments to the method call, rather than on the receiver.
For more information on dispatch-function resolution, see the description and examples for the
somDispatch, and somOverrideMtab methods in the SOMobjects Developer Toolkit Pro-
grammers Reference Manual.

Customizing method resolution  
Customizing method resolution requires the use of metaclasses that override SOMClass
methods. This is not recommend without use of the Cooperative Metaclass that guarantees
correct operation of SOMobjects in conjunction with such metaclasses. SOMobjects users who
require this functionality should request access to the experimental Cooperative Metaclass
used to implement the SOMobjects Metaclass Framework. Metaclasses implemented using
the Cooperative Metaclass may have to be reprogrammed in the future when SOMobjects
introduces an officially supported Cooperative Metaclass.
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The four kinds of SOM methods  

SOM supports four different kinds of methods:  static methods, nonstatic methods, dynamic
methods, and direct-call procedures. The following paragraphs explain these four method
categories and the kinds of method resolution available for each.

Static methods 
These are similar in concept to C++ virtual functions. Static methods are normally invoked using
offset resolution via a method table, as described above, but all three kinds of method resolution
are applicable to static methods. Each different static method available on an object is given a
different slot in the object’s method table. When SOMobjects Toolkit language bindings are used
to implement a class, the SOM IDL method modifier can be specified to indicate that a given
method is static; however, this modifier is rarely used since it is the default for SOM methods.

Static methods introduced by a class can be overridden (redefined) by any descendant classes
of the class. When SOMobjects language bindings are used to implement a class, the SOM IDL
override modifier is specified to indicate that a class overrides a given inherited method. When
a static method is resolved using offset resolution, it is not important which interface is acces-
sing the method — the actual class of the object determines the method procedure that is
selected.

Note:  All SOM IDL modifiers are described in the topic “Modifier statements” in Chapter 4,
“SOM IDL and the SOM Compiler.”

Nonstatic methods 
These methods are similar in concept to C++ nonstatic member functions (that is, C++ functions
that are not virtual member functions and are not static member functions). Nonstatic methods
are normally invoked using offset resolution, but all three kinds of method resolution are
applicable to nonstatic methods. When the SOMobjects language bindings are used to imple-
ment a class, the SOM IDL nonstatic modifier is used to indicate that a given method is
nonstatic.

Like static methods, nonstatic methods are given individual positions in method tables. Howev-
er, nonstatic methods cannot be overridden. Instead, descendants of a class that introduces a
nonstatic method can use the SOM IDL reintroduce modifier to “hide” the original nonstatic
method with another (nonstatic or static) method of the same name and signature. When a
nonstatic method is resolved, selection of the specific method procedure is determined by the
interface that is used to access the method.

Dynamic methods 
These methods are not declared when specifying an object interface using IDL. Instead, they
are registered with a class object at run time using the method somAddDynamicMethod.
Because there is no way for SOM to know about dynamic methods before run time, offset
resolution is not available for dynamic methods. Only name-lookup or dispatch-function resolu-
tion can be used to invoke dynamic methods. Dynamic methods cannot be overridden.

Direct-call procedures 
These are similar in concept to C++ static member functions. Direct-call procedures are not
given positions in SOM method tables, but are accessed directly from a class’s ClassData
structure. Strictly speaking, none of the previous method-resolution approaches apply for
invoking a direct-call procedure, although SOMobjects language bindings provide the same
invocation syntax for direct-call procedures as for static or nonstatic methods. Direct-call
procedures cannot be overridden, but they can be reintroduced. When SOMobjects language
bindings are used to implement a class, the SOM IDL procedure modifier is used to indicate
that a given method is a direct-call procedure. Note: Methods having the procedure modifier
cannot be invoked remotely using DSOM.



5 – 16 SOMobjects Developer Toolkit Users Guide

5.4  Implementing SOM Classes   
The interface  to a class of objects contains the information that a client must know to use an
object — namely, the signatures of its methods and the names of its attributes. The interface is
described in a formal language independent of the programming language used to implement
the object’s methods. In SOM, the formal language used to define object interfaces is the
Interface Definition Language (described in Chapter 4, “SOM IDL and the SOM Compiler”).

The implementation  of a class of objects  (that is, the procedures that implement the methods
and the instance variables that store an object’s state) is written in the implementor’s preferred
programming language. This language can be object-oriented (for instance, C++) or procedural
(for instance, C).

A completely implemented class definition, then, consists of two main files:

� An IDL specification of the interface to instances of the class — the interface definition file
(or .idl file) and

� Method procedures written in the implementor’s language of choice — the implementation
file.

The SOM Compiler provides the link between those two files: To assist users in implementing
classes, the SOM Compiler produces a template implementation file — a type-correct guide for
how the implementation of a class should look. Then, the class implementor modifies this
template file to fully implement the class’s methods. That process is the subject of the remainder
of this chapter.

The SOM Compiler can also update the implementation file to reflect changes subsequently

made to a class’s interface definition file (the .idl file). These incremental updates  include ad-
ding new stub procedures, adding comments, and changing method prototypes to reflect
changes made to the method declarations in the IDL specification. These updates to the imple-
mentation file, however, do not  disturb existing code in the method procedures. These updates
are discussed further in “Running incremental updates of the implementation template file” later
in this section.

For C programmers, the SOM Compiler generates a <filestem>.c file. For C++ programmers,
the SOM Compiler generates a <filestem>.C file (for AIX) or a <filestem>.cpp file (for OS/2 or
Windows). To specify whether the SOM Compiler should generate a C or C++ implementation
template, set the value of the SMEMIT environment variable, or use the –s option when running
the SOM Compiler. (See “The SOM Compiler” in Chapter 4, “SOM IDL and the SOM Compiler.”)

Note:  As this chapter describes, a SOM class can be implemented by using C++ to define the
instance variables introduced by the class and to define the procedures that implement the
overridden and introduced methods of the class. Be aware, however, that the C++ class defined
by the C++ usage bindings for a SOM class (described in Chapter 3) cannot be subclassed in
C++ to create new C++ or SOM classes.� 

� The reason why the C++ implementation of a SOM class involves the definition of C++ procedures (not C++ methods) to support

SOM methods is that there is no language-neutral way to call a C++ method. Only C++  code can call C++ methods, and this calling
code must be generated by the same compiler that generates the method code. In contrast, the method procedures that implement
SOM methods must be callable from any language, without knowledge on the part of the object client as to which language is used to

implement the resolved method procedure.



5 – 175.  Implementing Classes in SOM

The implementation template  

Consider the following IDL description of the “Hello” class:

#include <somobj.idl>   

interface Hello : SOMObject

{

    void sayHello();

    // This method outputs the string ”Hello, World!”.

};

From this IDL description, the SOM Compiler generates the following C implementation tem-
plate, hello.c (a C++ implementation template, hello.C or hello.cpp, is identical except that the
#included file is <hello.xih> rather than <hello.ih>):

#define Hello_Class_Source

#include <hello.ih>

/*

 *  This method outputs the string ”Hello, World!”.

 */

SOM_Scope void   SOMLINK sayHello(Hello somSelf, Environment *ev)

{

    /* HelloData *somThis = HelloGetData(somSelf); */

    HelloMethodDebug(”Hello”,”sayHello”);

}

The first line defines the “Hello_Class_Source” symbol, which is used in the SOM-generated
implementation header files for C to determine when to define various functions, such as
“HelloNewClass.” For interfaces defined within a module, the directive “#define
<className>_Class_Source” is replaced by the directive “#define SOM_Module_<module-
Name>_Source”.

The second line (#include <hello.ih> for C, or  #include <hello.xih> for C++) includes
the SOM-generated implementation header file. This file defines a struct holding the class’s
instance variables, macros for accessing instance variables, macros for invoking parent meth-
ods, and so forth.

Stub procedures for methods   
For each method introduced or overridden by the class, the implementation template includes
a stub procedure — a procedure that is empty except for an initialization statement, a debugging
statement, and possibly a return statement. The stub procedure for a method is preceded by
any comments that follow the method’s declaration in the IDL specification.

For method “sayHello” above, the SOM Compiler generates the following prototype of the stub
procedure:

SOM_Scope void SOMLINK sayHello(Hello somSelf, Environment *ev)

The “SOM_Scope” symbol is defined in the implementation header file as either “extern” or
“static,” as appropriate. The term “void” signifies the return type of method “sayHello”. The
“SOMLINK” symbol is defined by SOM; it represents the keyword needed to link to the C or C++

compiler, and its value is system-specific. Using the “SOMLINK” symbol allows the code to work
with a variety of compilers without modification.

Following the “SOMLINK” symbol is the name of the procedure that implements the method. If no
functionprefix modifier has been specified for the class, then the procedure name is the same
as the method name. If a functionprefix modifier is in effect, then the procedure name is
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generated by prepending the specified prefix to the method name. For example, if the class
definition contained the following statement:

functionprefix = xx_;

then the prototype of the stub procedure for method “sayHello” would be:

SOM_Scope void SOMLINK xx_sayHello(Hello somSelf, Environment *ev)

The functionprefix cannot be

<classname>_

since this is used in method invocation macros defined by the C usage bindings.

Following the procedure name is the formal parameter list for the method procedure. Because
each SOM method always receives at least one argument (a pointer to the SOM object that
responds to the method), the first parameter name in the prototype of each stub procedure is
called somSelf. (The macros defined in the implementation header file rely on this convention.)
The somSelf parameter is a pointer to an object that is an instance of the class being imple-
mented (here, class “Hello”) or an instance of a class derived from it.

Unless the IDL specification of the class included the callstyle=oidl modifier, then the formal
parameter list will include one or two additional parameters before the parameters declared in
the IDL specification: an (Environment *ev) input/output parameter, which permits the return of
exception information, and, if the IDL specification of the method includes a context specifica-
tion, a (Context *ctx) input parameter. These parameters are prescribed by the CORBA stan-
dard. For more information on using the Environment and Context parameters, see the
section entitled “Exceptions and error handling” in Chapter 3, “Using SOM Classes in Client
Programs,” and the book The Common Object Request Broker: Architecture and Specification,
published by Object Management Group and X/Open.

The first statement in the stub procedure for method “sayHello” is the statement:

   /* HelloData *somThis = HelloGetData(somSelf); */

This statement is enclosed in comments only when the class does not  introduce any instance
variables. The purpose of this statement, for classes that do introduce instance variables, is to
initialize a local variable (somThis) that points to a structure  representing the instance vari-
ables introduced by the class. The somThis pointer is used by the macros defined in the “Hello”
implementation header file to access those instance variables. (These macros are described
below.) In this example, the “Hello” class introduces no instance variables, so the statement is
commented out. If instance variables are later added to a class that initially had none, then the
comment characters can be removed if access to the variable is required.

The “HelloData” type and the “HelloGetData” macro used to initialize the somThis pointer are
defined in the implementation header file. Within a method procedure, class implementors can
use the somThis pointer to access instance data, or they can use the convenience macros
defined for accessing each instance variable, as described below.

To implement a method so that it can modify a local copy of an object’s instance data without
affecting the object’s real instance data, declare a variable of type <className>Data (for ex-
ample, “HelloData”) and assign to it the structure that somThis points to; then make the
somThis pointer point to the copy. For example:

    HelloData myCopy = *somThis;

    somThis = &myCopy;

Next in the stub procedure for method “sayHello” is the statement:

    HelloMethodDebug(”Hello”,“sayHello”);
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This statement facilitates debugging. The “HelloMethodDebug” macro is defined in the imple-
mentation header file. It takes two arguments, a class name and a method name. If debugging is
turned on (that is, if global variable SOM_TraceLevel is set to one in the calling program), the
macro produces a message each time the method procedure is entered. (See Chapter 3, “Using
SOM Classes in Client Programs,” for information on debugging with SOM.)

Debugging can be permanently disabled (regardless of the SOM_TraceLevel setting in the
calling program) by redefining the <className>MethodDebug macro as SOM_NoTrace(c,m)
following the #include directive for the implementation header file. (This can yield a slight
performance improvement.) For example, to permanently disable debugging for the “Hello”
class, insert the following lines in the hello.c implementation file following the line “#include
hello.ih” (or “#include hello.xih,” for classes implemented in C++):

#undef HelloMethodDebug

#define HelloMethodDebug(c,m) SOM_NoTrace(c,m)  

The way in which the stub procedure ends is determined by whether the method is a new or an
overriding method.

� For non-overriding (new) methods, the stub procedure ends with a return statement
(unless the return type of the method is void). The class implementor should customize
this return statement.

� For overriding methods, the stub procedure ends by making a “parent method call” for
each of the class’s parent classes. If the method has a return type that is not void, the last
of these parent method calls is returned as the result of the method procedure. The class
implementor can customize this return statement if needed (for example, if some other
value is to be returned, or if the parent method calls should be made before the method
procedure’s own processing). See the next section for a discussion of parent method calls.

If a classinit modifier was specified to designate a user-defined procedure that will initialize the
“Hello” class object, as in the statement:

    classinit = HInit;

then the implementation template file would include the following stub procedure for “HInit”, in
addition to the stub procedures for Hello’s methods:

    void  SOMLINK HInit(SOMClass *cls)

    {

    }

This stub procedure is then filled in by the class implementor. If the class definition specifies a
functionprefix modifier, the classinit procedure name is generated by prepending the speci-
fied prefix to the specified classinit name, as with other stub procedures.

Extending the implementation template  

To implement a method, add code to the body of the stub procedure. In addition to standard C or
C++ code, class implementors can also use any of the functions, methods, and macros SOM
provides for manipulating classes and objects. Chapter 3, “Using SOM Classes in Client
Programs,” discusses these functions, methods, and macros.

In addition to the functions, methods, and macros SOM provides for both class clients and class
implementors, SOM provides two facilities especially for class implementors. They are for (1)
accessing instance variables of the object responding to the method and (2) making parent
method calls, as follows.
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Accessing internal instance variables  
To access internal instance variables, class implementors can use either of the following forms:

_variableName

somThis–>variableName

To access internal instance variables “a”, “b”, and “c”, for example, the class implementor could
use either _a, _b, and _c, or somThis–>a, somThis–>b, and somThis–>c. These expressions
can appear on either side of an assignment statement. The somThis pointer must be properly
initialized in advance using the <className>GetData procedure, as shown above.

Instance variables can be accessed only within the implementation file of the class that intro-
duces the instance variable, and not within the implementation of subclasses or within client
programs. (To allow access to instance data from a subclass or from client programs, use an
attribute rather than an instance variable to represent the instance data.) For C++ programmers,
the _variableName form is available only if the macro VARIABLE_MACROS is defined (that is,
#define VARIABLE_MACROS) in the implementation file prior to including the .xih file for the
class.

Making parent method calls  
In addition to macros for accessing instance variables, the implementation header file that the
SOM Compiler generates also contains definitions of macros for making “parent method calls.”
When a class overrides a method defined by one or more of its parent classes, often the new
implementation simply needs to augment the functionality of the existing implementation(s).
Rather than completely re-implementing the method, the overriding method procedure can
conveniently invoke the procedure that one or more of the parent classes uses to implement
that method, then perform additional computation (redefinition) as needed. The parent method
call can occur anywhere within the overriding method. (See Example 3 of the SOM IDL tutorial.)

The SOM-generated implementation header file defines the following macros for making par-
ent-method calls from within an overriding method:

<className>_parent_<parentClassName>_<methodName> 
                         (for each parent class of the class overriding the method), and

<className>_parents_<methodName>.

For example, given class “Hello” with parents “File” and “Printer” and overriding method
somInit (the SOM method that initializes each object), the SOM Compiler defines the following
macros in the implementation header file for “Hello”:

Hello_parent_Printer_somInit 

Hello_parent_File_somInit

Hello_parents_somInit

Each macro takes the same number and type of arguments as <methodName>. The
<className>_parent_<parentClassName>_<methodName> macro invokes the implemen-
tation of <methodName> inherited from <parentClassName>. Hence, using the macro
“Hello_parent_File_somInit” invokes File’s implementation of somInit.

The <className>_parents_<methodName> macro invokes the parent method for each par-
ent of the child class that supports <methodName>. That is, “Hello_parents_somInit” would
invoke File’s implementation of somInit, followed by Printer’s implementation of somInit. The
<className>_parents_<methodName> macro is redefined in the binding file each time the
class interface is modified, so that if a parent class is added or removed from the class
definition, or if <methodName> is added to one of the existing parents, the macro
<className>_parents_<methodName> will be redefined appropriately.
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Converting C++ classes to SOM classes   
For C++ programmers implementing SOM classes, SOM provides a macro that simplifies the
process of converting C++ classes to SOM classes. This macro allows the implementation of
one method of a class to invoke another new or overriding method of the same class on the
same receiving object by using the following shorthand syntax:

_methodName(arg1, arg2, ...)

For example, if class X introduces or overrides methods m1 and m2, then the C++ implementa-
tion of method m1 can invoke method m2 on its somSelf argument using _m2(arg, arg2, ...),
rather than somSelf–>m2(arg1, arg2, ...), as would otherwise be required. (The longer form is
also available.) Before the shorthand form in the implementation file is used, the macro
METHOD_MACROS must be defined (that is, use #define METHOD_MACROS) prior to including
the .xih file for the class.  

Running incremental updates of the implementation template file   
Refining the .idl file for a class is typically an iterative process. For example, after running the IDL
source file through the SOM Compiler and writing some code in the implementation template
file, the class implementor realizes that the IDL class interface needs another method or
attribute, a method needs a different parameter, or any such changes.

As mentioned earlier, the SOM Compiler (when run using the c or xc emitter) assists in this
development by reprocessing the .idl file and making incremental updates  to the current
implementation file. This modify-and-update process may in fact be repeated several times
before the class declaration becomes final. Importantly, these updates do not disturb existing
code for the method procedures. Included in the incremental update are these changes:

� Stub procedures are inserted into the implementation file for any new methods added to
the .idl file.

� New comments in the .idl file are transferred to the implementation file, reformatted
appropriately.

� If the interface to a method has changed, a new method procedure prototype is placed in
the implementation file. As a precaution, however, the old prototype is also preserved
within comments. The body of the method procedure is left untouched (as are the method
procedures for all methods).

� Similarly left intact are preprocessor directives, data declarations, constant declarations,
non-method functions, and additional comments — in essence, everything else in the
implementation file.

Some changes to the .idl file are not  reflected automatically in the implementation file after an
incremental update. The class implementor must manually edit the implementation file after
changes such as these in the .idl file:

� Changing the name of a class or a method.

� Changing the parents of a class (see also “If you change the parents of a class...” later in
this topic).

� Changing a functionprefix class modifier statement.  

� Changing the content of a passthru statement directed to the implementation (.c, .C, or
.cpp) file. As previously emphasized, however, passthru statements are primarily recom-
mended only for placing #include statements in a binding file (.ih, .xih, .h, or .xh file) used
as a header file in the implementation file or in a client program.

� If the class implementor has placed “forward declarations” of the method procedures in the
implementation file, those are not updated. Updates occur only for method prototypes that
are part of the method procedures themselves.
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Considerations to ensure that updates work
To ensure that the SOM Compiler can properly update method procedure prototypes in the
implementation file, class implementors should avoid editing changes such as the following:

� A method procedure name should not  be enclosed in parentheses in the prototype.

� A method procedure name must appear in the first line of the prototype, excluding com-
ments and whitespace. Thus, a newline must not  be inserted before the procedure name.

Error messages occur while updating an existing implementation file if it contains syntax that is
not ANSI C. For example, “old style” method definitions such as the example on the left generate
errors:

     Invalid “old” syntax Required ANSI C

     void foo(x) void foo(short x) {

     short x;  ...

     { }

      ...

     }

Similarly, error messages occur if anything in the .idl file would produce an implementation file
that is not syntactically valid for C/C++ (such as nested comments). If update errors occur, either
the .idl file or the implementation file may be at fault. One way to track down the problem is to run
the implementation file through the C/C++ compiler. Or, move the existing implementation file to
another directory, generate a completely new one from the .idl file, and then run it  through the
C/C++ compiler. One of these steps should pinpoint the error, if the compiler is strict ANSI.

Conditional compilation (using #if and #ifdef directives) in the implementation file can be another
source of errors, because the SOM Compiler does not invoke the preprocessor (it simply
recognizes and ignores those directives). The programmer should be careful when using
conditional compilation, to avoid a situation such as shown below; here, with apparently two
open braces and only one closing brace, the c or xc emitter would report an unexpected
end-of-file:

     Invalid syntax Required matching braces

     #ifdef FOOBAR #ifdef FOOBAR

      {  {

       ...   ...

     #else  }

      { #else

       ...  {

     #endif   ...

      }  }

#endif

If you change the parents of a class...  
Because the implementation-file emitters never change any existing code within a previously
generated implementation file, changing the parents of a class requires extremely careful
attention by the programmer. For example, for overridden methods, changing a class’s parents
may invalidate previous parent-method calls provided by the template, and require the addition
of new parent-method calls. Neither of these issues is addressed by the incremental update of
previously generated method-procedure templates.

The greatest danger from changing the parents of a class, however, concerns the ancestor-in-
itializer calls provided in the stub procedures for initializer methods. (For further information on
ancestor initializer calls, see “Initializing and Uninitializing Objects” later in this chapter.) Unlike
parent-method calls, ancestor-initializer calls are not optional — they must be made to all
classes specified in a directinitclasses modifier, and these calls should always include the



5 – 235.  Implementing Classes in SOM

parents of the class (the default when no directinitclasses modifier is given). When the parents
of a class are changed, however, the ancestor-initializer calls (which must be made in a specific
order) are not updated.

The easiest way to deal with this problem is to change the method name of the previously
generated initializer stub procedure in the implementation template file. Then, the SOM Compil-
er can correctly generate a completely new initializer stub procedure (while ignoring the re-
named procedure). Once this is done, your customization code from the renamed initializer
procedure can be “merged” into the newly generated one, after which the renamed initializer
procedure can be deleted.

Compiling and linking  

After you fill in the method stub procedures, the implementation template file can be compiled
and linked with a client program as shown below. In these examples, the environment variable
SOMBASE represents the directory in which SOM has been installed.

Note:  If you are building an application that uses a combination of C and C++ compiled object
modules, then the C++ linker must be used.

For AIX:  When the client program (main.c) and the implementation file (hello.c)
  are written in C:

> xlc –I. –I$SOMBASE/include –o hello main.c hello.c \ 

      –L$SOMBASE/lib –lsomtk

When the client program and the implementation file are written in C++:

> xlC –I. –I$SOMBASE/include –o hello main.C hello.C \ 

      –L$SOMBASE/lib –lsomtk

For OS/2:  When the client program (main.c) and the implementation file (hello.c) are in C:

> set LIB=%SOMBASE%\lib;%LIB%

> icc –I. –I%SOMBASE%\include –Fe hello \

      main.c hello.c somtk.lib

When the client program and the implementation file are written in C++:

> set LIB=%SOMBASE%\lib;%LIB%

> icc –I. –I%SOMBASE%\include –Fe hello \

      main.cpp hello.cpp somtk.lib

For Windows:  When the client program (main.c) and the implementation file (hello.c) are in C:

> cl –AL –Zp1 –I. –I%SOMBASE%\include –Fehello \

      main.c hello.c llibcew.lib libw.lib somtk.lib main.def

When the client program and the implementation file are written in C++:

> cl –AL –Zp1 –I. –I%SOMBASE%\include –Fehello \

      main.cpp hello.cpp llibcew.lib libw.lib somtk.lib main.def

Windows compiler notes:  The SOM Compiler and runtime libraries under Windows only
provide support for Large Memory Model systems. The “–Oi” compile flag should be used
whenever a SOM Windows program contains or calls any functions that return floats or doubles.
The “–F” option can be used to set the stack size if STACKSIZE is not specified in a .def file.
Additionally, for this manual, compile and link commands are demonstrated using the Visual C++

compiler. Sample Makefiles shipped with SOMobjects For Windows also show how to build with
other compilers.
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For all users:  If the class definition (in the .idl file) changes, run the SOM Compiler again. This
will generate new header files, and it will update the implementation file to include any:

� New comments,

� Stub procedures for any new methods, and

� Revised method procedure prototypes for methods whose signatures have been changed
in the .idl file.

After rerunning the SOM Compiler, add to the implementation file the code for any newly added
method procedures, and recompile the implementation file with the client program.



5 – 255.  Implementing Classes in SOM

5.5  Initializing and Uninitializing Objects  
This section discusses the initialization and uninitialization of SOM objects. Subsequent topics
introduce the methods and capabilities that the SOMobjects Developer Toolkit provides to
facilitate this.

Object creation is the act that enables the execution of methods on an object. In SOM, this
means storing a pointer to a method table into a word of memory. This single act converts raw
memory into an (uninitialized) SOM object that starts at the location of the method table pointer.

Object initialization, on the other hand, is a separate activity from object creation in SOM.
Initialization is a capability supported by certain methods available on an object. An object’s
class determines the implementation of the methods available on the object, and thus deter-
mines its initialization behavior.

The instance variables encapsulated by a newly created object must be brought into a consis-
tent state before the object can be used. This is the purpose of initialization methods.  Because,
in general, every ancestor of an object’s class contributes instance data to an object, it is
appropriate that each of these ancestors contribute to the initialization of the object.

SOM thus recognizes initializers as a special kind of method. One advantage of this approach
is that special metaclasses are not required for defining constructors (class methods) that take
arguments. Furthermore, a class can define multiple initializer methods, thus enabling its
different objects to be initialized supporting different characteristics or capabilities. This results
in simpler designs and more efficient programs.

The SOMobjects Toolkit provides an overall framework that class designers can easily exploit
in order to implement default or customized initialization of SOM objects. This framework is fully
supported by the SOM Toolkit emitters that produce the implementation template file. The
following sections describe the declaration, implementation, and use of initializer (and uninitial-
izer) methods.

Important: All code written prior to SOMobjects Release 2.1 using documented guidelines for
the earlier initialization approach based on the somInit method (as well as all existing class
binaries) continues to be fully supported and useful.

Initializer methods  
As noted above, in the SOMobjects Toolkit each ancestor of an object contributes to the
initialization of that object. Initialization of an object involves a chain of ancestor-method calls
that, by default, are automatically determined by the SOM Compiler emitters. The SOMobjects
framework for initialization of objects is based on the following approach:

1. SOMobjects recognizes initializers as a special kind of method, and supports a
special mechanism for ordering the execution of ancestor-initializer method proce-
dures. The SOMObject class introduces an initializer method, somDefaultInit, that
uses this execution mechanism.

2. The SOM Compiler’s emitters provide special support for methods that are declared
as initializers in the .idl file. To supplement the somDefaultInit method, SOM class
designers can also declare additional initializers in their own classes.

Two SOM IDL modifiers are provided for declaring initializer methods and controlling their
execution, init and directinitclasses:

• The init modifier is required in order to designate a given method is an initializer; that
is, to indicate that the method both uses and supports the object-initialization protocol
described here.

• The directinitclasses modifier can be used to control the order of execution of
initializer method procedures provided by the different ancestors of the class of an
object.



5 – 26 SOMobjects Developer Toolkit Users Guide

For full definitions of init and directinitclasses, see the topic “Modifier statements” in Chapter
4,“SOM IDL and the SOM Compiler.”

Every SOM class has a list that defines (in sequential order) the ancestor classes whose
initializer method procedures the class should invoke. If a class’s IDL does not specify an
explicit directinitclasses modifier, the default for this list is simply the class’s parents — in
left-to-right order.

Using the directinitclasses list and the actual run-time class hierarchy above itself, each class
inherits from SOMClass the ability to create a data structure of type somInitCtrl. This structure
is used to control the execution of initializers. Moreover, it represents a particular visit-ordering
that reaches each class in the transitive closure of directinitclasses exactly once. To initialize a
given object, this visit-ordering occurs as follows:  While recursively visiting each ancestor class
whose initializer method procedure should be run, SOMobjects first runs the initializer method
procedures of all of that class’s directinitclasses if they have not already been run by another
class’s initializers, with ancestor classes always taken in left-to-right order.

For example, Figure 10 shows an inheritance hierarchy along with the ordering produced when
an instance of the class numbered 7 is initialized, assuming that each class simply uses its
parents as its directinitclasses. Note that the class numbered 3 is at the top of a diamond.

2

31 5

4 6

7

A default initializer ordering

Figure 10.  A default initializer ordering of a class’s inheritance hierarchy.

In this example, the somInitCtrl data structure for class 7 is what tells node 6 in Figure 10 not to
invoke node 3’s initializer code (because it has already been executed). The code that deals
with the somInitCtrl data structure is generated automatically within the implementation bind-
ings for a class, and need not concern a class implementor.

As illustrated by this example, when an instance of a given class (or some descendant class) is
initialized, only one of the given class’s initializers will be executed, and this will happen exactly
once (under control of the ordering determined by the class of the object being initialized).
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The somInitCtrl structure solves a problem originally created by the addition of multiple
inheritance to SOMobjects 2.0. With multiple inheritance, any class can appear at the top of a
multiple inheritance diamond. Previously, whenever this happened, the class could easily
receive multiple initialization calls. In the current version of the SOMobjects Toolkit, however,
the somInitCtrl structure prevents this from happening.

Declaring new initializers in SOM IDL   

When defining SOMobjects classes, programmers can easily declare and implement new
initializers. Classes can have as many initializers as desired, and subclassers can invoke
whichever of these they want. When introducing new initializers, developers must adhere to the
following rules:

• All initializer methods take a somInitCtrl data structure as an initial inout parameter (its
type is defined in the SOMobjects header file somapi.h), and

• All initializers return void.

Accordingly, the somDefaultInit initializer introduced by SOMObject takes a somInitCtrl
structure as its (only) argument, and returns void. Here is the IDL syntax for this method, as
declared in somobj.idl:

void  somDefaultInit (inout somInitCtrl ctrl);

When introducing a new initializer, it is also necessary to specify the init modifier in the
implementation section. The init modifier is what tells emitters that the new method is actually
an initializer, so the method can be properly supported from the language bindings. As de-
scribed below, this support includes the generation of special initializer stub procedures in the
implementation template file, as well as bindings containing ancestor-initialization macros and
object constructors that invoke the class implementor’s new initializers.

It is a good idea to begin the names of initializer methods with the name of the class (or some
other string that can be unique for the class). This is important because all initializers available
on a class must be newly introduced by that class (that is, you cannot override initializers —
except for somDefaultInit). Using a class-unique name means that subclasses will not be
unnecessarily constrained in their choice of initializer names.

Here are two classes that introduce new initializers:

interface Example1 : SOMObject 

{

   void Example1_withName (inout somInitCtrl ctrl, in string name);

   void Example1_withSize (inout somInitCtrl ctrl, in long size);

   void Example1_withNandS(inout somInitCtrl ctrl, in string name, 

                                                   in long size);

implementation {

releaseorder: Example1_withName, 

              Example1_withSize,

              Example1_withNandS;

somDefaultInit: override, init;

somDestruct: override;

Example1_withName: init;

Example1_withSize: init;

Example1_withNandS: init;

};

};
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interface Example2 : Example1 

{

   void Example2_withName(inout somInitCtrl ctrl, in string name);

   void Example2_withSize(inout somInitCtrl ctrl, in long size);

implementation {

releaseorder: Example2_withName, 

              Example2_withSize;

somDefaultInit: override, init;

somDestruct: override;

Example2_withName: init;

Example2_withSize: init;

};

};

Here, interface “Example1” declares three new initializers. Notice the use of inout somInitCtrl
as the first argument of each initializer, and also note that the init modifier is used in the
implementation section. These two things are required to declare initializers. Any number of
initializers can be declared by a class. “Example2” declares two initializers.

“Example1” and “Example2” both override the somDefaultInit initializer. This initializer method
is introduced by SOMObject and is special for two reasons: First, somDefaultInit is the only
initializer that can be overridden. And, second, SOMobjects arranges that this initializer will
always be available on any class (as further explained below).

Historically in the SOMobjects Toolkit, object-initialization methods by default have invoked the
somInit method, which class implementors could override to customize initialization as ap-
propriate. SOMobjects continues to support this approach, so that existing code (and class
binaries) will execute correctly.  However, the somDefaultInit method is now the preferred form
of initialization because it offers greatly improved efficiency.

Even if no specialized initialization is needed for a class, you should still override the
somDefaultInit method in the interest of efficiency. If you do not override somDefaultInit, then
a generic (and therefore less efficient) somDefaultInit method procedure will be used for your
class. This generic method procedure first invokes somDefaultInit on the appropriate ancestor
classes. Then (for consistency with earlier versions of SOMobjects), it checks to determine if
the class overrides somInit and, if so, calls any customized somInit code provided by the class.

When you override somDefaultInit, the emitter’s implementation template file will include a
stub procedure similar to those used for other initializers, and you can fill it in as appropriate
(or simply leave it as is).  Default initialization for your class will then run much faster than with
the generic method procedure. Examples of initializer stub procedures (and customizations)
are given below.

In summary, the initializers available for any class of objects are somDefaultInit (which you
should always override) plus any new initializers explicitly declared by the class designer.
Thus, “Example1” objects may be initialized using any of four different initializers (the three that
are explicitly declared, plus somDefaultInit). Likewise, there are three initializers for the
“Example2” objects. Some examples of using initializers are provided below.

Considerations re: ‘somInit’ initialization from earlier SOM releases  
To re-emphasize: All code written prior to SOMobjects Release 2.1 using documented guide-
lines for the earlier initialization approach based on the somInit method (as well as all existing
class binaries) continues to be fully supported and useful.

Prior to SOMobjects 2.1, initialization was done with initializer methods that would simply
“chain” parent-method calls upward, thereby allowing the execution of initializer method proce-
dures contributed by all ancestors of an object’s class. This chaining of initializer calls was not
supported in any special way by the SOM API. Parent-method calls are simply one of the
possible idioms available to users of OOP in SOM, easily available to a SOM class designer as a
result of the support provided by the SOMobjects Toolkit emitters for parent-method calls.
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So, SOM did not constrain initialization to be done in any particular way or require the use of any
particular ordering of the method procedures of ancestor classes.  But, SOM did provide an
overall framework that class designers could easily utilize in order to implement default initializa-
tion of SOM objects. This framework is provided by the somInit object-initialization method
introduced by the SOMObject class and supported by the SOM Toolkit emitters. The emitters
create an implementation template file with stub procedures for overridden methods that
automatically chain parent-method calls upward through parent classes. Many of the class
methods that perform object creation called somInit automatically. [Note: These will now call
somDefaultInit, which in turn calls somInit for legacy code, as described in the previous topic.]

Because it takes no arguments, somInit best served the purpose of a default initializer. SOM
programmers also had the option of introducing additional “non-default” initialization methods
that took arguments. In addition, by using metaclasses, they could introduce new class meth-
ods as object constructors that first create an object (generally using somNewNoInit) and then
invoke some non-default initializer on the new object.

For a number of reasons, the somInit framework has been augmented by recognizing initializ-
ers as a special kind of method in SOMobjects. One advantage of this approach is that special
metaclasses are no longer required for defining constructors that take arguments. Instead,
because the init modifier identifies initializers, usage-binding emitters can now provide these
constructors. This results in simpler designs and more efficient programs.

Although somDefaultInit replaces somInit as the no-argument initializer used for SOM ob-
jects, all previous use of somInit is still supported by the SOMobjects Developers Toolkit on
AIX, OS/2 and 16-bit Windows. You may continue to use somInit on these systems if you like,
although this is somewhat less efficient than using somDefaultInit.

However, you cannot use both methods. In particular, if a class overrides both somDefaultInit
and somInit, its somInit code will never be executed. It is recommended that you always
override somDefaultInit for object initialization. For one thing, it is likely that when SOMobjects
is ported to new systems, somInit (and somUninit) may not be supported on those systems.
Thus, code written using these (obsolete) methods will be less portable.

Implementing initializers  
When new initializers are introduced by a class, as in the preceding examples, the implementa-
tion template file generated by the SOM Toolkit C and C++ emitters automatically contains an
appropriate stub procedure for each initializer method, for the class implementor’s use. The
body of an initializer stub procedure consists of two main sections:

• The first section performs calls to ancestors of the class to invoke their initializers.

• The second section is used by the programmer to perform any “local” initializations
appropriate to the instance data of the class being defined.

In the first section, by default, the parents of the new class are the ancestors whose initializers
are called. When something else is desired, the IDL directinitclasses modifier can be used
to explicitly designate the ancestors whose initializer methods should be invoked by a new
class’s initializers.

Important:  Under no circumstances can the number or the ordering of ancestor initializer calls
in the first section of an initializer stub procedure be changed. The control masks used by
initializers are based on these orderings. (If you want to change the number or ordering of
ancestor initializer calls, you must use the directinitclasses modifier.) The ancestor initializer
calls themselves can be modified as described below.

Each call to an ancestor initializer is made using a special macro (much like a parent call) that is
defined for this purpose within the implementation bindings. These macros are defined for all
possible ancestor initialization calls. Initially, an initializer stub procedure invokes the default
ancestor initializers provided by somDefaultInit. However, a class implementor can replace
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any of these calls with a different initializer call, as long as it calls the same ancestor (see the
example in the next topic). Non-default initializer calls generally take other arguments in addition
to the control argument.

In the second section of an initializer stub procedure, the programmer provides any class-spe-
cific code that may be needed for initialization. For example, the “Example2_withName” stub
procedure is shown below. As with all stub procedures produced by the SOMobjects imple-
mentation-template emitters, this code requires no modification to run correctly.

SOM_Scope void SOMLINK Example2_withName(Example2 *somSelf,

                                         Environment *ev, 

                                         somInitCtrl* ctrl, 

                                         string name)

{

    Example2Data *somThis; /* set by BeginInitializer */

    somInitCtrl globalCtrl;

    somBooleanVector myMask;

    Example2MethodDebug(”Example2”,”withName”);

    /*

     * first section –– calls to ancestor initializers

     */

    Example2_BeginInitializer_Example2_withName;

    Example2_Init_Example1_somDefaultInit(somSelf, ctrl);

    /* 

     * second section –– local Example2 initialization code

     */

}

In this example, notice that the “Example2_withName” initializer is an IDL callstyle method, so
it  receives an Environment argument. In contrast, somDefaultInit is introduced by the
SOMObject class (so it has an OIDL callstyle initializer, without an environment).

Important: If a class is defined where multiple initializers have exactly the same signature, then
the C++ usage bindings will not be able to differentiate among them. That is, if there are multiple
initializers defined with environment and long arguments, for example, then C++ clients would
not be able to make a call using only the class name and arguments, such as:

new Example2(env, 123);

Rather, C++ users would be forced to first invoke the somNewNoInit method on the class to
create an uninitialized object, and then separately invoke the desired initializer method on the
object. This call would pass a zero for the control argument, in addition to passing values for
the other arguments. For further discussion of client usage, see “Using initializers when creat-
ing new objects” later in this chapter.

Selecting non-default ancestor initializer calls 
Often, it will be appropriate (in the first section of an initializer stub procedure) to change the
invocation of an ancestor’s somDefaultInit initializer to some other initializer available on the
same class. The rule for making this change is simple: Replace somDefaultInit with the name
of the desired ancestor initializer, and add any new arguments that are required by the replace-
ment initializer. Important: Under no circumstances can you change anything else in the first
section.

This example shows how to change an ancestor-initializer call correctly. Since there is a known
“Example1_withName” initializer, the following default ancestor-initializer call (produced within
the stub procedure for “Example2_withName”) can be changed from

Example2_Init_Example1_somDefaultInit(somSelf, ctrl);

to

Example2_Init_Example1_Example1_withName(somSelf, ev, ctrl, name);
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Notice that the revised ancestor-initializer call includes arguments for an Environment and a
name, as defined by the “Example1_withname” initializer.

Using initializers when creating new objects  

There are several ways that client programs can take advantage of the somDefaultInit object
initialization. If desired, clients can use the SOM API directly (rather than taking advantage of
the usage bindings). Also, the general object constructor, somNew, can always be invoked on a
class to create and initialize objects. This call creates a new object and then invokes
somDefaultInit on it.

To use the SOM API directly, the client code should first invoke the somNewNoInit method on
the desired class object to create a new, uninitialized object. Then, the desired initializer is
invoked on the new object, passing a null (that is, 0) control argument in addition to whatever
other arguments may be required by the initializer. For example:

/* first make sure the Example2 class object exists */

Example2NewClass(Example2_MajorVersion, Example2_MinorVersion);

/* then create a new, uninitialized Example2 object */

myObject = _somNewNoInit(_Example2);

/* then initialize it with the desired initializer */

Example2_withName(myObject, env, 0, ”MyName”);

Usage bindings hide the details associated with initializer use in various ways and make calls

more convenient for the client. For example, the C usage bindings for any given class already
provide a convenience macro, <className>New, that first assures existence of the class
object, and then calls somNew on it to create and initialize a new object. As explained above,
somNew will use somDefaultInit to initialize the new object.

Also, the C usage bindings provide object-construction macros that use somNewNoInit

and  then invoke non-default initializers. These macros are named using the form
<className>New_<initializerName>. For example, the C usage bindings for “Example2” allow
using the following expression to create, initialize, and return a new “Example2” object:

Example2New_Example2_withName(env, “AnyName”);

In the C++ bindings, initializers are represented as overloaded C++ constructors. As a result,
there is no need to specify the name of the initializer method. For example, using the C++

bindings, the following expressions could be used to create a new “Example2” object:

new Example2; // will use somDefaultInit

new Example2(); // will use somDefaultInit

new Example2(env,“A.B.Normal”); // will use Example2_withName

new Example2(env,123); // will use Example2_withSize

Observe that if multiple initializers in a class have exactly the same signatures, the C++ usage
bindings would be unable to differentiate among the calls, if made using the forms illustrated
above. In this case, a client could use somNewNoInit first, and then invoke the specific
initializer, as described in the preceding paragraphs.
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Uninitialization  

An object should always be uninitialized before its storage is freed. This is important because it
also allows releasing resources and freeing storage not contained within the body of the object.
SOMobjects handles uninitialization in much the same way as for initializers: An uninitializer
takes a control argument and is supported with stub procedures in the implementation template
file in a manner similar to initializers.

Only a single uninitialization method is needed, so SOMObject introduces the method that
provides this function: somDestruct. As with the default initializer method, a class designer
who requires nothing special in the way of uninitialization need not be concerned about modify-
ing the default somDestruct method procedure. However, your code will execute faster if the
.idl file overrides somDestruct so that a non-generic stub-procedure code can be provided for
the class. Note that somDestruct was overridden by “Example1” and “Example2” above. No
specific IDL modifiers other than override are required for this.

Like an initializer template, the stub procedure for somDestruct consists of two sections: The
first section is used by the programmer for performing any “local” uninitialization that may be
required. The second section (which consists of a single EndDestructor macro invocation)
invokes somDestruct on ancestors. The second section must not be modified or removed by
the programmer. It must be the final statement executed in the destructor.

Using ‘somDestruct’ 
It is rarely necessary to invoke the somDestruct method explicitly. This is because object
uninitialization is normally done just before freeing an object’s storage, and the mechanisms
provided by SOMobjects for this purpose will automatically invoke somDestruct. For example,
if an object were created using somNew or somNewNoInit, or by using a convenience macro
provided by the C language bindings, then the somFree method can be invoked on the object
to delete the object. This automatically calls somDestruct before freeing storage.

C++ users can simply use the delete operator provided by the C++ bindings. This destructor calls
somDestruct before the C++ delete operator frees the object’s storage.

On the other hand, if an object is initially created by allocating memory in some special way and
subsequently some somRenew methods are used, somFree (or C++ delete) is probably not
appropriate. Thus, the somDestruct method should be explicitly called to uninitialize the object
before freeing memory.
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A complete example 

The following example illustrates the implementation and use of initializers and destructors from
the C++ bindings. The first part shows the IDL for three classes with initializers. For variety, some
of the classes use callstyle OIDL and others use callstyle IDL.

#include <somobj.idl>

interface A : SOMObject { 

readonly attribute long a;

implementation {

releaseorder: _get_a; 

functionprefix = A;

somDefaultInit: override, init; 

somDestruct: override; 

somPrintSelf: override;

}; 

};

interface B : SOMObject { 

readonly attribute long b;

void BwithInitialValue(inout somInitCtrl ctrl, 

                               in long initialValue);

implementation {

callstyle = OIDL;

releaseorder: _get_b, BwithInitialValue; 

functionprefix = B;

BwithInitialValue: init;

somDefaultInit: override, init;

somDestruct: override; 

somPrintSelf: override;

}; 

};

interface C : A, B      { 

readonly attribute long c;

void CwithInitialValue(inout somInitCtrl ctrl, 

       in long initialValue);

void CwithInitialString(inout somInitCtrl ctrl, 

        in string initialString);

implementation {

releaseorder: _get_c, CwithInitialString,

      CwithInitialValue; 

functionprefix = C;

CwithInitialString: init;

CwithInitialValue: init;

somDefaultInit: override, init; 

somDestruct: override; 

somPrintSelf: override;

}; 

};
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Implementation code
Based on the foregoing class definitions, the next example illustrates several important aspects
of initializers. The following code is a completed implementation template and an example client
program for the preceding classes. Code added to the original template is given in bold.

/*

 *  This file generated by the SOM Compiler and Emitter Framework.

 *  Generated using: 

 *      SOM Emitter emitxtm.dll: 2.22

 */

#define SOM_Module_ctorfullexample_Source

#define VARIABLE_MACROS

#define METHOD_MACROS

#include <ctorFullExample.xih>

#include <stdio.h>

SOM_Scope void SOMLINK AsomDefaultInit(A *somSelf, 

       somInitCtrl* ctrl)

{

    AData *somThis; /* set by BeginInitializer */

    somInitCtrl globalCtrl;

    somBooleanVector myMask;

    AMethodDebug(”A”,”somDefaultInit”);

    A_BeginInitializer_somDefaultInit;

    A_Init_SOMObject_somDefaultInit(somSelf, ctrl);

    /* 

     * local A initialization code added by programmer 

     */

    _a = 1;

}

SOM_Scope void SOMLINK AsomDestruct(A *somSelf, octet doFree, 

                                    somDestructCtrl* ctrl)

{

    AData *somThis; /* set by BeginDestructor */

    somDestructCtrl globalCtrl;

    somBooleanVector myMask;

    AMethodDebug(”A”,”somDestruct”);

    A_BeginDestructor;

    /* 

     * local A deinitialization code added by programmer 

     */

    A_EndDestructor;

}

SOM_Scope SOMObject*  SOMLINK AsomPrintSelf(A *somSelf)

{

    AData *somThis = AGetData(somSelf);

    AMethodDebug(”A”,”somPrintSelf”);

    somPrintf(”{an instance of %s at location %X with (a=%d)}\n”,

     _somGetClassName(),somSelf,__get_a((Environment*)0));

    return (SOMObject*)((void*)somSelf);

}



5 – 355.  Implementing Classes in SOM

SOM_Scope void SOMLINK BBwithInitialValue(B *somSelf, 

          somInitCtrl* ctrl,

          long initialValue)

{

    BData *somThis; /* set by BeginInitializer */

    somInitCtrl globalCtrl;

    somBooleanVector myMask;

    BMethodDebug(”B”,”BwithInitialValue”);

    B_BeginInitializer_withInitialValue;

    B_Init_SOMObject_somDefaultInit(somSelf, ctrl);

    /* 

     * local B initialization code added by programmer 

     */

    _b = initialValue;

}

SOM_Scope void SOMLINK BsomDefaultInit(B *somSelf, 

       somInitCtrl* ctrl)

{

    BData *somThis; /* set by BeginInitializer */

    somInitCtrl globalCtrl;

    somBooleanVector myMask;

    BMethodDebug(”B”,”somDefaultInit”);

    B_BeginInitializer_somDefaultInit;

    B_Init_SOMObject_somDefaultInit(somSelf, ctrl);

    /* 

     * local B initialization code added by programmer 

     */

    _b = 2;

}

SOM_Scope void SOMLINK BsomDestruct(B *somSelf, octet doFree, 

                                    somDestructCtrl* ctrl)

{

    BData *somThis; /* set by BeginDestructor */

    somDestructCtrl globalCtrl;

    somBooleanVector myMask;

    BMethodDebug(”B”,”somDestruct”);

    B_BeginDestructor;

    /* 

     * local B deinitialization code added by programmer 

     */

    B_EndDestructor;

}

SOM_Scope SOMObject*  SOMLINK BsomPrintSelf(B *somSelf)

{

    BData *somThis = BGetData(somSelf);

    BMethodDebug(”B”,”somPrintSelf”);

    printf(”{an instance of %s at location %X with (b=%d)}\n”,

   _somGetClassName(),somSelf,__get_b());

    return (SOMObject*)((void*)somSelf);

}
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Note: The following initializer for a C object accepts a string as an argument, converts this to an
integer, and uses this for ancestor initialization of “B.” This illustrates how a default ancestor
initializer call is replaced with a non-default ancestor initializer call.

SOM_Scope void SOMLINK CCwithInitialString(C *somSelf,  

                                           Environment *ev, 

                                           somInitCtrl* ctrl, 

                                           string initialString)

{

    CData *somThis; /* set by BeginInitializer */

    somInitCtrl globalCtrl;

    somBooleanVector myMask;

    CMethodDebug(”C”,”CwithInitialString”);

    C_BeginInitializer_withInitialString;

    C_Init_A_somDefaultInit(somSelf, ctrl);

    C_Init_B_BwithInitialValue(somSelf, ctrl,

                               atoi(initialString)–11);

    /* 

     * local C initialization code added by programmer 

     */

    _c = atoi(initialString);

}

SOM_Scope void SOMLINK CsomDefaultInit(C *somSelf, 

       somInitCtrl* ctrl)

{

    CData *somThis; /* set by BeginInitializer */

    somInitCtrl globalCtrl;

    somBooleanVector myMask;

    CMethodDebug(”C”,”somDefaultInit”);

    C_BeginInitializer_somDefaultInit;

    C_Init_A_somDefaultInit(somSelf, ctrl);

    C_Init_B_somDefaultInit(somSelf, ctrl);

    /* 

     * local C initialization code added by programmer 

     */

    _c = 3;

}

SOM_Scope void SOMLINK CsomDestruct(C *somSelf, octet doFree, 

                                    somDestructCtrl* ctrl)

{

    CData *somThis; /* set by BeginDestructor */

    somDestructCtrl globalCtrl;

    somBooleanVector myMask;

    CMethodDebug(”C”,”somDestruct”);

    C_BeginDestructor;

    /* 

     * local C deinitialization code added by programmer 

     */

    C_EndDestructor;

}
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SOM_Scope SOMObject*  SOMLINK CsomPrintSelf(C *somSelf)

{

    CData *somThis = CGetData(somSelf);

    CMethodDebug(”C”,”somPrintSelf”);

    printf(”{an instance of %s at location %X with”

           ” (a=%d, b=%d, c=%d)}\n”,

_somGetClassName(),somSelf,

__get_a((Environment*)0),

__get_b(),

__get_c((Environment*)0));

    return (SOMObject*)((void*)somSelf);

}

SOM_Scope void SOMLINK CCwithInitialValue(C *somSelf,  

Environment *ev, 

somInitCtrl* ctrl, 

long initialValue)

{

    CData *somThis; /* set by BeginInitializer */

    somInitCtrl globalCtrl;

    somBooleanVector myMask;

    CMethodDebug(”C”,”CwithInitialValue”);

    C_BeginInitializer_withInitialValue;

    C_Init_A_somDefaultInit(somSelf, ctrl);

    C_Init_B_BwithInitialValue(somSelf, ctrl, initialValue–11);

    /* 

     * local C initialization code added by programmer 

     */

    _c = initialValue;

}

Here is a C++ program that creates instances of “A”, “B”, and “C” using the initializers defined
above.

main()

{

    SOM_TraceLevel = 1;

    

    A *a = new A;

    a–>somPrintSelf();

    delete a;

    printf(”\n”);

    B *b = new B();

    b–>somPrintSelf();

    delete b;

    printf(”\n”);

    b = new B(22);

    b–>somPrintSelf();

    delete b;

    printf(”\n”);

    C *c = new C;

    c–>somPrintSelf();

    delete c;

    printf(”\n”);
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    c = new C((Environment*)0, 44);

    c–>somPrintSelf();

    delete c;

    printf(”\n”);

    c = new C((Environment*)0, ”66”);

    c–>somPrintSelf();

    delete c;

}

The output from the preceding program is as follows:

”ctorFullExample.C”: 18: In A:somDefaultInit 

”ctorFullExample.C”: 48: In A:somPrintSelf 

”./ctorFullExample.xih”: 292: In A:A_get_a 

{an instance of A at location 20063C38 with (a=1)}

”ctorFullExample.C”: 35: In A:somDestruct

”ctorFullExample.C”: 79: In B:somDefaultInit 

”ctorFullExample.C”: 110: In B:somPrintSelf 

”./ctorFullExample.xih”: 655: In B:B_get_b 

{an instance of B at location 20064578 with (b=2)}

”ctorFullExample.C”: 97: In B:somDestruct

”ctorFullExample.C”: 62: In B:BwithInitialValue 

”ctorFullExample.C”: 110: In B:somPrintSelf 

”./ctorFullExample.xih”: 655: In B:B_get_b 

{an instance of B at location 20064578 with (b=22)}

”ctorFullExample.C”: 97: In B:somDestruct

”ctorFullExample.C”: 150: In C:somDefaultInit 

”ctorFullExample.C”: 18: In A:somDefaultInit 

”ctorFullExample.C”: 79: In B:somDefaultInit 

”ctorFullExample.C”: 182: In C:somPrintSelf 

”./ctorFullExample.xih”: 292: In A:A_get_a 

”./ctorFullExample.xih”: 655: In B:B_get_b 

”./ctorFullExample.xih”: 1104: In C:C_get_c 

{an instance of C at location 20065448 with (a=1, b=2, c=3)}

”ctorFullExample.C”: 169: In C:somDestruct 

”ctorFullExample.C”: 35: In A:somDestruct 

”ctorFullExample.C”: 97: In B:somDestruct

”ctorFullExample.C”: 196: In C:CwithInitialValue 

”ctorFullExample.C”: 18: In A:somDefaultInit 

”ctorFullExample.C”: 62: In B:BwithInitialValue 

”ctorFullExample.C”: 182: In C:somPrintSelf 

”./ctorFullExample.xih”: 292: In A:A_get_a 

”./ctorFullExample.xih”: 655: In B:B_get_b 

”./ctorFullExample.xih”: 1104: In C:C_get_c 

{an instance of C at location 20065448 with (a=1, b=33, c=44)}

”ctorFullExample.C”: 169: In C:somDestruct 

”ctorFullExample.C”: 35: In A:somDestruct 

”ctorFullExample.C”: 97: In B:somDestruct 
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”ctorFullExample.C”: 132: In C:CwithInitialString 

”ctorFullExample.C”: 18: In A:somDefaultInit 

”ctorFullExample.C”: 62: In B:BwithInitialValue 

”ctorFullExample.C”: 182: In C:somPrintSelf 

”./ctorFullExample.xih”: 292: In A:A_get_a 

”./ctorFullExample.xih”: 655: In B:B_get_b 

”./ctorFullExample.xih”: 1104: In C:C_get_c 

{an instance of C at location 20065448 with (a=1, b=55, c=66)}

”ctorFullExample.C”: 169: In C:somDestruct 

”ctorFullExample.C”: 35: In A:somDestruct 

”ctorFullExample.C”: 97: In B:somDestruct 

Customizing the initialization of class objects  

As described previously, the somDefaultInit method can be overridden to customize the initial-
ization of objects. Because classes are objects, somDefaultInit is also invoked on classes
when they are first created (generally by invoking the somNew method on a metaclass). For a
class object, however, somDefaultInit normally just sets the name of the class to “unknown,”
after which the somInitMIClass method must be used for the major portion of class initializa-
tion. Of course, metaclasses can override somDefaultInit to initialize introduced class vari-
ables that require no arguments for their initialization.

Note: Because somNew does not call somInitMIClass, class objects returned from invoca-
tions of somNew on a metaclass are not yet useful class objects.

The somInitMIClass method (introduced by SOMClass) is invoked on a new class object using
arguments to indicate the class name and the parent classes from which inheritance is desired
(among other arguments). This invocation is made by whatever routine is used to initialize the
class. (For SOM classes using the C or C++ implementation bindings, this is handled by the
somBuildClass procedure, which is called by the implementation bindings automatically.) The
somInitMIClass method is often overridden by a metaclass to influence initialization of new
classes in some way. Typically, the overriding procedure begins by making parent method calls,
and then performs additional actions thereafter.

However, without use of the Cooperative Metaclass to guarantee correct operation of
SOMobjects in general, none of the methods introduced by SOMClass should be overridden.
As a result, customizing the initialization of class objects (other than through overriding
somDefaultInit for initialization of class variables) is not recommended in SOMobjects 2.1.
Users whose applications require this should request access to the experimental Cooperative
Metaclass used to implement the SOMobjects Metaclass Framework. But, metaclasses imple-
mented using the experimental Cooperative Metaclass may require reprogramming when
SOMobjects introduces an officially supported Cooperative Metaclass.
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5.6  Creating a SOM Class Library   
One of the principal advantages of SOM is that it makes “black box” (or binary) reusability
possible. Consequently, SOM classes are frequently packaged and distributed as class li-
braries. A class library  holds the actual implementation of one or more classes and can be
dynamically loaded and unloaded as needed by applications. Importantly, class libraries can
also be replaced independently of the applications that use them and, provided that the class
implementor observes simple SOM guidelines for preserving binary compatibility, can evolve
and expand over time.

General guidelines for class library designers

One of the most important features of SOM is that it allows you to build and distribute class
libraries in binary form. Because there is no “fragile base class” problem in SOM, client pro-
grams that use your libraries (by subclassing your classes or by invoking the methods in your
classes) will not need to be recompiled if you later produce a subsequent version of the library,
provided you adhere to some simple restrictions.

1. You should always maintain the syntax and the semantics of your existing interfaces.
This means that you cannot take away any exposed capabilities, nor add or remove
arguments for any of your public methods.

2. Always maintain the releaseorder list, so that it never changes except for additions to the
end. The releaseorder should contain all of your public methods, the one or two methods
that correspond to each public attribute, and a placeholder for each private method (or
private attribute method).

3. Assign a higher minorversion number for each subsequent release of a class, so that
client programmers can determine whether a new feature is present or not. Change the
majorversion number only when you deliberately wish to break binary compatibility.
(See the topic “Modifier statements” in Chapter 4, “SOM IDL and the SOM Compiler” for
explanations of the releaseorder, minorversion and majorversion modifiers.)

4. Under Windows, you should avoid the use of methods or attributes that return structures.
In the DOS/Windows environment, there is no universally agreed upon calling convention
for returning structures that is observed by all popular language compilers. Instead,
define attributes that return pointers to structures, or define methods that take an out
parameter for passing a structure back to the caller.

Note that you can always avoid this problem in classes of your own design. However,
some of the attributes and methods in the frameworks that come with the SOMobjects
Toolkit do  return structures. Many of these are dictated by the OMG CORBA standard, and
could not be avoided. For each of these methods two common calling conventions have
been implemented:

� Microsoft convention, where the address of the structure is returned in AX:DX, 
and

� Borland convention, where the caller provides a hidden first argument to receive
a copy of the returned structure.

No action is needed on your part to use the Microsoft convention. To use the Borland
convention, you should include the file BCCSTRUC.H following any other “includes” of
SOM headers.

5. With each new release of your class library, you have significant degrees of freedom to
change much of the implementation detail. You can add to or reorganize your instance
variables, add new public or private methods, inject new base classes into your class
hierarchies, change metaclasses to more derived ones, and relocate the implementation
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of methods upward in your class hierarchies. Provided you always retain the same
capabilities and semantics that were present in your first release, none of these changes
will break the client programs that use your libraries.

Types of class libraries
Since class libraries are not programs, users cannot execute them directly. To enable users to
make direct use of your classes, you must also provide one or more programs that create the
classes and objects that the user will need. This section describes how to package your classes
in a SOM class library and what you must do to make the contents of the library accessible to
other programs.

On AIX, class libraries are actually produced as AIX shared libraries, whereas on OS/2 or
Windows they appear as dynamically-linked libraries (or DLLs). The term “DLL” is sometimes
used to refer to either an AIX, an OS/2, or a Windows class library, and (by convention only) the
file suffix “.dll” is used for SOM class libraries on all platforms.

A program can use a class library containing a given class or classes in one of two ways:

1. If the programmer employs the SOM bindings to instantiate the class and invoke its meth-
ods, the resulting client program contains static references to the class. The operating
system will automatically resolve those references when the program is loaded, by also
loading the appropriate class library.

2. If the programmer uses only the dynamic SOM mechanisms for finding the class and in-
voking its methods (for example, by invoking somFindClass, somFindMethod,
somLookupMethod, somDispatch, somResolveByName, and so forth), the result-
ing client program does not contain any static references to the class library. Thus, SOM
will load the class library dynamically during execution of the program. Note: For SOM to
be able to load the class library, the dllname modifier must be set in the .idl file. (See the
topic “Modifier statements” in Chapter 4, “SOM IDL and the SOM Compiler.”)

Because the provider of a class library cannot predict which of these ways a class will be used,
SOM class libraries must be built such that either usage is possible. The first case above
requires the class library to export the entry points needed by the SOM bindings, whereas the
second case requires the library to provide an initialization function to create the classes it
contains. The following topics discuss each case.

Building export files   
The SOM Compiler provides an “exp” emitter for AIX and a “def” emitter for OS/2 or Windows to
produce the necessary exported symbols for each class. For example, to generate the neces-
sary exports for a class “A”, issue the sc or somc command with one of the following –s options.
(For a discussion of the sc or somc command and options, see “Running the SOM Compiler” in
Chapter 4, “SOM IDL and the SOM Compiler.”)

For AIX, this command generates an “a.exp” file:

   sc –sexp a.idl

For OS/2, this command generates an “a.def” file:

   sc –sdef a.idl

For Windows, this command generates an “a.def” file:

   somc –sdef a.idl

Typically, a class library contains multiple classes. To produce an appropriate export file for
each class that the library will contain, you can create a new export file for the library itself by
combining the exports from each “exp” or “def” file into a single file. Following are examples of a
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combined export “exp” file for AIX and a combined “def” file for OS/2 or Windows. Each example
illustrates a class library composed of three classes, “A”, “B”, and “C”.

AIX “exp” file:

   #! abc.dll

   ACClassData

   AClassData

   ANewClass

   BCClassData

   BClassData

   BNewClass

   CCClassData

   CClassData

   CNewClass

OS/2 “def” file:

   LIBRARY abc INITINSTANCE

   DESCRIPTION ’abc example class library’

   PROTMODE

   DATA MULTIPLE NONSHARED LOADONCALL

   EXPORTS

      ACClassData

      AClassData

      ANewClass

      BCClassData

      BClassData

      BNewClass

      CCClassData

      CClassData

      CNewClass

Windows “def” file:

   LIBRARY abc

   DESCRIPTION ’abc example class library’

   EXETYPE WINDOWS

   STUB ’WINSTUB.EXE’

   PROTMODE

   DATA MOVEABLE SINGLE SHARED LOADONCALL

   CODE MOVEABLE DISCARDABLE

   HEAPSIZE 4096

   STACKSIZE 4096

   EXPORTS

      _ACClassData 

      _AClassData  

      _ANewClass  

      _BCClassData 

      _BClassData  

      _BNewClass   

      _CCClassData 

      _CClassData  

      _CNewClass

Other symbols in addition to those generated by the “def” or “exp” emitter can be included if
needed, but this is not required by SOM. One feature of SOM is that a class library needs no
more than three exports per class (by contrast, many OOP systems require externals for every
method as well). One required export is the name of a procedure to create the class
(<className>NewClass), and the others are two external data structures that are referenced
by the SOM bindings.
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Specifying the initialization function   

An initialization function for the class library must be provided to support dynamic loading of the
library by the SOM Class Manager. The SOM Class Manager expects that, whenever it loads a
class library, the initialization function will create and register class objects for all of the classes
contained in the library. These classes are then managed as a group (called an affinity group).

One class in the affinity group has a privileged position — namely, the class that was specifical-
ly requested when the library was loaded. If that class (that is, the class that caused loading to
occur) is subsequently unregistered, the SOM Class Manager will automatically unregister all of
the other classes in the affinity group as well, and will unload the class library. Similarly, if the
SOM Class Manager is explicitly asked to unload the class library, it will also automatically
unregister and free all of the classes in the affinity group.

It is the responsibility of the class-library creator to supply the initialization function. The
interface to the initialization function is given by the following C/C++ prototype:

#ifdef __IBMC__
   #pragma linkage (SOMInitModule, system)
#endif

SOMEXTERN void  SOMLINK SOMInitModule ( long majorVersion,
                                      long minorVersion, 
                                      string className);

The parameters provided to this function are the className and the major/minor version
numbers of the class that was requested when the library was loaded (that is, the class that
caused loading). The initialization function is free to use or to disregard this information;
nevertheless, if it fails to create a class object with the required name, the SOM Class Manager
considers the load to have failed. As a rule of thumb, however, if the initialization function
invokes a <className>NewClass procedure for each class in the class library, this condition
will always be met. Consequently, the parameters supplied to the initialization function are not
needed in most cases.

Here is a typical class-library initialization function, written in C, for a library with three classes
(“A”, “B”, and “C”):

   #include ”a.h”

   #include ”b.h”

   #include ”c.h”

   #ifdef __IBMC__

     #pragma linkage (SOMInitModule, system)

   #endif

   SOMEXTERN void  SOMLINK SOMInitModule (long majorVersion,

                             long minorVersion, string className)

   {

       SOM_IgnoreWarning (majorVersion);  /* This function makes  */

       SOM_IgnoreWarning (minorVersion);  /* no use of the passed */

       SOM_IgnoreWarning (className);     /* arguments.   */

       ANewClass (A_MajorVersion, A_MinorVersion);

       BNewClass (B_MajorVersion, B_MinorVersion);

       CNewClass (C_MajorVersion, C_MinorVersion);

   }

The source code for the initialization function can be added to one of the implementation files
for the classes in the library, or you can put it in a separate file and compile it independently.
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Using Windows class libraries
Some additional considerations apply for Windows class libraries: Each class library must also
supply a Windows LibMain function. The LibMain function is invoked automatically whenever a
Windows DLL is loaded, and is responsible for identifying the library and its SOMInitModule
function to the SOM Kernel. Here is an example of a typical Windows LibMain function for a
SOM class library as it would appear in a C or C++ program:

    #include <som.h>

    SOMEXTERN void SOMLINK SOMInitModule (long majorVersion,

  long minorVersion,

  string className);

    #include <windows.h>

    int CALLBACK LibMain (HINSTANCE inst, 

  WORD ds,

  WORD Heapsize,

  LPSTR cmdLine)

    {

SOM_IgnoreWarning (inst);

SOM_ignoreWarning (ds);

SOM_IgnoreWarning (heapSize);

SOM_IgnoreWarning (cmdLine);

SOM_ClassLibrary (”xyz.dll”);

return 1;  /* Indicate success to loader */

    }

The only operative statement in the LibMain function is the macro SOM_ClassLibrary, which
identifies the actual file name of the library as it would appear in a Windows LoadLibrary call, and
internally generates a reference to the library’s SOMInitModule function. This information is
passed to the SOM Kernel, which in turn registers the library and schedules the execution of the
SOMInitModule function.

Typically, the SOM Kernel invokes the SOMInitModule function of each statically loaded class
library during execution of the SOM_MainProgram macro within the using application; other-
wise, SOMInitModule is invoked immediately upon completion of the dynamic loading of a
class library by an already executing application. Regardless of the loading mechanism, the
SOM Kernel guarantees that the SOMInitModule function executes exactly once for each
class library.

Creating the import library   

Finally, for each of your class libraries, you should create an import library that can be used
by client programs (or by other class libraries that use your classes) to resolve the references
to your classes.

Here is an example illustrating all of the steps required to create a class library (“abc.dll”) that
contains the three classes “A”, “B”, and “C”.

1. Compile all of the implementation files for the classes that will be included in the library.
Include the initialization function also.

For AIX written in C:

    xlc –I. –I$SOMBASE/include –c a.c

    xlc –I. –I$SOMBASE/include –c b.c

    xlc –I. –I$SOMBASE/include –c c.c

    xlc –I. –I$SOMBASE/include –c initfunc.c
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For AIX written in C++:

    xlC –I. –I$SOMBASE/include –c a.C

    xlC –I. –I$SOMBASE/include –c b.C

    xlC –I. –I$SOMBASE/include –c c.C

    xlC –I. –I$SOMBASE/include –c initfunc.C

For OS/2 written in C:

    icc –I. –I%SOMBASE%\include –Ge– –c a.c

    icc –I. –I%SOMBASE%\include –Ge– –c b.c

    icc –I. –I%SOMBASE%\include –Ge– –c c.c

    icc –I. –I%SOMBASE%\include –Ge– –c initfunc.c

Note: The “–Ge” option is used only with the IBM compiler. It indicates that the object files will
go into a DLL.

For OS/2 written in C++:

    icc –I. –I%SOMBASE%\include –Ge– –c a.cpp

    icc –I. –I%SOMBASE%\include –Ge– –c b.cpp

    icc –I. –I%SOMBASE%\include –Ge– –c c.cpp

    icc –I. –I%SOMBASE%\include –Ge– –c initfunc.cpp

Note: The “–Ge” option is used only with the IBM compiler. It indicates that the object files will
go into a DLL.

For Windows, written in C:

    cl –ALw –G2s –Zp1 –I. –I%SOMBASE%\include –c a.c

    cl –ALw –G2s –Zp1 –I. –I%SOMBASE%\include –c b.c

    cl –ALw –G2s –Zp1 –I. –I%SOMBASE%\include –c c.c

    cl –ALw –G2s –Zp1 –I. –I%SOMBASE%\include –c initfunc.c

Notes: If your Windows program uses floats or doubles, also use the “–Oi” flag. These
commands are illustrated with the Visual C++ compiler. Sample Makefiles shipped with
SOMobjects For Windows also show how to build with other compilers.

For Windows, written in C++:

    cl –ALfu –G2s –Zp1 –I. –I%SOMBASE%\include –c a.cpp

    cl –ALfu –G2s –Zp1 –I. –I%SOMBASE%\include –c b.cpp

    cl –ALfu –G2s –Zp1 –I. –I%SOMBASE%\include –c c.cpp

    cl –ALfu –G2s –Zp1 –I. –I%SOMBASE%\include –c initfunc.cpp

Notes: If your Windows program uses floats or doubles, also use the “–Oi” flag. These
commands are illustrated with the Visual C++ compiler. Sample Makefiles shipped with
SOMobjects For Windows also show how to build with other compilers.

2. Produce an export file for each class.

For AIX:

    sc –sexp a.idl b.idl c.idl

For OS/2:

    sc –sdef a.idl b.idl c.idl

For Windows:

    somc –sdef a.idl b.idl c.idl
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3. Manually combine the exported symbols into a single file.

For AIX, create a file “abc.exp” from “a.exp”, “b.exp”, and “c.exp”. Do not  include the
initialization function (SOMInitModule) in the export list.

For OS/2, create a file “abc.def” from “a.def”, “b.def”, and “c.def”. Include the initialization
function (SOMInitModule) in the export list so that all classes will be initialized automatical-
ly, unless your initialization function does not need arguments and you explicitly invoke it
yourself from an OS/2 DLL initialization routine.

For Windows, create a file “abc.def” from “a.def”, “b.def”, and “c.def”. There is no need to
include the SOMInitModule function in the export list for Windows programs.

4. Using the object files and the export file, produce a binary class library.

For AIX:

    ld –o abc.dll –bE:abc.exp –e SOMInitModule –H512 –T512 \

       a.o b.o c.o initfunc.o –lc –L$SOMBASE/lib –lsomtk

The –o option assigns a name to the class library (“abc.dll”). The –bE: option designates the
file with the appropriate export list. The –e option designates SOMInitModule as the
initialization function. The –H and –T options must be supplied as shown; they specify the
necessary alignment information for the text and data portions of your code. The –l options
name the specific libraries needed by your classes. If your classes make use of classes in
other class libraries, include a –l option for each of these also. The ld command looks for a
library named “lib<x>.a”, where <x> is the name provided with each –l option. The –L option
specifies the directory where the “somtk” library resides.

For OS/2:

    set LIB=%SOMBASE%\lib;%LIB%

    link386 /noi /packd /packc /align:16 /exepack \

        a.obj b.obj c.obj initfunc.obj, abc.dll,,os2386 somtk, \ 

        abc.def

If your classes make use of classes in other class libraries, include the names of their import
libraries immediately after “somtk” (before the next comma).

For Windows:

    link a.obj b.obj c.obj initfunc.obj, abc.dll, nul, \

         ldllcew libw %SOMBASE%\somtk, abc.def

Note: /noi should not be used unless all symbols are exported as ordinals.

If your classes make use of classes in other class libraries, also include the names of their
import libraries immediately after “somtk” (before the next comma).

5. Create an import library that corresponds to the class library, so that programs and other
class libraries can use (import) your classes.

For AIX:

    ar ruv libabc.a abc.exp � Note the use of the “.exp” file, not  a “.o” file

The first filename (“libabc.a”) specifies the name to give to the import library. It should be of
the form “lib<x>.a”, where <x> represents your class library. The second filename
(“abc.exp”) specifies the exported symbols to include in the import library.

Caution: Although AIX shared libraries can be placed directly into an archive file (“lib<x>.a”),
this is not recommended! A SOM class library should have a corresponding import library
constructed directly from the combined export file.
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For OS/2:

    implib /noi abc.lib abc.def

The first filename (“abc.lib”) specifies the name for the import library and should always have
a suffix of “.lib”. The second filename (“abc.def”) specifies the exported symbols to include in
the import library.  Note: SOMInitModule should be included in the <x>.dll but not in <x>.lib.
If you are using an export file that contains the symbol SOMInitModule, delete it first;
SOMInitModule should not appear in your import library because it needs not be exported.
SOMInitModule should be included when creating your file <x>.dll because all classes in
the <x>.dll will be initialized.

For Windows:

    implib  abc.lib abc.def

The first filename (“abc.lib”) specifies the name for the import library and should always have
a suffix of “.lib”. The second filename (“abc.def”) specifies the exported symbols to include in
the import library.
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5.7  Customizing Memory Management   

SOM is designed to be policy free and highly adaptable. Most of the SOM behavior can be
customized by subclassing the built-in classes and overriding their methods, or by replacing
selected functions in the SOM run-time library with application code. The next five sections
contain more advanced topics describing how to customize the various aspects of SOM
behavior:  memory management, dynamic class loading and unloading, character output, error
handling, and method resolution. Information on customizing Distributed SOM is provided in
Chapter 6.

The memory management functions used by the SOM run-time environment are a subset of
those supplied in the ANSI C standard library. They have the same calling interface and return
the equivalent types of results as their ANSI C counterparts, but include some supplemental
error checking. Errors detected in these functions result in the invocation of the error-handling
function to which SOMError points.

The correspondence between the SOM memory-management function variables and their
ANSI standard library equivalents is given in Table 1 below.

SOM Function
Variable

ANSI Standard C
Library Function Return type Argument types

SOMCalloc calloc( ) somToken size_t, size_t

SOMFree free( ) void somToken

SOMMalloc malloc( ) somToken size_t

SOMRealloc realloc( ) somToken somToken, size_t

Table 1.  Memory-Management Functions         

An application program can replace SOM’s memory management functions with its own
memory management functions to change the way SOM allocates memory (for example, to
perform all memory allocations as suballocations in a shared memory heap). This replacement
is possible because SOMCalloc, SOMMalloc, SOMRealloc, and SOMFree are actually global
variables that point to SOM’s default memory management functions, rather than being the
names of the functions themselves. Thus, an application program can replace SOM’s default
memory management functions by assigning the entry-point address of the user-defined
memory management function to the appropriate global variable. For example, to replace the
default free procedure with the user-defined function MyFree (which must have the same
signature as the ANSI C free function), an application program would require the following code:

#include <som.h>

/* Define a replacement routine: */

void myFree (somToken memPtr)

{

    (Customized code goes here)

}

...

SOMFree = MyFree;

Note: In general, all of these routines should be replaced as a group. For instance, if an ap-
plication supplies a customized version of SOMMalloc, it should also supply corre-
sponding SOMCalloc, SOMFree, and SOMRealloc functions that conform to this
same style of memory management.
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5.8  Customizing Class Loading and Unloading    
SOM uses three routines that manage the loading and unloading of class libraries (referred to
here as DLLs). These routines are called by the SOMClassMgrObject as it dynamically loads
and registers classes. If appropriate, the rules that govern the loading and unloading of DLLs
can be modified, by replacing these functions with alternative implementations.

Customizing class initialization     

The SOMClassInitFuncName function has the following signature:

string  (*SOMClassInitFuncName) ( );

This function returns the name of the function that will initialize (create class objects for) all of the
classes that are packaged together in a single class library. (This function name applies
to all class libraries loaded by the SOMClassMgrObject.) The SOM-supplied version of
SOMClassInitFuncName returns the string “SOMInitModule”. The interface to the library
initialization function is described under the topic “Creating a SOM Class Library” earlier in this
chapter.

Customizing DLL loading    
To dynamically load a SOM class, the SOMClassMgrObject calls the function pointed to by the
global variable SOMLoadModule to load the DLL containing the class. The reason for making
public the SOMLoadModule function (and the following SOMDeleteModule function) is to
reveal the boundary where SOM touches the operating system. Explicit invocation of these
functions is never required. However, they are provided to allow class implementors to insert
their own code between the operating system and SOM, if desired. The SOMLoadModule
function has the following signature:

long  (*SOMLoadModule)  ( string className,
          string fileName,
          string functionName,
          long majorVersion,
          long minorVersion,
          somToken *modHandle);

This function is responsible for loading the DLL containing the SOM class className and
returning either the value zero (for success) or a nonzero system-specific error code. The output
argument modHandle is used to return a token that can subsequently be used by the DLL-un-
loading routine (described below) to unload the DLL. The default DLL-loading routine returns
the DLL’s module handle  in this argument. The remaining arguments are used as follows:

Argument Usage

fileName — The file name of the DLL to be loaded, which can be either a
simple name or a full path name.

functionName — The name of the routine to be called after the DLL is suc-

cessfully loaded by the SOMClassMgrObject. This rou-
tine is responsible for creating the class objects for the
class(es) contained in the DLL. Typically, this argument
has the value “SOMInitModule”, which is obtained from
the function SOMClassInitFuncName described above.
If no SOMInitModule entry exists in the DLL, the default
DLL-loading routine looks in the DLL for a procedure with
the name <className>NewClass instead. If neither entry
point can be found, the default DLL-loading routine fails.
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majorVersion — The major version number to be passed to the class initial-
ization function in the DLL (specified by the functionName
argument).

minorVersion — The minor version number to be passed to the class initial-
ization function in the DLL (specified by the functionName
argument).

An application program can replace the default DLL-loading routine by assigning the entry point
address of the new DLL-loading function (such as MyLoadModule) to the global variable
SOMLoadModule, as follows:

#include <som.h>

/* Define a replacement routine: */

long myLoadModule (string className, string fileName,

                   string functionName, long majorVersion,

                   long minorVersion, somToken *modHandle)

{

    (Customized code goes here)

}

...

SOMLoadModule = MyLoadModule;

Customizing DLL unloading   

To unload a SOM class, the SOMClassMgrObject calls the function pointed to by the global
variable SOMDeleteModule. The SOMDeleteModule function has the following signature:

long  (*SOMDeleteModule)  (in somToken modHandle);

This function is responsible for unloading the DLL designated by the modHandle  parameter and
returning either zero (for success) or a nonzero system-specific error code. The parameter
modHandle  contains the value returned by the DLL loading routine (described above) when the
DLL was loaded.

An application program can replace the default DLL-unloading routine by assigning the entry
point address of the new DLL-unloading function (such as, MyDeleteModule) to the global
variable SOMDeleteModule, as follows:

#include <som.h>

/* Define a replacement routine: */

long myDeleteModule (somToken modHandle)

{

    (Customized code goes here)

}

...

SOMDeleteModule = MyDeleteModule;
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5.9  Customizing Character Output     
The SOM character-output function is invoked by all of the SOM error-handling and debugging
macros whenever a character must be generated (see “Debugging” and “Exceptions and error
handling” in Chapter 3, “Using SOM Classes in Client Programs”). The default character-output
routine, pointed to by the global variable SOMOutCharRoutine, simply writes the character to
“stdout,” then returns 1 if successful, or 0 otherwise.

For convenience, SOMOutCharRoutine is supplemented by the somSetOutChar function.
The somSetOutChar function enables each task to have a customized character output rou-
tine, thus it is often preferred for changing the output routine called by somPrintf (because
SOMOutCharRoutine would remain in effect for subsequent tasks). On Windows, the
somSetOutChar function is required (rather than SOMOutCharRoutine); it is optional on oth-
er operating systems.

An application programmer might wish to supply a customized replacement routine to:

� Direct the output to stderr,

� Record the output in a log file,

� Collect characters and handle them in larger chunks,

� Send the output to a window to display it,

� Place the output in a clipboard, or

� Some combination of these.

With SOMOutCharRoutine, an application program would use code similar to the following to
install the replacement routine:

#include <som.h>

#pragma linkage(myCharacterOutputRoutine, system)

/* Define a replacement routine: */

int SOMLINK myCharacterOutputRoutine (char c)

{

    (Customized code goes here)

}

...

/* After the next stmt all output */

/* will be sent to the new routine   */

SOMOutCharRoutine = myCharacterOutputRoutine;

With somSetOutChar, an application program would use code similar to the following to install
the replacement routine:

#include <som.h>

static int irOutChar(char c);

static int irOutChar(char c)

{

    (Customized code goes here)

}

main (...)

{

    ...

    somSetOutChar((somTD_SOMOutCharRoutine *) irOutChar);

}
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5.10  Customizing Error Handling     
When an error occurs within any of the SOM-supplied methods or functions, an error-handling
procedure is invoked. The default error-handling procedure supplied by SOM, pointed to by the
global variable SOMError, has the following signature:

void  (*SOMError) (int errorCode,  string fileName,  int lineNum);

The default error-handling procedure inspects the errorCode  argument and takes appropriate
action, depending on the last decimal digit of errorCode (see “Exceptions and error handling” in
Chapter 3, “Using SOM Classes in Client Programs,” for a discussion of error classifications). In
the default error handler, fatal errors terminate the current process. The remaining two argu-
ments (fileName and lineNum), which indicate the name of the file and the line number within the
file where the error occurred, are used to produce an error message.

An application programmer might wish to replace the default error handler with a customized
error-handling routine to:

� Record errors in a way appropriate to the particular application,

� Inform the user through the application’s user interface,

� Attempt application-level recovery by restarting at a known point, or

� Shut down the application.

An application program would use code similar to the following to install the replacement
routine:

#include <som.h>

/* Define a replacement routine: */

void myErrorHandler (int errorCode, string fileName, int lineNum)

{

    (Customized code goes here)

}

...

/* After the next stmt all errors     */

/* will be handled by the new routine */

SOMError = myErrorHandler;

When any error condition originates within the classes supplied with SOM, SOM is left in an
internally consistent state. If appropriate, an application program can trap errors with a custom-
ized error-handling procedure and then resume with other processing. Application program-
mers should be aware, however, that all methods within the SOM run-time library behave
atomically. That is, they either succeed or fail; but if they fail, partial effects are undone wherever
possible. This is done so that all SOM methods remain usable and can be re-executed following
an error.
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5.11  Customizing Mutual Exclusion Services (Thread Safety) 
The SOM kernel and the other SOMobjects frameworks (DSOM, Persistence, Replication, and
so on), have been made thread safe with respect to multi-threaded processes. As used here,
“thread safe” means that the SOMobjects run time has been implemented using mutual exclu-
sion semaphores, or “mutex semaphores,” to protect sections of the code which must only be
executed by a single thread in a multi-threaded application process at one time.

Some operating systems provide native multi-threading (for example, OS/2). On other operat-
ing systems that do not support native multi-threading (such as, AIX 3.2), thread support may be
provided as part of particular programming environments (like DCE) or libraries.

It is vital that SOM employ the mutex services that are provided by the thread package used by
the application. Consequently, SOM provides a mechanism for defining and customizing mutex
services.

Five mutex service functions are used to implement mutual exclusion in SOM. These functions
are called indirectly via the global pointer variables defined below. A somToken parameter
(called “sem” below) is used as a generic “handle” to refer to a mutex semaphore — usually it is a
pointer to a mutex semaphore variable or data structure. The actual representation of the mutex
semaphore is hidden by the functions.

unsigned long (*SOMCreateMutexSem)(somToken *sem);

The referenced function creates a mutex semaphore, whose handle is returned as an
output parameter in the somToken variable identified by “sem”.

If the call succeeds, a 0 is returned.  Otherwise, a non-zero error code is returned.

unsigned long (*SOMRequestMutexSem)(somToken sem);

The referenced function requests ownership of the mutex semaphore identified by the
parameter, sem. If the semaphore is not currently owned by another thread, ownership is
assigned to the calling thread. Otherwise, the calling thread is blocked until the sema-
phore is released by the current owner.

Important:  If the same thread calls SOMRequestMutexSem multiple times, a reference
count must be kept, so that the semaphore is released only after the same number of
calls to SOMReleaseMutexSem. Some, but not all, thread packages provide refer-
ence counting automatically, via “counting semaphores.”

If the call succeeds, a 0 is returned. Otherwise,  a non-zero error code is returned.

unsigned long (*SOMReleaseMutexSem)(somToken sem);

The referenced function releases ownership of the mutex semaphore identified by the
parameter, sem.

Important:  If the same thread calls SOMRequestMutexSem multiple times, a reference
count must be kept, so that the semaphore is released only after the same number of
calls to SOMReleaseMutexSem. Some, but not all, thread packages provide refer-
ence counting automatically, via “counting semaphores.”

If the call succeeds, a 0 is returned.  Otherwise, a non-zero error code is returned.

unsigned long (*SOMDestroyMutexSem)(somToken sem);

The referenced function destroys the a mutex semaphore identified by the parameter,
sem.

If the call succeeds, a 0 is returned. Otherwise, a non-zero error code is returned.
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unsigned long (*SOMGetThreadId)();

The referenced function returns a small integer identifier for the calling thread. The ID
cannot be associated with any other thread in the process. The ID is used as an index for
table lookups.

If threads are not supported, the function must return 0.

The actual mutex service function prototypes and global variable declarations are found in file

	��������.

If the underlying operating system supports native multi-threading (currently, only OS/2), SOM
provides appropriate default mutex service function implementations. On those operating
systems that do not support native multi-threading, the default mutex service functions have null
implementations.

An application may want to use threading services different from those provided by the underly-
ing operating system (if any); for example, DCE applications will want to use DCE threads. In
that case, the default mutex service functions can be replaced by application-defined functions.

An application program would use code similar to the following to install the replacement
routines:

#include <som.h>

/* Define a replacement routine: */

unsigned long myCreateMutexSem (somToken *sem)

{

    (Customized code goes here)

}

...

SOMCreateMutexSem = myCreateMutexSem;

It is important to install custom mutex service functions before any SOM calls are made.
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5.12  Customizing Multi-threading Services 
Although the SOM kernel and the other SOMobjects frameworks allow applications to be
multi-threaded, the kernel and frameworks generally do not require or exploit threads them-
selves. But there are some exceptions: for example, application servers in DSOM can be
configured so that each incoming request is executed on a separate thread.

An application may choose to employ “native” multi-threading services provided by the underly-
ing operating system (for example, OS/2). On other operating systems that do not support
native multi-threading (such as, AIX 3.2), thread support may be provided as part of particular
programming environments (like DCE) or libraries.  SOM provides a mechanism that allows an
application to define and customize the multi-threading services used by SOMobjects frame-
works.

Four thread service functions are defined for use by SOMobjects frameworks. These functions
may be called indirectly via the global pointer variables defined below. A somToken parameter
(called “thrd” below) is used as a generic “handle” to refer to a thread — usually it is a pointer to
a thread ID or descriptor. The actual representation of the thread handle is hidden by the
functions.

typedef void somTD_SOMThreadProc(void * data);

unsigned long (*SOMStartThread)(somToken *thrd,

somTD_SOMThreadProc proc,

void *data,

unsigned long datasz,

unsigned long stacksz);

The referenced function starts a thread, and returns a thread handle in the somToken
variable identified by “thrd”.  The thread executes the procedure whose address is
specified by the  proc parameter; the thread procedure takes a single void* argument
and returns void.  The data parameter passed to SOMStartThread is passed on to the
thread procedure; the size of the data parameter, in bytes, is given by datasz.  A stack of
stacksz bytes will be allocated for the thread.

Note:  On OS/2, the thread procedure must be compiled with _Optlink linkage.

If the call succeeds, a 0 is returned.  Otherwise, a non-zero error code is returned.

unsigned long (*SOMEndThread)(void);

The referenced function terminates the calling thread.

If the call succeeds, a 0 is returned. Otherwise,  a non-zero error code is returned.

unsigned long (*SOMKillThread)(somToken thrd);

The referenced function terminates the thread identified by the input parameter thrd.

If the call succeeds, a 0 is returned.  Otherwise, a non-zero error code is returned.

unsigned long (*SOMYieldThread)(void);

The referenced function causes the calling thread to yield control to another thread of
equal or higher priority.

If the call succeeds, a 0 is returned.  Otherwise, a non-zero error code is returned.

unsigned long (*SOMGetThreadHandle)(somToken * thrd);

The referenced function returns a handle that can be used to identify the calling thread.
The handle is returned in the somToken variable pointed to by thrd.

If the call succeeds, a 0 is returned. Otherwise, a non-zero error code is returned.
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The actual mutex service function prototypes and global variable declarations are found in file

���	������.

If the underlying operating system supports native multi-threading (currently, only OS/2), SOM
provides appropriate default multi-threading service function implementations. On those oper-
ating systems that do not support native multi-threading, the default multi-threading service
functions have null implementations.

An application may want to use threading services different from those provided by the underly-
ing operating system (if any); for example, DCE applications will want to use DCE threads. In
that case, the default multi-threading service functions can be replaced by application-defined
functions.

An application program would use code similar to the following to install the replacement
routines:

#include <somthrd.h>

/* Define a replacement routine: */

unsigned long myStartThread (somToken *thrd,

                             somTD_SOMThreadProc proc,

                             void *data,

                             unsigned long datasz,

                             unsigned long stacksz)

{

    (Customized code goes here)

}

...

SOMStartThread = myStartThread;

It is important to install custom multi-threading service functions before any SOM calls are
made.


