
Objects By Value
Joint Revised Submission - w/ Errata
BEA Sytems, Inc.

International Business Machines Corporation

Iona Technologies, Plc.

Netscape Communications Corporation

Novell, Inc.

Visigenic Software, Inc.

Supported by:

Hewlett-Packard Company

OMG TC Document orbos/98-01-18
Joint Objects By Value Submission 1

hese
he
ately

t
of,
ibuted

n the

or
 of

ce.

ny
ng,

tion

MG

t to
ter
Copyright 1998 by BEA Systems, Inc.
Copyright 1998 by International Business Machines Corporation
Copyright 1998 by Iona Technologies, Plc.
Copyright 1998 by Netscape Communications, Inc.
Copyright 1998 by Novell, Inc.
Copyright 1998 by Visigenic Software, Inc.

The submitting companies listsed above have all contributed to this “merged” submission. T
companies recognize that this draft joint submission is the joint intellectual property of all t
submitters, and may be used by any of them in the future, regardless of whether they ultim
participate in a final joint submission.

The companies listed above hereby grant a royalty-free license to the Object Managemen
Group, Inc. (OMG) for worldwide distribution of this document or any derivative works there
so long as the OMG reproduces the copyright notices and the below paragraphs on all distr
copies.
The material in this document is submitted to the OMG for evaluation. Submission of this
document does not represent a commitment to implement any portion of this specification i
products of the submitters.
WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE,THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. The companies listed above shall not be liable for errors contained herein or f
incidental or consequential damages in connection with the furnishing, performance or use
this material. The information contained in this document is subject to change without noti
This document contains information which is protected by copyright. All Rights Reserved.
Except as otherwise provided herein, no part of this work may be reproduced or used in a
form or by any means—graphic, electronic, or mechanical, including photocopying, recordi
taping, or information storage and retrieval systems— without the permission of one of the
copyright owners. All copies of this document must include the copyright and other informa
contained on this page.
The copyright owners grant member companies of the OMG permission to make a limited
number of copies of this document (up to fifty copies) for their internal use as part of the O
evaluation process.
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subjec
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Compu
Software Clause at DFARS 252.227.7013.

CORBA and Object Request Broker are trademarks of Object Management Group.

OMG is a trademark of Object Management Group.
2 orbos/98-01-18: Objects By Value (with errata)

Table of Contents
. 7

. 7
. 7
. 8
. 8
. 9
. 9
. 9

1

3

 13
4

14
14
14
15
5

15

7
 17
17
1 Preface .

1.1 Cosubmitting Companies .
1.2 Status of this document .

1.2.1 Changes to 98-01-01 .
1.3 Guide to the Submission.
1.4 Missing Items .
1.5 Conventions .
1.6 Submission Contact Points.

2 Proof of Concept . 1

3 Response to RFP Requirements . 1

3.1 Pass By Value Semantics .
3.2 Interoperability . 1
3.3 Memory Management .
3.4 IDL Changes.
3.5 Language Mapping Changes .
3.6 GIOP and Wire Protocol Changes .
3.7 Discuss Upwardly Incompatible Changes . 1
3.8 Design Rationale .

4 Overall Design Rationale . 17

4.1 Protected Fields in State Definition . 1
4.2 Single Inheritance Issues .
4.3 Base Value Type.
2/10/98 orbos/98-01-18: Objects By Value (with errata) iii

4.4 Narrowing from interface to value . 18
4.5 Passing A Value Instance for an Interface Type . 18
4.6 Boxed Values . 19
4.7 value keyword . 19
4.8 Use of Helper classes . 19

5 Value Types .21

5.1 Introduction . 21
5.2 Goals. 22
5.3 Description . 23

5.3.1 Value Types . 23
5.3.2 Typing and Substitutability Issues . 26
5.3.3 Value Boxes . 30
5.3.4 LifeCycle issues . 31
5.3.5 . Security Considerations32
5.3.6 Language Mappings . 33
5.3.7 Custom Marshaling . 35
5.3.8 Access to the Sending Context Run Time . 41

5.4 IDL Extensions. 43
5.4.1 Syntax. 43
5.4.2 New lexical type - Keyword Identifier. 44
5.4.3 ValueBase Operations . 45

5.5 Interface Repository . 46
5.6 Repository Id and Value Types . 49

5.6.1 CORBA Repository Ids . 49
5.6.2 RepositoryId for Value Type . 50
5.6.3 Hashing Algorithm. 51

5.7 Dynamic Any . 52
5.8 TypeCodes . 53

5.8.1 New TCKinds. 53
5.8.2 New ORB operations . 53

5.9 GIOP/IIOP Extensions and Mapping . 54
5.9.1 Partial Type Information and Versioning. 54
5.9.2 Scope of the Indirections . 55
5.9.3 Other Encoding Information . 55
5.9.4 Fragmentation. 55
5.9.5 Notation . 56
5.9.6 The Format . 57
5.9.7 New TypeCodes Encoding. 58

5.10 Minor Exception Codes . 59

6 Java Language Mapping .61
iv orbos/98-01-18: Objects By Value (with errata) 2/10/98

6.1 Introduction . 61
6.2 Names. 61
6.3 Mapping for Value . 61

6.3.1 Basics for Stateful Values . 61
6.3.2 Helper Class . 63
6.3.3 Holder Class . 63
6.3.4 Example A . 64
6.3.5 Example B . 65
6.3.6 Parameter Passing Modes. 66

6.4 Value Factory and Marshaling . 67
6.5 Value Box Types . 67

6.5.1 Primitive Types . 68
6.5.2 Complex Types . 69

6.6 Any . 70
6.7 Java ORB Portability Interfaces . 70

7 C++ Language Mapping .71

7.1 Introduction . 71
7.2 Names. 71
7.3 Mapping for Value . 71

7.3.1 Value Data Members . 72
7.3.2 Constructors, Assignment Operators, and Destructors 73
7.3.3 Value Operations . 74
7.3.4 Example . 74
7.3.5 ValueBase and Reference Counting. 76
7.3.6 Reference Counting Mix-in Classes. 78
7.3.7 Value Boxes . 78
7.3.8 Abstract Values . 88
7.3.9 Value Inheritance . 88
7.3.10 Value Factories. 89
7.3.11 Custom Marshaling . 93
7.3.12 Parameter Passing Modes. 93
7.3.13 Memory Management Considerations . 94
7.3.14 Another Example . 95
7.3.15 Value Members of Structs . 95
7.3.16 Value Interaction With Any . 96

8 Abstract Interfaces. .99

8.1 Introduction . 99
8.2 Syntax for Abstract Interfaces . 100
8.3 Semantics of Abstract Interfaces . 100
2/10/98 orbos/98-01-18: Objects By Value (with errata) v

8.4 Usage Guidelines . 101
8.5 IDL Extensions. 101
8.6 Interface Repository Extensions. 101
8.7 Java Language Mapping for Abstract Interfaces . 102

8.7.1 Java ORB Portability Interfaces. 102
8.8 C++ Language Mapping for Abstract Interfaces . 102

8.8.1 Abstract Interface Base . 103
8.8.2 Client Side Mapping . 104
8.8.3 Server Side Mapping . 105

8.9 Security Considerations . 106
8.10 Usage Scenarios . 106

8.10.1 Base Types and Mixin Types. 106
8.10.2 Passing Values to Trusted Domains. 107

9 Conformance Issues .109

9.1 Introduction . 109
9.2 Compliance. 109

10 Changes to CORBA 2.2 .111

10.1 Changes to CORBA 2.2 . 111
vi orbos/98-01-18: Objects By Value (with errata) 2/10/98

Preface 1
e to

ow)

BA
 parts

 the
2 is
 The
the
RBA
1.1 Cosubmitting Companies

The following companies are pleased to jointly submit this specification in respons
the OMG Objects By Value RFP (Document ORBOS/96-06-14):

• BEA Systems, Inc.

• International Business Machines Corporation

• Iona Technologies, Plc.

• Netscape Communications Corporation

• Novell, Inc.

• Visigenic Software, Inc.

1.2 Status of this document

This document is the final revised submission with several minor errors (listed bel
fixed and indicated by change bars in the document.

It is assumed that when this submission is adopted it will become part of the COR
2.3 core. The nature of this submission is that its changes are not isolated to small
of the core.

Chapter 10 “merely” outlines the exact changes to CORBA 2.2. It does not contain
complete “editing instructions” required to update CORBA 2.2 because CORBA 2.
still under development and it was not possible to provide the exact text required.
motion to adopt this submission will include a motion to form an RTF made up of
submitters (at least) whose charter will be to produce the detailed changes for CO
2.3. The changes will then be voted on following normal OMG RTF procedures.
2/10/98 orbos/98-01-18: Objects By Value (with errata) 1-7

1

ge to

der

s

nd
w

om
re

OMA
1.2.1 Changes to 98-01-01
• In “Partial Type Information and Versioning” on page 5-54, specifying the list of

safe bases, in addition to the actual type, was omitted. The corresponding chan
the GIOP format in “The Format” on page 5-57 was also made.

• A dependency on new functionality being added to the JDK was identified. In or
to provide an alternative, a note was added to the
org.omg.CORBA.portable.OutputStream in “Java ORB Portability Interfaces” on
page 6-70. A value’s mapped Java class must also implement
org.omg.portable.Streamable if it is to be used with a version of the JDK that doe
not provide the new feature (see Section 6.3.1, “Basics for Stateful Values,” on
page 6-61).

• In the C++ mapping (see Section 7.3.1, “Value Data Members,” on page 7-72 a
the examples following) accessors and modifers are now virtual in order to allo
application developers to reimplement the generated default behavior.

• Specification of RepositoryID format was added. See Section 5.6.1, “CORBA
Repository Ids,” on page 5-49.

• A typo in “Value Operations” on page 7-74 was fixed.

• Fixed the formatting of this section.

• Missing “in” keyword in syntax rule for <init_param_decl> in Section 5.4.1,
“Syntax,” on page 5-43.

• Missing “in” specifiers in operation declarations in some of the examples.

• Missing <identifier> in syntax productions for <value_abs_dcl> and <header>
Section 5.4.1, “Syntax,” on page 5-43.

• Change the syntax to not overload the colon to indicate both the inheritance fr
abstract interfaces and values, and the support of interfaces. Although there a
many changes throughout the document, they are mostly to change the use of
inherits/derives to supports and fix the grammar. The primary change is to the
syntax production in Section 5.4.1, “Syntax,” on page 5-43.

1.3 Guide to the Submission

This revised submission proposes an approach to handling objects by value in an
context. Elements include:

• Value Interfaces

• IDL extensions

• Parameter Passing Semantics

• GIOP/IIOP Extensions

• Abstract Interfaces
1-8 orbos/98-01-18: Objects By Value (with errata) 2/10/98

1

 IDL

r 8

or the
 what
Chapter 5 describes the approach and contains the bulk of the proposal including
extensions and GIOP/IIOP extensions. Chapter 6 describes the changes to Java
mapping. Chapter 7 describes the required changes to the C++ mapping. Chapte
contains the proposal to add abstract interfaces to CORBA.

1.4 Missing Items

1.5 Conventions

IDL appears using this font.

Concrete programming language (Java, C++, etc.) code appears using this font.

Please note that any change bars have no semantic meaning. They are present f
convenience of readers and submitters (and the editor who wants to be able to tell
changed between various drafts).

1.6 Submission Contact Points

The primary editor, and contact point for this submission is:

Jeff Mischkinsky
Visigenic Software, Inc.
951 Mariner’s Island Blvd. Suite 120
San Mateo, CA 94404
USA
phone: +1 650 312 5158
email: jeffm@visigenic.com

The contact information for the other co-submitting companies is:

Dan Frantz
BEA Systems, Inc..
436 Amherst Street
Nashua, NH 03063
USA
phonee: +1 603 579-2519
emaill: dan.frantz@beasys.com

Randy Fox
IBM Corp.
11400 Burnet Road
Austin, TX 78758
phonee: +1 512 838 2310
emaill: randyfox@austin.ibm.com

Martin Chapman
IONA Technologies
The IONA Building
8-10 Lower Pembroke Street
Dublin 2, Ireland
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 1-9

1

phone: +353 1 662 5255
fax: +353 1 662 5244
email: mchapman@iona.com

David Stryker
Netscape Communications Corporation
501 E. Middlefield Road
Mountain View, CA 94043
USA
phone: +1 650 937-3454
email: stryker@netscape.com

Bill Cox
Novell, Inc.
2 Oak Way
Berkeley Heights, NJ 07922
phone: +1 908 790-5123
email: bill@novell.com
1-10 orbos/98-01-18: Objects By Value (with errata) 2/10/98

Proof of Concept 2
 in

sco
The core ideas presented in this submission are based on Visigenic’s experience
implementing our Caffeine extensions to CORBA for Visibroker/Java.

Many of the ideas for custom marshaling are based upon experience with Iona’s
opaque extensions.

Issues dealing with codebase and code downloading are based on RMI work in
partnership with JavaSoft on mapping RMI to IIOP.

The abstract interface extensions are based upon IBM’s work on their San Franci
project.
2/10/98 orbos/98-01-18: Objects By Value (with errata) 2-11

2

2-12 orbos/98-01-18: Objects By Value (with errata) 2/10/98

Response to RFP Requirements 3
ng
ses,
er is

ntext.
pect
aller

nd

he

l”
The following is a list of the requirements from the Objects By Value RFP (OMG
orbos/96-06-14), specifying how this submission is responsive to the RFP.

Introduction

In the following requirements discussion, the terms “sending context” and “receivi
context” are relative roles played by client and server contexts (programs, proces
whatever). If an object is being passed by value as an in parameter, then the call
the sending context and the callee is the receiving context. If the object is an out
parameter, then the caller is the receiving context and the callee is the sending co
If the parameter is an inout parameter, then the roles are meaningful only with res
to a single parameter directional flow. If the parameter is a return parameter, the c
is the receiving context and the callee is the sending context.

3.1 Pass By Value Semantics

Submissions shall define precisely the semantics of passing objects by value.
Specifically, the following issues shall be addressed:

• what is the relationship between the identity of the object in the sending context a
the object in the receiving context (including any security implications)?

None, copy semantics are used.

• what is the relationship between the implementation in the sending context and t
implementation in the receiving context? Must they be identical? If not, how is
equivalency for the purposes of passing by value established?

Structural compatibility. We guarantee that code will not break, but as with “norma
CORBA there are no semantic guarantees.

• what happens when there is no appropriate implementation available in the
receiving context?
2/10/98 orbos/98-01-18: Objects By Value (with errata) 3-13

3

pe

may
by
 are

w an

nt
r

ng

rs.

g

A policy for searching for compatible implementations is defined.

• what are the relationships between the primary (or most-derived) interface of an
object being passed in the sending context, the interface type of the parameter
declaration, and the primary (or most-derived) interface of the object in the
receiving context? Can any object supporting the declared parameter interface ty
be passed by value? If an object being passed in the sending context supports
interfaces that are more derived than the parameter interface, will the resulting
object in the receiving context also support those more-derived interfaces?

The submission supports “regular” CORBA subtyping semantics. Stateful values
only singly inherit from other stateful values. Parameters are passed by value or
reference depending upon their formal type. Parameters with a formal value type
passed by value. Parameters with a formal ordinary interface type are passed by
reference. If the formal type is an abstract interface, then the determination of ho
actual parameter is passed is made at runtime.

3.2 Interoperability
• Submissions shall describe how interoperability may be ensured between differe

ORB implementations when passing objects by value. All information required fo
ORB interoperability shall be precisely described and exposed in some standard
format. For example, if a submission proposes to ensure interoperability of passi
by value based on information in the object's interface (IDL or IR) with some
additional annotations, the submission shall describe a standard format for the
annotation and medium (media) though which it will be expressed.

The submission does this. It extends GIOP and IIOP.

3.3 Memory Management
• Submissions shall specify the memory management rules for by-value paramete

They are provided.

3.4 IDL Changes
• Submissions shall provide justification and rationale for any modifications or

extensions to IDL, and to any new prescribed interfaces or modifications of existin
CORBA interfaces.

They are provided.

3.5 Language Mapping Changes
• Any changes to adopted IDL language mappings necessary to allow use of your

objects-by-value mechanism from those languages shall be specified.

They are provided.
3-14 orbos/98-01-18: Objects By Value (with errata) 2/10/98

3

.
3.6 GIOP and Wire Protocol Changes
• Any changes to GIOP and the CORBA 2 interoperability architecture, including

marshalling and on-the-wire formats, shall be specified.

They are specified.

3.7 Discuss Upwardly Incompatible Changes
• Because of the consequences of changing existing specifications, particularly

upwardly incompatible changes, submitters should carefully consider the
implications of changes, and fully document their implications in their submissions
A migration plan shall be included for upwardly incompatible changes.

There are none.

3.8 Design Rationale
• The language mapping should be prefaced by an explanation of the design

rationale.

A separate chapter outlining some of the design rationale is provided. Where
appropriate there is discussion in the main body of the submission.
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 3-15

3

3-16 orbos/98-01-18: Objects By Value (with errata) 2/10/98

Overall Design Rationale 4
or this

the
only
d for
e

 from

 Java

n as

g

This chapter discusses some of the rationale behind the choices that were made f
mapping.

General issues are discussed in the Introduction.

4.1 Protected Fields in State Definition

We chose not to introduce a notion of protected data member following the lead of
Enhanced Portability specification which states that a derived implementation can
rely on the public interface of its base. If it becomes clear that this notion is neede
value types it will be possible to revise the specification in an upwardly compatibl
way.

4.2 Single Inheritance Issues

Because we are stepping over the line that separates pure interface specification
implementation specification, concrete programming language issues must be
considered. There are well-known difficulties in implementing multiple
implementation inheritance. As a result many OO languages do not support it, e.g.
and Smalltalk. We therefore choose to adopt a model which supports multiple
inheritance for interfaces or value with no state, but only single inheritance as soo
some state is declared.

This restriction allows a clean and efficient mapping to the major OO programmin
languages, Java, C++, and Smalltalk.

4.3 Base Value Type

By default value types are not CORBA Objects, i.e. they do not inherit from
CORBA::Object. The rationale for that decision is that mandating CORBA::Object
semantics for all values is overkill: A important expected use of value types is to
2/10/98 orbos/98-01-18: Objects By Value (with errata) 4-17

4

y
was
values

.

the
r to

” to
o

. It
cific

a
erface
ace.

ration
s
ous
rs so

e
ever
g a
nding

l it
e
the

 or a

break
of
support lightweight “data objects” which by they very nature are always passed b
value (like a date, or a matrix), if value types had existed at the time CORBA1.0
defined pseudo objects (e.g. TypeCodes) could have been expressed cleanly as
too. Forcing these kinds of data objects to support all the apparatus of a
CORBA::Object (e.g., get_interface, IOR support, etc.) is an unnecessary burden

4.4 Narrowing from interface to value

Narrowing from interface to value is not automatically allowed. To do so requires
creation of a local copy of the value type instance in the receiving context. In orde
successfully perform this operation, the receiving context would have to “go back
the object reference’s implementation (server) and download the value. There is n
guarantee that the receiving context even “knows” about such an implementation
was deemed much safer and less confusing to force the designer to define a spe
application level operation if this feature is desired.

4.5 Passing A Value Instance for an Interface Type

This section discusses in more detail the rationale behind the decision to require
reference to be sent when an instance of a value type whose type supports an int
is passed as an actual parameter for a formal parameter whose type is the interf

Again consider the example of a value type that supports an interface and an ope
which has a parameter whose formal type is the interface. The question is what i
actually passed in an invocation when the actual instance is the value type. Seri
consideration was given to allowing the actual value to be passed, under the cove
to speak. However there were several issues with this approach.

From an application/client perspective there is no problem. It only knows about th
base interface and hence only uses the instance as if it were the base type. How
there may be a change in the semantics in that the application is now manipulatin
local copy. Any changes it makes stay local and are not propagated back to the se
context.

The receiving context also now has an implementation “living” within itself when al
thought was that it was receiving a reference. The situation is even stranger if on
considers the case of an out parameter. In that case the client, which is initiating
invocation, could find itself all of sudden receiving an implementation.

There would have to be a way to let the sending side control whether a reference
value was to be sent, thus necessitating an additional api of some sort.

A major change to GIOP would have to occur to allow an encoding of a reference
either as an IOR or as a value. This change would either cause older servers to
(if they were not careful about checking version numbers) or limit the usefulness
new clients.
4-18 orbos/98-01-18: Objects By Value (with errata) 2/10/98

4

 it can
e
kind
 a

e its
ng or
 of a
g of

t IDL

ssion
uence
pping
se it
ific

lue

curs.

in the
These issues and problems arise because the receiving context is not aware that
now be sent a value instead of a reference. Hence the decision was made to forc
designers to make an explicit decision to support this capability by adding a new
of interface to IDL which has the semantics that it may be implemented either by
reference (IOR) or by a value.

4.6 Boxed Values

Sometimes it is necessary to define a value type with a single data member insid
state section and no inheritance or methods. For example, when transmitting a stri
sequence as an actual parameter on an interface operation or as a data member
value type that is an actual parameter, it may be important to preserve any sharin
the string or sequence within the object graph being transmitted. Because curren
data types do not preserve referential integrity in this way, this requirement is
conveniently handled by using a value type. Value types also support the transmi
of nulls (as a distinguished value), whereas IDL data types such as string and seq
(which are mapped to empty strings and sequences) do not. The Java to IDL ma
requires both preservation of referential integrity and transmission of nulls. Becau
would be cumbersome to require the full IDL syntax for a value type for this spec
usage, a shorthand IDL notation is introduced to cover this use of value types for
simple containment of a single data member.

4.7 value keyword

There is a fair amount of language required to specify the obvious uses of the va
keyword. Basically value is analogous to interface , and is used in the grammar to
introduce a value declaration. ValueBase is analogous to Object and is used to
denote the base type. The rest of the language is to describe how the parsing oc

4.8 Use of Helper classes

Helper and holder classes are used in keeping with the decisions that were made
adopted Java language mapping specification.
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 4-19

4

4-20 orbos/98-01-18: Objects By Value (with errata) 2/10/98

Value Types 5
ntics

ue,
 that

bject
t’s
ke a
ent

at of
alue

is

RBA

her

e
5.1 Introduction

Pure CORBA (2.1) objects cannot be passed by value, only object reference sema
are supported. Objects, more specifically, interface types that objects support, are
defined by an IDL interface, allowing arbitrary implementations. There is great val
which is described in great detail elsewhere, in having a distributed object system
places almost no constraints on implementations.

However there are many occasions in which it is desirable to be able to pass an o
by value, rather than by reference. This may be particularly useful when an objec
primary “purpose” is to encapsulate data, or an application explicitly wishes to ma
“copy” of an object. We assume that the purpose of this feature is NOT to implem
replication and/or caching1.

In this submission, we define the semantics of pass by value as being similar to th
standard programming languages. The receiving side of a parameter passed by v
receives a “new” instance of the object, with a separate identity from that of the
sending side. Once the parameter passing operation is complete, no relationship
assumed to exist between the two instances.

Because it is necessary for the receiving side to instantiate an instance, it must
necessarily know something about the object’s state. This submission extends CO
(and IDL) to include the notion of a value type.

It has also proved desirable to allow the receiving side the flexibility to receive eit
an Object type or a Value type. This submission proposes extending CORBA to
support the notion of an abstract interface type which allows a designer to specify
that an operation can explicitly support receiving either a value type or an interfac
type at runtime. See Chapter 8, “Abstract Interfaces" for more details.

1.But we believe that more complex caching and replication functionality can be built on the
top of the feature set proposed here.
2/10/98 orbos/98-01-18: Objects By Value (with errata) 5-21

5

and

 they

 to

ing

 be

G to

tics.

ce

in
Value types provide semantics that bridge between CORBA structs and CORBA
interfaces:

• They support description of complex state (i.e arbitrary graphs, with recursion
cycles)

• Their instances are always local to the context in which they are used (because
are always copied when passed as a parameter to a remote call)

• They support both public and private (to the implementation) data members.

• They can be used to specify the state of an object implementation i.e they can
support an interface.

• They support single inheritance (of value) and can support multiple interfaces.

• They may be also be abstract.

The submitters were also faced with the problem of adding several new keywords
IDL. The submission proposes some minor extensions to the way in which IDL is
parsed in order to make it possible to add keywords to IDL without breaking exist
programs which use those keywords as identifiers.

The submitters are also working closely with submitters on several other ongoing
RFPs. These include the reverse Java to IDL language mapping, Persistent State
Service, and CORBA Components RFP. We expect that facilities added by this
proposal to be used in those submissions. The final adopted specifications should
closely coordinated.

It is our belief that the concepts provided by this submission would enable the OM
eliminate almost all the PIDL contained in the CORBA specification. It is our
recommendation that an RFP to do so be issued.

5.2 Goals

The goals of this proposal are to:

• provide a simple and very robust model that builds on existing CORBA seman

• respect the current CORBA model that distinguishes, in its type system, interfa
types from constructed data types.

• minimize changes to IDL.

• maintain flexibility in ORB implementations, while guaranteeing interoperability
and portability.

• expose complex implementation states in a language independent manner.

• guarantee consistent semantics and use across languages.

• support passing of objects by value between clients and servers implemented
different languages.

• provide natural and convenient support in Java and C++
5-22 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

ort
on
nts
 is
ntial

 state

ignal
ils be
me
s.

pings.

l.
ays
have
.

ct
same.
pped
 to

ting:

alue
A key design center for this submission is to provide natural and convenient supp
for Java users of CORBA. Our feeling is that a key factor in the continued adopti
and deployment of CORBA will be the ease of interoperability between Java (clie
and servers) and other language platforms, particularly C++. Hence this proposal
designed so that it may be efficiently and easily implemented in Java. Where pote
features (e.g. multiple inheritance) increased complexity, we chose to simplify.

5.3 Description

5.3.1 Value Types

5.3.1.1 Architecture

This submission introduces the notion of a value type to the OMA. This has profound
implications on the type system and has forced careful consideration of issues
surrounding the nature of interfaces, the separation of interface definition and
implementation, and the guarantees that CORBA makes with respect to issues of
consistency and coherency.

The basic notion is relatively simple. A value type is, in some sense, half way
between a “regular” IDL interface type and a struct. The use of a value type is a s
from the designer that some additional properties (state) and implementation deta
specified beyond that of an interface type. Specification of this information puts so
additional constraints on the implementation choices beyond that of interface type
This is reflected in both the semantics specified herein, and in the language map

An essential property of value types is that their implementations are always loca
That is, the explicit use of value type in a concrete programming language is alw
guaranteed to use a local implementation, and will not require a remote call. They
no identity (their value is their identity) and they are not “registered” with the ORB

There are two kinds of value types, concrete (or stateful) value types, and abstra
(stateless) ones. As explained below the essential characteristics of both are the
The differences between them result from the differences in the way they are ma
in the language mappings. In this specification the semantics of value types apply
both kinds, unless specifically stated otherwise.

Concrete (stateful) values add to the expressive power of (IDL) structs by suppor

• single derivation (from other value types)

• support of multiple interfaces

• arbitrary recursive value type definitions, with sharing semantics providing the
ability to define lists, trees, lattices and more generally arbitrary graphs using v
types.

• null value semantic
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-23

5

arshals
tiates
te. It

e

state

alue
ally
ver,
),
pon

ngs

 They
al

f the
code

d to
pping

 only
by a

assed
ce
Note,
 the
When an instance of such a type is passed as a parameter, the sending context m
the state (data) and passes it to the receiving context. The receiving context instan
a new instance using the information in the GIOP request and unmarshals the sta
is assumed that the receiving context has available to it an implementation that is
consistent with the sender’s (i.e. only needs the state information), or that it can
somehow download a usable implementation. Provision is made in the on-the-wir
format to support the carrying of an optional call back object (CodeBase) to the
sending context which enables such downloading when it is appropriate.

It should be noted that it is possible to define a concrete value type with an empty
as a degenerate case.

Abstract Values

Value types may also be abstract. They are called abstract because an abstract v
type may not be instantiated. Only concrete types derived from them may be actu
instantiated and implemented. Their implementation, of course, is still local. Howe
because no state information may be specified (only local operations are allowed
abstract value types are not subject to the single inheritnace restrictions placed u
concrete value types. Essentially they are a bundle of operation signatures with a
purely local implementation. This distinction is made clear in the language mappi
for abstract values.

Note that a concrete value type with an empty state is not an abstract value type.
are considered to be stateful, may be instantiated, marshaled and passed as actu
parameters. Consider them to be a degenerate case of stateful values.

5.3.1.2 State Definition

Data members that define the state of a value type may be private or public. The
default is private and the public modifier can be used. The annotation directs the
language mapping to hide or expose the different parts of the state to the clients o
value type. The private part of the state is only accessible to the implementation
and the marshaling routines.

Note that certain programming languages may not have the built in facilities neede
distinguish between public and private members. In those cases, the language ma
will specify the rules that programmers have to follow.

5.3.1.3 Operations

Operations defined on a value type specify signatures whose implementation can
be local. Because these operations are local, they must be directly implemented
body of code in the language mapping (no proxy or indirection is involved).

The language mappings of such operations require that instances of value types p
into such local methods are passed by reference (programming language referen
semantics, not CORBA object reference semantics) and that a copy is not made.
such a (local) invocation is not a CORBA invocation. Hence it is not mediated by
ORB, although the API to be used is specified in the language mapping.
5-24 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

es of
A
d as a

d the

f the
ence

 the
lly

izers
und in

e to
e

ap

e
The (copy) semantics for instances of value type are only guaranteed when instanc
these value types are passed as a parameter to an operation defined on a CORB
interface, and hence mediated by the ORB. If an instance of a value type is passe
parameter to a method of another value type in an invocation, then this call is a
“normal” programming language call. In this case both of the instances are local
programming language constructs. No CORBA style copy semantics are used an
normal semantics for the programming language in question apply.

Operations on the value type are supported in order to guarantee the portability o
client code for these value types. They have no representation on the wire and h
no impact on interoperability.

5.3.1.4 Initializers

In order to ensure portability of value implementations, designers may also define
signatures of initializers (or constructors) for non abstract value types. Syntactica
these look like local operations except that they use the keyword identifier init for the
“name” of the operation, have no return type, and must use only in parameters. There
may be any number of init() declarations, as long as the signatures of all the initial
declared within the same scope are unique. Using the same signature as one fo
a less-derived type is allowed.

The mapping of initializers is language specific and may not always result in a on
one correspondence between initializer signatures and the programming languag
constructs into which they map. This is because the mapping from IDL types into
programming language types is not isomorphic; several different IDL types may m
to the same programming language type. Hence defining initializers with the sam
number of parameters with types that are “similar” (e.g. char and wchar , signed and
unsigned integers, etc.) should be done with care.

5.3.1.5 Example

interface A {};

interface B {};
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-25

5

only
value Example supports A, B {
// state definition

short a;
public long b; // public field, the default is private
string c;
float d;
Example eg; // passed by value + recursive definition
A anA; // passed by reference

// initializers
init(in short a);
init(in short a, in long b);

// operations
short f (in A x);
long g(in Example x);

};

A more realistic value type might be:

interface AnInterface {};

typedef sequence<unsigned long> WeightSeq;

value WeightedBinaryTree {
// state definition

unsigned long weight;
WeightedBinaryTree left;
WeightedBinaryTree right;

// initializer
init(in unsigned long w);

// local operations
WeightSeq pre_order();
WeightSeq post_order();

};

value WTree: WeightedBinaryTree supports AnInterface {
 };

5.3.2 Typing and Substitutability Issues

5.3.2.1 Inheritance Relationships

Values may be derived from other values and can support interfaces.

Once implementation (state) is specified at a particular point in the inheritance
hierarchy, all derived value types (which must of course implement the state) may
derive from a single (concrete) value type. They can however derive from other
additional abstract values and support additional interfaces.
5-26 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

ent
y
 that

e to
 to

l as

tting

pes

pe

in a
i.e.
.

The single immediate base concrete value type, if present, must be the first elem
specified in the inheritance list of the value declaration’s IDL. It may be followed b
other abstract values from which it inherits. The interfaces and abstract interfaces
it supports are listed in any order following the supports keyword.

A stateful value that derives from another stateful value may specify that it is saf
“truncate” (seeSection , “Value instance -> Value type,” on page 5-29) an instance
be an instance of its immediate parent (stateful) value type.

These rules are summarized in the following table:

5.3.2.2 Value Base Type

All value types have a conventional base type called CORBA::ValueBase. This is a
type which fulfills a role that is similar to that played by CORBA::Object.
Conceptually it supports the common operations available on all value types. See
Section 5.4.3, “ValueBase Operations,” on page 5-45 for a description of those
operations. In each language mapping CORBA::ValueBase will be mapped to an
appropriate base type that supports the marshaling/unmarshaling protocol as wel
the model for custom marshaling.

The mapping for other operations which all value types must support, such as ge
meta information about the type, may be found in the specifics for each language
mapping.

5.3.2.3 Value Type vs. Interfaces

By default value types are not CORBA Objects. In particular instances of value ty
do not inherit from CORBA::Object and do not support normal object reference
semantics. However it is always possible to explicitly declare that a given value ty
supports an interface type. In this case instances of the type may support CORBA
object reference semantics (if they are registered with the ORB using an object
adapter.).

5.3.2.4 Parameter Passing

This section describes semantics when a value instance is passed as parameter
CORBA invocation. It does not deal with the case of calling another non-CORBA (
local) programming method which happens to have a parameter of the same type

Table 5-1 Allowable Inheritance Relationships

may inherit from: Interface Abstract Value Stateful Value

Interface multiple no no

Abstract Value supports multiple n/a

Stateful Value supports multiple single (may be safe)
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-27

5

de by
g

face
s

value
d by
 IDL
he
d
t is

py of

nd

s
d to be
sed as

rface,

. We
is the
Value vs. Reference Semantics

Determination of whether a parameter is to be passed by value or reference is ma
examining the parameter’s formal type (i.e the signature of the operation it is bein
passed to). If it is a value type then it is passed by value. If it is an ordinary inter
then it is passed by reference (the case today for all CORBA objects). This rule i
simple and consistent with the handling of the same situation in recursive state
definitions or in structs.

In the case of abstract interfaces, the determination is made at runtime. See
Section 8.3, “Semantics of Abstract Interfaces” for a description of the rules.

Sharing Semantics

In order to be expressive enough to describe arbitrary graphs, lattice, trees etc.,
types support sharing and null semantics. Instances of a value type can be share
others across or within other instances. They can also be null. This is unlike other
data types such as structs, unions, and sequences which can never be shared. T
sharing of values within and between the parameters to an operation, is preserve
across an invocation, i.e the graph which is reconstructed in the receiving contex
structurally isomorphic to the sending context’s.

Identity Semantics

When an instance of the value type is passed as a parameter, an independent co
the instance is instantiated in the receiving context. That copy is a separate
independent entity and there is no explicit or implicit sharing of state.

Any parameter type

When an instance of a value type is passed to an any, as with all cases of passing
instances to an any, it is the responsibility of the implementer to insert and extract a
the value according to the language mapping specification.

5.3.2.5 Substitutability Issues

The substitutability requirements for CORBA require the definition of what happen
when an instance of a derived value type is passed as a parameter that is declare
a base value type or an instance of a value type that supports an interface is pas
a parameter that is declared as the interface type.

There are two cases to consider in this submission: the parameter type is an inte
and the parameter type is a value type.

Value instance -> Interface type

Assume that we have an instance of a value type that supports an interface type
have an IDL operation whose signature contains a parameter whose formal type
interface. The following rule applies to this situation:
5-28 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

ect

ving
m.

le”

t
n the
ht

dicate
• If the value type instance (in the sending context) has not been registered with
ORB, then a OBJECT_NOT_EXIST exception with an identified minor code (see
Section 5.10, “Minor Exception Codes”) is raised. Otherwise the instance’s obj
reference is used and it is passed as normal.

Value instance -> Value type

In this case the receiving context is expecting to receive a value type. If the recei
context currently has the appropriate implementation class then there is no proble

If the receiving context does not currently hold an implementation with which to
reconstruct the original type then the following algorithm is used to find such an
implementation:

1. Load
• Attempt to load (locally in C/C++, possibly remotely in Java and other “portab

languages) the real type of the object (with its methods). If this succeeds, OK

2. Truncate
• Truncate the type of the object to the base type (if specified as safe in the IDL).

Truncation can never lead to faulty programs because, from a structural poin
view base types structurally subsume a derived type and an object created i
receiving context bears no relationship with the original one. However, it mig
be semantically puzzling, as the derived type may completely re-interpret the
meaning of the state of the base. For that reason a derived value needs to in
if it is is safe to truncate to its immediate non-abstract parent.

3. Raise Exception
• If none of these work or are possible, then raise the NO_IMPLEMENT exception.

Safeness is a transitive property.

Example

value EmployeeRecord { // note this is not a CORBA::Object
// state definition

string name;
string email;
string SSN;

// initializer
init(in string name, in string SSN);

};

value ManagerRecord: safe EmployeeRecord {
// state definition

sequence<EmployeeRecord> direct_reports;
};
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-29

5

 other
tions

. If

tion

ith a

ceived
the
5.3.2.6 Widening/Narrowing

As has been described above, value type instances may be widened/narrowed to
value types. Each language mapping is responsible for specifying how these opera
are made available to the programmer.

Narrowing from an interface type instance to a value type instance is not allowed
the interface designer wants to allow the receiving context to create a local
implementation of the value type, i.e. a value representing the interface, an opera
which returns the appropriate value type may defined.

5.3.3 Value Boxes

It is often convenient to define a value type with no inheritance or methods and w
single data member. A shorthand IDL notation is used to simplify the use of value
types for this kind of simple containment, sometimes referred to as a “value box”.

This particularly useful for strings and sequences. Basically one does not have to
create what is in effect an additional namespace that will contain only one name.

For example, the IDL definition

module Example {
interface Foo {

... /* anything */
};
value FooSeq sequence<Foo>;
interface Bar {

void doIt (in FooSeq seq1, in FooSeq seq2);
};

};

could be used to ensure a single copy of the Foo sequence is transmitted and re
when the operation doIt() is invoked with the same sequence data item passed as
seq1 and seq2 parameters.

This IDL provides similar functionality to writing the following IDL. However the
type identities (repository ID’s) would be different in this case.
5-30 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

n of
 to

uage
t with

iving
o

ed by
4,

A

 by

module Example {
interface Foo {

... /* anything */
};
value FooSeq {

public sequence<Foo> data;
};
interface Bar {

void doIt (in FooSeq seq1, in FooSeq seq2);
};

};

The former is easier to manipulate after it is mapped to a concrete programming
language.

5.3.3.1 Standard Value Box Definitions

For some CORBA-defined types for which preservation of sharing and transmissio
nulls are likely to be important, the following value box type definitions are added
the CORBA module:

module CORBA {
value StringValue string;
value WStringValue wstring;

};

5.3.4 LifeCycle issues

Value type instances are always local to their creating context, i.e in a given lang
mapping an instance of a value type is always created as a local “language” objec
no POA semantics attached to it initially.

When passed using a CORBA invocation, a copy of the value is made in the rece
context and that copy starts its life as a local programming language entity with n
POA semantics attached to it.

If a value type supports an ordinary interface type, its instances may also be pass
reference when the formal parameter type is an interface type (see Section 5.3.2.
“Parameter Passing,” on page 5-27). In this case they behave like ordinary object
implementations and must be associated with a POA policy (CORBA 2.2) or a BO
(CORBA 2.1) and also be registered with the ORB (e.g. POA::activate_object()
(CORBA 2.2), BOA::obj_is_ready() (CORBA 2.1), etc.) before they can be passed
reference. Not registering the value as a CORBA object and/or not associating an
appropriate policy with it results in an exception when trying to use it as a remote
object, the “normal” behavior. The exception raised shall be OBJECT_NOT_EXIST
with an identified minor code (see Section 5.10, “Minor Exception Codes”).
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-31

5

d and

s part
)

ecify

icitly
 any

 on

hose
l,

ifest

lue
e

s in

ter,
her
g as

lly
f the

s
 type,

any
t to
 the

en
5.3.4.1 Creation and Factories

When an instance of a value type is received by the ORB, it must be demarshale
an appropriate factory for its actual type found in order for the new instance to be
created. The type is encoded by the RepositoryID which is passed over the wire a
of an invocation. The mapping between the type (as specified by the RepositoryID
and the factory is language specific. In certain languages it may be possible to sp
default policies that are used to find the factory, without requiring that specific
routines be called. In others the runtime and/or generated code may have to expl
specify the mapping on a per type basis. In others a combination may be used. In
event the ORB implementation is responsible for maintaining this mapping See
Section 5.3.6.3, “Language Specific Value Factory Requirements” for more details
the requirements for each language mapping.

5.3.5 Security Considerations

The addition of value types has few impacts on the CORBA security model. In
essence, the security implications in defining and using value types are similar to t
involved with the use of IDL structs. Instances of value types are mapped to loca
concrete programming language constructs. Except for providing the marshaling
mechanisms, the ORB is not directly involved with accessing value type
implementations. This specification is mostly about 2 things: how value types man
themselves as concrete programming language constructs and how they are
transmitted.

To see this consider how value types are actually used. The IDL definition of a va
type in conjunction with a programming language mapping is used to generate th
concrete programming language definitions for that type.

Let us consider its lifecycle. In order to use it, the programmer uses the mechanism
the programming language to instantiate an instance. This is instance is a local
programming language construct. It is not “registered” with the ORB, object adap
etc. The programmer may manipulate this programming construct just like any ot
programming language construct. So far there are no security implications. As lon
no ORB-mediated invocations are made, the programmer may manipulate the
construct. Note, this includes making “local”, non ORB-mediated calls to any loca
implemented operations. Any assignments to the construct are the responsibility o
programmer and have no special security implications.

Things get interesting when the program attempts to pass one of these construct
through an orb-mediated invocation (i.e. calls a stub which uses it as a parameter
or uses the DII). There are two cases to consider:

Value as Value

The formal type of the parameter is a value. This case is no different from using
other kind of a value (long, string, struct, etc.) in a CORBA invocation, with respec
security. The value (data) is marshaled and delivered to the receiving context. On
receiving context, the knowledge of the type is used (at least implicitly) to find the
factory to create the correct local programming language construct. The data is th
5-32 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

lues
in”

ue.
y
uces”
d to
nt
al”
y a
 an

llow
 not

ing
d
ill

 Java,

on
ss is
tion,

l and
unmarshaled to fill in the newly created construct. This is similar to using other va
(longs, strings, structs, etc.) except that the knowledge of the factory is not “built-
to the ORB’s skeleton/DSI engine.

Value as Object Reference

The formal type of the parameter is an interface type which is supported by a val
The program must have “registered” the value with an object adapter and is reall
using the returned object reference (see for the specific rules.) Thus this case “red
to a regular CORBA invocation, using a regular object reference. An IOR is passe
the receiving context. All the “normal” security considerations apply. From the poi
of view of the receiving context, the IOR is a “normal” object reference. No “speci
rules, with respect to security or otherwise, apply to it. The fact that it is ultimatel
reference to an implementation that was created from instantiating and registering
value type implementation is not relevant.

In both of these cases, security considerations are involved with the decision to a
the ORB-mediated invocation to proceed. The fact that a value type is involved is
material.

5.3.6 Language Mappings

5.3.6.1 General Requirements

A concrete value will map to a concrete usable “class” construct in each programm
language, plus possibly some helper classes where appropriate. In Java, C++, an
Smalltalk this will be a real concrete class. In C it will be a struct. This mapping w
be captured in the Interface Repository by storing the extra information.

An abstract value is mapped to some sort of an abstract construct--an interface in
and an abstract class with pure virtual function members in C++.

Tools that implement the language mapping are free to “extend” the implementati
classes with “extra” data members and methods. When an instance of such a cla
used as a parameter, only the portions that correspond directly to the IDL declara
are marshaled and delivered to the receiving context. This allows freedom of
implementations while preserving the notion of contract and type safety in IDL.

5.3.6.2 Language Specific Marshaling

Each language mapping specifies an appropriate marshaling/unmarshaling protoco
the entry point for custom marshaling/unmarshaling.
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-33

5

yIDs
y be

y
uch

age
 for

s

5.3.6.3 Language Specific Value Factory Requirements

Each language mapping shall specify the algorithm and means by which Repositor
are used to find the appropriate factory for an instance of a value type so that it ma
created as it is unmarshaled “off the wire”.

It is desirable, where it makes sense, to specify a “default” policy for automaticall
using RepositoryIDs that are in common formats to find the appropriate factory. S
a policy can be thought of as an implicit registration. Additionally, IDL is defined
which provides a portable way to register the association between an arbitrary
RepositoryID and value factory with the ORB runtime.

Each language mapping shall specify how and when the registration occurs, both
explicit and implicit. The registration must occur before an attempt is made to
unmarshal an instance of a value type. If the ORB is unable to locate and use the
appropriate factory, then a MARSHAL exception with an identified minor code (see
Section 5.10, “Minor Exception Codes”) is raised.

Because the type of the factory is programming language specific and each
programming language platform has different policies, the factory type must be
specified as native . It is the responsibility of each language mapping to specify the
actual programming language type of the factory.

// IDL
native ValueFactory;

interface ORB {
ValueFactory register_value_factory(

in RepositoryId id,
in ValueFactory factory

);
void unregister_value_factory(in RepositoryId id);
ValueFactory lookup_value_factory(in RepositoryId id);
...

};

The register_value_factory() operation registers the ValueFactory passed to it as
the factory for the type identified by the RepositoryId string argument. If a factory
was already registered for that type, the old factory is returned, otherwise a langu
mapping specified specific value (usually null if the language mapping supports it)
the native ValueFactory. If the registration fails then a BAD_PARAM exception with
an identified minor code (see Section 5.10, “Minor Exception Codes”) is raised.

The lookup_value_factory() operation returns the ValueFactory registered for the
specified RepositoryId string, either explicitly (because the registration routine wa
called) or implicitly, for the specified RepositoryId string. If it is unable to locate a
factory then a BAD_PARAM exception with an identified minor code (see
Section 5.10, “Minor Exception Codes”) is raised.
5-34 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

ed

d on
shall
all be

uired
ge

their
 to

ions

y in

ed
show
elp

 an
The unregister_value_factory() operation unregisters the factory already associat
with the specified RepositoryId string argument. If it is unable to locate the factory
then a BAD_PARAM exception with an identified minor code (see Section 5.10,
“Minor Exception Codes”) is raised.

Although technically these definitions are PIDL (because the operations are define
the ORB pseudo-object), the language mappings for these types and operations
treat them as if they are regular IDL and the standard language mapping rules sh
followed.

5.3.6.4 Value Method Implementation

The mapped class must support method bodies (i.e. code) that implement the req
IDL operations. The means by which this association is accomplished is a langua
mapping “detail” in much the same way that an IDL compiler is.

5.3.7 Custom Marshaling

Value types can override the default marshaling/unmarshaling model and provide
own way to encode/decode their state. Custom marshaling is intended to be used
facilitate integration of existing “class libraries” and other legacy systems. It is
explicitly not intended to be a standard practice, nor used in other OMG specificat
to avoid “standard ORB” marshaling.

The fact that a value type has some custom marshaling code is declared explicitl
the IDL. This explicit declaration has two goals:

• type safety: stub and skeleton can know statically that a given type is custom
marshalled and can then do sanity check on what is coming over the wire.

• efficiency: for value types that are not custom marshaled no run time test is
necessary in the marshaling code.

A custom marshaled value type is indicated syntactically by use of the custom
modifier. It may also have an optional state definition. The state definition is treat
the same as that of a non custom value type for mapping purposes, i.e. the fields
up in the same fashion in the concrete programming language. It is provided to h
with application portability.

A custom marshalled value type is always a stateful value type.

// Example IDL

custom value T {
// optional state definition
...

};

Custom value types can never be safely truncated to base i.e they always require
exact match for their RepositoryId in the receiving context.
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-35

5

 to be
n

f its

ing.

, not
 of a

r the
 to a

ffers)

s own
Once a value type has been marked as custom, a marshaling policy object needs
registered for it. The marshaling policy encapsulates the application code that ca
marshal and unmarshal instances of the value type over a stream using the CDR
encoding. It is the responsibility of the implementation to marshal the state of all o
base types.

Non-custom value types may not (transitively) inherit from custom value types.

5.3.7.1 Streaming A Custom Value

The following IDL defines the interfaces that are used to support custom marshal

module CORBA {
abstract value StreamingPolicy {

void marshal (in CDROutputStream os, in ValueBase value);
ValueBase unmarshal (in CDRInputStream is);

};
};

The StreamingPolicy is a abstract value type that is meant to be used by the ORB
the user. The implementer of a custom value type must provide an implementation
StreamingPolicy object. Each custom marshaled value type will have its own
implementation. The interface is exposed in the CORBA module so that the
implementer can use the skeletons generated by the IDL compiler as the basis fo
implementation. Hence there is no need for the application to acquire a reference
Stream.

The implementation requirements of the streaming mechanism require that the
implementations must be local since local memory addresses (i.e. the marshal bu
have to be manipulated.

A StreamingPolicy can be shared by several value types or each type can have it
policy. The ORB run time simply maintains an association between
CORBA::RepositoryId and StreamingPolicies.

module CORBA {
interface ORB {
...

StreamingPolicy register_streaming_policy(
in CORBA::RepositoryId id,
 in StreamingPolicy policy);

StreamingPolicy lookup_streaming_policy(
in CORBA::RepositoryId id);

void unregister_streaming_policy(
in CORBA::RepositoryId id);

};
};
5-36 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

n
 old

g) is

s free
fine
The register operation replaces an existing registration if a policy has already bee
registered for the specified type. If a policy was already registered for that type, the
policy is returned, otherwise a null value type (as defined in the language mappin
returned.

This API is guaranteed to be supported by the ORB but each language mapping i
to add extra facilities to support more automatic ways for a given value type to de
and register its marshaling policy.

CDR Streams are defined by the following interfaces:

module CORBA {

typedef sequence<any> AnySeq;
typedef sequence<boolean> BooleanSeq;
typedef sequence<char> CharSeq;
typedef sequence<wchar> WCharSeq;
typedef sequence<octet> OctetSeq;
typedef sequence<short> ShortSeq;
typedef sequence<unsigned short> UShortSeq;
typedef sequence<long> LongSeq;
typedef sequence<unsigned long> ULongSeq;
typedef sequence<long long> LongLongSeq;
typedef sequence<unsigned long long> ULongLongSeq;
typedef sequence<float> FloatSeq;
typedef sequence<double> DoubleSeq;
typedef sequence<string> StringSeq;
typedef sequence<wstring> WStringSeq;

abstract value CDROutputStream {
void write_any (in any value);
void write_boolean (in boolean value);
void write_char (in char value);
void write_wchar (in wchar value);
void write_octet (in octet value);
void write_short (in short value);
void write_ushort (in unsigned short value);
void write_long (in long value);
void write_ulong (in unsigned long value);
void write_longlong (in long long value);
void write_ulonglong (in unsigned long long value);
void write_float (in float value);
void write_double (in double value);
void write_longdouble (in long double value);
void write_string (in string value);
void write_wstring (in wstring value);
void write_objref (in Object value);
void write_value (in ValueBase value);
void write_TypeCode (in TypeCode value);
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-37

5

void write_any_array(in AnySeq seq,
in unsigned long offset,
in unsigned long length);

void write_boolean_array(in BooleanSeq seq,
in unsigned long offset,
in unsigned long length);

void write_char_array(in CharSeq seq,
in unsigned long offset,
in unsigned long length);

void write_wchar_array(in WcharSeq seq,
in unsigned long offset,
in unsigned long length);

void write_octet_array(in OctetSeq seq,
in unsigned long offset,
in unsigned long length);

void write_long_array(in LongSeq seq,
in unsigned long offset,
in unsigned long length);

void write_ulong_array(in ULongSeq seq,
in unsigned long offset,
in unsigned long length);

void write_ulonglong_array(in ULongLongSeq seq,
in unsigned long offset,
in unsigned long length);

void write_longlong_array(in LongLongSeq seq,
in unsigned long offset,
in unsigned long length);

void write_float_array(in FloatSeq seq,
in unsigned long offset,
in unsigned long length);

void write_double_array(in DoubleSeq seq,
in unsigned long offset,
in unsigned long length);

void write_string_array(in StringSeq seq,
in unsigned long offset,
in unsigned long length);

void write_wstring_array(in WStringSeq seq,
in unsigned long offset,
in unsigned long length);

};
5-38 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

abstract value CDRInputStream {
any read_any();
boolean read_boolean();
char read_char();
wchar read_wchar();
octet read_octet();
short read_short();
unsigned short read_ushort();
long read_long();
unsigned long read_ulong();
long long long read_long();
unsigned long long read_ulonglong();
float read_float();
double read_double();
long double read_longdouble();
string read_string ();
wstring read_wstring();
Object read_objref();
ValueBase read_value();
TypeCode read_TypeCode();
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-39

5

void read_any_array(inout AnySeq seq,
in unsigned long offset,
in unsigned long length);

void read_boolean_array(inout BooleanSeq seq,
in unsigned long offset,
in unsigned long length);

void read_char_array(inout CharSeq seq,
in unsigned long offset,
in unsigned long length);

void read_wchar_array(inout WcharSeq seq,
in unsigned long offset,
in unsigned long length);

void read_octet_array(inout OctetSeq seq,
in unsigned long offset,
in unsigned long length);

void read_long_array(inout LongSeq seq,
in unsigned long offset,
in unsigned long length);

void read_ulong_array(inout ULongSeq seq,
in unsigned long offset,
in unsigned long length);

void read_ulonglong_array(inout ULongLongSeq seq,
in unsigned long offset,
in unsigned long length);

void read_longlong_array(inout LongLongSeq seq,
in unsigned long offset,
in unsigned long length);

void read_float_array(inout FloatSeq seq,
in unsigned long offset,
in unsigned long length);

void read_double_array(inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length);

void read_string_array(inout StringSeq seq,
in unsigned long offset,
in unsigned long length);

void read_wstring_array(inout WStringSeq seq,
in unsigned long offset,
in unsigned long length);

}
};

};

Note that the CDR streams are abstract value types. This ensures that their
implementation will be local, which is required in order for them to properly flatten
and encode nested value types.
5-40 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

the
ions.

m
 (and

then

al
and
 do

RB.

iate
).

RB

ay
ch a

n the
The ORB (i.e. the CDR encoding engine) is responsible for actually constructing
value’s encoding. The application marshaling code merely calls the above operat
The details of writing the value tag, header information, end tag(s), etc. are
specifically not exposed to the application code. In particular the size of the custo
data is not written by the application. This guarantees that the custom marshaling
unmarshaling code) cannot corrupt the other parameters of the call.

If an inconsistency is detected, including not having registered a streaming policy,
the standard system exception MARSHAL is raised.

A possible implementation might have the engine determine that a custom marsh
parameter is “next”. It would then write the value tag and other header information
then return control back to the application defined marshaling policy which would
the marshaling by calling the CDROutputStream operations to write the data as
appropriate. (Note the stream takes care off breaking the data into chunks, if
necessary.) When control was returned back to the engine, it performs any other
cleanup activities to complete the value type, and then proceeds onto the next
parameter. How this is actually accomplished is an implementation detail of the O

The CDR Streams shall test for possible shared or null values and place appropr
indirections or null encodings (even when used from the custom streaming policy

There are no explicit operations for creating the streams. It is assumed that the O
implicitly acts as a factory. In a sense they are always available.

5.3.8 Access to the Sending Context Run Time

There are two cases where a receiving context might want to access the run time
environment of the sending context:

• To attempt the downloading of some missing implementation for the value

• To access some meta information about the version of the value just received

In order the provide that kind of service a call back object interface is defined. It m
optionally be supported by the sending context (it can be seen as a service). If su
callback object is supported its IOR may be added to an optional service context i
GIOP header passed from the sending context to the receiving context.

A new constant is added to the IOP Module to define the new service context:
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-41

5

 for
ice

y of
 then
t

t will
module IOP {

...
const ServiceID SendingContextRunTime = 5;

};

A service context tagged with the ServiceID 5 contains an encapsulation of the IOR
a SendingContext::RunTime object. Because ORBs are always free to skip a serv
context they don’t understand, this addition does not impact IIOP interoperability.

module SendingContext {

interface RunTime {}; // so that we can provide more
// sending context run time
// services in the future

interface CodeBase: RunTime {
typedef string URL;
typedef sequence<URL> URLSeq;
typedef sequence <CORBA::FullValueDescription> ValueDescSeq;

// Operation to obtain the IR from the sending context
CORBA::InterfaceRepository get_ir();

// Operations to obtain a URL to the implementation code
URL Implementation(in CORBA::RepositoryId x);
URLSeq implementations(in CORBA::RepositoryIdSeq x);

// Operations to obtain complete meta information about a Value
// This is just a performance optimization the IR can provide
// the same information
CORBA::FullValueDescription meta(in CORBA::RepositoryId x);
ValueDescSeq metas(in CORBA::RepositoryIdSeq x);

// To obtain a type graph for a value type
// same comment as before the IR can provide similar
// information
CORBA::RepositoryIdSeq bases(in CORBA::RepositoryId x);

};
};

Supporting the CodeBase interface for a given ORB run time is an issue of qualit
service. The point here is that if the sending context does not support a CodeBase
the receiving context will simply raise an exception with which the sending contex
had to be prepared to deal. There will always be cases where a receiving contex
get a value type and won’t be able to interpret it because:
5-42 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

ue

iece

BA
at

 that
ve a
ode
• It can’t get a legal implementation for it (even if it knows where it is, possibly d
to security and/or resource access issues)

• Its local version is so radically different that it cannot make sense out of the p
of state being provided

These two failure modes will be represented by the CORBA system exception
NO_IMPLEMENT with identified minor codes, for a missing local value
implementation and for incompatible versions (see Section 5.10, “Minor Exception
Codes”).

Under certain conditions it is possible that when several values of the same COR
type (same repository id) are sent in either a request or reply, that the reality is th
they have distinct implementations. In this case, in addition to the codebase URL
is sent in the service context, each value which has a different codebase may ha
codebase URL associated with it. This is encoded by using a different tag to enc
the value on the wire.

5.4 IDL Extensions

5.4.1 Syntax

The following new syntax productions are added to IDL:

<value_token> ::= “value”

<value_type_spec_token> ::= “ValueBase”

<safe_token> ::= “safe”

<custom_token> ::= “custom”

<public_token> ::= “public”

<init_token> ::= “init”

<abstract_token> ::= “abstract”

<supports_token> ::= “supports”

<value> ::= (<value_dcl> | <value_abs_dcl> | <value_box_dcl> |
 <value_forward_dcl>) “;”
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-43

5

wn
fier
h it
<value_forward_dcl> ::= <value_token> <identifier>

<value_box_dcl> ::= <value_token> <identifier> <type_spec>

<value_abs_dcl> ::= <abstract_token> <value_token> <identifier>
 [<value_inheritance_spec>] “{“ <export>* “}”

<value_dcl> ::= <value_header> “{“ < value_body > “}”

<value_header> ::= [<custom_token>] <value_token> <identifier>
 [<value_inheritance_spec>]

<value_inheritance_spec> ::= “:” [<safe_token>] <scoped_name>
 { “,” <scoped_name>}*
[<supports_token> <scoped_name> { “,” <scoped_name> }*]

<value_body> ::= <value_element>*

<value_element> ::= <export> | < state_member> | <init_dcl>

<state_member> ::= <public_token> <type_spec> <declarators> “;”
| <type_spec> <declarators> “;”

<init_dcl> ::= <init_token> “(“ [<init_param_decls>] “)” “;”

<init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> }

<init_param_decl> ::= “in” <param_type_spec> <simple_declarator>

The <definition> rule is modified to allow values:

<definition> ::= <type_dcl> “;” | <const_dcl> “;” | <except_dcl> “;”
| <interface> “;” | <value> “;” | <module> “;”

The type specification rules are modified to allow use of the base value as a type
specification.

<base_type_spec> ::=... | <value_type_spec>

<value_type_spec> ::= <value_type_spec_token>

5.4.2 New lexical type - Keyword Identifier

In order to allow for the addition of new keywords to IDL in a way that will not
invalidate existing IDL, a new lexical class is added to IDL--keyword identifier.

Keyword identifiers obey the rules for identifiers and must be written exactly as sho
in the list below. However an identifier that matches a word on the keyword identi
list is treated as a keyword and not as an identifier if it occurs in a context in whic
would be legal to interpret it as the reserved word according to the syntax.
5-44 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

tion,

d to
ar.

e

to

o

d

to

d

d

fined
Keyword identifiers are used in the grammar by adding a new non-terminal produc
conventionally called <yyy_token>, where yyy stands for the name of the token. A
<yyy_token> ::= “terminal_string” is also added. Since the production defining
<identifier> is not explicitly shown, an alternative containing the new token is adde
the definition of <identifier>. The token is then used at higher levels in the gramm

Note: It is recommended that new keyword identifiers only be added such that th
resulting grammar is still easily parsable, e.g. is LALR(1).

This specification adds the following keyword identifiers:
value ValueBase safe custom public init abstract
supports

The keyword identifier value is a keyword (in the appropriate context) that is used
introduce a value declaration.

The keyword identifier ValueBase is the name of the base type for value types and
may be used as a type specifier.

The keyword identifier safe is a keyword (in the appropriate context) that is used t
indicate that it is safe to truncate a derived value instance to a less derived value
instance.

The keyword identifier custom is a keyword (in the appropriate context) that is use
to indicate that a value type should be custom marshaled whenever it is used.

The keyword identifier public is a keyword (in the appropriate context) that is used
indicate that a value data member should be public.

The keyword identifier init is a keyword (in the appropriate context) that is used to
define an initializer for a value type.

The keyword identifier abstract is a keyword (in the appropriate context) that is use
to introduce an abstract declaration, either value or interface.

The keyword identifier supports is a keyword (in the appropriate context) that is use
to indicate that a value type supports an interface.

5.4.3 ValueBase Operations

There are some operations that can be done on any value. These operations are
analogous to the operations that are defined on Object. Conceptually they are de
on all values, but in reality their actual mapping depends upon on the language
mapping.

module CORBA {

value ValueBase {};
};
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-45

5

ort
5.5 Interface Repository

Mirroring the syntax a new meta object type ValueDef is added to the Interface
Repository definition as well as two structs ValueDescription and
FullValueDescription . The interface repository needs to be also modified to supp
the creation of such entities.

New DefinitionKinds, called dk_Value and dk_ValueBox are added:

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox

};

A new creation operation is added called create_value

module CORBA{
...
interface Container: IRObject {
...

ValueDef create_value(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in octet flags, // must be 0
in ValueDef base_value,
in boolean has_safe_base,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces

);

ValueBoxDef create_value_box(
in IDLType original_type_def

);

};
};

The interface ValueDef is also added:

module CORBA {
...
5-46 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

typedef short Visibility;
const Visibility PRIVATE = 0;
const Visibility PUBLIC = 1;

struct ValueMember {
Identifier name;
TypeCode type;
IDLType type_def;
Visibility access;

};

interface ValueMemberDef : Contained {
readonly attribute TypeCode type;

attribute IDLType type_def;
attribute Identifier name;
attribute Visibility access;

};

typedef sequence <ValueMember> ValueMemberSeq;

struct Initializer {
StructMemberSeq members;

};

typedef sequence<Initializer> InitializerSeq;

interface InitializerDef : Contained {
attribute StructMemberSeq members;

};

interface ValueDef : Container, Contained, IDLType {
// read/write interface

attribute InterfaceDefSeq supported_interfaces;
attribute ValueDef base_value;
attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;
attribute boolean is_custom;
attribute octet flags; // always 0
attribute boolean has_safe_base;

// read interface

boolean is_a(in RepositoryId value_id);
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-47

5

struct FullValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
octet flags; // always 0
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean has_safe_base;
RepositoryId base_value;
TypeCode type;

};

FullValueDescription describe_value();

// write interface

ValueMemberDef create_value_member(
in Identifier name,
in IDLType type_def,
in Visibility access

);

InitializerDef create_initializer(
in StructMemberSeq members

);

AttributeDef create_attribute(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);

OperationDef create_operation (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
5-48 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

is

 the
e to

s may
te.
};

struct ValueDescription {
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
octet flags; // always 0
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean has_safe_base;
RepositoryId base_value;

};

The interface ValueBoxDef is also added:

module CORBA {
...

interface ValueBoxDef : IDLType {
attribute IDLType original_type_def;

};
}

5.6 Repository Id and Value Types

5.6.1 CORBA Repository Ids

CORBA RepositoryIds are defined as opaque semantic markers. In the core
specification they are just arbitrary strings and their association with an IDL type
purely conventional i.e it must be maintained explicitly somewhere (in existing ORB
implementation this is done either in an IR or in memory tables).

This core model and has real value in allowing great flexibility in federation and
interoperability by:

• remapping ids while keeping IDL source or stub libraries unchanged

• changing IDL source or stub libraries while maintaining ids the same.This core
model is very useful as a “lowest possible denominator”.

The CORBA however recognized that “styles” of ID can be defined that may help
management, versioning, interoperability across domains/organization that choos
agree on these “styles”.

If one uses such a style, the association between the id and the IDL type it denote
not be arbitrary. The ids have some intrinsic information about the type they deno
For instance one of the formats defined is
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-49

5

ly by

he

, deal

is

 an
ss
re
ses

lly in
is that

leton
pt

l

n
nt
ash
IDL:/<name>/<name>/<name>:<major version number>.<minor version number>

where it is assumed that the names are the fully scoped names of the IDL type
definition.

Systems or organizations that use this style can detect versioning problems simp
comparing ids locally, without having to lookup schema information in an interface
repository.

5.6.2 RepositoryId for Value Type

RepositoryIds are used by the ORB to identify value types as they are being
unmarshaled. If the Ids are truly arbitrary, then the ORB must be able to lookup t
association in a registry somewhere in its environment or use the IR.

This method can be used to locate unmarshaling code, perform version checking
with schema evolution etc. ...) with truly opaque ids.

For portability and interoperability reasons, having a defined, “standard” style for
RepositoryIds associated with value types would be very useful.

This submission defines such a new “standard” format as follows:

“H:” <scoped_name> “:” <64 bits hash code>

The separator between the components of the scoped name shall be a “:: ”.

5.6.2.1 Versioning Issues

We don’t recommand the classic id format “IDL:” <scoped name> “:” <major> “.”
<minor> because it is not “foolproof” enough. (It is of course allowable to use th
format, since the CORE specification does not mandate any particular form.) The
problem with the existing scheme as it is used by most vendors today, is that it is
optimistic scheme. sIDL compiler keep on spitting out the default version 1.0 unle
somebody place a explicit #pragma that bumps the version up. Because people a
sloppy that method generates a lot of interfaces that are not really in synch but u
the same id.

This is not a too severe problem for interfaces. If stubs and skeleton are not actua
synch, even though the RepositoryIds report they are, the worse that can happen
the result of an invocation is a BAD_OPERATION exception. The issue with value
types it is more problematic because the inconsistency between the stub and ske
marshaling/unmarshaling code can confuse the marshaling engine and may corru
memory and/or dump core.

A pessimistic scheme whereby any structural change in the IDL source results in the
versions being incompatible. With such a scheme the ORB can raise a meaningfu
exception instead of corrupting memory or dumping core.

A hash code is to be computed from the IDL definition. Everytime the IDL definitio
changes the hash function will (statistically) produce a hash code which is differe
from the previous one. When an ORB run time receives a value with a different h
5-50 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

 to
 the

ough

roof
 The
h a
on
uld

ts)
he
HA-
re

 that

tion
ard
ed).
than what is expected, it is free to raise a BAD_PARAM exception. It may also try
resolve the incompatibility by some means. If it is not successful, then it shall raise
BAD_PARAM exception.

A user may still use the #pragma id to force an id to be a specific hash value, alth
this is not recommended.

Note: The Versioning scheme based on a major and minor version could be made foolp
but it would require more sophisticated IDL compilers than are in widespread use today.
compiler would have to be stateful (i.e operate out of a persistent IR), be integrated wit
version management system, and automatically compare newer versions of IDL definiti
with older version. If it determined that a newer version was structurally compatible it wo
bump the minor number, otherwise it would bump the major version number.

5.6.3 Hashing Algorithm

The hash code is computed using the signature of a sequence of longs (four octe
written in network byte order (big endian) that reflects the value type definition. T
National Institute of Standards and Technology (NIST) Secure Hash Algorithm (S
1) is used to compute a signature for the stream. The first two 32-bit quantities a
used to form a 64-bit hash.

The sequence of long is equivalent to a fully expanded typecode for the value type
would ignore all field names, it is constructed as follows:

Each IDL type constructor is identified with its tk constant i.e

• interface: tk_objref

• struct: tk_struct

• value: tk_value

• union: tk_union

• sequence: tk_sequence

•

Each base type is identified with its tk constant i.e

• short: tk_short

• long:tk_long

•

The value type definition is traversed depth first, in the order of the fields declara
starting from its highest base value type the following the derivation chain downw
(only single inheritance is involved since only concrete base value type are involv

For each field:

• If it is a base type, its tk constant is appended to the sequence of long

• If it is an interface type, tk_objref is appended to the sequence of long
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-51

5

e is
g

 to
 the

ctet

and
• If it is a constructed type or a value type, the tk constant of the constructed typ
appended to the sequence. The algorithm is applied recursively to its remainin
components

• If the field uses a type which has already been processed, 0xfffffff is appended
the sequence followed by an indirection to the position in the sequence where
type encoding is located. (similar to what is done for recursive typecode)

• If it is a bounded sequence, or an array, the dimensions are appended to the o
sequence after tk_sequence or tk_array

• Typdefs are ignored (i.e resolved to the type being aliased)

The SHA-1 algorithm is executed on the sequence of long in network byte order
produces five 32-bit values sha[0..4].

• The hash value is assembled from the first and second 32-bit values.

 long hash = sha[1] << 32 + sha[0].

5.7 Dynamic Any

The following operations are added to support value types in dynamic anys:

module CORBA {
...

interface DynAny {
...
void insert_value (in ValueBase value) raises (InvalidValue);
ValueBase get_value() raises (TypeMismatch);

...

interface DynValue : DynAny {
FieldName current_member_name();
TCKind current_member_kind();
NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value) raises (InvalidSeq);

};

Any attempt to set or get a member which has been declared private in the IDL
definition of the value contained in the dynamic any raises the exception
NO_PERMISSION.

The next() and rewind() operations skip private members. The seek() operation will
raise the NO_PERMISSION exception if an attempt is made to seek to a private
member.
5-52 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

at

w
Unlike other constructed types, we don’t provide a way to construct new dynamic
values from scratch in order to avoid the creation of values with an initial state th
would violate the value type invariant.

5.8 TypeCodes

Two new TypeCodes are introduced.

5.8.1 New TCKinds

Two new TCKinds are introduced:

module CORBA {

enum TCKind {
....
tk_value,
tk_value_box,

};
...

5.8.2 New ORB operations

The following new operations are added to the ORB in order to create the two ne
TypeCodes needed for value types:

interface ORB {
...
TypeCode create_value_tc (

in RepositoryId id;
in Identifier name;
in boolean is_custom;
in RepositoryId base_id; // immediate concrete parent type, ““ if none
in ValueMembersSeq members; // may be null if the typecode is a

// placeholder in a recursive typecode definition
);
TypeCode fill_in_recursive_value_tc (

in TypeCode tc;
in Repository id;
in ValueMembersSeq placeholder_replacement;

);
TypeCode create_box_value_tc (

in RepositoryId id,
in Identifier name,
in TypeCode orignal_type
);
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-53

5

des.

ber.
t.

plex

P

bject

raph
lue
nce

ded.

e

the

 a
...
}

These operations have to handle the potentially recursive nature of value TypeCo

It is legal to create a typecode with only an id, name, custom flag with a null mem
That TypeCode can be used as a “placeholder” for other typecodes that refer to i
Then it is possible to “go back” to the placeholder typecode and fill in the correct
members field using the fill_in_recursive_value_tc() operation.

5.9 GIOP/IIOP Extensions and Mapping

GIOP messages and the on-the-wire format are extended to support passing com
object state by value.

A new minor revision number for GIOP and IIOP is required by this submission.

The general philosophy is to add support for transmission of

• the data (state)

• type information (encoded as RepositoryIDs)

The loading (and possible transmission) of code is outside of the scope of the IIO
definition but enough information must be carried to support it (codebase).

The format also makes provision for custom marshaling i.e the fact that a value o
is encoded using application-defined code.

The encoding supports all of the features of value types as well as supporting the
fragmentation or “chunking” of value types. It does so in a compact way.

At a high level the format can be described as the linearization of a graph. The g
is the depth-first exploration of the transitive closure that starts at the top level va
object and follows its “reference to value objects” fields (an ordinary remote refere
its just written as an IOR). It is a recursive encoding similar to the one used for
TypeCodes. An indirection is used to point to a value that has already been enco

The data members are written beginning with the highest possible base type to th
most derived type in the order of their declaration.

5.9.1 Partial Type Information and Versioning

The format provides support for partial type information and versioning issues in
receiving context.

The type information is specified by providing a list of repositoryIDs, preceded by
long specifying the number of repositoryIDs.
5-54 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

lue.
ting
,
.

ng
n

or
e
tever

o

ared

er.

es

hared

ID
ld be

later

 The

eing
 an

DR
The first repositoryID, which is always present is the id for the real type of the va
If the value’s real type is a derived type, the sending context is responsible for lis
the repositoryIDs for all the base types to which it is safe to truncate the real type
going up (the derivation hierarchy) to, and including if appropriate, the formal type

If the receiving context needs more typing information it can go back to the sendi
context do a lookup based on that repositoryID to retrieve more typing informatio
(e.g. the type graph).

CORBA RepositoryIDs also contain standard version identification (major and min
version numbers). It is up to the ORB run time to check whether the version of th
value being transmitted is compatible with the version expected, and to apply wha
truncation/conversion rules might be appropriate (with the help of a local interface
repository or the SendingContext::RunTime service). The RMI model of
truncation/conversion across versions can be supported here.

5.9.2 Scope of the Indirections

The special value 0xffffffff introduces an indirection, i.e it directs the decoder to g
somewhere else in the marshaling buffer to find what it is looking for. This can be
either a URL which has already been encoded, or another value object which is sh
in a graph. 0xffffffff is always followed by a long indicating where to go in the buff

The encoding used for indirection is the same as that used for recursive TypeCod
with the following exception:

Indirections are assumed to work across parameters i.e the same value object can be s
across multiple parameters of an IDL call.

5.9.3 Other Encoding Information

A “new” value is coded as a value header followed by a list of value chunks. The
header contains a tag, a codebase URL if appropriate, followed by the repository
and an octet flag of bits. Because the same repositoryID (and codebase URL) cou
repeated many times in a single request when sending a complex graph, they are
encoded as a regular string the first time they appear, and use an indirection for
occurrences.

The octet flag contains information which makes operating on value types easier.
flag is reserved for later use and shall be 0.

5.9.4 Fragmentation

It is anticipated that value types may be rather large, particularly when a graph is b
transmitted. Hence the encoding supports the breaking up of the serialization into
arbitrary number of “chunks” in order to facilitate incremental processing.

The data may be split into multiple chunks at arbitrary points Any given CDR type
representation may be split across multiple chunks. It is the responsibility of the C
stream to hide the chunking from the marshaling code.
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-55

5

k.

ther
d

er of
ted.

at the

e or

ion
es
g
d to

r
se it
t is a

sed
k to

 ORB
ed

 the

er:

the

The use of chunking is signaled by the appearance of the appropriate tag at the
beginning of the value.

Each chunk is preceded by a positive long which specifies the length of the chun

A value is terminated by an end tag which is a non-positive long so it can be
differentiated from the start of another chunk. In the case of values which contain o
values (e.g. a linked list) the “recursive” value is started without there being an en
tag. The absolute value of an end tag (when if finally appears) indicates the numb
levels of “recursion” to pop, i.e. how many nested values are actually being termina
The detailed rules are as follows:

• End tags and value size tags are encoded using non-overlapping ranges so th
unmarshaling code can tell after reading each chunk whether:

• another chunk follows (positive tag)

• one or multiple value types are ending at a given point in the stream (negativ
null tag)

• The end tag is a non-positive long indicating the number of value types (recurs
level) ending at this point in the CDR stream. A recursion depth of zero indicat
that more than 2^31 recursion levels are ending, and at least one more end ta
follows. The following tag represents the number of recursion levels to be adde
the previous end tag. All value types using a chunked encoding will always be
terminated by at least one end tag with a value of -1.

Because data members are encoded in their declaration order, declaring a data membe
containing value type last is likely to result in more compact encoding on the wire becau
maximizes the number of value ending at the same place, the canonical example for tha
linked list.

Truncating a value type in the receiving context may require keeping track of unu
buffer chunks (only during unmarshaling) in case further indirection tags point bac
values that appear in the unused chunks, which means that they must then be
unmarshalled.

Value types that are custom marshaled are encoded as chunks in order to let the
run time know exactly where they end in the stream without relying on user defin
code.

5.9.5 Notation

The on the wire format is described by a BNF grammar with similar conventions as
one used by the CORBA2.2 specification to define IDL syntax. The terminals of the
grammar are to be interpreted differently though: We are describing a protocol format
and the terminal although they bear the same name as IDL token represents eith

• constant tags (TCKind)

• the GIOP CDR encoding of the corresponding IDL construct

i.e short is a shorthand for the GIOP encoding of the IDL short data type (with all
GIOP alignment rules). Similarly struct is a shorthand for the GIOP CDR encoding
of a struct, etc.
5-56 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

5.9.6 The Format

<value> ::=
| <value_tag> <flag_tag> <rep_ids> <value_chunk>+ <end_tag>+
| <value_codebase_tag> <flag_tag> <codebase_URL> <rep_ids>

<value_chunk>+ <end_tag>+
| <indirection_tag> <indirection>
| <null_tag>

<rep_ids> ::= long <repository_id>+

<repository_id> ::= (string | <indirection_tag> <indirection>)

<flag_tag> := (octet) 0

<value_chunk> ::= <chunk_size_tag> <octets>

<null_tag> ::= (long) 0

<value_tag> ::= (long) 1

<value_codebase_tag> ::= (long) 2

<indirection_tag> ::= 0xffffffff

<codebase_URL> ::= (string | <indirection_tag> <indirection>)

<chunk_size_tag> ::= long // 0 < chunk_size_tag < 2^31-1

<end_tag> := long // -(2^31-1) < end_tag <= 0

<indirection> ::= long
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-57

5

st

<octets> := octet | octet <octets>

<state members> ::=
<member>
| <member> <state members>

<state_member> ::=// All legal IDL types should be here
value
| octet
| boolean
| char
| short
| unsigned short
| long
| unsigned long
| float
| wchar
| wstring
| string
| struct
| union
| sequence
| array
| CORBA::Object
| CORBA::ValueBase
| any
| <CDR encapsulation >

<CDR encapsulation> ::= <size> <octets>

5.9.7 New TypeCodes Encoding

The following rows are added to Table 12-2 “TypeCode enum value, parameter li
types, and parameters” in Section 12.3.4 to describe the encoding of the two new
TypeCodes added by this specification.

TCKind Integer Value Type Parameters

tk_value 29 complex string (repository ID), string
(name), ulong (count) {string
(member name), TypeCode
(member type)}

tk_value_box 30 complex string (repository ID), string
(name), TypeCode
5-58 orbos/98-01-18: Objects By Value (with errata) 2/10/98

5

re

of
de id.

ard

pace.
n the

5.10 Minor Exception Codes

This submission specifies several minor exception codes in order to make it
considerably easier for clients to diagnose, in a portable fashion, some of the mo
important new failure modes introduced by value objects.

In CORBA 2.1, the OMG divided the minor exception code space so that ranges
exception codes could be allocated to vendors, using a vendor exception minor co

The Interoperability 1.2 RTF is using this methodology to define a space for stand
OMG minor exception codes.

The minor exception codes specified in this submission shall be assigned to this s
The low order bits for codes being standardized by this submission are specified i
following table. The high order bits shall be administratively assigned by the OMG
once the Interoperability 1.2 report has been accepted.

Table 5-2 Minor exception codes

SYSTEM EXCEPTION MINOR CODE EXPLANATION

OBJECT_NOT_EXIST 1 Attempt to pass an unactivated
(unregistered) value as an object
reference

NO_IMPLEMENT 1 Missing local value implementation

2 Incompatible value implementation
version

MARSHAL 1 Unable to locate value factory

BAD_PARAM 1 Unable to register value factory
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 5-59

5

5-60 orbos/98-01-18: Objects By Value (with errata) 2/10/98

Java Language Mapping 6
ace

ing.

ional

nition
same

tions
r of
” on
 value
tool
6.1 Introduction

The mapping for a value type is similar to the mapping for an IDL struct . However,
unlike the struct, the mapped value type must implement the standard Java interf
java.io.Serializable.

6.2 Names

The mapping follows the conventions established for the IDL Java Language mapp
No additional reserved names are required.

6.3 Mapping for Value

6.3.1 Basics for Stateful Values

An IDL value is mapped to a public Java class with the same name, and an addit
“helper” Java class with the suffix Helper appended to the interface name.

The class contains instance variables that correspond to the fields in the state defi
in the IDL declaration. The order and name of the Java instance variables are the
as the IDL state fields. Fields which are identified as public in the IDL are mapped to
public instance variables.The rest are private instance variables in the mapped Java.

The mapped Java class contains method definitions which correspond to the opera
defined on the value type in IDL. These definitions are defined by the implemente
the class in Java. As noted in the Section 5.3.6.4, “Value Method Implementation,
page 5-35, the actual code for the methods must be provided before the (mapped)
type can be used. The way in which the association is made is a an issue left to
vendors.
2/10/98 orbos/98-01-18: Objects By Value (with errata) 6-61

6

n. The

ent

n the

nts

erit
e is

n-

ed

 also
e type

e.
The mapped Java class contains a Java class constructor for each init() declaratio
parameters follow the standard mapping rules.

In the absence of JDK support for GIOP serialization, the class must also implem
org.omg.CORBA.Streamable. The choice of whether to generate direct support for
Streamable or to depend upon the JDK is an implementation choice of the code
generator. Note that the ORB runtime does not have to use the Streamable methods if
JDK support is available. See Section 6.7, “Java ORB Portability Interfaces,” on
page 6-70 for more information.

The inheritance scheme and specifics of the mapped class depends upon the
inheritance and implementation characteristics of the value type and is described i
following subsections.

6.3.1.1 Inheritance from Value

A value type that does not inherit from any other value type or interface impleme
java.io.Serializable.

A value type that inherits from another “pure” value type, i.e. one that does not inh
from an interface (CORBA::Object), extends the Java class to which that value typ
mapped.

6.3.1.2 Support of Interface

A value type which supports an IDL interface uses the tie mechanism for its
implementation.

The details of the tie mechanism are awaiting approval as part of the IDL/Java
Language mapping. All ORB products which support Java, currently provide a (no
portable) tie mechanism.

6.3.1.3 Basics for Abstract Values

Abstract value types follow the same rules as stateful ones, except for as describ
below.

Abstract value types are mapped to a Java interface. The mapped Java interface
contains abstract methods which correspond to the operations defined on the valu
in IDL. It must also extend java.io.Serializable.

The implementer must, of course, provide a class which implements the Value typ

6.3.1.4 CORBA::ValueBase

CORBA::ValueBase is mapped to java.io.Serializable.
6-62 orbos/98-01-18: Objects By Value (with errata) 2/10/98

6

such

ast.

pped
6.3.2 Helper Class

Value types, like all other user defined IDL types have an additional “helper” Java
class.

In addition to the normal methods, the helper class for a value type also contains
operations that conceptually belong on CORBA::ValueBase . This is to make it
possible to use and pass Java classes, which did not originate as IDL definitions
as the Java builtins, as CORBA values without first having to wrap them. Forcing
users to define such a wrapping for Java builtins would be awkward to say the le

The following is the standard helper class generated for a value type named
<typename>:

// generated Java helper

public class <typename>Helper {
public static void

insert(org.omg.CORBA.Any a, <typename> t) {...}
public static <typename> extract(Any a) {...}
public static org.omg.CORBA.TypeCode type() {...}
public static String id() {...}
public static <typename> read(

org.omg.CORBA.portable.InputStream istream)
{...}

public static void write(
org.omg.CORBA.portable.OutputStream ostream,
<typename> value)

{...}

// only for value helpers
public static

org.omg.CORBA.ValueDef get_value_def();
}

6.3.3 Holder Class

The holder class for the value type is also generated. Its name is the values’s ma
Java classname with Holder appended to it as follows:
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 6-63

6

final public class <value_class>Holder
implements org.omg.CORBA.portable.Streamable {

public <value_class> value;
public <value_class>Holder() {}
public <value_class>Holder(

<value_class> initial) {
value = initial;

public void _read(org.omg.CORBA.portable InputStream i)
{...}

public void _write(org.omg.CORBA.portable OutputStream o)
{...}

public org.omg.CORBA.TypeCode _type() {...}
}

6.3.4 Example A

// IDL

typedef sequence<unsigned long> WeightSeq;

module Example {
value WeightedBinaryTree {
 unsigned long weight;

 WeightedBinaryTree left;
 WeightedBinaryTree right;

init(in long w);
 WeightSeq preOrder();
 WeightSeq postOrder();

};
};

// generated Java

package Example;

public class WeightedBinaryTree implements java.io.Serializable {

 // instance variables
 private int weight;
 private WeightedBinaryTree left;
 private WeightedBinaryTree right;

 // methods implemented by the interface developer in the file
 // WeightedBinaryTree.impl
 // included (glued) here by the IDL compiler
 public WeightedBinaryTree(long w) {...}

public int[] preOrder() {...}
 public int[] postOrder() {...}
6-64 orbos/98-01-18: Objects By Value (with errata) 2/10/98

6

}

final public class WeightedBinaryTreeHelper {
// ... other standard helper methods

public static org.omg.CORBA.ValueDef get_value_def()
{...}

}

// Holder class
final public class WeightedBinaryTreeHolder
 implements org.omg.CORBA.portable.Streamable {

public WeightedBinaryTree value;
public WeightedBinaryTreeHolder() {}
public WeightedBinaryTreeHolder(WeightedBinaryTreeHolder initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i) {
// read state information using the wire format and construct
// value
...

 }
public void _write(org.omg.CORBA.portable.OutputStream o) {

 // write state information using the wire format
 ...
 }

public org.omg.CORBA.TypeCode _type() {...}
}

6.3.5 Example B

// IDL

module Example {
interface Printer {

typedef sequence<unsigned long> ULongSeq;
void print(in ULongSeq data);
};

value WeightedBinaryTree supports Printer {
unsigned long weight;

 WeightedBinaryTree left;
WeightedBinaryTree right;
ULongSeq preOrder();
ULongSeq postOrder();
};

};
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 6-65

6

he

.

bove.
// generated Java

package Example;

public class WeightedBinaryTree extends Example._PrinterImplBase {
// instance variables
private int weight;
private WeightedBinaryTree left;
private WeightedBinaryTree right;
// methods implemented by the interface developer in the file
// WeightedBinaryTree.impl
// included here by the IDL compiler
public int[] preOrder() {...}
public int[] postOrder() {...}

}

final public class WeightedBinaryTreeHelper {
// ... other standard helper methods
public static org.omg.CORBA.ValueDef get_value_def()

 {...}
}

6.3.6 Parameter Passing Modes

If the formal parameter in the signature of an operation is value , then the actual
parameter is passed by value. If the formal parameter type of an operation is an
interface, then the actual parameter is passed by reference, i.e. it is widened to t
mapped Java interface before being passed.

IDL value in parameters are passed as the mapped Java class as defined above

IDL value in and inout parameters are passed using the Holder classes defined a

6.3.6.1 Example

// IDL

module Example {

interface Target {
WeightedBinaryTree operation(in WeightedBinaryTree inArg,

out WeightedBinaryTree outArg,
inout WeightedBinaryTree inoutArg);

};

};
6-66 orbos/98-01-18: Objects By Value (with errata) 2/10/98

6

ces is

 that
ne-
lue
e

n

lass

 It is
tion

 by

same

mitive
// generated Java code

package Example;

public interface Target {
WeightedBinaryTree operation(WeightedBinaryTree inArg,

WeightedBinarTreeHolder outArg,
WeightedBinaryTreeHolder inoutArg);

}

6.4 Value Factory and Marshaling

Marshaling Java value instances is straightforward, but unmarshaling value instan
somewhat problematic. In Java there is no a priori relationship between the
RepositoryID encoded in the stream and the class name of the actual Java class
implements the value. However, in practice we would expect that there will be a o
to-one relationship between the RepositoryID and the fully scoped name of the va
type. However the RepositoryID may have an arbitrary prefix prepended to it, or b
completely arbitrary.

The following algorithm will be followed by the ORB:

• If the RepositoryId is a standard IDL repository id (i.e. it starts with “IDL:” the
attempt to interpret it as a fully scoped class name by stripping off the “IDL:”
header and “:<major>.<minor>” version information trailer, and replacing the
“/”s which separate the module names with “.”s.

• If this is not successful, then look up the class name in the RepositoryID to c
name map.

• If this is not successful, then raise the MARSHAL exception.

The IDL native type ValueFactory is mapped in Java to java.lang.Class.

A null is returned when register_value_factory() is called and no previous
RepositoryId was registered.

As usual, it is a tools issue, as to how RepositoryIDs are registered with classes.
our assumption that in the vast majority of times, the above default implicit registra
policies will be adequate. A tool is free to arrange to have the ORB’s
register_value_factory() explicitly called if it wishes to explicitly register a
particular Value Factory with some RepositoryID. For example, this could be done
an “installer” in a server, by pre-loading the ORB runtime, etc..

6.5 Value Box Types

The rules for mapping value box types are specified below.

In addition, helper and holder classes are generated for the value box type in the
way as for other value types.

There are two general cases to consider: value boxes that are mapped to Java pri
types, and those that are mapped to Java classes.
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 6-67

6

ame

d.
6.5.1 Primitive Types

If the value box IDL type maps to a Java primitive (e.g. float , long , char , wchar ,
boolean , octet , etc.), then the value box type is mapped to a Java class whose n
is the same as the IDL value type. The class has a public data member named value,
and has the appropriate Java type. The holder and helper class are also generate

// IDL
value <box_name> <primitive_type> ;

// generated Java

 public class <box_name> {
public <mapped_primitive_Java_type> value;
public <box_name>(<mapped_primitive_Java_type> initial)

{ value = initial; }
}

final public class <box_name>Holder
implements org.omg.CORBA.portable.Streamable {

public <mapped_primitive_Java_type> value;
...

}

public class <box_name>Helper {
...

}

6.5.1.1 Primitive Type Example

// IDL

value MyLong long;

interface foo {
void bar_in(in MyLong number);
void bar_inout(inout MyLong number);

};
6-68 orbos/98-01-18: Objects By Value (with errata) 2/10/98

6

riate
 be
// Generated Java

public class MyLong {
public int value;
public MyLong(int initial) {value = initial;}

}

final public class MyLongHolder
implements org.omg.CORBA.portable.Streamable {

public MyLong value;
...

}

public class MyLongHelper {...}

public interface foo extends org.omg.CORBA.Object {
void bar_in(MyLong number);
void bar_inout(MyLongHolder number);

}

6.5.2 Complex Types

If the value box IDL type is more complex and maps to a Java class (e.g. string ,
wstring , enum , struct , sequence , array , any, interface , etc.), then the value box
type is mapped to the Java class that is appropriate for the IDL type. The approp
holder and helper class are also generated. The details for the mapped class can
found in the Java Language mapping specification and are not repeated here.

6.5.2.1 Complex Type Example

// IDL

value MySequence sequence<long>;

interface foo {
void bar_in(in MySequence seq);
void bar_inout(inout MySequence seq);

};
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 6-69

6

rt

n of
// Generated Java

final public class MySequenceHolder
implements org.omg.CORBA.portable.Streamable {

public int[] value;
...

}

public class MySequenceHelper {...}

public interface foo extends org.omg.CORBA.Object {
void bar_in(int[] seq);
void bar_inout(MySequenceHolder seq);

}

6.6 Any

The following methods are added to the Any class:

abstract public java.io.Serializable extract_Value()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_Value(java.io.Serializable v);
abstract public void insert_Value(

java.io.Serializable v,
org.omg.CORBA.TypeCode t)

throws org.omg.CORBA.MARSHAL;

6.7 Java ORB Portability Interfaces

In order to support marshaling of value types additions are made to the input and
output stream APIs which are found in the org.omg.CORBA.portable package.

Add the following method to org.omg.CORBA.portable.InputStream:

public abstract java.io.Serializable read_Value();

Add the following method to org.omg.CORBA.portable.OutputStream:

public abstract void write_Value(java.io.Serializable obj);

Note: The most efficient implementation of write_Value() is dependent upon an
enhancement to the JDK that supports the writing of Java serializable objects in GIOP
format. It is however possible to implement the marshaling of values without JDK suppo
provided that the mapped Java class implements org.omg.CORBA.Streamable (see
Section 6.3.1, “Basics for Stateful Values,” on page 6-61). In that case the implementatio
write_Value() will have to cast its obj parameter to be a Streamable and then use its
write() method for marshaling. The decision of which algorithm to be used is the
implementation choice of the ORB runtime.
6-70 orbos/98-01-18: Objects By Value (with errata) 2/10/98

C++ Language Mapping 7
DL
 but

++

d

ete

,
rs
7.1 Introduction

The value type has features that make its C++ mapping unlike that of any other I
type. Specifically, all other IDL types comprise either pure state or pure interface,
the value type can include both. Because of this, the C++ mapping for the value type
is necessarily more restrictive in terms of implementation than other parts of the C
mapping.

7.2 Names

The value mapping follows the naming conventions established for the OMG IDL
C++ Language Mapping. Each IDL value type maps to a C++ class with the same
name, a corresponding _var type, and for all value types with initializers, an associate
_init factory type.

7.3 Mapping for Value

An IDL value type is mapped to a C++ class with the same name as the IDL value .
This class is a partially-concrete base class, with virtual accessor and modifier
functions corresponding to the state members of the value type, and pure virtual
functions corresponding to the operations of the value type. In order to provide
implementations for the pure virtual functions, they must be overridden in a concr
class derived from the base class by the application developer.

Applications are responsible for the creation of value instances, and after creation,
they deal with value instances only through C++ pointers. Unlike object references
which map to C++ _ptr types that may be implemented either as actual C++ pointe
or as C++ pointer-like objects, "handles" to C++ value instances are actual C++
pointers. This helps to distinguish them from object references.
2/10/98 orbos/98-01-18: Objects By Value (with errata) 7-71

7

es

ns

a
he

ing
rs are

d

ers

 self-
g

turn a
ample:
Because value types support the sharing of instances within other constructed typ
(such as graphs), the lifetimes of C++ value instances are managed via reference
counting. Unlike the semantics of object reference counting, where neither duplicate
nor release actually affect the object implementation, reference counting operatio
for C++ value instances are directly implemented by those instances. Reference
counting mix-in classes are provided by ORB implementations for use by value
implementors.

As for most other types in the C++ mapping, value types also have associated C++
_var types that automate their reference counting.

All init initializers declared for a value type are mapped to pure virtual functions on
separate abstract C++ factory class. The class is named by appending “_init” to t
name of the value type, e.g., type A has a factory class named A_init .

7.3.1 Value Data Members

The C++ mapping for value data members follows the same rules as the C++ mapp
for unions except that the accessors and modifers are virtual. Public state membe
mapped to public virtual accessor and modifier functions of the C++ value base class,
and private value state members are mapped to protected C++ virtual accessor an
modifier functions (so that derived concrete classes may access them). Portable
applications, including derived value classes, shall not access the actual data memb
used to store the value state, and ORB implementations are free to make such
members private. The only restriction on the actual data members is that they be
managing so that derived classes can correctly implement copying without needin
direct access to them.

Like C++ unions, the accessor and modifier functions for value state members do not
follow the regular C++ parameter passing rules. This is because they allow local
program access to the state stored inside the value instance. Modifier functions
perform the equivalent of a deep-copy of their parameters, and accessors that re
reference or pointer to a state member can be used for read-write access. For ex

// IDL
typedef octet Bytes[64];
struct S { ... };
interface A { ... };

value Val {
public Val t;
long v;
public Bytes w;
public string x;
S y;
A z;

};
7-72 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

efs as

 that
he
hile

// C++
typedef Octet Bytes[64];
typedef Octet Bytes_slice;
...
struct S { ... };

typedef ... A_ptr;

class Val : public virtual ValueBase {
public:

...
virtual Val* t() const; // add_ref not called on return value
virtual void t(Val*); // remove_ref old Val, add_ref argument

virtual const Bytes_slice* w() const;
virtual Bytes_slice* w();
virtual void w(const Bytes);

virtual const char* x() const;
virtual void x(char*); // free old storage, adopt argument
virtual void x(const char*); // free old storage, copy argument
virtual void x(const String_var&);// free old storage, copy argument

protected:
virtual Long v() const;
virtual void v(Long);

virtual const S& y() const; // read-only access to y member
virtual S& y(); // read-write access to y member
virtual void y(const S&); // deep copy

virtual A_ptr z() const; // return value not duplicated
virtual void z(A_ptr); // release old objref, duplicate argument
...

};

State members of anonymous array types require the same supporting C++ typed
required for union members of anonymous array types; see the OMG C++ union
mapping for more details.

7.3.2 Constructors, Assignment Operators, and Destructors

A C++ value class defines a protected default constructor, a protected constructor
takes an initializer for each value data member, and a protected virtual destructor. T
constructors are protected to allow only derived class instances to invoke them, w
the destructor is protected to prevent applications from invoking delete on pointers to
value instances instead of using reference counting operations. The destructor is
virtual to provide for proper destruction of derived value class instances when their
reference counts drop to zero.
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-73

7

ar in

d

erely
r

es,
s
m

ired

of
er to
The parameters of the constructor that takes an initializer for each member appe
the same order as the data members appear, top to bottom, in the IDL value definition,
regardless of whether they are public or private. All parameters for the member
initializer constructor follow the C++ mapping parameter passing rules for in
arguments of their respective types.

Portable applications shall not invoke a value class copy constructor or default
assignment operator. Due to the required value reference counting, the default
assignment operator for a value class shall be private and preferably unimplemente
to completely disallow assignment of value instances.

7.3.3 Value Operations

Operations declared on a value type are mapped to public pure virtual member
functions in the corresponding value C++ class. None of these pure virtual member
functions shall be declared const because unlike C++, IDL provides no way to
distinguish between operations that change the state of an object and those that m
access that state. This choice, similar to the choice made for the C++ mapping fo
operations declared in IDL interface types, has an impact on parameter passing rul
as described below. The alternative, declaring all pure virtual member functions a
const, is less desirable because it would not allow member functions inherited fro
interface classes to be invoked on const value instances, since all such member
functions are already mapped as non-const.

The C++ signatures and memory management rules for value operations are identical
to those described in the OMG IDL C++ mapping for client-side interface operations.

A static _narrow function is provided by each value class to provide a portable way
for applications to cast down the C++ inheritance hierarchy. This is especially requ
after an invocation of the _copy_value function (see “ValueBase and Reference
Counting” on page 7-76). If a null pointer is passed to _narrow, it returns a null
pointer. Otherwise, if the value instance pointed to by the argument is an instance
the value class being narrowed to, its reference count is incremented and a point
the narrowed-to class type is returned. If however the value instance pointed to by the
argument is not an instance of the value class being narrowed to, a null pointer is
returned.

7.3.4 Example

For example, consider the following IDL value type:
7-74 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

// IDL
value Example {

short op1();
long op2(in Example x);

short val1;
public long val2;
string val3;
float val4;
Example val5;

};

The C++ mapping for this value type is:

// C++
class Example : public virtual CORBA::ValueBase {
public:

virtual CORBA::Short op1() = 0;
virtual CORBA::Long op2(Example*) = 0;

virtual CORBA::Long val2();
virtual void val2(CORBA::Long);

Example* _narrow(CORBA::ValueBase*);

 protected:
Example();
Example(CORBA::Short init1, CORBA::Long init2,

const char* init3, CORBA::Float init4, Example* init5);
virtual ~Example();

virtual CORBA::Short val1();
virtual void val1(CORBA::Short);

virtual const char* val3();
virtual void val3(char*);
virtual void val3(const char*);
virtual void val3(const String_var&);

virtual CORBA::Float val4();
virtual void val4(CORBA::Float);

virtual Example* val5();
virtual void val5(Example*);

private:
void operator=(const Example&);

};
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-75

7

all

 the
e the

y

e

 with

it
7.3.5 ValueBase and Reference Counting

The C++ mapping for the ValueBase IDL type serves as an abstract base class for
C++ value classes. ValueBase provides several pure virtual reference counting
functions inherited by all value classes:

// C++
namespace CORBA {

class ValueBase {
public:

virtual _add_ref() = 0;
virtual _remove_ref() = 0;
virtual ValueBase* _copy_value() = 0;
virtual CORBA::ULong _refcount_value() = 0;

static ValueBase* _narrow(ValueBase*);

protected:
ValueBase();
ValueBase(const ValueBase&);
virtual ~ValueBase();

private:
void operator=(const ValueBase&);

};
}

• _add_ref, used to increment the reference count of a value instance.

• _remove_ref, used to decrement the reference count of a value instance and delete
the instance when the reference count drops to zero. Note that the use of delete to
destroy instances requires that all value instances be allocated using new.

• _copy_value, used to make a deep copy of the value instance. The copy has no
connections with the original instance and has a lifetime independent of that of
original. Since C++ supports covariant return types, derived classes can overrid
_copy_value function to return a pointer to the derived class rather than
ValueBase*, but since covariant return types are still not commonly supported b
commercial C++ compilers, the return value of _copy_value can also be
ValueBase*, even for derived classes. A compliant ORB implementation may us
either approach. For now, portable applications will not rely on covariant return
types and will instead use narrowing1 to regain the most derived type of a copied
value .

• _refcount_value, which returns the value of the reference count for the value
instance on which it is invoked.

The names of these operations begin with underscore to keep them from clashing
user-defined operations in derived value classes.

1. The C++ dynamic_cast<> operator may also be used to cast down the value hierarchy, but
too is still not available in all C++ compilers and thus its use is still not portable at this time.
7-76 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

to

es of

nce

lso

nting

ce

ine
ValueBase also provides a protected default constructor, a protected copy
constructor, and a protected virtual destructor. The copy constructor is protected
disallow copy construction of derived value instances except from within derived
class functions, and the destructor is protected to prevent direct deletion of instanc
classes derived from ValueBase .

With respect to reference counting, ValueBase is intended to introduce only interface.
Depending upon the inheritance hierarchy of a value class, its instances may require
different reference counting mechanisms. For example, the reference counting
mechanisms needed for a value class that supports an interface are likely to be
different from those needed for a regular concrete value class, since the former has
object adapter issues to consider. Therefore, ValueBase normally serves as a virtual
base class multiply inherited into a value class. One inheritance path is through the
IDL inheritance hierarchy for the value type, since all value types inherit from
ValueBase , which provides the reference counting interface, and the other inherita
path is through the reference counting implementation mix-in base class (see
Section 7.3.6, “Reference Counting Mix-in Classes,” on page 7-78), which itself a
inherits from ValueBase .

7.3.5.1 CORBA Module Additions

The C++ mapping also adds two additional reference counting functions to the
CORBA namespace, as shown below:

// C++
namespace CORBA {

void add_ref(ValueBase* vb)
{

if (vb != 0) vb->_add_ref();
}

void remove_ref(ValueBase* vb)
{

if (vb != 0) vb->_remove_ref();
}

}

These functions are provided for consistency with object reference reference cou
functions. They are similar in that unlike the _add_ref and _remove_ref member
functions, they can be called with null value pointers. The CORBA::add_ref function
increments the reference count of the value instance pointed to by the function
argument if non-null, or does nothing if the argument is a null pointer. The
CORBA::remove_ref function behaves the same except it decrements the referen
count. (The implementations shown above are intended to specify the required
semantics of the functions, not to imply that conforming implementations must inl
the functions.)
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-77

7

in

ix-

t

d.

ts the
cted
 one.

void
al

y the

ng

differ
7.3.6 Reference Counting Mix-in Classes

The C++ mapping provides two standard reference counting implementation mix-
base classes:

• CORBA::DefaultValueRefCountBase, which can serve as a base class for any
application-provided concrete value class whose corresponding IDL value type
does not derive from any IDL interface s. For these types of value classes,
applications are also free to use their own reference-counting implementation m
ins as long as they fulfill the ValueBase reference counting interface.

• PortableServer::ValueRefCountBase, which must serve as a base class for any
application-provided concrete value class whose corresponding IDL value type
does derive from one or more IDL interface s, and whose instances will be
registered with the POA as servants. If IDL interface inheritance is present, bu
instances of the application-provided concrete value class will not be registered
with the POA, the CORBA::DefaultValueRefCountBase or an application-specific
reference counting implementation mix-in may be used as a base class instea

Each of these classes shall be fully concrete and shall completely fulfill the
ValueBase reference counting interface, except that since they provide
implementation, not interface, they shall not provide support for narrowing. In
addition, each of these classes shall provide a protected default constructor that se
reference count of the instance to one, a protected virtual destructor, and a prote
copy constructor that sets the reference count of the newly-constructed instance to
Just as with the ValueBase base class, the default assignment operator should be
private and preferably unimplemented to completely disallow assignment.

Note that it is the application-supplied concrete value classes that must derive from
these mix-in classes, not the partially-abstract value classes generated by the IDL
compiler. This is to avoid the need to inherit these mix-ins as virtual bases, or to a
inheriting multiple copies of the mix-ins(and thus multiple reference counts) if virtu
bases are not employed. Also, only the final implementor of a value knows whether it
will ever be used as a POA servant or not, and thus the implementor must specif
desired reference counting mix-in.

7.3.7 Value Boxes

A value box class essentially provides a reference-counted version of its underlyi
type. Unlike normal value classes, C++ classes for value boxes can be concrete since
value boxes do not support methods, inheritance, or interfaces. Value box classes
depending upon their underlying types.

To fulfill the ValueBase interface, all value box classes are derived from
CORBA::DefaultValueRefCountBase.
7-78 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

nd on
the
ed

e

in

er.)

ent

This
7.3.7.1 Parameter Passing for Underlying Boxed Type

All value box classes provide boxed_in, boxed_inout, and boxed_out member
functions that allow the underlying boxed value to be passed to functions taking
parameters of the underlying boxed type. The signatures of these functions depe
the parameter passing modes of the underlying boxed type. The return values of
boxed_inout and boxed_out functions shall be such that the boxed value is referenc
directly, allowing it to be replaced or set to a new value. For example, invoking
boxed_out on a boxed string allows the actual string owned by the value box to b
replaced:

// IDL
value StringValue string;
interface X {

void op(out string s);
};

// C++
StringValue* sval = new StringValue("string val");
X_var x = ...
x->op(sval->boxed_out()); // boxed string is replaced by op() invocation

Assume the implementation of op is as follows:

// C++
void MyXImpl::op(CORBA::String_out s)
{

s = CORBA::string_dup("new string val");
}

The return value of the boxed_out function shall be such that the string value boxed
the instance pointed to by sval is set to "new string val" after op returns, with the
instance pointed to by sval maintaining ownership of the string.

7.3.7.2 Basic Types, Enums, and Object References

For all the integer types, boolean , octet , char , wchar , and enumerated types, and
for typedefs of all of these, value box classes provide:

• A public default constructor. Note that except for the object reference case, the
value of the underlying boxed value will be indeterminate after this constructor
runs, i.e., the default constructor does not initialize the boxed value to a given
value. (This is because the built-in constructors for each of the basic types and
enumerations do not initialize instances of their types to particular values, eith
For boxed object references, this constructor sets the underlying boxed object
reference to nil.

• A public constructor that takes one argument of the underlying type. This argum
is used to initialize the value of the underlying boxed type.

• A public assignment operator that takes one argument of the underlying type.
argument is used to replace the value of the underlying boxed type.
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-79

7

n

 to
• Public accessor and modifier functions for the boxed value. The accessor and
modifier functions are always named value. For boxed object references, the retur
value of the accessor is not a duplicate.

• Explicit conversion functions that allow the boxed value to be passed where its
underlying type is called for. These functions are named boxed_in, boxed_inout,
and boxed_out, and their return types match the in , inout , and out parameter
passing modes, respectively, of the underlying boxed type. Implicit conversions
the underlying type are not provided because values are normally handled by
pointer.

• A public copy constructor.

• A public static _narrow function.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

An example value box class for an enumerated type is shown below:

// IDL
enum Color { red, green, blue };
value ColorValue Color;

// C++
class ColorValue : public CORBA::DefaultValueRefCountBase {
public:

ColorValue();
ColorValue(Color val);
ColorValue(const ColorValue& val);

ColorValue& operator=(Color val);

Color value() const; // accessor
void value(Color val); // modifier

// explicit conversion functions for underlying boxed type
//
Color boxed_in() const;
Color& boxed_inout();
Color& boxed_out();

static ColorValue* _narrow(CORBA::ValueBase* base);

protected:
~ColorValue();

private:
void operator=(const ColorValue& val);

};
7-80 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

ifier

t

g

 The

ions
rs.

ype
7.3.7.3 Struct Types

Value box classes for struct types map to classes that provide accessor and mod
functions for each struct member. Specifically, the classes provide:

• A public default constructor. The underlying boxed struct type is initialized as i
would be by its own default constructor.

• A public constructor that takes a single argument of type const T& , where T is the
underlying boxed struct type.

• A public assignment operator that takes a single argument of type const T& , where
T is the underlying boxed struct type.

• Public accessor and modifier functions, all named value, for the underlying boxed
struct type. Two accessors are provided: one a const member function returnin
const T& , and the other a non-const member function returning a T& . The modifier
function takes a single argument of type const T& .

• The boxed_in, boxed_inout, and boxed_out functions that allow access to the
boxed value to pass it in signatures expecting the underlying boxed struct type.
return values of these functions correspond to the in , inout , and out parameter
passing modes for the underlying boxed struct type, respectively.

• For each struct member, a set of accessor and modifier functions. These funct
have the same signatures as accessor and modifier functions for union membe

• A public copy constructor.

• A public static _narrow function.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

As with other value box classes, no implicit conversions to the underlying boxed t
are provided since values are normally handled by pointer.

For example:

// IDL
struct S {

string str;
long len;

};
value BoxedS S;
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-81

7

alue

ovide

ing

:

// C++
class BoxedS : public CORBA::DefaultValueRefCountBase {
public:

BoxedS();
BoxedS(const S& val);
BoxedS(const BoxedS& val);

BoxedS& operator=(const S& val);

const BoxedS& value() const;
BoxedS& value();
void value(const BoxedS& val);

const BoxedS& boxed_in() const;
BoxedS& boxed_inout();
BoxedS*& boxed_out();

static BoxedS* _narrow(CORBA::ValueBase* base);

const char* str() const;
void str(char* val); // adopt
void str(const char* val); // copy
void str(const CORBA::String_var& val);// copy

CORBA::Long len() const;
void len(CORBA::Long val);

protected:
~BoxedS();

private:
void operator=(const BoxedS& val);

};

7.3.7.4 String and WString Types

In order to allow boxed strings to be treated as normal strings where appropriate, v
box classes for strings provide largely the same interface as the String_var class. The
only differences from the interface of the String_var class are:

• The value box class interface does not provide the in, inout, out, and _retn
functions that String_var provides. Rather; the value box class provides
replacements for these functions called boxed_in, boxed_inout, and boxed_out.
They have mostly the same semantics and signatures as their String_var
counterparts, but their names have been changed to make it clear that they pr
access to the underlying string, not to the value box itself.

• There are no overloaded operators for implicit conversion to the underlying str
type because values are normally handled by pointer.

In addition to most of the String_var interface, value box classes for strings provide
7-82 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

ons
s a
ne

ing.

e
ng.
• Public accessor and modifier functions for the boxed string value. These functi
are all named value. The single accessor function takes no arguments and return
const char*. There are three modifier functions, each taking a single argument. O
takes a char* argument which is adopted by the value box class, one takes a const
char* argument which is copied, and one takes a const String_var& from which
the underlying string value is copied.

• A public default constructor that initializes the underlying string to an empty str

• Three public constructors that take string arguments. One takes a char* argument
which is adopted, one takes a const char* which is copied, and one takes a const
String_var& from which the underlying string value is copied. If the String_var
holds no string, the boxed string value is initialized to the empty string.

• Three public assignment operators: one that takes a parameter of type char* which
is adopted, one that takes a parameter of type const char* which is copied, and one
that takes a parameter of type const String_var& from which the underlying string
value is copied. Each returns a reference to the object being assigned to. If th
String_var holds no string, the boxed string value is set equal to the empty stri

• A public copy constructor.

• A public static _narrow function.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

An example of a value box class for a string is shown below:

// IDL
value StringValue string;
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-83

7

st be
// C++
class StringValue : public CORBA::DefaultValueRefCountBase {
public:

// constructors
//
StringValue();
StringValue(const StringValue& val);
StringValue(char* str); // adopt
StringValue(const char* str); // copy
StringValue(const String_var& var); // copy

// assignment operators
//
StringValue& operator=(char* str); // adopt
StringValue& operator=(const char* str); // copy
StringValue& operator=(const String_var& var); // copy

// accessor
//
const char* value() const;

// modifiers
//
void value(char* str); // adopt
void value(const char* str); // copy
void value(const String_var& var); // copy

// explicit argument passing conversions for
// the underlying string
//
const char* boxed_in() const;
char*& boxed_inout();
char*& boxed_out();

// ...other String_var functions such as overloaded subscript operators, etc....

static StringValue* _narrow(CORBA::ValueBase* base);

protected:
~StringValue();

private:
void operator=(const StringValue& val);

};

Note that even though value box classes for strings provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they mu
dereferenced before the subscript operators can be used.
7-84 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

rfaces

pe,

ns
n

 The

ype

7.3.7.5 Union, Sequence, Fixed, and Any Types

Value boxes for these types map to classes that have exactly the same public inte
as the underlying boxed types, except that each has:

• In addition to the constructors provided by the class for the underlying boxed ty
a public constructor that takes a single argument of type const T&, where T is the
underlying boxed type.

• An assignment operator that takes a single argument of type const T&, where T is
the underlying boxed type.

• Accessor and modifier functions for the underlying boxed value. All such functio
are named value. There are two accessor functions, one a const member functio
returning a const T&, and the other a non-const member function returning T& .
The modifier function takes a single argument of type const T&.

• The boxed_in, boxed_inout, and boxed_out functions that allow access to the
boxed value to pass it in signatures expecting the underlying boxed value type.
return values of these functions correspond to the in , inout , and out parameter
passing modes for the underlying boxed type, respectively.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

As with other value box classes, no implicit conversions to the underlying boxed t
are provided since values are normally handled by pointer.

Note that the value box class for sequence types provides overloaded subscript
operators (operator[]) just as a sequence class does. However, since values are
normally handled by pointer, the value instance must be dereferenced before the
overloaded subscript operator can be applied to it.

Value box instances for the any type can be passed to the overloaded operators for
insertion and extraction by invoking the appropriate explicit conversion function:

// C++
AnyValueBox* val = ...
val->boxed_inout() <<= something;
if (val->boxed_in() >>= something_else) ...

Below is an example value box along with its corresponding C++ class:

// IDL
typedef sequence<long> LongSeq;
value LongSeqValue LongSeq;
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-85

7

value
ray

 for

, not
// C++
class LongSeqValue : public CORBA::DefaultValueRefCountBase {
public:

LongSeqValue();
LongSeqValue(CORBA::ULong max);
LongSeqValue(CORBA::ULong max,

CORBA::ULong length,
CORBA::Long* buf, CORBA::Boolean release = 0);

LongSeqValue(const LongSeq& init);
LongSeqValue(const LongSeqValue& val);

LongSeqValue& operator=(const LongSeq& val);

const LongSeq& value() const;
LongSeq& value();
void value(const LongSeq&);

const LongSeq& boxed_in() const;
LongSeq& boxed_inout();
LongSeq*& boxed_out();

static LongSeqValue* _narrow(CORBA::ValueBase*);

CORBA::ULong maximum() const;
CORBA::ULong length() const;
void length(CORBA::ULong len);

CORBA::Long& operator[](CORBA::ULong index);
CORBA::Long operator[](CORBA::ULong index) const;

protected:
~LongSeqValue();

private:
void operator=(const LongSeqValue&);

};

7.3.7.6 Array Types

In order to allow boxed arrays to be treated as normal arrays where appropriate,
box classes for arrays provide largely the same interface as the corresponding ar
_var class. The only differences from the interface of the _var class are:

• The value box class interface does not provide the in, inout, out, and _retn
functions that _var provides. Rather; the value box class provides replacements
these functions called boxed_in, boxed_inout, and boxed_out. They have mostly
the same semantics and signatures as their _var counterparts, but their names have
been changed to make it clear that they provide access to the underlying array
to the value box itself.
7-86 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

ay

ons
a
nst
• There are no overloaded operators for implicit conversion to the underlying arr
type because values are normally handled by pointer.

In addition to most of the _var interface, value box classes for arrays provide:

• Public accessor and modifier functions for the boxed array value. These functi
are named value. The single accessor function takes no arguments and returns
pointer to array slice. The modifier function takes a single argument of type co
array.

• A public default constructor.

• A public constructor that takes a const array argument.

• A public assignment operator that takes a const array argument.

• A public copy constructor.

• A public static _narrow function.

• A protected destructor.

• A private and preferably unimplemented default assignment operator.

An example of a value box class for an array is shown below:

// IDL
typedef long LongArray[3][4];
value ArrayValue LongArray;
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-87

7

st be
// C++
typedef CORBA::Long LongArray[3][4];
typedef CORBA::Long LongArray_slice[4];
class ArrayValue : public CORBA::DefaultValueRefCountBase {
public:

ArrayValue();
ArrayValue(const ArrayValue& val);
ArrayValue(const LongArray val);

ArrayValue& operator=(const LongArray val);

const LongArray_slice* value() const;
LongArray_slice* value();

void value(const LongArray val);

// explicit argument passing conversions for
// the underlying array
//
const LongArray_slice* boxed_in() const;
LongArray_slice* boxed_inout();
LongArray_slice* boxed_out();

// ...overloaded subscript operators...

static ArrayValue* _narrow(CORBA::ValueBase* base);

protected:
~ArrayValue();

private:
void operator=(const ArrayValue& val);

};

Note that even though value box classes for arrays provide overloaded subscript
operators, the fact that values are normally handled by pointer means that they mu
dereferenced before the subscript operators can be used.

7.3.8 Abstract Values

Abstract IDL value types follow the same C++ mapping rules as concrete IDL value
types, except that since they have no data members, they do not have member
initializer constructors.

7.3.9 Value Inheritance

For an IDL value type derived from other value types or that supports interface
types, several C++ inheritance scenarios are possible:
7-88 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

d

y

w

ted
rted

ld
ased
ed the
 by
at
lease

ion
e:

s do

ay

++
• Concrete value base classes are inherited as public non-virtual bases. Concrete
value types may only be singly inherited in IDL, so they are not multiply inherite
in C++ either.

• Abstract value base classes are inherited as public virtual base classes, since the
may be multiply inherited in IDL.

• Interface classes supported by the IDL value type are not inherited. Instead, their
corresponding POA skeleton classes are derived from.

The reason that interface classes are not inherited is that value instances, like POA
servants, are themselves not object references. Providing this inheritance would allo
for error-prone code that implicitly widened pointers to value instances to C++ object
references for the supported interfaces, but without first obtaining valid object
references for those value instances from the POA. When such an application
attempted to use an invalid object reference obtained in this manner, it would
encounter errors that could be difficult to track back to the implicit widening of the
pointer to value to object reference. The C++ language provides no hooks into the
implicit pointer-to-class widening mechanism by which an application might guard
against this type of error.

By instead deriving value classes from the POA skeleton classes for those suppor
interfaces, value class instances can yield object references for the desired suppo
interfaces by normal POA operations, e.g., via invocation of _this or by explicit
registration of the value instance as a POA servant.

Avoiding the derivation of value classes from interface classes also separates the
lifetimes of value instances from the lifetimes of object reference instances. It wou
be surprising to an application if a valid object reference that had not yet been rele
unexpectedly became invalid because another part of the program had decrement
value part of the object reference instance to zero. This scenario could be solved
the provision of an appropriate reference counting mix-in class. However, given th
such an approach breaks local/remote transparency by having object reference re
operations affect the servant, and given the associated problems described in the
preceding paragraphs, deriving value classes from interface classes is best avoided.

7.3.10 Value Factories

Because concrete value classes are provided by the application developer, the creat
of values is problematic under certain circumstances. These circumstances includ

• Unmarshaling. The ORB cannot know a priori about all potential concrete value
classes supplied by the application, and so the ORB unmarshaling mechanism
not possess the capability to directly create instances of those classes.

• Component Libraries. Portions of an application, such as parts of a framework, m
be limited to only manipulating value instances while leaving creation of those
instances to other parts of the application.

Just as they provide concrete C++ value classes, applications must also provide
factories for those concrete classes. The base of all value factory classes is the C
CORBA::ValueFactoryBase class:
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-89

7

ses
RB

d via

eir

n

ans

lue

inter

ue
 data
// C++
namespace CORBA {

class ValueFactoryBase;
typedef ValueFactoryBase* ValueFactory;
class ValueFactoryBase {
public:

virtual ~ValueFactoryBase();

static ValueFactory _narrow(ValueFactory vf);

protected:
ValueFactoryBase();

private:
virtual ValueBase* create_for_unmarshal() = 0;

};
}

The C++ mapping for the IDL CORBA::ValueFactory native type is a pointer to a
ValueFactoryBase class, as shown above. Applications derive concrete factory clas
from ValueFactoryBase, and register instances of those factory classes with the O
via the ORB::register_value_factory function. If a factory is registered for a given
value type and no previous factory was registered for that type, the
register_value_factory function returns a null pointer.

When unmarshaling value instances, the ORB needs to be able to call up to the
application to ask it to create those instances. Value instances are normally create
their type-specific value factories (see Section 7.3.10.1, “Type-Specific Value
Factories,” on page 7-91) so as to preserve any invariants they might have for th
state. However, creation for unmarshaling is different because the ORB has no
knowledge of application-specific factories, and in fact in most cases may not eve
have the necessary arguments to provide to the type-specific factories.

To allow the ORB to create value instances required during unmarshaling, the
ValueFactoryBase class provides the create_for_unmarshal pure virtual function.
The function is private so that only the ORB, through implementation-specific me
(e.g., via a friend class), can invoke it. Applications are not expected to invoke the
create_for_unmarshal function. Derived classes shall override the
create_for_unmarshal function and shall implement it such that it creates a new va
instance and returns a pointer to it. The caller assumes ownership of the returned
instance and shall ensure that _remove_ref is eventually invoked on it. Since the
create_for_unmarshal function returns a pointer to ValueBase, the caller may use the
narrowing functions supplied by value types to downcast the pointer back to a po
to a derived value type.

Once the ORB has created a value instance via the create_for_unmarshal function, it
can use the value data member modifier functions to set the state of the new val
instance from the unmarshaled data. How the ORB accesses the protected value
member modifiers of the value is implementation-specific and does not affect
application portability.
7-90 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

er,

-

all be

ping

tory
The _narrow function on the factory allows the return type of the
ORB::lookup_value_factory function to be narrowed to a pointer to a type-specific
factory (see Section 7.3.10.1). It is important to note that the return value of the
factory _narrow does not become the memory management responsibility of the call
and thus delete should never be called on it. (In this regard it is exactly like the
narrowing supplied by the C++ mapping for the IDL exception hierarchy.)

7.3.10.1 Type-Specific Value Factories

All value types that have init initializer operations declared for them also have type
specific C++ value factory classes generated for them. For a value type A, the name
of the factory class, which is generated at the same scope as the value class, sh
A_init Each init initializer operation maps to a pure virtual function in the factory
class, and each of these initializer functions is named create. The initializer parameters
are mapped using normal C++ parameter passing rules for in parameters. The return
type of each create function is a pointer to the created value type.

For example, consider the following value type:

// IDL
value V {

init(boolean b);
init(char c);
init(octet o);
init(short s, string p);
...

};

First, note that this type presents a minor problem due to the fact that the C++ map
does not require the boolean , char , octet , and wchar types to map to different C++
types. Similar to the support provided by the Any type for allowing overloading of
insertion and extraction functions, disambiguating types that allow overloaded fac
functions for these three types are provided in the ValueFactoryBase class:
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-91

7

 as

fault

lue

// C++
class ValueFactoryBase {
public:

...
struct BooleanValue {

BooleanValue(Boolean b) : value(b) {}
Boolean value;

};
struct CharValue {

CharValue(Char c) : value(c) {}
Char value;

};
struct OctetValue {

OctetValue(Octet o) : value(o) {}
Octet value;

};
struct WCharValue {

WCharValue(WChar wc) : value(wc) {}
WChar value;

};
...

};

These types allow the factory class for the example given above to be generated
follows:

// C++
class V_init : public CORBA::ValueFactoryBase {
public:

virtual ~V_init();

virtual V* create(ValueFactoryBase::BooleanValue val) = 0;
virtual V* create(ValueFactoryBase::CharValue val) = 0;
virtual V* create(ValueFactoryBase::OctetValue val) = 0;
virtual V* create(Short s, const char* p) = 0;

static V_init* _narrow(ValueFactory vf);

protected:
V_init();

};

Each generated factory class shall have a public virtual destructor, a protected de
constructor, and a public _narrow function allowing narrowing from the base
ValueFactoryBase class. Each also supplies a public pure virtual create function
corresponding to each init initializer. Applications derive concrete factory classes from
these classes and register them with the ORB. Note that since each generated va
factory derives from the base ValueFactoryBase, all derived concrete factory classes
shall also override the private pure virtual create_for_unmarshal function inherited
from ValueFactoryBase.
7-92 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

 the

y
 are

d to

aled.
p if

e

ays

has

Note that the BooleanValue, CharValue, OctetValue, and WCharValue types shall
be provided by a conforming ORB implementation exactly as shown above (though
constructors need not be inlined), since portable derived factory implementations
require access to the values stored in their value data members.

For value types that have no init initializers, there are no type-specific abstract factor
classes, but applications must still supply concrete factory classes. These classes
derived directly from ValueFactoryBase, need not supply _narrow functions2, and
only need to override the create_for_unmarshal function.

7.3.10.2 Unmarshaling Issues

When the ORB unmarshals a value for a request handled via C++ static stubs or
skeletons, it tries to find a factory for the value type via the
ORB::lookup_value_factory operation. If the factory lookup fails, the client
application receives a CORBA::MARSHAL exception. Thus, applications utilizing
static stubs or skeletons must ensure that a value factory is registered for every value
type it expects to receive via static invocation mechanisms.

Because of their dynamic nature, applications using the DII or DSI are not expecte
have compile-time information for all the value types they might receive. For these
applications, value instances are represented as CORBA::Any , and so value factories
are not required to be registered with the ORB to allow such values to be unmarsh
However, value factories must be registered with the ORB and available for looku
the application attempts extraction of the values via the statically-typed Any extraction
functions. See Section 7.3.16, “Value Interaction With Any,” on page 7-96 for mor
details.

7.3.11 Custom Marshaling

The C++ mappings for the IDL CORBA::StreamingPolicy ,
CORBA::CDROutputStream , and CORBA::CDRInputStream types follow
normal C++ value mapping rules.

7.3.12 Parameter Passing Modes

Value instances are never passed by value or by reference; instead, they are alw
accessed through C++ pointers. Null value instances are indicated by null C++
pointers.

The parameter passing rules described below use an example value type named
ValType :

• An in value is passed as ValType* . It is explicitly not passed as pointer to const
because the callee would be unable to invoke any operations on the received value ,
since all value operations are non-const member functions. This is because IDL

2. Since the factory class hierarchy has virtual functions in it, a C++ dynamic_cast can always
be used to traverse the factory inheritance hierarchy, but it is not portable since all C++
compilers do not yet support it.
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-93

7

e lack
l not

or

.

e or

ses”

 their

n the
ay
no similar or corresponding notion of const operations. Since value instances are
copied when passed as arguments, the callee gets its own copy, so despite th
of const the callee is unable to affect the caller’s copy anyway. The callee shal
invoke _remove_ref on the received value without first invoking a matching
_add_ref.

• An inout value is passed as ValType*& . If the callee wishes to return a different
value as an out back to the caller, it shall invoke _remove_ref on the incoming
value and then assign a value pointer to the ValType*& argument. The caller
shall eventually invoke _remove_ref on the returned value regardless of whether
the callee returned a different value or not.

• As with other IDL types, an out value is passed as ValType_out. The
ValType_out type must ensure that a ValType_var passed by the caller has its
value instance reference count decremented before the operation is invoked. F
the callee, the ValType_out type has the same semantics as a ValType*& , and
should set the ValType_out to point to a value instance to be returned to the caller
The caller becomes responsible for eventually invoking _remove_ref on the
returned pointer to value instance.

• A value is returned as ValType* . The callee should return a pointer to value
instance, and the caller becomes responsible for eventually invoking _remove_ref
on the returned pointer to value instance.

These parameter passing rules follow the C++ mapping rules for other pointer-typ
pointer-like IDL types, such as strings and object references.

7.3.13 Memory Management Considerations

Regardless of their mode (in , inout , out , or return), value instances that use the
standard reference counting mix-ins described in “Reference Counting Mix-in Clas
on page 7-78 shall always be allocated using new. The standard _remove_ref
mechanisms supplied by the standard mix-in classes call delete this on a value
instance when its reference count drops to zero. Applications that use their own
reference counting mix-in classes have no restrictions on where they may allocate
value instances.

Note that care must be taken by application developers when dealing with cycles i
reference counting of value instances, otherwise memory management problems m
occur.
7-94 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

e

hey
ers.

types

he

.

7.3.14 Another Example

// IDL
value node {

public long data;
public node next;
void print();
node change(in node inval,

inout node ioval,
out node outval)

};

// generated C++ node.hh
class node_var {
...
};

class node : public virtual CORBA::ValueBase {
public:

virtual CORBA::Long data() const;
virtual void data(CORBA::Long);

virtual node* next() const;
virtual void node(next*);

node* _narrow(CORBA::ValueBase*);

protected:
node();
node(CORBA::Long data_init, node* next_init);
virtual ~node();

virtual void print() = 0;
virtual node* change(node* _inval, node*& _ioval, node_out _outval) = 0;

};

7.3.15 Value Members of Structs

The C++ mapping requires struct members to be self-managing. This results in th
need for manager types for both strings and object references. Since value types are
handled by pointer,similar to the way strings and object references are handled, t
too require manager types to represent them when they are used as struct memb

The value instance manager types have semantics similar to that of the manager
for object references:

• Any assignment to a managed value member causes that member to decrement t
reference count of the value it is managing, if any.

• A value pointer assigned to a managed value member is adopted by the member
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-95

7

t

nces

naged
ted,

avoid

t

e

d

.
• A value _var assigned to a managed value member results in the reference coun
of the instance being incremented. The _var types and value member manager
types follow the same rules for widening assignment that those for object refere
do.

• If the constructed type holding the managed value member is assigned to another
constructed type (for example, an instance of a struct with a value member is
assigned to another instance of the same struct), the reference count of the ma
value instance in the struct on the right-hand side of the assignment is incremen
while the reference count of the managed instance on the left-hand side is
decremented. As usual in C++, assignment to self must be guarded against to
any mishandling of the reference count.

• When it is destroyed, the managed value member decrements the reference coun
of the managed value instance.

The semantics of value managers described here provide for sharing of value
instances across constructed types by default. Each C++ value type also provides an
explicit copy function that can be used to avoid sharing when desired.

7.3.16 Value Interaction With Any

As for other IDL types, type-safe insertion and extraction of value types is supported
by CORBA::Any .

7.3.16.1 Any Insertion

A value instance is inserted into a CORBA::Any by the following function at global
scope:

// C++
void operator<<=(CORBA::Any& any, T* val);

Here, T represents the value type. This function increments the reference count of th
instance pointed to by val, assuming val is not a null pointer. After insertion, when the
CORBA::Any is destroyed, or when a different instance of a value type or any other
IDL type is inserted into the CORBA::Any , the reference count of the instance pointe
to by val is decremented.

Adopting insertion is also supported:

// C++
void operator<<=(CORBA::Any& any, T** val_p);

Assuming that val_p is not a null pointer, the underlying T instance is adopted by the
CORBA::Any . The reference count of the T instance is not incremented in this case
When the CORBA::Any is later destroyed, or when a different instance of a value
type or any other IDL type is inserted into the CORBA::Any , the reference count of
the instance referred to by val_p is decremented (if *val_p is not a null pointer, of
course).
7-96 orbos/98-01-18: Objects By Value (with errata) 2/10/98

7

y for

the
ate
7.3.16.2 Any Extraction

Instances of value types are extracted from CORBA::Any instances using the
following function available at global scope:

// C++
CORBA::Boolean operator>>=(const CORBA::Any& any, T*& val_ref);

If an instance of the value type represented by type T is actually present in the
CORBA::Any instance as determined by TypeCode equality, this function will
extract the typed value. Proper extraction of a value instance may require a factor
the value type. The extraction function can use the ORB::lookup_value_factory
function to locate an appropriate factory. If a factory is needed for extraction and
factory lookup fails, the extraction function returns FALSE. Assuming an appropri
factory is found (if needed), the extraction function sets the val_ref argument to point
to the T instance in the CORBA::Any , and returns TRUE. The TypeCode for val_ref
is implied by the C++ type of val_ref. After extraction, the value type instance
pointed to by val_ref is still owned by the CORBA::Any and shall not have its
_remove_ref function invoked by anything other than the owning CORBA::Any . Note
that since value types may be null, a successful extraction sets the val_ref argument to
a null pointer if the CORBA::Any contains a null value pointer.

Otherwise, if the type instance stored in the CORBA::Any has a different type than
that of val_ref as determined by TypeCode equality, the value of val_ref is
unchanged and the extraction function returns FALSE.
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 7-97

7

7-98 orbos/98-01-18: Objects By Value (with errata) 2/10/98

Abstract Interfaces 8
e is
ture.

s

f the

.

 when
s.

d,
ssed.
8.1 Introduction

In this submission, the decision whether an object is sent by reference or by valu
determined by the type specification of the formal parameter in the operation signa
Consider the example

interface Example {
 void foo(in MyType mydata);
};

The following cases apply:

a) MyType is an interface type (not an abstract interface). An object ref (IOR) is
always passed. If the implementation object is not registered with the ORB/OA a
exportable, the invocation fails.

b) MyType is a value. A value (marshalled object state) is always passed, even i
value object inherits from an interface and is registered with the ORB/OA.

Both of these assume that on every invocation of the foo operation, either object
references are always passed as the mydata parameter, or values are always passed
There is no way to sometimes invoke the foo operation with a reference actual
parameter, and sometimes invoke it with a value actual parameter.

In many cases, this restriction causes no problems. However, there are occasions
more flexibility is needed. See Section 8.10, “Usage Scenarios” for some example
This submission provides this extra flexibility through a new IDL type called an
abstract interface . This adds a third case for the above example:

c) MyType is an abstract interface. Either an object ref (IOR) or a value is passe
depending on some rules about the runtime type and state of the actual object pa
See Section 8.3, “Semantics of Abstract Interfaces” for details of these rules.
2/10/98 orbos/98-01-18: Objects By Value (with errata) 8-99

8

ctual

f the
n

ace
 is a

ct

n
s
s

types
.2 of

. If
nce

8.2 Syntax for Abstract Interfaces

An optional keyword abstract is added to th IDL interface definition syntax. In
the above example, to define MyType as an abstract interface, we would write
an interface definition such as

abstract interface MyType {
 void bar(in long avalue);
};

This specifies that whenever a formal parameter of type MyType appears in an IDL
operation definition, either a value or an object reference can be passed as the a
parameter. In both cases, the object that is passed must support the bar operation as
declared in the abstract interface.

8.3 Semantics of Abstract Interfaces

Abstract interfaces differ from regular IDL interfaces in the following ways:

1. When used in an operation signature, they do not determine whether actual
parameters are passed as an object reference or by value. Instead, the type o
actual parameter (regular interface or value) is used to make this determinatio
using the following rules:

• The actual parameter is passed as an object reference if it is a regular interf
type (or a subtype of a regular interface type), and that regular interface type
subtype of the signature abstract interface type, and the object is already
registered with the ORB/OA.

• The actual parameter is passed as a value if it cannot be passed as an obje
reference but can be passed as a value. Otherwise, a BAD_PARAM exception is
raised.

2. The GIOP encoding of an abstract interface type is a boolean (TRUE if it is a
IOR, FALSE if it is a value) followed by either the IOR or the value. This allow
the demarshaling code to determine whether an object reference or a value wa
passed.

3. Abstract interfaces do not implicitly inherit from CORBA::Object. This is because
they can represent either value types or CORBA object references, and value
do not necessarily support the object reference operations defined in section 5
the CORBA 2.1 specification (see Section 5.3.2.3, “Value Type vs. Interfaces”)
an IDL abstract interface type can be successfully narrowed to an object refere
type (a regular IDL interface), then the CORBA::Object operations can be invoked
on the narrowed object reference.

4. Abstract interfaces do not imply copy semantics for value types passed as
arguments to their operations. This is because their operations may be either
CORBA invocations (for abstract interfaces that represent CORBA object
8-100 orbos/98-01-18: Objects By Value (with errata) 2/10/98

8

le
ular
place
time
e
references) or local programming language calls (for abstract interfaces that
represent CORBA value types). See Section 5.3.1.3, “Operations” and
Section 5.3.2.4, “Parameter Passing” for details of these differences.

5. Abstract interfaces may only inherit from other abstract interfaces.

6. In other respects, abstract interfaces are identical to regular IDL interfaces.

For example, consider the following operation m1() in abstract interface foo :

abstract interface foo {
void m1(in AnInterfaceType x, in AnAbstractInterfaceType y,

in AValueType z);
};

x’s are always passed by reference,

z’s are:

• passed as copied values if foo refers to an ordinary interface.

• passed as non-copied values if foo refers to a value type

y’s are:

• passed as reference if their concrete type is an ordinary interface subtype of
AnAbstractInterfaceType (registered with the ORB), no matter what foo ’s
concrete type is.

• passed as copied values if their concrete type is value and foo ’s concrete type is
ordinary interface.

• passed as non-copied values if their concrete type is value and foo ’s concrete
type is value.

8.4 Usage Guidelines

Abstract interfaces are intended for situations where it cannot be known at compi
time whether an object reference or a value will be passed. In other cases, a reg
interface or value type should be used. Abstract interfaces are not intended to re
regular CORBA interfaces in situations where there is no clear need to provide run
flexibility to pass either an object reference or a value. If reference semantics ar
intended, regular interfaces should be used.

8.5 IDL Extensions

The <abstract_token> is added to the production defining interface as optionally
preceding the keyword interface .

8.6 Interface Repository Extensions

1. The FullInterfaceDescription and InterfaceDescription structs in the CORBA
module are extended to add a new member:
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 8-101

8

L

ce,

 it is
for

ular
hich

es,
face
boolean is_abstract;

2. The InterfaceDef interface in the CORBA module is extended to add a new
attribute:

attribute boolean is_abstract;

3. The create_interface operation in the Container interface is extended to add a
new formal parameter:

in boolean is_abstract

8.7 Java Language Mapping for Abstract Interfaces

Abstract interfaces are mapped to Java interfaces in the same way as regular ID
interfaces, with the exception that the mapped interfaces do not extend
org.omg.CORBA.Object.

Helper and holder classes are generated in the usual way.

8.7.1 Java ORB Portability Interfaces

In order to support marshaling of parameters whose formal type is abstract interfa
additions are made to the input and output stream APIs which are found in the
org.omg.CORBA.portable package.

Add the following method to org.omg.CORBA.portable.InputStream:

public abstract java.lang.Object read_Abstract();

Add the following method to org.omg.CORBA.portable.OutputStream:

public abstract void write_Abstract(java.lang.Object obj);

The read_Abstract() and write_Abstract() methods are used to marshal and
unmarshal abstract interface types. They use java.lang.Object, in order to be able to
read and write both value types and regular interface types. The read_Abstract()
method returns either a value type or an org.omg.CORBA.Object, depending on the
data in the input stream. The write_Abstract() method marshals either a value or an
IOR to the output stream, depending on its argument's runtime type and whether
registered with the ORB/OA. See Section 8.3, “Semantics of Abstract Interfaces”
more details.

8.8 C++ Language Mapping for Abstract Interfaces

The C++ mapping for abstract interfaces is almost identical to the mapping for reg
interfaces. Rather than defining a complete C++ mapping for abstract interfaces, w
would only duplicate much of the specification of the mapping for regular interfac
only the ways in which the abstract interface mapping differs from the regular inter
mapping are described here.
8-102 orbos/98-01-18: Objects By Value (with errata) 2/10/98

8

es,

 is

 the

8.8.1 Abstract Interface Base

C++ classes for abstract interfaces are not derived from the CORBA::Object C++
class. In IDL, abstract interfaces have no common base. However, to facilitate
narrowing from an abstract interface base class down to derived abstract interfac
derived interfaces, and derived value types, all abstract interface base classes that
have no other base abstract interfaces derive directly from CORBA::AbstractBase.
This base class provides the following:

• a protected default constructor

• a protected copy constructor

• a protected pure virtual destructor

• a public static _duplicate function

• a public static _narrow function

• a public static _nil function

The AbstractBase class is shown below:

// C++
class AbstractBase;
typedef ... AbstractBase_ptr; // actually either pointer or class

class AbstractBase {
public:

static AbstractBase_ptr _duplicate(AbstractBase_ptr);
static AbstractBase_ptr _narrow(AbstractBase_ptr);
static AbstractBase_ptr _nil();

protected:
AbstractBase();
AbstractBase(const AbstractBase& val);
virtual ~AbstractBase() = 0;

};

The _duplicate function operates polymorphically over both object references and
value types. If an AbstractBase_ptr that actually refers to an object reference is
passed to the _duplicate function, the object reference is duplicated and returned.
Otherwise, the argument refers to a value instance, so the _add_ref function is called
on the value and the argument is returned. If the argument is nil, the return value
nil.

The implementation of AbstractBase::_narrow merely passes its argument to
_duplicate and uses the value it returns as its own return value. Strictly speaking,
_narrow function is not needed in the AbstractBase interface since it is rather
pointless to narrow an AbstractBase to its own type, but it is required by all
conforming implementations in order to make writing C++ templates that deal with
abstract interfaces easier (since AbstractBase does not present a special case).
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 8-103

8

.

for

upplied

e of

nce
 serve

lways

be
,
As with regular object references, the _nil function returns a typed AbstractBase nil
reference.

Both the is_nil and release functions in the CORBA namespace are overloaded to
handle abstract interface references:

// C++
namespace CORBA {

Boolean is_nil(AbstractBase_ptr);
void release(AbstractBase_ptr);

}

These behave the same as their object reference counterparts. Note that release is
expected to operate polymorphically over both value types and object reference types
If its argument is nil, it does nothing. If its argument refers to a value instance, it
invokes _remove_ref on that instance. Otherwise, its argument refers to an object
reference, on which it invokes CORBA::release.

8.8.2 Client Side Mapping

The client side mapping for abstract interfaces is almost identical to the mapping
object references, except:

• C++ classes for abstract interfaces derive from CORBA::AbstractBase, not
CORBA::Object . Accordingly, their static _duplicate and _narrow member
functions have arguments and return values of type CORBA::AbstractBase_ptr,
not CORBA::Object_ptr .

• Because abstract interface classes can serve as base classes for application-s
concrete value classes, they shall provide a protected default constructor, a
protected copy constructor, and a protected destructor (which is virtual by virtu
inheritance from AbstractBase).

• The mapping for object reference classes does not specify the type of inherita
used for base object reference classes. However, since abstract interfaces can
as base classes for application-supplied concrete value classes, which themselves
can be derived from regular interface classes, abstract interface classes shall a
be inherited as public virtual base classes.

• Inserting an abstract interface reference into a CORBA::Any operates
polymorphically; either the object reference or value to which the abstract interface
reference refers is what actually gets inserted into the Any. This is because there is
no TypeCode for abstract interfaces. Since abstract interfaces cannot actually
inserted into an Any, there is no need for abstract interface extraction operators
either. However, the CORBA::Any::to_abstract_base type allows the contents of
an Any to be extracted as an AbstractBase if the entity stored in the Any is an
object reference type or a value type directly or indirectly derived from the
AbstractBase base class. The to_abstract_base type is shown below:
8-104 orbos/98-01-18: Objects By Value (with errata) 2/10/98

8

++
ce

 in

for
 an

s.
essary.

efore

ns
ted
on-
d, it
by
// C++
class Any {
public:

...
struct to_abstract_base {

to_abstract_base(AbstractBase_ptr& base) : ref(base) {}
AbstractBase_ptr& ref;

};
...

};

Boolean operator>>=(const Any& any, Any::to_abstract_base val);

Other than that, the mapping for abstract interfaces is identical to that for regular
interfaces, including the provision of _var types, _out types, manager types for struct,
sequence, and array members, identical memory management, and identical C++
signatures for operations.

Both interfaces that are derived from one or more abstract interfaces and value types
that support one or more abstract interfaces shall support implicit widening to the _ptr
type for each abstract interface base class. Specifically, the T* for value type T and
the T_ptr type for interface type T shall support implicit widening to the Base_ptr
type for abstract interface type Base . The only exception to this rule is for value
types that directly or indirectly support one or more regular interface types; the C
classes for these value types are derived from the POA skeletons for the base interfa
types, not from the C++ classes for the interface types themselves (as described
Section 7.3.9, “Value Inheritance,” on page 7-88). In these cases, it is the object
reference for the value , not the pointer to the value , that supports widening to the
abstract interface base.

8.8.3 Server Side Mapping

The only circumstances under which an IDL compiler should generate C++ code
abstract interfaces for the server side are when either an interface is derived from
abstract interface, or when a value type supports an abstract interface indirectly
through one or more intermediate regular interface types. Abstract interfaces by
themselves cannot be directly implemented or instantiated by portable application
Because of this, standard C++ skeleton classes for abstract interfaces are not nec

The requirements for the C++ server-side mapping for abstract interfaces are ther
quite simple:

• The IDL compiler shall ensure that POA skeletons for interfaces derived from
abstract interfaces somehow include pure virtual functions for the IDL operatio1
defined in the base abstract interface(s). These functions can either be genera
directly into the POA skeleton class, or can be generated into an implementati
specific base class inherited by the POA skeleton. If the latter approach is use
should be done in a way that does not require special constructor invocations

1. This refers only to the operations defined in IDL, not to the C++-specific _duplicate,
_narrow, and _nil functions supplied by all abstract interface C++ classes.
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 8-105

8

s

aces
stract
o be
ed by
 (in
of

ur.
es to

hese
be
d by
e) or

a list
 a
rk

s the

ypes

check
application-supplied servant classes (for example, if it were a virtual base clas
without a default constructor, it would require the most derived servant class to
explicitly initialize it in its own constructor member initialization lists).

8.9 Security Considerations

Security considerations for abstract interfaces are similar to those for regular interf
and values (see Section 5.3.5, “Security Considerations”). This is because an ab
interface formal parameter type allows either a regular interface (IOR) or a value t
passed. Likewise, an operation defined in an abstract interface can be implement
either a regular interface (with “normal” security considerations) or by a value type
which case it is a local call, not mediated by the ORB). The security implication
making the choice between these alternatives a runtime determination is that the
programmer must ensure that for both alternatives, no security violations can occ
For example, a technique similar to that described in Section 8.10.2, “Passing Valu
Trusted Domains” could be used to avoid inadvertently passing values outside a
domain of trust.

8.10 Usage Scenarios

8.10.1 Base Types and Mixin Types

The introduction of value types into CORBA will enable the creation of business
object frameworks that contain both interface types and value types. In order for t
frameworks to support polymorphism with static type checking, it is necessary to
able to specify operations with arguments whose type abstractions can be satisfie
objects implemented as either CORBA interface types (passed by object referenc
value types (passed by value).

For example, in a business application it is extremely common to need to display
of objects of a given type, with some identifying attribute like account number and
translated text description such as “Savings Account.” A business object framewo
might define an interface such as Describable whose methods provide this information,
and implement this interface on a wide range of business object types. This allow
method that displays items to take an argument of type Describable and query it for the
necessary information. The Describable objects passed in to the display method may be
either CORBA interface types (passed in as object references) or CORBA value t
(passed in by value).

In this example, Describable is used as a polymorphic abstract type. No objects of
implementation type Describable exist, but many different implementation types
support the Describable type abstraction. In C++, Describable would be an abstract
base class; in Java, an interface. In statically typed languages, the compiler can
that the actual parameter type passed by callers of display is a valid subtype of
Describable and therefore supports the methods defined by Describable. The display
method can simply invoke the methods of Describable on the objects that it receives,
without concern for any details of their implementation.
8-106 orbos/98-01-18: Objects By Value (with errata) 2/10/98

8

rences

annot

rence.

se
rface
work
ts a
ited
t not

:

e,

icies
the
ess
and

 the
Unfortunately it is not possible to define Describable as a regular IDL interface. This
is because arguments of declared interface type are always passed as object refe
(see Section 5.3.2.4, “Parameter Passing”) and we also want the display method to be
able to accept value type objects that can only be passed by value. Similarly we c
define Describable as an IDL value type because then the display method would not be
able to accept actual parameter objects that only support passing as an object refe
Abstract interfaces are needed to cover such cases.

This usage of abstract interfaces includes both base types and mixin types. A ba
type is a type that appears at the top of a hierarchy that includes both regular inte
and value types. For example, it could be the root type of a business object frame
that includes both regular interface types and value types. A mixin type represen
property of some (but not all) types in a hierarchy. For example, it could be inher
by some regular interface types and supported by value types in a framework, bu
by other types in the framework.

8.10.1.1 Example

The Describable abstract interface could be defined and used by the following IDL

abstract interface Describable {
string get_description();

};

interface Example {
void display (in Describable anObject);

};

interface Account supports Describable { // passed by reference
 // add Account methods here
};

value Currency: Describable { // passed by value
 // add Currency methods here
};

If Describable were defined as a regular interface instead of an abstract interfac
then it would not be possible to pass a Currency value to the display method, even
though the Currency IDL type supports the Describable interface. See Section 4.5,
“Passing A Value Instance for an Interface Type”, for the rationale.

8.10.2 Passing Values to Trusted Domains

When a server passes an object reference, it can be sure that access control pol
will apply to any attempt to access anything through that object reference. When
underlying object is passed as a value, the granularity and level/semantics of acc
control are different. In the “by value” case, all the data for the object is passed,
method invocations on the passed object are local calls that are not mediated by
February 10, 1998 2:04 pm orbos/98-01-18: Objects By Value (with errata) 8-107

8

value
 said

ly in
ling

 be
 level

ill
ORB. Whether the server wants to use the (potentially more permissive) pass by
access control or not could depend on the security domain which is receiving the
object or object reference.

Consider the case where the server S has an object O that it is willing to pass on
the form of an object reference Or' to a domain Du that it does not trust, but is wil
to pass the object by value Ov to another domain Ot that it trusts.

This flexibility is not possible without abstract interfaces. Signatures would have to
written to either always pass references or always pass values, irrespective of the
of trust of the invocation target domain. However, abstract interfaces provide the
necessary flexibility. The formal parameter type MyType can be declared as an
abstract interface and the method invocation can be coded along the lines of

 myExample->foo(security_check(myExample,mydata));

where the security_check function determines the level of trust of myExample's
domain and returns an regular interface subtype of MyType for untrusted domains and
a value subtype of MyType for trusted domains. The rules for abstract interfaces w
then pass the correct thing in both these cases.
8-108 orbos/98-01-18: Objects By Value (with errata) 2/10/98

Conformance Issues 9
. It
laim
9.1 Introduction

This chapter specifies the compliance points for this specification

9.2 Compliance

This submission adds no additional compliance points to the CORBA specification
defines new semantics and IDL extensions that must be implemented in order to c
conformance to CORBA CORE.
2/10/98 orbos/98-01-18: Objects By Value (with errata) 9-109

9

9-110 orbos/98-01-18: Objects By Value (with errata) 2/10/98

Changes to CORBA 2.2 10
y

on.

t of

o
This submission proposes extensions to CORBA 2.2 to support passing objects b
value. It

• adds the concepts of value types and abstract interfaces to CORBA

• extends IDL

• extends the language mappings to support these IDL extensions

• extends GIOP to further support these extensions in an interoperable fashion

This chapter outlines in detail the probable changes to the CORBA 2.2 specificati
See Section 1.4, “Missing Items,” on page 1-9 for further discussion.

10.1 Changes to CORBA 2.2

The following is an extracted set of notes (from a .pdf file) relative to the beta draf
CORBA 2.2 that was made available by the OMG for review purposes. Each note
contains the (absolute) page number of the draft, as well as the section number t
which it applies.
2/10/98 orbos/98-01-18: Objects By Value (with errata) 10-111

Changes needed to apply OBV to CORBA 2.2 review

Page 42

Note 1; Label: jeffm; Date: 1/18/98 5:10:06 PM
Section 1.2.4 Object Model Types
Add value type description

Page 43

Note 1; Label: jeffm; Date: 1/18/98 5:10:20 PM
Section 1.2.4 Object Model Types
Add value type at the same level as Object Reference

Note 2; Label: jeffm; Date: 1/18/98 5:10:38 PM
Section 1.2.4 Object Model Types
Replace use of Value in this section with "entity" as appropriate,
so that Value type can be used for the new entity being defined

Page 44

Note 1; Label: jeffm; Date: 1/18/98 5:11:22 PM
Section 1.2.5 Object Model Interfaces
Add new section 1.2.5a
 Value types
 describe their general characteristics

Page 73

Note 1; Label: jeffm; Date: 1/18/98 5:11:39 PM
Section 3.2.4 Keywords
Add new section 3.2.4a : Keyword Identifiers
 (from submission 5.4.2)

Page 76

Note 1; Label: jeffm; Date: 1/18/98 5:12:04 PM
Section 3.4 OMG IDL Grammar
update complete grammar with new productions
(from submission 5.4.1)

Page 80

Note 1; Label: jeffm; Date: 1/18/98 3:06:10 PM
Section 3.5 OMG IDL Specification
add <value> to <definition>

Page 82

Note 1; Label: jeffm; Date: 1/18/98 5:17:17 PM
Section 3.5 OMG IDL Specification
Add new Section 3.5.a on Value Types
Add new Section 3.5.b on Value Boxes
Add new Section 3.5.c on Abstract Value
Add new Section 3.5.d on Abstract Interfaces
 These sections include most of the material from submission 5.3, 5.4 and 8.2-8.5

Note 2; Label: jeffm; Date: 1/18/98 5:17:25 PM
Section 3.6 Inheritance

 generalize to apply scoping rules to value defs as well as interface defs

Page 88

Note 1; Label: jeffm; Date: 1/18/98 3:09:38 PM
Section 3.8
add <value_type_spec> to <base_type_spec>

Page 101

Note 1; Label: jeffm; Date: 1/18/98 3:09:57 PM
Section 3.13 Names and Scoping
Add value types

Page 105

Note 1; Label: jeffm; Date: 1/18/98 3:10:35 PM
Section 3.15 Exceptions
Add table with new standard minor exception codes from submission 5.9

Page 127

Note 1; Label: jeffm; Date: 1/18/98 5:18:43 PM
Section 4.10
Add new sections 4.10a... to add all the addional ORB and CORBA module functions
(from submission 5.3.6, 5.3.7)

Page 155

Note 1; Label: jeffm; Date: 1/18/98 4:12:40 PM
Section 7.2 Dynamic Any
Add insert_value()

Page 156

Note 1; Label: jeffm; Date: 1/18/98 4:13:03 PM
Section 7.2 Dynamic Any
add get_value() operation

Page 157

Note 1; Label: jeffm; Date: 1/18/98 4:13:12 PM
Section 7.2 Dynamic Any
 Add DynValue to IDL

Page 166

Note 1; Label: jeffm; Date: 1/18/98 5:19:18 PM
Section 7.2.9
Add Section 7.2.10 The DynValue Interface
(from submission 5.6)

Page 175

Note 1; Label: jeffm; Date: 1/18/98 4:16:00 PM
Section 8.4.2 IR
 Add ValueDef to list

Page 176

Note 1; Label: jeffm; Date: 1/18/98 4:16:41 PM

Section 8.2 IR
 add ValueDef to Figure 8-2

Page 177

Note 1; Label: jeffm; Date: 1/18/98 4:17:42 PM
Section 8.5.1 IR
 add new DefinitionKinds
 (from submission 5.5)

Page 183

Note 1; Label: jeffm; Date: 1/18/98 4:19:07 PM
Section 8.5.3 IR
 Add create_value

Page 200

Note 1; Label: jeffm; Date: 1/18/98 5:19:58 PM
Section 8.23 IR
 Add new section 8.24 ValueDef
 contains bulk of new IDL
 (from submission 5.5 and 8.6)

Page 206

Note 1; Label: jeffm; Date: 1/18/98 5:20:09 PM
Section 8.7.1 TypeCodes
Add new TCKind
(from submission 5.7.1)

Page 209

Note 1; Label: jeffm; Date: 1/18/98 5:20:14 PM
Section 8.7.1 Typecodes
Add new info to Table 8-1
 (from submission 5.8.7)

Page 212

Note 1; Label: jeffm; Date: 1/18/98 5:20:20 PM
Section 8.7.3 Creeating Typecodes
Add new operations
(from submission 5.7.2)

Page 213

Note 1; Label: jeffm; Date: 1/18/98 4:28:23 PM
Section 8.8 OMG IDL for IR
Update complete IDL with new IDL (from submssion 5.5)

Page 321

Note 1; Label: jeffm; Date: 1/18/98 5:20:44 PM
Section 11.6.7 Interop
 Add new service context: SendingContextRunTime
(from submission 5.3.8)

Page 340

Note 1; Label: jeffm; Date: 1/18/98 5:20:55 PM
Section 11.10
Add a new Section 11.11 SendingContextRuntime includes IDL and semantics of new interface
RunTime
(from submission 5.3.8)

Page 366

Note 1; Label: jeffm; Date: 1/18/98 4:42:41 PM
Section 13.3 CDR Transfer Syntax
Add new Section 13.3.6 Value Types
 specifies encoding rules for values (from submission 5.8-5.8.6)

Page 672

Note 1; Label: jeffm; Date: 1/18/98 5:05:08 PM
Section 19.15 C++ Mapping for Any

Add new Section 19.15a Mapping for Value
(from submission 7.1, 7.2, 7.3)

Page 892

Note 1; Label: jeffm; Date: 1/18/98 4:46:57 PM
Section 23.4 Java Helper
Add helper class for Value also has get_value_def() method

Page 906

Note 1; Label: jeffm; Date: 1/18/98 4:50:53 PM
Section 3.11
Add new Section 3.11a Mapping for Value Types
(from submssion 6.3))
Add new Section 3.11b Mappging for Boxed Values
(from submission6.5).
Add new Section 3.11c Mapping for Abstract Interfaces
(from submission8.7)

Page 910

Note 1; Label: jeffm; Date: 1/18/98 5:21:32 PM
Section 23.13 Java Mapping for Any
Add value support to any
(from submission 6.6)

Page 914

Note 1; Label: jeffm; Date: 1/18/98 4:53:53 PM
Section 23.15
Add new section 23.15a Value Factory and Marshaling
(from submission 6.4)

Page 937

Note 1; Label: jeffm; Date: 1/18/98 5:21:47 PM
Section 23.18.4 Java Streamable APIs
Add support for new types
(from submission 6.7 and 8.7)

10
10-112 orbos/98-01-18: Objects By Value (with errata) 2/10/98

	ChapTitle - Preface
	ChapNumber - 1
	Head1 - 1.1 Cosubmitting Companies
	Head1 - 1.2 Status of this document
	Head2 - 1.2.1 Changes to 98-01-01

	Head1 - 1.3 Guide to the Submission
	Head1 - 1.4 Missing Items
	Head1 - 1.5 Conventions
	Head1 - 1.6 Submission Contact Points
	ChapTitle - Proof of Concept
	ChapNumber - 2
	ChapTitle - Response to RFP Requirements

	ChapNumber - 3
	Head4 - Introduction

	Head1 - 3.1 Pass By Value Semantics
	Head1 - 3.2 Interoperability
	Head1 - 3.3 Memory Management
	Head1 - 3.4 IDL Changes
	Head1 - 3.5 Language Mapping Changes
	Head1 - 3.6 GIOP and Wire Protocol Changes
	Head1 - 3.7 Discuss Upwardly Incompatible Changes
	Head1 - 3.8 Design Rationale
	ChapTitle - Overall Design Rationale
	ChapNumber - 4

	Head1 - 4.1 Protected Fields in State Definition
	Head1 - 4.2 Single Inheritance Issues
	Head1 - 4.3 Base Value Type
	Head1 - 4.4 Narrowing from interface to value
	Head1 - 4.5 Passing A Value Instance for an Interface Type
	Head1 - 4.6 Boxed Values
	Head1 - 4.7 value keyword
	Head1 - 4.8 Use of Helper classes
	ChapTitle - Value Types
	ChapNumber - 5

	Head1 - 5.1 Introduction
	Head1 - 5.2 Goals
	Head1 - 5.3 Description
	Head2 - 5.3.1 Value Types
	Head3 - 5.3.1.1 Architecture
	Head4 - Abstract Values

	Head3 - 5.3.1.2 State Definition
	Head3 - 5.3.1.3 Operations
	Head3 - 5.3.1.4 Initializers
	Head3 - 5.3.1.5 Example

	Head2 - 5.3.2 Typing and Substitutability Issues
	Head3 - 5.3.2.1 Inheritance Relationships
	TableCaption - Table�5�1 Allowable Inheritance Relationships

	Head3 - 5.3.2.2 Value Base Type
	Head3 - 5.3.2.3 Value Type vs. Interfaces
	Head3 - 5.3.2.4 Parameter Passing
	Head4 - Value vs. Reference Semantics
	Head4 - Sharing Semantics
	Head4 - Identity Semantics
	Head4 - Any parameter type

	Head3 - 5.3.2.5 Substitutability Issues
	Head4 - Value instance -> Interface type
	Head4 - Value instance -> Value type
	Head4-list - 1. Load
	Head4-list - 2. Truncate
	Head4-list - 3. Raise Exception
	Head4 - Example

	Head3 - 5.3.2.6 Widening/Narrowing

	Head2 - 5.3.3 Value Boxes
	Head3 - 5.3.3.1 Standard Value Box Definitions

	Head2 - 5.3.4 LifeCycle issues
	Head3 - 5.3.4.1 Creation and Factories

	Head2 - 5.3.5 Security Considerations
	Head4 - Value as Value
	Head4 - Value as Object Reference

	Head2 - 5.3.6 Language Mappings
	Head3 - 5.3.6.1 General Requirements
	Head3 - 5.3.6.2 Language Specific Marshaling
	Head3 - 5.3.6.3 Language Specific Value Factory Requirements
	Head3 - 5.3.6.4 Value Method Implementation

	Head2 - 5.3.7 Custom Marshaling
	Head3 - 5.3.7.1 Streaming A Custom Value

	Head2 - 5.3.8 Access to the Sending Context Run Time

	Head1 - 5.4 IDL Extensions
	Head2 - 5.4.1 Syntax
	Head2 - 5.4.2 New lexical type - Keyword Identifier
	Head2 - 5.4.3 ValueBase Operations

	Head1 - 5.5 Interface Repository
	Head1 - 5.6 Repository Id and Value Types
	Head2 - 5.6.1 CORBA Repository Ids
	Head2 - 5.6.2 RepositoryId for Value Type
	Head3 - 5.6.2.1 Versioning Issues

	Head2 - 5.6.3 Hashing Algorithm

	Head1 - 5.7 Dynamic Any
	Head1 - 5.8 TypeCodes
	Head2 - 5.8.1 New TCKinds
	Head2 - 5.8.2 New ORB operations

	Head1 - 5.9 GIOP/IIOP Extensions and Mapping
	Head2 - 5.9.1 Partial Type Information and Versioning
	Head2 - 5.9.2 Scope of the Indirections
	Head2 - 5.9.3 Other Encoding Information
	Head2 - 5.9.4 Fragmentation
	Head2 - 5.9.5 Notation
	Head2 - 5.9.6 The Format
	Head2 - 5.9.7 New TypeCodes Encoding

	Head1 - 5.10 Minor Exception Codes
	TableCaption - Table�5�2 Minor exception codes
	ChapTitle - Java Language Mapping
	ChapNumber - 6

	Head1 - 6.1 Introduction
	Head1 - 6.2 Names
	Head1 - 6.3 Mapping for Value
	Head2 - 6.3.1 Basics for Stateful Values
	Head3 - 6.3.1.1 Inheritance from Value
	Head3 - 6.3.1.2 Support of Interface
	Head3 - 6.3.1.3 Basics for Abstract Values
	Head3 - 6.3.1.4 CORBA::ValueBase

	Head2 - 6.3.2 Helper Class
	Head2 - 6.3.3 Holder Class
	Head2 - 6.3.4 Example A
	Head2 - 6.3.5 Example B
	Head2 - 6.3.6 Parameter Passing Modes
	Head3 - 6.3.6.1 Example

	Head1 - 6.4 Value Factory and Marshaling
	Head1 - 6.5 Value Box Types
	Head2 - 6.5.1 Primitive Types
	Head3 - 6.5.1.1 Primitive Type Example

	Head2 - 6.5.2 Complex Types
	Head3 - 6.5.2.1 Complex Type Example

	Head1 - 6.6 Any
	Head1 - 6.7 Java ORB Portability Interfaces
	ChapTitle - C++ Language Mapping
	ChapNumber - 7

	Head1 - 7.1 Introduction
	Head1 - 7.2 Names
	Head1 - 7.3 Mapping for Value
	Head2 - 7.3.1 Value Data Members
	Head2 - 7.3.2 Constructors, Assignment Operators, and Destructors
	Head2 - 7.3.3 Value Operations
	Head2 - 7.3.4 Example
	Head2 - 7.3.5 ValueBase and Reference Counting
	Head3 - 7.3.5.1 CORBA Module Additions

	Head2 - 7.3.6 Reference Counting Mix-in Classes
	Head2 - 7.3.7 Value Boxes
	Head3 - 7.3.7.1 Parameter Passing for Underlying Boxed Type
	Head3 - 7.3.7.2 Basic Types, Enums, and Object References
	Head3 - 7.3.7.3 Struct Types
	Head3 - 7.3.7.4 String and WString Types
	Head3 - 7.3.7.5 Union, Sequence, Fixed, and Any Types
	Head3 - 7.3.7.6 Array Types

	Head2 - 7.3.8 Abstract Values
	Head2 - 7.3.9 Value Inheritance
	Head2 - 7.3.10 Value Factories
	Head3 - 7.3.10.1 Type-Specific Value Factories
	Head3 - 7.3.10.2 Unmarshaling Issues

	Head2 - 7.3.11 Custom Marshaling
	Head2 - 7.3.12 Parameter Passing Modes
	Head2 - 7.3.13 Memory Management Considerations
	Head2 - 7.3.14 Another Example
	Head2 - 7.3.15 Value Members of Structs
	Head2 - 7.3.16 Value Interaction With Any
	Head3 - 7.3.16.1 Any Insertion
	Head3 - 7.3.16.2 Any Extraction
	ChapTitle - Abstract Interfaces
	ChapNumber - 8

	Head1 - 8.1 Introduction
	Head1 - 8.2 Syntax for Abstract Interfaces
	Head1 - 8.3 Semantics of Abstract Interfaces
	Head1 - 8.4 Usage Guidelines
	Head1 - 8.5 IDL Extensions
	Head1 - 8.6 Interface Repository Extensions
	Head1 - 8.7 Java Language Mapping for Abstract Interfaces
	Head2 - 8.7.1 Java ORB Portability Interfaces

	Head1 - 8.8 C++ Language Mapping for Abstract Interfaces
	Head2 - 8.8.1 Abstract Interface Base
	Head2 - 8.8.2 Client Side Mapping
	Head2 - 8.8.3 Server Side Mapping

	Head1 - 8.9 Security Considerations
	Head1 - 8.10 Usage Scenarios
	Head2 - 8.10.1 Base Types and Mixin Types
	Head3 - 8.10.1.1 Example

	Head2 - 8.10.2 Passing Values to Trusted Domains
	ChapTitle - Conformance Issues
	ChapNumber - 9

	Head1 - 9.1 Introduction
	Head1 - 9.2 Compliance
	ChapTitle - Changes to CORBA 2.2
	ChapNumber - 10

	Head1 - 10.1 Changes to CORBA 2.2

