ave Quick Reference
 Octave Version 1.1.1

ing Octave

start interactive Octave session
file run Octave on commands in file --help describe command line options

ping Octave

```
r exit exit Octave
```

UPT (e.g. C-c) terminate current command and return to top-level prompt

ing Help

list all commands and built-in variables
ommand
briefly describe command
use Info to browse Octave manual
i command search for command in Octave manual

on in Info

$\begin{array}{ll}\text { C-v } & \text { scroll forward one screenful } \\ \text { M-v } & \text { scroll backward one screenfu }\end{array}$
redraw the display

Selection in Info

select the next node
select the previous node
select the 'up' node
select the 'top' node
select the directory node
select the first node in the current file select the last node in the current file reads the name of a node and selects it kills the current node

hing in Info

search for a string
search forward incrementally
search backward incrementally
search index \& go to corresponding node
go to next match from last ' i ' command

mand-Line Cursor Motion

move back one character
move forward one character
move the the start of the line
move to the end of the line
move forward a word
move backward a word
clear screen, reprinting current line at top

ting or Changing Text

insert a tab character
delete character to the left of the cursor delete character under the cursor add the next character verbatim transpose characters at the point transpose words at the point

Killing and Yanking

C-k	kill to the end of the line
C-y	yank the most recently killed text
M-d	kill to the end of the current word
M-DEL	kill the word behind the cursor
M-y	rotate the kill ring and yank the new top

Command Completion and History

TAB
M-?
RET
$\mathrm{C}-\mathrm{p}$
$\mathrm{C}-\mathrm{n}$
C-n
$\mathrm{M}-<$
$\mathrm{M}->$
$\stackrel{+}{M-r}$
$\mathrm{C}-\mathrm{r}$
$\mathrm{C}-\mathrm{s}$
C-s
search backward in the history list
search forward in the history list
list N previous history lines, omitting history numbers if -q
history $-\mathrm{w}[$ file $]$ write history to file (~/.octave_hist if no file argument)
history $-\mathrm{r}[$ file $]$ read history from file ($\sim /$.octave_hist if no file argument)
edit_history lines edit and then run previous commands from the history list
run_history lines run previous commands from the history list
[beg] [end] Specify the first and last history commands to edit or run
If beg is greater than end, reverse the list of commands before editing. If end is omitted, select commands from beg to the end of the history list. If both arguments are omitted, edit the previous item in the history list.

Shell Commands

cd dir change working directory to dir
pwd print working directory
ls [options]
getenv (string) return value of named environment
system (cmd)
print working directory
xecute arbitrary shell command string

Matrices

Square brackets delimit literal matrices. Commas separate elements on the same row. Semicolons separate rows. Commas may be replaced by spaces, and semicolons may be replaced by one or more newlines. Elements of a matrix may be arbitrary expressions, provided that all the dimensions agree.
$[x, y, \ldots] \quad$ enter a row vector
$[x ; y ; \ldots] \quad$ enter a column vector
$[w, x ; y, z]$
enter a 2×2 matrix

Ranges

base : limit
base : incr : limit
Specify a range of values beginning with base with no elements greater than limit. If it is omitted, the default value of incr is 1 . Negative increments are permitted.

Strings and Common Escape Sequences

A string constant consists of a sequence of characters enclosed in either double-quote or single-quote marks.
$\ 1$
$\ "$
$\backslash \prime$
\vdots
\n
literal double-quote character
a literal single-quote character
newline, ASCII code 10
horizontal tab, ASCII code 9

Index Expressions

var (idx)

$\operatorname{var}(i d x 1, i d x 2)$
scalar
vector select rows (columns) corresponding to the elements of vector
range select rows (columns) corresponding to the elements of range
select all rows (columns)

Global Variables

global var1... Declare variables global.
Global variables may be accessed inside the body of a function without having to be passed in the function parameter list provided they are also declared global within the function.

Selected Built-in Variables

EDITOR

Inf, NaN
LOADPATH
PAGER
ans
eps
pi
realmax
realmin
automatic_replot do_fortran_indexing implicit_str_to_num_ok output_max_field_width output_precision page_screen_output prefer_column_vectors resize_on_range_error save_precision
silent_functions warn_divide_by_zero
ditor to use with edit_history IEEE infinity, NaN
path to search for function files program to use to paginate output last result not explicitly assigned machine precision
π
maximum representable value minimum representable value
automatically redraw plots Fortran-style indexing of matrices allow strings to become numbers maximum numeric field width min significant figures displayed control whether output is paged reate column vectors by defaul automatic resizing of matrices digits stored by save command suppress output from functions suppress divide by zero errors
commas_in_literal_matrix
control handling of spaces in matrices
ignore_function_time_stamp
ignore changes in function files during session
ok_to_lose_imaginary_part
allow complex to real conversion
prefer_zero_one_indexing
if ambiguous, prefer $0-1$ style indexing

imetic and Increment Operator:

addition

subtraction
matrix multiplication
element by element multiplication
right division, conceptually equivalent to
(inverse (y') * x')'
element by element right division
left division, conceptually equivalent to inverse (x) * y
element by element left division
power operator
element by element power operator
negation
unary plus (a no-op)
complex conjugate transpose
transpose
increment (decrement) x, return new value

nment Expressions

assign expression to variable

parison and Boolean Operators

operators work on an element-by-element basis. Both nts are always evaluated
true if x is less than y
true if x is less than or equal to y true if x is greater than y true if x is greater than or equal to y true if x is equal to y
true if x is not equal to y
true if both x and y are true
true if at least one of x or y is true true bool is false

t-circuit Boolean Operators

ors evaluate left-to-right, expecting scalar operands. ids are only evaluated if necessary, stopping once overal alue can be determined. Operands are converted to by applying the all function
true if both x and y are true
true if at least one of x or y is true

ator Precedence

a table of the operators in Octave, in order of ing precedence.
statement separators
assignment, groups left to right
logical "or" and "and"
element-wise "or" and "and"
relational operators
colon
addition and subtraction
multiplication and division
transpose
unary minus, increment, logical "not" exponentiation

Statements

for identifier $=$ expr stmt-list endfor
Execute stmt-list once for each column of expr. The variable identifier is set to the value of the current column during each iteration.
while (condition) stmt-list endwhile
Execute stmt-list while condition is true.

break	exit innermost loop
continue	go to beginning of innermost loop
return	return to calling function

if (condition) if-body [else else-body] endif
Execute if-body if condition is true, otherwise execute elsebody.
if (condition) if-body [elseif (condition) elseif-body] endif Execute $i f$-body if condition is true, otherwise execute the elseif-body corresponding to the first elseif condition that is true, otherwise execute else-body.
Any number of elseif clauses may appear in an if statement.
unwind_protect body unwind_protect_cleanup cleanup end Execute body. Execute cleanup no matter how control exits body.

Defining Functions

function $[$ ret-list $]$ function-name $[$ (arg-list) $]$
function-body
endfunction
ret-list may be a single identifier or a comma-separated list of identifiers delimited by square-brackets.
arg-list is a comma-separated list of identifiers and may be empty.

Basic Matrix Manipulations

rows (a) return number of rows of a
columns (a) return number of columns of a
all (a) check if all elements of a nonzero
any (a) check if any elements of a nonzero
find (a)
sort (a)
sum (a)
prod (a)
prod (a)
\min (args)
max (args)
rem (x, y)
reshape (a, m, n) reformat a to be m by n
diag (v, k)
create diagonal matrices
linspace (b, l, n) create vector of linearly-spaced elements
logspace (b, l, n) create vector of log-spaced elements
eye $(n, m) \quad$ create n by m identity matrix
ones (n, m) create n by m matrix of ones
zeros $(n, m) \quad$ create n by m matrix of zeros
rand $(n, m) \quad$ create n by m matrix of random values

Linear Algebra

chol (a) Cholesky factorization
$\operatorname{det}(a) \quad$ compute the determinant of a matrix
eig (a)
expm (a)
hess (a)
inverse (a)
norm (a, p)
pinv (a)
qr (a)
rank (a)
schur (a)
$\operatorname{svd}(a)$
syl (a, b, c) compute the determinant of a matrix
eigenvalues and eigenvectors compute the exponential of a matrix compute Hessenberg decomposition invert a square matrix
compute the p-norm of a matrix compute pseudoinverse of a compute the QR factorization of a matrix matrix rank
matrix rank
Schur decomposition of a matrix singular value decomposition solve the Sylvester equation

Equations, ODEs, DAEs, Quadrature *fsolve solve nonlinear algebraic equations *fsolve
*lsode integrate nonlinear ODEs
*dassl integrate nonlinear DAEs
*quad integrate nonlinear functions
perror ($n m$, code) for functions that return numeric codes, print error message for named function and given error code

* See the on-line or printed manual for the complete list of arguments for these functions.

Signal Processing

fft (a)
freqz (args)
$\operatorname{sinc}(x)$
Fast Fourier Transform using FFTPACK
inverse FFT using FFTPACK
returns $\sin (\pi x) /(\pi x)$

Image Processing

colormap (map)
gray2ind (i, n)
image (img, zoom)
imagesc (img, zoom)
imshow (img, map) imshow (i, n)
imshow (r, g, b)
ind2gray (img , map)
ind2rgb (img, map)
loadimage (file)
rgb2ind (r, g, b)

Sets

create_set (a, b) create row vector of unique value
complement (a, b)
intersection (a, b)
union (a, b)
elements of b not in a
intersection of sets a and b
union of sets a and b

Strings

$\operatorname{strcmp}(s, t) \quad$ compare strings
strcat (s, t, \ldots... concatenate strings

le Input and Output

mode)

```
(file)
```

formatted output to stdout
f (file, fmt, ...) formatted output to file
f (fmt, ...)
($f m t$)
(file, fmt)
$($ file, fmt
(str, fmt
(file, le
(file)
(file)
d (file)
(file, size, prec)
(file, size, prec)
file)
determine if pointer is at EOF
nay be referenced either by name or by the number
drom fopen. Three files are preconnected when Octave
stdin, stdout, and stderr

r Input and Output functions

$\begin{aligned} & \text { le var . . } \\ & \text { le } \\ & \text { var }) \end{aligned}$	save variables in file
	load variables from file
	display value of var to screen

ellaneous Functions

str)
(str, ...)
evaluate str as a command (str, ...) evaluate function named by str, passing remaining args to called function
print message and return to top level
clear variables matching pattern check existence of variable or function list current variables

nomials

$(a, b) \quad$ partial fraction expansion of ratio a / b

stics

ef (x, y)
correlation coefficient
covariance
mean value
median value
standard deviation
variance

Basic Plotting

$\begin{array}{ll}\text { gplot }[\text { ranges }] \text { expr }[\text { using }][\text { title }][\text { style }] & \text { 2D plotting } \\ \text { gsplot }[\text { ranges }] \text { expr }[\text { using }][\text { title }][\text { style }] & \text { 3D plotting }\end{array}$

ranges	specify data ranges
expr	expression to plot
using	specify columns to plot
title	specify line title for legend
style	specify line style

If ranges are supplied, they must come before the expression to plot. The using, title, and style options may appear in any order after expr. Multiple expressions may be plotted with a single command by separating them with commas.

set options	set plotting options
show options	show plotting options
replot	redisplay current plot
closeplot	close stream to gnuplot process
purge_tmp_files	clean up temporary plotting files

automatic_replot built-in variable

Other Plotting Functions

plot (args)
2D plot with linear axes
semilogx (args) 2D plot with logarithmic x-axis
semilogy (args) 2D plot with logarithmic y-axis
loglog (args) 2D plot with logarithmic axes
bar (args) plot bar charts
stairs $(x, y) \quad$ plot stairsteps
hist (y, x) plot histograms
title (string) set plot title
axis (limits) set axis ranges
xlabel (string) set x -axis label
ylabel (string) set y -axis label
grid [on|off] set grid state
hold [on off] set hold state
ishold
return 1 if hold is on, 0 otherwise
$\operatorname{mesh}(x, y, z) \quad$ plot 3D surface
meshdom $(x, y) \quad$ create mesh coordinate matrices

Edition 1.1for Octave Version 1.1.1. Copyright 1996, John W. Eaton (jwe@che.utexas.edu). The author assumes no responsibility for any errors on this card.

This card may be freely distributed under the terms of the GNU General Public License.
$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Macros for this card by Roland Pesch (pesch@cygnus.com), originally for the GDB reference card

Octave itself is free software; you are welcome to distribute copies of it under the terms of the GNU General Public License. There is absolutely no warranty for Octave

