
PCCTS Reference Manual

Version 1.00

T. J. Parr, H. G. Dietz, and W. E. Cohen

School of Electrical Engineering
Purdue University

West Lafayette, IN 47907
August 1991

pccts@ecn.purdue.edu

This document describes the structure and use of the Purdue
Compiler-Construction Tool Set (PCCTS), a set of public domain
software tools designed to facilitate the implementation of compilers and
other translation systems.

Distribution of PCCTS is managed by an email server that reads
the Subject: line of each email sent to
pccts@ecn.purdue.edu. A missing or undecipherable
Subject: line will cause the system to reply with email explaining
how to use the server. Full C source code for PCCTS, various examples,
and on-line documentation are available.

PCCTS was developed within the School of Electrical Engineering
at Purdue University, supported in part by NSF award number
8624385A3-CDR. As a public domain software release, Purdue Univer-
sity and the authors provide the system strictly on an ‘‘as-is’’ basis,
without warranty or liability. Despite this, bug reports and fixes are wel-
come.

1. Introduction
This document describes structure and use of the Purdue Compiler-

Construction Tool Set (PCCTS). In many ways, PCCTS is similar to a highly
integrated version of YACC [Joh78] and LEX [Les75]; where ANTLR (ANother
Tool for Language Recognition) corresponds to YACC and DLG (DFA-based
Lexical analyzer Generator) functions like LEX. However, PCCTS has many
additional features which make it easier to use for a wide range of translation
problems.

PCCTS grammars contain specifications for lexical and syntactic analysis,
intermediate-form construction and error reporting. Future releases will include
an integrated code-generator generator to support code-generation and other
intermediate-form translations. Rules may employ Extended BNF (EBNF) gram-
mar constructs and may define parameters, return values and local variables.
Languages described in PCCTS are recognized via Strong LL(k) parsers con-
structed in pure, human-readable, C code.

The Version 1.00 Release PCCTS package is considered public-domain and
includes the following items:

g C source code for antlr — parser generator.
g C source code for dlg — DFA-based lexical analyzer generator.
g C source for a symbol table manager with arbitrary scoping capabilities.
g Grammars for ISO PASCAL and ANSI C with symbol table management.
g C source for rexpr(char *expr, char *s) which answers whether

s is in the language (regular expression) described by expr.
g On-line documents — PCCTS Version 1.00 Reference Manual

PCCTS was developed within the School of Electrical Engineering at Purdue
University to aid in constructing various prototype and specialized compilers.
After using the system for over a year, we decided that it was mature enough to
warrant release to a few test sites. Hence, in Spring 1990, an experimental version
of the system, known as PCCTS β, was made available via anonymous ftp.
Although the system was only announced via two short postings in network news-
groups, by January 1991, there were over 450 known user sites worldwide — and
we were hopelessly behind in responding to requests for hardcopy manuals.

Now, only a year older but much wiser, we are finally ready for a full release
of PCCTS — Version 1.00. Experience has proven that we are not able to deal
with high-quantity hardcopy requests; instead, the basic documentation (this docu-
ment) is being printed by SIGPLAN Notices and all documentation is available
on-line.

The rest of this section describes the overall characteristics of PCCTS includ-
ing its programming interface, translation to C code and input file format. Also,
an example is presented to illustrate the development of parsers using PCCTS.

Page 1

PCCTS 1.00

1.1. PCCTS programming interface
PCCTS accepts language descriptions in the form of a set of grammatical

rules and token/lexeme definitions. Significant emphasis was placed on making
the PCCTS programming interface simple and flexible. Much of the notation was
derived from previous language tools and/or programming languages in order to
bring a sense of familiarity and to attenuate the learning curve. For example, attri-
bute notation ($i) and grammar syntax were derived mainly from YACC, though
they have been augmented for use in the EBNF environment. Rules may define
return types, parameter lists and local variables just as in a programming language.
A mechanism for describing abstract-syntax-trees is also provided.

PCCTS Grammars tend to be smaller and more readable than grammars writ-
ten for other parser-generators because of the EBNF notation and because pre-
cedence rules are defined inherently within the grammar rather than delineated via
pseudo-instructions (e.g. %left, %right in YACC). In addition, PCCTS
translators (parser plus actions) are generally easier to develop because of the
extensive programming support.

For example, init-actions allow the user to define local stack-based variables
or execute a piece of C initialization code. Often, a distinct copy of a variable is
required for each invocation of a rule. This requires the overhead of a software
stack when using other language tools. PCCTS constructs a function for each rule
which allows each rule invocation to automatically create its own copy of the user
variables on the hardware stack.

PCCTS parsers are constructed in pure, human-readable, C code. As a result,
standard debugging tools can be used to trace and debug PCCTS parsers. Break-
points can be set so that parser execution stops before or after certain grammar
fragments of interest have been recognized. PCCTS parsers consist of if, and
while statements which can be easily traced by a human observer.

PCCTS supports intermediate-form (such as expression-trees) construction
via a flexible abstract-syntax-tree (AST) mechanism which allows trees to be built
explicitly or automatically. The user explicitly creates trees via a LISP-like tree
constructor or directs the automatic tree construction facility via simple grammar
directives. AST tree nodes are user-defined and are generally a function of attri-
butes or terminals. A default transformation from attributes/terminals ($-
variables) to AST nodes can be specified. Alternatively, each tree node can be
defined explicitly via an AST node constructor.

1.2. PCCTS information flow
PCCTS currently consists of ANTLR (ANother Tool for Language Recogni-

tion) and DLG (DFA-based lexical analyzer generator) which construct parsers
and lexical analyzers respectively.

ANTLR accepts as input a complete language description including rules for
both lexical and syntactic analysis and produces a C program that recognizes

Page 2

PCCTS 1.00

sentences in that language. A C file is constructed for each grammar description
file. Also, three additional files — err.c, tokens.h and parser.dlg (all
of which can be renamed) are generated as support files. err.c contains error
information and token class definitions. tokens.h is a list of #define’s
representing all of the token names defined or referenced in the grammar descrip-
tion files as well as function prototypes for rules that have return types.
parser.dlg is a specification of the lexical analyzer generator derived from the
user’s language description and is translated to C by DLG.

DLG creates an automaton that breaks up the input character stream into
tokens used by the ANTLR-generated parser and it creates mode.h which is a
list of #define’s corresponding to the separate automatons defined by your
grammar.

The following is a graphical representation of the information flow during
translation from parser description to executable parser.

ANTLR
cc
c
hhhhhhhhhhhh

cc
chhhhhhhhhhhh

DLG
cc
c
hhhhhhhhhhhh

cc
chhhhhhhhhhhh

CC
cc
c
hhhhhhhhhhhh

cc
chhhhhhhhhhhh

cc
c

cc
c

cc
c
c
c

hhhhhhhhhhhhh

hhhhhhhhhhhhh

cc
c

cc
c

f1.c, f2.c, ..., fn.c
tokens.h
err.c

f1, f2, ..., fn

scan.c mode.h

parser.dlg

a.out

Page 3

PCCTS 1.00

iii
FILE DESCRIPTIONii

f1 ... fn Input ANTLR grammar description filesiii
f1.c ... fn.c C code generated by ANTLRiii
tokens.h List of token names found in f1 ... fniii
err.c File containing error sets and error support routinesiii
parser.dlg Scanner description prepared for DLGiii
scan.c Actual scanner written in Ciii
mode.h Definitions for lexical modes (#lexclass’s)iii
a.out Final executable parseriiic

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

1.3. PCCTS file(s) format
PCCTS descriptions adhere to a fairly flexible format and can be spread out

over many files. The actual grammar for PCCTS input can be defined in itself as:

grammar : { "#header" Action }
(Action | tokenDef | eclassDef)*
(rule | tokenDef | eclassDef)+
(Action | tokenDef | eclassDef)*
Eof

;

where Action is a user action (C code), tokenDef is a #token definition
and eclassDef is an #errclass definition. Lexical actions found in a
language description are passed on to the parser.dlg file. The ()* and (
)+ EBNF operators indicate 0 or more and 1 or more respectively. { } implies
that the items within are optional. Rule grammar indicates that a PCCTS file
has a #header action first (if at all) followed by actions, token definitions and
error class definitions with the except that actions may not appear between rules.
Also, at least one rule must be defined. There is no start symbol specification
since any rule can be invoked first.

The minimum required user C code is a main program that initializes the
PCCTS-generated parser and calls the starting rule. The lexical analyzer is
derived automatically (from the user’s language description) by ANTLR and a
user routine is not necessary to supply tokens to the parser. The main program
does not need to be located in a PCCTS grammar file.

ANTLR descriptions may be broken up into many different files, but the
sequence mentioned above in grammar must be maintained. For example, if file
f1.g contained

#header <<#include "int.h">>

<< main() { ANTLR(start(), stdin); } >>

Page 4

PCCTS 1.00

and file f2.g contained

start : "begin" VAR "=" NUM ";" "end" "." "@" ;

and file f3.g contained

#token VAR "[a-z]+"
#token NUM "[0-9]+"

the correct ANTLR invocation would be

antlr f1.g f2.g f3.g

Note that the order of files f2.g and f3.g could be switched because a rule
is either a #token or an actual rule definition. In this case, to comply with
ANTLR’s grammar, the only restriction is that file f1.g must be mentioned first
on the command line.

Other files may be included into the parser files generated by ANTLR via
actions containing a #include directive. For example,

<<#include "support_code.h">>

If a file must be included in all parser files generated by ANTLR, the #include
directive must be placed in the #header action. In other words,

#header <<#include "necessary_type_defs_for_all_files.h">>

Note that #include’s can be used to define any ANTLR object (Attrib,
AST, etc...) by placing it in the #header action.

1.4. Makefile template
The template presented in this section can be used to construct makefiles for

single-file grammars. The order of execution will follow that illustrated in section
1.2.

Page 5

PCCTS 1.00

#
Makefile for a single-file grammar
#
ANTLR_H= path to antlr.h, dlgdef.h, dlgauto.h, standard attribute defs
CFLAGS= -I$(ANTLR_H) -DLL_K = $(K)
AFLAGS=
GRM=user_grammar_file_name
SRC=scan.c $(GRM).c err.c
OBJ=scan.o $(GRM).o err.o
K=number_of_tokens_of_lookahead

build an executable with same name as grammar file minus .g
proj: $(OBJ) $(SRC)

cc -o $(GRM) $(OBJ)

how to build parser files from grammar files
$(GRM).c parser.dlg : $(GRM).g

antlr $(AFLAGS) $(GRM).g

how to build scanner from lex description built by ANTLR
scan.c : parser.dlg

dlg -C2 parser.dlg scan.c

1.5. PCCTS component command-line options
The PCCTS system is composed of ANTLR and DLG both of which have

command-line options. Since each component is executed independently, each
may be invoked with different options which are summarized in this section.

ANTLR accepts the following command-line options

-crGenerate cross reference of all rules. The default is FALSE.

-e1Only the first 3 tokens of any ambiguity set are displayed upon warning/error.
i.e. { A B C ...}.

-e2Every token in an ambiguity set is displayed upon warning/error.

-e3Error levels 1 and 2 (-e1, -e2) are sometimes misleading for the sake of brev-
ity. For instance, when a block is ambiguous upon the sequences

A B
C D

only { A C }, { B D } is displayed when in fact A D and C B are not ambi-
guous. The -e3 option makes ANTLR generate permutation trees in LISP-
like notation

(root child1 child2 ... childn)

The following grammar illustrates the difference

Page 6

PCCTS 1.00

a : (A B|C D|A D|C B)
| (A D|C B)
;

ANTLR with error level 1 or 2 reports

Antlr parser generator Version 1.00 1989, 1990, 1991
"t.g", line 1: warning: alts 1 and 2 rule ambiguous upon { A C }, { B D }

ANTLR with error level 3 reports

Antlr parser generator Version 1.00 1989, 1990, 1991
"t.g", line 4: warning: alts 1 and 2 rule ambiguous upon (C B) (A D)

which indicates that rule a is only ambiguous upon the two sequences C B
and A D.

-fe fname
Rename the file where error information, token sets, and zztokens[] are
placed. Default is err.c.

-fl fname
Rename the file where ANTLR places the lexical description. Default is
parser.dlg.

-ft fname
Rename the file where ANTLR places the #define’s for labeled constants
and the function prototypes. Default is tokens.h.

-gaGenerate ANSI prototypes for functions constructed from rules. Default is
not to generate ANSI-style prototypes.

-gtGenerate code for Abstract-Syntax-Trees. Default is not to generate trees.

-gcDo not generate output parser code or lexical description (implies -gx).
This option can be used to check a grammar for ambiguities. Default is to
generate parsers.

-geGenerate an error class for each non-terminal of the form

#errclass Rule { rule }

Default is not to generate the classes.

-gsWhen a token in the current look-ahead needs to be compared against two or
more tokens, code for set membership is generated rather than a set of integer
comparisons. This renders the parsers more efficient, but much more difficult
to read for a human. When debugging an ANTLR parser with a source level
debugger, this command-line option should be used to create more readable
parsers. The default is to generate sets for any token expression list with two
or more members.

Page 7

PCCTS 1.00

-gdGenerate debugging code; trace rule invocation. This command-line option
forces ANTLR to generate code that calls zzTRACE() with the rule name
in which it appears as an argument. zzTRACE() can be a macro or a func-
tion. The default is not to generate debugging code.

-glGenerate line information in PCCTS-generated parser that associates a line in
the user’s grammar with a line in the C code. This is useful when the C com-
piler reports an error in a user action. It will report an error in the grammar
file rather than an error in the C file. This dumps line information like the C
preprocessor.

-gxDo not generate a lexical description (dlg-related files). This is useful if you
are positive nothing has changed in the lexical portion of your language
description. For example, if you simply change an action in one of your
rules, nothing has changed lexically and you need not run DLG to recreate the
lexical analyzer. The default is to generate a description.

-k n
Set k, the number of look-ahead tokens, to n. Default is 1.

-p Print out the grammar to stdout without actions. This option is useful for
documentation purposes or to simply make viewing/understanding your
grammar easier. The default is not to generate a grammar printout.

-paThis option is identical to the -p option accept that the grammar is annotated
with the results of grammar analysis. For example, the set of all tokens that
can be matched at k tokens into the future are displayed after each point in
your grammar where a decision has to be made. ANTLR prints out only the
sets of tokens that would be needed to construct a parser. Rule a below
illustrates the annotations.

#header <<;>>
a : (A B | A D)

| Q
;

Executing ANTLR with

antlr -k 2 -pa t.g

yields (cleaned up slightly)

Antlr parser generator Version 1.00 1989, 1990, 1991

a : (A B /* [1] { A }, { B } */
| A D /* [2] { A }, { D } */
) /* [1] { A } */
| Q /* [2] { Q } */

;

Page 8

PCCTS 1.00

The first alternative of rule a has a subrule with two alternatives which
requires a parsing decision. Since both alternatives start with an A, another
token of look-ahead must be examined to determine which alternative to
choose. In this case, the second token in each alternative allows us to choose.
Therefore, two sets of tokens (singleton sets here) are printed out for each
alternative in the subrule. The alternatives of rule a can be matched with the
knowledge of only the first token and so only one set is printed. The default
is not to generate a grammar printout with annotations.

DLG has the following command-line options.

−Cn
Specify level of character class compression. 0 means no compression, 1
removes unused characters from DFA states, and 2 specifies that DLG is to
combine characters into equivalence classes. It is suggested that -C2 be
used since it will result in much smaller output file and does not require much
additional processing time.

−ga Produce ANSI C compatible code.

−m filename
Uses filename rather than mode.h for the lexical mode definition file.

−i Attempts to build a lexical scanner for interactive programs. The non-
interactive scanner always looks one character past the end of a token. This
look-ahead is avoided whenever possible in the interactive version so that the
pattern is recognized without any additional characters being read. Look-
ahead is always used when necessary to correctly match input tokens.

1.6. Introductory example
As a simple concrete example of the PCCTS system, consider the following

translator which accepts a date in the typical American format of mm/dd/yy and
prints to stdout the same date, but in the European format of dd/mm/yy.

#header <<#include "int.h">>

<<
main()
{

ANTLR(date(), stdin);
}
>>

#token "[\t\ \n]" << zzskip(); >> /* Ignore White */
#token Digits2 "[0-9][0-9]" /* Define mm, dd or yy */

date : Digits2 "/" Digits2 "/" Digits2 "@"
<<printf("%02d/%02d/%02d\n", $3, $1, $5);>>

;

Page 9

PCCTS 1.00

This example is complete in the sense that PCCTS can generate all C files neces-
sary to lexically and syntactically analyze a date and convert it to the European
format. An executable can be obtained by performing the following sequence of
commands (assuming the above grammar is in file date.g and antlr.h, the
standard ANTLR header, is in the current directory).

antlr date.g
dlg parser.dlg scan.c
cc date.c scan.c err.c

Executing the file a.out (on UNIX [Trademark AT&T] systems) will allow the
user to type in a date and have the European version printed out (after end of file is
typed).

Rule date is defined to be a sequence of two digits followed by a / fol-
lowed by a sequence of 2 digits, and so on, terminated by the end of the input file
(represented by "@"). Note that rule names begin with a lower-case letter. The
action

<<printf("%02d/%02d/%02d\n", $3, $1, $5);>>

contains C code that is executed after all elements in rule date have been recog-
nized. C code for the action is delimited by << and >> (European quotes).
Because the >> delimiter otherwise would be confused with C’s right-shift opera-
tor within the C code of an action, right-shift is written as \>\>. Similarly, the
$ and # characters normally have special meanings within the C code of a
PCCTS action; hence, the literal character $ in the C code would be written as
\$ and # would be written as \#.

Although the placement of an action within a grammar determines when that
action will be applied, it must also be possible for the action to be a function of the
text which has been recognized. For example, PCCTS automatically makes $1 in
rule date have a value, or attribute, which is a function of the text matched by
the first occurrence of Digits2. In general, the attribute associated with the ith

item in a rule is called $i. Both the type of the attributes and the mapping from
text matched into its attribute value is specified by the user. The directive

#header <<#include "int.h">>

includes code that makes the values of ‘‘$ variables’’ be of the C type int with
values defined by applying the C function atoi() to the text matched.

Each item in the rules refers either to the text matched by a simple pattern (a
regular expression) or to the collection of items matched by a rule (represented by
the rule’s name). Simple patterns can be stated directly, such as "/" in the
example, or can be given names using the #token directive. The token
definitions

Page 10

PCCTS 1.00

#token "[\t\ \n]" << zzskip(); >> /* Ignore White */
#token Digits2 "[0-9][0-9]" /* Define mm, dd or yy */

cause tab (\t), space (\), and newline (\n) characters between the other tokens
to be ignored, and allow use of the name Digits2 as a shorthand for "[0-
9][0-9]".

Since the above is meant to be a stand-alone complete example and PCCTS
does not generate a C main function, the user must provide a main. The
main also specifies which rule is to be used to recognize the input and where that
input will come from. The code

ANTLR(date(), stdin);

specifies that the date rule will be used to recognize input taken from stdin
(the standard input stream).

Notice that, although there is no specification of how incorrect input should
be handled by the generated program, PCCTS will automatically generate
appropriate error messages and attempt to recover from the errors.

The above example should give the reader a "feel" for how PCCTS can be
used, however, the system supports much more than the example uses. This docu-
ment is organized into six major sections: lexical analysis, syntactic analysis, attri-
bute handling, error detection, miscellaneous items and PCCTS history.

2. Lexical analysis and token definition
The task of language recognition is conveniently broken down into two

phases — lexical and syntactic analysis. Each phase is considered a separate
operation and, therefore, most language tools require separate specifications. For
example, Coco-2 [DoP90] requires the user to create separate, but consistent,
specifications of character sets, keywords and tokens (and even non-terminals). In
contrast, PCCTS derives all this information from a single description. This both
ensures that the information is consistent and makes it easier to view a PCCTS
language specification as a whole.

This section of the manual describes general lexical issues associated with
PCCTS’ integrated description including lexical action definitions, regular expres-
sion specification, and resolution of ambiguities. Also, more specialized issues
such as multiple automatons, interactive scanners, token positional information
and input character supply are presented.

2.1. Token Labeling and token actions
Tokens are defined either explicitly with #token or implicitly by using

them as rule elements. Implicitly defined tokens can be either regular expressions
(non-labeled tokens) or token names (labeled). Token names begin with an

Page 11

PCCTS 1.00

upper-case letter (rules begin with a lower-case letter). More than one occurrence
of the same regular expression in a grammar description produces a single regular
expression in parser.dlg and is assigned one token number. Quoted and
non-quoted tokens that refer to the same lexical object (expression) may be used
interchangeably. Token names that are referenced, but not attached to a regular
expression are assigned a number and given a #define definition in
tokens.h. It is not necessary to label any tokens in PCCTS. However, all
tokens that you wish to explicitly refer to in an action, must be declared with a
#token instruction. From PCCTS’s point of view, it merely needs to know that a
word is a token (as opposed to a non-terminal). Its value is irrelevant at the sym-
bolic level of PCCTS’s meta-language.

The user may introduce tokens, lexical/token actions, and token labels via the
#token instruction. Specifically,

g Simply declare a token for use in a user action:

#token VAR

g Associate a token with a regular expression and, optionally, an action:

#token VAR "[a-zA-Z][a-zA-Z0-9]*"
#token Eof "@" << printf("Eof Found\n"); >>

g Specify what must occur upon a regular expression:

#token "[0-9]+" << printf("Found int %s\n", zzlextext); >>

Token actions may employ two functions, zzreplchar() and
zzreplstr(), to replace the text for the regular expression matched on the
input stream. For example, if \n is found in a string for C, it needs to be con-
verted to the actual newline character. Strings in C can be handled in the follow-
ing manner.

Page 12

PCCTS 1.00

/* START lexclass is in effect */
#token "\"" <<zzmode(STRINGS); zzmore();>>

#lexclass STRINGS /* define a new automaton */
#token STRING "\"" <<zzmode(START);>>
#token "\\\"" <<zzmore();>>
#token "\\n" <<zzreplchar(’\n’); zzmore();>>
#token "\\r" <<zzreplchar(’\r’); zzmore();>>
#token "\\t" <<zzreplchar(’\t’); zzmore();>>
#token "\\[1-9][0-9]*"

<<zzreplchar((char)strtol(zzbegexpr,NULL,10)); zzmore();>>
#token "\\0[0-7]*" <<zzreplchar((char)strtol(zzbegexpr,NULL,8)); zzmore();>>
#token "\\0x[0-9a-fA-F]+"

<<zzreplchar((char)strtol(zzbegexpr,NULL,16)); zzmore();>>
#token "\\˜[\n\r]" <<zzmore();>>
#token "[\n\r]" <<zzline++; zzmore(); /* print warning about \n in str */>>
#token "˜[\"\n\r\\]+" <<zzmore();>>

#lexclass START

Note the use of zzbegexpr which points to the beginning of the text matched
for the currently recognized regular expression. zzendexpr is also available
and points to the end of the expression. The text always has a ’\0’ on the end
and zzendexpr points to the character just before.

There is a big difference between a token action and a normal action found
outside of the #token instructions. An action not included as part of one of the
lexical commands is considered a syntactic action and is placed in the C parser file
associated with that grammar file.

If a grammar action follows a #token definition with no associated lexical
action, the #token instruction will assume that the action is really meant as a
lexical action. This is sort of analogous to the dangling-else-clause dilemma.
Example:

#token VAR "[a-zA-Z][a-zA-Z0-9]*"

<<
/*
* This will be associated with the #token even though it is
* probably a grammar action not a lexical action
*/

>>

This ambiguity can be solved by appending a null action to the #token:

#token VAR "[a-zA-Z][a-zA-Z0-9]*" << ; >>

Page 13

PCCTS 1.00

2.2. Lexical actions via #lexaction

Often, it is convenient to have a section of user C code placed in the lexical
analyzer constructed automatically by DLG (PCCTS’s DFA-based lexical
analyzer generator). Normally, actions not associated with a #token pseudo-op
or embedded within a rule are placed in the parser generated by ANTLR. How-
ever, preceding an action appearing outside of any rule, with the #lexaction
pseudo-op directs the C code to the lexical analyzer. For example,

<< /* a normal action outside of the rules */ >>

#lexaction
<< /* this action is inserted into the lexical

* analyzer created by DLG
*/

>>

All #lexaction actions are collected and placed as a group into the C file
where the lexer resides. Typically, this code consists of functions or variable
declarations needed by #token actions.

2.3. Multiple lexical classes
ANTLR parsers employ DFA’s (Deterministic Finite Automatons) created by

DLG to match tokens found on the character input stream. More than one automa-
ton (lexical class) may be defined in PCCTS. Multiple scanners are useful in two
ways. First, more than one grammar can be described within the same PCCTS
input file(s). Second, multiple automatons can be used to recognize tokens that
seriously conflict with other regular expressions within the same lexical analyzer
(e.g. comments, quoted-strings, etc...).

Actions attached to regular expressions (which are executed when that
expression has been matched on the input stream) may switch from one lexical
analyzer to another. Each analyzer (lex class) has a label which is used to enter
that automaton. A predefined lexical class called START is in effect from the
beginning of the PCCTS description until the user issues a #lexclass directive
or the end of the description is found.

When more than one lexical class is defined, it is possible to have the same
regular expression and the same token label defined in multiple automatons. Reg-
ular expressions found in more than one automaton are given different token
numbers, but token labels are unique across lexical class boundaries. For instance,

#lexclass A
#token LABEL "expr1"

#lexclass B
#token LABEL "expr2"

Page 14

PCCTS 1.00

In this case, LABEL is the same token number (#define in C) for both
"expr1" and "expr2". A reference to LABEL within a rule can be matched
by two different regular expressions depending on which automaton is currently
active.

Hence, the #lexclass directive marks the start of a new set of lexical
definitions. Rules found after a #lexclass can only use tokens defined within
that class — i.e. all tokens defined until the next #lexclass or the end of the
PCCTS description, whichever comes first. Any regular expressions used expli-
city in these rules are placed into the current lexical class. Since the default auto-
maton, START, is active upon parser startup, the start rule must be defined within
the boundaries of the START automaton. Typically, a multiple-automaton
PCCTS grammar will begin with

#lexclass START

immediately before the rule definitions to insure that the rules use the token
definitions in the "main" automaton.

Tokens are given sequential token numbers across all lexical classes so that
no conflicts arise. This also allows the user to reference
zztokens[token_num] (which is a string representing the label or regular
expression defined in the grammar) regardless of which class token_num is defined
in.

2.3.1. Multiple grammars, multiple lexical analyzers
Different grammars will generally require separate lexical analyzers to break

up the input stream into tokens. What may be a keyword in one language, may be
a simple variable in another. The #lexclass PCCTS meta-op is used to group
tokens into different lexical analyzers. For example, to separate two grammars
into two lexical classes,

#lexclass GRAMMAR1

rules for grammar1

#lexclass GRAMMAR2

rules for grammar2

All tokens found beyond the #lexclass meta-op will be considered of that
class.

2.3.2. Single grammar, multiple lexical analyzers
Again the #lexclass meta-op is used to indicate the beginning of a new

lexical analyzer. For instance to define C-style comments, the following will
suffice:

Page 15

PCCTS 1.00

/* lexclass START is in effect by default */
/* switch to COMMENT automaton */
#token "/*" <<zzmode(COMMENT); zzskip();>>
...
#lexclass COMMENT
#token "*/" <<zzmode(START); zzskip();>> /* switch back */
#token "˜[*]*" <<zzskip();>> /* ignore all stuff inside */
#token "*˜[/]" <<zzskip();>>
...

2.4. Handling end of input
There is only one automatically defined regular expression — end-of-file

which is represented by the regular expression @. An implicit

#token "@"

is executed at the start of each lexical class (#lexclass). A label may be
attached via the following in the user’s grammar:

#token Eof "@"

A user could then refer to end-of-file as the #define constant Eof.

2.5. Token order and lexical ambiguities
The order in which regular expressions are found in the grammar description

file(s) is significant. When the input stream contains a sequence of characters that
match more than one regular expression, (e.g. one regular expression is a subset of
another) DLG is confronted with a dilemma. DLG does not know which regular
expression to match, hence, it does not know which action should be performed.
To resolve the ambiguity, DLG assumes that the regular expression which is
defined earliest in the DLG input should take precedence over later definitions.
Therefore, tokens that are special cases of other regular expressions should be
defined before the more general regular expressions.

ANTLR automatically constructs the input to DLG by copying regular
expressions into the file parser.dlg. These definitions are copied in the order
in which they are encountered among the rules and #token definitions. For
example, a keyword is a special case of a variable and thus needs to occur before
the variable definition.

#token KBegin "begin"
.
.
.

#token VAR "[a-zA-Z][a-zA-Z0-9]*"

Page 16

PCCTS 1.00

2.6. Quoted tokens
The regular expressions in a PCCTS grammar appear between quote marks

and are literally copied into the input for DLG. Therefore, the regular expressions
must use the notation accepted by DLG — a relatively standard notation using a
few meta-symbols.

"a|b"Matches either the pattern a or the pattern b.

"(a)"
Matches the pattern a. Pattern a is kept as an indivisible unit.

"{a}"
Matches a or nothing, i.e., the same as "(a|)".

"[a]"
Matches any single character in character list a. e.g. "[abc]" matches
either an a, b or c and is equivalent to "(a|b|c)".

"[a-b]"
Matches any of the single characters whose ASCII codes are between a and
b inclusively, i.e., the same as "(a|... |b)".

"˜[a]"
Matches any single character except for those in character list a.

"˜[]"
Matches any single character; literally "not nothing."

"a*"
Matches zero or more occurrences of pattern a.

"a+"
Matches one or more occurrences of pattern a, i.e., the same as "aa*".

"\a"
Matches the single character a — even if a by itself would have a different
meaning, e.g., "\+" would match the + character. This is consistent with
the use of \ in the C language.

In addition, the symbols %%, <<, and >> are used to specify control for DLG;
hence, these patterns must be escaped if they are to appear as literals within a reg-
ular expression. For example, << would be \<\<. The following characters are
also special.

@ Matches end-of-file.

\t Tab character

\n Newline character

\r Carriage return character

\b Backspace character

\0nnn
Matches character that has octal value nnn

Page 17

PCCTS 1.00

\0xnn
Matches character that has hexadecimal value nnn

\mnn
Matches character with decimal value mnn, 1≤m≤9

\c Character escape

White space characters (tab and space) are ignored within the quotation marks. To
specify the actual space character use "\ ".

2.7. Interactive lexical analyzers
Normally, the scanners produced by DLG always have one character of

look-ahead available. This look-ahead causes the scanner to look one character
past the end of the current pattern and wait for the next character if it is not yet
available.

This can cause unexpected behavior from interactive programs such as com-
mand line interpreters which must respond to input upon newline. Normally, the
scanner would seek a character beyond the newline; forcing the user to type an
additional character before returning the carriage return token to the parser.

The user may employ the DLG -i command-line option to request that
unneeded look-ahead be removed whenever possible. This allows interactive
parsers such as the interpreter mentioned above to get tokens without the user hav-
ing to type additional characters. On some systems special flags need to be set, so
that the scanner actually gets the characters when they are received rather than
having the operating system buffer them. On BSD unix the cbreak mode needs
to be used to accomplish this (e.g. stty cbreak).

There are situations where the character look-ahead is still required. Typi-
cally, this occurs when two patterns have the same prefix. For example, patterns α
and αb can only be distinguished by examining the character following pattern α.
A b character would indicate that the token associated with the second pattern
should be returned. Also, any pattern that has a closure, + or *, must have
look-ahead to determine the end of the pattern, since the pattern by definition can
be repeated indefinitely.

2.8. DLG lexical input
The user can specify that DLG is to take its input from a stream or from a

function. The function must behave like getchar() by returning a new charac-
ter per invocation. The function must return -1 when no more characters are
available to signal "end-of-file." Presumably, the function would read characters
from some buffer and hand them one by one to DLG upon request. For example, a
user might define the following.

Page 18

PCCTS 1.00

char text_edit_buf[BIG];

int nextchar()
{

static char *p = &text_edit_buf[0];
return (p < &text_edit_buf[BIG]) ? *(p++) : -1;

}

Then, when invoking the parser, the user would call:

{
...
ANTLRf(start_symbol(), nextchar);
...

}

2.9. Tracking pattern position
There are several global variables available in the scanners produced by DLG

to keep track of the position of a pattern within an input stream. zzline tracks
vertical position and must be explicitly updated by the user’s grammar.
zzbegcol and zzendcol track horizontal position—column number within a
line. They are maintained by the DLG automaton for characters that are normally
one character wide. zzendcol needs to be corrected for cases when the char-
acter is not one character wide, e.g. tabs or carriage return.

To enable the position tracking, a #define ZZCOL needs to be put in an
action in the lexical specification or −DZZCOL needs to be included in the com-
mand line when compiling the C code for the lexical analyzer.

This section described how a stream of input characters can be collected into
a sequence of tokens and how one can act upon the recognition of particular
tokens. Sentences in a language are composed of tokens and are described using a
set of rules. The next section presents the PCCTS meta-language for describing
language syntax.

3. Syntactic analysis
Once the lexical structure of a language has been specified, the way in which

tokens can be combined to form sentences must be described. The set of valid
sentences in a language is described by a set of rules, written in an appropriate
meta-language, that impose a structure on the sequence of input tokens.

In most parser-generator tools, context-free grammars are specified in a nota-
tion which is equivalent to BNF [Nau63]. However, the notation used in regular
expressions to permit repetition, alternatives, etc. can be used to extend BNF
(EBNF) so that context-free grammars can be expressed more concisely. This also
has the advantage of being more consistent with the regular expression notation
and providing additional information which can be used to create a more efficient

Page 19

PCCTS 1.00

parser. For these reasons, PCCTS accepts an EBNF-like grammar notation.

The input for PCCTS differs from EBNF primarily in that ::= is replaced
by : and non-terminals are distinguished from terminals by requiring all non-
terminals to begin with a lowercase letter, rather than by bracketing non-terminals
with <>. Further, since rules can become long when actions are embedded, each
rule is terminated by a ; symbol. These modifications are not arbitrary, but mir-
ror the differences between YACC grammars and BNF (although PCCTS provides
a number of extensions beyond YACC).

As an example rule, consider:

block: "begin" (statement)* "end" ;

It indicates that rule a is defined to be the word "begin", followed by zero or
more statement’s, followed by the word "end".

This section describes the syntax of PCCTS rules and the method by which
rules communicate at run-time.

3.1. PCCTS rule definitions
A rule is formally defined, in PCCTS’s own notation, as:

rule : NonTerminal /* rule name */
{ "!" } /* turn off automatic AST construction */
{ {"\<"} InheritAction } /* downward-inheritance ("input") */
{ "\>" InheritAction } /* upward-inheritance ("output") */
{ QuotedTerm } /* name for error reporting */
":" block ";" /* actual rule elements */
{ Action } /* fail action */

;

block : alt ("\|" alt)*
;

alt : (element)*
;

element : TokenTerm { "ˆ" | "!" }
| QuotedTerm { "ˆ" | "!" }
| NonTerminal { "!" }

{ {"\<"} InheritAction } { "\>" InheritAction }
| Action
| "\(" block "\)" { "*" | "\+" } { InheritAction }
| "\{" block "\}" { InheritAction }
;

where InheritAction is a C expression enclosed in [] used for both
upward- and downward-inheritance. QuotedTerm is a regular expression and
TokenTerm is a label associated with some lexeme.

Page 20

PCCTS 1.00

3.1.1. Subrules
Rules that employ EBNF constructs implicitly define subrules according to

the following syntax:

(i) bi =(a1 | a2 | ... | am); match 1 time

a1
hhhhhh
hhhhhh

a2
hhhhhh
hhhhhh

am
hhhhhh
hhhhhh

.....................

.....................

.

.

.

bi

(ii) bi ={a1 | a2 | ... | am}; match 0 or 1 times

bi

.

.

.

.....................

..................... am
hhhhhh
hhhhhh

a2
hhhhhh
hhhhhh

a1
hhhhhh
hhhhhh

c
c
c

c
c
c

hhhhhhhhhh

(iii) bi =(a1 | a2 | ... | am)*; match 0 or more times

bi

.

.

.

.....................

..................... am
hhhhhh
hhhhhh

a2
hhhhhh
hhhhhh

a1
hhhhhh
hhhhhh

c
c
c

c
c
c

hhhhhhhhhh

(iv) bi =(a1 | a2 | ... | am)+; match 1 or more times

a1
hhhhhh
hhhhhh

a2
hhhhhh
hhhhhh

am
hhhhhh
hhhhhh

.....................

.....................

.

.

.

bi

hhhhhhhhhh

where ai represents an alternative (list of rule elements).

With each enclosing set of meta-symbols, a new level of alternatives is per-
mitted. Each rule or subrule thus created is called a ‘‘block.’’ In terms of the
recognizer generated, blocks generated for rules and subrules are virtually indistin-
guishable. Subrules are like macro expansions of rules. However, there is no
label associated with a subrule and thus cannot be referred to by another rule or
from elsewhere within that rule.

Consider the following rule which uses EBNF constructs:

Page 21

PCCTS 1.00

e12 : {"\+" | "\-"} VAR
| (FuncName | ProcName) parameterList
| "[0-9]+"
;

Rule e12 has 3 alternatives. The first alternative has an optional block with
2 alternatives as its first element. The { } is an optional subrule. VAR is a sim-
ple token. The optional block says that a VAR can have a plus or minus in front,
but it is not necessary. The second alternative of rule a also begins with a
subrule. The block indicates that this alternative must begin with a function or
procedure name. parameterList is some other rule which presumably looks
for a list of parameters. Alternative 3 is simply a token which recognizes an
integer number.

Subrule meta-symbols alter the associativity of the | alternative operator and
can be nested to any number of levels. |’s have the lowest precedence.

a: B | C D ;

Rule a specifies that the parser should match either B or C D. It will not
match a D preceded by a B or C. The following version of a will accomplish
that:

a: (B | C) D;

Empty alternatives called epsilon transfers can also be used to imply optional-
ity. They are useful when you want an action to be performed when nothing is
matched by the other alternatives of the block.

a: B | C | ;
b: { B | C } ;

Rules a and b are identical in what they match. However, the resulting C
code could be very different. Also note that with rule a, an action can placed in
the empty alternative to be executed when a B or C is not matched. Rule b does
not have this capability.

Subrules are allowed at most one parameter which must be of type Attrib.
The attribute $0 receives the inherited parameter for subrules. Subrules return
values in $0 as well (which become the appropriate $i in the enclosing
subrule/scope above). $0 is initially undefined in rules and in subrules with no
explicit parameter or default $0 initialization. See section 3.1.2.

Page 22

PCCTS 1.00

3.1.2. Rule communication
An advantage of LL parsers over LR parsers is that inheritance (rule/subrule

communication) is relatively simple and efficient. PCCTS allows each non-
terminal to have an arbitrary set of downward-inherited (parameters) and upward-
inherited (return value) attributes (see section 4.1.6). The specification syntax is
presented in this section whereas the use of rule communication is illustrated in
section 4.1.6.2:

rule[parameters] > [return_type(s)] : ξ1 | ξ2 | ... | ξm ;

which provide more powerful attribute handling than can be achieved with the ‘‘$
variables’’ found in systems like YACC (and also supported in PCCTS, primarily
to ease the transition for users familiar with YACC and to communicate with the
lexical analyzer).

Communicating with other rules should be as flexible as it is in a program-
ming language. Hence, in addition to the standard attribute mechanism, PCCTS
supports the familiar high-level language parameter passing scheme. The argu-
ments to a rule must be consistent with the parameter specifications given with the
definition of the rule. For example,

<<
#define GLOBAL 1
#define LOCAL 2
>>

prog : <<Sym *vars;>>
TYPE dlist[GLOBAL] > [vars]
<<OperateOn(vars);>>
...

;

/* Recognize a list of declarations. The scoping level is passed
* in and the list of symbols is returned.
*/
dlist[int level] > [Sym *list]

: <<$list=NULL;>>
VAR <<add($list, $1, $level);>>
(","

VAR <<add($list, $2, $level);>>
)*

;

where add() is some function that adds an element to a list. Here we have used
the attributes only as a means of communicating with the lexical analyzer.

In contrast to most programming languages, more than one value can be
returned. Each return value is set by simply referring to it by the name given in
the return value definition (prefixed with $) — e.g. $list in the dlist
example.

Page 23

PCCTS 1.00

Subrules may not have return types nor parameter list definitions. They may
only pass a single attribute which becomes the initial value of $0 in the subrule.1

To illustrate the effect of rule communications upon local variables and scop-
ing, consider:

rule[int a, Attrib b] > [float q, int r] /* a,b visible to rule */
: <<int i,j; printf("starting rule a\n");>> /* i,j visible to rule */

...
(<<int i;>> /* i hides rule-local i */

...
(<<int i,r;>> /* def hides outer scope i; local r can’t be used */

<<$r=5;>> /* $r is return value not local var */
)

)
;

Note that return values and parameters are always given priority over local vari-
ables. While generating C code for a rule, ANTLR scans the actions and translates
references to return values and parameters irrespective of scope.

3.1.3. Miscellaneous notes
The user may attach a string to a non-terminal that is passed on to the error

reporting macro/function zzsyn(). See section 5 on error reporting for more
details.

The user may elect to have PCCTS automatically construct abstract-syntax-
trees (AST’s). To disable automatic AST construction for a rule, employ the ! as
indicated above in the rule grammar. See section 4.2 on abstract-syntax-trees.

3.1.4. LL(k) parsing
ANTLR attempts to build parsers that use as little look-ahead as possible.

Ambiguities force ANTLR to attempt resolution using more and more tokens of
look-ahead. For example, ANTLR tries to resolve LL(1) ambiguities with LL(2).
If the grammar construct is still ambiguous, LL(k>2) is tried until either all ambi-
guities are resolved or the user-defined maximum k has been reached. A subrule
or rule which requires LL(k>1) does not constrain all others to LL(k>1). ANTLR
builds mixed model parsers where each parsing decision is made with the smallest
of amount of look-ahead possible. The -k command-line option is used to bound
the maximum number of tokens of look-ahead to be used by ANTLR-generated
parsers.

Most programming language constructs that cannot be described in LL(1) can
be easily described in LL(2). Typically, LL(2) is only required in a handful of
hhhhhhhhhhhhhh

1 An earlier version of PCCTS treated subrules and rules identically with respect to
parameters and return values. The current distinction represents an extension to the
handling of rules.

Page 24

PCCTS 1.00

rules yielding a general LL(1) parser with a few anomalies. For example, when
parsing the C programming language, a left-parenthesis could be the beginning of
a type-cast or the beginning of an expression. With two tokens of look-ahead a
parser could use the token following the parenthesis to determine whether an
expression or type-cast followed. A more common problem lies in the definition
of labels. The following grammar fragment illustrates the problem.

stat : { WORD ":" } /* label definition */
(
| "if" ...
| "while" ...
.
.
| WORD "\(" ... /* forward ref to function */
| FUNC "\(" ... /* ref to function already seen */
)

;

With only one token of look-ahead, function stat() could not determine
whether a WORD on the input stream was to be matched as a label or a yet to be
seen function. However, if two tokens or more were available, the colon or left-
parenthesis following WORD would unambiguously indicate which alternative to
match.

3.2. Grammar ambiguities
PCCTS parsers are of the top-down, recursive descent variety which implies

that all parsing decisions must be left-decidable—decidable given a finite
sequence of input tokens looking from left to right across productions. Because of
this limitation, there are grammars for which PCCTS cannot construct a parser.
However, any language can be described by several, equivalent grammars. Ambi-
guities that arise in a grammar may often be circumvented by modifying that
grammar while still recognizing the same language.

A grammar is considered ambiguous (in PCCTS’s opinion) if one input
sequence of k tokens can be matched by two different productions/alternatives
within the same block. For example, if k equals one,

a : A B
| A C
;

is ambiguous because if all the parser "sees" is A, it will be unable to choose
between alternatives one and two. ANTLR reports the following error message:

Antlr parser generator Version 1.00 1989, 1990, 1991
"t.g", line 1: warning: alts 1 and 2 ambiguous upon { A }

Page 25

PCCTS 1.00

If we allow two tokens of look-ahead (with -k 2), a parser would see either
A B or A C and could uniquely determine which production to match. If
subrules and/or rule references are used, the set of possible input permutations
grows quickly.

a : A (B | D) E F H
| A b E G H
;

b : B
;

Rule a is ambiguous when k equals one or two since A B can start either pro-
duction. If we increase k to three, rule a is still ambiguous because A B E
begins both productions. Only when k is set to four is a unambiguous. ANTLR
applies a similar logic when constructing parsers. When an ambiguity occurs at
k==i, k=i+1 is tried until either the ambiguity is resolved or the maximum look-
ahead defined by the user is reached (in which case the ambiguity is reported to
the user). ANTLR reports the following for k==2,

Antlr parser generator Version 1.00 1989, 1990, 1991
"t.g", line 1: warning: alts 1 and 2 ambiguous upon { A }, { B }

Note the sequence A B is denoted by the singleton set { A } followed by the
singleton set { B }. In general, ambiguous input sequences of k tokens are
represented by a sequence of k sets.

The -pa command-line option can be used to print out the user’s grammar
(minus actions) annotated with the input token permutations. The set sequence
{ A B }, { C D } means that the following four input token permutations
are possible:

A C
A D
B C
B D

3.3. Look-ahead size
The user’s grammar can be analyzed using any integer k value (limited by

machine size and how long the user wants to wait). However, parsers constructed
by ANTLR always use k values equal to the nearest power of two greater than or
equal to the k specified by the user. ANTLR parsers treat the look-ahead as a cir-
cular buffer in which a "modulo k" operation is performed repeatedly. If k is a
power of two, this operation reduces to a logical-and operation whereas other
values generally require a divide — i.e. a time consuming operation. Since the
modulo operation is performed at least once for each input token, a divide opera-
tion would seriously degrade parser performance. The #define constant

Page 26

PCCTS 1.00

LL_K is set by ANTLR to the k associated with parser execution. Note that files
not constructed by ANTLR will need to define LL_K if they include antlr.h.
This can be handled with a "-DLL_K=k" command-line option on most C com-
pilers.

3.4. ANTLR parser construction
ANTLR generates parsers in pure C code--i.e. non-interpretive, mutually-

recursive sets of functions. There is exactly one C function for every rule present
in an ANTLR grammar description. Transformations exist to convert grammar
constructs to C language constructs. To perform lexical analysis, ANTLR
prepares a DLG input file that will be converted to a C scanner by DLG and then
linked into the parser. Because of ANTLR’s flexibility, C code generation tem-
plates vary depending on command-line options and #define’s [Par90].
ANTLR parsers are fast primarily because they never have to back up and map
EBNF grammar constructs to efficient target language constructs. The current k
tokens of look-ahead always tells the parser which alternative to choose. Also,
C’s efficient function invocation mechanism allows references to other rules to be
handled quickly.

3.4.1. Efficiency
The way grammars are described has a big impact on phrase recognition

speed. Rules invoking other rules with tail-recursion (right-recursion) like

/* S l o w A n d U g l y */
a: B c ;
c: a | ;

can be replaced with

/* F a s t e r B u t S t i l l U g l y */
a: B (a |) ;

or, better yet,

/* F a s t e s t A n d R e a d a b l e */
a: B (B)* ;

which is more concise and infinitely more readable.

This example leads us to two important generalizations:

g Subrules are much faster than invoking another rule to match the same
subgrammar.

g Use the ()* and ()+ closure operators instead of tail recursion. This
generates a while loop instead of recursive function calls.

Page 27

PCCTS 1.00

Rules or subrules with many alternatives tend to generate bigger and slower
programs. This arises from the fact that a linear search implemented by a
sequence of if statements is used to determine which alternative to choose.
Although general LL(k) parsing makes it difficult to optimize this search for the
correct alternative, future versions of PCCTS will probably make a number of
special-case improvements, such as generating a switch statement for each
alternative selection problem which is LL(1).

In many parser-generators, such as YACC, adding actions to a grammar can
cause rules to be split, introducing ambiguities and/or extra states in the generated
parser. In contrast, actions have no affect on the structure of the recognizers con-
structed by PCCTS. PCCTS simply generates C code templates that implement
the recognizer and embeds C code for the user-supplied actions at the proper
points. User actions have no significant affect on parsing speed.

3.4.2. Debugging parsers
PCCTS parsers have one function for each rule. The function name will coin-

cide with the rule it was constructed from and therefore can be referenced from
within a source-level debugger. Breakpoints can be set so that parser execution
stops before or after certain grammar fragments of interest have been recognized.
PCCTS parsers are easy to follow because parsing decisions are made using sim-
ple if and while statements.

Often it is convenient to track the sequence of rule invocations made in an
PCCTS parser. The -gd command-line option forces PCCTS to generate code
that calls zzTRACE() with the rule name in which it appears as an argument.
zzTRACE() can be a macro or a function.

3.5. PCCTS parser template
The following code template can be used to begin parser development.

/*
* A N T L R P a r s e r T e m p l a t e
*
* Terence Parr, Hank Dietz and Will Cohen
* CARP Research Group
* Purdue University Electrical Engineering
* PCCTS Version 1.00
*/
#header << /* Define Attrib/AST or include standard package */ >>

/* O p t i o n a l */
#token "[\t\]+" << zzskip(); >> /* Ignore White */
#token "\n" << zzline++; zzskip(); >> /* Track Line # */

Page 28

PCCTS 1.00

<<
main() { ANTLR(startSymbol(), stdin); }

zzcr_attr(attr, token, text)
Attrib *attr;
int token;
char *text;
{

/* *attr = Function(text, token) */
}

zzd_attr(attr) Attrib *attr; { /* destroy attribute */ }

zzcr_ast(ast, attr, tok, text)
AST *ast;
Attrib *attr;
int tok;
char *text;
{

/* *ast = Function(attr) */
}

/* node constructor for use with #[] */
AST zzmk_ast(node, user_args)
AST *node; /* newly created node */
{

/* fill in node->fields */
return node;

}

zzd_ast(ast) AST *ast; { /* destroy AST node pointed to by ’ast’ */ }

#define zzdef0(zero) /* *(zero) = initial $0 attrib */
>>

/* P u t R u l e s H e r e */

3.6. Grammatical actions
Actions are blocks of C code enclosed in << and >>. They are placed in the

ANTLR-generated C files according to position in the corresponding grammar file.
In general, an action following a token or non-terminal reference is executed after
that grammar element has been recognized. There is no restriction concerning
their placement within rules. However, actions cannot be specified between rules.
They may only be used before and after the set of rules.

3.6.1. Init Actions
If an action is specified before any grammar element is found after the : in a

rule definition or after the start of a subrule, it is placed before any ANTLR gen-
erated C code for that rule or subrule. This allows the user to define variables and
execute C code in a scope local to that rule or subrule; any C code given is

Page 29

PCCTS 1.00

executed just before the rule or subrule is applied. For example, consider the
definition of a rule a:

a : <<List *p=NULL;>> /* Get a type followed by a list of vars */
Type
(<<int i=0;>>

Var <<append(p, i++, $1);>>
)*
<<OperateOn(p);>>

;

The init action <<List *p=NULL;>> defines a local auto variable called p
and initializes it to NULL. The subrule also has an init action, <<int i=0;>>,
which is executed every time the subrule is entered.

The init actions of optional blocks are executed whether or not the elements
in the block are recognized. This is due to the fact that subrules (C code block)
must be entered in order to determine whether or not that grammar construct can
be matched on the input stream. This can be confusing, but on the other hand, we
can force a variable to have a value even if nothing is matched in an optional
block. For example,

a : <<Sym *p;>>
...
{ <<p=NULL;>> ":" Type <<p=$2;>> }
<<OperateOn(p);>>
...

;

The init-actions of closure blocks (()* subrules) are executed only once —
upon entry to the block. This allows local variable initialization within closure
blocks.

Only $0 can be referenced in an init-action since nothing will have been
matched when the action executes. Default $0 initialization occurs before init-
actions are executed.

3.6.2. Fail actions
Fail actions are actions that are placed immediately following the ; rule ter-

minator. They are executed after a syntax error has been detected but before a
message is printed and the attributes have been destroyed (optionally with
zzd_attr(); see the section on attributes). However, attributes are not valid
here because one does not know at what point the error occurred and which attri-
butes even exist. Fail actions are often useful for cleaning up data structures or
freeing memory. For example,

Page 30

PCCTS 1.00

a : <<List *p=NULL;>>
(Var <<append(p, $1);>>)+
<<OperateOn(p); rmlist(p);>>

;
<<rmlist(p);>>

The ()+ loop matches a lists of variables (Var’s) and collections them in a list.
The fail-action <<rmlist(p);>> specifies that if and when a syntax error
occurs, the elements are to be free()’ed.

3.6.3. Actions appearing outside of rules
When PCCTS is used to construct a complete compiler, it is useful to be able

to incorporate support code written in C in the same file. For example, there must
always be a main specified and the ANTLR-generated parser must be invoked
using the ANTLR macro. Hence, PCCTS allows arbitrary C code to appear as
‘‘actions’’ outside of the grammar rules. The PCCTS description

<<
#include "junk"
static int local_to_the_parser;
main() {ANTLR(a(), stdin);}
>>

a: a_stuff ;
b: b_stuff ;

<< hello() { printf("Hello?"\n"); } >>

will result in the following output C code:

#include "junk"
static int local_to_the_parser;
main() {ANTLR(a(), stdin);}

a()
{

... code to recognize a_stuff ...
}

b()
{

... code to recognize b_stuff ...
}

hello() { printf("Hello?"\n"); }

Note that although these segments of C code look like ‘‘actions,’’ and the
same rules apply concerning the use of escape characters, they are not actions per
se. Hence, no attribute values are accessible.

Page 31

PCCTS 1.00

4. Attribute handling
Given a grammar, PCCTS constructs a C program that recognizes phrases in

the language described by that grammar. No translation from source language to
output language is performed; the resulting parser merely complains if a syntax
error is detected. To effect a transformation, actions must be embedded within the
grammar that either perform an immediate translation or create an intermediate-
form which is translated at a later time. Grammar actions have access to lexical
information via run-time objects called attributes which are a function of the token
number and the text of the lexeme found on the input stream. PCCTS also sup-
ports the creation and manipulation of abstract-syntax-trees (AST’s) to handle
more complicated transformations. This section describes the use of attributes,
attribute inheritance as well as other forms of rule communication, and the han-
dling of AST’s.

4.1. General attribute handling
Attributes are objects that are associated with all rules and rule elements

including block elements like { }. Attributes are generally identified by $i
(where i is a positive integer) and are used in actions to identify the values of rule
elements. Attributes behave like variables. They are mentioned and labeled at
analysis-time, but have values only at run-time. The positive integers uniquely
identify an element within the currently active block and within the current alter-
native of that block. With the invocation of each new block, a new set of attri-
butes becomes active and the previously active set is temporarily inactive (unless
$i.j, $$ or $inheritance_attr attributes are used; see sections 4.1.4). Attributes
are scoped exactly like local stack-based variables in C.

$-variables refer to user-defined objects associated with each rule element.
The zzcr_attr() function transforms lexical objects into grammar attributes.
Attributes associated with terminals are implicitly created and are a function of
lexemes. However, attributes of non-terminals and subrules are explicitly manipu-
lated by actions provided by the user. Terminals, which are lexical tokens, simply
have a value associated with them and are generally referenced not reset by
actions. Attributes that are returned from or passed to blocks are considered syn-
thetic attributes. Rules and subrules may communicate via attributes or with fami-
liar high-level language parameter passing techniques (see sections 3.1.2 and
4.1.6).

PCCTS requires that the user define the data type or structure of the attributes
as well as specify how to convert from lexemes to attributes. This provides
significant control over what information attributes carry and how the lexical
analyzer should react to lexical objects found on the input stream. The type of the
attributes is always defined by a C typedef named Attrib and must be
defined before antlr.h is included in your C program. Using the PCCTS
#header instruction, the user may specify the C definition or #include the
file needed to define Attrib. The action associated with #header is placed in

Page 32

PCCTS 1.00

every C file generated from the input grammar files. Any C file created by the
user that includes antlr.h must once again define Attrib before
#include’ing antlr.h.

Attributes are stored and accessed in stack fashion. With the recognition of
each element in a rule, a new attribute is pushed on the stack—i.e. becomes avail-
able. In other words, the ith attribute is not available until the ith rule element has
been matched. If a rule element is something other than a simple token, many
attributes may be pushed on the attribute stack until they reduce to a single attri-
bute for that rule reference or subrule.

For example, if attributes are to be simple integers, the following C definition
is sufficient and necessary

typedef int Attrib;.

However, this does not specify how those integer attributes are converted from
character strings in the input stream.

4.1.1. Attribute creation
The attributes associated with terminals must be a function of the text and the

token number associated with that lexeme. These values are passed to
zzcr_attr() which computes the attribute to be associated with that lexeme.
The user must define a function or macro that has the following form:

zzcr_attr(attr, token, text)
Attrib *attr; /* Pointer to attribute associated with this lexeme */
int token;
char *text; /* text associated with lexeme */
{

/* *attr = F(text,token); */
}

Consider the following Attrib and zzcr_attr() definition.

typedef union {int ival; float fval;} Attrib;

zzcr_attr(attr, token, text)
Attrib *attr;
int token;
char *text;
{

switch (token)
{

case INT : attr->ival = atoi(text); break;
case FLOAT : attr->fval = atof(text); break;

}
}

The typedef specifies that attributes are integer or floating point values. When
the regular expression for a floating point number (which has been labeled

Page 33

PCCTS 1.00

FLOAT) is matched on the input stream, zzcr_attr() converts the string of
characters representing that number to a C float.

The next attribute example is more involved. Attributes are either symbol
table entries or integer values. Variables (VAR), intrinsic types (BuiltInType)
and parameters (PARAMETER) found on the input stream are converted to symbol
table pointers. Integers are converted to C int’s.

/* Assume Sym, zzsymget() are defined elsewhere */
#header <<typedef union { Sym *var; int val; } Attrib;>>

<<
Sym *cursym;

main() { ANTLR(prog(), stdin); }

zzcr_attr(attr, token, text)
Attrib *attr;
int token;
char *text;
{

switch (token)
{

case WORD :
case BuiltInType :
case PARAMETER :
case VAR : attr->var = cursym;

break;
case INT : attr->val = atoi(text);

break;
}

}
>>

#token WORD "[a-zA-Z_][a-zA-Z_]*"
<<{ extern Sym *cursym;

cursym = zzsymget(zzlextext);
if (cursym == NULL) cursym = zzsymnew(zzlextext);
else LA(1) = cursym->token;

}>>

prog : ... VAR ... ;

When a WORD is matched on the input stream, the character string is looked
up in the symbol table. If it exists, a pointer to it is placed in cursym and the
current look-ahead token (LA(1)) is modified accordingly. Otherwise, a symbol
table record is created leaving cursym pointing to it. Also of note, we cannot
place the zzsymget() call into zzcr_attr() because of the look-ahead.
zzcr_attr() is called after the token has been recognized; modifying LA(1)
in zzcr_attr() would have no effect. Parsing decisions are made based upon
current look-ahead and, therefore, the lexical action must "compute" the token

Page 34

PCCTS 1.00

value before the parser receives it.

4.1.2. Attribute destruction
The user may elect to "destroy" all attributes created with zzcr_attr().

A macro or function called zzd_attr(), is executed once for every attribute.
This occurs collectively at the end of every block. zzd_attr() is passed the
address of the attribute to destroy. This can be useful when memory is allocated
with zzcr_attr() and needs to be free()’ed. For example, sometimes
zzcr_attr() needs to make copies of some lexical objects temporarily. Rather
than explicitly inserting code into the grammar to free these copies,
zzd_attr() can be used to do it implicitly. Notice that this concept is similar
to the constructors and destructors of C++ [Str87].

Attributes are often character strings. Copies of the lexical text buffer
(managed by DLG) are made which later need to be deallocated. This can be
accomplished with code similar to the following.

#header <<#define zzd_attr(attr) {free(*(attr));}
typedef char *Attrib;>>

<<
zzcr_attr(attr, token, text)
Attrib *attr;
int token;
char *text;
{

extern char *malloc();

if (token == StringLiteral)
{

*attr = malloc(strlen(text)+1);
strcpy(*attr, text);

}
}
>>

4.1.3. Standard attribute definitions
Some typical attribute types are defined in the PCCTS include directory.

These standard attribute types are contained in the following include files:

charbuf.h
Attributes are fixed-size buffers, each of 32 characters in length. If a string
longer than 31 characters (31 + 1 ’\0’ terminator) is matched for a token, it
is truncated to 31 characters. The user can change this buffer length from the
default 32 by redefining ZZTEXTSIZE before the point where
charbuf.h is included. The text for an attribute must be referenced as
$i.text.

int.h
Attributes are int values derived from tokens using the atoi() function.

Page 35

PCCTS 1.00

charptr.h, charptr.c
Attributes are pointers to dynamically-allocated variable-length strings.
Although generally both more efficient and more flexible than charbuf.h,
these attribute handlers use malloc() and free(), hence, they can cause
memory fragmentation. The file charptr.c must be #include’d, or
linked with, the C code PCCTS generates for any grammar using
charptr.h.

In addition to the standard library of attribute handlers, the user may define new
attribute types and handlers — which should also be placed in the PCCTS include
directory. The makefile template given in section 1.4 knows where the include
files live and will inform the C compiler.

The following example uses the charptr package:

#header <<#include "charptr.h">>

<<
#include "charptr.c"
main() { ANTLR(a(), stdin); }
>>

#token "\n" <<zzskip();>>

a : "[a-z]+" <<printf("matched %s\n", $1);>>
;

4.1.4. Attribute references
PCCTS accepts five basic attribute referencing notations:

$i This format refers to the ith rule element within the current alternative which
can be a rule reference, token or subrule.

$i.j This format extends the $i notation to allow the user to refer to attributes at
scopes above the current scope. i is the scope and j is the jth rule element
within the alternative that encloses the current scope.

$$ This is a shorthand for the $0 of the enclosing rule and can be referred to
from an action anywhere within the rule.

$label
$rule is identical to $$ where rule is the name of the enclosing rule.

$parameter refers to one of the user-defined parameters given in the enclos-
ing rule definition.

$return_value refers to one of the user-defined return values given in the
enclosing rule definition.

$[token, text]
This represents an attribute constructor. Its value is computed using
zzcr_attr just like any other attribute with token and text as parameters.
This is an explicit method of attribute creation whereas normally attributes

Page 36

PCCTS 1.00

are created implicitly — one for each input terminal. This mechanism can be
useful when creating AST nodes which are functions of attributes or for pass-
ing values to subrules. For example, if attributes were integers and integer
tokens were labeled NUM, $[NUM,"34"] would create an attribute whose
value was 34. $[] returns an empty attribute node.

4.1.4.1. $i references
As a simple example of $i numbering in rules with alternatives, consider the

following.

a: B | C ;

Rule a has 2 alternatives. $i refers to the ith rule element in the current block
and within the same alternative. So, in rule a, both B and C are $1.

Below, rule a has a subrule as the second rule element and is referenced as
$2 after the entire subrule has been matched. Assume that charptr.h attri-
butes are in effect.

a : "ick" ("A" <<$0 = $1;>> | "B" <<$0 = $1;>>) "ugh"
<<printf("$1,$2,$3 are %s,%s,%s\n", $1,$2,$3);>>

;

In this case, one of the following will be printed depending on whether "A"
or "B" was found

$1,$2,$3 are ick,A,ugh
$1,$2,$3 are ick,B,ugh

$2 is the attribute of the subrule ("A"|"B") and is the second rule element
of rule a (outermost level). However, within the subrule, "A" and "B" are
both $1. The initial value of $0 will be undefined unless it either inherits a
value or is assigned a value by defining the macro zzdef0. This value can, of
course, be altered within the subrule by using $0 on the left side of an assign-
ment.

$$ always refers to the $0 of the outermost scope — the rule scope (i.e
$1.0). $$ can be referenced from any user action within any subrule.

4.1.4.2. $i.j references
The EBNF subrules of PCCTS introduce scoping as in programming

languages. To access attributes at scopes above (in an enclosing scope) from
within a user action, $i.j variables are used where i is the scope and j follows the
normal attribute numbering. Levels are numbered from 1 starting at the rule level.
Each subrule increments the level. Actions at level i cannot access attributes at
level i+1 or below just like in a programming language. Attributes of the form $i

Page 37

PCCTS 1.00

are accepted as a shorthand. When a level is not indicated, the current scope will
be assumed. For example,

a : A B (C (D E) F) G ;

The following table summarizes levels and attribute numbers:
ii
Token $level.attr# $level Availabilityii
A $1.1 $1 rule a after Aii
B $1.2 $2 rule a after Bii
C $2.1 $1 (C (D E) F)ii
D $3.1 $1 (D E)ii
E $3.2 $2 (D E)ii
F $2.3 $3 in subrule after Fii
G $1.4 $4 rule a after Giicc

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

In this example, actions at level 1 (rule level) cannot access attributes within any
of the subrules. Actions before the subrules cannot access these lower attributes
because they have not been created yet (the terminals have not been recognized).
Actions following the subrules cannot access the lower attributes because they
have all been collapsed into one attribute--namely, $3.

4.1.4.3. $label references
Inheritance (parameters and return values) and rule-level $0 attributes are

referred to by name. $rule is identical to $$, but is more informative. The fol-
lowing two examples perform the same function, but the first uses upward-
inheritance and and the second uses $rule notation.

#header <<#include "int.h">>

<<main() { ANTLR(start(), stdin); } >>

start : <<int r;>>
expr > [r] "\n" <<printf("result %d\n", r);>>

;

expr > [int result]
: "[0-9]+" <<$result = $1;>>

("\+" "[0-9]+" <<$result += $2;>>)*
;

Note that the next version does not require a parameter definition since all rules
implicitly return an attribute ($$, $rule).

Page 38

PCCTS 1.00

#header <<#include "int.h">>

<<main() { ANTLR(start(), stdin); } >>

start : expr "\n" <<printf("result %d\n", $1);>>
;

expr : "[0-9]+" <<$expr = $1;>>
("\+" "[0-9]+" <<$expr += $2;>>)*

;

Similarly, $parameter refers to one of the user-defined parameters.

4.1.5. $[token, text] attribute constructor
This attribute is not automatically destroyed via zzd_attr if zzd_attr

is defined. If necessary, the user must explicitly destroy these attributes. For
example,

#header <<#include "charptr.h">>

<<
#include "charptr.c"
main() {ANTLR(a(), stdin);}
>>

a : <<Attrib b = $[0, "a string"];>>
<<printf("b is %s\n", b);
zzd_attr(&b); >>

;

which would yield

b is a string

Note that the token number is irrelevant for charptr type attributes since its
zzcr_attr is a function of the text only.

4.1.6. Inheritance
Inheritance refers to the ability of a rule to obtain information about the con-

text in which it was invoked. Because ANTLR generates top-down parsers, infor-
mation can be carried down through each rule invocation as well as returned. This
ability, dubbed downward-inheritance, provides significant power because a rule
can decide which rule invoked it or gain some other context altering information.
LR parser-generators create parsers of the bottom-up variety and will never be
able to pass information to a subrule because recognition begins at the leaves of
the parse-tree and works it way upwards to the root (start symbol).

Page 39

PCCTS 1.00

4.1.6.1. $0 inheritance
$0 is one mechanism by which attributes can be inherited from and returned

to an invoking block. The inheritance mechanism uses the attribute stack to ini-
tialize the $0 value seen by a subrule. Subrules can only pass one parameter
which is implicitly typed as an attribute ($0). The $0 of a subrule is undefined
unless set by a user action or by passing an attribute to that subrule. For example,

decl : TypeID
Var <<$2.type = $1;>>
("," Var <<$2.type = $0;>>)*[$1]

;

where the [] is an InheritAction mentioned above in the grammar for a
PCCTS rule. The value inside is passed to the $0 of the subrule. This syntax is
also used to pass parameters to rules. See below for more details. In this case, we
are passing the type of a declaration (represented by the attribute associated with
TypeID — $1 in the outermost scope) to a subrule which accepts a list of vari-
ables separated by commas. This could alternatively be accomplished via

decl : TypeID
Var <<$2.type = $1;>>
("," Var <<$2.type = $1.1;>>)*

;

or with a local variable.

decl : <<Attrib type;>>
TypeID <<type = $1;>>
Var <<$2.type = type;>>
("," Var <<$2.type = type;>>)*

;

Unlike subrules, rules employ the C hardware stack and $0 is never
automatically set by inheritance. Despite this, the inheritance of a value for a
rule’s $0 can be accomplished by:

rule[Attrib dummy]: <<$0=$dummy;>> remainder_of_rule ;

This uses the more powerful rule communication mechanism and an assignment to
$0 to simulate the inheritance mechanism used for subrules. Rules have a much
more flexible inheritance scheme which, combined with rule-local variables for
subrule inheritance, make the YACC-like attributes (Attrib’s) useful primarily
for communicating with the lexical analyzer.

If a macro called zzdef0 is #define’d, it is executed upon entry to any
block (rule or subrule) via zzdef0(&($0)). This macro can be used to ensure
that all attributes have a certain property. For example, if $0 is not set in a rule,
then the $i in the invoking rule will be undefined (some previous attribute

Page 40

PCCTS 1.00

typically). Setting the $0 initially to NULL or some other meaningful value can
be convenient. If attributes are string pointers, not assigning $0 to NULL before
rule completion could cause an invoking rule to assume a valid pointer had been
returned (as $i).

Note that use of zzdef0 is incompatible with the use of $0 in subrules to
inherit values, i.e., zzdef0 will destroy the inherited value.

4.1.6.2. Generalized rule communication
PCCTS rules may pass parameters and return values just as C functions do

(though, PCCTS rules can return multiple values). This mechanism can be viewed
as generalized attribute handling where each rule defines its downward- and
upward-inheritance attribute types.

4.1.6.2.1. Downward-inheritance
The syntax for PCCTS parameter passing (downward-inheritance) is identical

to that of the ANSI C Standard [ANS90] except that the () is replaced by [].
Specifically, parameter declarations are comma-separated lists of single declara-
tions:

rule[type1 var1, ..., typen varn] : ... ;

The parameter declarations are broken down into old style C declarations when
parsers are generated:

rule(var1, ..., varn)
type1 var1;

...;
typen varn;
{

/* Stuff to recognize rule */
}

which is recognized by both ANSI compliant and old-style C compilers.

The parameters mentioned in the parameter declaration list may be used in
user actions like any other variable just as in C except that they must be preceded
by a $. The $ is consistent with references to the attributes associated with ter-
minals and rule references. For example,

a[int i, int j] : <<printf("%d\n", $i+$j);>> ;

adds the two inherited attributes i and j and prints the result to stdout. It
can be invoked in the following manner:

rule : a[3,4]
;

Page 41

PCCTS 1.00

4.1.6.2.2. Upward-inheritance
Return values are similarly declared via a comma-separated list of types and

names enclosed in [] (following the parameter definition if any):

rule[parameters] > [type1 var1, ..., typen varn] : ... ;

The names given in the return value definition may be used to explicitly set the
return values. These may be treated like $-prefixed variables and can referenced
as well as set. The names in the return value definition may not conflict with any
parameter or local variable defined elsewhere in that rule.

a[int i, int j] > [int x, int y] : <<$x = $i+$j; $y = 0;>> ;

Rule a can be invoked in the following manner:

rule : <<int i,j;>>
a[3,4] > [i,j]

;

which passes 3 and 4 to rule a which returns 7 and 0 placing them into i and j
respectively.

4.2. Abstract-syntax-tree construction and manipulation
Many translation problems can be accomplished with actions embedded in a

grammar that simply compute an output phrase and send it to the output stream.
Unfortunately, most translation problems cannot be implemented in such a
straightforward manner. For this reason, PCCTS supports an abstract-syntax-tree
(AST) mechanism that provides a framework for constructing and manipulating
intermediate representations of the input stream.

Without touching the grammar description, the user may direct PCCTS (by
using the -gt command-line option) to automatically generate an AST of the
input stream. By default, this AST is a flat tree (a list) with one node for each
input token. Generally, the organization of an AST reflects the language structure
used to recognize an input phrase. A flat AST does not contain information about
the language structure and, in effect, would only be a copy of the input. The
default automatic tree construction can be modified by annotating the grammar
with a few appropriately placed characters and is sufficient to handle many situa-
tions (such as arithmetic expressions) well.

Some intermediate-forms cannot be adequately described by simple grammar
annotations (e.g. type-trees for the C programming language). A more general
tree construction mechanism is provided by PCCTS to allow explicit
intermediate-form tree description and is described in section 4.2.4.

AST nodes and subtrees, both automatically and explicitly constructed, are
referenced via #-variables. The notation and behavior of these variables is

Page 42

PCCTS 1.00

similar to that of the attribute $-variables. They are always implicitly typed as
pointers to AST nodes and are generally associated with rule and token references;
rules yield subtrees and tokens yield nodes.

PCCTS parsers manage the actual creation of nodes and the construction of
the trees, but the user must describe what information an AST node is to carry and
how to fill in that information.

The command-line option -gt must be used to access any of the features is
this section. Also note that the PCCTS automatically defines #define
GENAST so that the user may write code that depends on whether or not trees are
being constructed.

4.2.1. AST node creation
PCCTS provides a default and an explicit node constructor. The default con-

structor is applied for each token in a rule defined without the ! modifier (which
indicates that the rule should disable automatic tree construction) and is a function
of the associated attribute, token and lexical text. The explicit constructor is user
defined and can take a variable number of arguments.

A macro called zzcr_ast() can be defined to give a default node
definition or transformation. Also, user actions embedded in the grammar can
modify AST fields. AST nodes have the structure

struct _ast {
struct _ast *right, *down;
user_defined_fields

};

where user_defined_fields is filled in via the #define constant:
AST_FIELDS. Only the user-defined fields should be modified by the user as
right and down are handled by the code inserted by PCCTS and could be sub-
ject to change. zzcr_ast() is of the form

#define zzcr_ast(ast,attr,tok,text) *ast = F(attr, tok, text);

with

AST *ast;
Attrib *attr;
int tok;
char *text;

For example, a simple, but useful attribute and AST definition is

Page 43

PCCTS 1.00

#header <<
typedef int Attrib;
#define AST_FIELDS int i;
#define zzcr_attr(attr, token, text) *(attr)=atoi(text)
#define zzcr_ast(ast, attr, tok, text) (ast)->i = *(attr)
>>

which defines both attributes and AST node data to be integers. This default AST
node construction merely copies the integer found on the input stream into the data
field i of the new AST node.

AST nodes may be explicitly constructed via a user-defined function called
zzmk_ast() which is defined as follows:

#include <varargs.h>

/* fill in an AST node (which is passed in) and return a ptr to it */
AST *zzmk_ast(va_alist)
va_dcl
{

va_list ap;
AST *node;

va_start(ap);
node = va_arg(ap, AST *); /* 1st arg is always a new AST node */
...
/* fill in node */

va_end(ap);
return node;

}

Note that the K&R-style variable argument method is not required if you are not
interested in portability or a constant number of parameters is passed (if only one
node type is used, for example). A portable ANSI C version would look like the
following:

#include <stdarg.h>

/* fill in an AST node (which is passed in) and return a ptr to it */
AST *zzmk_ast(AST *node, ...)
{

va_list ap;

va_start(ap, node);
...
/* fill in node */

va_end(ap);
return node;

}

To make an explicit node constructor that duplicates the simple integer AST node
definition given above, the following would suffice (ANSI C version):

Page 44

PCCTS 1.00

#header <<
typedef int Attrib;
#define AST_FIELDS int i;
#define zzcr_attr(attr, token, text) *(attr)=atoi(text)
#define zzcr_ast(ast, attr, tok, text) (ast)->i = *(attr)
#include <stdarg.h>
>>

AST *zzmk_ast(AST *node, ...)
{

va_list ap;

va_start(ap, node);
node->i = va_arg(ap, int);
va_end(ap);
return node;

}

Now, an action may construct tree nodes via #[integer]. For example,

a > [AST *node]
: <<$node = #[34];>> /* return a node with 34 in it */
;

The #[] node constructor is detailed in section 4.2.6.

4.2.2. AST node destruction
A routine called zzfree_ast(AST *t) is used to free any abstract-

syntax-tree created by an PCCTS parser. If defined, a macro called zzd_ast is
applied to each AST node before its memory is free()’d. This can be used to
free any additional memory that may have been allocated by zzcr_ast and
attached to the AST nodes. The zzd_ast macro is passed the address of the
node it is to destroy and is of the form

#define zzd_ast(treeNodePtr) /* perform operation on tree node */

zzd_ast must be defined in or included into the #header action.
zzfree_ast() must be called explicitly by the user.

4.2.3. Automatic AST construction
For small or uniform grammars (like C language expressions), PCCTS pro-

vides a concise tree construction mechanism. Token references are annotated to
indicate

g which tokens are to be subtree roots in the AST

g which tokens are to be excluded from the AST

Any non-modified (non-root and non-excluded) token is considered a leaf node.
Rule names are never included in the automatically generated AST’s. The

Page 45

PCCTS 1.00

resulting tree is composed entirely of nodes derived from grammar terminals.
Each rule yields one subtree. Subrules do not create subrules; elements enclosed
within subrules modify the subtree for the current rule. Subtrees and nodes
created from terminal references are accessed from user actions via #-variables
which are discussed in section 4.2.6.

4.2.3.1. Grammar annotation
PCCTS generates an AST by placing C code into the parser that, at parser

run-time, builds a tree and makes it available to the user’s program. AST’s are
stored in a child-sibling list form similar to that used by LISP. This allows each
level in the AST to have one root and arbitrarily many children:

(root child1 child2 ... childn)

Suffixing a token with ˆ identifies it as a subtree root. Each root-token
encountered increases the depth of the current subtree by 1. All further leaf tokens
are considered siblings to the previous root node. A ! suffix on a terminal refer-
ence excludes the terminal from the AST (no AST node is created or linked in).
Suffixing a rule reference with a ! indicates that the subtree created by that rule
reference is not to be linked into the current subtree, but is still to be made avail-
able via #i variables. Rule references yield a pointer to the root of the subtree
created by that rule invocation. Therefore, the subtree roots returned by rules
become siblings in the current rule. Rules defined with a ! immediately follow-
ing the rule name (and before the :) do not automatically construct trees. A ! in
the rule definition is like placing a ! after each grammar element within that rule.
#-variables do not exist for tokens suffixed with !. Hence, tree nodes are not
automatically constructed within these rules although references to other rules can
still create subtrees that can be accessed via #-variables.

To demonstrate the actual construction of AST’s, consider the following grammar
fragment.

x : A Bˆ C! D y
;

y : Eˆ F
;

The grammar matches

A B C D E F

and considers B to be a subtree root. Token C is to be ignored. Rule y matches
E F and returns a subtree of depth 2 to rule x where the root of rule y’s subtree
becomes available as #5. The following figure sequence shows the state of the
AST after each token has been recognized. The various AST nodes are labeled

Page 46

PCCTS 1.00

with the #-variable that could be used to access that node. The LISP-like child-
sibling notation is given after the input state.

Ahhh
hhh #1

A g B C D E F, (A)

Bhhh
hhh

hhh
hhhA
cc #1

#2

A B g C D E F, (B A)

Bhhh
hhh

hhh
hhhA
cc #1

#2

A B C g D E F, (B A)

Dhhhh
hhhhhhhhh

Bhhhh
hhhh

hhhh
hhhhA

cc #1

#2

#4

A B C D g E F, (B A D)

c
c
Ahhhh

hhhh

hhhh
hhhhB

hhhhh hhhh
hhhhD Ehhhh

hhhhhhhhh

hhhh
hhhhF

c
c

#1

#2

#4 #5

A B C D E F g, (B A D (E F))

Because of the ! suffix, terminal C does not appear in the AST. Terminal B is a
root-token because of the ˆ modifier and is therefore the root of the subtree
created for rule x. The root of the subtree created by rule y is a sibling of the
leaf nodes of rule x. The way in which rules describe a grammar effects AST
construction. e.g. rules x and y could be rewritten to recognize the same input,

Page 47

PCCTS 1.00

but to construct a different tree.

x : A Bˆ C! D Eˆ y
;

y : F
;

In this case the root-token E will become the root of the tree matched up to that
point (i.e. (B A D)) yielding

(E (B A D))

The final AST would be

(E (B A D) F)

4.2.3.2. Operator precedence
Operator associativity in the AST’s is directly related to the precedence

implicitly defined among the rules. For example, to specify that the exponentiation
operator, **, groups right-to-left, a grammar similar to the following would be
required.

expr : exp0 { "**"ˆ expr }
;

exp0 : "[0-9]+"
;

The input

3**4**5

would yield

(** 3 (** 4 5))

indicating that the 4**5 would be performed first.

For a full explanation of arbitrary tree construction see the section on explicit
AST construction. However, the following example is beneficial in this section.
Give a grammar fragment that recognizes a simple assignment, a tree of the form:
(:= expr lvalue) can be constructed via:

assign! : lvalue ":=" expr ";" <<#0 = #(#[$2], #3, #1);>>
;

The ! after the rule definition tells PCCTS to turn off automatic tree construction
for this rule. #[$2] is an AST node constructed from an attribute.

Page 48

PCCTS 1.00

4.2.3.3. Example
The following simple grammar illustrates the automatic construction of

AST’s, the definition/creation of AST nodes, and the use of #i variables

#header <<
typedef int Attrib;
#define AST_FIELDS int i, token;
#define zzcr_attr(attr, token, text) *(attr)=atoi(text)
#define zzcr_ast(ast, attr, tok, text) {(ast)->i = *(attr); (ast)->token=0;}

>>

<<
AST *root = NULL; /* define a root ptr for AST; must be NULL */

void show(tree) /* define function to show a tree node */
AST *tree;
{

if (tree->token != 0) printf(" %s", zztokens[tree->token]);
else printf(" %d", tree->i);

}
void before() { printf(" ("); }
void after() { printf(")"); }

main()
{

ANTLR(expr(&root), stdin); /* get an expr AST by passing &root */
zzpre_ast(root, show, before, after);/* print out in LISP notation */

}
>>

expr : exp0 ("\+"ˆ <<#1->token=LA(1);>> exp0)* "\n"! ;
exp0 : exp1 ("*"ˆ <<#1->token=LA(1);>> exp1)* ;
exp1 : "[0-9]+"

;

The actions in rules expr and exp0 set the token field (defined in
AST_FIELDS) to the current token of look-ahead (LA(1)). This tells the
predefined astpreorder() function to print the token value and not the
number value (field i). Note that we must pass the address of a root pointer to
expr so that expr can make it point to the subtree constructed for that rule. The
newline character is not included in the trees because of the ! suffix. The + and
the * characters are considered operators in our language and so they are
modified by ˆ. The job performed by the default AST node creation macro
zzcr_ast could have just as easily been accomplished by removing
zzcr_ast and changing rule exp1 to be

exp1 : "[0-9]+" <<#1->i = $1; #1->token = 0;>>
;

Page 49

PCCTS 1.00

which is somewhat more explicit, but would be inconvenient if many such actions
were required.

If the input to this PCCTS parser example were 3+4, the program would
print out

(\+ 3 4)

which represents

hhhh
hhhh\+

3hhhh
hhhh hhhh

hhhh4

or, in child-sibling form

\+hhhh
hhhh

hhhh
hhhh3

c
c

4hhhh
hhhhhhhhh

Note that the AST is significantly different than the parse-tree which can be
represented by

exp0hhhh
hhhh

hhhh
hhhhexpr

hhhh
hhhh\+ exp0hhhh

hhhh

hhhh
hhhhexp1

c
c

\nhhhh
hhhh

c
c
4hhhh

hhhh

c
c

exp1hhhh
hhhh

c
c
3hhhh

hhhh

An input of 3+4*5 yields

(\+ 3 (* 4 5))

which represents

Page 50

PCCTS 1.00

hhhh
hhhh\+

3hhhh
hhhh hhhh

hhhh*

5hhhh
hhhhhhhh

hhhh4

or, in child-sibling form

\+hhhh
hhhh

hhhh
hhhh3

c
c

*hhhh
hhhhhhhhh

hhhhh hhhh
hhhh5

c
c
4hhhh

hhhh

The 4*5 would be performed before the addition because one of the addition’s
operands is itself an operation (i.e. a multiply).

4.2.4. Explicit AST construction
The automatic tree construction scheme available with PCCTS is useful for

building AST’s whose structure is similar to that of the grammar parse trees. It is
not suited to applications where the structure of the grammar bears no resem-
blance to the structure required in the intermediate-form. C declarations are a
good example of this and a sample "C declaration to English" translator is
developed in this section.

Reasonable tree-construction and tree-rewriting systems, such as Purtilo and
Callahan’s [PuC89] NewYacc, have been developed but most rely on bottom-up
parser generators like YACC to build a parse-tree in memory which is later
traversed to simulate inherited attributes. PCCTS parsers construct AST’s while
parsing the input. Rules can pass subtrees as arguments to other rules and con-
struct AST’s without first having to build a parse-tree. PCCTS supports general
AST construction via two simple tree description constructs — AST node con-
structors and AST tree definitions.

The AST node constructor is similar to the constructor for attributes
($[token,text]) except that AST node constructors yield pointers to AST nodes
whereas attribute constructors yield attributes (of type Attrib). #[args]
creates an AST node and passes a pointer to it to zzmk_ast() with args as
arguments. Constructors may be nested to create AST nodes from attributes; e.g.
#[$[token,text]].

Trees are defined using a LISP-like notation because of its brevity.

Page 51

PCCTS 1.00

#(root, child1, child2, ..., childn)

where root and childi are pointers to AST nodes which can themselves be
trees or node constructors. The return tree for any rule is #0 which can appear on
both the left- and right-hand side of an assignment statement. Automatic construc-
tion of trees will proceed unless the ! is included in the rule definition to override
the normal AST mechanism. The same grammar may have some rules that use the
automatic tree mechanism and other rules that explicitly construct trees. However,
the methods must not be mixed within the same rule. In other words, do not
assign a tree to #0 unless you have turned off the automatic tree construction.
When default AST construction is turned off, #-variables do not exist for termi-
nals or rule references except for references to rules that construct trees (explicitly
or automatically). Nodes for terminals must be explicitly created just as the tree
structure must be explicitly defined.

4.2.4.1. Simple example
We present a trivial example in this section to illustrate the AST node and

tree constructors.

#header <<
#include "int.h"
#define AST_FIELDS int i;

>>

<<
AST *root = NULL; /* define a root ptr for AST; must be NULL */

void show(tree) /* define function to show a tree node */
AST *tree;
{

printf(" %d", tree->i);
}
void before() { printf(" ("); }
void after() { printf(")"); }

AST *zzmk_ast(node, v)
AST *node;
int v;
{

node->i = v;
return node;

}

main()
{

ANTLR(tree(&root), stdin);
zzpre_ast(root, show, before, after);

}
>>

Page 52

PCCTS 1.00

tree! : NUM NUM NUM "\n"
<<#0 = #(#[$[NUM,"101"]], #[$1], #[$2], #[$3]);>>

;

#token "\ " <<zzskip();>>
#token NUM "[0-9]+"

Given the input 3 4 5, rule tree would return

(101 3 4 5)

The rule itself matches three integers followed by a newline. As usual, the four
attributes $1-$4 exist, but #1-#4 do not because rule tree was defined with a
! modifier. To create AST nodes for the terminals we use the node construct
#[$i] which returns a new node constructed through zzmk_ast. The newline
is not to be included in the tree so no AST node was constructed for it. To illus-
trate the attribute constructor, a root node was created as a function of an attribute
with a value of 101, though #[101] would have been easier. There is no
corresponding terminal in the grammar for this AST node and therefore one was
created. $[NUM,"101"] creates an attribute through zzcr_attr which is
passed to zzmk_ast when enclosed in #[]. The subtree created in rule tree
is explicitly returned by making #0 point to the root of the subtree.

4.2.4.2. C declaration to English translator
The type declaration syntax of C is somewhat bizarre and can be troublesome

to even experienced programmers. The syntax of declaration mirrors that of use.
In other words, variables are defined the way they would be used in an expression.
We give a loose description of how to correctly "parse" a C declaration and then
we present a complete translator to describe, in English, what the declaration
means.

Kernighan and Ritchie [KeR88] give an excellent description of how to
understand C declarations and they present a program to convert from C to a word
description. To parse a declaration as a Human, we follow a few simple rules.

(i) Start parsing at the variable name.

(ii) Scan to the right. For each [expr] or () encountered say "n-element array
of" or "function returning" respectively where n is the (optional) expression
found inside the brackets. Continue scanning until a right-parenthesis or a
semicolon.

(iii) Now, scan left. For each * say "pointer to" until you see a type name or a
left-parenthesis.

(iv) Move to the next outer nesting level if one exists and begin again at rule (ii).
If no more declaration symbols exist, look to the left and say the type name
(ignoring storage classes here).

Page 53

PCCTS 1.00

For example, let us parse

int *(*a[10])();

By (i), we begin at a. Looking to the right in (ii), we see brackets and so we say
"10-element array of." The right-parenthesis makes us jump to rule (iii) and scan
left. We see a * and say "pointer to." The left-parenthesis finishes off (iii) and
rule (iv) tells us to exit this level of parenthesis (nesting) and start again at (ii).
Scanning to the right we see () and say "function returning." The semicolon
forces us to (iii) where we see a * and say "pointer to." (iv) tells us to say
"integer." Packing all of the "sayings" together yields: "10-element array of
pointer to function returning pointer to integer" or, in a flat tree representation,

([10] (* (() (* int))))."

Our example parser will construct trees of a similar form but with result in a little
better English.

To build a type tree for C we "unroll" the nesting of the declaration so that it
can be read left-to-right. Our trees will have the variable name at the root and the
type as the leaf. Each node in the tree will be a type-qualifier. The type-qualifiers
are one of [expr], (), * and are linked together in a parent/child relationship.
e.g. (i (* int)) means that i is a pointer to an integer.

The translator uses simple character buffers as attributes and AST node data.
The trees are constructed at parse-time and later traversed to print out the descrip-
tion. A function to find the bottom of a parent/child list is required to augment the
normal tree construction features of PCCTS.

#header <<
#include "charbuf.h"
#define AST_FIELDS Attrib attr;

>>

<<
AST *root = NULL;

AST *zzmk_ast(node,attr)
AST *node;
Attrib attr;
{

node->attr = attr;
return node;

}

main() { ANTLR(start(&root), stdin); }

Page 54

PCCTS 1.00

AST *bottom(t)
AST *t;
{

if (t==NULL) return NULL;
if (t->down != NULL) return bottom(t->down);
return t;

}

english(tree)
AST *tree;
{

printf("%s is", tree->attr.text);
engl(tree->down, 0);

}

engl(tree, plural)
AST *tree;
int plural;
{

if (tree == NULL) return;
if (strcmp(tree->attr.text, "*") == 0)

printf(plural?" pointers to":" a pointer to");
else if (strcmp(tree->attr.text, "nodim") == 0) {

printf(plural?" arrays of":" an array of");
plural = 1;

}
else if (strcmp(tree->attr.text, "int") == 0)

printf(plural?" integers\n":" an integer\n");
else if (strcmp(tree->attr.text, "ret") == 0)

printf(plural?" functions returning": " a function returning");
else {

if (plural) printf(" %s-element arrays of", tree->attr.text);
else printf(" a %s-element array of", tree->attr.text);
plural = 1;

}
engl(zzchild(tree), plural);
engl(zzsibling(tree), plural);

}
>>

Page 55

PCCTS 1.00

#token "[\ \t\n]+" <<zzskip();>>

start! : (d <<english(#1); zzfree_ast(#1);>>)*
;

d! : <<AST *word;>>
"int" d1[#[$1]] > [word] ";" <<#0 = #(word, #2);>>

;

d1![AST *type] > [AST *word]
: "*" d1[#(#[$1], $type)] > [$word] <<#0 = #2;>>
| d2[$type] > [$word] <<#0 = #1;>>
;

d2![AST *type] > [AST *word]
: WORD d3[$type] <<$word = #[$1]; #0 = #2;>>
| "\(" d1[NULL] > [$word] "\)" d3[$type]

<<#(bottom(#2), #4); #0 = (#2==NULL)? #4 : #2;>>
;

d3![AST *type]
: "\[" NUM "\]" d3[type] <<#0 = #(#[$2], #4);>>
| "\[" "\]" d3[type] <<#0 = #(#[$[WORD,"nodim"]], #3);>>
| "\(" "\)" <<#0 = #(#[$[WORD,"ret"]], type);>>
| <<#0 = type;>>
;

#token NUM "[0-9]+"
#token WORD "[a-z]+"

The rules of this grammar perform the following functions

start
Match multiple declarations translating each one to English and freeing each
tree.

d Only integers are recognized for simplicity. Declarations begin with "int"
and are terminated by a ";". Rule d1 returns a pointer to the AST contain-
ing the symbol name found in the declaration (which has not yet been added
to the tree). Rule d returns the declaration found in rule d1 with the symbol
name as the new root. The type node is always the leaf and is passed to rule
d1 which builds everything on top of the type node.

d1 The * is the lowest priority symbol in a declaration and hence we "look" to
the right first. The * is appended to whatever is found to the right. This is
accomplished by passing the * and the currently built tree to rule d2. Since
we are scanning from the left, but must translate as if starting from the most
deeply nested structure, we must keep adding type-qualifiers on top of the
root. The current tree is always passed down. Rule d1 returns a pointer to the
AST node containing the variable name.

d2 Recognize a variable name followed by an array/function descriptor or recog-
nize a parenthesized declarator. Rule d2 creates an AST node for the vari-
able name and returns it. The tree constructed by rule d3 is also returned.

Page 56

PCCTS 1.00

We need to attach the array/function descriptor to the bottom of the
parenthesized declarator which could be arbitrarily large. For this reason, we
use the bottom() function to find the end of the declarator returned by the
reference to d1.

d3 Match an array or function descriptor. Note that two tokens of look-ahead are
required to decide between alternatives one and two since both begin with a
left-bracket. Tail-recursion is used to get a sequence of [] or () descrip-
tors. Array descriptors like [34] are converted to tree nodes containing just
the number of elements. If no size is present, "nodim" is substituted for
the number in the AST node. If nothing is seen by rule d3, it returns the
type that was passed in since nothing was appended. Function descriptors
form type-qualifiers labeled "ret".

It is interesting to note that the grammar actions required to construct the type
trees were small and mostly assignments. The explicit tree constructors allow
complicated trees to be built without a great deal of C code.

The translator can be made using the following makefile.

Makefile for C -> English translator
CFLAGS= -I../h
AFLAGS= -gt -k 2
GRM=decl
SRC=scan.c $(GRM).c err.c
OBJ=scan.o $(GRM).o err.o

test: $(OBJ) $(SRC)
cc -o $(GRM) $(OBJ)

$(GRM).c parser.dlg : $(GRM).g
antlr $(AFLAGS) $(GRM).g

scan.c : parser.dlg
dlg -C2 parser.dlg scan.c

Our translator knows how and when to make things plural so it generates correct
English. For example,

int *(*i[5])();

yields

i is a 5-element array of pointers to functions returning pointers to integers

4.2.5. Tree manipulation routines
PCCTS generates code that calls the following set of tree manipulation rou-

tines to create AST’s. The user may modify the routines to suit their own pur-
poses. The routines and AST node definitions are located in ast.c and
ast.h respectively and reside in the PCCTS include directory. They are

Page 57

PCCTS 1.00

automatically included when the ANTLR -gt command-line option is specified.
Routines prefixed with underscore are not normally called by the user.

void _link(_root, _sibling, _tail)
Called to ensure tree manipulation variables for current rule are valid after a
rule reference.

AST *_astnew()
Create a new AST node and return it.

void _child(_root, _sibling, _tail)
Add a leaf node to the current AST. Creates an AST node, applies the
default node transformation (zzcr_ast) if it exists, and appends the node
to the current sibling list. After this function, #i variables are available for
user actions.

void _subroot(_root, _sibling, _tail)
Perform the same operations as _child(), but make the newly-created node the
root for the current sibling list. If a root node exists, make the newly-created
node the root of the current root.

void zzpre_ast(tree, apply, before, after)
Perform a preorder traversal of tree applying apply to each node. Apply
function before before the start of each new subtree and function after
after you complete each subtree.

A common use of this function is to print out a tree. For example, if AST
nodes had a field called token, the tree of tokens could be printed by defining
the following

void show(tree)
AST *tree;
{

if (tree == NULL) return;
printf(" %s", zztokens[tree->token]);

}

void before() { printf(" ("); }
void after() { printf(")"); }

and then calling zzpre_ast() as

zzpre_ast(some_tree, show, before, after);

AST *zzdup_ast(tree)
Return a duplicate of the tree passed in.

void zzfree_ast(tree)
Free the AST pointed to by tree applying zzd_ast to each node before
freeing if it is defined.

Page 58

PCCTS 1.00

zzrm_ast
This macro is used to free the subtree for the current rule (using
zzfree_ast()) and remove all references to it. PCCTS maintains local
pointers to the current sibling list etc... which must be NULL’ed in order to
begin a new subtree. Translators that perform an operation on a list of items
using ()* or ()+ can add an action to free and remove references to the
AST associated with the different items upon each iteration of the loop. e.g.
(item <<zzrm_ast;>>)+.

zzchild(tree)
Return the first child of the node pointed to by tree. Returns NULL if
tree is NULL.

zzsibling(tree)
Return the immediate sibling of the node pointed to by tree. Returns
NULL if tree is NULL.

The parameters tree, _root, _sibling and _tail are defined as

AST *tree, **_root, **_sibling, **_tail;

A useful modification to _astnew() would be to use custom allocation of AST
nodes. Since they are all the same size, it could be done quickly and efficiently.

4.2.6. AST references
References to AST objects come in three basic forms.

#i This attribute refers to the tree constructed for the ith rule element within the
current alternative. #i variables are scoped/numbered just like $i variables
and their association dissolves after leaving the current attribute scope. #i
is unique until the current block is exited or another iteration of a ()* or a
()+ loop has begun.

#0 is special and always refers to the root of the subtree associated with the
rule in which it was referenced. #0 is scoped like $$, not like $0; there is
only one #0 for the entire rule. If #0 is ever set to NULL, the current sub-
tree disappears (without freeing the nodes). Normally, #0 is only set when
the automatic AST tree creation is turned off with a ! after the rule name in
a definition.

Since subrules do not have their own #0 values. The #i value of a subrule
is undefined. However, for compatibility with $i numbering, subrules are
counted as though they were assigned #i values:

An example #-variable number is as follows.

Page 59

PCCTS 1.00

a : B
(C D /* #1 is C, #2 is D */)*
E
/* #1 is B, #2 does not exist, #3 is E */

;

When the automatic tree construction is turned off for a rule, #-variables for
terminals are undefined since nodes are not created for them. #-variables
always exist for rule references since the referenced rule may construct a tree
(implicitly or explicitly).

#[args]
This form constructs an AST node and returns a pointer to it (of type
AST *). The arguments and the newly-constructed node are passed to the
zzmk_ast() function defined by the user.

#(root, child1, child2, ..., childn)
This form represents a tree descriptor from a set of AST node pointers. It is
translated to a function call that links all the child nodes together as
siblings, with root as their parent. A pointer to the root is returned. If the
root is NULL, a pointer to the sibling list is returned. #(NULL) and
#() both return NULL. #(nodeptr) yields nodeptr. All child’ren
become siblings of each other and any siblings of the child’ren that existed
previously become siblings also. For example,

#(NULL, #(NULL, #[a], #[b]), #[c])

results in a, b and c all being siblings.

4.2.7. Invoking parsers that construct trees
PCCTS parsers pass an address of a root pointer to other rules while con-

structing AST’s. This root pointer is always the first parameter and will point to
the subtree built for that rule upon rule completion. Any parameters defined for a
rule are not affected by this additional rule argument. All root pointers must be set
to NULL initially. Normally, PCCTS generates code to handle all pointer parame-
ter passing and tree manipulations. However, the starting rule (i.e. the one called
using the ANTLR macro) may try to reference the root pointer it presumes was
passed in. Therefore, the address of a NULL-initialized root pointer must be
manually passed in. e.g.

Page 60

PCCTS 1.00

AST *root = NULL;

main()
{

ANTLR(start(&root), stdin);
}

start : stuff ;

This root parameter will be not be defined in rule start if the -gt command-
line option is not used.

Note that if main() is located in a file other than a grammar file, the user
must explicitly include ast.h.

4.2.8. Error recovery and AST’s
When a syntax error is discovered by an ANTLR-generated parser, no further

additions will be made to the subtree of the current rule. Additions will resume
after ‘‘successful’’ error recovery. The AST is always left in a stable state (i.e. a
valid child-sibling tree) so that user actions may examine and/or modify the tree.
This also ensures that syntax errors will not result in ill-formed trees.

5. Error detection and repair
Reasonable error recovery is a notoriously difficult task which is handled

very poorly, or not at all, by most parser-generator systems. In part, this may be
due to the fact that most systems construct LR parsers, and these are theoretically
less able to recover from errors than LL parsers [FiL88]. It can also be justified on
the basis that a parser can be used to quickly find the first error, so that an interac-
tive user can repair the error and recompile without having to read through a mul-
titude of additional error messages which might represent the parser’s confusion
rather than actual errors.

In contrast, PCCTS attempts to provide a simple, automatic, error reporting
and recovery mechanism. Currently, ANTLR-generated parsers recover from syn-
tax errors by consuming tokens until a token in the FOLLOW set of ξ is
discovered where ξ is the rule in which the error was discovered. Errors are
reported in terms of the set of tokens which could legally have appeared at that
point.

A syntax error occurs when a PCCTS parser discovers a token on the input
stream that cannot be matched to any currently recognizable rule element.
Because PCCTS performs grammar analysis on the user’s grammar description, it
is aware of all possible tokens that can be recognized at a given instant. Sets
representing these tokens are passed to an error reporting function when a syntax
error is discovered. Optionally, a fail-action can be executed.

Page 61

PCCTS 1.00

[Wir76] provides a simple mechanism for recovering from syntax errors in
LL(1) parsers by consuming tokens until the current token is found to be a
member of a ‘‘stopping set.’’ This stopping set is comprised of the FOLLOW set
for that rule and any user-defined marking (‘‘resynch’’) tokens that are never to be
skipped (e.g. BEGIN). PCCTS currently employs a simple variant of the
[Wir76] mechanism. When a syntax error occurs in any production of rule ξ, the
parser will consume input until the current token is a member of the stopping set
for ξ.

The syntax error recovery mechanism employed by PCCTS does not effect
parser recognition speed unless an error is discovered. PCCTS error recovery is
attractive because it is completely automatic, but it tends to delete groups of
tokens which may lead to erroneous resynchronizations. This ‘‘glutton’’ scheme
could be refined by allowing the user to specify a set of resynch tokens to augment
the FOLLOW set [Wir76]. These resynch tokens would be determined by experi-
ence.

Sophisticated error recovery is possible using k tokens of look-ahead. Future
versions of PCCTS might employ this large look-ahead for intelligent error
recovery. Hence, it can be expected that automatic error handling will improve
without requiring users to change the input to PCCTS.

5.1. Modifying grammars to recognize common syntax errors
The user may modify a given grammar to recognize common, but erroneous

sentences. For example, if rule expr8 below were part of an expression recog-
nizer for a programming language,

expr8 : VAR
| INT
| FUNC "\(" elist "\)"
;

it could be modified to print an error message whenever an undefined variable was
seen. In other words,

expr8 : VAR
| INT
| FUNC "\(" elist "\)"
| WORD <<error("Undefined variable: %s", $1);>>
;

Without this additional production, the parser would print something like (assum-
ing test was the undefined variable found):

syntax error at "test" missing { VAR INT FUNC }

The extra production would allow a more informative error message to be printed,
such as:

Page 62

PCCTS 1.00

Undefined variable: "test"

5.2. Default error reporting function
The default error reporting function, zzsyn(), is defined as follows.

void
zzsyn(char *text, /* text of current token */

int tok, /* current token */
char *egroup, /* label attached to rule with error if present */
unsigned *eset, /* etok==0 -> >1 token missing; set is eset */
int etok) /* etok>0 -> 1 token missing; token is etok */

{
fprintf(stderr, "syntax error at \"%s\"", text);
fprintf(stderr, " missing ");
if (!etok) zzedecode(eset);
else fprintf(stderr, "%s", zztokens[etok]);
if (strlen(egroup) > 0) fprintf(stderr, " in %s", egroup);
fprintf(stderr, "\n");

}

A list of the regular expression or label associated with each token value is
stored in the char *zztokens[] array in err.c. zzedecode() is a
predefined function that decodes the set of tokens stored in the bit-set eset.

zzsyn() can be modified according to the user’s needs. For example, it can
be modified to print out the file and line number (zzline).

5.3. Error groups
The user may attach a string to a non-terminal that is passed on to the error

reporting macro/function zzsyn() by placing it just before the : in a rule
definition. e.g.

declarator "declaration or definition" : ... ;

Although zzsyn() can be redefined by the user, the default error reporting facil-
ity appends the specified string to the error message. More than one rule may
share the same string. This mechanism can generate decent error messages. For
example, one could specify that all rules dealing with expressions (e.g. factor,
term, conditional) are to be labeled as "expression". The default
zzsyn() would then yield something like:

syntax error at "NUM" missing { "\+" "*" } in expression

as opposed to

syntax error at "NUM" missing { "\+" "*" }

Page 63

PCCTS 1.00

Another example might be that all rules used to define variables, such as rule
declarator above, should be labeled "declaration or definition".

5.4. Error token classes
The default syntax error reporting facility generates a list of tokens that could

be possibility matched when the erroneous token was encountered. Often, this list
is large and means little to the user for anything but small grammars. For exam-
ple, an expression recognizer might generate the following error message for an
invalid expression, "a . b":

syntax error at "." missing { "\+" "\-" "*" "\/" "\&" "\|" "\<" "\>" "\=" ";" }

A better error message would be

syntax error at "." missing { operator ";" }

This modification can be accomplished by defining the error class:

#errclass "operator" { "\+" "\-" "*" "\/" "\&" "\|" "\<" "\>" "\=" }

5.4.1. Error class definitions
The general syntax for #errclass is as follows:

#errclass label { e1 e2 ... en }

where label is either a quoted string or a label (capitalized just like token labels).
The quoted string must not conflict with any rule name or regular expression.
Groups of expressions will be replaced with this string and it must not appear to
be a simple token. Similarly, an error class label may not share the same name as
a labeled token. The error class elements, ei, can be a labeled token, a regular
expression or a non-terminal. Tokens (labeled or regular expressions) referenced
within an error class must at some point in the grammar be referenced in a rule or
explicitly defined with #token. The definition need not appear before the
#errclass definition. If a non-terminal is referenced, the FIRST set (set of all
tokens that can be recognized first upon entering a rule) for that rule is instantiated
into the error class. The -ge command-line option can be used to have PCCTS
generate an error class for each non-terminal of the form:

#errclass Rule { rule }

which implies that each non-terminal will have an error class composed of the first
set for that rule. The error class name is the same as the non-terminal except that
the first character is converted to upper case.

Page 64

PCCTS 1.00

Error class names may also be used as error class elements (ei) since error
class names are treated somewhat like tokens. This capability allows error class
hierarchies. For example,

#errclass Fruit { CHERRY APPLE }
#errclass Meat { COW PIG }
#errclass "stuff you can eat" { Fruit Meat }

yum : (CHERRY | APPLE) PIE
| (COW | PIG) FARM
| THE (CHERRY | APPLE) TREE
;

Different error messages will result depending upon where in rule a a syntax
error is detected. If the input were

THE PIG TREE

the following error message would result:

syntax error at "PIG" missing { Fruit }

However, if the input were

FARM COW

the decent error message

syntax error at "FARM" missing { "stuff you can eat" THE }

would result. Note that without the error class definitions, the error message
would have been:

syntax error at "FARM" missing { CHERRY APPLE COW PIG THE }

which conveys the same information, but at a much lower level.

5.4.2. Error class utilization
PCCTS attempts to construct sets of tokens for error reporting--error sets.

The sets are created wherever a parsing decision will be made in the generated
parser. At every point in the parsing process there exists a set of currently
recognizable/acceptable terminals. This set can be decoded and printed out when
a syntax error is detected — when the current token is not currently recognizable.
PCCTS attempts to replace subsets of all error sets with error classes defined by
the user. For example, rule a below contains a subrule with more than one alter-
native which implies that a parsing decision will be required at run-time to deter-
mine which alternative to choose.

Page 65

PCCTS 1.00

a : (Happy | Sad | Funny | Carefree) Person ;

If, upon entering rule a, the current token is not one of the four terminals found in
the alternatives, a syntax error will have occurred and the following message
would be generated (if "huh" were the current token):

syntax error at "huh" missing { Happy Sad Funny Carefree }

Let us define an error class called Adjective that groups those same four
tokens together.

#errclass Adjective { Happy Sad Funny Carefree }

Now, the error message would be:

syntax error at "huh" missing { Adjective }

PCCTS repeatedly trys to replace subsets of the error set until no more substi-
tutions can be made. At each replacement iteration, the largest error class that is
completely contained within the error set is substituted for that group of tokens.
One replacement iteration may perform some substitution that makes another, pre-
viously inviable, substitution possible. This allows the hierarchy mechanism
described above in the error class description section. The sequence of substitu-
tions for the yum example would be:

[i] { CHERRY APPLE COW PIG THE }
[ii] { Fruit COW PIG THE }
[iii] { Fruit Meat THE }
[iv] { "stuff you can eat" THE }

The error class mechanism leads to smaller error sets and can be used to pro-
vide more informative error messages.

6. Things you should know about
This section is a collection of important things that did not properly belong in

any other section.

6.1. Available program symbols
This section describes all symbols visible to the user that may be of interest.

6.1.1. Macros, functions, #define’s

Page 66

PCCTS 1.00

ZZCOL /* define so that DLG tracks column # of tokens */
ZZLEXBUFSIZE /* if not set, default size of lexical bufs */
ZZA_STACKSIZE /* if not set, default size of attrib stack */
ZZAST_STACKSIZE /* if not set, default size of AST stack */
zzTRACE(rule) /* macro called at start of rule when -gd set */
LL_K /* == max # tokens of look-ahead used in parser */
ANTLR(start,stream) /* ANTLR startup macro; get input from stream */
ANTLRf(start,funcPtr) /* ANTLR startup macro; get input from func */
zzcr_attr() /* create attribute from token, text on input */
zzd_attr() /* call zzd_attr(&($i)) for each attrib created */
zzcr_ast() /* how to create an AST node from attribute */
zzmk_ast() /* how to create an AST node (user-defined) */
zzd_ast() /* how to destroy an AST node */
LA(i) /* ith token of look-ahead */
LATEXT(i) /* text for ith token of look-ahead */
zzlextext /* buffer holding text of current token */
zzsyn() /* error reporting macro */
zzpre_ast(tree, func1, func2, func3) /* see section 4.2.5 */
zzfree_ast(tree) /* see section 4.2.5 */
zzdup_ast(tree) /* see section 4.2.5 */
zzedecode(unsigned *error_set); /* decode a bit-set */
zzskip() /* Tell DLG to skip this token */
zzmore() /* Tell DLG to try for more chars */
zzmode(mode) /* switch DLG to another lex mode */
zzadvance() /* Get next char allow only valid chars */
zzrdstream(s) /* Reset lex_line, use stream s for input */
zzrdfunc(f) /* Reset lex_line, call function f to read input */
zzreplchar(c) /* replace current lex buffer with c */
zzreplstr(s) /* replace current lex buffer with s */

6.1.2. Global variables

char *zztokens[], /* zztokens[t] is rexpr or label for token t */
zzbegexpr, / start of text for currently recognized expr */
zzendexpr; / end of text for currently recognized expr */

int zzline, /* set by user to current line # */
zzbegcol, /* column # of 1st char in token */
zzendcol, /* column # of last char in token */
zzchar; /* current character of look-ahead */

void (*zzerr)(); /* ptr to func to exec upon lexical error */

One of the most common actions found among PCCTS descriptions is a statement
similar to

#token "\n" << zzline++; >> /* Move to next line */

6.2. ANSI versus K&R
K&R, actually Kernighan and Ritchie, ‘‘The C Programming Language,’’

Prentice-Hall, 1978, was effectively the standard for the C language until the
ANSI X3-J11 committee put forth a definition of ANSI C [ANS90]. Unfor-
tunately, ANSI C is not compatible with K&R C, yet both dialects are in common

Page 67

PCCTS 1.00

use. For this reason, PCCTS supports generation of either ANSI C or K&R C.

By default, PCCTS generates K&R C code with parameterless extern
declarations automatically placed in tokens.h for each parsing function that
has a return value. If the -ga command-line option is used (on both ANTLR and
DLG), PCCTS generates ANSI C compatible code and function prototype declara-
tions; all parsing functions with return values or parameter definitions have
appropriate prototypes placed in tokens.h.

According to the ANSI C standard, a compliant compiler must define the
macro name __STDC__, which would not be defined by a K&R C compiler.
Hence, code can be written to work correctly with both ANSI C and K&R C by
using #ifdef to test if __STDC__ has been defined. Although the output of
PCCTS would have been excessively large if #ifdef had been used to make the
code be acceptable to both ANSI C and K&R C compilers, #include files and
other support code may test for the macro __STDC__.

6.3. Bugs
Occasionally, PCCTS will find a grammar that it cannot analyze and you will

receive an error similar to the following.

file.c, line 43: out of memory while analyzing alts 2 and 5 of (..)+

This is due to LL(k) grammar analysis requiring exponential space in some cases.
Normally, this problem only will occur with k > 2 for large, ambiguous, gram-
mars. A technique which avoids the worst-case exponential space requirement is
being considered for a future release.

Although not technically a ‘‘bug,’’ the differences between β release PCCTS
and version 1.00 will cause numerous errors to be reported if old grammars are
submitted to the new system. Most of these incompatibilities require only minor
changes; see section 7.1. This was expected — why do you think we called it β?

The code generated using the -ga option has not been tested for compliance
with the ANSI C standard.

The source code for ANTLR itself is not ANSI compliant, although it is fairly
close.

Error messages reporting ambiguities involving nullable subrules (i.e., {} or
()*) sometime blame the ambiguity on an alternative rather than the nullable con-
struct.

The names of PCCTS variables and/or functions are not necessarily con-
sistent, mnemonic or convenient. PCCTS symbols are, therefore, subject to
change.

ANTLR will not compile on any system that does not have _iobuf as the
standard FILE * structure name. This is because struct _iobuf * is used
in a header file instead of FILE *. The header file is automatically generated via

Page 68

PCCTS 1.00

proto--the C example distributed with PCCTS. You can circumvent this prob-
lem by changing the declaration of struct _iobuf * in proto.h to
FILE *.

ANTLR normally checks to see that you do not reference an attribute (param-
eter, return value, normal attribute) that is not defined. However, if you use a
$name where name is a substring of a valid parameter or return value, it thinks
that it is ok.

Invoking an ANTLR parser multiple times or invoking multiple parsers does
not work very well; tokens tend to be lost.

7. History
PCCTS Version 1.00 was written using β release PCCTS — 1.0B. 1.0B was,

in turn, written in alpha release PCCTS, 1.0A, which was written in YUCC (a gra-
duate class project gone wild). YUCC was written in PG; both of which were
simple BNF-style recursive descent parser generators. PG was written in RD
[JuD84].

7.1. Differences from β release PCCTS
PCCTS Version 1.00 is significantly different from β release PCCTS. How-

ever, Version 1.00 is mostly a superset — most old grammars require only minor
changes for version 1.00. This section delineates all of the changes and a few pos-
sible migration paths.

g #attrib is now called #header to reflect the more general use of the
construct in version 1.00.

g The ANTLR initiation macro now requires that the starting rule have ()
appended just as you would call the function by hand. For example,
ANTLR(start(), stdin).

g A number of internal functions and variables have been renamed so that
conflicts with user-defined names are less likely. All the new names begin
with the prefix zz. For example:

g aCreate() is now zzcr_attr().

g cur_char is now called zzchar, but the user should not need to
reference it.

g LexSkip and LexMore are now zzskip and zzmore.

g Token is now called LA(1) (first token of look-ahead). LA(i) is the ith

token.

g LexText is now LATEXT(1) (text for first token of look-ahead).
LATEXT(i) is the text for the ith token.

g ANTLRi no longer exists.

Page 69

PCCTS 1.00

g Rules no longer automatically define an attribute parameter. Also, parameters
of the form {...} (i.e. rule[{...}]) cannot be used. Basically,
parameter passing to a rule is exactly like in a programming language. All
parameters must be defined and can be any valid type. Also, return values
may be defined for rules rather than using old-style upward attributes. Rules
may simulate the old-style $0 inheritance via

rule[Attrib inh] : <<$0 = inh;>> ... ;

g A new file called mode.h is created by DLG and is included into your
ANTLR parser. This implies that DLG must be run before you can compile
the C files created by ANTLR.

g New command-line options have appeared, old ones have been changed
and/or disappeared. To be precise,

-T is now -gd.

-z is gone.

-n is now -gx.

-l is now -fl.

-c is now -gc.

-I is gone.

-s is gone.

-fi is gone.

-fo is gone.

-R is now -cr.

-e is gone.

-a is gone.

-w is now one of -e1, -e2, -e3.

-d is gone.

-E is gone since the user can redefine zzsyn().

g zzreplchar() and zzreplstr() should be used instead of modifying
the lexical buffer manually.

g A pointer to a function called zzerr is set to a function to call upon lexical
error (invalid token etc...).

7.2. Future directions
Neither we nor Purdue University guarantee that PCCTS works or accept lia-

bility if it does not do what you want it to. However, we do try to maintain and
improve the system. So, we value user feedback that might help us improve
PCCTS.

Page 70

PCCTS 1.00

Within Purdue University’s School of Electrical Engineering, we are con-
stantly updating PCCTS. The 1.00 release does not include all the latest goodies
— it contains only those features whose implementation we believe to be useful,
correct, and reasonably stable. The following is a partial list of improvements
currently being considered:

Parser construction
Currently, ANTLR parsers use a sequence of if statements to find the
correct alternative to match. This is inefficient if only one token of look-
ahead is required to uniquely determine which alternative to choose. Depend-
ing on the C compiler, a switch statement would generate much faster
code.

Attribute and AST variables are maintained on software stacks in 1.00.
Grammar analysis could easily create a collection of local hardware-stack-
based variables to use in place of the software stack. This would eliminate
the need to specify an attribute or AST stack size and produce faster code.

Inline rules
For the most part, subrules are like macro-expansions of rules. Rather than
referencing a rule, the user simply instantiates the rule in place of the rule
reference. Grammatically the two methods are the same, but they differ in
two important ways. First, subrules cannot employ the sophisticated parame-
ter passing mechanism available to rules. Second, subrules are much faster
than rule references since subrules avoid the function call overhead. A future
version of PCCTS might introduce inline rules. Inline rules would be defined
as before (with the addition of the inline keyword) but would be instan-
tiated into rules that reference them. This would cut down on grammar
clutter by breaking up long rules while maintaining the speed advantage of
subrules.

Abstract-syntax-trees
Through experience with PCCTS AST’s, a new group of tree manipulation
routines should appear. Some of them could relate to code-generation.

Example grammars
More and more grammars are being built with PCCTS. Some of them might
be made available through future PCCTS releases and through users’ network
postings.

Recognition
Currently, PCCTS parsers cannot recognize as large a class of languages as
bottom-up parsers. Research is underway to create hybrid parsers that would
retain top-down’s programmer-interface features while gaining bottom-up’s
recognition strength.

Code generation
Research continues at Purdue toward a code-generator generator for parallel
machines (PIG).

Page 71

PCCTS 1.00

A simple uni-processor code-generator that has been in use at Purdue may be
made available in the next release of PCCTS.

$token
PCCTS only recognizes $i, $i.j, $rule variables presently. Future versions
might allow $token variables which will refer to attributes for tokens by the
name of the token not the position number.

7.3. Acknowledgements
Thanks is due to the users of β release PCCTS for their excellent suggestions.

In particular, Mark Nichols (PhD candidate in Electrical Engineering at Purdue)
discovered many of the initial quirks and bugs. We acknowledge Dana Hoggatt
(Micro Data Base Systems Inc) for his idea of error grouping (strings attached to
non-terminals) and his significant software testing efforts. Thanks is due Profes-
sor Matthew O’Keefe and Peter Dahl (both at University of Minnesota) for their
review of the user’s manual and their bug-finding escapades into PCCTS.

Page 72

PCCTS 1.00

8. References
[ANS90]

American National Standard for Information Systems, "Programming
Language C," Document X3J11/90-013, February 1990.

[AhU79]
A.V. Aho, J.D. Ullman, Principles of Compiler Design, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1979.

[DoP90]
H. Dobler and K. Pirklbauer, "Coco-2 A New Compiler Compiler," ACM
SIGPLAN Notices, Vol. 25, No. 5, May 1990.

[Joh78]
Stephen C. Johnson, "Yacc: Yet Another Compiler-Compiler," Bell Labora-
tories, Murray Hill, NJ, 1978.

[JuD84]
R. Juels, H. Dietz, S. Arbeeny, J. Patane, E. Tepe, "Automatic Translation
Systems," Study Report, Center For Digital Systems, Department of Electri-
cal Engineering and Computer Science, The Polytechnic Institute of New
York, New York, 1984.

[KeR88]
Brian W. Kernighan and Dennis M. Ritchie, "The C programming
Language," Prentice Hall Inc., Englewood Cliffs, New Jersey, 1988.

[Les75]
M. E. Lesk, "LEX--a Lexical Analyzer Generator," CSTR 39 Bell Labora-
tories, Murray Hill, NJ, 1975.

[LeP81]
Harry R. Lewis, Christos H. Papadimitriou, Elements of the Theory of Com-
putation, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1981.

[Nau63]
P. Naur (ed.), "Revised report on the algorithmic language ALGOL 60,"
Communications of the ACM 6:1, 1-17.

[PaD90]
Terence Parr, Henry Dietz, Will Cohen, "Purdue Compiler-Construction Tool
Set," Technical Report TR-EE 90-14, School Of Electrical Engineering, Pur-
due University, West Lafayette, IN, February 1990.

[Par90]
Terence Parr, "The Analysis of Extended BNF Grammars and the Construc-
tion of LL(1) Parsers," Technical Report TR-EE 90-30, School Of Electrical
Engineering, Purdue University, West Lafayette, IN, May 1990.

[PuC89]
James J. Purtilo and John R. Callahan, "Parse-Tree Annotations", Communi-
cations of the ACM, Vol. 32, No. 12, December 1989.

Page 73

PCCTS 1.00

[Str87]
Bjarne Stroustrup, "The C++ Programming Language," Addison-Wesley
Publishing Company, Reading, Massachusetts, 1987.

[Wir76]
Niklaus Wirth, Algorithms + Data Structures = Programs, Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1976.

Notes:
[LeP81] credits P. Naur [Nau63] with Backus-Naur Form (BNF) and is a rea-
sonable text on language theory. [AhU79] gave more complete references to
Johnson’s YACC and Lesk’s LEX — i.e. the CSTR numbers from Bell
Laboratories.

PCCTS 1.00

Table of Contents

1. Introduction .. 1

1.1. PCCTS programming interface ... 2

1.2. PCCTS information flow ... 2

1.3. PCCTS file(s) format ... 4

1.4. Makefile template .. 5

1.5. PCCTS component command-line options 6

1.6. Introductory example ... 9

2. Lexical analysis and token definition ... 11

2.1. Token Labeling and token actions ... 11

2.2. Lexical actions via #lexaction ... 14

2.3. Multiple lexical classes .. 14

2.3.1. Multiple grammars, multiple lexical analyzers 15

2.3.2. Single grammar, multiple lexical analyzers 15

2.4. Handling end of input .. 16

2.5. Token order and lexical ambiguities .. 16

2.6. Quoted tokens .. 17

2.7. Interactive lexical analyzers ... 18

2.8. DLG lexical input .. 18

2.9. Tracking pattern position ... 19

3. Syntactic analysis ... 19

3.1. PCCTS rule definitions .. 20

3.1.1. Subrules ... 21

3.1.2. Rule communication .. 23

3.1.3. Miscellaneous notes ... 24

3.1.4. LL(k) parsing ... 24

3.2. Grammar ambiguities .. 25

3.3. Look-ahead size ... 26

3.4. ANTLR parser construction ... 27

3.4.1. Efficiency ... 27

3.4.2. Debugging parsers ... 28

3.5. PCCTS parser template .. 28

PCCTS 1.00

3.6. Grammatical actions .. 29

3.6.1. Init Actions .. 29

3.6.2. Fail actions ... 30

3.6.3. Actions appearing outside of rules 31

4. Attribute handling .. 32

4.1. General attribute handling ... 32

4.1.1. Attribute creation ... 33

4.1.2. Attribute destruction .. 35

4.1.3. Standard attribute definitions ... 35

4.1.4. Attribute references .. 36

4.1.4.1. $i references ... 37

4.1.4.2. $i.j references ... 37

4.1.4.3. $label references .. 38

4.1.5. $[token, text] attribute constructor 39

4.1.6. Inheritance ... 39

4.1.6.1. $0 inheritance ... 40

4.1.6.2. Generalized rule communication 41

4.1.6.2.1. Downward-inheritance 41

4.1.6.2.2. Upward-inheritance 42

4.2. Abstract-syntax-tree construction and manipulation 42

4.2.1. AST node creation ... 43

4.2.2. AST node destruction .. 45

4.2.3. Automatic AST construction ... 45

4.2.3.1. Grammar annotation .. 46

4.2.3.2. Operator precedence .. 48

4.2.3.3. Example ... 49

4.2.4. Explicit AST construction ... 51

4.2.4.1. Simple example .. 52

4.2.4.2. C declaration to English translator 53

4.2.5. Tree manipulation routines .. 57

4.2.6. AST references .. 59

4.2.7. Invoking parsers that construct trees 60

4.2.8. Error recovery and AST’s .. 61

5. Error detection and repair .. 61

5.1. Modifying grammars to recognize common syntax errors 62

5.2. Default error reporting function ... 63

PCCTS 1.00

5.3. Error groups ... 63

5.4. Error token classes ... 64

5.4.1. Error class definitions .. 64

5.4.2. Error class utilization ... 65

6. Things you should know about .. 66

6.1. Available program symbols ... 66

6.1.1. Macros, functions, #define’s 66

6.1.2. Global variables ... 67

6.2. ANSI versus K&R ... 67

6.3. Bugs ... 68

7. History ... 69

7.1. Differences from β release PCCTS ... 69

7.2. Future directions .. 70

7.3. Acknowledgements .. 72

8. References .. 73

