
Engineering a Programming

Language:

The Type and Class System of

Sather

Clemens Szypersky

�

Stephen Omohundro

y

Stephan Murer

z

TR-93-064

November 1993

Abstract

Sather 1.0 is a programming language whose design has resulted from the interplay

of many criteria. It attempts to support a powerful object-oriented paradigm without

sacri�cing either the computational performance of traditional procedural languages or

support for safety and correctness checking. Much of the engineering e�ort went into the

design of the class and type system. This paper describes some of these design decisions

and relates them to approaches taken in other languages. We particularly focus on issues

surrounding inheritance and subtyping and the decision to explicitly separate them in

Sather.

�

ICSI, E-mail: szyper@icsi.berkeley.edu.

y

ICSI, E-mail: om@icsi.berkeley.edu.

z

ICSI and Eidgen�ossische Technische Hochschule (ETH), Z�urich, Switzerland. E-mail: murer@icsi.berkeley.edu.

ii

1 Introduction

Sather is an object-oriented language developed at the International Computer Science Institute [22]. It

has a clean and simple syntax, parameterized classes, object-oriented dispatch, statically-checkable strong

typing, multiple subtyping, multiple code inheritance, and garbage collection. It is especially aimed at

complex, performance-critical applications. Such applications are in need of both reusable components

and high computational e�ciency.

Sather was initially based on Ei�el and was developed to correct the poor computational perfor-

mance of the Ei�el implementations available in 1990. Ei�el introduced a number of important ideas

but also made certain design decisions which compromised e�ciency. Sather attempts to support a pow-

erful object-oriented paradigm without sacri�cing either the computational performance of traditional

procedural languages or support for safety and correctness checking.

The initial \0.1" release of the compiler, debugger, class library, and development environment were

made available by anonymous FTP

1

in May, 1991 and it was quickly retrieved by several hundred sites.

This version achieved our desired e�ciency goals [15] and was used for several projects. Our experience

with it and feedback from other users has led to the design of Sather 1.0. This improves certain aspects

of the initial version and incorporates a number of new language constructs.

The language design process has been intimately coupled with the design and implementation of

libraries and applications. A particularly demanding application is the extensible ICSI connectionist

network simulator: ICSIM [24]. The examples in this paper are taken from the actual code and structure

of the Sather libraries and applications to make them realistic. The design e�ort was continually a

balance between the needs of applications and constraints on language design, such as simplicity and

orthogonality.

One of the most fundamental aspects of the Sather 1.0 design is its type system. Earlier versions of

the language were strongly typed, but it was not possible to statically check a system for type correctness.

Ei�el has the same problem [5], and attempts to solve it by introducing system-level type-checking [17].

This is a conservative system-wide global check. A system which satis�es the check will be type safe but

many legal programs are rejected. Adding new classes to a system can cause previously correct code to

become incorrect.

Sather 1.0 solved this and other problems by completely redesigning the type and class system.

This paper describes a number of these issues. We do not describe the whole language here but do

include the relevant parts of the grammar in Appendix A. The bulk of the paper is devoted to the

interplay between subtyping and subclassing. Section 2 de�nes these concepts and motivates the decision

to explicitly separate them in the language. It describes the Sather version of parameterized classes and

object-oriented dispatch. It also describes the three kinds of Sather objects: reference objects, value

objects, and bound objects. Bound objects are a particularly clean way of implementing higher-order

functions within an object-oriented context. Section 3 describes some of the subtle issues involved in

code inheritance. Finally, section 4 describes some more system level issues.

2 Sather Types and Classes

Object-oriented terminology is used in a variety of ways in the programming language literature. A few

informal de�nitions will su�ce for the purposes of this paper:

� Objects are the building blocks of all Sather data structures. Objects both encapsulate state and

support a speci�ed set of operations.

� A type represents a set of objects.

� The signature of an operation that may be performed on an object consists of its name, a possibly

empty tuple of its argument types, and an optional return type. Sather supports both routines

which perform a single operation and iters [20] which encapsulate iteration abstractions

2

.

1

From ftp.icsi.berkeley.edu, directory pub/sather/

2

There is some additional information in signatures which are associated with iters which we do not describe here.

1

� Each type has an interface which consists of the signatures of the operations that may be applied

to objects of the type. Sather supports overloading which means that an interface may have more

than one operation with the same name if they di�er in the number or types of arguments or in the

presence of a return type.

� Classes are textual units that de�ne the interface and implementation of types.

� The Sather type graph is a directed acyclic graph whose vertices are types and whose edges de�ne

the subtype relationship between them. We say that a type A conforms to a type B if there is a

directed path from A to B in the type graph.

2.1 Subtyping and Multiple Subtyping

Every object and every variable in Sather has a uniquely speci�ed type. The fundamental Sather typing

rule is: \A variable can hold an object only if the object's type conforms to the variable's declared type.".

There are three kinds of object type: reference, value, and bound. We describe these later. Variables

can be declared by one of these types, but may also be declared by an abstract type. These are types

which represent sets of object types and are how Sather describes polymorphism. Abstract types are

de�ned by abstract classes and do not directly correspond to objects.

We say that Sather is strongly typed because each variable has a type which speci�es exactly which

objects it can hold. We say that it is statically type-safe because it is impossible for a program which

compiles to assign an object of an incorrect type to a variable. The Sather type correctness checking is

purely local and does not require a system-wide analysis. It is done by checking calls against the declared

signatures in the interface of the type to which the call is applied. Statically-checked strong typing is

fundamental to achieving both the performance and the safety goals of Sather.

Type safety is ensured because of a conformance requirement on the interfaces of types[3]. If the

type A conforms to the type B, then the interface of A is required to conform to the interface of B. This

means that for each signature in B's interface there is a conforming signature in A's interface.

Object-oriented dispatch means that the particular implementation for a routine call is made accord-

ing to the type of the object the call is made on. This object may be thought of as the �rst argument of

the routine. Within the routine, it is referred to as self. The type of self, denoted as SAME, is the type

de�ned by the class that implements the operation.

Under the subtype relation, the self parameter is covariantly typed. Because of the dispatching,

this is typesafe

3

. All other arguments are contravariantly typed and the return value is covariantly typed.

Together, these conformance requirements ensure that if a call is type correct on the declared type of a

variable, then it will be type correct when made on all possible objects that may be held by that variable.

Sather allows for multiple subtyping: A type can be subtype of more than one type. This is very

important for using software types to model types in the world. Real-world types are often subtypes of

more than one type. In a system which only supports single subtyping, one is often forced to introduce

spurious subtype relations which can destroy the conceptual integrity of a design.

A new feature introduced by Sather is the possibility for a new class to declare itself as a supertype of

an existing class. Using this facility, it is possible to interpose a new type between two existing types in a

hierarchy. This solves an old dilemmaof class hierarchy design. On the one hand, for future exibility one

often wanted to introduce many incrementally di�erent types. On the other hand, huge type hierarchies

with many similar classes are hard to understand and use. With the ability to insert new types into a

hierarchy, intermediate classes can be introduced only when needed.

2.2 Code Inheritance, Subclassing and Multiple Subclassing

Although often confused or combined with subtyping, an entirely di�erent aspect of object-oriented

programming is code reuse by means of code inheritance, also called subclassing. A class A is called a

subclass of a class B if A's implementation is based in part on B's implementation. Code reuse in this

sense di�ers from the use of traditional library routines in two important ways. First, the inherited code

3

The language Cecil[4] uses multi-methods to allow multiple covariantly typed parameters in a type-safe way. Some

disadvantages of multi-methods are discussed in section 2.7.

2

has direct access to the internal representation of the reusing class. Second, the inherited code may make

calls on self. Such calls may call other inherited operations or operations explicitly de�ned in the new

class. This intricate tangling of new and old code is powerful but complexity-prone [16].

As with subtyping, Sather allowsmultiple subclassing: A class can be subclass of multiple classes, i.e.

it can reuse portions of the implementations of multiple classes. Multiple subclassing introduces many

complications that require careful attention. Most languages combine multiple subtyping with multiple

subclassing into multiple inheritance. The complexity introduced by multiple subclassing has given rise

to widespread ambivalent feelings about multiple inheritance. A particularly tricky situation arises when

the same code is inherited by a class along multiple paths. The resulting conicts and Sather's conict

resolution mechanisms are described below in Section 3.

One could imagine introducing a construct for code inheritance which is analogous to the supertyping

construct described above (cf. Section 2.1). This would be a form of \code injection" in which classes

could add implementation to other classes. This possibility was rejected in the Sather design because

it gives rise to many ambiguities and errors which would be hard to �nd. One would no longer be able

to determine the source code of a class by merely looking at the class text and those classes reachable

from references in it. When using classes from another system, it would not be clear which source

�les contributed code to the desired classes. Also, because of the separation between subclassing from

subtyping, code can be inherited in the opposite direction from subtyping if desired.

2.3 Separating Subtyping and Subclassing

Traditionally, object-oriented languages are either untyped { e.g. Smalltalk [10] or Self [27] { or tightly

bind classes and types { e.g. C++ [8], Ei�el [17] Modula-3 [21], or Oberon-2 [19]. (In contrast to Oberon-2,

Oberon [23] keeps the dispatching of implementation variants separate from subtyping issues, essentially

by not providing methods at all. Instead, Oberon relies entirely on procedure variables to implement

late binding. Nevertheless, Oberon still does not completely separate subtyping from subclassing, cf. Sec-

tion 2.6.)

The decision to have static type safety caused us to reject the untyped variants. Given that there

will be types, one must decide how tight a binding there should be between subtyping and subclassing.

The typed object-oriented languages mentioned above bind these notions closely together. Not separating

these concepts properly leads to several problems, however.

One approach requires that every subclass relationship obeys the rules of type-safe subtyping. This

leads to contravariant typing of routine arguments. It has been argued that this eliminates several

important opportunities for code reuse [18, 14].

Another approach introduces subclasses which are subtypes by declaration but not in terms of the

interface which is supported. This approach is adopted as a compromise in many languages, including

the original version of Sather and Ei�el [17]. This violates the requirement of local type checkability. In

the original Ei�el design this was a safety loop-hole [5]. The latest version of Ei�el requires \system-level

type checking", which gives up on local type checkability and sometimes rejects dynamically type-safe

programs.

Because of these problems, [6] suggested that subtyping should be clearly separated from subclassing.

Emerald [11] is one of the few languages that actually implemented this separation. In Emerald, however,

the result is a signi�cant burden on the programmer. Often, subtyping and subclassing do go along in

parallel, and Emerald requires separate speci�cation even for this common case.

Later language designs, such as Sather 1.0 and Cecil [4], attempt to provide more convenient ways

to support the common case. Since Cecil is based on prototype objects, quite similar to Self, its code

inheritance is not based on classes. Still, Cecil's counterpart to subclassing has the default behavior of

also introducing a subtype. This behavior can be explicitly prevented, however, and it is even possible to

have code inheritance and subtyping go in opposite directions. Sather follows a similar path of optimizing

the common case. However, instead of introducing defaults, Sather introduces special kinds of classes

and an explicit means to implement subclassing and subtyping graphs over these classes.

3

2.4 Sather Types, Classes, and Variables

As described above, Sather distinguishes between abstract and concrete types (the names of abstract types

are distinguished by a leading \$" to help distinguish them). Abstract classes can have descendants in

the type graph, but cannot be instantiated as objects. Concrete classes are always leaf-nodes in the

subtype graph, but can be instantiated. This approach is similar to the type system formally de�ned in

[7]. Abstract classes may provide partial implementations to be inherited by subclasses, while concrete

classes are required to fully implement their type. Sather code inheritance is explained in Section 3.

All Sather variables are statically typed. If a variable is declared as a concrete type, then only objects

of exactly that type can be held by it. As a result, all calls on such variables are monomorphisms, i.e.

the actual implementation invoked is statically determined. This is an important source of e�ciency for

Sather programs. If a variable is declared by an abstract type, then it can hold objects belonging to any

of the subtypes of the declared type. Calls made on such \abstract variables" are polymorphisms. This

means that the actual implementation invoked is determined at run-time according to the type of the

object bound to the variable at the time of the call.

2.5 Examples of Separate Subtyping and Subclassing

Multiple subtyping is important in situations where there is not an obvious hierarchy of object properties.

In the Sather library some container classes are internally based on hash tables, others are not. Not

every object de�nes a corresponding hash function, however. We make objects which do provide a hash

function be descendants of the abstract class $HASHABLEwhose interface de�nes the single routine \hash":

abstract class $HASHABLE is

hash:INT;

end

Note that $HASHABLE doesn't provide an implementation of hash, because there is no generic hash function

that works for all types. Abstract classes without implementation information, such as $HASHABLE, only

serve for subtyping purposes. The implementation of the required features is left to the descendants.

Figure 1 shows a typical inheritance graph for de�ning an element class to be used as a type parameter

in a parameterized, hash table-based set class (cf. Section 2.8. In Figure 1, as well as in the other

inheritance graphs, solid and dashed arcs are used to represent subtype and subclass relationships. Class

names set in a plain typeface denote abstract types and those in a bold typeface denote concrete types.

(cf. Section 2.3).

MY_HASHABLE_ELEMENT HASH_SET{MY_HASHABLE_ELEMENT}

$HASHABLE $MY_ELEMENT $SET{T}

Figure 1: Typical inheritance graph for $HASHABLE

Multiple subclassing is much less common in Sather programs than multiple subtyping. Nevertheless,

there are situations where application programmers prefer to use multiple subclassing. It is used in

the mixin programming style used extensively in CLOS[2]. ICSIM, the ICSI neural network simulator,

uses this style to let the user con�gure the properties of neuron sites. Sites are subsets of a neuron's

connections with identical properties. Sites have connection-oriented properties represented by $PORT

descendants and computation-oriented properties represented by $COMPUTATION descendants. $SITE is a

subtype of both $PORT and $COMPUTATION.

Typically, ICSIM users do not program their own sites, but instead choose them from built-in

classes that provide building blocks for connection and computation code. All types used in ICSIM are

also subtypes of $ANY ICSIM. These relationships are shown in the inheritance graph in Figure 2. It is

4

interesting to note that the MY SITE class uses multiple subclassing but single subtyping (the opposite of

the usual case).

MY_SITE

VIRTUAL_PORTUNIT_LIST_PORTVECTOR_PORT BP_LEARNING QP_LEARNING

$PORT

$ANY_ICSIM

$COMPUTATION

$SITE

Figure 2: Multiple Subclassing for Programming by Con�guration

2.6 Features of a Class

The features of a Sather class are either attributes, routines, or iters

4

. Attributes are the analog of record

�elds in Pascal-like languages. Routines are the equivalent of \methods" in some other object-oriented

languages. In particular, routines di�er from Pascal-like procedures by having an additional implicit

parameter bound to the object that the routine is called on.

Whether a particular operation is implemented as an attribute or as a routine is not visible from the

interface of a type. One concrete descendant of an abstract class may de�ne an attribute while another

may just provide accessor and modi�er routines. This is a departure from the traditional coincidence

of type and structure de�nition in Pascal-like languages, including Oberon. It is used in some earlier

object-oriented languages, however, such as Self. One might argue that the same e�ect can be achieved

by not introducing public attributes, as, for example, can be done in Oberon by not exporting record

�elds. The price to pay for doing so is the loss of the intuitive and lightweight attribute access notation

\x.a" in clients of the class.

Attributes may be declared to be shared among all instances of a type. Such shared attributes

serve the function of global variables (and the rather di�cult to use \once functions" of Ei�el). Shared

attributes may specify an initialization expression that is evaluable at compile-time. Similar attributes

may be declared constant, in which case the binding established by the initializer is permanent.

The features of a Sather class may be declared private, allowing only the routines within the class to

access them, and only relative to self. For attributes, it is possible to declare the accessor and modi�er

routines individually as private or public. This allows attributes to be read-write, read-only, or invisible

from within code external to the class.

2.7 Object-Oriented Dispatch

Variables declared by an abstract type can hold objects of any descendant type. Routine calls made

on such variables dispatch on the runtime type of the object to determine the code to execute. This

lookup adds a small amount of extra overhead to such calls. By declaring a variable with an abstract

or a concrete type, the programmer may decide to pay the price for routine dispatch or to restrict the

generality of the code by precisely specifying the object type that the variable can hold.

Some languages support \multi-methods" which can dispatch on all the arguments of a call. Sather

does not adopt this approach for both semantic and performance reasons. In Sather routines are grouped

into classes according to the type of \self". This provides a natural organization principle and is

responsible for the encapsulation of functionality into types. The interface of a type encapsulates the

4

We do not describe iters here because it would take us too far a�eld and they have been described elsewhere [20].

5

abstraction de�ned by that type. With multi-methods code does not naturally belong to a particular

type. Sather deals with multi-method situations by using \typecase" statements. These appear in the

body of a routine which dispatches on the �rst argument type and may explicitly dispatch on the second

argument type. Unlike a simple \case" statement applied to the type, a \typecase" statement can

branch on abstract types. This means they can be used in the same situations that multi-methods would

be helpful. This approach also makes the performance consequences of a multi-method organization

explicit rather than hiding it behind a complex language construct.

Sather routines can also be called directly. A direct call is equivalent to dispatching the routine call

on an unbound variable of concrete type (self = void). Direct-called routines are Sather's version of

plain procedures in Pascal, class methods in Smalltalk, and static member functions in C++.

2.8 Parameterized Classes

Sather allows the de�nition of a family of classes parameterized by types. This is a similar mechanism to

the generic packages of Ada [28] and templates in the newer versions of C++. Sather type parameters

have associated type constraints. The values speci�ed for the type parameters are required to be subtypes

of these constraint types. The supertyping feature introduced in Section 2.1 is quite useful for de�ning

such constraints. A constraint type representing an arbitrary union of types can be introduced by forming

an appropriate supertype.

A second form of genericity in Sather is related to the typing of arguments and return values in

inherited code. Sather allows such types to be declared as SAME, similar to Ei�el's like-current. If

a class A inherits code which refers to the type SAME, it behaves as if the type were replaced by A. For

a subclass to be also a subtype, however, this replacement has to follow the subtyping rules stated in

Section 2.1. This is very di�erent from Ei�el's like-current, where a subclass formed in this way is

automatically considered a subtype, even though it might well have introduced a conformance conict.

2.9 Reference and Value Classes

Sather distinguishes between reference, value, and bound objects. Most user-de�ned objects are reference

objects. These are passed by reference as routine arguments and may be aliased. The fundamental types

representing boolean values, integers, characters, oating point values, etc. are called value objects.

These are always passed by value and it is not possible to alias them (i.e. to reference the same object

under two names). More pure object-oriented languages such as Smalltalk and Self try to unify these

notions.

Languages that only operate over values are typically called functional languages, and operations

de�ned only over value types are side-e�ect free and therefore referentially transparent. On the other

hand, reference objects are best used to model entities that have an identity plus a current state. The

idea of an object identity bound to a modi�able state introduces referential opaqueness and allows for

side-e�ects.

Sather distinguishes between these at the level of types. Instances of value types have value semantics:

Once created they never change, and there is no such thing as a \reference" to a value object. Reference

objects have an identity and the state of a reference object can be modi�ed by writing to its attributes.

A variable of abstract type can be used to store either value or reference objects.

The special properties of value objects make them especially amenable to compiler optimization

techniques. Most important, a value object can be copied freely without the possibility of aliasing

conicts. Logically, when value objects are passed as arguments, their value is �rst copied and then the

operation is invoked on the copy (call by value semantics). Of course, the compiler is free to eliminate

this copying whenever it can deduce that the invoked operation cannot modify the object.

The introduction of separate value and reference classes imposes certain restrictions on subclassing:

An abstract class can only be a subclass of other abstract classes; a value class can only be a subclass of

abstract classes and other value classes; a reference class can only be a subclass of abstract classes and

other reference classes.

6

2.10 Bound Routines

A controversial feature of non-functional programming languages are closures or higher-order functions.

While expressive and powerful, certain formulations are di�cult to implement e�ciently. Hence, many

non-functional programming languages provide more lightweight but much less powerful facilities.

Pascal [12] introduced procedure parameters, but no procedure variables. This allowed implementa-

tions to strictly adhere to a stack discipline, but prevented the use of procedures as �rst-class values in

data structures. In Modula-2 [29] this was changed to allow for procedure variables, but the restriction

was added that only global procedures can be assigned. C [13] has function pointers with a similar

semantics. While this allows �rst-class procedure values, it restricts such procedures to operate on the

global state only, while in Pascal it was possible to pass a nested procedure that in turn could operate

on the current bindings of local variables of the passing procedure.

Sather, as in C, has no nested routines, hence the C / Modula-2 solution would work without any

constraints. However, the constraint that routines bound to a variable can only operate on the global

state is much weaker than many applications need. For example, to implement a routine which produces

the complement of a boolean argument routine or the composition of two argument routines there must

be internal state associated with the routine.

The Sather solution is to introduce bound routines

5

to express higher-order functions and closure-like

constructs. The key idea is that the parameters of a routine, including the implicit self, can be bound

to objects. The resulting bound routine can then be assigned to a routine variable of the appropriate

type. For example, it is possible to take a routine with two integer parameters, bind one of these to an

integer value, and then assign the resulting bound routine to a variable that asks for a routine with a

single integer parameter. Bound types describe the resulting signature of a bound routine. Conformance

is de�ned as contravariant conformance of the type signature.

3 Code Inheritance

3.1 The Textual Inclusion Model for Code Inheritance

The semantics of code inheritance in Sather is de�ned by textual inclusion of the inherited code. So-called

\include" clauses are used to incorporate source code from a speci�ed class. The choice of the keyword

\include" was made to indicate the textual semantics for the inheritance model. References to the

type \SAME" in the inherited code represent the type of the inheriting class. Newly de�ned features in a

class override inherited features with a conforming signature (as de�ned in Section 2.1). This approach

di�ers from that used in Smalltalk and most other object-oriented languages, in which a call conceptually

climbs up in the class hierarchy until a corresponding method is found. For most common cases, the

two approaches produce identical results. In complex situations, however, the textual inclusion approach

seems easier to understand and to reason about.

It is sometimes convenient for a new version of a feature to call the old version that it overrides.

Smalltalk solves this problem by providing the \super"-call, which bypasses any matching implementa-

tions in the object's class and passes the call directly to the superclass. We found that in Sather, this

approach would be confusing in certain circumstances. The problem arises when code which makes a

super call is itself inherited. The ambiguity for programmers was whether the inherited \super" call

refers to the \super" class of the original de�ning class or of the inheriting class.

To eliminate this problem, Sather replaces the \super"-call approach with a general \renaming"

facility in the include clauses which de�ne code inheritance. The include clause comes in two forms:

one is used to include and possibly rename a single feature from another class and the other includes

an entire class but may cause features to be unde�ned or renamed. Renaming is shallow, i.e. renam-

ing a�ects only the de�nition of the speci�ed feature but not calls on that feature

6

. Appendix A.10

includes the syntax of the construct. Figure 3 uses the example of extending a simple unit (neuron)

in ICSIM to a unit with back-propagation learning to show how the \super"-call problem is solved in

5

Sather also introduces bound iters.

6

Thus, renaming or unde�ning a feature may break inherited code. If this is the case the compiler signals a \subclassing

error" associated with the corresponding include clause.

7

Sather. The routine accumulated input inherited from SIMPLE UNIT is renamed as the private routine:

\SIMPLE UNIT accumulated input" in SIMPLE BP UNIT.

class SIMPLE_UNIT is

...

accumulated_input: REAL is

-- Compute the dot product of input values * weights

input_port.get_outputs_into_vec(input_values);

res := input_values.dot_v(weights)

end;

...

end;

class SIMPLE_BP_UNIT is

include SIMPLE_UNIT

accumulated_input -> private SIMPLE_UNIT_accumulated_input ... ;

...

accumulated_input: REAL is

-- Compute the dot product of weights * inputs + the bias value

res := SIMPLE_UNIT_accumulated_input + bias.val

end;

...

end

Figure 3: Using renaming instead of a \super"-call.

One may argue that the renaming solution for \super"-calls unnecessarily clutters the name space.

Our experience shows that we use this style of programming infrequently, and if we need it we make

the renamed version of the old routine private in order not to a�ect the external interface of a class.

Because every routine has a speci�ed name, the approach eliminates any ambiguity in the interpretation

of code. As shown in the next section, the renaming approach is also more general than the \super"-call

approach.

3.2 Multiple Subclassing and Conict Resolution

Sather supports multiple subclassing (multiple code inheritance) by allowingmultiple include clauses per

class. Since more than one of the superclasses may provide a feature with the same signature, multiple

subclassing leads to inheritance conicts. Two routines or iters are said to conict if they have the same

name, the same number and types of arguments, and both either have or do not have a return value.

Reference [9] describes four ways to cope with inheritance conicts:

1. Disallow conicts: Signal an error in the case of a conict.

2. Resolve conicts by explicit selection: Require the user to make a selection in case of a conict.

This is Sather's approach, as described below.

3. Form disjoint union of features: Create a separate feature for each conicting feature. This is the

approach of C++ where feature names of sub- and superclasses are in di�erent scopes. The user

selects between conicting features using the scope resolution operator \::".

4. Form composite union of features: Create one single feature for each conicting feature by algorith-

mically resolving the conict. CLOS [1] follows this approach by linearizing the class hierarchy.

1. to 3. are explicit conict resolution methods, 4. is an implicit method. Cecil [4] takes an intermedi-

ate stance between 3. and 4. by imposing only a partial ordering on classes, and requiring any remaining

8

conicts to be resolved explicitly by the programmer. We agree with [25] that CLOS-style linearization

of the inheritance graphs may lead to unexpected method lookups, and result in faulty and hard to debug

programs.

Sather, therefore, adopts an explicit conict resolution scheme in which the programmer has to

explicitly choose in case of conicts. A class may not explicitly de�ne two conicting routines or iters.

A class may not de�ne a routine which conicts with the reader or writer routine of any of its attributes

(whether explicitly de�ned or included from other classes). If a routine or iter is explicitly de�ned in a

class, it overrides all conicting routines or iters from included classes. The reader and writer routines

of a class's attributes also override any included routines and must not conict with each other. If an

included routine or iter is not overridden, then it must not conict with another included routine or iter.

Renaming or unde�ning in include clauses is used to resolve these conicts.

Any language which supports code inheritance must deal with the problem of the same code inherited

along two di�erent paths. Some languages introduce complex mechanisms to deal with this case, but these

tend to be confusing to programmers and rarely do exactly what is desired. Sather's solution is implied

by the rules given above. Sather does not consider the origin of code and resolves inheritance solely based

on the body of the class itself and the bodies of the classes it includes (after their own code inheritance

has been resolved). This behaves like the non-virtual inheritance of C++ for diamond-shaped inheritance

graphs, i.e. features from a common superclass are included along each edge. This sometimes necessitates

explicitly choosing a single version of a routine inherited along multiple paths, but it eliminates complex

rules which depend on the structure of the code inheritance graph.

Our experience with the Sather libraries is that we use multiple subclassing only rarely. We therefore

felt that these special cases were too weak a justi�cation to introduce a complex graph-based subclassing

scheme or a strategy based on structural equality of feature de�nitions.

3.3 Separate Compilation

Sather has no explicit notion of structural units comprising multiple classes. The Sather programming

environment is intended to manage and maintain the source code of multiple classes. In particular, when

compiling a new class it is often required that the Sather compiler has access to the source code (or at

least the type interface and dependency information) of all classes referred to by it.

For example, the compiler automatically inlines short routines to improve e�ciency. There tend to

be many short routines in object-oriented programming because a routine which is needed only for the

purposes of an abstract interface often just calls another routine. In addition to eliminating an extra

routine call, inlining allows much more optimization to be done within a routine with inlined code. On the

one hand, compiler-controlled inlining requires that the code to be inlined is available to the compiler and

to the compiler's analysis process, i.e. that the source is at hand. On the other hand, inlining introduces

hidden dependencies between implementations.

For large systems, there are arguments for introducing another level of modularity. In some cases,

one doesn't want to require that all source code be available or allow arbitrary dependencies between

compiled units. Such large systems are usually composed of subsystems. For a limited subsystem the

global analysis is acceptable. For a composed system, however, it should be possible to de�ne the

subsystems in a way that global analysis is not required.

For Sather, it is possible to form subsystems with strict boundaries in terms of compiler analysis.

Such a subsystem must be limited by an interface presenting only types, i.e. empty abstract classes, to

subtyping clients, and allowing for direct calls to routines (c.f. Section 2.7) de�ned by classes within the

subsystem.

The most prominent mechanism that cannot be allowed to cross subsystems is code inheritance,

which of course is a direct consequence of specifying the semantics of code inheritance based upon the

actually inherited source text. Also to be excluded from a subsystem's interface are parameterized classes:

The current Sather compiler cannot completely check a parameterized class before its parameters actually

get speci�ed. This defect in the checkability of Sather's parameterized classes is unfortunate and an issue

of ongoing research. However, this problem is not speci�c to Sather, the same holds for C++, where

such errors might be detected as late as at link-time(!), Ei�el, and Ada. Possible solutions tend to

either restrict the usefulness of parameterized classes, or to introduce a complicated apparatus to specify

9

su�ciently strong bounds on the parameters.

Explicit support for expressing subsystem boundaries, such as modules [26], might be a useful ex-

tension to Sather. In particular, a module construct would help to package helper classes, to explicitly

treat subsystem invariants, to reduce the probability of conicts in the global class name space, and allow

limitations to be placed and how much of a source needs to be revealed for purposes of compilation. The

best form for such a construct is not yet clear, however, and so the current version of Sather will address

these issues at the level of the development environment rather than in the language.

4 Foundations

The type system described so far needs to be grounded in explicit built-in classes. A class can do no

more than de�ne attributes of types introduced by itself or other classes, or de�ne routines operating

over its own or shared attributes, or invoking other operations. What is missing are the foundational

entities to start with. Such foundation entities are present in all languages

7

in the form of built-in types

or operations with prede�ned semantics. In Sather, certain prede�ned classes serve this purpose.

A language that claims to be \general-purpose" also has to be able to express interfaces to the outside

world. For example, a Sather program should be able to call non-Sather libraries, including functions of

the underlying operating system and graphical user interface. It is not reasonable to expect that a �xed

set of built-in classes will ever su�ce to serve this purpose in full generality. For these purposes Sather

has external classes. Prede�ned and external classes are described in the next two subsections.

4.1 Built-in Classes

Most classes are de�ned by explicit code in a Sather program, but there are several classes which are

automatically constructed by the compiler. These classes have certain built-in features that may be

de�ned in an implementation dependent way. In each case, the choices made by the implementation are

described by constants which may be accessed by a program. This section provides a short description of

some of the most important built-in classes. The complete and detailed semantics and precise interface

is speci�ed in the Sather class library documentation.

� $OB is automatically an ancestor of every class. Variables declared by this type may hold any object.

� BOOL de�nes value objects which represent boolean values.

� CHAR de�nes value objects which represent characters.

� STR de�nes reference objects which represent strings.

� INT de�nes value objects which represent machine-dependent integers. The size is implementation

dependent. Classes representing �xed-sized integers with a di�erent number bits may be de�ned by

inheriting from INT and rede�ning the constant \bsize". All the routines work with an arbitrary

\bsize".

� INTINF de�nes reference objects which represent in�nite precision integers. They support arithmetic

operations but do not support bit operations.

� FLT, FLTD, FLTE, and FLTDE de�ne value objects which represent oating point values according to

the single, double, extended, and double extended representations de�ned by the IEEE-754-1985

standard.

� ARR{T} is a reference class de�ning dynamically-sized arrays of elements of type T. Classes which

inherit from this are called array classes. They allocate space for the array and the attribute

asize:INT whose value is the number of elements in the array.

� TYPE de�nes the value objects returned by the type routine.

7

In theory, the �-calculus, e.g. with syntax E ::= x j EE j �x:E, is su�cient. Such languages tend to have e�ciency

problems, though!

10

4.2 Interfacing to External Code

Sather provides a few special built-in classes to interface to external code, as listed below. Additionally,

Sather's external classes can be used to interface with code from other languages. External classes are

not classes in the traditional sense. They can neither be instantiated, nor can they be in a subclass or

subtype relationship with any other class. It is merely for the sake of uniformity of the language that

external routine interfaces are grouped into external \classes".

Each external class is typically associated with an object �le compiled from a language like C or

Fortran. External classes may only contain routines with distinct names (overloading is not allowed in

external classes). The external object �le must provide a conforming function de�nition with the same

name as each routine which doesn't have an implementation in the external class. Sather code may call

these external routines using a class call expression of the form EXT_CLASS::ext_rout(5). Similarly,

the external code may call one of the non-abstract Sather routines

8

de�ned in the class by using a name

consisting of the class name, an underscore, and the routine name (eg. EXT_CLASS_sather_rout).

� BITS may be inherited by value classes which represent a single �eld of data. The descendant may

de�ne the two constants bsize:INT and balign:INT to specify the size in bits of the object and

its alignment requirements.

� $EXTOB is used to refer to \foreign pointers". These might be used, for example, to hold references

to C structures. Such pointers are never followed by Sather and are treated essentially as integers

which disallow arithmetic operations. They may be passed to external routines.

5 Conclusions

The design of Sather 1.0 involved trading o� an interesting set of constraints regarding e�ciency, clarity,

reusability and safety. We have described several important aspects of the type and class system and

compared them with the solutions chosen by other object-oriented languages. These give rise to a language

with a unique combination of conceptual clarity, safety and support for high performance.

Acknowledgements

Many people were involved in the Sather 1.0 design discussions. Jerry Feldman, Ben Gomes, Ari Hut-

tunen, Chu-Cheow Lim, Heinz Schmidt, and David Stoutamire made suggestions which were especially

relevant to the topics discussed in this paper.

A Syntax of the Sather Class and Type System

The following sections give examples of actual Sather code fragments together with the corresponding

grammar rules. The grammar rules are presented in a variant of Backus-Naur form. Non-terminal

symbols are represented by strings of letters and underscores in italic typeface and begin with a letter.

The nonterminal symbol on the lefthand side of a grammar rule is followed by an arrow \) " and

right-hand side of the rule. The terminal symbols consist of Sather keywords and special symbols and are

typeset in the typewriter font. Italic parentheses \(: : :) " are used for grouping, italic square brackets

\[: : :] " enclose optional clauses, vertical bars \: : : j : : : " separate alternatives, italic asterisks \: : :* "

follow clauses which may appear zero or more times, and italic plus signs \: : :+ " follow clauses which

may appear one or more times.

A.1 Class de�nition lists

class A is ... end; class B is ... end

class def list) [class def] j class def list ; [class def]

8

The calling conventions and the layout of objects are described in the implementation manual of individual versions.

11

A.2 Class de�nitions

class A{S,T:=INT,U<B} is ... end

value class B < $C,$D is ... end

abstract class $E > G,H is ... end

class def) [value j abstract j external] class class name

[{ param dec (, param dec)*}] class inheritance is class elt list end

param dec) ident [< type spec] [:= type spec]

class inheritance) [< type spec (, type spec)*]

[> type spec (, type spec)*]

A.3 Type speci�ers

A{B,C{$D}}

ROUT{A,B,C}:D

ITER{A,B!,C}

type spec) [class name] [{ type spec list }] j

ROUT [{ type spec list }] [: type spec] j

ITER [{ type spec [!] (, type spec [!])*}] [: type spec]

type spec list) type spec (, type spec)*

A.4 Features

class elt list) [class elt] j class elt list ; [class elt]

class elt) const def j shared def j attr def j rout def j iter def j include clause

A.5 Constant attribute de�nitions

const r:FLT:=45.6

private const a,b,c

const def) [private] const ident (: type spec := expr j [:= expr] [,ident list])

ident list) ident (, ident)*

A.6 Shared attribute de�nitions

private shared i,j:INT

shared s:STR:="name"

readonly shared c:CHAR:='x'

shared def) [private j readonly] shared

(ident : type spec := expr j ident list : type spec)

A.7 Object attribute de�nitions

attr a,b,c:INT

private attr c:CHAR:='a'

readonly attr s:STR:="a string"

attr def) [private j readonly] attr

(ident : type spec := expr j ident list : type spec)

12

A.8 Routine de�nitions

a(FLT):FLT pre arg>1.2 post res<4.3 is ... end

b is ... end

private d:INT is ... end

c(s1,s2,s3:STR)

rout def) [private] ident [(arg dec (, arg dec)*)] [: type spec] [pre expr] [post expr] [is stmt list

end]

arg dec) [ident list :] type spec

A.9 Iter de�nitions

elts!(i:INT, x:FLT!):T is ... end

iter def) [private] iter name [(iter arg dec (, iter arg dec)*)] [: type spec]

[pre expr] [post expr] [isstmt list end]

iter name) ident!

iter arg dec) [ident list :] type spec [!]

A.10 include clauses

include A a:INT->b, c(INT)->, d:FLT->private d;

private include D e:STR->readonly f;

include A::a(INT)->b;

include clause) include type spec :: elt mod j

[private] include type spec [elt mod (, elt mod)*]

elt mod) ident [(type spec list)] [: type spec] ->

[[private j readonly] ident]

References

[1] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. Keene, G. Kiczales, and D. A. Moon. The common

lisp object system speci�cation. Technical Report 88-002R, X3J13, June 1988. Also in special issue

of SIGPLAN Notices 23 (Sep. 1988) and Lisp and Symbolic Computation (Jan. 1989).

[2] Gilad Bracha and William R. Cook. Mixin-based inheritance. In Proceedings of the Conference

on Object-Oriented Programming, Systems, and Applications and European Conferance on Object-

Oriented Programming (OOPSLA/ECOOP'90), Ottawa, Canada, October 1990. Also in SIGPLAN

Notices, 25:10, Oct. 1990.

[3] Luca Cardelli. Typeful programming. Technical report, DEC Systems Research Center, Palo Alto,

CA, May 1989.

[4] Craig Chambers. The Cecil language - speci�cation and rationale. Technical Report 93-03-05,

Department of Computer Science, University of Washington, Seattle, WA, March 1993.

[5] William R. Cook. A proposal for making ei�el type safe. In Proceedings of the Third European Con-

ference on Object-Oriented Programming (ECOOP'89), pages 57{70, Nottingham, England, 1989.

Cambridge University Press.

[6] WilliamR. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In Proceedings

of the ACM Conference on Principles of Programming Languages (POPL'90), pages 125{135. ACM

Press. Addison-Wesley, 1990.

13

[7] Mahesh Dodani and Chung-Sin Tsai. ACTS: A type system for object-oriented programming based

on abstract and concrete classes. In Proceedings of the Sixth European Conference on Object-Oriented

Programming (ECOOP'92), pages 309{328, Utrecht, Netherlands, 1992.

[8] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley,

1990.

[9] Richard P. Gabriel, Jon L White, and Daniel G. Bobrow. CLOS: Integrating object-oriented and

functional programming. Communications of the ACM, 34(9):29{38, September 1991.

[10] Adele Goldberg and David Robson. Smalltalk-80, The Language and its Implementation. Addison-

Wesley, 1985.

[11] Norman Hutchinson. Emerald: An Object-Oriented Language for Distributed Programming. PhD

thesis, Department of Computer Science and Engineering, University of Washington, Seattle, WA,

January 1987.

[12] Kathleen Jensen and Niklaus Wirth. PASCAL: User Manual and Report. Springer-Verlag, 2d ed.

corr. print edition, 1978.

[13] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall, 1978.

[14] B.B. Kristensen, O.L. Madsen, B. Moeller-Pedersen, and Kristen Nygaard. The BETA program-

ming language. In B.D. Shriver and P. Wegner, editors, Research Directions in Object-Oriented

Programming. MIT Press, 1987.

[15] Chu-Cheow Lim and Andreas Stolcke. Sather language design and performance evaluation. Technical

Report TR-91-034, International Computer Science Institute, May 1991.

[16] Boris Magnusson. Code reuse considered harmful. Journal of Object Oriented Programming, 4(3),

November 1991.

[17] Bertrand Meyer. Ei�el - The Language. Prentice-Hall, 1988.

[18] Bertrand Meyer. Object-oriented Software Construction. Prentice-Hall, 1988.

[19] Hanspeter M�ossenb�ock and Niklaus Wirth. The programming language Oberon-2. Structured Pro-

gramming, 12(4), 1991.

[20] Stephan Murer, Stephen Omohundro, and Clemens A. Szyperski. Sather iters: Object-oriented

iteration abstraction. Technical Report TR-92-xxx, International Computer Science Institute, 1993.

[21] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[22] Stephen Omohundro. Sather provides nonproprietary access to object-oriented programming. Com-

puters in Physics, 6(5):444{449, 1992.

[23] Martin Reiser and Niklaus Wirth. Programming in Oberon. Steps Beyond Pascal and Modula.

Addison-Wesley, 1992.

[24] Heinz W. Schmidt and Benedict Gomes. ICSIM: An object-oriented connectionist simulator. Tech-

nical Report TR-91-048, International Computer Science Institute, November 1991.

[25] Alan Snyder. Encapsulation and Inheritance in object-oriented programming languages. In Pro-

ceedings of the First ACM Conference on Object-Oriented Programming, Systems, and Applications

(OOPSLA'86), pages 38{45, Portland, OR, November 1986. Also in SIGPLAN Notices, 21:11, Nov.

1986.

[26] Clemens A. Szyperski. Import is not Inheritance { why we need both: Modules and Classes. In Pro-

ceedings of the Sixth European Conference on Object-Oriented Programming (ECOOP'92), Utrecht,

The Netherlands, June 1992.

14

[27] David Ungar and Randall B. Smith. Self: The power of simplicity. In Proceedings of the Second ACM

Conference on Object-Oriented Programming, Systems, and Applications (OOPSLA'87), Orlando,

FL, October 1987. Also in SIGPLAN Notices, 22:12, Dec. 1987.

[28] U.S. Department of Defence. Ada Reference Manual: Proposed Standard Document, July 1980.

[29] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 1982.

15

