
The pSather 1.0 Manual

December 2, 1994

David Stoutamire1

International Computer Science Institute
1947 Center Street, Suite 600

Berkeley, California 94704

1. Direct email correspondence to davids@icsi.berkeley.edu

3

pSather 1.0 - Tutorial

EXAMPLES 5
 Gate examples .5

 Fork, par, and parloop examples .6

 Locking examples .7

 Memory consistency examples .7

 Locality examples .8

 Spread example .9

 A Code Example .10

The pSather 1.0 Specification

INTRODUCTION 13

PARALLEL EXTENSIONS TO SATHER 14
 Threads .14

 Gates .14

par and fork . 16
 Locks .17

$LOCK Classes .18

 Memory consistency model .19

 The SYS Class .19

 Exceptions .20

DISTRIBUTED EXTENSIONS 20
 Locality and the Cluster Model .20

 Spread Objects .22

4

Examples 5

pSather 1.0 - Tutorial

EXAMPLES

Gate examples

Gates can be used as futures:

g: := #GATE{FLT}; -- Create a gate with queue of FLTs
g :- compute;
...
result := g.get;

The statement “g :- compute;” creates a new thread to do some computation; the current
thread can continue to execute. It is suspended only if the result is needed and not avail-
able.

Obtaining the first result from several competing searches:

g :- search(strategy1);
g :- search(strategy2);
g :- search(strategy3);
result := g.get;
g.clear;

When one of the threads succeeds, its result is enqueued in g. After retrieving this result
the other threads are terminated by “g.clear”.

6 Examples

Fork, par, and parloop examples

In the following code A and B can execute concurrently. After both A and B complete, C
and D can execute concurrently. E must wait for A, B, C and D to terminate before execut-
ing.

par
par

fork A end;
B

end;
fork C end;
D

end;
E

This code applies frobnify using a separate thread for each element of an array.

par
loop e: := a.elt!;

fork e.frobnify end
end

end

The same code can be written:

parloop e: := a.elt! do
e.frobnify

end

This code applies phase1 and phase2 to each element of an array, waiting for all phase1
to complete before beginning phase2 (barrier sync):

parloop e: := a.elt! do e.phase1 end;
parloop e: := a.elt! do e.phase2 end

This code does the same thing without iterating over the elements for each phase:

parloop e: := a.elt! do
e.phase1;
cohort.sync;
e.phase2;

end

Because local variables declared in the parloop become unique to each thread, the explicit
barrier sync in the last example is useful to allow convenient passing of state from one
phase to another through the thread’s local variables, instead of using an intermediate ar-
ray with one element for each thread.

Examples 7

It is possible to clear all threads at once and resume execution with the thread outside the
par statement in this way:

answer:FOO; -- This is outside the par so it is shared
parloop e: := a.elt! do

result: := e.search;
if ~void(result) then

answer := result;
cohort.clear -- This clears all threads in the par, even the thread executing the ‘elt!’

end
end
-- Now answer can be used

Locking examples

The following code computes the maximum value in an array by using a thread to com-
pute the max of each subrange:

global_max:FLT:=a[0]; -- Outside the par body so this is shared
parloop

i:=0.upto!(a.size-1, 1024);-- Step by 1024. Each thread works on 1024 elements
do

m:FLT:=a[i]; -- This is local to each body thread
loop

m:=m.max(a.elt!(i,1024)) -- Yield 1024 elements starting at index ‘i’
end
lock cohort then -- Obtain mutual exclusion

global_max:=global_max.max(m)
end

end

This code implements five dining philosophers:

chopsticks : := #ARRAY{MUTEX}(5);
loop chopsticks.set!(#MUTEX) end;
parloop

i: := 0.upto!(4);
do

loop
think;
lock chopsticks[i], chopsticks[(i+1).mod(5)] then

eat
end

end
end

Memory consistency examples

The following incorrect code may loop forever waiting for flag, print “i is 1”, or print “i
is 0”. The code fails because it is trying to use flag to signal completion of “i:=1”, but
there is no appropriate synchronization occuring between the forked thread and the
body thread. Even though the thread terminates, the modification of flag may not be ob-

8 Examples

served because there is no import in the body thread. Even if the modification to flag is
observed, there is no guarantee that a modification to i will be observed before this, if at
all.

i:INT; -- These variables are shared
flag:BOOL;
par

fork
i := 1;
flag := true;

end;
loop until!(flag) end-- Attempt to loop until change observed
#OUT + “i is” + i + ’\n’

end

The code below will always print “i is 1” because there is no race condition. An export oc-
curs when the forked thread terminates, and an import occurs when par completes. There-
fore the change to ‘i’ must be observed.

i:INT; -- This is a shared variable
par

fork i:=1 end;
end
#OUT + “i is” + i + ’\n’

Locality examples

This code creates an unfixed object and then inserts it into a table, taking care that the in-
sertion code runs at the same cluster as the table:

table.insert(#FOO @ any) @ where(table);

To make sure the object is fixed at the same cluster as the table, one could write

loc: := where(table);
table.insert(#FOO @ loc) @ loc;

or

fork @ table(where);
table.insert(#FOO)

end

To recursively copy only that portion of a binary tree which is near,

near_copy:NODE is
if near(self) then return #NODE(lchild.near_copy, rchild.near_copy)
else return self
end

end

Examples 9

Spread example

On a machine with one processor per cluster, spread might be used to implement a
spread vector with subranges distributed across the clusters:

spread class SPREAD_VEC is
attr subrange:VEC; -- There is one vector on each cluster; this is a pointer to it.
...
plus(b:SAME):SAME is

res: := new;
parloop do @ clusters!; -- Idiom recognized by compiler; implemented as a broadcast

res.subrange := subrange + b.subrange
end;
return res

end
...

end

This implementation will not perform well on architectures with more than one processor
per cluster; a more portable class would be written

spread class DIST_VEC is
attr chunks:ARRAY{VEC}; -- There are one or more chunks per processor
...
plus(b:SAME):SAME is

res: := new;
res.chunks := #(size);
parloop do @ clusters!; -- Execute on each cluster

parloop i: := chunks.ind!; do -- Fork for each chunk
res.chunks[i] := chunks[i] + b.chunks[i]

end
end;
return res

end
...

end

10 Examples

A Code Example

This program takes a distributed vector of FLTs, computes the maximum value, and prints
how many times this value appears in each of the chunks constituting the distributed vec-
tor.

class MAIN is
main is

-- ‘vec’ is a Distributed VECtor, composed of many VECs, each
-- of which is an array of FLT (IEEE single precision).
vec:DVEC:= ... -- Read vec in from a file

-- ‘big’ is a local FLT variable which will be shared by all
-- threads in this routine. ‘big_lk’ will be used to guarantee
-- atomicity during the max computation.
big::= - FLT::infinity;
big_lk::=#MUTEX;

-- ‘counts’ is an array of the results, one element per chunk
counts::=#ARRAY{INT}(vec.num_chunks);

parloop
-- The code between ‘parloop’ and ‘do’ is executed serially
-- as in an ordinary loop.

ch::=vec.chunks!; -- Iterate over each chunk
idx::=0.up!; -- Find a place to put the result

do @ where(ch);
-- A thread is forked for the code following the ‘do’.
-- We want it to execute at the location of the chunk.

-- ‘m’ is the maximum value seen by this thread. Because it
-- is declared inside the parloop, it is private to this thread.
-- Similarly, ‘ct’ is private to this thread.
m::= - FLT::infinity;
ct::=0;

-- Scan the local chunk for the maximum and update the count
loop

el::=ch.elt!; -- Iterate over all elements
if m=el then ct:=ct+1;
elsif m<el then m:=el; ct:=1;
end;

end;

-- Now update the global maximum. The ‘if’ isn’t strictly
-- necessary, but avoids synchronization overhead for the
-- common case. The lock guarantees atomicity in case another
-- thread has the same idea.
if big<m then

lock big_lk then big:=big.max(m); end;
end;

Examples 11

cohort.sync; -- Wait for all threads (barrier sync)

-- If the local max is the same as the global max, then our
-- count is legitimate, so store it. Otherwise, the count
-- should stay zero as the array was initialized.
if m=big then

counts[idx]:=ct;
end;

end; -- parloop

-- Print out what has been discovered
#OUT + “The maximum value is: “ + big + ‘\n’;
loop i::=0.for!(vec.num_chunks);

#OUT + “Chunk “ + i + “ has “ + counts[i] + “ instances” + ‘\n’;
end;

end; -- routine main
end; -- class MAIN

class DVEC < $DIST{VEC} is
dir:DIRECTORY{VEC}; --DIRECTORY is a spread class, lists chunks
num_chunks:INT;
create(num_chunks:INT):SAME is ... end;
chunks!:VEC is ... end; -- Iterate over chunks
...

end; -- class DVEC

12 Examples

Introduction 13

The pSather 1.0 Specification

INTRODUCTION

Sather is an object oriented language that supports highly efficient computation and pow-
erful abstractions for encapsulation and code reuse. pSather is a set of extensions to (serial)
Sather to allow scalable reusable software units on shared or distributed-memory architec-
tures. This document builds upon and assumes knowledge of the Sather 1.0 specification,
available at http://http.icsi.berkeley.edu/Sather.

The pSather syntax is specified by grammar rules expressed in a variant of Backus-Naur
form, following the Sather 1.0 specification. The full pSather 1.0 grammar is formed by the
union of the grammar rules from the Sather 1.0 specification and those in this document.

This specification differs in many important ways from the previous “pSather 1.0” as de-
scribed in ICSI TR-93-028. Many of the changes were prompted by conflicts with changes
in serial Sather, while others are generalizations or streamlining of the previous pSather
constructs.

14 Parallel Extensions to Sather

PARALLEL EXTENSIONS TO SATHER

Threads

In serial Sather there is only one thread of execution; in pSather there may be many. Mul-
tiple threads are similar to multiple serial Sather programs executing concurrently, but
threads share variables of a single namespace. A new thread is created by executing a fork,
which may be either a fork statement (page 16) or an attach (page 14). The new thread is a
child of the forking thread, which is the child’s parent. pSather provides operations that can
block a thread, making it unable to execute statements until some condition occurs. pSather
threads that are not blocked will eventually run, but there is no other constraint on the or-
der of execution of statements between threads that are not blocked. Threads no longer ex-
ist once they terminate. When a pSather program begins execution it has a single thread
corresponding to the main routine.

Serial Sather defines a total order of execution of the program’s statements; in contrast,
pSather defines only a partial order. This partial order is defined by the union of the con-
straints implied by the consecutive execution order of statements within single threads and
pSather synchronization operations between statements in different threads. As long as
this partial order appears to be observed it is possible for an implementation to overlap
multiple operations in time, so a child thread may run concurrently with its parent and
with other children.

Gates

Gates are powerful synchronization primitives which generalize fork/join, mailboxes,
semaphores and barrier synchronization. Gates have the following unnamed attributes:

• A locked status (unlocked, or locked by a particular thread);

• In the case of GATE{T}, a queue of values which must conform to T, or

• In the case of the unparameterized class GATE, an integer counter;

• A set of attached threads. Every pSather thread is attached to exactly one gate1. At-
tached threads may be thought of as producers that enqueue their return value (or in-
crement the counter) when they terminate.

One way that threads can be created is by executing an attach:

attach expression :- expression

1. Even the main routine, which may be considered dynamically inside an implicit par (page 16), is attached to a
gate; the program terminates when all threads have terminated.

⇒

Parallel Extensions to Sather 15

The left side must be of type GATE or GATE{T}. If the left side is of type GATE{T}, the re-
turn type of the right side must conform to T. If the left side is of type GATE, the right side
must not return a value. The right side must be a routine call or a call on a bound routine
object.

The left side is evaluated; then any subexpressions of the right side are evaluated left to
right. If the gate is locked by another thread, the executing thread is suspended until the
gate becomes unlocked; then a new thread is created to execute the specified routine. The
new thread is attached to the gate. When the forked routine returns, the thread terminates,
detaches itself from the gate, and enqueues the return value or increments the counter.

Gates can be used to signal threads about changes in their queue or attached threads. For
example, a thread that wants to continue when a gate’s queue has a value can use get to
wait without looping.

In addition to having threads attached, gates support the following operations:

Table 1: Basic operations on GATE{T} [and GATE]

Signature Description Exclusive?

create:SAME Make a new unlocked GATE{T} with an empty queue and no

attached threads.

N/A

size:INT Returns number of elements in queue [GATE: returns counter]. No

has_thread:BOOL Returns true if there exists a thread attached to the gate. No

set(T)
[GATE::set]

Replace head of queue with argument, or insert into queue if

empty. [GATE: If counter is zero, set to one.]

Yes

get:T
[GATE::get]

Return head of queue; do not remove from queue. Blocks until

queue is not empty. [GATE: Blocks until counter is nonzero.]

Yes

enqueue(T)
[GATE::enqueue]

Insert argument at tail of queue. [GATE: increment counter.] Yes

dequeue:T
[GATE::dequeue]

Block until queue is not empty, then remove and return head of

queue. [GATE: Block until counter nonzero, then decrement.]

Yes

clear Clears the gate, emptying the queue [GATE: clearing counter],

detaching any threads, setting their SYS::cleared flag and pos-

sibly raising an exception; see page 19.

Yes

sync Blocks until all attached threads are also blocking on a call to

sync or have terminated. It is an error for sync to be called by a

thread not attached to this gate.

Yes

16 Parallel Extensions to Sather

Some gate operations are exclusive: these lock the gate before proceeding and unlock it
when the operation is complete. Only one thread may lock a gate at a time. The exclusive
operations also perform imports and exports significant to memory consistency (page 19).
Gates also support the operations listed on page 18.

par and fork

A threads may be created by an attach, but may also be created with the fork statement,
which must be syntactically enclosed in a par statement:

fork_statement fork statement_list end

par_statement par statement_list end

When a fork statement is executed, it forks a body thread to execute the statements in its
body. Local variables which are declared outside the body of the innermost enclosing par
statement are shared among all threads in the par body. The rules for memory consistency
apply to body threads, so they may not see a consistent picture of the shared variables un-
less they employ explicit synchronization (page 19).

Each body thread receives a unique copy of every local declared in the innermost enclosing
par body. When body threads begin, these copies have the value that the locals did at the
time the fork statement was executed. Changes to a thread’s copy of these variables are not
observed by other threads. Iterators may not occur in a fork statement unless they are with-
in a loop which is also enclosed by the fork.

The thread executing a par statement creates a GATE object and forks a thread to execute
the body. This newly created thread as well as all threads created by fork statements syn-
tactically in the par body are attached to this same gate. The gate may be accessed by the
special expression cohort, which must be syntactically enclosed in a par statement:

expression cohort

The thread executing a par statement blocks until there are no threads attached to the co-
hort gate. This will occur even if threads exit the par body due to an enclosing loop termi-
nating because of an iterator, a return statement, or an exception. yield is not permitted
within a par body.

The parloop statement is syntactic sugar to make convenient a common parallel program-
ming idiom:

parloop_statement parloop statement_list do statement_list end

⇒

⇒

⇒

⇒

Parallel Extensions to Sather 17

This is syntactic sugar for:

par
loop

statement_list
fork

statement_list
end

end
end

Locks

Synchronization objects control the blocking and unblocking of threads. GATE, GATE{T}
and MUTEX are special synchronization objects which provide a mutual exclusion lock.
Only one thread may acquire the lock at a time. The thread then holds the lock until it re-
leases it. A single thread may acquire a lock multiple times concurrently; it will be held
until a corresponding number of releases occur.

Locks may be safely acquired with the lock and try statements:

lock_statement lock expression { , expression } then statement_list end

try_statement try expression { , expression } then statement_list [else statement_list] end

The type of all expressions must be subtypes of $LOCK (page 18). The thread executing the
lock statement is said to be locking on the listed locks. The statement list following the then
is called the lock body. A lock statement guarantees that all listed locks are atomically ac-
quired before the body executes. The try statement does not block, and if it fails to acquire
all the locks, it will instead execute the statements following the else, if present.

Because all listed locks are acquired atomically, deadlock can never occur due to concur-
rent execution of two or more lock statements with multiple locks, although it is possible
for deadlock to occur by dynamic nesting of lock statements or in other ways.

The implementation of lock statements also ensures that threads that can run will eventu-
ally do so; no thread will face starvation because of the operation of the locking and sched-
uling implementation. However, it is frequently good practice to have threads whose
programmer supplied enabling conditions are never met in a given run (exceptional cases)
or are not met after some time (alternative methods). One thread in an infinite loop can pre-
vent other threads from executing for an arbitrary time.

All locks acquired by the lock statement are released when the lock body stops executing;
this may occur due to executing the last statement of the body, termination of a loop by an
iterator, a return, or an exception. Objects may also be unlocked before exiting a lock body
by an unlock statement:

unlock_statement unlock expression

⇒

⇒

⇒

18 Parallel Extensions to Sather

An unlock statement must be syntactically within a lock body, and must not occur within
a loop statement unless it is also within the body of a lock statement also within the loop.
It is a fatal error if the expression does not evaluate to a $LOCK object which is locked by
the enclosing lock statement.

$LOCK Classes

All synchronization objects subtype from $LOCK.The following primitive $LOCK classes
are built-in:

• GATE{T} and GATE (page 14)

• MUTEX: a simple mutual exclusion lock. Two threads may not simultaneously lock a
MUTEX. MUTEX is a subset of the functionality of GATE, and may require less over-
head.

In addition to these primitive $LOCK classes, some synchronization classes return $LOCK
objects to allow different kinds of locking. The concrete type of the returned object is im-
plementation dependent:

• GATE and GATE{T} define empty, not_empty, threads and no_threads. These opera-
tions are not exclusive. Other gate operations are listed on page 14.

• RW_LOCK is used to manage reader-writer synchronization. If rw is an object of type
RW_LOCK, then a lock on rw.reader or rw.writer blocks until no thread is locking on
rw.writer. Threads may upgrade from a reader to a writer without deadlock.

Table 2: Operations on GATE{T} [and GATE] that return $LOCK objects

Signature Description

empty:$LOCK Returns a lock which blocks until the gate is lockable and the gate’s queue is

empty [GATE: counter zero]; then the gate is locked. Holding this lock does not

prevent the holder from making the queue become not empty [counter become

nonzero].

not_empty:$LOCK Returns a lock which blocks until the gate is lockable and the gate’s queue is not

empty [GATE: counter nonzero]; then the gate is locked. Holding this lock does

not prevent the holder from making the queue become empty [counter zero].

threads:$LOCK Returns a lock which blocks until the gate is lockable and there is some thread

attached to the gate; then the gate is locked. Holding this lock does not prevent the

completion of attached threads.

no_threads:$LOCK Returns a lock which blocks until the gate is lockable and there are no threads

attached to the gate; then the gate is locked. Holding this lock does not prevent the

attachment of threads by the holder.

Parallel Extensions to Sather 19

Memory consistency model

Threads may communicate by writing and then reading variables or attributes of objects.
All assignments are atomic (the result of a read is guaranteed to be the value of some pre-
vious write); assignments to value objects atomically modify all attributes. Writes are al-
ways observed by the thread itself. Writes are not guaranteed to be observed by other
threads until an export is executed by the writer and a subsequent import is executed by
the reader. Exports and imports are implicitly associated with certain operations:.

This model has the property that it guarantees sequential consistency to programs without
data races.

The SYS Class

pSather extends the SYS class with these functions:

Table 3: Operations with implicit imports and exports

An import occurs: An export occurs:

In a newly created thread In parent thread when a child thread is forked

When exiting a par statement (children have terminated) In the child on thread termination

When entering the body of a lock or try statement When exiting the body of a lock or try

On exclusive GATE and GATE{T} operations (page 14) On exclusive GATE and GATE{T} operations

cleared:BOOL False when a thread begins; this becomes true if clear is called on the gate the thread

is attached to. This value is unique to each thread.

trap_clear:BOOL This variable is unique to each thread. It is true when a thread begins; if true at the

time the gate is cleared, the thread encounters a CLEARED_EX exception. Other-

wise the thread continues but will observe cleared to be true.

defer Hint to scheduler that this is a good time to preempt this thread.

import Execute an import operation (page 19).

export Execute an export operation (page 19).

20 Distributed Extensions

Exceptions

Exceptions in a par body will not be raised outside the body until all threads created in the
body have terminated; exceptions in a lock body will not be raised outside the body until
all associated locks have been released.

As in serial Sather, it is a fatal error if an exception occurs in a thread which is not handled
within that thread by some protect statement. There is an implicit handler for
CLEARED_EX on all threads which executes nothing; clearing a gate will by default (see
page 19) kill any attached threads by raising a CLEARED_EX which they do not catch.

DISTRIBUTED EXTENSIONS

Locality and the Cluster Model

The pSather executing environment defines a number of clusters. At any time a thread has
an associated cluster id (an INT), its locus of control. Every thread also has a fixed or unfixed
status. Unless modified explicitly, the locus of a fixed thread remains the same throughout
the thread’s execution. The locus of control of an unfixed thread may change at any time.

When execution begins, the main routine is unfixed2. The unfixed status or fixed locus of
control of a child thread is the same as the status or locus of its parent at the time of the fork.

The locus of a thread may be explicitly fixed or unfixed for the duration of the evaluation
of an expression:

expression expression @ (expression | any)

An expression following the ‘@’ must evaluate to an INT, which specifies the cluster id of
the locus of control the thread will be fixed at while it evaluates the preceeding expression.
It is a fatal error for a cluster id to be less than zero or greater than or equal to clusters (page
19). If any is given instead of a cluster id, the thread will be unfixed while it evaluates the
expression. The ‘@’ operator has lower precedence than any other operator.

2. The fixed or unfixed status of the main routine and other characteristics of unfixed threads and objects may be
changed by compiler options. It is a legitimate implementation to have “unfixed” threads and objects behave as
though they were fixed at the point of creation.

⇒

Distributed Extensions 21

The ‘@’ notation may also be used to explicitly fix or unfix body threads of fork and parloop
statements.

fork_statement fork @ (expression | any) ; statement_list end

parloop_statement parloop statement_list do @ (expression | any) ; statement_list end

Although for these constructs the location expression may appear to be within the body, it
is really part of the header. The location expression is executed before the threads are
forked and is not part of the body threads.

All reference objects have a unique associated cluster id, the object’s location, as well as a
fixed or unfixed status. When a reference object is created by a fixed thread, its location will
be the same as the locus of control when the new expression was executed. If the creating
thread was unfixed, the object will be unfixed and its location may change at any time. A
reference object is near to a thread if its current location is the same as the thread’s locus of
control, otherwise it is far.

There are several built-in expressions for location:

It is also possible to assert that particular reference objects remain near at run-time:

with_near_statement with identifier_list near statement_list [else statement_list] end

Expression Type Description

here INT The cluster ID of the locus of control of the thread.

where(expression) INT The location of the argument. It is a fatal error for the argument to eval-

uate to void. If the argument is a value or spread type it returns here.

near(expression) BOOL True if the argument is not void and near. If the argument is a value or

spread type it returns ~void(x).

far(expression) BOOL True if the argument is not void and far. If the argument is a value or

spread type it returns false.

clusters INT Number of clusters. Although a constant, may not be available at com-

pile time.

clusters! INT Iterator which returns all cluster ids in some order. This may bring the

compiler’s attention to opportunities for optimization.

⇒

⇒

⇒

22 Distributed Extensions

The identifier_list may contain local variables, arguments, and self; these are called near vari-
ables. When the with statement begins execution, the identifiers are checked to ensure that
all of them hold either near objects or are void. If this is true then the statements following
near are executed, and it is a fatal error if the identifiers stop holding either near objects or
void at any time. Unfixed objects will not change location while they are held by near vari-
ables. It is a fatal error if some identifiers hold neither near nor void and there is no else.
Otherwise, the statements following the else are executed.

Spread Objects

A spread class replicates object attributes and array elements across all clusters.

class
[spread | value | external] class uppercase_identifier
[{ parameter_declaration {, parameter_declaration} }][subtyping_clause]
is [class_element] { ; [class_element]} end

An object of a spread class has a distinct instance of each attribute and array element on
each cluster. Attribute and array accesses read or write only the instance on the cluster of
the locus of execution; therefore the instance on a particular cluster can be accessed with
the idiom “spread_var@location”. The new expression in a spread class is used just as in a
reference class; there is a single integer argument if the class has an array portion.

⇒

