
NASM: The Netwide Assembler
This file documents NASM, the Netwide Assembler: an assembler targetting the Intel x86 series
of processors, with portable source.
Chapter 1: Introduction
Chapter 2: Running NASM
Chapter 3: The NASM Language
Chapter 4: The NASM Preprocessor
Chapter 5: Assembler Directives
Chapter 6: Output Formats
Chapter 7: Writing 16-bit Code (DOS, Windows 3/3.1)
Chapter 8: Writing 32-bit Code (Unix, Win32, DJGPP)
Chapter 9: Mixing 16 and 32 Bit Code
Chapter 10: Troubleshooting
Appendix A: Intel x86 Instruction Reference

Chapter 1: Introduction
Section 1.1: What Is NASM?
Section 1.2: Contact Information
Section 1.3: Installation

1.1. What Is NASM?
The Netwide Assembler, NASM, is an 80x86 assembler designed for portability and modularity.
It supports a range of object file formats, including Linux a.out and ELF, NetBSD/FreeBSD,
COFF, Microsoft 16-bit OBJ and Win32. It will also output plain binary files. Its syntax is
designed to be simple and easy to understand, similar to Intel's but less complex. It supports
Pentium, P6 and MMX opcodes, and has macro capability.
Section 1.1.1: Why Yet Another Assembler?
Section 1.1.2: Licence Conditions

1.1.1. Why Yet Another Assembler?
The Netwide Assembler grew out of an idea on comp.lang.asm.x86 (or possibly
alt.lang.asm – I forget which), which was essentially that there didn't seem to be a good
free x86-series assembler around, and that maybe someone ought to write one.
Ÿ a86 is good, but not free, and in particular you don't get any 32-bit capability until you pay.

It's DOS only, too.
Ÿ gas is free, and ports over DOS and Unix, but it's not very good, since it's designed to be a

back end to gcc, which always feeds it correct code. So its error checking is minimal. Also,
its syntax is horrible, from the point of view of anyone trying to actually write anything in it.
Plus you can't write 16-bit code in it (properly).

Ÿ as86 is Linux-specific, and (my version at least) doesn't seem to have much (or any)
documentation.

Ÿ MASM isn't very good, and it's expensive, and it runs only under DOS.

Ÿ TASM is better, but still strives for MASM compatibility, which means millions of directives
and tons of red tape. And its syntax is essentially MASM's, with the contradictions and quirks
that entails (although it sorts out some of those by means of Ideal mode). It's expensive too.
And it's DOS-only.

So here, for your coding pleasure, is NASM. At present it's still in prototype stage – we don't
promise that it can outperform any of these assemblers. But please, please send us bug reports,
fixes, helpful information, and anything else you can get your hands on (and thanks to the many
people who've done this already! You all know who you are), and we'll improve it out of all
recognition. Again.

1.1.2. Licence Conditions
Please see the file Licence, supplied as part of any NASM distribution archive, for the licence
conditions under which you may use NASM.

1.2. Contact Information
NASM has a WWW page at http://www.cryogen.com/Nasm. The authors are emailable
as jules@earthcorp.com and anakin@pobox.com. If you want to report a bug to us,
please read section 10.2 first.
New releases of NASM are uploaded to sunsite.unc.edu, ftp.simtel.net and
ftp.coast.net. Announcements are posted to comp.lang.asm.x86, alt.lang.asm,
comp.os.linux.announce and comp.archives.msdos.announce (the last one is
done automagically by uploading to ftp.simtel.net).

If you don't have Usenet access, or would rather be informed by email when new releases come
out, email anakin@pobox.com and ask.

1.3. Installation
Section 1.3.1: Installing NASM under MS-DOS or Windows
Section 1.3.2: Installing NASM under Unix

1.3.1. Installing NASM under MS-DOS or Windows
Once you've obtained the DOS archive for NASM, nasmXXX.zip (where XXX denotes the
version number of NASM contained in the archive), unpack it into its own directory (for
example c:\nasm).

The archive will contain four executable files: the NASM executable files nasm.exe and
nasmw.exe, and the NDISASM executable files ndisasm.exe and ndisasmw.exe. In
each case, the file whose name ends in w is a Win32 executable, designed to run under Windows
95 or Windows NT Intel, and the other one is a 16-bit DOS executable.
The only file NASM needs to run is its own executable, so copy (at least) one of nasm.exe and
nasmw.exe to a directory on your PATH, or alternatively edit autoexec.bat to add the
nasm directory to your PATH. (If you're only installing the Win32 version, you may wish to
rename it to nasm.exe.)

That's it – NASM is installed. You don't need the nasm directory to be present to run NASM
(unless you've added it to your PATH), so you can delete it if you need to save space; however,
you may want to keep the documentation or test programs.
If you've downloaded the DOS source archive, nasmXXXs.zip, the nasm directory will also
contain the full NASM source code, and a selection of Makefiles you can (hopefully) use to
rebuild your copy of NASM from scratch. The file Readme lists the various Makefiles and
which compilers they work with. Note that the source files insnsa.c and insnsd.c are
automatically generated from the master instruction table insns.dat by a Perl script; a QBasic
version of the program is provided, but it is recommended that you use the Perl version. A DOS
port of Perl is available from www.perl.org.

1.3.2. Installing NASM under Unix
Once you've obtained the Unix source archive for NASM, nasmX.XX.tar.gz (where X.XX
denotes the version number of NASM contained in the archive), unpack it into a directory such
as /usr/local/src. The archive, when unpacked, will create its own subdirectory nasm-
X.XX.

NASM is an auto-configuring package: once you've unpacked it, cd to the directory it's been
unpacked into and type ./configure. This shell script will find the best C compiler to use for
building NASM and set up Makefiles accordingly.
Once NASM has auto-configured, you can type make to build the nasm and ndisasm binaries,
and then make install to install them in /usr/local/bin and install the man pages
nasm.1 and ndisasm.1 in /usr/local/man/man1. Alternatively, you can give options
such as prefix to the configure script (see the file INSTALL for more details), or install
the programs yourself.
NASM also comes with a set of utilities for handling the RDOFF custom object-file format,
which are in the rdoff subdirectory of the NASM archive. You can build these with
make rdf and install them with make rdf_install, if you want them.

If NASM fails to auto-configure, you may still be able to make it compile by using the fall-back
Unix makefile Makefile.unx. Copy or rename that file to Makefile and try typing make.
There is also a Makefile.unx file in the rdoff subdirectory.

Chapter 2: Running NASM
Section 2.1: NASM Command Line Syntax
Section 2.2: Quick Start for MASM Users

2.1. NASM CommandLine Syntax
To assemble a file, you issue a command of the form
nasm -f <format> <filename> [-o <output>]
For example,
nasm -f elf myfile.asm
will assemble myfile.asm into an ELF object file myfile.o. And
nasm -f bin myfile.asm -o myfile.com
will assemble myfile.asm into a raw binary file myfile.com.

To produce a listing file, with the hex codes output from NASM displayed on the left of the
original sources, use the l option to give a listing file name, for example:
nasm -f coff myfile.asm -l myfile.lst
To get further usage instructions from NASM, try typing
nasm -h
This will also list the available output file formats, and what they are.
If you use Linux but aren't sure whether your system is a.out or ELF, type
file nasm
(in the directory in which you put the NASM binary when you installed it). If it says something
like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1
then your system is ELF, and you should use the option f elf when you want NASM to
produce Linux object files. If it says
nasm: Linux/i386 demand-paged executable (QMAGIC)
or something similar, your system is a.out, and you should use f aout instead.

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won't see any
output at all, unless it gives error messages.
Section 2.1.1: The o Option: Specifying the Output File Name
Section 2.1.2: The f Option: Specifying the Output File Format
Section 2.1.3: The l Option: Generating a Listing File
Section 2.1.4: The s Option: Send Errors to stdout
Section 2.1.5: The i Option: Include File Search Directories
Section 2.1.6: The p Option: Pre-Include a File
Section 2.1.7: The d Option: Pre-Define a Macro
Section 2.1.8: The e Option: Preprocess Only
Section 2.1.9: The a Option: Don't Preprocess At All
Section 2.1.10: The w Option: Enable or Disable Assembly Warnings
Section 2.1.11: The NASM Environment Variable

2.1.1. The o Option: Specifying the Output File Name
NASM will normally choose the name of your output file for you; precisely how it does this is
dependent on the object file format. For Microsoft object file formats (obj and win32), it will
remove the .asm extension (or whatever extension you like to use – NASM doesn't care) from
your source file name and substitute .obj. For Unix object file formats (aout, coff, elf and
as86) it will substitute .o. For rdf, it will use .rdf, and for the bin format it will simply
remove the extension, so that myfile.asm produces the output file myfile.

If the output file already exists, NASM will overwrite it, unless it has the same name as the input
file, in which case it will give a warning and use nasm.out as the output file name instead.

For situations in which this behaviour is unacceptable, NASM provides the o command-line
option, which allows you to specify your desired output file name. You invoke o by following it
with the name you wish for the output file, either with or without an intervening space. For
example:
nasm -f bin program.asm -o program.com
nasm -f bin driver.asm -odriver.sys

2.1.2. The f Option: Specifying the Output File Format
If you do not supply the f option to NASM, it will choose an output file format for you itself. In
the distribution versions of NASM, the default is always bin; if you've compiled your own copy
of NASM, you can redefine OF_DEFAULT at compile time and choose what you want the
default to be.
Like o, the intervening space between f and the output file format is optional; so f elf and -
felf are both valid.

A complete list of the available output file formats can be given by issuing the command
nasm h.

2.1.3. The l Option: Generating a Listing File
If you supply the l option to NASM, followed (with the usual optional space) by a file name,
NASM will generate a sourcelisting file for you, in which addresses and generated code are
listed on the left, and the actual source code, with expansions of multi-line macros (except those
which specifically request no expansion in source listings: see section 4.2.9) on the right. For
example:
nasm -f elf myfile.asm -l myfile.lst

2.1.4. The s Option: Send Errors to stdout
Under MS-DOS it can be difficult (though there are ways) to redirect the standard-error output of
a program to a file. Since NASM usually produces its warning and error messages on stderr,
this can make it hard to capture the errors if (for example) you want to load them into an editor.
NASM therefore provides the s option, requiring no argument, which causes errors to be sent to
standard output rather than standard error. Therefore you can redirect the errors into a file by
typing
nasm -s -f obj myfile.asm > myfile.err

2.1.5. The i Option: Include File Search Directories
When NASM sees the %include directive in a source file (see section 4.5), it will search for
the given file not only in the current directory, but also in any directories specified on the
command line by the use of the i option. Therefore you can include files from a macro library,
for example, by typing
nasm -ic:\macrolib\ -f obj myfile.asm
(As usual, a space between i and the path name is allowed, and optional).

NASM, in the interests of complete source-code portability, does not understand the file naming
conventions of the OS it is running on; the string you provide as an argument to the i option will
be prepended exactly as written to the name of the include file. Therefore the trailing backslash
in the above example is necessary. Under Unix, a trailing forward slash is similarly necessary.
(You can use this to your advantage, if you're really perverse, by noting that the option ifoo
will cause %include "bar.i" to search for the file foobar.i...)

If you want to define a standard include search path, similar to /usr/include on Unix
systems, you should place one or more i directives in the NASM environment variable (see
section 2.1.11).

2.1.6. The p Option: Pre-Include a File
NASM allows you to specify files to be preincluded into your source file, by the use of the p
option. So running
nasm myfile.asm -p myinc.inc
is equivalent to running nasm myfile.asm and placing the directive
%include "myinc.inc" at the start of the file.

2.1.7. The d Option: Pre-Define a Macro
Just as the p option gives an alternative to placing %include directives at the start of a source
file, the d option gives an alternative to placing a %define directive. You could code
nasm myfile.asm -dFOO=100
as an alternative to placing the directive
%define FOO 100
at the start of the file. You can miss off the macro value, as well: the option dFOO is equivalent
to coding %define FOO. This form of the directive may be useful for selecting assemblytime
options which are then tested using %ifdef, for example dDEBUG.

2.1.8. The e Option: Preprocess Only
NASM allows the preprocessor to be run on its own, up to a point. Using the e option (which
requires no arguments) will cause NASM to preprocess its input file, expand all the macro
references, remove all the comments and preprocessor directives, and print the resulting file on
standard output (or save it to a file, if the o option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate
expressions which depend on the values of symbols: so code such as
%assign tablesize ($-tablestart)
will cause an error in preprocessonly mode.

2.1.9. The a Option: Don't Preprocess At All
If NASM is being used as the back end to a compiler, it might be desirable to suppress
preprocessing completely and assume the compiler has already done it, to save time and increase
compilation speeds. The a option, requiring no argument, instructs NASM to replace its
powerful preprocessor with a stub preprocessor which does nothing.

2.1.10. The w Option: Enable or Disable Assembly Warnings
NASM can observe many conditions during the course of assembly which are worth mentioning
to the user, but not a sufficiently severe error to justify NASM refusing to generate an output file.
These conditions are reported like errors, but come up with the word `warning' before the
message. Warnings do not prevent NASM from generating an output file and returning a success
status to the operating system.
Some conditions are even less severe than that: they are only sometimes worth mentioning to the
user. Therefore NASM supports the w command-line option, which enables or disables certain
classes of assembly warning. Such warning classes are described by a name, for example
orphanlabels; you can enable warnings of this class by the command-line option -
w+orphanlabels and disable it by worphanlabels.

The suppressible warning classes are:
Ÿ macroparams covers warnings about multiline macros being invoked with the wrong

number of parameters. This warning class is enabled by default; see section 4.2.1 for an
example of why you might want to disable it.

Ÿ orphanlabels covers warnings about source lines which contain no instruction but define
a label without a trailing colon. NASM does not warn about this somewhat obscure condition
by default; see section 3.1 for an example of why you might want it to.

Ÿ numberoverflow covers warnings about numeric constants which don't fit in 32 bits (for
example, it's easy to type one too many Fs and produce 0x7ffffffff by mistake). This
warning class is enabled by default.

2.1.11. The NASM Environment Variable
If you define an environment variable called NASM, the program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to
define standard search directories for include files, by putting i options in the NASM variable.

The value of the variable is split up at white space, so that the value s ic:\nasmlib will be
treated as two separate options. However, that means that the value dNAME="my name" won't
do what you might want, because it will be split at the space and the NASM command-line
processing will get confused by the two nonsensical words dNAME="my and name".

To get round this, NASM provides a feature whereby, if you begin the NASM environment
variable with some character that isn't a minus sign, then NASM will treat this character as the
separator character for options. So setting the NASM variable to the value !s!ic:\nasmlib is
equivalent to setting it to s ic:\nasmlib, but !dNAME="my name" will work.

2.2. Quick Start for MASM Users
If you're used to writing programs with MASM, or with TASM in MASM-compatible (non-
Ideal) mode, or with a86, this section attempts to outline the major differences between
MASM's syntax and NASM's. If you're not already used to MASM, it's probably worth skipping
this section.
Section 2.2.1: NASM Is Case-Sensitive
Section 2.2.2: NASM Requires Square Brackets For Memory References
Section 2.2.3: NASM Doesn't Store Variable Types
Section 2.2.4: NASM Doesn't ASSUME
Section 2.2.5: NASM Doesn't Support Memory Models
Section 2.2.6: Floating Point Differences
Section 2.2.7: Other Differences

2.2.1. NASM Is Case-Sensitive
One simple difference is that NASM is case-sensitive. It makes a difference whether you call
your label foo, Foo or FOO. If you're assembling to DOS or OS/2 .OBJ files, you can invoke
the UPPERCASE directive (documented in section 6.2) to ensure that all symbols exported to
other code modules are forced to be upper case; but even then, within a single module, NASM
will distinguish between labels differing only in case.

2.2.2. NASM Requires Square Brackets For Memory References
NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that
it should be possible, as far as is practical, for the user to look at a single line of NASM code and
tell what opcode is generated by it. You can't do this in MASM: if you declare, for example,
foo equ 1
bar dw 2
then the two lines of code
 mov ax,foo
 mov ax,bar
generate completely different opcodes, despite having identical-looking syntaxes.
NASM avoids this undesirable situation by having a much simpler syntax for memory
references. The rule is simply that any access to the contents of a memory location requires
square brackets around the address, and any access to the address of a variable doesn't. So an
instruction of the form mov ax,foo will always refer to a compile-time constant, whether it's
an EQU or the address of a variable; and to access the contents of the variable bar, you must
code mov ax,[bar].

This also means that NASM has no need for MASM's OFFSET keyword, since the MASM code
mov ax,offset bar means exactly the same thing as NASM's mov ax,bar. If you're
trying to get large amounts of MASM code to assemble sensibly under NASM, you can always
code %idefine offset to make the preprocessor treat the OFFSET keyword as a no-op.

This issue is even more confusing in a86, where declaring a label with a trailing colon defines it
to be a `label' as opposed to a `variable' and causes a86 to adopt NASM-style semantics; so in
a86, mov ax,var has different behaviour depending on whether var was declared as
var: dw 0 (a label) or var dw 0 (a word-size variable). NASM is very simple by
comparison: everything is a label.
NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by
MASM and its clones, such as mov ax,table[bx], where a memory reference is denoted by
one portion outside square brackets and another portion inside. The correct syntax for the above
is mov ax,[table+bx]. Likewise, mov ax,es:[di] is wrong and mov ax,[es:di]
is right.

2.2.3. NASM Doesn't Store Variable Types
NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM
will remember, on seeing var dw 0, that you declared var as a word-size variable, and will
then be able to fill in the ambiguity in the size of the instruction mov var,2, NASM will
deliberately remember nothing about the symbol var except where it begins, and so you must
explicitly code mov word [var],2.

For this reason, NASM doesn't support the LODS, MOVS, STOS, SCAS, CMPS, INS, or OUTS
instructions, but only supports the forms such as LODSB, MOVSW, and SCASD, which explicitly
specify the size of the components of the strings being manipulated.

2.2.4. NASM Doesn't ASSUME
As part of NASM's drive for simplicity, it also does not support the ASSUME directive. NASM
will not keep track of what values you choose to put in your segment registers, and will never
automatically generate a segment override prefix.

2.2.5. NASM Doesn't Support Memory Models
NASM also does not have any directives to support different 16-bit memory models. The
programmer has to keep track of which functions are supposed to be called with a far call and
which with a near call, and is responsible for putting the correct form of RET instruction (RETN
or RETF; NASM accepts RET itself as an alternate form for RETN); in addition, the programmer
is responsible for coding CALL FAR instructions where necessary when calling external
functions, and must also keep track of which external variable definitions are far and which are
near.

2.2.6. FloatingPoint Differences
NASM uses different names to refer to floating-point registers from MASM: where MASM
would call them ST(0), ST(1) and so on, and a86 would call them simply 0, 1 and so on,
NASM chooses to call them st0, st1 etc.

As of version 0.96, NASM now treats the instructions with `nowait' forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was
based on a misunderstanding by the authors.

2.2.7. Other Differences
For historical reasons, NASM uses the keyword TWORD where MASM and compatible
assemblers use TBYTE.

NASM does not declare uninitialised storage in the same way as MASM: where a MASM
programmer might use stack db 64 dup (?), NASM requires stack resb 64,
intended to be read as `reserve 64 bytes'. For a limited amount of compatibility, since NASM
treats ? as a valid character in symbol names, you can code ? equ 0 and then writing dw ?
will at least do something vaguely useful. DUP is still not a supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See
chapter 4 and chapter 5 for further details.

Chapter 3: The NASM Language
Section 3.1: Layout of a NASM Source Line
Section 3.2: Pseudo Instructions
Section 3.3: Effective Addresses
Section 3.4: Constants
Section 3.5: Expressions
Section 3.6: SEG and WRT
Section 3.7: Critical Expressions
Section 3.8: Local Labels

3.1. Layout of a NASM Source Line
Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor
directive or an assembler directive: see chapter 4 and chapter 5) some combination of the four
fields
label: instruction operands ; comment
As usual, most of these fields are optional; the presence or absence of any combination of a
label, an instruction and a comment is allowed. Of course, the operand field is either required or
forbidden by the presence and nature of the instruction field.
NASM places no restrictions on white space within a line: labels may have white space before
them, or instructions may have no space before them, or anything. The colon after a label is also
optional. (Note that this means that if you intend to code lodsb alone on a line, and type
lodab by accident, then that's still a valid source line which does nothing but define a label.
Running NASM with the command-line option w+orphanlabels will cause it to warn you if
you define a label alone on a line without a trailing colon.)
Valid characters in labels are letters, numbers, _, $, #, @, ~, ., and ?. The only characters which
may be used as the first character of an identifier are letters, . (with special meaning: see section
3.8), _ and ?. An identifier may also be prefixed with a $ to indicate that it is intended to be read
as an identifier and not a reserved word; thus, if some other module you are linking with defines
a symbol called eax, you can refer to $eax in NASM code to distinguish the symbol from the
register.
The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU
instructions, MMX instructions and even undocumented instructions are all supported. The
instruction may be prefixed by LOCK, REP, REPE/REPZ or REPNE/REPNZ, in the usual way.
Explicit address-size and operandsize prefixes A16, A32, O16 and O32 are provided – one
example of their use is given in chapter 9. You can also use the name of a segment register as an
instruction prefix: coding es mov [bx],ax is equivalent to coding mov [es:bx],ax. We
recommend the latter syntax, since it is consistent with other syntactic features of the language,
but for instructions such as LODSB, which has no operands and yet can require a segment
override, there is no clean syntactic way to proceed apart from es lodsb.

An instruction is not required to use a prefix: prefixes such as CS, A32, LOCK or REPE can
appear on a line by themselves, and NASM will just generate the prefix bytes.
In addition to actual machine instructions, NASM also supports a number of pseudo-instructions,
described in section 3.2.
Instruction operands may take a number of forms: they can be registers, described simply by the
register name (e.g. ax, bp, ebx, cr0: NASM does not use the gas–style syntax in which
register names must be prefixed by a % sign), or they can be effective addresses (see section 3.3),
constants (section 3.4) or expressions (section 3.5).
For floatingpoint instructions, NASM accepts a wide range of syntaxes: you can use two-operand
forms like MASM supports, or you can use NASM's native single-operand forms in most cases.
Details of all forms of each supported instruction are given in appendix A. For example, you can
code:

 fadd st1 ; this sets st0 := st0 + st1
 fadd st0,st1 ; so does this

 fadd st1,st0 ; this sets st1 := st1 + st0
 fadd to st1 ; so does this
Almost any floating-point instruction that references memory must use one of the prefixes
DWORD, QWORD or TWORD to indicate what size of memory operand it refers to.

3.2. PseudoInstructions
Pseudo-instructions are things which, though not real x86 machine instructions, are used in the
instruction field anyway because that's the most convenient place to put them. The current
pseudo-instructions are DB, DW, DD, DQ and DT, their uninitialised counterparts RESB, RESW,
RESD, RESQ and REST, the INCBIN command, the EQU command, and the TIMES prefix.

Section 3.2.1: DB and friends: Declaring Initialised Data
Section 3.2.2: RESB and friends: Declaring Uninitialised Data
Section 3.2.3: INCBIN: Including External Binary Files
Section 3.2.4: EQU: Defining Constants
Section 3.2.5: TIMES: Repeating Instructions or Data

3.2.1. DB and friends: Declaring Initialised Data
DB, DW, DD, DQ and DT are used, much as in MASM, to declare initialised data in the output file.
They can be invoked in a wide range of ways:
 db 0x55 ; just the byte 0x55
 db 0x55,0x56,0x57 ; three bytes in succession
 db 'a',0x55 ; character constants are OK
 db 'hello',13,10,'$' ; so are string constants
 dw 0x1234 ; 0x34 0x12
 dw 'a' ; 0x41 0x00 (it's just a number)
 dw 'ab' ; 0x41 0x42 (character constant)
 dw 'abc' ; 0x41 0x42 0x43 0x00 (string)
 dd 0x12345678 ; 0x78 0x56 0x34 0x12
 dd 1.234567e20 ; floating-point constant
 dq 1.234567e20 ; double-precision float
 dt 1.234567e20 ; extended-precision float
DQ and DT do not accept numeric constants or string constants as operands.

3.2.2. RESB and friends: Declaring Uninitialised Data
RESB, RESW, RESD, RESQ and REST are designed to be used in the BSS section of a module:
they declare uninitialised storage space. Each takes a single operand, which is the number of
bytes, words, doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not
support the MASM/TASM syntax of reserving uninitialised space by writing DW ? or similar
things: this is what it does instead. The operand to a RESB–type pseudo-instruction is a critical
expression: see section 3.7.
For example:
buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word
realarray resq 10 ; array of ten reals

3.2.3. INCBIN: Including External Binary Files
INCBIN is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim
into the output file. This can be handy for (for example) including graphics and sound data
directly into a game executable file. It can be called in one of these three ways:
 incbin "file.dat" ; include the whole file
 incbin "file.dat",1024 ; skip the first 1024 bytes
 incbin "file.dat",1024,512 ; skip the first 1024, and
 ; actually include at most 512

3.2.4. EQU: Defining Constants
EQU defines a symbol to a given constant value: when EQU is used, the source line must contain
a label. The action of EQU is to define the given label name to the value of its (only) operand.
This definition is absolute, and cannot change later. So, for example,
message db 'hello, world'
msglen equ $-message
defines msglen to be the constant 12. msglen may not then be redefined later. This is not a
preprocessor definition either: the value of msglen is evaluated once, using the value of $ (see
section 3.5 for an explanation of $) at the point of definition, rather than being evaluated
wherever it is referenced and using the value of $ at the point of reference. Note that the operand
to an EQU is also a critical expression (section 3.7).

3.2.5. TIMES: Repeating Instructions or Data
The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as
NASM's equivalent of the DUP syntax supported by MASM–compatible assemblers, in that you
can code
zerobuf: times 64 db 0
or similar things; but TIMES is more versatile than that. The argument to TIMES is not just a
numeric constant, but a numeric expression, so you can do things like
buffer: db 'hello, world'
 times 64-$+buffer db ' '
which will store exactly enough spaces to make the total length of buffer up to 64. Finally,
TIMES can be applied to ordinary instructions, so you can code trivial unrolled loops in it:
 times 100 movsb
Note that there is no effective difference between times 100 resb 1 and resb 100,
except that the latter will be assembled about 100 times faster due to the internal structure of the
assembler.
The operand to TIMES, like that of EQU and those of RESB and friends, is a critical expression
(section 3.7).
Note also that TIMES can't be applied to macros: the reason for this is that TIMES is processed
after the macro phase, which allows the argument to TIMES to contain expressions such as 64$
+buffer as above. To repeat more than one line of code, or a complex macro, use the
preprocessor %rep directive.

3.3. Effective Addresses
An effective address is any operand to an instruction which references memory. Effective
addresses, in NASM, have a very simple syntax: they consist of an expression evaluating to the
desired address, enclosed in square brackets. For example:
wordvar dw 123
 mov ax,[wordvar]
 mov ax,[wordvar+1]
 mov ax,[es:wordvar+bx]
Anything not conforming to this simple system is not a valid memory reference in NASM, for
example es:wordvar[bx].

More complicated effective addresses, such as those involving more than one register, work in
exactly the same way:
 mov eax,[ebx*2+ecx+offset]
 mov ax,[bp+di+8]
NASM is capable of doing algebra on these effective addresses, so that things which don't
necessarily look legal are perfectly all right:
 mov eax,[ebx*5] ; assembles as [ebx*4+ebx]
 mov eax,[label1*2-label2] ; ie [label1+(label1-label2)]
Some forms of effective address have more than one assembled form; in most such cases NASM
will generate the smallest form it can. For example, there are distinct assembled forms for the 32-
bit effective addresses [eax*2+0] and [eax+eax], and NASM will generally generate the
latter on the grounds that the former requires four bytes to store a zero offset.
NASM has a hinting mechanism which will cause [eax+ebx] and [ebx+eax] to generate
different opcodes; this is occasionally useful because [esi+ebp] and [ebp+esi] have
different default segment registers.
However, you can force NASM to generate an effective address in a particular form by the use of
the keywords BYTE, WORD, DWORD and NOSPLIT. If you need [eax+3] to be assembled
using a double-word offset field instead of the one byte NASM will normally generate, you can
code [dword eax+3]. Similarly, you can force NASM to use a byte offset for a small value
which it hasn't seen on the first pass (see section 3.7 for an example of such a code fragment) by
using [byte eax+offset]. As special cases, [byte eax] will code [eax+0] with a
byte offset of zero, and [dword eax] will code it with a double-word offset of zero. The
normal form, [eax], will be coded with no offset field.

Similarly, NASM will split [eax*2] into [eax+eax] because that allows the offset field to
be absent and space to be saved; in fact, it will also split [eax*2+offset] into
[eax+eax+offset]. You can combat this behaviour by the use of the NOSPLIT keyword:
[nosplit eax*2] will force [eax*2+0] to be generated literally.

3.4. Constants
NASM understands four different types of constant: numeric, character, string and floating-point.
Section 3.4.1: Numeric Constants
Section 3.4.2: Character Constants
Section 3.4.3: String Constants
Section 3.4.4: Floating-Point Constants

3.4.1. Numeric Constants
A numeric constant is simply a number. NASM allows you to specify numbers in a variety of
number bases, in a variety of ways: you can suffix H, Q and B for hex, octal and binary, or you
can prefix 0x for hex in the style of C, or you can prefix $ for hex in the style of Borland Pascal.
Note, though, that the $ prefix does double duty as a prefix on identifiers (see section 3.1), so a
hex number prefixed with a $ sign must have a digit after the $ rather than a letter.

Some examples:
 mov ax,100 ; decimal
 mov ax,0a2h ; hex
 mov ax,$0a2 ; hex again: the 0 is required
 mov ax,0xa2 ; hex yet again
 mov ax,777q ; octal
 mov ax,10010011b ; binary

3.4.2. Character Constants
A character constant consists of up to four characters enclosed in either single or double quotes.
The type of quote makes no difference to NASM, except of course that surrounding the constant
with single quotes allows double quotes to appear within it and vice versa.
A character constant with more than one character will be arranged with littleendian order in
mind: if you code
 mov eax,'abcd'
then the constant generated is not 0x61626364, but 0x64636261, so that if you were then to
store the value into memory, it would read abcd rather than dcba. This is also the sense of
character constants understood by the Pentium's CPUID instruction (see section A.22).

3.4.3. String Constants
String constants are only acceptable to some pseudo-instructions, namely the DB family and
INCBIN.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:
 db 'hello' ; string constant
 db 'h','e','l','l','o' ; equivalent character constants
And the following are also equivalent:
 dd 'ninechars' ; doubleword string constant
 dd 'nine','char','s' ; becomes three doublewords
 db 'ninechars',0,0,0 ; and really looks like this
Note that when used as an operand to db, a constant like 'ab' is treated as a string constant
despite being short enough to be a character constant, because otherwise db 'ab' would have
the same effect as db 'a', which would be silly. Similarly, three-character or four-character
constants are treated as strings when they are operands to dw.

3.4.4. Floating-Point Constants
Floatingpoint constants are acceptable only as arguments to DD, DQ and DT. They are expressed
in the traditional form: digits, then a period, then optionally more digits, then optionally an E
followed by an exponent. The period is mandatory, so that NASM can distinguish between
dd 1, which declares an integer constant, and dd 1.0 which declares a floating-point constant.

Some examples:
 dd 1.2 ; an easy one
 dq 1.e10 ; 10,000,000,000
 dq 1.e+10 ; synonymous with 1.e10
 dq 1.e-10 ; 0.000 000 000 1
 dt 3.141592653589793238462 ; pi
NASM cannot do compile-time arithmetic on floating-point constants. This is because NASM is
designed to be portable – although it always generates code to run on x86 processors, the
assembler itself can run on any system with an ANSI C compiler. Therefore, the assembler
cannot guarantee the presence of a floating-point unit capable of handling the Intel number
formats, and so for NASM to be able to do floating arithmetic it would have to include its own
complete set of floating-point routines, which would significantly increase the size of the
assembler for very little benefit.

3.5. Expressions
Expressions in NASM are similar in syntax to those in C.
NASM does not guarantee the size of the integers used to evaluate expressions at compile time:
since NASM can compile and run on 64-bit systems quite happily, don't assume that expressions
are evaluated in 32-bit registers and so try to make deliberate use of integer overflow. It might
not always work. The only thing NASM will guarantee is what's guaranteed by ANSI C: you
always have at least 32 bits to work in.
NASM supports two special tokens in expressions, allowing calculations to involve the current
assembly position: the $ and $$ tokens. $ evaluates to the assembly position at the beginning of
the line containing the expression; so you can code an infinite loop using JMP $. $$ evaluates
to the beginning of the current section; so you can tell how far into the section you are by using
($$$).

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.
Section 3.5.1: |: Bitwise OR Operator
Section 3.5.2: ^: Bitwise XOR Operator
Section 3.5.3: &: Bitwise AND Operator
Section 3.5.4: << and >>: Bit Shift Operators
Section 3.5.5: + and -: Addition and Subtraction Operators
Section 3.5.6: *, /, //, % and %%: Multiplication and Division
Section 3.5.7: Unary Operators: +, -, ~ and SEG

3.5.1. |: Bitwise OR Operator
The | operator gives a bitwise OR, exactly as performed by the OR machine instruction. Bitwise
OR is the lowest-priority arithmetic operator supported by NASM.

3.5.2. ^: Bitwise XOR Operator
^ provides the bitwise XOR operation.

3.5.3. &: Bitwise AND Operator
& provides the bitwise AND operation.

3.5.4. << and >>: Bit Shift Operators
<< gives a bit-shift to the left, just as it does in C. So 5<<3 evaluates to 5 times 8, or 40. >>
gives a bit-shift to the right; in NASM, such a shift is always unsigned, so that the bits shifted in
from the left-hand end are filled with zero rather than a sign-extension of the previous highest
bit.

3.5.5. + and -: Addition and Subtraction Operators
The + and - operators do perfectly ordinary addition and subtraction.

3.5.6. *, /, //, % and %%: Multiplication and Division
* is the multiplication operator. / and // are both division operators: / is unsigned division and
// is signed division. Similarly, % and %% provide unsigned and signed modulo operators
respectively.
NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo
operator.
Since the % character is used extensively by the macro preprocessor, you should ensure that both
the signed and unsigned modulo operators are followed by white space wherever they appear.

3.5.7. Unary Operators: +, -, ~ and SEG
The highest-priority operators in NASM's expression grammar are those which only apply to one
argument. - negates its operand, + does nothing (it's provided for symmetry with -), ~ computes
the one's complement of its operand, and SEG provides the segment address of its operand
(explained in more detail in section 3.6).

3.6. SEG and WRT
When writing large 16-bit programs, which must be split into multiple segments, it is often
necessary to be able to refer to the segment part of the address of a symbol. NASM supports the
SEG operator to perform this function.

The SEG operator returns the preferred segment base of a symbol, defined as the segment base
relative to which the offset of the symbol makes sense. So the code
 mov ax,seg symbol
 mov es,ax
 mov bx,symbol
will load ES:BX with a valid pointer to the symbol symbol.

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one.
NASM lets you do this, by the use of the WRT (With Reference To) keyword. So you can do
things like
 mov ax,weird_seg ; weird_seg is a segment base
 mov es,ax
 mov bx,symbol wrt weird_seg
to load ES:BX with a different, but functionally equivalent, pointer to the symbol symbol.

NASM supports far (inter-segment) calls and jumps by means of the syntax
call segment:offset, where segment and offset both represent immediate values.
So to call a far procedure, you could code either of
 call (seg procedure):procedure
 call weird_seg:(procedure wrt weird_seg)
(The parentheses are included for clarity, to show the intended parsing of the above instructions.
They are not necessary in practice.)
NASM supports the syntax call far procedure as a synonym for the first of the above
usages. JMP works identically to CALL in these examples.

To declare a far pointer to a data item in a data segment, you must code
 dw symbol, seg symbol
NASM supports no convenient synonym for this, though you can always invent one using the
macro processor.

3.7. Critical Expressions
A limitation of NASM is that it is a twopass assembler; unlike TASM and others, it will always
do exactly two assembly passes. Therefore it is unable to cope with source files that are complex
enough to require three or more passes.
The first pass is used to determine the size of all the assembled code and data, so that the second
pass, when generating all the code, knows all the symbol addresses the code refers to. So one
thing NASM can't handle is code whose size depends on the value of a symbol declared after the
code in question. For example,
 times (label-$) db 0
label: db 'Where am I?'
The argument to TIMES in this case could equally legally evaluate to anything at all; NASM will
reject this example because it cannot tell the size of the TIMES line when it first sees it. It will
just as firmly reject the slightly paradoxical code
 times (label-$+1) db 0
label: db 'NOW where am I?'
in which any value for the TIMES argument is by definition wrong!

NASM rejects these examples by means of a concept called a critical expression, which is
defined to be an expression whose value is required to be computable in the first pass, and which
must therefore depend only on symbols defined before it. The argument to the TIMES prefix is a
critical expression; for the same reason, the arguments to the RESB family of pseudo-instructions
are also critical expressions.
Critical expressions can crop up in other contexts as well: consider the following code.
 mov ax,symbol1
symbol1 equ symbol2
symbol2:
On the first pass, NASM cannot determine the value of symbol1, because symbol1 is defined
to be equal to symbol2 which NASM hasn't seen yet. On the second pass, therefore, when it
encounters the line mov ax,symbol1, it is unable to generate the code for it because it still
doesn't know the value of symbol1. On the next line, it would see the EQU again and be able to
determine the value of symbol1, but by then it would be too late.

NASM avoids this problem by defining the right-hand side of an EQU statement to be a critical
expression, so the definition of symbol1 would be rejected in the first pass.

There is a related issue involving forward references: consider this code fragment.
 mov eax,[ebx+offset]
offset equ 10
NASM, on pass one, must calculate the size of the instruction mov eax,[ebx+offset]
without knowing the value of offset. It has no way of knowing that offset is small enough
to fit into a one-byte offset field and that it could therefore get away with generating a shorter
form of the effectiveaddress encoding; for all it knows, in pass one, offset could be a symbol

in the code segment, and it might need the full four-byte form. So it is forced to compute the size
of the instruction to accommodate a four-byte address part. In pass two, having made this
decision, it is now forced to honour it and keep the instruction large, so the code generated in this
case is not as small as it could have been. This problem can be solved by defining offset
before using it, or by forcing byte size in the effective address by coding
[byte ebx+offset].

3.8. Local Labels
NASM gives special treatment to symbols beginning with a period. A label beginning with a
single period is treated as a local label, which means that it is associated with the previous non-
local label. So, for example:
label1 ; some code
.loop ; some more code
 jne .loop
 ret
label2 ; some code
.loop ; some more code
 jne .loop
 ret
In the above code fragment, each JNE instruction jumps to the line immediately before it,
because the two definitions of .loop are kept separate by virtue of each being associated with
the previous non-local label.
This form of local label handling is borrowed from the old Amiga assembler DevPac; however,
NASM goes one step further, in allowing access to local labels from other parts of the code. This
is achieved by means of defining a local label in terms of the previous non-local label: the first
definition of .loop above is really defining a symbol called label1.loop, and the second
defines a symbol called label2.loop. So, if you really needed to, you could write
label3 ; some more code
 ; and some more
 jmp label1.loop
Sometimes it is useful – in a macro, for instance – to be able to define a label which can be
referenced from anywhere but which doesn't interfere with the normal local-label mechanism.
Such a label can't be non-local because it would interfere with subsequent definitions of, and
references to, local labels; and it can't be local because the macro that defined it wouldn't know
the label's full name. NASM therefore introduces a third type of label, which is probably only
useful in macro definitions: if a label begins with the special prefix ..@, then it does nothing to
the local label mechanism. So you could code
label1: ; a non-local label
.local: ; this is really label1.local
..@@foo: ; this is a special symbol
label2: ; another non-local label
.local: ; this is really label2.local
 jmp ..@@foo ; this will jump three lines up
NASM has the capacity to define other special symbols beginning with a double period: for
example, ..start is used to specify the entry point in the obj output format (see section
6.2.6).

Chapter 4: The NASM Preprocessor
NASM contains a powerful macro processor, which supports conditional assembly, multi-level
file inclusion, two forms of macro (single-line and multi-line), and a `context stack' mechanism
for extra macro power. Preprocessor directives all begin with a % sign.

Section 4.1: Single Line Macros
Section 4.2: Multi Line Macros: %macro
Section 4.3: Conditional Assembly
Section 4.4: Preprocessor Loops: %rep
Section 4.5: Including Other Files
Section 4.6: The Context Stack
Section 4.7: Standard Macros

4.1. SingleLine Macros
Section 4.1.1: The Normal Way: %define
Section 4.1.2: Preprocessor Variables: %assign

4.1.1. The Normal Way: %define
Single-line macros are defined using the %define preprocessor directive. The definitions work
in a similar way to C; so you can do things like
%define ctrl 0x1F &
%define param(a,b) ((a)+(a)*(b))
 mov byte [param(2,ebx)], ctrl 'D'
which will expand to
 mov byte [(2)+(2)*(ebx)], 0x1F & 'D'
When the expansion of a single-line macro contains tokens which invoke another macro, the
expansion is performed at invocation time, not at definition time. Thus the code
%define a(x) 1+b(x)
%define b(x) 2*x
 mov ax,a(8)
will evaluate in the expected way to mov ax,1+2*8, even though the macro b wasn't defined
at the time of definition of a.

Macros defined with %define are case sensitive: after %define foo bar, only foo will
expand to bar: Foo or FOO will not. By using %idefine instead of %define (the `i' stands
for `insensitive') you can define all the case variants of a macro at once, so that
%idefine foo bar would cause foo, Foo, FOO, fOO and so on all to expand to bar.

There is a mechanism which detects when a macro call has occurred as a result of a previous
expansion of the same macro, to guard against circular references and infinite loops. If this
happens, the preprocessor will only expand the first occurrence of the macro. Hence, if you code
%define a(x) 1+a(x)
 mov ax,a(3)
the macro a(3) will expand once, becoming 1+a(3), and will then expand no further. This
behaviour can be useful: see section 8.1 for an example of its use.
You can overload single-line macros: if you write
%define foo(x) 1+x
%define foo(x,y) 1+x*y
the preprocessor will be able to handle both types of macro call, by counting the parameters you
pass; so foo(3) will become 1+3 whereas foo(ebx,2) will become 1+ebx*2. However, if
you define
%define foo bar
then no other definition of foo will be accepted: a macro with no parameters prohibits the
definition of the same name as a macro with parameters, and vice versa.
This doesn't prevent single-line macros being redefined: you can perfectly well define a macro
with
%define foo bar

and then re-define it later in the same source file with
%define foo baz
Then everywhere the macro foo is invoked, it will be expanded according to the most recent
definition. This is particularly useful when defining single-line macros with %assign (see
section 4.1.2).
You can predefine single-line macros using the `-d' option on the NASM command line: see
section 2.1.7.

4.1.2. Preprocessor Variables: %assign
An alternative way to define single-line macros is by means of the %assign command (and its
case sensitivecase-insensitive counterpart %iassign, which differs from %assign in exactly
the same way that %idefine differs from %define).

%assign is used to define single-line macros which take no parameters and have a numeric
value. This value can be specified in the form of an expression, and it will be evaluated once,
when the %assign directive is processed.

Like %define, macros defined using %assign can be re-defined later, so you can do things
like
%assign i i+1
to increment the numeric value of a macro.
%assign is useful for controlling the termination of %rep preprocessor loops: see section 4.4
for an example of this. Another use for %assign is given in section 7.4 and section 8.1.

The expression passed to %assign is a critical expression (see section 3.7), and must also
evaluate to a pure number (rather than a relocatable reference such as a code or data address, or
anything involving a register).

4.2. MultiLine Macros: %macro
Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line
macro definition in NASM looks something like this.
%macro prologue 1
 push ebp
 mov ebp,esp
 sub esp,%1
%endmacro
This defines a C-like function prologue as a macro: so you would invoke the macro with a call
such as
myfunc: prologue 12
which would expand to the three lines of code
myfunc: push ebp
 mov ebp,esp
 sub esp,12
The number 1 after the macro name in the %macro line defines the number of parameters the
macro prologue expects to receive. The use of %1 inside the macro definition refers to the first
parameter to the macro call. With a macro taking more than one parameter, subsequent
parameters would be referred to as %2, %3 and so on.

Multi-line macros, like single-line macros, are casesensitive, unless you define them using the
alternative directive %imacro.

If you need to pass a comma as part of a parameter to a multi-line macro, you can do that by
enclosing the entire parameter in braces. So you could code things like
%macro silly 2
%2: db %1
%endmacro
 silly 'a', letter_a ; letter_a: db 'a'
 silly 'ab', string_ab ; string_ab: db 'ab'
 silly @{13,10@}, crlf ; crlf: db 13,10
Section 4.2.1: Overloading Multi Line Macros
Section 4.2.2: Macro Local Labels
Section 4.2.3: Greedy Macro Parameters
Section 4.2.4: Default Macro Parameters
Section 4.2.5: %0: Macro Parameter Counter
Section 4.2.6: %rotate: Rotating Macro Parameters
Section 4.2.7: Concatenating Macro Parameters
Section 4.2.8: Condition Codes as Macro Parameters
Section 4.2.9: Disabling Listing Expansion

4.2.1. Overloading MultiLine Macros
As with single-line macros, multi-line macros can be overloaded by defining the same macro
name several times with different numbers of parameters. This time, no exception is made for
macros with no parameters at all. So you could define
%macro prologue 0
 push ebp
 mov ebp,esp
%endmacro
to define an alternative form of the function prologue which allocates no local stack space.
Sometimes, however, you might want to `overload' a machine instruction; for example, you
might want to define
%macro push 2
 push %1
 push %2
%endmacro
so that you could code
 push ebx ; this line is not a macro call
 push eax,ecx ; but this one is
Ordinarily, NASM will give a warning for the first of the above two lines, since push is now
defined to be a macro, and is being invoked with a number of parameters for which no definition
has been given. The correct code will still be generated, but the assembler will give a warning.
This warning can be disabled by the use of the wmacroparams command-line option (see
section 2.1.10).

4.2.2. MacroLocal Labels
NASM allows you to define labels within a multi-line macro definition in such a way as to make
them local to the macro call: so calling the same macro multiple times will use a different label
each time. You do this by prefixing %% to the label name. So you can invent an instruction which
executes a RET if the Z flag is set by doing this:
%macro retz 0
 jnz %%skip
 ret
%%skip:
%endmacro
You can call this macro as many times as you want, and every time you call it NASM will make
up a different `real' name to substitute for the label %%skip. The names NASM invents are of
the form ..@2345.skip, where the number 2345 changes with every macro call. The ..@
prefix prevents macro-local labels from interfering with the local label mechanism, as described
in section 3.8. You should avoid defining your own labels in this form (the ..@ prefix, then a
number, then another period) in case they interfere with macro-local labels.

4.2.3. Greedy Macro Parameters
Occasionally it is useful to define a macro which lumps its entire command line into one
parameter definition, possibly after extracting one or two smaller parameters from the front. An
example might be a macro to write a text string to a file in MS-DOS, where you might want to be
able to write
 writefile [filehandle],"hello, world",13,10
NASM allows you to define the last parameter of a macro to be greedy, meaning that if you
invoke the macro with more parameters than it expects, all the spare parameters get lumped into
the last defined one along with the separating commas. So if you code:
%macro writefile 2+
 jmp %%endstr
%%str: db %2
%%endstr: mov dx,%%str
 mov cx,%%endstr-%%str
 mov bx,%1
 mov ah,0x40
 int 0x21
%endmacro
then the example call to writefile above will work as expected: the text before the first
comma, [filehandle], is used as the first macro parameter and expanded when %1 is
referred to, and all the subsequent text is lumped into %2 and placed after the db.

The greedy nature of the macro is indicated to NASM by the use of the + sign after the
parameter count on the %macro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro
given any number of parameters from the actual number specified up to infinity; in this case, for
example, NASM now knows what to do when it sees a call to writefile with 2, 3, 4 or more
parameters. NASM will take this into account when overloading macros, and will not allow you
to define another form of writefile taking 4 parameters (for example).

Of course, the above macro could have been implemented as a non-greedy macro, in which case
the call to it would have had to look like
 writefile [filehandle], @{"hello, world",13,10@}
NASM provides both mechanisms for putting commas in macro parameters, and you choose
which one you prefer for each macro definition.
See section 5.2.1 for a better way to write the above macro.

4.2.4. Default Macro Parameters
NASM also allows you to define a multi-line macro with a range of allowable parameter counts.
If you do this, you can specify defaults for omitted parameters. So, for example:
%macro die 0-1 "Painful program death has occurred."
 writefile 2,%1
 mov ax,0x4c01
 int 0x21
%endmacro
This macro (which makes use of the writefile macro defined in section 4.2.3) can be called
with an explicit error message, which it will display on the error output stream before exiting, or
it can be called with no parameters, in which case it will use the default error message supplied
in the macro definition.
In general, you supply a minimum and maximum number of parameters for a macro of this type;
the minimum number of parameters are then required in the macro call, and then you provide
defaults for the optional ones. So if a macro definition began with the line
%macro foobar 1-3 eax,[ebx+2]
then it could be called with between one and three parameters, and %1 would always be taken
from the macro call. %2, if not specified by the macro call, would default to eax, and %3 if not
specified would default to [ebx+2].

You may omit parameter defaults from the macro definition, in which case the parameter default
is taken to be blank. This can be useful for macros which can take a variable number of
parameters, since the %0 token (see section 4.2.5) allows you to determine how many parameters
were really passed to the macro call.
This defaulting mechanism can be combined with the greedy-parameter mechanism; so the die
macro above could be made more powerful, and more useful, by changing the first line of the
definition to
%macro die 0-1+ "Painful program death has occurred.",13,10
The maximum parameter count can be infinite, denoted by *. In this case, of course, it is
impossible to provide a full set of default parameters. Examples of this usage are shown in
section 4.2.6.

4.2.5. %0: Macro Parameter Counter
For a macro which can take a variable number of parameters, the parameter reference %0 will
return a numeric constant giving the number of parameters passed to the macro. This can be used
as an argument to %rep (see section 4.4) in order to iterate through all the parameters of a
macro. Examples are given in section 4.2.6.

4.2.6. %rotate: Rotating Macro Parameters
Unix shell programmers will be familiar with the shift shell command, which allows the
arguments passed to a shell script (referenced as $1, $2 and so on) to be moved left by one
place, so that the argument previously referenced as $2 becomes available as $1, and the
argument previously referenced as $1 is no longer available at all.

NASM provides a similar mechanism, in the form of %rotate. As its name suggests, it differs
from the Unix shift in that no parameters are lost: parameters rotated off the left end of the
argument list reappear on the right, and vice versa.
%rotate is invoked with a single numeric argument (which may be an expression). The macro
parameters are rotated to the left by that many places. If the argument to %rotate is negative,
the macro parameters are rotated to the right.
So a pair of macros to save and restore a set of registers might work as follows:
%macro multipush 1-*
%rep %0
 push %1
%rotate 1
%endrep
%endmacro
This macro invokes the PUSH instruction on each of its arguments in turn, from left to right. It
begins by pushing its first argument, %1, then invokes %rotate to move all the arguments one
place to the left, so that the original second argument is now available as %1. Repeating this
procedure as many times as there were arguments (achieved by supplying %0 as the argument to
%rep) causes each argument in turn to be pushed.

Note also the use of * as the maximum parameter count, indicating that there is no upper limit on
the number of parameters you may supply to the multipush macro.

It would be convenient, when using this macro, to have a POP equivalent, which didn't require
the arguments to be given in reverse order. Ideally, you would write the multipush macro call,
then cut-and-paste the line to where the pop needed to be done, and change the name of the
called macro to multipop, and the macro would take care of popping the registers in the
opposite order from the one in which they were pushed.
This can be done by the following definition:
%macro multipop 1-*
%rep %0
%rotate -1
 pop %1
%endrep
%endmacro
This macro begins by rotating its arguments one place to the right, so that the original last
argument appears as %1. This is then popped, and the arguments are rotated right again, so the
second-to-last argument becomes %1. Thus the arguments are iterated through in reverse order.

4.2.7. Concatenating Macro Parameters
NASM can concatenate macro parameters on to other text surrounding them. This allows you to
declare a family of symbols, for example, in a macro definition. If, for example, you wanted to
generate a table of key codes along with offsets into the table, you could code something like
%macro keytab_entry 2
keypos%1 equ $-keytab
 db %2
%endmacro
keytab:
 keytab_entry F1,128+1
 keytab_entry F2,128+2
 keytab_entry Return,13
which would expand to
keytab:
keyposF1 equ $-keytab
 db 128+1
keyposF2 equ $-keytab
 db 128+2
keyposReturn equ $-keytab
 db 13
You can just as easily concatenate text on to the other end of a macro parameter, by writing
%1foo.

If you need to append a digit to a macro parameter, for example defining labels foo1 and foo2
when passed the parameter foo, you can't code %11 because that would be taken as the eleventh
macro parameter. Instead, you must code %{1}1, which will separate the first 1 (giving the
number of the macro parameter) from the second (literal text to be concatenated to the
parameter).
This concatenation can also be applied to other preprocessor in-line objects, such as macro-local
labels (section 4.2.2) and context-local labels (section 4.6.2). In all cases, ambiguities in syntax
can be resolved by enclosing everything after the % sign and before the literal text in braces: so %
{%foo}bar concatenates the text bar to the end of the real name of the macro-local label %
%foo. (This is unnecessary, since the form NASM uses for the real names of macro-local labels
means that the two usages %{%foo}bar and %%foobar would both expand to the same thing
anyway; nevertheless, the capability is there.)

4.2.8. Condition Codes as Macro Parameters
NASM can give special treatment to a macro parameter which contains a condition code. For a
start, you can refer to the macro parameter %1 by means of the alternative syntax %+1, which
informs NASM that this macro parameter is supposed to contain a condition code, and will cause
the preprocessor to report an error message if the macro is called with a parameter which is not a
valid condition code.
Far more usefully, though, you can refer to the macro parameter by means of %1, which NASM
will expand as the inverse condition code. So the retz macro defined in section 4.2.2 can be
replaced by a general conditionalreturn macro like this:
%macro retc 1
 j%-1 %%skip
 ret
%%skip:
%endmacro
This macro can now be invoked using calls like retc ne, which will cause the conditional-
jump instruction in the macro expansion to come out as JE, or retc po which will make the
jump a JPE.

The %+1 macro-parameter reference is quite happy to interpret the arguments CXZ and ECXZ as
valid condition codes; however, %1 will report an error if passed either of these, because no
inverse condition code exists.

4.2.9. Disabling Listing Expansion
When NASM is generating a listing file from your program, it will generally expand multi-line
macros by means of writing the macro call and then listing each line of the expansion. This
allows you to see which instructions in the macro expansion are generating what code; however,
for some macros this clutters the listing up unnecessarily.
NASM therefore provides the .nolist qualifier, which you can include in a macro definition
to inhibit the expansion of the macro in the listing file. The .nolist qualifier comes directly
after the number of parameters, like this:
%macro foo 1.nolist
Or like this:
%macro bar 1-5+.nolist a,b,c,d,e,f,g,h

4.3. Conditional Assembly
Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if
certain conditions are met. The general syntax of this feature looks like this:
%if<condition>
; some code which only appears if <condition> is met
%elif<condition2>
; only appears if <condition> is not met but <condition2> is
%else
; this appears if neither <condition> nor <condition2> was met
%endif
The %else clause is optional, as is the %elif clause. You can have more than one %elif
clause as well.
Section 4.3.1: %ifdef: Testing Single Line Macro Existence
Section 4.3.2: %ifctx: Testing the Context Stack
Section 4.3.3: %if: Testing Arbitrary Numeric Expressions
Section 4.3.4: %ifidn and %ifidni: Testing Exact Text Identity
Section 4.3.5: %ifid, %ifnum, %ifstr: Testing Token Types
Section 4.3.6: %error: Reporting User Defined Errors

4.3.1. %ifdef: Testing SingleLine Macro Existence
Beginning a conditional-assembly block with the line %ifdef MACRO will assemble the
subsequent code if, and only if, a single-line macro called MACRO is defined. If not, then the
%elif and %else blocks (if any) will be processed instead.

For example, when debugging a program, you might want to write code such as
 ; perform some function
%ifdef DEBUG
 writefile 2,"Function performed successfully",13,10
%endif
 ; go and do something else
Then you could use the command-line option dDEBUG to create a version of the program which
produced debugging messages, and remove the option to generate the final release version of the
program.
You can test for a macro not being defined by using %ifndef instead of %ifdef. You can also
test for macro definitions in %elif blocks by using %elifdef and %elifndef.

4.3.2. %ifctx: Testing the Context Stack
The conditional-assembly construct %ifctx ctxname will cause the subsequent code to be
assembled if and only if the top context on the preprocessor's context stack has the name
ctxname. As with %ifdef, the inverse and %elif forms %ifnctx, %elifctx and
%elifnctx are also supported.

For more details of the context stack, see section 4.6. For a sample use of %ifctx, see section
4.6.5.

4.3.3. %if: Testing Arbitrary Numeric Expressions
The conditional-assembly construct %if expr will cause the subsequent code to be assembled
if and only if the value of the numeric expression expr is non-zero. An example of the use of
this feature is in deciding when to break out of a %rep preprocessor loop: see section 4.4 for a
detailed example.
The expression given to %if, and its counterpart %elif, is a critical expression (see section
3.7).
%if extends the normal NASM expression syntax, by providing a set of relational operators
which are not normally available in expressions. The operators =, <, >, <=, >= and <> test
equality, less-than, greater-than, less-or-equal, greater-or-equal and not-equal respectively. The
C-like forms == and != are supported as alternative forms of = and <>. In addition, low-priority
logical operators &&, ^^ and || are provided, supplying logical AND, logical XOR and logical
OR. These work like the C logical operators (although C has no logical XOR), in that they
always return either 0 or 1, and treat any non-zero input as 1 (so that ^^, for example, returns 1 if
exactly one of its inputs is zero, and 0 otherwise). The relational operators also return 1 for true
and 0 for false.

4.3.4. %ifidn and %ifidni: Testing Exact Text Identity
The construct %ifidn text1,text2 will cause the subsequent code to be assembled if and
only if text1 and text2, after expanding single-line macros, are identical pieces of text.
Differences in white space are not counted.
%ifidni is similar to %ifidn, but is caseinsensitive.

For example, the following macro pushes a register or number on the stack, and allows you to
treat IP as a real register:
%macro pushparam 1
%ifidni %1,ip
 call %%label
%%label:
%else
 push %1
%endif
%endmacro
Like most other %if constructs, %ifidn has a counterpart %elifidn, and negative forms
%ifnidn and %elifnidn. Similarly, %ifidni has counterparts %elifidni, %ifnidni
and %elifnidni.

4.3.5. %ifid, %ifnum, %ifstr: Testing Token Types
Some macros will want to perform different tasks depending on whether they are passed a
number, a string, or an identifier. For example, a string output macro might want to be able to
cope with being passed either a string constant or a pointer to an existing string.
The conditional assembly construct %ifid, taking one parameter (which may be blank),
assembles the subsequent code if and only if the first token in the parameter exists and is an
identifier. %ifnum works similarly, but tests for the token being a numeric constant; %ifstr
tests for it being a string.
For example, the writefile macro defined in section 4.2.3 can be extended to take advantage
of %ifstr in the following fashion:
%macro writefile 2-3+
%ifstr %2
 jmp %%endstr
%if %0 = 3
%%str: db %2,%3
%else
%%str: db %2
%endif
%%endstr: mov dx,%%str
 mov cx,%%endstr-%%str
%else

 mov dx,%2
 mov cx,%3

%endif
 mov bx,%1
 mov ah,0x40
 int 0x21
%endmacro
Then the writefile macro can cope with being called in either of the following two ways:
 writefile [file], strpointer, length
 writefile [file], "hello", 13, 10
In the first, strpointer is used as the address of an already-declared string, and length is
used as its length; in the second, a string is given to the macro, which therefore declares it itself
and works out the address and length for itself.
Note the use of %if inside the %ifstr: this is to detect whether the macro was passed two
arguments (so the string would be a single string constant, and db %2 would be adequate) or
more (in which case, all but the first two would be lumped together into %3, and db %2,%3
would be required).
 The usual %elifXXX, %ifnXXX and %elifnXXX versions exist for each of %ifid, %ifnum
and %ifstr.

4.3.6. %error: Reporting UserDefined Errors
The preprocessor directive %error will cause NASM to report an error if it occurs in assembled
code. So if other users are going to try to assemble your source files, you can ensure that they
define the right macros by means of code like this:
%ifdef SOME_MACRO
; do some setup
%elifdef SOME_OTHER_MACRO
; do some different setup
%else
%error Neither SOME_MACRO nor SOME_OTHER_MACRO was defined.
%endif
Then any user who fails to understand the way your code is supposed to be assembled will be
quickly warned of their mistake, rather than having to wait until the program crashes on being
run and then not knowing what went wrong.

4.4. Preprocessor Loops: %rep
NASM's TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple
times, because it is processed by NASM after macros have already been expanded. Therefore
NASM provides another form of loop, this time at the preprocessor level: %rep.

The directives %rep and %endrep (%rep takes a numeric argument, which can be an
expression; %endrep takes no arguments) can be used to enclose a chunk of code, which is then
replicated as many times as specified by the preprocessor:
%assign i 0
%rep 64
 inc word [table+2*i]
%assign i i+1
%endrep
This will generate a sequence of 64 INC instructions, incrementing every word of memory from
[table] to [table+126].

For more complex termination conditions, or to break out of a repeat loop part way along, you
can use the %exitrep directive to terminate the loop, like this:
fibonacci:
%assign i 0
%assign j 1
%rep 100
%if j > 65535
%exitrep
%endif
 dw j
%assign k j+i
%assign i j
%assign j k
%endrep
fib_number equ ($-fibonacci)/2
This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum
repeat count must still be given to %rep. This is to prevent the possibility of NASM getting into
an infinite loop in the preprocessor, which (on multitasking or multi-user systems) would
typically cause all the system memory to be gradually used up and other applications to start
crashing.

4.5. Including Other Files
Using, once again, a very similar syntax to the C preprocessor, NASM's preprocessor lets you
include other source files into your code. This is done by the use of the %include directive:
%include "macros.mac"
will include the contents of the file macros.mac into the source file containing the %include
directive.
Include files are searched for in the current directory (the directory you're in when you run
NASM, as opposed to the location of the NASM executable or the location of the source file),
plus any directories specified on the NASM command line using the i option.

The standard C idiom for preventing a file being included more than once is just as applicable in
NASM: if the file macros.mac has the form
%ifndef MACROS_MAC
%define MACROS_MAC
; now define some macros
%endif
then including the file more than once will not cause errors, because the second time the file is
included nothing will happen because the macro MACROS_MAC will already be defined.

You can force a file to be included even if there is no %include directive that explicitly
includes it, by using the p option on the NASM command line (see section 2.1.6).

4.6. The Context Stack
Having labels that are local to a macro definition is sometimes not quite powerful enough:
sometimes you want to be able to share labels between several macro calls. An example might be
a REPEAT ... UNTIL loop, in which the expansion of the REPEAT macro would need to be able
to refer to a label which the UNTIL macro had defined. However, for such a macro you would
also want to be able to nest these loops.
NASM provides this level of power by means of a context stack. The preprocessor maintains a
stack of contexts, each of which is characterised by a name. You add a new context to the stack
using the %push directive, and remove one using %pop. You can define labels that are local to a
particular context on the stack.
Section 4.6.1: %push and %pop: Creating and Removing Contexts
Section 4.6.2: Context Local Labels
Section 4.6.3: Context Local Single Line Macros
Section 4.6.4: %repl: Renaming a Context
Section 4.6.5: Example Use of the Context Stack: Block IFs

4.6.1. %push and %pop: Creating and Removing Contexts
The %push directive is used to create a new context and place it on the top of the context stack.
%push requires one argument, which is the name of the context. For example:
%push foobar
This pushes a new context called foobar on the stack. You can have several contexts on the
stack with the same name: they can still be distinguished.
The directive %pop, requiring no arguments, removes the top context from the context stack and
destroys it, along with any labels associated with it.

4.6.2. ContextLocal Labels
Just as the usage %%foo defines a label which is local to the particular macro call in which it is
used, the usage %$foo is used to define a label which is local to the context on the top of the
context stack. So the REPEAT and UNTIL example given above could be implemented by
means of:
%macro repeat 0
%push repeat
%$begin:
%endmacro
%macro until 1
 j%-1 %$begin
%pop
%endmacro
and invoked by means of, for example,
 mov cx,string
 repeat
 add cx,3
 scasb
 until e
which would scan every fourth byte of a string in search of the byte in AL.

If you need to define, or access, labels local to the context below the top one on the stack, you
can use %$$foo, or %$$$foo for the context below that, and so on.

4.6.3. ContextLocal SingleLine Macros
NASM also allows you to define single-line macros which are local to a particular context, in
just the same way:
%define %$localmac 3
will define the single-line macro %$localmac to be local to the top context on the stack. Of
course, after a subsequent %push, it can then still be accessed by the name %$$localmac.

4.6.4. %repl: Renaming a Context
If you need to change the name of the top context on the stack (in order, for example, to have it
respond differently to %ifctx), you can execute a %pop followed by a %push; but this will
have the side effect of destroying all context-local labels and macros associated with the context
that was just popped.
NASM provides the directive %repl, which replaces a context with a different name, without
touching the associated macros and labels. So you could replace the destructive code
%pop
%push newname
with the non-destructive version %repl newname.

4.6.5. Example Use of the Context Stack: Block IFs
This example makes use of almost all the context-stack features, including the conditional-
assembly construct %ifctx, to implement a block IF statement as a set of macros.
%macro if 1
 %push if
 j%-1 %$ifnot
%endmacro
%macro else 0
 %ifctx if
 %repl else
 jmp %$ifend
 %$ifnot:
 %else
 %error "expected `if' before `else'"
 %endif
%endmacro
%macro endif 0
 %ifctx if
 %$ifnot:
 %pop
 %elifctx else
 %$ifend:
 %pop
 %else
 %error "expected `if' or `else' before `endif'"
 %endif
%endmacro
This code is more robust than the REPEAT and UNTIL macros given in section 4.6.2, because it
uses conditional assembly to check that the macros are issued in the right order (for example, not
calling endif before if) and issues a %error if they're not.

In addition, the endif macro has to be able to cope with the two distinct cases of either directly
following an if, or following an else. It achieves this, again, by using conditional assembly to
do different things depending on whether the context on top of the stack is if or else.

The else macro has to preserve the context on the stack, in order to have the %$ifnot
referred to by the if macro be the same as the one defined by the endif macro, but has to
change the context's name so that endif will know there was an intervening else. It does this
by the use of %repl.

A sample usage of these macros might look like:
 cmp ax,bx
 if ae
 cmp bx,cx
 if ae

 mov ax,cx
 else
 mov ax,bx
 endif
 else
 cmp ax,cx
 if ae
 mov ax,cx
 endif
 endif
The block-IF macros handle nesting quite happily, by means of pushing another context,
describing the inner if, on top of the one describing the outer if; thus else and endif
always refer to the last unmatched if or else.

4.7. Standard Macros
NASM defines a set of standard macros, which are already defined when it starts to process any
source file. If you really need a program to be assembled with no pre-defined macros, you can
use the %clear directive to empty the preprocessor of everything.

Most userlevel assembler directives (see chapter 5) are implemented as macros which invoke
primitive directives; these are described in chapter 5. The rest of the standard macro set is
described here.
Section 4.7.1: __NASM_MAJOR__ and __NASM_MINOR__: NASM Version
Section 4.7.2: __FILE__ and __LINE__: File Name and Line Number
Section 4.7.3: STRUC and ENDSTRUC: Declaring Structure Data Types
Section 4.7.4: ISTRUC, AT and IEND: Declaring Instances of Structures
Section 4.7.5: ALIGN and ALIGNB: Data Alignment

4.7.1. __NASM_MAJOR__ and __NASM_MINOR__: NASM Version
The single-line macros __NASM_MAJOR__ and __NASM_MINOR__ expand to the major and
minor parts of the version number of NASM being used. So, under NASM 0.96 for example,
__NASM_MAJOR__ would be defined to be 0 and __NASM_MINOR__ would be defined as 96.

4.7.2. __FILE__ and __LINE__: File Name and Line Number
Like the C preprocessor, NASM allows the user to find out the file name and line number
containing the current instruction. The macro __FILE__ expands to a string constant giving the
name of the current input file (which may change through the course of assembly if %include
directives are used), and __LINE__ expands to a numeric constant giving the current line
number in the input file.
These macros could be used, for example, to communicate debugging information to a macro,
since invoking __LINE__ inside a macro definition (either single-line or multi-line) will return
the line number of the macro call, rather than definition. So to determine where in a piece of
code a crash is occurring, for example, one could write a routine stillhere, which is passed a
line number in EAX and outputs something like `line 155: still here'. You could then write a
macro
%macro notdeadyet 0
 push eax
 mov eax,__LINE__
 call stillhere
 pop eax
%endmacro
and then pepper your code with calls to notdeadyet until you find the crash point.

4.7.3. STRUC and ENDSTRUC: Declaring Structure Data Types
The core of NASM contains no intrinsic means of defining data structures; instead, the
preprocessor is sufficiently powerful that data structures can be implemented as a set of macros.
The macros STRUC and ENDSTRUC are used to define a structure data type.

STRUC takes one parameter, which is the name of the data type. This name is defined as a
symbol with the value zero, and also has the suffix _size appended to it and is then defined as
an EQU giving the size of the structure. Once STRUC has been issued, you are defining the
structure, and should define fields using the RESB family of pseudo-instructions, and then
invoke ENDSTRUC to finish the definition.

For example, to define a structure called mytype containing a longword, a word, a byte and a
string of bytes, you might code
 struc mytype
mt_long: resd 1
mt_word: resw 1
mt_byte: resb 1
mt_str: resb 32
 endstruc
The above code defines six symbols: mt_long as 0 (the offset from the beginning of a mytype
structure to the longword field), mt_word as 4, mt_byte as 6, mt_str as 7, mytype_size
as 39, and mytype itself as zero.

The reason why the structure type name is defined at zero is a side effect of allowing structures
to work with the local label mechanism: if your structure members tend to have the same names
in more than one structure, you can define the above structure like this:
 struc mytype
.long: resd 1
.word: resw 1
.byte: resb 1
.str: resb 32
 endstruc
This defines the offsets to the structure fields as mytype.long, mytype.word,
mytype.byte and mytype.str.

NASM, since it has no intrinsic structure support, does not support any form of period notation
to refer to the elements of a structure once you have one (except the above local-label notation),
so code such as mov ax,[mystruc.mt_word] is not valid. mt_word is a constant just like
any other constant, so the correct syntax is mov ax,[mystruc+mt_word] or mov ax,
[mystruc+mytype.word].

4.7.4. ISTRUC, AT and IEND: Declaring Instances of Structures
Having defined a structure type, the next thing you typically want to do is to declare instances of
that structure in your data segment. NASM provides an easy way to do this in the ISTRUC
mechanism. To declare a structure of type mytype in a program, you code something like this:
mystruc: istruc mytype
 at mt_long, dd 123456
 at mt_word, dw 1024
 at mt_byte, db 'x'
 at mt_str, db 'hello, world', 13, 10, 0
 iend
The function of the AT macro is to make use of the TIMES prefix to advance the assembly
position to the correct point for the specified structure field, and then to declare the specified
data. Therefore the structure fields must be declared in the same order as they were specified in
the structure definition.
If the data to go in a structure field requires more than one source line to specify, the remaining
source lines can easily come after the AT line. For example:
 at mt_str, db 123,134,145,156,167,178,189
 db 190,100,0
Depending on personal taste, you can also omit the code part of the AT line completely, and start
the structure field on the next line:
 at mt_str
 db 'hello, world'
 db 13,10,0

4.7.5. ALIGN and ALIGNB: Data Alignment
The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word,
longword, paragraph or other boundary. (Some assemblers call this directive EVEN.) The syntax
of the ALIGN and ALIGNB macros is
 align 4 ; align on 4-byte boundary
 align 16 ; align on 16-byte boundary
 align 8,db 0 ; pad with 0s rather than NOPs
 align 4,resb 1 ; align to 4 in the BSS
 alignb 4 ; equivalent to previous line
Both macros require their first argument to be a power of two; they both compute the number of
additional bytes required to bring the length of the current section up to a multiple of that power
of two, and then apply the TIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the default for ALIGN is NOP, and the default for
ALIGNB is RESB 1. So if the second argument is specified, the two macros are equivalent.
Normally, you can just use ALIGN in code and data sections and ALIGNB in BSS sections, and
never need the second argument except for special purposes.
ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if
their first argument fails to be a power of two, or if their second argument generates more than
one byte of code. In each of these cases they will silently do the wrong thing.
ALIGNB (or ALIGN with a second argument of RESB 1) can be used within structure
definitions:
 struc mytype2
mt_byte: resb 1
 alignb 2
mt_word: resw 1
 alignb 4
mt_long: resd 1
mt_str: resb 32
 endstruc
This will ensure that the structure members are sensibly aligned relative to the base of the
structure.
A final caveat: ALIGN and ALIGNB work relative to the beginning of the section, not the
beginning of the address space in the final executable. Aligning to a 16-byte boundary when the
section you're in is only guaranteed to be aligned to a 4-byte boundary, for example, is a waste of
effort. Again, NASM does not check that the section's alignment characteristics are sensible for
the use of ALIGN or ALIGNB.

Chapter 5: Assembler Directives
NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is
nevertheless forced to support a few directives. These are described in this chapter.
NASM's directives come in two types: userlevel directivesuserlevel directives and primitive
directivesprimitive directives. Typically, each directive has a user-level form and a primitive
form. In almost all cases, we recommend that users use the user-level forms of the directives,
which are implemented as macros which call the primitive forms.
Primitive directives are enclosed in square brackets; user-level directives are not.
In addition to the universal directives described in this chapter, each object file format can
optionally supply extra directives in order to control particular features of that file format. These
formatspecific directivesformatspecific directives are documented along with the formats that
implement them, in chapter 6.
Section 5.1: BITS: Specifying Target Processor Mode
Section 5.2: SECTION or SEGMENT: Changing and Defining Sections
Section 5.3: ABSOLUTE: Defining Absolute Labels
Section 5.4: EXTERN: Importing Symbols from Other Modules
Section 5.5: GLOBAL: Exporting Symbols to Other Modules
Section 5.6: COMMON: Defining Common Data Areas

5.1. BITS: Specifying Target Processor Mode
The BITS directive specifies whether NASM should generate code designed to run on a
processor operating in 16-bit mode, or code designed to run on a processor operating in 32-bit
mode. The syntax is BITS 16 or BITS 32.

In most cases, you should not need to use BITS explicitly. The aout, coff, elf and win32
object formats, which are designed for use in 32-bit operating systems, all cause NASM to select
32-bit mode by default. The obj object format allows you to specify each segment you define as
either USE16 or USE32, and NASM will set its operating mode accordingly, so the use of the
BITS directive is once again unnecessary.

The most likely reason for using the BITS directive is to write 32-bit code in a flat binary file;
this is because the bin output format defaults to 16-bit mode in anticipation of it being used
most frequently to write DOS .COM programs, DOS .SYS device drivers and boot loader
software.
You do not need to specify BITS 32 merely in order to use 32-bit instructions in a 16-bit DOS
program; if you do, the assembler will generate incorrect code because it will be writing code
targeted at a 32-bit platform, to be run on a 16-bit one.
When NASM is in BITS 16 state, instructions which use 32-bit data are prefixed with an 0x66
byte, and those referring to 32-bit addresses have an 0x67 prefix. In BITS 32 state, the reverse
is true: 32-bit instructions require no prefixes, whereas instructions using 16-bit data need an
0x66 and those working in 16-bit addresses need an 0x67.
The BITS directive has an exactly equivalent primitive form, [BITS 16] and [BITS 32].
The user-level form is a macro which has no function other than to call the primitive form.

5.2. SECTION or SEGMENT: Changing and Defining Sections
The SECTION directive (SEGMENT is an exactly equivalent synonym) changes which section of
the output file the code you write will be assembled into. In some object file formats, the number
and names of sections are fixed; in others, the user may make up as many as they wish. Hence
SECTION may sometimes give an error message, or may define a new section, if you try to
switch to a section that does not (yet) exist.
The Unix object formats, and the bin object format, all support the standardised section names
.text, .data and .bss for the code, data and uninitialised-data sections. The obj format, by
contrast, does not recognise these section names as being special, and indeed will strip off the
leading period of any section name that has one.
Section 5.2.1: The __SECT__ Macro

5.2.1. The __SECT__ Macro
The SECTION directive is unusual in that its user-level form functions differently from its
primitive form. The primitive form, [SECTION xyz], simply switches the current target
section to the one given. The user-level form, SECTION xyz, however, first defines the single-
line macro __SECT__ to be the primitive [SECTION] directive which it is about to issue, and
then issues it. So the user-level directive
 SECTION .text
expands to the two lines
%define __SECT__ [SECTION .text]
 [SECTION .text]
Users may find it useful to make use of this in their own macros. For example, the writefile
macro defined in section 4.2.3 can be usefully rewritten in the following more sophisticated
form:
%macro writefile 2+
 [section .data]
%%str: db %2
%%endstr:
 __SECT__
 mov dx,%%str
 mov cx,%%endstr-%%str
 mov bx,%1
 mov ah,0x40
 int 0x21
%endmacro
This form of the macro, once passed a string to output, first switches temporarily to the data
section of the file, using the primitive form of the SECTION directive so as not to modify
__SECT__. It then declares its string in the data section, and then invokes __SECT__ to switch
back to whichever section the user was previously working in. It thus avoids the need, in the
previous version of the macro, to include a JMP instruction to jump over the data, and also does
not fail if, in a complicated OBJ format module, the user could potentially be assembling the
code in any of several separate code sections.

5.3. ABSOLUTE: Defining Absolute Labels
The ABSOLUTE directive can be thought of as an alternative form of SECTION: it causes the
subsequent code to be directed at no physical section, but at the hypothetical section starting at
the given absolute address. The only instructions you can use in this mode are the RESB family.

ABSOLUTE is used as follows:
 absolute 0x1A
kbuf_chr resw 1
kbuf_free resw 1
kbuf resw 16
This example describes a section of the PC BIOS data area, at segment address 0x40: the above
code defines kbuf_chr to be 0x1A, kbuf_free to be 0x1C, and kbuf to be 0x1E.

The user-level form of ABSOLUTE, like that of SECTION, redefines the __SECT__ macro
when it is invoked.
STRUC and ENDSTRUC are defined as macros which use ABSOLUTE (and also __SECT__).

ABSOLUTE doesn't have to take an absolute constant as an argument: it can take an expression
(actually, a critical expression: see section 3.7) and it can be a value in a segment. For example, a
TSR can re-use its setup code as run-time BSS like this:
 org 100h ; it's a .COM program
 jmp setup ; setup code comes last
 ; the resident part of the TSR goes here
setup: ; now write the code that installs the TSR here
 absolute setup
runtimevar1 resw 1
runtimevar2 resd 20
tsr_end:
This defines some variables `on top of' the setup code, so that after the setup has finished
running, the space it took up can be re-used as data storage for the running TSR. The symbol
`tsr_end' can be used to calculate the total size of the part of the TSR that needs to be made
resident.

5.4. EXTERN: Importing Symbols from Other Modules
EXTERN is similar to the MASM directive EXTRN and the C keyword extern: it is used to
declare a symbol which is not defined anywhere in the module being assembled, but is assumed
to be defined in some other module and needs to be referred to by this one. Not every object-file
format can support external variables: the bin format cannot.

The EXTERN directive takes as many arguments as you like. Each argument is the name of a
symbol:
 extern _printf
 extern _sscanf,_fscanf
Some object-file formats provide extra features to the EXTERN directive. In all cases, the extra
features are used by suffixing a colon to the symbol name followed by object-format specific
text. For example, the obj format allows you to declare that the default segment base of an
external should be the group dgroup by means of the directive
 extern _variable:wrt dgroup
The primitive form of EXTERN differs from the user-level form only in that it can take only one
argument at a time: the support for multiple arguments is implemented at the preprocessor level.
You can declare the same variable as EXTERN more than once: NASM will quietly ignore the
second and later redeclarations. You can't declare a variable as EXTERN as well as something
else, though.

5.5. GLOBAL: Exporting Symbols to Other Modules
GLOBAL is the other end of EXTERN: if one module declares a symbol as EXTERN and refers to
it, then in order to prevent linker errors, some other module must actually define the symbol and
declare it as GLOBAL. Some assemblers use the name PUBLIC for this purpose.

The GLOBAL directive applying to a symbol must appear before the definition of the symbol.

GLOBAL uses the same syntax as EXTERN, except that it must refer to symbols which are
defined in the same module as the GLOBAL directive. For example:
 global _main
_main: ; some code
GLOBAL, like EXTERN, allows object formats to define private extensions by means of a colon.
The elf object format, for example, lets you specify whether global data items are functions or
data:
 global hashlookup:function, hashtable:data
Like EXTERN, the primitive form of GLOBAL differs from the user-level form only in that it can
take only one argument at a time.

5.6. COMMON: Defining Common Data Areas
The COMMON directive is used to declare common variables. A common variable is much like a
global variable declared in the uninitialised data section, so that
 common intvar 4
is similar in function to
 global intvar
 section .bss
intvar resd 1
The difference is that if more than one module defines the same common variable, then at link
time those variables will be merged, and references to intvar in all modules will point at the
same piece of memory.
Like GLOBAL and EXTERN, COMMON supports object-format specific extensions. For example,
the obj format allows common variables to be NEAR or FAR, and the elf format allows you
to specify the alignment requirements of a common variable:
 common commvar 4:near ; works in OBJ
 common intarray 100:4 ; works in ELF: 4 byte aligned
Once again, like EXTERN and GLOBAL, the primitive form of COMMON differs from the user-
level form only in that it can take only one argument at a time.

Chapter 6: Output Formats
NASM is a portable assembler, designed to be able to compile on any ANSI C-supporting
platform and produce output to run on a variety of Intel x86 operating systems. For this reason, it
has a large number of available output formats, selected using the f option on the NASM
command line. Each of these formats, along with its extensions to the base NASM syntax, is
detailed in this chapter.
As stated in section 2.1.1, NASM chooses a default name for your output file based on the input
file name and the chosen output format. This will be generated by removing the extension
(.asm, .s, or whatever you like to use) from the input file name, and substituting an extension
defined by the output format. The extensions are given with each format below.
Section 6.1: bin: Flat Form Binary Output
Section 6.2: obj: Microsoft OMF Object Files
Section 6.3: win32: Microsoft Win32 Object Files
Section 6.4: coff: Common Object File Format
Section 6.5: elf: Linux ELFObject Files
Section 6.6: aout: Linux a.out Object Files
Section 6.7: aoutb: NetBSD/FreeBSD/OpenBSD a.out Object Files
Section 6.8: as86: Linux as86 Object Files
Section 6.9: rdf: Relocatable Dynamic Object File Format
Section 6.10: dbg: Debugging Format

6.1. bin: FlatForm Binary Output
The bin format does not produce object files: it generates nothing in the output file except the
code you wrote. Such `pure binary' files are used by MSDOS: .COM executables and .SYS
device drivers are pure binary files. Pure binary output is also useful for operatingsystem and
boot loader development.
bin supports the three standardised section names .text, .data and .bss only. The file
NASM outputs will contain the contents of the .text section first, followed by the contents of
the .data section, aligned on a four-byte boundary. The .bss section is not stored in the
output file at all, but is assumed to appear directly after the end of the .data section, again
aligned on a four-byte boundary.
If you specify no explicit SECTION directive, the code you write will be directed by default into
the .text section.

Using the bin format puts NASM by default into 16-bit mode (see section 5.1). In order to use
bin to write 32-bit code such as an OS kernel, you need to explicitly issue the BITS 32
directive.
bin has no default output file name extension: instead, it leaves your file name as it is once the
original extension has been removed. Thus, the default is for NASM to assemble
binprog.asm into a binary file called binprog.

Section 6.1.1: ORG: Binary File Program Origin
Section 6.1.2: bin Extensions to the SECTION Directive

6.1.1. ORG: Binary File Program Origin
The bin format provides an additional directive to the list given in chapter 5: ORG. The function
of the ORG directive is to specify the origin address which NASM will assume the program
begins at when it is loaded into memory.
For example, the following code will generate the longword 0x00000104:
 org 0x100
 dd label
label:
Unlike the ORG directive provided by MASM-compatible assemblers, which allows you to jump
around in the object file and overwrite code you have already generated, NASM's ORG does
exactly what the directive says: origin. Its sole function is to specify one offset which is added to
all internal address references within the file; it does not permit any of the trickery that MASM's
version does. See section 10.1.3 for further comments.

6.1.2. bin Extensions to the SECTION Directive
The bin output format extends the SECTION (or SEGMENT) directive to allow you to specify
the alignment requirements of segments. This is done by appending the ALIGN qualifier to the
end of the section-definition line. For example,
 section .data align=16
switches to the section .data and also specifies that it must be aligned on a 16-byte boundary.

The parameter to ALIGN specifies how many low bits of the section start address must be forced
to zero. The alignment value given may be any power of two.

6.2. obj: Microsoft OMF Object Files
The obj file format (NASM calls it obj rather than omf for historical reasons) is the one
produced by MASM and TASM, which is typically fed to 16-bit DOS linkers to produce .EXE
files. It is also the format used by OS/2.
obj provides a default output file-name extension of .obj.

obj is not exclusively a 16-bit format, though: NASM has full support for the 32-bit extensions
to the format. In particular, 32-bit obj format files are used by Borland's Win32 compilers,
instead of using Microsoft's newer win32 object file format.

The obj format does not define any special segment names: you can call your segments
anything you like. Typical names for segments in obj format files are CODE, DATA and BSS.

If your source file contains code before specifying an explicit SEGMENT directive, then NASM
will invent its own segment called __NASMDEFSEG for you.

When you define a segment in an obj file, NASM defines the segment name as a symbol as
well, so that you can access the segment address of the segment. So, for example:
 segment data
dvar: dw 1234
 segment code
function: mov ax,data ; get segment address of data
 mov ds,ax ; and move it into DS
 inc word [dvar] ; now this reference will work
 ret
The obj format also enables the use of the SEG and WRT operators, so that you can write code
which does things like
 extern foo
 mov ax,seg foo ; get preferred segment of foo
 mov ds,ax
 mov ax,data ; a different segment
 mov es,ax
 mov ax,[ds:foo] ; this accesses `foo'
 mov [es:foo wrt data],bx ; so does this
Section 6.2.1: obj Extensions to the SEGMENT Directive
Section 6.2.2: GROUP: Defining Groups of Segments
Section 6.2.3: UPPERCASE: Disabling Case Sensitivity in Output
Section 6.2.4: IMPORT: Importing DLL Symbols
Section 6.2.5: EXPORT: Exporting DLL Symbols
Section 6.2.6: ..start: Defining the Program Entry Point
Section 6.2.7: obj Extensions to the EXTERN Directive
Section 6.2.8: obj Extensions to the COMMON Directive

6.2.1. obj Extensions to the SEGMENT Directive
The obj output format extends the SEGMENT (or SECTION) directive to allow you to specify
various properties of the segment you are defining. This is done by appending extra qualifiers to
the end of the segment-definition line. For example,
 segment code private align=16
defines the segment code, but also declares it to be a private segment, and requires that the
portion of it described in this code module must be aligned on a 16-byte boundary.
The available qualifiers are:
Ÿ PRIVATE, PUBLIC, COMMON and STACK specify the combination characteristics of the

segment. PRIVATE segments do not get combined with any others by the linker; PUBLIC
and STACK segments get concatenated together at link time; and COMMON segments all get
overlaid on top of each other rather than stuck end-to-end.

Ÿ ALIGN is used, as shown above, to specify how many low bits of the segment start address
must be forced to zero. The alignment value given may be any power of two from 1 to 4096;
in reality, the only values supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be
rounded up to 16, and 32, 64 and 128 will all be rounded up to 256, and so on. Note that
alignment to 4096-byte boundaries is a PharLap extension to the format and may not be
supported by all linkers.

Ÿ CLASS can be used to specify the segment class; this feature indicates to the linker that
segments of the same class should be placed near each other in the output file. The class
name can be any word, e.g. CLASS=CODE.

Ÿ OVERLAY, like CLASS, is specified with an arbitrary word as an argument, and provides
overlay information to an overlay-capable linker.

Ÿ Segments can be declared as USE16 or USE32, which has the effect of recording the choice
in the object file and also ensuring that NASM's default assembly mode when assembling in
that segment is 16-bit or 32-bit respectively.

Ÿ When writing OS/2 object files, you should declare 32-bit segments as FLAT, which causes
the default segment base for anything in the segment to be the special group FLAT, and also
defines the group if it is not already defined.

Ÿ The obj file format also allows segments to be declared as having a pre-defined absolute
segment address, although no linkers are currently known to make sensible use of this
feature; nevertheless, NASM allows you to declare a segment such as
SEGMENT SCREEN ABSOLUTE=0xB800 if you need to. The ABSOLUTE and ALIGN
keywords are mutually exclusive.

NASM's default segment attributes are PUBLIC, ALIGN=1, no class, no overlay, and USE16.

6.2.2. GROUP: Defining Groups of Segments
The obj format also allows segments to be grouped, so that a single segment register can be
used to refer to all the segments in a group. NASM therefore supplies the GROUP directive,
whereby you can code
 segment data
 ; some data
 segment bss
 ; some uninitialised data
 group dgroup data bss
which will define a group called dgroup to contain the segments data and bss. Like
SEGMENT, GROUP causes the group name to be defined as a symbol, so that you can refer to a
variable var in the data segment as var wrt data or as var wrt dgroup, depending
on which segment value is currently in your segment register.
If you just refer to var, however, and var is declared in a segment which is part of a group,
then NASM will default to giving you the offset of var from the beginning of the group, not the
segment. Therefore SEG var, also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if
you do this. Variables declared in a segment which is part of more than one group will default to
being relative to the first group that was defined to contain the segment.
A group does not have to contain any segments; you can still make WRT references to a group
which does not contain the variable you are referring to. OS/2, for example, defines the special
group FLAT with no segments in it.

6.2.3. UPPERCASE: Disabling Case Sensitivity in Output
Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for
NASM to output single-case object files. The UPPERCASE format-specific directive causes all
segment, group and symbol names that are written to the object file to be forced to upper case
just before being written. Within a source file, NASM is still case-sensitive; but the object file
can be written entirely in upper case if desired.
UPPERCASE is used alone on a line; it requires no parameters.

6.2.4. IMPORT: Importing DLL Symbols
The IMPORT format-specific directive defines a symbol to be imported from a DLL, for use if
you are writing a DLL's import library in NASM. You still need to declare the symbol as
EXTERN as well as using the IMPORT directive.

The IMPORT directive takes two required parameters, separated by white space, which are
(respectively) the name of the symbol you wish to import and the name of the library you wish to
import it from. For example:
 import WSAStartup wsock32.dll
A third optional parameter gives the name by which the symbol is known in the library you are
importing it from, in case this is not the same as the name you wish the symbol to be known by
to your code once you have imported it. For example:
 import asyncsel wsock32.dll WSAAsyncSelect

6.2.5. EXPORT: Exporting DLL Symbols
The EXPORT format-specific directive defines a global symbol to be exported as a DLL symbol,
for use if you are writing a DLL in NASM. You still need to declare the symbol as GLOBAL as
well as using the EXPORT directive.

EXPORT takes one required parameter, which is the name of the symbol you wish to export, as it
was defined in your source file. An optional second parameter (separated by white space from
the first) gives the external name of the symbol: the name by which you wish the symbol to be
known to programs using the DLL. If this name is the same as the internal name, you may leave
the second parameter off.
Further parameters can be given to define attributes of the exported symbol. These parameters,
like the second, are separated by white space. If further parameters are given, the external name
must also be specified, even if it is the same as the internal name. The available attributes are:
Ÿ resident indicates that the exported name is to be kept resident by the system loader. This

is an optimisation for frequently used symbols imported by name.
Ÿ nodata indicates that the exported symbol is a function which does not make use of any

initialised data.
Ÿ parm=NNN, where NNN is an integer, sets the number of parameter words for the case in

which the symbol is a call gate between 32-bit and 16-bit segments.
Ÿ An attribute which is just a number indicates that the symbol should be exported with an

identifying number (ordinal), and gives the desired number.
For example:
 export myfunc
 export myfunc TheRealMoreFormalLookingFunctionName
 export myfunc myfunc 1234 ; export by ordinal
 export myfunc myfunc resident parm=23 nodata

6.2.6. ..start: Defining the Program Entry Point
OMF linkers require exactly one of the object files being linked to define the program entry
point, where execution will begin when the program is run. If the object file that defines the
entry point is assembled using NASM, you specify the entry point by declaring the special
symbol ..start at the point where you wish execution to begin.

6.2.7. obj Extensions to the EXTERN Directive
If you declare an external symbol with the directive
 extern foo
then references such as mov ax,foo will give you the offset of foo from its preferred
segment base (as specified in whichever module foo is actually defined in). So to access the
contents of foo you will usually need to do something like
 mov ax,seg foo ; get preferred segment base
 mov es,ax ; move it into ES
 mov ax,[es:foo] ; and use offset `foo' from it
This is a little unwieldy, particularly if you know that an external is going to be accessible from a
given segment or group, say dgroup. So if DS already contained dgroup, you could simply
code
 mov ax,[foo wrt dgroup]
However, having to type this every time you want to access foo can be a pain; so NASM allows
you to declare foo in the alternative form
 extern foo:wrt dgroup
This form causes NASM to pretend that the preferred segment base of foo is in fact dgroup;
so the expression seg foo will now return dgroup, and the expression foo is equivalent to
foo wrt dgroup.

This default-WRT mechanism can be used to make externals appear to be relative to any group or
segment in your program. It can also be applied to common variables: see section 6.2.8.

6.2.8. obj Extensions to the COMMON Directive
The obj format allows common variables to be either near or far; NASM allows you to specify
which your variables should be by the use of the syntax
 common nearvar 2:near ; `nearvar' is a near common
 common farvar 10:far ; and `farvar' is far
Far common variables may be greater in size than 64Kb, and so the OMF specification says that
they are declared as a number of elements of a given size. So a 10-byte far common variable
could be declared as ten one-byte elements, five two-byte elements, two five-byte elements or
one ten-byte element.
Some OMF linkers require the element size, as well as the variable size, to match when resolving
common variables declared in more than one module. Therefore NASM must allow you to
specify the element size on your far common variables. This is done by the following syntax:
 common c_5by2 10:far 5 ; two five-byte elements
 common c_2by5 10:far 2 ; five two-byte elements
If no element size is specified, the default is 1. Also, the FAR keyword is not required when an
element size is specified, since only far commons may have element sizes at all. So the above
declarations could equivalently be
 common c_5by2 10:5 ; two five-byte elements
 common c_2by5 10:2 ; five two-byte elements
In addition to these extensions, the COMMON directive in obj also supports default-WRT
specification like EXTERN does (explained in section 6.2.7). So you can also declare things like
 common foo 10:wrt dgroup
 common bar 16:far 2:wrt data
 common baz 24:wrt data:6

6.3. win32: Microsoft Win32 Object Files
The win32 output format generates Microsoft Win32 object files, suitable for passing to
Microsoft linkers such as Visual C++. Note that Borland Win32 compilers do not use this format,
but use obj instead (see section 6.2).

win32 provides a default output file-name extension of .obj.

Note that although Microsoft say that Win32 object files follow the COFF (Common Object File
Format) standard, the object files produced by Microsoft Win32 compilers are not compatible
with COFF linkers such as DJGPP's, and vice versa. This is due to a difference of opinion over
the precise semantics of PC-relative relocations. To produce COFF files suitable for DJGPP, use
NASM's coff output format; conversely, the coff format does not produce object files that
Win32 linkers can generate correct output from.
Section 6.3.1: win32 Extensions to the SECTION Directive

6.3.1. win32 Extensions to the SECTION Directive
Like the obj format, win32 allows you to specify additional information on the SECTION
directive line, to control the type and properties of sections you declare. Section types and
properties are generated automatically by NASM for the standard section names .text, .data
and .bss, but may still be overridden by these qualifiers.

The available qualifiers are:
Ÿ code, or equivalently text, defines the section to be a code section. This marks the section

as readable and executable, but not writable, and also indicates to the linker that the type of
the section is code.

Ÿ data and bss define the section to be a data section, analogously to code. Data sections
are marked as readable and writable, but not executable. data declares an initialised data
section, whereas bss declares an uninitialised data section.

Ÿ info defines the section to be an informational section, which is not included in the
executable file by the linker, but may (for example) pass information to the linker. For
example, declaring an info–type section called .drectve causes the linker to interpret the
contents of the section as command-line options.

Ÿ align=, used with a trailing number as in obj, gives the alignment requirements of the
section. The maximum you may specify is 64: the Win32 object file format contains no
means to request a greater section alignment than this. If alignment is not explicitly specified,
the defaults are 16-byte alignment for code sections, and 4-byte alignment for data (and BSS)
sections. Informational sections get a default alignment of 1 byte (no alignment), though the
value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:
 section .text code align=16
 section .data data align=4
 section .bss bss align=4
Any other section name is treated by default like .text.

6.4. coff: Common Object File Format
The coff output type produces COFF object files suitable for linking with the DJGPP linker.

coff provides a default output file-name extension of .o.

The coff format supports the same extensions to the SECTION directive as win32 does,
except that the align qualifier and the info section type are not supported.

6.5. elf: Linux ELFObject Files
The elf output format generates ELF32 (Executable and Linkable Format) object files, as used
by Linux. elf provides a default output file-name extension of .o.

Section 6.5.1: elf Extensions to the SECTION Directive
Section 6.5.2: Position Independent Code: elf Special Symbols and WRT
Section 6.5.3: elf Extensions to the GLOBAL Directive
Section 6.5.4: elf Extensions to the COMMON Directive

6.5.1. elf Extensions to the SECTION Directive
Like the obj format, elf allows you to specify additional information on the SECTION
directive line, to control the type and properties of sections you declare. Section types and
properties are generated automatically by NASM for the standard section names .text, .data
and .bss, but may still be overridden by these qualifiers.

The available qualifiers are:
Ÿ alloc defines the section to be one which is loaded into memory when the program is run.

noalloc defines it to be one which is not, such as an informational or comment section.

Ÿ exec defines the section to be one which should have execute permission when the program
is run. noexec defines it as one which should not.

Ÿ write defines the section to be one which should be writable when the program is run.
nowrite defines it as one which should not.

Ÿ progbits defines the section to be one with explicit contents stored in the object file: an
ordinary code or data section, for example, nobits defines the section to be one with no
explicit contents given, such as a BSS section.

Ÿ align=, used with a trailing number as in obj, gives the alignment requirements of the
section.

The defaults assumed by NASM if you do not specify the above qualifiers are:
 section .text progbits alloc exec nowrite align=16
 section .data progbits alloc noexec write align=4
 section .bss nobits alloc noexec write align=4
 section other progbits alloc noexec nowrite align=1
(Any section name other than .text, .data and .bss is treated by default like other in the
above code.)

6.5.2. PositionIndependent Code: elf Special Symbols and WRT
The ELF specification contains enough features to allow position-independent code (PIC) to be
written, which makes ELF shared libraries very flexible. However, it also means NASM has to
be able to generate a variety of strange relocation types in ELF object files, if it is to be an
assembler which can write PIC.
Since ELF does not support segment-base references, the WRT operator is not used for its normal
purpose; therefore NASM's elf output format makes use of WRT for a different purpose, namely
the PIC-specific relocation types.
elf defines five special symbols which you can use as the right-hand side of the WRT operator
to obtain PIC relocation types. They are ..gotpc, ..gotoff, ..got, ..plt and ..sym.
Their functions are summarised here:
Ÿ Referring to the symbol marking the global offset table base using wrt ..gotpc will end

up giving the distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE_ is the standard symbol name used to refer to the GOT.) So
you would then need to add $$ to the result to get the real address of the GOT.

Ÿ Referring to a location in one of your own sections using wrt ..gotoff will give the
distance from the beginning of the GOT to the specified location, so that adding on the
address of the GOT would give the real address of the location you wanted.

Ÿ Referring to an external or global symbol using wrt ..got causes the linker to build an
entry in the GOT containing the address of the symbol, and the reference gives the distance
from the beginning of the GOT to the entry; so you can add on the address of the GOT, load
from the resulting address, and end up with the address of the symbol.

Ÿ Referring to a procedure name using wrt ..plt causes the linker to build a procedure
linkage table entry for the symbol, and the reference gives the address of the PLT entry. You
can only use this in contexts which would generate a PC-relative relocation normally (i.e. as
the destination for CALL or JMP), since ELF contains no relocation type to refer to PLT
entries absolutely.

Ÿ Referring to a symbol name using wrt ..sym causes NASM to write an ordinary
relocation, but instead of making the relocation relative to the start of the section and then
adding on the offset to the symbol, it will write a relocation record aimed directly at the
symbol in question. The distinction is a necessary one due to a peculiarity of the dynamic
linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in
NASM is given in section 8.2.

6.5.3. elf Extensions to the GLOBAL Directive
ELF object files can contain more information about a global symbol than just its address: they
can contain the size of the symbol and its type as well. These are not merely debugger
conveniences, but are actually necessary when the program being written is a shared library.
NASM therefore supports some extensions to the GLOBAL directive, allowing you to specify
these features.
You can specify whether a global variable is a function or a data object by suffixing the name
with a colon and the word function or data. (object is a synonym for data.) For
example:
 global hashlookup:function, hashtable:data
exports the global symbol hashlookup as a function and hashtable as a data object.

You can also specify the size of the data associated with the symbol, as a numeric expression
(which may involve labels, and even forward references) after the type specifier. Like this:
 global hashtable:data (hashtable.end - hashtable)
hashtable:
 db this,that,theother ; some data here
.end:
This makes NASM automatically calculate the length of the table and place that information into
the ELF symbol table.
Declaring the type and size of global symbols is necessary when writing shared library code. For
more information, see section 8.2.4.

6.5.4. elf Extensions to the COMMON Directive
ELF also allows you to specify alignment requirements on common variables. This is done by
putting a number (which must be a power of two) after the name and size of the common
variable, separated (as usual) by a colon. For example, an array of doublewords would benefit
from 4-byte alignment:
 common dwordarray 128:4
This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4-byte
boundary.

6.6. aout: Linux a.out Object Files
The aout format generates a.out object files, in the form used by early Linux systems. (These
differ from other a.out object files in that the magic number in the first four bytes of the file is
different. Also, some implementations of a.out, for example NetBSD's, support position-
independent code, which Linux's implementation doesn't.)
a.out provides a default output file-name extension of .o.

a.out is a very simple object format. It supports no special directives, no special symbols, no
use of SEG or WRT, and no extensions to any standard directives. It supports only the three
standard section names .text, .data and .bss.

6.7. aoutb: NetBSD/FreeBSD/OpenBSD a.out Object Files
The aoutb format generates a.out object files, in the form used by the various free BSD Unix
clones, NetBSD, FreeBSD and OpenBSD. For simple object files, this object format is exactly
the same as aout except for the magic number in the first four bytes of the file. However, the
aoutb format supports positionindependent code in the same way as the elf format, so you
can use it to write BSD shared libraries.
aoutb provides a default output file-name extension of .o.

aoutb supports no special directives, no special symbols, and only the three standard section
names .text, .data and .bss. However, it also supports the same use of WRT as elf does,
to provide position-independent code relocation types. See section 6.5.2 for full documentation
of this feature.
aoutb also supports the same extensions to the GLOBAL directive as elf does: see section
6.5.3 for documentation of this.

6.8. as86: Linux as86 Object Files
The Linux 16-bit assembler as86 has its own non-standard object file format. Although its
companion linker ld86 produces something close to ordinary a.out binaries as output, the
object file format used to communicate between as86 and ld86 is not itself a.out.

NASM supports this format, just in case it is useful, as as86. as86 provides a default output
file-name extension of .o.

as86 is a very simple object format (from the NASM user's point of view). It supports no
special directives, no special symbols, no use of SEG or WRT, and no extensions to any standard
directives. It supports only the three standard section names .text, .data and .bss.

6.9. rdf: Relocatable Dynamic Object File Format
The rdf output format produces RDOFF object files. RDOFF (Relocatable Dynamic Object File
Format) is a home-grown object-file format, designed alongside NASM itself and reflecting in its
file format the internal structure of the assembler.
RDOFF is not used by any well-known operating systems. Those writing their own systems,
however, may well wish to use RDOFF as their object format, on the grounds that it is designed
primarily for simplicity and contains very little file-header bureaucracy.
The Unix NASM archive, and the DOS archive which includes sources, both contain an rdoff
subdirectory holding a set of RDOFF utilities: an RDF linker, an RDF static-library manager, an
RDF file dump utility, and a program which will load and execute an RDF executable under
Linux.
rdf supports only the standard section names .text, .data and .bss.

Section 6.9.1: Requiring a Library: The LIBRARY Directive

6.9.1. Requiring a Library: The LIBRARY Directive
RDOFF contains a mechanism for an object file to demand a given library to be linked to the
module, either at load time or run time. This is done by the LIBRARY directive, which takes one
argument which is the name of the module:
 library mylib.rdl

6.10. dbg: Debugging Format
The dbg output format is not built into NASM in the default configuration. If you are building
your own NASM executable from the sources, you can define OF_DBG in outform.h or on
the compiler command line, and obtain the dbg output format.

The dbg format does not output an object file as such; instead, it outputs a text file which
contains a complete list of all the transactions between the main body of NASM and the output-
format back end module. It is primarily intended to aid people who want to write their own
output drivers, so that they can get a clearer idea of the various requests the main program makes
of the output driver, and in what order they happen.
For simple files, one can easily use the dbg format like this:
nasm -f dbg filename.asm
which will generate a diagnostic file called filename.dbg. However, this will not work well
on files which were designed for a different object format, because each object format defines its
own macros (usually user-level forms of directives), and those macros will not be defined in the
dbg format. Therefore it can be useful to run NASM twice, in order to do the preprocessing with
the native object format selected:
nasm -e -f rdf -o rdfprog.i rdfprog.asm
nasm -a -f dbg rdfprog.i
This preprocesses rdfprog.asm into rdfprog.i, keeping the rdf object format selected in
order to make sure RDF special directives are converted into primitive form correctly. Then the
preprocessed source is fed through the dbg format to generate the final diagnostic output.

This workaround will still typically not work for programs intended for obj format, because the
obj SEGMENT and GROUP directives have side effects of defining the segment and group
names as symbols; dbg will not do this, so the program will not assemble. You will have to work
around that by defining the symbols yourself (using EXTERN, for example) if you really need to
get a dbg trace of an obj–specific source file.

dbg accepts any section name and any directives at all, and logs them all to its output file.

Chapter 7: Writing 16-bit Code (DOS, Windows 3/3.1)
This chapter attempts to cover some of the common issues encountered when writing 16-bit code
to run under MS-DOS or Windows 3.x. It covers how to link programs to produce .EXE or
.COM files, how to write .SYS device drivers, and how to interface assembly language code
with 16-bit C compilers and with Borland Pascal.
Section 7.1: Producing .EXE Files
Section 7.2: Producing .COM Files
Section 7.3: Producing .SYS Files
Section 7.4: Interfacing to 16-bit C Programs
Section 7.5: Interfacing to Borland Pascal Programs

7.1. Producing .EXE Files
Any large program written under DOS needs to be built as a .EXE file: only .EXE files have the
necessary internal structure required to span more than one 64K segment. Windows programs,
also, have to be built as .EXE files, since Windows does not support the .COM format.

In general, you generate .EXE files by using the obj output format to produce one or more
.OBJ files, and then linking them together using a linker. However, NASM also supports the
direct generation of simple DOS .EXE files using the bin output format (by using DB and DW to
construct the .EXE file header), and a macro package is supplied to do this. Thanks to Yann
Guidon for contributing the code for this.
NASM may also support .EXE natively as another output format in future releases.

Section 7.1.1: Using the obj Format To Generate .EXE Files
Section 7.1.2: Using the bin Format To Generate .EXE Files

7.1.1. Using the obj Format To Generate .EXE Files
This section describes the usual method of generating .EXE files by linking .OBJ files together.

Most 16-bit programming language packages come with a suitable linker; if you have none of
these, there is a free linker called VAL, available in LZH archive format from
x2ftp.oulu.fi. An LZH archiver can be found at ftp.simtel.net. There is another
`free' linker (though this one doesn't come with sources) called FREELINK, available from
www.pcorner.com. A third, djlink, written by DJ Delorie, is available at
www.delorie.com.

When linking several .OBJ files into a .EXE file, you should ensure that exactly one of them
has a start point defined (using the ..start special symbol defined by the obj format: see
section 6.2.6). If no module defines a start point, the linker will not know what value to give the
entry-point field in the output file header; if more than one defines a start point, the linker will
not know which value to use.
An example of a NASM source file which can be assembled to a .OBJ file and linked on its own
to a .EXE is given here. It demonstrates the basic principles of defining a stack, initialising the
segment registers, and declaring a start point. This file is also provided in the test subdirectory
of the NASM archives, under the name objexe.asm.
 segment code

..start: mov ax,data
 mov ds,ax
 mov ax,stack
 mov ss,ax
 mov sp,stacktop
This initial piece of code sets up DS to point to the data segment, and initialises SS and SP to
point to the top of the provided stack. Notice that interrupts are implicitly disabled for one
instruction after a move into SS, precisely for this situation, so that there's no chance of an
interrupt occurring between the loads of SS and SP and not having a stack to execute on.

Note also that the special symbol ..start is defined at the beginning of this code, which
means that will be the entry point into the resulting executable file.
 mov dx,hello
 mov ah,9
 int 0x21
The above is the main program: load DS:DX with a pointer to the greeting message (hello is
implicitly relative to the segment data, which was loaded into DS in the setup code, so the full
pointer is valid), and call the DOS print-string function.
 mov ax,0x4c00
 int 0x21
This terminates the program using another DOS system call.
 segment data

hello: db 'hello, world', 13, 10, '$'
The data segment contains the string we want to display.
 segment stack stack
 resb 64
stacktop:
The above code declares a stack segment containing 64 bytes of uninitialised stack space, and
points stacktop at the top of it. The directive segment stack stack defines a segment
called stack, and also of type STACK. The latter is not necessary to the correct running of the
program, but linkers are likely to issue warnings or errors if your program has no segment of
type STACK.

The above file, when assembled into a .OBJ file, will link on its own to a valid .EXE file,
which when run will print `hello, world' and then exit.

7.1.2. Using the bin Format To Generate .EXE Files
The .EXE file format is simple enough that it's possible to build a .EXE file by writing a pure-
binary program and sticking a 32-byte header on the front. This header is simple enough that it
can be generated using DB and DW commands by NASM itself, so that you can use the bin
output format to directly generate .EXE files.

Included in the NASM archives, in the misc subdirectory, is a file exebin.mac of macros. It
defines three macros: EXE_begin, EXE_stack and EXE_end.

To produce a .EXE file using this method, you should start by using %include to load the
exebin.mac macro package into your source file. You should then issue the EXE_begin
macro call (which takes no arguments) to generate the file header data. Then write code as
normal for the bin format – you can use all three standard sections .text, .data and .bss.
At the end of the file you should call the EXE_end macro (again, no arguments), which defines
some symbols to mark section sizes, and these symbols are referred to in the header code
generated by EXE_begin.

In this model, the code you end up writing starts at 0x100, just like a .COM file – in fact, if you
strip off the 32-byte header from the resulting .EXE file, you will have a valid .COM program.
All the segment bases are the same, so you are limited to a 64K program, again just like a .COM
file. Note that an ORG directive is issued by the EXE_begin macro, so you should not explicitly
issue one of your own.
You can't directly refer to your segment base value, unfortunately, since this would require a
relocation in the header, and things would get a lot more complicated. So you should get your
segment base by copying it out of CS instead.

On entry to your .EXE file, SS:SP are already set up to point to the top of a 2Kb stack. You can
adjust the default stack size of 2Kb by calling the EXE_stack macro. For example, to change
the stack size of your program to 64 bytes, you would call EXE_stack 64.

A sample program which generates a .EXE file in this way is given in the test subdirectory of
the NASM archive, as binexe.asm.

7.2. Producing .COM Files
While large DOS programs must be written as .EXE files, small ones are often better written as
.COM files. .COM files are pure binary, and therefore most easily produced using the bin output
format.
Section 7.2.1: Using the bin Format To Generate .COM Files
Section 7.2.2: Using the obj Format To Generate .COM Files

7.2.1. Using the bin Format To Generate .COM Files
.COM files expect to be loaded at offset 100h into their segment (though the segment may
change). Execution then begins at 100h, i.e. right at the start of the program. So to write a .COM
program, you would create a source file looking like
 org 100h
 section .text
start: ; put your code here
 section .data
 ; put data items here
 section .bss
 ; put uninitialised data here
The bin format puts the .text section first in the file, so you can declare data or BSS items
before beginning to write code if you want to and the code will still end up at the front of the file
where it belongs.
The BSS (uninitialised data) section does not take up space in the .COM file itself: instead,
addresses of BSS items are resolved to point at space beyond the end of the file, on the grounds
that this will be free memory when the program is run. Therefore you should not rely on your
BSS being initialised to all zeros when you run.
To assemble the above program, you should use a command line like
nasm myprog.asm -fbin -o myprog.com
The bin format would produce a file called myprog if no explicit output file name were
specified, so you have to override it and give the desired file name.

7.2.2. Using the obj Format To Generate .COM Files
If you are writing a .COM program as more than one module, you may wish to assemble several
.OBJ files and link them together into a .COM program. You can do this, provided you have a
linker capable of outputting .COM files directly (TLINK does this), or alternatively a converter
program such as EXE2BIN to transform the .EXE file output from the linker into a .COM file.

If you do this, you need to take care of several things:
Ÿ The first object file containing code should start its code segment with a line like

RESB 100h. This is to ensure that the code begins at offset 100h relative to the beginning
of the code segment, so that the linker or converter program does not have to adjust address
references within the file when generating the .COM file. Other assemblers use an ORG
directive for this purpose, but ORG in NASM is a format-specific directive to the bin output
format, and does not mean the same thing as it does in MASM-compatible assemblers.

Ÿ You don't need to define a stack segment.

Ÿ All your segments should be in the same group, so that every time your code or data
references a symbol offset, all offsets are relative to the same segment base. This is because,
when a .COM file is loaded, all the segment registers contain the same value.

7.3. Producing .SYS Files
MSDOS device drivers – .SYS files – are pure binary files, similar to .COM files, except that
they start at origin zero rather than 100h. Therefore, if you are writing a device driver using the
bin format, you do not need the ORG directive, since the default origin for bin is zero.
Similarly, if you are using obj, you do not need the RESB 100h at the start of your code
segment.
.SYS files start with a header structure, containing pointers to the various routines inside the
driver which do the work. This structure should be defined at the start of the code segment, even
though it is not actually code.
For more information on the format of .SYS files, and the data which has to go in the header
structure, a list of books is given in the Frequently Asked Questions list for the newsgroup
comp.os.msdos.programmer.

7.4. Interfacing to 16-bit C Programs
This section covers the basics of writing assembly routines that call, or are called from, C
programs. To do this, you would typically write an assembly module as a .OBJ file, and link it
with your C modules to produce a mixedlanguage program.
Section 7.4.1: External Symbol Names
Section 7.4.2: Memory Models
Section 7.4.3: Function Definitions and Function Calls
Section 7.4.4: Accessing Data Items
Section 7.4.5: c16.mac: Helper Macros for the 16-bit C Interface

7.4.1. External Symbol Names
C compilers have the convention that the names of all global symbols (functions or data) they
define are formed by prefixing an underscore to the name as it appears in the C program. So, for
example, the function a C programmer thinks of as printf appears to an assembly language
programmer as _printf. This means that in your assembly programs, you can define symbols
without a leading underscore, and not have to worry about name clashes with C symbols.
If you find the underscores inconvenient, you can define macros to replace the GLOBAL and
EXTERN directives as follows:
%macro cglobal 1
 global _%1
%define %1 _%1
%endmacro
%macro cextern 1
 extern _%1
%define %1 _%1
%endmacro
(These forms of the macros only take one argument at a time; a %rep construct could solve this.)

If you then declare an external like this:
 cextern printf
then the macro will expand it as
 extern _printf
%define printf _printf
Thereafter, you can reference printf as if it was a symbol, and the preprocessor will put the
leading underscore on where necessary.
The cglobal macro works similarly. You must use cglobal before defining the symbol in
question, but you would have had to do that anyway if you used GLOBAL.

7.4.2. Memory Models
NASM contains no mechanism to support the various C memory models directly; you have to
keep track yourself of which one you are writing for. This means you have to keep track of the
following things:
Ÿ In models using a single code segment (tiny, small and compact), functions are near. This

means that function pointers, when stored in data segments or pushed on the stack as function
arguments, are 16 bits long and contain only an offset field (the CS register never changes its
value, and always gives the segment part of the full function address), and that functions are
called using ordinary near CALL instructions and return using RETN (which, in NASM, is
synonymous with RET anyway). This means both that you should write your own routines to
return with RETN, and that you should call external C routines with near CALL instructions.

Ÿ In models using more than one code segment (medium, large and huge), functions are far.
This means that function pointers are 32 bits long (consisting of a 16-bit offset followed by a
16-bit segment), and that functions are called using CALL FAR (or CALL seg:offset)
and return using RETF. Again, you should therefore write your own routines to return with
RETF and use CALL FAR to call external routines.

Ÿ In models using a single data segment (tiny, small and medium), data pointers are 16 bits
long, containing only an offset field (the DS register doesn't change its value, and always
gives the segment part of the full data item address).

Ÿ In models using more than one data segment (compact, large and huge), data pointers are 32
bits long, consisting of a 16-bit offset followed by a 16-bit segment. You should still be
careful not to modify DS in your routines without restoring it afterwards, but ES is free for
you to use to access the contents of 32-bit data pointers you are passed.

Ÿ The huge memory model allows single data items to exceed 64K in size. In all other memory
models, you can access the whole of a data item just by doing arithmetic on the offset field of
the pointer you are given, whether a segment field is present or not; in huge model, you have
to be more careful of your pointer arithmetic.

Ÿ In most memory models, there is a default data segment, whose segment address is kept in
DS throughout the program. This data segment is typically the same segment as the stack,
kept in SS, so that functions' local variables (which are stored on the stack) and global data
items can both be accessed easily without changing DS. Particularly large data items are
typically stored in other segments. However, some memory models (though not the standard
ones, usually) allow the assumption that SS and DS hold the same value to be removed. Be
careful about functions' local variables in this latter case.

In models with a single code segment, the segment is called _TEXT, so your code segment must
also go by this name in order to be linked into the same place as the main code segment. In
models with a single data segment, or with a default data segment, it is called _DATA.

7.4.3. Function Definitions and Function Calls
The C calling convention in 16-bit programs is as follows. In the following description, the
words caller and callee are used to denote the function doing the calling and the function which
gets called.
Ÿ The caller pushes the function's parameters on the stack, one after another, in reverse order

(right to left, so that the first argument specified to the function is pushed last).
Ÿ The caller then executes a CALL instruction to pass control to the callee. This CALL is either

near or far depending on the memory model.
Ÿ The callee receives control, and typically (although this is not actually necessary, in functions

which do not need to access their parameters) starts by saving the value of SP in BP so as to
be able to use BP as a base pointer to find its parameters on the stack. However, the caller
was probably doing this too, so part of the calling convention states that BP must be
preserved by any C function. Hence the callee, if it is going to set up BP as a frame pointer,
must push the previous value first.

Ÿ The callee may then access its parameters relative to BP. The word at [BP] holds the
previous value of BP as it was pushed; the next word, at [BP+2], holds the offset part of the
return address, pushed implicitly by CALL. In a small-model (near) function, the parameters
start after that, at [BP+4]; in a large-model (far) function, the segment part of the return
address lives at [BP+4], and the parameters begin at [BP+6]. The leftmost parameter of
the function, since it was pushed last, is accessible at this offset from BP; the others follow, at
successively greater offsets. Thus, in a function such as printf which takes a variable
number of parameters, the pushing of the parameters in reverse order means that the function
knows where to find its first parameter, which tells it the number and type of the remaining
ones.

Ÿ The callee may also wish to decrease SP further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets from BP.

Ÿ The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or
DX:AX depending on the size of the value. Floating-point results are sometimes (depending
on the compiler) returned in ST0.

Ÿ Once the callee has finished processing, it restores SP from BP if it had allocated local stack
space, then pops the previous value of BP, and returns via RETN or RETF depending on
memory model.

Ÿ When the caller regains control from the callee, the function parameters are still on the stack,
so it typically adds an immediate constant to SP to remove them (instead of executing a
number of slow POP instructions). Thus, if a function is accidentally called with the wrong
number of parameters due to a prototype mismatch, the stack will still be returned to a
sensible state since the caller, which knows how many parameters it pushed, does the
removing.

It is instructive to compare this calling convention with that for Pascal programs (described in
section 7.5.1). Pascal has a simpler convention, since no functions have variable numbers of

parameters. Therefore the callee knows how many parameters it should have been passed, and is
able to deallocate them from the stack itself by passing an immediate argument to the RET or
RETF instruction, so the caller does not have to do it. Also, the parameters are pushed in left-to-
right order, not right-to-left, which means that a compiler can give better guarantees about
sequence points without performance suffering.
Thus, you would define a function in C style in the following way. The following example is for
small model:
 global _myfunc
_myfunc: push bp
 mov bp,sp
 sub sp,0x40 ; 64 bytes of local stack space
 mov bx,[bp+4] ; first parameter to function
 ; some more code
 mov sp,bp ; undo "sub sp,0x40" above
 pop bp
 ret
For a large-model function, you would replace RET by RETF, and look for the first parameter at
[BP+6] instead of [BP+4]. Of course, if one of the parameters is a pointer, then the offsets of
subsequent parameters will change depending on the memory model as well: far pointers take up
four bytes on the stack when passed as a parameter, whereas near pointers take up two.
At the other end of the process, to call a C function from your assembly code, you would do
something like this:
 extern _printf
 ; and then, further down...
 push word [myint] ; one of my integer variables
 push word mystring ; pointer into my data segment
 call _printf
 add sp,byte 4 ; `byte' saves space
 ; then those data items...
 segment _DATA
myint dw 1234
mystring db 'This number -> %d <- should be 1234',10,0
This piece of code is the small-model assembly equivalent of the C code
 int myint = 1234;
 printf("This number -> %d <- should be 1234\n", myint);
In large model, the function-call code might look more like this. In this example, it is assumed
that DS already holds the segment base of the segment _DATA. If not, you would have to
initialise it first.
 push word [myint]
 push word seg mystring ; Now push the segment, and...
 push word mystring ; ... offset of "mystring"
 call far _printf
 add sp,byte 6

The integer value still takes up one word on the stack, since large model does not affect the size
of the int data type. The first argument (pushed last) to printf, however, is a data pointer,
and therefore has to contain a segment and offset part. The segment should be stored second in
memory, and therefore must be pushed first. (Of course, PUSH DS would have been a shorter
instruction than PUSH WORD SEG mystring, if DS was set up as the above example
assumed.) Then the actual call becomes a far call, since functions expect far calls in large model;
and SP has to be increased by 6 rather than 4 afterwards to make up for the extra word of
parameters.

7.4.4. Accessing Data Items
To get at the contents of C variables, or to declare variables which C can access, you need only
declare the names as GLOBAL or EXTERN. (Again, the names require leading underscores, as
stated in section 7.4.1.) Thus, a C variable declared as int i can be accessed from assembler as
 extern _i
 mov ax,[_i]
And to declare your own integer variable which C programs can access as extern int j,
you do this (making sure you are assembling in the _DATA segment, if necessary):
 global _j
_j dw 0
To access a C array, you need to know the size of the components of the array. For example, int
variables are two bytes long, so if a C program declares an array as int a[10], you can access
a[3] by coding mov ax,[_a+6]. (The byte offset 6 is obtained by multiplying the desired
array index, 3, by the size of the array element, 2.) The sizes of the C base types in 16-bit
compilers are: 1 for char, 2 for short and int, 4 for long and float, and 8 for double.

To access a C data structure, you need to know the offset from the base of the structure to the
field you are interested in. You can either do this by converting the C structure definition into a
NASM structure definition (using STRUC), or by calculating the one offset and using just that.

To do either of these, you should read your C compiler's manual to find out how it organises data
structures. NASM gives no special alignment to structure members in its own STRUC macro, so
you have to specify alignment yourself if the C compiler generates it. Typically, you might find
that a structure like
struct @{
 char c;
 int i;
@} foo;
might be four bytes long rather than three, since the int field would be aligned to a two-byte
boundary. However, this sort of feature tends to be a configurable option in the C compiler, either
using command-line options or #pragma lines, so you have to find out how your own compiler
does it.

7.4.5. c16.mac: Helper Macros for the 16-bit C Interface
Included in the NASM archives, in the misc directory, is a file c16.mac of macros. It defines
three macros: proc, arg and endproc. These are intended to be used for C-style procedure
definitions, and they automate a lot of the work involved in keeping track of the calling
convention.
An example of an assembly function using the macro set is given here:
 proc _nearproc
%$i arg
%$j arg
 mov ax,[bp + %$i]
 mov bx,[bp + %$j]
 add ax,[bx]
 endproc
This defines _nearproc to be a procedure taking two arguments, the first (i) an integer and
the second (j) a pointer to an integer. It returns i + *j.

Note that the arg macro has an EQU as the first line of its expansion, and since the label before
the macro call gets prepended to the first line of the expanded macro, the EQU works, defining %
$i to be an offset from BP. A context-local variable is used, local to the context pushed by the
proc macro and popped by the endproc macro, so that the same argument name can be used
in later procedures. Of course, you don't have to do that.
The macro set produces code for near functions (tiny, small and compact-model code) by default.
You can have it generate far functions (medium, large and huge-model code) by means of coding
%define FARCODE. This changes the kind of return instruction generated by endproc, and
also changes the starting point for the argument offsets. The macro set contains no intrinsic
dependency on whether data pointers are far or not.
arg can take an optional parameter, giving the size of the argument. If no size is given, 2 is
assumed, since it is likely that many function parameters will be of type int.

The large-model equivalent of the above function would look like this:
%define FARCODE
 proc _farproc
%$i arg
%$j arg 4
 mov ax,[bp + %$i]
 mov bx,[bp + %$j]
 mov es,[bp + %$j + 2]
 add ax,[bx]
 endproc
This makes use of the argument to the arg macro to define a parameter of size 4, because j is
now a far pointer. When we load from j, we must load a segment and an offset.

7.5. Interfacing to Borland Pascal Programs
Interfacing to Borland Pascal programs is similar in concept to interfacing to 16-bit C programs.
The differences are:
Ÿ The leading underscore required for interfacing to C programs is not required for Pascal.

Ÿ The memory model is always large: functions are far, data pointers are far, and no data item
can be more than 64K long. (Actually, some functions are near, but only those functions that
are local to a Pascal unit and never called from outside it. All assembly functions that Pascal
calls, and all Pascal functions that assembly routines are able to call, are far.) However, all
static data declared in a Pascal program goes into the default data segment, which is the one
whose segment address will be in DS when control is passed to your assembly code. The only
things that do not live in the default data segment are local variables (they live in the stack
segment) and dynamically allocated variables. All data pointers, however, are far.

Ÿ The function calling convention is different – described below.

Ÿ Some data types, such as strings, are stored differently.

Ÿ There are restrictions on the segment names you are allowed to use – Borland Pascal will
ignore code or data declared in a segment it doesn't like the name of. The restrictions are
described below.

Section 7.5.1: The Pascal Calling Convention
Section 7.5.2: Borland Pascal Segment Name Restrictions
Section 7.5.3: Using c16.mac With Pascal Programs

7.5.1. The Pascal Calling Convention
The 16-bit Pascal calling convention is as follows. In the following description, the words caller
and callee are used to denote the function doing the calling and the function which gets called.
Ÿ The caller pushes the function's parameters on the stack, one after another, in normal order

(left to right, so that the first argument specified to the function is pushed first).
Ÿ The caller then executes a far CALL instruction to pass control to the callee.

Ÿ The callee receives control, and typically (although this is not actually necessary, in functions
which do not need to access their parameters) starts by saving the value of SP in BP so as to
be able to use BP as a base pointer to find its parameters on the stack. However, the caller
was probably doing this too, so part of the calling convention states that BP must be
preserved by any function. Hence the callee, if it is going to set up BP as a frame pointer,
must push the previous value first.

Ÿ The callee may then access its parameters relative to BP. The word at [BP] holds the
previous value of BP as it was pushed. The next word, at [BP+2], holds the offset part of
the return address, and the next one at [BP+4] the segment part. The parameters begin at
[BP+6]. The rightmost parameter of the function, since it was pushed last, is accessible at
this offset from BP; the others follow, at successively greater offsets.

Ÿ The callee may also wish to decrease SP further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets from BP.

Ÿ The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or
DX:AX depending on the size of the value. Floating-point results are returned in ST0.
Results of type Real (Borland's own custom floating-point data type, not handled directly by
the FPU) are returned in DX:BX:AX. To return a result of type String, the caller pushes a
pointer to a temporary string before pushing the parameters, and the callee places the
returned string value at that location. The pointer is not a parameter, and should not be
removed from the stack by the RETF instruction.

Ÿ Once the callee has finished processing, it restores SP from BP if it had allocated local stack
space, then pops the previous value of BP, and returns via RETF. It uses the form of RETF
with an immediate parameter, giving the number of bytes taken up by the parameters on the
stack. This causes the parameters to be removed from the stack as a side effect of the return
instruction.

Ÿ When the caller regains control from the callee, the function parameters have already been
removed from the stack, so it needs to do nothing further.

Thus, you would define a function in Pascal style, taking two Integer–type parameters, in the
following way:
 global myfunc
myfunc: push bp
 mov bp,sp
 sub sp,0x40 ; 64 bytes of local stack space
 mov bx,[bp+8] ; first parameter to function

 mov bx,[bp+6] ; second parameter to function
 ; some more code
 mov sp,bp ; undo "sub sp,0x40" above
 pop bp
 retf 4 ; total size of params is 4
At the other end of the process, to call a Pascal function from your assembly code, you would do
something like this:
 extern SomeFunc
 ; and then, further down...
 push word seg mystring ; Now push the segment, and...
 push word mystring ; ... offset of "mystring"
 push word [myint] ; one of my variables
 call far SomeFunc
This is equivalent to the Pascal code
procedure SomeFunc(String: PChar; Int: Integer);
 SomeFunc(@@mystring, myint);

7.5.2. Borland Pascal Segment Name Restrictions
Since Borland Pascal's internal unit file format is completely different from OBJ, it only makes a
very sketchy job of actually reading and understanding the various information contained in a
real OBJ file when it links that in. Therefore an object file intended to be linked to a Pascal
program must obey a number of restrictions:
Ÿ Procedures and functions must be in a segment whose name is either CODE, CSEG, or

something ending in _TEXT.

Ÿ Initialised data must be in a segment whose name is either CONST or something ending in
_DATA.

Ÿ Uninitialised data must be in a segment whose name is either DATA, DSEG, or something
ending in _BSS.

Ÿ Any other segments in the object file are completely ignored. GROUP directives and segment
attributes are also ignored.

7.5.3. Using c16.mac With Pascal Programs
The c16.mac macro package, described in section 7.4.5, can also be used to simplify writing
functions to be called from Pascal programs, if you code %define PASCAL. This definition
ensures that functions are far (it implies FARCODE), and also causes procedure return
instructions to be generated with an operand.
Defining PASCAL does not change the code which calculates the argument offsets; you must
declare your function's arguments in reverse order. For example:
%define PASCAL
 proc _pascalproc
%$j arg 4
%$i arg
 mov ax,[bp + %$i]
 mov bx,[bp + %$j]
 mov es,[bp + %$j + 2]
 add ax,[bx]
 endproc
This defines the same routine, conceptually, as the example in section 7.4.5: it defines a function
taking two arguments, an integer and a pointer to an integer, which returns the sum of the integer
and the contents of the pointer. The only difference between this code and the large-model C
version is that PASCAL is defined instead of FARCODE, and that the arguments are declared in
reverse order.

Chapter 8: Writing 32-bit Code (Unix, Win32, DJGPP)
This chapter attempts to cover some of the common issues involved when writing 32-bit code, to
run under Win32 or Unix, or to be linked with C code generated by a Unix-style C compiler such
as DJGPP. It covers how to write assembly code to interface with 32-bit C routines, and how to
write position-independent code for shared libraries.
Almost all 32-bit code, and in particular all code running under Win32, DJGPP or any of the PC
Unix variants, runs in flat memory model. This means that the segment registers and paging have
already been set up to give you the same 32-bit 4Gb address space no matter what segment you
work relative to, and that you should ignore all segment registers completely. When writing flat-
model application code, you never need to use a segment override or modify any segment
register, and the code-section addresses you pass to CALL and JMP live in the same address
space as the data-section addresses you access your variables by and the stack-section addresses
you access local variables and procedure parameters by. Every address is 32 bits long and
contains only an offset part.
Section 8.1: Interfacing to 32-bit C Programs
Section 8.2: Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries

8.1. Interfacing to 32-bit C Programs
A lot of the discussion in section 7.4, about interfacing to 16-bit C programs, still applies when
working in 32 bits. The absence of memory models or segmentation worries simplifies things a
lot.
Section 8.1.1: External Symbol Names
Section 8.1.2: Function Definitions and Function Calls
Section 8.1.3: Accessing Data Items
Section 8.1.4: c32.mac: Helper Macros for the 32-bit C Interface

8.1.1. External Symbol Names
Most 32-bit C compilers share the convention used by 16-bit compilers, that the names of all
global symbols (functions or data) they define are formed by prefixing an underscore to the name
as it appears in the C program. However, not all of them do: the ELF specification states that C
symbols do not have a leading underscore on their assembly-language names.
The older Linux a.out C compiler, all Win32 compilers, DJGPP, and NetBSD and FreeBSD,
all use the leading underscore; for these compilers, the macros cextern and cglobal, as
given in section 7.4.1, will still work. For ELF, though, the leading underscore should not be
used.

8.1.2. Function Definitions and Function Calls
The C calling conventionThe C calling convention in 32-bit programs is as follows. In the
following description, the words caller and callee are used to denote the function doing the
calling and the function which gets called.
Ÿ The caller pushes the function's parameters on the stack, one after another, in reverse order

(right to left, so that the first argument specified to the function is pushed last).
Ÿ The caller then executes a near CALL instruction to pass control to the callee.

Ÿ The callee receives control, and typically (although this is not actually necessary, in functions
which do not need to access their parameters) starts by saving the value of ESP in EBP so as
to be able to use EBP as a base pointer to find its parameters on the stack. However, the caller
was probably doing this too, so part of the calling convention states that EBP must be
preserved by any C function. Hence the callee, if it is going to set up EBP as a frame pointer,
must push the previous value first.

Ÿ The callee may then access its parameters relative to EBP. The doubleword at [EBP] holds
the previous value of EBP as it was pushed; the next doubleword, at [EBP+4], holds the
return address, pushed implicitly by CALL. The parameters start after that, at [EBP+8]. The
leftmost parameter of the function, since it was pushed last, is accessible at this offset from
EBP; the others follow, at successively greater offsets. Thus, in a function such as printf
which takes a variable number of parameters, the pushing of the parameters in reverse order
means that the function knows where to find its first parameter, which tells it the number and
type of the remaining ones.

Ÿ The callee may also wish to decrease ESP further, so as to allocate space on the stack for
local variables, which will then be accessible at negative offsets from EBP.

Ÿ The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or EAX
depending on the size of the value. Floating-point results are typically returned in ST0.

Ÿ Once the callee has finished processing, it restores ESP from EBP if it had allocated local
stack space, then pops the previous value of EBP, and returns via RET (equivalently, RETN).

Ÿ When the caller regains control from the callee, the function parameters are still on the stack,
so it typically adds an immediate constant to ESP to remove them (instead of executing a
number of slow POP instructions). Thus, if a function is accidentally called with the wrong
number of parameters due to a prototype mismatch, the stack will still be returned to a
sensible state since the caller, which knows how many parameters it pushed, does the
removing.

There is an alternative calling convention used by Win32 programs for Windows API calls, and
also for functions called by the Windows API such as window procedures: they follow what
Microsoft calls the __stdcall convention. This is slightly closer to the Pascal convention, in
that the callee clears the stack by passing a parameter to the RET instruction. However, the
parameters are still pushed in right-to-left order.
Thus, you would define a function in C style in the following way:

 global _myfunc
_myfunc: push ebp
 mov ebp,esp
 sub esp,0x40 ; 64 bytes of local stack space
 mov ebx,[ebp+8] ; first parameter to function
 ; some more code
 leave ; mov esp,ebp / pop ebp
 ret
At the other end of the process, to call a C function from your assembly code, you would do
something like this:
 extern _printf
 ; and then, further down...
 push dword [myint] ; one of my integer variables
 push dword mystring ; pointer into my data segment
 call _printf
 add esp,byte 8 ; `byte' saves space
 ; then those data items...
 segment _DATA
myint dd 1234
mystring db 'This number -> %d <- should be 1234',10,0
This piece of code is the assembly equivalent of the C code
 int myint = 1234;
 printf("This number -> %d <- should be 1234\n", myint);

8.1.3. Accessing Data Items
To get at the contents of C variables, or to declare variables which C can access, you need only
declare the names as GLOBAL or EXTERN. (Again, the names require leading underscores, as
stated in section 8.1.1.) Thus, a C variable declared as int i can be accessed from assembler as
 extern _i
 mov eax,[_i]
And to declare your own integer variable which C programs can access as extern int j,
you do this (making sure you are assembling in the _DATA segment, if necessary):
 global _j
_j dd 0
To access a C array, you need to know the size of the components of the array. For example, int
variables are four bytes long, so if a C program declares an array as int a[10], you can
access a[3] by coding mov ax,[_a+12]. (The byte offset 12 is obtained by multiplying the
desired array index, 3, by the size of the array element, 4.) The sizes of the C base types in 32-bit
compilers are: 1 for char, 2 for short, 4 for int, long and float, and 8 for double.
Pointers, being 32-bit addresses, are also 4 bytes long.
To access a C data structure, you need to know the offset from the base of the structure to the
field you are interested in. You can either do this by converting the C structure definition into a
NASM structure definition (using STRUC), or by calculating the one offset and using just that.

To do either of these, you should read your C compiler's manual to find out how it organises data
structures. NASM gives no special alignment to structure members in its own STRUC macro, so
you have to specify alignment yourself if the C compiler generates it. Typically, you might find
that a structure like
struct @{
 char c;
 int i;
@} foo;
might be eight bytes long rather than five, since the int field would be aligned to a four-byte
boundary. However, this sort of feature is sometimes a configurable option in the C compiler,
either using command-line options or #pragma lines, so you have to find out how your own
compiler does it.

8.1.4. c32.mac: Helper Macros for the 32-bit C Interface
Included in the NASM archives, in the misc directory, is a file c32.mac of macros. It defines
three macros: proc, arg and endproc. These are intended to be used for C-style procedure
definitions, and they automate a lot of the work involved in keeping track of the calling
convention.
An example of an assembly function using the macro set is given here:
 proc _proc32
%$i arg
%$j arg
 mov eax,[ebp + %$i]
 mov ebx,[ebp + %$j]
 add eax,[ebx]
 endproc
This defines _proc32 to be a procedure taking two arguments, the first (i) an integer and the
second (j) a pointer to an integer. It returns i + *j.

Note that the arg macro has an EQU as the first line of its expansion, and since the label before
the macro call gets prepended to the first line of the expanded macro, the EQU works, defining %
$i to be an offset from BP. A context-local variable is used, local to the context pushed by the
proc macro and popped by the endproc macro, so that the same argument name can be used
in later procedures. Of course, you don't have to do that.
arg can take an optional parameter, giving the size of the argument. If no size is given, 4 is
assumed, since it is likely that many function parameters will be of type int or pointers.

8.2. Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared
Libraries
ELF replaced the older a.out object file format under Linux because it contains support for
positionindependent code (PIC), which makes writing shared libraries much easier. NASM
supports the ELF position-independent code features, so you can write Linux ELF shared
libraries in NASM.
NetBSD, and its close cousins FreeBSD and OpenBSD, take a different approach by hacking
PIC support into the a.out format. NASM supports this as the aoutb output format, so you
can write BSD shared libraries in NASM too.
The operating system loads a PIC shared library by memory-mapping the library file at an
arbitrarily chosen point in the address space of the running process. The contents of the library's
code section must therefore not depend on where it is loaded in memory.
Therefore, you cannot get at your variables by writing code like this:
 mov eax,[myvar] ; WRONG
Instead, the linker provides an area of memory called the global offset table, or GOT; the GOT is
situated at a constant distance from your library's code, so if you can find out where your library
is loaded (which is typically done using a CALL and POP combination), you can obtain the
address of the GOT, and you can then load the addresses of your variables out of linker-
generated entries in the GOT.
The data section of a PIC shared library does not have these restrictions: since the data section is
writable, it has to be copied into memory anyway rather than just paged in from the library file,
so as long as it's being copied it can be relocated too. So you can put ordinary types of relocation
in the data section without too much worry (but see section 8.2.4 for a caveat).
Section 8.2.1: Obtaining the Address of the GOT
Section 8.2.2: Finding Your Local Data Items
Section 8.2.3: Finding External and Common Data Items
Section 8.2.4: Exporting Symbols to the Library User
Section 8.2.5: Calling Procedures Outside the Library
Section 8.2.6: Generating the Library File

8.2.1. Obtaining the Address of the GOT
Each code module in your shared library should define the GOT as an external symbol:
 extern _GLOBAL_OFFSET_TABLE_ ; in ELF
 extern __GLOBAL_OFFSET_TABLE_ ; in BSD a.out
At the beginning of any function in your shared library which plans to access your data or BSS
sections, you must first calculate the address of the GOT. This is typically done by writing the
function in this form:
func: push ebp
 mov ebp,esp
 push ebx
 call .get_GOT
.get_GOT: pop ebx
 add ebx,_GLOBAL_OFFSET_TABLE_+$$-.get_GOT wrt ..gotpc
 ; the function body comes here
 mov ebx,[ebp-4]
 mov esp,ebp
 pop ebp
 ret
(For BSD, again, the symbol _GLOBAL_OFFSET_TABLE requires a second leading
underscore.)
The first two lines of this function are simply the standard C prologue to set up a stack frame,
and the last three lines are standard C function epilogue. The third line, and the fourth to last line,
save and restore the EBX register, because PIC shared libraries use this register to store the
address of the GOT.
The interesting bit is the CALL instruction and the following two lines. The CALL and POP
combination obtains the address of the label .get_GOT, without having to know in advance
where the program was loaded (since the CALL instruction is encoded relative to the current
position). The ADD instruction makes use of one of the special PIC relocation types: GOTPC
relocation. With the WRT ..gotpc qualifier specified, the symbol referenced (here
_GLOBAL_OFFSET_TABLE_, the special symbol assigned to the GOT) is given as an offset
from the beginning of the section. (Actually, ELF encodes it as the offset from the operand field
of the ADD instruction, but NASM simplifies this deliberately, so you do things the same way for
both ELF and BSD.) So the instruction then adds the beginning of the section, to get the real
address of the GOT, and subtracts the value of .get_GOT which it knows is in EBX. Therefore,
by the time that instruction has finished, EBX contains the address of the GOT.

If you didn't follow that, don't worry: it's never necessary to obtain the address of the GOT by
any other means, so you can put those three instructions into a macro and safely ignore them:
%macro get_GOT 0
 call %%getgot
%%getgot: pop ebx
 add ebx,_GLOBAL_OFFSET_TABLE_+$$-%%getgot wrt ..gotpc
%endmacro

8.2.2. Finding Your Local Data Items
Having got the GOT, you can then use it to obtain the addresses of your data items. Most
variables will reside in the sections you have declared; they can be accessed using the
..gotoff special WRT type. The way this works is like this:
 lea eax,[ebx+myvar wrt ..gotoff]
The expression myvar wrt ..gotoff is calculated, when the shared library is linked, to be
the offset to the local variable myvar from the beginning of the GOT. Therefore, adding it to
EBX as above will place the real address of myvar in EAX.

If you declare variables as GLOBAL without specifying a size for them, they are shared between
code modules in the library, but do not get exported from the library to the program that loaded
it. They will still be in your ordinary data and BSS sections, so you can access them in the same
way as local variables, using the above ..gotoff mechanism.

Note that due to a peculiarity of the way BSD a.out format handles this relocation type, there
must be at least one non-local symbol in the same section as the address you're trying to access.

8.2.3. Finding External and Common Data Items
If your library needs to get at an external variable (external to the library, not just to one of the
modules within it), you must use the ..got type to get at it. The ..got type, instead of giving
you the offset from the GOT base to the variable, gives you the offset from the GOT base to a
GOT entry containing the address of the variable. The linker will set up this GOT entry when it
builds the library, and the dynamic linker will place the correct address in it at load time. So to
obtain the address of an external variable extvar in EAX, you would code
 mov eax,[ebx+extvar wrt ..got]
This loads the address of extvar out of an entry in the GOT. The linker, when it builds the
shared library, collects together every relocation of type ..got, and builds the GOT so as to
ensure it has every necessary entry present.
Common variables must also be accessed in this way.

8.2.4. Exporting Symbols to the Library User
If you want to export symbols to the user of the library, you have to declare whether they are
functions or data, and if they are data, you have to give the size of the data item. This is because
the dynamic linker has to build procedure linkage table entries for any exported functions, and
also moves exported data items away from the library's data section in which they were declared.
So to export a function to users of the library, you must use
 global func:function ; declare it as a function
func: push ebp
 ; etc.
And to export a data item such as an array, you would have to code
 global array:data array.end-array ; give the size too
array: resd 128
.end:
Be careful: If you export a variable to the library user, by declaring it as GLOBAL and supplying
a size, the variable will end up living in the data section of the main program, rather than in your
library's data section, where you declared it. So you will have to access your own global variable
with the ..got mechanism rather than ..gotoff, as if it were external (which, effectively, it
has become).
Equally, if you need to store the address of an exported global in one of your data sections, you
can't do it by means of the standard sort of code:
dataptr: dd global_data_item ; WRONG
NASM will interpret this code as an ordinary relocation, in which global_data_item is
merely an offset from the beginning of the .data section (or whatever); so this reference will
end up pointing at your data section instead of at the exported global which resides elsewhere.
Instead of the above code, then, you must write
dataptr: dd global_data_item wrt ..sym
which makes use of the special WRT type ..sym to instruct NASM to search the symbol table
for a particular symbol at that address, rather than just relocating by section base.
Either method will work for functions: referring to one of your functions by means of
funcptr: dd my_function
will give the user the address of the code you wrote, whereas
funcptr: dd my_function wrt ..sym
will give the address of the procedure linkage table for the function, which is where the calling
program will believe the function lives. Either address is a valid way to call the function.

8.2.5. Calling Procedures Outside the Library
Calling procedures outside your shared library has to be done by means of a procedure linkage
table, or PLT. The PLT is placed at a known offset from where the library is loaded, so the library
code can make calls to the PLT in a position-independent way. Within the PLT there is code to
jump to offsets contained in the GOT, so function calls to other shared libraries or to routines in
the main program can be transparently passed off to their real destinations.
To call an external routine, you must use another special PIC relocation type, WRT ..plt. This
is much easier than the GOT-based ones: you simply replace calls such as CALL printf with
the PLT-relative version CALL printf WRT ..plt.

8.2.6. Generating the Library File
Having written some code modules and assembled them to .o files, you then generate your
shared library with a command such as
ld -shared -o library.so module1.o module2.o # for ELF
ld -Bshareable -o library.so module1.o module2.o # for BSD
For ELF, if your shared library is going to reside in system directories such as /usr/lib or
/lib, it is usually worth using the soname flag to the linker, to store the final library file name,
with a version number, into the library:
ld -shared -soname library.so.1 -o library.so.1.2 *.o
You would then copy library.so.1.2 into the library directory, and create
library.so.1 as a symbolic link to it.

Chapter 9: Mixing 16 and 32 Bit Code
This chapter tries to cover some of the issues, largely related to unusual forms of addressing and
jump instructions, encountered when writing operating system code such as protected-mode
initialisation routines, which require code that operates in mixed segment sizes, such as code in a
16-bit segment trying to modify data in a 32-bit one, or jumps between different-size segments.
Section 9.1: Mixed-Size Jumps
Section 9.2: Addressing Between Different-Size Segments
Section 9.3: Other Mixed-Size Instructions

9.1. Mixed-Size Jumps
The most common form of mixedsize instruction is the one used when writing a 32-bit OS:
having done your setup in 16-bit mode, such as loading the kernel, you then have to boot it by
switching into protected mode and jumping to the 32-bit kernel start address. In a fully 32-bit
OS, this tends to be the only mixed-size instruction you need, since everything before it can be
done in pure 16-bit code, and everything after it can be pure 32-bit.
This jump must specify a 48-bit far address, since the target segment is a 32-bit one. However, it
must be assembled in a 16-bit segment, so just coding, for example,
 jmp 0x1234:0x56789ABC ; wrong!
will not work, since the offset part of the address will be truncated to 0x9ABC and the jump will
be an ordinary 16-bit far one.
The Linux kernel setup code gets round the inability of as86 to generate the required instruction
by coding it manually, using DB instructions. NASM can go one better than that, by actually
generating the right instruction itself. Here's how to do it right:
 jmp dword 0x1234:0x56789ABC ; right
The DWORD prefix (strictly speaking, it should come after the colon, since it is declaring the
offset field to be a doubleword; but NASM will accept either form, since both are unambiguous)
forces the offset part to be treated as far, in the assumption that you are deliberately writing a
jump from a 16-bit segment to a 32-bit one.
You can do the reverse operation, jumping from a 32-bit segment to a 16-bit one, by means of the
WORD prefix:
 jmp word 0x8765:0x4321 ; 32 to 16 bit
If the WORD prefix is specified in 16-bit mode, or the DWORD prefix in 32-bit mode, they will be
ignored, since each is explicitly forcing NASM into a mode it was in anyway.

9.2. Addressing Between Different-Size Segments
If your OS is mixed 16 and 32-bit, or if you are writing a DOS extender, you are likely to have to
deal with some 16-bit segments and some 32-bit ones. At some point, you will probably end up
writing code in a 16-bit segment which has to access data in a 32-bit segment, or vice versa.
If the data you are trying to access in a 32-bit segment lies within the first 64K of the segment,
you may be able to get away with using an ordinary 16-bit addressing operation for the purpose;
but sooner or later, you will want to do 32-bit addressing from 16-bit mode.
The easiest way to do this is to make sure you use a register for the address, since any effective
address containing a 32-bit register is forced to be a 32-bit address. So you can do
 mov eax,offset_into_32_bit_segment_specified_by_fs
 mov dword [fs:eax],0x11223344
This is fine, but slightly cumbersome (since it wastes an instruction and a register) if you already
know the precise offset you are aiming at. The x86 architecture does allow 32-bit effective
addresses to specify nothing but a 4-byte offset, so why shouldn't NASM be able to generate the
best instruction for the purpose?
It can. As in section 9.1, you need only prefix the address with the DWORD keyword, and it will
be forced to be a 32-bit address:
 mov dword [fs:dword my_offset],0x11223344
Also as in section 9.1, NASM is not fussy about whether the DWORD prefix comes before or after
the segment override, so arguably a nicer-looking way to code the above instruction is
 mov dword [dword fs:my_offset],0x11223344
Don't confuse the DWORD prefix outside the square brackets, which controls the size of the data
stored at the address, with the one inside the square brackets which controls the length of the
address itself. The two can quite easily be different:
 mov word [dword 0x12345678],0x9ABC
This moves 16 bits of data to an address specified by a 32-bit offset.
You can also specify WORD or DWORD prefixes along with the FAR prefix to indirect far jumps or
calls. For example:
 call dword far [fs:word 0x4321]
This instruction contains an address specified by a 16-bit offset; it loads a 48-bit far pointer from
that (16-bit segment and 32-bit offset), and calls that address.

9.3. Other Mixed-Size Instructions
The other way you might want to access data might be using the string instructions (LODSx,
STOSx and so on) or the XLATB instruction. These instructions, since they take no parameters,
might seem to have no easy way to make them perform 32-bit addressing when assembled in a
16-bit segment.
This is the purpose of NASM's a16 and a32 prefixes. If you are coding LODSB in a 16-bit
segment but it is supposed to be accessing a string in a 32-bit segment, you should load the
desired address into ESI and then code
 a32 lodsb
The prefix forces the addressing size to 32 bits, meaning that LODSB loads from [DS:ESI]
instead of [DS:SI]. To access a string in a 16-bit segment when coding in a 32-bit one, the
corresponding a16 prefix can be used.

The a16 and a32 prefixes can be applied to any instruction in NASM's instruction table, but
most of them can generate all the useful forms without them. The prefixes are necessary only for
instructions with implicit addressing: CMPSx (section A.19), SCASx (section A.149), LODSx
(section A.98), STOSx (section A.157), MOVSx (section A.105), INSx (section A.80), OUTSx
(section A.112), and XLATB (section A.169). Also, the various push and pop instructions
(PUSHA and POPF as well as the more usual PUSH and POP) can accept a16 or a32 prefixes to
force a particular one of SP or ESP to be used as a stack pointer, in case the stack segment in use
is a different size from the code segment.
PUSH and POP, when applied to segment registers in 32-bit mode, also have the slightly odd
behaviour that they push and pop 4 bytes at a time, of which the top two are ignored and the
bottom two give the value of the segment register being manipulated. To force the 16-bit
behaviour of segment-register push and pop instructions, you can use the operand-size prefix
o16:
 o16 push ss
 o16 push ds
This code saves a doubleword of stack space by fitting two segment registers into the space
which would normally be consumed by pushing one.
(You can also use the o32 prefix to force the 32-bit behaviour when in 16-bit mode, but this
seems less useful.)

Chapter 10: Troubleshooting
This chapter describes some of the common problems that users have been known to encounter
with NASM, and answers them. It also gives instructions for reporting bugs in NASM if you find
a difficulty that isn't listed here.
Section 10.1: Common Problems
Section 10.2: Bugs

10.1. Common Problems
Section 10.1.1: NASM Generates Inefficient Code
Section 10.1.2: My Jumps are Out of Range
Section 10.1.3: ORG Doesn't Work
Section 10.1.4: TIMES Doesn't Work

10.1.1. NASM Generates Inefficient Code
I get a lot of `bug' reports about NASM generating inefficient, or even `wrong', code on
instructions such as ADD ESP,8. This is a deliberate design feature, connected to predictability
of output: NASM, on seeing ADD ESP,8, will generate the form of the instruction which leaves
room for a 32-bit offset. You need to code ADD ESP,BYTE 8 if you want the space-efficient
form of the instruction. This isn't a bug: at worst it's a misfeature, and that's a matter of opinion
only.

10.1.2. My Jumps are Out of Range
Similarly, people complain that when they issue conditional jumps (which are SHORT by default)
that try to jump too far, NASM reports `short jump out of range' instead of making the jumps
longer.
This, again, is partly a predictability issue, but in fact has a more practical reason as well. NASM
has no means of being told what type of processor the code it is generating will be run on; so it
cannot decide for itself that it should generate Jcc NEAR type instructions, because it doesn't
know that it's working for a 386 or above. Alternatively, it could replace the out-of-range short
JNE instruction with a very short JE instruction that jumps over a JMP NEAR; this is a sensible
solution for processors below a 386, but hardly efficient on processors which have good branch
prediction and could have used JNE NEAR instead. So, once again, it's up to the user, not the
assembler, to decide what instructions should be generated.

10.1.3. ORG Doesn't Work
People writing boot sector programs in the bin format often complain that ORG doesn't work the
way they'd like: in order to place the 0xAA55 signature word at the end of a 512-byte boot
sector, people who are used to MASM tend to code
 ORG 0
 ; some boot sector code
 ORG 510
 DW 0xAA55
This is not the intended use of the ORG directive in NASM, and will not work. The correct way
to solve this problem in NASM is to use the TIMES directive, like this:
 ORG 0
 ; some boot sector code
 TIMES 510-($-$$) DB 0
 DW 0xAA55
The TIMES directive will insert exactly enough zero bytes into the output to move the assembly
point up to 510. This method also has the advantage that if you accidentally fill your boot sector
too full, NASM will catch the problem at assembly time and report it, so you won't end up with a
boot sector that you have to disassemble to find out what's wrong with it.

10.1.4. TIMES Doesn't Work
The other common problem with the above code is people who write the TIMES line as
 TIMES 510-$ DB 0
by reasoning that $ should be a pure number, just like 510, so the difference between them is
also a pure number and can happily be fed to TIMES.

NASM is a modular assembler: the various component parts are designed to be easily separable
for re-use, so they don't exchange information unnecessarily. In consequence, the bin output
format, even though it has been told by the ORG directive that the .text section should start at
0, does not pass that information back to the expression evaluator. So from the evaluator's point
of view, $ isn't a pure number: it's an offset from a section base. Therefore the difference
between $ and 510 is also not a pure number, but involves a section base. Values involving
section bases cannot be passed as arguments to TIMES.

The solution, as in the previous section, is to code the TIMES line in the form
 TIMES 510-($-$$) DB 0
in which $ and $$ are offsets from the same section base, and so their difference is a pure
number. This will solve the problem and generate sensible code.

10.2. Bugs
We have never yet released a version of NASM with any known bugs. That doesn't usually stop
there being plenty we didn't know about, though. Any that you find should be reported to
anakin@pobox.com.

Please read section 2.2 first, and don't report the bug if it's listed in there as a deliberate feature.
(If you think the feature is badly thought out, feel free to send us reasons why you think it should
be changed, but don't just send us mail saying `This is a bug' if the documentation says we did it
on purpose.) Then read section 10.1, and don't bother reporting the bug if it's listed there.
If you do report a bug, please give us all of the following information:
Ÿ What operating system you're running NASM under. DOS, Linux, NetBSD, Win16, Win32,

VMS (I'd be impressed), whatever.
Ÿ If you're running NASM under DOS or Win32, tell us whether you've compiled your own

executable from the DOS source archive, or whether you were using the standard distribution
binaries out of the archive. If you were using a locally built executable, try to reproduce the
problem using one of the standard binaries, as this will make it easier for us to reproduce
your problem prior to fixing it.

Ÿ Which version of NASM you're using, and exactly how you invoked it. Give us the precise
command line, and the contents of the NASM environment variable if any.

Ÿ Which versions of any supplementary programs you're using, and how you invoked them. If
the problem only becomes visible at link time, tell us what linker you're using, what version
of it you've got, and the exact linker command line. If the problem involves linking against
object files generated by a compiler, tell us what compiler, what version, and what command
line or options you used. (If you're compiling in an IDE, please try to reproduce the problem
with the command-line version of the compiler.)

Ÿ If at all possible, send us a NASM source file which exhibits the problem. If this causes
copyright problems (e.g. you can only reproduce the bug in restricted-distribution code) then
bear in mind the following two points: firstly, we guarantee that any source code sent to us
for the purposes of debugging NASM will be used only for the purposes of debugging
NASM, and that we will delete all our copies of it as soon as we have found and fixed the
bug or bugs in question; and secondly, we would prefer not to be mailed large chunks of code
anyway. The smaller the file, the better. A three-line sample file that does nothing useful
except demonstrate the problem is much easier to work with than a fully fledged ten-
thousand-line program. (Of course, some errors do only crop up in large files, so this may not
be possible.)

Ÿ A description of what the problem actually is. `It doesn't work' is not a helpful description!
Please describe exactly what is happening that shouldn't be, or what isn't happening that
should. Examples might be: `NASM generates an error message saying Line 3 for an error
that's actually on Line 5'; `NASM generates an error message that I believe it shouldn't be
generating at all'; `NASM fails to generate an error message that I believe it should be
generating'; `the object file produced from this source code crashes my linker'; `the ninth byte
of the output file is 66 and I think it should be 77 instead'.

Ÿ If you believe the output file from NASM to be faulty, send it to us. That allows us to
determine whether our own copy of NASM generates the same file, or whether the problem
is related to portability issues between our development platforms and yours. We can handle
binary files mailed to us as MIME attachments, uuencoded, and even BinHex. Alternatively,
we may be able to provide an FTP site you can upload the suspect files to; but mailing them
is easier for us.

Ÿ Any other information or data files that might be helpful. If, for example, the problem
involves NASM failing to generate an object file while TASM can generate an equivalent file
without trouble, then send us both object files, so we can see what TASM is doing differently
from us.

Appendix A: Intel x86 Instruction Reference
This appendix provides a complete list of the machine instructions which NASM will assemble,
and a short description of the function of each one.
It is not intended to be exhaustive documentation on the fine details of the instructions' function,
such as which exceptions they can trigger: for such documentation, you should go to Intel's Web
site, http://www.intel.com.

Instead, this appendix is intended primarily to provide documentation on the way the instructions
may be used within NASM. For example, looking up LOOP will tell you that NASM allows CX
or ECX to be specified as an optional second argument to the LOOP instruction, to enforce which
of the two possible counter registers should be used if the default is not the one desired.
The instructions are not quite listed in alphabetical order, since groups of instructions with
similar functions are lumped together in the same entry. Most of them don't move very far from
their alphabetic position because of this.
Section A.1: Key to Operand Specifications
Section A.2: Key to Opcode Descriptions
Section A.3: Key to Instruction Flags
Section A.4: AAA, AAS, AAM, AAD: ASCII Adjustments
Section A.5: ADC: Add with Carry
Section A.6: ADD: Add Integers
Section A.7: AND: Bitwise AND
Section A.8: ARPL: Adjust RPL Field of Selector
Section A.9: BOUND: Check Array Index against Bounds
Section A.10: BSF, BSR: Bit Scan
Section A.11: BSWAP: Byte Swap
Section A.12: BT, BTC, BTR, BTS: Bit Test
Section A.13: CALL: Call Subroutine
Section A.14: CBW, CWD, CDQ, CWDE: Sign Extensions
Section A.15: CLC, CLD, CLI, CLTS: Clear Flags
Section A.16: CMC: Complement Carry Flag
Section A.17: CMOVcc: Conditional Move
Section A.18: CMP: Compare Integers
Section A.19: CMPSB, CMPSW, CMPSD: Compare Strings
Section A.20: CMPXCHG, CMPXCHG486: Compare and Exchange
Section A.21: CMPXCHG8B: Compare and Exchange Eight Bytes
Section A.22: CPUID: Get CPU Identification Code
Section A.23: DAA, DAS: Decimal Adjustments
Section A.24: DEC: Decrement Integer
Section A.25: DIV: Unsigned Integer Divide
Section A.26: EMMS: Empty MMX State
Section A.27: ENTER: Create Stack Frame
Section A.28: F2XM1: Calculate 2**X-1
Section A.29: FABS: Floating-Point Absolute Value
Section A.30: FADD, FADDP: Floating-Point Addition
Section A.31: FBLD, FBSTP: BCD Floating-Point Load and Store

Section A.32: FCHS: Floating-Point Change Sign
Section A.33: FCLEX, {FNCLEX}: Clear Floating-Point Exceptions
Section A.34: FCMOVcc: Floating-Point Conditional Move
Section A.35: FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP: Floating-Point Compare
Section A.36: FCOS: Cosine
Section A.37: FDECSTP: Decrement Floating-Point Stack Pointer
Section A.38: FxDISI, FxENI: Disable and Enable Floating-Point Interrupts
Section A.39: FDIV, FDIVP, FDIVR, FDIVRP: Floating-Point Division
Section A.40: FFREE: Flag Floating-Point Register as Unused
Section A.41: FIADD: Floating-Point/Integer Addition
Section A.42: FICOM, FICOMP: Floating-Point/Integer Compare
Section A.43: FIDIV, FIDIVR: Floating-Point/Integer Division
Section A.44: FILD, FIST, FISTP: Floating-Point/Integer Conversion
Section A.45: FIMUL: Floating-Point/Integer Multiplication
Section A.46: FINCSTP: Increment Floating-Point Stack Pointer
Section A.47: FINIT, FNINIT: Initialise Floating-Point Unit
Section A.48: FISUB: Floating-Point/Integer Subtraction
Section A.49: FLD: Floating-Point Load
Section A.50: FLDxx: Floating-Point Load Constants
Section A.51: FLDCW: Load Floating-Point Control Word
Section A.52: FLDENV: Load Floating-Point Environment
Section A.53: FMUL, FMULP: Floating-Point Multiply
Section A.54: FNOP: Floating-Point No Operation
Section A.55: FPATAN, FPTAN: Arctangent and Tangent
Section A.56: FPREM, FPREM1: Floating-Point Partial Remainder
Section A.57: FRNDINT: Floating-Point Round to Integer
Section A.58: FSAVE, FRSTOR: Save/Restore Floating-Point State
Section A.59: FSCALE: Scale Floating-Point Value by Power of Two
Section A.60: FSETPM: Set Protected Mode
Section A.61: FSIN, FSINCOS: Sine and Cosine
Section A.62: FSQRT: Floating-Point Square Root
Section A.63: FST, FSTP: Floating-Point Store
Section A.64: FSTCW: Store Floating-Point Control Word
Section A.65: FSTENV: Store Floating-Point Environment
Section A.66: FSTSW: Store Floating-Point Status Word
Section A.67: FSUB, FSUBP, FSUBR, FSUBRP: Floating-Point Subtract
Section A.68: FTST: Test ST0 Against Zero
Section A.69: FUCOMxx: Floating-Point Unordered Compare
Section A.70: FXAM: Examine Class of Value in ST0
Section A.71: FXCH: Floating-Point Exchange
Section A.72: FXTRACT: Extract Exponent and Significand
Section A.73: FYL2X, FYL2XP1: Compute Y times Log2(X) or Log2(X+1)
Section A.74: HLT: Halt Processor
Section A.75: IBTS: Insert Bit String
Section A.76: IDIV: Signed Integer Divide
Section A.77: IMUL: Signed Integer Multiply

Section A.78: IN: Input from I/O Port
Section A.79: INC: Increment Integer
Section A.80: INSB, INSW, INSD: Input String from I/O Port
Section A.81: INT: Software Interrupt
Section A.82: INT3, INT1, ICEBP, INT01: Breakpoints
Section A.83: INTO: Interrupt if Overflow
Section A.84: INVD: Invalidate Internal Caches
Section A.85: INVLPG: Invalidate TLB Entry
Section A.86: IRET, IRETW, IRETD: Return from Interrupt
Section A.87: JCXZ, JECXZ: Jump if CX/ECX Zero
Section A.88: JMP: Jump
Section A.89: Jcc: Conditional Branch
Section A.90: LAHF: Load AH from Flags
Section A.91: LAR: Load Access Rights
Section A.92: LDS, LES, LFS, LGS, LSS: Load Far Pointer
Section A.93: LEA: Load Effective Address
Section A.94: LEAVE: Destroy Stack Frame
Section A.95: LGDT, LIDT, LLDT: Load Descriptor Tables
Section A.96: LMSW: Load/Store Machine Status Word
Section A.97: LOADALL, LOADALL286: Load Processor State
Section A.98: LODSB, LODSW, LODSD: Load from String
Section A.99: LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ: Loop with Counter
Section A.100: LSL: Load Segment Limit
Section A.101: LTR: Load Task Register
Section A.102: MOV: Move Data
Section A.103: MOVD: Move Doubleword to/from MMX Register
Section A.104: MOVQ: Move Quadword to/from MMX Register
Section A.105: MOVSB, MOVSW, MOVSD: Move String
Section A.106: MOVSX, MOVZX: Move Data with Sign or Zero Extend
Section A.107: MUL: Unsigned Integer Multiply
Section A.108: NEG, NOT: Two's and One's Complement
Section A.109: NOP: No Operation
Section A.110: OR: Bitwise OR
Section A.111: OUT: Output Data to I/O Port
Section A.112: OUTSB, OUTSW, OUTSD: Output String to I/O Port
Section A.113: PACKSSDW, PACKSSWB, PACKUSWB: Pack Data
Section A.114: PADDxx: MMX Packed Addition
Section A.115: PADDSIW: MMX Packed Addition to Implicit Destination
Section A.116: PAND, PANDN: MMX Bitwise AND and AND-NOT
Section A.117: PAVEB: MMX Packed Average
Section A.118: PCMPxx: MMX Packed Comparison
Section A.119: PDISTIB: MMX Packed Distance and Accumulate with Implied Register
Section A.120: PMACHRIW: MMX Packed Multiply and Accumulate with Rounding
Section A.121: PMADDWD: MMX Packed Multiply and Add
Section A.122: PMAGW: MMX Packed Magnitude
Section A.123: PMULHRW, PMULHRIW: MMX Packed Multiply High with Rounding

Section A.124: PMULHW, PMULLW: MMX Packed Multiply
Section A.125: PMVccZB: MMX Packed Conditional Move
Section A.126: POP: Pop Data from Stack
Section A.127: POPAx: Pop All General-Purpose Registers
Section A.128: POPFx: Pop Flags Register
Section A.129: POR: MMX Bitwise OR
Section A.130: PSLLx, PSRLx, PSRAx: MMX Bit Shifts
Section A.131: PSUBxx: MMX Packed Subtraction
Section A.132: PSUBSIW: MMX Packed Subtract with Saturation to Implied Destination
Section A.133: PUNPCKxxx: Unpack Data
Section A.134: PUSH: Push Data on Stack
Section A.135: PUSHAx: Push All General-Purpose Registers
Section A.136: PUSHFx: Push Flags Register
Section A.137: PXOR: MMX Bitwise XOR
Section A.138: RCL, RCR: Bitwise Rotate through Carry Bit
Section A.139: RDMSR: Read Model-Specific Registers
Section A.140: RDPMC: Read Performance-Monitoring Counters
Section A.141: RDTSC: Read Time-Stamp Counter
Section A.142: RET, RETF, RETN: Return from Procedure Call
Section A.143: ROL, ROR: Bitwise Rotate
Section A.144: RSM: Resume from System-Management Mode
Section A.145: SAHF: Store AH to Flags
Section A.146: SAL, SAR: Bitwise Arithmetic Shifts
Section A.147: SALC: Set AL from Carry Flag
Section A.148: SBB: Subtract with Borrow
Section A.149: SCASB, SCASW, SCASD: Scan String
Section A.150: SETcc: Set Register from Condition
Section A.151: SGDT, SIDT, SLDT: Store Descriptor Table Pointers
Section A.152: SHL, SHR: Bitwise Logical Shifts
Section A.153: SHLD, SHRD: Bitwise Double-Precision Shifts
Section A.154: SMI: System Management Interrupt
Section A.155: SMSW: Store Machine Status Word
Section A.156: STC, STD, STI: Set Flags
Section A.157: STOSB, STOSW, STOSD: Store Byte to String
Section A.158: STR: Store Task Register
Section A.159: SUB: Subtract Integers
Section A.160: TEST: Test Bits (notional bitwise AND)
Section A.161: UMOV: User Move Data
Section A.162: VERR, VERW: Verify Segment Readability/Writability
Section A.163: WAIT: Wait for Floating-Point Processor
Section A.164: WBINVD: Write Back and Invalidate Cache
Section A.165: WRMSR: Write Model-Specific Registers
Section A.166: XADD: Exchange and Add
Section A.167: XBTS: Extract Bit String
Section A.168: XCHG: Exchange
Section A.169: XLATB: Translate Byte in Lookup Table

Section A.170: XOR: Bitwise Exclusive OR

A.1. Key to Operand Specifications
The instruction descriptions in this appendix specify their operands using the following notation:
Ÿ Registers: reg8 denotes an 8-bit general purpose register, reg16 denotes a 16-bit general

purpose register, and reg32 a 32-bit one. fpureg denotes one of the eight FPU stack
registers, mmxreg denotes one of the eight 64-bit MMX registers, and segreg denotes a
segment register. In addition, some registers (such as AL, DX or ECX) may be specified
explicitly.

Ÿ Immediate operands: imm denotes a generic immediate operand. imm8, imm16 and imm32
are used when the operand is intended to be a specific size. For some of these instructions,
NASM needs an explicit specifier: for example, ADD ESP,16 could be interpreted as either
ADD r/m32,imm32 or ADD r/m32,imm8. NASM chooses the former by default, and so
you must specify ADD ESP,BYTE 16 for the latter.

Ÿ Memory references: mem denotes a generic memory reference; mem8, mem16, mem32,
mem64 and mem80 are used when the operand needs to be a specific size. Again, a specifier
is needed in some cases: DEC [address] is ambiguous and will be rejected by NASM.
You must specify DEC BYTE [address], DEC WORD [address] or
DEC DWORD [address] instead.

Ÿ Restricted memory references: one form of the MOV instruction allows a memory address to
be specified without allowing the normal range of register combinations and effective address
processing. This is denoted by memoffs8, memoffs16 and memoffs32.

Ÿ Register or memory choices: many instructions can accept either a register or a memory
reference as an operand. r/m8 is a shorthand for reg8/mem8; similarly r/m16 and
r/m32. r/m64 is MMX-related, and is a shorthand for mmxreg/mem64.

A.2. Key to Opcode Descriptions
This appendix also provides the opcodes which NASM will generate for each form of each
instruction. The opcodes are listed in the following way:
Ÿ A hex number, such as 3F, indicates a fixed byte containing that number.

Ÿ A hex number followed by +r, such as C8+r, indicates that one of the operands to the
instruction is a register, and the `register value' of that register should be added to the hex
number to produce the generated byte. For example, EDX has register value 2, so the code
C8+r, when the register operand is EDX, generates the hex byte CA. Register values for
specific registers are given in section A.2.1.

Ÿ A hex number followed by +cc, such as 40+cc, indicates that the instruction name has a
condition code suffix, and the numeric representation of the condition code should be added
to the hex number to produce the generated byte. For example, the code 40+cc, when the
instruction contains the NE condition, generates the hex byte 45. Condition codes and their
numeric representations are given in section A.2.2.

Ÿ A slash followed by a digit, such as /2, indicates that one of the operands to the instruction is
a memory address or register (denoted mem or r/m, with an optional size). This is to be
encoded as an effective address, with a ModR/M byte, an optional SIB byte, and an optional
displacement, and the spare (register) field of the ModR/M byte should be the digit given
(which will be from 0 to 7, so it fits in three bits). The encoding of effective addresses is
given in section A.2.3.

Ÿ The code /r combines the above two: it indicates that one of the operands is a memory
address or r/m, and another is a register, and that an effective address should be generated
with the spare (register) field in the ModR/M byte being equal to the `register value' of the
register operand. The encoding of effective addresses is given in section A.2.3; register
values are given in section A.2.1.

Ÿ The codes ib, iw and id indicate that one of the operands to the instruction is an immediate
value, and that this is to be encoded as a byte, little-endian word or little-endian doubleword
respectively.

Ÿ The codes rb, rw and rd indicate that one of the operands to the instruction is an immediate
value, and that the difference between this value and the address of the end of the instruction
is to be encoded as a byte, word or doubleword respectively. Where the form rw/rd appears,
it indicates that either rw or rd should be used according to whether assembly is being
performed in BITS 16 or BITS 32 state respectively.

Ÿ The codes ow and od indicate that one of the operands to the instruction is a reference to the
contents of a memory address specified as an immediate value: this encoding is used in some
forms of the MOV instruction in place of the standard effective-address mechanism. The
displacement is encoded as a word or doubleword. Again, ow/od denotes that ow or od
should be chosen according to the BITS setting.

Ÿ The codes o16 and o32 indicate that the given form of the instruction should be assembled
with operand size 16 or 32 bits. In other words, o16 indicates a 66 prefix in BITS 32 state,

but generates no code in BITS 16 state; and o32 indicates a 66 prefix in BITS 16 state
but generates nothing in BITS 32.

Ÿ The codes a16 and a32, similarly to o16 and o32, indicate the address size of the given
form of the instruction. Where this does not match the BITS setting, a 67 prefix is required.

Section A.2.1: Register Values
Section A.2.2: Condition Codes
Section A.2.3: Effective Address Encoding: ModR/M and SIB

A.2.1. Register Values
Where an instruction requires a register value, it is already implicit in the encoding of the rest of
the instruction what type of register is intended: an 8-bit general-purpose register, a segment
register, a debug register, an MMX register, or whatever. Therefore there is no problem with
registers of different types sharing an encoding value.
The encodings for the various classes of register are:
Ÿ 8-bit general registers: AL is 0, CL is 1, DL is 2, BL is 3, AH is 4, CH is 5, DH is 6, and BH is

7.
Ÿ 16-bit general registers: AX is 0, CX is 1, DX is 2, BX is 3, SP is 4, BP is 5, SI is 6, and DI is

7.
Ÿ 32-bit general registers: EAX is 0, ECX is 1, EDX is 2, EBX is 3, ESP is 4, EBP is 5, ESI is 6,

and EDI is 7.

Ÿ Segment registers: ES is 0, CS is 1, SS is 2, DS is 3, FS is 4, and GS is 5.

Ÿ {Floating-point registers}: ST0 is 0, ST1 is 1, ST2 is 2, ST3 is 3, ST4 is 4, ST5 is 5, ST6 is
6, and ST7 is 7.

Ÿ 64-bit MMX registers: MM0 is 0, MM1 is 1, MM2 is 2, MM3 is 3, MM4 is 4, MM5 is 5, MM6 is 6,
and MM7 is 7.

Ÿ Control registers: CR0 is 0, CR2 is 2, CR3 is 3, and CR4 is 4.

Ÿ Debug registers: DR0 is 0, DR1 is 1, DR2 is 2, DR3 is 3, DR6 is 6, and DR7 is 7.

Ÿ Test registers: TR3 is 3, TR4 is 4, TR5 is 5, TR6 is 6, and TR7 is 7.

(Note that wherever a register name contains a number, that number is also the register value for
that register.)

A.2.2. Condition Codes
The available condition codes are given here, along with their numeric representations as part of
opcodes. Many of these condition codes have synonyms, so several will be listed at a time.
In the following descriptions, the word `either', when applied to two possible trigger conditions,
is used to mean `either or both'. If `either but not both' is meant, the phrase `exactly one of' is
used.
Ÿ O is 0 (trigger if the overflow flag is set); NO is 1.

Ÿ B, C and NAE are 2 (trigger if the carry flag is set); AE, NB and NC are 3.

Ÿ E and Z are 4 (trigger if the zero flag is set); NE and NZ are 5.

Ÿ BE and NA are 6 (trigger if either of the carry or zero flags is set); A and NBE are 7.

Ÿ S is 8 (trigger if the sign flag is set); NS is 9.

Ÿ P and PE are 10 (trigger if the parity flag is set); NP and PO are 11.

Ÿ L and NGE are 12 (trigger if exactly one of the sign and overflow flags is set); GE and NL are
13.

Ÿ LE and NG are 14 (trigger if either the zero flag is set, or exactly one of the sign and overflow
flags is set); G and NLE are 15.

Note that in all cases, the sense of a condition code may be reversed by changing the low bit of
the numeric representation.

A.2.3. Effective Address Encoding: ModR/M and SIB
An effective address is encoded in up to three parts: a ModR/M byte, an optional SIB byte, and
an optional byte, word or doubleword displacement field.
The ModR/M byte consists of three fields: the mod field, ranging from 0 to 3, in the upper two
bits of the byte, the r/m field, ranging from 0 to 7, in the lower three bits, and the spare
(register) field in the middle (bit 3 to bit 5). The spare field is not relevant to the effective address
being encoded, and either contains an extension to the instruction opcode or the register value of
another operand.
The ModR/M system can be used to encode a direct register reference rather than a memory
access. This is always done by setting the mod field to 3 and the r/m field to the register value
of the register in question (it must be a general-purpose register, and the size of the register must
already be implicit in the encoding of the rest of the instruction). In this case, the SIB byte and
displacement field are both absent.
In 16-bit addressing mode (either BITS 16 with no 67 prefix, or BITS 32 with a 67 prefix),
the SIB byte is never used. The general rules for mod and r/m (there is an exception, given
below) are:
Ÿ The mod field gives the length of the displacement field: 0 means no displacement, 1 means

one byte, and 2 means two bytes.
Ÿ The r/m field encodes the combination of registers to be added to the displacement to give

the accessed address: 0 means BX+SI, 1 means BX+DI, 2 means BP+SI, 3 means BP+DI, 4
means SI only, 5 means DI only, 6 means BP only, and 7 means BX only.

However, there is a special case:
Ÿ If mod is 0 and r/m is 6, the effective address encoded is not [BP] as the above rules would

suggest, but instead [disp16]: the displacement field is present and is two bytes long, and
no registers are added to the displacement.

Therefore the effective address [BP] cannot be encoded as efficiently as [BX]; so if you code
[BP] in a program, NASM adds a notional 8-bit zero displacement, and sets mod to 1, r/m to 6,
and the one-byte displacement field to 0.
In 32-bit addressing mode (either BITS 16 with a 67 prefix, or BITS 32 with no 67 prefix)
the general rules (again, there are exceptions) for mod and r/m are:

Ÿ The mod field gives the length of the displacement field: 0 means no displacement, 1 means
one byte, and 2 means four bytes.

Ÿ If only one register is to be added to the displacement, and it is not ESP, the r/m field gives
its register value, and the SIB byte is absent. If the r/m field is 4 (which would encode ESP),
the SIB byte is present and gives the combination and scaling of registers to be added to the
displacement.

If the SIB byte is present, it describes the combination of registers (an optional base register, and
an optional index register scaled by multiplication by 1, 2, 4 or 8) to be added to the
displacement. The SIB byte is divided into the scale field, in the top two bits, the index field

in the next three, and the base field in the bottom three. The general rules are:

Ÿ The base field encodes the register value of the base register.

Ÿ The index field encodes the register value of the index register, unless it is 4, in which case
no index register is used (so ESP cannot be used as an index register).

Ÿ The scale field encodes the multiplier by which the index register is scaled before adding it
to the base and displacement: 0 encodes a multiplier of 1, 1 encodes 2, 2 encodes 4 and 3
encodes 8.

The exceptions to the 32-bit encoding rules are:
Ÿ If mod is 0 and r/m is 5, the effective address encoded is not [EBP] as the above rules

would suggest, but instead [disp32]: the displacement field is present and is four bytes
long, and no registers are added to the displacement.

Ÿ If mod is 0, r/m is 4 (meaning the SIB byte is present) and base is 4, the effective address
encoded is not [EBP+index] as the above rules would suggest, but instead
[disp32+index]: the displacement field is present and is four bytes long, and there is no
base register (but the index register is still processed in the normal way).

A.3. Key to Instruction Flags
Given along with each instruction in this appendix is a set of flags, denoting the type of the
instruction. The types are as follows:
Ÿ 8086, 186, 286, 386, 486, PENT and P6 denote the lowest processor type that supports

the instruction. Most instructions run on all processors above the given type; those that do not
are documented. The Pentium II contains no additional instructions beyond the P6 (Pentium
Pro); from the point of view of its instruction set, it can be thought of as a P6 with MMX
capability.

Ÿ CYRIX indicates that the instruction is specific to Cyrix processors, for example the extra
MMX instructions in the Cyrix extended MMX instruction set.

Ÿ FPU indicates that the instruction is a floating-point one, and will only run on machines with
a coprocessor (automatically including 486DX, Pentium and above).

Ÿ MMX indicates that the instruction is an MMX one, and will run on MMX-capable Pentium
processors and the Pentium II.

Ÿ PRIV indicates that the instruction is a protected-mode management instruction. Many of
these may only be used in protected mode, or only at privilege level zero.

Ÿ UNDOC indicates that the instruction is an undocumented one, and not part of the official
Intel Architecture; it may or may not be supported on any given machine.

A.4. AAA, AAS, AAM, AAD: ASCII Adjustments
AAA ; 37 [8086]
AAS ; 3F [8086]
AAD ; D5 0A [8086]
AAD imm ; D5 ib [8086]
AAM ; D4 0A [8086]
AAM imm ; D4 ib [8086]
These instructions are used in conjunction with the add, subtract, multiply and divide instructions
to perform binary-coded decimal arithmetic in unpacked (one BCD digit per byte – easy to
translate to and from ASCII, hence the instruction names) form. There are also packed BCD
instructions DAA and DAS: see section A.23.

AAA should be used after a one-byte ADD instruction whose destination was the AL register: by
means of examining the value in the low nibble of AL and also the auxiliary carry flag AF, it
determines whether the addition has overflowed, and adjusts it (and sets the carry flag) if so. You
can add long BCD strings together by doing ADD/AAA on the low digits, then doing ADC/AAA on
each subsequent digit.
AAS works similarly to AAA, but is for use after SUB instructions rather than ADD.

AAM is for use after you have multiplied two decimal digits together and left the result in AL: it
divides AL by ten and stores the quotient in AH, leaving the remainder in AL. The divisor 10 can
be changed by specifying an operand to the instruction: a particularly handy use of this is
AAM 16, causing the two nibbles in AL to be separated into AH and AL.

AAD performs the inverse operation to AAM: it multiplies AH by ten, adds it to AL, and sets AH to
zero. Again, the multiplier 10 can be changed.

A.5. ADC: Add with Carry
ADC r/m8,reg8 ; 10 /r [8086]
ADC r/m16,reg16 ; o16 11 /r [8086]
ADC r/m32,reg32 ; o32 11 /r [386]
ADC reg8,r/m8 ; 12 /r [8086]
ADC reg16,r/m16 ; o16 13 /r [8086]
ADC reg32,r/m32 ; o32 13 /r [386]
ADC r/m8,imm8 ; 80 /2 ib [8086]
ADC r/m16,imm16 ; o16 81 /2 iw [8086]
ADC r/m32,imm32 ; o32 81 /2 id [386]
ADC r/m16,imm8 ; o16 83 /2 ib [8086]
ADC r/m32,imm8 ; o32 83 /2 ib [386]
ADC AL,imm8 ; 14 ib [8086]
ADC AX,imm16 ; o16 15 iw [8086]
ADC EAX,imm32 ; o32 15 id [386]
ADC performs integer addition: it adds its two operands together, plus the value of the carry flag,
and leaves the result in its destination (first) operand. The flags are set according to the result of
the operation: in particular, the carry flag is affected and can be used by a subsequent ADC
instruction.
In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. In
these cases, the BYTE qualifier is necessary to force NASM to generate this form of the
instruction.
To add two numbers without also adding the contents of the carry flag, use ADD (section A.6).

A.6. ADD: Add Integers
ADD r/m8,reg8 ; 00 /r [8086]
ADD r/m16,reg16 ; o16 01 /r [8086]
ADD r/m32,reg32 ; o32 01 /r [386]
ADD reg8,r/m8 ; 02 /r [8086]
ADD reg16,r/m16 ; o16 03 /r [8086]
ADD reg32,r/m32 ; o32 03 /r [386]
ADD r/m8,imm8 ; 80 /0 ib [8086]
ADD r/m16,imm16 ; o16 81 /0 iw [8086]
ADD r/m32,imm32 ; o32 81 /0 id [386]
ADD r/m16,imm8 ; o16 83 /0 ib [8086]
ADD r/m32,imm8 ; o32 83 /0 ib [386]
ADD AL,imm8 ; 04 ib [8086]
ADD AX,imm16 ; o16 05 iw [8086]
ADD EAX,imm32 ; o32 05 id [386]
ADD performs integer addition: it adds its two operands together, and leaves the result in its
destination (first) operand. The flags are set according to the result of the operation: in particular,
the carry flag is affected and can be used by a subsequent ADC instruction (section A.5).

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. In
these cases, the BYTE qualifier is necessary to force NASM to generate this form of the
instruction.

A.7. AND: Bitwise AND
AND r/m8,reg8 ; 20 /r [8086]
AND r/m16,reg16 ; o16 21 /r [8086]
AND r/m32,reg32 ; o32 21 /r [386]
AND reg8,r/m8 ; 22 /r [8086]
AND reg16,r/m16 ; o16 23 /r [8086]
AND reg32,r/m32 ; o32 23 /r [386]
AND r/m8,imm8 ; 80 /4 ib [8086]
AND r/m16,imm16 ; o16 81 /4 iw [8086]
AND r/m32,imm32 ; o32 81 /4 id [386]
AND r/m16,imm8 ; o16 83 /4 ib [8086]
AND r/m32,imm8 ; o32 83 /4 ib [386]
AND AL,imm8 ; 24 ib [8086]
AND AX,imm16 ; o16 25 iw [8086]
AND EAX,imm32 ; o32 25 id [386]
AND performs a bitwise AND operation between its two operands (i.e. each bit of the result is 1
if and only if the corresponding bits of the two inputs were both 1), and stores the result in the
destination (first) operand.
In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. In
these cases, the BYTE qualifier is necessary to force NASM to generate this form of the
instruction.
The MMX instruction PAND (see section A.116) performs the same operation on the 64-bit
MMX registers.

A.8. ARPL: Adjust RPL Field of Selector
ARPL r/m16,reg16 ; 63 /r [286,PRIV]
ARPL expects its two word operands to be segment selectors. It adjusts the RPL (requested
privilege level – stored in the bottom two bits of the selector) field of the destination (first)
operand to ensure that it is no less (i.e. no more privileged than) the RPL field of the source
operand. The zero flag is set if and only if a change had to be made.

A.9. BOUND: Check Array Index against Bounds
BOUND reg16,mem ; o16 62 /r [186]
BOUND reg32,mem ; o32 62 /r [386]
BOUND expects its second operand to point to an area of memory containing two signed values
of the same size as its first operand (i.e. two words for the 16-bit form; two doublewords for the
32-bit form). It performs two signed comparisons: if the value in the register passed as its first
operand is less than the first of the in-memory values, or is greater than or equal to the second, it
throws a BR exception. Otherwise, it does nothing.

A.10. BSF, BSR: Bit Scan
BSF reg16,r/m16 ; o16 0F BC /r [386]
BSF reg32,r/m32 ; o32 0F BC /r [386]
BSR reg16,r/m16 ; o16 0F BD /r [386]
BSR reg32,r/m32 ; o32 0F BD /r [386]
BSF searches for a set bit in its source (second) operand, starting from the bottom, and if it finds
one, stores the index in its destination (first) operand. If no set bit is found, the contents of the
destination operand are undefined.
BSR performs the same function, but searches from the top instead, so it finds the most
significant set bit.
Bit indices are from 0 (least significant) to 15 or 31 (most significant).

A.11. BSWAP: Byte Swap
BSWAP reg32 ; o32 0F C8+r [486]
BSWAP swaps the order of the four bytes of a 32-bit register: bits 0-7 exchange places with bits
24-31, and bits 8-15 swap with bits 16-23. There is no explicit 16-bit equivalent: to byte-swap
AX, BX, CX or DX, XCHG can be used.

A.12. BT, BTC, BTR, BTS: Bit Test
BT r/m16,reg16 ; o16 0F A3 /r [386]
BT r/m32,reg32 ; o32 0F A3 /r [386]
BT r/m16,imm8 ; o16 0F BA /4 ib [386]
BT r/m32,imm8 ; o32 0F BA /4 ib [386]
BTC r/m16,reg16 ; o16 0F BB /r [386]
BTC r/m32,reg32 ; o32 0F BB /r [386]
BTC r/m16,imm8 ; o16 0F BA /7 ib [386]
BTC r/m32,imm8 ; o32 0F BA /7 ib [386]
BTR r/m16,reg16 ; o16 0F B3 /r [386]
BTR r/m32,reg32 ; o32 0F B3 /r [386]
BTR r/m16,imm8 ; o16 0F BA /6 ib [386]
BTR r/m32,imm8 ; o32 0F BA /6 ib [386]
BTS r/m16,reg16 ; o16 0F AB /r [386]
BTS r/m32,reg32 ; o32 0F AB /r [386]
BTS r/m16,imm ; o16 0F BA /5 ib [386]
BTS r/m32,imm ; o32 0F BA /5 ib [386]
These instructions all test one bit of their first operand, whose index is given by the second
operand, and store the value of that bit into the carry flag. Bit indices are from 0 (least
significant) to 15 or 31 (most significant).
In addition to storing the original value of the bit into the carry flag, BTR also resets (clears) the
bit in the operand itself. BTS sets the bit, and BTC complements the bit. BT does not modify its
operands.
The bit offset should be no greater than the size of the operand.

A.13. CALL: Call Subroutine
CALL imm ; E8 rw/rd [8086]
CALL imm:imm16 ; o16 9A iw iw [8086]
CALL imm:imm32 ; o32 9A id iw [386]
CALL FAR mem16 ; o16 FF /3 [8086]
CALL FAR mem32 ; o32 FF /3 [386]
CALL r/m16 ; o16 FF /2 [8086]
CALL r/m32 ; o32 FF /2 [386]
CALL calls a subroutine, by means of pushing the current instruction pointer (IP) and optionally
CS as well on the stack, and then jumping to a given address.

CS is pushed as well as IP if and only if the call is a far call, i.e. a destination segment address is
specified in the instruction. The forms involving two colon-separated arguments are far calls; so
are the CALL FAR mem forms.

You can choose between the two immediate far call forms (CALL imm:imm) by the use of the
WORD and DWORD keywords: CALL WORD 0x1234:0x5678) or
CALL DWORD 0x1234:0x56789abc.

The CALL FAR mem forms execute a far call by loading the destination address out of memory.
The address loaded consists of 16 or 32 bits of offset (depending on the operand size), and 16
bits of segment. The operand size may be overridden using CALL WORD FAR mem or
CALL DWORD FAR mem.

The CALL r/m forms execute a near call (within the same segment), loading the destination
address out of memory or out of a register. The keyword NEAR may be specified, for clarity, in
these forms, but is not necessary. Again, operand size can be overridden using
CALL WORD mem or CALL DWORD mem.

As a convenience, NASM does not require you to call a far procedure symbol by coding the
cumbersome CALL SEG routine:routine, but instead allows the easier synonym
CALL FAR routine.

The CALL r/m forms given above are near calls; NASM will accept the NEAR keyword (e.g.
CALL NEAR [address]), even though it is not strictly necessary.

A.14. CBW, CWD, CDQ, CWDE: Sign Extensions
CBW ; o16 98 [8086]
CWD ; o16 99 [8086]
CDQ ; o32 99 [386]
CWDE ; o32 98 [386]
All these instructions sign-extend a short value into a longer one, by replicating the top bit of the
original value to fill the extended one.
CBW extends AL into AX by repeating the top bit of AL in every bit of AH. CWD extends AX into
DX:AX by repeating the top bit of AX throughout DX. CWDE extends AX into EAX, and CDQ
extends EAX into EDX:EAX.

A.15. CLC, CLD, CLI, CLTS: Clear Flags
CLC ; F8 [8086]
CLD ; FC [8086]
CLI ; FA [8086]
CLTS ; 0F 06 [286,PRIV]
These instructions clear various flags. CLC clears the carry flag; CLD clears the direction flag;
CLI clears the interrupt flag (thus disabling interrupts); and CLTS clears the task-switched (TS)
flag in CR0.

To set the carry, direction, or interrupt flags, use the STC, STD and STI instructions (section
A.156). To invert the carry flag, use CMC (section A.16).

A.16. CMC: Complement Carry Flag
CMC ; F5 [8086]
CMC changes the value of the carry flag: if it was 0, it sets it to 1, and vice versa.

A.17. CMOVcc: Conditional Move
CMOVcc reg16,r/m16 ; o16 0F 40+cc /r [P6]
CMOVcc reg32,r/m32 ; o32 0F 40+cc /r [P6]
CMOV moves its source (second) operand into its destination (first) operand if the given condition
code is satisfied; otherwise it does nothing.
For a list of condition codes, see section A.2.2.
Although the CMOV instructions are flagged P6 above, they may not be supported by all Pentium
Pro processors; the CPUID instruction (section A.22) will return a bit which indicates whether
conditional moves are supported.

A.18. CMP: Compare Integers
CMP r/m8,reg8 ; 38 /r [8086]
CMP r/m16,reg16 ; o16 39 /r [8086]
CMP r/m32,reg32 ; o32 39 /r [386]
CMP reg8,r/m8 ; 3A /r [8086]
CMP reg16,r/m16 ; o16 3B /r [8086]
CMP reg32,r/m32 ; o32 3B /r [386]
CMP r/m8,imm8 ; 80 /0 ib [8086]
CMP r/m16,imm16 ; o16 81 /0 iw [8086]
CMP r/m32,imm32 ; o32 81 /0 id [386]
CMP r/m16,imm8 ; o16 83 /0 ib [8086]
CMP r/m32,imm8 ; o32 83 /0 ib [386]
CMP AL,imm8 ; 3C ib [8086]
CMP AX,imm16 ; o16 3D iw [8086]
CMP EAX,imm32 ; o32 3D id [386]
CMP performs a `mental' subtraction of its second operand from its first operand, and affects the
flags as if the subtraction had taken place, but does not store the result of the subtraction
anywhere.
In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. In
these cases, the BYTE qualifier is necessary to force NASM to generate this form of the
instruction.

A.19. CMPSB, CMPSW, CMPSD: Compare Strings
CMPSB ; A6 [8086]
CMPSW ; o16 A7 [8086]
CMPSD ; o32 A7 [386]
CMPSB compares the byte at [DS:SI] or [DS:ESI] with the byte at [ES:DI] or
[ES:EDI], and sets the flags accordingly. It then increments or decrements (depending on the
direction flag: increments if the flag is clear, decrements if it is set) SI and DI (or ESI and
EDI).

The registers used are SI and DI if the address size is 16 bits, and ESI and EDI if it is 32 bits.
If you need to use an address size not equal to the current BITS setting, you can use an explicit
a16 or a32 prefix.

The segment register used to load from [SI] or [ESI] can be overridden by using a segment
register name as a prefix (for example, es cmpsb). The use of ES for the load from [DI] or
[EDI] cannot be overridden.

CMPSW and CMPSD work in the same way, but they compare a word or a doubleword instead of
a byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.
The REPE and REPNE prefixes (equivalently, REPZ and REPNZ) may be used to repeat the
instruction up to CX (or ECX – again, the address size chooses which) times until the first
unequal or equal byte is found.

A.20. CMPXCHG, CMPXCHG486: Compare and Exchange
CMPXCHG r/m8,reg8 ; 0F B0 /r [PENT]
CMPXCHG r/m16,reg16 ; o16 0F B1 /r [PENT]
CMPXCHG r/m32,reg32 ; o32 0F B1 /r [PENT]
CMPXCHG486 r/m8,reg8 ; 0F A6 /r [486,UNDOC]
CMPXCHG486 r/m16,reg16 ; o16 0F A7 /r [486,UNDOC]
CMPXCHG486 r/m32,reg32 ; o32 0F A7 /r [486,UNDOC]
These two instructions perform exactly the same operation; however, apparently some (not all)
486 processors support it under a non-standard opcode, so NASM provides the undocumented
CMPXCHG486 form to generate the non-standard opcode.

CMPXCHG compares its destination (first) operand to the value in AL, AX or EAX (depending on
the size of the instruction). If they are equal, it copies its source (second) operand into the
destination and sets the zero flag. Otherwise, it clears the zero flag and leaves the destination
alone.
CMPXCHG is intended to be used for atomic operations in multitasking or multiprocessor
environments. To safely update a value in shared memory, for example, you might load the value
into EAX, load the updated value into EBX, and then execute the instruction
lock cmpxchg [value],ebx. If value has not changed since being loaded, it is updated
with your desired new value, and the zero flag is set to let you know it has worked. (The LOCK
prefix prevents another processor doing anything in the middle of this operation: it guarantees
atomicity.) However, if another processor has modified the value in between your load and your
attempted store, the store does not happen, and you are notified of the failure by a cleared zero
flag, so you can go round and try again.

A.21. CMPXCHG8B: Compare and Exchange Eight Bytes
CMPXCHG8B mem ; 0F C7 /1 [PENT]
This is a larger and more unwieldy version of CMPXCHG: it compares the 64-bit (eight-byte)
value stored at [mem] with the value in EDX:EAX. If they are equal, it sets the zero flag and
stores ECX:EBX into the memory area. If they are unequal, it clears the zero flag and leaves the
memory area untouched.

A.22. CPUID: Get CPU Identification Code
CPUID ; 0F A2 [PENT]
CPUID returns various information about the processor it is being executed on. It fills the four
registers EAX, EBX, ECX and EDX with information, which varies depending on the input
contents of EAX.

CPUID also acts as a barrier to serialise instruction execution: executing the CPUID instruction
guarantees that all the effects (memory modification, flag modification, register modification) of
previous instructions have been completed before the next instruction gets fetched.
The information returned is as follows:
Ÿ If EAX is zero on input, EAX on output holds the maximum acceptable input value of EAX,

and EBX:EDX:ECX contain the string "GenuineIntel" (or not, if you have a clone
processor). That is to say, EBX contains "Genu" (in NASM's own sense of character
constants, described in section 3.4.2), EDX contains "ineI" and ECX contains "ntel".

Ÿ If EAX is one on input, EAX on output contains version information about the processor, and
EDX contains a set of feature flags, showing the presence and absence of various features.
For example, bit 8 is set if the CMPXCHG8B instruction (section A.21) is supported, bit 15 is
set if the conditional move instructions (section A.17 and section A.34) are supported, and bit
23 is set if MMX instructions are supported.

Ÿ If EAX is two on input, EAX, EBX, ECX and EDX all contain information about caches and
TLBs (Translation Lookahead Buffers).

For more information on the data returned from CPUID, see the documentation on Intel's web
site.

A.23. DAA, DAS: Decimal Adjustments
DAA ; 27 [8086]
DAS ; 2F [8086]
These instructions are used in conjunction with the add and subtract instructions to perform
binary-coded decimal arithmetic in packed (one BCD digit per nibble) form. For the unpacked
equivalents, see section A.4.
DAA should be used after a one-byte ADD instruction whose destination was the AL register: by
means of examining the value in the AL and also the auxiliary carry flag AF, it determines
whether either digit of the addition has overflowed, and adjusts it (and sets the carry and
auxiliary-carry flags) if so. You can add long BCD strings together by doing ADD/DAA on the
low two digits, then doing ADC/DAA on each subsequent pair of digits.

DAS works similarly to DAA, but is for use after SUB instructions rather than ADD.

A.24. DEC: Decrement Integer
DEC reg16 ; o16 48+r [8086]
DEC reg32 ; o32 48+r [386]
DEC r/m8 ; FE /1 [8086]
DEC r/m16 ; o16 FF /1 [8086]
DEC r/m32 ; o32 FF /1 [386]
DEC subtracts 1 from its operand. It does not affect the carry flag: to affect the carry flag, use
SUB something,1 (see section A.159). See also INC (section A.79).

A.25. DIV: Unsigned Integer Divide
DIV r/m8 ; F6 /6 [8086]
DIV r/m16 ; o16 F7 /6 [8086]
DIV r/m32 ; o32 F7 /6 [386]
DIV performs unsigned integer division. The explicit operand provided is the divisor; the
dividend and destination operands are implicit, in the following way:
Ÿ For DIV r/m8, AX is divided by the given operand; the quotient is stored in AL and the

remainder in AH.

Ÿ For DIV r/m16, DX:AX is divided by the given operand; the quotient is stored in AX and
the remainder in DX.

Ÿ For DIV r/m32, EDX:EAX is divided by the given operand; the quotient is stored in EAX
and the remainder in EDX.

Signed integer division is performed by the IDIV instruction: see section A.76.

A.26. EMMS: Empty MMX State
EMMS ; 0F 77 [PENT,MMX]
EMMS sets the FPU tag word (marking which floating-point registers are available) to all ones,
meaning all registers are available for the FPU to use. It should be used after executing MMX
instructions and before executing any subsequent floating-point operations.

A.27. ENTER: Create Stack Frame
ENTER imm,imm ; C8 iw ib [186]
ENTER constructs a stack frame for a high-level language procedure call. The first operand (the
iw in the opcode definition above refers to the first operand) gives the amount of stack space to
allocate for local variables; the second (the ib above) gives the nesting level of the procedure
(for languages like Pascal, with nested procedures).
The function of ENTER, with a nesting level of zero, is equivalent to
 PUSH EBP ; or PUSH BP in 16 bits
 MOV EBP,ESP ; or MOV BP,SP in 16 bits
 SUB ESP,operand1 ; or SUB SP,operand1 in 16 bits
This creates a stack frame with the procedure parameters accessible upwards from EBP, and
local variables accessible downwards from EBP.

With a nesting level of one, the stack frame created is 4 (or 2) bytes bigger, and the value of the
final frame pointer EBP is accessible in memory at [EBP4].

This allows ENTER, when called with a nesting level of two, to look at the stack frame described
by the previous value of EBP, find the frame pointer at offset –4 from that, and push it along with
its new frame pointer, so that when a level-two procedure is called from within a level-one
procedure, [EBP4] holds the frame pointer of the most recent level-one procedure call and
[EBP8] holds that of the most recent level-two call. And so on, for nesting levels up to 31.

Stack frames created by ENTER can be destroyed by the LEAVE instruction: see section A.94.

A.28. F2XM1: Calculate 2**X-1
F2XM1 ; D9 F0 [8086,FPU]
F2XM1 raises 2 to the power of ST0, subtracts one, and stores the result back into ST0. The
initial contents of ST0 must be a number in the range –1 to +1.

A.29. FABS: Floating-Point Absolute Value
FABS ; D9 E1 [8086,FPU]
FABS computes the absolute value of ST0, storing the result back in ST0.

A.30. FADD, FADDP: Floating-Point Addition
FADD mem32 ; D8 /0 [8086,FPU]
FADD mem64 ; DC /0 [8086,FPU]
FADD fpureg ; D8 C0+r [8086,FPU]
FADD ST0,fpureg ; D8 C0+r [8086,FPU]
FADD TO fpureg ; DC C0+r [8086,FPU]
FADD fpureg,ST0 ; DC C0+r [8086,FPU]
FADDP fpureg ; DE C0+r [8086,FPU]
FADDP fpureg,ST0 ; DE C0+r [8086,FPU]
FADD, given one operand, adds the operand to ST0 and stores the result back in ST0. If the
operand has the TO modifier, the result is stored in the register given rather than in ST0.

FADDP performs the same function as FADD TO, but pops the register stack after storing the
result.
The given two-operand forms are synonyms for the one-operand forms.

A.31. FBLD, FBSTP: BCD Floating-Point Load and Store
FBLD mem80 ; DF /4 [8086,FPU]
FBSTP mem80 ; DF /6 [8086,FPU]
FBLD loads an 80-bit (ten-byte) packed binary-coded decimal number from the given memory
address, converts it to a real, and pushes it on the register stack. FBSTP stores the value of ST0,
in packed BCD, at the given address and then pops the register stack.

A.32. FCHS: Floating-Point Change Sign
FCHS ; D9 E0 [8086,FPU]
FCHS negates the number in ST0: negative numbers become positive, and vice versa.

A.33. FCLEX, {FNCLEX}: Clear Floating-Point Exceptions
FCLEX ; 9B DB E2 [8086,FPU]
FNCLEX ; DB E2 [8086,FPU]
FCLEX clears any floating-point exceptions which may be pending. FNCLEX does the same
thing but doesn't wait for previous floating-point operations (including the handling of pending
exceptions) to finish first.

A.34. FCMOVcc: Floating-Point Conditional Move
FCMOVB fpureg ; DA C0+r [P6,FPU]
FCMOVB ST0,fpureg ; DA C0+r [P6,FPU]
FCMOVBE fpureg ; DA D0+r [P6,FPU]
FCMOVBE ST0,fpureg ; DA D0+r [P6,FPU]
FCMOVE fpureg ; DA C8+r [P6,FPU]
FCMOVE ST0,fpureg ; DA C8+r [P6,FPU]
FCMOVNB fpureg ; DB C0+r [P6,FPU]
FCMOVNB ST0,fpureg ; DB C0+r [P6,FPU]
FCMOVNBE fpureg ; DB D0+r [P6,FPU]
FCMOVNBE ST0,fpureg ; DB D0+r [P6,FPU]
FCMOVNE fpureg ; DB C8+r [P6,FPU]
FCMOVNE ST0,fpureg ; DB C8+r [P6,FPU]
FCMOVNU fpureg ; DB D8+r [P6,FPU]
FCMOVNU ST0,fpureg ; DB D8+r [P6,FPU]
FCMOVU fpureg ; DA D8+r [P6,FPU]
FCMOVU ST0,fpureg ; DA D8+r [P6,FPU]
The FCMOV instructions perform conditional move operations: each of them moves the contents
of the given register into ST0 if its condition is satisfied, and does nothing if not.

The conditions are not the same as the standard condition codes used with conditional jump
instructions. The conditions B, BE, NB, NBE, E and NE are exactly as normal, but none of the
other standard ones are supported. Instead, the condition U and its counterpart NU are provided;
the U condition is satisfied if the last two floating-point numbers compared were unordered, i.e.
they were not equal but neither one could be said to be greater than the other, for example if they
were NaNs. (The flag state which signals this is the setting of the parity flag: so the U condition
is notionally equivalent to PE, and NU is equivalent to PO.)

The FCMOV conditions test the main processor's status flags, not the FPU status flags, so using
FCMOV directly after FCOM will not work. Instead, you should either use FCOMI which writes
directly to the main CPU flags word, or use FSTSW to extract the FPU flags.

Although the FCMOV instructions are flagged P6 above, they may not be supported by all
Pentium Pro processors; the CPUID instruction (section A.22) will return a bit which indicates
whether conditional moves are supported.

A.35. FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP: Floating-Point
Compare
FCOM mem32 ; D8 /2 [8086,FPU]
FCOM mem64 ; DC /2 [8086,FPU]
FCOM fpureg ; D8 D0+r [8086,FPU]
FCOM ST0,fpureg ; D8 D0+r [8086,FPU]
FCOMP mem32 ; D8 /3 [8086,FPU]
FCOMP mem64 ; DC /3 [8086,FPU]
FCOMP fpureg ; D8 D8+r [8086,FPU]
FCOMP ST0,fpureg ; D8 D8+r [8086,FPU]
FCOMPP ; DE D9 [8086,FPU]
FCOMI fpureg ; DB F0+r [P6,FPU]
FCOMI ST0,fpureg ; DB F0+r [P6,FPU]
FCOMIP fpureg ; DF F0+r [P6,FPU]
FCOMIP ST0,fpureg ; DF F0+r [P6,FPU]
FCOM compares ST0 with the given operand, and sets the FPU flags accordingly. ST0 is treated
as the left-hand side of the comparison, so that the carry flag is set (for a `less-than' result) if ST0
is less than the given operand.
FCOMP does the same as FCOM, but pops the register stack afterwards. FCOMPP compares ST0
with ST1 and then pops the register stack twice.

FCOMI and FCOMIP work like the corresponding forms of FCOM and FCOMP, but write their
results directly to the CPU flags register rather than the FPU status word, so they can be
immediately followed by conditional jump or conditional move instructions.
The FCOM instructions differ from the FUCOM instructions (section A.69) only in the way they
handle quiet NaNs: FUCOM will handle them silently and set the condition code flags to an
`unordered' result, whereas FCOM will generate an exception.

A.36. FCOS: Cosine
FCOS ; D9 FF [386,FPU]
FCOS computes the cosine of ST0 (in radians), and stores the result in ST0. See also FSINCOS
(section A.61).

A.37. FDECSTP: Decrement Floating-Point Stack Pointer
FDECSTP ; D9 F6 [8086,FPU]
FDECSTP decrements the `top' field in the floating-point status word. This has the effect of
rotating the FPU register stack by one, as if the contents of ST7 had been pushed on the stack.
See also FINCSTP (section A.46).

A.38. FxDISI, FxENI: Disable and Enable Floating-Point
Interrupts
FDISI ; 9B DB E1 [8086,FPU]
FNDISI ; DB E1 [8086,FPU]
FENI ; 9B DB E0 [8086,FPU]
FNENI ; DB E0 [8086,FPU]
FDISI and FENI disable and enable floating-point interrupts. These instructions are only
meaningful on original 8087 processors: the 287 and above treat them as no-operation
instructions.
FNDISI and FNENI do the same thing as FDISI and FENI respectively, but without waiting
for the floating-point processor to finish what it was doing first.

A.39. FDIV, FDIVP, FDIVR, FDIVRP: Floating-Point Division
FDIV mem32 ; D8 /6 [8086,FPU]
FDIV mem64 ; DC /6 [8086,FPU]
FDIV fpureg ; D8 F0+r [8086,FPU]
FDIV ST0,fpureg ; D8 F0+r [8086,FPU]
FDIV TO fpureg ; DC F8+r [8086,FPU]
FDIV fpureg,ST0 ; DC F8+r [8086,FPU]
FDIVR mem32 ; D8 /0 [8086,FPU]
FDIVR mem64 ; DC /0 [8086,FPU]
FDIVR fpureg ; D8 F8+r [8086,FPU]
FDIVR ST0,fpureg ; D8 F8+r [8086,FPU]
FDIVR TO fpureg ; DC F0+r [8086,FPU]
FDIVR fpureg,ST0 ; DC F0+r [8086,FPU]
FDIVP fpureg ; DE F8+r [8086,FPU]
FDIVP fpureg,ST0 ; DE F8+r [8086,FPU]
FDIVRP fpureg ; DE F0+r [8086,FPU]
FDIVRP fpureg,ST0 ; DE F0+r [8086,FPU]
FDIV divides ST0 by the given operand and stores the result back in ST0, unless the TO
qualifier is given, in which case it divides the given operand by ST0 and stores the result in the
operand.
FDIVR does the same thing, but does the division the other way up: so if TO is not given, it
divides the given operand by ST0 and stores the result in ST0, whereas if TO is given it divides
ST0 by its operand and stores the result in the operand.

FDIVP operates like FDIV TO, but pops the register stack once it has finished. FDIVRP
operates like FDIVR TO, but pops the register stack once it has finished.

A.40. FFREE: Flag Floating-Point Register as Unused
FFREE fpureg ; DD C0+r [8086,FPU]
FFREE marks the given register as being empty.

A.41. FIADD: Floating-Point/Integer Addition
FIADD mem16 ; DE /0 [8086,FPU]
FIADD mem32 ; DA /0 [8086,FPU]
FIADD adds the 16-bit or 32-bit integer stored in the given memory location to ST0, storing the
result in ST0.

A.42. FICOM, FICOMP: Floating-Point/Integer Compare
FICOM mem16 ; DE /2 [8086,FPU]
FICOM mem32 ; DA /2 [8086,FPU]
FICOMP mem16 ; DE /3 [8086,FPU]
FICOMP mem32 ; DA /3 [8086,FPU]
FICOM compares ST0 with the 16-bit or 32-bit integer stored in the given memory location, and
sets the FPU flags accordingly. FICOMP does the same, but pops the register stack afterwards.

A.43. FIDIV, FIDIVR: Floating-Point/Integer Division
FIDIV mem16 ; DE /6 [8086,FPU]
FIDIV mem32 ; DA /6 [8086,FPU]
FIDIVR mem16 ; DE /0 [8086,FPU]
FIDIVR mem32 ; DA /0 [8086,FPU]
FIDIV divides ST0 by the 16-bit or 32-bit integer stored in the given memory location, and
stores the result in ST0. FIDIVR does the division the other way up: it divides the integer by
ST0, but still stores the result in ST0.

A.44. FILD, FIST, FISTP: Floating-Point/Integer Conversion
FILD mem16 ; DF /0 [8086,FPU]
FILD mem32 ; DB /0 [8086,FPU]
FILD mem64 ; DF /5 [8086,FPU]
FIST mem16 ; DF /2 [8086,FPU]
FIST mem32 ; DB /2 [8086,FPU]
FISTP mem16 ; DF /3 [8086,FPU]
FISTP mem32 ; DB /3 [8086,FPU]
FISTP mem64 ; DF /0 [8086,FPU]
FILD loads an integer out of a memory location, converts it to a real, and pushes it on the FPU
register stack. FIST converts ST0 to an integer and stores that in memory; FISTP does the
same as FIST, but pops the register stack afterwards.

A.45. FIMUL: Floating-Point/Integer Multiplication
FIMUL mem16 ; DE /1 [8086,FPU]
FIMUL mem32 ; DA /1 [8086,FPU]
FIMUL multiplies ST0 by the 16-bit or 32-bit integer stored in the given memory location, and
stores the result in ST0.

A.46. FINCSTP: Increment Floating-Point Stack Pointer
FINCSTP ; D9 F7 [8086,FPU]
FINCSTP increments the `top' field in the floating-point status word. This has the effect of
rotating the FPU register stack by one, as if the register stack had been popped; however, unlike
the popping of the stack performed by many FPU instructions, it does not flag the new ST7
(previously ST0) as empty. See also FDECSTP (section A.37).

A.47. FINIT, FNINIT: Initialise Floating-Point Unit
FINIT ; 9B DB E3 [8086,FPU]
FNINIT ; DB E3 [8086,FPU]
FINIT initialises the FPU to its default state. It flags all registers as empty, though it does not
actually change their values. FNINIT does the same, without first waiting for pending
exceptions to clear.

A.48. FISUB: Floating-Point/Integer Subtraction
FISUB mem16 ; DE /4 [8086,FPU]
FISUB mem32 ; DA /4 [8086,FPU]
FISUBR mem16 ; DE /5 [8086,FPU]
FISUBR mem32 ; DA /5 [8086,FPU]
FISUB subtracts the 16-bit or 32-bit integer stored in the given memory location from ST0, and
stores the result in ST0. FISUBR does the subtraction the other way round, i.e. it subtracts ST0
from the given integer, but still stores the result in ST0.

A.49. FLD: Floating-Point Load
FLD mem32 ; D9 /0 [8086,FPU]
FLD mem64 ; DD /0 [8086,FPU]
FLD mem80 ; DB /5 [8086,FPU]
FLD fpureg ; D9 C0+r [8086,FPU]
FLD loads a floating-point value out of the given register or memory location, and pushes it on
the FPU register stack.

A.50. FLDxx: Floating-Point Load Constants
FLD1 ; D9 E8 [8086,FPU]
FLDL2E ; D9 EA [8086,FPU]
FLDL2T ; D9 E9 [8086,FPU]
FLDLG2 ; D9 EC [8086,FPU]
FLDLN2 ; D9 ED [8086,FPU]
FLDPI ; D9 EB [8086,FPU]
FLDZ ; D9 EE [8086,FPU]
These instructions push specific standard constants on the FPU register stack. FLD1 pushes the
value 1; FLDL2E pushes the base-2 logarithm of e; FLDL2T pushes the base-2 log of 10;
FLDLG2 pushes the base-10 log of 2; FLDLN2 pushes the base-e log of 2; FLDPI pushes pi; and
FLDZ pushes zero.

A.51. FLDCW: Load Floating-Point Control Word
FLDCW mem16 ; D9 /5 [8086,FPU]
FLDCW loads a 16-bit value out of memory and stores it into the FPU control word (governing
things like the rounding mode, the precision, and the exception masks). See also FSTCW (section
A.64).

A.52. FLDENV: Load Floating-Point Environment
FLDENV mem ; D9 /4 [8086,FPU]
FLDENV loads the FPU operating environment (control word, status word, tag word, instruction
pointer, data pointer and last opcode) from memory. The memory area is 14 or 28 bytes long,
depending on the CPU mode at the time. See also FSTENV (section A.65).

A.53. FMUL, FMULP: Floating-Point Multiply
FMUL mem32 ; D8 /1 [8086,FPU]
FMUL mem64 ; DC /1 [8086,FPU]
FMUL fpureg ; D8 C8+r [8086,FPU]
FMUL ST0,fpureg ; D8 C8+r [8086,FPU]
FMUL TO fpureg ; DC C8+r [8086,FPU]
FMUL fpureg,ST0 ; DC C8+r [8086,FPU]
FMULP fpureg ; DE C8+r [8086,FPU]
FMULP fpureg,ST0 ; DE C8+r [8086,FPU]
FMUL multiplies ST0 by the given operand, and stores the result in ST0, unless the TO qualifier
is used in which case it stores the result in the operand. FMULP performs the same operation as
FMUL TO, and then pops the register stack.

A.54. FNOP: Floating-Point No Operation
FNOP ; D9 D0 [8086,FPU]
FNOP does nothing.

A.55. FPATAN, FPTAN: Arctangent and Tangent
FPATAN ; D9 F3 [8086,FPU]
FPTAN ; D9 F2 [8086,FPU]
FPATAN computes the arctangent, in radians, of the result of dividing ST1 by ST0, stores the
result in ST1, and pops the register stack. It works like the C atan2 function, in that changing
the sign of both ST0 and ST1 changes the output value by pi (so it performs true rectangular-to-
polar coordinate conversion, with ST1 being the Y coordinate and ST0 being the X coordinate,
not merely an arctangent).
FPTAN computes the tangent of the value in ST0 (in radians), and stores the result back into
ST0.

A.56. FPREM, FPREM1: Floating-Point Partial Remainder
FPREM ; D9 F8 [8086,FPU]
FPREM1 ; D9 F5 [386,FPU]
These instructions both produce the remainder obtained by dividing ST0 by ST1. This is
calculated, notionally, by dividing ST0 by ST1, rounding the result to an integer, multiplying by
ST1 again, and computing the value which would need to be added back on to the result to get
back to the original value in ST0.

The two instructions differ in the way the notional round-to-integer operation is performed.
FPREM does it by rounding towards zero, so that the remainder it returns always has the same
sign as the original value in ST0; FPREM1 does it by rounding to the nearest integer, so that the
remainder always has at most half the magnitude of ST1.

Both instructions calculate partial remainders, meaning that they may not manage to provide the
final result, but might leave intermediate results in ST0 instead. If this happens, they will set the
C2 flag in the FPU status word; therefore, to calculate a remainder, you should repeatedly
execute FPREM or FPREM1 until C2 becomes clear.

A.57. FRNDINT: Floating-Point Round to Integer
FRNDINT ; D9 FC [8086,FPU]
FRNDINT rounds the contents of ST0 to an integer, according to the current rounding mode set
in the FPU control word, and stores the result back in ST0.

A.58. FSAVE, FRSTOR: Save/Restore Floating-Point State
FSAVE mem ; 9B DD /6 [8086,FPU]
FNSAVE mem ; DD /6 [8086,FPU]
FRSTOR mem ; DD /4 [8086,FPU]
FSAVE saves the entire floating-point unit state, including all the information saved by FSTENV
(section A.65) plus the contents of all the registers, to a 94 or 108 byte area of memory
(depending on the CPU mode). FRSTOR restores the floating-point state from the same area of
memory.
FNSAVE does the same as FSAVE, without first waiting for pending floating-point exceptions to
clear.

A.59. FSCALE: Scale Floating-Point Value by Power of Two
FSCALE ; D9 FD [8086,FPU]
FSCALE scales a number by a power of two: it rounds ST1 towards zero to obtain an integer,
then multiplies ST0 by two to the power of that integer, and stores the result in ST0.

A.60. FSETPM: Set Protected Mode
FSETPM ; DB E4 [286,FPU]
This instruction initalises protected mode on the 287 floating-point coprocessor. It is only
meaningful on that processor: the 387 and above treat the instruction as a no-operation.

A.61. FSIN, FSINCOS: Sine and Cosine
FSIN ; D9 FE [386,FPU]
FSINCOS ; D9 FB [386,FPU]
FSIN calculates the sine of ST0 (in radians) and stores the result in ST0. FSINCOS does the
same, but then pushes the cosine of the same value on the register stack, so that the sine ends up
in ST1 and the cosine in ST0. FSINCOS is faster than executing FSIN and FCOS (see section
A.36) in succession.

A.62. FSQRT: Floating-Point Square Root
FSQRT ; D9 FA [8086,FPU]
FSQRT calculates the square root of ST0 and stores the result in ST0.

A.63. FST, FSTP: Floating-Point Store
FST mem32 ; D9 /2 [8086,FPU]
FST mem64 ; DD /2 [8086,FPU]
FST fpureg ; DD D0+r [8086,FPU]
FSTP mem32 ; D9 /3 [8086,FPU]
FSTP mem64 ; DD /3 [8086,FPU]
FSTP mem80 ; DB /0 [8086,FPU]
FSTP fpureg ; DD D8+r [8086,FPU]
FST stores the value in ST0 into the given memory location or other FPU register. FSTP does
the same, but then pops the register stack.

A.64. FSTCW: Store Floating-Point Control Word
FSTCW mem16 ; 9B D9 /0 [8086,FPU]
FNSTCW mem16 ; D9 /0 [8086,FPU]
FSTCW stores the FPU control word (governing things like the rounding mode, the precision, and
the exception masks) into a 2-byte memory area. See also FLDCW (section A.51).

FNSTCW does the same thing as FSTCW, without first waiting for pending floating-point
exceptions to clear.

A.65. FSTENV: Store Floating-Point Environment
FSTENV mem ; 9B D9 /6 [8086,FPU]
FNSTENV mem ; D9 /6 [8086,FPU]
FSTENV stores the FPU operating environment (control word, status word, tag word, instruction
pointer, data pointer and last opcode) into memory. The memory area is 14 or 28 bytes long,
depending on the CPU mode at the time. See also FLDENV (section A.52).

FNSTENV does the same thing as FSTENV, without first waiting for pending floating-point
exceptions to clear.

A.66. FSTSW: Store Floating-Point Status Word
FSTSW mem16 ; 9B DD /0 [8086,FPU]
FSTSW AX ; 9B DF E0 [286,FPU]
FNSTSW mem16 ; DD /0 [8086,FPU]
FNSTSW AX ; DF E0 [286,FPU]
FSTSW stores the FPU status word into AX or into a 2-byte memory area.

FNSTSW does the same thing as FSTSW, without first waiting for pending floating-point
exceptions to clear.

A.67. FSUB, FSUBP, FSUBR, FSUBRP: Floating-Point Subtract
FSUB mem32 ; D8 /4 [8086,FPU]
FSUB mem64 ; DC /4 [8086,FPU]
FSUB fpureg ; D8 E0+r [8086,FPU]
FSUB ST0,fpureg ; D8 E0+r [8086,FPU]
FSUB TO fpureg ; DC E8+r [8086,FPU]
FSUB fpureg,ST0 ; DC E8+r [8086,FPU]
FSUBR mem32 ; D8 /5 [8086,FPU]
FSUBR mem64 ; DC /5 [8086,FPU]
FSUBR fpureg ; D8 E8+r [8086,FPU]
FSUBR ST0,fpureg ; D8 E8+r [8086,FPU]
FSUBR TO fpureg ; DC E0+r [8086,FPU]
FSUBR fpureg,ST0 ; DC E0+r [8086,FPU]
FSUBP fpureg ; DE E8+r [8086,FPU]
FSUBP fpureg,ST0 ; DE E8+r [8086,FPU]
FSUBRP fpureg ; DE E0+r [8086,FPU]
FSUBRP fpureg,ST0 ; DE E0+r [8086,FPU]
FSUB subtracts the given operand from ST0 and stores the result back in ST0, unless the TO
qualifier is given, in which case it subtracts ST0 from the given operand and stores the result in
the operand.
FSUBR does the same thing, but does the subtraction the other way up: so if TO is not given, it
subtracts ST0 from the given operand and stores the result in ST0, whereas if TO is given it
subtracts its operand from ST0 and stores the result in the operand.

FSUBP operates like FSUB TO, but pops the register stack once it has finished. FSUBRP
operates like FSUBR TO, but pops the register stack once it has finished.

A.68. FTST: Test ST0 Against Zero
FTST ; D9 E4 [8086,FPU]
FTST compares ST0 with zero and sets the FPU flags accordingly. ST0 is treated as the left-
hand side of the comparison, so that a `less-than' result is generated if ST0 is negative.

A.69. FUCOMxx: Floating-Point Unordered Compare
FUCOM fpureg ; DD E0+r [386,FPU]
FUCOM ST0,fpureg ; DD E0+r [386,FPU]
FUCOMP fpureg ; DD E8+r [386,FPU]
FUCOMP ST0,fpureg ; DD E8+r [386,FPU]
FUCOMPP ; DA E9 [386,FPU]
FUCOMI fpureg ; DB E8+r [P6,FPU]
FUCOMI ST0,fpureg ; DB E8+r [P6,FPU]
FUCOMIP fpureg ; DF E8+r [P6,FPU]
FUCOMIP ST0,fpureg ; DF E8+r [P6,FPU]
FUCOM compares ST0 with the given operand, and sets the FPU flags accordingly. ST0 is
treated as the left-hand side of the comparison, so that the carry flag is set (for a `less-than'
result) if ST0 is less than the given operand.

FUCOMP does the same as FUCOM, but pops the register stack afterwards. FUCOMPP compares
ST0 with ST1 and then pops the register stack twice.

FUCOMI and FUCOMIP work like the corresponding forms of FUCOM and FUCOMP, but write
their results directly to the CPU flags register rather than the FPU status word, so they can be
immediately followed by conditional jump or conditional move instructions.
The FUCOM instructions differ from the FCOM instructions (section A.35) only in the way they
handle quiet NaNs: FUCOM will handle them silently and set the condition code flags to an
`unordered' result, whereas FCOM will generate an exception.

A.70. FXAM: Examine Class of Value in ST0
FXAM ; D9 E5 [8086,FPU]
FXAM sets the FPU flags C3, C2 and C0 depending on the type of value stored in ST0: 000
(respectively) for an unsupported format, 001 for a NaN, 010 for a normal finite number, 011 for
an infinity, 100 for a zero, 101 for an empty register, and 110 for a denormal. It also sets the C1
flag to the sign of the number.

A.71. FXCH: Floating-Point Exchange
FXCH ; D9 C9 [8086,FPU]
FXCH fpureg ; D9 C8+r [8086,FPU]
FXCH fpureg,ST0 ; D9 C8+r [8086,FPU]
FXCH ST0,fpureg ; D9 C8+r [8086,FPU]
FXCH exchanges ST0 with a given FPU register. The no-operand form exchanges ST0 with
ST1.

A.72. FXTRACT: Extract Exponent and Significand
FXTRACT ; D9 F4 [8086,FPU]
FXTRACT separates the number in ST0 into its exponent and significand (mantissa), stores the
exponent back into ST0, and then pushes the significand on the register stack (so that the
significand ends up in ST0, and the exponent in ST1).

A.73. FYL2X, FYL2XP1: Compute Y times Log2(X) or Log2(X+1)
FYL2X ; D9 F1 [8086,FPU]
FYL2XP1 ; D9 F9 [8086,FPU]
FYL2X multiplies ST1 by the base-2 logarithm of ST0, stores the result in ST1, and pops the
register stack (so that the result ends up in ST0). ST0 must be non-zero and positive.

FYL2XP1 works the same way, but replacing the base-2 log of ST0 with that of ST0 plus one.
This time, ST0 must have magnitude no greater than 1 minus half the square root of two.

A.74. HLT: Halt Processor
HLT ; F4 [8086]
HLT puts the processor into a halted state, where it will perform no more operations until
restarted by an interrupt or a reset.

A.75. IBTS: Insert Bit String
IBTS r/m16,reg16 ; o16 0F A7 /r [386,UNDOC]
IBTS r/m32,reg32 ; o32 0F A7 /r [386,UNDOC]
No clear documentation seems to be available for this instruction: the best I've been able to find
reads `Takes a string of bits from the second operand and puts them in the first operand'. It is
present only in early 386 processors, and conflicts with the opcodes for CMPXCHG486. NASM
supports it only for completeness. Its counterpart is XBTS (see section A.167).

A.76. IDIV: Signed Integer Divide
IDIV r/m8 ; F6 /7 [8086]
IDIV r/m16 ; o16 F7 /7 [8086]
IDIV r/m32 ; o32 F7 /7 [386]
IDIV performs signed integer division. The explicit operand provided is the divisor; the
dividend and destination operands are implicit, in the following way:
Ÿ For IDIV r/m8, AX is divided by the given operand; the quotient is stored in AL and the

remainder in AH.

Ÿ For IDIV r/m16, DX:AX is divided by the given operand; the quotient is stored in AX and
the remainder in DX.

Ÿ For IDIV r/m32, EDX:EAX is divided by the given operand; the quotient is stored in EAX
and the remainder in EDX.

Unsigned integer division is performed by the DIV instruction: see section A.25.

A.77. IMUL: Signed Integer Multiply
IMUL r/m8 ; F6 /5 [8086]
IMUL r/m16 ; o16 F7 /5 [8086]
IMUL r/m32 ; o32 F7 /5 [386]
IMUL reg16,r/m16 ; o16 0F AF /r [386]
IMUL reg32,r/m32 ; o32 0F AF /r [386]
IMUL reg16,imm8 ; o16 6B /r ib [286]
IMUL reg16,imm16 ; o16 69 /r iw [286]
IMUL reg32,imm8 ; o32 6B /r ib [386]
IMUL reg32,imm32 ; o32 69 /r id [386]
IMUL reg16,r/m16,imm8 ; o16 6B /r ib [286]
IMUL reg16,r/m16,imm16 ; o16 69 /r iw [286]
IMUL reg32,r/m32,imm8 ; o32 6B /r ib [386]
IMUL reg32,r/m32,imm32 ; o32 69 /r id [386]
IMUL performs signed integer multiplication. For the single-operand form, the other operand and
destination are implicit, in the following way:
Ÿ For IMUL r/m8, AL is multiplied by the given operand; the product is stored in AX.

Ÿ For IMUL r/m16, AX is multiplied by the given operand; the product is stored in DX:AX.

Ÿ For IMUL r/m32, EAX is multiplied by the given operand; the product is stored in
EDX:EAX.

The two-operand form multiplies its two operands and stores the result in the destination (first)
operand. The three-operand form multiplies its last two operands and stores the result in the first
operand.
The two-operand form is in fact a shorthand for the three-operand form, as can be seen by
examining the opcode descriptions: in the two-operand form, the code /r takes both its register
and r/m parts from the same operand (the first one).

In the forms with an 8-bit immediate operand and another longer source operand, the immediate
operand is considered to be signed, and is sign-extended to the length of the other source
operand. In these cases, the BYTE qualifier is necessary to force NASM to generate this form of
the instruction.
Unsigned integer multiplication is performed by the MUL instruction: see section A.107.

A.78. IN: Input from I/O Port
IN AL,imm8 ; E4 ib [8086]
IN AX,imm8 ; o16 E5 ib [8086]
IN EAX,imm8 ; o32 E5 ib [386]
IN AL,DX ; EC [8086]
IN AX,DX ; o16 ED [8086]
IN EAX,DX ; o32 ED [386]
IN reads a byte, word or doubleword from the specified I/O port, and stores it in the given
destination register. The port number may be specified as an immediate value if it is between 0
and 255, and otherwise must be stored in DX. See also OUT (section A.111).

A.79. INC: Increment Integer
INC reg16 ; o16 40+r [8086]
INC reg32 ; o32 40+r [386]
INC r/m8 ; FE /0 [8086]
INC r/m16 ; o16 FF /0 [8086]
INC r/m32 ; o32 FF /0 [386]
INC adds 1 to its operand. It does not affect the carry flag: to affect the carry flag, use
ADD something,1 (see section A.6). See also DEC (section A.24).

A.80. INSB, INSW, INSD: Input String from I/O Port
INSB ; 6C [186]
INSW ; o16 6D [186]
INSD ; o32 6D [386]
INSB inputs a byte from the I/O port specified in DX and stores it at [ES:DI] or [ES:EDI]. It
then increments or decrements (depending on the direction flag: increments if the flag is clear,
decrements if it is set) DI or EDI.

The register used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you need to use an
address size not equal to the current BITS setting, you can use an explicit a16 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use of ES for the load from
[DI] or [EDI] cannot be overridden.

INSW and INSD work in the same way, but they input a word or a doubleword instead of a byte,
and increment or decrement the addressing register by 2 or 4 instead of 1.
The REP prefix may be used to repeat the instruction CX (or ECX – again, the address size
chooses which) times.
See also OUTSB, OUTSW and OUTSD (section A.112).

A.81. INT: Software Interrupt
INT imm8 ; CD ib [8086]
INT causes a software interrupt through a specified vector number from 0 to 255.

The code generated by the INT instruction is always two bytes long: although there are short
forms for some INT instructions, NASM does not generate them when it sees the INT
mnemonic. In order to generate single-byte breakpoint instructions, use the INT3 or INT1
instructions (see section A.82) instead.

A.82. INT3, INT1, ICEBP, INT01: Breakpoints
INT1 ; F1 [P6]
ICEBP ; F1 [P6]
INT01 ; F1 [P6]
INT3 ; CC [8086]
INT1 and INT3 are short one-byte forms of the instructions INT 1 and INT 3 (see section
A.81). They perform a similar function to their longer counterparts, but take up less code space.
They are used as breakpoints by debuggers.
INT1, and its alternative synonyms INT01 and ICEBP, is an instruction used by in-circuit
emulators (ICEs). It is present, though not documented, on some processors down to the 286, but
is only documented for the Pentium Pro. INT3 is the instruction normally used as a breakpoint
by debuggers.
INT3 is not precisely equivalent to INT 3: the short form, since it is designed to be used as a
breakpoint, bypasses the normal IOPL checks in virtual-8086 mode, and also does not go
through interrupt redirection.

A.83. INTO: Interrupt if Overflow
INTO ; CE [8086]
INTO performs an INT 4 software interrupt (see section A.81) if and only if the overflow flag
is set.

A.84. INVD: Invalidate Internal Caches
INVD ; 0F 08 [486]
INVD invalidates and empties the processor's internal caches, and causes the processor to
instruct external caches to do the same. It does not write the contents of the caches back to
memory first: any modified data held in the caches will be lost. To write the data back first, use
WBINVD (section A.164).

A.85. INVLPG: Invalidate TLB Entry
INVLPG mem ; 0F 01 /0 [486]
INVLPG invalidates the translation lookahead buffer (TLB) entry associated with the supplied
memory address.

A.86. IRET, IRETW, IRETD: Return from Interrupt
IRET ; CF [8086]
IRETW ; o16 CF [8086]
IRETD ; o32 CF [386]
IRET returns from an interrupt (hardware or software) by means of popping IP (or EIP), CS
and the flags off the stack and then continuing execution from the new CS:IP.

IRETW pops IP, CS and the flags as 2 bytes each, taking 6 bytes off the stack in total. IRETD
pops EIP as 4 bytes, pops a further 4 bytes of which the top two are discarded and the bottom
two go into CS, and pops the flags as 4 bytes as well, taking 12 bytes off the stack.

IRET is a shorthand for either IRETW or IRETD, depending on the default BITS setting at the
time.

A.87. JCXZ, JECXZ: Jump if CX/ECX Zero
JCXZ imm ; o16 E3 rb [8086]
JECXZ imm ; o32 E3 rb [386]
JCXZ performs a short jump (with maximum range 128 bytes) if and only if the contents of the
CX register is 0. JECXZ does the same thing, but with ECX.

A.88. JMP: Jump
JMP imm ; E9 rw/rd [8086]
JMP SHORT imm ; EB rb [8086]
JMP imm:imm16 ; o16 EA iw iw [8086]
JMP imm:imm32 ; o32 EA id iw [386]
JMP FAR mem ; o16 FF /5 [8086]
JMP FAR mem ; o32 FF /5 [386]
JMP r/m16 ; o16 FF /4 [8086]
JMP r/m32 ; o32 FF /4 [386]
JMP jumps to a given address. The address may be specified as an absolute segment and offset,
or as a relative jump within the current segment.
JMP SHORT imm has a maximum range of 128 bytes, since the displacement is specified as
only 8 bits, but takes up less code space. NASM does not choose when to generate JMP SHORT
for you: you must explicitly code SHORT every time you want a short jump.

You can choose between the two immediate far jump forms (JMP imm:imm) by the use of the
WORD and DWORD keywords: JMP WORD 0x1234:0x5678) or
JMP DWORD 0x1234:0x56789abc.

The JMP FAR mem forms execute a far jump by loading the destination address out of memory.
The address loaded consists of 16 or 32 bits of offset (depending on the operand size), and 16
bits of segment. The operand size may be overridden using JMP WORD FAR mem or
JMP DWORD FAR mem.

The JMP r/m forms execute a near jump (within the same segment), loading the destination
address out of memory or out of a register. The keyword NEAR may be specified, for clarity, in
these forms, but is not necessary. Again, operand size can be overridden using JMP WORD mem
or JMP DWORD mem.

As a convenience, NASM does not require you to jump to a far symbol by coding the
cumbersome JMP SEG routine:routine, but instead allows the easier synonym
JMP FAR routine.

The CALL r/m forms given above are near calls; NASM will accept the NEAR keyword (e.g.
CALL NEAR [address]), even though it is not strictly necessary.

A.89. Jcc: Conditional Branch
Jcc imm ; 70+cc rb [8086]
Jcc NEAR imm ; 0F 80+cc rw/rd [386]
The conditional jump instructions execute a near (same segment) jump if and only if their
conditions are satisfied. For example, JNZ jumps only if the zero flag is not set.

The ordinary form of the instructions has only a 128-byte range; the NEAR form is a 386
extension to the instruction set, and can span the full size of a segment. NASM will not override
your choice of jump instruction: if you want Jcc NEAR, you have to use the NEAR keyword.

The SHORT keyword is allowed on the first form of the instruction, for clarity, but is not
necessary.

A.90. LAHF: Load AH from Flags
LAHF ; 9F [8086]
LAHF sets the AH register according to the contents of the low byte of the flags word. See also
SAHF (section A.145).

A.91. LAR: Load Access Rights
LAR reg16,r/m16 ; o16 0F 02 /r [286,PRIV]
LAR reg32,r/m32 ; o32 0F 02 /r [286,PRIV]
LAR takes the segment selector specified by its source (second) operand, finds the corresponding
segment descriptor in the GDT or LDT, and loads the access-rights byte of the descriptor into its
destination (first) operand.

A.92. LDS, LES, LFS, LGS, LSS: Load Far Pointer
LDS reg16,mem ; o16 C5 /r [8086]
LDS reg32,mem ; o32 C5 /r [8086]
LES reg16,mem ; o16 C4 /r [8086]
LES reg32,mem ; o32 C4 /r [8086]
LFS reg16,mem ; o16 0F B4 /r [386]
LFS reg32,mem ; o32 0F B4 /r [386]
LGS reg16,mem ; o16 0F B5 /r [386]
LGS reg32,mem ; o32 0F B5 /r [386]
LSS reg16,mem ; o16 0F B2 /r [386]
LSS reg32,mem ; o32 0F B2 /r [386]
These instructions load an entire far pointer (16 or 32 bits of offset, plus 16 bits of segment) out
of memory in one go. LDS, for example, loads 16 or 32 bits from the given memory address into
the given register (depending on the size of the register), then loads the next 16 bits from
memory into DS. LES, LFS, LGS and LSS work in the same way but use the other segment
registers.

A.93. LEA: Load Effective Address
LEA reg16,mem ; o16 8D /r [8086]
LEA reg32,mem ; o32 8D /r [8086]
LEA, despite its syntax, does not access memory. It calculates the effective address specified by
its second operand as if it were going to load or store data from it, but instead it stores the
calculated address into the register specified by its first operand. This can be used to perform
quite complex calculations (e.g. LEA EAX,[EBX+ECX*4+100]) in one instruction.

LEA, despite being a purely arithmetic instruction which accesses no memory, still requires
square brackets around its second operand, as if it were a memory reference.

A.94. LEAVE: Destroy Stack Frame
LEAVE ; C9 [186]
LEAVE destroys a stack frame of the form created by the ENTER instruction (see section A.27).
It is functionally equivalent to MOV ESP,EBP followed by POP EBP (or MOV SP,BP
followed by POP BP in 16-bit mode).

A.95. LGDT, LIDT, LLDT: Load Descriptor Tables
LGDT mem ; 0F 01 /2 [286,PRIV]
LIDT mem ; 0F 01 /3 [286,PRIV]
LLDT r/m16 ; 0F 00 /2 [286,PRIV]
LGDT and LIDT both take a 6-byte memory area as an operand: they load a 32-bit linear address
and a 16-bit size limit from that area (in the opposite order) into the GDTR (global descriptor
table register) or IDTR (interrupt descriptor table register). These are the only instructions which
directly use linear addresses, rather than segment/offset pairs.
LLDT takes a segment selector as an operand. The processor looks up that selector in the GDT
and stores the limit and base address given there into the LDTR (local descriptor table register).
See also SGDT, SIDT and SLDT (section A.151).

A.96. LMSW: Load/Store Machine Status Word
LMSW r/m16 ; 0F 01 /6 [286,PRIV]
LMSW loads the bottom four bits of the source operand into the bottom four bits of the CR0
control register (or the Machine Status Word, on 286 processors). See also SMSW (section
A.155).

A.97. LOADALL, LOADALL286: Load Processor State
LOADALL ; 0F 07 [386,UNDOC]
LOADALL286 ; 0F 05 [286,UNDOC]
This instruction, in its two different-opcode forms, is apparently supported on most 286
processors, some 386 and possibly some 486. The opcode differs between the 286 and the 386.
The function of the instruction is to load all information relating to the state of the processor out
of a block of memory: on the 286, this block is located implicitly at absolute address 0x800,
and on the 386 and 486 it is at [ES:EDI].

A.98. LODSB, LODSW, LODSD: Load from String
LODSB ; AC [8086]
LODSW ; o16 AD [8086]
LODSD ; o32 AD [386]
LODSB loads a byte from [DS:SI] or [DS:ESI] into AL. It then increments or decrements
(depending on the direction flag: increments if the flag is clear, decrements if it is set) SI or
ESI.

The register used is SI if the address size is 16 bits, and ESI if it is 32 bits. If you need to use an
address size not equal to the current BITS setting, you can use an explicit a16 or a32 prefix.

The segment register used to load from [SI] or [ESI] can be overridden by using a segment
register name as a prefix (for example, es lodsb).

LODSW and LODSD work in the same way, but they load a word or a doubleword instead of a
byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.

A.99. LOOP, LOOPE, LOOPZ, LOOPNE, LOOPNZ: Loop with Counter
LOOP imm ; E2 rb [8086]
LOOP imm,CX ; a16 E2 rb [8086]
LOOP imm,ECX ; a32 E2 rb [386]
LOOPE imm ; E1 rb [8086]
LOOPE imm,CX ; a16 E1 rb [8086]
LOOPE imm,ECX ; a32 E1 rb [386]
LOOPZ imm ; E1 rb [8086]
LOOPZ imm,CX ; a16 E1 rb [8086]
LOOPZ imm,ECX ; a32 E1 rb [386]
LOOPNE imm ; E0 rb [8086]
LOOPNE imm,CX ; a16 E0 rb [8086]
LOOPNE imm,ECX ; a32 E0 rb [386]
LOOPNZ imm ; E0 rb [8086]
LOOPNZ imm,CX ; a16 E0 rb [8086]
LOOPNZ imm,ECX ; a32 E0 rb [386]
LOOP decrements its counter register (either CX or ECX – if one is not specified explicitly, the
BITS setting dictates which is used) by one, and if the counter does not become zero as a result
of this operation, it jumps to the given label. The jump has a range of 128 bytes.
LOOPE (or its synonym LOOPZ) adds the additional condition that it only jumps if the counter is
nonzero and the zero flag is set. Similarly, LOOPNE (and LOOPNZ) jumps only if the counter is
nonzero and the zero flag is clear.

A.100. LSL: Load Segment Limit
LSL reg16,r/m16 ; o16 0F 03 /r [286,PRIV]
LSL reg32,r/m32 ; o32 0F 03 /r [286,PRIV]
LSL is given a segment selector in its source (second) operand; it computes the segment limit
value by loading the segment limit field from the associated segment descriptor in the GDT or
LDT. (This involves shifting left by 12 bits if the segment limit is page-granular, and not if it is
byte-granular; so you end up with a byte limit in either case.) The segment limit obtained is then
loaded into the destination (first) operand.

A.101. LTR: Load Task Register
LTR r/m16 ; 0F 00 /3 [286,PRIV]
LTR looks up the segment base and limit in the GDT or LDT descriptor specified by the segment
selector given as its operand, and loads them into the Task Register.

A.102. MOV: Move Data
MOV r/m8,reg8 ; 88 /r [8086]
MOV r/m16,reg16 ; o16 89 /r [8086]
MOV r/m32,reg32 ; o32 89 /r [386]
MOV reg8,r/m8 ; 8A /r [8086]
MOV reg16,r/m16 ; o16 8B /r [8086]
MOV reg32,r/m32 ; o32 8B /r [386]
MOV reg8,imm8 ; B0+r ib [8086]
MOV reg16,imm16 ; o16 B8+r iw [8086]
MOV reg32,imm32 ; o32 B8+r id [386]
MOV r/m8,imm8 ; C6 /0 ib [8086]
MOV r/m16,imm16 ; o16 C7 /0 iw [8086]
MOV r/m32,imm32 ; o32 C7 /0 id [386]
MOV AL,memoffs8 ; A0 ow/od [8086]
MOV AX,memoffs16 ; o16 A1 ow/od [8086]
MOV EAX,memoffs32 ; o32 A1 ow/od [386]
MOV memoffs8,AL ; A2 ow/od [8086]
MOV memoffs16,AX ; o16 A3 ow/od [8086]
MOV memoffs32,EAX ; o32 A3 ow/od [386]
MOV r/m16,segreg ; o16 8C /r [8086]
MOV r/m32,segreg ; o32 8C /r [386]
MOV segreg,r/m16 ; o16 8E /r [8086]
MOV segreg,r/m32 ; o32 8E /r [386]
MOV reg32,CR0/2/3/4 ; 0F 20 /r [386]
MOV reg32,DR0/1/2/3/6/7 ; 0F 21 /r [386]
MOV reg32,TR3/4/5/6/7 ; 0F 24 /r [386]
MOV CR0/2/3/4,reg32 ; 0F 22 /r [386]
MOV DR0/1/2/3/6/7,reg32 ; 0F 23 /r [386]
MOV TR3/4/5/6/7,reg32 ; 0F 26 /r [386]
MOV copies the contents of its source (second) operand into its destination (first) operand.

In all forms of the MOV instruction, the two operands are the same size, except for moving
between a segment register and an r/m32 operand. These instructions are treated exactly like
the corresponding 16-bit equivalent (so that, for example, MOV DS,EAX functions identically to
MOV DS,AX but saves a prefix when in 32-bit mode), except that when a segment register is
moved into a 32-bit destination, the top two bytes of the result are undefined.
MOV may not use CS as a destination.

CR4 is only a supported register on the Pentium and above.

A.103. MOVD: Move Doubleword to/from MMX Register
MOVD mmxreg,r/m32 ; 0F 6E /r [PENT,MMX]
MOVD r/m32,mmxreg ; 0F 7E /r [PENT,MMX]
MOVD copies 32 bits from its source (second) operand into its destination (first) operand. When
the destination is a 64-bit MMX register, the top 32 bits are set to zero.

A.104. MOVQ: Move Quadword to/from MMX Register
MOVQ mmxreg,r/m64 ; 0F 6F /r [PENT,MMX]
MOVQ r/m64,mmxreg ; 0F 7F /r [PENT,MMX]
MOVQ copies 64 bits from its source (second) operand into its destination (first) operand.

A.105. MOVSB, MOVSW, MOVSD: Move String
MOVSB ; A4 [8086]
MOVSW ; o16 A5 [8086]
MOVSD ; o32 A5 [386]
MOVSB copies the byte at [ES:DI] or [ES:EDI] to [DS:SI] or [DS:ESI]. It then
increments or decrements (depending on the direction flag: increments if the flag is clear,
decrements if it is set) SI and DI (or ESI and EDI).

The registers used are SI and DI if the address size is 16 bits, and ESI and EDI if it is 32 bits.
If you need to use an address size not equal to the current BITS setting, you can use an explicit
a16 or a32 prefix.

The segment register used to load from [SI] or [ESI] can be overridden by using a segment
register name as a prefix (for example, es movsb). The use of ES for the store to [DI] or
[EDI] cannot be overridden.

MOVSW and MOVSD work in the same way, but they copy a word or a doubleword instead of a
byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.
The REP prefix may be used to repeat the instruction CX (or ECX – again, the address size
chooses which) times.

A.106. MOVSX, MOVZX: Move Data with Sign or Zero Extend
MOVSX reg16,r/m8 ; o16 0F BE /r [386]
MOVSX reg32,r/m8 ; o32 0F BE /r [386]
MOVSX reg32,r/m16 ; o32 0F BF /r [386]
MOVZX reg16,r/m8 ; o16 0F B6 /r [386]
MOVZX reg32,r/m8 ; o32 0F B6 /r [386]
MOVZX reg32,r/m16 ; o32 0F B7 /r [386]
MOVSX sign-extends its source (second) operand to the length of its destination (first) operand,
and copies the result into the destination operand. MOVZX does the same, but zero-extends rather
than sign-extending.

A.107. MUL: Unsigned Integer Multiply
MUL r/m8 ; F6 /4 [8086]
MUL r/m16 ; o16 F7 /4 [8086]
MUL r/m32 ; o32 F7 /4 [386]
MUL performs unsigned integer multiplication. The other operand to the multiplication, and the
destination operand, are implicit, in the following way:
Ÿ For MUL r/m8, AL is multiplied by the given operand; the product is stored in AX.

Ÿ For MUL r/m16, AX is multiplied by the given operand; the product is stored in DX:AX.

Ÿ For MUL r/m32, EAX is multiplied by the given operand; the product is stored in
EDX:EAX.

Signed integer multiplication is performed by the IMUL instruction: see section A.77.

A.108. NEG, NOT: Two's and One's Complement
NEG r/m8 ; F6 /3 [8086]
NEG r/m16 ; o16 F7 /3 [8086]
NEG r/m32 ; o32 F7 /3 [386]
NOT r/m8 ; F6 /2 [8086]
NOT r/m16 ; o16 F7 /2 [8086]
NOT r/m32 ; o32 F7 /2 [386]
NEG replaces the contents of its operand by the two's complement negation (invert all the bits
and then add one) of the original value. NOT, similarly, performs one's complement (inverts all
the bits).

A.109. NOP: No Operation
NOP ; 90 [8086]
NOP performs no operation. Its opcode is the same as that generated by XCHG AX,AX or
XCHG EAX,EAX (depending on the processor mode; see section A.168).

A.110. OR: Bitwise OR
OR r/m8,reg8 ; 08 /r [8086]
OR r/m16,reg16 ; o16 09 /r [8086]
OR r/m32,reg32 ; o32 09 /r [386]
OR reg8,r/m8 ; 0A /r [8086]
OR reg16,r/m16 ; o16 0B /r [8086]
OR reg32,r/m32 ; o32 0B /r [386]
OR r/m8,imm8 ; 80 /1 ib [8086]
OR r/m16,imm16 ; o16 81 /1 iw [8086]
OR r/m32,imm32 ; o32 81 /1 id [386]
OR r/m16,imm8 ; o16 83 /1 ib [8086]
OR r/m32,imm8 ; o32 83 /1 ib [386]
OR AL,imm8 ; 0C ib [8086]
OR AX,imm16 ; o16 0D iw [8086]
OR EAX,imm32 ; o32 0D id [386]
OR performs a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if
and only if at least one of the corresponding bits of the two inputs was 1), and stores the result in
the destination (first) operand.
In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. In
these cases, the BYTE qualifier is necessary to force NASM to generate this form of the
instruction.
The MMX instruction POR (see section A.129) performs the same operation on the 64-bit MMX
registers.

A.111. OUT: Output Data to I/O Port
OUT imm8,AL ; E6 ib [8086]
OUT imm8,AX ; o16 E7 ib [8086]
OUT imm8,EAX ; o32 E7 ib [386]
OUT DX,AL ; EE [8086]
OUT DX,AX ; o16 EF [8086]
OUT DX,EAX ; o32 EF [386]
IN writes the contents of the given source register to the specified I/O port. The port number
may be specified as an immediate value if it is between 0 and 255, and otherwise must be stored
in DX. See also IN (section A.78).

A.112. OUTSB, OUTSW, OUTSD: Output String to I/O Port
OUTSB ; 6E [186]
OUTSW ; o16 6F [186]
OUTSD ; o32 6F [386]
OUTSB loads a byte from [DS:SI] or [DS:ESI] and writes it to the I/O port specified in DX.
It then increments or decrements (depending on the direction flag: increments if the flag is clear,
decrements if it is set) SI or ESI.

The register used is SI if the address size is 16 bits, and ESI if it is 32 bits. If you need to use an
address size not equal to the current BITS setting, you can use an explicit a16 or a32 prefix.

The segment register used to load from [SI] or [ESI] can be overridden by using a segment
register name as a prefix (for example, es outsb).

OUTSW and OUTSD work in the same way, but they output a word or a doubleword instead of a
byte, and increment or decrement the addressing registers by 2 or 4 instead of 1.
The REP prefix may be used to repeat the instruction CX (or ECX – again, the address size
chooses which) times.

A.113. PACKSSDW, PACKSSWB, PACKUSWB: Pack Data
PACKSSDW mmxreg,r/m64 ; 0F 6B /r [PENT,MMX]
PACKSSWB mmxreg,r/m64 ; 0F 63 /r [PENT,MMX]
PACKUSWB mmxreg,r/m64 ; 0F 67 /r [PENT,MMX]
All these instructions start by forming a notional 128-bit word by placing the source (second)
operand on the left of the destination (first) operand. PACKSSDW then splits this 128-bit word
into four doublewords, converts each to a word, and loads them side by side into the destination
register; PACKSSWB and PACKUSWB both split the 128-bit word into eight words, converts each
to a byte, and loads those side by side into the destination register.
PACKSSDW and PACKSSWB perform signed saturation when reducing the length of numbers: if
the number is too large to fit into the reduced space, they replace it by the largest signed number
(7FFFh or 7Fh) that will fit, and if it is too small then they replace it by the smallest signed
number (8000h or 80h) that will fit. PACKUSWB performs unsigned saturation: it treats its
input as unsigned, and replaces it by the largest unsigned number that will fit.

A.114. PADDxx: MMX Packed Addition
PADDB mmxreg,r/m64 ; 0F FC /r [PENT,MMX]
PADDW mmxreg,r/m64 ; 0F FD /r [PENT,MMX]
PADDD mmxreg,r/m64 ; 0F FE /r [PENT,MMX]
PADDSB mmxreg,r/m64 ; 0F EC /r [PENT,MMX]
PADDSW mmxreg,r/m64 ; 0F ED /r [PENT,MMX]
PADDUSB mmxreg,r/m64 ; 0F DC /r [PENT,MMX]
PADDUSW mmxreg,r/m64 ; 0F DD /r [PENT,MMX]
PADDxx all perform packed addition between their two 64-bit operands, storing the result in the
destination (first) operand. The PADDxB forms treat the 64-bit operands as vectors of eight
bytes, and add each byte individually; PADDxW treat the operands as vectors of four words; and
PADDD treats its operands as vectors of two doublewords.

PADDSB and PADDSW perform signed saturation on the sum of each pair of bytes or words: if
the result of an addition is too large or too small to fit into a signed byte or word result, it is
clipped (saturated) to the largest or smallest value which will fit. PADDUSB and PADDUSW
similarly perform unsigned saturation, clipping to 0FFh or 0FFFFh if the result is larger than
that.

A.115. PADDSIW: MMX Packed Addition to Implicit Destination
PADDSIW mmxreg,r/m64 ; 0F 51 /r [CYRIX,MMX]
PADDSIW, specific to the Cyrix extensions to the MMX instruction set, performs the same
function as PADDSW, except that the result is not placed in the register specified by the first
operand, but instead in the register whose number differs from the first operand only in the last
bit. So PADDSIW MM0,MM2 would put the result in MM1, but PADDSIW MM1,MM2 would put
the result in MM0.

A.116. PAND, PANDN: MMX Bitwise AND and AND-NOT
PAND mmxreg,r/m64 ; 0F DB /r [PENT,MMX]
PANDN mmxreg,r/m64 ; 0F DF /r [PENT,MMX]
PAND performs a bitwise AND operation between its two operands (i.e. each bit of the result is 1
if and only if the corresponding bits of the two inputs were both 1), and stores the result in the
destination (first) operand.
PANDN performs the same operation, but performs a one's complement operation on the
destination (first) operand first.

A.117. PAVEB: MMX Packed Average
PAVEB mmxreg,r/m64 ; 0F 50 /r [CYRIX,MMX]
PAVEB, specific to the Cyrix MMX extensions, treats its two operands as vectors of eight
unsigned bytes, and calculates the average of the corresponding bytes in the operands. The
resulting vector of eight averages is stored in the first operand.

A.118. PCMPxx: MMX Packed Comparison
PCMPEQB mmxreg,r/m64 ; 0F 74 /r [PENT,MMX]
PCMPEQW mmxreg,r/m64 ; 0F 75 /r [PENT,MMX]
PCMPEQD mmxreg,r/m64 ; 0F 76 /r [PENT,MMX]
PCMPGTB mmxreg,r/m64 ; 0F 64 /r [PENT,MMX]
PCMPGTW mmxreg,r/m64 ; 0F 65 /r [PENT,MMX]
PCMPGTD mmxreg,r/m64 ; 0F 66 /r [PENT,MMX]
The PCMPxx instructions all treat their operands as vectors of bytes, words, or doublewords;
corresponding elements of the source and destination are compared, and the corresponding
element of the destination (first) operand is set to all zeros or all ones depending on the result of
the comparison.
PCMPxxB treats the operands as vectors of eight bytes, PCMPxxW treats them as vectors of four
words, and PCMPxxD as two doublewords.

PCMPEQx sets the corresponding element of the destination operand to all ones if the two
elements compared are equal; PCMPGTx sets the destination element to all ones if the element of
the first (destination) operand is greater (treated as a signed integer) than that of the second
(source) operand.

A.119. PDISTIB: MMX Packed Distance and Accumulate with
Implied Register
PDISTIB mmxreg,mem64 ; 0F 54 /r [CYRIX,MMX]
PDISTIB, specific to the Cyrix MMX extensions, treats its two input operands as vectors of
eight unsigned bytes. For each byte position, it finds the absolute difference between the bytes in
that position in the two input operands, and adds that value to the byte in the same position in the
implied output register. The addition is saturated to an unsigned byte in the same way as
PADDUSB.

The implied output register is found in the same way as PADDSIW (section A.115).

Note that PDISTIB cannot take a register as its second source operand.

A.120. PMACHRIW: MMX Packed Multiply and Accumulate with
Rounding
PMACHRIW mmxreg,mem64 ; 0F 5E /r [CYRIX,MMX]
PMACHRIW acts almost identically to PMULHRIW (section A.123), but instead of storing its
result in the implied destination register, it adds its result, as four packed words, to the implied
destination register. No saturation is done: the addition can wrap around.
Note that PMACHRIW cannot take a register as its second source operand.

A.121. PMADDWD: MMX Packed Multiply and Add
PMADDWD mmxreg,r/m64 ; 0F F5 /r [PENT,MMX]
PMADDWD treats its two inputs as vectors of four signed words. It multiplies corresponding
elements of the two operands, giving four signed doubleword results. The top two of these are
added and placed in the top 32 bits of the destination (first) operand; the bottom two are added
and placed in the bottom 32 bits.

A.122. PMAGW: MMX Packed Magnitude
PMAGW mmxreg,r/m64 ; 0F 52 /r [CYRIX,MMX]
PMAGW, specific to the Cyrix MMX extensions, treats both its operands as vectors of four signed
words. It compares the absolute values of the words in corresponding positions, and sets each
word of the destination (first) operand to whichever of the two words in that position had the
larger absolute value.

A.123. PMULHRW, PMULHRIW: MMX Packed Multiply High with
Rounding
PMULHRW mmxreg,r/m64 ; 0F 59 /r [CYRIX,MMX]
PMULHRIW mmxreg,r/m64 ; 0F 5D /r [CYRIX,MMX]
These instructions, specific to the Cyrix MMX extensions, treat their operands as vectors of four
signed words. Words in corresponding positions are multiplied, to give a 32-bit value in which
bits 30 and 31 are guaranteed equal. Bits 30 to 15 of this value (bit mask 0x7FFF8000) are
taken and stored in the corresponding position of the destination operand, after first rounding the
low bit (equivalent to adding 0x4000 before extracting bits 30 to 15).

For PMULHRW, the destination operand is the first operand; for PMULHRIW the destination
operand is implied by the first operand in the manner of PADDSIW (section A.115).

A.124. PMULHW, PMULLW: MMX Packed Multiply
PMULHW mmxreg,r/m64 ; 0F E5 /r [PENT,MMX]
PMULLW mmxreg,r/m64 ; 0F D5 /r [PENT,MMX]
PMULxW treats its two inputs as vectors of four signed words. It multiplies corresponding
elements of the two operands, giving four signed doubleword results.
PMULHW then stores the top 16 bits of each doubleword in the destination (first) operand;
PMULLW stores the bottom 16 bits of each doubleword in the destination operand.

A.125. PMVccZB: MMX Packed Conditional Move
PMVZB mmxreg,mem64 ; 0F 58 /r [CYRIX,MMX]
PMVNZB mmxreg,mem64 ; 0F 5A /r [CYRIX,MMX]
PMVLZB mmxreg,mem64 ; 0F 5B /r [CYRIX,MMX]
PMVGEZB mmxreg,mem64 ; 0F 5C /r [CYRIX,MMX]
These instructions, specific to the Cyrix MMX extensions, perform parallel conditional moves.
The two input operands are treated as vectors of eight bytes. Each byte of the destination (first)
operand is either written from the corresponding byte of the source (second) operand, or left
alone, depending on the value of the byte in the implied operand (specified in the same way as
PADDSIW, in section A.115).

PMVZB performs each move if the corresponding byte in the implied operand is zero. PMVNZB
moves if the byte is non-zero. PMVLZB moves if the byte is less than zero, and PMVGEZB moves
if the byte is greater than or equal to zero.
Note that these instructions cannot take a register as their second source operand.

A.126. POP: Pop Data from Stack
POP reg16 ; o16 58+r [8086]
POP reg32 ; o32 58+r [386]
POP r/m16 ; o16 8F /0 [8086]
POP r/m32 ; o32 8F /0 [386]
POP CS ; 0F [8086,UNDOC]
POP DS ; 1F [8086]
POP ES ; 07 [8086]
POP SS ; 17 [8086]
POP FS ; 0F A1 [386]
POP GS ; 0F A9 [386]
POP loads a value from the stack (from [SS:SP] or [SS:ESP]) and then increments the stack
pointer.
The address-size attribute of the instruction determines whether SP or ESP is used as the stack
pointer: to deliberately override the default given by the BITS setting, you can use an a16 or
a32 prefix.

The operand-size attribute of the instruction determines whether the stack pointer is incremented
by 2 or 4: this means that segment register pops in BITS 32 mode will pop 4 bytes off the stack
and discard the upper two of them. If you need to override that, you can use an o16 or o32
prefix.
The above opcode listings give two forms for general-purpose register pop instructions: for
example, POP BX has the two forms 5B and 8F C3. NASM will always generate the shorter
form when given POP BX. NDISASM will disassemble both.

POP CS is not a documented instruction, and is not supported on any processor above the 8086
(since they use 0Fh as an opcode prefix for instruction set extensions). However, at least some
8086 processors do support it, and so NASM generates it for completeness.

A.127. POPAx: Pop All General-Purpose Registers
POPA ; 61 [186]
POPAW ; o16 61 [186]
POPAD ; o32 61 [386]
POPAW pops a word from the stack into each of, successively, DI, SI, BP, nothing (it discards a
word from the stack which was a placeholder for SP), BX, DX, CX and AX. It is intended to
reverse the operation of PUSHAW (see section A.135), but it ignores the value for SP that was
pushed on the stack by PUSHAW.

POPAD pops twice as much data, and places the results in EDI, ESI, EBP, nothing (placeholder
for ESP), EBX, EDX, ECX and EAX. It reverses the operation of PUSHAD.

POPA is an alias mnemonic for either POPAW or POPAD, depending on the current BITS setting.

Note that the registers are popped in reverse order of their numeric values in opcodes (see section
A.2.1).

A.128. POPFx: Pop Flags Register
POPF ; 9D [186]
POPFW ; o16 9D [186]
POPFD ; o32 9D [386]
POPFW pops a word from the stack and stores it in the bottom 16 bits of the flags register (or the
whole flags register, on processors below a 386). POPFD pops a doubleword and stores it in the
entire flags register.
POPF is an alias mnemonic for either POPFW or POPFD, depending on the current BITS setting.

See also PUSHF (section A.136).

A.129. POR: MMX Bitwise OR
POR mmxreg,r/m64 ; 0F EB /r [PENT,MMX]
POR performs a bitwise OR operation between its two operands (i.e. each bit of the result is 1 if
and only if at least one of the corresponding bits of the two inputs was 1), and stores the result in
the destination (first) operand.

A.130. PSLLx, PSRLx, PSRAx: MMX Bit Shifts
PSLLW mmxreg,r/m64 ; 0F F1 /r [PENT,MMX]
PSLLW mmxreg,imm8 ; 0F 71 /6 ib [PENT,MMX]
PSLLD mmxreg,r/m64 ; 0F F2 /r [PENT,MMX]
PSLLD mmxreg,imm8 ; 0F 72 /6 ib [PENT,MMX]
PSLLQ mmxreg,r/m64 ; 0F F3 /r [PENT,MMX]
PSLLQ mmxreg,imm8 ; 0F 73 /6 ib [PENT,MMX]
PSRAW mmxreg,r/m64 ; 0F E1 /r [PENT,MMX]
PSRAW mmxreg,imm8 ; 0F 71 /4 ib [PENT,MMX]
PSRAD mmxreg,r/m64 ; 0F E2 /r [PENT,MMX]
PSRAD mmxreg,imm8 ; 0F 72 /4 ib [PENT,MMX]
PSRLW mmxreg,r/m64 ; 0F D1 /r [PENT,MMX]
PSRLW mmxreg,imm8 ; 0F 71 /2 ib [PENT,MMX]
PSRLD mmxreg,r/m64 ; 0F D2 /r [PENT,MMX]
PSRLD mmxreg,imm8 ; 0F 72 /2 ib [PENT,MMX]
PSRLQ mmxreg,r/m64 ; 0F D3 /r [PENT,MMX]
PSRLQ mmxreg,imm8 ; 0F 73 /2 ib [PENT,MMX]
PSxxQ perform simple bit shifts on the 64-bit MMX registers: the destination (first) operand is
shifted left or right by the number of bits given in the source (second) operand, and the vacated
bits are filled in with zeros (for a logical shift) or copies of the original sign bit (for an arithmetic
right shift).
PSxxW and PSxxD perform packed bit shifts: the destination operand is treated as a vector of
four words or two doublewords, and each element is shifted individually, so bits shifted out of
one element do not interfere with empty bits coming into the next.
PSLLx and PSRLx perform logical shifts: the vacated bits at one end of the shifted number are
filled with zeros. PSRAx performs an arithmetic right shift: the vacated bits at the top of the
shifted number are filled with copies of the original top (sign) bit.

A.131. PSUBxx: MMX Packed Subtraction
PSUBB mmxreg,r/m64 ; 0F F8 /r [PENT,MMX]
PSUBW mmxreg,r/m64 ; 0F F9 /r [PENT,MMX]
PSUBD mmxreg,r/m64 ; 0F FA /r [PENT,MMX]
PSUBSB mmxreg,r/m64 ; 0F E8 /r [PENT,MMX]
PSUBSW mmxreg,r/m64 ; 0F E9 /r [PENT,MMX]
PSUBUSB mmxreg,r/m64 ; 0F D8 /r [PENT,MMX]
PSUBUSW mmxreg,r/m64 ; 0F D9 /r [PENT,MMX]
PSUBxx all perform packed subtraction between their two 64-bit operands, storing the result in
the destination (first) operand. The PSUBxB forms treat the 64-bit operands as vectors of eight
bytes, and subtract each byte individually; PSUBxW treat the operands as vectors of four words;
and PSUBD treats its operands as vectors of two doublewords.

In all cases, the elements of the operand on the right are subtracted from the corresponding
elements of the operand on the left, not the other way round.
PSUBSB and PSUBSW perform signed saturation on the sum of each pair of bytes or words: if
the result of a subtraction is too large or too small to fit into a signed byte or word result, it is
clipped (saturated) to the largest or smallest value which will fit. PSUBUSB and PSUBUSW
similarly perform unsigned saturation, clipping to 0FFh or 0FFFFh if the result is larger than
that.

A.132. PSUBSIW: MMX Packed Subtract with Saturation to Implied
Destination
PSUBSIW mmxreg,r/m64 ; 0F 55 /r [CYRIX,MMX]
PSUBSIW, specific to the Cyrix extensions to the MMX instruction set, performs the same
function as PSUBSW, except that the result is not placed in the register specified by the first
operand, but instead in the implied destination register, specified as for PADDSIW (section
A.115).

A.133. PUNPCKxxx: Unpack Data
PUNPCKHBW mmxreg,r/m64 ; 0F 68 /r [PENT,MMX]
PUNPCKHWD mmxreg,r/m64 ; 0F 69 /r [PENT,MMX]
PUNPCKHDQ mmxreg,r/m64 ; 0F 6A /r [PENT,MMX]
PUNPCKLBW mmxreg,r/m64 ; 0F 60 /r [PENT,MMX]
PUNPCKLWD mmxreg,r/m64 ; 0F 61 /r [PENT,MMX]
PUNPCKLDQ mmxreg,r/m64 ; 0F 62 /r [PENT,MMX]
PUNPCKxx all treat their operands as vectors, and produce a new vector generated by
interleaving elements from the two inputs. The PUNPCKHxx instructions start by throwing away
the bottom half of each input operand, and the PUNPCKLxx instructions throw away the top
half.
The remaining elements, totalling 64 bits, are then interleaved into the destination, alternating
elements from the second (source) operand and the first (destination) operand: so the leftmost
element in the result always comes from the second operand, and the rightmost from the
destination.
PUNPCKxBW works a byte at a time, PUNPCKxWD a word at a time, and PUNPCKxDQ a
doubleword at a time.
So, for example, if the first operand held 0x7A6A5A4A3A2A1A0A and the second held
0x7B6B5B4B3B2B1B0B, then:

Ÿ PUNPCKHBW would return 0x7B7A6B6A5B5A4B4A.

Ÿ PUNPCKHWD would return 0x7B6B7A6A5B4B5A4A.

Ÿ PUNPCKHDQ would return 0x7B6B5B4B7A6A5A4A.

Ÿ PUNPCKLBW would return 0x3B3A2B2A1B1A0B0A.

Ÿ PUNPCKLWD would return 0x3B2B3A2A1B0B1A0A.

Ÿ PUNPCKLDQ would return 0x3B2B1B0B3A2A1A0A.

A.134. PUSH: Push Data on Stack
PUSH reg16 ; o16 50+r [8086]
PUSH reg32 ; o32 50+r [386]
PUSH r/m16 ; o16 FF /6 [8086]
PUSH r/m32 ; o32 FF /6 [386]
PUSH CS ; 0E [8086]
PUSH DS ; 1E [8086]
PUSH ES ; 06 [8086]
PUSH SS ; 16 [8086]
PUSH FS ; 0F A0 [386]
PUSH GS ; 0F A8 [386]
PUSH imm8 ; 6A ib [286]
PUSH imm16 ; o16 68 iw [286]
PUSH imm32 ; o32 68 id [386]
PUSH decrements the stack pointer (SP or ESP) by 2 or 4, and then stores the given value at
[SS:SP] or [SS:ESP].

The address-size attribute of the instruction determines whether SP or ESP is used as the stack
pointer: to deliberately override the default given by the BITS setting, you can use an a16 or
a32 prefix.

The operand-size attribute of the instruction determines whether the stack pointer is decremented
by 2 or 4: this means that segment register pushes in BITS 32 mode will push 4 bytes on the
stack, of which the upper two are undefined. If you need to override that, you can use an o16 or
o32 prefix.

The above opcode listings give two forms for general-purpose register push instructions: for
example, PUSH BX has the two forms 53 and FF F3. NASM will always generate the shorter
form when given PUSH BX. NDISASM will disassemble both.

Unlike the undocumented and barely supported POP CS, PUSH CS is a perfectly valid and
sensible instruction, supported on all processors.
The instruction PUSH SP may be used to distinguish an 8086 from later processors: on an 8086,
the value of SP stored is the value it has after the push instruction, whereas on later processors it
is the value before the push instruction.

A.135. PUSHAx: Push All General-Purpose Registers
PUSHA ; 60 [186]
PUSHAD ; o32 60 [386]
PUSHAW ; o16 60 [186]
PUSHAW pushes, in succession, AX, CX, DX, BX, SP, BP, SI and DI on the stack, decrementing
the stack pointer by a total of 16.
PUSHAD pushes, in succession, EAX, ECX, EDX, EBX, ESP, EBP, ESI and EDI on the stack,
decrementing the stack pointer by a total of 32.
In both cases, the value of SP or ESP pushed is its original value, as it had before the instruction
was executed.
PUSHA is an alias mnemonic for either PUSHAW or PUSHAD, depending on the current BITS
setting.
Note that the registers are pushed in order of their numeric values in opcodes (see section A.2.1).
See also POPA (section A.127).

A.136. PUSHFx: Push Flags Register
PUSHF ; 9C [186]
PUSHFD ; o32 9C [386]
PUSHFW ; o16 9C [186]
PUSHFW pops a word from the stack and stores it in the bottom 16 bits of the flags register (or
the whole flags register, on processors below a 386). PUSHFD pops a doubleword and stores it in
the entire flags register.
PUSHF is an alias mnemonic for either PUSHFW or PUSHFD, depending on the current BITS
setting.
See also POPF (section A.128).

A.137. PXOR: MMX Bitwise XOR
PXOR mmxreg,r/m64 ; 0F EF /r [PENT,MMX]
PXOR performs a bitwise XOR operation between its two operands (i.e. each bit of the result is 1
if and only if exactly one of the corresponding bits of the two inputs was 1), and stores the result
in the destination (first) operand.

A.138. RCL, RCR: Bitwise Rotate through Carry Bit
RCL r/m8,1 ; D0 /2 [8086]
RCL r/m8,CL ; D2 /2 [8086]
RCL r/m8,imm8 ; C0 /2 ib [286]
RCL r/m16,1 ; o16 D1 /2 [8086]
RCL r/m16,CL ; o16 D3 /2 [8086]
RCL r/m16,imm8 ; o16 C1 /2 ib [286]
RCL r/m32,1 ; o32 D1 /2 [386]
RCL r/m32,CL ; o32 D3 /2 [386]
RCL r/m32,imm8 ; o32 C1 /2 ib [386]
RCR r/m8,1 ; D0 /3 [8086]
RCR r/m8,CL ; D2 /3 [8086]
RCR r/m8,imm8 ; C0 /3 ib [286]
RCR r/m16,1 ; o16 D1 /3 [8086]
RCR r/m16,CL ; o16 D3 /3 [8086]
RCR r/m16,imm8 ; o16 C1 /3 ib [286]
RCR r/m32,1 ; o32 D1 /3 [386]
RCR r/m32,CL ; o32 D3 /3 [386]
RCR r/m32,imm8 ; o32 C1 /3 ib [386]
RCL and RCR perform a 9-bit, 17-bit or 33-bit bitwise rotation operation, involving the given
source/destination (first) operand and the carry bit. Thus, for example, in the operation
RCR AL,1, a 9-bit rotation is performed in which AL is shifted left by 1, the top bit of AL
moves into the carry flag, and the original value of the carry flag is placed in the low bit of AL.

The number of bits to rotate by is given by the second operand. Only the bottom five bits of the
rotation count are considered by processors above the 8086.
You can force the longer (286 and upwards, beginning with a C1 byte) form of RCL foo,1 by
using a BYTE prefix: RCL foo,BYTE 1. Similarly with RCR.

A.139. RDMSR: Read Model-Specific Registers
RDMSR ; 0F 32 [PENT]
RDMSR reads the processor Model-Specific Register (MSR) whose index is stored in ECX, and
stores the result in EDX:EAX. See also WRMSR (section A.165).

A.140. RDPMC: Read Performance-Monitoring Counters
RDPMC ; 0F 33 [P6]
RDPMC reads the processor performance-monitoring counter whose index is stored in ECX, and
stores the result in EDX:EAX.

A.141. RDTSC: Read Time-Stamp Counter
RDTSC ; 0F 31 [PENT]
RDTSC reads the processor's time-stamp counter into EDX:EAX.

A.142. RET, RETF, RETN: Return from Procedure Call
RET ; C3 [8086]
RET imm16 ; C2 iw [8086]
RETF ; CB [8086]
RETF imm16 ; CA iw [8086]
RETN ; C3 [8086]
RETN imm16 ; C2 iw [8086]
RET, and its exact synonym RETN, pop IP or EIP from the stack and transfer control to the new
address. Optionally, if a numeric second operand is provided, they increment the stack pointer by
a further imm16 bytes after popping the return address.

RETF executes a far return: after popping IP/EIP, it then pops CS, and then increments the
stack pointer by the optional argument if present.

A.143. ROL, ROR: Bitwise Rotate
ROL r/m8,1 ; D0 /0 [8086]
ROL r/m8,CL ; D2 /0 [8086]
ROL r/m8,imm8 ; C0 /0 ib [286]
ROL r/m16,1 ; o16 D1 /0 [8086]
ROL r/m16,CL ; o16 D3 /0 [8086]
ROL r/m16,imm8 ; o16 C1 /0 ib [286]
ROL r/m32,1 ; o32 D1 /0 [386]
ROL r/m32,CL ; o32 D3 /0 [386]
ROL r/m32,imm8 ; o32 C1 /0 ib [386]
ROR r/m8,1 ; D0 /1 [8086]
ROR r/m8,CL ; D2 /1 [8086]
ROR r/m8,imm8 ; C0 /1 ib [286]
ROR r/m16,1 ; o16 D1 /1 [8086]
ROR r/m16,CL ; o16 D3 /1 [8086]
ROR r/m16,imm8 ; o16 C1 /1 ib [286]
ROR r/m32,1 ; o32 D1 /1 [386]
ROR r/m32,CL ; o32 D3 /1 [386]
ROR r/m32,imm8 ; o32 C1 /1 ib [386]
ROL and ROR perform a bitwise rotation operation on the given source/destination (first)
operand. Thus, for example, in the operation ROR AL,1, an 8-bit rotation is performed in which
AL is shifted left by 1 and the original top bit of AL moves round into the low bit.

The number of bits to rotate by is given by the second operand. Only the bottom 3, 4 or 5 bits
(depending on the source operand size) of the rotation count are considered by processors above
the 8086.
You can force the longer (286 and upwards, beginning with a C1 byte) form of ROL foo,1 by
using a BYTE prefix: ROL foo,BYTE 1. Similarly with ROR.

A.144. RSM: Resume from System-Management Mode
RSM ; 0F AA [PENT]
RSM returns the processor to its normal operating mode when it was in System-Management
Mode.

A.145. SAHF: Store AH to Flags
SAHF ; 9E [8086]
SAHF sets the low byte of the flags word according to the contents of the AH register. See also
LAHF (section A.90).

A.146. SAL, SAR: Bitwise Arithmetic Shifts
SAL r/m8,1 ; D0 /4 [8086]
SAL r/m8,CL ; D2 /4 [8086]
SAL r/m8,imm8 ; C0 /4 ib [286]
SAL r/m16,1 ; o16 D1 /4 [8086]
SAL r/m16,CL ; o16 D3 /4 [8086]
SAL r/m16,imm8 ; o16 C1 /4 ib [286]
SAL r/m32,1 ; o32 D1 /4 [386]
SAL r/m32,CL ; o32 D3 /4 [386]
SAL r/m32,imm8 ; o32 C1 /4 ib [386]
SAR r/m8,1 ; D0 /0 [8086]
SAR r/m8,CL ; D2 /0 [8086]
SAR r/m8,imm8 ; C0 /0 ib [286]
SAR r/m16,1 ; o16 D1 /0 [8086]
SAR r/m16,CL ; o16 D3 /0 [8086]
SAR r/m16,imm8 ; o16 C1 /0 ib [286]
SAR r/m32,1 ; o32 D1 /0 [386]
SAR r/m32,CL ; o32 D3 /0 [386]
SAR r/m32,imm8 ; o32 C1 /0 ib [386]
SAL and SAR perform an arithmetic shift operation on the given source/destination (first)
operand. The vacated bits are filled with zero for SAL, and with copies of the original high bit of
the source operand for SAR.

SAL is a synonym for SHL (see section A.152). NASM will assemble either one to the same
code, but NDISASM will always disassemble that code as SHL.

The number of bits to shift by is given by the second operand. Only the bottom 3, 4 or 5 bits
(depending on the source operand size) of the shift count are considered by processors above the
8086.
You can force the longer (286 and upwards, beginning with a C1 byte) form of SAL foo,1 by
using a BYTE prefix: SAL foo,BYTE 1. Similarly with SAR.

A.147. SALC: Set AL from Carry Flag
SALC ; D6 [8086,UNDOC]
SALC is an early undocumented instruction similar in concept to SETcc (section A.150). Its
function is to set AL to zero if the carry flag is clear, or to 0xFF if it is set.

A.148. SBB: Subtract with Borrow
SBB r/m8,reg8 ; 18 /r [8086]
SBB r/m16,reg16 ; o16 19 /r [8086]
SBB r/m32,reg32 ; o32 19 /r [386]
SBB reg8,r/m8 ; 1A /r [8086]
SBB reg16,r/m16 ; o16 1B /r [8086]
SBB reg32,r/m32 ; o32 1B /r [386]
SBB r/m8,imm8 ; 80 /3 ib [8086]
SBB r/m16,imm16 ; o16 81 /3 iw [8086]
SBB r/m32,imm32 ; o32 81 /3 id [386]
SBB r/m16,imm8 ; o16 83 /3 ib [8086]
SBB r/m32,imm8 ; o32 83 /3 ib [8086]
SBB AL,imm8 ; 1C ib [8086]
SBB AX,imm16 ; o16 1D iw [8086]
SBB EAX,imm32 ; o32 1D id [386]
SBB performs integer subtraction: it subtracts its second operand, plus the value of the carry flag,
from its first, and leaves the result in its destination (first) operand. The flags are set according to
the result of the operation: in particular, the carry flag is affected and can be used by a
subsequent SBB instruction.

In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. In
these cases, the BYTE qualifier is necessary to force NASM to generate this form of the
instruction.
To subtract one number from another without also subtracting the contents of the carry flag, use
SUB (section A.159).

A.149. SCASB, SCASW, SCASD: Scan String
SCASB ; AE [8086]
SCASW ; o16 AF [8086]
SCASD ; o32 AF [386]
SCASB compares the byte in AL with the byte at [ES:DI] or [ES:EDI], and sets the flags
accordingly. It then increments or decrements (depending on the direction flag: increments if the
flag is clear, decrements if it is set) DI (or EDI).

The register used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you need to use an
address size not equal to the current BITS setting, you can use an explicit a16 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use of ES for the load from
[DI] or [EDI] cannot be overridden.

SCASW and SCASD work in the same way, but they compare a word to AX or a doubleword to
EAX instead of a byte to AL, and increment or decrement the addressing registers by 2 or 4
instead of 1.
The REPE and REPNE prefixes (equivalently, REPZ and REPNZ) may be used to repeat the
instruction up to CX (or ECX – again, the address size chooses which) times until the first
unequal or equal byte is found.

A.150. SETcc: Set Register from Condition
SETcc r/m8 ; 0F 90+cc /2 [386]
SETcc sets the given 8-bit operand to zero if its condition is not satisfied, and to 1 if it is.

A.151. SGDT, SIDT, SLDT: Store Descriptor Table Pointers
SGDT mem ; 0F 01 /0 [286,PRIV]
SIDT mem ; 0F 01 /1 [286,PRIV]
SLDT r/m16 ; 0F 00 /0 [286,PRIV]
SGDT and SIDT both take a 6-byte memory area as an operand: they store the contents of the
GDTR (global descriptor table register) or IDTR (interrupt descriptor table register) into that
area as a 32-bit linear address and a 16-bit size limit from that area (in that order). These are the
only instructions which directly use linear addresses, rather than segment/offset pairs.
SLDT stores the segment selector corresponding to the LDT (local descriptor table) into the
given operand.
See also LGDT, LIDT and LLDT (section A.95).

A.152. SHL, SHR: Bitwise Logical Shifts
SHL r/m8,1 ; D0 /4 [8086]
SHL r/m8,CL ; D2 /4 [8086]
SHL r/m8,imm8 ; C0 /4 ib [286]
SHL r/m16,1 ; o16 D1 /4 [8086]
SHL r/m16,CL ; o16 D3 /4 [8086]
SHL r/m16,imm8 ; o16 C1 /4 ib [286]
SHL r/m32,1 ; o32 D1 /4 [386]
SHL r/m32,CL ; o32 D3 /4 [386]
SHL r/m32,imm8 ; o32 C1 /4 ib [386]
SHR r/m8,1 ; D0 /5 [8086]
SHR r/m8,CL ; D2 /5 [8086]
SHR r/m8,imm8 ; C0 /5 ib [286]
SHR r/m16,1 ; o16 D1 /5 [8086]
SHR r/m16,CL ; o16 D3 /5 [8086]
SHR r/m16,imm8 ; o16 C1 /5 ib [286]
SHR r/m32,1 ; o32 D1 /5 [386]
SHR r/m32,CL ; o32 D3 /5 [386]
SHR r/m32,imm8 ; o32 C1 /5 ib [386]
SHL and SHR perform a logical shift operation on the given source/destination (first) operand.
The vacated bits are filled with zero.
A synonym for SHL is SAL (see section A.146). NASM will assemble either one to the same
code, but NDISASM will always disassemble that code as SHL.

The number of bits to shift by is given by the second operand. Only the bottom 3, 4 or 5 bits
(depending on the source operand size) of the shift count are considered by processors above the
8086.
You can force the longer (286 and upwards, beginning with a C1 byte) form of SHL foo,1 by
using a BYTE prefix: SHL foo,BYTE 1. Similarly with SHR.

A.153. SHLD, SHRD: Bitwise Double-Precision Shifts
SHLD r/m16,reg16,imm8 ; o16 0F A4 /r ib [386]
SHLD r/m16,reg32,imm8 ; o32 0F A4 /r ib [386]
SHLD r/m16,reg16,CL ; o16 0F A5 /r [386]
SHLD r/m16,reg32,CL ; o32 0F A5 /r [386]
SHRD r/m16,reg16,imm8 ; o16 0F AC /r ib [386]
SHRD r/m32,reg32,imm8 ; o32 0F AC /r ib [386]
SHRD r/m16,reg16,CL ; o16 0F AD /r [386]
SHRD r/m32,reg32,CL ; o32 0F AD /r [386]
SHLD performs a double-precision left shift. It notionally places its second operand to the right
of its first, then shifts the entire bit string thus generated to the left by a number of bits specified
in the third operand. It then updates only the first operand according to the result of this. The
second operand is not modified.
SHRD performs the corresponding right shift: it notionally places the second operand to the left
of the first, shifts the whole bit string right, and updates only the first operand.
For example, if EAX holds 0x01234567 and EBX holds 0x89ABCDEF, then the instruction
SHLD EAX,EBX,4 would update EAX to hold 0x12345678. Under the same conditions,
SHRD EAX,EBX,4 would update EAX to hold 0xF0123456.

The number of bits to shift by is given by the third operand. Only the bottom 5 bits of the shift
count are considered.

A.154. SMI: System Management Interrupt
SMI ; F1 [386,UNDOC]
This is an opcode apparently supported by some AMD processors (which is why it can generate
the same opcode as INT1), and places the machine into system-management mode, a special
debugging mode.

A.155. SMSW: Store Machine Status Word
SMSW r/m16 ; 0F 01 /4 [286,PRIV]
SMSW stores the bottom half of the CR0 control register (or the Machine Status Word, on 286
processors) into the destination operand. See also LMSW (section A.96).

A.156. STC, STD, STI: Set Flags
STC ; F9 [8086]
STD ; FD [8086]
STI ; FB [8086]
These instructions set various flags. STC sets the carry flag; STD sets the direction flag; and STI
sets the interrupt flag (thus enabling interrupts).
To clear the carry, direction, or interrupt flags, use the CLC, CLD and CLI instructions (section
A.15). To invert the carry flag, use CMC (section A.16).

A.157. STOSB, STOSW, STOSD: Store Byte to String
STOSB ; AA [8086]
STOSW ; o16 AB [8086]
STOSD ; o32 AB [386]
STOSB stores the byte in AL at [ES:DI] or [ES:EDI], and sets the flags accordingly. It then
increments or decrements (depending on the direction flag: increments if the flag is clear,
decrements if it is set) DI (or EDI).

The register used is DI if the address size is 16 bits, and EDI if it is 32 bits. If you need to use an
address size not equal to the current BITS setting, you can use an explicit a16 or a32 prefix.

Segment override prefixes have no effect for this instruction: the use of ES for the store to [DI]
or [EDI] cannot be overridden.

STOSW and STOSD work in the same way, but they store the word in AX or the doubleword in
EAX instead of the byte in AL, and increment or decrement the addressing registers by 2 or 4
instead of 1.
The REP prefix may be used to repeat the instruction CX (or ECX – again, the address size
chooses which) times.

A.158. STR: Store Task Register
STR r/m16 ; 0F 00 /1 [286,PRIV]
STR stores the segment selector corresponding to the contents of the Task Register into its
operand.

A.159. SUB: Subtract Integers
SUB r/m8,reg8 ; 28 /r [8086]
SUB r/m16,reg16 ; o16 29 /r [8086]
SUB r/m32,reg32 ; o32 29 /r [386]
SUB reg8,r/m8 ; 2A /r [8086]
SUB reg16,r/m16 ; o16 2B /r [8086]
SUB reg32,r/m32 ; o32 2B /r [386]
SUB r/m8,imm8 ; 80 /5 ib [8086]
SUB r/m16,imm16 ; o16 81 /5 iw [8086]
SUB r/m32,imm32 ; o32 81 /5 id [386]
SUB r/m16,imm8 ; o16 83 /5 ib [8086]
SUB r/m32,imm8 ; o32 83 /5 ib [386]
SUB AL,imm8 ; 2C ib [8086]
SUB AX,imm16 ; o16 2D iw [8086]
SUB EAX,imm32 ; o32 2D id [386]
SUB performs integer subtraction: it subtracts its second operand from its first, and leaves the
result in its destination (first) operand. The flags are set according to the result of the operation:
in particular, the carry flag is affected and can be used by a subsequent SBB instruction (section
A.148).
In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. In
these cases, the BYTE qualifier is necessary to force NASM to generate this form of the
instruction.

A.160. TEST: Test Bits (notional bitwise AND)
TEST r/m8,reg8 ; 84 /r [8086]
TEST r/m16,reg16 ; o16 85 /r [8086]
TEST r/m32,reg32 ; o32 85 /r [386]
TEST r/m8,imm8 ; F6 /7 ib [8086]
TEST r/m16,imm16 ; o16 F7 /7 iw [8086]
TEST r/m32,imm32 ; o32 F7 /7 id [386]
TEST AL,imm8 ; A8 ib [8086]
TEST AX,imm16 ; o16 A9 iw [8086]
TEST EAX,imm32 ; o32 A9 id [386]
TEST performs a `mental' bitwise AND of its two operands, and affects the flags as if the
operation had taken place, but does not store the result of the operation anywhere.

A.161. UMOV: User Move Data
UMOV r/m8,reg8 ; 0F 10 /r [386,UNDOC]
UMOV r/m16,reg16 ; o16 0F 11 /r [386,UNDOC]
UMOV r/m32,reg32 ; o32 0F 11 /r [386,UNDOC]
UMOV reg8,r/m8 ; 0F 12 /r [386,UNDOC]
UMOV reg16,r/m16 ; o16 0F 13 /r [386,UNDOC]
UMOV reg32,r/m32 ; o32 0F 13 /r [386,UNDOC]
This undocumented instruction is used by in-circuit emulators to access user memory (as
opposed to host memory). It is used just like an ordinary memory/register or register/register
MOV instruction, but accesses user space.

A.162. VERR, VERW: Verify Segment Readability/Writability
VERR r/m16 ; 0F 00 /4 [286,PRIV]
VERW r/m16 ; 0F 00 /5 [286,PRIV]
VERR sets the zero flag if the segment specified by the selector in its operand can be read from at
the current privilege level. VERW sets the zero flag if the segment can be written.

A.163. WAIT: Wait for Floating-Point Processor
WAIT ; 9B [8086]
WAIT, on 8086 systems with a separate 8087 FPU, waits for the FPU to have finished any
operation it is engaged in before continuing main processor operations, so that (for example) an
FPU store to main memory can be guaranteed to have completed before the CPU tries to read the
result back out.
On higher processors, WAIT is unnecessary for this purpose, and it has the alternative purpose of
ensuring that any pending unmasked FPU exceptions have happened before execution continues.

A.164. WBINVD: Write Back and Invalidate Cache
WBINVD ; 0F 09 [486]
WBINVD invalidates and empties the processor's internal caches, and causes the processor to
instruct external caches to do the same. It writes the contents of the caches back to memory first,
so no data is lost. To flush the caches quickly without bothering to write the data back first, use
INVD (section A.84).

A.165. WRMSR: Write Model-Specific Registers
WRMSR ; 0F 30 [PENT]
WRMSR writes the value in EDX:EAX to the processor Model-Specific Register (MSR) whose
index is stored in ECX. See also RDMSR (section A.139).

A.166. XADD: Exchange and Add
XADD r/m8,reg8 ; 0F C0 /r [486]
XADD r/m16,reg16 ; o16 0F C1 /r [486]
XADD r/m32,reg32 ; o32 0F C1 /r [486]
XADD exchanges the values in its two operands, and then adds them together and writes the
result into the destination (first) operand. This instruction can be used with a LOCK prefix for
multi-processor synchronisation purposes.

A.167. XBTS: Extract Bit String
XBTS reg16,r/m16 ; o16 0F A6 /r [386,UNDOC]
XBTS reg32,r/m32 ; o32 0F A6 /r [386,UNDOC]
No clear documentation seems to be available for this instruction: the best I've been able to find
reads `Takes a string of bits from the first operand and puts them in the second operand'. It is
present only in early 386 processors, and conflicts with the opcodes for CMPXCHG486. NASM
supports it only for completeness. Its counterpart is IBTS (see section A.75).

A.168. XCHG: Exchange
XCHG reg8,r/m8 ; 86 /r [8086]
XCHG reg16,r/m8 ; o16 87 /r [8086]
XCHG reg32,r/m32 ; o32 87 /r [386]
XCHG r/m8,reg8 ; 86 /r [8086]
XCHG r/m16,reg16 ; o16 87 /r [8086]
XCHG r/m32,reg32 ; o32 87 /r [386]
XCHG AX,reg16 ; o16 90+r [8086]
XCHG EAX,reg32 ; o32 90+r [386]
XCHG reg16,AX ; o16 90+r [8086]
XCHG reg32,EAX ; o32 90+r [386]
XCHG exchanges the values in its two operands. It can be used with a LOCK prefix for purposes
of multi-processor synchronisation.
XCHG AX,AX or XCHG EAX,EAX (depending on the BITS setting) generates the opcode 90h,
and so is a synonym for NOP (section A.109).

A.169. XLATB: Translate Byte in Lookup Table
XLATB ; D7 [8086]
XLATB adds the value in AL, treated as an unsigned byte, to BX or EBX, and loads the byte from
the resulting address (in the segment specified by DS) back into AL.

The base register used is BX if the address size is 16 bits, and EBX if it is 32 bits. If you need to
use an address size not equal to the current BITS setting, you can use an explicit a16 or a32
prefix.
The segment register used to load from [BX+AL] or [EBX+AL] can be overridden by using a
segment register name as a prefix (for example, es xlatb).

A.170. XOR: Bitwise Exclusive OR
XOR r/m8,reg8 ; 30 /r [8086]
XOR r/m16,reg16 ; o16 31 /r [8086]
XOR r/m32,reg32 ; o32 31 /r [386]
XOR reg8,r/m8 ; 32 /r [8086]
XOR reg16,r/m16 ; o16 33 /r [8086]
XOR reg32,r/m32 ; o32 33 /r [386]
XOR r/m8,imm8 ; 80 /6 ib [8086]
XOR r/m16,imm16 ; o16 81 /6 iw [8086]
XOR r/m32,imm32 ; o32 81 /6 id [386]
XOR r/m16,imm8 ; o16 83 /6 ib [8086]
XOR r/m32,imm8 ; o32 83 /6 ib [386]
XOR AL,imm8 ; 34 ib [8086]
XOR AX,imm16 ; o16 35 iw [8086]
XOR EAX,imm32 ; o32 35 id [386]
XOR performs a bitwise XOR operation between its two operands (i.e. each bit of the result is 1
if and only if exactly one of the corresponding bits of the two inputs was 1), and stores the result
in the destination (first) operand.
In the forms with an 8-bit immediate second operand and a longer first operand, the second
operand is considered to be signed, and is sign-extended to the length of the first operand. In
these cases, the BYTE qualifier is necessary to force NASM to generate this form of the
instruction.
The MMX instruction PXOR (see section A.137) performs the same operation on the 64-bit
MMX registers.

