
PCCTS 1.20 — Release Notes

Terence J. Parr�

University of Minnesota
Army High-Performance Computing

Research Center
Minneapolis, MN 55415
parrt@acm.org

Russell W. Quong

School of Electrical Engineering
Purdue University

W. Lafayette, IN 47907
quong@ecn.purdue.edu

William E. Cohen

School of Electrical Engineering
Purdue University

W. Lafayette, IN 47907
cohenw@ecn.purdue.edu

March 31, 1994

Abstract

This document describes the 1.20 release of the Purdue Compiler Construction Tool Set (PCCTS). A number

of new features have been added since 1.10 (August 1993), but the main addition is the introduction of C++

support. The C++ support will be described in a forthcoming paper—it is merely summarized here.

PCCTS is in the public-domain and can be obtained atmarvin.ecn.purdue.edu inpub/pccts/1.20.

You can join the pccts-usersmailing list dealing with tools ANTLR, DLG (and SORCERER) by emailing

pccts-users-request@ahpcrc.umn.eduwith a body of subscribe pccts-users your-name-

or-ret-addr.

The authors make no claims that this software will do what you want, that this manual is any good, or that

the software actually works—use PCCTS at your own risk. Bug reports and/or cheery reports of its usefulness

are very welcome, however.

�Partial support for this work has come from the Army Research Office contract number DAAL03-89-C-0038 with the Army High

Performance Computing Research Center at the U of MN.

1

1 Introduction

The 1.20 release is primarily to introduce C++ support for PCCTS, but includes some nice overall enhancements

and important bug fixes. The C++ support is only of beta quality and, as such, can be expected to change in

future releases.

We anticipate more frequent releases to PCCTS in the future rather than big, twice-a-year, releases to provide

faster bug fixes and feature enhancements.

The main 1.20 features and enhancements are

� Added “#tokclass” (define a set of tokens), “.” (wildcard operator), “˜” (not operator).

� Added “T1..Tn” token range operator.

� Added “#tokdefs” so programmers can have predefined token type values.

� A new, improved genmk program.

� Line numbers are now tracked when using infinite lookahead.

� Added C++ support for ANTLR and DLG output.

� Added “-o dir” option to specify where all output should go.

� A few nasty code generation bugs were fixed as well as a few bugs relating to semantic predicate hoisting.

2 Token Classes

A token class is set of tokens that can be referenced as one entity; they are equivalent to a subrule consisting of

its member tokens separated by “|”s. The basic syntax is:

#tokclass tclass f T1::Tn g

where T

i

is a token reference (either a token label or a regular expression in double-quotes) or a token class

reference; token classes may have overlapping tokens.

The difference between a token class and a subule lies in efficiency. A reference to a token class is a simple

set membership test during parser execution rather than a linear search of the tokens in a subrule. Furthermore,

the set membership will be much smaller than a series of if-statements in a recursive-descent parser. Note that

automaton-based parsers (both LALR and LL) automatically perform this type of set membership (specifically,

a table lookup), but lack the flexibility of recursive-descent parsers such as those constructed by ANTLR.

Figure 1 is a sample ANTLR 1.20 program that recognizes a simple mythical assembly language with

statements such as:

#segment data
a ds 42
b ds 13
#segment code

load r1, a
load r2, b
add r1,r2,r3
print r3

Referencing token class REGISTER is the same as referencing

("r0" | "r1" | "r2" | "r3")

A wildcard token is also available that refers to an implied token class consisting of all tokens referenced

within a grammar. It can be used to ignore pieces of the input:

2

#header <<#include "charbuf.h">>

<<main() f ANTLR(prog(), stdin); g>>

#tokclass OPCODE f "add" "store" "load" "call" "ret" "print" g

#tokclass REGISTER f "r0" "r1" "r2" "r3" g

#token "[\ \t]+" <<zzskip();>>
#token "\n" <<zzskip(); zzline++;>>

prog: "#segment" "data" (data)*
"#segment" "code" (stat)*

;

stat: OPCODE operands
;

operands
: ID
| REGISTER
| REGISTER "," NUM
| REGISTER "," REGISTER "," REGISTER
;

data: ID "ds" NUM
;

#token NUM "[0-9]+"
#token ID "[a-zA-Z]+"

Figure 1: ANTLR Recognizer for Simple Assembly Language

3

ig : "beginfignoreg"
.
"endfignoreg"

;

which matches any single token between beginfignoreg and endfignoreg, or the wildcard can be used

for error detection:

if : "if" expr "then" stat
| . <<fprintf(stderr, "malformed if-statement");>>
;

The programmer should be careful not to do things like this:

ig : "beginfignoreg"
(.)*
"endfignoreg"

;

because the loop generated for the (.)* block will never terminate—"endfignoreg" is also matched by

the wildcard.

Rather than using the wildcard to match large token classes, it is often best to use the not operator. For

example,

ig : "beginfignoreg"
(˜"endfignoreg")*
"endfignoreg"

;

where ˜ is the not operator. The if example could be rewritten as:

if : "if" expr "then" stat
| "if" <<fprintf(stderr, "malformed if-statement");>>
;

The not operator may be applied to token class references and token references only (it may not be applied

to subrules, for example).

The wildcard operator and the not operator never result in a set containing the end-of-file token type.

One final token operator has been introduced—the range operator of the form T1..Tn. The vaue of T1 must

be less than T

n

and the values in between should be valid token types. In general, this feature should be used in

conjunction with #tokdefs so that the programmer controls the token type values.

An example range operator is:

#tokdefs "mytokens.h"

a : OpStart .. OpEnd operand ;

This feature is perhaps unneeded due to the more powerful token class directive.

3 New Directive #tokdefs

It is often the case that the user is interested in specifying the token types rather than having ANTLR generate its

own; typically, this situation arises when the user wants to link an ANTLR-generated parser with a non-DLG-based

scanner. To get ANTLR to use pre-assigned token types, specify

#tokdefs "mytokens:h"

before any token definitions where mytokens:h is a file with only a list of #defines or an enum definition

with optional comments.

4

When this directive is used, new token label definitions will not be allowed (either explicit definitions like

#token A or implicit definitions such as a reference to a token label in a rule). However, the programmer

may attach regular expressions and lexical actions to the token labels defined in mytokens:h. For example, if

mytokens:h contained:

#define A 2

and t.g contained:

#tokdefs "mytokens.h"

#token A "blah"

a : A B;

ANTLR would report the following error message:

Antlr parser generator Version 1.20 1989-1994
t.g, line 5: error: implicit token definition not allowed with #tokdefs

4 New genmk

The genmk program has been substantially upgraded. It now generates clean and scrub targets, generates

more accurate file dependencies and, most importantly, generates makefiles for PCCTS C++ mode. The command

line options are defined as follows:

� -CC: Generate C++ output from both ANTLR and DLG.

� -class cl: Name of the grammar class defined in the grammar files. This is only a valid option if -CC
was seen before it on the command line.

� -dlg-class cl: Name of DLG lexer class (default is DLGLexer). This is only a valid option if -CC
was seen before it on the command line. The option is placed on the DLG command line as the -cl option.

� -header h: Name of the ANTLR standard header information (default=no file).

� -o dir: Directory where output files should go (default="."). This is very nice for keeping the source

directory clear of ANTLR and DLG spawn.

� -project proj: Name of executable to create (default=t).

� -token-types t: Token types are in this file; this option implies that the normal tokens.h is not

to be generated or used for token type definitions (in C output mode, however, tokens.h may still be

required because we have jammed some function prototypes in the file as well).

� -trees: Generate ASTs; basically turns on the -gt option of ANTLR, but also results in a target to

compile the AST support file (in C++ mode only).

� -user-lexer: Do not create a DLG-based scanner. Turns on ANTLR -gx command line option. Turns

off generation of targets for DLG scanners.

For example, to create a makefile for a grammar in test.g with project name t that uses a DLG-based

scanner, use:

genmk -project t test.g

To specify multiple files (comprising the same grammar) use:

5

genmk -project t test.g test2.g test3.g

To create a basic C++ mode makefile for a grammar class Expr in file test.g and project t use:

genmk -project t -CC -class Expr test.g

To rename the default DLGLexer class and (associated files) to Scanner for DLG, use:

genmk -project t -CC -class Expr -dlg-class Scanner test.g

To create a makefile for a C++ parser that uses a non-DLG-based scanner, use:

genmk -project t -CC -class Expr -user-lexer test.g

To create a makefile that uses a hand-built parser for a grammar that uses “#tokdefs "mytokens.h"”, use:

genmk -project t -CC -class Expr -user-lexer -token-types mytokens.h test.g

5 Line Numbers and Infinite Lookahead

Because ANTLR-generated parsers that use infinite lookahead (i.e., syntactic predicates) scan the entire input

stream before actual parsing begins, the normal line number variablezzline is meaningless—it always “points”

to the last line in the file. To overcome this, we have added a new macro (member function inf line(int i)
in C++ mode):

ZZINF LINE(i)

for i � 1. ZZINF LINE(1) is the line number of the token about to be matched. The following example

illustrates the use of the new macro:

#header <<#include "charbuf.h">>

<<main() f ANTLR(stat(), stdin); g>>

#token "[n \t]+" <<zzskip();>>
#token "\n" <<zzskip(); zzline++;>>
#token Equal "="
#token Semi ";"

stat: (list Equal)? list Equal list ";" <<printf("list = list\n");>>
| list ";" <<printf("list\n");>>
;

list: "n(" elem ("," elem)* "n)"
;

elem: <<int line=0;>>
<<line = ZZINF LINE(1);>> WORD <<printf("WORD at line %d\n", line);>>

| <<line = ZZINF LINE(1);>> INT <<printf("INT at line %d\n", line);>>
;

#token WORD "[a-zA-Z]+"
#token INT "[0-9]+"

The line number recording before the recognition ofWORD andINT inelem is done becauseZZINF LINE(1)
refers to the line number for the token about to be matched.

6

outputANTLRTokenStreamDLGInputStream
ParserDLGLexer

Figure 2: PCCTS C++ Parsing Block Diagram

This feature does not work correctly in C++ mode when -gk ANTLR option is used.

6 C++ Parser Organization

[The C++ Output of PCCTS 1.20 is considered only “beta” quality. Expect a future release
to require changes in most parsers written assuming version 1.20 C++ output.]

[Also note that the C++ output has only been tested under g++ 2.5.7 and cannot be
guaranteed to compile under any other C++ compilers; indeed, g++ 2.4.5 will not compile
our test cases.]

Computer language recognition is generally viewed conceptually as a parser that parses tokens taken from

a token stream filled by a lexical analyzer (scanner) that takes characters from an input stream. In practice, the

token and character streams end up being merely function calls to an input routine while the separation between

parser and scanner tends to become blurred.

For the C++ output of ANTLR and DLG, we have chosen to create a class hierarchy that reflects the nice

conceptual separation between recognition subtasks. Figure 2 represents the class interactions that mirror the

standard parsing block diagram. In C++ code, the block diagram is “constructed” by

1. Attaching an input stream to a DLG-based scanner,

DLGFileInput in(stdin); /* create an input stream for DLG to get chars from */

DLGLexer scan(&in,2000);/* create scanner reading from stdin w/bufsize==2000 */

2. Providing a token to DLG for it to continually fill in (the scanner is totally separated from the parser and,

hence, has no idea how big the programmer’s token is)1

ANTLRToken aToken;

scan.setToken(&aToken);

3. Attaching the token stream to a parser

Parser p(&scan);

To start parsing, it is sufficient to call the Parser member function associated with the grammar rule:

p.starting rule(any args);

To specify the name of the parser class to construct, the programmer encloses all rules and actions in

class Parser f

1Note that if C++ allowed typenames to be passed around as objects, the scanner could simply be initialized with the correct typename.

Also, since constructors cannot be virtual (polymorphic) a DLG-based token must be able to answer a message called makeToken().

7

tokens.hparser.dlgfile.CParser.hParser.C

ANTLR

Figure 3: ANTLR-Generated Files in C++ Mode

DLGLexer.hDLGLexer.C

DLG

Figure 4: DLG-Generated Files in C++ Mode

...
g

Currently, exactly one class may be defined. For the defined class, ANTLR generates a derived class of

ANTLRParser which accepts tokens (ANTLRToken) from a class derived from ANTLRTokenBase. This

token stream can be either a user defined scanner or a DLG-based scanner. DLG generates a class (default name

is DLGLexer) that is derived from DLGLexerBase. DLG-based scanners read input from derived classes of

DLGInputStream, the most common being DLGFileInput.

Figures 3 and 4 describe the files constructed from ANTLR and DLG in C++ mode in the case where ANTLR

was given a grammar called file.g containing “class Parser f...g” and DLG was given the usual

parser.dlg. If the #tokdefs directive were used, then the tokens.h file would not be generated by

ANTLR and if the ANTLR command line option for user-defined scanners (-gx) were used, parser.dlg
would not be generated (#tokdefs and -gx operate independently of each other). Files Parser.h and

Parser.C represent the class definition and support code for the output parser. The actual recursive-descent

parser generated from file.g is placed in file.C; there may be multiple input files and for reasons of separate

compilation, we do not put the parser functions into the Parser.C file. File tokens.h contains an enumerated

type TokenType describing the set of defined token types. Files DLGLexer.C and DLGLexer.h embody

the class definition of the scanner described by parser.dlg. The C++ support code for ANTLR and DLG

output is not dependent on #defines as the C output is. For example, “#define DEMAND LOOK” is not

generated by ANTLR in C++ mode. The support code senses a flag in the parser structure that indicates whether

to consume lookahead on demand or to continually fill the lookahead “pipe.”

The communication medium between scanner and parser is an ANTLRToken (the name is fixed for the class

name) where the communications channel is an ANTLRTokenStream. Tokens are no longer simply a token

type; further, attributes, as defined by ANTLR 1.10, are no longer defined. For version 1.20, we combine the

previous definitions to create an abstract token, ANTLRToken under the ANTLRTokenBase hierarchy, that

contains at least the token type, but may include anything else required by the user. When using DLG-based

scanners, ANTLRToken must be derived from DLGBasedTokenwhich adds behavior needed by DLG (DLG-

based scanners need to be able to set/get the text of a token). A common token definition,ANTLRCommonToken,

is predefined to be the usual token type plus a fixed-size text buffer (similar to the old Attrib definition in

charbuf.h). The minimal token definition is still the size of an integer (sizeof(enum TokenType)).

To access the tokens in a token stream from the parser, $i variables are used. However, these variables are

consistently pointers to type ANTLRToken in C++ mode whereas in C mode $i variables are of type Attrib.

The minimal programmer-supplied code requirements to get a C++ parser going are:

1. A function that constructs the various objects in the C++ parser block diagram in Figure 2 and invokes one

of the parser member rules in your Parser class.

2. A definition for ANTLRToken. An easy way to accomplish this is to do the following:

8

typedef ANTLRCommonToken ANTLRToken; /* a token is token type and text */

3. A class definition in the grammar file(s).

The various definitions need not be placed in the #header action as in C output mode. The next section

provides a complete example that illustrates all of the conventions described in this section.

6.1 A Simple C++ Example

Figure 5 is a simple example that illustrates a simple DLG-based scanner with an ANTLR grammar class.

Assuming that the example is in a file called test.g, an executable parser may be obtained via the following

command sequence:

antlr -CC test.g
dlg -CC parser.dlg
C++ -c -I/usr/local/pccts/include -o test.o test.C
C++ -c -I/usr/local/pccts/include -o Expr.o Expr.C
C++ -c -I/usr/local/pccts/include -o DLGLexer.o DLGLexer.C
C++ -o t test.o Expr.o DLGLexer.o \

/usr/local/pccts/antlrx.o \
/usr/local/pccts/dlgx.o \

where antlrx.o and dlgx.o are support code modules.

6.2 Grammar Classes

A grammar class is defined as follows

class Parser f

actions

rules

g

The actions may contain any normal C++ code that is valid within a C++ class definition2. For example,

class Parser f

<<public: int i;>>
<<int f() f blah; g>>

rule : A B ;

g

would result in a C++ class definition of:

2Actually, any normal ANTLR directive such as #token definitions may be placed inside, but it is best to separate them from the

grammar class

9

<<
typedef ANTLRCommonToken ANTLRToken; /* user must define ANTLRToken */

/* "DLGLexer" must match DLG command line (-cl option); DLGLexer is default */
#include "DLGLexer.h" /* include definition of DLGLexer.
main()
f

DLGFileInput in(stdin); /* create an input stream for DLG to get chars from */
DLGLexer scan(&in,2000);/* create scanner reading from stdin w/bufsize==2000

*/
ANTLRToken aToken; /* create a token for DLG to fill in */
scan.setToken(&aToken);
Expr parser(&scan); /* create a parser of type Expr hooked to the scanner

*/

parser.e(); /* start parsing at rule ’e’ of that parser */
g

>>

#token "[\ \t\n]+" <<skip();>>
#token Eof "@"

class Expr f /* Define a grammar class */
e : IDENTIFIER NUMBER Eof

<<printf("text is %s,%s\n", $1->getText(), $2->getText());>>
;

g

#token IDENTIFIER "[a-z]+"
#token NUMBER "[0-9]+"

Figure 5: Sample ANTLR Grammar for C++ Output

10

TokenForUserDefinedScanner

ANTLRCommonToken

DLGBasedToken

ANTLRTokenBase

Figure 6: C++ Token Hierarchy

class Parser : public ANTLRParser f

protected:
static ANTLRChar * token tbl[];

private:
static SetWordType setwd1[4];

private:
public:

Parser(ANTLRTokenStream *lexer);
Parser(ANTLRTokenStream *lexer, TokenType eof);
void rule();

public: int i;
int f() f blah; g

g;

6.3 ANTLR Parser Classes

6.3.1 ANTLR Tokens

In C++ output mode, a token is an object that represents an abstraction of a lexical object found on the input

stream by the scanner. An ANTLR-generated parser accepts input as sequence of tokens in the form of a token

stream where the token stream is usually managed by a lexical analyzer (typically DLG). A token contains,

minimally, a token type that is used by the parser to recognize grammatical structure. Optionally, the programmer

can add fields specific to the token class to carry application-specific information. To facilitate error reporting, it

is common practice to include a text string associate with each token and possibly the line number.

Figure 6 depicts the hierarchy of token base classes available to the programmer. Because an ANTLR parser

must be able to make local copies of input tokens, the name of the programmer’s token definition is fixed to

be ANTLRToken; we do this for efficiency reasons as specifying a size to the parser and then asking it to

allocate memory on the heap is much slower than defining a local object on the stack. The most basic token,

ANTLRTokenBase knows how to set and get its token type and to get its text representation; the latter is needed

to satisfy an ANTLR-generated parser’s urge to print meaningful syntax error messages (because the text of a

token is not required, this function returns the empty string unless redefined in a subclass). ANTLRToken must

have a blank constructor:

ANTLRToken() ;

so that the parser can allocate local copies if required.

When using DLG-based scanners, additional behavior is required of a token. DLG must be able to set the

text and token type for an ANTLRToken. A virtual function called

virtual void makeToken(TokenType t, ANTLRChar *s);

11

DLGLexer

DLGLexerBaseUserDefinedScanner

ANTLRTokenStream

Figure 7: C++ Token Streams

is used because constructors cannot be virtual in C++ and we cannot pass the class to DLG so that it knows

how to create and initialize an ANTLRToken. It is invoked in the following manner:

token to fill->makeToken(gettok(), lextext);

where token to fill is a pointer to an ANTLRToken. This token, again, cannot be created by DLG because

it’s size is unknown to the DLG support code. It must be created by the programmer (normally just a local

variable) and its address passed to the DLG-based scanner via member function setToken().

The programmer defines an ANTLRToken class by deriving a class from DLGBasedToken (if DLG is

being used—ANTLRTokenBase otherwise). For example, a common token is provided with PCCTS:

class ANTLRCommonToken : public DLGBasedToken f

protected:
ANTLRChar text[ANTLRCommonTokenTEXTSIZE+1];

public:
ANTLRCommonToken(TokenType t, ANTLRChar *s) : DLGBasedToken(t,s)

f setText(s); g

ANTLRCommonToken() f;g
ANTLRChar *getText() f return text; g

void setText(ANTLRChar *s) f strncpy(text, s, ANTLRCommonTokenTEXTSIZE); g

g;

Because the parser is attached to a DLG-based scanner, the parser has access to the current input line number;

consequently, the line number is not stored in this token definition.

In C output mode, a type calledAttrib is defined by the programmer and a required macrozzcr attr() is

invoked to set the attributes. In C++, these items correspond to ANTLRToken and makeToken(), respectively.

There is not a software stack of attributes or ANTLRTokens in C++ output mode—local token copies are

local variables (on the hardware stack) for efficiency and ease of debugging.

6.3.2 ANTLR Token Streams

In C++ mode, an ANTLR-generated parser consumes ANTLRTokens from an ANTLRTokenStreamwhich is

an object that acts like a pipeline between the parser and lexical analyzer; the lexical analyzer, in turn, consumes

characters from a text-based input stream. An ANTLRTokenStream supplies a stream of tokens by returning

the “next” token for each call to nextToken() and also knows how to return the current text and line number

of the current token. An ANTLRTokenStream can be anything from a simple array of TokenTypes to a full

DLG-based scanner. Figure 7 depicts the token stream hierarchy.

To attach a non-DLG-based scanner to an ANTLR-generated parser, the programmer subclassesANTLRTokenStream.

For example,

12

UserGrammarClass

ANTLRParser

Figure 8: C++ Parser Hierarchy

class MyTokenStream : public ANTLRTokenStream f

private:
char c;

public:
MyTokenStream() f c = getchar(); g

ANTLRTokenBase *nextToken();
g;

where MyTokenStream::nextToken() is some function that embodies a lexical analyzer; i.e., it breaks

up the input stream into vocabulary symbols. nextToken() returns a pointer to an ANTLRToken that it has

initialized.

6.3.3 ANTLR Parsers

All ANTLR-generated parsers in C++ mode are derived classes of ANTLRParser. No preprocessor symbols

are used to define the structure of the parser as is done in C mode. In this way, the ANTLR-parser support code

can be compiled separately and linked with different parsers. The support code senses object variables such as

demand look and can use inf look. Figure 8 depicts the parser class hierarchy.

A few of the public interface functions are worth mentioning. To access the ith token type of lookahead, use

inline TokenType LA(int i);

To access a pointer to the ith ANTLRToken of lookahead, use

inline ANTLRTokenBase *LT(int i);

When using a non-DLG-based scanner, the user must inform the parser what token type should be considered

end-of-input. This token type will then be used by the error recovery facilities to scan past bogus tokens without

going beyond the end of input.

void setEofToken(TokenType t);

The programmer commonly wishes to modify the standard error reporting facility. To do so in C++ mode,

simply subclass Parser and redefine syn() where Parser is your grammar class.

void syn(ANTLRTokenBase *tok, ANTLRChar *egroup,
SetWordType *eset, TokenType etok, int k);

When syn() is redefined, so should edecode():

void edecode(SetWordType *);

Upon catastrophic error, the following function is called (and should never return). The programmer can

subclass Parser and redefine ANTLRPanic:

void ANTLRPanic(ANTLRChar *msg);

13

The following functions are the analog of the C mode infinite lookahead macros.

int inf LA valid(int i);
int inf LA(int i);
inline inf line(int i);

The following protected member functions can also be redefined:

virtual void tracein(ANTLRChar *r);
virtual void traceout(ANTLRChar *r);

The various ANTLR parser class definitions could have benefited greatly from templates and multiple

inheritance, but no current C++ compiler implements these reliably; i.e., because of features like this C++ is

totally nonportable due to compiler limitations.

6.4 AST Classes

To use ASTs with ANTLR in C++ mode, the user simply derives a class from eitherASTBaseorASTDoublyLinkedBase
and adds the desired fields. The AST classes automatically know how to do a preorder traversal of an AST, the

programmer should redefine

virtual void preorder action() f ; g

virtual void preorder before action() f printf(" ("); g

virtual void preorder after action() f printf(")"); g

in their derived class if required. Figure 9 provides a simple example of how to use ASTs.

The zzmk ast() and zzcr ast() functions are now embodied by the AST class constructor.

#-variables are used as before and are pointers to the node(s) created by token and rule references.

6.5 DLG Classes

DLG generates a class (default name is DLGLexer) that is derived from DLGLexerBase. DLG-based scanners

read input from derived classes of DLGInputStream, the most common being DLGFileInput. A number

of functions can be redefined in derived classes; the interesting ones are:

virtual void erraction();
void DLGPanic(DLGChar *msg);
virtual ANTLRTokenBase *nextToken();

ThenextToken() function can be redefined in a subclass so that it knows what anANTLRToken looks like.

The standard nextToken() does not have this luxury and, hence, the user is required to provide DLG-based

scanners with an ANTLRToken to fill in.

The function trackColumns() can be called to turn on column tracking. This is analogous to setting

preprocessor symbol ZZCOL in C mode.

6.6 ANTLR Parsers and Hand-Built Scanners

Because of the clean separation of parsing subtasks followed by ANTLR, it is a trivial matter to link in a hand-built

scanner or any non-DLG-based scanner. Simply turn on the -gx ANTLR command line option, which turns off

the generation of DLG input, and attach an instance of your scanner to an instance of the parser class generated

by ANTLR. Figures 10, 11, and 12 represent a complete example. The call to setEofToken() is done to

inform ANTLR what token type is considered end of input; this is necessary for all hand-built parsers so that

ANTLR does not try to resynchronize, after a syntax error, beyond the end of input.

6.7 New Supplied Files

� antlrx.h: All ANTLR parser support classes and the ANTLRParser class itself.

� antlrx.C: ANTLR parser support code.

14

<<
typedef ANTLRCommonToken ANTLRToken;
#include "DLGLexer.h"

class AST : public ASTBase f

public:
ANTLRToken token; /* this is what I want inside */
AST(ANTLRToken *t) f token = *t; g /* how to make an AST node */
void preorder action() f

char *s = token.getText();
printf(" %s", s);

g

g;

main()
f

ANTLRToken aToken;
DLGFileInput in(stdin);
DLGLexer scan(&in,2000);
scan.setToken(&aToken);
Expr parser(&scan);

ASTBase *root = NULL; // make a pointer to fill in
parser.e(&root); // don’t forget to pass the ptr to the rule

root->preorder(); // do a preorder traversal
printf("\n");

g

>>

#token "[\ \t\n]+" <<skip();>>
#token Eof "@"

class Expr f /* Define a grammar class */

e : IDENTIFIERˆn Eof!
<<printf("text is %s,%s\n", #1->token.getText(),#2->token.getText());>>

;

n : NUMBER
;

g

#token IDENTIFIER "[a-z]+"
#token NUMBER "[0-9]+"

Figure 9: ANTLR Grammar Using ASTs

15

<<
typedef ANTLRCommonToken ANTLRToken;
#include "MyTokenStream.h"
main()
f

MyTokenStream scan; /* create one of my scanners */
Expr parser(&scan); /* create a parser of type Expr hooked to my scanner */
parser.setEofToken(Eof);
parser.e();

g

>>

class Expr f

e : IDENTIFIER NUMBER Eof
;

g

Figure 10: ANTLR Example That Uses Hand-Built Scanner

#include "ATokenStream.h"
class MyTokenStream : public ANTLRTokenStream f

private:
char c;

public:
MyTokenStream() f c = getchar(); g

ANTLRTokenBase *nextToken();
g;

Figure 11: Hand-Built Scanner Class Definition

16

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <iostream.h>
#include "tokens.h" /* include token defs */
#include "antlrx.h" /* include all the ANTLR yuck */
#include "MyTokenStream.h"
typedef ANTLRCommonToken ANTLRToken;

/* Recognizes Tokens IDENTIFIER and NUMBER */
ANTLRTokenBase *MyTokenStream::nextToken()
f

static ANTLRToken resultToken; /* we will return a pointer to this guy */
ANTLRChar TokenBuffer[100];
int index=0;

while (c==’ ’ || c==’\n’) c=getchar();

if (c==EOF) fresultToken.setType(Eof); return &resultToken;g

if (isdigit(c)) f

while (isdigit(c))] f

TokenBuffer[index++]=c;
c = getchar();

g

TokenBuffer[index]=’\0’;
resultToken.makeToken(NUMBER, TokenBuffer);
return &resultToken;

g

if (isalpha(c)) f

while (isalpha(c)) f

TokenBuffer[index++]=c;
c = getchar();

g

TokenBuffer[index]=’\0’;
resultToken.makeToken(IDENTIFIER, TokenBuffer);
return &resultToken;

g

g

Figure 12: Hand-Built Scanner nextToken() Function

17

� dlgx.h: DLG scanner support classes and DLGLexerBase class.

� dlgx.C: DLG scanner support code.

� astx.h: AST class definition.

� astx.C: AST support code.

� DLexer.C: Support code that must be aware of the particular scanner generated by DLG. This is an ugly

mechanism and will change in future versions.

� AToken.h: Definitions for classesANTLRTokenBase,DLGBasedToken, andANTLRCommonToken.

� ATokenStream.h: Definition of class ANTLRTokenStream.

6.8 $-Variables in C++ Mode

Because attributes do not exist in C++ mode, $-variables point to ANTLRTokens. Further, $-variables do not

exist for rule references. Rule arguments and return values should be used instead. We anticipate the removal of

$-variables all together in future releases in favor of labels for rule elements such as in the tree-parser generator

SORCERER.

$-variables are pointers to ANTLRTokens exclusively in C++ mode.

6.9 Semantic Predicates

Semantic predicates should reference LT(i)->getText() instead of LATEXT(i) as LATEXT does not exist.

6.10 Converting a 1.10 Grammar to 1.20 C++ Grammar

This section describes the procedure we used to convert the PCCTS 1.10 C grammar from C to C++ mode (this

covers most, but not all issues); “your mileage may vary.”

� Remove #parser directive if any.

� typedef ANTLRToken to something or derive a class. Remove #include "charbuf.h" or other

previous Attrib definition.

� Add a grammar class “wrapper” around your grammar rules.

� Convert AST stuff: (1) make a class AST definition. (2) Add fields in AST FIELDS macro to the

class AST definition as fields. (3) Remove zzcr ast and make that the constructor. (4) Remove

zzmk ast if you have it and make it another constructor (no need to convert any #[args] references in

the grammar).

� Add a #include "DLGLexer.h" in the parser (or whatever you call the lexical analyzer class).

� Convert all $i:blah to $i� > blah.

� Convert all LATEXT(i) to LT(i)->getText().

� Definitions in #header can come afterwards (i.e., do not use the directive anymore).

� Convert all $0=blah, $$=blah, or $rule=blah to a return value or “by-reference” argument.

� Convert the ANTLR() macro reference into the series of object definitions outline in this document.

18

7 Semantic Predicate Hoisting

The hoisting of predicates in version 1.10 had a number of bugs that have been fixed. In addition, version 1.20

has changed the semantics of semantic predicate hoisting slightly to gain a useful feature. We begin by describing

the bug fix.

The following grammar now behaves as advertised:

a : <<p1>>? b
| ID
;

b : <<p2>>? ID
| <<p3>>? ID
;

It results in the following code for a:

void a(void)
f

...
if ((LA(1)==ID)&&((p1)&&((p2)||(p3)))) f

if (!(p1)) zzfailed pred((ANTLRChar *)" p1"); //unused
b();

g

else f

if ((LA(1)==ID)) f

zzmatch(ID); zzCONSUME;
g

else ...
g

Note that the following semantics indicate the correct semantic validity of production one of a: “p1 and (p2 or

p3).” In version 1.10, the “or” was an “and.”

In 1.10, we indicated that predicates were hoisting ONLY if the grammar was syntactically ambiguous. This

had the unfortunate effect of making it impossible to include a predicate in the loop decision for (..)+ and

(..)* subrules if only one alternative was present. We have changed the meaning of semantic predicates

slightly so that if only one alternative exists in a looping subrule, all visible predicates are ALWAYS hoisting.

For example,

a : <<int i=5;>> // match exactly 5 A’s
(<<i>0>>? A <<i--;>>)+

;

In 1.10, this would have resulting in a loop that only tested the lookahead. In 1.20, the following is generated

for the (..)+ loop:

if (((i>0))) f

do f

if (!(i>0)) zzfailed pred((ANTLRChar *)" i>0"); // unused
zzLOOP(zztasp2);

g while ((LA(1)==A)&&((i>0)));
g

8 C AST Changes

In C mode, the programmer can define the preprocessor symbol USER DEFINED AST which allows the pro-

grammer to define the AST type themselves. The macro AST REQUIRED FIELDS is the minimum set of AST

fields needed by ANTLR; as such, it functions like inheritance in C++. For example,

19

typedef struct ast f

AST REQUIRED FIELDS; // order is unimportant
my stuff;

g AST;

The structure name must be ast for the AST REQUIRED FIELDS to work. If it is not used, the structure name

can be anything.

9 New Command-Line Options

The following ANTLR command line options are new:

� -CC: Generate C++ output.

� -o: Directory where output files should go (default="."). This is very nice for keeping the source directory

clear of ANTLR and DLG spawn.

� -ct: Do not make copies of tokens passed to the parser in C++ mode (default=to copy). When using DLG

in conjunction with ANTLR, you will always want ANTLR to make copies because DLG only has space

for one ANTLRToken (which is passed to the scanner with setToken); this address is always returned

and, hence, without copies, all $-variables would point to the same ANTLRToken.

The -ai option has been removed in anticipation of an ANTLR graphical interface.

The following DLG command line options are new:

� -CC: Generate C++ output.

� -o: Directory where output files should go (default="."). This is very nice for keeping the source directory

clear of ANTLR and DLG spawn.

� -cl class: Specify a class name for DLG to generate. The default is DLGLexer. classwill be a subclass

of DLGLexerBase.

Also note that in C++ mode, DLG now does not accept the output file name on the command line. The class

name specified (or the default of DLGLexer) is used to derive the output file name:

dlg options parser:dlg

10 Miscellaneous New Additions

The following minor changes were made:

� A new character type is used for ANTLR and DLG ANTLRChar and DLGChar respectively in C++ mode.

Normally these are ’char’, but you can change the typedef to whatever you wish (you can even make it

a class).

� ASTs were incorrectly handled in conjunction with 1.10 syntactic predicates—this has been fixed.

� The return values of rules were still assigned in guess mode (when using syntactic predicates); the arguments

are still evaluated. This is perhaps not too bright.

� Warnings about missing #header now require that -w2 ANTLR option be set.

� Allows #parser to come first (before #header)

� Fixed a bug so that “(A B)+ A C” will now terminate the loop upon “A C” whereas before it would just

loop forever (it was not using enough lookahead).

20

� When a token label (for which there is no regular expression) is referenced in a rule, a warning is generated

(if the ANTLR command line option -w2 is specified).

� Fixed a nasty bug that caused ANTLR to loop forever (and a day) upon very large grammars with lots of

optional subrules.

� ANTLR itself tends to give better error messages now; e.g., lexical errors give the file now and grammatical

errors (employing #errclasses) are more readable.

11 Future

Our work on ANTLR continues to be heavily influenced by the feedback from our industrial and academic user

community. As such, we are currently developing or planning the following improvements and tools.

� Good error recovery and reporting is notoriously difficult to achieve with parser generators, especially

LALR-based tools. We are developing a sophisticated error handling mechanism analogous to C++

exception handling called parser exception handling that approaches the flexibility of hand-built parsers.

� The recognition strength of hand-built parsers arises from the fact that arbitrarily-complex expressions can

be used to distinguish between alternative productions. We will introduce a new type of predicate called

a prediction predicate that constitutes the entire prediction expression for a particular production; i.e.,

ANTLR does not generate code to test lookahead for the associated production. We anticipate the notation:

“<<this-is-the-entire-prediction-expression>>?!”.

� A graphical user interface is planned and a coder has been tentatively “pressed” into service. This “GUI”

will display syntax diagrams on the screen and, hence, ambiguities in the grammar can be highlighted. The

output of the GUI will be an ANTLR grammar or a PostScript representation of the syntax diagram.

� We intend to yank the infinite lookahead mechanism out ofANTLRParser and put it inANTLRTokenStream
where it belongs.

[The users of PCCTS should be forewarned that we anticipate a break with total backward
compatibility for a future release (perhaps PCCTS 2.00). This release is intended to fix the
odious C output generated by the current version of ANTLR/DLG and will result in a modified
grammar meta-language plus the removal of some parsing modes. Any book on PCCTS to be
written will describe this version of reality. Also remember that the C++ output is going to
change as we learn more about it.]

12 Acknowledgements

Thanks are due to Sumana Srinivasan, Mike Monegan, and Steve Naroff of NeXT, Inc. for their extensive help

in the initial definition of the ANTLR C++ parser. They are also instrumental in the ongoing design of parser

exception handling.

We thank Gary Funck at Intrepid for his extensive testing of ANTLR and DLG plus his constant stream of

excellent suggestions.

Steve Robenalt at Rockwell is single-handedly pushing thecomp.compilers.pccts news group through,

is helping with the workshop, and is porting PCCTS to a number of different platforms.

We thank Tom Moog (moog@polhode.com) for his fantastic NOTES.newbie information.

Ariel Tamches (tamches@cs.wisc.edu) deserves credit for spending a week of his Christmas vacation in

the wilds of Minnesota helping me with the C++ output; he developed the majority of the code for the hand-built

scanner C++ example.

The C++ output was also influenced by Thom Wood (twood@tcis3.tcis.com) and Randy Helzerman

helz@ecn.purdue.edu.

21

Anthony Green at Visible Decisions, John Hall at Worcester Polytechnic Institute, Devin Hooker at Ellery

Systems, Kenneth D. Weinert at Information Handling Services, and Roy Levow at Florida Atlantic University

helped beta test 1.20.

Sriram Sankar at Sun Microsystems has help debug a number of features including the infinite lookahead line

number tracking and has provided a fix to make DLG char-size independent, which we hope to include soon.

John Hall (jhall@ivy.wpi.edu) ported PCCTS to Visual C++.

We would also like to thank the multitude of other users of PCCTS for their excellent suggestions and

beta-testing of the new C++ parsers.

22

