
delim $$
Introductory Tutorial

PCCTS 1.0x

Terence Parr, Hank Dietz, Will Cohen

School of Electrical Engineering
Purdue University

West Lafayette, IN 47907
Fall 1992

parrt@ecn.purdue.edu
hankd@ecn.purdue.edu

cohenw@ecn.purdue.edu

The Purdue Compiler-Construction Tool Set (PCCTS) is a set of public
domain software tools designed to facilitate the implementation of compilers
and other translation systems. In many ways, PCCTS is similar to a highly
integrated version of YACC and LEX; where ANTLR (ANother Tool for
Language Recognition) corresponds to YACC and DLG (DFA-based Lexical
analyzer Generator) functions like LEX. However, PCCTS has many addi-
tional features which make it easier to use for a wide range of translation
problems.

This document introduces the basic functionality of PCCTS by example.
The user need not be familiar with parsing theory or other compiler tools,
but any familiarity reduces the learning curve substantially. The PCCTS
reference manual is a necessary supplement to this tutorial as information
here regarding PCCTS structures and operation is incomplete.

Page 1

PCCTS Introductory Tutorial 1.0x

1. Introduction

PCCTS allows the user to describe languages (e.g. programming language, OS
shell, game, editor); from such a description, a C program is generated that recognizes
and, optionally, translates phrases in that language. The user must specify the follow-
ing:

(i) How the input stream is to be broken up into lexemes (tokens) which comprise
the vocabulary of the language.

(ii) How the tokens are to be grouped; i.e. what structure/grammar is to be applied to
the token stream.

(iii) C actions which perform a user-specified translation. Along with this
specification, the user must also describe token attributes objects that actions use
to communicate with the lexical analysis phase of translation.

Similarly, this tutorial is broken up into sections on lexical analysis, syntactic analysis,
and actions/translation.

2. Lexical Analysis

Before understanding a phrase in English, one must separate the stream of charac-
ters into a stream of words; e.g. the phrase: ‘‘thisisveryhardtoread’’ accentuates this
fact recognition cannot easily be done from a character stream, only from word/token
streams.

Compilers and other translators are very strict about this ‘‘tokenization’’ and gen-
erally describe tokens via regular expressions expressions that describe sets of char-
acter sequences. The regular expressions are, in fact, language descriptions as well.
For example, hello is a regular expression that recognizes a sequence of five charac-
ters; namely, the word: ‘‘hello’’. To inform PCCTS that ‘‘hello’’ is to be a word in
the vocabulary of your language, the following description would be placed in your
grammar file.

#token LABEL "hello"

where LABEL is some label (C #define) that you want associated with that token. To
test regular expressions in PCCTS, let us form a simple, complete description which
recognizes ‘‘hello’’ (we will use this description as a base for all examples in this sec-
tion):

#header <<#include "charbuf.h">>

<<main() { ANTLR(a(), stdin); }>>

#token WORD "hello"

a : WORD ;

Page 2

PCCTS Introductory Tutorial 1.0x

This is a minimal description in that it contains everything needed for PCCTS to gen-
erate an executable (actually, to generate all C files needed for the C compiler to gen-
erate an executable). The #header <<...>> instruction informs PCCTS that the C code
inside the <<...>> action is necessary to define attributes and to compile the actions
found elsewhere; for this section, we will ignore its significance. The second action
gives a main program that specifies where C is to begin execution. It contains one
statement which asks ANTLR to begin parsing at rule a. The third instruction defines
a token hello. The fourth component of this description is a rule definition. Rules
definitions have the form:

rule: $alternative sub 1$ | $alternative sub 2$ | ... | $alternative sub n$;

where each alternative is a sequence of grammatical structures that are to be
matched one of possible structures is a simple token reference (WORD, in our case).
Therefore, rule a says, ‘‘match the token identified as WORD on the input stream’’.
The C function generated for rule a asks the lexical analyzer, generated by PCCTS, to
collect characters until it sees a complete token. Each token in the vocabulary is given
a unique number which the lexical analyzer returns to indicate what token was just
matched. Function a() then verifies that the number associated with WORD is indeed
returned by the lexical analyzer.

The above example can be tested via the following sequence of commands:

antlr -gk t.g
dlg -i parser.dlg scan.c
cc -I../h -o t t.c scan.c err.c

The first command generates the parser, t.c, the lexical description, parser.dlg, and a
support file, err.c. The second command converts the lexical description to a C file
that constitutes our scanner (lexical analyzer). The third command compiles all C files
needed to generate the executable (the -I../h option tells the C compiler where to look
for the standard PCCTS include files; you will have to change this to where the
PCCTS include files are located). The output on our UNIX system looks like this
(assuming the example is in file t.g):

% antlr -gk t.g
Antlr parser generator Version 1.06 1989-1992
% dlg -i parser.dlg scan.c
dlg Version 1.0 1989, 1990, 1991
% cc -I../h -o t t.c scan.c err.c

To test the grammar file, run the executable:

% t
hello
%

Page 3

PCCTS Introductory Tutorial 1.0x

No error message is generated and t terminates successfully. If a token not in the
vocabulary of our language is typed, an error message appears. We have only one
word in our vocabulary, and hence, anything other than ‘‘hello’’ generates an error.

% t
bob
invalid token near line 1 (text was ’b’)
invalid token near line 1 (text was ’o’)
invalid token near line 1 (text was ’b’)
invalid token near line 1 (text was ’
ˆDline 1: syntax error at "EOF" missing WORD
%

The first ‘‘invalid token’’ errors are from the scanner, the last message is from the
parser (function a()) indicating that end-of-file was found when a WORD was
expected. EOF was returned by the scanner because bob was ignored and end-of-file
appeared immediately afterwards; EOF is a predefined token in any PCCTS vocabu-
lary.

Adding more tokens to your language’s vocabulary is easy simply add more
#token definitions. Consider this new example:

#token "\ " <<zzskip();>> /* ignore blanks */
#token "\t" <<zzskip();>> /* ignore tabs */
#token "\n" <<zzline++; zzskip();>> /* ignore newlines */
#token A "apple"
#token P "pear"

This example introduces lexical actions actions that are executed upon recognition of
a particular regular expression. For most language descriptions, lexical actions are not
used except to tell the scanner to skip a token or continue looking for more characters.
zzskip() is a standard PCCTS function (generally, PCCTS variables/functions/defines
are prefixed with zz to avoid name collisions with user variables) which forces the
scanner to ignore the currently matched token and to try to find another. Essentially,
the first three token definitions here tell the scanner that it is to ignore white space, but
to increment the current line number when it sees a newline. The fourth and fifth
definitions introduce two words into our vocabulary. Notice that only the last two
have labels associated with them. Any #token instruction may give a label, but they
are not necessary. Labels are handy when you want an action to refer to the value
(token number) of a particular token; also, when a regular expression is complicated or
confusing, often it is better to use a label throughout your grammar rather than repeat-
ing the regular expression. To illustrate this, we present the following four equivalent
partial PCCTS descriptions:

(i) Repeated use of labels.

Page 4

PCCTS Introductory Tutorial 1.0x

#token A "apple"
#token P "pear"

a : A P
| P A
;

(ii) Repeated use of expressions.

#token "apple"
#token "pear"

a : "apple" "pear"
| "pear" "apple"
;

(iii) Repeated use of implicitly-defined expressions.

a : "apple" "pear"
| "pear" "apple"
;

(iv) Mixed use of labels and expressions.

#token A "apple"
#token P "pear"

a : "apple" P
| "pear" A
;

Each unique token regular-expression string in PCCTS gets its own token number.
Token labels are words that begin with a uppercase letter whereas rules begin with
lowercase letters. Repeating the same token string in a grammar merely refers to the
same token; strings can only appear once in #token definitions, however, as this
instruction attempts to define a new token. An implicitly-defined token is one that is
referenced but that has no formal #token instruction. In fact, we use the #token only
when the expression is long, when a lexical action must be attached, or when a label is
required (so that a C action can refer to it).

Each rule a above indicates that either apple followed by pear is to be matched or
pear followed by apple is to be matched.

Once again, let’s test this vocabulary description with a complete, executable
example:

Page 5

PCCTS Introductory Tutorial 1.0x

#header <<#include "charbuf.h">>

<<main() { ANTLR(a(), stdin); }>>

#token "\ " <<zzskip();>> /* ignore blanks */
#token "\t" <<zzskip();>> /* ignore tabs */
#token "\n" <<zzline++; zzskip();>> /* ignore newlines */

a : "apple" "pear"
| "pear" "apple"
;

To build the executable, we proceed as before:

% antlr -gk t.g
Antlr parser generator Version 1.06 1989-1992
% dlg -i parser.dlg scan.c
dlg Version 1.0 1989, 1990, 1991
% cc -g -I../h -o t t.c scan.c err.c

To test the example, type:

% t
apple

pear
%

No error is reported due to the validity of the input. Note that the newline and the
spaces were ignored because of the zzskip() actions associated with our token
definitions for white space. To ensure that t is actually doing something useful, try:

% t
apple apple
line 2: syntax error at "apple" missing pear
ˆD%

PCCTS generates parsers that automatically report errors and try to resynchronize the
parser; hence, in this case, a control-D (ˆD) is necessary to terminate the program
because t is looking for another token with which to resynchronize. Because of the
zzline++ statement in the action for newline, the error is correctly reported on line 2.

The regular expressions used in the above examples are simple and do not use
any of the meta-characters or regular expression operators. Before presenting a more
realistic example, we illustrate the use of some useful regular expression meta-
characters (for a complete description see PCCTS documentation):

@ EOF character

\t tab character

\n newline character

\c character escape; used to obtain actual character for meta-characters

Page 6

PCCTS Introductory Tutorial 1.0x

(e) keep expression e as an indivisible group

[c] match one character from list c

[x-y] match one character from range x to y

˜ [c] match one character not in list c

{e} expression e is optional

e* match zero or more of e

e+ match one or more of e

e|f match either expression e or f

Naturally, the above operators and meta-characters can be used in many combinations
to produce very complicated expressions. To illustrate more complex expressions, we
define the vocabulary of a calculator (ignoring white space for the moment).

#token NUM "[0-9]+"
#token VAR "[a-zA-Z][a-zA-Z0-9]*"
#token "\("
#token "\)"
#token "\+"
#token "\-"
#token "*"
#token "/"

A number is defined as a sequence of one or more decimal digits. Variables begin
with an upper or lowercase letter, but can otherwise contain digits as well; note that *
is used rather than + for variables because + would force VAR to recognize at least
two characters. This calculator has some tokens in its vocabulary that are identical to
those of the regular expressions, so these must be escaped to tell the scanner to look
for those actual characters. To create an executable, we form a grammar which
accepts one of the words in the vocabulary:

#header <<#include "charbuf.h">>

<<main() { ANTLR(a(), stdin); }>>

#token "\ " <<zzskip();>> /* ignore blanks */
#token "\t" <<zzskip();>> /* ignore tabs */
#token "\n" <<zzline++; zzskip();>> /* ignore newlines */

#token NUM "[0-9]+"
#token VAR "[a-zA-Z][a-zA-Z0-9]*"
#token "\("
#token "\)"
#token "\+"
#token "\-"
#token "*"
#token "/"

a : NUM | VAR | "\(" | "\)" | "\+" | "\-" | "*" | "/" ;

Page 7

PCCTS Introductory Tutorial 1.0x

As before, we create the executable with (assuming the example is in t.g):

antlr -gk t.g
dlg -i parser.dlg scan.c
cc -g -I../h -o t t.c scan.c err.c

The executable, t, will recognize any one token from our vocabulary. The next section
discusses how one employs rules to specify valid, structured sequences; i.e. how one
defines the syntax of a language.

3. Syntactic Analysis

The syntax of a language is the grammatical structure which summarizes the set
of valid phrases in that language. Because one cannot normally delineate all possible
sentences, languages are described via a set of rules which obey the laws of a meta-
language, which is literally a ‘‘language to describe languages’’ just as the syntax of
regular expressions represents a language. This section describes the format of a
PCCTS language description the syntax of PCCTS rules and how they may be used
to impose a structure upon a stream of input tokens.

The basic template used to build a grammar is:

#header action
action(s) and/or #token definition(s)
rule(s)
action(s) and/or #token definition(s)

To compile, all grammars must define a number of things inside the #header action;
this instruction is not optional and must appear first in your file. The rest of the file is
basically a sequence of user actions, token and rule definitions except that actions,
not contained within rules, must be placed before or after the rule definitions.

Rules have the basic form:

rule: $alternative sub 1$ | $alternative sub 2$ | ... | $alternative sub n$;

where $alternative sub i$ is a sequence of the following elements:

token
Match token on the input stream.

rule Visit rule and match whatever is specified.

action
Execute C action.

($a sub 1$ | $a sub 2$ | ... | $a sub n$)
Introduce a subrule match one $a sub i$.

{$a sub 1$ | $a sub 2$ | ... | $a sub n$}
Introduce an optional subrule; match one $a sub i$ or none.

Page 8

PCCTS Introductory Tutorial 1.0x

($a sub 1$ | $a sub 2$ | ... | $a sub n$)*
Conditionally match any sequence of $a sub i$’s.

($a sub 1$ | $a sub 2$ | ... | $a sub n$)+
Match any sequence of $a sub i$’s.

Examples of rule definitions are:

w : WORD ("," WORD)*
;

where rule w matches a list of comma-separated WORD’s. The ("," WORD)* con-
struction says match zero or more "," WORD sequences. Consider,

st : "if" expr "then" st {"else" st} ";"
| WORD ":=" expr
| "begin" (st ";")+ "end"

;

where expr is some rule that matches an arithmetic expression. Rule st matches state-
ments such as:

if $expr sub 1$ then begin
i := $expr sub 2$;
j := $expr sub 3$;

end
else

k := $expr sub 4$;

The first alternative has an optional subrule that matches an else-clause if it exists.
The third alternative matches one or more semicolon-delimited statements, which are
enclosed in begin and end. Let’s examine the description of a simple expression.

e : e1 (("\+" | "\-") e1)*
;

e1 : WORD
| INT
;

Rule e matches simple expressions with only plus and minus as operators; e.g. a+3-b
or a. Note that we have nested the ("\+" | "\-") subrule within the (...)* subrule.

Let’s build a complete PCCTS language description by extending the expression
example. Rules to handle multiplication and division will be added as well as token
definitions to ignore white space etc...:

Page 9

PCCTS Introductory Tutorial 1.0x

#header <<#include "charbuf.h">>

<<main() { ANTLR(calc(), stdin); }>>

#token "[\ \t]" <<zzskip();>> /* ignore blanks, tabs */
#token "\n" <<zzline++;>> /* ignore newlines */
#token INT "[0-9]+"
#token FLOAT "[0-9]+ {. [0-9]+}"

calc: (e "\n")* "@"
;

e : e1 (("\+" | "\-") e1)*
;

e1 : e2 (("*" | "/") e2)*
;

e2 : INT
| FLOAT

;

Note that newlines are no longer to be ignored, hence, the zzskip() function call has
been removed from its lexical action. Our language is a set of expressions terminated
by newlines followed by end-of-file (@ is a predefined lexical meta-symbol referring
to end-of-file). Without actions, testing this grammar is uninteresting because no out-
put is generated (unless, of course, an invalid expression is given). Therefore, let us
place an action among the rule elements to generate some output. Augment rule calc
as follows:

calc: (e "\n" <<printf("found expression\n");>>)* "@"
;

Essentially, we have added C code to print out a brief message after an expression-
newline pair has been encountered. Create the executable, t, as before with:

antlr -gk t.g
dlg -i parser.dlg scan.c
cc -I../h -o t t.c scan.c err.c

Test the program via a few simple expressions:

% t
3+4*5
found expression
3.15 / 6 - 2.1
found expression
ˆD%

This example grammar is not recursive; i.e. no rule references another rule that directly
or indirectly returns to itself. But, recursion is a very powerful tool. It allows the
concept of self-similarity. In other words, structures in which some subcomponents are

Page 10

PCCTS Introductory Tutorial 1.0x

similar to the outer structure. Pascal has several self-similar constructs: record field
definitions, procedure definitions, expressions, and type definitions to name a few.

To illustrate recursive grammars, we extend the above expression example to
allow parenthesized subexpressions such as (3+4)*7.

e2 : INT
| FLOAT

| "\(" e "\)"
;

Placing the subexpression construct at the lowest recursion level makes it have the
highest precedence because of the nature of top-down, depth-first parsing. To see this,
consider the parse tree for (3+4)*5 (beginning at rule e):
box invis "e" with .sw at (2.24,9.76) width 0.25 height 0.25 box invis "e2" with .sw at

(2.24,9.26) width 0.25 height 0.25 box invis "e3" with .sw at (1.74,8.76) width 0.25 height

0.25 box invis "*" with .sw at (2.24,8.76) width 0.25 height 0.25 box invis "5" with .sw at

(2.74,8.76) width 0.25 height 0.25 box invis "e" with .sw at (1.74,8.26) width 0.25 height 0.25

box invis "(" with .sw at (1.24,8.26) width 0.25 height 0.25 box invis ")" with .sw at

(2.24,8.26) width 0.25 height 0.25 box invis "3" with .sw at (1.24,7.76) width 0.25 height 0.25

box invis "+" with .sw at (1.74,7.76) width 0.25 height 0.25 box invis "4" with .sw at

(2.24,7.76) width 0.25 height 0.25 line -> from 2.362,9.762 to 2.362,9.512 line -> from

2.362,9.262 to 2.362,9.012 line -> from 2.362,9.262 to 1.863,9.012 line -> from 2.362,9.262 to

2.862,9.012 line -> from 1.863,8.762 to 1.863,8.512 line -> from 1.863,8.762 to 1.363,8.512

line -> from 1.863,8.762 to 2.362,8.512 line -> from 1.863,8.262 to 1.363,8.012 line -> from

1.863,8.262 to 1.863,8.012 line -> from 1.863,8.262 to 2.362,8.012

Clearly, 3+4 must be evaluated before the * for a valid result; this is precisely a
depth-first evaluation of the parse tree (which PCCTS parsers do naturally). The
deeper the recursive nesting, the higher the precedence. Extending the input expres-
sion to (3+4)*(5-6) yields:

Page 11

PCCTS Introductory Tutorial 1.0x

box invis "e3" with .sw at (1.24,6.01) width 0.25 height 0.25 box invis "e" with .sw at

(1.24,5.51) width 0.25 height 0.25 box invis "(" with .sw at (0.74,5.51) width 0.25 height 0.25

box invis ")" with .sw at (1.74,5.51) width 0.25 height 0.25 box invis "3" with .sw at

(0.74,5.01) width 0.25 height 0.25 box invis "+" with .sw at (1.24,5.01) width 0.25 height 0.25

box invis "4" with .sw at (1.74,5.01) width 0.25 height 0.25 line -> from 1.363,6.013 to

1.363,5.763 line -> from 1.363,6.013 to 0.863,5.763 line -> from 1.363,6.013 to 1.863,5.763

line -> from 1.363,5.513 to 0.863,5.263 line -> from 1.363,5.513 to 1.363,5.263 line -> from

1.363,5.513 to 1.863,5.263 box invis "e3" with .sw at (3.24,6.01) width 0.25 height 0.25 box

invis "e" with .sw at (3.24,5.51) width 0.25 height 0.25 box invis "(" with .sw at (2.74,5.51)

width 0.25 height 0.25 box invis ")" with .sw at (3.74,5.51) width 0.25 height 0.25 box invis

"5" with .sw at (2.74,5.01) width 0.25 height 0.25 box invis "-" with .sw at (3.24,5.01) width

0.25 height 0.25 box invis "6" with .sw at (3.74,5.01) width 0.25 height 0.25 line -> from

3.362,6.013 to 3.362,5.763 line -> from 3.362,6.013 to 2.862,5.763 line -> from 3.362,6.013 to

3.862,5.763 line -> from 3.362,5.513 to 2.862,5.263 line -> from 3.362,5.513 to 3.362,5.263

line -> from 3.362,5.513 to 3.862,5.263 box invis "e" with .sw at (2.24,7.01) width 0.25 height

0.25 box invis "e2" with .sw at (2.24,6.51) width 0.25 height 0.25 box invis "*" with .sw at

(2.24,6.01) width 0.25 height 0.25 line -> from 2.362,7.013 to 2.362,6.763 line -> from

2.362,6.513 to 2.362,6.263 line -> from 2.362,6.513 to 1.363,6.263 line -> from 2.362,6.513 to

3.362,6.263

Again, both operands of the * must be evaluated before it can proceed.

As another example of recursive definitions, consider type definitions for a
Pascal-like language. Types look like:

char
integer
array [5] of char
array [100] of array [20] of integer

A grammar similar to the following could be used:

type: "char"
| "integer"
| "array" "\[" INT "\]" "of" type
;

The recursive invocation of type by the array alternative effectively allows chains of
array specifications. The parse tree for

array [100] of array [20] of integer

looks like:

Page 12

PCCTS Introductory Tutorial 1.0x

box invis "[" with .sw at (2.49,8.76) width 0.25 height 0.25 box invis "array" with .sw at

(1.99,8.76) width 0.25 height 0.25 box invis "20" with .sw at (2.99,8.76) width 0.25 height

0.25 box invis "]" with .sw at (3.49,8.76) width 0.25 height 0.25 box invis "of" with .sw at

(3.99,8.76) width 0.25 height 0.25 box invis "type" with .sw at (4.49,8.76) width 0.25 height

0.25 line -> from 3.362,9.262 to 2.112,9.012 line -> from 3.362,9.262 to 2.612,9.012 line ->
from 3.362,9.262 to 3.112,9.012 line -> from 3.362,9.262 to 3.612,9.012 line -> from

3.362,9.262 to 4.112,9.012 line -> from 3.362,9.262 to 4.612,9.012 box invis "type" with .sw

at (3.24,9.26) width 0.25 height 0.25 box invis "[" with .sw at (1.24,9.26) width 0.25 height

0.25 box invis "array" with .sw at (0.74,9.26) width 0.25 height 0.25 box invis "100" with .sw

at (1.74,9.26) width 0.25 height 0.25 box invis "]" with .sw at (2.24,9.26) width 0.25 height

0.25 box invis "of" with .sw at (2.74,9.26) width 0.25 height 0.25 box invis "type" with .sw at

(1.99,9.76) width 0.25 height 0.25 line -> from 2.112,9.762 to 0.863,9.512 line -> from

2.112,9.762 to 1.363,9.512 line -> from 2.112,9.762 to 1.863,9.512 line -> from 2.112,9.762 to

2.362,9.512 line -> from 2.112,9.762 to 2.862,9.512 line -> from 2.112,9.762 to 3.362,9.512

box invis "integer" with .sw at (4.49,8.26) width 0.25 height 0.25 line -> from 4.612,8.762 to

4.612,8.512

In this case, we are less interested in precedence and more interested in allowing
chains of array specifications.

In general, recursion and repetition constructs such as (...)+ are needed to avoid
delineating all possible phrases in a language. Grammars are descriptions of the pat-
terns found among the phrases of a particular language just as $size +2 SIGMA$ nota-
tion summarizes an infinite series.

The recognition of input languages, via the use of grammars, performs two tasks:
it ensures phrase validity and directs translation to an output language. The next sec-
tion demonstrates how actions, embedded among the grammar elements, can be used
to effect a translation.

4. Translation

Given a grammar, PCCTS constructs a recognizer for phrases in that input
language. No translation from input to output is performed. User actions must be
supplied in the correct positions to generate output. Translation occurs when an action
produces output which is a function of the input phrase. Actions have access to input
phrase token values through an abstraction called an attribute. These attributes are
user-defined types and can be as simple as the text associated with a token.

This section introduces the notion of an attribute as a means of communicating
with the lexical analyzer and presents a number of examples that explain how and
where actions can be used to generate output.

Page 13

PCCTS Introductory Tutorial 1.0x

4.1. Attributes

Attributes are objects associated with all rules and rule elements, but we will only
concern ourselves here with attributes associated with token and rule references. Attri-
butes are referenced in actions with the notation $$i$ where i indicates that the
attribute for the $i sup th$ token in that production is desired. Attributes are
run-time objects and have no value until run-time. They are generally used to
access the actual text (or a function of the text) of the tokens matched on the
input stream. The set of all tokens defines the vocabulary of the input language.
The term ‘‘token’’ collectively refers to the token type (an integer that identifies it
as part of the vocabulary) and the token text (the actual string that matched the
regular expression for the token type).

Before illustrating attributes, we begin with an example. The vocabulary of an
input language (known a priori) may be the set { WORD, ""begin"", INT }}, which is
the set of integer token types. The text associated with a token type is only
known at parser run-time because it depends on the input characters. Let us say
that the grammatical structure of the language is any sequence of tokens in the
vocabulary (ignoring white space); then, a valid sentence could be:

begin hello 34 13 bob

The parser would see a token stream of tuples of the form (token type, token text):

(begin, begin)
(WORD, hello)
(INT, 34)
(INT, 13)
(WORD, bob)

A different input sentence, with the same sequence of token types is:

begin hi 2 99 ptr

which would yield the same sequence of token types, but a different set of token text:

(begin, begin)
(WORD, hi)
(INT, 2)
(INT, 99)
(WORD, ptr)

The grammar might look like:

a : (WORD | "begin" | INT)+
;

Only the token types are referenced in the grammar as they describe the structure of
the language and are a shorthand notation for the set of valid input sentences. Obvi-
ously, one could not delineate all possible sentences as there are infinitely many. For

Page 14

PCCTS Introductory Tutorial 1.0x

a PCCTS description to perform a translation that is specific to the particular input,
actions must access the text of the input tokens, not just the token type. Attributes are
provided to provide access to the text (or some function thereof) of an input token. To
illustrate this, we give a complete example and then, later, describe the particulars:

#header <<#include "charptr.h">>

<<main() { ANTLR(a(), stdin); }>>

#token "[\ \t]" <<zzskip();>>
#token "\n" <<zzline++; zzskip();>>

a : (WORD <<printf(" %s", $1);>>
| "begin" <<printf(" begin");>>
| INT <<printf(" %s", $1);>>
)+

;

#token WORD "[a-z]+"
#token INT "[0-9]+"

This example defines attributes to be strings representing what was found on the input
stream and prints the stream of tokens back out. In other words, attributes are merely
a copy of the words found; the mapping from token/lexeme to attribute is an identity
mapping (do nothing but copy). For the moment, concentrate on the actions. $1
refers to the attribute of the first item in the production in which the action occurs; in
this case, only one item appears per production. Note that the action for the "begin"
token does not need to refer to its attribute as it will always be begin. The rest of this
section describes the particulars needed to understand everything else in the example.

PCCTS requires that the user define the data type or structure of the attributes as
well as specify how to convert from lexemes to attributes. The type is always defined
by a C typedef named Attrib and must be defined in the action associated with the
#header instruction. For example, if one wishes the attribute for a token to be simple
integers, the following is a sufficient type definition:

#header <<typedef int Attrib;>>

However, this does not tell PCCTS how to convert a token to an attribute. This is
accomplished with a function called zzcr O attr() which defines the value of an attribute
given complete information about a lexeme (token number and associated text). It has
the general form:

Page 15

PCCTS Introductory Tutorial 1.0x

void
zzcrO attr(a,token,text)
Attrib *a;
int token;
char *text;
{

/* *a = function(token, text); */
}

where a points to an attribute created by PCCTS at run-time. The user simply has to
assign a value to *a. In our case, we will use a macro version to set our attributes to
the integer value of the input:

#define zzcrO attr(a,tok,txt) {*(a) = atoi(txt);}

This specifies that whenever a token is matched on the input stream by the parser, an
attribute of type int is to be created and assigned the result of atoi(text) where text is
the character string matched for the token. The attribute is then made available as
$$i$ to actions in the production that matched the token. For example,

#header <<
typedef int Attrib;
#define zzcr O attr(a,tok,txt) {*(a) = atoi(txt);}

>>

<<main() { ANTLR(a(), stdin); }>>

#token "[\ \t]" <<zzskip();>>
#token "\n" <<zzline++; zzskip();>>

a : "hi" "[0-9]+" <<printf("$1, $2 are %d, %d\n", $1, $2);>>
;

$1 refers to the first token in the alternative, "hi"; similarly, $2 refers to the the second
token, "[0-9]+". When executed, the executable t (created as before) yields:

% t
hi 34
$1, $2 are 0, 34
%

where atoi() of a non-numeric string is 0, but the text 34 gets converted to an integer
(binary word) version of 34 and printed back out as a number.

The token type can be tested to ensure that it is an integer before applying the
atoi() function via:

#header <<
typedef int Attrib;
#define zzcr O attr(a,tok,txt) {if (tok==INT) *(a) = atoi(txt);}

>>

Page 16

PCCTS Introductory Tutorial 1.0x

where INT is defined to be "[0-9]+". This defines an attribute for all INT tokens
found on the input stream. Other tokens have undefined attributes.

Attributes can have multiple elements or assume one of many values. For exam-
ple, we can extend the above example to handle FLOAT tokens as well:

#header <<typedef union { int ival; float fval; } Attrib;>>

<<
void
zzcrO attr(a,token,text)
Attrib *a;
int token;
char *text;
{

switch (token)
{

case INT : (a)->ival = atoi(text); break;
case FLOAT : (a)->fval = atof(text); break;

}
}
>>

The typedef specifies that attributes are integer or floating point values. When the reg-
ular expression for a floating point number (integer number) is matched on the input
stream, zzcr O attr() converts the string of characters representing that number to a C
float (int).

Attributes can become even more complicated, but typically, attributes are merely
a copy of the text found on the input stream. A standard PCCTS attribute definition is
available as charbuf.h and is defined as follows:

/* PCCTS attribute -- constant width text */
#ifndef DO TextSize
#define DO TextSize 30
#endif

typedef struct { char text[DO TextSize]; } Attrib;

#define zzcrO attr(a,tok,t) strncpy((a)->text, t, DO TextSize-1);

These attributes are referred to by $$i$.text in actions.

Each alternative begins a new sequence of $$i$’s and from an enclosing
scope/level, entire subules are counted as one unit. This is best explained with an
example:

a : A B (C D)+ E
| F G
;

>From an action after token E, A is $1, B is $2, the entire subrule (C D) is $3, and
E is $4; C and D are inaccessible from outside the scope of the subrule. From an

Page 17

PCCTS Introductory Tutorial 1.0x

action inside the subrule just after the token D, C is $1 and D is $2. In alternative two
from an action after G, F is $1 and F is $2. Attributes have a scoping just like vari-
ables in a programming langauage.

Attributes are a means of communicating with the lexical analyzer. Actions may
use these attributes to provide a translation. The next section utilizes the concepts
presented here to build translators.

4.2. Actions

Actions are rule elements just like token references, but perform a different func-
tion. Token references indicate that a particular token is to be matched on the input
stream at that point in the parse. Actions indicate that this action is to be performed at
that point in the parse, immediately following the preceding token match. For exam-
ple,

a : A <<$action sub 1$>> B ;
| (C)+ <<$action sub 2$>>
;

$action sub 1$ is executed after the parser has found an A, but before it has found a
B. $action sub 2$ is executed only after a sequence of one or more C’s has been
found.

As a more concrete example, we augment the above calc example to print some-
thing more useful than found expression:

calc: (e "\n" <<printf("\n");>>)* "@"
;

e : e1
(("\+" <<printf(" add");>>

| "\-" <<printf(" sub");>>
)
e1

)*
;

e1 : e2
(("*" <<printf(" mult");>>

| "/" <<printf(" div");>>
)
e2

)*
;

e2 : INT <<printf(" INT");>>
| FLOAT <<printf(" FLOAT");>>

;

Essentially, we have added C code to print out the operand types and operators.
Create the executable, t, as before with

Page 18

PCCTS Introductory Tutorial 1.0x

antlr -gk t.g
dlg -i parser.dlg scan.c
cc -I../h -o t t.c scan.c err.c

Test the program via a few simple expressions:

% t
3+4*5
INT add INT mult INT

3.15 / 6 - 2.1
FLOAT div INT sub FLOAT

ˆD%

Now, let’s use the attributes to generate code for a simple reverse-polish stack
machine whose operations are defined as follows:

push $opnd$
Push $opnd$ onto the stack.

print Print the value of the top of stack; POP the value off the stack.

add PUSH(POP + POP)

sub a := POP
b := POP
PUSH(b - a)

mult
PUSH(POP * POP)

div a := POP
b := POP
PUSH(b / a)

Modify the rules as follows:

#header <<#include "charbuf.h">>

<<main() { ANTLR(calc(), stdin); }>>

#token "[\ \t]" <<zzskip();>> /* ignore blanks, tabs */
#token "\n" <<zzline++;>> /* ignore newlines */
#token INT "[0-9]+"
#token FLOAT "[0-9]+ {. [0-9]+}"

Page 19

PCCTS Introductory Tutorial 1.0x

calc: (e "\n" <<printf("\tprint\n");>>)* "@"
;

e : <<char *op;>>
e1
(("\+" <<op="\tadd\n";>>

| "\-" <<op="\tsub\n";>>
)
e1

<<printf("%s", op);>>
)*

;

e1 : <<char *op;>>
e2
(("*" <<op="\tmult\n";>>

| "/" <<op="\tdiv\n";>>
)
e2

<<printf("%s", op);>>
)*

;

e2 : INT <<printf("\tpush %s\n", $1.text);>>
| FLOAT <<printf("\tpush %s\n", $1.text);>>

;

Page 20

PCCTS Introductory Tutorial 1.0x

Table of Contents

1. Introduction .. 2

2. Lexical Analysis ... 2

3. Syntactic Analysis .. 8

4. Translation .. 13

4.1. Attributes .. 14

4.2. Actions ... 18

