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About this manual
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The material in this manual follows the order of presentation of topics in the Report on the

Modula-2 language in Wirth's Programming in Modula-2, (Springer-Verlag).

The railroad syntax diagrams are adapted from an appendix in the book Modula-2: a second

course in programming by Gough and Mohay (Prentice-Hall 1988), and are used by permission

of the authors.

The date of this version of the manual is
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About gardens point modula

gardens point modula is a product of the programming language and systems group of

the Queensland University of Technology. Implementations are currently available for

11 separate 32-bit machine types, and the demonstration version gpm-pc which emulates a

32-bit machine on any \industry standard pc".

Copyright of all the source code is held by the Faculty of Information Technology of QUT, or

by Software Automata. This manual also is copyright
c
. Permission is granted for portions

of this manual to be copied for the convenience of users of the compiler under circumstances

set out in the licence agreement. All other duplication requires the written permission of the

copyright holder.
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John Gough (system architecture)

John Hynd (project manager)

Diane Corney, Christina Cifuentes and Peter Kolb (gpm-pc)
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Michael Roggenkamp (some libraries)

gpm is an entirely new implementation of the Modula-2 language. It inherits neither code

nor data structures from any of the previous compilers associated with its authors. It has

been designed for the computer architectures of the current generation, particularly those

using the reduced instruction set philosophy.



Chapter 1

Introduction

This manual is a concise guide to the language Modula-2, or simply Modula. The manual

does not set out to be a guide to learning to program in the language | for that you should

see any one of a number of textbooks on the subject.

There is a slight bias in the presentation, in that there is frequent reference to the gardens

point modula (henceforth gpm) version of Modula. Attention is drawn to the small number

of places where gpm does not yet fully conform to the emerging ISO draft standard. Likewise,

warnings are given regarding those features that are new in the language, and may hence

cause problems of portability for users who are using old compilers as well as gpm. The �nal

chapter of this manual collects in one place all of the changes that have taken place since the

�rst edition of Wirth's Programming in Modula-2.

gpm is available for a large number of di�erent machines, and behaves identically (almost)

for all versions. The only di�erences are due to smaller table sizes in the PC-demonstration

version, and the absence of some libraries in the PC version. Some versions have additional

command line options, and there are some limitations in the sharing of data �les between

versions that use di�erent byte packing conventions, or di�erent �le formats.

What this manual contains

This manual contains details of the language Modula as implemented by gpm. It contains

a guide to the syntactic rules that govern the legality of programs, and an explanation of

the semantics rules that programs must obey also. The syntax is given in both EBNF and

railroad diagram forms.

This manual also contains examples of the use of various constructs, and points out some

of the subtle consequences of the �ne print details of the language semantics. There is some

deliberate repetition in the details, so that important points on any particular topic may

be found with a single lookup. For example, details regarding the use of anonymous types

are given in the section on variable declarations and also in the section that deals with type

compatability.

What this manual doesn't contain

This manual is not a textbook, and neither is it a technical reference manual for gpm. The

separate User Guide contains the following important information |

5



CHAPTER 1. INTRODUCTION 6

� how to get started with gpm

� command line parameters

� helpful hints on using gpm

� error messages during compilation

� error messages at runtime

� how to do post-mortem debugging

The separate Technical Reference Manual contains the following further information |

� compiler limits

� representation issues

� detailed explanation of error messages

� how to interface to other languages

� interface de�nitions for the libraries

Finally, the Release notes that come with your particular version of gpm contain the following

information |

� latest information on new libraries

� latest information on new features

� noti�cation of any recent bug �xes

� a list of any known bugs (oops)

� known di�erences between versions



Chapter 2

Syntax and notation

Modula programs are sequences of symbols belonging to the alphabet of Modula. This

alphabet consists of 41 keywords, a number of special symbols, some standard identi�ers and

user declared identi�ers. To describe the syntax in a precise and compact way, a notation

called Extended Backus-Naur Form (EBNF) will be used. This form describes the structure

of the various phrases from which valid programs are constructed.

Please note from the outset that the syntactic rules of the language do not completely

specify which programs are actually valid. As well as obeying the syntax rules that are

detailed here, there are other semantic rules that must be obeyed also. These semantic rules

specify such things as the fact that identi�ers must be declared before they are used, and so

on. It is just a matter of convenience that the rules are separated into two kinds.

EBNF consists of replacement rules that give the relationship between di�erent kinds

of symbols. There are two kinds of symbols | terminal symbols, which have no further

structure at this level of description; and syntactic categories which may be further ex-

panded. Because of the possibility of further expansion, syntactic categories are also called

non-terminal symbols.

Terminal symbols consist of the special symbols such as := and the punctuation symbols,

the keywords, and certain lexical categories. Lexical categories are symbols such as num-

ber, and literalString. These symbols have properties, such as a numeric value, or a string

value which are important for the meaning of the program, but not important for syntactic

correctness. For example, an assignment statement of the form

strVar := "some literal string";

is syntactically correct no matter what the identi�er value is, or the literal string value. For

semantic correctness the identi�er must denote a variable that is declared as an array of

characters and which is at least as long as the length of the literal string.

Syntactic categories (non-terminal symbols) are denoted by English words expressing their

intuitive meaning.

Examples:

syntactic categories - Program, Statement

lexical categories - ident�er, number, literalString.

7



CHAPTER 2. SYNTAX AND NOTATION 8

The EBNF notation speci�es a set of productions or replacement rules, that show how

each particular syntactic category may be built up from other syntactic categories and the

symbols of the Modula alphabet. In any production, the phrase on the right-hand-side of the

arrow symbol is a possible expansion of the syntactic category on the left-hand-side.

Braces, brackets and parentheses, the arrow sign, the solid vertical bar, and the fullstop

are all special symbols of the notation. Square brackets indicate that the enclosed form

is optional. Braces (curly brackets) indicate the enclosed form may be repeated zero, one

or more times. Parentheses (round brackets) group terms that are alternatives. The solid

vertical bar separates alternatives and the fullstop marks the end of the production. If there

is a need to use one of the special symbols literally, it is enclosed in quote symbols. Consider

the following example |

ValueList ! \f" Element f, Element g \g".

This states that a ValueList may be expanded as a list of one or more comma-separated

Elements, enclosed in literal braces (curly brackets). Note that the outer braces are literal,

while the inner ones denote repetition.

2.1 How to read the syntax diagrams

Syntax diagrams provide an alternative to EBNF in expressing the syntax of the language.

These diagrams, sometimes called railroad diagrams, indicate which sequences of symbols are

valid. Any path with starts at the entry point on the left and �nishes at the exit point on the

right spells out a valid phrase, provided that it only travels in the direction of the arrows.

Rectangular boxes correspond to syntactic categories that appear elsewhere in the syntax

diagrams. The oval and round boxes contain terminal symbols of the grammar such as

keywords, special symbols, or the lexical categories ident, number and litstring.

Example:

The non-terminal symbol IdentList is used throughout the EBNF, denoting a comma-

separated list of identi�ers. The production rule is |

IdentList ! ident f, identg.

These identi�er lists are always shown explicitly in the railroad diagrams, and look similar

to this example |

�

�

�

�

ident

�

�
�

��

��

,

�

6

- -

2.2 Lexical categories and rules

The ASCII character set is assumed and the following lexical rules must be observed.



CHAPTER 2. SYNTAX AND NOTATION 9

Blanks must not occur within symbols (except in strings). Blanks and line breaks are

ignored unless they are essential to separate two consecutive symbols.

Identi�ers are sequences of letters, digits and lowlines. The �rst character must be a

letter. The lowline character \underscore" may be used in multi-word identi�ers to separate

words, to increase readability. However, in Modula, it is traditional to use upper and lower

case rather than lowlines for this purpose, and this manual follows the Modula convention.

gpm currently does not allow identi�ers to start or end with a lowline, and does not permit

lowlines to be adjacent.

ident ! letterfletter j digitg.

Examples: count Modula get_Symbol

identi�er

-

�

�

�

�

alphabetic character

-
�

�
�

�

�

�

�

alphanumeric character

�

6

�

�

?

��

��

Numbers are whole numbers or real numbers. Whole numbers are sequences of digits.

Whole numbers may be represented by decimal, octal or hexadecimal values. In each instance

the �rst character of the number must be a digit; octal representations are terminated by a B

or C and a hexadecimal representation is terminated by a H. The use of the C form indicates

that the value is the octal ordinal representation of a character constant.

number ! WholeNumber j RealNumber.

WholeNumber ! digitfdigitg

j octalDigitfoctalDigitg B j C

j digitfhexDigitg H.

octalDigit ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7.

digit ! octalDigit j 8 j 9.

hexDigit ! digit j A j B j C j D j E j F.

literal whole number

�

-

�

�

�

�

digit

-

�

��

6

�
-

�

�

�

�

octal digit

-

��

��

B

-
�

��

6

�
-

�

�

�

�

digit

-

�

�

�

�

hex digit

�

��

6

-

��

��

H

�

6

6
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CHAR-valued number

-

�

�

�

�

octal digit

-

��

��

C

-
�

��

6

A real number always contains a decimal point. Optionally it may contain a decimal scale

factor. The letter E is pronounced as \ten to the power of".

realNumber ! digitfdigitg `.' fdigitg [scaleFactor].

scaleFactor ! E [+ j {] digitfdigitg.

REAL-valued number

-

�

�

�

�

digit

-

��

��

.

-
�

��

6

�

�
�

�

�

�

�

digit

�

6

�

�
-

��

��

E

-

�

	




�

-

-

��

��

+

��

��

-

�
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?

�

�

�

�

digit

�

6

�

��

6

Strings are sequences of characters enclosed in quotes. Both double and single quotes

(apostrophes) may be used. However, the opening and closing quotes must be the same

character, and this character cannot occur within the string. A string must not extend over

the end of a line.

litString ! 'fcharacterg' j "fcharacterg".

Examples: "Life's great" 'Watch out!'

litstring

-

��

��

'

--

��

��

'

-

�


�

�

�

�

�

any graphics char except '

�

6

�

�
-

��

��

"

--

��

��

"

�

6

�


�

�

�

�

�

any graphics char except "

�

6

The keywords and special symbols of Modula are listed below.

AND ARRAY BEGIN BY CASE

CONST DEFINITION DIV DO ELSE

ELSIF END EXIT EXPORT FOR

FORWARD FROM IF IMPLEMENTATION IMPORT

IN LOOP MOD MODULE NOT

OF OR POINTER PROCEDURE QUALIFIED

RECORD REPEAT RETURN SET THEN

TO TYPE UNTIL VAR WHILE

WITH

+ - * / := & . ..
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; ( ) [ ] { } ,

^ ~ = # < > <> <=

>= " ' | :

The two symbols <> and # are lexical synonyms, with both denoting the inequality

predicate (not equal to), the two symbols ~ and NOT are lexical synonyms, both denoting

logical negation (Boolean NOT ), �nally, the two symbols & and AND are lexical synonyms,

both denoting logical conjunction (Boolean AND).

Comments may be inserted between any two symbols in the program. Comments are

enclosed in `(*' and `*)' markers. Material in comments does not a�ect the meaning of the

program.

Comments may be properly nested, so that it is possible to comment out sections of code

that include comments. Beware however of commenting out sections of code that contain

literal strings that contain character sequences that will be interpreted as comment delimiters.



Chapter 3

Declarations and scope rules

Syntax

Declaration ! CONST fident = ConstExpr ;g

j TYPE fident= Type ;g j VAR fIdentList : Type ;g

j ModDeclaration ; j ProcDeclaration ;.

IdentList ! ident f, identg.

Declaration

�
-

ModDeclaration

-

��

��

;

-

�
-

ProcDeclaration

-

��

��

;

-

�
-

�

�

�

�

VAR

--
�

�
-

�

�

�

�

ident

�

�
�

��

��

,

�

6

-

��

��

:

-

Type

-

��

��

;

-

�



�
�

?

�
-

�

�

�

�

TYPE

--
�

�
-

�

�

�

�

ident

-

��

��

=

-

Type

-

��

��

;

-

�



�
�

?

-

�

�

�

�

CONST

--
�

�
-

�

�

�

�

ident

-

��

��

=

-

ConstExpr

-

��

��

;

-

�
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?

�
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6

Every identi�er occurring in a program must be introduced by a declaration, unless it is a

standard identi�er (that is, a pervasive identi�er). Declarations also serve to specify certain

permanent properties of an object, such as whether it is a constant, a type, a variable, a

procedure, or a module.

12



CHAPTER 3. DECLARATIONS AND SCOPE RULES 13

The identi�er is then used to refer to the associated object. This is possible in those parts

of the program that are within the scope of the declaration. In general, the scope extends

over the entire block (procedure or module declaration) to which the declaration belongs and

to which the object is local.

The order of declaration of objects is not constrained as it is in language Pascal. This

additional freedom may be used to place declarations together for objects that logically belong

together. Thus the declarations of constants that are parameters in type declarations may

be placed with the type declarations.

3.1 Declaration before use

In general, Modula demands that objects used in declarations should themselves have been

declared (or imported) earlier in the program text. This rule is relaxed only in the declaration

of pointer and procedure types, as detailed in a later chapter.

An object is not declared until its declaration is complete. This means, for example, that

a type cannot refer to itself within its own declaration. An occurrence of an identi�er is a used

occurrence in a declaration if the identi�er appears in the right-hand-part of the declaration

of another object, is used as a type-name in a formal parameter list, or appears in an import

list. The occurrence of an identi�er in an export list does not constitute a used occurrence in

a declaration.

The use of a procedure name in the body part of a procedure or module declaration does

not constitute a used occurrence in a declaration, within the meaning of the declaration before

use rule. Or at least gpm doesn't think so. The ability to call procedures that have not yet

been declared is a traditional part of Modula. However, some simple compilers are unable to

cope with this. Such compilers are said to have single pass restrictions. In order to legitimize

such compilers, Modula now allows procedures to be explicitly declared FORWARD. Details are

given in the chapter on procedure declarations. gpm allows such forward declarations, and

checks their correctness, but does not need them for procedures. A special case of use is given

in the chapter on module declarations.

3.2 Scope rules

In general, the scope of an object is the whole of the procedure or module in which it is

declared. It is important to note some consequences of this rule. The point of declaration of

an object may be somewhere in the middle of a module (say). The scope of the declaration

is the whole of the module, but the name of the object may not be used in that part of the

scope that precedes the point of declaration.

This rule prevents any other object from being associated with the identi�er of a local

object in that part of the procedure or module that precedes the declaration of the object.

Consider the following situation |

TYPE Thing = POINTER TO CHAR;

PROCEDURE Foo;

VAR bar : Thing; (* an error *)

TYPE Thing = POINTER TO INTEGER;
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BEGIN

...

The marked variable declaration might be either: an illegal reference to the relatively global

type Thing, or is an illegal used occurrence of the identi�er of the local type Thing. It is

known that some early Modula compilers will not detect this error, but gpm will reject it

�rmly.

The exceptions to the scope extends throughout the procedure or module rule are as follows

|

� the scope of an exported object expands to the whole of the block into which it is

injected. In the case of compilation units the scope expands to include all of the

modules that import that object

� if a procedure declaration is in the scope of some object, and the procedure contains a

declaration of a local object with the same name as that object, inside the nested scope

the identi�er designates the local object. The more global object is rendered invisible

by the more local declaration. It is said to be occluded or to be incidentally invisible.

Such an occluded object becomes visible again at the end of the scope of the more

deeply nested object

3.3 Pervasive identi�ers

The following identi�ers are said to be pervasive. They are visible in all scopes in which

they are not made incidentally invisible by a local declaration. The purpose of each of these

is explained in the relevant chapter, but they are collected here for reference.

Built-in constants

FALSE NIL TRUE

Built-in types

BITSET BOOLEAN CARDINAL CHAR INTEGER

LONGREAL PROC REAL SHORTREAL

1

Built-in procedures

ABORT

1

ABS CAP CHR DEC

DISPOSE EXCL FLOAT HALT HIGH

INC INCL LENGTH LFLOAT MAX

MIN NEW ODD ORD SIZE

SFLOAT

1

TRUNC VAL

1

Not standard modula, gpm only
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Constant declarations

Syntax

Declaration ! ... j CONST fident = ConstExpr ; g j ...

De�nition ! ... j CONST fident = ConstExpr ; g j ...

ConstExpr ! Expression.

Constant declarations are used to introducemanifest constants, that is identi�ers which

denote particular constant values. Modula provides for the declarations of constants of all

types for which expressions may be constructed.

Constant declarations may occur anywhere in the declaration part of blocks, and are

used both in other declarations, and in the statement sequence part of blocks. Constant

de�nitions share the same syntax, and occur in the de�nition parts of separately compiled

modules. These are treated in the Compilation Units chapter of this manual.

Constant declarations

-

�

�

�

�

CONST

--
�

�
-

�

�

�

�

ident

-

��

��

=

-

ConstExpr

-

��

��

;

6

�



�
�

?

4.1 Literal constants

The basic literal constants were introduced in the chapter on syntax. These are WholeNum-

bers, RealNumbers, litStrings, and the various pervasive constants TRUE, FALSE and NIL.

These are used as the building blocks from which other constant expressions are constructed.

Other constant values are introduced by the declaration of enumeration types, and other

constant declarations.

Once a constant has been declared, it may be used in other constant, variable or type

declarations. Consider the following parameterized declarations |

CONST ElementNumber = 3743;

MaxIndex = ElementNumber - 1;

StrTabMax = ElementNumber * 10;

15
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VAR HashTable : ARRAY [0 .. MaxIndex] OF Entry;

StringTable : ARRAY [0 .. StrTabMax] OF CHAR;

Some literal constants are of special types, which obey less strict rules of type compatibility

than do other objects. It is not possible to declare variables to have these types, but literal

constants automatically are of the appropriate type.

Literal whole-valued numbers are of a special type ZZ. Constants of this type are com-

patible with both signed and unsigned numeric types.

Literal strings are of the special abstract string type SS. Constants of this type are

assignment compatible with all su�ciently long arrays of CHAR. The special cases of literal

strings of length zero and one are also compatible with the type CHAR. Length-zero strings,

when treated as character constants, have a value which is equal to the implementation

de�ned string termination character. In gpm this value may be also denoted as Ascii.nul

(if module Ascii has been imported) or as 0C. However, the denotation '' or "" is simpler

and preferred in some styles.

For number literals ending with character C, the type of the constant is referred to here

as S1 (length-1 string). This is a special case of string literal which is expression compatible

with the type CHAR, but which is also assignment compatible with arrays of CHAR in the same

way as other strings.

For all other whole number literals, the type of the literal is the special integer type ZZ,

mentioned earlier.

Real valued literals are of the special RR type which is expression compatible with all

named real types. The following assignments are valid because of this property, and not

because of any kind of automatic conversion of the type that some other languages provide.

CONST pi = 3.1415926535897932385;

VAR short : SHORTREAL; (* IEEE single *)

long : LONGREAL; (* IEEE double *)

...

short := pi;

long := pi;

Enumeration constants have type corresponding to the enumeration of which they denote

a particular value.

The constant expressions which occur in constant declarations may use all operators

which are applicable for the constant operand type. It is also permissible to use certain

of the pervasive functions in such declarations. For example, it is legal (and perhaps even

useful) to use constructs of the form |

CONST message = "dispute the dominant paradigm";

mHigh = LENGTH(message) - 1;

VAR buffer : ARRAY [0 .. mHigh] OF CHAR;

4.2 Procedure constants

Procedure constants provide a newly introduced method of declaring procedure synonyms.

The name of a procedure, without parameters, denotes a procedure value of some particular
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procedure type. The use of such a name as the right hand side of a constant declaration

introduces a procedure valued constant. The procedure constant is simply a manifest constant

denoting the declared value.

This mechanism may be used to declare a synonym for a procedure. For example in the

following program fragment, short synonyms are declared for two procedures.

IMPORT Terminal, StdError;

CONST WrtT = Terminal.WriteString;

WrtE = StdError.WriteString;

The mechanism is also useful in de�nition modules, for declaring specializations of existing

modules, and thus sharing code |

DEFINITION MODULE Stacks;

IMPORT Sequences;

TYPE Stack = Sequences.Sequence;

CONST MakeEmpty = Sequences.MakeEmpty(* *);

IsEmpty = Sequences.IsEmpty (* s : Stack *)

(* returns BOOLEAN *);

Push = Sequences.LinkRight (* VAR s : Stack;

elem : Element *);

Pop = Sequences.UnLinkRight (* VAR s : Stack;

VAR elem : Element *);

Note the use of comments in this example to remind the human reader of the actual parameter

list and return types of the procedure constants.

4.3 Constant constructors

The syntax of constructors is given in detail in the chapter on expressions. In this chapter

examples are given of constructors of various types.

Set constructors

Here is a simple example of constant set constructors, and an expression involving constant

sets.

TYPE CharSet = SET OF CHAR;

CONST alphas = CharSet{'A' .. 'Z','a' .. 'z'};

vowels = CharSet{'a','e','i','o','u',

'A','E','I','O','U'};

consonants = alphas - vowels;
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Record constructors

Here are two examples of use of constant record constructors.

TYPE Tree = POINTER TO Glue;

Glue = RECORD

key : KeyType;

left, right : Tree;

END;

CONST mtTree = Tree{"empty",NIL,NIL};

In this case the initialization of a tree node can be performed by the assignment of mtTree.

t := mtTree;

The same e�ect might be obtained by the procedure call |

PROCEDURE MakeEmptyTree(VAR t : Tree);

BEGIN

t := Tree{"empty",NIL,NIL};

END MakeEmptyTree;

Array constructors

Here are two di�erent constant array constructors.

TYPE ShortStr = ARRAY [0 .. 15] OF CHAR;

CONST str1 = ShortStr{'e','x','a','m','p','l','e',0C BY 9};

str2 = "example";

In this example the two constants have di�erent types and di�erent possible operations,

although they would look identical if printed. The �rst, str1, is of type ShortStr. This

constant may have its components selected by indexing, but is only compatible with other

object of this same array type.

The second constant is of the special abstract string type SS. This constant may not have

its components selected by indexing, but may be assigned to character array variables of any

su�ciently large index range.

TYPE BytePosition = [0 .. 3];

PositionMap = ARRAY BytePosition OF BytePosition;

CONST bigEndian = PositionMap {3,2,1,0};

littleEndian = PositionMap {0,1,2,3};

map = littleEndian; (* edit this if necessary *)

...

FOR index := 0 TO 3 DO

word[index] := value[map[index]];

...

In this second example, a constant mapping array is de�ned, so that a single edit operation

may change the mapping function while leaving the text of the code unaltered. In this case,

since the map is a constant some compilers will fold many mapping operations at compile

time, so that the mapping function will not consume runtime resources.
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4.4 Function applications in constant expressions

Normally the use of a function application in an expression signals that the expression is not

constant. Usually it is necessary to execute the code of a function procedure to evaluate the

result of the function application. However, for some built-in procedures it is possible for

the compiler to evaluate the function at compile time, provided the actual parameters are

constant expressions.

The following pseudo-functions take type names as parameter, and may be used freely in

constant declarations |

function result type meaning

MAX(typeName) type, or ZZ maximum value of type

MIN(typeName) type, or ZZ minimum value of type

SIZE(typeName) CARDINAL storage size of type

The �rst two of these may only be applied to the totally ordered types, such as the numeric,

enumeration and subrange types. The last of these may also be called using an expression

as a parameter. In that case the function returns the storage size of the expression type, but

the expression must itself be constant.

The following functions may be applied in constant expressions, but require that the

parameters are compile time constants.

function result type meaning

ABS(ordExp) ExprType absolute value of ordExp

CAP(charExp) CHAR capitalized value of charExp

CHR(ordExp) CHAR char of same ordinal value as ordExp

FLOAT(numExp) REAL real of same value as numExp

INT

1

(numExp) INTEGER integer of same value

LENGTH(strExp) CARDINAL length of string constant

LFLOAT(numExp) REAL real of same value as numExp

ODD(ordExp) BOOLEAN predicate is-odd?

ORD(ordExp) CARDINAL ordinal value of ordExp

SFLOAT(numExp) SHORTREAL short of same value as numExp

TRUNC(realExp) CARDINAL largest cardinal <= realExp

VAL(typeName,ordExp) type value of type with same ordinal value

1

INT is not implemented in gpm at this time
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Type declarations

Syntax

Declaration ! ... j TYPE = Type ; j ...

De�nition ! ... j TYPE [= Type] ; j ...

Type ! SimpleType j StructuredType j PointerType j ProcType.

SimpleType ! Qualident j Enumeration j SubrangeType.

StructuredType ! SetType j ArrayType j RecordType.

Type

-

SimpleType

-
�

�
-

StructuredType

-

�
-

PointerType

-

�
-

ProcType

-

6

�

SimpleType

-

Qualident

-
�

�
-

Enumeration

-

�
-

SubrangeType

-

6

�

20
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StructuredType

-

SetType

-
�

�
-

ArrayType

-

�
-

RecordType

-

6

�

The declaration of a type introduces a set of values that a variable of the type may assume.

Every type is characterized by its structuring method and its set of values.

5.1 The built-in types

All user-de�ned types are constructed from certain basic types that are built-in to the lan-

guage. These are BITSET, BOOLEAN, CARDINAL, CHAR, INTEGER, LONGREAL, REAL, and

SHORTREAL

1

. The properties of each of these is as follows {

Type Name Type Value-Set

BITSET subsets of an implementation de�ned set

in gpm SET OF [0 .. 31]

BOOLEAN may be thought of as the enumeration FALSE, TRUE

CARDINAL the set of integers from 0 to MAX(CARDINAL)

in gpm 0 to 2

32

� 1, [0 .. 4 294 967 295]

CHAR an implementation de�ned set of characters

in gpm the ascii set 0C to 377C

INTEGER some set of integers

in gpm �2

31

to 2

31

� 1, [-2 147 483 648 .. 2 147 483 647]

LONGREAL some implementation de�ned set of model numbers

in gpm the IEEE double precision type

PROC parameterless proper procedures

REAL some implementation de�ned set of model numbers

in gpm the IEEE double precision type

SHORTREAL some implementation de�ned set of model numbers

in gpm the IEEE single precision type

The types BOOLEAN, CARDINAL, CHAR, INTEGER, are ordinal types, that is, they have

a total order de�ned on their values, and may be placed in one-to-one correspondence with

some subrange of the integers.

The built-in function ORD extracts the ordinal number associated with a value of any

ordinal type. For example, for the Boolean type ORD(FALSE) = 0 and ORD(TRUE) = 1. The

built-in procedures INC, DEC also apply to all ordinal types.

1

Because the types REAL and LONGREAL are identical in gpm the non-standard type SHORTREAL is included

as a language extension
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The types CARDINAL, INTEGER, LONGREAL, REAL, SHORTREAL are number types. They

are not only ordered, but permit arithmetic operations to be performed on expressions of these

types.

5.2 Type synonyms

A type may be declared as a synonym for an already declared type. Such a declaration does

not introduce a new type, but just another name for the existing type.

As a particular instance of this, inside an implementation module a type declared opaquely

in the de�nition may be elaborated as a synonym of another type.

(* type MyOpaque is an opaque type *)

TYPE MyOpaque = SYSTEM.ADDRESS;

(* importing modules need not know this *)

In this particular example the opaque has been elaborated as the special type ADDRESS, which

has special type compatability rules. The importing module will treat this type strictly, but

within the implementation the special properties may be used freely.

5.3 Enumeration types

Syntax

Enumeration ! \("IdentList\)".

Enumeration

-

��

��

(

-

�

�

�

�

ident

�

�
�

��

��

,

�

6

-

��

��

)

-

Enumerations introduce ordinal types with named values. The values have ordinal num-

bers starting from 0. Thus in the example |

TYPE DaysOfWeek = (sunday, monday, tuesday, wednesday,

thursday, friday, saturday);

the expression ORD(friday) evaluates to 5, and MAX(DaysOfWeek) evaluates to saturday.

The identi�ers in the type declaration are called enumeration constants. gpm limits

the number of enumeration constants in any type to 256, as an implementation limit.

Enumerations have special properties as far as import and export are concerned. When

an enumeration type is imported or exported, the names of the enumeration constants are

imported or exported in the same mode (quali�ed or transparent) as is the type name. This

is a matter of convenience, but sometimes causes subtle errors if two enumeration types

are imported, but share an enumeration type name. In this case the compiler must give

information as to which identi�er is the cause of the error.

Because enumeration types are ordinal types all the usual equality, inequality and ordering

tests apply to expressions of these types. However, arithmetic is not permitted on values of
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these types, except for the special case of the built-in procedures INC, DEC which respectively

increment and decrement variables of any ordinal type.

5.4 Subrange types

Syntax

SubrangeType ! [ident] \[" ConstExpr .. ConstExpr \]".

SubrangeType

-
�

�
-

�

�

�

�

ident

�

6

��

��

[

-

ConstExpr

-

��

��

..

-

ConstExpr

-

��

��

]

-

Subrange types are ordinal types derived from some other ordinal type by restriction of

the range of values. The declaration contains two constant expressions that give the lower

and upper bounds to the range of values for the new type. The types of the two bounding

expressions must be (expression) compatible. The next section de�nes this property. It is

an error if the value of the �rst bounding expression is greater than the value of the second

bounding expression. It follows that every subrange has a least a single value.

In the example |

TYPE SubType = [min .. max];

the types of min and max must be compatible and min must be less than or equal to max.

The type from which the new type is derived is called the host type. Usually the host

type is inferred from the types of the bounding expressions.

It is possible to control the host type by including a type name as the optional ident in the

declaration. This type name is the candidate host type. In such a case each of the bounding

expressions must be compatible with the candidate host type. The actual host type is the

candidate type or, if the candidate type is itself a subrange, the host type is the host type of

the candidate type. The following examples illustrate various possibilities |

TYPE SubType1 = [0 .. 7]; (* host type is CARDINAL *)

SubType2 = INTEGER[0 .. 7]; (* host type is INTEGER *)

SubType3 = SubType1[0 .. 4]; (* host type is CARDINAL *)

SubType4 = SubType2[0 .. 7]; (* host type is INTEGER *)

WeekDays = [mon .. fri]; (* host type is DaysOfWeek *)

In the �rst example the type of the two bounding expressions is the internal type ZZ, which

is compatible with either CARDINAL or INTEGER. However, since the two values lie entirely in

the CARDINAL range, this will be the default host type.

The purpose of forcing the host type to be INTEGER, as in the second example, might be

to ensure that variables of the subrange type are compatible with other signed types.

The thoughtful use of subranges is a mark of a skilled and careful programmer. By using

subranges, the runtime error checks in the program can be made more e�ective. In many
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cases the use of subranges actually leads to faster program execution, since some runtime

checks may be recognized as redundant during code optimization.

In gpm subranges are allocated only enough space in computer memory to store the

range of values that are represented.

5.5 Type compatability

Two types are said to be expression compatible or simply compatible if any of the

following conditions are met |

� the types are the same type, or

� one type is a subrange of the other, or they are both subranges of the same host type,

or

� one type is ZZ and the other is ZZ, INTEGER, CARDINAL, or a subrange of one of these.

In the following example, the types SubType1 and SubType2 are not compatible, since

they have di�erent host types. However, types SubType1 and SubType3 are compatible, since

the two types have the same host type.

TYPE SubType1 = [0 .. 7]; (* host type is CARDINAL *)

SubType2 = INTEGER[0 .. 7]; (* host type is INTEGER *)

SubType3 = SubType1[0 .. 4]; (* host type is CARDINAL *)

It is important to remember that in general an anonymous type is di�erent to every other

named or unnamed type. This hardly has any e�ect on anonymous subranges, since they are

automatically compatible with all other subranges of the same host type. However, for the

structured types, anonymous types are incompatible with all other types.

5.6 Pointer Types

Syntax

PointerType ! POINTER TO Type.

Pointers are used to designate dynamically allocated objects. Every pointer type is only

permitted to designate objects of one particular type, the pointer is said to be bound to its

target type.

A pointer type declaration simply declares the target type to which the pointer is to be

bound.

PointerType

-

�

�

�

�

POINTER

-

�

�

�

�

TO

-

Type

-

It is commonplace for the target types of pointer types to contain components of the

pointer type. Such a structure is called a recursive type. Because of the possibility of

recursive types, the declaration before use rule is relaxed in this case to allow pointer types
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to be declared before the target type to which they are bound. It is an error if the forward

target type of a pointer type is not declared in the same block as the pointer declaration.

Here is a typical recursive type declaration involving a forward target type |

TYPE TreePtr = POINTER TO TreeGlue;

TreeGlue = RECORD

key : KeyType;

info : InfoType;

left : TreePtr; (* left child *)

right : TreePtr; (* right child *)

END;

5.7 Procedure types

Syntax

ProcType ! PROCEDURE [FormalTypeList] .

FormalTypeList ! \("[FTSection f, FTSection g] \)" [: Qualident] .

FTSection ! [VAR] FormalType.

Modula provides for the declaration of procedure types, and the declaration of variables

of those types. A procedure type consists of the keyword PROCEDURE followed by an optional

formal parameter list. The declared or imported procedures with conforming parameter lists

and result types are the possible values that an object of procedure type may have. In

principle there are an unbounded number of possible values of every procedure type.

ProcType

-

�

�

�

�

PROCEDURE

-
�

�
-

FormalTypeList

�

6

The formal parameter list is a list of the formal types of the parameters and, in the case

of a function procedure type, a return type as well. Each formal type consists of a possibly

quali�ed type name, together with an indication whether the formal parameter is of value or

variable mode, and whether is an open array or not. The formal type does not give a dummy

name to the formal parameters that every procedure of the de�ned type will have.

Examples

TYPE StringWriteProc = PROCEDURE(ARRAY OF CHAR);

CharReadProc = PROCEDURE(VAR CHAR);

StringPredicate =

PROCEDURE(ARRAY OF CHAR,ARRAY OF CHAR) : BOOLEAN;

In these examples StringWriteProc is a proper procedure type which has a value open array

of characters as its formal parameter. The familiar procedures Terminal.WriteString and

InOut.WriteString are values of this type.
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CharReadProc is a proper procedure type which has a variable character as its formal

parameter. The procedures Terminal.Read and InOut.Read are values of this type.

The example StringPredicate is a function procedure type which takes two value open

array of character formals, and returns a Boolean value. A string equality-comparison pro-

cedure would be a value of this type.

FormalTypeList

-

��

��

(

-

��

��

)

-
�

�
-

FormalType

�

�

6

�

��

��

,

�

�
-

�

�

�

�

VAR

�

6

�

�

��

��

:

-

Qualident

�

6

FormalType

-

Qualident

-
�

�
-

�

�

�

�

ARRAY

-

�

�

�

�

OF

�

6

The formal type lists for procedure types may refer to types that have not yet been

declared. As is the case with pointer declarations, that share this property, the type must be

declared within the same block. The possibility of using forward declarations in procedure

type declarations allows recursive procedure types to be created. For example, here is a

procedure type that contains a variable parameter of its own type.

TYPE ScannerProc = PROCEDURE(SymbolType, VAR ScannerProc);

Such a procedure type might be used to construct lexical scanners that are used in the

following manner |

VAR current : ScannerProc;

symbol : SymbolType;

BEGIN

current := InitialProc;

GetSymbol(symbol);

WHILE symbol <> endSymbol DO

current(symbol,current);

GetSymbol(symbol);

END;

In this example, each call of current performs one step of the scanning process and replaces

the current procedure value with another corresponding to the new state of the scanner.
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Type compatibility for procedure value assignments

The comparison of the types of objects that are of procedure types is di�erent to all other

objects in Modula. Elsewhere in Modula name equivalence is the rule. That is, two objects

have the same type if they have the same type name (or the names are synonyms) or if they

have the same anonymous type as a result of having been declared together. For procedures

the rule is structural equivalence. That is |

Two procedure objects are compatible if they have the same number, type and

mode of formal parameters, and have the same return type.

This rule is necessary since procedure values, that is, actual procedures, do not have

a declared type. They only have a type structure that may be inferred from the formal

parameters of the procedure heading.

As an example, if a procedure type VoidProc was declared by the following |

TYPE VoidProc = PROCEDURE; (* no formals *)

then any parameterless proper procedure is compatible with variables and parameters of this

type.

5.8 Set types

Syntax

SetType ! SET OF SimpleType.

Set types are structured types which take values that are subsets of some ordinal base

type. Although the syntax allows any simple type as base type, the semantic rules only allow

ordinal types.

Modula implementations usually enforce some sort of limit on the cardinality of the base

type that is permitted. In the case of gpm the allowed base types must have ordinal numbers

lying in the subrange [0 .. 256]

2

. Thus sets of CHAR and any enumeration type are allowed,

but sets of the whole number types are quite restricted.

SetType

-

�

�

�

�

SET

-

�

�

�

�

OF

-

SimpleType

-

Examples:

TYPE CharSet = SET OF CHAR;

PrintCharSet = SET OF [" " .. "~"];

2

Later releases are expected to relax this constraint, allowing arbitrary ordinal subranges of some maximum

cardinality



CHAPTER 5. TYPE DECLARATIONS 28

5.9 Array types

Syntax

ArrayType ! ARRAY SimpleType f, SimpleTypeg OF Type.

Array type declarations introduce positional aggregates, that is, structures formed by

aggregating a number of components, and which allow selection of components based on

position (indexing). In this case, all of the components must be of the same type | the

element type, while the type of the selector expression is the index type. Index types

must necessarily be ordinal types, but element types may be any type.

ArrayType

-

�

�

�

�

ARRAY

-

SimpleType

�

�
�

��

��

,

�

6

-

��

��

OF

-

Type

-

In particular, it is possible to have an array in which the element type is another array.

This construction occurs so often that the syntax allows an abbreviated form for specifying

such types. The use of a comma separated list of index types, as in |

TYPE Matrix = ARRAY Index1, Index2 OF REAL;

is a short notation that is identical in meaning to the full form

TYPE Matrix = ARRAY Index1 OF

ARRAY Index2 OF REAL;

The same e�ect might have been obtained by having a named inner type as in this �nal

example |

TYPE Vector = ARRAY Index2 OF REAL;

Matrix = ARRAY Index1 OF Vector;

Note carefully that if square brackets occur in the de�nition of a type, they appear only as

part of the declaration of an anonymous index type. This is di�erent to language Pascal, and

a potential cause of beginning errors. The following example contrasts correct and incorrect

declarations |

TYPE TwoDims = ARRAY [0 .. 2], [0 .. 2] OF REAL; (* correct *)

TYPE TwoDims = ARRAY [0 .. 2, 0 .. 2] OF REAL; (* incorrect *)

The same abbreviation is allowed in the selection of components as in the declarations.

Thus if the (0,3) element of a variable foo of Matrix type is required it may be selected

equivalently by either of the designators

foo[0][3] foo[0,3]

Some compilers may place a limit on the depth of nesting for such arrays. In gpm this limit

is 16.



CHAPTER 5. TYPE DECLARATIONS 29

Anonymous element types

When a type declaration declares a multidimensional array, the type is actually a one-

dimensional array of some element type that is another array type. If the multi-dimensional

array type is declared directly, the element type is an anonymous type, that is, the type

does not have a type identi�er associated with it.

This style has no particular disadvantage if objects of the type will always be manipulated

as entire variables. However, if the element type needs to be, for example, used as the formal

parameter type for a procedure, then the type must have a name.

In the following example, unless the type Vector is explictly declared, it could not be

declared as the formal parameter type of the procedure VecLength.

TYPE Vector = ARRAY [0 .. 2] OF REAL;

Matrix = ARRAY [0 .. 2] OF Vector;

VAR matrix1 : Matrix;

...

x := VecLength(matrix1[1]);

...

5.10 Record types

Syntax

RecordType ! RECORD FieldListSequence END.

FieldListSequence ! FieldList f; FieldListg .

FieldList ! [IdentList : Type]

j CASE [ident] : Qualident OF

Variant f\j" Variantg

[ELSE FieldListSequence] END.

Variant ! [CaseLabelList : FieldListSequence] .

Record type declarations introduce named aggregates, that is, structures formed by ag-

gregating a number of components, and which allow selection of components by name. The

components may be of any type, and there may be any number of them. The values that

record types may have are thus product types, since they are the (mathematical) direct

product of the component type values.

Modula also allows a variation of the same syntax to specify union types, that is types

that allow one of several forms. In Modula, types containing unions are called variant

records.

Here is the syntax diagram for the overall structure of the record types. The �eld lists

in the declarations may be speci�ed in either of two ways. The �elds that form part of the

product part of the type are speci�ed using the ident : Type form, while unions are speci�ed

by means of Union phrases.
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All the identi�ers used as �eld names for a particular record type must be distinct, but

need not be distinct from other names used in the same scope. This is because �eld names

are used quali�ed by the name of the object to which they refer, thus providing additional

context.

Note that the semicolon is a separator between �eld lists, but that a FieldList may be

empty, allowing the use of redundant semicolons. In particular, there is a empty �eld list

in every record that has a semicolon immediately before an END. In all the examples in this

manual the redundant semicolon is deliberately left in, as a matter of style.

Here are some examples of ordinary record types declared using the �rst form of �eld list

|

TYPE PersonInfo = RECORD

name : StringIndex;

class : ClassType;

prNum : PayRollNumber;

END;

In this case, the �elds of the record would be selected using the variable name quali�ed by

the �eld identi�er.

IF person.name = chosenName THEN

rank := person.class;

num := person.prNum;

...

Anonymous component types

When a type declaration declares a record where one of the components contains a nested

declaration of some structured type, the nested type is an anonymous type, that is, the

type does not have a type identi�er associated with it.
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This style has no particular disadvantage if objects of the type will always be manipulated

as entire variables. However, if the component type needs to be, for example, used as the

formal parameter type for a procedure, then the type must have a name.

In the following example, if the type NameType was anonymous, it could not be declared

as the formal parameter type of the procedure PrintName.

TYPE NameType = RECORD

length : CARDINAL;

chars : CharPtr;

END;

PersonId = RECORD

serial : CARDINAL;

name : NameType;

...

...

PrintName(thisPerson.name);

...

Note that if NameType was actually an anonymous type, the procedure PrintName could

still have been declared with multiple parameters, and the components thisPerson.name.length

and thisPerson.name.chars passed to it individually. Alternatively, if NameType were an

anonymous array type, and if PrintName had an open array formal parameter of appropriate

type, then the name component could still have been passed to the procedure.

Types for dynamic data structures

Records are widely used for creating and manipulating dynamic data structures, that is,

pointer accessed structures. In this case it is common to have declarations in the following

form |

TYPE ElemPtr = POINTER TO GlueBlock;

Sequence = RECORD

first, last : ElemPtr;

END;

GlueBlock = RECORD

next : ElemPtr;

info : PersonInfo;

END;

Structures using these types may be accessed by code of which the following is typical |

PROCEDURE InitSequ(VAR seq : Sequence);

BEGIN

seq.first := NIL; seq.last := NIL;

END InitSequ;

PROCEDURE LinkLeft(VAR seq : Sequence;
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nxt : PersonInfo);

VAR ptr : ElemPtr;

BEGIN

NEW(ptr); (* get new glue *)

ptr^.next := seq.first; (* hook up glue *)

seq.first := ptr;

ptr^.info := nxt; (* load up info *)

IF seq.last = NIL THEN seq.last := ptr END;

END LinkLeft;

Variant records

Variant records are used when an information structure has one of several forms depending

on the value of some ordinal selector component. They are also necessary for certain kinds of

dynamic data structures, the so called heterogeneous linked structures where a pointer

must be bound to a union type, rather than to a simple product type.

Components of records that are union types are declared using syntax that is similar,

in general terms, to that used for CASE statements. Notionally, every union embedded in a

record has a tag type that selects the active variant. This tag type must be an ordinal

type. A variant must be speci�ed for every value of this type, either explicitly in a case

selector list, or by means of the ELSE part of the declaration.
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It is permissible to omit the tag �eld in the declaration of a union part of record declara-

tion. In this case the colon and the tag type name must still appear. It is good practice to

place a comment noting the deliberate omission of the tag, since this is a potentially insecure

mechanism that should not pass without notice.



CHAPTER 5. TYPE DECLARATIONS 33

Note that the vertical bar is a separator between variants, but that a Variant may be

empty, allowing the use of redundant bar symbols. In particular, there is a empty variant

in every union that has a vertical bar immediately after the OF. In all the examples in this

manual the redundant bar is deliberately left in, as a matter of formatting style.

Here is a simple example of a variant record declaration.

TYPE VehicleType = (coupe, sedan, truck, omnibus);

VehicleInfo =

RECORD

make : NameString;

model : NameString;

engine : EngineDetailType;

CASE type : VehicleType OF

| truck : loadCapacity : REAL;

| omnibus : numberOfSeats : CARDINAL;

ELSE (* nothing extra *)

END;

END;

In the case of heterogeneous linked data structures, it is necessary to allow a pointer to

point to any one of several di�erent block types. Since pointers are bound to unique target

type, that type must be a variant record. Here is an example that demonstrates the principle

in the case of a representation of expression syntax |

TYPE Expression = POINTER TO Block;

BlockType = (add,sub,mul,div,neg,val);

Block = RECORD

CASE op : BlockType OF

| add, sub, mul, div :

leftEx, rightEx : Expression;

| neg : operand : Expression;

| val : number : REAL;

END;

END;

Note that four di�erent tag values share the same �eld types, reecting the fact that all

binary operators have a left and right operand. Here now is the code for evaluating such

expressions.

PROCEDURE ValueOf(exp : Expression) : REAL;

BEGIN

WITH exp^ DO

CASE op OF

| val : RETURN number;

| neg : RETURN - ValueOf(operand);

| add : RETURN ValueOf(leftEx) + ValueOf(rightEx);

| sub : RETURN ValueOf(leftEx) - ValueOf(rightEx);

| mul : RETURN ValueOf(leftEx) * ValueOf(rightEx);
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| div : RETURN ValueOf(leftEx) / ValueOf(rightEx);

END; (* case *)

END; (* with *)

END ValueOf;

Note how the code of the procedure mimics the syntax of the type declaration. This is a

typical phenomenon.
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Variable declarations

Syntax

Declaration ! ... j VAR fIdentList : Type ; g j ...

De�nition ! ... j VAR fIdentList : Type ; g j ...
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Variable declarations introduce local objects into the current scope. The type of the

variable is the type that appears in the declaration.

6.1 Extent of variables

Variables that are declared in scopes that are nested only within modules but not procedures,

are said to be of static extent. This means that such a variable is allocated storage space

at the time of the start of the program, and remains bound to that location throughout the

entire running of the program.

Variables that are declared in scopes that are nested within one or more procedures are

said to have automatic extent. This means that the variable is bound to some location

at the time of invocation of the most closely enclosing procedure, and ceases to exist when

the most closely enclosing procedure terminates. Thus repeated calls to the same procedure

cannot rely on �nding an initial value that is the same as the �nal value in the previous

invocation.

Variables that are declared to be of pointer types, have bound variables that are of

dynamic extent. This means that the bound variable does not exist until it is explictly

allocated by NEW (or equivalently ALLOCATE). Such a variable continues to exist until it is

explicitly deallocated by DISPOSE (or equivalently DEALLOCATE). Note that the bound variable

35
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continues to exist, even if all the pointers that were bound to the variable cease to exist.

However such a variable is inaccessible | it is said to be garbage. Programs should, in

general, try to avoid the creation of garbage.

6.2 Anonymous types

If a variable declaration has an explicit type rather than a type name on its right hand side,

the variable is said to be of an anonymous type. In the case of variables of anonymous

subrange types, very little harm is done, except to the aesthetics of the program. This lack of

harm arises because subrange types are automatically compatible with their host type, and

with all other subranges of the same base type, whether anonymous or not.

The practice of declaring variables of anonymous structured types is rather more danger-

ous. Variables of anonymous structured types are not compatible with any other type, and

every anonymous type is distinct. In the following example some of the potential problems

are indicated.

TYPE Thing = ARRAY [0 .. 7] OF CHAR;

VAR str1 : Thing;

str2 : ARRAY [0 .. 7] OF CHAR;

str3 : ARRAY [0 .. 7] OF CHAR;

...

str1 := str2; (* illegal, types are incompatible *)

str2 := str3; (* illegal, types are incompatible *)

If the variables of anonymous type are declared together, one of the assignments then becomes

legal.

TYPE Thing = ARRAY [0 .. 7] OF CHAR;

VAR str1 : Thing;

str2, str3 : ARRAY [0 .. 7] OF CHAR;

...

str1 := str2; (* illegal, types are incompatible *)

str2 := str3; (* legal, variables same anon type *)

Such an anonymous type cannot be the declared type of a formal parameter in a procedure,

so that variables declared in this way cannot be passed to procedures as parameters (except

maybe as open array parameters).

Note however, that in any case, an assignment of a string literal to any one of the string

variables in the above examples would be legal. It would also be legal to pass any one of these

variables as an actual parameter to a procedure with a formal parameter that is of ARRAY OF

CHAR type. Thus it would be legal to write |

InOut.WriteString(str1);

InOut.WriteString(str2);

InOut.WriteString(str3);

no matter what the style of the variable declarations.
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Expressions

Expressions are used to specify values. Every expression in Modula has a value, and a type.

The type of every expression in Modula may be determined by a mere textual scan of the

program. However, it is sometimes impossible to �nd the value of an expression except by

executing the program.

Expressions consist of two kinds of things | the operands and the operators.

7.1 Designators

Operands of expressions consist of various constants literals | WholeNumbers, RealNumbers,

litStrings | together with constructors and designators. Constructors are dealt with in

a later section of this chapter. Designators are used to denote objects, such as variables,

constants and procedures.

In expressions, that is, when used as operands, designators denote the value of the object

that they name. Designators consist of an identi�er (possibly quali�ed by module name),

and optional selectors in the case of objects of structured type.

Syntax

Designator ! Qualident fSelectorg .

Selector ! \[" ExpressionList \]" j " j \." ident .

Qualident ! ident f\." identg .

Note that the " symbol is shown as the carat character `^' on most terminals, and is

shown in this way in the program fragments in this manual.

The qualident (quali�ed identi�er) part of a designator denotes an entire object. This

object might be the name of variable, a constant or a procedure. In the case of an object

of a structured type a particular component of the object may be selected by means of the

optional selectors that follow the identi�er.
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Selection of the named �elds of record types is achieved by use of the dot notation. The

identi�er following the dot is the name of the �eld to be selected

1

. Here is an assignment

statement using �eld selection

range := recVar.last - recVar.first;

It is an error if the identi�er following the dot is not the name of a �eld belonging to the type

of the object denoted by the (partial) designator that precedes the dot.

Selection of positional components (array elements) is achieved by indexing. The index of

a designator is the value of the expression enclosed in square brackets. In the case of multiple

selection in multi-dimensional arrays, the array indices may be given in a comma-separated

expression-list, rather than in separate selectors. Thus the two following designators are

equivalent

arrayVar[i][j][k]

arrayVar[i,j,k]

It is an error if the value of an array index does not lie strictly within the declared bounds of

the array index type. Note that since index values are expressions, the values cannot always

be determined at compilation time, and hence runtime checks are required.

Dereference of pointers is denoted by the use of the `uparrow' selector " or in typewriter

fonts `^'. Such a dereference selects the object that the pointer denotes | it selects the object

that the pointer points to. It is very common, in pointer linked data structures, for pointer

dereference and �eld selection to be used together. This is because the most common target

types of pointers are the record types. Here is a typical example

1

note that the use of the same dot notation for both module-quali�cation and �eld selection is syntactically

ambiguous. However, the usage is justi�ed by the fact that in each case the identi�er that precedes the dot

quali�es the context in which the identi�er after the dot is to be interpreted.
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isLast := (current^.next = NIL);

It is an error if the value of the pointer does not denote a dynamically allocated object of the

bound type. In particular, it is an error if the value of the pointer is uninitialized or is NIL.

Such errors can, in general, only be detected during program execution.

7.2 Expressions

Syntax

ConstExpr ! Expression.

Expression ! SimpleExpression [Relop SimpleExpression] .

SimpleExpression ! [Sign] Term fAddop Termg .

Term ! Factor fMulop Factorg .

Factor ! WholeNumber j RealNumber j litString

j \(" Expression \)"j Notop Factor j Constructor

j Designator j Designator ActualParams .

Relop ! = j <> j # j < j <= j > j >= j IN .

Addop ! + j { j OR .

Mulop ! * j / j REM j DIV j MOD j AND j &.

Notop ! NOT j ~ .

Sign ! + j { .

Expressions denote the rules by which values are to computed. They consist of operators

and operands, that are understood in terms of conventional precedence. There is further

discussion of operator precedence in the Operators section of this chapter.

� Expressions are either a single simple expression or consist of two simple expressions

separated by a relational operator

� Simple expressions consist of one or more terms connected by adding operators. The

complete simple expression may be optionally signed, if it is of numeric type

� Terms consist of one or more factors connected by multiplying operators

� Factors are either the logical negation of another factor, or consist of a literal, a desig-

nator or a constructor

ConstExpr

-

Expression

-

Expression

-

SimpleExpr

-
�

�
-

Relop

-

SimpleExpr

�

6



CHAPTER 7. EXPRESSIONS 40

SimpleExpr

�

	




�

-

-

��

��

+

��

��

-

�



6

? -

Term

-
�

�
�

Addop

�

6

Term

-

Factor

-
�

�
�

Mulop

�

6

Factor

-

�

�

�

�

number

-
�

�

-

�

�

�

�

litstring

-

�

-

Designator

-
�

�
-

ActualParams

-

�
-

�

�

�

�

NOT

-

Factor

-

�
-

��

��

(

-

Expression

-

��

��

)

-

�
-

Constructor

-
�

6

7.3 Operators

Expressions denote the rules by which values are to computed. They consist of operators

and operands, that are understood in terms of conventional precedence. Not all operators

apply to operands of all possible types.

The negation operator NOT (or its lexical alternative ~ ) has the highest precedence, fol-

lowed by the muliplying operators,Mulops, then the addition operators,Addops, and �nally

the relational operators, Relops with the lowest precedence. The following interpretations

follow from these rules |

Expression Equivalent expression

NOT a OR b (NOT a) OR b

a + b * c a + (b * c)

a < b + c a < (b + c)

Within an operator group, evaluation is from left to right. Thus the following interpreta-

tions follow |
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Expression Equivalent expression

a / b * c (a / b) * c

a { b + c (a { b) + c

Parentheses may always be used to ensure a particular order of grouping of operands.

Redundant parentheses do not add any execution time overhead and may be used freely. As

an example, the following expression would have the same meaning if fully parenthesized as

shown.

aVar * 3 + bVar < 5

((aVar * 3) + bVar) < 5

Expression compatiblity

In general, the operands of binary operators must be expression compatible or more briey

just compatible. Compatability may be determined by the application of one or more of

the following rules |

� values of all types are compatible with other values of the same type

� subrange types are compatible with their host type

� the constant numeric type ZZ is compatible with both INTEGER or CARDINAL

� the constant real numeric type RR is compatible with all the real types

� character literals are compatible with type CHAR

� strings of length 0 and 1 may be considered character literals

� the NIL value is compatible with all pointer types

Logical negation operator

The logical negation operator is unary, that is, it takes a single operand. It is denoted by

NOT (or its lexical alternative ~ ), and performs the logical negation of its operand. It thus

applies only to the Boolean type.

Relational operators

The relational operators perform various computations that produce Boolean results. These

operators are said to be overloaded, since they have di�erent meaning when applied to

operands of di�erent type.



CHAPTER 7. EXPRESSIONS 42

Relop

-

��

��

=

-

�
-

��

��

#

-

�
-

��

��

<>

-

�
-

��

��

<

-

�
-

��

��

<=

-

�
-

��

��

>

-

�
-

��

��

>=

-

�
-

�

�

�

�

IN

�

�

6

Ordinal types

For the ordinal types, the ordering operators may be used. Thus =, <>, >, >=, <, <=

apply to all such types, even those such as Boolean and enumeration types that do not

have numeric values. All such types are said to be strictly ordered. The meaning of such

comparisons is the same as an arithmetic comparison between the numbers to which the

ordinal values correspond. The two operands of the ordering operator must be of expression

compatible type.

Real types

For the real types REAL, LONGREAL, SHORTREAL, all of the ordering operators may be used,

and return values of the Boolean type. The two operands must be expression compatible

2

.

Note that the precise meaning of comparisons between real values where one or more are

not-a-number-symbols may depend on mode settings of the hardware.

Set types

For set types only four of the six ordering operators apply. These are =, <>, >=, <=.

Equality and its negation have the obvious meaning, while the non strict inequality operations

correspond to non-strict set inclusion. Thus if a and b are sets, a <= b will have the same

truth value as the predicate a � b. The two set expressions must be of expression compatible

types.

Note particularly the absence of strict inequality operators. When it is absolutely neces-

sary, these may be synthesized by compound expressions such as

(set1 <= set2) AND (set1 <> set2)

The relational operator IN applies to sets, with the meaning of a membership test. In

other words lhs IN rhs is true if and only if the value of the expression lhs is a member

of the set denoted by the expression rhs. In this case, the left operand must be of ordinal

type, and the right operand must be of some set type. The left operand must be expression

compatible with the base type of the set on the right.

2

In gpm REAL and LONGREAL are type synonyms and are thus compatible. This compatability is not portable

to other systems where REAL is often the short type
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Pointer types

Equality and non-equality apply to pointer and to the opaque types that are introduced later,

but no meaning can be given to other ordering comparisons on such types. As usual, the two

values must be of expression compatible types.

There are no built-in relational operators for structured types. If these are required they

must be created by programming value returning procedures. In particular there are no

built-in relational operators for the character string types, however, there are functions for

this purpose in the libraries.

Procedure types

Equality and non-equality apply to procedure types, but no meaning can be given to other

ordering comparisons on such types. As usual, the two values must be of expression compatible

types. In the case of procedure types this is a structural equivalence test. As a matter of

fact, these two tests (together with assignment, and invocation) are the only operations that

can be performed on objects of procedure type.

Adding operators

The adding operators are binary operators with lower precedence than the multiplying oper-

ators. As usual, not all operators apply to all types.
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Numeric types

For all numeric types, the valid adding operators are + and {. These denote addition and

subtraction respectively. The two operands must be expression compatible. These two oper-

ators may also be used as sign operators on the �rst term in a simple expression. In such a

case, the sign operates on the value of the �rst term only. Thus �a+ b is equal to (�a) + b

and not �(a+ b).

Boolean type

The �nal adding operator OR denotes logical disjunction. The expression a OR b evaluates

to TRUE if either or both of the operands are true. In this case both operands must be of

Boolean type. Note however that expressions involving OR are evaluated in a special way.

Each term is evaluated from left to right in the expression, with evaluation stopping as soon

as any true-valued term is encountered. This is referred to as short-circuit evaluation. In

particular, suppose that a has the value TRUE while the value of b is unde�ned. In such a

case, the expression a OR b has the value TRUE, while b OR a would be unde�ned.
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Short circuit evaluation is often used to allow safe evaluation of expressions where one

or more components may be unde�ned. The idea is that an earlier term in the expression

(that is, one to the left of the unsafe term) acts as a guard expression. It the guard

expression is TRUE, the unsafe expression is not evaluated. An example is the expression

(ptr = NIL) OR ptr^.flag. If the pointer has the NIL value, the pointer is not dereferenced.

The programming convenience of this particular construction is believed to outweigh the

disadvantage of invalidation of the normal commutative property that would be expected in

a Boolean algebra.

Set types

For set types, the operators + and { apply. The meaning of the operations is set union and

set di�erence respectively.
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The two operands must be of the same set type.

String literals

The only operator de�ned for string types is +, denoting string concatenation. It applies only

to literals. Other operations, and operations including variables, are available via procedures

imported from the standard strings library.

Multiplying operators

The multiplying operators are binary operators with higher precedence than the adding

operators. As usual, not all operators apply to all types.

Mulop

-

��

��

*

-

�

�
-

��

��

/

-

�
-

�

�

�

�

MOD

-

�
-

�

�

�

�

DIV

-

�
-

�

�

�

�

AND

-

�
-

�

�

�

�

REM

�

6

Whole number types

The multiplying operators that apply to the whole number types are *, DIV MOD and two

recent additions /, and REM. The asterisk character denotes multiplication. The pair of

operators DIV and /, each denote whole number division. They produce the same result

for positive operands, but di�er in their treatment of signed operands if one or both of the

operands is negative.
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Similarly the pair of operands MOD and REM produce the same result for positive operands,

but di�er in their treatment of signed operands if one or both of the operands is negative.

The following table summarizes the values produced by these four operators for operands

of every possible combination of signs |

op 31 op 10 31 op (-10) (-31) op 10 (-31) op (-10)

/ 3 -3 -3 3

REM 1 1 -1 -1

DIV 3 Exception -4 Exception

MOD 1 Exception 9 Exception

Note that it is an error if the right operand of either DIV or MOD have a negative value. Also,

it is an error if the right operand of any of these operators is the value zero. In all cases the

two operands must be expression compatible.

Real types

For real operands, the applicable operands are +, -, *, and /. These denote a imple-

mentation de�ned approximation to the addition subtraction, multiplication and division

operations. As usual, the two operands must be expression compatible. For the division

operation, the right hand operand must not be zero.

Boolean type

For the Boolean type, the only multiplying operator is AND. It denotes the logical conjunction

of its two operands. That is to say, the expression a AND b has the value TRUE if and only if both

operands are true. Both operands must be of Boolean type. Note however that expressions

involving AND are evaluated in a special way. Each term is evaluated from left to right in the

expression, with evaluation stopping as soon as any true-valued term is encountered. This

is referred to as short-circuit evaluation. In particular, suppose that a has the value FALSE

while the value of b is unde�ned. In such a case, the expression a AND b has the value FALSE,

while b AND a would be unde�ned.

Short circuit evaluation is often used to allow safe evaluation of expressions where one

or more components may be unde�ned. The idea is that an earlier factor in the expression

(that is, one to the left of the unsafe factor) acts as a guard expression. It the guard

expression is FALSE, the unsafe expression is not evaluated. An example is the expression

(ptr <> NIL) AND ptr^.flag. If the pointer has the NIL value, the pointer is not derefer-

enced.

The programming convenience of this particular construction is believed to outweigh the

disadvantage of invalidation of the normal commutative property that would be expected in

a Boolean algebra.

Set types

For set operands, the applicable operands are * and /. The asterisk denotes set intersection,

while the slash denotes set symmetric di�erence.

S
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S

1
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= fe : (e 2 S
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1
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)g

The two operands must be of the same set type.

The e�ect of the four set operations may be summarized as follows |

op f1, 3, 5, 7g op f5, 7, 9g

+ f1, 3, 5, 7, 9g

{ f1, 3g

* f5, 7g

/ f1, 3, 9g

7.4 Function applications

In an expression, a function application is denoted by the identi�er of the function, together

with a (possibly empty) parameter list. The meaning of a function application is the value of

the function, evaluated with the actual parameters substituted for the formal parameters that

were declared in the function declaration. The parameter list is not optional | the name of

a function without a parameter list denotes the function itself and not the result of applying

the function. Consider the following program fragment, which contains two assignments,

both of which are correct |

TYPE SeqBoolProc = PROCEDURE(Sequence) : BOOLEAN;

VAR bProc : SeqBoolProc;

ended : BOOLEAN;

seq : Sequence;

BEGIN

...

bProc := CardSequences.IsEmpty;

ended := CardSequences.IsEmpty(seq);

...

The �rst of these assignments assigns the function procedure IsEmpty to the procedure vari-

able bProc. The second assignment applies the function procedure to the actual parameter

seq. In the �rst case the type of the expression on the right hand side of the assignment is

SeqBoolProc, while in the second case the type is Boolean.

Except for a few of the built in procedures that obey special rules, the type of the value

returned by a function application is the return value type of the function declaration.

As explained in the chapter on procedure declarations, the actual parameters must be

parameter compatible with the declared formal parameter types and modes.



CHAPTER 7. EXPRESSIONS 47

7.5 Constructors

Syntax

Constructor ! Qualident ValueList.

ValueList ! \f" Element f, Element g \g".

Element ! SetElement j Component .

SetElement ! Expression [.. Expression].

Component ! (Expression j ValueList) [BY ConstExpr ].

Original Modula possessed only set constructors, but current standards allow constructors

for record and array types as well

3
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Constructors consist of a possibly empty list of elements from which the value is to be

constructed. In the case of set constructors, the order of the elements in the constructor is

not important. In the case of records and arrays, the values must be listed in an order that

corresponds to the order of the components of the type.

The replicator BY ConstExpr clause only applies to array constructors, even though it

is sometimes meaningful for records that have repeated �elds of the same type. Semantic

restrictions include the fact that any repeat counts must be non-negative, whole-number

constants, and the total number of elements (taking into account any repetition of elements)

must exactly match the number of elements in the structure. Values must be assignment

3

At the time of this edition of this manual gpm versions other than gpm-pc only permit constant

constructors for record and array types
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compatible with the component type to which the equivalent assignment is being made.

Thus a valid record initialization might be {

TYPE NamType = ARRAY [0 .. 15] OF CHAR;

RecType = RECORD

name : NamType;

b,c,d : CARDINAL;

END;

CONST initial = RecType{"anon", 0, 0, 0};

It should be noted that the elements of a constructor may themselves contain lists of

elements, and that such nested constructs do not need to specify a typename, although they

are free to do so. This relaxation is necessary for multidimensional arrays, where the types

of the inner components may be anonymous. Consider the array {

TYPE Matrix = ARRAY [0 .. 2], [0 .. 2] OF REAL;

This is an array of three elements each of which is an array of three reals which has no type

name. In this case a constructor may be speci�ed as follows {

CONST initial = Matrix {{1.0, 0.0, 0.0},

{0.0, 1.0, 0.0},

{0.0, 0.0, 1.0}};

Of course it is possible to name the inner type as follows {

TYPE Vector = ARRAY [0 .. 2] OF REAL;

Matrix = ARRAY [0 .. 2] OF Vector;

CONST initial = Matrix {Vector{1.0, 0.0, 0.0},

Vector{0.0, 1.0, 0.0},

Vector{0.0, 0.0, 1.0}};

As a �nal example, here is an alternative initialization of the same record type that was

given earlier |

TYPE NamType = ARRAY [0 .. 15] OF CHAR;

RecType = RECORD

name : NamType;

b,c,d : CARDINAL;

END;

CONST initial = RecType{{" " BY 16}, 0, 0, 0};

The use of constant value constructors facilitates the sensible initialization of structures.

In some speed critical programs it also can lead to faster code, by moving array index and

o�set computations from runtime to compile time. Against this must be weighed the fact that,

as a new language construct, the feature is not present in any previous Modula compilers.

The use of the feature may thus make programs di�cult to port to machines for which gpm

is not yet available.
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Statements

The executable statements of Modula-2 comprise:

� the assignment statement, for storing values in variables,

� the procedure call statement, which invokes a procedure, passing parameters,

� the conditional statements IF (two-way) and CASE (multi-way),

� the iterative statements WHILE, REPEAT, FOR and LOOP,

� the WITH statement, which applies record �eld quali�cation to a statement.

� the EXIT statement, which terminates a LOOP

� the procedure termination and function result RETURN statement,

Syntax

Statement ! Assignment j ProcCall j CaseStat j IfStat

j WhileStat j RepeatStat j LoopStat j ForStat

j WithStat j ExitStat j ReturnStat j .

Assignments, procedure calls, RETURN, and EXIT are unstructured statements { that is,

they do not contain parts that are themselves statements; the other statement types all

contain statement (sequences) and are classed as structured statements.

8.1 The empty statement

Anywhere in the Modula syntax where a statement can go, it is perfectly legal to to have an

empty statement. The empty statement does not perform any action, and usually exists only

as a formatting convenience.

49
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8.2 Assignments

Syntax

Assignment ! Designator := Expression.

The assignment statement evaluates an expression, and assigns the result to a variable

(stores the result in the variable). The assignment operator \:=" separates the variable and

the assigned expression.

The variable is denoted by a designator, that comprises a (possibly quali�ed) identi�er,

and optional selectors. The quali�ed identi�er identi�es a variable object of some module;

in the case of the current module or unqualifying import, no quali�cation may be needed.

The selectors are used to specify a component of a structured variable, using the appropriate

combination of record �eld selection with `.', array element selection with `[...]', and pointer

dereferencing with '^'.

The expression must be assignment compatible with the variable. Assignment compatibil-

ity is an extension of expression compatibility | an expression and a variable are assignment

compatible if

1

� they are expression compatible, or

� they are CARDINAL and INTEGER (in either order), or

� the variable is of pointer type and the expression is NIL, or

� the variable is a procedure variable and the expression is a procedure with the same

structure (proper procedure or function, number and types of parameters and result),

or

� the variable is CHAR and the expression is a string of length 0 or 1, or

� the variable is a �xed-size array of characters and the expression is a string constant

whose length is less than or equal to the number of elements in the array.

Entire arrays or records may be assigned; the e�ect is the same as element-by-element or

�eld-by-�eld assignment, except that unde�ned values may be assigned.

When a string constant is assigned to an array of characters and the string does not �ll

the array, an end-of-string character Ascii.nul is appended and the rest of the array becomes

unde�ned.

When assignment to the tag �eld of a record variant-part causes a new variant to be

selected, all the �elds of the old variant become unde�ned. The standard also requires that

it is an exception if a value from a non-active component of a variant record is accessed.

Together, these strictures would prevent even the infrequent but entrenched use of undis-

criminated variant records to circumvent type checking. Like most compilers, gpm does not

make �elds unde�ned or check which variant is active, so that assignment to a tag �eld has

no e�ect on the values of other �elds, and access to non-active variants is allowed.

The order of evaluation of the expression and the variable designator in an assignment is

not de�ned by the language. Thus programs will not be portable if they rely on evaluation

1

Some additional special cases which involve the low-level types BYTE, WORD and ADDRESS are added

later
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being in a particular order. This can happen if the evaluations have side-e�ects. As an

example if a function procedure Pop removes and returns the top element from a stack, the

e�ect of the statement |

array[Pop()] := array[Pop()]; (* very bad ! *)

will be quite unpredictable. Even on the same compiler the e�ect might change with the

optimization level of the compilation. For clarity as well as portability, good programming

practice would avoid such side e�ects.

Examples:

(*1*) length := minLength;

nodePtr^.keys[index] := key;

tree.CompareProc := CompareComplex;

result := (item[index] # undefined) AND

(tree.CompareProc(item[index],key) = equal);

(*2*) TYPE

Row = ARRAY [1..8] OF Contents;

Board = ARRAY [1..8] OF Row;

VAR

row : Row;

board : Board;

...

board[1] := row;

8.3 Procedure calls

Syntax

ProcCall ! Designator [ActualParams].

ActualParams ! \(" ExpressionList \)".

ExpressionList ! Expressionf, Expressiong.

A procedure call invokes a proper procedure, passing parameters which supply input

values and recipients for output values. It comprises the name of the called procedure, or the

name of a procedure variable, followed by a list of actual parameters enclosed in parentheses.

The number of parameters must be the same as the number of formal parameters given in

the procedure declaration, and they must be parameter compatible with the corresponding

formal parameters.
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Value parameters, which may be arbitrary expressions, are evaluated and the result passed

to the procedure as an initialised local object of the procedure, with the name of the corre-

sponding formal parameter; they thus serve as inputs to the procedure and local variables.

Variable (reference or VAR) parameters, which must be variables, are directly accessed by

the procedure wherever the corresponding formal parameter is designated; they thus serve as

both inputs to and outputs from the procedure.

The rules for parameter compatibility reect the two parameter-passing mechanisms. For

value formal parameters, an actual parameter is parameter compatible if it is |

� assignment compatible (see section 8.2) with the corresponding formal parameter, or

� the formal parameter is an open array of some type, and the actual parameter is an

array of elements of an assignment compatible type, or

� the formal parameter is of type BYTE or WORD and the actual parameter is of byte or

word size, or

� the formal parameter is an open array of type BYTE or WORD, and the actual parameter

is any type

2

For variable formal parameters, an actual parameter is parameter compatible if it is |

� of identical type to the corresponding formal parameter, or

� the formal parameter is an open array of some type, and the actual parameter is an

array of elements of an identical type, or

� the formal parameter is of type BYTE or WORD and the actual parameter is of byte or

word size, or

� the formal parameter is an open array of type BYTE or WORD, and the actual parameter

is any type

3

The order of evaluation of procedure designator and actual parameters is implementation-

dependent, but all are evaluated before the procedure block is executed. A program that

depends on a particular evaluation order is incorrect, and will be non portable.

Examples:

Lookup (dictionary, key, success);

homeBucket := Hash(key);

2

gpm actually insists that the actual parameter is at least as strictly aligned in the underlying hardware

as is the formal parameter

3

as for value parameters, gpm insists that the actual parameter is at least as strictly aligned as is the

formal parameter
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8.4 Statement sequences

Syntax

StatSequence ! Statementf; Statementg.

A statement sequence expresses the concept of a high-level algorithmic step that has been

translated into a sequence of Modula-2 statements. The sequence comprises any number of

statements, separated by \;". Statement sequences form the `bodies' of module or procedure

blocks, and of looping and other structured statements. Since each of the statements in a

sequence may itself be a structured statement, arbitrarily complex statement structures may

be built.

Though the syntax requires at least one statement in a sequence, and a `;' only between

statements, an empty statement is valid. Thus a statement sequence may be completely

empty, and a ';' may precede the �rst or follow the last statement in a sequence.

Examples: see the examples for LOOP, RETURN and WITH.

8.5 IF statements

Syntax

IfStat ! IF Expression THEN StatSequence

fELSIF Expression THEN StatSequenceg

[ELSE StatSequence] END.

The IF statement expresses the conditional construct of algorithms, where one of a number

of alternative statement sequences is chosen on the basis of Boolean expressions.
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The syntax speci�es a single IF statement, but options and repetitions in the syntax lead

to a number of common forms. The simplest form chooses between one statement sequence,

executed if the Boolean expression (the `guard') evaluates to TRUE, and no action at all (if

the guard evaluates to FALSE):

IF BooleanExpression THEN statementSequence END

Another form also speci�es a statement sequence to be executed if the guard evaluates to

FALSE:

IF BooleanExpression THEN

statementSequence

ELSE

statementSequence

END

Others allow for any number of guards, before a �nal sequence to be executed if all fail:

IF BooleanExpression THEN

statementSequence

ELSIF BooleanExpression THEN

statementSequence

ELSIF BooleanExpression THEN

statementSequence

ELSE

statementSequence

END

Thus each of the simpler forms is a special case of this �nal general form. Note that any

sequence may be empty, specifying no action if that guard succeeds.

The evaluation of the Boolean expressions occurs in the order stated, until one succeeds;

each is evaluated short-circuit. Thus a suitable ordering of expressions and subexpressions

can avoid any errors due to dependencies such as array indexes out of range, pointers NIL,

etc.

Examples:

IF pointer = NIL THEN

Error ("Invalid pointer in structure");

ELSIF pointer^.count = 0 THEN

Error ("Empty occurrence list");

ELSE

PrintList (pointer^.occurrences);

END;
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8.6 CASE statements

Syntax

CaseStat ! CASE Expression OF

Casef\j" Caseg [ELSE StatSequence] END.

Case ! [CaseLabelList : StatSequence].

CaseLabelList ! CaseLabelf, CaseLabelg.

CaseLabel ! ConstExpr[.. ConstExpr].

The CASE statement also expresses the conditional construct of algorithms, but selects

on the basis of the value of a single expression matching one of a number of alternatives.
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The overall form of the CASE statement is

CASE selector OF

| case

| case

...

END

where each case comprises a list of the values that select it for execution, and a statement

sequence to be executed; each case is separated from the next by `j'. An optional �nal
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case labelled with ELSE speci�es a default statement sequence to be executed if the selector

expression does not match any case label; if the default is not supplied, failure to match a

case label is an error.

The selector expression must be of ordinal type, and expression-compatible with each of

the case labels. Each label must be a constant expression, or a constant range expressed as

lowerLimit .. upperLimit. All labels must be distinct, and non-overlapping in the case of

ranges.

Examples:

CASE nodeType OF

internal : IF ...

...

...;

| leaf : INC (referenced);

END;

CASE markEntered OF

| 0..24 : grade := lowFail;

| 25..46 : grade := fail;

...

| 85..100 : grade := highDistinction;

ELSE WriteString ("Invalid mark");

WriteLn;

END;

Note that an empty case is valid, allowing the common style of pre�xing the �rst case

label list with `|' so that each case is clearly signalled.

8.7 WHILE statements

Syntax

WhileStat ! WHILE Expression DO StatSequence END.

The WHILE statement is the pre-tested, condition-controlled loop structure. A Boolean

expression is (short-circuit) evaluated, and if the result is TRUE the statement sequence

which forms the loop body is executed; control then returns to the re-evaluation of the

Boolean expression, and so on, until the test fails and the entire WHILE terminates.

Due to the pre-test, the loop body may never be executed.

Examples:

index := first;

WHILE (index <= limit) and (values[index] <= sought) DO

INC (index);

END;
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(* Assert: index in [1..limit] and values[index] = sought

or

index = limit+1 *)

8.8 REPEAT statements

Syntax

RepeatStat ! REPEAT StatSequence UNTIL Expression.

The REPEAT statement is the post-tested, condition-controlled loop; it is thus similar to

the WHILE loop, but with the test for loop continuation applied after each execution of the

loop body. Thus the loop body executes at least once; the precondition of the loop must

ensure that this is valid.

Examples:

index := first-1;

(* Assert: sought is in array values, at position beyond index

(e.g. by appending as sentinel) *)

REPEAT

INC (index);

UNTIL values[index] = sought;

(* Assert: values[index] = sought *)

8.9 FOR statements

The FOR statement is the pre-tested, count-controlled loop structure. It is appropriate where

it is desired to iterate over each of a known range of values. The range is established by

evaluating initial and �nal limit expressions once only before the loop body is executed;

a control variable is then iterated over each value in the range, and the loop body | a

statement sequence | is executed for each value. Due to the pre-test, the loop body may not

be executed at all. The single evaluation of the limit expressions, and protection of the control

variable from modi�cation, ensure that the expected number of iterations is performed.

Syntax

ForStat ! FOR ident := Expression TO Expression

[BY ConstExpr] DO StatSequence END.
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The control variable must be of ordinal type. The initial limit expression must be

assignment-compatible with it, and the �nal limit expression must be expression-compatible

with it. In the simpler form of FOR statement, the iteration is from the initial limit value to

the �nal limit value inclusive, incrementing the control variable after each execution of the

loop body.

If an optional step is speci�ed by the BY clause, it gives the di�erence in ordinal values

between successive values of the control variable; thus it may be used to step the control

variable through, say, every third value, or downward from a higher initial value to a lower

�nal value. If the step is not 1 or {1, the iteration terminates when the control variable would

have passed the �nal value in the appropriate direction.

The protection of the control variable from alteration (except by the steps of the FOR

control structure) is strong: the control variable may not be `threatened' by assignment,

passing as a variable parameter, uplevel access by nested procedures, or export. In recognition

of its local purpose, it must also be a simple variable declared in the block containing the

FOR loop.

After completion of the FOR loop, the value of the control variable is unde�ned.

Examples:

FOR index := 1 TO limit DO

sum := sum + reading[index];

END;

FOR month := dec TO jan BY -2 DO

(* dec, oct, aug, jun, apr, feb *)

IF rainfall[state, month] > 100.0 THEN

WriteCard (rainfall[state, month],6);

END;

END;
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8.10 LOOP and EXIT statements

Syntax

LoopStat ! LOOP StatSequence END.

ExitStat ! EXIT.

The LOOP statement is a general iterative structure, with the loop termination speci�ed

by one or more EXIT statements within its statement sequence body. Thus it can be used

to simulate each of the other loop structures, but in less clear and robust ways. Good

programming practice dictates that it should be used only where none of the other loop

structures is appropriate, and that the number of EXITs be small.

An EXIT statement terminates the execution of the immediately enclosing LOOP statement;

execution resumes at the statement following the LOOP END. If it is desired to exit from further

enclosing LOOP structures, a further EXIT in each is needed. If an EXIT occurs within a WHILE,

REPEAT or FOR loop nested within a LOOP, both the inner loop and the enclosing LOOP are

terminated. (Again, good practice suggests that such a violation of the apparent intent of

the nested WHILE, REPEAT or FOR should be used with discretion.)

Examples:

LOOP (* The classic "n&1/2-times" iteration *)

Read (ch);

IF ch = terminator THEN EXIT END;

Process (ch);

END;

8.11 RETURN statements

Syntax

ReturnStat ! RETURN [Expression].

The RETURN statement is used to return from a module, proper procedure or function

procedure, in the latter case supplying the function result.

A RETURN in a module or procedure block simply terminates execution of the block at

that point, rather than the more common termination by reaching the �nal END; clearly, it

must be a simple return, with no result expression.

A RETURN from a function procedure also terminates the execution at that point, and

provides the function result. The result expression must be assignment-compatible with the

declared result type of the function. There may be any number of RETURN statements in a

function, though good practice suggests few. It is an error to reach the END of a function

procedure (i.e. without encountering a RETURN).

Examples:

PROCEDURE Factorial (number : CARDINAL) : CARDINAL;

(* Return number!,

or the maximum cardinal if overflow would occur. *)
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CONST

limit = 12; (* 13! > 2**31 *)

BEGIN

IF number = 0 THEN

RETURN 1;

ELSIF number > limit THEN

RETURN MAX(CARDINAL);

ELSE

RETURN number * Factorial(number-1);

END;

END Factorial;

8.12 WITH statements

Syntax

WithStat ! WITH Designator DO StatSequence END.

A WITH statement provides automatic quali�cation of the �eld names of a record object

within its statement sequence, avoiding the need for frequent repetition of the quali�cation in

a statement sequence that repeatedly refers to �elds of the record. The designator between

`WITH' and `DO' must designate a record variable or constant. Reference to a �eld of that

record object is allowed without quali�cation by the record name.

The qualifying designator is evaluated once, before executing the statement sequence.

Thus any change to variables that might alter the value of the qualifying designator has no

e�ect on the quali�cation (see example 2).

Examples:

(*1*) WITH date DO

day := 12; (* equivalent to date.day *)

month := Dec;

year := 1990;

END;

(*2*) TYPE

ReadingIndex = [1..maxReadings];

Element = RECORD

name : NameString;

readings : ARRAY ReadingIndex OF INTEGER;

END;

Table = ARRAY ReadingIndex OF Element;

VAR

table : Table;

i : CARDINAL;

...
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i := 5;

WITH table[i] DO

name := inputString;

FOR i := 1 TO maxReadings DO (* Not good form, but valid -

* WITH still qualifies table[5]

*)

ReadInt (readings[i]);

END (* FOR *) ;

(* i is now undefined *)

END (* WITH *) ;



Chapter 9

Procedure declarations

Syntax

ProcDeclaration ! ProcHeading ; (Block ident j FORWARD) .

ProcHeading ! PROCEDURE ident [FormalParams] .

FormalParams ! \("[FPSection f; FPSection g] \)"[ : Qualident] .

FPSection ! [VAR] IdentList : FormalType .

FormalType ! [ARRAY OF] Qualident .

Procedure declarations consist of a procedure heading and a procedure body. The

procedure heading names the procedure, and lists the types and modes of the formal pa-

rameters. The procedure body consists of a Block followed by a further occurrence of the

procedure name. The block contains declarations of any local objects of the procedure, and

declares the statement sequence which is to be executed when the procedure is invoked.

In forward declarations, the body is replaced by the keyword FORWARD. gpm does not

require the use of forward declarations but supports their use in the interests of portability.

ProcDeclaration

-

ProcHeading

-

��

��

;

-

Block

-

�

�

�

�

ident

-
�

�
-

�

�

�

�

FORWARD

�

6

ProcHeading

-

�

�

�

�

PROCEDURE

-

�

�

�

�

ident

-
�

�
-

FormalParams

�

6
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FormalParams
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Block

�

-

Declaration

�
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�
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?

�
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�
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BEGIN

-

Statement

�

�

�
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;
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END

-

There are two kinds of procedures | function procedures, that return values of some

prescribed type, and proper procedures that do not have a return value. The value re-

turned by a function procedure is of the type denoted by the (possibly quali�ed) identi�er

that optionally ends the formal parameter list. Function procedures are invoked by using

the function identi�er, together with an actual parameter list within an expression. Proper

procedures are invoked by using the procedure identi�er, together with an actual parameter

list in a procedure call statement.

9.1 Formal parameters

Formal parameters are dummy identi�ers that denote data objects, the values of which may

be referenced within the procedure block. The actual data objects that are used are speci�ed

in the actual parameters of each procedure call. The correspondence between actual and
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formal parameters is determined at the time of the call, so that the same procedure may

process di�erent data objects on each occasion that it is called.

Formal parameters are speci�ed as being of some particular formal type, and either of

value or variable mode. Variable mode parameters are distinguished by the presence of the

keyword VAR preceding the dummy name of the parameter.

Variable mode parameters are references to the actual variable that is speci�ed at the

procedure call. Because of this, any statement within the body of the procedure that changes

the value of the formal parameter changes the value of the actual variable that the formal

parameter denotes. Variable parameters are sometimes called inout parameters. It is an

error if an actual parameter corresponding to a variable formal parameter does not denote a

variable.

Value mode parameters denote local variables of the procedure. The initial values of these

variables are determined by the evaluation of actual parameter expressions at the time of the

procedure call. The values of these variables may be changed within the procedure body

without a�ecting any variables that are involved in the actual parameter expressions. Value

parameters are sometimes called in parameters since they carry values into the procedure

but do not carry values out.

The formal type of every formal parameter is speci�ed either as a (possibly quali�ed) type

name, or as an open array type. Open arrays are arrays of some particular type, speci�ed

by the syntax ARRAY OF typename, where as usual the type name is an optionally quali�ed

identi�er. Open arrays permit the procedure to accept as actual parameter any array with

the speci�ed element type. Procedures may thus be devised that process arrays of arbitrary

size. In such a case, the size of the array is determined by the size of the actual array that

the formal denotes on any particular procedure call.

It is possible to declare several formal parameters all of the same mode and formal type

by using the identList construct in the procedure heading syntax. The meaning of such a

heading is not changed by such a grouping, which may thus be used as a matter of formatting

convenience. For example, the two following procedure headings are identical in meaning |

PROCEDURE StringCompare(str1, str2 : ARRAY OF CHAR) : Order;

PROCEDURE StringCompare(str1 : ARRAY OF CHAR;

str2 : ARRAY OF CHAR) : Order;

Note that the return type speci�ed in the heading of a function procedure syntactically

forms part of the formal parameters. Thus a proper procedure without any parameters may

omit the parameter list entirely, as in

PROCEDURE WriteLn;

or include an empty parameter list, as in the equivalent example

PROCEDURE WriteLn();

For function procedures however, the result type cannot be declared without a formal param-

eter list. Thus a function procedure without parameters must be declared with an explicitly

empty parameter list |

PROCEDURE IsEnded() : BOOLEAN;
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9.2 The procedure body

The procedure body consists of declarations, and a statement sequence. The declarations

may be of any Modula object. There may be declarations of modules, procedures, constants,

types, or variables. All such declared objects are said to be local to the procedure, and are

visible throughout the procedure body, but not outside that scope.

If a procedure is declared local to another procedure, then within the more deeply nested

procedure the local objects of the outer procedure are within scope, and are therefore visible

unless occluded by the declaration of a more local object with the same name.

On the other hand, if a module is declared local to a procedure, the local objects of the

procedure are only visible within the module if they are explicitly imported.

Any variables declared local to a procedure are said to have automatic extent. That

is to say, such variables are created at the time of invocation of the procedure, and are

destroyed at the time of procedure termination. If a procedure is invoked recursively, then

in each invocation the variable name will denote a di�erent data object.

The statement sequence of the procedure body is executed whenever the procedure is

invoked. The procedure terminates when control reaches the end of the statement sequence,

or whenever a RETURN statement is executed. It is an error for a function procedure to reach

the end of the statement sequence without an explicit return.

9.3 Open array parameters

Formal open arrays are declared by the ARRAY OF ElementType construct. Invocations of

procedures may substitute any array of the correct element type as the actual parameter

corresponding to a formal open array parameter. (There are some special cases which are

detailed in the chapter on low-level facilities).

Within a procedure, an open array appears as an array with an index type of some zero-

based subrange of CARDINAL. The index ranges from zero to some upper limit determined by

the cardinality of the index type of the actual parameter. This upper limit may be accessed

by the built-in function HIGH. The array index may thus be considered to be the subrange [0

.. HIGH(ident)], where ident is the identi�er of the formal open array.

The function procedure HIGHmay not be used in declarations. This restriction is necessary

since the high value corresponds to a the value of a hidden size attribute which is passed to

the procedure, and is only evaluated at runtime.

Here are two examples that illustrate this correspondence.

An actual parameter of ARRAY CHAR OF INTEGER will appear as an open array formal of

ARRAY [0 .. 255] OF INTEGER.

If an ARRAY [-5 .. +5] OF INTEGER is passed to the same open array formal, it will

appear as an ARRAY [0 .. 10] OF INTEGER.

Within the body of a procedure, an open array formal parameter may be manipulated in

almost exactly the same way as a �xed size array parameter of the same mode. In particular,

such an array may be accessed element by element, and the entire variable may be passed as

actual parameter to another procedure. However, the array may not otherwise be accessed

as an entire variable. In particular, the following program fragment contains an error |

PROCEDURE Foo(VAR s : ARRAY OF CHAR);
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BEGIN

GetString(s); (* this IS legal code *)

s := message; (* this is NOT legal *)

Literal character strings

If a literal string is passed as actual parameter to a (value) open array of CHAR formal pa-

rameter, the HIGH value is one less than the length of the abstract string. Thus if the string

"example" is passed to an open array str, then HIGH(str) will have the value 6. In this

same example str[1] will have the value 'x' and so on.

The character constants, and constant strings of length-1 appear with a HIGH value equal

to zero, so that the formal parameter is of the perfectly legal type ARRAY [0 .. 0] OF

CHAR. Note however that a character variable cannot be passed to an open array of characters

| a character variable is not an array. The ability to send a literal character constant arises

because such a constant is a special kind of literal string, the S1 subtype of the abstract

string type SS.

Literal strings of length equal to 0 have even stranger properties. An empty string, as

an open array parameter, appears with a HIGH value of 0, and with �rst character equal to

the string terminator value. This is necessary, since a HIGH value of {1 is impossible. Apart

from this necessity, there is logic to the rule, as the �rst character would be the same if the

empty string were assigned to a �xed size array of characters, and that was passed as the

actual parameter.

9.4 Forward declarations

Some Modula compilers require that procedures be declared prior to any used occurence.

This is called a single pass restriction since it commonly occurs in simple compilers that

use this technology. gpm does not require forward declarations, but thoroughly checks the

syntax and semantics of any that it encounters.

A forward declaration consists of a procedure heading, followed by the single symbol

FORWARD. The procedure heading must have a complete formal parameter list, and the dec-

laration must be elaborated by a complete procedure declaration within the same scope.

The elaboration of a forward declaration consists of a perfectly normal procedure decla-

ration. The formal parameters of the procedure heading in the elaboration must match the

formal parameter list in the the forward declaration in number, order, type and mode. The

actual dummy names for the parameters need not match, and the grouping of parameters into

identi�er lists also does not a�ect the meaning. The following shows a forward declaration

and the header of a legal elaboration.

PROCEDURE Centroid(ein : CoordPair;

zwei : CoordPair;

drei : CoordPair) : CoordPair;

FORWARD;

...
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PROCEDURE Centroid(pt1, pt2, pt3 : CoordPair) : CoordPair;

BEGIN

...

9.5 Procedure variables

Modula allows the declaration of procedure types, and the declaration of variables and

formal parameters of such types. As explained in the chapter on type declarations, the rules of

type compatability are somewhat di�erent to those for other type. Assignment compatability

for procedure types is based on structural equivalence rather than name equivalence.

The values that an object of procedure type may take are procedures that have matching

parameter and result types. Thus the ordinary procedures that are declared in a program,

or are imported into a program are the constant values of the structurally equivalent type.

Thus Terminal.WriteLn is a value of the pervasive type PROC. However, only procedures that

are declared at level one are able to be used as procedure value for either procedure variables

or actual parameters passed to formal parameters of procedure types. This is called the

level-one rule.

The level-one rule

Procedures are said to be declared at level one (or more simply, at the outer level) if the

declaration is not nested within any other procedure. Note here particularly that nesting

within modules does not count, no matter how deep any such nesting is.

The restriction is necessary, since nested procedures are able to access the local variables

and parameters of their enclosing procedure(s). If such a procedure were assigned to a

statically declared procedure variable, it might be activated at a time when the variables of

the enclosing procedure did not exist. This would be a serious error.

9.6 Pervasive procedures

Proper procedure ABORT

The procedure ABORT

1

takes no parameters, and causes the immediate abnormal termination

of the program. On most systems, this implies the production of a core dump for post-

mortem analysis.

Function procedure ABS

The procedure ABS takes an expression of any signed numeric type as a parameter, and

returns the absolute value of the parameter. The type of the return value is the same as that

of the parameter.

1

Not a standard procedure, gpm only
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Function procedure CAP

The procedure CAP takes an expression of character type as a parameter and returns a char-

acter. If the parameter is a lower case character, the returned value is the corresponding

upper case character, otherwise the parameter value is returned unchanged.

Function procedure CHR

The procedure CHR takes a value of any ordinal type as a parameter, and returns the character

with the same ordinal value. It is an error if the value of the parameter is outside the character

ordinal range.

Proper procedure DEC

There are two di�erent versions of the procedure DEC. The simpler takes a single variable

parameter of ordinal type. The procedure decrements the variable by one. The second

version has a second parameter that speci�es the number by which the variable is to be

decremented. As before, the �rst parameter must be a variable of ordinal type, while the

second must be an expression of unsigned numeric type, or a positive literal number.

It is an error if the result of decrementing the variable is outside the range of the type.

Proper procedure DISPOSE

The procedure DISPOSE deallocates dynamically allocated storage. The parameter is a vari-

able of any pointer type. It is an error if the pointer does not point to a valid variable of the

bound type of the pointer. After the execution of the procedure, the pointer will have the

value NIL, and the bound variable will be deallocated.

This procedure is actually a denotation for the visible procedure with name DEALLOCATE,

usually from module Storage. A call of DISPOSE(x) corresponds exactly to the expanded call

DEALLOCATE(x,SIZE(T)) where T is the bound type of the pointer designated by x.

Proper procedure EXCL

The procedure EXCL removes (excludes) an element in a set. The �rst parameter is a variable

of some set type, while the second parameter must evaluate to a value of the base type of the

set. If, at the call, the selected element is not in the set, the procedure has no e�ect.

Function procedure FLOAT

The procedure FLOAT returns a value of type REAL with value approximately equal to the

value of the single actual parameter. The actual parameter may be of any numeric type,

including SHORTREAL, REAL, CARDINAL, INTEGER, ZZ, or RR.

In gpm the function converts numbers to IEEE double precision format, and is identical

in e�ect to LFLOAT.

Proper procedure HALT

The procedure HALT takes no parameters, and causes the immediate termination of the pro-

gram. This is a normal termination.
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Function procedure HIGH

The procedure HIGH takes the name of an open array formal parameter as parameter, and

returns the highest index value of the corresponding actual parameter. The return type is

the unsigned type. Note that this procedure is only applicable to open arrays, and not to

�xed arrays.

Proper procedure INC

There are two di�erent versions of the procedure INC. The simpler takes a single variable

parameter of ordinal type. The procedure increments the variable by one. The second version

has a second parameter that speci�es the number by which the variable is to be incremented.

As before, the �rst parameter must be a variable of ordinal type, while the second must be

an expression of unsigned numeric type, or a positive literal number.

It is an error if the result of incrementing the variable is outside the range of the type.

Proper procedure INCL

The procedure INCL inserts (includes) an element in a set. The �rst parameter is a variable

of some set type, while the second parameter must evaluate to a value of the base type of the

set. If, at the call, the selected element is already in the set, the procedure has no e�ect.

Function procedure INT

This function takes a numerical expression as its parameter, and returns as integer with an

implementation de�ned approximation to that value. gpm does not implement this function

in this release.

Function procedure LENGTH

The procedure LENGTH takes an array of characters, or a literal string as its single parameter,

and returns the string length. In the case of character arrays, the length is the number of

characters before the �rst string terminator character, or the number of characters in the

array. Thus in the following example, the function will return length 3 |

strVar := "abcdefgh";

strVar[3] := ""; (* string terminator *)

length := LENGTH(strVar);

where it is assumed that the array indexes from 0.

LENGTH is computed at compile time where possible, and may thus be used in declarations.

Function procedure LFLOAT

The procedure LFLOAT returns a value of type REAL with value equal to the value of the single

actual parameter. The actual parameter may be of any numeric type, including SHORTREAL,

REAL, CARDINAL, INTEGER, ZZ, or RR.

In gpm the function converts numbers to IEEE double precision format, and is identical

in e�ect to FLOAT.
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Function procedure MAX

The procedure MAX takes the name of a type as \actual parameter" and returns the greatest

value of that type. In the case of subranges of the whole number types the return type is the

special type ZZ, which is compatible with both signed and unsigned types.

Function procedure MIN

The procedure MIN takes the name of a type as \actual parameter" and returns the least

value of that type. In the case of subranges of the whole number types the return type is the

special type ZZ, which is compatible with both signed and unsigned types.

Proper procedure NEW

The procedure NEW allocates dynamically allocated storage. The parameter is a variable of

any pointer type. After the execution of the procedure, the pointer will denote a newly

allocated variable of the bound type of the pointer. The bound variable will be disjoint in

memory from all other allocated objects.

This procedure is actually a denotation for the visible procedure with name ALLOCATE,

usually from module Storage. A call of NEW(x) corresponds exactly to the expanded call

ALLOCATE(x,SIZE(T)) where T is the bound type of the pointer designated by x.

Function procedure ODD

The procedure ODD takes an actual parameter of any whole number type (including ZZ) and

returns a Boolean value as result. The returned value is TRUE if and only if the value of the

actual parameter is odd.

Function procedure ORD

The procedure ORD takes an actual parameter of any ordinal type, and returns a value of type

CARDINAL of the same ordinal value.

Function procedure SIZE

The procedure SIZE exists in two forms. The �rst form takes a type name as an \actual

parameter", and returns the storage size of objects of that type. The second form takes the

designator of a (non open-array) variable, and returns the storage size of that variable

2

.

In both cases, the storage size is expressed in units of LOCs, which in gpm are always

BYTEs. The type of the returned value is always ZZ.

Function procedure SFLOAT

The procedure SFLOAT returns a value of type SHORTREAL with value approximately equal to

the value of the single actual parameter. The actual parameter may be of any numeric type,

including SHORTREAL, REAL, CARDINAL, INTEGER, ZZ, or RR.

2

In the standard, the variable must be entire, but in gpm components may be selected. In this extension,

the returned value is the size of the variable if it existed. Thus the bounds of index expressions, or the

allocation status of pointer targets is not investigated
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In gpm the function converts numbers to IEEE single precision format.

Function procedure TRUNC

The procedure TRUNC takes a parameter of any real number type, and returns a value of

unsigned type. The returned value is the largest whole number that is less than or equal to

the value of the parameter. It is an error if the parameter has a value that is outside the

range of CARDINAL values.

Function procedure VAL

The procedure VAL provides a generic type conversion facility.

If the �rst \actual parameter" of the procedure is the name of an ordinal type, then the

second parameter may be an expression of any ordinal type.

If the �rst \actual parameter" of the procedure is the name of a numeric type, then the

second parameter may be an expression of any numeric type.

In either case, the returned value is of the type speci�ed by the �rst parameter, and is an

approximation to the value of the expression in the second. In the case of ordinal types the

value is exact, but in the case of real expressions converted to whole number types the result

is the integer part of the expression value. It is an error if the value of the expression may

not be expressed in the range of the speci�ed type.

Several of the other built in functions are special cases of VAL. In particular |

CHR(x) == VAL(CHAR,x)

FLOAT(x) == VAL(REAL,x)

INT(x) == VAL(INTEGER,x)

LFLOAT(x) == VAL(LONGREAL,x)

SFLOAT(x) == VAL(SHORTREAL,x)

TRUNC(x) == VAL(CARDINAL,x) provided x is of some real type

ORD(x) == VAL(CARDINAL,x) provided x is of ordinal type
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Nested modules

There are two mechanisms in Modula that provide for data-hiding and the modularity from

which the language gets its name. Modularity may be obtained by use of the safe separate

compilation features described in the section compilation units, or by the use of nested modules

that are described in this section.

Modules are named and declared objects that may occur within Modula programs. Roughly

speaking a nested module may be declared in any position in which a procedure declaration

would be legal. Such declarations may be nested to any depth.

Syntax

ModDeclaration ! MODULE ident [priority] ; fImportg [Export] Block ident.

priority ! ConstExpr.

Import ! [FROM ident] IMPORT IdentList ;.

Export ! EXPORT [QUALIFIED] IdentList ;.

ModDeclaration

�

�

�

�

MODULE

�

�

�

�

ident

Priority

��

��

;

Import Export

Block

�

�

�

�

ident

- - -
�

�

�

?�
�

?- -
�

�

�

�

-
�

� �

6

- - -

Just as is the case for procedures, a module declaration �nishes with an END identi�er

sequence. As for procedure declarations, the identi�er at the end must exactly match the

module name.

1

1

Those implementations of Modula that provide interrupt priority control include an optional priority

expression in the module heading. gpm does not implement these mechanisms for UNIX based systems, and

will ignore any such priority expressions after giving a warning.

73
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10.1 Import and export lists

A module declaration begins with a header, followed by zero or more import lists, followed

by an optional export list.

Each import list is of one of the forms {

IMPORT identList;

FROM moduleName IMPORT identList;

As usual, the identLists are just comma-separated lists of identi�ers.

The export list, if present, is in one of the forms {

EXPORT identList;

EXPORT QUALIFIED identList;

The �rst form of export list is called direct export, while the second is called quali�ed export.
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;
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10.2 Visibility and scope rules

The declaration of a module creates a new lexical scope in which constants, types, variables,

procedures and more deeply nested modules may be declared. The visibility of the objects

declared in such a nested module di�ers from those declared in procedures, and gives the

module the special properties that motivate its use. The introduction of a module acts as

a boundary or frontier through which identi�ers pass only by explicit authorization. An

exception applies to the so called pervasive identi�ers such as CHAR and ORD, that may be

thought of as being inherited by every module scope.

Exactly the following objects are visible inside a module {

� objects declared within the module

� objects imported into the module from the immediately surrounding scope by an IMPORT

statement

� objects inherited from the pervasive scope and not redeclared in the module
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� objects injected into the scope by an export statement in a more deeply nested module

In order for an object to be imported into a module the object must be visible in the im-

mediately surrounding scope. The object need not be actually declared in the surrounding

scope.

The set of objects imported as a result of an import statement is called the closure of the

identi�er list in the import statement. The closure consists of exactly the identi�ers named

in the list, together with the enumeration constants of any enumeration types that occur on

the list.

The export statement explicitly makes one or more objects that are visible inside a module

also visible in the lexical scope immediately surrounding the module. If the object is exported

using the EXPORT QUALIFIED form, the object is only visible in the surrounding scope using

the quali�ed name moduleName.objectName. If the object is directly exported, then in the

surrounding scope it is known by its unquali�ed name. (Note however that the Draft ISO

standard for Modula-2 clari�es that such an exported object is also visible in quali�ed form).

The set of objects exported as a result of the export statement is called the closure of the

identi�er list in the export statement. The closure consists of exactly the identi�ers named

in the list, together with the enumeration constants of any enumeration types that occur on

the list.

It is an error to declare a local object within a scope that has the same name as an

imported object. Conversely, it is an error to export an object into a surrounding scope in

which a di�erent object with the same name is visible. Potential name clashes of this kind

must be resolved by the use of quali�ed names.

Examples

If an object is visible unquali�ed outside the module then it may be imported and is visible

unquali�ed within the module.

MODULE CompUnit;

MODULE Nest1;

EXPORT EnumType; (* exports closure of type *)

TYPE EnumType = (zero, one, two);

END Nest1;

MODULE Nested;

IMPORT EnumType;

VAR thing : EnumType; (* EnumType is visible here *)

BEGIN (* Nested *)

thing := two; (* so are the enum constants *)

END Nested;

END CompUnit.

If an object is visible quali�ed outside the module then the qualifying module name may

be imported, in which case the object is visible quali�ed within the module.
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If an enumeration type is visible quali�ed, the enumeration constants are visible in qual-

i�ed form also.

MODULE CompUnit;

MODULE Nest1;

EXPORT QUALIFIED EnumType;

TYPE EnumType = (zero, one, two);

END Nest1;

MODULE Nest2;

IMPORT Nest1;

VAR thing : Nest1.EnumType; (* visible qualified *)

BEGIN (* Nest2 *)

thing := Nest1.two; (* also visible qualified *)

END Nest2;

END CompUnit.

If an object is visible quali�ed outside the module then the object may be imported using

the FROM moduleName IMPORT identList form of import, in which case the object is visible

unquali�ed within the module.

MODULE CompUnit;

MODULE Nest1;

EXPORT QUALIFIED EnumType;

TYPE EnumType = (zero, one, two);

END Nest1;

MODULE Nest2;

FROM Nest1 IMPORT EnumType;

VAR thing : EnumType; (* EnumType is visible here *)

BEGIN (* Nest2 *)

thing := two; (* so are the enum constants *)

END Nest2;

END CompUnit.

10.3 Module bodies

Modules, as well as containing declarations, may also contain a module body, that begins

with the keyword BEGIN and is ended by the module end. The module body may contain

initialization statements. The syntax is identical to the Block that appears in the syntax of

procedures.

The statements of the module body are executed immediately prior to the execution of

the body of the surrounding procedure or module. If the module is surrounded by another
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module, the body of the nested module is executed prior to the body of the surrounding

module. If the module is surrounded by a procedure, the body of the module is executed as

part of every invocation of the surrounding procedure. This rule implies that if modules are

deeply nested, then the bodies are executed in depth �rst order.

Example

Consider the following program that contains nested modules.

MODULE Deep;

FROM Terminal IMPORT WriteString,WriteLn;

MODULE One; (* ---------------------------+ *)

IMPORT WriteString; (* | *)

MODULE Two; (* ---------------------+ | *)

IMPORT WriteString; (* | | *)

MODULE Three; (* -------------+ | | *)

IMPORT WriteString; (* | | | *)

BEGIN (* Three *) (* | | | *)

WriteString("three "); (* | | | *)

END Three; (* ----------------+ | | *)

BEGIN (* Two *) (* | | *)

WriteString("two "); (* | | *)

END Two; (* ------------------------+ | *)

BEGIN (* one *) (* | *)

WriteString("one "); (* | *)

END One; (* ------------------------------+ *)

BEGIN

WriteString("zero"); WriteLn;

END Deep.

The output obtained by running this program is {

three two one zero

If several modules are contained within the same module or procedure, then each body is

executed in order of textual appearance, followed by the body of the surrounding module or

procedure.

Example

Consider the following program that contains nested modules.

MODULE Shallow;

FROM Terminal IMPORT WriteString,WriteLn;

MODULE One; (* ---------------------------+ *)

IMPORT WriteString; (* | *)

BEGIN (* One *) (* | *)

WriteString("one "); (* | *)

END One; (* ------------------------------+ *)
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MODULE Two; (* ---------------------------+ *)

IMPORT WriteString; (* | *)

BEGIN (* Two *) (* | *)

WriteString("two "); (* | *)

END Two; (* ------------------------------+ *)

MODULE Three; (* -------------------------+ *)

IMPORT WriteString; (* | *)

BEGIN (* Three *) (* | *)

WriteString("three "); (* | *)

END Three; (* ----------------------------+ *)

BEGIN

WriteString("four");

END Shallow.

The output obtained by running this program is {

one two three four

10.4 Dynamic modules

The nesting of modules inside procedures is unusual but interesting. Such modules are called

dynamic modules, since the variables of such modules have automatic scope.

Any variables that are declared within the module have the same extent, and are at the

same lexical level as the variables of the surrounding procedure. In the usual implementation,

these variables are part of the same stack frame as the surrounding procedure. In any case,

every invocation of the procedure causes storage space to be allocated to variables of the

module, as well as those of the procedure. If the procedure is called recursively, then each

invocation has separate instances of the module variables.

Whenever the surrounding procedure is called, memory is allocated for the data structures

of the module body, and the module body is executed. This conveniently allows for the

automatic initialization of the data structures of the module by the statements of the module

body.

Example

Here is an example of the use of a dynamic module inside a procedure that requires a stack

data structure. The module imports the element type for the stack, and exports the push

and pop operations.

PROCEDURE UseStack();

MODULE Stack;

IMPORT TypeT;

EXPORT Push, Pop;

TYPE Index = [0 .. 15];

VAR stackP : Index;
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stackD : ARRAY Index OF TypeT;

PROCEDURE Pop(VAR e : TypeT);

BEGIN

DEC(stackP); e := stackD[stackP];

END Pop;

PROCEDURE Push(e : TypeT);

BEGIN

stackD[stackP] := e; INC(stackP);

END Push;

BEGIN

stackP := 0; (* automatic initialization *)

END Stack;

BEGIN

...

END UseStack;

Whenever the procedure UseStack is called, a new stack is allocated automatically, and the

module body initializes the empty stack. On the completion of the procedure, the stack space

is reclaimed.

Note that this example, for simplicity of exposition, has had the normal stack overow

and underow tests removed. In the example as given, such an exception would be detected

as a range check violation. Because the stack index is declared as belonging to a subrange

type, the increment and decrement operations will be protected by range checking code.
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Compilation units

Syntax

CompUnit ! ProgModule j DefModule j ImplModule.

ProgModule ! MODULE ident [priority] ; fImportg Block ident \.".

DefModule ! DEFINITION MODULE ident ; fImportg fDe�nitiong END ident \.".

ImplModule ! IMPLEMENTATION MODULE ident [priority] ; fImportg Block ident \.".

A Modula program comprises one or more compilation units. A compilation unit is the

smallest unit that may be separately compiled, and should correspond to the decomposition

of the program into a number of components of manageable size and complexity, separating

loosely connected concepts, hiding detail, and utilising existing modules where possible.

There are three types of compilation unit: program modules, de�nition modules

and implementation modules.

CompUnit

ImplModule

DefModule

ProgModule

- -

�

6

�

- -

�
-

�

The simplest program consists of a single compilation unit, which must be a program

module. Nevertheless, such a simple program will use facilities in standard compilation units

such as the input-output library module InOut in order to make a useful application. The

program module will be compiled and then linked with the library modules it has used to

make an executable program.

More complex programs will be decomposed into a number of compilation units, of which

one only must be the program module, and the others are de�nition module { implementa-

tion module pairs. Each de�nition module de�nes some logically-related group of facilities

(constants, types, variables, procedures), making them available for use by other modules;

it does not, however, supply the code that implements those procedures, and may de�ne

80
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types in an opaque form. Thus the de�nition module provides the mechansim for separating

speci�cation from implementation, leaving the implementation hidden and protected. The

corresponding implementation module supplies that hidden implementation. It completes

any opaque type de�nitions, supplies the bodies of procedures de�ned in the de�nition mod-

ule, and also contains other constants, types, variables and procedures that are relevant only

to the implementation.

Each compilation unit is compiled separately. A de�nition module must be compiled

before any other module that refers to objects de�ned in it. Subject to this constraint,

program and implementation modules may be compiled in any order. The link phase then

combines the object code from the program module and the implementation modules of

any facilities it uses (directly or indirectly), making consistency checks, and produces an

executable program.

Local (nested) modules may occur anywhere within the code bodies of program or im-

plementation modules | they serve the same purpose of encapsulation, but for objects that

presumably have no expected use outside the enclosing module. If such a nested module is,

later found to have wider use, it can be extracted and split into two separate compilation

units | the usual de�nition module { implementation module pair.

11.1 Program modules

Program modules are the ordinary modules that form the base module of every program.

They may and almost always do import objects from other modules, but do not export

objects. Unless deliberate renaming is done, the module name in the program module of a

program becomes the name of the program.

ProgModule

�

�

�

�

MODULE

�

�

�

�

ident

Priority

��

��

;

Import

Block

�

�

�

�

ident

��

��

.

- - -
�

�

�

?�
�

?- -
�

�

�

�

- - - -

11.1.1 A note on module priority

The syntax of Modula allows for program and implementation modules to have a declared

priority. This permits mechanisms for controlling the interruptability of code to be con-

trolled. Versions of gpm on the UNIX system do not support this feature.

The priority is simply a constant expression of a type de�ned by the particular implmen-

tation.
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11.2 De�nition modules

The purpose of a de�nition module is to de�ne objects that may be imported and used in

other modules. The de�nition makes available all of the imformation that the compiler needs

in order to use the facilities of the module, and hides away all the other details.

A de�nition module is introduced by the reserved word DEFINITION, and has the syntax

|

DefModule

�

�

�

�

DEFINITION

�

�

�

�

MODULE

�

�

�

�

ident

��

��

;

Import

De�nition

�

�

�

�

END

�

�

�

�

ident

��

��

.

- - -
�

�
�

�

�
-

-

�

�

�

-

-

�

�

�

-

- - -

As for any other module, the identi�er following MODULE and that following the �nal END

must be identical.

The import lists are identical to the import lists of program modules | thus a de�ni-

tion module may use objects de�ned in other de�nition modules. Instead of declarations,

de�nition modules have de�nitions.

11.3 De�nitions

Syntax

De�nition ! CONST f ident = ConstExpr ;g

j TYPE fident [= Type] ;g

j VAR fIdentList : Type ;g

j ProcHeading ;.

De�nitions are similar to the declarations of program modules, and of procedures, com-

prising constant, type, variable and procedure de�nitions. They di�er in that

� type de�nitions may be opaque, and

� only procedure headers are given | that is, name, parameters and result type of func-

tion procedures

Note that no export list appears in a de�nition module | any identi�er de�ned in the

de�nition module is automatically exported in quali�ed mode.
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If a type is de�ned by an opaque type declaration

TYPE OpaqueType;

then the type must be elaborated in the the corresponding implementation module. Opaque

types may only be elaborated as pointers or as type ADDRESS, but may be declared as syn-

onyms to other opaque or pointer types.

Similarly, all procedures de�ned in the de�nition module must be elaborated in the cor-

responding implementation module.

11.4 Implementation modules

An implementation module is introduced by the reserved word IMPLEMENTATION, and has the

syntax |

ImplModule

�

�

�

�

IMPLEMENTATION

�

�

�

�

MODULE

�

�

�

�

ident

Priority

��

��

;

Import

Block

�

�

�

�

ident

��

��

.

- - - -
�

�

�

?
�

�

?
- -

�

�

�

�

-
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The implementation module supplies the details of objects whose de�nitions (interfaces)

were given in the de�nition module of the same name | elaborations of opaque types,

and the code of procedures. It may also import and/or declare other objects useful to

the implementation. Such objects that are not included in the de�nition module are not

exported, and thus are not visible to modules that import the facilities speci�ed by the

de�nition module. Finally, the body of the implementation module supplies initialization

code that will be executed before any call to the procedures of the module.

The implementation module's own de�nition module is automatically imported unqual-

i�ed, so that identi�ers completely de�ned in the de�nition module may simply be used.

Incomplete de�nitions are repeated as necessary: an opaque type is declared as a pointer

type, and procedure headings are repeated as part of their full declaration (in the latter case,

the formal parameter names need not be the same as in the de�nition module, though they

will usually be so for readability).

11.5 Module initialization order

Before the statements of the program module are executed, module initializations are per-

formed. The order of initialization is intended to ensure that each initialization is performed

before any use of the objects being initialised can occur, but also resolves the issue of circular
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imports (e.g. program module A imports from module B, which imports from module C,

which in turn imports from module B).

Beginning at the program module, modules are initialised in the order in which they occur

in the import lists; each module initialization comprises the initialization of modules refer-

enced by the de�nition module's import lists, then the initialization of modules referenced by

the implementation module's import lists, then the execution of the implementation module

body. This depth-�rst recursive initialization ignores any modules already initialised or being

initialised. Thus, the example above would start from program module A, begin initialising

B, �nd the reference to C and so begin initialising C, �nd the reference to B in C but ignore

it as B is being initialised, complete any other initializations resulting from imports in C's

de�nition and then implementation modules, then execute C's implementation module body,

then resume initialization of B.
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Low-level facilities

12.1 Introduction to system modules

Modula provides a number of features which are described as being low-level. By this it is

meant that the features deal with the underlying machine at a low level of abstraction, or

that the safety features of the language are in some way being bypassed.

In general, the low-level features are exported by the pseudo-module SYSTEM. A pseudo-

module, or synonymously a system module, is one which is known to the compiler. Because

the compiler knows of the module, in most implementations no de�nition module is required,

and the objects exported by the module may obey special rules and are not able to be replaced

by the user. The module SYSTEM is the model of all other system modules.

The objects in system modules are known to the compiler, but are not in scope unless

explicitly imported into a compilation unit. A majority of programs do not need to import

SYSTEM, and those which do are likely to be non-portable. It is good programming practice to

isolate the importation of these facilities to low-level modules which supply services to other

modules of the program. Thus the non-portable features are isolated and encapsulated, and

the e�ort in porting the program to other machines and implementations constrained.

The facilities of the module SYSTEM fall into a few categories. First there are the system

types SAL, BIN, WORD, BYTE, and ADDRESS. Then there are procedures which manipulate

these objects, ADR, INCADR, DECADR, DIFADR, TSIZE and CAST. Finally, there are special

procedures SHIFT and ROTATE.

12.2 The system types

SAL, the smallest addressable unit

The type SAL is a synonym for the smallest addressable unit in the memory of the underlying

machine. On most modern computers SAL is the same as BYTE, and is an 8-bit storage

location.

BIN, a special binary type

The type BIN is a special type which is used to construct sets which map onto the under-

lying machine in predictable ways. In particular, any SET OF BIN has the property that

85
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SYSTEM.CAST(CARDINAL,SetTypef0g) = 1. Thus the type maps onto bit positions in the

underlying implementation in such a way that bit-0 is the bit which is numerically the least

signi�cant. In the case of gpm BIN is simply a subrange f0 .. 31g.

WORD, the natural word size

The type WORD corresponds to the natural word size of the underlying machine. WORD is the

storage size which corresponds to the types CARDINAL and INTEGER. In all versions of gpm

this is a 32-bit word.

WORD is an uninterpreted type, that is, no meaning is attached to particular values of

the type. There are no operations de�ned on this type. Nothing is compatible with the type,

and nothing may be directly assigned to a variable of the type, except an expression also of

the same type.

Formal parameters of word type

As a formal parameter type, WORD has very special properties. A formal word parameter, may

have any word-sized object passed to it as actual parameter. In the case of formal parameters

which are of variable mode any variable of word size may be used as actual parameter

1

. Thus

procedures which operate on word sized quantities without regard for the semantics of the

type may use this type as a formal parameter type.

As an example, a utility procedure which prints out the hexadecimal representation of a

word is indi�erent to the semantics of the declared type of the datum which is to be printed.

Thus a formal parameter of word type would be an appropriate choice |

PROCEDURE HexDumpWord(wrd : SYSTEM.WORD);

(* prints out any 32-bit sized type *)

Array of word formal parameters

Parameters which are open arrays of WORD accept any object at all as actual parameter

1

.

In the case of variable mode open arrays of words, any variable may be passed as actual

parameter. Unlike every other use of open arrays, the actual parameter does not have to

have been declared as an array. Thus an object of any type at all may be used as an actual

parameter. The hidden HIGH value of the actual parameter allows the called procedure to

know how many word-sized locations the procedure is to manipulate.

This facility makes it possible to treat objects as uninterpreted sequences of memory

locations. Here is a typical procedure |

PROCEDURE HexDumpBlock(blk : ARRAY OF SYSTEM.WORD);

(* prints out SIZE(blk) 32-bit sized data *)

1

Many implementations, including gpm require that the actual parameter is aligned at least as strictly as

the word type, as a result of restrictions on some hardware platforms.
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The low-level byte size

The type BYTE corresponds to the natural character size of the underlying machine. BYTE is

the storage size which corresponds to the type CHAR, on most machines this is the same as

SAL. In all versions of gpm this is an 8-bit quantity.

BYTE is an uninterpreted type, that is, no meaning is attached to particular values of

the type. There are no operations de�ned on this type. Nothing is compatible with the type,

and nothing may be directly assigned to a variable of the type, except an expression also of

the same type.

Formal parameters of byte type

As a formal parameter type, BYTE has very special properties. A formal byte parameter,

may have any byte-sized object passed to it as actual parameter. Thus characters, small

subranges and any enumeration type object may be passed to a formal byte. In the case of

formal parameters which are of variable mode any variable of byte size may be used as actual

parameter. Thus procedures which operate on byte sized quantities without regard for the

semantics of the type may use this type as a formal parameter type.

As an example, a utility procedure which prints out the hexadecimal representation of a

byte is indi�erent to the semantics of the declared type of the datum which is to be printed.

Thus a formal parameter of byte type would be an appropriate choice |

PROCEDURE HexDumpByte(byt : SYSTEM.BYTE);

(* prints out any 8-bit sized type *)

Array of byte formal parameters

Parameters which are open arrays of BYTE accept any object at all as actual parameter. In the

case of variable mode open arrays of bytes, any variable may be passed as actual parameter.

Unlike every other use of open arrays, the actual parameter does not have to have been

declared as an array. Thus an object of any type at all may be used as an actual parameter.

The hidden HIGH value of the actual parameter allows the called procedure to know how

many byte-sized locations the procedure is to manipulate.

This facility makes it possible to treat objects as uninterpreted sequences of memory

locations. Here is a typical procedure |

PROCEDURE HexDumpBlock(blk : ARRAY OF SYSTEM.BYTE);

(* prints out SIZE(blk) 8-bit sized data *)

ADDRESS the amorphous pointer type

The type ADDRESS is de�ned as POINTER TO SAL. However the properties of the type are

di�erent to a user-de�ned type with the same de�nition. All pointer types are compatible

with the type, so that by using type ADDRESS the checking of bound types of pointers is

avoided. The type is said to be amorphous since it is without de�nite form, and may be

made to conform to any bound type. For programs which really do need to manipulate

pointers without regard to the declared bound type, this type is an important convenience.
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However, any modules that use these facilities abandon the protection that Modula's type

safety normally provides.

Some built-in procedures, such as NEW use this type as a formal parameter type, so that

the procedure may be applied to actual parameter variables of any pointer type.

12.3 System procedures

12.3.1 ADR, the address-of operator

The function procedure ADR takes any variable as actual parameter, and returns the storage

address of the object. The use of this function is a necessary part of modules which manipulate

uninterpreted blocks of memory. Programs which pass addresses to coroutine libraries, or

input-output system calls often require to use this function.

There are subtle dangers in the unrestricted use of this function. In particular, taking

the storage address of an object allows the object to be manipulated via a pointer alias. This

explicit alias may defeat the analysis of the compiler's code optimizer, so that optimizations

become unsafe. Some compilers may simply refuse to even attempt to optimize code from

modules which import this function.

12.3.2 Manipulation of addresses

On machines with so-called at address space, addresses may be manipulated by ordinary

arithmetic operations. Such facilities are not portable however, since in segmented archi-

tectures ordinary arithmetic is incorrect. Modula therefore supplies address manipulation

procedures which capture the abstraction more portably.

The procedures supplied with gpm are as follows |

PROCEDURE INCADR(a : ADDRESS; i : CARDINAL) : ADDRESS;

(* returns the address a "incremented" by i *)

PROCEDURE DECADR(a : ADDRESS; d : CARDINAL) : ADDRESS;

(* returns the address a "decremented" by i *)

PROCEDURE DIFADR(a, b : ADDRESS) : INTEGER;

(* returns the difference (a - b) in bytes *)

It is probable that these functions will change their names and/or signatures in the �nal

ISO standard for Modula.

12.3.3 TSIZE, the type-size function

The function TSIZE is included mainly for historical reasons. It takes a type name as \pa-

rameter" and returns the storage size of the type. Its use is almost completely replaced by

SIZE, which is pervasive, and more general.

In some implementations, TSIZE takes optional parameters which specify the tag types

which select the active variant of the parametric type. gpm accepts these optional parame-

ters, but ignores them (after giving a friendly warning).
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12.3.4 Unsafe type conversions

The special function CAST provides type-casts, or unsafe type conversions. CAST takes two

parameters. The �rst is a type name, while the second is a value of some type. The function

returns the value of the second parameter but interpreted as being of the type of the �rst

parameter. No conversion is performed, and no validity check is performed. The function is

inherently unsafe, and is inherently non-portable.

Some implementations, including gpm, place restrictions on the objects and types which

may be cast. For example, since the datum is uninterpreted and no conversion is performed

the datum might need to be at least as strictly aligned in memory as the target type. In the

case of objects which are too large to �t into machine registers, it may be required that the

datum actually have a memory address.

Type casts are most widely used to deliberately avoid the type checking of numeric values.

For example, suppose that a variable, minus1 contains the value {1. An attempt to assign

such a value to a cardinal variable will result in a runtime range violation.

crdVar := minus1; (* a runtime error *)

crdVar := VAL(CARDINAL,minus1); (* still a runtime error *)

crdVar := CAST(CARDINAL,minus1); (* at last, not a trap *)

In the �nal case, the value assigned to cardVar will be 4294967295.

2

Type casts may be used to perform manipulations on data which do not make sense in

terms of the declared semantics of the type. This is necessary, for example, in the implemen-

tation of hash functions where the essence of the method is to manipulate the data in a way

which does not make sense in a conventional way.

Modula provides another method of deliberately breaking the type system when that is

necessary. The second method is to declare a variant record without a tag. This method is

applicable to any possible types. Here is a typical example.

TYPE TrickWord = RECORD

CASE (* oops, no tag *) : BOOLEAN OF

| TRUE : fltVal : REAL; (* ieee double *)

| FALSE : bytes : ARRAY [0 .. 7] OF CHAR;

END;

END;

In this example, a datum may be assigned to the REAL type record �eld, and then extracted

byte by byte.

12.3.5 Bitset manipulation procedures

The draft standard speci�es two procedures for operating on the BITSET type. These provide

for rotation and shifting of these types. The interface as supplied by gpm is as follows |

PROCEDURE SHIFT (VAR b : BITSET, n : INTEGER);

PROCEDURE ROTATE(VAR b : BITSET; n : INTEGER);

2

Or at least that is the case provided that the implementation has 32-bit binary cardinal and integer types,

and uses 2's complement representation for negative quantities. Change any one of those provisos, and the

value will be di�erent.
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It is possible that in future releases these proper procedures may become function procedures,

so some caution is advised in their use.

The second formal parameter of each procedure is an integer, which is de�ned with the

sense that a positive shift or rotation is to the left. Thus in the following code |

b := BITSET{0};

SHIFT(b,1);

the result is b = BITSET{1}. Similarly, ROTATE(BITSET{0} = BITSET{1}.

12.4 The Coroutines Library

The coroutines library is a system library

3

. In gpm it is implemented as a separate library.

It is implemented in assembly language and uses the usual gpm FOREIGN mechanism. The

library must be explicitly imported by user programs, in keeping with the proposals of ISO

WG-13. However, this version implements the old coroutines model exactly as speci�ed by

Wirth in PIM. gpm will provide the new coroutines model when acceptance of the change

is con�rmed. In the meanwhile, the old style library will not break existing programs.

Library de�nition

(* ========================================================= *)

(* Preliminary library module for Gardens Point Modula *)

(* ========================================================= *)

FOREIGN DEFINITION MODULE Coroutines;(* coroutines as in PIM *)

IMPORT IMPLEMENTATION FROM "coroutines.o";

FROM SYSTEM IMPORT ADDRESS;

TYPE Coroutine = ADDRESS; (* use of this type avoids SYSTEM import *)

PROCEDURE NEWPROCESS (code : PROC; (* body of coroutine *)

space : ADDRESS; (* ptr to workspace *)

size : CARDINAL; (* size of workspace *)

VAR this : Coroutine); (* returned coroutine *)

PROCEDURE TRANSFER (VAR thisCo : Coroutine; (* current saved here *)

VAR destCo : Coroutine); (* target to activate *)

END Coroutines.

3

In PIM coroutines were in SYSTEM, but are now often placed in a separate library which requires separate

import
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12.4.1 Procedure NEWPROCESS

The procedure NEWPROCESS initializes a new coroutine and computes various static at-

tributes. In particular the call of the procedure speci�es the code body which the coroutine

will execute, and the size and address of the workspace which it will use.

The �rst parameter

The �rst actual parameter of the procedure call must designate a parameterless procedure

value, that is a PROC. The actual parameter must thus either be a procedure of this type,

or a procedure variable of this type.

4

The second and third parameters

The second actual parameter is of Coroutine or of SYSTEM.ADDRESS type. It is a pointer

to the workspace which the coroutine will use. The memory to which this value points must

have been allocated prior to the call, either by a call to Storage.ALLOCATE or by using

a statically declared array of suitable size. It is strongly recommended that space obtained

from the storage allocator be used as workspace. In particular, the workspacemust be aligned

on the most restrictive boundary which the machine architecture requires. Space obtained

from Storage.ALLOCATE automatically ful�ls this condition. The third parameter simply

states the workspace size.

How much workspace does gpm require?

The imformation in this subsection is gpm-speci�c. The amount of workspace required varies

with the particular implementation and on some machines may be of the order of 5k Bytes.

On gpm-pc, at the other extreme, only about 600 bytes are required. The workspace must

provide space for the coroutine state vector, usually of the order of 100 to 300 bytes, and the

separate stack for open array parameters on some gpm implementations.

All of the remaining workspace is available as stack space for the coroutine. The procedure

sets a stack overow limit exactly 512 bytes from the end of the workspace. This safety

zone provides space for cleanup procedures (which will execute in the context of the failed

coroutine) to run to completion successfully.

Programs which do not require any stack space at all will thus need workspace of approx-

imately (SOAPSIZE + 1024) bytes. With the system defaults this will be about 5000 bytes.

For typical programs, a size of 10 000 bytes is probably more realistic. In the unusual case

where a very large number of coroutines are to be created, it is recommended that the soap-

size be reduced to a very small value and workspaces of as little as 1000 bytes be allocated.

Remember that the size of soap is determined at build time, not at compile time.

Possible errors

It is an error if a coroutine (other than the main process) ends \normally", or if a coroutines

runs out of stack space. In gpm these two errors produce the following error messages

4

The use of parameters which are procedure variables is unusual. However, the creation of a pool of

coroutines whose bodies may be spec�ed at runtime is an interesting technique. It allows Modula to come

close to providing for dynamically speci�ed processes.
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respectively |

**** m2rts: coroutine ended without TRANSFER ****

**** m2rts: stack limit has been exceeded ****

A typical example

In the following program two coroutines are created.

MODULE CoTest;

IMPORT SYSTEM;

FROM Storage IMPORT ALLOCATE;

FROM Coroutines IMPORT

Coroutine, NEWPROCESS, TRANSFER;

VAR adr : SYSTEM.ADDRESS;

init, c1, c2 : Coroutine;

...

BEGIN

ALLOCATE(adr,10000); (* get workspace *)

NEWPROCESS(Proc1,adr,10000,c1);

ALLOCATE(adr,10000); (* get workspace *)

NEWPROCESS(Proc2,adr,10000,c2);

...

TRANSFER(init,c1); (* init is main process *)

...

END CoTest.

12.4.2 Procedure TRANSFER

The two actual parameters to TRANSFER are both of Coroutine type, and both are of VAR

mode. Prior to the call of TRANSFER, the second parameter designates the variable of

Coroutine type which identi�es the coroutine which is to be activated (or resumed, as the

case may be). The �rst parameter, designates the variable which after the transfer identi�es

the coroutine which has just been suspended.

In a typical example of usage, each newly created coroutine will have a variable associated

with it by the call of NEWPROCESS. One further variable is declared to identify the implicit

main coroutine. In the previous example, init identi�es the main coroutine, and c1, c2 are

the new coroutines.

Because of the details of the TRANSFER semantics, it is valid (although unusual) to use

the same variable for both actual parameters. In a program with just two coroutines such a

single variable can be arranged to always designate the other process. In this case, the call of

TRANSFER has the meaning `resume other coroutine'. Here is the skeleton of an example

of this unusual structure.
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VAR adr : SYSTEM.ADDRESS;

other : Coroutine;

PROCEDURE Proc1;

BEGIN

...

TRANSFER(other,other); (* "resume" *)

...

END Proc1;

BEGIN

ALLOCATE(adr,10000); (* get workspace *)

NEWPROCESS(Proc1,adr,10000,other);

...

TRANSFER(other,other); (* "resume" *)

...

END CoTest.



Chapter 13

Di�erences from `PIM'

This chapter sets out a brief list of all those changes to the language Modula which have

been implemented in the current version of gpm. These are set out in the same sequence as

the \Report on the programming language Modula-2" in Wirth's Programming in Modula-2

(Springer-Verlag 1982, 1983, 1985, 1988).

13.1 Vocabulary and representation

Identi�ers

Identi�ers are now permitted to contain underscores, but with the following restrictions. An

underscore may not be the �rst or last character in an identi�er, and underscores may not

be adjacent.

Numbers

Literal whole numbers are considered to be of a special, internal type called ZZ. These are

compatible with either the signed or unsigned type. Some of the built-in functions also return

this type.

Strings and character constants

Strings may be of any length, including both zero and one. Strings of length one may be

treated as character strings, but are also compatible with the type CHAR. Strings of length

zero are also compatible with the type CHAR, and when treated as character constants denote

the string terminator. In the case of gpm this terminator is Ascii.nul.

As from this release, character constants such as Ascii.bel and 15C are treated uniformly

with character literals such as \a". This is necessary in order to be able to concatenate single

character constants.

Operators and delimiters

The symbols ~ and NOT are synonyms, as are & and AND. FORWARD is a new keyword.

Details on the use of the new symbol are given later.

94
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13.2 Declarations and scope rules

Function calls in constant expressions

Constant expressions may contain function calls to built-in functions, provided that the

functions may be evaluated at compile time. Most pervasive functions may be used in this

way, provided the actual parameters to the functions are themselves constants.

Constant procedures

Constants may now be declared which have (constant) procedure values. There are two clear

uses for this.

In de�nition modules procedure constants may be used for the renaming of an imported

procedure for export. In software systems which are strictly structured in layers, it allows

facilities of (say) a lower layer to be passed on unchanged to a higher layer, without the

ine�ciency of an encapsulating procedure call.

DEFINITION MODULE Stacks; (* a specialization of Sequences *)

IMPORT Sequences;

TYPE Stack = Sequences.Sequence;

CONST MakeEmpty = Sequences.MakeEmpty;

IsEmpty = Sequences.IsEmpty;

Push = Sequences.PutRight;

Pop = Sequences.GetRight;

END Stacks;

Within implementation and programmodules it may be convenient to rename a procedure

to avoid having to use the quali�ed name, or to give it a name which is more meaningful in

the local context.

IMPORT CardStr, IntStr, Terminal;

CONST IVal = IntStr.Value;

CVal = CardStr.Value;

NL = Terminal.WriteLn;

...

Type declarations

Subranges

Subranges now take an optional typename which forces the subrange to take that type as

host type. For example

TYPE OneToTenInt = INTEGER [1 .. 10]; (* subrange of INTEGER *)

OneToTenCrd = [1 .. 10]; (* a subrange of CARDINAL *)

In the �rst case, variables of this type will be expression compatible with expressions of

the signed type. Variables of the default subrange type would only be compatible with the

unsigned type.
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Records

In the syntax of records there are two minor changes. In the unusual case of variant records

without tags, the syntax demands the presence of the colon. Thus a typical tagless variant

record will now look as follows

CASE (* eek, no tag! *) : BOOLEAN OF

| TRUE : ...

Previously, the colon would have been left out, as well as the tag �eld.

Secondly, variants may be empty, so that it is possible to place extra vertical bar symbols

in the declaration of variants. This allows all variants to begin with the bar, as shown in the

previous example.

Set types

The maximum cardinality of the base type of sets is now at least large enough to allow SET

OF CHAR. For gpm the maximum cardinality is 256.

Procedure types

Procedure type declarations may contain references to types which are not yet declared.

These forward declarations must be resolved within the same block in the same way as

forward declarations of pointers.

This facility allows a procedure type to reference its own type in its formal parameter

list, or in the case of a function procedure, to even return its own type

TYPE FsaStep = PROCEDURE (SymbolType) : FsaStep;

13.3 Expressions

Set constructors

Set constructors may now contain non-constant expressions, and must begin with the name

of the set type. The default type BITSET no longer applies.

Operators

There are new operators REM and `/'. These apply to both the signed and unsigned type,

and produce the remainder and integer part of the quotient respectively. They are the same

as MOD and DIV in the case of unsigned operands.

MOD and DIV have their functionality either clari�ed or extended (depending on your

point of view). Both may now take negative left operands. m MOD n returns the true

modulus, always in the range [0 .. (n�1)], while m DIV n returns the greatest whole number

less than or equal to the rational number m=n.
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Value constructors

Value constructors are proposed both for constants and variables, and native code versions of

gpm implement both. The detailed syntax is treated in the User Guide. Constructors may

be used for records |

recVar := RecType{17, Ascii.bel, "warning");

where the �elds of the record are listed in order.

The syntax for arrays also permits repeat counts |

arrayVar := ArrayType{0 BY i - 1, 1, 0 BY max - i};

In the case of multiple dimension arrays, the names of the nested types (which are often

anonymous) may be omitted |

CONST identity = TwoDimArray{{1.0, 0.0, 0.0},

{0.0, 1.0, 0.0},

{0.0, 0.0, 1.0}};

13.4 Statements

String assignments

As mentioned earlier in this section, strings of length 0 or 1 are both compatible (and hence

also assignment compatible) with type CHAR. In the case of the empty string, the character

value is the string terminator character.

Strings are now compatible with all arrays of CHAR of equal or greater length. The

restriction that the array must index from zero has been removed.

Case statements

The syntax for case statements has been relaxed so that cases may now be empty. Essen-

tially this permits redundant vertical bars to be inserted into the format. In particular, this

modi�cation allows a formatting style where every case begins with a bar

CASE expression OF

| value1 : ...

For statement

The lower bound expression in a for statement header may be assignment compatible with

the for loop variable. The upper bound (if not a literal) must be expression compatible with

the control variable.

The checks on threats against the for loop control variable are now very stringent indeed.

Within the body of the loop the variable may not assigned to, nor sent as a VAR parameter

to any procedure; it may not have its address taken, nor have INC or DEC applied to it. The

variable must be a simple variable, it must be declared locally, and must not be imported

or exported. Finally, procedures nested within the same scope as the FOR loop, may not

threaten the variable by uplevel accesses.
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13.5 Procedure declarations

Forward declarations

FORWARD is a new keyword. It anticipates a procedure declaration in order to avoid di�-

culties with mutual recursion when using single pass compilers. gpm has no such restriction,

but accepts (and carefully checks) such declarations.

A forward declaration consists of the procedure heading, including formal parameters,

followed by the keyword. As an example

PROCEDURE Thing(a, b : CHAR; VAR x : CHAR); FORWARD;

The forward declaration must be completed in the same block, and repeats the formal pa-

rameter list.

PROCEDURE Thing(lCh : CHAR; rCh : CHAR; VAR outCh : CHAR);

BEGIN

...

Note that (as in the case of de�nition and implementation parts) the formal parameters must

match in type and order, but need not have the same names, or be declared using the same

grouping lists.

Standard procedures

New standard procedures MIN, MAX, LENGTH have been de�ned, and SIZE (which was in

SYSTEM) is now pervasive.

MIN and MAX return the minimum and maximum values respectively of their argument,

which must be a typename. In the case of whole number types, or subranges of these, the

functions return the type ZZ which is compatible with both signed and unsigned types.

LENGTH returns the length of character strings, and is evaluated at compile-time if

applied to constant strings. It may thus be used in declarations

CONST message = "Special alert, aliens have landed";

TYPE MesStrs = ARRAY [1 .. LENGTH(message)] OF CHAR;

SIZE is now pervasive, and accepts either a variable designator or a typename as param-

eter. It returns the storage size of the object. In the case that the parameter is a variable,

the designator should not use dereference, or indexing by non-constant index expressions

1

.

The functionality of the generic value conversion function VAL has been signi�cantly

extended. VAL now allows conversions from any numeric values to any ordinal or numeric

type (that is, real and whole-number types, enumerations, CHAR, BOOLEAN, and subranges

of any of these). Conversely, values of any ordinal or numeric type may be converted to any

whole-number types (that is, INTEGER, CARDINAL, and subranges of either of these).

Unlike the type cast with which it is often confused, the use of the value conversion

function VAL generates safe conversions. In most cases actual object code is generated, and

a range check is performed unless gpm can prove that it is unnecessary to do so.

1

Actually gpm does not insist on this, but returns the size that the object would have if it did exist.

However, a program making use of this feature would not be standard conforming.
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In the case of applying VAL to real operands, any whole number result is rounded toward

zero. The following thus applies |

c := VAL(CARDINAL,realVal); (* round toward zero, *)

(* same as TRUNC(realVal) *)

i := VAL(INTEGER,realVal); (* round toward zero *)

(* same as INT(realVal) *)

i := SYSTEM.ENTIER(realVal); (* round toward -infinity *)

i := SYSTEM.ROUND(realVal); (* rounds to nearest int *)

Note carefully that the last two are non-standard. For positive values, ENTIER and

VAL(INTEGER,{) return the same value.

ROUND returns an integer result. Nevertheless, implementations guarantee that the bit

pattern returned by applying either ROUND or INT to any real value in the cardinal range

will be correct in the sense that the returned bit pattern will correspond to the correctly

transformed cardinal value. In order to make use of this property, overow testing must be

turned o�. Beyond the valid range, the result is implementation dependent.

13.5.1 Parameter passing to open arrays

When actual arrays are passed to value-mode, open array formals, the element types must

be assignment compatible. Originally, the element types had to be identical.

A consequence of this change is that values passed to open arrays must be marshalled

in the stack frame of the calling procedure. In some cases the value must be range-checked

element by element.

13.6 System-dependent facilities

Type casts

Originally Modula o�ered the type-transfer-function as a facility to bypass the compiler's

type checking in low-level modules. There is general agreement that this dangerous facility

should only be available as a result of an explicit import from SYSTEM. The procedure SYS-

TEM.CAST provides these facilities. The procedure takes a typename as its �rst parameter,

and the object to be cast as its second. The compiler treats the result as though it were of

the speci�ed type.

From the 1995 releases, native code versions of gpm allow almost any value to be cast to

any type.

New and changed system procedures

SIZE, which was in system has become a standard procedure, that is, become pervasive. The

procedures associated with coroutines have moved to a separate module Coroutines. This

release of gpm now contains this module.

There are new facilities for manipulation of the types BITSET and ADDRESS. The 32-

bit sets may be shifted and rotated by the procedures SHIFT and ROTATE, while address

arithmetic is provided by ADDADR, SUBADR and DIFFADR.
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13.7 Compilation units

Export lists do not now appear in the de�nition parts of modules. It is more fruitful to

consider the whole de�nition part �le to be an extended export list.

Another consequence of this particular view, is that names are only introduced into the

de�nition part as needed for the de�nitions. Imported objects which are required in the

implementation part must be explicitly imported into that part.


