
Sather Lisp

Robert Griesemer
International Computer Science Institute, Berkeley

gri@icsi.berkeley.edu

August 17, 1994

1. Introduction

Sather Lisp is a primitive Lisp interpreter completely written in Sather 1.0. Currently no local
function definitions are possible, and therefore no higher order functions can be defined directly
(i.e., local lambda's do not work correctly). However, arbitrary long integers and rational
numbers are fully supported.

Sather Lisp serves as an example for a non_trivial but still comprehensible Sather 1.0
application. Its simplicity lead to a small and straightforward implementation (less than 1000
lines of code, including comments and empty lines), but the interpreter is still powerful enough
to give valuable insights into the principles of list processing. It can either be used to learn
Sather by studying a concrete application, or to get a glance of list processing by studying the
implementation details.

This documentation is only a brief description of the interpreter functionality (its user
interface) and is not intended as a Lisp tutorial. The reader is referred to the standard literature
for a more thourough introduction into the topic (e.g., P.H. Winston and B.K.P. Horn (1984),
Lisp, 2nd edition, Addison_Wesley).

2. Usage

The Sather Lisp implementation consists of the file Lisp.sa and the necessary Sather library files.
After compilation with:

cs Lisp.sa −main LISP −o Lisp <CR>

(assuming SATHER_COMMANDS set correctly), the Lisp interpreter can be started:

Lisp <CR>
Sather Lisp − gri 15 Aug 94
(symbols) returns a list of all defined symbols
>

The '>' prompt signals that the interpreter is ready for input. The interpreter accepts any
sequence of Lisp expressions as input and evaluates them consecutively. The output is the result
of the last evaluated expression (unless an error occured before). The program can be left by
typing in Ctrl_D (indicating end of file) or by using the predefined function exit:

2

> (exit) <CR>

3. Expression syntax

The Sather Lisp syntax is described using an Extended Backus_Naur Formalism (EBNF): brackets
[and] denote optionality of the enclosed sentential form, braces { and } denote its repetition
(possibly zero times). Alternative forms are separated by vertical bars |. Syntactic entities
(non_terminal symbols) are denoted by English words starting with a capital letter (the only one
is Expression). Tokens of the language vocabulary (terminal symbols) are either denoted by
English words starting with a small letter (e.g., number), or are denoted by strings enclosed in
double quotes (e.g., "."). No white space may appear within tokens. However, arbitrary white
space and comments may appear between tokens. Comments are denoted by the curly braces {
and } and may be nested.

Expression = "'" Expression |
"(" {Expression} ["." Expression] ")" |
symbol | number | string.

symbol = letter {letter | digit} |
special {special}.

number = ["−"] digit {digit} ["/" digit {digit}].
string = """ char """.

letter = "A" | "B" ... "Z" | "a" | "b" ... "z".
digit = "0" | "1" ... "9".
special = "!" | "#" | "$" | "%" | "&" | "*" | "+" | "−" | "/" | ":" |

"<" | "=" | ">" | "?" | "@" | "\\" | "↑" | "|" | "˜".

char = any printable character except "

Examples:

−1234 (negative) integer
7/31 (positive) rational number
"This is a string" string
() empty list, nil
myFunc symbol
<= (special) symbol
'a quoted symbol
(a (b 3/4 c) d) list consisting of 3 elements
(a . b) dotted pair
(a b c (u v w) x . d) list terminated with dotted pair
(a . (b . (c . ()))) = (a b c) equivalence of dotted pair and list notation

Note: The negative sign of a number must be immediately before the first digit and must not be
preceeded by another special character, otherwise it is interpreted as (special) symbol. 'x is a
shortcut for (quote x) (unless quote has been redefined).

3

4. Expression evaluation

Sather Lisp evaluates a list by first evaluating its first element (which must evaluate to a
function) and then applying the function to the remaining list. Whether the arguments are
evaluated or not depends on the function; e.g., quote (') never evaluates its (single) argument,
but setq evaluates only its second argument, and + evaluates all its arguments, etc. Symbols
evaluate to their bound values, which may be assigned using set or setq. Initially, they evaluate
to nil. Numbers, strings and functions evaluate to themselves. Truth values are denoted by the
empty list (i.e., nil) and non_nil values. The empty list (nil) stands for "false", and any non_nil
value stands for "true". Usually the predefined symbols nil and t (which evaluate to the empty
list () and t, respectively) are used to represent "false" and "true". In order to avoid confusion,
they shouldn't be redefined. If they are, (setq nil ()) and (setq t 't) re_establishes their default
values.

Examples:

1234 ↑ 1234
"hello world" ↑ "hello world"
(+ 1 2 3 4 5 6 7 8 9 10) ↑ 55
'(a . b) ↑ (a . b)
car ↑ [car] ([...] denotes functions)
(cons 'a 'b) ↑ (a . b)
(car (cons 'a 'b)) ↑ a
(cdr (cons 'a 'b)) ↑ b
(cdr '(a b)) ↑ (b)
(setq a 4/6) ↑ 2/3
a ↑ 2/3
(lambda (x) (+ x 1)) ↑ [((+ #0 1))] (#i denotes argument no. i)
((lambda (x) (+ x 1)) 1) ↑ 2
(setq inc (lambda (x) (+ x 1))) ↑ [inc]
(inc 1) ↑ 2

5. Predefined functions

Several functions are predefined in Sather Lisp. Since predefined functions are bound to
ordinary symbols, (the values of) these symbols may be redefined if desired (and the old
function is lost unless it is bound to another symbol, too). User defined functions may be added
(or redefined, resp.) by binding lambda expressions to symbols (see Section 6). A list of all
symbols known to the system is obtained using (symbols). The following table gives a brief
definition of all predefined functions.

Expression Result Constraints

(+ arg0 arg1 [... argn]) (arg0 + arg1) + ... + argn (numbers only)
(− arg0 arg1 [... argn]) (arg0 − arg1) − ... − argn (numbers only)
(* arg0 arg1 [... argn]) (arg0 * arg1) * ... * argn (numbers only)
(/ arg0 arg1 [... argn]) (arg0 / arg1) / ... / argn (numbers only)

4

(% arg0 arg1 [... argn]) (arg0 % arg1) % ... % argn (numbers only)
(↑ arg0 arg1 [... argn]) (arg0 ↑ arg1) ↑ ... ↑ argn (numbers only)

(= arg0 arg1 [... argn]) arg0 = arg1 = ... = argn (numbers and strings only)
(# arg0 arg1 [... argn]) arg0 # arg1 # ... # argn (numbers and strings only)
(< arg0 arg1 [... argn]) arg0 < arg1 < ... < argn (numbers and strings only)
(<= arg0 arg1 [... argn]) arg0 <= arg1 <= ... <= argn (numbers and strings only)
(> arg0 arg1 [... argn]) arg0 > arg1 > ... > argn (numbers and strings only)
(>= arg0 arg1 [... argn]) arg0 >= arg1 >= ... >= argn (numbers and strings only)

(! arg) factorial of floor(arg) (numbers only)
(floor arg) floor of arg (numbers only)
(ceiling arg) ceiling of arg (numbers only)

(car arg) head of arg (arg must be a list)
(cdr arg) tail of arg (arg must be a list)
(cons arg0 arg1) (arg0 . arg1)
(atom arg) t if arg is not a pair, () otherwise
(eq arg0 arg1) arg0 = arg1

'arg shortcut for (quote arg)
(quote arg) returns arg without evaluation
(eval arg) evaluates the value of arg

(set sym arg) binds the value of arg to the symbol sym
(setq arg0 arg1) binds the value of arg1 to the symbol value of arg1

(write arg) writes arg to stdout and returns arg
(writeLn) starts a new line to stdout and returns ()

(lambda ...) see Section 6
(cond arg0 [arg1 ... argn]) each argument is considered to be a list consisting of

a condition (which evaluates to nil or non_nil) and
a sequence of expressions. cond evaluates the first
sequence of expressions for which its condition is
evaluated to a non_nil value. The result of cond
is the last expression evaluated (see examples).

(readFile arg) reads and evaluates file arg (arg must be a string)
(tracer arg) arg = on: turns tracing output on and returns on

arg # on: turns tracing output off and returns off
(tracer) actual tracing mode (on or off)
(symbols) returns list of all known symbols
(exit) exits the interpreter

Note: Use = for comparison of numbers and strings; eq does only a pointer comparison, thus
(eq 1 1) # t!

5

6. Function definition

New functions can be created using the lambda function. lambda expects a parameter list and a
sequence of expressions. Three syntactic variants exist:

a) (lambda x expr0 expr1 ... exprm)
b) (lambda (par0 par1 .. parn−1) expr0 expr1 ... exprm)
c) (lambda (par0 par1 .. parn−1 . x) expr0 expr1 ... exprm)

a) This corresponds to case c) with n = 0.
b) The function expects n parameters which are hold in par0 to parn−1. The result of a function
invocation is the value of the last expression exprm evaluted using the parameter values (i.e., the
parameters are evaluated before the expri's are evaluated). Symbols that are not parameters are
considered to be global.
c) The function expects at least n parameters. The values of the first n parameters are hold in
par0 to parn−1 (i.e., these parameters are evaluated before the expri's are evaluated), the
remaining parameter list is hold in x (i.e., the last parameter is not evaluated prior to evaluation
of the expri's).

Variant a) and c) can be used to implement functions that accept variable long argument lists
or functions that do only partially evaluate their arguments. For instance, quote could be
defined by (setq quote (lambda x (car x))). The ReadFiles function definition in the example
section below is another application of this feature. Furthermore, variant a) and c) can also be
(mis_)used to implement functions with one local variable x. If more than one local variable are
required, an auxiliary function must be called that specifies local variables as additional
arguments which are not used (but initialized) by the call.

Note: A function which is used several times should be bound to a symbol (for efficiency
reasons). This is especially important when using recursion.

Implementation restriction: Currently, local lambda definitions (lambdas within lambdas) do not work

correctly. Furthermore, quoting arguments within lambdas is erroneous. Both these problems are related

and due to the simplified implementation. Solving these problems correctly requires a redesign of the

function evaluation mechanism.

Examples:

(lambda (x) (add x 1)) defines an increment function
(setq inc (lambda (x) (add x 1))) the value of inc is the increment function
(inc 1) inc applied to 1 returns the value 2

(setq sum defines a function sum which recursively
 (lambda (n) calculates the sum of the first n integers
 (cond
 ((< 0 n) (+ n (sum (− n 1))))
 (t 0)
)
)

6

)

(sum 100) 5050

(setq list (lambda x x)) returns its arguments as a list without evaluation
(list a b c) (a b c)

(setq readFiles extend the readFile function to arbitrary many
 (lambda x arguments
 (cond
 ((atom x))
 (t (readFile (car x)) (eval (cons 'readFiles (cdr x))))
)
)
)

7. Error recovery

Currently, after a parse_ or run_time, the interpreter only prints out a short error message and
returns to the read_eval_write loop. If the error hapens during file input (i.e., during the
evaluation of a (readFile arg) expression, also the file name (arg) is displayed. However, the Lisp
tracing facility can be used to simplify the location of bugs. The function tracer is turned on by
evaluating (tracer on), and turned off by evaluating (tracer off). When on, the interpreter prints
out the every (predefined and user_defined) function call together with its arguments and the
return value. The following shows the trace of the expression (sum 3) (sum is defined in
Section 8):

> (tracer on)
on
> (sum 3)
[sum] called with (3)
 [cond] called with (((<= #0 0) 0) (t (+ #0 (sum (− #0 1)))))
 [<=] called with (#0 0)
 [<=] returns nil
 [+] called with (#0 (sum (− #0 1)))
 [sum] called with ((− #0 1))
 [−] called with (#0 1)
 [−] returns 2
 [cond] called with (((<= #0 0) 0) (t (+ #0 (sum (− #0 1)))))
 [<=] called with (#0 0)
 [<=] returns nil
 [+] called with (#0 (sum (− #0 1)))
 [sum] called with ((− #0 1))
 [−] called with (#0 1)
 [−] returns 1
 [cond] called with (((<= #0 0) 0) (t (+ #0 (sum (− #0 1)))))
 [<=] called with (#0 0)

7

 [<=] returns nil
 [+] called with (#0 (sum (− #0 1)))
 [sum] called with ((− #0 1))
 [−] called with (#0 1)
 [−] returns 0
 [cond] called with (((<= #0 0) 0) (t (+ #0 (sum (− #0 1)))))
 [<=] called with (#0 0)
 [<=] returns t
 [cond] returns 0
 [sum] returns 0
 [+] returns 1
 [cond] returns 1
 [sum] returns 1
 [+] returns 3
 [cond] returns 3
 [sum] returns 3
 [+] returns 6
 [cond] returns 6
[sum] returns 6
6
>

Function names (i.e., the symbols to which the functions are bound to) are shown in brackets
[]. If there is no name for a particular function (i.e., in case of a anonymous lambda
expression), the function definition is printed out instead. Parameters are denoted by #i,
starting with i = 0 for the first parameter of a lambda expression. If the same function sum is
called with a wrong argument, e.g., a string, the run_time error can be located easily:

> (sum "illegal argument")
[sum] called with ("illegal argument")
 [cond] called with (((<= #0 0) 0) (t (+ #0 (sum (− #0 1)))))
 [<=] called with (#0 0)
error in [sum]: 0 is not a string
>

Obviously, the error occured in the user_defined function sum (error messages refer to
user_defined function names only). Within sum, the last function called was [<=] with the
arguments #0 and 0. Since #0 refers to the string "illegal argument", the expression to be
evaluated is (<= "illegal argument" 0) which results in a run_time error, since [<=] requires all
arguments to be either numbers or strings.

8. A few more examples

{ Sum of the first n integers }

(setq sum
 (lambda (n)

8

 (cond
 ((<= n 0) 0)
 (t (+ n (sum (− n 1))))
)
)
)

{ Examples }

(sum 0)
(sum 10)
(sum 100)
(sum 1000)
(sum 0)

{ Factorial using Peano Axioms }

(setq s
 (lambda (x)
 (cons 's (cons x nil))))

(setq p
 (lambda (x)
 (car (cdr x))))

(setq myAdd
 (lambda (x y)
 (cond
 ((atom x) y)
 (t (s (myAdd (p x) y))))))

(setq myMul
 (lambda (x y)
 (cond
 ((atom x) 0)
 (t (myAdd (myMul (p x) y) y)))))

(setq gen
 (lambda (n)
 (cond
 ((<= n 0) 0)
 (t (s (gen (− n 1)))))))

(setq fact
 (lambda (x)
 (cond
 ((atom x) (s 0))

9

 (t (myMul x (fact (p x)))))))

{ Examples (gen is used to create Peano Integers) }

(gen 0)
(gen 2)
(gen 10)
(gen 100)

(p (gen 3))

{ Peano addition }

(myAdd (gen 3) (gen 4))
(myAdd (gen 0) (gen 2))

{ Peano multiplication }

(myMul (gen 2) (gen 3))

{ Peano factorial }

(fact (gen 0))
(fact (gen 2))
(fact (gen 4))
(fact (gen 5))
(fact (gen 6))

{ Towers of Hanoi }

(setq print
 (lambda (x)
 (write x) (writeLn)))

(setq move
 (lambda (from to)
 (print (cons from (cons to ())))))

(setq hanoi
 (lambda (from over to n)
 (cond
 ((> n 0)
 (hanoi from to over (− n 1))
 (move from to)
 (hanoi over from to (− n 1))
))))

10

{ Example }

(hanoi 'a 'b 'c 5)

{ Ackerman function }

(setq A
 (lambda (x y)
 (cond
 ((= x 0) (+ y 1))
 ((= y 0) (A (− x 1) 1))
 (t (A (− x 1) (A x (− y 1))))
)
)
)

{ Examples }

(A 3 2)
(A 3 3)

