Killing and Y	anking
C-k	kill to the end of the line
C-y	yank the most recently killed text
M-d	kill to the end of the current word
M-DEL	kill the word behind the cursor
M-y	rotate the kill ring and yank the new top
Command Co	mpletion and History
TAB	complete a command or variable name
M-?	list possible completions
RET	enter the current line
C-p	move 'up' through the history list
C-n	move 'down' through the history list
M-<	move to the first line in the history
M->	move to the last line in the history
C-r	search backward in the history list
C-s	search forward in the history list
history $\begin{bmatrix} -q \end{bmatrix} \begin{bmatrix} N \end{bmatrix}$	list N previous history lines, omitting history numbers if $-q$
history -w $\left[file ight]$	write history to file (~/.octave_hist if no file argument)
history -r $[file]$	<pre>read history from file (~/.octave_hist if</pre>
edit_history lines	s edit and then run previous commands from the history list
run_history lines	run previous commands from the history list
$\begin{bmatrix} b e g \end{bmatrix} \begin{bmatrix} e n d \end{bmatrix}$	Specify the first and last history commands to edit or run.
If <i>beg</i> is greater	than end, reverse the list of commands
	f end is omitted, select commands from
	f the history list. If both arguments are
omitted, edit the	e previous item in the history list.

Shell Commands

cd dir	change working directory to dir
pwd	print working directory
ls [options]	print directory listing
getenv (string)	return value of named environment variable
system (cmd)	execute arbitrary shell command string

Matrices

.1.1

nd

bles

ual

ìle le s it

node

nand

at top

irsor

iments

back

Square brackets delimit literal matrices. Commas separate elements on the same row. Semicolons separate rows. Commas may be replaced by spaces, and semicolons may be replaced by one or more newlines. Elements of a matrix may be arbitrary expressions, provided that all the dimensions agree.

[x, y,]	enter a row vector
[x; y;]	enter a column vector
[w, x; y, z]	enter a 2×2 matrix

Ranges

base : limit base : incr : limit

Specify a range of values beginning with base with no elements greater than *limit*. If it is omitted, the default value of *incr* is 1. Negative increments are permitted.

Strings and Common Escape Sequences

A string constant consists of a sequence of characters enclosed in either double-quote or single-quote marks.

11	a literal backslash
\"	a literal double-quote character
\'	a literal single-quote character
\n	newline, ASCII code 10
\t	horizontal tab, ASCII code 9

Index Expressions

var (idx)	select elements of a vector
var ($idx1$, $idx2$)	select elements of a matrix
scalar	select row (column) corresponding to
	scalar
vector	select rows (columns) corresponding to
	the elements of vector
range	select rows (columns) corresponding to
	the elements of $rang e$
:	select all rows (columns)

Global Variables

global var1 ... Declare variables global.

Global variables may be accessed inside the body of a function without having to be passed in the function parameter list provided they are also declared global within the function.

Selected Built-in Variables

EDITOR	editor to use with edit_history
Inf, NaN	IEEE infinity, NaN
LOADPATH	path to search for function files
PAGER	program to use to paginate output
ans	last result not explicitly assigned
eps	machine precision
pi	π
realmax	maximum representable value
realmin	minimum representable value

automatic_replot do_fortran_indexing implicit_str_to_num_ok output_max_field_width output_precision page_screen_output prefer_column_vectors resize_on_range_error save_precision silent_functions warn_divide_by_zero

automatically redraw plots Fortran-style indexing of matrices allow strings to become numbers maximum numeric field width min significant figures displayed control whether output is paged create column vectors by default automatic resizing of matrices digits stored by save command suppress output from functions suppress divide by zero errors

commas_in_literal_matrix

control handling of spaces in matrices

ignore_function_time_stamp

ignore changes in function files during session

ok_to_lose_imaginary_part

allow complex to real conversion

prefer_zero_one_indexing

.

if ambiguous, prefer 0-1 style indexing

Arithmetic and Increment Operators

	1
x + y	addition
x - y	subtraction
x * y	matrix multiplication
$x \cdot * y$	element by element multiplication
x / y	<pre>right division, conceptually equivalent to (inverse (y') * x')'</pre>
x ./ y	element by element right division
$x \setminus y$	left division, conceptually equivalent to inverse (x) * y
$x \land y$	element by element left division
$x \uparrow y$	power operator
x , \hat{y}	element by element power operator
- x	negation
+ x	unary plus (a no-op)
<i>x</i> '	complex conjugate transpose
<i>x</i> .'	transpose
++ x (x)	increment (decrement) x, return new value
x ++ (x)	increment (decrement) x , return old value

Assignment Expressions

var = exprassign expression to variable var (*idx*) = expr assign expression to indexed variable

Comparison and Boolean Operators

These operators work on an element-by-element basis. Both arguments are always evaluated.

x	< y	true if x is less than y
x	<= y	true if x is less than or equal to y
x	== y	true if x is greater than y
x	>= y	true if x is greater than or equal to y
x	> y	true if x is equal to y
x	!= y	true if x is not equal to y
x	& y	true if both x and y are true
x	y	true if at least one of x or y is true
Į.	bool	true <i>bool</i> is false

Short-circuit Boolean Operators

Operators evaluate left-to-right, expecting scalar operands. Operands are only evaluated if necessary, stopping once overall truth value can be determined. Operands are converted to scalars by applying the all function.

&&	y	true	if	both	x	and	y a	are	tr	ıe	
	y	true	$\mathbf{i}\mathbf{f}$	at le	ast	one	\mathbf{of}	x	\mathbf{r}	y is	true

Operator Precedence

x

x

Here is a table of the operators in Octave, in order of increasing precedence.

; , =	statement separators assignment, groups left to right
8&	logical "or" and "and"
&	element-wise "or" and "and"
< <= == >= > !=	relational operators
:	colon
+ -	addition and subtraction
*/_*_/_\	multiplication and division
, , ,	transpose
+ - ++ !	unary minus, increment, logical "not"
^ .^	exponentiation
/\ . ./ .\ , ., + - ++ ! ^ .^	transpose unary minus, increment, logical "not"

Linear	Algebra
--------	---------

*fsolve

*lsode

*dassl

*quad

chol (a)	Cholesky factorization
det (a)	compute the determinant of a matrix
eig (a)	eigenvalues and eigenvectors
expm (a)	compute the exponential of a matrix
hess (a)	compute Hessenberg decomposition
inverse (<i>a</i>)	invert a square matrix
norm (<i>a</i> , <i>p</i>)	compute the <i>p</i> -norm of a matrix
pinv (a)	compute pseudoinverse of a
qr (<i>a</i>)	compute the QR factorization of a matrix
rank (a)	matrix rank
schur (<i>a</i>)	Schur decomposition of a matrix
svd (a)	singular value decomposition
syl (<i>a</i> , <i>b</i> , <i>c</i>)	solve the Sylvester equation

Equations, ODEs, DAEs, Quadrature

solve nonlinear algebraic equations

print error message for named function

integrate nonlinear ODEs

integrate nonlinear DAEs

integrate nonlinear functions

e else-

olumn

endif the

n that

end

list

bе

arguments for these	e functions.
Signal Process	sing
fft (a)	Fast Fourier Transform using FFTPACK
; ff+ (_)	Same FET FETDACK

* See the on-line or printed manual for the complete list of

perror (nm, code) for functions that return numeric codes,

and given error code

ifft (a)	inverse FFT using FFTPACK
freqz (<i>args</i>)	FIR filter frequency response
sinc (x)	returns sin (π x)/(π x)

Image Processing

colormap (map) set the current colormap gray2ind (i, n) convert gray scale to Octave image image (imq, zoom) display an Octave image matrix imagesc (img, zoom) display scaled matrix as image imshow (img, map) display Octave image imshow (i, n)display gray scale image imshow (r, q, b)display RGB image ind2gray (imq, map) convert Octave image to gray scale ind2rgb (imq, map) convert indexed image to RGB loadimage (file) load an image file convert RGB to Octave image rgb2ind (r, g, b)saveimage (file, imq, fmt, map) save a matrix to file

Sets

create_set (a , b)	create row vector of unique values
complement (a , b)	elements of b not in a
intersection (a , b)	intersection of sets a and b
union (<i>a</i> , <i>b</i>)	union of sets a and b

Strings

strcmp	(<i>s</i> ,	t)		co
strcat	(<i>s</i> ,	t ,)	co

mpare strings ncatenate strings

C-style Input and Output

fopen (name, mode) open file name fclose (file) close file printf (fmt, \ldots) formatted output to stdout fprintf (file, fmt, ...) formatted output to file sprintf (fmt, ...) formatted output to string scanf(fmt)formatted input from stdin fscanf (file, fmt) formatted input from file sscanf (str, fmt) formatted input from string fgets (file, len) read len characters from file fflush (file) flush pending output to file ftell (file) return file pointer position frewind (file) move file pointer to beginning freport print a info for open files fread (file, size, prec) read binary data files fwrite (file, size, prec) write binary data files feof (file) determine if pointer is at EOF

A file may be referenced either by name or by the number returned from fopen. Three files are preconnected when Octave starts: stdin, stdout, and stderr.

Other Input and Output functions

save file var	save variables in $file$
load $file$	load variables from file
disp (var)	display value of var to screen

Miscellaneous Functions

eval (<i>str</i>)	evaluate str as a command
feval (<i>str</i> ,)	evaluate function named by <i>str</i> , passing remaining args to called function
error (<i>message</i>)	print message and return to top level
clear pattern exist (str) who	clear variables matching pattern check existence of variable or function list current variables

Polynomials

compan (p)	companion matrix
conv (a, b)	convolution
deconv (a, b)	deconvolve two vectors
poly (a)	create polynomial from a matrix
polyderiv (p)	derivative of polynomial
polyreduce (p)	integral of polynomial
polyval (p , x)	value of polynomial at x
polyvalm (p , x)	value of polynomial at x
roots (p)	polynomial roots
residue (a , b)	partial fraction expansion of ratio a/b

Statistics

corrcoef (x, y)correlation coefficient cov(x, y)covariance mean (a) mean value median (a) median value std (a)standard deviation var (a) variance

Basic Plotting

gplot [ranges] expr [using] [title] [style]

gsplot [ranges] expr [using] [title] [style]

specify data ranges rangesexpression to plot exprusingspecify columns to plot specify line title for legend titlespecify line style style

If ranges are supplied, they must come before the expression to plot. The using, title, and style options may appear in any order after expr. Multiple expressions may be plotted with a single command by separating them with commas.

2D plotting

3D plotting

plotting options
v plotting options
splay current plot
e stream to gnuplot process
n up temporary plotting files
-in variable

Other Plotting Functions

plot (<i>args</i>)	2D plot with linear axes
semilogx (<i>args</i>)	2D plot with logarithmic x-axis
semilogy (<i>args</i>)	2D plot with logarithmic y-axis
loglog (<i>args</i>)	2D plot with logarithmic axes
bar (<i>args</i>)	plot bar charts
stairs (x , y)	plot stairsteps
hist (y , x)	plot histograms
<pre>title (string)</pre>	set plot title
axis (limits)	set axis ranges
xlabel (<i>string</i>)	set x-axis label
ylabel (<i>string</i>)	set y-axis label
grid $\left[\text{on} \middle \text{off} \right]$	set grid state
hold on off	set hold state
ishold	return 1 if hold is on, 0 otherwise
mesh (x , y , z) meshdom (x , y)	plot 3D surface create mesh coordinate matrices

Edition 1.1 for Octave Version 1.1.1. Copyright 1996, John W. Eaton (jwe@che.utexas.edu). The author assumes no responsibility for any errors on this card.

This card may be freely distributed under the terms of the GNU General Public License.

TEX Macros for this card by Roland Pesch (pesch@cygnus.com), originally for the GDB reference card

Octave itself is free software; you are welcome to distribute copies of it under the terms of the GNU General Public License. There is absolutely no warranty for Octave.

lues

ents