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Preface 1=

1.1 Cosubmitting Companies

The following companies are pleased to jointly submit this specification in response to
the OMG Objects By Value RFP (Document ORBOS/96-06-14):

® BEA Systems, Inc.

® |International Business Machines Corporation
® Jona Technologies, Plc.

® Netscape Communications Corporation

® Novell, Inc.

® Visigenic Software, Inc.

1.2 Status of this document

2/10/98

This document is the final revised submission with several minor errors (listed below)
fixed and indicated by change bars in the document.

It is assumed that when this submission is adopted it will become part of the CORBA
2.3 core. The nature of this submission is that its changes are not isolated to small parts
of the core.

Chapter 10 “merely” outlines the exact changes to CORBA 2.2. It does not contain the
complete “editing instructions” required to update CORBA 2.2 because CORBA 2.2 is
still under development and it was not possible to provide the exact text required. The
motion to adopt this submission will include a motion to form an RTF made up of the
submitters (at least) whose charter will be to produce the detailed changes for CORBA
2.3. The changes will then be voted on following normal OMG RTF procedures.
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1.2.1 Changes to 98-01-01

In “Partial Type Information and Versioning” on page 5-54, specifying the list of
safe bases, in addition to the actual type, was omitted. The corresponding change to
the GIOP format in “The Format” on page 5-57 was also made.

A dependency on new functionality being added to the JDK was identified. In order
to provide an alternative, a note was added to the
org.omg.CORBA.portable.OutputStreamin “Java ORB Portability Interfaces” on
page 6-70. A value's mapped Java class must also implement
org.omg.portable.Streamabléef it is to be used with a version of the JDK that does
not provide the new feature (see Section 6.3.1, “Basics for Stateful Values,” on
page 6-61).

In the C++ mapping (see Section 7.3.1, “Value Data Members,” on page 7-72 and
the examples following) accessors and modifers are now virtual in order to allow
application developers to reimplement the generated default behavior.

Specification of RepositorylD format was added. See Section 5.6.1, “CORBA
Repository Ids,” on page 5-49.

A typo in “Value Operations” on page 7-74 was fixed.
Fixed the formatting of this section.

Missing “in” keyword in syntax rule for <init_param_decl> in Section 5.4.1,
“Syntax,” on page 5-43.

Missing “in” specifiers in operation declarations in some of the examples.

Missing <identifier> in syntax productions for <value_abs_dcl> and <header>
Section 5.4.1, “Syntax,” on page 5-43.

Change the syntax to not overload the colon to indicate both the inheritance from
abstract interfaces and values, and the support of interfaces. Although there are
many changes throughout the document, they are mostly to change the use of
inherits/derives to supports and fix the grammar. The primary change is to the
syntax production in Section 5.4.1, “Syntax,” on page 5-43.

1.3 Guide to the Submission

This revised submission proposes an approach to handling objects by value in an OMA
context. Elements include:

Value Interfaces

IDL extensions

Parameter Passing Semantics
GIOP/IIOP Extensions

Abstract Interfaces

orbos/98-01-18: Objects By Value (with errata) 2/10/98
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Chapter 5 describes the approach and contains the bulk of the proposal including IDL
extensions and GIOP/IIOP extensions. Chapter 6 describes the changes to Java
mapping. Chapter 7 describes the required changes to the C++ mapping. Chapter 8
contains the proposal to add abstract interfaces to CORBA.

1.4 Missing Items

1.5 Conventions

IDL appears using this font.

Concrete programming language (Java, C++, etc.) code appears using this font.

Please note that any change bars have no semantic meaning. They are present for the
convenience of readers and submitters (and the editor who wants to be able to tell what
changed between various drafts).

1.6 Submission Contact Points
The primary editor, and contact point for this submission is:

Jeff Mischkinsky

Visigenic Software, Inc.

951 Mariner’s Island Blvd. Suite 120
San Mateo, CA 94404

USA

phone:+1 650 312 5158

email: jeffm@visigenic.com

The contact information for the other co-submitting companies is:

Dan Frantz

BEA Systems, Inc..

436 Amherst Street

Nashua, NH 03063

USA

phones: +1 603 579-2519
email: dan.frantz@beasys.com

Randy Fox

IBM Corp.

11400 Burnet Road

Austin, TX 78758

phones: +1 512 838 2310

email: randyfox@austin.ibm.com

Martin Chapman

IONA Technologies

The IONA Building

8-10 Lower Pembroke Street
Dublin 2, Ireland

February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 1-9
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phone:+353 1 662 5255
fax: +353 1 662 5244
email: mchapman@iona.com

David Stryker

Netscape Communications Corporation
501 E. Middlefield Road

Mountain View, CA 94043

USA

phone:+1 650 937-3454

email: stryker@netscape.com

Bill Cox

Novell, Inc.

2 Oak Way

Berkeley Heights, NJ 07922
phone +1 908 790-5123
emait bill@novell.com
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Proof of Concept 2=

The core ideas presented in this submission are based on Visigenic's experience in
implementing our Caffeine extensions to CORBA for Visibroker/Java.

Many of the ideas for custom marshaling are based upon experience with lona’s
opaque extensions.

Issues dealing with codebase and code downloading are based on RMI work in
partnership with JavaSoft on mapping RMI to IIOP.

The abstract interface extensions are based upon IBM’s work on their San Francisco
project.

orbos/98-01-18: Objects By Value (with errata) 2-11
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Responseto RFP Requirements 3=

The following is a list of the requirements from the Objects By Value RFP (OMG
orbos/96-06-14), specifying how this submission is responsive to the RFP.

Introduction

In the following requirements discussion, the terms “sending context” and “receiving
context” are relative roles played by client and server contexts (programs, processes,
whatever). If an object is being passed by value as an in parameter, then the caller is
the sending context and the callee is the receiving context. If the object is an out
parameter, then the caller is the receiving context and the callee is the sending context.
If the parameter is an inout parameter, then the roles are meaningful only with respect
to a single parameter directional flow. If the parameter is a return parameter, the caller
is the receiving context and the callee is the sending context.

3.1 Pass By Value Semantics

2/10/98

Submissions shall define precisely the semantics of passing objects by value.
Specifically, the following issues shall be addressed:

® what is the relationship between the identity of the object in the sending context and
the object in the receiving context (including any security implications)?

None, copy semantics are used.

®* what is the relationship between the implementation in the sending context and the
implementation in the receiving context? Must they be identical? If not, how is
equivalency for the purposes of passing by value established?

Structural compatibility. We guarantee that code will not break, but as with “normal”
CORBA there are no semantic guarantees.

® what happens when there is no appropriate implementation available in the
receiving context?

orbos/98-01-18: Objects By Value (with errata) 3-13



A policy for searching for compatible implementations is defined.

®* what are the relationships between the primary (or most-derived) interface of an
object being passed in the sending context, the interface type of the parameter
declaration, and the primary (or most-derived) interface of the object in the
receiving context? Can any object supporting the declared parameter interface type
be passed by value? If an object being passed in the sending context supports
interfaces that are more derived than the parameter interface, will the resulting
object in the receiving context also support those more-derived interfaces?

The submission supports “regular” CORBA subtyping semantics. Stateful values may
only singly inherit from other stateful values. Parameters are passed by value or by
reference depending upon their formal type. Parameters with a formal value type are
passed by value. Parameters with a formal ordinary interface type are passed by
reference. If the formal type is an abstract interface, then the determination of how an
actual parameter is passed is made at runtime.

3.2 Interoperability

® Submissions shall describe how interoperability may be ensured between different
ORB implementations when passing objects by value. All information required for
ORB interoperability shall be precisely described and exposed in some standard
format. For example, if a submission proposes to ensure interoperability of passing
by value based on information in the object's interface (IDL or IR) with some
additional annotations, the submission shall describe a standard format for the
annotation and medium (media) though which it will be expressed.

The submission does this. It extends GIOP and IIOP.

3.3 Memory Management

3.4 IDL Changes

® Submissions shall specify the memory management rules for by-value parameters.

They are provided.

® Submissions shall provide justification and rationale for any modifications or
extensions to IDL, and to any new prescribed interfaces or modifications of existing
CORBA interfaces.

They are provided.

3.5 Language Mapping Changes

3-14

®* Any changes to adopted IDL language mappings necessary to allow use of your
objects-by-value mechanism from those languages shall be specified.

They are provided.

orbos/98-01-18: Objects By Value (with errata) 2/10/98
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3.6 GIOP and Wire Protocol Changes

®* Any changes to GIOP and the CORBA 2 interoperability architecture, including
marshalling and on-the-wire formats, shall be specified.

They are specified.

3.7 Discuss Upwardly Incompatible Changes

® Because of the consequences of changing existing specifications, particularly
upwardly incompatible changes, submitters should carefully consider the
implications of changes, and fully document their implications in their submissions.
A migration plan shall be included for upwardly incompatible changes.

There are none.

3.8 Design Rationale

® The language mapping should be prefaced by an explanation of the design
rationale.

A separate chapter outlining some of the design rationale is provided. Where
appropriate there is discussion in the main body of the submission.

February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 3-15
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Overall Design Rationale 1=

This chapter discusses some of the rationale behind the choices that were made for this
mapping.

General issues are discussed in the Introduction.

4.1 Protected Fields in State Definition

We chose noto introduce a notion of protected data member following the lead of the
Enhanced Portability specification which states that a derived implementation can only
rely on the public interface of its base. If it becomes clear that this notion is needed for
value types it will be possible to revise the specification in an upwardly compatible
way.

4.2 Single Inheritance Issues

Because we are stepping over the line that separates pure interface specification from
implementation specification, concrete programming language issues must be
considered. There are well-known difficulties in implementing multiple

implementation inheritance. As a result many OO languages do not support it, e.g. Java
and Smalltalk. We therefore choose to adopt a model which supports multiple
inheritance for interfaces or value with no state, but only single inheritance as soon as
some state is declared.

This restriction allows a clean and efficient mapping to the major OO programming
languages, Java, C++, and Smalltalk.

4.3 Base Value Type

By default value types are not CORBA Objects, i.e. they do not infnenit
CORBA::Object. The rationale for that decision is that mandating CORBA::Object
semantics for all values is overkill: A important expected use of value types is to

| 2/10/98 orbos/98-01-18: Objects By Value (with errata) 4-17



support lightweight “data objects” which by they very nature are always passed by
value (like a date, or a matrix), if value types had existed at the time CORBA1.0 was
defined pseudo objects (e.g. TypeCodes) could have been expressed cleanly as values
too. Forcing these kinds of data objects to support all the apparatus of a
CORBA::Object (e.g., get_interface, IOR support, etc.) is an unnecessary burden.

4.4 Narrowing from interface to value

Narrowing from interface to value is not automatically allowed. To do so requires the
creation of a local copy of the value type instance in the receiving context. In order to
successfully perform this operation, the receiving context would have to “go back” to
the object reference’s implementation (server) and download the value. There is no
guarantee that the receiving context even “knows” about such an implementation. It
was deemed much safer and less confusing to force the designer to define a specific
application level operation if this feature is desired.

| 4.5 Passing A Value Instance for an Interface Type

| 418

This section discusses in more detail the rationale behind the decision to require a
reference to be sent when an instance of a value type whose type supports an interface
is passed as an actual parameter for a formal parameter whose type is the interface.

Again consider the example of a value type that supports an interface and an operation
which has a parameter whose formal type is the interface. The question is what is
actually passed in an invocation when the actual instance is the value type. Serious
consideration was given to allowing the actual value to be passed, under the covers so
to speak. However there were several issues with this approach.

From an application/client perspective there is no problem. It only knows about the
base interface and hence only uses the instance as if it were the base type. However
there may be a change in the semantics in that the application is now manipulating a
local copy. Any changes it makes stay local and are not propagated back to the sending
context.

The receiving context also now has an implementation “living” within itself when all it
thought was that it was receiving a reference. The situation is even stranger if one
considers the case of an out parameter. In that case the client, which is initiating the
invocation, could find itself all of sudden receiving an implementation.

There would have to be a way to let the sending side control whether a reference or a
value was to be sent, thus necessitating an additional api of some sort.

A major change to GIOP would have to occur to allow an encoding of a reference
either as an IOR or as a value. This change would either cause older servers to break
(if they were not careful about checking version numbers) or limit the usefulness of
new clients.

orbos/98-01-18: Objects By Value (with errata) 2/10/98
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4.6 Boxed Values

4.7 value keyword

These issues and problems arise because the receiving context is not aware that it can
now be sent a value instead of a reference. Hence the decision was made to force
designers to make an explicit decision to support this capability by adding a new kind
of interface to IDL which has the semantics that it may be implemented either by a
reference (IOR) or by a value.

Sometimes it is necessary to define a value type with a single data member inside its
state section and no inheritance or methods. For example, when transmitting a string or
sequence as an actual parameter on an interface operation or as a data member of a
value type that is an actual parameter, it may be important to preserve any sharing of
the string or sequence within the object graph being transmitted. Because current IDL
data types do not preserve referential integrity in this way, this requirement is
conveniently handled by using a value type. Value types also support the transmission
of nulls (as a distinguished value), whereas IDL data types such as string and sequence
(which are mapped to empty strings and sequences) do not. The Java to IDL mapping
requires both preservation of referential integrity and transmission of nulls. Because it
would be cumbersome to require the full IDL syntax for a value type for this specific
usage, a shorthand IDL notation is introduced to cover this use of value types for
simple containment of a single data member.

There is a fair amount of language required to specify the obvious uses of the value
keyword. Basicallyalue is analogous tinterface , and is used in the grammar to
introduce a value declaratiowalueBase is analogous t@bject and is used to

denote the base type. The rest of the language is to describe how the parsing occurs.

4.8 Use of Helper classes

February 10, 1998 2:04 pm

Helper and holder classes are used in keeping with the decisions that were made in the
adopted Java language mapping specification.

orbos/98-01-18: Objects By Value (with errata) 4-19
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5.1

2/10/98

Introduction

Value Types —

Pure CORBA (2.1) objects cannot be passed by value, only object reference semantics
are supported. Objects, more specifically, interface types that objects support, are
defined by an IDL interface, allowing arbitrary implementations. There is great value,
which is described in great detail elsewhere, in having a distributed object system that
places almost no constraints on implementations.

However there are many occasions in which it is desirable to be able to pass an object
by value, rather than by reference. This may be particularly useful when an object’s
primary “purpose” is to encapsulate data, or an application explicitly wishes to make a
“copy” of an object. We assume that the purpose of this feature is NOT to implement
replication and/or cachirlg

In this submission, we define the semantics of pass by value as being similar to that of
standard programming languages. The receiving side of a parameter passed by value
receives a “new” instance of the object, with a separate identity from that of the
sending side. Once the parameter passing operation is complete, no relationship is
assumed to exist between the two instances.

Because it is necessary for the receiving side to instantiate an instance, it must
necessarily know something about the object’s state. This submission extends CORBA
(and IDL) to include the notion of walue type

It has also proved desirable to allow the receiving side the flexibility to receive either
an Object type or a Value type. This submission proposes extending CORBA to
support the notion of aabstract interface type which allows a designer to specify
that an operation can explicitly support receiving either a value type or an interface
type at runtime. See Chapter 8, “Abstract Interfaces" for more details.

1.But we believe that more complex caching and replication functionality can be built on the
top of the feature set proposed here.

orbos/98-01-18: Objects By Value (with errata) 5-21
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5.2 Goals

5-22

Value types provide semantics that bridge between CORBA structs and CORBA
interfaces:

® They support description of complex state (i.e arbitrary graphs, with recursion and
cycles)

® Their instances are always local to the context in which they are used (because they
are always copied when passed as a parameter to a remote call)

® They support both public and private (to the implementation) data members.

® They can be used to specify the state of an object implementation i.e they can
support an interface.

® They support single inheritance (adlue) and can support multiplaterfaces

® They may be also babstract.

The submitters were also faced with the problem of adding several new keywords to
IDL. The submission proposes some minor extensions to the way in which IDL is
parsed in order to make it possible to add keywords to IDL without breaking existing
programs which use those keywords as identifiers.

The submitters are also working closely with submitters on several other ongoing
RFPs. These include the reverse Java to IDL language mapping, Persistent State
Service, and CORBA Components RFP. We expect that facilities added by this
proposal to be used in those submissions. The final adopted specifications should be
closely coordinated.

It is our belief that the concepts provided by this submission would enable the OMG to
eliminate almost all the PIDL contained in the CORBA specification. It is our
recommendation that an RFP to do so be issued.

The goals of this proposal are to:
® provide a simple and very robust model that builds on existing CORBA semantics.

® respect the current CORBA model that distinguishes, in its type system, interface
types from constructed data types.

® minimize changes to IDL.

® maintain flexibility in ORB implementations, while guaranteeing interoperability
and portability.

® expose complex implementation states in a language independent manner.
® guarantee consistent semantics and use across languages.

® support passing of objects by value between clients and servers implemented in
different languages.

® provide natural and convenient support in Java and C++

orbos/98-01-18: Objects By Value (with errata) 2/10/98
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5.3 Description

A key design center for this submission is to provide natural and convenient support
for Java users of CORBA. Our feeling is that a key factor in the continued adoption
and deployment of CORBA will be the ease of interoperability between Java (clients
and servers) and other language platforms, particularly C++. Hence this proposal is
designed so that it may be efficiently and easily implemented in Java. Where potential
features (e.g. multiple inheritance) increased complexity, we chose to simplify.

5.3.1 Value Types

5.3.1.1 Architecture

February 10, 1998 2:04 pm

This submission introduces the notion ofedue type to the OMA. This has profound
implications on the type system and has forced careful consideration of issues
surrounding the nature of interfaces, the separation of interface definition and
implementation, and the guarantees that CORBA makes with respect to issues of state
consistency and coherency.

The basic notion is relatively simple. value type is, in some sense, half way

between a “regular” IDL interface type and a struct. The use of a value type is a signal
from the designer that some additional properties (state) and implementation details be
specified beyond that of an interface type. Specification of this information puts some
additional constraints on the implementation choices beyond that of interface types.
This is reflected in both the semantics specified herein, and in the language mappings.

An essential property of value types is that their implementations are always local.
That is, the explicit use of value type in a concrete programming language is always
guaranteed to use a local implementation, and will not require a remote call. They have
no identity (their value is their identity) and they are not “registered” with the ORB.

There are two kinds of value types, concrete (or stateful) value types, and abstract
(stateless) ones. As explained below the essential characteristics of both are the same.
The differences between them result from the differences in the way they are mapped
in the language mappings. In this specification the semantics of value types apply to
both kinds, unless specifically stated otherwise.

Concrete (stateful) values add to the expressive power of (IDL) structs by supporting:
® single derivation (from other value types)
® support of multiple interfaces

® arbitrary recursive value type definitions, with sharing semantics providing the
ability to define lists, trees, lattices and more generally arbitrary graphs using value

types.
® null value semantic
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5.3.1.2

5.3.1.3

When an instance of such a type is passed as a parameter, the sending context marshals
the state (data) and passes it to the receiving context. The receiving context instantiates
a new instance using the information in the GIOP request and unmarshals the state. It
is assumed that the receiving context has available to it an implementation that is
consistent with the sender’s (i.e. only needs the state information), or that it can
somehow download a usable implementation. Provision is made in the on-the-wire
format to support the carrying of an optional call back obj€cdéBase ) to the

sending context which enables such downloading when it is appropriate.

It should be noted that it is possible to define a concrete value type with an empty state
as a degenerate case.

Abstract Values

Value types may also be abstract. They are called abstract because an abstract value
type may not be instantiated. Only concrete types derived from them may be actually
instantiated and implemented. Their implementation, of course, is still local. However,
because no state information may be specified (only local operations are allowed),
abstract value types are not subject to the single inheritnace restrictions placed upon
concrete value types. Essentially they are a bundle of operation signatures with a
purely local implementation. This distinction is made clear in the language mappings
for abstract values.

Note that a concrete value type with an empty state is not an abstract value type. They
are considered to be stateful, may be instantiated, marshaled and passed as actual
parameters. Consider them to be a degenerate case of stateful values.

State Definition

Data members that define the state of a value type may be private or public. The
default is private and theublic modifier can be used. The annotation directs the
language mapping to hide or expose the different parts of the state to the clients of the
value type. The private part of the state is only accessible to the implementation code
and the marshaling routines.

Note that certain programming languages may not have the built in facilities needed to
distinguish between public and private members. In those cases, the language mapping
will specify the rules that programmers have to follow.

Operations

Operations defined on a value type specify signatures whose implementation can only
be local. Because these operations are local, they must be directly implemented by a
body of code in the language mapping (no proxy or indirection is involved).

The language mappings of such operations require that instances of value types passed
into such local methods are passed by reference (programming language reference
semantics, not CORBA object reference semantics) and that a copy is not made. Note,
such a (local) invocation is not a CORBA invocation. Hence it is not mediated by the
ORB, although the API to be used is specified in the language mapping.
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5.3.1.4

5.3.1.5

February 10, 1998 2:04 pm

The (copy) semantics for instances of value type are only guaranteed when instances of
these value types are passed as a parameter to an operation defined on a CORBA
interface, and hence mediated by the ORB. If an instance of a value type is passed as a
parameter to a method of another value type in an invocation, then this call is a
“normal” programming language call. In this case both of the instances are local
programming language constructs. No CORBA style copy semantics are used and the
normal semantics for the programming language in question apply.

Operations on the value type are supported in order to guarantee the portability of the
client code for these value types. They have no representation on the wire and hence
no impact on interoperability.

Initializers

In order to ensure portability of value implementations, designers may also define the
signatures of initializers (or constructors) for non abstract value types. Syntactically
these look like local operations except that they use the keyword ideitifidor the

“name” of the operation, have no return type, and must useiorgparameters. There

may be any number of init() declarations, as long as the signatures of all the initializers
declared within the same scope are unique. Using the same signature as one found in
a less-derived type is allowed.

The mapping of initializers is language specific and may not always result in a one to
one correspondence between initializer signatures and the programming language
constructs into which they map. This is because the mapping from IDL types into
programming language types is not isomorphic; several different IDL types may map
to the same programming language type. Hence defining initializers with the same
number of parameters with types that are “similar” (etr andwchar, signed and
unsigned integers, etc.) should be done with care.

Example
interface A {};

interface B {};
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value Example supports A, B {

/I state definition
short a;
public long b; // public field, the default is private
string ¢;
float d;
Example eg; // passed by value + recursive definition
A anA; /I passed by reference

/I initializers
init(in short a);
init(in short a, in long b);

/l operations
short f (in A x);
long g(in Example x);

A more realistic value type might be:
interface Anlinterface {};
typedef sequence<unsigned long> WeightSeq;

value WeightedBinaryTree {

/I state definition
unsigned long weight;
WeightedBinaryTree left;
WeightedBinaryTree right;

/I initializer
init(in unsigned long w);

/' local operations
WeightSeq pre_order();
WeightSeq post_order();

2
value WTree: WeightedBinaryTree supports Aninterface {
%
5.3.2 Typing and Substitutability Issues

5.3.2.1 Inheritance Relationships

Values may be derived from other values and can support interfaces.

Once implementation (state) is specified at a particular point in the inheritance
hierarchy, all derived value types (which must of course implement the state) may only
derive from a single (concrete) value type. They can however derive from other

additional abstract values and support additional interfaces.
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5.3.2.2

5.3.2.3

5.3.2.4

February 10, 1998 2:04 pm

The single immediate base concrete value type, if present, must be the first element
specified in the inheritance list of the value declaration’s IDL. It may be followed by
other abstract values from which it inherits. The interfaces and abstract interfaces that
it supports are listed in any order following th@pports keyword.

A stateful value that derives from another stateful value may specify that it is safe to
“truncate” (seeSection, “Value instance -> Value type,” on page 5-29) an instance to
be an instance of its immediate parent (stateful) value type.

These rules are summarized in the following table:

Table 5-1 Allowable Inheritance Relationships

may inherit from: | Interface Abstract Value  Stateful Value
Interface multiple no no

Abstract Value supports multiple n/a

Stateful Value supports multiple single (may be safe)

Value Base Type

All value types have a conventional base type call&@RBA::ValueBase. This is a

type which fulfills a role that is similar to that played by CORBA::Object.
Conceptually it supports the common operations available on all value types. See
Section 5.4.3, “ValueBase Operations,” on page 5-45 for a description of those
operations. In each language mapp@@QRBA::ValueBase will be mapped to an
appropriate base type that supports the marshaling/unmarshaling protocol as well as
the model for custom marshaling.

The mapping for other operations which all value types must support, such as getting
meta information about the type, may be found in the specifics for each language

mapping.

Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular instances of value types
do not inherit from CORBA::Object and do not support normal object reference
semantics. However it is always possible to explicitly declare that a given value type
supports an interface type. In this case instances of the type may support CORBA
object reference semantics (if they are registered with the ORB using an object
adapter.).

Parameter Passing

This section describes semantics when a value instance is passed as parameter in a
CORBA invocation. It does not deal with the case of calling another non-CORBA (i.e.
local) programming method which happens to have a parameter of the same type.
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Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is made by
examining the parameter’s formal type (i.e the signature of the operation it is being
passed to). If it is a value type then it is passed by value. If it is an ordinary interface
then it is passed by reference (the case today for all CORBA objects). This rule is
simple and consistent with the handling of the same situation in recursive state
definitions or in structs.

In the case of abstract interfaces, the determination is made at runtime. See
Section 8.3, “Semantics of Abstract Interfaces” for a description of the rules.

Sharing Semantics

In order to be expressive enough to describe arbitrary graphs, lattice, trees etc., value
types support sharing and null semantics. Instances of a value type can be shared by
others across or within other instances. They can also be null. This is unlike other IDL
data types such as structs, unions, and sequences which can never be shared. The
sharing of values within and between the parameters to an operation, is preserved
across an invocation, i.e the graph which is reconstructed in the receiving context is
structurally isomorphic to the sending context’s.

Identity Semantics

When an instance of the value type is passed as a parameter, an independent copy of
the instance is instantiated in the receiving context. That copy is a separate
independent entity and there is no explicit or implicit sharing of state.

Any parameter type

When an instance of a value type is passed targn as with all cases of passing
instances to amny, it is the responsibility of the implementer to insert and extract and
the value according to the language mapping specification.

5.3.2.5 Substitutability Issues

The substitutability requirements for CORBA require the definition of what happens
when an instance of a derived value type is passed as a parameter that is declared to be
a base value type or an instance of a value type that supports an interface is passed as
a parameter that is declared as the interface type.

There are two cases to consider in this submission: the parameter type is an interface,
and the parameter type is a value type.

Value instance -> Interface type

Assume that we have an instance of a value type that supports an interface type. We
have an IDL operation whose signature contains a parameter whose formal type is the
interface. The following rule applies to this situation:
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® |f the value type instance (in the sending context) has not been registered with
ORB, then a@OBJECT_NOT_EXIST exception with an identified minor code (see
Section 5.10, “Minor Exception Codes”) is raised. Otherwise the instance’s object
reference is used and it is passed as normal.

Value instance -> Value type

In this case the receiving context is expecting to receive a value type. If the receiving
context currently has the appropriate implementation class then there is no problem.

If the receiving context does not currently hold an implementation with which to
reconstruct the original type then the following algorithm is used to find such an
implementation:

1. Load

» Attempt to load (locally in C/C++, possibly remotely in Java and other “portable”
languages) the real type of the object (with its methods). If this succeeds, OK

2. Truncate
» Truncate the type of the object to the base type (if specifisdfasin the IDL).

Truncation can never lead to faulty programs because, from a structural point
view base types structurally subsume a derived type and an object created in the
receiving context bears no relationship with the original one. However, it might
be semantically puzzling, as the derived type may completely re-interpret the
meaning of the state of the base. For that reason a derived value needs to indicate
if it is is safe to truncate to its immediate non-abstract parent.

3. Raise Exception
« If none of these work or are possible, then raiseNde IMPLEMENT exception.

Safeness is a transitive property.

Example
value EmployeeRecord { /I note this is not a CORBA::Object
/I state definition
string name;
string email;
string SSN;
/I initializer
init(in string name, in string SSN);
2

value ManagerRecord: safe EmployeeRecord {
/I state definition
sequence<EmployeeRecord> direct_reports;
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5.3.2.6 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to other
value types. Each language mapping is responsible for specifying how these operations
are made available to the programmer.

Narrowing from an interface type instance to a value type instance is not allowed. If
the interface designer wants to allow the receiving context to create a local
implementation of the value type, i.e. a value representing the interface, an operation
which returns the appropriate value type may defined.

5.3.3 Value Boxes

It is often convenient to define a value type with no inheritance or methods and with a
single data member. A shorthand IDL notation is used to simplify the use of value
types for this kind of simple containment, sometimes referred to as a “value box”.

This particularly useful for strings and sequences. Basically one does not have to
create what is in effect an additional namespace that will contain only one name.

For example, the IDL definition

module Example {
interface Foo {
... * anything */
2
value FooSeq sequence<Foo>;
interface Bar {
void dolt (in FooSeq seql, in FooSeq seq2);
2
2

could be used to ensure a single copy of the Foo sequence is transmitted and received
when the operatiodolt() is invoked with the same sequence data item passed as the
seql and seq2 parameters.

This IDL provides similar functionality to writing the following IDL. However the
type identities (repository ID’s) would be different in this case.
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module Example {
interface Foo {
... [* anything */
2
value FooSeq {
public sequence<Foo> data;
2
interface Bar {
void dolt (in FooSeq seql, in FooSeq seq2);
%
%

The former is easier to manipulate after it is mapped to a concrete programming
language.

Standard Value Box Definitions

For some CORBA-defined types for which preservation of sharing and transmission of
nulls are likely to be important, the following value box type definitions are added to
the CORBA module:

module CORBA {
value StringValue string;
value WStringValue wstring;

h

5.3.4 LifeCycle issues

February 10, 1998 2:04 pm

Value type instances are always local to their creating context, i.e in a given language
mapping an instance of a value type is always created as a local “language” object with
no POA semantics attached to it initially.

When passed using a CORBA invocation, a copy of the value is made in the receiving
context and that copy starts its life as a local programming language entity with no
POA semantics attached to it.

If a value type supports an ordinary interface type, its instances may also be passed by
reference when the formal parameter type is an interface type (see Section 5.3.2.4,
“Parameter Passing,” on page 5-27). In this case they behave like ordinary object
implementations and must be associated with a POA policy (CORBA 2.2) or a BOA
(CORBA 2.1) and also be registered with the ORB (e.g. POA::activate_object()
(CORBA 2.2), BOA::0bj_is_ready() (CORBA 2.1), etc.) before they can be passed by
reference. Not registering the value as a CORBA object and/or not associating an
appropriate policy with it results in an exception when trying to use it as a remote
object, the “normal” behavior. The exception raised shalDBSECT_NOT_EXIST

with an identified minor code (see Section 5.10, “Minor Exception Codes”).
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5.3.4.1 Creation and Factories

When an instance of a value type is received by the ORB, it must be demarshaled and
an appropriate factory for its actual type found in order for the new instance to be
created. The type is encoded by the RepositorylD which is passed over the wire as part
of an invocation. The mapping between the type (as specified by the RepositoryID)
and the factory is language specific. In certain languages it may be possible to specify
default policies that are used to find the factory, without requiring that specific

routines be called. In others the runtime and/or generated code may have to explicitly
specify the mapping on a per type basis. In others a combination may be used. In any
event the ORB implementation is responsible for maintaining this mapping See
Section 5.3.6.3, “Language Specific Value Factory Requirements” for more details on
the requirements for each language mapping.

5.3.5 Security Considerations

The addition of value types has few impacts on the CORBA security model. In
essence, the security implications in defining and using value types are similar to those
involved with the use of IDL structs. Instances of value types are mapped to local,
concrete programming language constructs. Except for providing the marshaling
mechanisms, the ORB is not directly involved with accessing value type
implementations. This specification is mostly about 2 things: how value types manifest
themselves as concrete programming language constructs and how they are
transmitted.

To see this consider how value types are actually used. The IDL definition of a value
type in conjunction with a programming language mapping is used to generate the
concrete programming language definitions for that type.

Let us consider its lifecycle. In order to use it, the programmer uses the mechanisms in
the programming language to instantiate an instance. This is instance is a local
programming language construct. It is not “registered” with the ORB, object adapter,
etc. The programmer may manipulate this programming construct just like any other
programming language construct. So far there are no security implications. As long as
no ORB-mediated invocations are made, the programmer may manipulate the
construct. Note, this includes making “local”, non ORB-mediated calls to any locally
implemented operations. Any assignments to the construct are the responsibility of the
programmer and have no special security implications.

Things get interesting when the program attempts to pass one of these constructs
through an orb-mediated invocation (i.e. calls a stub which uses it as a parameter type,
or uses the DIl). There are two cases to consider:

Value as Value

The formal type of the parameter is a value. This case is no different from using any
other kind of a value (long, string, struct, etc.) in a CORBA invocation, with respect to
security. The value (data) is marshaled and delivered to the receiving context. On the
receiving context, the knowledge of the type is used (at least implicitly) to find the
factory to create the correct local programming language construct. The data is then
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unmarshaled to fill in the newly created construct. This is similar to using other values
(longs, strings, structs, etc.) except that the knowledge of the factory is not “built-in”
to the ORB’s skeleton/DSI engine.

Value as Object Reference

The formal type of the parameter is an interface type which is supported by a value.
The program must have “registered” the value with an object adapter and is really
using the returned object reference (see for the specific rules.) Thus this case “reduces”
to a regular CORBA invocation, using a regular object reference. An IOR is passed to
the receiving context. All the “normal” security considerations apply. From the point

of view of the receiving context, the IOR is a “normal” object reference. No “special”
rules, with respect to security or otherwise, apply to it. The fact that it is ultimately a
reference to an implementation that was created from instantiating and registering an
value type implementation is not relevant.

In both of these cases, security considerations are involved with the decision to allow
the ORB-mediated invocation to proceed. The fact that a value type is involved is not
material.

5.3.6 Language Mappings

5.3.6.1

5.3.6.2

February 10, 1998 2:04 pm

General Requirements

A concrete value will map to a concrete usable “class” construct in each programming
language, plus possibly some helper classes where appropriate. In Java, C++, and
Smalltalk this will be a real concrete class. In C it will be a struct. This mapping will
be captured in the Interface Repository by storing the extra information.

An abstract value is mapped to some sort of an abstract construct--an interface in Java,
and an abstract class with pure virtual function members in C++.

Tools that implement the language mapping are free to “extend” the implementation
classes with “extra” data members and methods. When an instance of such a class is
used as a parameter, only the portions that correspond directly to the IDL declaration,
are marshaled and delivered to the receiving context. This allows freedom of
implementations while preserving the notion of contract and type safety in IDL.

Language Specific Marshaling

Each language mapping specifies an appropriate marshaling/unmarshaling protocol and
the entry point for custom marshaling/unmarshaling.
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5.3.6.3 Language Specific Value Factory Requirements

Each language mapping shall specify the algorithm and means by which RepositorylDs
are used to find the appropriate factory for an instance of a value type so that it may be
created as it is unmarshaled “off the wire”.

It is desirable, where it makes sense, to specify a “default” policy for automatically
using RepositorylDs that are in common formats to find the appropriate factory. Such
a policy can be thought of as an implicit registration. Additionally, IDL is defined
which provides a portable way to register the association between an arbitrary
RepositorylD and value factory with the ORB runtime.

Each language mapping shall specify how and when the registration occurs, both
explicit and implicit. The registration must occur before an attempt is made to
unmarshal an instance of a value type. If the ORB is unable to locate and use the
appropriate factory, then MARSHAL exception with an identified minor code (see
Section 5.10, “Minor Exception Codes”) is raised.

Because the type of the factory is programming language specific and each
programming language platform has different policies, the factory type must be
specified amative . It is the responsibility of each language mapping to specify the
actual programming language type of the factory.

/I IDL
native ValueFactory;

interface ORB {
ValueFactory register_value_factory(
in Repositoryld id,
in ValueFactory factory
);
void unregister_value_factory(in Repositoryld id);
ValueFactory lookup_value_factory(in Repositoryld id);

b

Theregister_value_factory() operation registers théalueFactory passed to it as
the factory for the type identified by thRepositoryld string argument. If a factory
was already registered for that type, the old factory is returned, otherwise a language
mapping specified specific value (usually null if the language mapping supports it) for
the native ValueFactory. If the registration fails theBAD PARAM exception with
an identified minor code (see Section 5.10, “Minor Exception Codes”) is raised.

Thelookup_value factory() operation returns the ValueFactory registered for the
specified Repositoryld string, either explicitly (because the registration routine was
called) or implicitly, for the specified Repositoryld string. If it is unable to locate a
factory then @BAD_PARAM exception with an identified minor code (see

Section 5.10, “Minor Exception Codes”) is raised.
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Theunregister_value_factory() operation unregisters the factory already associated
with the specifiedRepositoryld string argument. If it is unable to locate the factory
then aBAD_PARAM exception with an identified minor code (see Section 5.10,
“Minor Exception Codes”) is raised.

Although technically these definitions are PIDL (because the operations are defined on

the ORB pseudo-object), the language mappings for these types and operations shall

treat them as if they are regular IDL and the standard language mapping rules shall be
followed.

5.3.6.4 Value Method Implementation

The mapped class must support method bodies (i.e. code) that implement the required
IDL operations. The means by which this association is accomplished is a language
mapping “detail” in much the same way that an IDL compiler is.

5.3.7 Custom Marshaling

February 10, 1998 2:04 pm

Value types can override the default marshaling/unmarshaling model and provide their
own way to encode/decode their state. Custom marshaling is intended to be used to
facilitate integration of existing “class libraries” and other legacy systems. It is
explicitly not intended to be a standard practice, nor used in other OMG specifications
to avoid “standard ORB” marshaling.

The fact that a value type has some custom marshaling code is declared explicitly in
the IDL. This explicit declaration has two goals:

® type safety: stub and skeleton can know statically that a given type is custom
marshalled and can then do sanity check on what is coming over the wire.

® efficiency: for value types that are not custom marshaled no run time test is
necessary in the marshaling code.

A custom marshaled value type is indicated syntactically by use of the custom
modifier. It may also have an optional state definition. The state definition is treated
the same as that of a non custom value type for mapping purposes, i.e. the fields show
up in the same fashion in the concrete programming language. It is provided to help
with application portability.

A custom marshalled value type is always a stateful value type.
/I Example IDL

custom value T {
/I optional state definition

b

Custom value types can never be safely truncated to base i.e they always require an
exact match for their Repositoryld in the receiving context.
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5.3.7.1

Once a value type has been marked as custom, a marshaling policy object needs to be
registered for it. The marshaling policy encapsulates the application code that can
marshal and unmarshal instances of the value type over a stream using the CDR
encoding. It is the responsibility of the implementation to marshal the state of all of its
base types.

Non-custom value types may not (transitively) inherit from custom value types.

Streaming A Custom Value

The following IDL defines the interfaces that are used to support custom marshaling.

module CORBA {
abstract value StreamingPolicy {
void marshal (in CDROutputStream os, in ValueBase value);
ValueBase unmarshal (in CDRInputStream is);
2
%

The StreamingPolicy is a abstract value type that is meant to be used by the ORB, not
the user. The implementer of a custom value type must provide an implementation of a
StreamingPolicy object. Each custom marshaled value type will have its own
implementation. The interface is exposed in the CORBA module so that the
implementer can use the skeletons generated by the IDL compiler as the basis for the
implementation. Hence there is no need for the application to acquire a reference to a
Stream.

The implementation requirements of the streaming mechanism require that the
implementations must be local since local memory addresses (i.e. the marshal buffers)
have to be manipulated.

A StreamingPolicy can be shared by several value types or each type can have its own
policy. The ORB run time simply maintains an association between
CORBA::Repositoryld and StreamingPolicies.

module CORBA {
interface ORB {

StreamingPolicy register_streaming_policy(
in CORBA::Repositoryld id,
in StreamingPolicy policy);

StreamingPolicy lookup_streaming_policy(
in CORBA::Repositoryld id);

void unregister_streaming_policy(
in CORBA::Repositoryld id);
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The register operation replaces an existing registration if a policy has already been
registered for the specified type. If a policy was already registered for that type, the old
policy is returned, otherwise a null value type (as defined in the language mapping) is
returned.

This API is guaranteed to be supported by the ORB but each language mapping is free
to add extra facilities to support more automatic ways for a given value type to define
and register its marshaling policy.

CDR Streams are defined by the following interfaces:
module CORBA {

typedef sequence<any> AnySeq;

typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSeq;

typedef sequence<wchar> WCharSeq;

typedef sequence<octet> OctetSeq;

typedef sequence<short> ShortSeq;

typedef sequence<unsigned short> UShortSeq;
typedef sequence<long> LongSeq;

typedef sequence<unsigned long> ULongSeq;
typedef sequence<long long> LongLongSeq;
typedef sequence<unsigned long long> ULongLongSeq;
typedef sequence<float> FloatSeq;

typedef sequence<double> DoubleSeq;
typedef sequence<string> StringSeq;

typedef sequence<wstring> WStringSeq;

abstract value CDROutputStream {

February 10, 1998 2:04 pm

void write_any

void write_boolean
void write_char

void write_wchar
void write_octet

void write_short

void write_ushort
void write_long

void write_ulong

void write_longlong
void write_ulonglong
void write_float

void write_double
void write_longdouble
void write_string
void write_wstring
void write_objref
void write_value

void write_TypeCode

(in any value);

(in boolean value);

(in char value);

(in wchar value);

(in octet value);

(in short value);

(in unsigned short value);
(in long value);

(in unsigned long value);
(in long long value);

(in unsigned long long value);
(in float value);

(in double value);

(in long double value);

(in string value);

(in wstring value);

(in Object value);

(in ValueBase value);

(in TypeCode value);
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void write_any_array(

in AnySeq seq,
in unsigned long offset,

in unsigned long length);

void write_boolean_array(in BooleanSeq seq,

void write_char_array(

void write_wchar_array(

void write_octet_array(

void write_long_array(

void write_ulong_array(

in unsigned long offset,

in unsigned long length);

in CharSeq seq,
in unsigned long offset,

in unsigned long length);

in WcharSeq seq,
in unsigned long offset,

in unsigned long length);

in OctetSeq seq,
in unsigned long offset,

in unsigned long length);

in LongSeq seq,
in unsigned long offset,

in unsigned long length);

in ULongSeq seq,
in unsigned long offset,

in unsigned long length);

void write_ulonglong_array(in ULongLongSeq seq,

in unsigned long offset,

in unsigned long length);

void write_longlong_array(in LongLongSeq seq,

void write_float_array(

in unsigned long offset,

in unsigned long length);

in FloatSeq seq,
in unsigned long offset,

in unsigned long length);

void write_double_array( in DoubleSeq seq,

void write_string_array(

in unsigned long offset,

in unsigned long length);
in StringSeq seq,

in unsigned long offset,

in unsigned long length);

void write_wstring_array( in WStringSeq seq,

in unsigned long offset,

in unsigned long length);

orbos/98-01-18: Objects By Value (with errata)

2/10/98



February 10, 1998 2:04 pm

abstract value CDRInputStream {

any read_any();

boolean read_boolean();

char read_char();

wchar read_wchar();

octet read_octet();

short read_short();

unsigned short read_ushort();
long read_long();

unsigned long read_ulong();
long long long read_long();
unsigned long long read_ulonglong();
float read_float();

double read_double();

long double read_longdouble();
string read_string ();

wstring read_wstring();

Object read_objref();
ValueBase read_value();
TypeCode read_TypeCode();
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void read_any_array( inout AnySeq seq,

in unsigned long offset,

in unsigned long length);
void read_boolean_array( inout BooleanSeq seq,

in unsigned long offset,

in unsigned long length);
void read_char_array( inout CharSeq seq,

in unsigned long offset,

in unsigned long length);
void read_wchar_array(  inout WcharSeq seq,

in unsigned long offset,

in unsigned long length);
void read_octet_array/( inout OctetSeq seq,

in unsigned long offset,

in unsigned long length);
void read_long_array( inout LongSeq seq,

in unsigned long offset,

in unsigned long length);
void read_ulong_array(  inout ULongSeq seq,

in unsigned long offset,

in unsigned long length);
void read_ulonglong_array(inout ULongLongSeq seq,

in unsigned long offset,

in unsigned long length);
void read_longlong_array(inout LongLongSeq seq,

in unsigned long offset,

in unsigned long length);
void read_float_array( inout FloatSeq seq,

in unsigned long offset,

in unsigned long length);
void read_double_array( inout DoubleSeq seq,

in unsigned long offset,

in unsigned long length);
void read_string_array( inout StringSeq seq,

in unsigned long offset,

in unsigned long length);
void read_wstring_array( inout WStringSeq seq,

in unsigned long offset,

in unsigned long length);

Note that the CDR streams are abstract value types. This ensures that their
implementation will be local, which is required in order for them to properly flatten
and encode nested value types.
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The ORB (i.e. the CDR encoding engine) is responsible for actually constructing the
value's encoding. The application marshaling code merely calls the above operations.
The details of writing the value tag, header information, end tag(s), etc. are
specifically not exposed to the application code. In particular the size of the custom
data is not written by the application. This guarantees that the custom marshaling (and
unmarshaling code) cannot corrupt the other parameters of the call.

If an inconsistency is detected, including not having registered a streaming policy, then
the standard system exceptiBMARSHAL is raised.

A possible implementation might have the engine determine that a custom marshal
parameter is “next”. It would then write the value tag and other header information and
then return control back to the application defined marshaling policy which would do
the marshaling by calling the CDROutputStream operations to write the data as
appropriate. (Note the stream takes care off breaking the data into chunks, if
necessary.) When control was returned back to the engine, it performs any other
cleanup activities to complete the value type, and then proceeds onto the next
parameter. How this is actually accomplished is an implementation detail of the ORB.

The CDR Streams shall test for possible shared or null values and place appropriate
indirections or null encodings (even when used from the custom streaming policy).

There are no explicit operations for creating the streams. It is assumed that the ORB
implicitly acts as a factory. In a sense they are always available.

5.3.8 Access to the Sending Context Run Time

There are two cases where a receiving context might want to access the run time
environment of the sending context:

® To attempt the downloading of some missing implementation for the value

® To access some meta information about the version of the value just received

In order the provide that kind of service a call back object interface is defined. It may
optionally be supported by the sending context (it can be seen as a service). If such a
callback object is supported its IOR may be added to an optional service context in the
GIOP header passed from the sending context to the receiving context.

A new constant is added to the IOP Module to define the new service context:
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module IOP {

const ServicelD SendingContextRunTime = 5;

A service context tagged with the ServicelD 5 contains an encapsulation of the IOR for
a SendingContext::RunTime object. Because ORBs are always free to skip a service
context they don’t understand, this addition does not impact IIOP interoperability.

module SendingContext {

interface RunTime {}; // so that we can provide more

/I sending context run time
/I services in the future

interface CodeBase: RunTime {

b
b

Supporting the CodeBase interface for a given ORB run time is an issue of quality of
service. The point here is that if the sending context does not support a CodeBase then
the receiving context will simply raise an exception with which the sending context

had to be prepared to deal. There will always be cases where a receiving context will

typedef string URL;
typedef sequence<URL> URLSeq;

typedef sequence <CORBA::FullValueDescription> ValueDescSeq;

/I Operation to obtain the IR from the sending context
CORBA::InterfaceRepository get_ir();

/I Operations to obtain a URL to the implementation code
URL Implementation(in CORBA::Repositoryld x);
URLSeq implementations(in CORBA::RepositoryldSeq x);

/I Operations to obtain complete meta information about a Value
/I This is just a performance optimization the IR can provide

/I the same information

CORBA::FullValueDescription meta(in CORBA::Repositoryld x);
ValueDescSeq metas(in CORBA::RepositoryldSeq x);

/I To obtain a type graph for a value type

/I same comment as before the IR can provide similar

/l information

CORBA::RepositoryldSeq bases(in CORBA::Repositoryld x);

get a value type and won't be able to interpret it because:
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® |t can't get a legal implementation for it (even if it knows where it is, possibly due
to security and/or resource access issues)

® |ts local version is so radically different that it cannot make sense out of the piece
of state being provided

These two failure modes will be represented by the CORBA system exception
NO_IMPLEMENT with identified minor codes, for a missing local value
implementation and for incompatible versions (see Section 5.10, “Minor Exception
Codes").

Under certain conditions it is possible that when several values of the same CORBA
type (same repository id) are sent in either a request or reply, that the reality is that
they have distinct implementations. In this case, in addition to the codebase URL that
is sent in the service context, each value which has a different codebase may have a
codebase URL associated with it. This is encoded by using a different tag to encode
the value on the wire.

5.4 |IDL Extensions

5.4.1 Syntax

February 10, 1998 2:04 pm

The following new syntax productions are added to IDL:
<value_token> ::= “value”

<value_type_spec_token> ::= “ValueBase”

<safe_token> ::= “safe”

<custom_token> ::= “custom”

<public_token> ::= “public”

<init_token> ::= “init”

<abstract_token> ::= “abstract”

<supports_token> ::= “supports”

<value> ::= ( <value_dcl> | <value_abs_dcl> | <value_box_dcl> |
<value_forward_dcl>) “;”

orbos/98-01-18: Objects By Value (with errata) 5-43



11!
U1

<value_forward_dcl> ::= <value_token> <identifier>
<value_box_dcl> ::= <value_token> <identifier> <type_spec>

<value_abs_dcl> ::= <abstract_token> <value_token> <identifier>
[ <value_inheritance_spec> ] “{" <export>* “}

<value_dcl> ::= <value_header>“{" <value_body > “}"

<value_header> ::= [<custom_token> ] <value_token> <identifier>
[ <value_inheritance_spec>]

<value_inheritance_spec> ::=*." [ <safe_token>] <scoped_name>
{*)” <scoped_name>}*
[ <supports_token> <scoped_name> {"“,” <scoped_name> }*]

<value_body> ::= <value_element>*
<value_element> ::= <export> | < state_member> | <init_dcl>

<state_member> ::= <public_token> <type_spec> <declarators> “;”
| <type_spec> <declarators> “:"

<init_dcl> ::= <init_token> “(* [ <init_param_decls>] “)" "
<init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> }
<init_param_decl> ::= “in” <param_type_spec> <simple_declarator>
The <definition> rule is modified to allow values:

<definition> ::= <type_dcl> ;" | <const_dcl>“;" | <except_dcl> *;"
| <interface> *;” | <value> “;” | <module> *;”

The type specification rules are modified to allow use of the base value as a type
specification.

<base_type_spec> ::=... | <value_type_spec>

<value_type_spec> ::= <value_type_spec_token>

5.4.2 New lexical type - Keyword Identifier

In order to allow for the addition of new keywords to IDL in a way that will not
invalidate existing IDL, a new lexical class is added to IDL--keyword identifier.

Keyword identifiers obey the rules for identifiers and must be written exactly as shown
in the list below. However an identifier that matches a word on the keyword identifier
list is treated as a keyword and not as an identifier if it occurs in a context in which it
would be legal to interpret it as the reserved word according to the syntax.
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Keyword identifiers are used in the grammar by adding a new non-terminal production,
conventionally called <yyy token>, where yyy stands for the name of the token. A
<yyy_token> ::= “terminal_string” is also added. Since the production defining
<identifier> is not explicitly shown, an alternative containing the new token is added to
the definition of <identifier>. The token is then used at higher levels in the grammar.

Note: It is recommended that new keyword identifiers only be added such that the
resulting grammar is still easily parsable, e.g. is LALR(1).

This specification adds the following keyword identifiers:
value ValueBase safe  custom public init abstract
supports

The keyword identifievalue is a keyword (in the appropriate context) that is used to
introduce a value declaration.

The keyword identifieValueBase is the name of the base type for value types and
may be used as a type specifier.

The keyword identifiesafe is a keyword (in the appropriate context) that is used to
indicate that it is safe to truncate a derived value instance to a less derived value
instance.

The keyword identifiecustom is a keyword (in the appropriate context) that is used
to indicate that a value type should be custom marshaled whenever it is used.

The keyword identifiepublic is a keyword (in the appropriate context) that is used to
indicate that a value data member should be public.

The keyword identifieinit is a keyword (in the appropriate context) that is used to
define an initializer for a value type.

The keyword identifieabstract is a keyword (in the appropriate context) that is used
to introduce an abstract declaration, either value or interface.

The keyword identifiesupports is a keyword (in the appropriate context) that is used
to indicate that a value type supports an interface.

5.4.3 ValueBase Operations

February 10, 1998 2:04 pm

There are some operations that can be done on any value. These operations are
analogous to the operations that are defined on Object. Conceptually they are defined
on all values, but in reality their actual mapping depends upon on the language

mapping.
module CORBA {

value ValueBase {};

h
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5.5 Interface Repository

Mirroring the syntax a new meta object tygalueDef is added to the Interface
Repository definition as well as two strustalueDescription and

FullValueDescription . The interface repository needs to be also modified to support
the creation of such entities.

New DefinitionKinds, calledik_Value and dk_ValueBox are added:

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox

2

A new creation operation is added callzeéate_value
module CORBA({
interface Container: IRObject {

ValueDef create_value(
in Repositoryld  id,

in ldentifier name,

in VersionSpec  version,

in boolean is_custom,

in boolean is_abstract,

in octet flags, // must be 0
in ValueDef base_ value,

in boolean has_safe base,

in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces

);

ValueBoxDef create_value_box(
in IDLType original_type_def
);

h
b

The interface ValueDef is also added:

module CORBA {
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typedef short Visibility;
const Visibility PRIVATE = 0;
const Visibility PUBLIC = 1;

struct ValueMember {
Identifier name;
TypeCode type;
IDLType type_def;
Visibility access;

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;
attribute  IDLType  type_def;
attribute  Identifier name;
attribute  Visibility —access;

h

typedef sequence <ValueMember> ValueMemberSeq;

struct Initializer {
StructMemberSeq members;

b

typedef sequence<initializer> InitializerSeq;

interface InitializerDef : Contained {
attribute StructMemberSeq members;

h

interface ValueDef : Container, Contained, IDLType {
/l read/write interface

attribute InterfaceDefSeq supported_interfaces;

attribute ValueDef base value;

attribute ValueDefSeq abstract_base values;
attribute boolean is_abstract;

attribute boolean is_custom;

attribute octet flags; // always O
attribute boolean has_safe base;

/I read interface

boolean is_a(in Repositoryld value_id);

orbos/98-01-18: Objects By Value (with errata)

5-47



11!
U1

5-48

struct FullValueDescription {

Identifier name;
Repositoryld id;

boolean is_abstract;
boolean is_custom;

octet flags; // always O
Repositoryld defined_in;
VersionSpec version;

OpDescriptionSeq operations;
AttrDescriptionSeq  attributes;

ValueMemberSeq members;
InitializerSeq initializers;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base values;
boolean has_safe base;
Repositoryld base_value;
TypeCode type;

2
FullValueDescription describe_value();

/I write interface

ValueMemberDef create_value_member(
in Identifier name,
in IDLType type_def,
in Visibility access

);

InitializerDef create_initializer(
in StructMemberSeq members

);

AttributeDef create_attribute(
in Repositoryld  id,

in Identifier name,
in VersionSpec  version,
in IDLType type,
in AttributeMode mode
);
OperationDef create_operation (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq  exceptions,
in ContextldSeq contexts
);
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struct ValueDescription {
Identifier name;
Repositoryld id;
boolean is_abstract;
boolean is_custom;
octet flags; // always O
Repositoryld defined_in;
VersionSpec version;

RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean has_safe base;
Repositoryld base_value;

h

The interface ValueBoxDef is also added:

module CORBA {

interface ValueBoxDef : IDLType {
attribute IDLType original_type_def;

h

5.6 Repository Id and Value Types

5.6.1 CORBA Repository Ids

CORBA Repositorylds are defined as opaque semantic markers. In the core
specification they are just arbitrary strings and their association with an IDL type is
purely conventionali.e it must be maintained explicitly somewhere (in existing ORB
implementation this is done either in an IR or in memory tables).

This core model and has real value in allowing great flexibility in federation and
interoperability by:

® remapping ids while keeping IDL source or stub libraries unchanged

® changing IDL source or stub libraries while maintaining ids the same.This core
model is very useful as a “lowest possible denominator”.

The CORBA however recognized that “styles” of ID can be defined that may help the
management, versioning, interoperability across domains/organization that choose to
agree on these “styles”.

If one uses such a style, the association between the id and the IDL type it denotes may
not be arbitrary. The ids have some intrinsic information about the type they denote.
For instance one of the formats defined is
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IDL:/<name>/<name>/<name>:<major version number>.<minor version number>

where it is assumed that the names are the fully scoped names of the IDL type
definition.

Systems or organizations that use this style can detect versioning problems simply by
comparing ids locally, without having to lookup schema information in an interface
repository.

5.6.2 Repositoryld for Value Type

5.6.2.1

Repositorylds are used by the ORB to identify value types as they are being
unmarshaled. If the Ids are truly arbitrary, then the ORB must be able to lookup the
association in a registry somewhere in its environment or use the IR.

This method can be used to locate unmarshaling code, perform version checking, deal
with schema evolution etc. ...) with truly opaque ids.

For portability and interoperability reasons, having a defined, “standard” style for
Repositorylds associated with value types would be very useful.

This submission defines such a new “standard” format as follows:
“H:” <scoped_name> “" <64 bits hash code>

The separator between the components of the scoped name shalt’be a “

Versioning Issues

We don’t recommand the classic id formildL:” <scoped name> “:" <major> *“.
<minor> because it is not “foolproof” enough. (It is of course allowable to use this
format, since the CORE specification does not mandate any particular form.) The
problem with the existing scheme as it is used by most vendors today, is that it is an
optimisticscheme. sIDL compiler keep on spitting out the default version 1.0 unless
somebody place a explicit #pragma that bumps the version up. Because people are
sloppy that method generates a lot of interfaces that are not really in synch but uses
the same id.

This is not a too severe problem for interfaces. If stubs and skeleton are not actually in
synch, even though the Repositorylds report they are, the worse that can happen is that
the result of an invocation isBAD_OPERATION:xception. The issue with value

types it is more problematic because the inconsistency between the stub and skeleton
marshaling/unmarshaling code can confuse the marshaling engine and may corrupt
memory and/or dump core.

A pessimisticscheme whereby arstructural change in the IDL source results in the
versions being incompatible. With such a scheme the ORB can raise a meaningful
exception instead of corrupting memory or dumping core.

A hash code is to be computed from the IDL definition. Everytime the IDL definition
changes the hash function will (statistically) produce a hash code which is different
from the previous one. When an ORB run time receives a value with a different hash
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than what is expected, it is free to raise a BAD_PARAM exception. It may also try to
resolve the incompatibility by some means. If it is not successful, then it shall raise the
BAD_PARAM exception.

A user may still use the #pragma id to force an id to be a specific hash value, although
this is not recommended.

Note: The Versioning scheme based on a major and minor version could be made foolproof
but it would require more sophisticated IDL compilers than are in widespread use today. The
compiler would have to be stateful (i.e operate out of a persistent IR), be integrated with a
version management system, and automatically compare newer versions of IDL definition
with older version. If it determined that a newer version was structurally compatible it would
bump the minor number, otherwise it would bump the major version number.

5.6.3 Hashing Algorithm

The hash code is computed using the signature of a sequence of longs (four octets)
written in network byte order (big endian) that reflects the value type definition. The
National Institute of Standards and Technology (NIST) Secure Hash Algorithm (SHA-
1) is used to compute a signature for the stream. The first two 32-bit quantities are
used to form a 64-bit hash.

The sequence of long is equivalent to a fully expanded typecode for the value type that
would ignore all field names, it is constructed as follows:

Each IDL type constructor is identified with its tk constant i.e
® interface: tk_objref

® struct: tk_struct

® value: tk_value

® union: tk_union

® sequence: tk_sequence

.

Each base type is identified with its tk constant i.e

® short: tk_short

®* |ong:tk_long

The value type definition is traversed depth first, in the order of the fields declaration
starting from its highest base value type the following the derivation chain downward
(only single inheritance is involved since only concrete base value type are involved).

For each field:
® |fitis a base type, its tk constant is appended to the sequence of long

® |fitis an interface type, tk_objref is appended to the sequence of long
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5.7 Dynamic Any

5-52

® |fitis a constructed type or a value type, the tk constant of the constructed type is
appended to the sequence. The algorithm is applied recursively to its remaining
components

® |f the field uses a type which has already been processed, Oxfffffff is appended to
the sequence followed by an indirection to the position in the sequence where the
type encoding is located. (similar to what is done for recursive typecode)

® |fitis a bounded sequence, or an array, the dimensions are appended to the octet
sequence after tk_sequence or tk_array

® Typdefs are ignored (i.e resolved to the type being aliased)

The SHA-1 algorithm is executed on the sequence of long in network byte order and
produces five 32-bit values shal0..4].

® The hash value is assembled from the first and second 32-bit values.

long hash = sha[l] << 32 + sha[0].

The following operations are added to support value types in dynamic anys:

module CORBA {

interface DynAny {

void insert_value (in ValueBase value) raises (InvalidValue);
ValueBase get_value() raises (TypeMismatch);

interface DynValue : DynAny {
FieldName current_member_name();
TCKind current_member_kind();
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value) raises (InvalidSeq);

b

Any attempt to set or get a member which has been declared private in the IDL
definition of the value contained in the dynamic any raises the exception
NO_PERMISSION.

Thenext() andrewind() operations skip private members. Tdex=k() operation will
raise theNO_PERMISSION exception if an attempt is made to seek to a private
member.
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5.8 TypeCodes

Unlike other constructed types, we don't provide a way to construct new dynamic
values from scratch in order to avoid the creation of values with an initial state that
would violate the value type invariant.

Two new TypeCodes are introduced.

5.8.1 New TCKinds

Two new TCKinds are introduced:

module CORBA {
enum TCKind {
tk_value,

tk_value_box,

h

5.8.2 New ORB operations

February 10, 1998 2:04 pm

The following new operations are added to the ORB in order to create the two new
TypeCodes needed for value types:

interface ORB {

TypeCode create_value_tc (
in Repositoryld  id;
in Identifier name;
in boolean is_custom;
in Repositoryld  base_id; // immediate concrete parent type, “ if none
in ValueMembersSeq members; // may be null if the typecode is a
/I placeholder in a recursive typecode definition

)i
TypeCode fill_in_recursive_value_tc (
in TypeCode tc;
in Repository id;
in ValueMembersSeq placeholder_replacement;
)i
TypeCode create_box_value_tc (
in Repositoryld  id,
in Identifier name,
in TypeCode orignal_type

);
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These operations have to handle the potentially recursive nature of value TypeCodes.

It is legal to create a typecode with only an id, name, custom flag with a null member.
That TypeCode can be used as a “placeholder” for other typecodes that refer to it.
Then it is possible to “go back” to the placeholder typecode and fill in the correct
members field using th#éll_in_recursive_value_tc() operation.

5.9 GIOP/IIOP Extensions and Mapping

5-54

GIOP messages and the on-the-wire format are extended to support passing complex
object state by value.

A new minor revision number for GIOP and IIOP is required by this submission.

The general philosophy is to add support for transmission of
®* the data (state)

® type information (encoded as RepositorylDs)

The loading (and possible transmission) of code is outside of the scope of the IIOP
definition but enough information must be carried to support it (codebase).

The format also makes provision for custom marshaling i.e the fact that a value object
is encoded using application-defined code.

The encoding supports all of the features of value types as well as supporting the
fragmentation or “chunking” of value types. It does so in a compact way.

At a high level the format can be described as the linearization of a graph. The graph
is the depth-first exploration of the transitive closure that starts at the top level value
object and follows its “reference to value objects” fields (an ordinary remote reference
its just written as an IOR). It is a recursive encoding similar to the one used for
TypeCodes. An indirection is used to point to a value that has already been encoded.

The data members are written beginning with the highest possible base type to the
most derived type in the order of their declaration.

5.9.1 Partial Type Information and Versioning

The format provides support for partial type information and versioning issues in the
receiving context.

The type information is specified by providing a list of repositorylDs, preceded by a
long specifying the number of repositorylIDs.
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The first repositoryID, which is always present is the id for the real type of the value.
If the value’s real type is a derived type, the sending context is responsible for listing
the repositorylDs for all the base types to which it is safe to truncate the real type,
going up (the derivation hierarchy) to, and including if appropriate, the formal type.

If the receiving context needs more typing information it can go back to the sending
context do a lookup based on that repositoryID to retrieve more typing information
(e.g. the type graph).

CORBA RepositorylDs also contain standard version identification (major and minor
version numbers). It is up to the ORB run time to check whether the version of the
value being transmitted is compatible with the version expected, and to apply whatever
truncation/conversion rules might be appropriate (with the help of a local interface
repository or the SendingContext::RunTime service). The RMI model of
truncation/conversion across versions can be supported here.

5.9.2 Scope of the Indirections

The special value Oxffffffff introduces an indirection, i.e it directs the decoder to go
somewhere else in the marshaling buffer to find what it is looking for. This can be
either a URL which has already been encoded, or another value object which is shared
in a graph. Oxffffffff is always followed by a long indicating where to go in the buffer.

The encoding used for indirection is the same as that used for recursive TypeCodes
with the following exception:

Indirections are assumed to work across parameters i.e the same value object can be shared
across multiple parameters of an IDL call.

5.9.3 Other Encoding Information

A “new” value is coded as a value header followed by a list of value chunks. The
header contains a tag, a codebase URL if appropriate, followed by the repositorylD
and an octet flag of bits. Because the same repositorylD (and codebase URL) could be
repeated many times in a single request when sending a complex graph, they are
encoded as a regular string the first time they appear, and use an indirection for later
occurrences.

The octet flag contains information which makes operating on value types easier. The
flag is reserved for later use and shall be 0.

5.9.4 Fragmentation

February 10, 1998 2:04 pm

It is anticipated that value types may be rather large, particularly when a graph is being
transmitted. Hence the encoding supports the breaking up of the serialization into an
arbitrary number of “chunks” in order to facilitate incremental processing.

The data may be split into multiple chunks at arbitrary points Any given CDR type
representation may be split across multiple chunks. It is the responsibility of the CDR
stream to hide the chunking from the marshaling code.
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The use of chunking is signaled by the appearance of the appropriate tag at the
beginning of the value.

Each chunk is preceded by a positive long which specifies the length of the chunk.

A value is terminated by an end tag which is a non-positive long so it can be
differentiated from the start of another chunk. In the case of values which contain other
values (e.g. a linked list) the “recursive” value is started without there being an end
tag. The absolute value of an end tag (when if finally appears) indicates the number of
levels of “recursion” to pop, i.e. how many nested values are actually being terminated.
The detailed rules are as follows:

® End tags and value size tags are encoded using non-overlapping ranges so that the
unmarshaling code can tell after reading each chunk whether:

» another chunk follows (positive tag)

« one or multiple value types are ending at a given point in the stream (negative or
null tag)

® The end tag is a non-positive long indicating the number of value types (recursion
level) ending at this point in the CDR stream. A recursion depth of zero indicates
that more than 2731 recursion levels are ending, and at least one more end tag
follows. The following tag represents the number of recursion levels to be added to
the previous end tag. All value types using a chunked encoding will always be
terminated by at least one end tag with a value of -1.

Because data members are encoded in their declaration order, declaring a data member
containing value type last is likely to result in more compact encoding on the wire because it
maximizes the number of value ending at the same place, the canonical example for that is a
linked list.

Truncating a value type in the receiving context may require keeping track of unused
buffer chunks (only during unmarshaling) in case further indirection tags point back to
values that appear in the unused chunks, which means that they must then be
unmarshalled.

Value types that are custom marshaled are encoded as chunks in order to let the ORB
run time know exactly where they end in the stream without relying on user defined
code.

5.9.5 Notation

The on the wire format is described by a BNF grammar with similar conventions as the
one used by the CORBAZ2.2 specification to define IDL synTdpe terminals of the
grammar are to be interpreted differently thoughiVe are describing a protocol format
and the terminal although they bear the same name as IDL token represents either:

® constant tags (TCKind)
* the GIOP CDR encoding of the corresponding IDL construct

i.e short is a shorthand for the GIOP encoding of the IDL short data type (with all the
GIOP alignment rules). Similarigtruct is a shorthand for the GIOP CDR encoding
of a struct, etc.
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5.9.6 The Format
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<value> ::=
| <value_tag> <flag_tag> <rep_ids> <value_chunk>+ <end_tag>+
| <value_codebase tag> <flag_tag> <codebase_URL> <rep_ids>
<value_chunk>+ <end_tag>+
| <indirection_tag> <indirection>
| <null_tag>
<rep_ids> ::= long <repository_id>+
<repository_id> ::= ( string | <indirection_tag> <indirection>)
<flag_tag> := (octet) 0
<value_chunk> ::= <chunk_size_tag> <octets>
<null_tag> ::= (long) O
<value_tag> ::= (long) 1
<value_codebase_tag> ::= (long) 2
<indirection_tag> ::= Oxffffffff
<codebase_URL> ::= ('string | <indirection_tag> <indirection>)
<chunk_size_tag>::=long // 0 < chunk_size_tag < 2731-1

<end_tag> := long /I -(2"31-1) <end_tag <=0

<indirection> ::= long
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<octets> := octet | octet <octets>

<state members> ::=

<member>

| <member> <state members>

<state_member> ::=// All legal IDL types should be here

value
| octet
| boolean
| char
| short

| unsigned short

| long

| unsigned long

| float

| wehar

| wstring

| string

| struct

| union

| sequence
| array

| CORBA::Object

| CORBA::ValueBase

| any

| <CDR encapsulation >

<CDR encapsulation> ::= <size> <octets>

5.9.7 New TypeCodes Encoding

The following rows are added to Table 12-2 “TypeCode enum value, parameter list
types, and parameters” in Section 12.3.4 to describe the encoding of the two new
TypeCodes added by this specification.

TCKind Integer Value Type Parameters
tk_value 29 complex| string (repository ID), string
(name), ulong (count) {string
(member name), TypeCode
(member type)}
tk_value_box 30 complex string (repository ID), string

(name), TypeCode

5-58
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5.10 Minor Exception Codes
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This submission specifies several minor exception codes in order to make it
considerably easier for clients to diagnose, in a portable fashion, some of the more
important new failure modes introduced by value objects.

In CORBA 2.1, the OMG divided the minor exception code space so that ranges of
exception codes could be allocated to vendors, using a vendor exception minor code id.

The Interoperability 1.2 RTF is using this methodology to define a space for standard
OMG minor exception codes.

The minor exception codes specified in this submission shall be assigned to this space.
The low order bits for codes being standardized by this submission are specified in the
following table. The high order bits shall be administratively assigned by the OMG
once the Interoperability 1.2 report has been accepted.

Table 5-2 Minor exception codes

SYSTEM EXCEPTION MINOR CODE EXPLANATION

OBJECT_NOT_EXIST | 1 Attempt to pass an unactivated
(unregistered) value as an object
reference

NO_IMPLEMENT 1 Missing local value implementation

2 Incompatible value implementation

version

MARSHAL 1 Unable to locate value factory

BAD_ PARAM 1 Unable to register value factory
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6.1 Introduction

6.2 Names

Java Language Mapping 0=

The mapping for aalue type is similar to the mapping for an |Bdtruct . However,
unlike the struct, the mapped value type must implement the standard Java interface
java.io.Serializable

The mapping follows the conventions established for the IDL Java Language mapping.
No additional reserved names are required.

6.3 Mapping for Value

6.3.1 Basics for Stateful Values

2/10/98

An IDL value is mapped to a public Java class with the same name, and an additional
“helper” Java class with the suffiielper appended to the interface name.

The class contains instance variables that correspond to the fields in the state definition
in the IDL declaration. The order and name of the Java instance variables are the same
as the IDL state fields. Fields which are identifiechbablic in the IDL are mapped to
public instance variables.The rest gnévate instance variables in the mapped Java.

The mapped Java class contains method definitions which correspond to the operations
defined on the value type in IDL. These definitions are defined by the implementer of
the class in Java. As noted in the Section 5.3.6.4, “Value Method Implementation,” on
page 5-35, the actual code for the methods must be provided before the (mapped) value
type can be used. The way in which the association is made is a an issue left to tool
vendors.

orbos/98-01-18: Objects By Value (with errata) 6-61



6-62

6.3.1.1

6.3.1.2

6.3.1.3

6.3.1.4

The mapped Java class contains a Java class constructor for each init() declaration. The
parameters follow the standard mapping rules.

In the absence of JDK support for GIOP serialization, the class must also implement
org.omg.CORBA.Streamable The choice of whether to generate direct support for
Streamable or to depend upon the JDK is an implementation choice of the code
generator. Note that the ORB runtime does not have to usgtriteemable methods if

JDK support is available. See Section 6.7, “Java ORB Portability Interfaces,” on
page 6-70 for more information.

The inheritance scheme and specifics of the mapped class depends upon the
inheritance and implementation characteristics of the value type and is described in the
following subsections.

Inheritance from Value

A value type that does not inherit from any other value type or interface implements
java.io.Serializable

A value type that inherits from another “pure” value type, i.e. one that does not inherit
from an interface (CORBA::Object), extends the Java class to which that value type is
mapped.

Support of Interface

A value type which supports an IDL interface uses the tie mechanism for its
implementation.

The details of the tie mechanism are awaiting approval as part of the IDL/Java
Language mapping. All ORB products which support Java, currently provide a (non-
portable) tie mechanism.

Basics for Abstract Values

Abstract value types follow the same rules as stateful ones, except for as described
below.

Abstract value types are mapped to a Java interface. The mapped Java interface also
contains abstract methods which correspond to the operations defined on the value type
in IDL. It must also extendaya.io.Serializable

The implementer must, of course, provide a class which implements the Value type.

CORBA::ValueBase

CORBA::ValueBase is mapped togva.io.Serializable
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6.3.2 Helper Class

Value types, like all other user defined IDL types have an additional “helper” Java
class.

In addition to the normal methods, the helper class for a value type also contains
operations that conceptually belong G@RBA::ValueBase . This is to make it

possible to use and pass Java classes, which did not originate as IDL definitions such
as the Java builtins, as CORBA values without first having to wrap them. Forcing
users to define such a wrapping for Java builtins would be awkward to say the least.

The following is the standard helper class generated for a value type named
<typename>

/I generated Java helper

public class<typename#elper {
public static void
insert(org.omg.CORBA.Any a,<typenames>t) {...}
public static <typename>extract(Any a) {...}
public static org.omg.CORBA.TypeCode type() {...}
public static String id() {...}
public static <typename>read(
org.omg.CORBA.portable.InputStream istream)
{..}
public static void write(
org.omg.CORBA.portable.OutputStream ostream,
<typename>value)

{...}
/I only for value helpers

public static
org.omg.CORBA.ValueDef get_value_def();

6.3.3 Holder Class

The holder class for the value type is also generated. Its name is the values’s mapped
Java classname witHolder appended to it as follows:
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final public class<value_class#older

implements org.omg.CORBA.portable.Streamable {
public <value_class>alue;
public <value_class#older() {}
public <value_classHolder(
<value_class=nitial) {
value = initial;
public void _read(org.omg.CORBA.portable InputStream i)
{..}
public void _write(org.omg.CORBA.portable OutputStream o)
{..}
public org.omg.CORBA.TypeCode _type() {...}

6.3.4 Example A

/I IDL

typedef sequence<unsigned long> WeightSeq;

module Example {

h

value WeightedBinaryTree {
unsigned long weight;
WeightedBinaryTree left;
WeightedBinaryTree right;
init(in long w);
WeightSeq preOrder();
WeightSeq postOrder();

h

/I generated Java

package Example;

public class WeightedBinaryTree implements java.io.Serializable {

/I instance variables

private int weight;

private WeightedBinaryTree left;
private WeightedBinaryTree right;

/l methods implemented by the interface developer in the file
//WeightedBinaryTree.impl
/I included (glued) here by the IDL compiler
public WeightedBinaryTree(long w) {...}
public int[] preOrder() {...}
public int[] postOrder() {...}
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final public class WeightedBinaryTreeHelper {
/I ... other standard helper methods

public static org.omg.CORBA.ValueDef get_value_def()
{--}

/I Holder class
final public class WeightedBinaryTreeHolder

implements org.omg.CORBA.portable.Streamable {
public WeightedBinaryTree value;
public WeightedBinaryTreeHolder() {}
public WeightedBinaryTreeHolder(WeightedBinaryTreeHolder initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i) {
/I read state information using the wire format and construct
/I value

}
public void _write(org.omg.CORBA.portable.OutputStream o) {

I/ write state information using the wire format

}
public org.omg.CORBA.TypeCode _type() {...}

6.3.5 Example B

February 10, 1998 2:04 pm

/I IDL

module Example {

interface Printer {
typedef sequence<unsigned long> ULongSeq;
void print(in ULongSeq data);
2
value WeightedBinaryTree supports Printer {
unsigned long weight;
WeightedBinaryTree left;
WeightedBinaryTree right;
ULongSeq preOrder();
ULongSeq postOrder();
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/I generated Java
package Example;

public class WeightedBinaryTree extends Example._PrinterimplBase {
/I instance variables
private int weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;
/I methods implemented by the interface developer in the file
/I WeightedBinaryTree.impl
/l included here by the IDL compiler
public int[] preOrder() {...}
public int[] postOrder() {...}

}

final public class WeightedBinaryTreeHelper {
/I ... other standard helper methods
public static org.omg.CORBA.ValueDef get_value_def()

{.}

6.3.6 Parameter Passing Modes

If the formal parameter in the signature of an operatioraise, then the actual
parameter is passed by value. If the formal parameter type of an operation is an
interface, then the actual parameter is passed by reference, i.e. it is widened to the
mapped Java interface before being passed.

IDL value in parameters are passed as the mapped Java class as defined above.

IDL value in andinout parameters are passed using the Holder classes defined above.

6.3.6.1 Example
/l IDL
module Example {
interface Target {
WeightedBinaryTree operation(in WeightedBinaryTree inArg,

out WeightedBinaryTree outArg,
inout WeightedBinaryTree inoutArg);
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/I generated Java code
package Example;

public interface Target {
WeightedBinaryTree operation(WeightedBinaryTree inArg,
WeightedBinarTreeHolder outArg,
WeightedBinaryTreeHolder inoutArg);

6.4 Value Factory and Marshaling

Marshaling Java value instances is straightforward, but unmarshaling value instances is
somewhat problematic. In Java there is no a priori relationship between the
RepositorylD encoded in the stream and the class name of the actual Java class that
implements the value. However, in practice we would expect that there will be a one-
to-one relationship between the RepositorylD and the fully scoped name of the value
type. However the RepositorylID may have an arbitrary prefix prepended to it, or be
completely arbitrary.

The following algorithm will be followed by the ORB:

« If the Repositoryld is a standard IDL repository id (i.e. it starts with “IDL:” then
attempt to interpret it as a fully scoped class name by stripping off the “IDL:”
header and “:<major>.<minor>" version information trailer, and replacing the
“I"s which separate the module names with “.”s.

« If this is not successful, then look up the class name in the RepositoryID to class
name map.

« If this is not successful, then raise tM&ARSHAL exception.
The IDL native typeValueFactory is mapped in Java fava.lang.Class

A null is returned whemegister_value_factory()is called and no previous
Repositoryld was registered.

As usual, it is a tools issue, as to how RepositorylDs are registered with classes. It is
our assumption that in the vast majority of times, the above default implicit registration
policies will be adequate. A tool is free to arrange to have the ORB’s
register_value_factory() explicitly called if it wishes to explicitly register a

particular Value Factory with some RepositorylD. For example, this could be done by
an “installer” in a server, by pre-loading the ORB runtime, etc..

6.5 Value Box Types

February 10, 1998 2:04 pm

The rules for mapping value box types are specified below.

In addition, helper and holder classes are generated for the value box type in the same
way as for other value types.

There are two general cases to consider: value boxes that are mapped to Java primitive
types, and those that are mapped to Java classes.
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6.5.1 Primitive Types

If the value box IDL type maps to a Java primitive (élgat, long, char, wchar,

boolean , octet, etc.), then the value box type is mapped to a Java class whose name
is the same as the IDL value type. The class has a public data membervaduneed

and has the appropriate Java type. The holder and helper class are also generated.

/I IDL
value <box_name> <primitive_type> ;

/I generated Java

public class<box_name>{
public <mapped_primitive_Java_typeralue;
public <box_nameX<mapped_primitive_Java_typenitial)
{ value = initial; }
}
final public class<box_nameolder

implements org.omg.CORBA.portable.Streamable {
public <mapped_primitive_Java_typeralue;

}

public class <box_name>Helper {

}

6.5.1.1 Primitive Type Example

/I IDL
value MyLong long;
interface foo {
void bar_in(in MyLong numbery);

void bar_inout(inout MyLong number);

h
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/I Generated Java

public class MyLong {

public int value;

public MyLong(int initial) {value = initial;}
}

final public class MyLongHolder
implements org.omg.CORBA.portable.Streamable {
public MyLong value;

}
public class MyLongHelper {...}

public interface foo extends org.omg.CORBA.Object {
void bar_in(MyLong number);
void bar_inout(MyLongHolder number);

6.5.2 Complex Types

If the value box IDL type is more complex and maps to a Java classfifng.,

wstring , enum, struct , sequence , array, any, interface , etc.), then the value box
type is mapped to the Java class that is appropriate for the IDL type. The appropriate
holder and helper class are also generated. The details for the mapped class can be
found in the Java Language mapping specification and are not repeated here.

6.5.2.1 Complex Type Example
/l IDL
value MySequence sequence<long>;
interface foo {
void bar_in(in MySequence seq);

void bar_inout(inout MySequence seq);

h
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6.6 Any

/I Generated Java
final public class MySequenceHolder

implements org.omg.CORBA.portable.Streamable {
public int[] value;

}
public class MySequenceHelper {...}
public interface foo extends org.omg.CORBA.Object {

void bar_in(int[] seq);
void bar_inout(MySequenceHolder seq);

The following methods are added to the Any class:

abstract public java.io.Serializable extract_Value()

throws org.omg.CORBA.BAD_OPERATION;
abstract public void insert_Value(java.io.Serializable v);
abstract public void insert_Value(

java.io.Serializable v,
org.omg.CORBA.TypeCode t)
throws org.omg.CORBA.MARSHAL,;

6.7 Java ORB Portability Interfaces

6-70

In order to support marshaling of value types additions are made to the input and
output stream APIs which are found in thiey.omg.CORBA.portable package.

Add the following method t@rg.omg.CORBA.portable.InputStream:

public abstract java.io.Serializable read_Value();

Add the following method t@rg.omg.CORBA.portable.OutputStream

public abstract void write_Value(java.io.Serializable obj);

Note: The most efficient implementation wfite_Value() is dependent upon an

enhancement to the JDK that supports the writing of Java serializable objects in GIOP
format. It is however possible to implement the marshaling of values without JDK support
provided that the mapped Java class implemergsomg.CORBA.Streamable(see

Section 6.3.1, “Basics for Stateful Values,” on page 6-61). In that case the implementation of

write_Value() will have to cast it®bj parameter to be Streamableand then use its
write() method for marshaling. The decision of which algorithm to be used is the
implementation choice of the ORB runtime.
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7.1 Introduction

7.2 Names

C++ Language Mapping 1=

Thevalue type has features that make its C++ mapping unlike that of any other IDL
type. Specifically, all other IDL types comprise either pure state or pure interface, but
thevalue type can include both. Because of this, the C++ mapping forallue type

is necessarily more restrictive in terms of implementation than other parts of the C++

mapping.

The value mapping follows the naming conventions established for the OMG IDL
C++ Language Mapping. Each IDlalue type maps to a C++ class with the same
name, a correspondingar type, and for all value types with initializers, an associated
_init factory type.

7.3 Mapping for Value

2/10/98

An IDL value type is mapped to a C++ class with the same name as thealDé.

This class is a partially-concrete base class, with virtual accessor and modifier
functions corresponding to the state members of/ttige type, and pure virtual
functions corresponding to the operations of\thkie type. In order to provide
implementations for the pure virtual functions, they must be overridden in a concrete
class derived from the base class by the application developer.

Applications are responsible for the creatiorvafue instances, and after creation,
they deal withvalue instances only through C++ pointers. Unlike object references,
which map to C++ ptr types that may be implemented either as actual C++ pointers
or as C++ pointer-like objects, "handles" to Cwalue instances are actual C++
pointers. This helps to distinguish them from object references.

orbos/98-01-18: Objects By Value (with errata) 7-71



7-72

Becausevalue types support the sharing of instances within other constructed types
(such as graphs), the lifetimes of Cyalue instances are managed via reference
counting. Unlike the semantics of object reference counting, where nditpkcate

nor release actually affect the object implementation, reference counting operations
for C++value instances are directly implemented by those instances. Reference
counting mix-in classes are provided by ORB implementations for usalbg
implementors.

As for most other types in the C++ mappinglue types also have associated C++
_var types that automate their reference counting.

All init initializers declared for @malue type are mapped to pure virtual functions on a
separate abstract C++ factory class. The class is named by appending “_init” to the
name of thevalue type,e.g, typeA has a factory class nam@éd init.

7.3.1 Value Data Members

The C++ mapping fovalue data members follows the same rules as the C++ mapping
for unions except that the accessors and modifers are virtual. Public state members are
mapped to public virtual accessor and modifier functions of thevahie base class,

and privatevalue state members are mapped to protected C++ virtual accessor and
modifier functions (so that derived concrete classes may access them). Portable
applications, including derivexhlue classes, shall not access the actual data members
used to store thealue state, and ORB implementations are free to make such
members private. The only restriction on the actual data members is that they be self-
managing so that derived classes can correctly implement copying without needing
direct access to them.

Like C++ unions, the accessor and modifier functionsvidue state members do not

follow the regular C++ parameter passing rules. This is because they allow local
program access to the state stored insidevéth@e instance. Modifier functions

perform the equivalent of a deep-copy of their parameters, and accessors that return a
reference or pointer to a state member can be used for read-write access. For example:

/I IDL

typedef octet Bytes[64];
structS{... };

interface A {... };

value Val {
public Val t;
long v;
public Bytes w;
public string x;
Sy;
Az
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/I C++

typedef Octet Bytes[64];
typedef Octet Bytes_slice;
structS{... };

typedef ... A_ptr;

class Val : public virtual ValueBase {

public:
virtual Val* t() const; /l add_ref not called on return value
virtual void t(Val*); /I remove_ref old Val, add_ref argument

virtual const Bytes_slice* w() const;
virtual Bytes_slice* w();
virtual void w(const Bytes);

virtual const char* x() const;

virtual void x(char?*); /I free old storage, adopt argument
virtual void x(const char*); // free old storage, copy argument
virtual void x(const String_var&);// free old storage, copy argument

protected:
virtual Long v() const;
virtual void v(Long);

virtual const S& y() const;  // read-only access to y member
virtual S& y(); /I read-write access to y member
virtual void y(const S&); /I deep copy

virtual A_ptr z() const; I return value not duplicated
virtual void z(A_ptr); I release old objref, duplicate argument

3

State members of anonymous array types require the same supporting C++ typedefs as
required for union members of anonymous array types; see the OMG C++ union
mapping for more details.

7.3.2 Constructors, Assignment Operators, and Destructors
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A C++ value class defines a protected default constructor, a protected constructor that
takes an initializer for eackalue data member, and a protected virtual destructor. The
constructors are protected to allow only derived class instances to invoke them, while
the destructor is protected to prevent applications from involl@igte on pointers to

value instances instead of using reference counting operations. The destructor is
virtual to provide for proper destruction of derivealue class instances when their
reference counts drop to zero.
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The parameters of the constructor that takes an initializer for each member appear in
the same order as the data members appear, top to bottom, in thelli2Ldefinition,
regardless of whether they are public or private. All parameters for the member
initializer constructor follow the C++ mapping parameter passing rules for

arguments of their respective types.

Portable applications shall not invokevalue class copy constructor or default
assignment operator. Due to the requivatle reference counting, the default
assignment operator forvalue class shall be private and preferably unimplemented
to completely disallow assignment wdlue instances.

7.3.3 Value Operations

Operations declared onvalue type are mapped to public pure virtual member

functions in the correspondingalue C++ class. None of these pure virtual member
functions shall be declarembnst because unlike C++, IDL provides no way to

distinguish between operations that change the state of an object and those that merely
access that state. This choice, similar to the choice made for the C++ mapping for
operations declared in IDinterface types, has an impact on parameter passing rules,

as described below. The alternative, declaring all pure virtual member functions as
const, is less desirable because it would not allow member functions inherited from
interface classes to be invoked @onstvalue instances, since all such member
functions are already mapped as roomst

The C++ signatures and memory management rulegaloe operations are identical
to those described in the OMG IDL C++ mapping for client-siderface operations.

A static_narrow function is provided by eackalue class to provide a portable way

for applications to cast down the C++ inheritance hierarchy. This is especially required
after an invocation of thecopy_valuefunction (see'ValueBase and Reference

Counting” on page 7-7§. If a null pointer is passed tanarrow, it returns a null

pointer. Otherwise, if th@alue instance pointed to by the argument is an instance of
thevalue class being narrowed to, its reference count is incremented and a pointer to
the narrowed-to class type is returned. If howevewtiee instance pointed to by the
argument imot an instance of thealue class being narrowed to, a null pointer is
returned.

7.3.4 Example

For example, consider the following IDlalue type:
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/l IDL
value Example {
short op1();
long op2(in Example X);
short vall;
public long val2;
string val3;
float val4;
Example val5;

b

The C++ mapping for thisalue type is:

/| C++
class Example : public virtual CORBA::ValueBase {
public:
virtual CORBA::Short op1() = 0;
virtual CORBA::Long op2(Example*) = 0;

virtual CORBA::Long val2();
virtual void val2(CORBA::Long);

Example* _narrow(CORBA::ValueBase?);

protected:
Example();
Example(CORBA::Short initl, CORBA::Long init2,
const char* init3, CORBA::Float init4, Example* init5);
virtual ~Example();

virtual CORBA::Short vall();
virtual void val1(CORBA::Short);

virtual const char* val3();

virtual void val3(char?*);

virtual void val3(const char*);
virtual void val3(const String_var&);

virtual CORBA::Float val4();
virtual void val4(CORBA::Float);

virtual Example* val5();
virtual void val5(Example?*);

private:
void operator=(const Example&);

3

February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-75



i
\l

7.3.5 ValueBase and Reference Counting

The C++ mapping for th¥alueBase IDL type serves as an abstract base class for all
C++value classesValueBase provides several pure virtual reference counting
functions inherited by alNalue classes:

/I C++
namespace CORBA {
class ValueBase {
public:

virtual _add_ref() = 0;

virtual _remove_ref() = 0;

virtual ValueBase* _copy_value() = 0,

virtual CORBA::ULong _refcount_value() = 0;

static ValueBase* _narrow(ValueBase*);

protected:
ValueBase();
ValueBase(const ValueBase&);
virtual ~ValueBase();

private:
void operator=(const ValueBase&);

3

_add_ref, used to increment the reference count ghlue instance.

* remove_ref used to decrement the reference count\dlae instance andelete
the instance when the reference count drops to zero. Note that the dedetefo
destroy instances requires that\alue instances be allocated usingw.

® copy_value used to make a deep copy of tredue instance. The copy has no
connections with the original instance and has a lifetime independent of that of the
original. Since C++ supports covariant return types, derived classes can override the
_copy_valuefunction to return a pointer to the derived class rather than
ValueBase* but since covariant return types are still not commonly supported by
commercial C++ compilers, the return value_abpy_valuecan also be
ValueBase* even for derived classes. A compliant ORB implementation may use
either approach. For now, portable applications will not rely on covariant return
types and will instead use narrowintp regain the most derived type of a copied
value.

® refcount_value which returns the value of the reference count forvtiee
instance on which it is invoked.

The names of these operations begin with underscore to keep them from clashing with
user-defined operations in derivedlue classes.

1. The C++ dynamic_cast<> operator may also be used to cast down the value hierarchy, but it
too is still not available in all C++ compilers and thus its use is still not portable at this time.
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ValueBase also provides a protected default constructor, a protected copy
constructor, and a protected virtual destructor. The copy constructor is protected to
disallow copy construction of derivedlue instances except from within derived

class functions, and the destructor is protected to prevent direct deletion of instances of
classes derived frorMalueBase .

With respect to reference countingglueBase is intended to introduce only interface.
Depending upon the inheritance hierarchy afatue class, its instances may require
different reference counting mechanisms. For example, the reference counting
mechanisms needed forvalue class that supports anterface are likely to be

different from those needed for a regular concxetieie class, since the former has
object adapter issues to consider. TherefoedueBase normally serves as a virtual
base class multiply inherited intovalue class. One inheritance path is through the
IDL inheritance hierarchy for thealue type, since allalue types inherit from
ValueBase , which provides the reference counting interface, and the other inheritance
path is through the reference counting implementation mix-in base class (see
Section 7.3.6, “Reference Counting Mix-in Classes,” on page 7-78), which itself also
inherits fromValueBase .

CORBA Module Additions

The C++ mapping also adds two additional reference counting functions to the
CORBA namespace, as shown below:

Il C++
namespace CORBA {
void add_ref(ValueBase* vb)

{
if (vb 1= 0) vb->_add_ref();
}
void remove_ref(ValueBase* vb)
{
if (vb 1= 0) vb->_remove_ref();
}

}

These functions are provided for consistency with object reference reference counting
functions. They are similar in that unlike thadd_ref and_remove_refmember

functions, they can be called with nullue pointers. TheCORBA::add_ref function
increments the reference count of tredue instance pointed to by the function

argument if non-null, or does nothing if the argument is a null pointer. The
CORBA::remove_ref function behaves the same except it decrements the reference
count. (The implementations shown above are intended to specify the required
semantics of the functions, not to imply that conforming implementations must inline
the functions.)
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7.3.6 Reference Counting Mix-in Classes

The C++ mapping provides two standard reference counting implementation mix-in
base classes:

® CORBA:DefaultvalueRefCountBase which can serve as a base class for any
application-provided concretealue class whose corresponding IDL value type
does notderive from any IDLinterface s. For these types eflue classes,
applications are also free to use their own reference-counting implementation mix-
ins as long as they fulfill thealueBase reference counting interface.

® PortableServer::ValueRefCountBase which mustserve as a base class for any
application-provided concretelue class whose corresponding IDL value type
doesderive from one or more IDinterface s, and whose instances will be
registered with the POA as servants. If IDL interface inheritance is present, but
instances of the application-provided concredie class will not be registered
with the POA, theCORBA::DefaultValueRefCountBaseor an application-specific
reference counting implementation mix-in may be used as a base class instead.

Each of these classes shall be fully concrete and shall completely fulfill the

ValueBase reference counting interface, except that since they provide
implementation, not interface, they shall not provide support for narrowing. In

addition, each of these classes shall provide a protected default constructor that sets the
reference count of the instance to one, a protected virtual destructor, and a protected
copy constructor that sets the reference count of the newly-constructed instance to one.
Just as with th&alueBase base class, the default assignment operator should be
private and preferably unimplemented to completely disallow assignment.

Note that it is the application-supplied concretdue classes that must derive from

these mix-in classes, not the partially-abstradtie classes generated by the IDL
compiler. This is to avoid the need to inherit these mix-ins as virtual bases, or to avoid
inheriting multiple copies of the mix-ins(and thus multiple reference counts) if virtual
bases are not employed. Also, only the final implementorvafliege knows whether it

will ever be used as a POA servant or not, and thus the implementor must specify the
desired reference counting mix-in.

7.3.7 Value Boxes

A value box class essentially provides a reference-counted version of its underlying
type. Unlike normalalue classes, C++ classes fealue boxesan be concrete since
value boxes do not support methods, inheritance, or interfaces. Value box classes differ
depending upon their underlying types.

To fulfill the ValueBase interface, all value box classes are derived from
CORBA::DefaultValueRefCountBase
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Parameter Passing for Underlying Boxed Type

All value box classes provideoxed_in, boxed_inout andboxed_outmember

functions that allow the underlying boxed value to be passed to functions taking
parameters of the underlying boxed type. The signhatures of these functions depend on
the parameter passing modes of the underlying boxed type. The return values of the
boxed_inoutandboxed_outfunctions shall be such that the boxed value is referenced
directly, allowing it to be replaced or set to a new value. For example, invoking
boxed_outon a boxed string allows the actual string owned by the value box to be
replaced:

/l IDL
value StringValue string;
interface X {

void op(out string s);

h

/I C++

StringValue* sval = new StringValue("string val”);

X varx = ...

x->op(sval->boxed_out()); // boxed string is replaced by op() invocation

Assume the implementation of is as follows:

Il C++
void MyXImpl::op(CORBA::String_out s)
{

}

The return value of thboxed_outfunction shall be such that the string value boxed in
the instance pointed to lywal is set to"'new string val" afterop returns, with the
instance pointed to bgval maintaining ownership of the string.

s = CORBA::string_dup("new string val");

Basic Types, Enums, and Object References

For all the integer type$oolean , octet, char, wchar, and enumerated types, and
for typedefs of all of these, value box classes provide:

® A public default constructor. Note that except for the object reference case, the
value of the underlying boxed value will be indeterminate after this constructor
runs,i.e, the default constructor doest initialize the boxed value to a given
value. (This is because the built-in constructors for each of the basic types and
enumerations do not initialize instances of their types to particular values, either.)
For boxed object references, this constructor sets the underlying boxed object
reference to nil.

® A public constructor that takes one argument of the underlying type. This argument
is used to initialize the value of the underlying boxed type.

®* A public assignment operator that takes one argument of the underlying type. This
argument is used to replace the value of the underlying boxed type.
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Public accessor and modifier functions for the boxed value. The accessor and
modifier functions are always nameelue. For boxed object references, the return
value of the accessor is not a duplicate.

Explicit conversion functions that allow the boxed value to be passed where its
underlying type is called for. These functions are nabwedd_in, boxed_inout
andboxed_out and their return types match the inout , andout parameter

passing modes, respectively, of the underlying boxed type. Implicit conversions to
the underlying type are not provided because values are normally handled by
pointer.

A public copy constructor.
A public static_narrow function.
A protected destructor.

A private and preferably unimplemented default assignment operator.

An example value box class for an enumerated type is shown below:

/l IDL
enum Color { red, green, blue };
value ColorValue Color;

Il C++
class ColorValue : public CORBA::DefaultValueRefCountBase {

3

7-80

public:
ColorValue();
ColorValue(Color val);
ColorValue(const ColorValue& val);

ColorValue& operator=(Color val);

Color value() const; /I accessor
void value(Color val); /I modifier

/I explicit conversion functions for underlying boxed type
1

Color boxed_in() const;

Color& boxed_inout();

Color& boxed_out();

static ColorValue* _narrow(CORBA::ValueBase* base);

protected:
~ColorValue();

private:
void operator=(const ColorValue& val);
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functions for each struct member. Specifically, the classes provide:
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A public default constructor. The underlying boxed struct type is initialized as it
would be by its own default constructor.

A public constructor that takes a single argument of tygestT& , whereT is the
underlying boxed struct type.

A public assignment operator that takes a single argument oty T& , where
T is the underlying boxed struct type.

Public accessor and modifier functions, all namatle, for the underlying boxed
struct type. Two accessors are provided: one a const member function returning
constT&, and the other a non-const member function returning aThe modifier
function takes a single argument of tygeEnstT& .

The boxed_in boxed_inout andboxed_outfunctions that allow access to the

boxed value to pass it in signatures expecting the underlying boxed struct type. The
return values of these functions correspond toirihénout , andout parameter

passing modes for the underlying boxed struct type, respectively.

For each struct member, a set of accessor and modifier functions. These functions
have the same signhatures as accessor and modifier functions for union members.

A public copy constructor.
A public static_narrow function.
A protected destructor.

A private and preferably unimplemented default assignment operator.

As with other value box classes, no implicit conversions to the underlying boxed type
are provided since values are normally handled by pointer.

For example:

/l IDL
struct S {

b

string str;
long len;

value BoxedS S;
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Il C++
class BoxedS : public CORBA::DefaultValueRefCountBase {

3

public:

BoxedS();
BoxedS(const S& val);
BoxedS(const BoxedS& val);

BoxedS& operator=(const S& val);

const BoxedS& value() const;
BoxedS& value();
void value(const BoxedS& val);

const BoxedS& boxed_in() const;
BoxedS& boxed_inout();
BoxedS*& boxed_out();

static BoxedS* _narrow(CORBA::ValueBase* base);

const char* str() const;

void str(char* val); /I adopt
void str(const char* val); /I copy
void str(const CORBA::String_var& val);// copy

CORBA::Long len() const;
void len(CORBA::Long val);

protected:

~BoxedS();

private:

void operator=(const BoxedS& val);

7.3.7.4 String and WString Types

In order to allow boxed strings to be treated as normal strings where appropriate, value
box classes for strings provide largely the same interface &titing_var class. The
only differences from the interface of t&&ring_var class are:

The value box class interface does not provideith@out, out, and_retn

functions thatString_var provides. Rather; the value box class provides
replacements for these functions calleaked_in boxed_inout andboxed_out

They have mostly the same semantics and signatures astheqg var

counterparts, but their names have been changed to make it clear that they provide
access to the underlying string, not to the value box itself.

There are no overloaded operators for implicit conversion to the underlying string
type because values are normally handled by pointer.

In addition to most of th&tring_var interface, value box classes for strings provide:
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Public accessor and modifier functions for the boxed string value. These functions
are all namedalue. The single accessor function takes no arguments and returns a
const char*. There are three modifier functions, each taking a single argument. One
takes achar* argument which is adopted by the value box class, one tat@ssa
char* argument which is copied, and one take®ast String_var& from which

the underlying string value is copied.

A public default constructor that initializes the underlying string to an empty string.

Three public constructors that take string arguments. One tadesr’a argument
which is adopted, one takesanst char* which is copied, and one takege@nst
String_var& from which the underlying string value is copied. If ®iing_var
holds no string, the boxed string value is initialized to the empty string.

Three public assignment operators: one that takes a parameter aharpaevhich

is adopted, one that takes a parameter of tgwst char* which is copied, and one
that takes a parameter of typenst String_var& from which the underlying string
value is copied. Each returns a reference to the object being assigned to. If the
String_var holds no string, the boxed string value is set equal to the empty string.

A public copy constructor.
A public static_narrow function.
A protected destructor.

A private and preferably unimplemented default assignment operator.

An example of a value box class for a string is shown below:

/l IDL
value StringValue string;
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/I C++
class StringValue : public CORBA::DefaultValueRefCountBase {
public:
/I constructors
1
StringValue();
StringValue(const StringValue& val);
StringValue(char* str); /l adopt
StringValue(const char* str); /I copy
StringValue(const String_var& var); Il copy

/[ assignment operators

/i

StringValue& operator=(char* str); /l adopt
StringValue& operator=(const char* str); /I copy
StringValue& operator=(const String_var& var); // copy

/[ accessor
1
const char* value() const;

/I modifiers

1

void value(char* str); /I adopt
void value(const char* str); I/l copy
void value(const String_var& var); Il copy

/I explicit argument passing conversions for
/I the underlying string

1

const char* boxed_in() const;

char*& boxed_inout();

char*& boxed_out();

/Il ...other String_var functions such as overloaded subscript operators, etc....
static StringValue* _narrow(CORBA::ValueBase* base);

protected:
~StringValue();

private:
void operator=(const StringValue& val);

3

Note that even though value box classes for strings provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they must be
dereferenced before the subscript operators can be used.
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Value boxes for these types map to classes that have exactly the same public interfaces
as the underlying boxed types, except that each has:

® In addition to the constructors provided by the class for the underlying boxed type,
a public constructor that takes a single argument of ¢gpest T&, whereT is the
underlying boxed type.

® An assignment operator that takes a single argument ofctypst T&, whereT is
the underlying boxed type.

® Accessor and modifier functions for the underlying boxed value. All such functions
are namedralue. There are two accessor functions, one a const member function
returning aconst T&, and the other a non-const member function returiiifg
The modifier function takes a single argument of tgpast T&.

®* Theboxed_in boxed_inout andboxed_outfunctions that allow access to the
boxed value to pass it in signatures expecting the underlying boxed value type. The
return values of these functions correspond toirihénout , andout parameter
passing modes for the underlying boxed type, respectively.

® A protected destructor.

®* A private and preferably unimplemented default assignment operator.

As with other value box classes, no implicit conversions to the underlying boxed type
are provided since values are normally handled by pointer.

Note that the value box class for sequence types provides overloaded subscript
operators @perator[]) just as a sequence class does. However, since values are
normally handled by pointer, the value instance must be dereferenced before the
overloaded subscript operator can be applied to it.

Value box instances for theny type can be passed to the overloaded operators for
insertion and extraction by invoking the appropriate explicit conversion function:

Il C++

AnyValueBox* val = ...

val->boxed_inout() <<= something;

if (val->boxed_in() >>= something_else) ...

Below is an example value box along with its corresponding C++ class:
/l IDL

typedef sequence<long> LongSeq;
value LongSeqValue LongSeq;
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Il C++
class LongSeqValue : public CORBA::DefaultValueRefCountBase {
public:
LongSeqValue();
LongSeqValue(CORBA::ULong max);
LongSeqValue(CORBA::ULong max,
CORBA::ULong length,
CORBA::Long* buf, CORBA::Boolean release = 0);
LongSeqgValue(const LongSeq& init);
LongSeqgValue(const LongSeqValue& val);

LongSeqValue& operator=(const LongSeqg& val);

const LongSeq& value() const;
LongSeqé& value();
void value(const LongSeq&);

const LongSeq& boxed_in() const;
LongSeqg& boxed_inout();
LongSeq*& boxed_out();

static LongSeqValue* _narrow(CORBA::ValueBase*);

CORBA::ULong maximum() const;
CORBA::ULong length() const;
void length(CORBA::ULong len);

CORBA::Long& operator[](CORBA::ULong index);
CORBA::Long operator[](CORBA::ULong index) const;

protected:
~LongSeqValue();

private:
void operator=(const LongSeqValue&);

3

7.3.7.6 Array Types

In order to allow boxed arrays to be treated as normal arrays where appropriate, value
box classes for arrays provide largely the same interface as the corresponding array
_var class. The only differences from the interface of thar class are:

® The value box class interface does not provideith@out, out, and_retn
functions that var provides. Rather; the value box class provides replacements for
these functions calledoxed_in, boxed_inout andboxed_out They have mostly
the same semantics and signatures as thvair counterparts, but their names have
been changed to make it clear that they provide access to the underlying array, not
to the value box itself.
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® There are no overloaded operators for implicit conversion to the underlying array
type because values are normally handled by pointer.

In addition to most of thevar interface, value box classes for arrays provide:

® Public accessor and modifier functions for the boxed array value. These functions
are namedralue. The single accessor function takes no arguments and returns a
pointer to array slice. The modifier function takes a single argument of type const
array.

A public default constructor.

A public constructor that takes a const array argument.

® A public assignment operator that takes a const array argument.

A public copy constructor.
® A public static_narrow function.
® A protected destructor.

®* A private and preferably unimplemented default assignment operator.

An example of a value box class for an array is shown below:
/l IDL

typedef long LongArray([3][4];
value ArrayValue LongArray,
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Il C++
typedef CORBA::Long LongArray[3][4];
typedef CORBA::Long LongArray_slice[4];
class ArrayValue : public CORBA::DefaultValueRefCountBase {
public:
ArrayValue();
ArrayValue(const ArrayValue& val);
ArrayValue(const LongArray val);

ArrayValue& operator=(const LongArray val);

const LongArray_slice* value() const;
LongArray_slice* value();

void value(const LongArray val);

/I explicit argument passing conversions for
/I the underlying array

1

const LongArray_slice* boxed_in() const;
LongArray_slice* boxed_inout();
LongArray_slice* boxed_out();

/I ...overloaded subscript operators...
static ArrayValue* _narrow(CORBA::ValueBase* base);

protected:
~ArrayValue();

private:
void operator=(const ArrayValue& val);

3

Note that even though value box classes for arrays provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they must be
dereferenced before the subscript operators can be used.

7.3.8 Abstract Values

Abstract IDLvalue types follow the same C++ mapping rules as concretevid@lie
types, except that since they have no data members, they do not have member
initializer constructors.

7.3.9 Value Inheritance

For an IDLvalue type derived from othevalue types or that supporisterface
types, several C++ inheritance scenarios are possible:
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® Concrete value base classae inherited as public non-virtual bases. Concrete
value types may only be singly inherited in IDL, so they are not multiply inherited
in C++ either.

® Abstract value base classage inherited as public virtual base classes, since they
may be multiply inherited in IDL.

® |nterface classesupported by the IDL value type amet inherited. Instead, their
corresponding POA skeleton classes are derived from.

The reason thahterface classes are not inherited is thatlue instances, like POA
servants, are themselvaet object references. Providing this inheritance would allow
for error-prone code that implicitly widened pointerssédue instances to C++ object
references for the supported interfaces, but without first obtaining valid object
references for thosealue instances from the POA. When such an application
attempted to use an invalid object reference obtained in this manner, it would
encounter errors that could be difficult to track back to the implicit widening of the
pointer tovalue to object reference. The C++ language provides no hooks into the
implicit pointer-to-class widening mechanism by which an application might guard
against this type of error.

By instead derivingzalue classes from the POA skeleton classes for those supported
interfacesyvalue class instances can yield object references for the desired supported
interfaces by normal POA operatioresg, via invocation of this or by explicit
registration of the value instance as a POA servant.

Avoiding the derivation ofalue classes froninterface classes also separates the
lifetimes ofvalue instances from the lifetimes of object reference instances. It would

be surprising to an application if a valid object reference that had not yet been released
unexpectedly became invalid because another part of the program had decremented the
value part of the object reference instance to zero. This scenario could be solved by
the provision of an appropriate reference counting mix-in class. However, given that
such an approach breaks local/remote transparency by having object reference release
operations affect the servant, and given the associated problems described in the
preceding paragraphs, derivinglue classes froninterface classes is best avoided.

7.3.10 Value Factories

Because concretealue classes are provided by the application developer, the creation
of values is problematic under certain circumstances. These circumstances include:

® Unmarshaling The ORB cannot know priori about all potential concrete value
classes supplied by the application, and so the ORB unmarshaling mechanisms do
not possess the capability to directly create instances of those classes.

® Component LibrariesPortions of an application, such as parts of a framework, may
be limited to only manipulatingalue instances while leaving creation of those
instances to other parts of the application.

Just as they provide concrete Cvalue classes, applications must also provide
factories for those concrete classes. The base of all value factory classes is the C++
CORBA::ValueFactoryBase class:
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/I C++
namespace CORBA {
class ValueFactoryBase;
typedef ValueFactoryBase* ValueFactory;
class ValueFactoryBase {
public:
virtual ~ValueFactoryBase();

static ValueFactory _narrow(ValueFactory vf);

protected:
ValueFactoryBase();

private:
virtual ValueBase* create_for_unmarshal() = 0;
h
}

The C++ mapping for the IDICORBA::ValueFactory native type is a pointer to a
ValueFactoryBaseclass, as shown above. Applications derive concrete factory classes
from ValueFactoryBase and register instances of those factory classes with the ORB
via the ORB::register_value_factory function. If a factory is registered for a given
value type and no previous factory was registered for that type, the
register_value_factoryfunction returns a null pointer.

When unmarshaling value instances, the ORB needs to be able to call up to the
application to ask it to create those instances. Value instances are normally created via
their type-specific value factories (see Section 7.3.10.1, “Type-Specific Value
Factories,” on page 7-91) so as to preserve any invariants they might have for their
state. However, creation for unmarshaling is different because the ORB has no
knowledge of application-specific factories, and in fact in most cases may not even
have the necessary arguments to provide to the type-specific factories.

To allow the ORB to create value instances required during unmarshaling, the
ValueFactoryBaseclass provides thereate_for_unmarshal pure virtual function.

The function is private so that only the ORB, through implementation-specific means
(e.g.,via a friend class), can invoke it. Applications are not expected to invoke the
create_for_unmarshalfunction. Derived classes shall override the
create_for_unmarshalfunction and shall implement it such that it creates a new value
instance and returns a pointer to it. The caller assumes ownership of the returned
instance and shall ensure thaemove_refis eventually invoked on it. Since the
create_for_unmarshalfunction returns a pointer ¥dalueBase the caller may use the
narrowing functions supplied by value types to downcast the pointer back to a pointer
to a derived value type.

Once the ORB has created a value instance viardate_for_unmarshalfunction, it

can use the value data member modifier functions to set the state of the new value
instance from the unmarshaled data. How the ORB accesses the protected value data
member modifiers of the value is implementation-specific and does not affect
application portability.
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The _narrow function on the factory allows the return type of the
ORB::lookup_value_factory function to be narrowed to a pointer to a type-specific
factory (see Section 7.3.10.1). It is important to note that the return value of the
factory narrow doesnot become the memory management responsibility of the caller,
and thusdelete should never be called on it. (In this regard it is exactly like the
narrowing supplied by the C++ mapping for the IDL exception hierarchy.)

7.3.10.1 Type-Specific Value Factories

February 10, 1998 2:04 pm

All value types that havanit initializer operations declared for them also have type-
specific C++ value factory classes generated for them. Faluz type A, the name

of the factory class, which is generated at the same scope as the value class, shall be
A_init Eachinit initializer operation maps to a pure virtual function in the factory

class, and each of these initializer functions is naonedte. The initializer parameters

are mapped using normal C++ parameter passing rulas foarameters. The return

type of eactcreate function is a pointer to the createdlue type.

For example, consider the followin@lue type:

/l IDL

value V {
init(boolean b);
init(char c);
init(octet 0);
init(short s, string p);

h

First, note that this type presents a minor problem due to the fact that the C++ mapping
does not require thieoolean , char, octet, andwchar types to map to different C++
types. Similar to the support provided by they type for allowing overloading of
insertion and extraction functions, disambiguating types that allow overloaded factory
functions for these three types are provided inViakeieFactoryBaseclass:
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/I C++
class ValueFactoryBase {
public:

struct BooleanValue {
BooleanValue(Boolean b) : value(b) {}
Boolean value;

h

struct CharValue {
CharValue(Char c) : value(c) {}
Char value;

h

struct OctetValue {
OctetValue(Octet 0) : value(o) {}
Octet value;

h

struct WCharValue {
WCharValue(WChar wc) : value(wc) {}
WChar value;

h

These types allow the factory class for the example given above to be generated as
follows:

Il C++
class V_init : public CORBA::ValueFactoryBase {
public:
virtual ~V_init();

virtual V* create(ValueFactoryBase::BooleanValue val) = 0;
virtual V* create(ValueFactoryBase::CharValue val) = 0;
virtual V* create(ValueFactoryBase::OctetValue val) = 0;
virtual V* create(Short s, const char* p) = 0;

static V_init* _narrow(ValueFactory vf);

protected:
V_init();
h

Each generated factory class shall have a public virtual destructor, a protected default
constructor, and a publicnarrow function allowing narrowing from the base
ValueFactoryBaseclass. Each also supplies a public pure virtwahte function
corresponding to eadhit initializer. Applications derive concrete factory classes from
these classes and register them with the ORB. Note that since each generated value
factory derives from the basélueFactoryBase all derived concrete factory classes
shall also override the private pure virtiabate for_unmarshalfunction inherited

from ValueFactoryBase
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Note that theBooleanValug CharValue, OctetValue, andWCharValue types shall

be provided by a conforming ORB implementation exactly as shown above (though the
constructors need not be inlined), since portable derived factory implementations
require access to the values stored in thelue data members.

Forvalue types that have niait initializers, there are no type-specific abstract factory
classes, but applications must still supply concrete factory classes. These classes are
derived directly fromValueFactoryBase need not supplynarrow function$, and

only need to override thereate_for_unmarshalfunction.

7.3.10.2 Unmarshaling Issues

When the ORB unmarshalsvalue for a request handled via C++ static stubs or
skeletons, it tries to find a factory for thelue type via the
ORB::lookup_value_factory operation. If the factory lookup fails, the client
application receives @ORBA::MARSHAL exception. Thus, applications utilizing
static stubs or skeletons must ensure that a value factory is registered fovauery
type it expects to receive via static invocation mechanisms.

Because of their dynamic nature, applications using the DIl or DSI are not expected to
have compile-time information for all thalue types they might receive. For these
applicationsyalue instances are representedGBRBA::Any, and so value factories

are not required to be registered with the ORB to allow such values to be unmarshaled.
However, value factories must be registered with the ORB and available for lookup if
the application attempts extraction of the values via the statically-#pgaxtraction
functions. See Section 7.3.16, “Value Interaction With Any,” on page 7-96 for more
details.

7.3.11 Custom Marshaling

The C++ mappings for the IDCORBA::StreamingPolicy ,
CORBA::CDROutputStream , andCORBA::CDRInputStream types follow
normal C++value mapping rules.

7.3.12 Parameter Passing Modes

February 10, 1998 2:04 pm

Value instances are never passed by value or by reference; instead, they are always
accessed through C++ pointers. Nudlue instances are indicated by null C++
pointers.

The parameter passing rules described below use an example value type named
ValType:

® Anin value is passed a®alType*. It is explicitly not passed as pointer to const
because the callee would be unable to invoke any operations on the recdied
since allvalue operations are non-const member functions. This is because IDL has

2. Since the factory class hierarchy has virtual functions in it, a C++ dynamic_cast can always

be used to traverse the factory inheritance hierarchy, but it is not portable since all C++
compilers do not yet support it.
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no similar or corresponding notion of const operations. Siatge instances are
copied when passed as arguments, the callee gets its own copy, so despite the lack
of const the callee is unable to affect the caller’s copy anyway. The callee shall not
invoke _remove_refon the receivedalue without first invoking a matching

add_ref.

® Aninout value is passed avalType*& . If the callee wishes to return a different
value as amut back to the caller, it shall invokeremove_refon the incoming
value and then assign\alue pointer to theValType*& argument. The caller
shall eventually invoke remove_refon the returnedalue regardless of whether
the callee returned a differemélue or not.

® As with other IDL types, aout value is passed agalType_out. The
ValType_out type must ensure that\alType_var passed by the caller has its
value instance reference count decremented before the operation is invoked. For
the callee, th&/alType_out type has the same semantics a@lype*& , and
should set th&alType_out to point to avalue instance to be returned to the caller.
The caller becomes responsible for eventually invokiremove_refon the
returned pointer twalue instance.

® A value is returned a¥alType*. The callee should return a pointervimue
instance, and the caller becomes responsible for eventually invokéngpve_ref
on the returned pointer telue instance.

These parameter passing rules follow the C++ mapping rules for other pointer-type or
pointer-like IDL types, such as strings and object references.

7.3.13 Memory Management Considerations

Regardless of their modén( inout, out, or return),value instances that use the
standard reference counting mix-ins described in “Reference Counting Mix-in Classes”
on page 7-78 shall always be allocated usieg. The standard remove_ref

mechanisms supplied by the standard mix-in classeslehdte thison avalue

instance when its reference count drops to zero. Applications that use their own
reference counting mix-in classes have no restrictions on where they may allocate their
value instances.

Note that care must be taken by application developers when dealing with cycles in the
reference counting ofalue instances, otherwise memory management problems may
occur.
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7.3.14 Another Example

/I IDL
value node {
public long data;
public node next;
void print();
node change(in node inval,
inout node ioval,
out node outval)

h

/I generated C++ node.hh
class node_var {

h
class node : public virtual CORBA::ValueBase {
public:

virtual CORBA::Long data() const;
virtual void data(CORBA::Long);

virtual node* next() const;
virtual void node(next*);

node* _narrow(CORBA::ValueBase*);

protected:
node();
node(CORBA::Long data_init, node* next_init);
virtual ~node();

virtual void print() = 0;
virtual node* change(node* _inval, node*& _ioval, node_out _outval) = O;

7.3.15 Value Members of Structs

February 10, 1998 2:04 pm

The C++ mapping requires struct members to be self-managing. This results in the
need for manager types for both strings and object references.\@ineetypes are
handled by pointer,similar to the way strings and object references are handled, they
too require manager types to represent them when they are used as struct members.

Thevalue instance manager types have semantics similar to that of the manager types
for object references:

® Any assignment to a managedlue member causes that member to decrement the
reference count of thealue it is managing, if any.

® A value pointer assigned to a manageddue member is adopted by the member.
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® A value var assigned to a managedlue member results in the reference count
of the instance being incremented. Thar types andralue member manager
types follow the same rules for widening assignment that those for object references
do.

® |f the constructed type holding the managedlie member is assigned to another
constructed type (for example, an instance of a struct withiiee member is
assigned to another instance of the same struct), the reference count of the managed
value instance in the struct on the right-hand side of the assignment is incremented,
while the reference count of the managed instance on the left-hand side is
decremented. As usual in C++, assignment to self must be guarded against to avoid
any mishandling of the reference count.

® When it is destroyed, the manageslue member decrements the reference count
of the managedalue instance.

The semantics ofalue managers described here provide for sharingahie
instances across constructed types by default. Eachv@lte type also provides an
explicit copy function that can be used to avoid sharing when desired.

7.3.16 Value Interaction With Any

As for other IDL types, type-safe insertion and extractiomabfie types is supported
by CORBA::Any.

7.3.16.1 Any Insertion

A value instance is inserted into@ORBA::Any by the following function at global
scope:

/I C++
void operator<<=(CORBA::Any& any, T* val);

Here,T represents thealue type. This function increments the reference count of the
instance pointed to byal, assumingsal is not a null pointer. After insertion, when the
CORBA::Any is destroyed, or when a different instance ohhie type or any other
IDL type is inserted into thEORBA::Any, the reference count of the instance pointed
to by val is decremented.

Adopting insertion is also supported:

/I C++
void operator<<=(CORBA::Any& any, T** val_p);

Assuming thawal_p is not a null pointer, the underlying instance is adopted by the
CORBA::Any. The reference count of tlieinstance is not incremented in this case.
When theCORBA::Any is later destroyed, or when a different instance oélae

type or any other IDL type is inserted into tB®RBA::Any, the reference count of
the instance referred to lyal_p is decremented (ifval_p is not a null pointer, of
course).
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7.3.16.2 Any Extraction
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Instances ofialue types are extracted fro@ORBA::Any instances using the
following function available at global scope:

Il C++
CORBA::Boolean operator>>=(const CORBA::Any& any, T*& val_ref);

If an instance of thealue type represented by tygeis actually present in the
CORBA::Any instance as determined BypeCode equality, this function will

extract the typed value. Proper extraction of a value instance may require a factory for
thevalue type. The extraction function can use RB::lookup_value_factory

function to locate an appropriate factory. If a factory is needed for extraction and the
factory lookup fails, the extraction function returns FALSE. Assuming an appropriate
factory is found (if needed), the extraction function setsviieref argument to point

to theT instance in th€ ORBA::Any, and returns TRUE. Th&ypeCode for val_ref

is implied by the C++ type ofal_ref. After extraction, thevalue type instance

pointed to byval_ref is still owned by theCORBA::Any and shall not have its
_remove_reffunction invoked by anything other than the own®@RBA::Any. Note

that sincevalue types may be null, a successful extraction setsaheef argument to

a null pointer if theCORBA::Any contains a nulalue pointer.

Otherwise, if the type instance stored in @@RBA::Any has a different type than
that ofval_ref as determined byypeCode equality, the value ofal_ref is
unchanged and the extraction function returns FALSE.
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Introduction

Abstract Interfaces 8=

In this submission, the decision whether an object is sent by reference or by value is
determined by the type specification of the formal parameter in the operation signature.
Consider the example

interface Example {
void foo(in MyType mydata);
2

The following cases apply:

a) MyType is an interface type (not an abstract interface). An object ref (IOR) is
always passed. If the implementation object is not registered with the ORB/OA as
exportable, the invocation fails.

b) MyType is a value. A value (marshalled object state) is always passed, even if the
value object inherits from an interface and is registered with the ORB/OA.

Both of these assume that on every invocation ofdbeoperation, either object
references are always passed asntlgdata parameter, or values are always passed.
There is no way to sometimes invoke fbe operation with a reference actual
parameter, and sometimes invoke it with a value actual parameter.

In many cases, this restriction causes no problems. However, there are occasions when
more flexibility is needed. See Section 8.10, “Usage Scenarios” for some examples.
This submission provides this extra flexibility through a new IDL type called an
abstract interface . This adds a third case for the above example:

c) MyType is an abstract interface. Either an object ref (IOR) or a value is passed,
depending on some rules about the runtime type and state of the actual object passed.
See Section 8.3, “Semantics of Abstract Interfaces” for details of these rules.
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8.2 Syntax for Abstract Interfaces

An optional keyword abstract is added to th IDL interface definition syntax. In
the above example, to define MyType as an abstract interface, we would write
an interface definition such as

abstract interface MyType {
void bar(in long avalue);

I3

This specifies that whenever a formal parameter of ip&ype appears in an IDL
operation definition, either a value or an object reference can be passed as the actual
parameter. In both cases, the object that is passed must suppuat thgeration as
declared in the abstract interface.

8.3 Semantics of Abstract Interfaces

8-100

Abstract interfaces differ from regular IDL interfaces in the following ways:

1. When used in an operation signhature, they do not determine whether actual
parameters are passed as an object reference or by value. Instead, the type of the
actual parameter (regular interface or value) is used to make this determination
using the following rules:

» The actual parameter is passed as an object reference if it is a regular interface
type (or a subtype of a regular interface type), and that regular interface type is a
subtype of the signature abstract interface type, and the object is already
registered with the ORB/OA.

» The actual parameter is passed as a value if it cannot be passed as an object
reference but can be passed as a value. Otherwia&DaPARAM exception is
raised.

2. The GIOP encoding of an abstract interface type is a boolean (TRUE if it is an
IOR, FALSE if it is a value) followed by either the IOR or the value. This allows
the demarshaling code to determine whether an object reference or a value was
passed.

3. Abstract interfaces do not implicitly inherit froBORBA::Object. This is because
they can represent either value types or CORBA object references, and value types
do not necessarily support the object reference operations defined in section 5.2 of
the CORBA 2.1 specification (see Section 5.3.2.3, “Value Type vs. Interfaces”). If
an IDL abstract interface type can be successfully narrowed to an object reference
type (a regular IDL interface), then tk®RBA::Object operations can be invoked
on the narrowed object reference.

4. Abstract interfaces do not imply copy semantics for value types passed as
arguments to their operations. This is because their operations may be either
CORBA invocations (for abstract interfaces that represent CORBA object
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references) or local programming language calls (for abstract interfaces that
represent CORBA value types). See Section 5.3.1.3, “Operations” and
Section 5.3.2.4, “Parameter Passing” for details of these differences.

5. Abstract interfaces may only inherit from other abstract interfaces.
6. In other respects, abstract interfaces are identical to regular IDL interfaces.

For example, consider the following operatimi() in abstract interfacéo:

abstract interface foo {
void m1(in AninterfaceType X, in AnAbstractinterfaceType v,
in AValueType z);

x's are always passed by reference,

z's are:
» passed as copied valueddb refers to an ordinary interface.
» passed as non-copied valuedoid refers to a value type

y’'s are:

» passed as reference if their concrete type is an ordinary interface subtype of
AnAbstractinterfaceType (registered with the ORB), no matter whad 's
concrete type is.

» passed as copied values if their concrete type is valudoarsl concrete type is
ordinary interface.

» passed as non-copied values if their concrete type is valuébbafglconcrete
type is value.

8.4 Usage Guidelines

Abstract interfaces are intended for situations where it cannot be known at compile
time whether an object reference or a value will be passed. In other cases, a regular
interface or value type should be used. Abstract interfaces are not intended to replace
regular CORBA interfaces in situations where there is no clear need to provide runtime
flexibility to pass either an object reference or a value. If reference semantics are
intended, regular interfaces should be used.

8.5 IDL Extensions

The <abstract _toker> is added to the production defining interface as optionally
preceding the keyworihterface .

8.6 Interface Repository Extensions

1. TheFullinterfaceDescription andInterfaceDescription structs in the CORBA
module are extended to add a new member:
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boolean is_abstract;

2. ThelnterfaceDef interface in the CORBA module is extended to add a new
attribute:

attribute boolean is_abstract;

3. Thecreate_interface operation in the&Container interface is extended to add a
new formal parameter:

in boolean is_abstract

8.7 Java Language Mapping for Abstract Interfaces

8.7.1 Java

Abstract interfaces are mapped to Java interfaces in the same way as regular IDL
interfaces, with the exception that the mapped interfaces do not extend
org.omg.CORBA.Object

Helper and holder classes are generated in the usual way.

ORB Portability Interfaces

In order to support marshaling of parameters whose formal type is abstract interface,
additions are made to the input and output stream APIs which are found in the
org.omg.CORBA.portable package.

Add the following method t@rg.omg.CORBA.portable.InputStream:

public abstract java.lang.Object read_Abstract();

Add the following method t@rg.omg.CORBA.portable.OutputStream

public abstract void write_Abstract(java.lang.Object obj);

The read_Abstract() andwrite_Abstract() methods are used to marshal and

unmarshal abstract interface types. Theyjasa.lang.Object, in order to be able to

read and write both value types and regular interface typestegide Abstract()

method returns either a value type oraxg.omg.CORBA.Object depending on the

data in the input stream. Therite_Abstract() method marshals either a value or an
IOR to the output stream, depending on its argument's runtime type and whether it is
registered with the ORB/OA. See Section 8.3, “Semantics of Abstract Interfaces” for
more details.

8.8 C++ Language Mapping for Abstract Interfaces

8-102

The C++ mapping for abstract interfaces is almost identical to the mapping for regular
interfaces. Rather than defining a complete C++ mapping for abstract interfaces, which
would only duplicate much of the specification of the mapping for regular interfaces,
only the ways in which the abstract interface mapping differs from the regular interface
mapping are described here.
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8.8.1 Abstract Interface Base
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C++ classes for abstract interfaces are not derived frorl€@RBA::Object C++

class. In IDL, abstract interfaces have no common base. However, to facilitate
narrowing from an abstract interface base class down to derived abstract interfaces,
derived interfaces, and derivedlue types, all abstract interface base classes that
have no other base abstract interfaces derive directly @@RBA::AbstractBase.

This base class provides the following:

® a protected default constructor

® a protected copy constructor

® a protected pure virtual destructor
® a public static_duplicate function

® a public static narrow function

® a public static nil function

The AbstractBaseclass is shown below:

/I C++
class AbstractBase;
typedef ... AbstractBase_ptr; /l actually either pointer or class

class AbstractBase {
public:
static AbstractBase_ptr _duplicate(AbstractBase_ptr);
static AbstractBase_ptr _narrow(AbstractBase_ptr);
static AbstractBase_ptr _nil();

protected:
AbstractBase();
AbstractBase(const AbstractBase& val);
virtual ~AbstractBase() = 0;

3

The _duplicate function operates polymorphically over both object references and
value types. If anAbstractBase_ptr that actually refers to an object reference is
passed to theduplicate function, the object reference is duplicated and returned.
Otherwise, the argument refers toaue instance, so theadd_ref function is called

on thevalue and the argument is returned. If the argument is nil, the return value is
nil.

The implementation oAbstractBase::_narrow merely passes its argument to
_duplicate and uses the value it returns as its own return value. Strictly speaking, the
_narrow function is not needed in thbstractBase interface since it is rather

pointless to narrow aAbstractBaseto its own type, but it is required by all

conforming implementations in order to make writing C++ templates that deal with
abstract interfaces easier (sinkbstractBase does not present a special case).
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As with regular object references, theil function returns a typedbstractBase nil
reference.

Both theis_nil andreleasefunctions in theCORBA namespace are overloaded to
handle abstract interface references:

/I C++

namespace CORBA {
Boolean is_nil(AbstractBase_ptr);
void release(AbstractBase_ptr);

}

These behave the same as their object reference counterparts. Notdetssis
expected to operate polymorphically over be#tue types and object reference types.
If its argument is nil, it does nothing. If its argument refers t@alae instance, it
invokes_remove_refon that instance. Otherwise, its argument refers to an object
reference, on which it invokeSORBA::release.

8.8.2 Client Side Mapping

The client side mapping for abstract interfaces is almost identical to the mapping for
object references, except:

® C++ classes for abstract interfaces derive IG@RBA::AbstractBase, not
CORBA::Object. Accordingly, their static duplicate and_narrow member
functions have arguments and return values of P&RBA::AbstractBase_ptr,
not CORBA::Object_ptr .

® Because abstract interface classes can serve as base classes for application-supplied
concretevalue classes, they shall provide a protected default constructor, a
protected copy constructor, and a protected destructor (which is virtual by virtue of
inheritance fromAbstractBase).

®* The mapping for object reference classes does not specify the type of inheritance
used for base object reference classes. However, since abstract interfaces can serve
as base classes for application-supplied cona@tee classes, which themselves
can be derived from regular interface classes, abstract interface classes shall always
be inherited as public virtual base classes.

® |nserting an abstract interface reference intOGRBA::Any operates
polymorphically; either the object referencevatue to which the abstract interface
reference refers is what actually gets inserted intoAthe This is because there is
no TypeCode for abstract interfaces. Since abstract interfaces cannot actually be
inserted into ariny, there is no need for abstract interface extraction operators,
either. However, th€ORBA::Any::to_abstract_base type allows the contents of
an Any to be extracted as a&bstractBaseif the entity stored in th&ny is an
object reference type onwlue type directly or indirectly derived from the
AbstractBase base class. Th®_abstract_basetype is shown below:
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class Any {
public:

struct to_abstract_base {
to_abstract_base(AbstractBase_ptr& base) : ref(base) {}
AbstractBase_ptr& ref;

h
h
Boolean operator>>=(const Any& any, Any::to_abstract_base val);

Other than that, the mapping for abstract interfaces is identical to that for regular
interfaces, including the provision of/ar types, out types, manager types for struct,
sequence, and array members, identical memory management, and identical C++
signatures for operations.

Both interfaces that are derived from one or more abstract interfaceslaedtypes

that support one or more abstract interfaces shall support implicit widening tptthe
type for each abstract interface base class. Specificallyj*tifer value typeT and

the T_ptr type for interface typ& shall support implicit widening to thgase_ptr

type for abstract interface tyfase. The only exception to this rule is faalue

types that directly or indirectly support one or more regular interface types; the C++
classes for thesealue types are derived from the POA skeletons for the base interface
types, not from the C++ classes for the interface types themselves (as described in
Section 7.3.9, “Value Inheritance,” on page 7-88). In these cases, it is the object
reference for thevalue, not the pointer to thealue, that supports widening to the
abstract interface base.

8.8.3 Server Side Mapping

| February 10, 1998 2:04 pm

The only circumstances under which an IDL compiler should generate C++ code for
abstract interfaces for the server side are when either an interface is derived from an
abstract interface, or whenvalue type supports an abstract interface indirectly

through one or more intermediate regular interface types. Abstract interfaces by
themselves cannot be directly implemented or instantiated by portable applications.
Because of this, standard C++ skeleton classes for abstract interfaces are not necessary.

The requirements for the C++ server-side mapping for abstract interfaces are therefore
quite simple:

® The IDL compiler shall ensure that POA skeletons for interfaces derived from
abstract interfaces somehow include pure virtual functions for the IDL operations
defined in the base abstract interface(s). These functions can either be generated
directly into the POA skeleton class, or can be generated into an implementation-
specific base class inherited by the POA skeleton. If the latter approach is used, it
should be done in a way that does not require special constructor invocations by

1. This refers only to the operations defined in IDL, not to the C++-specific _duplicate,
_narrow, and _nil functions supplied by all abstract interface C++ classes.
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application-supplied servant classes (for example, if it were a virtual base class
without a default constructor, it would require the most derived servant class to
explicitly initialize it in its own constructor member initialization lists).

8.9 Security Considerations

Security considerations for abstract interfaces are similar to those for regular interfaces
and values (see Section 5.3.5, “Security Considerations”). This is because an abstract
interface formal parameter type allows either a regular interface (IOR) or a value to be
passed. Likewise, an operation defined in an abstract interface can be implemented by
either a regular interface (with “normal” security considerations) or by a value type (in
which case it is a local call, not mediated by the ORB). The security implication of
making the choice between these alternatives a runtime determination is that the
programmer must ensure that for both alternatives, no security violations can occur.
For example, a technique similar to that described in Section 8.10.2, “Passing Values to
Trusted Domains” could be used to avoid inadvertently passing values outside a
domain of trust.

8.10 Usage Scenarios

8-106

8.10.1 Base Types and Mixin Types

The introduction of value types into CORBA will enable the creation of business
object frameworks that contain both interface types and value types. In order for these
frameworks to support polymorphism with static type checking, it is necessary to be
able to specify operations with arguments whose type abstractions can be satisfied by
objects implemented as either CORBA interface types (passed by object reference) or
value types (passed by value).

For example, in a business application it is extremely common to need to display a list
of objects of a given type, with some identifying attribute like account number and a
translated text description such as “Savings Account.” A business object framework
might define an interface such Bescribablewhose methods provide this information,

and implement this interface on a wide range of business object types. This allows the
method that displays items to take an argument of Bg=eribableand query it for the
necessary information. TH2escribableobjects passed in to thiésplaymethod may be
either CORBA interface types (passed in as object references) or CORBA value types
(passed in by value).

In this exampleDescribableis used as a polymorphic abstract type. No objects of
implementation typ@®escribableexist, but many different implementation types

support theDescribabletype abstraction. In C+4escribablewould be an abstract

base class; in Java, an interface. In statically typed languages, the compiler can check
that the actual parameter type passed by calledispfayis a valid subtype of
Describableand therefore supports the methods define®éscribable The display

method can simply invoke the methodsO#¥scribableon the objects that it receives,
without concern for any details of their implementation.
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Unfortunately it is not possible to defifescribableas a regular IDL interface. This

is because arguments of declared interface type are always passed as object references
(see Section 5.3.2.4, “Parameter Passing”) and we also wadisgiiay method to be

able to accept value type objects that can only be passed by value. Similarly we cannot
define Describableas an IDL value type because then dieplaymethod would not be

able to accept actual parameter objects that only support passing as an object reference.
Abstract interfaces are needed to cover such cases.

This usage of abstract interfaces includes both base types and mixin types. A base
type is a type that appears at the top of a hierarchy that includes both regular interface
and value types. For example, it could be the root type of a business object framework
that includes both regular interface types and value types. A mixin type represents a
property of some (but not all) types in a hierarchy. For example, it could be inherited
by some regular interface types and supported by value types in a framework, but not
by other types in the framework.

8.10.1.1 Example

The Describableabstract interface could be defined and used by the following IDL:

abstract interface Describable {
string get_description();

h

interface Example {
void display (in Describable anObject);

h

interface Account supports Describable { // passed by reference
/I add Account methods here

h

value Currency: Describable { // passed by value
/I add Currency methods here

b

If Describable were defined as a regular interface instead of an abstract interface,
then it would not be possible to pas€arrency value to the display method, even
though theCurrency IDL type supports th®escribable interface. See Section 4.5,
“Passing A Value Instance for an Interface Type”, for the rationale.

8.10.2 Passing Values to Trusted Domains

February 10, 1998 2:04 pm

When a server passes an object reference, it can be sure that access control policies
will apply to any attempt to access anything through that object reference. When the
underlying object is passed as a value, the granularity and level/semantics of access
control are different. In the “by value” case, all the data for the object is passed, and
method invocations on the passed object are local calls that are not mediated by the
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ORB. Whether the server wants to use the (potentially more permissive) pass by value
access control or not could depend on the security domain which is receiving the said
object or object reference.

Consider the case where the server S has an object O that it is willing to pass only in
the form of an object reference Or' to a domain Du that it does not trust, but is willing
to pass the object by value Ov to another domain Ot that it trusts.

This flexibility is not possible without abstract interfaces. Signatures would have to be
written to either always pass references or always pass values, irrespective of the level
of trust of the invocation target domain. However, abstract interfaces provide the
necessary flexibility. The formal parameter tydgType can be declared as an

abstract interface and the method invocation can be coded along the lines of

myExample->foo(security_check(myExample,mydata));

where thesecurity_checkfunction determines the level of trustmfyExample's

domain and returns an regular interface subtypefype for untrusted domains and
a value subtype dflyType for trusted domains. The rules for abstract interfaces will
then pass the correct thing in both these cases.
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9.1 Introduction

9.2 Compliance

2/10/98

Conformance Issues O=

This chapter specifies the compliance points for this specification

This submission adds no additional compliance points to the CORBA specification. It
defines new semantics and IDL extensions that must be implemented in order to claim
conformance to CORBA CORE.
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Changesto CORBA2.2 10=

This submission proposes extensions to CORBA 2.2 to support passing objects by
value. It

® adds the concepts of value types and abstract interfaces to CORBA
® extends IDL
® extends the language mappings to support these IDL extensions

®* extends GIOP to further support these extensions in an interoperable fashion

This chapter outlines in detail the probable changes to the CORBA 2.2 specification.
See Section 1.4, “Missing Items,” on page 1-9 for further discussion.

10.1 Changesto CORBA 2.2

The following is an extracted set of notes (from a .pdf file) relative to the beta draft of
CORBA 2.2 that was made available by the OMG for review purposes. Each note
contains the (absolute) page number of the draft, as well as the section number to
which it applies.
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Changes needed to apply OBV to CORBA 2.2 review

Page 42

Note 1; Label: jeffm; Date: 1/18/98 5:10:06 PM
Section 1.2.4 Object Model Types
Add value type description

Page 43

Note 1; Label: jeffm; Date: 1/18/98 5:10:20 PM
Section 1.2.4 Object Model Types
Add value type at the same level as Object Reference

Note 2; Label: jeffm; Date: 1/18/98 5:10:38 PM

Section 1.2.4 Object Model Types

Replace use of Value in this section with "entity" as appropriate,
so that Value type can be used for the new entity being defined

Page 44

Note 1; Label: jeffm; Date: 1/18/98 5:11:22 PM
Section 1.2.5 Object Model Interfaces
Add new section 1.2.5a
Value types
describe their general characteristics

Page 73

Note 1; Label: jeffm; Date: 1/18/98 5:11:39 PM

Section 3.2.4 Keywords

Add new section 3.2.4a : Keyword Identifiers
(from submission 5.4.2)

Page 76

Note 1; Label: jeffm; Date: 1/18/98 5:12:04 PM
Section 3.4 OMG IDL Grammar

update complete grammar with new productions
( from submission 5.4.1)

Page 80

Note 1; Label: jeffm; Date: 1/18/98 3:06:10 PM
Section 3.5 OMG IDL Specification
add <value> to <definition>

Page 82

Note 1; Label: jeffm; Date: 1/18/98 5:17:17 PM
Section 3.5 OMG IDL Specification
Add new Section 3.5.a on Value Types
Add new Section 3.5.b on Value Boxes
Add new Section 3.5.c on Abstract Value
Add new Section 3.5.d on Abstract Interfaces
These sections include most of the material from submission 5.3, 5.4 and 8.2-8.5

Note 2; Label: jeffm; Date: 1/18/98 5:17:25 PM
Section 3.6 Inheritance



generalize to apply scoping rules to value defs as well as interface defs

Page 88

Note 1; Label: jeffm; Date: 1/18/98 3:09:38 PM
Section 3.8
add <value_type_spec> to <base_type spec>

Page 101

Note 1; Label: jeffm; Date: 1/18/98 3:09:57 PM
Section 3.13 Names and Scoping
Add value types

Page 105

Note 1; Label: jeffm; Date: 1/18/98 3:10:35 PM
Section 3.15 Exceptions
Add table with new standard minor exception codes from submission 5.9

Page 127

Note 1; Label: jeffm; Date: 1/18/98 5:18:43 PM

Section 4.10

Add new sections 4.10a... to add all the addional ORB and CORBA module functions
(from submission 5.3.6, 5.3.7)

Page 155

Note 1; Label: jeffm; Date: 1/18/98 4:12:40 PM
Section 7.2 Dynamic Any
Add insert_value()

Page 156

Note 1; Label: jeffm; Date: 1/18/98 4:13:03 PM
Section 7.2 Dynamic Any
add get_value() operation

Page 157

Note 1; Label: jeffm; Date: 1/18/98 4:13:12 PM
Section 7.2 Dynamic Any
Add DynValue to IDL

Page 166

Note 1; Label: jeffm; Date: 1/18/98 5:19:18 PM
Section 7.2.9

Add Section 7.2.10 The DynValue Interface
(from submission 5.6)

Page 175

Note 1; Label: jeffm; Date: 1/18/98 4:16:00 PM
Section 8.4.2 IR
Add ValueDef to list

Page 176

Note 1; Label: jeffm; Date: 1/18/98 4:16:41 PM



Section 8.2 IR
add ValueDef to Figure 8-2

Page 177

Note 1; Label: jeffm; Date: 1/18/98 4:17:42 PM
Section 8.5.1 IR

add new DefinitionKinds

(from submission 5.5)

Page 183

Note 1; Label: jeffm; Date: 1/18/98 4:19:07 PM
Section 8.5.3 IR
Add create_value

Page 200

Note 1; Label: jeffm; Date: 1/18/98 5:19:58 PM
Section 8.23 IR

Add new section 8.24 ValueDef

contains bulk of new IDL

( from submission 5.5 and 8.6)

Page 206

Note 1; Label: jeffm; Date: 1/18/98 5:20:09 PM
Section 8.7.1 TypeCodes

Add new TCKind

(from submission 5.7.1)

Page 209

Note 1; Label: jeffm; Date: 1/18/98 5:20:14 PM
Section 8.7.1 Typecodes

Add new info to Table 8-1

(from submission 5.8.7)

Page 212

Note 1; Label: jeffm; Date: 1/18/98 5:20:20 PM
Section 8.7.3 Creeating Typecodes

Add new operations

(from submission 5.7.2)

Page 213

Note 1; Label: jeffm; Date: 1/18/98 4:28:23 PM
Section 8.8 OMG IDL for IR
Update complete IDL with new IDL (from submssion 5.5)

Page 321

Note 1; Label: jeffm; Date: 1/18/98 5:20:44 PM
Section 11.6.7 Interop

Add new service context: SendingContextRunTime
(from submission 5.3.8)

Page 340




Note 1; Label: jeffm; Date: 1/18/98 5:20:55 PM

Section 11.10

Add a new Section 11.11 SendingContextRuntime includes IDL and semantics of new interface
RunTime

(from submission 5.3.8)

Page 366

Note 1; Label: jeffm; Date: 1/18/98 4:42:41 PM
Section 13.3 CDR Transfer Syntax
Add new Section 13.3.6 Value Types
specifies encoding rules for values (from submission 5.8-5.8.6)

Page 672

Note 1; Label: jeffm; Date: 1/18/98 5:05:08 PM
Section 19.15 C++ Mapping for Any

Add new Section 19.15a Mapping for Value
(from submission 7.1, 7.2, 7.3)

Page 892

Note 1; Label: jeffm; Date: 1/18/98 4:46:57 PM
Section 23.4 Java Helper
Add helper class for Value also has get_value_def() method

Page 906

Note 1; Label: jeffm; Date: 1/18/98 4:50:53 PM

Section 3.11

Add new Section 3.11a Mapping for Value Types

(from submssion 6.3))

Add new Section 3.11b Mappging for Boxed Values
(from submission6.5).

Add new Section 3.11c Mapping for Abstract Interfaces
(from submission8.7)

Page 910

Note 1; Label: jeffm; Date: 1/18/98 5:21:32 PM
Section 23.13 Java Mapping for Any

Add value support to any

(from submission 6.6)

Page 914

Note 1; Label: jeffm; Date: 1/18/98 4:53:53 PM
Section 23.15

Add new section 23.15a Value Factory and Marshaling
(from submission 6.4)

Page 937

Note 1; Label: jeffm; Date: 1/18/98 5:21:47 PM
Section 23.18.4 Java Streamable APIs

Add support for new types

(from submission 6.7 and 8.7)
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