
INDEX 1992-6-4

name/2 39

nl/0 35

nl/1 35

nodebug/0 56

nonvar/1 24

noprotocol/0 56

nospy/1 56

nospyall/0 56

not/1 27

notrace/0 56

nth0/3 46

nth1/3 46

number/1 24

numbervars/4 38

once/1 27

op/3 41

open/3 33

open_null_stream/1 34

pi/0 44

PL_action() 81

PL_arg() 76

PL_atom_value() 76

PL_atomic() 76

PL_bktrk() 79

PL_call() 79

PL_context() 80

PL_fail() 73

PL_fatal_error() 81

PL_float_value() 76

PL_foreign_context() 74

PL_foreign_control() 74

PL_functor() 76

PL_functor_arity() 76

PL_functor_name() 76

PL_integer_value() 76

PL_mark() 79

PL_module_name() 80

PL_new_atom() 78

PL_new_float() 78

PL_new_functor() 78

PL_new_integer() 78

PL_new_module() 80

PL_new_string() 78

PL_new_term() 78

PL_query() 81

PL_register_foreign() 82

PL_retry() 74

PL_signal() 80

PL_string_value() 76

PL_strip_module() 80

PL_succeed() 73

PL_type() 75

PL_unify() 78

PL_unify_atomic() 78

PL_unify_functor() 78

PL_warning() 80

please/3 15

plus/3 42

portray/1 37

portray_clause/1 23

predicate_property/2 31

predsort/3 47

preprocessor/2 22

print/1 37

print/2 37

profile/3 58

profile_count/3 59

profiler/2 59

prolog/0 55

prolog_current_frame/1 86

prolog_frame_attribute/3 86

prolog_skip_level/2 87

prolog_trace_interception/3 86

prompt/2 38

proper_list/1 45

protocol/1 55

protocola/1 56

protocolling/1 56

put/1 35

put/2 35

random/1 43

read/1 37

read/2 37

read_clause/1 37

read_clause/2 37

read_history/6 37

read_variables/2 37

read_variables/3 37

recorda/2 28

recorda/3 28

recorded/2 28

recorded/3 28

recordz/2 28

recordz/3 28

rename_file/2 54

repeat/0 25

reset_profiler/0 59

retract/1 28

retractall/1 28

reverse/2 46

same_file/2 54

save_program/1 17

{ 99 {

INDEX 1992-6-4

current_atom/1 30

current_flag/1 30

current_functor/1 30

current_input/1 34

current_key/1 30

current_op/3 41

current_output/1 34

current_predicate/2 30

current_stream/3 34

debug/0 56

debugging/0 56

delete/3 46

delete_file/1 54

discontiguous/1 29

display/1 36

display/2 36

displayq/1 36

displayq/2 36

dwim_match/2 60

dwim_match/3 60

dwim_predicate/2 31

dynamic/1 29

e/0 44

ed/0 23

ed/1 23

edit/0 23

edit/1 23

ensure_loaded/1 22

erase/1 29

exception/3 88

exists_directory/1 54

exists_file/1 54

exp/1 44

expand_file_name/2 55

export/1 68

fail/0 25

fileerrors/2 35

findall/3 47

flag/3 29

flatten/2 46

float/1 24

floor/1 43

flush/0 36

flush_output/1 36

forall/2 49

foreign_file/1 72

format/1 50

format/2 50

format_predicate/2 52

free_variables/2 39

functor/3 38

garbage_collect/0 59

gensym/2 60

get/1 36

get/2 36

get0/1 36

get0/2 36

get_single_char/1 36

get_time/1 54

getenv/2 53

ground/1 24

halt/0 55

help/0 10

help/1 10

history_depth/1 38

ignore/1 27

import/1 64

index/1 30

int_to_atom/2 39

int_to_atom/3 39

integer/1 24, 43

intersection/3 47

is/2 42

is_list/1 45

is_set/1 46

keysort/2 47

last/2 46

leash/1 56

length/2 46

library_directory/1 22

limit_stack/2 59

line_count/2 35

line_position/2 35

list_to_set/2 47

listing/0 23

listing/1 23

load_foreign/2 72

log/1 44

log10/1 44

make/0 22

maplist/3 49

max/2 43

member/2 46

memberchk/2 46

merge/3 46

merge_set/3 47

min/2 43

mod/2 43

module/2 68

module_transparent/1 68

msort/2 47

multifile/1 29

{ 98 {

Index

Emacs 9

GNU-Emacs 9

!/0 26

*/2 43

+/2 43

-/1 43

-/2 43

->/2 26

./2 43

///2 43

//2 43

\+/1 26

/\/2 44

\=/2 25

\//2 44

\/1 44

;/2 26

</2 42

<</2 44

=../2 38

\==/2 24

=/2 25

=\=/2 42

=:=/2 42

=</2 42

==/2 24

=@=/2 25

>/2 42

>=/2 42

>>/2 43

@</2 25

\=@=/2 25

@=</2 25

@>/2 25

@>=/2 25

^/2 44

abolish/2 28

abort/0 55

abs/1 43

absolute_file_name/2 55

access_file/2 54

acos/1 44

append/1 33

append/3 46

apply/2 27

apropos/1 10

arg/3 38

arithmetic_function/1 45

asin/1 44

assert/1 28

assert/2 28

asserta/1 28

asserta/2 28

assertz/1 28

assertz/2 28

atan/1 44

atan/2 44

atom/1 24

atom_length/2 40

atom_to_term/3 40

atomic/1 24

bagof/3 48

between/3 42

break/0 55

call/1 27

ceil/1 43

character_count/2 35

chdir/1 55

checklist/2 49

clause/2 31

clause/3 32

close/1 34

compiling/0 22

concat/3 40

concat_atom/2 40

consult/1 21

context_module/1 68

convert_time/8 54

copy_term/2 39

cos/1 44

cputime/0 45

current_arithmetic_function/1 45

97

Bibliography

[Anjewierden & Wielemaker, 1989] A. Anjewierden and J. Wielemaker. Extensible objects. ESPRIT

Project 1098 Technical Report UvA-C1-TR-006a, University of

Amsterdam, March 1989.

[BIM, 1989] BIM Prolog release 2.4. Everberg, Belgium, 1989.

[Bowen & Byrd, 1983] D.L. Bowen and L.M. Byrd. A portable Prolog compiler. In L.M.

Pereira, editor, Proceedings of the Login Programming Workshop

1983, Lisabon, Portugal, 1983. Universidade nova de Lisboa.

[Bratko, 1986] I. Bratko. Prolog Programming for Arti�cial Intelligence.

Addison-Wesley, Reading Massachusetts, 1986.

[Clocksin & Melish, 1981] W.F. Clocksin and C.S. Melish. Programming in Prolog.

Springer-Verlag, New York, 1981.

[Kernighan & Ritchie, 1978] B.W. Kernighan and D.M. Ritchie. The C Programming Lan-

guage. Prentice-Hall, Englewood Cli�s, NJ, 1978.

[O'Keefe, 1985] R.A. O'Keefe. This Here Isn't Even Fine, 1985. also available

from SWI, University of Amsterdam.

[OKeefe, 1990] R.A. OKeefe. The Craft of Prolog. The MIT Press, Massachus-

setts, 1990.

[Pereira, 1986] F. Pereira. C-Prolog User's Manual, 1986.

[Qui, 1987] Quintus Prolog, User Guide and Reference Manual. Mountain

View, CA, 1987.

[Sterling & Shapiro, 1986] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press,

Cambridge, Massachusetts, 1986.

[Warren, 1983] D.H.D. Warren. The runtime environment for a prolog compiler

using a copy algorithm. Technical Report 83/052, SUNY and

Stone Brook, N.Y., 1983. Major revision March 1984.

96

APPENDIX B. PREDICATE SUMMARY 1992-6-4

tab/2 Output number of spaces on a stream

tan/1 Arithmetic: tangent

tell/1 Change current output stream

telling/1 Query current output stream

term_expansion/2 Convert term before compilation

term_to_atom/2 Convert between term and atom

time/1 Determine time needed to execute goal

time_file/2 Get last modi�cation time of �le

told/0 Close current output

trace/0 Start the tracer

tracing/0 Query status of the tracer

trim_stacks/0 Release unused memory resources

true/0 Succeed

tty_fold/2 Make terminal fold long lines in output

tty_get_capability/3 Get terminal parameter

tty_goto/2 Goto position on screen

tty_put/2 Write control string to terminal

ttyflush/0 Flush output on terminal

union/3 Union of two sets

unknown/2 Trap unde�ned predicates

unsetenv/1 Delete Unix environment variable

use_module/1 Import a module

use_module/2 Import predicates from a module

var/1 Type check for unbound variable

visible/1 Set ports that are visible in the tracer

wait_for_input/3 Wait for input with optional timeout

wildcard_match/2 Csh(1) style wildcard match

write/1 Write term

write/2 Write term to stream

write_ln/1 Write term, followed by a newline

writef/1 Formatted write

writef/2 Formatted write

writeq/1 Write term, insert quotes

writeq/2 Write term, insert quotes on stream

xor/2 Arithmetic: exclusive or

|/2 Disjunction of goals

{ 95 {

APPENDIX B. PREDICATE SUMMARY 1992-6-4

recorded/3 Obtain term from the database

recordz/2 Record term in the database (last)

recordz/3 Record term in the database (last)

rename_file/2 Change name of Unix �le

repeat/0 Succeed, leaving in�nite backtrackpoints

reset_profiler/0 Clear statistics obtained by the pro�ler

retract/1 Remove clause from the database

retractall/1 Remove unifying clauses from the database

reverse/2 Inverse the order of the elements in a list

same_file/2 Succeeds if arguments refer to same �le

save_program/1 Save the current program on a �le

save_program/2 Save the current program on a �le

see/1 Change the current input stream

seeing/1 Query the current input stream

seen/0 Close the current input stream

select/3 Select element of a list

set_input/1 Set current input stream from a stream

set_output/1 Set current output stream from a stream

set_tty/2 Set `tty' stream

setenv/2 Set Unix environment variable

setof/3 Find all unique solutions to a goal

sformat/2 Format on a string

sformat/3 Format on a string

shell/0 Execute interactive Unix subshell

shell/1 Execute Unix command

shell/2 Execute Unix command

show_profile/1 Show results of the pro�ler

sin/1 Arithmetic: sine

size_file/2 Get size of a �le in characters

sleep/1 Suspend execution for speci�ed time

sort/2 Sort elements in a list

source_file/1 Examine currently loaded source �les

source_file/2 Obtain source �le of predicate

spy/1 Force tracer on speci�ed predicate

sqrt/1 Arithmetic: square root

statistics/0 Show execution statistics

statistics/2 Obtain collected statistics

stream_position/3 Get/seek to position in �le

string/1 Type check for string

string_length/2 Determine length of a string

string_to_atom/2 Conversion between string and atom

string_to_list/2 Conversion between string and list of ASCII

style_check/1 Change level of warnings

sublist/3 Determine elements that meet condition

subset/2 Generate/check subset relation

substring/4 Get part of a string

subtract/3 Delete elements that do not meet condition

succ/2 Logical integer successor relation

swritef/2 Formatted write on a string

swritef/3 Formatted write on a string

tab/1 Output number of spaces

{ 94 {

APPENDIX B. PREDICATE SUMMARY 1992-6-4

nl/1 Generate a newline on a stream

nodebug/0 Disable debugging

nonvar/1 Type check for bound term

noprotocol/0 Disable logging of user interaction

nospy/1 Remove spy point

nospyall/0 Remove all spy points

not/1 Negation by failure (not provable)

notrace/0 Stop tracing

nth0/3 N-th element of a list (0-based)

nth1/3 N-th element of a list (1-based)

number/1 Type check for integer or
oat

numbervars/4 Enumerate unbound variables of a term

once/1 Call a goal deterministicaly

op/3 Declare an operator

open/3 Open a �le (creating a stream)

open_null_stream/1 Open a stream to discard output

pi/0 Arithmetic: mathematical constant

please/3 Query/change environment parameters

plus/3 Logical integer addition

portray/1 Modify behaviour of print/1

portray_clause/1 Pretty print a clause

predicate_property/2 Query predicate attributes

predsort/3 Sort, using a predicate to determine the order

preprocessor/2 Install a preprocessor before the compiler

print/1 Print a term

print/2 Print a term on a stream

profile/3 Obtain execution statistics

profile_count/3 Obtain pro�le results on a predicate

profiler/2 Obtain/change status of the pro�ler

prolog/0 Run interactive toplevel

prolog_current_frame/1 Reference to goal's environment stack

prolog_frame_attribute/3 Obtain information on a goal environment

prolog_skip_level/2 Indicate deepest recursion to trace

prolog_trace_interception/3 Intercept the Prolog tracer

prompt/2 Change the prompt used by read/1

proper_list/1 Type check for list

protocol/1 Make a log of the user interaction

protocola/1 Append log of the user interaction to �le

protocolling/1 On what �le is user interaction logged

put/1 Write a character

put/2 Write a character on a stream

random/1 Arithmetic: generate random number

read/1 Read Prolog term

read/2 Read Prolog term from stream

read_clause/1 Read clause

read_clause/2 Read clause from stream

read_variables/2 Read clause including variable names

read_variables/3 Read clause including variable names from stream

recorda/2 Record term in the database (�rst)

recorda/3 Record term in the database (�rst)

recorded/2 Obtain term from the database

{ 93 {

APPENDIX B. PREDICATE SUMMARY 1992-6-4

get0/2 Read next character from a stream

get_single_char/1 Read next character from the terminal

get_time/1 Get current time

getenv/2 Get Unix environment variable

ground/1 Verify term holds no unbound variables

halt/0 Exit from Prolog

help/0 Give help on help

help/1 Give help on predicates and show parts of manual

history_depth/1 Number of remembered queries

read_history/6 Read using history substitution

ignore/1 Call the argument, but always succeed

import/1 Import a predicate from a module

index/1 Change clause indexing

int_to_atom/2 Convert from integer to atom

int_to_atom/3 Convert from integer to atom (non-decimal)

integer/1 Arithmetic: round to nearest integer

integer/1 Type check for integer

intersection/3 Set intersection

is/2 Evaluate arithmetic expression

is_list/1 Type check for a list

is_set/1 Type check for a set

keysort/2 Sort, using a key

last/2 Last element of a list

leash/1 Change ports visited by the tracer

length/2 Length of a list

library_directory/1 Directories holding Prolog libraries

limit_stack/2 Limit stack expansion

line_count/2 Line number on stream

line_position/2 Character position in line on stream

list_to_set/2 Remove duplicates

listing/0 List program in current module

listing/1 List predicate

load_foreign/2 Load foreign (C) module

load_foreign/5 Load foreign (C) module

log/1 Arithmetic: natural logarithm

log10/1 Arithmetic: 10 base logarithm

make/0 Reconsult all changed source �les

maplist/3 Transform all elements of a list

max/2 Arithmetic: Maximum of two numbers

member/2 Element is member of a list

memberchk/2 Deterministic member/2

merge/3 Merge two sorted lists

merge_set/3 Merge two sorted sets

min/2 Arithmetic: Minimum of two numbers

mod/2 Arithmetic: remainder of division

module/2 Declare a module

module_transparent/1 Indicate module based meta predicate

msort/2 Sort, do not remove duplicates

multifile/1 Indicate distributed de�nition of predicate

name/2 Convert between atom and list of ASCII characters

nl/0 Generate a newline

{ 92 {

APPENDIX B. PREDICATE SUMMARY 1992-6-4

current_op/3 Examine current operator declaractions

current_output/1 Get the current output stream

current_predicate/2 Examine existing predicates

current_stream/3 Examine open streams

debug/0 Test for debugging mode

debugging/0 Show debugger status

delete/3 Delete all matching members from a list

delete_file/1 Unlink a �le from the Unix �le system

discontiguous/1 Indicate distributed de�nition of a predicate

display/1 Write a term, ignore operators

display/2 Write a term, ignore operators on a stream

displayq/1 Write a term with quotes, ignore operators

displayq/2 Write a term with quotes, ignore operators on a stream

dwim_match/2 Atoms match in \Do What I Mean" sense

dwim_match/3 Atoms match in \Do What I Mean" sense

dwim_predicate/2 Find predicate in \Do What I Mean" sense

dynamic/1 Indicate predicate de�nition may change

e/0 Arithmetic: mathematical constant

ed/0 Edit last edited predicate

ed/1 Edit a predicate

edit/0 Edit last edited �le

edit/1 Edit a �le

ensure_loaded/1 Consult a �le if that has not yet been done

erase/1 Erase a database record or clause

exception/3 Handle runtime exceptions

exists_directory/1 Check existence of Unix directory

exists_file/1 Check existence of Unix �le

exp/1 Arithmetic: exponent (base e)

expand_file_name/2 Wildcard expansion of �le names

export/1 Export a predicate from a module

fail/0 Always false

fileerrors/2 Do/Don't warn on �le errors

findall/3 Find all solutions to a goal

flag/3 Simple global variable system

flatten/2 Transform nested list into
at list

float/1 Type check for a
oating point number

floor/1 Arithmetic: largest integer below argument

flush/0 Output pending characters on current stream

flush_output/1 Output pending characters on speci�ed stream

forall/2 Prove goal for all solutions of another goal

foreign_file/1 Examine loaded foreign �les

format/1 Produce formatted output

format/2 Produce formatted output on a stream

format_predicate/2 Program format/[1,2]

free_variables/2 Find unbound variables in a term

functor/3 Get name and arity of a term or construct a term

garbage_collect/0 Invoke the garbage collector

gensym/2 Generate unique atoms from a base

get/1 Read �rst non-blank character

get/2 Read �rst non-blank character from a stream

get0/1 Read next character

{ 91 {

APPENDIX B. PREDICATE SUMMARY 1992-6-4

abolish/2 Remove predicate de�nition from the database

abort/0 Abort execution, return to top level

abs/1 Arithmetic: absolute value

absolute_file_name/2 Get absolute Unix path name

access_file/2 Check access permissions of a �le

acos/1 Arithmetic: inverse (arc) cosine

append/1 Append to a �le

append/3 Concatenate lists

apply/2 Call goal with additional arguments

apropos/1 Show related predicates and manual sections

arithmetic_function/1 Register an evaluable function

arg/3 Access argument of a term

asin/1 Arithmetic: inverse (arc) sine

assert/1 Add a clause to the database

assert/2 Add a clause to the database, give reference

asserta/1 Add a clause to the database (�rst)

asserta/2 Add a clause to the database (�rst)

assertz/1 Add a clause to the database (last)

assertz/2 Add a clause to the database (last)

atan/1 Arithmetic: inverse (arc) tangent

atan/2 Arithmetic: rectangular to polar conversion

atom/1 Type check for an atom

atom_length/2 Determine length of an atom

atom_to_term/3 Convert between atom and term

atomic/1 Type check for primitive

bagof/3 Find all solutions to a goal

between/3 Integer range checking/generating

break/0 Start interactive toplevel

call/1 Call a goal

ceil/1 Arithmetic: smallest integer larger than argument

character_count/2 Get character index on a stream

chdir/1 Change working directory

checklist/2 Invoke goal on all members of a list

clause/2 Get clauses of a predicate

clause/3 Get clauses of a predicate

close/1 Close stream

compiling/0 Is this a compilation run?

concat/3 Append two atoms

concat_atom/2 Append a list of atoms

consult/1 Read (compile) a Prolog source �le

context_module/1 Get context module of current goal

convert_time/8 Convert time stamp

copy_term/2 Make a copy of a term

cos/1 Arithmetic: cosine

cputime/0 Arithmetic: get CPU time

current_atom/1 Examine existing atoms

current_arithmetic_function/1 Examine evaluable functions

current_flag/1 Examine existing
ags

current_functor/2 Examine existing name/arity pairs

current_input/1 Get current input stream

current_key/1 Examine existing database keys

{ 90 {

Appendix B

Predicate Summary

!/0 Cut. Discard choicepoints

*/2 Arithmetic: multiplication

+/2 Arithmetic: addition

,/2 Conjuction of goals

-/1 Arithmetic: unary minus

-/2 Arithmetic: subtraction

->/2 If-then-else

./2 List operator. Also consult

///2 Arithmetic: Integer division

//2 Arithmetic: division

/\/2 Arithmetic: bitwise and

;/2 Disjunction of goals

</2 Arithmetic smaller

<</2 Arithmetic: bitwise left shift

=../2 Univ. Term to list conversion

=/2 Uni�cation

=:=/2 Arithmetic equal

=</2 Arithmetic smaller or equal

==/2 Identical

=@=/2 Structural identical

=\=/2 Arithmetic not equal

>/2 Arithmetic larger

>=/2 Arithmetic larger or equal

>>/2 Arithmetic: bitwise right shift

@</2 Standard order smaller

@=</2 Standard order smaller or equal

@>/2 Standard order larger

@>=/2 Standard order larger or equal

\/1 Bitwise negation

\//2 Arithmetic: bitwise or

\+/1 Negation by failure (not provable)

\=/2 Not unifyable

\==/2 Not identical

\=@=/2 Not structural identical

^/2 Existential quanti�cation (bagof/3, setof/3)

89

APPENDIX A. HACKERS CORNER 1992-6-4

A.3 Exception Handling

A start has been made to make exception handling available to the Prolog user. On exceptions a

dynamic and multi�le de�ned predicate exception/3 is called. If this user de�ned predicate succeeds

Prolog assumes the exception has been taken care of. Otherwise the system default exception handler

is called.

exception(+Exception, +Context, -Action)

Dynamic predicate, normally not de�ned. Called by the Prolog system on run-time exceptions.

Currently exception/3 is only used for trapping unde�ned predicates. Future versions might

handle signal handling,
oating exceptions and other runtime errors via this mechanism. The

values for Exception are described below.

unde�ned predicate

If Exception is undefined predicate Context is instantiated to a term Name/Arity.

Name refers to the name and Arity to the arity of the unde�ned predicate. If the de�nition

module of the predicate is not user Context will be of the form Module:Name/Arity. If

the predicate fails Prolog will print the default error warning and start the tracer. If the

predicate succeeds it should instantiate the last argument either to the atom fail to tell

Prolog to fail the predicate or the atom retry to tell Prolog to retry the predicate. This

only makes sense if the exception handler has de�ned the predicate. Otherwise it will

lead to a loop.

warning

If prolog wants to give a warning while reading a �le, it will �rst raise the exception

warning. The context argument is a term of the form warning(Path, LineNo, Message),

where Path is the absolute �lename of the �le prolog is reading; LineNo is an extimate of

the line number where the error occurred and Message is a Prolog string indicating the

message. The Action argument is ignored. The error is supposed to be presented to the

user if the exception handler succeeds. Otherwise the standard Prolog warning message

is printed.

This exception is used by the library emacs interface, that integrates error handling

with GNU-Emacs.

{ 88 {

APPENDIX A. HACKERS CORNER 1992-6-4

Key Value

alternative Value is uni�ed with an integer reference to the local stack

frame in which execution is resumed if the goal associated

with Frame fails. Fails if the frame has no alternative

frame.

has alternatives Value is uni�ed with `1' if Frame still is a candidate for

backtracking. `0' otherwise.

goal Value is uni�ed with the goal associated with Frame. If

the de�nition module of the active predicate is not user

the goal is represented as module:goal. Do not instantiate

variables in this goal unless you know what you are doing!

level Value is uni�ed with the recursion level of Frame. The top

level frame is at level `0'.

parent Value is uni�ed with an integer reference to the parent local

stack frame of Frame. Fails if Frame is the top frame.

context module Value is uni�ed with the name of the context module of

the environment.

top Value is uni�ed with `1' if Frame is the top Prolog goal

from a recursive call back from the foreign language. `0'

otherwise.

Table A.1: Key values of prolog current frame/1

in �gure A.1 records all goals trapped by the tracer in the database. To trace the execution

of `go' this way the following query should be given:

?- trace, go, notrace.

prolog_trace_interception(Port, Frame, continue) :-

prolog_frame_attribute(Frame, goal, Goal),

prolog_frame_attribute(Frame, level, Level),

recordz(trace, trace(Port, Level, Goal)).

Figure A.1: Record a trace in the database

prolog skip level(-Old, +New)

Unify Old with the old value of `skip level' and than set this level according to New. New is

an integer, or the special atom very deep (meaning don't skip). The `skip level' is a global

variable of the Prolog system that disables the debugger on all recursion levels deeper than the

level of the variable. Used to implement the trace options `skip' (sets skip level to the level of

the frame) and `up' (sets skip level to the level of the parent frame (i.e. the level of this frame

minus 1).

{ 87 {

Appendix A

Hackers corner

This appendix describes a number of predicates which enable the Prolog user to inspect the Prolog

environment and manipulate (or even rede�ne) the debugger. They can be used as entry points for

experiments with debugging tools for Prolog. The predicates described here should be handled with

some care as it is easy to corrupt the consistency of the Prolog system by misusing them.

A.1 Examining the Environment Stack

prolog current frame(-Frame)

Unify Frame with an integer providing a reference to the parent of the current local stack

frame. A pointer to the current local frame cannot be provided as the predicate succeeds

deterministically and therefore its frame is destroyed immediately after succeeding.

prolog frame attribute(+Frame, +Key, -Value)

Obtain information about the local stack frame Frame. Frame is a frame reference as obtained

through prolog current frame/1, prolog trace interception/3 or this predicate. The key

values are described in table A.1.

A.2 Intercepting the Tracer

prolog trace interception(+Port, +Frame, -Action)

Dynamic predicate, normally not de�ned. This predicate is called from the SWI-Prolog de-

bugger just before it would show a port. If this predicate succeeds the debugger assumes the

trace action has been taken care of and continues execution as described by Action. Otherwise

the normal Prolog debugger actions are performed.

Port is one of call, redo, exit, fail or unify. Frame is an integer reference to the current

local stack frame. Action should be uni�ed with one of the atoms continue (just continue

execution), retry (retry the current goal) or fail (force the current goal to fail). Leaving it

a variable is identical to continue.

Together with the predicates described in section 3.34 and the other predicates of this chapter

this predicate enables the Prolog user to de�ne a complete new debugger in Prolog. Besides

this it enables the Prolog programmer monitor the execution of a program. The example shown

86

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

option to include dbx debugging information. Then load them into SWI-Prolog. Now obtain the

name of the current symbol table and the process id of Prolog. Then start dbx (or dbxtool) using

sun% dbx[tool] <symbol file> <pid>

Should this be done often then the following foreign predicate de�nition might help:

pl_dbx()

{ char *symbolfile = PL_query(PL_QUERY_SYMBOLFILE);

char cmd[256];

sprintf(cmd, "dbxtool %s %d &", symbolfile, getpid());

if (system(cmd) == 0)

PL_succeed;

else

PL_fail;

}

Register this predicate as dbx/0 using the following call in your initialisation function:

PL_register_foreign("dbx", 0, pl_dbx, 0);

5.7.4 Name Con
icts in C modules

In the current version of the system all public C functions of SWI-Prolog are in the symbol table.

This can lead to name clashes with foreign code. Someday I should write a program to strip all

these symbols from the symbol table (why does Unix not have that?). For now I can only suggest

to give your function another name. You can do this using the C preprocessor. If {for example{

your foreign package uses a function warning(), which happens to exist in SWI-Prolog as well, the

following macro should �x the problem.

#define warning warning_

5.7.5 Compatibility of the Foreign Interface

As far as I' aware of, there is no standard for foreign language interfaces in Prolog. The SWI-Prolog

interface is no attempt to propose such a standard. It is (in part) tailored to the possibilities of the

SWI-Prolog machinery. BIM-Prolog has a similar interface to analyse and construct terms. The

major di�erence is that they have garbage collection and calls are made available to lock and unlock

terms for garbage collection. I built a similar interface to Edinburgh C-Prolog (although less clean).

This at least tells us that the interface can work for various forms of the WAM as well as a structure

sharing Prolog.

As no standard exists nor emerges, users of the foreign language interface should carefully design

the interface if the C-code should be portable to other Prolog implementation. The best advice to

give is to de�ne a small interface layer around the C-application and interface this to Prolog.

{ 85 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

Compiling and Loading Foreign Code

sun% cc -O -c lowercase.c

sun% pl

/staff/jan/.plrc consulted, 0.166667 seconds, 2256 bytes.

Welcome to SWI-Prolog (version 1.6.0, May 1992)

Copyright (c) 1990, University of Amsterdam

1 ?- load_foreign(lowercase, init_lowercase).

foreign file(s) lowercase loaded, 0.016667 seconds, 464 bytes.

Yes

2 ?- lowercase('Hello World!', L).

L = 'hello world!'

Yes

5.7 Notes on Using Foreign Code

5.7.1 Garbage Collection and Foreign Code

Currently no interface between foreign code and the garbage collector has been de�ned. The garbage

collector is disabled during execution of foreign code. Future versions might de�ne such an interface.

This probably will introduce incompatible changes to the current interface de�nition.

5.7.2 Memory Allocation

SWI-Prolog's memory allocation is based on the malloc() library routines. Foreign applications can

savely use malloc(), realloc() and free(). Memory allocation using brk() or sbrk() is not allowed as

these calls con
ict with malloc().

5.7.3 Debugging Foreign Code

NOTE: this section is highly machine dependent. The tricks described here are tested on SUN-3

and SUN-4. They might work on other BSD variants of Unix.

Debugging incrementally loaded executables is a bit more di�cult than debugging normal executa-

bles. The oldest way of debugging (putting print statements in your code at critical points) of course

still works. `Post-crash' debugging however is not possible. For adb/dbx to work they need (besides

the core) the text segment and the symbol table. The symbol table lives somewhere on /tmp (called

`/tmp/pl ld', where `...' is the process id and `.' is an additional number to make sure the

temporary �le is unique. The text segment lives partly in the core (the incremental loaded bit) and

partly in the SWI-Prolog executable.

The only way to debug foreign language code using a debugger is by starting the debugger on the

running core image. Dbx(1) can do this. First compile the source �les to be debugged with the `-g'

{ 84 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

5.6 Example of Using the Foreign Interface

Below is an example showing all stages of the declaration of a foreign predicate that transforms

atoms possibly holding uppercase letters into an atom only holding lower case letters. Figure 5.4

shows the C-source �le.

C-Source �le (lowercase.c)

/* Include file depends on local installation */

#include "/usr/local/lib/pl/library/SWI-prolog.h"

#include <ctype.h>

long

pl_lowercase(u, l)

term u, l;

{ char *copy;

char *s, *q;

atomic la;

if (PL_type(u) != PL_ATOM)

return PL_warning("lowercase/2: instantiation fault");

s = PL_atom_value(PL_atomic(u));

copy = (char *) malloc(strlen(s)+1);

for(q=copy; *s; q++, s++)

*q = (isupper(*s) ? tolower(*s) : *s);

*q = '\0';

la = PL_new_atom(copy);

free(copy);

return PL_unify_atomic(l, la);

}

init_lowercase()

{ PL_register_foreign("lowercase", 2, pl_lowercase, 0);

}

Figure 5.4: Lowercase source �le

{ 83 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

Registering Foreign Predicates

bool PL register foreign(name, arity, function, [...option...] 0)

Register a C-function to implement a Prolog predicate. After this call returns successfully a

predicate with name name (a char *) and arity arity (a C int) is created. When called in

Prolog, Prolog will call function. [...option...] forms a 0-terminated list of options for the

installation. These are:

PL FA NOTRACE Predicate cannot be seen in the tracer

PL FA TRANSPARENT Predicate is module transparent

PL FA NONDETERMINISTIC Predicate is non-deterministic. This attribute is

currently ignored, but will probably be used in

future versions.

{ 82 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

void PL fatal error(format, a1, ...)

Print a message like PL warning(), but starting with `FATAL ERROR: ' and then exits Prolog.

Environment Control from Foreign Code

bool PL action(int, C type)

Perform some action on the Prolog system. int describes the action, C type provides the

argument if necessary. The actions are listed in table 5.1.

PL ACTION TRACE Start Prolog tracer

PL ACTION DEBUG Switch on Prolog debug mode

PL ACTION BACKTRACE Print backtrace on current output stream

PL ACTION HALT Halt Prolog execution. This action should be called rather

than Unix exit() to give Prolog the opportunity to clean

up. This call does not return.

PL ACTION ABORT Generate a Prolog abort. This call does not return.

PL ACTION BREAK Create a standard Prolog break environment. Returns af-

ter the user types control-D.

PL ACTION SYMBOLFILE The argument (a char *) is considered to be hold the sym-

bol�le for further incremental loading. Should be called by

user applications that perform incremental loading as well

and want to inform Prolog of the new symbol table.

Table 5.1: PL action() options

Querying Prolog

C type PL query(int)

Obtain status information on the Prolog system. The actual argument type depends on the

information required. int describes what information is wanted. The options are given in

table 5.2.

PL QUERY ARGC Return an integer holding the number of arguments given

to Prolog from Unix.

PL QUERY ARGV Return a char ** holding the argument vector given to

Prolog from Unix.

PL QUERY SYMBOLFILE Return a char * holding the current symbol �le of the run-

ning process.

PL QUERY ORGSYMBOLFILE Return the initial symbol �le (before loading) of Prolog.

By setting the symbol �le to this value no name clashes can

occur with previously loaded foreign �les (but no symbols

can be shared with earlier loaded modules as well).

Table 5.2: PL query() options

{ 81 {

CHAPTER 5. FOREIGN LANGUAGE INTERFACE 1992-6-4

Foreign Code and Modules

Modules are identi�ed via a unique handle. The following functions are available to query and

manipulate modules.

module PL context()

Return the module identi�er of the context module of the currently active foreign predicate.

term PL strip module(term, module *)

Utility function. If term is a term, possibly holding the module construct module:rest this

function will return rest and �ll module * with module. For further nested module constructs

the inner most module is returned via module *. If term is not a module construct term will

simply be returned. If module * is NULL it will be set to the context module. Otherwise it will

be left untouched. The following example shows how to obtain the plain term and module if

the default module is the user module:

{ module m = PL_new_module(PL_new_atom("user"));

if ((term = PL_strip_module(term, &m)) == NULL)

return PL_warning("Illegal module specification");

...

atomic PL module name(module)

Return the name of module as an atom.

module PL new module(atomic)

Find an existing or create a new module with name speci�ed by the atom atomic.

Catching Unix Signals

SWI-Prolog catches the Unix signals SIGINT, SIGFPE and SIGSEGV. To avoid problems with

foreign code attempting to catch these signals foreign code should call PL signal() to install signal

handlers rather than the Unix library function signal(). SWI-Prolog will always handle SIGINT

itself. SIGFPE and SIGSEGV are passed to the foreign code handlers if Prolog did not expect that

signal.

void (*PL signal(sig, func))()

This function should be used to install signal handlers rather than the Unix library function

signal(). It ensures consistent signal handling between SWI-Prolog and the foreign code and

reinstalls signal handlers if a state created with save program/1 is restarted.

Errors and warnings

Two standard functions are available to print standard Prolog errors to the standard error stream.

bool PL warning(format, a1, ...)

Print an error message starting with `[WARNING: ', followed by the output from format, fol-

lowed by a `]' and a newline. Then start the tracer. format and the arguments are the same

as for printf(2). No more than 10 arguments can be provided.

{ 80 {

