
GARDENS POINT MODULA

Users Guide

Reference Manual

April 1995

1

About this manual

The material in this manual was originally prepared by the following persons:

Michael Roggenkamp (editor)

John Hynd

John Gough

This 1992 update has been edited by John Gough, and contains details of the entirely new

version of gpmake.

The manual was prepared camera-ready, using the L

A

T

E

X document processing system.

The railroad syntax diagrams are adapted from an appendix in the book Modula-2: a second

course in programming by Gough and Mohay (Prentice-Hall 1988), and are used by permission

of the authors.

The date of this version of the manual is

February 1993 (generic version)

About gardens point modula

gardens point modula is a product of the programming language and systems group of

the Queensland University of Technology. Copyright of all the source code is held by

the Faculty of Information Technology of QUT, or by Software Automata. This manual

also is copyright
c
. Permission is granted for portions of this manual to be copied for the

convenience of users of the compiler under circumstances set out in the licence agreement.

All other duplication requires the written permission of the copyright holder.

Responsibilty for design and implementation of current versions is as follows:

John Gough (system architecture)

John Hynd (static semantics)

Diane Corney, Christina Cifuentes and Peter Kolb (the gpm-pc back-end, interpreter

and bootstrap libraries)

John Chalk and Diane Corney (gpmake)

Michael Roggenkamp (some library modules)

John Hynd is project manager.

This is an entirely new implementation of the Modula-2 language. It inherits neither code

nor data structures from any of the previous compilers associated with its authors. It has

been designed for the computer architectures of the current generation, particularly those

using the reduced instruction set philosophy.

Contents

I Users Guide 10

1 Getting Started 11

1.1 The Program Development Cycle : 11

1.2 Developing Programs : 11

1.2.1 Writing and Editing Modula-2 Source Code : : : : : : : : : : : : : : : 11

1.2.2 Compiling Source Files : 12

1.2.3 Building an Executable File : 12

1.2.4 Use of Library Modules : 12

2 Using gpm 13

2.1 Compiling a program module : 13

2.2 Compiling a de�nition module : 13

2.3 Compiling an implementation module : 13

2.4 Using gpm's options : 14

2.4.1 Compiler Option Flags by Functionality : : : : : : : : : : : : : : : : : 14

2.4.2 Using the Interactive Option : 14

2.4.3 Inline Compiler Options : 16

3 Using build 17

3.1 Building an Executable File : 17

3.2 Builder Option Flags : 18

3.3 Running your program : 18

4 Programming in the Large 19

4.1 Using gardens point modula to solve problems : : : : : : : : : : : : : : : : : : 19

4.2 Consistency checks between modules : 22

4.2.1 Symbol-�le key values : 22

4.2.2 Compile-time key-value checks : 23

4.2.3 Build-time key-value checks : 23

4.3 File names { and gpm : 24

4.4 File names { and the build phase : 26

4.5 Maintaining complex programs : 26

4.6 Other utilities : 27

4.6.1 The cross reference generator gpxrf : 27

4.6.2 The de�nition extractor grepdef : 27

4.7 Temporary �les : 27

2

CONTENTS 3

5 Compiler Diagnostics : Summary 29

6 Syntax Diagrams for Modula-2 34

II Technical Reference 49

7 The Compiler Environment 50

7.1 Overview of the System : 50

7.1.1 The Compiler : 50

7.1.2 The Load-builder : 52

7.1.3 The Pro�ling Load-builder : 52

7.1.4 The gpmake Utility : 52

7.1.5 The Cross-reference Generator : 53

7.1.6 The Standard Libraries : 53

7.1.7 The Special Libraries : 53

7.2 Environment Variables : 53

8 Command-line Options 56

8.1 Compiler Options : 56

8.1.1 Flags grouped by function : 56

8.1.2 Flags listed alphabetically : 57

8.2 Builder Option Flags : 58

9 Implementation Speci�cs 59

9.1 Pragmas and Compiler Switches : 59

9.1.1 Source code switches : 59

9.1.2 Stack overow testing : 60

9.1.3 Pragmas in the de�nition part : 61

9.2 Omissions and Limitations : 63

9.2.1 Omitted constructs : 63

9.2.2 Included constructs : 63

9.2.3 Compiler limits : 65

9.2.4 Symbol �le keys (magic numbers) : 65

9.2.5 Miscellaneous Information : 66

9.2.6 Constant value constructors : 67

9.3 Size and alignment of data items : 68

9.3.1 Subranges : 72

9.3.2 Miscellaneous notes : 72

9.4 How gpm passes parameters and results : 72

9.4.1 Parameter passing : 72

9.4.2 Function results : 73

9.5 How gpm forms linker names : 74

CONTENTS 4

10 Using the gpmake Tool 75

10.1 Overview of gpmake : 75

10.1.1 Invoking the program : 76

10.1.2 Search Strategy : 77

10.2 Smart recompilation : 78

10.2.1 Summary of messages : 80

10.2.2 The rule for forming �le names : 81

10.2.3 Files : 81

11 The Cross-reference utility gpxrf 83

12 Errors and Error Messages 85

12.1 Errors Detected at Build Time : 85

12.1.1 Summary of build messages : 86

12.2 Errors Detected at Compile Time : 87

12.2.1 Lexical Errors : 87

12.2.2 Syntax Errors : 87

12.2.3 Semantic Errors : 87

12.2.4 Warnings : 88

12.2.5 When are Errors Detected? : 88

12.2.6 Position of the Error Marker : 88

12.2.7 Other compiler messages : 89

12.3 Errors Detected at Runtime : 90

12.3.1 Range Check Errors : 91

12.3.2 Index Bounds Check Errors : 91

12.3.3 Case Selector Errors : 92

12.3.4 Memory and Bus Errors : 92

12.3.5 Divide by Zero Error : 92

12.3.6 Floating Point Errors : 92

12.3.7 Storage Errors : 92

12.3.8 Soap Errors : 93

12.3.9 User Errors : 93

12.3.10Assert errors and assertion checking : : : : : : : : : : : : : : : : : : : 93

12.3.11Function return errors : 94

12.3.12Coroutine return errors : 94

12.3.13Stack overow errors : 94

13 Interpreting Compiler Diagnostics 96

13.1 Introduction : 96

13.2 Lexical Errors : 97

13.3 Syntax Errors : 98

13.4 Semantic Errors : 99

13.5 Warnings : 113

CONTENTS 5

14 Interfacing to other languages 116

14.1 Introduction to the facilities : 116

14.2 Foreign de�nition part �les : 117

14.2.1 Points to watch : 118

14.3 Interface de�nition part �les : 119

14.3.1 Open arrays and interface de�nitions : : : : : : : : : : : : : : : : : : : 120

14.3.2 Points to watch : 121

14.3.3 Interface procedures and procedure variables : : : : : : : : : : : : : : 121

14.4 The special import statement : 122

14.4.1 Where can the special import statement appear? : : : : : : : : : : : : 123

14.4.2 Declaring name aliases : 123

15 Coroutines 124

15.1 Introduction to coroutines : 124

15.1.1 The Coroutines library : 124

15.1.2 Procedure NEWPROCESS : 125

15.1.3 Procedure TRANSFER : 127

A Debugging with gdb | getting started 128

A.1 Introduction : 128

A.1.1 Preparing a program for debugging : 129

A.1.2 Name-munging and gpm : 129

A.2 Post-mortem debugging with gdb : 130

A.2.1 Examining the procedure call chain : 130

A.2.2 Examining global and local data : 133

A.3 Runtime debugging : 135

A.4 Dealing with types : 138

A.5 Finding out more about gdb : 140

B Using dbx to obtain a stack unwind listing 141

C Getting started with dbx 145

D Using XDB to obtain a stack unwind listing 156

E Using adb to obtain a stack unwind listing (HP-UX) 161

F Using the Pro�ling Tools 164

F.1 Getting execution time percentages : 164

F.2 How pro�ling works : 166

F.3 Basic-block counting (using pixie) : 166

F.4 Summary : 169

G Interpreting the stack unwind trace on gpm-pc 170

CONTENTS 6

H The PC-speci�c libraries 174

H.1 The PcProcesses library : 175

H.2 The DOS version of UxFiles : 177

H.3 The WildCards library : 180

Introduction

gardens point modula

gardens point modula is a new implementation of Modula-2 for 32-bit UNIX machines.

The implementation for the Hewlett-Packard HP9000/8xx has been available since October

1989, with the DECstation,mips and Silicon Graphics IRIS versions available in �rst quarter

of 1990. The combination of Modula-2 and RISC architecture brings unprecedented power

to the software developer.

gardens point modula provides a uniform Modula-2 programming environment in

multi-vendor networks, and provides unrivaled portability between machines. The imple-

mentation is based on the emerging ISO draft standard for the Modula-2 language and its

libraries, and is fully integrated with UNIX

1

standards.

gardens point modula provides the following features

� a fully type-checked, safe programming environment based on sound software engineer-

ing principles

� safe separate compilation based on pre-declared interfaces, data hiding and data ab-

straction

� comprehensive compile-time diagnostics, with explicit error messages, and optional

warnings for obsolete syntax or dubious program constructs

� rigorous version checking of symbol and object �les during compilation, and during

load-module building

� seamless integration with standard UNIX tools such as prof and dbx, and safe inter-

faces to libraries such as curses

� extensive runtime checking is standard, with both command-line and embedded-pragma

control of checks if desired

� high quality, fast code

The system consists of the compiler gpm, the load-builder build, libraries, and various

utilities.

1

UNIX is a registered trademark of AT & T

7

CONTENTS 8

Introduction to the documentation set

The documentation for gpm consists of the following documents |

� Language Reference Manual

� Library De�nitions Reference Manual

� Version Release Notes for each version

� User Guide and Technical Reference Manual (this manual)

How to use this manual

This manual is intended as a reference manual for writing application programs in Modula-2.

It is not intended as a tutorial for beginning programmers, nor does it discuss systems pro-

gramming or advanced techniques. This manual is divided into two parts: Part I, User

Introduction comprises Chapters 1{6. Chapters 7{15 make up Part II, Technical Refer-

ence. All users should read Part I while users will choose from Part II the various features

of the compiler that they wish to understand at a more technical level. The Library Def-

inition Parts is essential reference material for all users, and is moved in this release to a

separate manual. Chapter 6 contains handy syntax diagrams for Modula.

All of the material in chapters 1 { 15 applies to gpm as it is implemented on all machines.

The material which is speci�c to particular implementations is in the appendices which follow

chapter 15. Relegation of this material to the appendices does not imply that it is unimportant

for most users. All of the material on pro�ling and use of the debuggers is machine dependent,

and is thus found in these appendices.

Notational Convention

This manual uses the following notational conventions :

Convention Example Description

of Convention of Convention

typewriter Examples This typeface is use to simulate

type the appearance of screen output

bolding KEYWORD Bold letters indicate keywords

or program names.

italics �lename used for emphasis or to indicate

a �lename, a module name or a

procedure name.

brackets [options] optional items listed between

brackets

CONTENTS 9

braces and fchoiceAjchoiceBg you have a choice between two or

vertical bars more items

ellipsis : : : following an item indicate that more

items having the same form may be

entered

Part I

Users Guide

10

Chapter 1

Getting Started

1.1 The Program Development Cycle

The Program Development Cycle for an application program written in Modula-2 is summa-

rized below :

1. Use a text editor to create or modify the source modules. Source modules can be organised

in a variety of ways. It is assumed the normal convention of writing separate de�nition

and implementation modules is used in the development cycle.

2. Use gpm to compile each of the modules of the program. If compilation errors are

encountered in a module, you must go back to Step 1 and correct the errors before

continuing. For each de�nition module (.def), gpm creates a symbol �le (.syx). For

each implementation module (.mod), gpm creates a reference �le (.rfx) and an object

�le (.o

1

). Optional listings (.lst) can also be created during compilation.

3. Use build to create a single executable �le

4. Debug your program if logical or run-time errors are encountered when the program is

executed. It will be necessary to return to step 1 to correct one or more source modules.

1.2 Developing Programs

This section takes you through the steps involved in developing programs. Examples are

shown for each step.

1.2.1 Writing and Editing Modula-2 Source Code

Modula-2 programs are created from one or more source �les. Source �les are text �les that

contain de�nition or implementation modules.

The following example, with apologies to B. Kernighan and D. Ritchie, is the �rst program

to write when learning a new programming language. The de�nition and implementation

modules have been combined into a single program module called hello.mod.

1

In the case of gpm-pc the object �le has the extention .obj. There are other obvious changes to the ma-

terial in this chapter which apply to the pc version. For example, the DOS command dir must be substituted

for the UNIX ls command

11

CHAPTER 1. GETTING STARTED 12

MODULE Hello;

FROM InOut IMPORT WriteString, WriteLn;

CONST str = "Hello world";

BEGIN

WriteString(str); WriteLn;

END Hello.

1.2.2 Compiling Source Files

Source modules are compiled with the comand gpm. Its command line syntax is

gpm [-options] filename

Assuming you have the source �le hello.mod, the simplest command line is

gpm hello.mod

The output would be an object �le, hello.o, and a reference �le, hello.rfx.

To compile the same source �le with the maximum amount of information being produced,

use the folllowing command line :

gpm -glV hello.mod

The version date and time of the compiler are displayed, all messages are verbose, a list

�le, hello.lst, is generated and the code is compiled with markers for the symbolic debugger

(either dbx or adb). Compiler options are discussed in detail in Chapter 2.

1.2.3 Building an Executable File

The command line syntax for the load-builder is

build [-options] basename

Having compiled hello.mod as above, an executable �le is produced by the command :

build hello

The program can now be executed with the command hello

1.2.4 Use of Library Modules

A common complaint from programmers who learn Modula-2 after some other high-level

programming language is the apparent lack of general purpose input/output facilities, for

example the read and write procedures of Pascal. The decision not to include such facilities

in the language means that Modula-2 is an extensible language and in order to use it e�ectively

a programmer needs to know how to access the library modules, what facilities are provided

by a library module and also the means of providing new features when desired.

Library modules consist of two parts | the DEFINITION part, which speci�es the

services provided, and the IMPLEMENTATION part , which speci�es how those services are

provided.

The .def �les for library modules may be found in the directory of the environment path

$M2SYM. If this path consists of a single directory, a directory listing of these �les may be

obtained by the command ls -l $M2SYM/*.def

Chapter 2

Using gpm

2.1 Compiling a program module

A program module is the single simplest compilation unit containing all declarations and

program statements with perhaps an importation from one or more modules. The example

program, hello.mod of Chapter 1 is a program module.

2.2 Compiling a de�nition module

A de�nition module (.def) is a separate compilation unit de�ning the interface between a

module and its environment. Its contains all the information that the compiler needs to verify

that another module is correctly using the facilities provided by this module. The command

gpm myfile.def

will produce a symbol �le, with extension .syx. A de�nition module must be compiled before

the corresponding implementation module. The de�nition module should also be compiled

before any program or module that imports objects from that module.

2.3 Compiling an implementation module

An implementation module (.mod) contains the procedure bodies and initialization state-

ments together with any other hidden procedure or data declarations. The command

gpm myfile.mod

will produce an object �le, with extension .o, and a reference �le, with extension .rfx. Since

an implementation module depends on its own de�nition module and those other de�nition

modules from which it imports some facility, an implementation module cannot be compiled

until all such de�nition modules have been compiled. During compilation, symbol �les for

imported modules are accessed, looking �rst in the current directory and then on the directo-

ries of the path $M2SYM. All module names are moved to lower case before any extension

is appended. If necessary, names are truncated to 80 characters in length, not counting the

extension.

13

CHAPTER 2. USING GPM 14

2.4 Using gpm's options

gpm provides many options to control the operation of the compiler and the format of

messages produced during compilation. The syntax for options ags follows closely the style

used by UNIX commands.

gpm -options ... �lename ...

Options are described in the following sub-section. Options may occur in any order, and may

be given separately or in a single group. A detailed description of each option is given in the

Chapter Compiler Options in the technical reference section.

2.4.1 Compiler Option Flags by Functionality

Listing and message control

{d suppress console warning messages

{l produce listing �le

{v produce verbose messages and listings

{V version date is displayed, module key values are traced, and verbose

messages and listings are produced

{X more detailed information is provided for each error

Runtime error checking

{a suppress runtime assertion tests

{i generate code without array index checks

{r generate code without value range checks

{s runtime stack tests are turned o�

{t runtime arithmetic overow checks o�

Compiler control ags

{f force compiler to produce reference and object �les with names based

on the �lename rather than the module name

{g compile with extra information for the debugger program (xdb or dbx)

{n compilation checks only, no object code is produced

{I run in interactive mode, with option of jumping to the editor

{Oc optimise for compactness and speed

{Of optimise for maximum speed

{p compile with procedure call-count code for the runtime pro�ler

{S intermediate code is persistent

2.4.2 Using the Interactive Option

One of the most useful options when modifying programs is {I. This allows an easy alternation

between gpm and vi or any other editor.

When an error occurs, and the interactive option is in force, the user is informed of the

error, and is given the verbose version of the diagnostic message following up to four lines

CHAPTER 2. USING GPM 15

of context. The user is then asked to choose between continuing to the next error (if there

is one), requesting more information about the error, abandoning compilation, or jumping

straight into the editor

1

.

$ gpm -I foo.mod

254 (* do a swap *)

255 temp := a[i];

256 a[i] := a[j];

257 a[j] := temp,

**** ^ syntax error 105

**** 105 Expected semicolon ****

<enter> to continue,'m' for more info,'q' to quit,'v' to edit :

If the user enters `v', gpm terminates and vi starts, with the cursor already on the o�ending

line. For most errors this means that the �le is already positioned for the user to correct the

error with a minimum of e�ort.

After the error is corrected and vi is terminated, gpm automatically resumes. In the

example, the comma is changed into a semicolon, and the user types `ZZ'

gpm: recompiling <foo.mod>

$

gpm announces that it is recompiling. If there are further errors detected, the alternation

between gpm and vi may be repeated.

When the interactive option is used, gpm only pauses and prompts the user when it

detects errors. It does not bother the user with warning messages. In the absence of errors,

the use of the `{I' option is similar in e�ect to the use of the `{d' option.

If the more response is selected, the compiler will print out any further information on

the particular error. The messages are based on the information in the chapter Interpreting

error messages of this technical reference manual. In the case of errors which have to do with

type mis-matches, the two particular types are listed. Here is an example |

C:\GPM\WRK> gpm -I compare.mod

12 WriteString("> ");

13 ReadString(vst);

14 val := Compare(vst,str);

15 CASE val OF

16 | friday : WriteString("equal");

****^ SemanticError # 207

**** 207 Expression is not compatible with declared type ****

<newline> to proceed,"m" for more info,"v" go to editor,"q" to quit: m

If the more option is selected, the following extra information is obtained on the screen |

1

The particular editor may be chosen by an environment variable, and current versions allow either e for

editor or v for vi to be used synonymously

CHAPTER 2. USING GPM 16

---- More info. ----

Modula enforces strict agreement between types of expressions and

the context in which they are used. This error occurs if a label

of a CASE statement branch does not match the selector type, an

element in a set constructor does not match the set type, a bound

of a subrange does not match the host type or the other bound, a

record variant label does not match the tag type, or an array

index does not match the index type.

--

The expected type is <StdStrings.CompareResult>

while the actual type is <Compare.DaysOfWeek>

--

<newline> to continue,"m" for more info,"v" go to editor,"q" to quit: _

Note that the \more info" explanation is also obtainable on the screen by using the {X

option, or in the listing �le by using {lX. However, the type information is only available to

the interactive mode, as the information is volatile, and is lost if compilation proceeds.

2.4.3 Inline Compiler Options

A number of the forementioned compiler options can be inserted in the IMPLEMENTA-

TION part of the source program. These inline options must appear within the comment

symbols (� �) .

$C+ produce compact code, even at the price of small speed loss

$F+ produce fast, even at the price of larger memory size

$I- array Index tests are turned o�

$R- Range checking of assigned values and actual value param-

eters is suppressed

$S+ Stack overow checking is turned on

Chapter 3

Using build

3.1 Building an Executable File

The load-builder program, build accepts the name of the base (main) module (with the name

moved to lower case). It opens .rfx �les as needed to calculate which other modules need

to be linked, and the order in which they should be initialized. This program produces an

executable �le with no extension.

The .syx, .o and .rfx �les produced by gpm take their name from the module name,

not from the original .mod �le name if that is di�erent. Sensible users will avoid confusion

by making sure that module and �le name correspond. If necessary, it is possible to override

this behaviour (see {f compiler option in Chapter 2). All output �le names are transformed

to lower case characters, and truncated if necessary to 80 characters in length. All searches

for .syx and .rfx �les use the same convention.

The syntax of the build command is

build [-options] base

base is the name of the base �le, with no extension. The `{v' option produces a verbose

listing on the screen. Other options are listed in the following section. The options for build

follow the same conventions as the compiler options. That is, options may appear in any

number of groups, in any order.

17

CHAPTER 3. USING BUILD 18

3.2 Builder Option Flags

{D \Debug" | the �le is linked with the runtime stack unwinder

{q \query" | the builder prompts for the names of reference �les

which it cannot �nd. Only the �le base-name is required, and

querying may be aborted by entering a blank line

{S \aSsembler" | the initialization-call-chain code �le and the

linker script are persistent as �les \modbase.c" and \modbase"

respectively

{v verbose messages are displayed on the screen so that progress may

be monitored, and the origin of any error messages determined

{V builder Version date and time are displayed, and screen messages

are verbose

{Ldirname the linker searches the directory dirname for library �les, before

searching the default library path

To build a pro�ling version of a program, build is invoked under the name bldprf. The

option and �lename conventions for bldprf are identical to those of build. Information on

using the pro�ling facilities are given in the Chapter Using the Pro�ling Tools.

3.3 Running your program

Once all modules have been compiled successfully and the build utility used to create an

executable �le, the program is run by the command base where base is the name of the base

�le. A number of possible runtime errors can be detected when the program is executed.

Refer to the Chapter Errors and Error Messages for more details.

Version speci�c details

The {D option is supported only on DECstation currently, and is the default for gpm-pc.

The {Ldirname option is not supported under MS-DOS. The Apollo Domain version has a

number of speci�c options which are detailed in the release notes for that version.

Chapter 4

Programming in the Large

4.1 Using gardens point modula to solve problems

The problem-solving process must start with a clear speci�cation of what is required; from

this a solution can be devised.

A typical structured (top-down) design will identify several major modules which make

up the solution { these modules will be largely independent of each other (have few con-

nections) but will be internally cohesive (share the same working data and detailed logic).

Such modules are naturally expressed as Modula-2 modules. Thus the result of the high-level

design is the partitioning of the problem and its solution into a number of modules, with the

interfaces between those modules expressed by Modula DEFINITION MODULEs, and the

main program written in terms of calls to the facilities de�ned in those de�nition modules.

Each of the modules then represents an independent subproblem, which is solved by

writing the IMPLEMENTATION MODULE which provides the facilities advertised by its

de�nition module { the de�nition module speci�es what is to be done, and the implementation

module does it, independent of any calling (or client) programs. Of course, the further

re�nement of the implementation may well identify lower-level facilities which are similarly

de�ned and implemented as separate modules.

As experience with structured problem-solving is gained, it will commonly be the case that

a module used in a previous solution will be useful in the current problem. Thus the design

will not be strictly top-down { a measure of bottom-up design will be added, by recognising

when previously-written modules from a library are appropriate. As well as reducing the

design and coding e�ort, this approach produces more reliable code: if a previously-written

module has been thoroughly tested (or, better still, proved correct) it can be re-used with

con�dence, rather than introduce new errors in a new solution. When modules are likely to

be re-usable in this way, there is a greater incentive to design, code, test and verify them

well.

Consider now a typical small problem solution using gpm. An application program such

as a cross-reference generator must maintain a table of word descriptors, where each word

descriptor comprises the word itself and a sequence of reference line numbers. This is clearly

an application of a standard table abstraction, and the program can be written in terms of

calls to standard table facilities such as \insert an entry", \look up an entry", \display all

entries", etc. A de�nition of such a table abstraction constitutes a DEFINITION MODULE

19

CHAPTER 4. PROGRAMMING IN THE LARGE 20

Table; the implementation may be in terms of any appropriate data structure, but typically

a balanced tree or hash table will be chosen for e�ciency combined with exibility.

Thus we now have a solution comprising three logical units: the de�nition of the table

abstraction, the cross-reference program which uses it, and the implementation as, say, a

balanced tree. In Modula terms, these are separately-compiled modules, each stored in a

separate �le:

file table.def: DEFINITION MODULE Table;

(* *)

TYPE Table;

ItemType = RECORD

key : KeyType;

...

END;

KeyType = Word;

PROCEDURE Insert (VAR t:Table; item:ItemType);

PROCEDURE Lookup (t:Table; key : KeyType;

VAR found : BOOLEAN;

VAR item:ItemType);

...

END Table.

file crossref.mod:

MODULE CrossReference;

(* *)

FROM InOut IMPORT Write, ... ;

FROM Table IMPORT Insert, ... ;

...

BEGIN

...

Insert (words, thisWord);

...

END CrossReference.

file table.mod: IMPLEMENTATION MODULE Table;

(* *)

TYPE Table = POINTER TO TreeNode;

TreeNode = ...

...

END Table.

Having produced these �les, compilation and linkage using gpm proceeds as follows :

1

1. table.def must be compiled �rst, since both other compilation units depend on its de�-

nitions (crossref.mod uses them, table.mod must supply a matching implementation):

1

The sample outputs are for the gpm version of Jun 21 1989; there may be di�erences in detail in the

output produced by later versions, especially in the {V (super Verbose) output used.

CHAPTER 4. PROGRAMMING IN THE LARGE 21

$gpm -IV table.def

HP-Precision Architecture Version of Wed Jun 21 19:55:14 1989

Opening "table.def" as input

Creating symbol file "table.syx"

$

and the result is the creation of the symbol �le table.syx, which holds the compiler-

readable equivalent of table.def.

2. Either table.mod or crossref.mod can now be compiled; each imports the table de�nitions

(explicitly in the case of crossref.mod, implicitly in the case of table.mod), so gpm reads

the data from table.syx to check the matching correctness of the cross-reference program

use and the tree implementation:

$gpm -V crossref.mod

HP-Precision Architecture Version of Wed Jun 21 19:56:04 1989

Opening "crossref.mod" as input

... Importing <InOut> from /usr/local/m2sym/inout.syx

-- mod <SYSTEM> key = 0

-- mod <InOut> key = 1608020411

... Importing <Table> from table.syx

-- mod <Table> key = 410000993

... Importing <Ascii> from /usr/local/m2sym/ascii.syx

-- mod <SYSTEM> key = 0

-- mod <Ascii> key = 3360978574

Output name is "crossreference"

..... Header file /usr/local/m2sym/m2rts.h

$

producing crossreference.o and crossreference.rfx. (Note the longer output �lenames

based on the module name.) The �le crossreference.o is the machine code version of

the cross-reference program, and crossreference.rfx is the reference �le (nothing to do

with the cross-reference of our sample application !) which notes that the code in

crossreference.o cannot work until it is combined with the implementation code of each

of the modules it imported (InOut, Table and Ascii).

$gpm -V table.mod

HP-Precision Architecture Version of Wed Jun 21 19:57:21 1989

Opening "table.mod" as input

... Importing <Storage> from /usr/local/m2sym/storage.syx

..... Header file /usr/local/m2sym/storage.h

..... using object library "<storage.o>"

-- mod <SYSTEM> key = 0

-- mod <Storage> key = 1497782521

... Importing <InOut> from /usr/local/m2sym/inout.syx

-- mod <SYSTEM> key = 0

-- mod <InOut> key = 1608020411

CHAPTER 4. PROGRAMMING IN THE LARGE 22

... Importing <Ascii> from /usr/local/m2sym/ascii.syx

-- mod <SYSTEM> key = 0

-- mod <Ascii> key = 3360978574

... Importing <Table> from table.syx

-- mod <Table> key = 410000993

Output name is "table"

..... Header file /usr/local/m2sym/m2rts.h

$

producing table.o and table.rfx (in this simple case, table.rfx includes references to Stor-

age, InOut and Ascii).

3. Now we must build an executable program from the cross-reference program's machine

code, that of the table implementation, and that of the library module InOut. This

phase is performed by the build utility:

$build -V crossreference

Build version of Sat Jun 24 09:42:56 1989

Reading <CrossReference> key = 0

Importing <InOut> key = 1608020411

Importing <Table> key = 410000993

Reading <InOut> key = 1608020411

Importing <Files> key = 3143116421

Reading <Table> key = 410000993

Importing library file <<storage.o>>

Importing <InOut> key = 1608020411

Reading <Files> key = 3143116421

$

Given the `base name' crossreference, the build program reads crossreference.rfx to �nd

the modules directly imported by crossreference; in turn, their .rfx �les will lead to any

lower-level modules needed. Having found all such needed modules in their machine-

code (.o) forms, build constructs a small C program which will invoke crossref, and

linker commands which will link it to all the modules found via .rfx's (in this case,

crossreference itself, table, and inout). The result of this linkage is the executable �le

crossreference.

4.2 Consistency checks between modules

4.2.1 Symbol-�le key values

Whenever a de�nition part is compiled by gpm the system evaluates a key-value for the

symbol �le. This key, sometimes also called a magic number, is unique to the symbol �le.

If the de�nition �le is changed in a way which changes the symbol �le, the key value will

be di�erent. The key-values of all the symbol �les used in a particular compilation are also

recorded in the reference �le.

CHAPTER 4. PROGRAMMING IN THE LARGE 23

The system uses these key values to ensure that programs only use consistent versions of

modules. Some checks are carried out during compilation, while others are carried out during

load-building.

4.2.2 Compile-time key-value checks

gpm records the key values of every symbol �le which it imports. The symbol �les also

contain the key values of any symbol �les which the de�nition-part �le itself imported. Thus

gpm is able to check when it meets the same symbol �le directly and indirectly that it has

a consistent version.

If gpm �nds symbol �les with inconsistent key-values it issues an error 300 message. In

di�cult cases a complete trace of the directly and indirectly imported key-values may be

obtained by use of the super-verbose {V option.

4.2.3 Build-time key-value checks

The build program checks the information included in .rfx �les to verify that all modules

importing from a common de�nition module in fact used the same version of that de�nition

�le. This guarantees that the separate compilations of program and implementation modules

are nevertheless dependent on the same de�nition information, and so will work together

correctly. If this were not the case, the cross-reference program might have been compiled

using information in table.syx (derived from compilation of table.def), then table.def could

have been changed and recompiled, and a changed table.mod recompiled (matching the new

de�nitions in table.syx); clearly, crossreference.o and table.o would not work together. If

build detects any such error in the dependency checks, it outputs a diagnostic and aborts

the build process:

$build -V crossreference

Build version of Sat Jun 24 09:42:56 1989

Reading <CrossReference> key = 0

Importing <InOut> key = 1608020411

Importing <Table> key = 410000993

Reading <InOut> key = 1608020411

Importing <Files> key = 3143116421

Reading <Table> key = 11511020

** Inconsistent key for module <Table> **

Importing library file <<storage.o>>

Importing <InOut> key = 1608020411

Reading <Files> key = 3143116421

*** File creation unsuccessful ***

$

You must then recall what changes have been made to determine what recompilations are

needed, and in what order they should be performed. Clearly, in general, new or changed .def

modules should be compiled �rst, since they are the common basis for later compilations;

within the .def's, lower-level facilities imported by other .def's must be compiled �rst. Then,

application programs such as crossreference and the various implementations may be compiled

CHAPTER 4. PROGRAMMING IN THE LARGE 24

in any order (as long as all the .def's they import have been compiled). Finally, build

produces a new working version. When very complex dependencies exist between modules it is

useful to allow the utility gpscript to analyse the dependencies and compute the compilation

order, or to use gpmake to perform an optimized partial recompilation.

4.3 File names { and gpm

Commonly, �le names are chosen to match module names { thus a service module such

as Table resides in the pair of �les table.def and table.mod, while an application such as

CrossReference might reside in crossreference.mod.

However, gpm will normally use the module name as the basis of the symbol, object and

reference �les its creates, regardless of the source �le name (the source �le name is, of course,

relevant { it must be the argument to the gpm command). Further, in forming output

�le names from the module name, gpm will convert all alphabetic characters to lower case

and truncate the name to 80 characters, should that be necessary. Thus, the module name

CrossReference led to �les crossreference.rfx and crossreference.o. Subsequent searches when

other modules reference .syx �les, or when the build utility uses .rfx �les, use the same lower

case convention.

2

As a side-e�ect of the module to �le name manipulations, common Modula identi�er

conventions such as capitalising the �rst character of module, type and procedure names,

and the �rst character of any concatenated word (to make multi-word identi�ers readable

without resorting to underscores), will not carry through to �le names. This is consistent

with the general Unix practice of lower-case �le names (except for �les which should be

specially noticeable, such as README.NOW).

Some Unix sites, however, do use mixed-case �le names, and in this environment gpm can

be directed to produce corresponding mixed-case names by setting the environment variable

GPNAMES to "Mixed". In this case, module CrossReference would lead to �les Cross-

Reference.rfx and CrossReference.o, and a subsequent build would produce an executable

CrossReference. For further details, see Section 7.2 Environment Variables, and the library

module GpFiles.

As another way of controlling �le name generation, the compiler option -f will use the

�le name as the basis for �les it produces, ignoring the module name, and will not map

to lower case. Note that this option cannot be used with program modules. Thus, had

we chosen the longer source �le name mytable.mod, gpm -f mytable.mod would produce

mytable.o and mytable.rfx, while a source �le called MyTable.mod would produce MyTable.o

and MyTable.rfx.

Another use for the -f option is a case where there are two implementations of some

facility. Consider again the Table example. Clearly, there should be only one de�nition

module { corresponding to the one concept of what a Table abstraction does. But if we wish

to have available both a balanced tree implementation and a hash table implementation, we

could choose to have two implementation �les:

file baltreetable.mod: IMPLEMENTATION MODULE Table;

2

Early versions of gpm truncated �lenames to 8 characters plus extension. For compatability with these

versions, both the compiler and the builder do a �nal check for the shorter version of the name before declaring

a �le missing.

CHAPTER 4. PROGRAMMING IN THE LARGE 25

(* Implement Table using a balanced tree *)

...

END Table.

file hashtable.mod: IMPLEMENTATION MODULE Table;

(* Implement Table using a hash table *)

...

END Table.

Now the command, gpm -f baltreetable.mod will produce �les baltreetable.o and bal-

treetable.rfx, while the command, gpm -f hashtable.mod will produce hashtable.o and

hashtable.rfx.

In both cases, the entry point names will still be based on the module name, which

matched the single de�nition { InsertTable, etc. In order for the build phase to succeed, one

of the two implementations must be chosen. This can be done in two ways:

(1) copy the appropriate �les to table �les:

$cp baltreetable.o table.o

$cp baltreetable.rfx table.rfx

$build crossreference

$

(2) use the -q option of build to prompt for the missing table �les :

$build -q crossreference

Build version of Sat Jun 24 09:42:56 1989

Reading <CrossReference> key = 0

Importing <InOut> key = 1608020411

Importing <Table> key = 410000993

Reading <InOut> key = 1608020411

Importing <Files> key = 3143116421

<Table>** Ref file not found ...

Filename for <Table> : baltreetable (* users response *)

Reading <Table> key = 410000993

Importing library file <<storage.o>>

Importing <InOut> key = 1608020411

Reading <Files> key = 3143116421

$

Of course, an alternative to this whole process would be to compile the implementations with-

out the -f option. In that case, each would produce table.o and table.rfx directly, overwriting

any previous version. To switch between implementations you could either rename the pre-

vious version before recompiling, or let it be overwritten and recompile again if necessary to

return to the alternative:

$gpm baltreetable.mod (* => table.o and table.rfx *)

$build crossreference (* with balanced tree table *)

CHAPTER 4. PROGRAMMING IN THE LARGE 26

$

$mv table.o baltreetable.o (* if want to save tree version *)

$mv table.rfx baltreetable.rfx

$

$gpm hashtree.mod (* => table.o and table.rfx *)

$build crossreference (* with hash table *)

$

4.4 File names { and the build phase

The build utility invokes the standard Unix linking loader ld. Modern Unix systems do not

have any sensible limit to the length of external symbols, and gpm produces symbols which

may extend up to 31 characters in length.

3

These external/entry-point names correspond

to Modula procedure names imported by client programs (external references) and exported

by de�nition/implementation modules (entry points). Since the same procedure name might

be exported by two modules, the external/entry names generated by gpmmust include the

module name.

A compromise must be made between the unlimited module and procedure names of

Modula and this 31 character limit. gpm produces external names by taking the module name

(shortened to the �rst ten characters if necessary) followed by the symbol name (shortened to

20 characters if necessary). These two parts are separated by an underscore character. Thus

procedure Insert of module Table gives rise to an entry point name Table_Insert, while

WriteString of InOut becomes InOut_WriteString, and Compare from StdStrings becomes

StdStrings_Compare.

Fortunately, most of this is invisible to you; it will only become apparent when you are

using the debugger (xdb or dbx) to investigate a run-time error. Then, the names in the

stack backtrace (the chain of procedures leading to the one in which the error was detected)

will all be of this form.

4.5 Maintaining complex programs

Large programs will comprise many modules, with possibly complex export/import depen-

dencies. Keeping track of dependencies may thus be quite di�cult (though, the better the

design, the simpler will be the interactions). Some cases will be simple { (1) a change to an

implementation module requires only that that module be recompiled and the whole program

be re-built; (2) if a de�nition module has few dependencies on it, only the de�nition module,

its implementation, and the few dependencies need be recompiled, and the program re-built.

Beyond these simple cases, two courses are open:

(1) Create shell scripts which invoke gpm and build to compile all modules in the correct

order and build the executable �le. This may be split up into a makedefs, followed by a

makemods, followed by build. This may recompile more modules than is required, but is

simple and fairly fast.

3

Early versions of gpm formed character long linker names which were only 14 characters long

CHAPTER 4. PROGRAMMING IN THE LARGE 27

(2) Use the supplied utility gpmake. This program automatically analyses the source

code of all the modules to extract the dependencies. gpmake also calculates the order of

compilation for de�nition modules, where these import from each other. It compiles all

inconsistent non-library modules in the correct order. See the Chapter Using The gpmake

tool in the technical reference manual for more details.

4.6 Other utilities

As well as gpmake, which has already been mentioned, there are several other utilities which

are helpful in the maintainence of Modula programs.

4.6.1 The cross reference generator gpxrf

The utility gpxrf produces crossreference listings for modula programs. The default operation

of the utility produces a listing of user de�ned identi�ers in case-sensitive lexicographic order.

The program accepts the following options |

{p includes pervasive identi�ers in the listing

{f lists identi�ers in ascending order of frequency of use

A full description of the mode of use is given in the Technical Reference Manual.

4.6.2 The de�nition extractor grepdef

The utility grepdef extracts de�nitions from de�nition �les on the symbolic path $M2SYM.

It is useful for discovering which modules de�ne particular identi�ers, and the exact spelling

of these. The program is invoked by the command

grepdef RegExp

where RegExp is a regular expression in the style expected by grep. All lines from �les with

names ending in .def which match the regular expression are printed. The order of directory

search exactly matches that used by the compiler. The current directory is searched �rst,

and the directories on the path $M2SYM are then searched in order.

4.7 Temporary �les

Both gpm and build use various temporary �les, which are normally removed on successful

completion. In abnormal situations, including a user interrupt, and when appropriate options

are selected, these �les will be apparent.

gpm compiles your Modula program or implementation code into a C �le modulename.c,

plus the reference �le modulename.rfx. The C code is then compiled by cc to give module-

name.o, and the C source modulename.c is removed. The compiler option -S suppresses the

C compilation phase and leaves the �le modulename.c in the current directory. This option

is largely for debugging purposes; the C code is not particularly interesting, and is hard to

read due to the lack of comments and liberal use of compiler-constructed internal names.

Nevertheless, it has recognisable similarity to the Modula source, and those versed in C may

use it to localise problems.

CHAPTER 4. PROGRAMMING IN THE LARGE 28

build creates temporary �les with a names like bld28077.c and bld28077. The �rst is the

initialization call-chain code, while the second is the linker script. Again, an abnormal event

may leave such �les in the directory /tmp.

A run-time error will cause a memory image to be dumped to the �le core which is used

by the postmortem debugger. Since this may be a large �le, it is good practice to remove it

when the fault has been corrected.

General housekeeping such as this may be simpli�ed by a make�le entry clean which

includes actions such as rm core; a cleanup is then invoked by make clean.

Chapter 5

Compiler Diagnostics : Summary

Here are the error messages exactly as they appear on the screen and in listing �les. Detailed

description of the circumstances under which each of these may arise is given in the chapter

Interpreting compiler diagnostics in the Technical Reference Manual.

Lexical Errors

1 Line ends inside literal string

2 Illegal character in input file

3 Input file ends inside a comment

4 Invalid exponent in REAL constant

5 Illegal character in numeric constant

6 Floating-point error during constant evaluation

7 Number too long

8 Character constant too large (377B is maximum)

9 Illegal use of underscore in identifier

Syntax Errors

100 Invalid symbols precede start of module

101 No identifier at end of module

102 No fullstop at end of module

103 Expected END symbol

104 Expected module END symbol

105 Expected semicolon

106 Expected declarations

107 Expected equals sign

108 Expected identifier

109 Expected IMPORT symbol

110 Expected comma

111 Expected ')' symbol

112 Expected '..' symbol

113 Error in qualified identifier

29

CHAPTER 5. COMPILER DIAGNOSTICS : SUMMARY 30

114 Expected parameters

115 Expected ']' symbol

116 Expected OF symbol

117 Expected colon

118 Formal parameter bad

119 Expected '{' symbol

120 Error in expression

121 Expected '(' symbol

122 Expected '}' symbol

123 Expected '|' symbol

124 Expected EXPORT symbol

125 Expected selectors

126 Expected addops

127 Expected mulops

128 Error in statement

129 Expected DO symbol

130 Expected UNTIL symbol

131 Expected ':=' symbol

132 Expected TO symbol

133 Expected THEN symbol

134 Expected start of type

135 Expected start of factor

136 Expected BEGIN

137 Premature exit: too few ENDs in block

138 Expected END identifier;

139 Resynchronizing here

140 Foreign import must be "IMPORT IMPLEMENTATION FROM litstring"

Semantic Errors

200 Identifier at block end does not match

201 Symbol file missing

202 Identifier is not exported from module

203 Identifer already known in this scope

204 Identifier not known in this scope

205 Qualified identifier is not a type name

206 Type is not an ordinal type

207 Expression is not compatible with declared type

208 Identifier is not a constant

209 Maximum of range is less than minimum

210 Implementation limit exceeded for set base type

211 Target of forward reference not declared

212 Type ident not expected here

213 Function HIGH cannot be used in a constant expression

214 Parameter is of wrong type

CHAPTER 5. COMPILER DIAGNOSTICS : SUMMARY 31

215 Range of type exceeded

216 Too many parameters

217 Conversion not implemented

218 Not of numeric type

219 Operation invalid on constant

220 Type incompatible operands

221 Not of Boolean type

222 Record field name is not unique

223 Opaque type only allowed in definition part

224 Opaque type not elaborated

225 Exported procedure not declared

226 (Implementation restriction) Too many formals of same type

227 Invalid elaboration of opaque type (must be a pointer)

228 Invalid elaboration of procedure header

229 Function return type not as defined

230 Exported object not declared

231 Too many constants in enumeration

232 Designator is not a record type

233 Fieldname not known for this type

234 Attempted field selection not on a record structure

235 Designator is not a variable

236 Attempted pointer dereference not on a pointer type

237 Attempted array index not on an array type

238 BY expression not within INTEGER value range

239 Control variable not found in local scope

240 Control variable must not be a formal parameter

241 Control variable must not be imported or exported

242 Selectors not permitted on constant

243 Selectors not permitted on procedure name

244 Standard procs are not valid as proc-values

245 Function name not known in this scope

246 Designator is not a function

247 Designator is not a set type name

248 Too few parameters

249 Designator is not a procedure name

250 Designator is not a procedure variable name

251 Missing function return expression

252 Proper procedure cannot return a value

253 Actual value parameter not assignment compatible with formal

254 Actual variable parameter type not identical to formal

255 Actual variable parameter must be a variable

256 Actual parameter corresponding to open array formal not an array

257 Incompatible open array element type

258 Expression not assignment-compatible with variable

259 Return value not assignment-compatible with function type

260 Designator is not a function variable name

CHAPTER 5. COMPILER DIAGNOSTICS : SUMMARY 32

261 Selectors not permitted on set type name

262 HIGH may only be applied to open array parameters

263 Expression is not of type CHAR

264 Name of qualifying module clashes in outer scope

265 Enumeration constant name clashes in this scope

266 Name clashes with an enumeration constant name

267 Duplicate case selector in this range

268 Operand not of signed numeric type

269 Operand(s) not of Boolean type

270 Operand(s) not of numeric type

271 Operand(s) not of whole number type

272 Operand may not be compared

273 Proper inclusion operator not defined for sets

274 This type may only be compared for (in)equality

275 Right operand or first parameter not of set type

276 Exported enumeration constant clashes in outer scope

277 Procedure in !LIBRARY module calls non-library procedure

278 EXIT not within a LOOP

279 FOR loop control variable may not be modified

280 Name is not a module name

281 Expected proper procedure, not function

282 ALLOCATE not known in this scope

283 DEALLOCATE not known in this scope

284 Not a valid substitution for NEW or DISPOSE

285 Type ranges do not overlap at all

286 Selectors not permitted on type identifier

287 Nested procedures are not valid as proc-values

288 Implementation restriction: case range too large

289 Duplicate identifier in export list of module

290 Actuals passed to amorphous formals must be simple

291 No literals except sets and strings allowed here

292 Values cast to structured types must be simple

293 Value is too large to cast to unstructured type

294 Actual parameter must be a pointer type

295 Right operand must be greater than zero

296 FOR loop control variable is threatened in uplevel access

297 FOR loop control variable is threatened

298 Feature not implemented -- read latest release notes

299 Multi-dimensional open array parameters not implemented yet

300 Incompatible keys for symbol files

301 Wrong name in symbol file

302 Linker name is not unique

303 Fatal circular import through this module

304 Target object has zero storage size

305 Header file for !FOREIGN symbol file not found

306 Library name has bad format in header file

CHAPTER 5. COMPILER DIAGNOSTICS : SUMMARY 33

307 Expression cannot be aligned with specified type

308 Ident was already uplevel referenced in this scope

309 Procedure declared FORWARD was not elaborated

310 Array exceeds machine size limit

311 Parameter name is repeated

312 Expression must be a designator

313 Constructor has too few elements

314 Constructor has too many elements

315 Ranges not allowed in record or array constructors

316 Replicators only allowed for array constructors

317 Repetition count must be positive

318 Illegal assignment of INTERFACE proc with open array, see manual

319 Open array parameter may only be accessed element by element

320 Maximum nesting depth for procedure declarations has been exceeded

321 RETRY is not inside an EXCEPT clause

322 Forward IMPORT not elaborated

323 Declaration must precede use in a declaration

324 Expression must be compatible with control variable

Warnings

495 Name or function will change next release

496 Array is very large

497 Last type has zero storage size

498 Case statement has very low density

499 Variant tags are ignored in this implementation

500 Symbols follow module end

501 Obsolete syntax, colon is compulsory

502 Obsolete syntax, export list is ignored

503 Invalid option selection character (I,R,F,C only)

504 Too many levels of option restoration

505 Invalid option operator (+, -, = are valid)

506 Obsolete syntax, use SYSTEM.CAST for type transfers

507 Procedure is not called, assigned, or exported

508 No EXIT from this LOOP

509 Priority not implemented, ignored

Chapter 6

Syntax Diagrams for Modula-2

Introduction to the syntax diagrams

The syntax of Modula

1

is divided, for convenience, into two parts. First there are the lexical

rules which describe how the symbols of the language are built up from characters of the

implementation character set. Then there are the syntactic rules, which describe the ways

in which the symbols of the language may be placed together to form grammatically correct

programs. Of course there are also rules which have to do with type checking and so on, but

these are not usually thought of as being part of the syntax of the language, and are not

treated in this chapter.

The symbols which make up the alphabet of Modula consist of a number of keywords

such as FROM and AND, some special symbols such as `:=' and `<>', and a small number

of lexical categories. Lexical categories are symbols which have some substructure. They are

the identi�ers, numbers of various kinds, and literal strings. All of the other symbols have a

�xed representation.

Modula is a free format language. The formatting of symbols onto separate lines and

the placement of space between symbols has no signi�cance to the compiler at all. All space

characters, linebreaks, control characters and comments are treated uniformly as whitespace.

As a general rule, symbols must be separated by whitespace only when that is necessary

to avoid ambiguity. This is the case between identi�ers and keywords, between keywords and

numbers, and between identi�ers and numbers. In all other cases whitespace is optional, and

should be used freely to assist human beings to read the program code.

Comments begin with a marker consisting of the character pair \(*" and terminate with

a matching marker consisting of the pair *)". Comments may be nested to any depth, and

do not end until every opening comment marker has been matched with a closing marker.

1

This edition of the gpm manual includes some of the new syntax proposed by the ISO. The use of

FORWARD as a keyword for compatability with compilers with single-pass restrictions is shown, but multi-

dimensional open arrays, and absolute address expressions are omitted. It is believed that these diagrams

accurately correspond to the April 1990 release of gpm.

34

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 35

Lexical Categories

identi�er

-

�

�

�

�

alphabetic character

-
�

�
�

�

�

�

�

alphanumeric character

�

6

�

�

?

��

��

litstring

-

��

��

'

--

��

��

'

-
�

�

�

�

�

�

any graphics char except '

�

6

�

�

-

��

��

"

--

��

��

"

�

6

�

�

�

�

�

�

any graphics char except "

�

6

literal whole number

�
-

�

�

�

�

digit

-
�

��

6

�

-

�

�

�

�

octal digit

-

��

��

B

-
�

��

6

�
-

�

�

�

�

digit

-

�

�

�

�

hex digit

�

��

6

-

��

��

H

�

6

6

CHAR-valued number

-

�

�

�

�

octal digit

-

��

��

C

-
�

��

6

REAL-valued number

-

�

�

�

�

digit

-

��

��

.

-
�

��

6

�

�
�

�

�

�

�

digit

�

6

�

�
-

��

��

E

-

�

	

�

-

-

��

��

+

��

��

-

�

6

?

�

�

�

�

digit

�

6

�

��

6

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 36

Syntactic Categories

Rectangular boxes correspond to syntactic categories which appear elsewhere in these syntax

diagrams. The oval and round boxes contain terminal symbols of the grammar such as

keywords, special symbols, or the lexical categories ident, number and litstring.

CompUnit

ImplModule

DefModule

ProgModule

- -

�

6

�
- -

�
-

�

ProgModule

�

�

�

�

MODULE

�

�

�

�

ident

Priority

��

��

;

Import

Block

�

�

�

�

ident

��

��

.

- - -
�

�

�

?�
�

?- -
�

�

�

�

- - - -

ImplModule

�

�

�

�

IMPLEMENTATION

�

�

�

�

MODULE

�

�

�

�

ident

Priority

��

��

;

Import

Block

�

�

�

�

ident

��

��

.

- - - -
�

�

�

?�
�

?
- -

�

�

�

�

-
- - -

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 37

DefModule

�

�

�

�

DEFINITION

�

�

�

�

MODULE

�

�

�

�

ident

��

��

;

Import

De�nition

�

�

�

�

END

�

�

�

�

ident

��

��

.

- - -
�

�
�

�

�
-

-

�

�

�

-

-

�

�

�

-

- - -

priority

��

��

[
ConstExpr

��

��

]

- - - -

Import

�

�

�

�

FROM

�

�

�

�

ident

�

�

�

�

IMPORT

�

�

�

�

ident

�

�
�

��

��

,

�

6

��

��

;

- - - - - -
�

�
-

�

6

Export

�

�

�

�

EXPORT

�

�

�

�

QUALIFIED

�

�

�

�

ident

�

�
�

��

��

,

�

6

��

��

;

- - - -
�

�
-

�

6

Block

�
-

Declaration

�

�

�

�

?

�
-

�

�

�

�

BEGIN

-

Statement

�

�
�

��

��

;

�

6

?
�

-

�

�

�

�

END

-

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 38

Declaration

�
-

ModDeclaration

-

��

��

;

-

�
-

ProcDeclaration

-

��

��

;

-

�
-

�

�

�

�

VAR

--
�

�
-

�

�

�

�

ident

�

�
�

��

��

,

�

6

-

��

��

:

-

Type

-

��

��

;

-

�

�
�

?

�
-

�

�

�

�

TYPE

--
�

�

-

�

�

�

�

ident

-

��

��

=

-

Type

-

��

��

;

-

�

�

�

?

-

�

�

�

�

CONST

--
�

�

-

�

�

�

�

ident

-

��

��

=

-

ConstExpr

-

��

��

;

-

�

�
�

?

�

�

6

De�nition

�
-

ProcHeading

-

��

��

;

-

�
-

�

�

�

�

VAR

--
�

�

-

�

�

�

�

ident

�

�
�

��

��

,

�

6

-

��

��

:

-

Type

-

��

��

;

-

�

�

�

?

�
-

�

�

�

�

TYPE

--
�

�

-

�

�

�

�

ident

-

��

��

=

-

Type

-

��

��

;

-
�

�

6

�

�

�

?

-

�

�

�

�

CONST

--
�

�
-

�

�

�

�

ident

-

��

��

=

-

ConstExpr

-

��

��

;

-

�

�
�

?

�

�

6

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 39

ProcDeclaration

-

ProcHeading

-

��

��

;

-

Block

-

�

�

�

�

ident

-
�

�

-

�

�

�

�

FORWARD

�

6

ProcHeading

-

�

�

�

�

PROCEDURE

-

�

�

�

�

ident

-

�

�
-

FormalParams

�

6

FormalParams

-

��

��

(

-

��

��

)

-
�

�

-

FPSection

�

�
�

��

��

;

�

6

�

6

�

�
-

��

��

:

-

Qualident

�

6

FPSection

-
�

�
-

�

�

�

�

VAR

�

6

�

�

�

�

ident

�

�

�

��

��

,

�

6

-

��

��

:

-

FormalType

-

ModDeclaration

�

�

�

�

MODULE

�

�

�

�

ident

Priority

��

��

;

Import Export

Block

�

�

�

�

ident

- - -
�

�

�

?
�

�

?
- -

�

�

�

�

-
�

� �

6

- - -

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 40

Type

-

SimpleType

-
�

�
-

StructuredType

-

�
-

PointerType

-

�
-

ProcType

-

6

�

SimpleType

-

Qualident

-
�

�
-

Enumeration

-

�
-

SubrangeType

-

6

�

Enumeration

-

��

��

(

-

�

�

�

�

ident

�

�
�

��

��

,

�

6

-

��

��

)

-

SubrangeType

-
�

�
-

�

�

�

�

ident

�

6

��

��

[

-

ConstExpr

-

��

��

..

-

ConstExpr

-

��

��

]

-

PointerType

-

�

�

�

�

POINTER

-

�

�

�

�

TO

-

Type

-

ProcType

-

�

�

�

�

PROCEDURE

-
�

�
-

FormalTypeList

�

6

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 41

FormalTypeList

-

��

��

(

-

��

��

)

-
�

�
-

FormalType

�

�

6

�

��

��

,

�

�
-

�

�

�

�

VAR

�

6

�

�

��

��

:

-

Qualident

�

6

FormalType

-

Qualident

-
�

�
-

�

�

�

�

ARRAY

-

�

�

�

�

OF

�

6

StructuredType

-

SetType

-
�

�
-

ArrayType

-

�
-

RecordType

-

6

�

SetType

-

�

�

�

�

SET

-

�

�

�

�

OF

-

SimpleType

-

ArrayType

-

�

�

�

�

ARRAY

-

SimpleType

�

�
�

��

��

,

�

6

-

��

��

OF

-

Type

-

RecordType

-

�

�

�

�

RECORD

-

FieldList

�

�

�

��

��

;

�

6

-

�

�

�

�

END

-

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 42

FieldList

-
�

�

-

�

�

�

�

ident

�

�

�

��

��

,

�

6

-

��

��

:

-

Type

-

�
-

Union

-
�

6

Union

-

�

�

�

�

CASE

-

�

�

�

�

ident

-

��

��

:

-

Qualident

-

�

�

�

�

OF

�

� �

?
�

��

�
- -

Variant

�

�
�

��

��

j

�

6

-

�

�

�

�

ELSE

-

FieldList

�

�
�

��

��

;

�

6

�
�

�
-

�

�

�

�

END

-

Variant

-
�

�
-

CaseLabel

�

�
�

��

��

,

�

6

-

��

��

:

-

FieldList

�

�
�

��

��

;

�

6

�

6

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 43

Statement

-

�
-

Designator

-

��

��

:=

-

Expression

-

�

-

Designator

-

ActualParams

-
�

�

-

�

-

�

�

�

�

WHILE

-

Expression

-

�

�

�

�

DO

-

Statement

�

�
�

��

��

;

�

6

-

�

�

�

�

END

-

�
-

�

�

�

�

REPEAT

-

Statement

�

�
�

��

��

;

�

6

-

�

�

�

�

UNTIL

-

Expression

-

�
-

�

�

�

�

WITH

-

Designator

-

�

�

�

�

DO

-

Statement

�

�
�

��

��

;

�

6

-

�

�

�

�

END

-

�
-

�

�

�

�

LOOP

-

Statement

�

�
�

��

��

;

�

6

-

�

�

�

�

END

-

�
-

�

�

�

�

RETURN

-

Expression

-
�

�
-

�
-

IfStat

-

�

-

CaseStat

-

�

-

ForStat

-

�
-

�

�

�

�

EXIT

-

�

?

�

6

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 44

ActualParams

-

��

��

(

-

��

��

)

-
�

�

-

Expression

�

�
�

��

��

,

�

6

�

6

IfStat

-

�

�

�

�

IF

-

Expression

-

�

�

�

�

THEN

-

Statement

�

�
�

��

��

;

�

6

�

-

�

�

�

�

ELSIF

-

Expression

-

�

�

�

�

THEN

-

Statement

�

�
�

��

��

;

�

6

-

�

�

�

�

�
-

�

�

�

�

ELSE

-

Statement

�

�
�

��

��

;

�

6

�
- -

�

�

�

�

END

-

?

?

ForStat

-

�

�

�

�

FOR

-

�

�

�

�

ident

-

��

��

:=

-

Expression

�

��

�
-

�

�

�

�

TO

-

Expression

-

�

�

�

�

BY

-

ConstExpr

�

��

�
-

�

�

�

�

�

�

�

DO

-

Statement

�

�
�

��

��

;

�

6

-

�

�

�

�

END

-

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 45

CaseStat

-

�

�

�

�

CASE

-

Expression

-

�

�

�

�

OF

-

Case

��

��

j

�

�

�

�

6

�

�

�

�

�
-

�

?

�

�

�

�

ELSE

-

Statement

�

�
�

��

��

;

�

6

-

�

�

�

�

END

-

Case

-
�

�

-

CaseLabel

�

�
�

��

��

,

�

6

-

��

��

:

-

Statement

�

�
�

��

��

;

�

6

�

6

CaseLabel

-

ConstExpr

-
�

�
-

��

��

..

-

ConstExpr

�

6

Expression

-

SimpleExpr

-

�

�
-

Relop

-

SimpleExpr

�

6

SimpleExpr

�

	

�

-

-

��

��

+

��

��

-

�

6

? -

Term

-
�

�
�

Addop

�

6

Term

-

Factor

-
�

�
�

Mulop

�

6

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 46

Factor

-

�

�

�

�

number

-
�

�
-

�

�

�

�

litstring

-

�

-

Designator

-
�

�
-

ActualParams

-

�
-

�

�

�

�

NOT

-

Factor

-

�
-

��

��

(

-

Expression

-

��

��

)

-

�
-

Constructor

-
�

6

Designator

-

Qualident

�
-

��

��

[

-

Expression

�

�
�

��

��

,

�

6

-

��

��

]

-

�
-

��

��

.

-

�

�

�

�

ident

-

�
-

��

��

"

-

�
-

�

�

� �

�

Qualident

-

�

�

�

�

ident

�

�
�

��

��

.
�

6

-

Constructor

- -

Qualident

ValueList

-

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 47

ValueList

-

��

��

f

-

��

��

g

-
�

�
-

Element

�

�
�

��

��

,

�

6

�

6

Element

-

SetElement

-
�

�
-

Component

�

6

SetElement

-

Expression

-
�

�
-

��

��

..

-

Expression

�

6

Component

-

Expression

�

�
-

ValueList

�

6

-
�

�
-

�

�

�

�

BY

-

ConstExpr

�

6

ConstExpr

-

Expression

-

Relop

-

��

��

=

-

�
-

��

��

#

-

�
-

��

��

<>

-

�
-

��

��

<

-

�
-

��

��

<=

-

�
-

��

��

>

-

�
-

��

��

>=

-

�
-

�

�

�

�

IN

�

�

6

Addop

-

��

��

+

-
�

�
-

��

��

{

-

�
-

�

�

�

�

OR

�

6

CHAPTER 6. SYNTAX DIAGRAMS FOR MODULA-2 48

Mulop

-

��

��

*

-
�

�
-

��

��

/

-

�
-

�

�

�

�

MOD

-

�
-

�

�

�

�

DIV

-

�
-

�

�

�

�

AND

-

�
-

��

��

&

�

6

Part II

Technical Reference

49

Chapter 7

The Compiler Environment

7.1 Overview of the System

Gardens Point Modula is a Modula-2 programming environment which brings the advan-

tages of Modula to the UNIX environment. The close interworking of Modula programs and

the standard tools and libraries of the UNIX environment is a goal of the development. gpm

will provide a uniform programming environment over all of the hardware platforms on which

it is available. The developers of the system are �rmly committed to implement all aspects

of the emerging ISO draft standard for Modula, and to provide portability at the source code

level between implementations.

The software consists of the following components

� the compiler gpm

� the load-builder build

� a pro�ling load-builder bldprf

� an order of compilation analysis tool gpmake

� a cross-reference generator gpxrf

� standard libraries

� special libraries

7.1.1 The Compiler

The gpm compiler is written entirely in Modula, and has a target-independent front-end

which performs all syntactic and static semantic checks on the source program. The compiler

builds a complete representation of the compilation unit in computer memory and performs

all analysis on this internal representation.

After performing a number of transformations on the code of the source program, gpm

emits its intermediate output code. The preliminary release of the gpm compiler on each new

target architecture emits output using language C as an assembly language. This assembly

output is further compiled by the standard C compiler cc. All of this is transparent to the

50

CHAPTER 7. THE COMPILER ENVIRONMENT 51

user, and the whole two-stage compilation process is invoked with a single command. In some

of the following, reference is made to the native code versions currently in test form.

Internally, the program gpm consists of a small driver programwhich parses the command

line arguments, forks and then execs gpm2, the compiler proper. When gpm2 terminates it

passes back a result code to the driver. In response to this exit code, gpm does one of three

things. If the source code was a de�nition part, or errors were detected, gpm terminates.

Alternatively, if the compiler was running in interactive mode and the user responded `v',

gpm chains to vi. Finally, in the event of a successful compilation gpm forks again and this

time execs cc. When cc terminates, the driver program removes the intermediate code �le,

unless the {S (assembler) option was speci�ed. In the case of multiple source-�le arguments

on the command line, gpm2 is forked repeatedly to compile each of the speci�ed �les.

The gpm driver is written entirely in Modula, and the source code is included in the

distribution. It is a good example of the way in which programs may use the underlying

UNIX system calls to manipulate processes.

It must be stressed that gpm is a complete compiler, and deals correctly with all of the

constructs of Modula, and not just a translator for those constructs which have an equivalent

in C. There are a number of immediate consequences of this high level assembler approach.

The level of possible integration between Modula programs and the C libraries is greatly

enhanced, and the portability of the compiler itself ensured. However there are a number of

other considerations.

Compilation Speed

Many vendor supplied C compilers are rather slow by modern standards, but most produce

quite good quality code. The gpm front end is exceptionally fast, despite the very compre-

hensive checks and transformations which it carries out. Early implementations indicate that

it so much faster than cc that compilation speed is essentially dominated by the second stage

of the process.

As an example, on the HP9000/840 the gpm front end produces its assembly level output

at between 30000 and 60000 lines per minute, depending on the number of imported symbol

�les. The overall compilation speed, when chaining to cc, is 5000 to 7000 lines per minute.

Faster processors are correspondingly faster.

Object Code Quality

The �nal object code quality depends on the quality of cc which, as noted above, is generally

quite good. Early measurements show that the quality of the �nal object code is comparable

with that of C, and in many cases the speed of applications exceeds that of implementations

of the same algorithms directly in C.

The reason for this rather surprising phenomenon is the front-end transformations which

gpm carries out on the source representation. The C which gpm produces is often quite

di�erent to that which a human programmer would produce for the same purpose.

Generally however, sensible programmers will compile Modula code into object code which

has runtime checking enabled. In this case, the speed will be less than that of the equivalent,

unsafe C version, but not by a very great factor. gpm performs extensive analysis of the

source code, and removes a large number of runtime checks which it is able to prove are

CHAPTER 7. THE COMPILER ENVIRONMENT 52

unnecessary. When used in this way, the compiler produces code which is much faster than

comparable Pascal compilers.

7.1.2 The Load-builder

The load-builder program build does three things. It performs an analysis of the compiled

code of the modules, so as to produce a linker script to build the �nal executable �le. It

analyses the dependencies between the modules so as to determine which of the modules

need initialization. Those which do are initialized exactly once, and in the order required

by the importation graph. Finally, build checks that all modules have been compiled with

consistent versions of the symbolic interface de�nitions.

Internally build, like gpm, consists of a small driver program. This driver parses

command-line arguments, forks and execs the load builder proper build2. This program

performs its analysis, and emits a short code �le containing the initialization call chain, and

a linker script. When build regains control it chains to the standard UNIX linker ld. Finally,

the script and code �le are deleted.

build does its analysis by reading the reference �le of each module. First, the reference

�le of the base module is read, and names and cryptographic checksums of all imported

modules recorded. The reference �les of all imports are likewise read, and the imports of

those modules. Diagnostics are issued if inconsistent checksums are detected.

As a result of this structure, the gpm system is able to use the standard UNIX linker,

without either losing the safety of Modula's strict version consistency checks, or involving

the user in the manual construction of long linker scripts.

7.1.3 The Pro�ling Load-builder

The pro�ling version of the load builder bldprf actually uses the same executable �le as

build. The directory entry bldprf is linked to the same program using the command ln.

When build begins, it fetches its �rst argument to determine the version of the task which

it is being asked to perform.

7.1.4 The gpmake Utility

The utility gpmake is an extremely clever recompilation analyser. The program reads all the

source �les associated with a particular program which are accessible in the current directory.

The program determines the module dependencies, and determines an order of recompilation

which is consistent with these dependencies. It also determines which of these recompilations,

if any, are required.

As a result of this analysis, gpmake issues commands to compile all necessary modules

of the program in the correct order. As an alternative, the program issues a script for a

complete recompilation. In this case the user may edit di�erent compile-time options into

di�erent lines of the script �le, should that be required. In either case, library modules which

are not in the current directory are not recompiled.

CHAPTER 7. THE COMPILER ENVIRONMENT 53

7.1.5 The Cross-reference Generator

The utility gpxrf produces a cross-reference listing of all occurrences of identi�ers in the

compilation unit. The listing is produced either in lexicographic (\alphabetical") order, or

in order of frequency of use.

7.1.6 The Standard Libraries

gpm will make all of the proposed ISO standard libraries available in due course. Interim

versions also have a number of old-style libraries, as described in Wirth's Programming in

Modula-2.

7.1.7 The Special Libraries

There are a number of non-standard libraries supplied. The chief purpose of these is to

provide access to UNIX system calls and other facilities.

7.2 Environment Variables

The compiler uses eight environment variables. Three of these are used in the �le search strat-

egy, two are used to set compile-time table sizes, a �fth is used to de�ne a build-time bu�er

size, a sixth sets the runtime stack-test limit, and the �nal variable chooses the interactive

editor.

The variable M2SYM

When looking for symbol �les, or for the header �les of foreign modules, gpm looks �rst in

the current directory, then in each directory on the path de�ned by the environment variable

M2SYM. The value $M2SYM is a sequence of one or more path-names, separated by colon

characters `:'. The compiler uses the same path when searching for the �le m2errlst.dat

which contains the table of verbose error diagnostics.

In many cases, the path $M2SYM will consist of a single directory. It may also be

convenient to place the human readable de�nition �les in the same directory.

Environment Variables and gpmake

gpmake depends upon �nding the de�nition �les of library modules, the .def �les, on the

path $M2SYM.

The variable M2LIB

When looking for reference �les, build looks �rst in the current directory, and then in the

directories of the path de�ned by the environment variable M2LIB. The value $M2LIB is a

sequence of one or more path-names, separated by colon characters `:'.

The build program depends on the fact that each reference �le and its associ-

ated object �le will be in the same directory. If this rule is broken, then the linker will

complain that it cannot �nd one of the object �les. It is common to have $M2LIB consist of

CHAPTER 7. THE COMPILER ENVIRONMENT 54

a single directory, and to place the object �les and the associated reference �les of all library

modules in this directory.

The variable GPNAMES

The compiler, load-builder, and all associated tools (gpmake, etc) use the �le lookup strategy

de�ned by the library module GpFiles. The environment variable GPNAMES controls both

the order of lookup of �lenames in lower-case-only, mixed-case and lower-case-truncated-to-

DOS-length, and also the use of mixed case names for �les created by the gpm programs. If

GPNAMES is unde�ned, or has the value "lower", the module name is converted to lower

case and this is used as the �rst choice for lookup and as the base for output �le names (.syx,

.rfx, .o). If GPNAMES is "Mixed", the module name as found is used for both purposes.

On lookup, if the �rst choice �le name is not found, the other alternative is tried, followed

if necessary by a �le name truncated to DOS length (and always lower case). This strategy

provides backward compatibility with earlier versions of gpm which always generated lower-

case names, and provides generous lookup matching. However, if mixed case in output �le

names is required, GPNAMES must be set to "Mixed".

The variable M2HASH

This variable sets the number of entries in the compiler's hash table used for fast identi�er

lookup. It must exceed (preferably by a factor of 2, for speed) the total number of distinct

identi�ers in the compilation unit and the de�nition modules it imports. The default value is

5987, but any value up to 65521 may be selected. The size must be a prime, but if $M2HASH

is not prime the compiler will use the next lower prime (the upper limit is the largest prime

less than 2

16

); a small saving at each invocation of the compiler is achieved by choosing a

prime value.

If the number of identi�ers exceeds the hash table size, the compiler halts with the message

\Warning: hash table near full".

The variable M2STRING

All the identi�ers (and also literal strings and set bitmaps) are stored in a string table;

the size of this table is set to $M2STRING. This must clearly exceed the total length of

identi�ers, but unlike the hash table no speed penalty is incurred if the spare space is small.

The default value is 64512, corresponding to an average identi�er size of about 10 characters

for the default limit of 5987 identi�ers. Clearly, $M2STRING should be increased in step

with $M2HASH, with a 10:1 ratio a good guide. In special cases (eg long identi�ers as in

XWindows interfaces), a larger ratio may be appropriate.

If the total string length exceeds the table size, the compiler halts with the message

\String table overow".

To assist with tuning $M2HASH and $M2STRING, note that the compiler's super-verbose

output (-V option) includes a usage summary for both tables. Note too that large settings

may cause the C compiler to fail with table overow; if so, check man cc to see if your compiler

has options to expand its tables.

In the case of gpm-pc the defaults are smaller, to suit the restricted memory.

CHAPTER 7. THE COMPILER ENVIRONMENT 55

The variable SOAPSIZE

gpm uses a separate stack for local copies of value-mode open array parameters. The default

size of this stack is 4096 bytes. This size has proven to be more than adequate for all normal

programs. It is possible to increase this allocation at link time.

The value of this variable is checked by build during the linking phase. The value is thus

determined at build time, rather than at compile time. gpm-pc uses extensible stack frames,

and does not use the soap mechanism.

The variable M2STACK

This variable sets the limit against which the stack overow tests are made. Remember

however that stack testing is o� by default. The variable states the size of the stack in bytes.

If the variable is not set, the stack defaults to 64K bytes. The symbol M2STACK is a decimal

numeric string, specifying the stack size in bytes.

The value of this variable is checked by build during the linking phase. The value is thus

determined at build time, rather than at compile time.

The variable GPMEDITOR

This variable sets the editor which the interactive mode of gpm chains to when errors are

detected, and tells gpm how to start the editor on the correct line.

The environment variable GPMEDITOR is of the form edName farg j %g, where as ususal

the braces denote optional repetition, and the vertical bar denotes choice. In the case of the

editor vi the variable might have been de�ned to the Bourne shell by the command

GPMEDITOR="vi +# %"

In this format edName is the name of the chosen editor, such as vi or emacs. The remaining

arguments may appear in any order, with the following macro substitutions | the percent

sign % is replaced by the name of the �le to edit, while any embedded # sign denotes the

line number on which the editor is to be started. Thus with the above de�nition, if the

program foo.mod has an error on line 23, interactive mode will invoke the editor vi with

command string "vi +23 foo.mod". As a second example, if the environment string was

"uemacs -g# %" the same program would have invoked the editor uemacs with the command

string "uemacs -g23 foo.mod".

In the event that the variable GPMEDITOR is unde�ned, the default editor vi is invoked.

Chapter 8

Command-line Options

The compiler and load-builder program both accept a number of options from the command

line. In each case the syntax is quite simple. If any options are to be passed, they must be in

option strings which follow after the command (gpm build or bldprf as the case may be),

but precede any �lenames.

Option strings start with a minus sign `{' and options may appear in one or more groups.

The order and grouping of options is never important. Thus `gpm -S -Of -i -r -I foo*.mod',

`gpm -IirOfS foo*.mod' and `gpm -SOfirI foo*.mod' all have a precisely equivalent e�ect.

The programs will complain if too few arguments are passed to them.

Options are listed here in functional groups, and then in a single alphabetical sequence.

The alphabetical listing has more detailed explanations of the e�ect of each option.

8.1 Compiler Options

8.1.1 Flags grouped by function

Listing and message control

{d suppress console warning messages

{l produce listing �le

{v produce verbose messages and listings

{V version date is displayed, symbol module key-values are traced, and verbose

messages and listings are produced

{X a detailed explanation of each error is given on screen and in the listing (if

selected)

Runtime error checking

{a suppress runtime assertion checks

{i generate code without array index checks

{r generate code without value range checks

{s runtime stack tests are turned o�

{t runtime arithmetic overow checks o�

56

CHAPTER 8. COMMAND-LINE OPTIONS 57

Compiler control ags

{f force compiler to produce reference and object �les with names based on the

�lename rather than the module name

{g compile with extra information for the debugger program (either xdb or dbx)

{n compilation checks only, no object code is produced

{I run in interactive mode, with option of jumping to vi

{Oc optimise for compactness and speed

{Of optimise for maximum speed

{p compile with procedure call-count code for the runtime pro�ler

{S intermediate code is persistent

8.1.2 Flags listed alphabetically

{a \assertion-o�" | assertion tests in the source code, invoked by the system procedure

Assert, are ignored by the compiler and generate no code

{d \dangerous" | warning messages to the screen and list �le (if selected) are suppressed.

However, if a program has both errors and warnings both will go to the screen and

listings in spite of the {d option

{f \filename" | force the compiler to name reference and object �les based on the source

�lename rather than the module name. This option is illegal when applied to program

modules. It is intended to allow several implementations of the same module to exist

in the same directory, and to be selectively linked using the query option {q of build

{g intermediate code is compiled with markers for the debuggers (xdb or dbx). This option

is not required to simply obtain a postmortem procedure call-chain listing. With gpm-

pc this ag leaves line number marks in the d-code output so that line numbers will

appear in the stack unwind

{I \Interactive" | the compiler halts on errors, displays the verbose version of the diag-

nostic, and prompts the user to continue, quit, obtain more information or jump into

the chosen editor

{i array index tests are turned o� (same as (* $I{ *) in the source �le)

{l a list �le name.lst is generated from input �le name.def or name.mod

{n \no-code" | the compiler performs syntactic and semantic checking, but no object

code is produced. This allows a speedy check of modi�ed code, before a complete

recompilation is attempted

{Oc Optimise so as to produce compact code, even at the price of small speed loss (same

as (* $C+ *) in the source �le).

{Of Optimise so as to produce fast code, even at the price of larger memory size. This

ag has a similar e�ect to the (* $F+ *) in the source �le, but a�ects code generation

strategy as well as front-end program transformations. Use of this ag is thus preferred

to the use of the program switch statement

CHAPTER 8. COMMAND-LINE OPTIONS 58

{p compile with pro�ling code so that bldprf and prof can produce procedure call-counts

as well as time statistics

1

. See the relevant chapter of the technical reference manual

for more on the pro�ling facilities

{r range checking of assigned values and actual value parameters is suppressed (same as

(* $R{ *) in the source �le)

{S \aSsembler" | the C language intermediate code is persistent in the �le ./name.c, no

object code is produced. This ag is only of use for debugging mixed language programs

{s stack overow checking is suppressed (same as (* $S{ *) in the source �le). Stack

overow checking is currently turned o� as the default. It may be explicitly turned on

by the use of the pragmas in the code

{t arithmetic overow tests are suppressed (same as (* $T{ *) in the source �le). Arith-

metic overow checking is not used in C-producing versions, but is standard on all

native code versions

{v verbose screen messages are produced, and verbose listings also, if {l is also speci�ed

{V \super-Verbose" | the Version date and time of the compiler are displayed, the key-

values of all directly and indirectly imported symbol modules are traced, and verbose

messages and listings are produced

{X eXplain | a detailed explanation is given for each error which is detected

8.2 Builder Option Flags

{D \Debug" | the program is linked with the runtime stack unwinder library so that

debugging information is available if the program crashes (DECstation only)

{Lname the speci�ed directory name is searched for libraries

{q \query" | the builder prompts for the names of reference �les which it cannot �nd.

Only the base-name of the �le is required, and querying may be aborted by entering a

blank line

{S \aSsembler" | the initialization-call-chain code �le and the linker script are persistent

as �les \modbase.c" and \modbase" respectively

{v verbose messages are displayed on the screen so that progress may be monitored, and

the origin of any error messages determined

{V builder Version date and time are displayed, and screen messages are verbose

To build a pro�ling version of a program, build is invoked under the name bldprf. The

option and �lename conventions for bldprf are identical to those of build. Information on

using the pro�ling facilities are given in the chapter titled Using the Pro�ling Tools.

1

If any modules of a program are compiled with this option, the program must be built with bldprf

Chapter 9

Implementation Speci�cs

This chapter includes details of gpm which are speci�c to this implementation. This includes

pragmas, special features, implementation restrictions and extensions. There are also details

of the primitive types and their representation, and the way in which gpm builds structured

types from these basic building blocks.

9.1 Pragmas and Compiler Switches

9.1.1 Source code switches

The compiler recognizes a number of switches in source code, which allow various options to

be turned on and o�. These are introduced in the traditional way for Modula, by means of

a pseudo-comment. All of these switches are in the form of Modula comments in which the

�rst non-whitespace character of the comment is a dollar sign $. These allow the switching

on and o� of runtime checks and optimizations, and the restoration of previous values.

The precise format of the compiler switches is described by the following extended-BNF

1

comment ! `(*' [switchf`,'switchg] any string `*)'.

switch ! `$' optionChar commandChar.

optionChar ! `R'j `I'j `F'j `T'j `C'.

commandChar ! `+'j `{'j `='.

Whitespace is allowed between switches and between the opening comment delimiter and

the �rst switch, but the dollar sign and the option character must be adjacent. The meaning

of the command characters is `+' activates the option, `{' deactivates the option, while `='

restores the previous value of the same option. There is a limit to the number of options

values which can be stacked for later restoration. This limit is currently 8.

The options which may be controlled in this way are

$I controls the emission of index bounds checks on array accesses

$R controls the emission of range checks on assignments, passing of value parameters, and

the incrementing and decrementing of values of ordinal types

1

It should be noted that the next release will o�er a new format for option switches, using the format

proposed by WG-13: <* switch-id *>. Of course gpm will continue to support the current format, for

backward compatability

59

CHAPTER 9. IMPLEMENTATION SPECIFICS 60

$F controls the application of optimizations to the compilation process. This switch controls

those transformations of the program which will increase speed of execution, possibly

at the expense of code size

$C controls the application of optimizations to the compilation process. This switch controls

those transformations of the program which will decrease the code size of the program,

even at the expense of a slight decrease in speed

$T controls the emission of arithmetic overow tests in native code versions.

Interaction with command-line arguments

All of these options are able to be set globally from the command line. The interaction be-

tween command line option arguments and the compiler switches is governed by the following

principles.

The initial values of the I and R options are set from the command line. Both

tests are on by default but may be switched o� by the {i and {r options. The

switches in the source program can then change these initial values at will.

The initial values of the F and C options are set from the command line. Both

optimizations are o� by default, but may be turned on by the {Of and {Oc

options. The switches in the source program may change these values at will,

but such changes only control transformations in the compiler front end. The use

of either option from the command line causes a higher level of optimization to

be applied to the code generation in the back end, irrespective of any changes

introduced in the source program by the use of switches.

9.1.2 Stack overow testing

Programs which do not use the coroutines library, so-called single-stack programs have little

need to perform stack overow testing. Typically, several hundred megabytes of virtual

memory are available for expansion of the stack segment of such programs, although it is

usual for UNIX�s process size limit to be exceeded well before this. Programs which use

the coroutines library have a separate stack for each coroutine, suggesting the prudent use

of stack overow testing. The facilities provided for this are also available for single stack

programs, although the default continues to be for stack overow testing to be disabled except

in gpm-pc which has stack overow testing as the default.

In some environments it may be useful to perform stack overow testing even on single

stack programs. For example, in a student environment, it may be useful to reduce the size

of the core dumps which are produced when student programs recurse in a berserk fashion.

The facilities for stack overow testing consist of the following items.

� Stack testing in turned on with the pragma (* $S+ *)

� Stack size limits are set by a environment variable M2STACK

� A new runtime message signals stack overow

CHAPTER 9. IMPLEMENTATION SPECIFICS 61

Setting the stack size limit

The load builder program build queries its environment for the variable M2STACK. The

value, if set, is inserted in the tiny program which contains the initialization call-chain for

the �nal, executable program. The value in the tiny program is used in the initalization of

the runtime support system.

If the variable M2STACK is not de�ned, the runtime system allocates a default size of

65536 bytes (16000 bytes in gpm-pc) to the stack. If this default is unsuitable a larger value

should be placed in the user pro�le. Note that this value is e�ective only for the main process.

The stack size of every other coroutine is determined separately by the third parameter to

the the call of NEWPROCESS which created it.

Miscellaneous information

Stack overow testing is performed by a simple inline statement. The cost of this test, in

terms of time taken, is approximately that of a simple assignment statement to a global

variable. The cost is thus similar to the inline Assert \procedure".

If stack testing is turned on by use of the pragma (* $S+ *) and the stack exceeds the set

limit a runtime error is raised. In the absence of exception handling, the program is aborted

with the following message being sent to the StdError stream.

**** m2rts: stack limit has been exceeded ****

9.1.3 Pragmas in the de�nition part

There is a facility built into the compiler which allows special information to be given about

modules, which is used in the program transformations which the gpm front-end performs.

The use of these facilities in the supplied libraries adds signi�cantly to the quality of the

code generated for user programs, even although the user programs themselves do not use

the pragmas. All of these facilities may be safely ignored by the applications

programmer.

gpm recognizes a number of context sensitive marker symbols immediately prior to the

keyword DEFINITION. These are the pragmas !LIBRARY and !SYSTEM, and the special

markers FOREIGN and INTERFACE.

!LIBRARY! de�nitions

There are a number of program transformations which are only safe to perform if it is known

that particular procedures cannot be recursive, or cannot modify their actual parameters

along indirect paths. The !LIBRARY

2

pragma gives the compiler a useful hint, by promising

that the facilities of the module will be well-behaved in this respect.

In particular these modules promise that calls to procedures exported by the module

cannot be involved in indirect recursion with code outside of the library system. When the

compiler meets the implementation of such a module the code is rigorously checked to see

that it keeps this promise. The code of these modules can only call external procedures which

have made the same promise (and have been similarly checked). The load-builder build also

2

The use of the closing exclamation point is optional

CHAPTER 9. IMPLEMENTATION SPECIFICS 62

checks that the pattern of importation within the library modules is strictly heirarchical (that

is, there are no cycles in the imports graph which involve !LIBRARY modules).

!SYSTEM! de�nitions

This marker signals to the compiler that no implementation is required for the module.

Usually this means that the facilities of the module are built into the compiler, or into the

runtime system. These modules have symbol �les in the usual way. Although the compiler

knows about the implementation, it must read the symbol �le before it will allow use of the

module's exports in a user program.

Users may mark their own modules in this way, provided the module does no more than

de�ne types and constants. See the standard library Ascii for an example of this.

FOREIGN de�nitions

This marker signals to the compiler that the facilities of the module are implemented outside

of the Modula environment. Such modules have de�nition and symbol �les in the usual

way, but do not have reference �les associated with their object �les. Instead each of these

modules has an optional non-standard IMPORT statement which marks the symbol �le

so that programs using the module know to link the object �le resulting from the foreign

implementation.

As an example, the supplied library module Terminal has the following de�nition �le

FOREIGN DEFINITION MODULE Terminal;

IMPORT IMPLEMENTATION FROM "terminal.o";

...

The FOREIGN marker tells the compiler that no reference �le will be produced, the im-

port statement ensures the programs using the module will automatically include the �le

terminal.o in the linker script. The object �le may be derived by compiling from any avail-

able language, and will de�ne external symbols such as Terminal_WriteLn,

Terminal_WriteString and so on.

INTERFACE de�nitions

This marker signals to the compiler that the facilities of the module are implemented in C, and

that the names of the symbols should not be changed by the normal process of concatenating

module and symbol names. Such modules are used to provide an interface to C-language

libraries where the external names are already determined. Once again, a non-standard

import statement is used to signal to the linker that particular object �les should be linked,

or particular libraries searched. For example, consider the following interface fragment |

INTERFACE DEFINITION MODULE GammaFunc;

IMPORT IMPLEMENTATION FROM "-lm";

VAR signgam : INTEGER;

PROCEDURE gamma(x : REAL) : REAL;

END Gamma.

CHAPTER 9. IMPLEMENTATION SPECIFICS 63

The INTERFACE marker tells the compiler that the function procedure really does have

name gamma, and not the otherwise expected GammaFunc gamma. The import statement

ensures that the linker will search the math library {lm.

The use of these modules is essential to the integration of Modula with the standard

UNIX facilities. All necessary details are given, for those applications which require to

generate foreign or interface de�nitions, in the chapter Interfacing to Other Languages.

9.2 Omissions and Limitations

9.2.1 Omitted constructs

The compiler currently does not support the following constructs

� multi-dimensional open array parameters are not supported yet. Support for these will

be in the next release

� runtime value constructors other than sets are not supported. ISO WG-13 has proposed

such constructs, and we will support these as soon as the proposal is �rm. The current

release permits record and array constructors only for constant values. This limited

implementation is most valuable.

� function procedures currently cannot return array values, they may however return

records. This limitation will be removed in the next release

� the use of module priority has no relevance to programs running under control of a

multi-user operating system such as UNIX . Priority speci�cations are allowed, but

produce a compiler warning message that the speci�cation has been ignored

� the optional variant tag speci�cation parameters to TSIZE and NEW and DISPOSE

are permitted, but ignored. A compile-time warning is issued

� gpm does not yet permit sets of ranges which have lower bounds less than zero. Set

base types currently must be either: CHAR or its subranges, enumerations or subranges

of enumerations, or subranges of [0 .. 255]

9.2.2 Included constructs

There are a number of new constructs which have entered the Modula language recently, or

are proposed by ISO WG-13. With the omissions noted above, gpm implements all of the

current syntax and semantics. In some cases the compiler accepts obsolete syntax also, and

ags such usages with a warning only. The old form of tag-less variant record is accepted and

agged, and the inclusion of explicit export lists in de�nition parts is permitted but ignored.

Old style type-casts which use the type transfer function are allowed but attract a warning

message. Use of type transfer functions is discouraged, as the new system function CAST

ful�lls the same purpose with greater safety and enhanced functionality.

The following new or changed constructs are permitted, and have semantics as speci�ed

by the ISO proposals. Further details on some of these constructs may be found in the release

notes

CHAPTER 9. IMPLEMENTATION SPECIFICS 64

� literal character strings may be assigned to arrays of CHAR even where the lower bound

of the array is not zero

� a new pervasive identi�er LENGTH may be used to return the length of character

strings. Since this is a built-in procedure, it may be used in declarations

� the empty string is compatible with the type CHAR as well as with other arrays of

CHAR. As a character, the empty string has a value equal to the string terminator

(Ascii.nul in this case).

� declarations of procedure types may include forward references to types in their formal

parameter lists. This is analogous to the familiar way in which pointers are declared

which are bound to target types which have not yet been declared. A function procedure

type may therefore be de�ned which returns its own type

� FORWARD is now a reserved word. Although gpm does not require forward declara-

tions of mutually recursive procedures, it recognizes the keyword.

� the new system functions INCADR, DECADR and DIFADR for \portable" address

arithmetic are supported, as are the system functions SHIFT and ROTATE for the

type BITSET

� NEW and DISPOSE are back in the language. These standard procedures map into

calls to the procedures of name ALLOCATE and DEALLOCATE which are visible in

the current lexical scope. The conformance of these substitution procedures with the

expected formal procedure type is checked

� function procedure SIZE allows either a type-name or a variable name as actual param-

eter. The function is pervasive (rather than in SYSTEM), and returns a value which

is compatible with either INTEGER or CARDINAL

� complete checks on threats to FOR loop control variables are implemented, including

threats from uplevel access within nested procedure bodies

� procedure constants may be declared as a mechanism for procedure renaming. When

used in de�nition parts, it allows export of a renamed version of a procedure imported

from another module, thereby allowing strictly layered software designs to avoid the

call overhead of an encapsulating procedure

� constant value constructors are permitted for arrays (including multi-dimensional ar-

rays), and for �xed format records (that is, those which do not have any variant part).

These constructors have a syntax which is an easy extension of the the form for set

constructors, which is shown in the syntax diagrams in the User Guide. This construct

is useful for initializing arrays and records, and for setting up constant tables. More

detail is given later in this chapter.

CHAPTER 9. IMPLEMENTATION SPECIFICS 65

9.2.3 Compiler limits

Number of identi�ers

The default maximum number of identi�ers which gpm will allow is 5987; this may be

increased via the M2HASH environment variable as described in Section 7.2. This number

includes the names of all declared and imported objects, including such things as enumeration

constant names and record �eld names. All of these names are held in a string table during

compilation, along with literal strings and the bit-patterns of set constants. The default

space allocated to the string table is 63K-bytes, and may be increased via the M2STRING

environment variable.

Memory use during compilation

gpm builds a complete abstract syntax tree of the compilation unit during compilation, and

builds descriptors for all declared and imported types. All of these are built in heap memory,

and have no signi�cant limitation in size.

There is no limit to the size of code which gpm can compile. In theory, with very, very

large programs gpm will start to exercise the demand paging of the host machine, and the

compilation will therefore slow down somewhat. This phenomenon has never been observed

in practice however.

A rough rule of thumb is that gpm will allocate about 3 bytes of heap space for every

byte of source code processed. For compilation units which import a large number of symbol

�les this �gure has been known to increase by a factor of almost two.

Other limits

There is a limit to the complexity of addressing expression which gpm allows. A designator

such as a^.b[x]^.c[y]^.d^.e ... will overow an internal bu�er if the number of derefer-

ence operators ^ exceeds about 12. Clarity, and good programming practice would suggest a

somewhat lower limit.

The build program has no limit to the number of modules which it will handle.

In a procedure declaration, the maximum length of a sequence of formal parameters which

may share the same mention of a formal typename is 15. The explanation for error 226 in

the chapter Interpreting compiler diagnostics explains how to evade this restriction.

9.2.4 Symbol �le keys (magic numbers)

All Modula implementations ensure version consistency by attaching a magic number to each

symbol �le. If two modules of the same program each import some third module, then it

can be checked that both modules used the same version of the interface de�nition which the

symbol �le represents. With gpm the reference �le associated with each object �le contains

a list of the magic numbers of every module on which that module depends. These magic

numbers are carefully checked by build.

Unlike many Modula systems, gpm does not use magic numbers based on date stamps

for ensuring consistency of modules when building. Instead it uses a cryptographic checksum

based on the total information in the symbol �le.

CHAPTER 9. IMPLEMENTATION SPECIFICS 66

The consequences of this deliberate choice are as follows. De�nition �les may be re-

compiled at will. The accidental recompilation of a low-level �le will not necessitate the

recompilation of any dependent modules, unless there has been some real change in the in-

terface which the de�nition part speci�es. It is possible to edit a de�nition part �le so as to

include new or expanded comments, and this will not a�ect the symbol �le, and hence the

magic number. It is even possible to change the names of the formal parameters of exported

procedures, and since these are not recorded in the symbol �le the magic number will not be

a�ected. However, the slightest change to the number of parameters, their types or modes

will be instantly detected.

9.2.5 Miscellaneous Information

Using functions in constant declarations

Compile-time constants may be de�ned using any expression which is able to be evaluated at

compile time. These expressions may use use all of the built-in expression operators and some

of the standard functions. The functions which are permitted are ABS, CAP, CHR, FLOAT,

SFLOAT, LFLOAT, LENGTH, MAX, MIN, ODD, ORD, SIZE, TRUNC and VAL. Needless

to say, in all cases the actual parameters to these functions must be constant expressions.

The use of the VAL function perhaps requires some explanation. The function has many

legitimate uses in constant expressions, but can introduce unwanted restrictions if used un-

neccesarily. For example, literal numeric constants such as 11 have an internal type ZZ which

is compatible with both signed and unsigned types. If the declaration

CONST eleven = VAL(INTEGER,11);

is used, then the constant eleven will no longer be expression compatible with the unsigned

types. In this example, unless there is a reason to deliberately restrict the compatibility, it

is best to simply say

CONST eleven = 11;

Amorphous open array parameters

Objects which are passed to amorphous open arrays (arrays of BYTE or WORD) must obey

two simple rules. They must be at least as stringently aligned as the formal element type,

and they must possess a runtime address.

The �rst restriction prevents arrays of characters from being passed to an open ARRAY

OF WORD formal parameter. The second prevents the result of an expression evaluation

(other than large sets) from being passed to open arrays. The exception for large sets arises

from the fortuitous circumstance that large set expression evaluations require the allocation

of memory temporaries. Use of the exception is likely to be non-portable to non gpm

implementations. The second restriction also rules out literals and constants other than sets

and strings.

Casts and coercions

There are restrictions on the casts which gpm can perform, which are hardware originated.

These restrictions are closely allied to those for amorphous open arrays, discussed above.

CHAPTER 9. IMPLEMENTATION SPECIFICS 67

In summary gpm will allow casts between word-sized and smaller values in a free fashion,

including expression evaluations. Neither the source nor the destination type may be an

array type however. For types of arbitrary size, casts are possible between quite di�erently

sized objects as proposed by ISO WG-13. However, the destination type must be at least as

stringently aligned as the source type, and the value to be cast must have a runtime address.

It is possible, for example, to cast a short string literal value to a very large CHAR

array type. This would enable indexing into (a copy of) the entire constant data section of

the runtime representation of the program. Sensible users will treat this new facility with

considerable caution.

9.2.6 Constant value constructors

ISO WG-13 has proposed value constructors for arrays and records, with a similar syntax to

set constructors. gpm has a partial implementation of this proposal in the current release.

It is not entirely clear, at the time of writing whether constructors evaluated at runtime will

�nally be approved. Nevertheless, constant constructors are very useful for many purposes,

and are supplied for that reason.

The extended-BNF syntax fragment for constructors is as follows {

constructor ! typename valueList.

valueList ! `f'element f`,' elementg`g'.

element ! setElement j component.

setElement ! expression [`..' expression].

component ! constExpression [BY repeatCount]

j valueList [BY repeatCount].

repeatCount ! constExpression.

The replicator clause only applies to array constructors, even although it is sometimes

meaningful for records which have repeated �elds of the same type. Semantic restrictions

include the fact that any repeat counts must be non-negative, whole-number constants, and

the total number of elements (taking into account any repetition of elements) must exactly

match the number of elements in the structure. Values must be assignment compatible with

the component type to which the equivalent assignment is being made. Thus a valid record

initialization might be {

TYPE NamType = ARRAY [0 .. 15] OF CHAR;

RecType = RECORD

name : NamType;

b,c,d : CARDINAL;

END;

CONST initial = RecType{"anon", 0, 0, 0};

It should be noted that the elements of a constructor may themselves contain lists of

elements, and that such nested constructs do not need to specify a typename, although they

are free to do so. This relaxation is necessary for multidimensional arrays, where the types

of the inner components may be anonymous. Consider the array {

CHAPTER 9. IMPLEMENTATION SPECIFICS 68

TYPE Matrix = ARRAY [0 .. 2], [0 .. 2] OF REAL;

This is an array of three elements each of which is an array of three reals which has no type

name. In this case a constructor may be speci�ed as follows {

CONST initial = Matrix {{1.0, 0.0, 0.0},

{0.0, 1.0, 0.0},

{0.0, 0.0, 1.0}};

Of course it is possible to name the inner type as follows {

TYPE Vector = ARRAY [0 .. 2] OF REAL;

Matrix = ARRAY [0 .. 2] OF Vector;

CONST initial = Matrix {Vector{1.0, 0.0, 0.0},

Vector{0.0, 1.0, 0.0},

Vector{0.0, 0.0, 1.0}};

As a �nal example, here is an alternative initialization of the same record type which was

given earlier |

TYPE NamType = ARRAY [0 .. 15] OF CHAR;

RecType = RECORD

name : NamType;

b,c,d : CARDINAL;

END;

CONST initial = RecType{{" " BY 16}, 0, 0, 0};

The use of constant value constructors facilitates the sensible initialization of structures.

In some speed critical programs it also can lead to faster code, by moving array index and

o�set computations from runtime to compile time. Against this must be weighed the fact that,

as a new language construct, the feature is not present in any previous Modula compilers.

The use of the feature may thus make programs di�cult to port to machines for which gpm

is not yet available.

9.3 Size and alignment of data items

Details of the size and alignment of Modula variables may be needed in some instances, for

example,

1 in restricted memory situations, where the required variable space may exceed

that available;

2 in low-level applications, or those which link to other language environments,

where it is essential to know what the memory layout is.

The correspondence between gpm's types and emitted C types is given below, for the HP

9000/8xx version, together with the resulting size and alignment constraints as speci�ed in

the HP C Programmer's Guide. Note that all gpm versions have the same size for all

CHAPTER 9. IMPLEMENTATION SPECIFICS 69

these types, but the alignments may vary. In particular, most Motorola 680x0 processor

versions, and gpm-pc never align �elds more strictly than on an even address boundary; the

Sony NEWS/M68K uses 4-byte alignment.

gpm TYPE C type Size Align Alias

(bytes)

CHAR unsigned char 1 1 (typdef unsigned char un chr)

BOOLEAN char 1 1 (typedef char BOOL)

BYTE unsigned char 1 1

INTEGER int 4 4

CARDINAL unsigned 4 4

WORD int 4 4

REAL double 8 8

LONGREAL double 8 8

SHORTREAL oat 4 4

BITSET unsigned 4 4 (typedef unsigned BITSET)

PROC void (�)() 4 4 (typedef void (�PROC)())

ADDRESS char � 4 4 (typedef char �ADDRESS)

enumeration unsigned char 1 1

subrange note 4

set unsigned [] 4n 4 (� see note 1 below �)

record (� see note 2 below �)

array (� see note 3 below �)

POINTER targetType � 4 4

Notes

1 Set size is the number of whole words needed to hold a bitmap of the possible

members of the set. Thus a SET OF [0..n] requires 1 word for n up to 31, 2 words

for 32 � n � 63, and so on up to 8 words for 224 � n � 255, the latter being the

implementation limit for set size.

2 A record translates into a C struct; thus

VAR

record : RECORD

int : INTEGER;

char : CHAR;

END;

...

record.int

translates to:

static struct t_BA {

int _int;

CHAPTER 9. IMPLEMENTATION SPECIFICS 70

un_chr _char;

} record;

...

record._int

Note that in this case the record type is anonymous, and so the struct has the

synthesised name t_BA. If it were declared as the named type Thing the resulting

typedef would be:

typedef struct tThing {

int _int;

un_chr _char;

} Thing;

A variant part translates to a C union, with each variant a struct; the entire union

is a �eld within the struct corresponding to the enclosing record:

VAR

variant : RECORD CASE b : BOOLEAN OF

| TRUE : trueForm : INTEGER;

| FALSE : falseForm : BITSET;

END;

END;

...

variant.trueForm

translates to :

static struct t_AA {

BOOL b;

union {

struct {

int trueForm;

} _a;

struct {

BITSET falseForm;

} _b;

} _0;

} variant;

...

variant._0._a.trueForm

Given this structure, the size and alignment of a record may be calculated:

(1) The size is the sum of the sizes of the �elds, with extra `padding' where

necessary to satisfy alignment requirements

CHAPTER 9. IMPLEMENTATION SPECIFICS 71

(2) the alignment is the strictest alignment required by any �eld

In detail:

(1) Knowing the size of each �eld, they can be assigned sequential o�sets within

the record; thus for example:

Ex1 = RECORD

card : CARDINAL;

int : INTEGER;

ch : CHAR;

END;

would have �eld `card' in bytes 0-3 inclusive, `int' in 4-7, and `ch' in 8.

However, the record must end on a boundary corresponding to the strictest

alignment within it, so that bytes 9-11 comprise a pad, and the size is 12

bytes. If the �eld order were di�erent:

Ex2 = RECORD

card : CARDINAL;

ch : CHAR;

int : INTEGER;

END;

then `card' would still occupy bytes 0-3, `ch' byte 4, bytes 5-7 would be a

pad, and `int' would occupy bytes 8-11, for the same size of 12

(2) Since the o�sets have been calculated and pads inserted on the assumption

that the record starts at address 0, its actual address must be such that

the alignments guaranteed by this assumed start address are still satis�ed

{ this will be the case if the alignment requirement of the entire record

is the strictest alignment of any �eld. Thus, both Ex1 and Ex2 have 4-

byte aligned INTEGER and CARDINAL �elds; any variable of either type

must be aligned at a 4-byte boundary to guarantee 4-byte alignment of the

CARDINAL and INTEGER �elds

The rules clearly apply recursively: if a �eld of a record is itself a structure, its

size and alignment are calculated and then used in calculating its o�set within,

and the size and alignment of, the parent record.

3 Thanks to the requirement mentioned in note 2 that records �nish on a multiple

of their alignment, arrays are quite simple. An array of any type never needs any

further padding between elements, and so the array size is just the element size

multiplied by the number of elements. For arrays with any number of dimen-

sions, just multiply the ultimate element size by the product of the index type

cardinalities. The array alignment requirement is the same as that of its elements.

Note that some special cases cause minor variations :

(1) Open array parameters acquire an extra following CARDINAL parameter

which holds the HIGH value.

CHAPTER 9. IMPLEMENTATION SPECIFICS 72

(2) Empty records parts have a dummy �eld inserted, since the C compiler

treats an empty struct or union as an error. The inserted �eld is named

char _99_ /*dummy */ Empty variant parts (that is, all variants empty)

are simply omitted. The usefulness of empty records or variant parts is, of

course, very limited !

These rules apply to all versions, except that the alignment of the underlying

primitive types varies from machine to machine. In particular, current versions

based on the Motorola 68K processor never require more than even-byte align-

ment. On the pc, gpm-pc also uses even byte alignment for primitive types larger

than one byte. The SPARC architecture only requires quad-byte alignment for

reals, in current models. The MIPS processor versions use the same alignment as

does the the HP precision architecture, with octo-byte alignment for reals.

The important attribute is that gpm should use the same alignment rules as the

usual C compiler on the same machine, so that the interface to foreign libraries

is safe.

9.3.1 Subranges

Subranges only take up as much space as is required to contain their extremal

values. They are compatible with their host type (that is, the type of which they

are a subrange), and are automatically widened and narrowed as necessary. In

particular, subranges which �t within the bounds [-32768 .. 32767] will occupy two

bytes only, and will be the same as C-language short int. Similarly, unsigned

ranges which �t within the limits [0 .. 65535] will occupy only two bytes, and will

be the same as C's short unsigned.

In the case of even shorter subranges, only one byte will be occupied. Thus a

subrange [-128 .. 127] will be the same as C's (signed) char, while a subrange [0

.. 255] will be the same as C's unsigned char.

9.3.2 Miscellaneous notes

Variable declarations in a given scope are usually emitted in a di�erent order in

the C-intermediate code than the order in the original Modula declarations.

Modula identi�ers which clash with C reserved words are systematically renamed

{ e.g. VAR char : CHAR leads to char _char.

9.4 How gpm passes parameters and results

9.4.1 Parameter passing

The parameter passing conventions of gpm are designed so that, whenever possible, they

conform to the same rules as for language C. In particular, scalars (numeric and ordinal

types) and records are passed by value or by reference according to whether they are value of

CHAPTER 9. IMPLEMENTATION SPECIFICS 73

variable mode. Arrays are always passed by reference. In the case of value arrays the called

procedure is responsible for making the local copy.

Open arrays are always passed by reference, and have a second parameter automatically

included which contains the HIGH value.

3

Procedures with value mode open arrays make a

local copy of the actual parameter, obtaining the necessary bu�er space from the stack for

open array parameters (SOAP) space.

Formal parameter Modula type type of C Comment

parameter(s)

value scalars p : S S p; S is a scalar type

VAR scalars VAR p : S S �p; S is a scalar type

value records p : R R p; R is a record type

VAR records VAR p : R R �p; R is a record type

value arrays p : A E �p; E is elem-type of A

callee makes copy

VAR arrays VAR p : A E �p; E is elem-type of A

open value arrays p : ARRAY OF E E �p; unsigned h; callee makes copy

h is HIGH value

open VAR arrays VAR p : ARRAY OF E E �p; unsigned h; h is HIGH value

sets see the note

Note

Sets which are one word in size are treated as scalars. Multi-word sets are treated exactly as

for (�xed size) arrays.

9.4.2 Function results

Functions returning scalar types and one word sets pass their results in a register in all current

gpm implementations. Functions returning records do so in the same way as C does on the

same machine.

Currently versions of gpm do not allow for functions to return arrays or multi-word

sets. Nevertheless the result passsing mechanisms have been decided and prototyped. This

information is given here for future reference, and because future releases will use an uniform

mechanism for arrays and for records.

Future releases of gpm will return structured types in the following way, irrespective of

the mechanism used by language C for records on the same machine.

� a synthetic �rst parameter will be prepended to the parameter list which will point to

the destination location

� the called function will copy the result to the designated location

3

Note however the deliberate exception to this rule in the case of INTERFACE de�nition modules whose

sole purpose is to interface with C libraries using exactly the C-language conventions. This exception is treated

in detail in the chapter Interfacing to other languages.

CHAPTER 9. IMPLEMENTATION SPECIFICS 74

� the function will return a pointer to the destination location exactly as if it were declared

as returning a pointer to the actual result type

Thus, a function procedure with the following declaration

PROCEDURE ArrayValue(params...) : ArrayType;

BEGIN

...

RETURN a;

END ArrayValue;

will be treated internally as if it were declared in this way |

TYPE ArrPtr = POINTER TO ArrayType;

PROCEDURE ArrayValue(dst : ArrPtr;

params...) : ArrPtr;

BEGIN

...

dst^ := a; (* copy result to destination *)

RETURN dst; (* return pointer to result *)

END ArrayValue;

9.5 How gpm forms linker names

gpm produces linker names which are at most 31 characters long, and which depend on

both the identi�er and module name of the named object. This is necessary since Modula

understands quali�ed names as a mechanism for resolving clashes of names, but the standard

UNIX linker ld only understands a single level of names.

The linker name is formed by concatenating two strings formed from the module identi�er,

truncated if necessary to 10 characters, and the object name, truncated if necessary to 20

characters. A lowline (underscore character) is placed between the two parts for ease of

readability. gpm preserves the case of characters in identi�ers. If follows that linker names

will reach the maximum length of 31 characters only if the module identi�er is at least ten

characters long, and the object identi�er is at least 20 characters long.

As an example, if a module Terminal exports an object with identi�er GetKeyStroke an

importing module may refer to the object as GetKeyStroke or as Terminal.GetKeyStroke,

depending on whether quali�ed or unquali�ed import is used. In either case, the object is

known to the linker as Terminal_GetKeyStroke.

A special case is the synthetic names which are formed for the initialization entry point

for module bodies. The entry point of the main module is Startmodule name. The entry

point for the implementation part bodies of imported modules are called Initmodule name.

gpm can detect if two objects known to the compiler during the same compilation ac-

cidentally generate the same linker name. However, it is possible that such conicts will

only be detected during the build phase if the two objects are not both visible in any single

module of the program. Such linker name conicts do not arise if sensible naming policies

are adopted, but it is possible to deliberately choose names so as to demonstrate the error

message.

Chapter 10

Using the gpmake Tool

10.1 Overview of gpmake

Almost all substantial programs involve multiple modules which are spread over a number

of separate �les. Working out the dependencies between them can be time consuming, par-

ticularly if changes are made to lower level de�nition module �les. The IMPORT statement

of Modula-2 enables a utility to calculate the dependencies automatically, thus saving time,

and reducing the chance of errors.

Separate, but not independent compilation in Modula-2 through the IMPORT statement

makes explicit the �les from which other program objects are required, within the initial �le.

The related programs

The make utility comes in 2 avours, gpmake and gpscript. The version gpmake provides

automatic recompilation of all �les whose modi�cation times or module keys indicate that

they are not up to date. The version gpscript provides an executable script �le. If this

script is executed it causes the compilation of all the non-library modules of the program.

Those interested in a more technical overview of the program will �nd details of the

algorithm in the section Smart recompilation, later in this chapter.

gpmake

All that is required is the command gpmake name, where name is the name of a main

(program) module, probably in a �le named �le.mod, and the compiler will be automatically

invoked with commands for recompilation of all non-library �les which are missing or in an

inconsistent state. Following successful recompilation of the inconsistent �les, the build

program is automatically invoked to create the executable �le.

gpscript

All that is required is the command gpscript name, where name is the name of a main

(program) module, probably in a �le named �le.mod, and a script �le will be generated with

all commands for recompilation of all non-library �les in the correct order. The script �le is

75

CHAPTER 10. USING THE GPMAKE TOOL 76

created using the same name conventions as the compiler, with the name name.mak. This

�le is an executable script �le in the UNIX environment. The script �le may be executed by

means of the command sh �lename.mak.

In gpm-pc the make �le is named with extension .bat to �t in with DOS conventions. If

there is already an executable �le with the same base name, a warning is issued, since versions

of MS-DOS prior to 5.0 cannot execute a .bat �le if there is a .exe �le on the path with the

same base name. In DOS version 5 it is possible to simply issue the command �lename.bat,

in earlier versions the executable �le must be deleted.

10.1.1 Invoking the program

The program gpscript will be used in most of the following examples, but the comments

will apply equally in most cases to gpmake. The syntax for use is gpscript [options] name

The given name must correspond to the name of the base source �le in one of the following

ways |

� the given name includes a \." character, and the name exactly matches the �lename

� the source �le has a name formed by moving the given name to lower case, and adding

the su�x .mod

� the source �le has a name formed by moving the given name to lower case, shortening

the base name to eight characters

� the source �le has a name formed by moving the given name to lower case, shortening

the base name to eight characters, and adding the su�x .mod

Suppose, for example that the source of module Graphbuild has been saved in �le graph-

bui.mod. The commands gpscript Graphbuild, or gpscript graphbuild, or gpscript graphbui.mod

would all be e�ective in �nding this �le.

Options, if any are speci�ed, are passed unchanged to the compiler.

Example

To use the well known dhrystone benchmark program as an example, suppose we wish to

create a script �le containing all the commands to \make" an executable �le for the program.

Before showing an example, however, it may be instructive to look at the import structure

of the program. The modules involved are

� Dhry (main)

� Dhry1 (de�nition and implementation)

� Dhry2 (de�nition and implementation)

� Dhry3 (de�nition and implementation)

The relevant part of the code for each is :

CHAPTER 10. USING THE GPMAKE TOOL 77

MODULE Dhry;

FROM Terminal IMPORT Write, WriteString, WriteLn;

FROM Dhry2 IMPORT Proc0;

...

DEFINITION MODULE Dhry2;

FROM Dhry1 IMPORT RecordPointer;

...

DEFINITION MODULE Dhry1;

(* no imports *)

...

DEFINITION MODULE Dhry3;

FROM Dhry1 IMPORT ArrayDim1Int, . . . etc;

...

This structure dictates the order in which the de�nition modules must be compiled. Subse-

quently, the main module and all implementation modules may be compiled in any order.

If we now issue the command gpscript -irOf dhry the �le dhry.mak is produced with

the following contents

script for the compilation of module [Dhry]

gpm -irOf dhry1.def

gpm -irOf dhry3.def

gpm -irOf dhry2.def

gpm -irOf dhry.mod

gpm -irOf dhry2.mod

gpm -irOf dhry1.mod

gpm -irOf dhry3.mod

build dhry

Note that the option {irOf has been passed to every call of gpm in the script �le. This is a

general rule.

It can be seen that dhry1.def must be compiled �rst, because both dhry2.def and

dhry3.def import from it.

Should a command be issued without any arguments, a usage message is given.

10.1.2 Search Strategy

Starting with the base �le, gpscript tries to �nd a de�nition module and an implementation

module for each imported module. It then tries to do the same for each of the imported

modules until all modules required by the program are located. Search is made for module

source �les only, using the name conventions of the compiler.

If the imported module is SYSTEM, no �les are required because the objects of SYSTEM

are known to the compiler.

CHAPTER 10. USING THE GPMAKE TOOL 78

The de�nition module �le is �rst searched for in the current directory. If this �le is not

found, a search is made for the symbol �le in the current directory, and on the path $M2SYM .

It is an error if the symbol �le cannot be found.

Whether the de�nition module is found or not, a search is made for the implementation

module �le in the current directory. It is common to have a customized local implementation

of a module the interface of which is de�ned in a library in another directory. However,

it makes no sense to have a local de�nition of a module which is implemented in another

directory, and the programs reject this as an error.

If a de�nition module is found in a library area, then it is presumed that the implemen-

tation is a custom version of a system library module.

Whenever a source �le is found in the current directory, the �le is opened and the source

is parsed. First, it is veri�ed that the module name is actually correct, as speci�ed in the

importing module. Then the module import list is parsed to see which other modules need

to be processed.

In the case that a de�nition is found to be a FOREIGN or INTERFACE de�nition then these

tools are unable to perform any checks on the correctness or otherwise of the implementation.

A warning is issued that manual recompilation of the implementation of any such �les may

be necessary.

An often encountered case occurs when an implementation �le is not found in the current

directory, and neither is the de�nition, but then subsequently a de�nition is found on the

path $M2SYM. This is the usual case for a module supplied in the system library, and no

recompilation should be necessary which involves these modules. It should be noted here that

care will be needed by persons engaged in development of library modules, and it is advised

to have the environment carefully crafted, perhaps to have all library �les available locally

while working, and the environment variables set accordingly.

10.2 Smart recompilation

gpmake o�ers \smart recompilation" of all of the �les in a program which are inconsistent

with the latest versions of the available source code �les. This utility di�ers from, and

improves on, traditional \make" programs in two ways |

� the module dependencies are automatically extracted from the source code, and thus

do not depend on the accuracy of programmer supplied dependency lists

� if some module is recompiled, dependent modules will be recompiled only if it is found

that the cryptographic key of the recompiled module is changed

Conditions for recompilation

It is possible to use gpmake without being concerned about the algorithm by which it

performs its analysis. Nevertheless, an understanding of the behaviour of the program is

helpful if a user wishes to predict the consequences of a particular change to a module.

The program begins by constructing the importation graph of the nominated program.

This is not necessarily a complete graph, since the program does not explore any dependencies

in the libraries. Any modules not in the current directory are thus leaves of the graph

fragment.

CHAPTER 10. USING THE GPMAKE TOOL 79

The next step is to topologically sort the nodes of the graph. This operation sequences

the decisions on recompilation in such a way that every module has the decision made only

after the decision has been made for all modules on which it depends. A de�nition module

�le is compiled if and only if one or more of the following conditions is true |

� the symbol �le �le.syx is missing

� the symbol �le is present but the creation date is earlier than that of the corresponding

source �le, but not more recent than the time at which gpmake was invoked

1

� the symbol �le is present but has key values which are inconsistent with the keys of its

imported symbol �les

For program or implementation modules the corresponding conditions are |

� the reference �le �le.rfx is missing

� the object �le �le.o is missing

� the reference �le is present but has key values which are inconsistent with the keys of

its imported symbol �les

� the reference �le is present but the creation date is earlier than that of the corresponding

source �le, but not more recent than the time at which gpmake was invoked

1

� all �les are present, but the time stamps on the reference and object �les di�er by more

than thirty seconds, but the reference �le is not more recent than the time at which

gpmake was invoked

1

The domino stopper e�ect

The implementation of the strategy used here has an immediately useful e�ect. Suppose,

in the dhrystone example, that the �le dhry1.syx was deleted from the �le system, or that

the �le dhry1.def was editted in some trivial way which did not change the meaning of the

de�nition. When gpmake is executed, the de�nition �le must be recompiled.

$ gpmake -irOf dhry.mod

compiling dhry1.def

building dhry

Circular imports, initialization order is

<Dhry3> (empty body)

<Dhry2> (empty body)

$

Note that even although every single module in the program depends directly or indirectly on

the recompiled module, only dhry1.def is recompiled. Although the �rst domino has fallen,

the others do not follow. This e�ect arises because the new version of dhry1.syx turns out

1

This extra condition ensures that �les are only recompiled once. Without this test, repeated recompilation

could be caused by, for example, a source �le with its date erroneously set to some future time, or an

exceptionally slow recompilation.

CHAPTER 10. USING THE GPMAKE TOOL 80

to have exactly the key value which the consistent modules are expecting. No other modules

meet the conditions for recompilation, and no unneccesary work is performed.

Suppose, contrary to the above assumption, that the interface in the �le dhry1.def had

actually been modi�ed in some non-trivial way. It that case the symbol �le of the recompiled

module would have a di�erent key, and all the other modules would be recompiled. In terms

of the conditions given above, the third condition would be met, in each case.

10.2.1 Summary of messages

The programs produce the following messages |

#gpmake: Usage: gpmake [-adfgIilOcOfprtvV] BaseModFileName

This is the normal usage message which indicates the correct command to invoke the

program.

#gpmake : Cannot complete unless .obj produced, so -S, -n are illegal

The recompilation cannot complete unless an object �le is produced. So it is illegal

to specify an option which asks for an object �le to not be produced. This prevents the

compile-and-test cycle from looping.

#gpmake : bad exit code from process-name

One of the subprocesses of gpmake sent back an error return. This usually happens if a

compilation results in an error exit.

#gpmake : can't exec program process-name

This results from a failure to spawn a subprocess, and is usually caused by executable

�les such as gpm not being on the path or not being executable by the user.

#gpmake : can't open temporary file: /tmp/gpmPID

The temporary �le could not be opened, check for locked �les in the /tmp directory.

#gpmake : can't find process-name

A subprocess of gpmake could not be found on the executable path.

compiling �le-name ...

This is the normal trace message of gpmake it is not an error message.

building �le-name ...

This is the normal trace message of gpmake it is not an error message.

#gpmake : invalid source file format

The current �le had invalid syntax, and maybe is not a source �le.

#gpmake : not a base module

The current input �le is not a main module. Remember that implementation modules

cannot be the base of a make operation.

#gpmake: Foreign implementation of <ModuleName> may need recompilation.

A foreign de�nition module was found. gpmake cannot check on the consistency of the

object �le for this module, since it cannot deduce the name of the source �le.

#gpmake: searching for <Module1>, found <Module2> in file �lename

CHAPTER 10. USING THE GPMAKE TOOL 81

The actual module name found in the �le was not the same as the name used in the im-

porting module. This is usually a spelling error. Check for upper-case { lower-case problems.

#gpmake : invalid symbol file format

The current symbol �le format has invalid syntax. This is a serious error which can only

arise due to corruption of the symbol �le.

#gpmake : local .def file must have a local .mod

If a de�nition module is found in the current directory, then the corresponding implemen-

tation must be found also. The reverse situation, a local implementation with the de�nition

on the library path, is normal and passes without comment.

#gpscript: WARNING:- delete �lename.exe before executing �lename.bat

This message appears in DOS versions only. It warns that the �le �lename.exe must be

deleted before the batch �le �lename.bat may be executed.

#gpmake: "DEFINITION" or "IMPLEMENTATION" not found

gpmake assumes minimally-correct syntax in the parts of the source �les it must scan.

This error message occurs if the expected module keyword is not found.

**** m2rts: assert error: Attempt to read past <EOF> ****

Another response to syntax errors which prevent gpmake from extracting dependency

information from the source �les. This error message occurs if the scanner encounters end-

of-�le before the required parts are found - typically due to an unclosed comment.

10.2.2 The rule for forming �le names

File names are taken from the module identi�er, truncated if necessary to 80 characters and

moved to all lower case. The extensions .def, .mod, .syx, .rfx, or .o are appended, as

appropriate. In the case of source �les, with extensions .def or .mod, if the �le is not found

the module base name is truncated to eight characters and the usual extension added. This

gives compatability with �les which have been transferred from DOS.

10.2.3 Files

UNIX �les

The executable �les used by gpmake are | gpmake, decider, graphbuild, gpm, gpm2,

build, build2. All of these must be on the path. graphbuild and decider are subprocesses

of gpmake. The �rst creates the importation graph and writes it to a �le in the current

directory. The second reads the �le, and decides incrementally whether each �le requires

compilation.

Two temporary �les are created. These are /tmp/gpmPID and ./�lename.mak, both are

deleted automatically on completion.

gpscript creates a text �le named �lename.mak in the current directory.

DOS �les

The executable �les used by gpmake are | gpmake.exe, decider.exe, graphbuild.exe,

gpm.exe, gpm2.exe, build.exe, build2.exe. All of these must be on the path. graph-

CHAPTER 10. USING THE GPMAKE TOOL 82

build and decider are subprocesses of gpmake. The �rst creates the importation graph and

writes it to a �le in the current directory. The second reads the �le, and decides incrementally

whether each �le requires compilation.

Two temporary �les are created. These are modbase and �lename.mak, both are deleted

automatically on completion.

gpscript creates a text �le named �lename.bat in the current directory.

Chapter 11

The Cross-reference utility gpxrf

gpxrf is a simple utility for obtaining cross reference listings of Modula programs. The

program has two command line options, and always sends its output to the standard output

stream.

Using gpxrf

The program is invoked from the command line with the following syntax

gpxrf [{options] �lename

Because the output always goes to the standard output, it is common to use gpxrf in com-

bination with the UNIX shell commands for redirection or piping to other tools.

The default output lists all of the non-pervasive identi�ers used in the nominated �le,

sorted into lexicographic order, each followed by a list of those line-numbers on which it

occurs. The ordering is case sensitive, placing Foo before foo, and bar before BAT.

Consider the following program

MODULE Hello;

FROM Terminal IMPORT WriteString, WriteLn;

VAR str : ARRAY [0 .. 6] OF CHAR;

BEGIN

str := "hello, "; WriteString(str);

str := "world"; WriteString(str);

WriteLn;

END Hello.

The command gpxrf hello.mod produces the following output

GPM Cross reference listing for file <hello.mod>

Hello 1 8

str 3 5 6

Terminal 2

WriteLn 2 7

WriteString 2 5 6

83

CHAPTER 11. THE CROSS-REFERENCE UTILITY GPXRF 84

String usage is 513 bytes

Entries = 78

Identi�ers are padded to a uniform length of 25 characters, or truncated if necessary. Note

that the identi�er str occurs twice on line 5 and twice on line 6, but these numbers occur

only once in the output. If the number of occurrences of an identi�er is large, gpxrf wraps

lines so the block of line numbers will �t on an 80 column screen.

gpxrf also indicates how much of gpm's string-table memory the �le used up. In this

example only 513 bytes were used, mainly by pervasive identi�ers which were not used in the

example program.

Command line options

The option {p causes gpxrf to include pervasive identi�ers in its output. The main body

of the output for the previous example program, using this option is

CHAR 3

Hello 1 8

str 3 5 6

Terminal 2

WriteLn 2 7

WriteString 2 5 6

The option {f lists the identi�ers in frequency of occurrence in the nominated �le. If

several identi�ers occur the same number of times, the group is sorted on the lexicographic

order. For the same example program, the main body of the output is

Terminal 2

Hello 1 8

WriteLn 2 7

WriteString 2 5 6

str 3 5 6

Note in this case that str is listed last on the basis of its �ve occurrences, even although it

only occurs on three di�erent lines.

Chapter 12

Errors and Error Messages

12.1 Errors Detected at Build Time

The build program, as its name implies, builds a complete program out of the separately

compiled parts in the library and the user modules. In doing so it performs a number of

checks for consistency, and consequently detects certain errors.

Every symbol �le contains a magic number called the key. If two versions of a symbol �le

have di�erent keys then it is certain that they contain di�erent information.

When an implementation module is compiled, the reference �le contains the key values

of every symbol �le which that module imports. This allows the build program to rigorously

check that if two modules both import the same module, then they both access the same

version.

If the build program detects inconsistent keys, it issues an error message, and the �nal

message

**** File Creation Unsuccessful ****

A detailed trace of the build process will show the key values for every module in every

reference �le, and will help pinpoint the module(s) causing the problem.

Build also produces a warning message if modules are involved in circular imports. If

your program causes such a message to be displayed, you will have to check that no module

on the circular path is relying on initialized data of any later member of the cycle.

$ build dhry

Circular imports, initialization order is

<Dhry3> (empty body)

<Dhry2> (empty body)

$

In this example, the dhrystone program has a circularity between two of its four modules. In

this case the modules involved in the circularity both have no initialization (empty body) and

so the message may be ignored without further consideration.

In general circular imports should be avoided if at all possible, in order to remove the

need for manual checking of data structure dependency.

85

CHAPTER 12. ERRORS AND ERROR MESSAGES 86

A special case is that of circular imports which involve a module which has been declared

with the !LIBRARY pragma. In this case the circularity is fatal, since the compiler relies on

!LIBRARY modules not being involved in cross-module recursion.

If the base module �lename passed to build is not a program module (for example if it

is an implementation module) build issues an error message stating this fact. Similarly, if

any module imported by the base module is not an implememtation module, an appropriate

error message is issued. This last diagnostic can only occur if a separately compiled module

has a valid de�nition part, but the keyword IMPLEMENTATION is missing from the im-

plementation part. The same diagnostic occurs if the input base �le name is inadvertently

typed with an extension.

12.1.1 Summary of build messages

The build program emits several other messages. These are, in alphabetical order:

** Bad filename <�le> in header file **

This error is fatal. The library �lename pragma in a foreign header �le was badly formed.

The �rst character which is not a legal �lename character must be `>'.

** Bad reference file syntax **

The current reference �le has incorrect syntax. This implies that the �le has been corrupted

in some way. This error is not only fatal, but causes build to immediately abort execution.

** Base file is not a program module **

This error is fatal. The �lename given on the command line does not correspond to a

reference �le belonging to a program module. Remember that the base name must not be

the name of an implementation/de�nition part pair. This message also arises if you type in

modname.mod instead of modname without a �lename extension.

** Module <module> was compiled with the -p (profiling) flag **

This error is fatal. Recompile the named module without the ag.

** Base file not found **

This error is fatal. The command line �le name could not be found. It must be in the current

directory. Other �les may be anywhere on the library path.

Build: illegal option

This is a warning only. An illegal command line argument has been passed to build.

Build: too many libraries

This error is fatal. gpm currently allows a maximum of 16 library object �les to be included

via the header �le mechanism. This is not a limitation on the number of header �les, only

on the number of di�erent libraries which may be utilized.

** Can't create output file **

This error is fatal. The attempt to create the intermediate code �le name.c failed. Check

�le permissions. The error usually arises when the {S ag has been used previously, and has

left a protected �le modname.c in the current directory. The error is very unlikely to occur

in other cases, as the synthetic name for the output �le is the unique /tmp/bldpid.c, where

pid is the process identi�er. All such �les are removed at the end of the building process.

** Can't create shell file **

CHAPTER 12. ERRORS AND ERROR MESSAGES 87

This error is fatal. The attempt to create the linker script �le name failed. Check �le

permissions. The error usually arises when the {S ag has been used, and a protected �le

modname already exists.

** Can't find runtime sytem file **

This error is fatal. The �le m2rts.o could not be found on the library path $M2LIB.

** Can't find file <�le> on library path **

This error is fatal. A �le named in a header �le could not be found either in the current

directory or the library path $M2LIB.

** FATAL CIRCULAR IMPORT ERROR **

This error is fatal. A circular import exists involving a module which has been declared with

the !LIBRARY pragma. Such circularity does not occur in the supplied libraries.

** Imported module <module> is not an implementation **

This error is fatal. The module which was imported has a symbol �le, but the reference �le

belongs to a program module, rather than an implementation. Check whether you have left

o� the word IMPLEMENTATION.

** Inconsistent key for module <module1> in reffile of <module2> **

This error is fatal. While reading the reference �le of module2, a key value was found for

module1 which is di�erent to the value found in a previous reference �le. This implies that

two modules of the program have been compiled using two di�erent versions of module1.

12.2 Errors Detected at Compile Time

The compiler detects about two hundred di�erent errors during compilation. These are

divided for convenience into several categories. Detailed explanations for these errors are

given in the following chapter.

12.2.1 Lexical Errors

These are errors caused by badly formed tokens in the input �le, such as illegal characters,

numbers, badly formed literal strings and comments. These errors have error numbers less

than 100.

12.2.2 Syntax Errors

These errors are caused by incorrect syntax in the input �le. Such things as missing semi-

colons, keywords or arithmetic operators fall into this category. In most cases the error

message indicates the identity of the expected symbol which was not found. These errors

have error numbers between 100 and 199.

12.2.3 Semantic Errors

These errors are caused by the failure of various so-called static semantic checks in the

compiler. These checks include such things as compatibility of types, correct declaration

of objects, matching of identi�ers and so on. This group is easily the largest group, being

allocated over one hundred separate error messages numbered between 200 and 450.

CHAPTER 12. ERRORS AND ERROR MESSAGES 88

12.2.4 Warnings

The compiler produces a number of friendly warning messages! These occur when certain

non-fatal errors are discovered. For example, if a program has a procedure which is not called,

exported or assigned as a procedure variable, then gpm will warn you of this probable error.

Similarly, LOOP statements without at least one EXIT or RETURN attract a warning.

In order to provide maximum compatibility with previous de�nitions of Modula, gpm

accepts several syntactic constructs which are technically illegal but conform to the de�nitions

in Programming in Modula-2. These constructs are agged with an obsolete syntax warning

message.

Warnings have \error" numbers greater than 450. Their reporting may be suppressed by

use of the -d (dangerous) compiler ag.

12.2.5 When are Errors Detected?

The compiler produces its error messages in two separate phases. The �rst phase is a single

pass over the source text; the second is a traversal of the internal abstract syntax represen-

tation. If errors are found during the �rst phase, the further checking of the second phase is

not attempted. In even more extreme circumstances, if symbol �les are missing, or relate to

the wrong module, even the �rst phase is cut short.

It is useful to know which errors are detected in which phase, since it explains why

previously unreported errors may appear after an unrelated error is removed. The rules are

as follows

� all lexical and syntactic errors are detected in the �rst phase, during parsing of the

source �le

� semantic errors in declarations are detected in the �rst phase, since declaration analysis

is interleaved with parsing

� semantic checks on FOR loop headers are performed in the �rst phase, for no particular

reason

� all other semantic checks on statement sequences are produced in the second phase, the

semantic analysis traversal

� global semantic errors and warnings, such as that caused by the failure to elaborate an

opaque type, are produced after the completion of the second phase.

More detailed explanations of the various errors are included in the next chapter.

12.2.6 Position of the Error Marker

Most errors are reported with a message which \points" to the error

thing := 5;

**** ^ semantic error 204 ****

**** 204 Identifier not known in this scope ****

In general, the marker points to the start of the token which is in error, as in the example.

However, there are examples where the marker points to the following token:

CHAPTER 12. ERRORS AND ERROR MESSAGES 89

CONST Foo = 1.0 / 0.0;

**** ^ semantic error 215 ****

**** 215 Range of type exceeded ****

In some cases the error marker may even point to the next line. This is common for

missing punctuation errors, since gpm cannot tell a punctuation symbol is missing until it

actually �nds something other than whitespace (blanks, newlines and comments).

There are also a small number of errors where the error has no position since the error

is caused by the fact that some expected feature is missing. Failure to elaborate an opaque

type is in this category. Such an error gives the following style of message, at the last legal

position that the declaration could have been placed.

BEGIN (* module body *)

**** Error 224 with identifier <Foo> ****

**** 224 Opaque type not elaborated ****

In this case type Foo was declared in a de�nition part but was not found among the

declarations of the implementation.

This style of error message is crucial also when declaration conicts arise between the

constant identi�ers of imported enumerations, since the o�ending identi�ers do not occur in

the import lists themselves.

12.2.7 Other compiler messages

gpm produces a small number of error messages which are related to the compiling environ-

ment, rather than to the source �le. These are as follows, in alphabetical order:

gpm2: Assert error in module <M2xxxx> at line nnnn

This error should never occur. It indicates that the compiler has detected an internal error.

All such occurrences should be reported to your support organization.

Bad option -k

This is a warning only. The option k was not recognized. Check this manual for a list of

allowed options.

gpm2: Can't open input file

This error is fatal. The input �le speci�ed on the command line could not be found in the

current directory. Remember that the source �le must be in the current directory, and the

full name of the �le must be given.

gpm2: Can't create symbol file

gpm2: Can't create reference file

gpm2: Can't create object file

gpm2: Can't create tmp file

These errors are all fatal. Usually these are caused by an existing �le which is write protected.

gpm2: Can't open list file

This is a warning only. Compilation proceeds, but the requested listing is not made.

gpm2: Can't open error list file

CHAPTER 12. ERRORS AND ERROR MESSAGES 90

This is a warning only. gpm cannot �nd or cannot open the �le m2errlst.dat, which is

required for verbose error messages or for the interactive option. Compilation proceeds, but

without the verbose version of the error diagnostics.

gpm2: String table overflow

gpm2: Hash table near full

These errors are fatal, they imply that an internal compiler table limit has been exceeded.

The default limits of the compiler are su�ciently large that they should rarely be exceeded

for programs partitioned into moderately sized modules as suggested by good software engi-

neering practice. If circumstances justify larger name spaces, the table sizes can be increased

by the environment variables M2HASH and M2STRING as described in section 7.2. An

alternative is to partition the module to decrease the number of identi�ers or the number of

strings.

Expected n found m

Bad object in SYM

The current symbol �le has incorrect syntax. These imply that the �le has been corrupted in

some way. These errors are not only fatal, but causes gpm to immediately abort execution.

Since the compiler is implemented in Modula, an error in the compiler itself may lead

to any of the runtime errors described in the next section. The only expected such error is

a storage error in the PC version, where memory exhaustion is likely for large compilation

units (depending on other resident code). As noted above, subdivision of modules is the cure.

12.3 Errors Detected at Runtime

Runtime errors are errors which are detected when a program is executed. Some errors are

detected by the compiler during compilation while others can only be detected when the

program is executed.

There is a module Exceptions which allows the program to regain control after the

occurrence of a runtime error. In the absence of the use of this module runtime errors cause

the program to terminate with the production of a core dump.

The core dump exists as a �le named core in the current directory. An analysis of this

�le can provide information on the nature of the event. This process is called Postmortem

debugging. Depending of the way in which the program was compiled, more or less information

may be obtained from the core-dump �le.

The higher levels of information which can be obtained require the program to be compiled

with special option ags (see the Options chapter for a list of option ags). However, useful

information can be obtained without invoking the special options. In particular a trace of

the procedure-call chain is most useful, because it points to the action which led to the event

and tells the user in which procedure the error occurred; this is called unwinding the stack.

The names of the procedures on this stack are just the (Modula) procedure names. In the

case of exported procedures the name is formed from the �rst 10 characters of the module

name followed by the �rst 20 characters of the procedure name.

For further information on this point refer to section How gpm forms linker names

in the Implementation Speci�cs chapter.

On the HP9000 the debuggers are called \xdb" and \adb". On mips-based machines the

usual debugger is \dbx", and is used for postmortem and for interactive runtime debugging.

CHAPTER 12. ERRORS AND ERROR MESSAGES 91

One of the appendices for this manual describes how to use the standard debugger supplied

with your system to debug programs compiled using gpm.

Every program compiled by gardens point modula is linked to a module of useful

routines called the runtime system. The functions and procedures of this module, which is

called m2rts, performs such things as error checking and the catching of errors. This module

writes out error messages which indicate the nature of any error, and then causes a core

dump to be produced.

12.3.1 Range Check Errors

Range errors occur whenever an attempt is made to assign an illegal value to a variable of or-

dinal type. Ordinal types include characters, enumerations and the whole number types, and

subranges of these. The assignment might be an assignment statement, an actual parameter

substitution, or an INC or DEC procedure call.

Di�erent format messages are produced for various kinds of tests | examples are

**** m2rts: range error: 25 > 12 ****

an attempt was made to assign the value 25 to a variable the upper bound of which was 12.

**** m2rts: range error: 25 not in [3..17] ****

an attempt was made to assign the value 25 to a variable for which the legal range was [3..17].

**** m2rts: range error: -3 < 0 ****

an attempt was made to assign the value -3 to a variable with lower bound 0 (probably an

unsigned type).

**** m2rts: MOD by op < 0 ****

Modula semantics demand that MOD (unlike DIV and the newly proposed whole number

operators REM and `/') is only de�ned for positive right hand operands. Values less than

zero report this error, values of exactly zero give the separate divide-by-zero message.

12.3.2 Index Bounds Check Errors

Whenever an array index is calculated, it is compared with the upper bound of array indices.

Internally, gpm uses zero-based indices. If, for example, you declare an array with an index

type which is [-5 .. 5], the array will have eleven elements numbered (internally) as 0 to 10.

The index bound is thus 10 in this case, and all index expressions will be compared against

the limit 10. If an index exceeds the bound, a message is produced with the following format

**** m2rts: index error: 11 >10 ****

In this case an attempt was made to select element 11 of an array with last element 10,

corresponding to an original, unnormalized index value (in this example) of 6.

Some more recent versions of gpm give the error message in terms of the user-de�ned

index bounds. In this case the error is quite unambiguous, and for the previous example

would read

**** m2rts: index error: 6 not in [-5 .. 5] ****

CHAPTER 12. ERRORS AND ERROR MESSAGES 92

12.3.3 Case Selector Errors

If a case statement does not have an ELSE part, and the case selection expression evaluates

to a value not speci�ed, a case selector error occurs. The message has the following format:

**** m2rts: case selector error: 5 ****

in this example the selector expression had ordinal value 5. Note that if the selector type

was an enumeration of, say, type WeekDays, this would imply that the value friday had been

selected.

12.3.4 Memory and Bus Errors

If an attempt is made to access an illegal or non-existent memory location, a memory error

or a bus error will occur. The most likely cause of this error is an attempt to dereference

the NIL value in programs which use pointers, or the use of an uninitialized pointer variable.

However, there are other possibilities, such as a call to an uninitialized procedure variable.

There are two message formats used to report these errors

**** m2rts: bus error ****

when a non-existent memory location is addressed, and

**** m2rts: memory error ****

when an illegal memory location is addressed. Note that NIL pointer references cause the

second message to be emitted, uninitialized pointers may cause either.

12.3.5 Divide by Zero Error

An attempt to divide by zero (either by DIV, MOD, REM or `/') provokes the following

message

**** m2rts: divide by zero error ****

12.3.6 Floating Point Errors

If the evaluation of some real-valued expression results in a not-a-number symbol a oating

point trap occurs, with the following message:

**** m2rts: real number error ****

12.3.7 Storage Errors

If the supplied version of the module Storage is unable to allocate any further heap space

to the program, the following message is produced

**** m2rts: storage error has occurred ****

CHAPTER 12. ERRORS AND ERROR MESSAGES 93

12.3.8 Soap Errors

The compiler allocates a small amount of space as a stack for value-mode open array

parameters (hence soap). This space is adequate for all normal programs. However, if you

call many nested procedures with huge value-mode open arrays you may get the message

**** m2rts: out of soap space ****

If it is absolutely necessary to increase the soap space, then declaring an environment

variable SOAPSIZE=nnnn where nnnn is a decimal number will cause the amount to be

varied at build time. The default size of the soap space is 4096 bytes, and gpm will ignore

any user attempt to allocate less than this amount.

If the Exceptions module has been imported, and errors are caught by the user, then

both storage and soap errors raise the pre-declared exception StorageError. Only if the error

is unhandled, and causes termination, will the distinct error messages be produced.

12.3.9 User Errors

The Exceptions module of the standard library provides facilities for raising and catching

various errors. Using these facilities, a program may regain control after an error and perform

any appropriate error recovery action.

All of the errors described above may be caught and handled by the exception handlers,

but it is also possible for the user to de�ne other exceptions.

When programs de�ne additional exception values, they de�ne text message strings which

are associated with those values. It is expected that when programs de�ne additional excep-

tion values they intend to handle the traps caused by those exceptions. However, if a user

de�ned exception is raised but is not handled by the user program, the normal procedure of

termination and core-dump is followed. In that case the following user de�ned message is

displayed

**** m2rts: "user-defined text string" ****

A procedure in the current version of the Exceptions module allows the text string asso-

ciated with an exception to be extracted. Thus it is possible to display the message (or write

it to a log �le) even if the exception is caught and handled.

12.3.10 Assert errors and assertion checking

The insertion of assertions into user code, and the subsequent testing of such assertions at

runtime is a most powerful tool of software engineering. If the correctness of some complex

piece of code depends on some particular predicate then it is sensible to test the truth value

of the Boolean expression. This guards against the case that the predicate is not true, but

gives rise to an incorrect result rather than to a runtime error.

It is a common practice in well constructed Modula programs to have a user-de�ned

Assert procedure which evaluates its actual Boolean parameter, and aborts the program if

the result is false. gpm goes much further than this by providing a built-in Assert procedure

in the special, system library ProgArgs.

Progargs.Assert evaluates its actual parameter and aborts the program if the result is

false. However, the compiler produces \inline" code for the test, thus avoiding the overhead

CHAPTER 12. ERRORS AND ERROR MESSAGES 94

of a procedure call, and compiles a trap call which provides speci�c information on the site

of the failed test. A typical error message would be

**** m2rts: Assert error in module <Foo> at line 1321 ****

Notice the importance of the compiler-produced message. Changes to the source code do not

require any change to the procedure calls, since gpm automatically calculates the proper line

numbers and module names at compile-time.

Since assertion tests are intended to catch errors in program logic, it is not appropriate

for an exception handler to attempt to recover from such an error. In gpm the exceptions

handling does not catch assert errors, so assert errors are always fatal, even if one or more

exception handlers have been set by the use of Call.

The runtime overhead arising from the use of these tests is extremely small, and the

potential for error detection very great. It is therefore quite acceptable to leave such tests

permanently enabled in most cases. Nevertheless, if it is desired, the compilation of assertion

tests may be turned o� by use of the {a command-line option. When this option is used, the

Assert procedure call in the source code is treated as an empty statement.

The current versions of gpm have an optional second parameter to Assert, which allows

the user to specify a message, as well as the predicate to be tested. An example would be |

Assert(NOT broken,"broken hearted");

If the predicate is false, the user-speci�ed message is printed, along with the line number

information. This feature allows gpm programs to be moved to other implementations in

which the Assert procedure is user-de�ned. In such a case, the user message is needed to

preserve the reduced functionality which a user-de�ned procedure can o�er.

12.3.11 Function return errors

If a value-returning function procedure should reach the end of its code without executing a

RETURN statement, the following message is produced

**** m2rts: function ended without RETURN ****

In this case it is necessary to use the postmortem debugger to �nd the name of the function

in which the trap was activated.

12.3.12 Coroutine return errors

If a coroutine should reach the end of its code without executing a TRANSFER call, the

following message is produced

**** m2rts: coroutine ended without TRANSFER ****

12.3.13 Stack overow errors

Stack overow checking is seldom enabled except for multi threaded programs which use the

Coroutines library. In any case, if a stack overow error is detected, the following message is

produced.

CHAPTER 12. ERRORS AND ERROR MESSAGES 95

**** m2rts: stack overflow has occurred ****

If the error occurred in a coroutine, the workspace allocated by ALLOCATE and passed to

NEWPROCESS must be increased. In the case of stack overows in the main program, the

value of the environment variable M2STACKmust be increased, and the program built again

(no recompilation is necessary).

Chapter 13

Interpreting Compiler Diagnostics

13.1 Introduction

This chapter gives detailed explanations for the compiler diagnostics which gpm emits. In

some cases the explanations refer to extremely rare and improbable events (see, for example,

the explanation for error 303). We have tried to detail all of the obvious and non-obvious

circumstances under which each such error arises.

This chapter forms the basis for the online \more info" which is available by using the

gpm -I option.

Some observations which apply to many error messages

(1) In many cases the compiler is trying to say \I expected this, and you gave me that". It

may well be that the confusion was due to a typing or spelling error, which happened

to match something di�erent from what you intended. If the incorrect spelling did not

match anything the compiler knows about, a clear \not de�ned" error results, but an

unintentional match with some other valid name may go unnoticed until some property

of the intended name is not satis�ed by the accidental name.

(2) The terms quali�ed identi�er and designator are used in several error messages; they

refer to various forms of names for objects. A simple identi�er such as fred may be

quali�ed by a module name (Jim.fred meaning identi�er fred of module Jim), giving

rise to the term quali�ed identi�er. It may also be combined with selection steps in

complex names such as jim.x[a + b].y, giving rise to the term designator for anything

which designates some object. (Note that in the last example, semantic checks must

be used to determine whether the �rst \." is a module quali�cation or a record �eld

selection.)

(3) Many messages are of the form \... not known in this scope ...". Remember that

the Modula scope rules make identi�ers in other modules invisible unless explicitly

IMPORT ed or EXPORT ed, and that local identi�ers of a procedure (including formal

parameters) are invisible outside the procedure.

96

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 97

13.2 Lexical Errors

1 Line ends inside literal string

Literal strings are limited to a single line. Commonly, this error is due to omission of the

closing quote (which must match the opening quote | either ' or "). If you wish to construct

literal strings longer than editor or system line length limits, you must do so by programmed

concatenation.

2 Illegal character in input file

All characters within the Modula character set are acceptable, and control characters in the

range 1C to 37C are ignored. Other characters are invalid. If there is no apparent invalid

character, use your text editor's \show non-printable characters" option or some dump utility

to check for spurious characters.

3 Input file ends inside a comment

This error will occur if a closing comment bracket is omitted. Note that comments nest

in Modula, so that a subsequent closing bracket will match only its corresponding opening

bracket; note also that an intervening space between the `*' and the `)' characters will destroy

a comment bracket. Since end-of-�le is indicated by a null character (0C), this error will also

occur if a null is introduced within a comment. The error is reported at the beginning of the

unclosed comment.

4 Invalid exponent in REAL constant

Immediately after the E which introduces a real exponent, there must follow an optional

sign, and then an unsigned integer.

5 Illegal character in numeric constant

Numeric constants may contain only the `digits' 0..7 for octal constants (su�x B or C), 0..9

for decimal (no su�x), or 0..9,A..F for hexadecimal (H su�x).

6 Floating-point error during constant evaluation

The error value \HUGE" was produced when this constant was evaluated. See the machine

reference manual for oating-point limits.

7 Number too long

Numeric constants are assembled in a bu�er which is currently large enough for the number

of signi�cant digits in a double-precision oating point value.

8 Character constant too large (377B is maximum)

9 Illegal use of underscore in identifier

Underscores are allowed in identi�ers only singly and internally | a leading or trailing un-

derscore is not allowed; nor are two or more adjacent underscores.

These rules are relaxed in interface de�nition modules, or in any modules which import

such modules. In that case, the use of underscores is entirely free, and error 9 should not

arise.

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 98

13.3 Syntax Errors

The majority of the syntactic error messages are self-explanatory, and are not further ex-

plained here.

100 Invalid symbols precede start of module

101 No identifier at end of module

102 No fullstop at end of module

103 Expected END symbol

104 Expected module END symbol

105 Expected semicolon

106 Expected declarations

107 Expected equals sign

108 Expected identifier

109 Expected IMPORT symbol

110 Expected comma

111 Expected ')' symbol

112 Expected '..' symbol

113 Error in qualified identifier

114 Expected parameters

115 Expected ']' symbol

116 Expected OF symbol

117 Expected colon

118 Formal parameter bad

119 Expected '{' symbol

120 Error in expression

121 Expected '(' symbol

122 Expected '}' symbol

123 Expected '|' symbol

124 Expected EXPORT symbol

125 Expected selectors

126 Expected addops

127 Expected mulops

128 Error in statement

129 Expected DO symbol

130 Expected UNTIL symbol

131 Expected ':=' symbol

132 Expected TO symbol

133 Expected THEN symbol

134 Expected start of type

135 Expected start of factor

136 Expected BEGIN

137 Premature exit: too few ENDs in block

138 Expected END identifier;

139 Resynchronizing here

140 Special import statement syntax is incorrect

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 99

Resynchronizing

gpm uses the names at the end of procedures and modules to help in recovery from errors

which are due to too many or too few ENDs. In the case that the END identi�er is found

too soon, gpm abandons parsing the rest of (possibly nested) statement sequences and issues

error 137.

If an END is found but the expected identi�er is missing then error 138 is emitted and

gpm searches for an END with the matching identi�er. This search will stop at the start of

any new declaration, so that a simple omission of the identi�er will not cause any information

to be skipped. However, if there are too many ENDs gpm will �nd the matching one, and

issue \error" 139 to announce that it has found the correct resynchronization point.

13.4 Semantic Errors

200 Identifier at block end does not match

Modula requires that the END of a module (compilation unit, or nested module) or procedure

be followed by the name of the module or procedure. Either you have omitted the matching

identi�er, or mis-spelt it, or perhaps incorrect pairing of ENDs with structures has misled

the compiler? (Errors 137 { 139 should catch most incorrect pairings)

201 Symbol file missing

You have tried to import from a de�nition module, and its symbol �le was not found. The

import may be explicit, or the implicit import of its own de�nition module by an implementa-

tion module. Is the module name spelt correctly? Has the de�nition module been compiled?

Is it in the current path? Do you have read access to it?

202 Identifier is not exported from module

You have tried to IMPORT a particular identi�er from a de�nition module; the module's

symbol �le was found, but that identi�er was not exported. Is it spelt correctly (or at least

the same way | Modula is case sensitive). Is it de�ned in that de�nition module? (Quick

check: grepdef identi�er will �nd the identi�er no matter which �le it is in, or what directory

on the search path the �le may be in).

203 Identifer already known in this scope

You are trying to de�ne a new object, and the name used already has some other meaning

in the current scope. It may have been IMPORT ed from some external scope, or declared

previously in this scope, or is being EXPORT ed from the current scope and clashes with a

name in the enclosing scope (\this scope" is then the enclosing scope). If you wish to use

a similar name, Modula's case-sensitivity may be used to distinguish them; but beware of

confusion later | two variables of the same type, distinguished only by case, could easily be

confused; on the other hand, two variables of di�erent type, or a type and a variable, would

almost certainly cause a compiler error if accidentally transposed.

204 Identifier not known in this scope

You are using an identi�er which has no de�nition visible in this scope. Did you mis-spell,

or fail to IMPORT? Remember that although global objects are visible by default in nested

procedures, nothing is visible across module boundaries unless explicitly exported and/or

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 100

imported. If you are trying to IMPORT into a nested module from a module which is not

visible in the enclosing scope, \this scope" means that enclosing scope.

205 Qualified identifier is not a type name

In a situation where the syntax requires the name of a type, the identi�er you have used is

known, but is not a type name. Mis-spelt name matching another identi�er? Or did you

forget that a type is required here?

206 Type is not an ordinal type

An even more restricted version of 205 | the type must be ordinal. That is, it must be a

type for which the next \counting" or \successor" value is de�ned. This allows CARDINAL,

INTEGER, BOOLEAN, CHAR, a user-de�ned enumeration, or a subrange of one of those;

REAL, or any structured type (arrays, records, sets) are not allowed. Ordinal types are

required for CASE statement selectors, array indices, variant record tag types, FOR loop

control variables, and arguments of CHR, ODD, ORD, INC & DEC.

207 Expression is not compatible with declared type

Modula enforces strict agreement between types of expressions and the context in which they

are used. This error occurs if a label of a CASE statement branch does not match the selector

type, an element in a set constructor does not match the set type, a bound of a subrange

does not match the host type or the other bound, a record variant label does not match the

tag type, or an array index does not match the index type.

208 Identifier is not a constant

The syntax requires a constant here. Did you mis-spell?

209 Maximum of range is less than minimum

Where a range a..b is allowed, a should be the lower bound and b the upper; the range is

from a up to b, inclusive.

210 Implementation limit exceeded for set base type

gpm like most compilers, puts a limit on the size of sets by restricting the range of the base

type; for gpm the limit is 256 members, starting at ordinal 0. Note that this means some

small sets may cause this error | a SET OF [1980..1999] has 2000 possible members, not

just 20; also a SET OF [-5..5] would breach the lower range limit. If necessary, you can work

around these limitations by de�ning your own HugeSet or NegativeSet types, implemented as

ARRAY OF BITSET, and mapping members of your desired set type to members of elements

of the array.

211 Target of forward reference not declared

Modula generally expects that identi�ers be declared before use, but there are exceptions: the

target type of a pointer (Fred in POINTER TO Fred), and procedure names. These names

must be subsequently declared within that compilation unit. Because of di�erent internal

processing of pointers and procedure names, gpm reports the two cases di�erently. Error 211

reports incomplete pointer de�nitions, at the point where it becomes clear that no de�nition

can appear. Error 204 occurs for missing procedures.

212 Type ident not expected here

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 101

In an expression which is required by the syntax to have a constant value, the only type

identi�er which can occur is that of a set (giving the type of a set constant).

213 Function HIGH cannot be used in a constant expression

Since HIGH always returns a value which varies with the actual parameter corresponding to

an open array formal parameter, it cannot be used in an expression which is required to have

a constant value.

214 Parameter is of wrong type

This actual parameter does not match the type required by the formal parameter in the

procedure declaration. This includes built-in functions such as ABS, CAP & CHR.

or

This argument to a built-in procedure or function is not a variable or type designator.

215 Range of type exceeded

A value which can be checked at compile-time has been found to be out of range. These

include constant arguments to built-in procedures and functions, the results of evaluating

constant expressions, set elements, and record variant labels. In some cases, error 207 may

be reported instead of error 215| e.g. a CASE statement selector is of CARDINAL subrange

type, and so a negative branch label is rejected as incompatible (which, of course, implies out

of range).

216 Too many parameters

You have supplied too many parameters for the procedure called. Check the de�nition, either

in the documentation of a built-in procedure, or in the de�nition module of an external

procedure, or the declaration of a local procedure.

217 Conversion not implemented

The constant value to be coerced by the built-in function VAL must be an ordinal type.

Conversion to real types in constant declarations is not yet implemented.

218 Not of numeric type

(No longer used)

219 Operation invalid on constant

This operation is not appropriate for the constant operand supplied. Check the (implied)

type of the constant, and that of the other operand, for consistency with one another and

the operator. There is also the case of a speci�c value of the operand being inappropriate |

division by zero.

220 Type incompatible operands

In general, operators combine operands of the same types; exceptions such as the set member-

ship operator IN still require compatibility between the element being tested for membership

and the base type of the set.

Note that if this error occurs, no check is made for the appropriateness of the operator; on

correcting the operand incompatibility, an inappropriate operator will give an error such as

270{275.

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 102

221 Not of Boolean type

The operand of the Boolean operator NOT must be Boolean; so too must the conditions

which are used in IF, WHILE and REPEAT statements.

222 Record field name is not unique

Within a single record, each �eld must have a distinct name; this includes the tag �eld of a

variant, and each of the variant �elds. Fields of other records (including records which are

the types of �elds of this record) may of course re-use the same names, since quali�cation by

their variable or �eld name prevents an ambiguity.

223 Opaque type only allowed in definition part

Opaque types are intended to provide an exported declaration which allows limited access

to the type while hiding other details; they are thus allowed only in DEFINITION modules.

Note that this implies a limitation on nested modules | they cannot export opaquely.

224 Opaque type not elaborated

An opaque type declared in a DEFINITIONmodule must be elaborated | its hidden details

completed | in the corresponding IMPLEMENTATION module. This message will appear

at the end of the implementation part, when it is clear that no complete declaration has

been found, and will quote the o�ending type name. Note that references to variables of the

opaque type within the IMPLEMENTATION module will not have caused errors, since the

elaboration check error on the �rst pass suppresses further semantic checking.

225 Exported procedure not declared

This is a similar instance to error 224, except that the object partially declared in the DEF-

INITION module and not completed in the IMPLEMENTATION module was a procedure.

You must supply the procedure body in the IMPLEMENTATION module.

226 (Implementation restriction) Too many formals of same type

In a parameter list of the form \(a,b,c,d:SomeType)", there can only be 15 items in the list

of parameters all sharing the same type SomeType. You can easily circumvent the limit by

splitting the list into two: \(a,b,c,...,o:SomeType; p,q,...,u:SomeType)"

227 Invalid elaboration of opaque type (must be a pointer)

An opaque type must turn out to be a pointer; if you want something else, you must de�ne

a pointer to it and opaquely export the pointer type.

228 Invalid elaboration of procedure header

The de�nition of a procedure in a DEFINITION module and its subsequent elaboration in

the IMPLEMENTATION module must have the same headings. This error occurs if a pa-

rameter does not match in type and mode of passing (VAR or value), or if the DEFINITION

speci�ed a function and the IMPLEMENTATION a proper procedure (no result type). In

the case of a parameter mismatch, the name of the o�ending parameter in the IMPLEMEN-

TATION module is quoted. (Note that the parameter names used in DEFINITION and

IMPLEMENTATION need not match, only their types and modes.)

Exactly the same rules apply for the elaboration of procedures which have been declared

with the FORWARD keyword. Remember that forward declarations are not required for

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 103

gpm. The keyword is only recogized in order to provide source code compatability with

those Modula compilers which have single-pass restrictions.

229 Function return type not as defined

The elaboration of a function in an IMPLEMENTATION module speci�es a di�erent result

type from the DEFINITION module.

230 Exported object not declared

A local or nested module has exported a name, and that name has not been declared within

the module. The error is reported at the end of the module, and quotes the o�ending name.

231 Too many constants in enumeration

There is an implementation limit of 256 values in an enumeration type. If you need more (!),

you will have to use a CARDINAL subrange to represent them, and take appropriate care to

avoid using CARDINAL operations which would be meaningless on the enumeration.

232 Designator is not a record type

AWITH statement allows shorter references to record �elds by implicitly pre�xing all relevant

identi�ers with that �eld name; clearly, the name following WITH must be the name of a

variable of record type (it may be a complex reference, such as a:b[c]:e[f], but the end result

must be a record).

233 Fieldname not known for this type

In the syntax a:b, a is a record variable name, but b is not a �eld of that record type.

234 Attempted field selection not on a record structure

In the syntax a:b, a has been determined not to be a module name; however, it is also not a

variable of record type, so that the apparent selection of �eld b is invalid.

235 Designator is not a variable

There are various places where an object must be a variable: on the left-hand of an assign-

ment; as the control variable of a FOR loop; anywhere where subscripting, �eld selection or

dereferencing is performed; as the pre�xing object of a WITH statement.

236 Attempted pointer dereference not on a pointer type

Clearly, only pointers can be dereferenced `^'- that is, variables whose type is POINTER TO

something or ADDRESS.

237 Attempted array index not on an array type

Only arrays can be subscripted ([]).

238 BY expression not within INTEGER value range

The expression which gives the step between successive values of a FOR loop control variable

must take INTEGER values; this is the number of values `forward' or `backward'. Even in

the case of control variables of type CHAR, or some enumerated type, etc., the step must

be the INTEGER number of values. A large CARDINAL (> MAX (INTEGER)) is also

unacceptable.

239 Control variable not found in local scope

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 104

Good (structured) programming practice suggests that the control variable of a structured

statement such as a FOR loop should be declared locally | i.e. in the procedure whose

body contains the loop. Modula enforces this good practice. This error occurs if the control

variable is relatively global to the procedure.

240 Control variable must not be a formal parameter

Continuing on from error 239: one way in which the control variable could be a local name for

a non-local object is via the parameters. Modula forbids even the use of a value parameter

as a control variable.

241 Control variable must not be imported or exported

Another way of making an external variable appear local, and thus avoiding errors 239 &

240, is to IMPORT it from an enclosing module, or have it EXPORT ed by a nested module.

Both of these are also unacceptable as FOR loop control variables.

242 Selectors not permitted on constant

Literal strings cannot be indexed, unlike constant constructors. In any case, you cannot

`select' a component by pointer dereferencing.

243 Selectors not permitted on procedure name

Procedure variables are unstructured | you cannot `select' a component by array indexing,

record �eld extraction or pointer dereferencing.

244 Standard procs are not valid as proc-values

It is a rule of the language that standard procedures may not be assigned as values of

procedure variables. You can work around this restriction by declaring a procedure whose

sole purpose is to call the standard procedure; since it is user-de�ned, it may be assigned to

procedure variables. Note that the user-de�ned procedure must be declared in the module

scope, not within any procedure, to conform with Modula's other restriction on procedure

variable values (see error 287).

245 Function name not known in this scope

An object which appears to be a function call (e.g. b in a := b(..)) is not declared in, or

IMPORT ed or EXPORT ed into this scope or any enclosing scope.

246 Designator is not a function

An object which appears to be a function call is known to be some other type (including a

proper procedure).

247 Designator is not a set type name

An object which appears to be a set designator (e.g. a{...}) begins with an identi�er (a in

the example) which is not a set type.

248 Too few parameters

A procedure or function call does not have as many parameters as required by the procedure

or function declaration.

249 Designator is not a procedure name

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 105

An object which appears to be a procedure call (e.g. a(...);) is not. It may be a function,

or some other type.

250 Designator is not a procedure variable name

A variable used in the style of a call to a procedure variable (e.g. a(...);) is not a procedure

variable.

251 Missing function return expression

A function procedure has no RETURN statement and so cannot return a result.

252 Proper procedure cannot return a value

The RETURN statement in a proper procedure should not specify a return value; proper

procedures return values only via VAR parameters, while function procedures should return

a single result.

253 Actual value parameter not assignment compatible with formal

Since a formal value parameter is treated as a local variable to which the value of the actual

parameter is assigned at procedure entry, the same compatibility rules as for assignment

statements apply. Some special cases: the second parameter of INC and DEC must be

assignment compatible with either INTEGER or CARDINAL, depending on the type of

the �rst parameter; the second parameter of ROTATE and SHIFT must be assignment

compatible with INTEGER.

See error 258 for discussion of assignment compatibility.

254 Actual variable parameter type not identical to formal

Since a formal variable parameter allows direct access to the corresponding actual parameter,

the compatibility requirements are strict | actual and formal must be of identical type. Note

that identical means the same named type | it is name equivalence which is required, not

just structural equivalence.

255 Actual variable parameter must be a variable

Since an actual variable parameter may be altered by a procedure, it must be a variable.

Constants could not be altered, and expressions have no memory location to hold the updated

value.

Also returned if the argument of ADR is not a variable.

256 Actual parameter corresponding to open array formal not an array

With the exception of the universally conformable ARRAY OF WORD and ARRAY OF

BYTE, open array parameters are compatible only with actual parameters which are arrays

of the appropriate type.

257 Incompatible open array element type

An open array formal parameter has an actual which is an array, but of the wrong element

type.

258 Expression not assignment-compatible with variable

Assignment compatibility is required in an actual assignment statement, and also between

the initial and �nal values of a FOR loop and the control variable.

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 106

Assignment compatibility is de�ned as follows: identical types are compatible; INTEGER

and CARDINAL are compatible; a subrange is compatible with its host type; strings are

compatible with string variables of equal or greater length.

259 Return value not assignment-compatible with function type

The value RETURN ed by a function procedure must be assignment compatible (see error

258) with the declared result type of the function.

260 Designator is not a function variable name

A variable used in the style of a call to a function variable (e.g. b in a := b(...);) is not a

function variable.

261 Selectors not permitted on set type name

Components of set variables cannot be `selected' by array indexing, record �eld extraction or

pointer dereferencing.

262 HIGH may only be applied to open array parameters

The built-in function HIGH applies only to open array formal parameters. For normal array

parameters, the upper bound is known from the type. If general size information is required,

the SIZE or TSIZE functions should be used.

263 Expression is not of type CHAR

The operand of standard function CAP must be CHAR.

264 Name of qualifying module clashes in outer scope

The name of this nested module, which is visible in the enclosing scope, has already been

used there for some other purpose.

265 Enumeration constant name clashes in this scope

This enumeration value name has already been used in the current scope. Note that the error

message quotes the o�ending name in the case where only the enumeration type name was

explicitly imported, but the resulting import of each of the value names caused the conict.

266 Name clashes with an enumeration constant name

This is a more speci�c version of error 203: the name you have used is already used in this

scope, as the name of a value of an enumeration type. Since it is easy to overlook enumeration

names, this speci�c error highlights the problem. The clashing name may also have entered

the scope by importation of its type name.

267 Duplicate case selector in this range

Each case branch selector must occur only once, so that the statements to be performed are

uniquely determined. Have you included this value in a range, as well as this occurrence?

268 Operand not of signed numeric type

The arithmetic negation operator (unary or pre�x minus) can only be applied to operands

which are of signed type; it is illegal on a CARDINAL operand, or any non-numeric operand.

Note that binary or in�x minus may be applied to CARDINAL operands; thus for CARDI-

NAL a and b the expression a� b is valid, while �b+ a is not.

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 107

269 Operand(s) not of Boolean type

The single operand of NOT, or either operand of AND or OR, must be Boolean.

270 Operand(s) not of numeric type

Arithmetic operators apply only to numeric operands.

271 Operand(s) not of whole number type

The operators DIV, MOD, REM and `/' apply only to INTEGER or CARDINAL operands,

implementing whole number arithmetic.

272 Operand may not be compared

Structured types such as arrays and records cannot be compared. Given your understanding

of the elements of the structure, you must write an appropriate Compare procedure.

273 Proper inclusion operator not defined for sets

Only <= and >= inclusion operators are de�ned for sets. If you wish to test for proper

inclusion, replace a < b by ((a <= b)AND(a <> b)).

274 This type may only be compared for (in)equality

The only comparison operators de�ned for types ADDRESS, WORD, BYTE, POINTER

TO ..., PROCEDURE, and opaque types are `=' and `<>'. If you believe a meaning can be

attached to other comparisons, you must �rst coerce or cast to an arithmetic type, on which

those operations are allowed.

275 Right operand or first parameter not of set type

The set membership operator IN testsmember IN set; thus the right operand must be of some

set type. The built-in include and exclude procedures INCL and EXCL have parameters (set,

member); thus the �rst parameter must be of some set type.

276 Exported enumeration constant clashes in outer scope

Another variation of the problem reported by error 265: when you export an enumeration

type you also export the name of each value of the type. One of those names has already

been used in the scope into which you are exporting the type.

277 Procedure in !LIBRARY module calls non-library procedure

A module with the !LIBRARY pragma assures the compiler that it does not perform direct

or indirect recursion, thus allowing the compiler to make optimizations. This assurance is

invalidated if a procedure in the module calls a procedure in another module and that other

module does not guarantee !LIBRARY.

278 EXIT not within a LOOP

The EXIT statement exits from the nearest enclosing LOOP statement, continuing execution

with the statement after the LOOP. This EXIT statement is not within any LOOP.

279 FOR loop control variable may not be modified

Consistent with its use as the control of a count-controlled loop, a FOR loop variable may

not be modi�ed. Thus, it may not be assigned a value, or passed as a variable parameter to

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 108

a procedure which could then modify it. If you wish to pass the value of the control variable

as a VAR parameter, copy it to another variable.

280 Name is not a module name

The name from which you have tried to IMPORT is known, but is not an external module

name.

281 Expected proper procedure, not function

The de�nition of this procedure speci�ed that it was a proper procedure (i.e., not a function

procedure). The implementation conicts by specifying a function result type.

282 ALLOCATE not known in this scope

A call to NEW is treated as a call to ALLOCATE, with the appropriate size. There is

no visible ALLOCATE | probably because it was not imported from Storage, though a

compatible local ALLOCATE procedure will su�ce.

283 DEALLOCATE not known in this scope

Similar to error 283.

284 Not a valid substitution for NEW or DISPOSE

The ALLOCATE or DEALLOCATE procedure used to implement NEW or DISPOSE must

be of the form PROCEDURE(VAR ADDRESS, CARDINAL).

285 Type ranges do not overlap at all

In checking assignment compatibility and the need for range checking, the special case of a

complete mismatch of two subranges causes this error.

286 Selectors not permitted on type identifier

Types cannot be `selected' by array indexing, record �eld extraction or pointer dereferencing.

Only variables of the appropriate structured types can be so selected, leading to components

of those variables.

287 Nested procedures are not valid as proc-values

It is a language restriction that procedures assigned to procedure variables must be declared

at the module level; i.e., they cannot be declared within procedures. (Actually, they must be

at the outer level of a static module, that is one not nested within a procedure.)

288 Implementation restriction: case range too large

The implementation restriction on the range of case labels from smallest to largest is 1024. If

you wish to use a larger range, IF statements to select appropriate ranges can be used, and

are likely to be more compact.

289 Duplicate identifier in export list of module

This identi�er being exported has already been mentioned in the export list.

290 Actuals passed to amorphous formals must be simple

Amorphous open array formal parameters (i.e. ARRAY OF WORD or ARRAY OF BYTE)

will accept almost any actual parameter; however, there are some restrictions imposed by

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 109

the implementation. Any variable is ok; expressions in general are not. Some special non-

variables are allowed: string constants (including single characters), set constants, and set

expressions which occupy more than a word and so are held in temporary variables.

If you wish to pass one of the prohibited objects to an amorphous open array parameter,

simply assign it to a local variable and pass that.

For ARRAY OF WORD, there is of course the extra restriction that the actual must be word

aligned and a multiple of word size (see error 307).

291 No literals except sets and strings allowed here

As described under error 290, it is an implementation restriction that in general constants

are not allowed as actual parameters corresponding to amorphous open array formals. For

similar reasons, it is not allowable to CAST constants to other types, except in these special

cases.

292 Values cast to structured types must be simple

Values to be cast to structured types must have an address at runtime. Expressions are in

general not acceptable | see error 290 for details and avoidance procedures.

293 Value is too large to cast to unstructured type

Unstructured types occupy one word or less; you are not allowed to CAST larger objects to

these types, as there is no de�nition of which bits are to be retained and which discarded.

294 Actual parameter must be a pointer type

The �rst parameter of the SYSTEM procedures INCADR, DECADR, DIFADR must be

either a pointer type or ADDRESS ; so must the second parameter of DIFADR.

The parameter of NEW and DISPOSE must be a pointer type (not ADDRESS).

295 Right operand must be greater than zero

The whole number modulo arithmetic operators DIV and MOD are de�ned only for positive

right operands. For negative right operands, the quotient remainder operators `/' and REM

are available, but note that they have di�erent semantics from DIV and MOD for negative

left operands.

296 FOR loop control variable is threatened in uplevel access

The loop control variable has been threatened inside the body of a nested procedure. Threat-

ening actions include being assigned to, passed as a VAR-mode parameter, having its address

taken, or subjected to INC or DEC.

297 FOR loop control variable is threatened

The loop control variable has been threatened inside the body of the loop. Threatening

actions include being assigned to, passed as a VAR-mode parameter, having its address

taken, or subjected to INC or DEC.

298 Feature not implemented -- read latest release notes

Currently:

299 Multi-dimensional open array parameters not implemented yet

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 110

ARRAY OF ARRAY OF ... is not implemented, pending de�nition of what actual parameters

are compatible.

300 Incompatible keys for symbol files

When IMPORT ing from various modules, repeated references to the same module are checked

for the same version keys. Thus, for example, if module A imports frommodules B and C, and

each of B and C in turn imported from D, the two references to D must be consistent. Note

that this check also applies to an IMPLEMENTATION module's implicit import of its own

DEFINITION �le; thus if the implementation of A imports from B, and B's DEFINITION

imported from A, the check for consistency between the current A and that via B is made.

You must determine which module(s) are obsolete, and recompile in the appropriate order.

Use of the {V (super-verbose) option of gpm is strongly recommended.

301 Wrong name in symbol file

The module name in the symbol �le (quoted in the error message) is not the expected one

(that in the IMPORT statement). With the symbol �le name normally derived from the

module name, this will occur only if another �le has been renamed to the symbol �le name.

It is common to rename object �les (or better still, use the {f option) when there are several

alternative implementations, but you should never rename a symbol �le.

302 Linker name is not unique

Since linker names are constructed from the �rst 10 characters of the module name followed

by the �rst 20 characters of the exported procedure or variable name, it is possible for

clashes to occur within a compilation unit, where the full names would not clash. Thus,

for example, procedure FilesMod001.WriteToLog�leAndStdError would produce the linker

name FilesMod00_WriteToLogfileAndStd. This name would clash with the name formed

for the procedure FilesMod002.WriteToLog�leAndStdOut. Clearly, avoidance of module and

exported procedure / variable names with long common pre�xes will prevent this problem.

This problem does not arise for non-exported names, since gpm itself takes account of all

characters of identi�ers no matter how long.

Note that further clashes may arise at build time, due to names constructed in independent

compilation units.

303 Fatal circular import through this module

This DEFINITION module indirectly imports itself. This can only occur if it imports from

another module which in turn imports from an earlier version of the module being compiled.

304 Target object has zero storage size

The object pointed to by the parameter of NEW has zero size. If the default ALLOCATE

procedure was the result of the substitution for NEW, a run-time error would result.

305 Header file not found

It is assumed that the C header �le for the runtime system �le m2rts.h exists somewhere in

the path given by the environment variable $M2SYM.

306 Library name has bad format in header file

This error is not used in the current version of gpm .

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 111

307 Expression cannot be aligned with specified type

When an expression is CAST to another type, the alignment requirements of the new type

must not be any greater than the old. Since CAST does not generate any code, the old bit

pattern, in its old alignment, must be usable as a value of the new type. Thus, for example, an

ARRAY [1..4] OF CHAR cannot be cast to CARDINAL, since the required word alignment

cannot be guaranteed.

308 Ident was already uplevel referenced in this scope

The identi�er being declared has already been used in the current scope to reference an object

in an enclosing scope | thus there is a conict between the apparent reference to its previous

(uplevel) meaning and the attempted new meaning.

309 Procedure declared FORWARD was not elaborated

A procedure declared using the FORWARD keyword was not elaborated within the same

block. It is a rule that the forward declaration and its elaboration must be in the same

lexical scope.

Remember that forward declarations are not required for gpm. The keyword is only recog-

nized in order to provide source code compatability with those Modula compilers which have

single-pass restrictions.

310 Array exceeds machine size limit

The C compiler limits the size of an array, and its index range, to less than 2

31

. Even for

sizes just less than 2

31

, the loader fails with an obscure error. gpm sets an experimentally-

determined limit of (2

31

� 90000), and rejects any larger sizes with this error. In gpm-pc

this limit is 64k-bytes.

Note that this is of rather academic interest, since the executable �le must be large enough

to hold the array in question, and such a 2 gigabyte �le would very likely �ll the �le system.

See warning 496.

311 Parameter name was repeated

The previous procedure declaration had two formal parameters with the same name

312 Expression must be a designator

The �rst parameter to the exception handler procedure CALL must be the designator of a

visible procedure, but (unlike the usual case with procedure parameters) need not be declared

at level-0.

313 Constructor has too few elements

Value constructors for arrays and records must have exactly the correct number of elements,

taking into account the multiplicity of values which appear with the BY repeatCount con-

struct.

314 Constructor has too many elements

Value constructors for arrays and records must have exactly the correct number of elements,

taking into account the multiplicity of values which appear with the BY repeatCount con-

struct.

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 112

315 Ranges not allowed in record or array constructors

Ranges (constructor elements of the form expression .. expression) are only allowed in set

constructors. They are not permitted in record or array contructors.

316 Replicators only allowed for array constructors

Replicator clauses (constructor elements of the form expression BY repeatCount) are only

allowed in array constructors. They are not permitted in record or set constructors.

The plausible use of replicators in records with repeated elements of the same kind is not

supported by ISO WG-13.

317 Repetition count must be positive

The repetition count in an array constructor must be a positive, constant value. Probably it

does not make any sense unless it is a non-zero, positive, constant value.

Check that you have gotten the order of expressions correct. The left-hand-side of the

BY is the expression value which you wish to replicate, the right-hand-side is the number of

times which you want it repeated.

318 Illegal assign of INTERFACE proc with open array

Procedures from INTERFACE modules with open arrays have parameters passed in a dif-

ferent way to Modula procedures (no HIGH value is passed). Such procedures can only be

assigned to variables of procedure types which are also imported from INTERFACE proce-

dures.

If you really do need to assign this procedure, write a dummy interface de�nition which

exports a procedure type with a conforming parameter list. Import this procedure type

and declare the variable to be of this type. This is pretty tricky stu� | read the chapter

Interfacing to other languages before going any further.

319 Open arrays may only be accessed element by element

Open array formal parameters may only be accessed one element at a time. In cases where

all elements are to be accessed it is necessary to write code along these lines |

FOR index := 0 TO HIGH(param) DO

-- do something with param(index) ...

320 Procedure declaration nesting limit has been exceeded

Procedure declarations may only be nested 18 deep. That is 17 procedures nested inside

each other, inside some enclosing module. In counting the levels when modules are nested

inside procedures, only the levels of procedure declarations count. This is because the data

belonging to such dynamic modules shares the stack frame with the data of the enclosing

procedure.

Compared to Pascal there is little need to nest procedure declarations in Modula. Instead,

visibility of identi�ers is best controlled by the declaration of modules.

321 RETRY is not inside an EXCEPT clause

The retry statement is only allowed to be used within an except clause, in the same way in

which EXIT may only be used inside a loop.

322 Forward IMPORT not elaborated

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 113

An object IMPORTed into a local module may be declared later in the enclosing module, or

in a later local module (provided it is exported from that local module). This message will

appear at the end of the scope which is the source of the IMPORT, when the declaration has

not so occurred. (cf errors 224, 225 and 309)

323 Declaration must precede use in a declaration

Although use of an identi�er before declaration is allowed in general, it is not permitted when

that use forms part of another declaration (i.e. a use of a type identi�er). The exceptions to

the restriction are declarations of pointer and procedure types. Most violations of this rule

attract error 204 or 205; however, if an IMPORTed identi�er which has not yet been declared

is used in a declaration this message is given.

324 Expression must be compatible with control variable

Modula requires that the type of the upper bound expression of a FOR loop and the control

variable have identical types, or share host (of subrange) type. Note that this is more restric-

tive that the requirement that the lower bound be assignment compatible with the control

variable.

13.5 Warnings

495 Name or function will change next release

Where it is known that the name, functionality or formal parameters of a built-in procedure

will change in the next release this warning is given. Only a single warning is given for each

a�ected identi�er, no matter how many times they are used.

In the current release, several SYSTEM procedures are known to be changing, due to pro-

posals currently before ISO WG-13.

496 Array is very large

As explained under error 310, gpm allows arrays whose size may well embarass virtual mem-

ory management, �le system capacity, or both. Since such a large size may be unintended,

this warning is given for sizes greater than 16 megabytes.

497 Last type has zero storage size

The type used in this type or variable declaration has no useful capacity. While this is

syntactically legal and may occur deliberately in some test programs, it may also result

inadvertently from the deletion of code, or code ignored due to comment brackets.

498 Case statement has very low density

Of the range of values used by this CASE statement, less than 25% are actually referenced;

since the compiler typically implements a CASE statement as a jump table, relatively large

amounts of code may be generated. If the Modula code can be expressed as IF statements

without loss of clarity, more compact code will usually result.

499 Variant tags are ignored in this implementation

In arguments to SIZE, TSIZE, NEW and DISPOSE, variant tags may be given to specify

the size of a particular variant. gpm ignores these, and uses the size of the largest variant.

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 114

500 Symbols follow module end

It is legal to have further text following the END ModuleName. which must terminate any

compilation unit; however, since this may not have been intended, this warning is issued.

501 Obsolete syntax, colon is compulsory

Modula syntax requires that an undistinguished variant record be declared as CASE : TagType

OF ...; however, the older form CASE TagType OF ... is also accepted by gpm , with this

warning.

502 Obsolete syntax, export list is ignored

Modula no longer requires that objects be explicitly exported from de�nition modules | all

names de�ned in de�nition modules are exported automatically. The older form is simply

ignored.

503 Invalid option selection character (I,R,F,C only)

Any comment beginning with optional whitespace followed by `$' is assumed to be an option

selection. Like any comment, it has no e�ect on the meaning of the program, but nevertheless

is interpreted by the compiler as a direction to generate code which implements that meaning

in a speci�c way (if possible). The two characters following the $ must be an option selector

character and the command character; for details, see the Implementation Speci�cs Chapter.

This comment appears to be an option selector, but has meaningless option selector character.

504 Too many levels of option restoration

One of the option commands, speci�ed by `=', is to restore the option setting to its value

before the last change. If an `=' command has no corresponding change to undo, this warning

results. Note that changes nest only to a depth of 8, so that the warning may be due to an

attempt to restore the earliest of more than 8 nested changes to the same option.

505 Invalid option operator (+, -, = are valid)

The only option commands available are those speci�ed by the three operators:

+ set option on (saving previous setting, up to 8 levels)

{ set option o� (saving previous setting, up to 8 levels)

= restore option setting to value saved before last change

506 Obsolete syntax, use SYSTEM.CAST for type transfers

The syntax of the unsafe, unchecked cast from one type to another is CAST (NewType, value);

however, the older form NewType(value) is accepted.

507 Procedure is not called, assigned, or exported

Clearly, this procedure is of no use. This may be a valid state during program development,

or it may reect a procedure no longer used. It may, however, be a symptom of a mis-spelt

reference to a procedure which unfortunately happened to match another procedure.

508 No EXIT from this LOOP

This LOOP is `in�nite' since there is no EXIT or RETURN within it. This may be deliberate,

but may be an omission. Note that EXIT escapes from only the innermost enclosing LOOP,

CHAPTER 13. INTERPRETING COMPILER DIAGNOSTICS 115

so that an outer LOOP will still need an EXIT. By contrast, the use of RETURN forcibly

terminates all loops, and the procedure in which they are enclosed.

509 Priority not implemented, ignored

The module priority concept is not implemented, due to the lack of low-level access into

UNIX .

Chapter 14

Interfacing to other languages

WARNING

The creation of the foreign and interface �les which are described

here is discouraged. The creation of such modules is not di�cult,

but tends to be more error prone that modules created entirely

within the Modula system. Disadvantages include loss of the normal

Modula type security, and the bypassing of the full power of the

automatic version checking of the builder program. Furthermore,

the runtime code produced will not have the important runtime

checks which Modula includes as the default. Errors may show

themselves as error messages from the C compiler cc or from the

linker.

Despite all of these reasons, gaining access to existing software is an important

goal. Therefore, for those who wish to ignore the above warning, and who have

su�cient knowledge of both C and Modula, all the necessary details are given

here.

14.1 Introduction to the facilities

The compiler possesses special features which allow an easy interface to the standard C-

language libraries, and allow implementations to be written in other languages when that

is absolutely necessary. Such non-Modula implementations are called interface and foreign

modules. These two kinds of modules are intended for di�erent purposes, and are described

here in turn.

Interface modules provide de�nitions which allow Modula programs to access directly

the facilities of the standard system libraries. In this case the Modula names of the objects

are identical to the library names, rather than being compound names formed from module-

name and identi�er. In addition, such names obey language C's lexical rules, rather than the

somewhat more strict rules for Modula identi�ers.

Foreign modules allow for modules to possess a normal de�nition �le, and to have linker

names formed in the standard way, but may be implemented in any suitable language. Many

116

CHAPTER 14. INTERFACING TO OTHER LANGUAGES 117

of the libraries supplied with gpm are foreign modules, and are all implemented in either C

or in assembly language.

These features are based on the ability for a de�nition part to signal that its implemen-

tation will not be a normal object- and reference-�le pair. Instead, the de�nition module

signals the source of its implementation by means of a non-standard IMPORT statement.

This statement, in its simplest form, has the following format |

IMPORT IMPLEMENTATION FROM "�lename";

for a description of the most general format of the special import statement see the �nal

section in this chapter The special import statement.

14.2 Foreign de�nition part �les

Foreign de�nition parts are used to create modules which are implemented in other languages.

However, despite this fact, they have linker names which obey the normal gpm linker con-

ventions. Typically they are used when there is some particular reason for believing that an

implementation in a language other than Modula will bring some special advantage. They

are not used for interfacing to existing library codes. For a simple solution to that problem

see the next section Interface de�nition part �les.

The compilation of an implementation �le by gpm creates an object �le and a reference

�le. The reference �le contains the information which is used by build to generate the linker

script and the initialization call chain. Since the implementations of foreign modules are not

processed by gpm, no reference �le will be produced. Therefore, a di�erent mechanism must

be provided for signalling to build that the relevant object �le should be linked. This is done

by using the non-standard import statement.

Consider the following example. A module Foo is to be de�ned with an implementation

which will be written in C, and compiled into an object �le called foo.o. The foreign de�nition

�le is as follows |

(* first example of a foreign module *)

FOREIGN DEFINITION MODULE Foo;

IMPORT IMPLEMENTATION FROM "foo.o";

TYPE FZZ = ARRAY [0 .. 7] OF CHAR;

VAR fzz : FZZ;

PROCEDURE Bar(str : ARRAY OF CHAR);

END Foo.

The �rst token of this �le, FOREIGN,

1

warns the compiler that this is a foreign de�nition

module. The compiler does two things as a result: �rstly, it looks for the special import

statement, and then it ags the symbol �le as foreign, so that later processing will not search

for a reference �le.

When this �le is compiled, a symbol �le is produced in the normal way. The special

import statement causes information to be placed in symbol �le foo.syx which will cause

build to link the object �le foo.o.

1

It should be noted that FOREIGN is a context sensitive mark, rather than a keyword. The identi�er

FOREIGN may be used in the normal way even within the same program. The identi�er only has its special

meaning when it occurs immediately before the keyword DEFINITION.

CHAPTER 14. INTERFACING TO OTHER LANGUAGES 118

Foreign modules may contain procedures and functions, types, variables and constants.

The above example does not demonstrate constant de�nitions.

If a module is now written which imports module Foo, the symbol �le is read in the

normal fashion. In particular, any access to the objects of the module are checked in the

same way as if Foo was a ordinary module. Suppose, we have

MODULE FooUser;

FROM Foo IMPORT FZZ, fzz, Bar;

TYPE StrProc = PROCEDURE(ARRAY OF CHAR);

VAR alias : StrProc;

BEGIN

fzz := "help.. ";

Bar(fzz);

alias := Bar;

alias("ending");

END FooUser.

gpm will generate code to call the procedure Bar in exactly the same way as if the module

was normal. The external names will be formed in the usual way. For example, the call to

the procedure Bar will be directed to the linker symbol Foo_Bar, as is normal.

The actual parameters passed to Bar are a pointer to the array variable and the HIGH

value. Since fzz is an array of eight elements, the high value wil be 7.

A possible implementation of Foo in language C might look as follows |

/* C implementation of module Foo */

#include <stdio.h>

unsigned char Foo_fzz[8];

/* note that Modula CHAR == unsigned char */

void Foo_Bar(p,h)

unsigned char *p; unsigned h;

{

for (; h >= 0; --h, ++p) {

if (*p == 0) break;

putchar(*p);

}

}

This module can be compiled using command cc -c foo.c, in the normal way, and will

produce output �le foo.o. It will export the external symbols Foo_Bar and Foo_fzz to the

linker.

14.2.1 Points to watch

Foreign implementation modules do not have the usual facilities for automatic initialization.

The simplest solution to this problem is to generate an explicit initialization function which

may then be explicitly called from a suitable point within the importing program.

CHAPTER 14. INTERFACING TO OTHER LANGUAGES 119

Notice that the C compiler has no way of checking that the implementation conforms to

the interface promised by the de�nition �le. Programmers thus bear an increased level of

responsibility for ensuring correctness. In particular, the conformance of the formal parameter

list in the foreign de�nition and the formal parameter list in the foreign implementation should

be checked most carefully, as should the actual linker names generated.

Finally, the conformance between the types used in C and the types declared in the

de�nition should be checked using the information in the chapter Implementation speci�cs.

In complex cases, such as C functions returning records structures, it may be useful to check

the C intermediate code output of an importing �le by using the gpm {S option.

14.3 Interface de�nition part �les

Interface de�nition parts are used to allow Modula programs to access the facilities of li-

braries written for C or other language systems. Unlike the case of foreign de�nition modules

described earlier, the names which appear in the de�nition part �le are exactly the names as

they are known to the UNIX linker.

Consider the following example which provides an interface to the hyperbolic trigonomet-

ric functions of the mathematics library.

INTERFACE DEFINITION MODULE Hyperbolic;

IMPORT IMPLEMENTATION FROM "-lm";

PROCEDURE sinh(x : REAL) : REAL;

PROCEDURE cosh(x : REAL) : REAL;

PROCEDURE tanh(x : REAL) : REAL;

END Hyperbolic.

The �rst token of this �le, INTERFACE,

2

warns the compiler that this is an interface def-

inition module. The compiler does several things as a result: �rst, it looks for the special

import statement, and then it ags the symbol �le as an interface symbol �le, so that later

processing will not search for a reference �le. As well as this, the mark tells the compiler to

treat the de�ned names literally, so that the external name of function sinh is sinh, and not

the Hyperbolic_sinh which would otherwise be expected.

Open array parameters in interface de�nition �les work di�erently than is the case within

the Modula system. Procedures from interface de�nition modules with open array parameters

do not have corresponding HIGH values passed to them. Note carefully that this is in

constrast to the case with foreign de�nition �les, which obey Modula parameter passing

conventions.

Finally, the occurrence of the special mark warns the compiler to relax the lexical con-

ventions for identi�er names so that strange C identi�ers such as __X_X__" are permitted.

2

It should be noted that INTERFACE is a context sensitive mark, rather than a keyword. The identi�er

INTERFACE may be used in the normal way even within the same program. The identi�er only has its special

meaning when it occurs immediately before the keyword DEFINITION.

CHAPTER 14. INTERFACING TO OTHER LANGUAGES 120

Under normal circumstances such an identi�er would provoke a lexical error 9. This re-

laxation of naming rules applies also to any modules which import an interface de�nition

(otherwise they wouldn't be able to reference objects with names such as __X_X__).

When the �le in the example is compiled, a symbol �le is produced in the normal way.

The special import statement causes information to be placed in symbol �le foo.syx which

will cause build to search the library libm.

14.3.1 Open arrays and interface de�nitions

Functions in C handle arrays in a di�erent (and less secure) way than does Modula. In C,

arrays formals are expected to receive a pointer to the element type as actual parameter, and

the length of the array is signalled in some other way, such as the occurrence of an Ascii.null

byte.

gpm understands this convention, and will suppress the passing of the usual HIGH value

to interface procedures. As an example, an interface to the standard C library function

strcmp could be de�ned as follows |

INTERFACE DEFINITION MODULE StrCompare;

(* no special import statement needed *)

TYPE Result = INTEGER;

(*

* less ==> result < 0

* equal ==> result = 0

* greater ==> result > 0

*)

PROCEDURE strcmp(s1, s2 : ARRAY OF CHAR) : Result;

END StrCompare.

In this case, any call to StrCompare.strcmp will create a call to the external function with

linker name strcmp. Such a call will have only two parameters passed to it, instead of the

usual four. The two parameters correspond to the C declaration

int strcmp(s1,s2)

unsigned char *s1, *s2;

{

...

Note that the actual library function strcmp may expect the two arguments to be arrays

of signed characters, while gpm expects characters to be unsigned. Users should carefully

consider the implications of this fact if they are using 8-bit character sets in a mixed language

environment.

The reason that no special import statement is required in this example is that the

function strcmp comes from the library libc which is always searched anyway. In e�ect there

is always an implicit special import statement equivalent to

IMPORT IMPLEMENTATION FROM "-lc";

CHAPTER 14. INTERFACING TO OTHER LANGUAGES 121

14.3.2 Points to watch

As well as the usual points which apply to foreign modules, the following point needs to be

considered.

Interface modules do not expand names to create compound names which include the

module name. There is thus a greater possibility of names from interface modules colliding

with each other, and with local symbols of importing modules. Extra care may thus be

needed, and a watch kept for possible linker error messages.

Because of the di�erent way of handling open arrays, there are restrictions on the assign-

ment of interface procedures to procedure variables. These restrictions apply to the passing

of interface procedures as actual parameters to procedures. Details of these restrictions are

given in the following subsection.

14.3.3 Interface procedures and procedure variables

Because interface procedures have open arrays passed to them in a di�erent way to ordinary

procedures, a potential insecurity could arise. Suppose unrestricted assignment of interface

procedures to procedure variables was permitted. In particular, suppose that some procedure

variable contains a procedure value, and the procedure is to be called. The compiler has no

simple way of knowing whether the last value assigned to the variable designated a normal

procedure or an interface procedure. Short of making all procedure variables carry along

a tag value, there is no solution to this problem. Assignments to procedure variables are

therefore restricted to avoid this ambiguity.

The simple rule is |

Procedures with open array formal parameters which are imported

from interface modules may only be assigned to variables of procedure

types which are also imported from interface modules.

Procedures with open array formal parameters which are declared in

non-interface modules may only be assigned to variables of procedure

types which are also declared in non-interface modules.

In e�ect, the rules for assignment compatability of procedure types with open array formal

parameters is augmented by the rule that the source and destination types must both have the

interface attribute, or neither must have the attribute. gpm checks all procedure assignments

for this rather subtle property, and issues error 318 in cases of violations.

Getting around the restriction

Suppose that it is wished to use the function strcmp in a Modula program, and the procedure

is to be assigned to a procedure variable. The following declarations will not work.

FROM C_Strings IMPORT strcmp;

TYPE CompProc = PROCEDURE(ARRAY OF CHAR;

ARRAY OF CHAR) : INTEGER;

VAR compare : CompProc;

...

compare := strcmp; (* this is not a valid assignment *)

**** ^ Semantic error 318 ****

CHAPTER 14. INTERFACING TO OTHER LANGUAGES 122

In order to allow the assigment, the procedure variable must be of a type which is also

imported from an interface module (but not necessarily the same one as the procedure value

comes from). Thus if it really is necessary to assign this procedure, a dummy interface

de�nition must be produced which exports a conforming procedure type.

INTERFACE DEFINITION MODULE CompProcDef;

TYPE CompProc = PROCEDURE(ARRAY OF CHAR;

ARRAY OF CHAR) : INTEGER;

END CompProcDef;

The previous example is now completed by importing this type, and declaring the procedure

variable to be of the type.

FROM C_Strings IMPORT strcmp;

FROM CompProcDef IMPORT CompProc;

VAR compare : CompProc;

...

compare := strcmp; (* this IS a valid assignment *)

Notice that logically it is impossible to declare a procedure variable which may contain

either normal or interface procedures with open array formal parameters. For procedure

types which do not have open arrays there is no such problem.

14.4 The special import statement

The special import statement is used to send information to build in cases where the usual

reference �le is not created by gpm . This information consists is of two possible kinds

� object �les which need to be included in the linker script

� libraries which need to be searched

The special import statement allows any number of each of these data to be speci�ed. The

syntax of the special import statement is as follows |

specialImport ! \IMPORT IMPLEMENTATION FROM" litstring `;'.

litstring ! `"' element f `&' elementg `"'.

element ! object-�le-name

j `{'library-name.

library names start with a minus sign, while �lenames do not.

Note that since the string is a Modula literal string token it cannot extend over a linebreak

with the current Modula conventions for strings. All tokens in the string may be separated

by spaces, except that there must be no space between the minus sign and the library name.

This is the normal UNIX convention.

When build creates its linker script, all the object �le names from all of the modules in

the program occur �rst, and are followed by all the library names. Thus the order of libraries

and object �le declarations within a particular interface module does not matter. The e�ect

of the two versions of the following special import statement is the same.

CHAPTER 14. INTERFACING TO OTHER LANGUAGES 123

IMPORT IMPLEMENTATION FROM "foo.o & -lm";

IMPORT IMPLEMENTATION FORM "-lm & foo.o";

Both will cause foo.o and {lm to appear in the linker script, in that order.

14.4.1 Where can the special import statement appear?

The special import statement may occur anywhere before the �rst de�nition in the de�nition

�le. If may occur before any other imports, after other imports, or in the middle of other

imports. It is probably a good plan to place the special import �rst, in the interests of

visibility.

14.4.2 Declaring name aliases

In some systems it may be desirable to access system call facilities which have names which

cannot be expressed even using the relaxed lexical rules which apply to INTERFACE de�-

nitions. For example, in Apollo Domain systems the system-calls have names which include

dollar signs ($).

The following mechanism has been decided to handle such cases. The interface de�nition

module may include a name-alias pragma. This pragma is of the form |

(* !ALIAS modulaName = "_$illy_name$_" *)

The string on the right may be any literal string at all. Internally the de�ned object, which

might be a variable or a procedure, is referred to by the de�ned name (modulaName in the

above example). In the intermediate code, the external name is taken from the string. It is

still the responsibility of the creator to ensure that the interface for procedures is declared to

have the correct parameter mode. In the case of Apollo Domain, for example, all parameters

are passed by reference in system calls. Thus in this case, all formal parameters which are

not arrays must be de�ned as being of VAR mode.

These facilities are not needed in UNIX based implementations, which have C-language

bindings to all the system-call facilities. However, this section is included to spell out the

mechanism which will be used in all cases where an extension is required. The next release

of the Apollo version will capture this feature.

Chapter 15

Coroutines

gpm provides a coroutine library as speci�ed in Wirth's PIM. ISO WG-13 has proposed a

slightly di�erent library, with somewhat enhanced (and somewhat incompatible) features. In

due course gpm will support the new model also, but will continue to ensure compatibility

for existing programs which use the traditional library.

15.1 Introduction to coroutines

The coroutine facilities of Modula-2 allow multi-threaded programs to be constructed. In such

programs, several threads may be at various stages of execution at the same time. These

threads are quasi-concurrent. That is, only one thread is actually active at any one time, but

by interleaving the execution of the various threads all may progress apparently in parallel.

The use of couroutines allows certain unique forms of program organization which are rather

under-utilized in current practice, probably since few languages support coroutine primitives.

In particular, coroutines form a natural foundation for simulation programs. Program threads

are sometimes also known as lightweight processes, since they provide some of the functionality

of UNIX processes, but are many, many orders of magnitude less costly in execution time.

Execution of each coroutine is explicitly suspended by transferring control to another

coroutine. Each coroutine has its own activation stack at runtime, and these stacks are

explicitly created and initialized by a call to the procedure Coroutines.NEWPROCESS.

Programs which do not use the coroutines library, so-called single-stack programs have

little need to perform stack overow testing. Typically, several hundred megabytes of virtual

memory are available for expansion of the stack segment of such programs, although it is

usual for UNIX�s process size limit to be exceeded well before this. Programs which use

the coroutines library have a separate stack for each coroutine, suggesting the prudent use

of stack overow testing. The facilities provided for this are also available for single-stack

programs, although the default continues to be for stack overow testing to be disabled.

15.1.1 The Coroutines library

The coroutines library is an ordinary library in the sense that no knowledge of the library

is required by the compiler. It is implemented in assembly language and uses the usual

FOREIGNmechanism. The library must be explicitly imported by user programs, in keeping

124

CHAPTER 15. COROUTINES 125

with the proposals of ISO WG-13. However, this version implements the old coroutines model

exactly as speci�ed by Wirth.

The source code of the implementation is included in the gpm distribution. The im-

plementation is written in the assembly language of the target computer architecture. This

code is extremely dependent on the exact procedure calling conventions of the Modula and

C compilers, and is tightly coupled to the facilities of the runtime system. Modi�cation of

this code, except as suggested by any future upgrade notices, is not recommended.

15.1.2 Procedure NEWPROCESS

The procedure NEWPROCESS initializes a new coroutine and computes various static at-

tributes. In particular the call of the procedure speci�es the code body which the coroutine

will execute, and the size and address of the workspace which it will use.

PROCEDURE NEWPROCESS (code : PROC; (* body of coroutine *)

space : ADDRESS; (* ptr to workspace *)

size : CARDINAL; (* size of workspace *)

VAR this : Coroutine); (* returned coroutine *)

The �rst parameter

The �rst actual parameter of the procedure call must designate a parameterless procedure

value, that is a PROC. The actual parameter must thus either be a procedure of this type,

or a procedure variable of this type.

1

The second and third parameters

The second actual parameter is of Coroutine or of SYSTEM.ADDRESS type. It is a pointer

to the workspace which the coroutine will use. The memory to which this value points must

have been allocated prior to the call, either by a call to Storage.ALLOCATE or by using the

a statically declared array of suitable size. It is strongly recommended that space obtained

from the storage allocator be used as workspace. The third parameter simply states the

workspace size.

How much workspace is required?

The workspace has three components. They are the coroutine state vector, the private soap-

space, and the normal coroutine private stack. The state vector is only a few hundred bytes

in size. The size of the soap-space is determined by the environment variable SOAPSIZE in

a similar way to that used for single stack programs. However, there is no lower limit to the

size of soap for coroutines. This is in contrast to the situation with main programs which

always get at least 4096 bytes no matter how small the variable is.

1

The use of parameters which are procedure variables is unusual. However, the creation of a pool of

coroutines whose bodies may be spec�ed at runtime is an interesting technique. It allows Modula to come

close to providing for dynamically speci�ed processes.

CHAPTER 15. COROUTINES 126

All of the remaining workspace is available as stack space for the coroutine. The procedure

sets a stack overow limit exactly 512 bytes from the end of the workspace

2

. This safety

zone provides space for cleanup procedures (which will execute in the context of the failed

coroutine) to run to completion successfully.

Programs which do not require any stack space at all will thus need workspace of approx-

imately (SOAPSIZE + 1024) bytes. With the system defaults this will be about 5000 bytes.

For typical programs, a size of 10 000 bytes is probably more realistic. In the unusual case

where a very large number of coroutines are to be created, it is recommended that the soap-

size be reduced to a very small value and workspaces of as little as 1000 bytes be allocated.

Remember that the size of soap is determined at build time, not at compile time.

New runtime error messages

If a coroutine (other than the main process) ends \normally" the following error message is

produced.

**** m2rts: coroutine ended without TRANSFER ****

In the event that the workspace stack limit has been exceeded, and stack overow testing

was used in the procedures of the coroutine body, the following message is produced.

**** m2rts: stack limit has been exceeded ****

A typical example

In the following program two coroutines are created.

MODULE CoTest;

IMPORT SYSTEM;

FROM Storage IMPORT ALLOCATE;

FROM Coroutines IMPORT

Coroutine, NEWPROCESS, TRANSFER;

VAR adr : SYSTEM.ADDRESS;

init, c1, c2 : Coroutine;

...

BEGIN

ALLOCATE(adr,10000); (* get workspace *)

NEWPROCESS(Proc1,adr,10000,c1);

ALLOCATE(adr,10000); (* get workspace *)

NEWPROCESS(Proc2,adr,10000,c2);

...

TRANSFER(init,c1); (* init is main process *)

...

END CoTest.

2

gpm-pc does not have SOAP and only reserves 200 bytes of safety zone. In the PC implementation, the

minimum workspace size is about 400 bytes

CHAPTER 15. COROUTINES 127

15.1.3 Procedure TRANSFER

The two actual parameters to TRANSFER are both of Coroutine type, and both are of VAR

mode. Prior to the call of TRANSFER, the second parameter designates the variable of

Coroutine type which identi�es the coroutine which is to be activated (or resumed, as the

case may be). The �rst parameter, designates the variable which after the transfer identi�es

the coroutine which has just been suspended.

PROCEDURE TRANSFER (VAR thisCo : Coroutine; (* current saved here *)

VAR destCo : Coroutine); (* target to activate *)

In a typical example of usage, each newly created coroutine will have a variable associated

with it by the call of NEWPROCESS. One further variable is declared to identify the implicit

main coroutine. In the previous example, init identi�es the main coroutine, and c1, c2 are

the new coroutines.

Because of the details of the TRANSFER semantics, it is valid (although unusual) to use

the same variable for both actual parameters. In a program with just two coroutines such a

single variable can be arranged to always designate the other process. In this case, the call of

TRANSFER has the meaning `resume other coroutine'. Here is the skeleton of an example

of this unusual structure.

VAR adr : SYSTEM.ADDRESS;

other : Coroutine;

PROCEDURE Proc1;

BEGIN

...

TRANSFER(other,other); (* "resume" *)

...

END Proc1;

BEGIN

ALLOCATE(adr,10000); (* get workspace *)

NEWPROCESS(Proc1,adr,10000,other);

...

TRANSFER(other,other); (* "resume" *)

...

END CoTest.

Transfer speed

On RISC architectures, the speed of coroutine transfers tends to be fairly slow, often being a

factor of 10 or more slower than a procedure call. This is an inherent property of these machine

organizations, and arises from the comparatively large processor state, due to the typically

large size of the register �les. As an example, mips R2000 based machines require about 14.5

�sec to perform a transfer. This implies that no more than approximately 50 000 transfers

per second may be expected. The situation is even worse with the SPARC architecture which

requires register windows to be saved.

Appendix A

Debugging with gdb | getting

started

A.1 Introduction

Several of the native code versions of gpm use gdb as the standard debugger. This provides

portability, since gdb works in essentially the same way on each of the platforms on which it is

available, apart from some minor di�erences inherent in the di�erent machine architectures.

Gdb is the standard debugger from the Free Software Foundation (FSF). Gdb is not part

of the gpm distribution, and must be obtained separately, from one of the usual freeware

sources. Some versions of gpm, such as gpm-solaris use the vendor's own assembler, but

still produce the symbol table information which is required for gdb to work. In the case of

gpm-linux and gpm-djgpp the Modula-2 system uses the FSF's assembler gas in the same

way as FSF's C-compiler gcc does.

Gdb is a symbolic debugger, which is to say that it knows about the names and structures

of various data elements in the program. Variables may be referred to by name, and in the

case of aggregates, components of structures may be accessed by name or by index. Gdb

understands Modula-2's record, array, pointer, enumeration and subrange types. It also

understands a subset of the Modula-2 syntax of expressions, so that components of values

may be referred to by the familiar syntax.

Although gdb is a symbolic debugger, it does work with the representation of data, rather

than with the abstractions which appear in our program source codes. For example, when we

communicate with gdb we need to take account of the fact that parameters of VAR mode are

actually pointers to the corresponding parameter. Thus it is di�cult to use such a debugger

for any of the more complex tasks without at least being aware of some of the issues of data

representation which the language itself hides away.

In principle, gdb could be used on programs with multiple coroutines, through the light-

weight thread support facility. However, this has not been implemented in the current version.

If gdb is used on a program with multiple coroutines, only the state of the currently executing

coroutine can be examined.

All of the examples in this introduction have been copied from the output of a gpm-

solaris system called \grange" running Solaris 2.3, and gdb 4.12. There may be minor

di�erences of detail with other versions.

128

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 129

A.1.1 Preparing a program for debugging

Programs compiled with gpm can be compiled with more or less information available for

the assistance of the debugger. Programs compiled with the {g command line ag (the \g-

ag") have full debugger support. For some platforms, gdb can extract useful amounts of

information from programs which have not been compiled using the g-ag, but this varies

from platform to platform.

Using the g-ag has some penalties at runtime. The size of the executable �le on disk may

be increased by as much as 50%, although the size in memory does not necessarily increase.

As well, the use of the g-ag is incompatible with some of the optimizations which gpm uses

so that programs compiled with the g-ag may also run slower by a small factor.

In general, if a large program is being debugged, only the modules of interest need to be

compiled with the g-ag. This strategy may be used to limit the amount of recompilation

which is required to provide complete debugging support. However, if some modules have

debugging information, and other modules do not, this needs to be taken into account when

examining stack traces, for example.

A.1.2 Name-munging and gpm

Recall that Modula-2 does not require that procedure names be unique within a program.

Indeed, two modules may even export procedures with the same name. The standard linker

programs require however that all globally visible symbols (such as exported procedures)

must have globally unique names. Thus gpm modi�es the names of all exported procedures

and variables so as to make the names unique. It does this by munging the names in the

following way.

The external name is formed by taking the module name, and truncating to 10

characters. The object name is similarly truncated to 20 characters, and the two

parts connected by an underscore character. The overall e�ect is to produce an

external name which has a similar appearance to the quali�ed name for the same

object.

Thus the familiar procedure WriteString from module InOut would have quali�ed name

InOut.WriteString and external (munged) name InOut_WriteString. Similarly, the munged

name for GenSequenceSupport.InitCursor would be GenSequenc_InitCursor.

With the g-ag, gpm un-munges the names, so that the names which are known to the

debugger are the unquali�ed names which the original program contained. In the presence

of name clashes gdb can usually tell which object is required, since it understands the �le

structure of the original program.

Thus, if a program has been compiled with some modules using the g-ag, and others

without, then the stack trace may have a mixture of munged and unmunged names. This

should seldom cause any confusion.

The body part of separately compiled modules, that is, the part after the last BEGIN

in a compilation unit, is called the initialization part. It is so called because it is used to

initialize any state which the module encapsulates. So far as the programmer is concerned,

these body parts do not have names , since they cannot be explicitly called. Instead, they are

automatically called, in the approriate order, by the startup code which is generated by the

build program. These initialization entry points thus do have linker names, which in this

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 130

Modula-2 name Linker name gdb name

(only with g-ag)

Entry point of module

GpFiles

no name InitGpFiles GpFiles

Main module entry

Example1

no name StartExample1 Example1

Procedure exported

from InOut

InOut.Write InOut_Write Write

Non-exported proce-

dure from Example1

StrOut not visible StrOut

Variable exported from

InOut

InOut.Done InOut_Done Done

Non-exported variable

from Example1

arr not visible arr

Local variable from

Example1

ix not visible ix

Figure A.1: Munged and un-munged names

case are invented by gpm itself. These synthetic names sometimes appear during debugging.

The rule which is used by gpm for generating these names is to concatenate the string `Init'

with the module name. In the case of main modules, the body part entry point is named

StartModuleName. If a module is compiled with the g-ag, then the entry point name is

known to the debugger simply as ModuleName.

Table A.1 gives examples of all the synthetic names generated by gpm, and how they

appear to the linker and debugger.

A.2 Post-mortem debugging with gdb

On most UNIX systems, when a program terminates abnormally, a complete image of the

memory of the program is written to disk as the �le core. This image is called the \core

dump". gdb can be used to examine such core dumps, in order to �nd out information

about the program at the time of termination. Because an abnormally terminated program

is commonly described as having \died", such examination of the memory image is usually

called post-mortem debugging.

In this section, only the basics of post-mortem debugging are treated. However, many of

the data examination facilities described later will work correctly on core �les as well as on

executing programs.

A.2.1 Examining the procedure call chain

Perhaps the most important information which a programmer wishes to know after a pro-

gram has crashed, is exactly where the ow of control was when the program crashed. This

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 131

information is often supplied by the gpm runtime system, even without the presence of a

debugger. For example consider the following (erroneous) program |

1 MODULE Example1;

2 IMPORT InOut;

3

4 PROCEDURE StrOut(str : ARRAY OF CHAR);

5 VAR ix : CARDINAL;

6 BEGIN

7 ix := 0;

8 WHILE str[ix] <> "" DO

9 InOut.Write(str[ix]); INC(ix);

10 END;

11 END StrOut;

12

13 VAR arr : ARRAY [0 .. 10] OF CHAR;

14

15 BEGIN

16 arr := "hello world";

17 StrOut(arr);

18 END Example1.

When we compile and run this program we get the following result |

grange> gpm example1

grange> build example1

grange> example1

**** gp.rts: index error: 11 not in [0 .. 10] ****

Abort(coredump)

The runtime system has signalled an index error. The index has reached 11, when the upper

bound of the array is 10. In this case it is not hard to see which array bound has been

exceeded, since there is only one in this simple example. However, we might like to know why

it has been exceeded. Is it not a fact that Modula-2 places a nul byte at the end of strings?

1

So, let us have a look at the core dump. We start up the debugger, with the name of the

program to be debugged as the �rst argument. If we are examining a core �le, we give this

�lename as a second argument.

grange> gdb example1 core

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.

GDB 4.12 (sparc-sun-solaris2.3),

Copyright 1994 Free Software Foundation, Inc...

Core was generated by `example1'.

Program terminated with signal 6, Aborted.

1

No, as a matter of fact Modula-2 doesn't always do this. Read on...

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 132

procfs (find_procinfo): Couldn't locate pid 0

#0 0xef7956c8 in _soapLim ()

(gdb)

The debugger starts by printing out its copyright notice, and is now ready to accept com-

mands. The prompt is the string (gdb).

Since we are interested in the control path which lead to the crash we ask for a stack

back-trace, with the command `bt'.

(gdb) bt

#0 0xef7956c8 in _soapLim ()

#1 0x126f4 in _catcher ()

#2 0x125f0 in _gp_iTrpLHU ()

#3 0x139f0 in StrOut ()

#4 0x13a8c in StartExample1 ()

#5 0x129ac in _gp_Init ()

#6 0x1202c in main ()

(gdb)

The top three procedures are part of the operating system or the runtime system of gpm,

and have to do with printing the error message and halting the program. In this particular

example the runtime startup procedure _gp_Init called the body part of Example1, which

called the non-exported procedure StrOut . This last procedure has called the index error

procedure _gp_iTrpLHU.

2

Notice that since the module was compiled without the g-ag it

is the munged names which appear in the stack back-trace, and that no line numbers or

parameter values are known to gdb. Notice also that although the procedure StrOut is

unknown to the linker, as shown in table A.1, the name is still able to be printed in the stack

trace.

Gdb is able to display this information because it is able to locate the procedure return

information on the runtime stack image in the core �le. However, some versions of gpm do

not create stack frames unless it is absolutely necessary, and hence sometimes may not be

able to even produce a stack backtrace without the g-ag.

If we repeat the previous example, but compile with the g-ag then we �nd the following |

grange> gpm -g example1.mod

grange> build example1

grange> example1

**** gp.rts: index error: 11 not in [0 .. 10] ****

Abort(coredump)

grange> gdb example1 core

...

(gdb) bt

#0 0xef7956c8 in _soapLim ()

#1 0x126f4 in _catcher ()

#2 0x125f0 in _gp_iTrpLHU ()

2

Just in case you were wondering, the procedure name indicates that this is an index trap procedure, which

is passed Low and High bounds as well as the trapped value, which is interpreted as an Unsigned value.

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 133

#3 0x139f4 in StrOut (str=0x27ed0, str$hi1=10) at example1.mod:9

#4 0x13a94 in Example1 () at example1.mod:17

#5 0x129ac in _gp_Init ()

#6 0x1202c in main ()

(gdb)

Now we have line numbers for the procedures of the module. In the case of StrOut we also

have parameter information. Notice that the name of the main body has been un-munged,

and now is just Example1. Notice also that the second, hidden HIGH value which forms part

of an open array parameter is called str$hi1 and has the value 10. If you count the characters

in the literal string in the program you may already be able to work out why the program is

wrong.

A.2.2 Examining global and local data

In general we would like to know data values as well as knowing the procedure call chain.

Gdb allows us to print the values of global and local variables, and to ask about the types of

the various data. If a module has been compiled without the g-ag, then gdb will only be

able to �nd exported global variables, and will not know their types. In all such cases gdb

will assume that the variables are of integer type. Such exported global variables have names

which are munged by the same algorithm as exported procedure names, as shown in table

A.1

With the g-ag, gdb knows about the values and types of exported variables, non-exported

variables, and local variables of the currently selected procedure. In the case of exported

variables gdb knows both the munged and unmunged names.

Taking the same example as before, we shall examine the data of the program which is

available in the core �le. The more complicated commands used to examine data, and which

are described later, can be applied here as well.

First we shall look at the non-exported, statically allocated variable arr. After starting

gdb on the core �le we �rst ask for information about this variable using the command

`whatis' |

(gdb) whatis arr

type = CHAR [11]

(gdb)

Gdb tells us that this is an array of eleven characters. We now ask for the value of the array

to be printed |

(gdb) print arr

$1 = "hello world"

(gdb)

Now, we want to know whether or not the array actually has a nul character at the end. We

ask for the last character of the array arr [10] to be displayed |

(gdb) print arr[10]

$2 = 100 'd'

(gdb)

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 134

By now the solution to the problem is clear. The last character in the array is `d' (the 100

is the decimal value of character `d' in the Ascii collating sequence). When the array was

declared we did not leave room for the terminating nul character which StrOut assumed

would be there.

3

Let us nevertheless investigate some of the other facilities of gdb.

Looking at the stack backtrace from the last section, we would like to make StrOut the

procedure of current focus. We can do this by using the `up' and `down' commands which

move the focus to higher and lower numbered procedures on the call chain.

(gdb) bt

#0 0xef7956c8 in _soapLim ()

#1 0x126f4 in _catcher ()

#2 0x125f0 in _gp_iTrpLHU ()

#3 0x139f4 in StrOut (str=0x27ed0, str$hi1=10) at example1.mod:9

#4 0x13a94 in Example1 () at example1.mod:17

#5 0x129ac in _gp_Init ()

#6 0x1202c in main ()

(gdb) up 3

#3 0139F4H in StrOut (str=0x27ed0, str$hi1=10) at example1.mod:9

9 InOut.Write(str[ix]); INC(ix);

Current language: auto; currently modula-2

(gdb)

Gdb has printed the current line out. Also, because we have switched �les from the runtime

system (written in C) to example1.mod (written in Modula-2) it tells us that it will now

accept Modula-2 expressions.

If we do not remember the names of the local variables we can ask gdb to list the code

in the vicinity of the current position by using the `list' command, or we can just ask for

information on all local variables using the command `info locals'. If we ask for the types

of the parameters and local variable, we see the following.

(gdb) whatis str$hi1

type = CARDINAL

(gdb) whatis ix

type = CARDINAL

(gdb) whatis str

type = CHAR (*)[]

(gdb) print ix

$3 = 11

(gdb)

As we by now expect, ix has value 11, having stepped o� the end of the open array.

The type of str requires some explanation. Although gdb understands di�erent language

rules for expressions, it always prints out values and types using a variation on the style of

the language C. In this particular case it is su�cient to know that gdb is telling us that str

is a pointer to the type CHAR, or possibly the address of an array of CHAR.

4

Now, gpm

3

Of course, the procedure StdOut shouldn't be written this way. Simply lengthening the array declaration

will remove the error, but the program is still badly designed.

4

C uses the asterisk character `*' to denote \pointer to" much as Pascal uses the carat character.

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 135

passes open arrays by reference, so the value denoted by the variable is actually a pointer to

the formal parameter. We may access this in the same way that we would access a parameter

of VAR mode in gdb.

(gdb) print str^

$4 = 0x27ed0 "hello world\000"

(gdb) print str^[str$hi1]

$5 = 100 'd'

(gdb)

As can be seen, the formal parameter does have a terminating nul byte (in this case quite

by accident), but this nul does no good as it is past the end of the array as denoted by the

HIGH value.

A.3 Runtime debugging

As well as examining core dumps, gdb is also able to examine the data and control ow

of programs while they are running | well, actually while they are temporarily paused for

examination.

In order to do this we start up the program under the control of gdb, but without the

speci�cation of the core �le.

grange> gdb example1

...

(gdb)

We may run the program until it crashes, using the `run' command

(gdb) run

Starting program: /export/home/gough/wrk/example1

**** gp.rts: index error: 11 not in [0 .. 10] ****

hello world

Program received signal SIGABRT, Aborted.

0xef7956c8 in _kill ()

(gdb) bt

#0 0xef7956c8 in _kill ()

#1 0xef76c36c in abort ()

#2 0x126f4 in _catcher ()

#3 0x125f0 in _gp_iTrpLHU ()

#4 0x139f4 in StrOut (str=0x27ed0, str$hi1=10) at example1.mod:9

#5 0x13a94 in Example1 () at example1.mod:17

#6 0x129ac in _gp_Init ()

#7 0x1202c in main ()

(gdb)

With minor variations, this is now in the same situation as that when the program is started

with a core �le.

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 136

Rather more interesting is the possibility of stopping the program at selected points before

it crashes. We do this with the `break' command. We may ask for the program to be halted

at the entry point of particular procedures, or at particular line numbers. The two forms

are |

break Procedure-name

break File-name:Line-number

Then when we run the program it will halt at the speci�ed point.

The points at which we ask for the program to be halted are called the breakpoints of

the program.

(gdb) break Example1

Breakpoint 1 at 0x13a4c: file example1.mod, line 1.

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /export/home/gough/wrk/example1

Breakpoint 1, Example1 () at example1.mod:1

1 MODULE Example1;

Current language: auto; currently modula-2

(gdb)

Notice that the program has halted, and is displaying the source line of the module entry.

Just to be clear, we look at the stack backtrace.

(gdb) bt

#0 Example1 () at example1.mod:1

#1 0129ACH in _gp_Init ()

#2 01202CH in main ()

(gdb)

It is important to realise that the source code line which gdb displays is the line which is

about to be executed. In other words, you get to look at the statement before it executes, and

may inspect the data which the statement will use when you give the command to continue.

We may now step through the code, line-by-line, using either `step' (step line-by-line),

or `next' (step line-by-line, but do not step into procedures). Since in this case we do want

the control to step into StrOut we shall use `step'.

(gdb) step

16 arr := "hello world";

(gdb) step

17 StrOut(arr);

(gdb) step

StrOut (str=0x27ed0, str$hi1=10) at example1.mod:4

4 PROCEDURE StrOut(str : ARRAY OF CHAR);

(gdb)

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 137

We are now in the nested procedure. We step some more |

(gdb) step

7 ix := 0;

(gdb) step

8 WHILE str[ix] <> "" DO

(gdb) step

9 InOut.Write(str[ix]); INC(ix);

(gdb) next

9 InOut.Write(str[ix]); INC(ix);

(gdb) next

9 InOut.Write(str[ix]); INC(ix);

(gdb)

Notice that we switched to `next', since we do not want to step into the library procedure.

We can print out the values of variables after each step, in order to track progress. In fact,

we can place a breakpoint at line 9 and ask for any sequence of commands to be executed at

that point. In this case we shall ask for ix to be printed, and str [ix].

(gdb) break example1.mod:9

Breakpoint 2 at 01399CH: file example1.mod, line 9.

(gdb) commands

Type commands for when breakpoint 2 is hit, one per line.

End with a line saying just "end".

print ix

print str^[ix]

end

(gdb)

We must not forget that to gdb str is a pointer to an array, so we must use the form str^[ix]

rather than the str[ix] that we would have used in a program.

Now when we restart the program from the beginning we may step from breakpoint to

breakpoint using the command `continue' which we may abbreviate to just `c'.

5

(gdb) run

Breakpoint 1, Example1 () at example1.mod:1

1 MODULE Example1;

(gdb) c

Continuing.

Breakpoint 2, StrOut (str=0x27ed0, str$hi1=10) at example1.mod:9

9 InOut.Write(str[ix]); INC(ix);

$3 = 0

$4 = 104 'h'

(gdb) c

Continuing.

5

In fact, all of the commands which have been met so far may be shortened to just a single letter.

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 138

Breakpoint 2, StrOut (str=0x27ed0, str$hi1=10) at example1.mod:9

9 InOut.Write(str[ix]); INC(ix);

$5 = 1

$6 = 101 'e'

(gdb) c

Continuing.

Breakpoint 2, StrOut (str=0x27ed0, str$hi1=10) at example1.mod:9

9 InOut.Write(str[ix]); INC(ix);

$7 = 2

$8 = 108 'l'

(gdb)

... and after some more continuations |

(gdb) c

Continuing.

Breakpoint 2, StrOut (str=0x27ed0, str$hi1=10) at example1.mod:9

9 InOut.Write(str[ix]); INC(ix);

$23 = 10

$24 = 100 'd'

(gdb) c

Continuing.

**** gp.rts: index error: 11 not in [0 .. 10] ****

hello world

Program received signal SIGABRT, Aborted.

0EF7956C8H in _kill ()

(gdb)

In more complicated cases, it is usually possible to stop a program just before it is going to

crash, and examine all the relevant data of the statement about to be executed.

A.4 Dealing with types

Gdb is able to understand and display type information from source programs in a reasonably

complete way.

6

This type information may be extracted by using the `whatis' command.

The command takes a variable as argument, and prints the type name if the variable is of a

named type, or the type structure if the variable is anonymous.

Suppose we have the following declarations |

1 MODULE Types;

2 IMPORT CardSequences;

3

6

This section deals with more complicated data structures, and it thus unsuitable for beginning Modula-2

programmers. Skip this section at the �rst reading, at least.

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 139

4 TYPE Days = (monday, tuesday, wednesday,

5 thursday, friday, saturday, sunday);

6

7 VAR sequ : CardSequences.Sequence;

9 today : Days;

If we now query the types and values of the variables during execution of the program, we

obtain |

(gdb) whatis today

type = Days

(gdb) print today

$2 = {val = tuesday, ord = 1}

Notice that when we print out a value of an enumeration type, we are told of both the value

of the variable, and the ordinal number to which that value corresponds. In this case, since

enumeration ordinals count from zero, tuesday is the day with ordinal of one.

For the other variable we shall not only ask what type the variable is, but also what is

the structure of the type. We do this with the `ptype' (print type) command. In this case

we obtain |

(gdb) whatis sequ

type = Sequence

(gdb) print sequ

$1 = {first = 0x0, last = 0x0}

(gdb) ptype sequ

type = struct {

C_char *first;

C_char *last;

}

The Modula-2 declaration of the Sequence type is a record with �rst and last �elds of some

opaque type. Notice that gdb has printed this out in C style as a \struct", with the �elds

being of type \C_char *". This corresponds to generic pointers in that language.

In general, records in Modula-2 become structs in gdb, and enumerations are represented

internally as C unions with value and ordinal �elds. Variant records in Modula-2 are displayed

as a single structure by gdb, but a structure in which the �elds belonging to di�erent variants

will overlap. Unravelling such structures is a relatively advanced topic.

Pointer types are displayed by gdb as \TypeName *" where, as mentioned previously,

the asterisk means \pointer to". Remembering that VAR parameters are references to the

actual parameter, variable parameters of pointer types will appear as \TypeName **", that

is pointer to pointer to the type.

Array types are displayed with the number of elements shown in square brackets. Gdb is

able to handle arrays which index from minimum values other than 0. However, open array

parameters are always accessed through a pointer, since the stack o�set of such values cannot

be determined at compile time.

Subranges are not distinguished by gdb except for size. Thus a 1-byte sized subrange of

INTEGER is reported by gdb as being of 8-bit integer type Int8 . In the case of subranges

of non-numeric types, gdb reports the host-type of the subrange.

APPENDIX A. DEBUGGING WITH GDB | GETTING STARTED 140

Opaque types, as seen in the example above, are treated as pointers to language C char.

If the target type is elaborated in the implementation module, and the implementation has

been compiled with the g-ag, then we may force gdb to treat the opaque value as a pointer

to the actual target type. The syntax for this is that of the traditional typecasts of Modula-2,

now deprecated by gpm. In this form, the typename is used as the name of a type transfer

function, with the value to be typecast as the single argument to the function.

For example if we have imported the opaque type Tree, which is elaborated as a pointer

to a type TreeBlock which contains key, left and right �elds, then we may force gdb to print

the root node of the tree by the command |

(gdb) whatis tree

type = C_char *

(gdb) print TreeBlock(tree^)

$1 = {key = 25, left = 0x29e84, right = 0x29e70}

(gdb)

Notice in this case that we cast the pointed-to value to the bound type of the pointer. Once

we have cast the opaque type, we may freely browse the rest of the tree |

(gdb) whatis TreeBlock(tree^).left

type = TreeBlock *

(gdb) print TreeBlock(tree^).right^

$4 = {key = 37, left = 0x29eac, right = 0x0}

(gdb)

These expressions are not strictly legal Modula-2 syntax, as we are being permitted to perform

further selection on a value resulting from a \function call". In e�ect, we have C semantics

overlaid onto the Modula-2 syntax.

A.5 Finding out more about gdb

Gdb has its own extensive documentation, available with the `help' command. UNIX systems

typically have documentation available using the command `man gdb'. This introduction has

scarcely scratched the surface of its capabilities. Learn to use the basic commands set out

here, and then gradually add to your repetoire.

There is a short summary of the most common commands which have been found to be

useful with gpm, called Using gdb with gpm. Any peculiarities which relate to using gdb

with Modula-2 are highlighted in that document.

There is also a WWW site with full hypertext gdb manuals online, at

http://www.cygnus.com/doc/gdb/index.html

Appendix B

Using dbx to obtain a stack unwind

listing

Program termination and the coredump

When a program aborts with a runtime error, the runtime system will attempt to create a

memory coredump in a �le in the current directory called core. The debugger utility dbx

may be used to analyse this �le, in order to locate the position in the program in which the

fault occurred. The use of a coredump �le from an aborted program to diagnose the cause

of the exception is called post-mortem debugging.

The program dbx is capable of performing quite detailed analysis on coredump �les. It

may also be used as a runtime debugger, allowing programs to be executed under the control

of dbx with the setting and clearing of breakpoints. An introduction to using dbx in this way

appears in another appendix. In most cases the more detailed information is only available if

the source �le has been compiled with special options. However, the simplest, and most basic

analysis is available to all programs, provided the object �le has not been passed through the

strip utility (the strip utility removes from the object �le the symbol table information which

is needed to report procedure names). The information which is available for all non-stripped

programs is the stack unwind list. This list gives the sequence of procedure calls which gave

rise to the program abort. For this reason the information is also called the procedure call

chain.

The core dump �le may be thought of as a snapshot of the data of the program at the

instant that the exception occurred. One of the important data structures of the program is

the procedure call chain which is held on the runtime stack. This information in on a stack

so that as the procedures return in last-in-�rst-out order, the chain of procedure calls may be

retraced. The runtime stack also holds procedure local variables and actual parameters. By

\unwinding" the sequence of procedure activation records from the runtime stack, as frozen

in the coredump, the procedure call chain may be reconstructed.

141

APPENDIX B. USING DBX TO OBTAIN A STACK UNWIND LISTING 142

Example

Consider the following program.

1 MODULE Crash;

2

3 VAR array : ARRAY [0 .. 2] OF CHAR;

4

5 PROCEDURE RecurseUntilDead(x : CARDINAL);

6 BEGIN

7 array[x] := 0C;

8 RecurseUntilDead(x + 1);

9 END RecurseUntilDead;

10

11 BEGIN

12 RecurseUntilDead(0);

13 END Crash.

This program, as the name of the procedure hints, recurses until �nally the value of the

formal parameter x causes an index bounds violation in the access to the array array.

When this program is compiled and then executed, a runtime error results.

$ gpm -g crash.mod

$ build crash

$ crash

**** m2rts: index error: 3 > 2 ****

abort - core dumped

$

The message indicates that the upper bound of the array index has been exceeded by one,

and that a core-dump �le has been produced.

The program dbx may now be started.

$ dbx crash core

dbx begins by printing information regarding the invocation and �nally gives the user input

prompt, which in this case is the string \(dbx)"

$ dbx crash core

dbx version 1.31

Type 'help' for help.

Corefile produced from file "crash"

reading symbolic information ...

[using memory image in core]

(dbx)

In this appendix the only dbx commands described are where, which produces the stack

unwind list, and quit which exits the program. There are of course many, many other

commands, and these are described in detail in the documentation which came with your

system.

APPENDIX B. USING DBX TO OBTAIN A STACK UNWIND LISTING 143

The stack unwind listing is obtained by typing `where' at the command prompt. In the

example this produces the following result.

(dbx) where

> 0 abort.abort(0x0, 0x0, 0x0, 0x0, 0x400be8) ["setjmp.s":113, 0x401eec]

1 _catcher(0x3, 0x2, 0x0, 0x0, 0x40114c) ["m2rts.c":420, 0x400f0c]

2 _ixChk(0x2, 0x0, 0x0, 0x2, 0x401168) ["m2rts.c":318, 0x400be4]

3 RecurseUntilDead(x = 3) ["crash.mod":7, 0x401148]

4 RecurseUntilDead(x = 2) ["crash.mod":8, 0x401164]

5 RecurseUntilDead(x = 1) ["crash.mod":8, 0x401164]

6 RecurseUntilDead(x = 0) ["crash.mod":8, 0x401164]

7 StartCrash() ["crash.mod":12, 0x40118c]

8 main(0x7fffeec4, 0x0, 0x0, 0x0, 0x0) ["/tmp/bld6353.c":25, 0x4002a4]

(dbx)

In this particular example the program was compiled with the {g option, and has additional

information shown which would not otherwise be present. Procedures from the �le compiled

with the {g option have the the parameters listed in symbolic form. The other routines in

the trace only have the parameter register values shown.

The program is terminated by typing in the quit command `quit'.

Reading the procedure call chain

The procedure call chain is printed by dbx in the order in which the procedure activation

records are unwound from the stack, that is, last-in-�rst-out. Each entry is in the format

called-procedure (parameters) [�lename : line-num , program-counter-value]

The list in the example shows that the last procedure called was the system procedure abort,

which causes the coredump to be produced. abort was called from _catcher, an internal

procedure of the exception handler in the gpm runtime system. _catcher is the procedure

which catches all exceptions, trapping back to the valid exception handler if there is one, or

printing a message and calling abort in the absence of a handler.

In the example, _catcher was called from _ixChk, the index range check procedure, which

in turn was called by the user's procedure RecurseUntilDead. The recursive calls of Recurse-

UntilDead were launched by the main line of module Crash. The call to the main module of

every program always has an entry point which is known to the linker by the synthetic name

Startmodule. In the event that a user de�ned symbol has an internal name which clashes

with this synthetic name, the internal name is changed by adding a pre�x.

The procedure main occurs in every call chain. main is the name of the function created by

the load builder build, which constructs the module initialization calls. If it should happen

that a program crashes during the initialization of an imported module body, then this

is recognizable because the symbol called from main has the synthetic name Initmodule.

The procedure main consists of initialization calls to the bodies of all imported modules

whose bodies are not empty, using the module name pre�xed by Init as the entry symbol.

Procedure main �nishes with a call to the body of the program module, which has an entry

symbol formed from the module name with the pre�x Start.

Notice how the line numbers in the procedure call chain correspond to the line numbers in

the program listing. The line numbers and program counter values in the chain correspond to

APPENDIX B. USING DBX TO OBTAIN A STACK UNWIND LISTING 144

the saved values, that is, the values at the point where control passes to the next procedure.

Thus in the example the main body calls the �rst invocation of RecurseUntilDead from line

12 of the �le crash.mod. The recursive calls of the procedure come from line 8, and the call

to _ixChk is hidden in line 7.

Errors and di�culties

The only signi�cant di�culty which arises in practice, occurs when a bad memory reference

has actually destroyed the procedure call chain. This sometimes occurs when a bad pointer

value has been accessed, and also when an array argument on the stack has been accessed

out of bounds. If this should occur, dbx will announce that it cannot unwind the stack data

structure in the coredump.

Although the example shown here used the {g option, it is quite satisfactory to produce

stack unwind traces without this. Information on the parameters of each call are much less

helpful, but otherwise all information shown in the stack unwind trace itself is unchanged.

In particular the �le line numbers are still present. It is as well to know that use of the {g

option is incompatible with many code optimizations, since it requires variables to be written

to memory, rather than to be held in registers. Use of this option thus causes a signi�cant

decrease in execution speed of some object codes.

Appendix C

Getting started with dbx

gpm is capable of working well with dbx in the runtime debugger mode. This appendix

sets out just enough information to get users started. For a more detailed explanation, and

for the more advanced features of dbx section 5 of the system manuals should be carefully

studied.

The following sections trace a dbx session, using a binary tree program to demonstrate

concepts. The complete code of the program is shown at the end of this appendix.

Notes : All lines in the source code should contain one statement. If more than one

statement is present on any line, results of single line stepping through the source may be

di�cult to interpret.

In all of the following, shortened forms of commands are used. The full form of the

commands, and their corresponding abbreviations are shown in a table at the end of the

section.

The example program

The example program consists of two modules. BinTree is an implmentation of a simple table

abstract data type (ADT) as a binary tree. This Module has a a matching pair of de�nition

and implementation parts. The module TestBinTree is a simple driver program to test the

other module.

Both modules should be compiled using the gpm {g option. This option ensures that

procedure parameters may be displayed in symbolic form, rather than as uninterpreted values.

To compile the program the following commands are typed at the shell prompt |

$ gpm bintree.def

$ gpm -g bintree.mod

$ gpm -g testbint.mod

$ build testbint

where the arguments are the names of the �les.

Running the program

To now run the program under the control of dbx the following commmand is entered |

145

APPENDIX C. GETTING STARTED WITH DBX 146

$ dbx testbint

The following lines will be displayed |

dbx version 1.31

Type 'help' for help

reading symbolic information...

main: Source not available

(dbx) _

The note that source is not available will occur with all programs compiled with gpm . This

is because the procedure main is a dummy procedure temporarily created by build to hold

the module initialization call chain. It is automatically deleted by build unless you specify

the persistent option. In any case, this �le is never needed since it contains no user-written

code.

Commands to dbx may now be entered at the \(dbx)" prompt. A complete list of

commands may be displayed by typing `help' or `?'.

Recording input and output

A log of input and output from dbx may be obtained by using the record commands, which

specify �les to store each log.

(dbx) ri input.dbx

[2] record input input.dbx (0 lines)

(dbx) ro output.dbx

[3] record output output.dbx (0 lines)

Setting an initial breakpoint

Breakpoints are positions in the program at which execution will be halted by dbx . Break-

points may be speci�ed in terms of line numbers or particular procedure names. In this

example a command is shown which speci�es the �lename and line-number at which the

breakpoint is to be inserted.

(dbx) stop at "testbint.mod":13

[4] stop at "testbint.mod":13

The user types the �rst line, at the prompt. The system replies with the second line verifying

that the breakpoint has been entered. The example command inserts a breakpoint at line 13

of �le testbint.mod.

Starting execution

The program may now be started with the run command. If the program requires command

line arguments these are entered on the same line, following `r'.

(dbx) r

[4] stopped at [StartTestBinTr:13 ,0x4023e4] Insert(bt1,arr[i]);

APPENDIX C. GETTING STARTED WITH DBX 147

dbx announces that it has stopped at a breakpoint. Note that dbx displays the module

name and the hexadecimal contents of the program counter register, followed by the text of

the source at line 13.

To see what has happened so far, a stack unwind listing may be obtained by typing where

or the short form `t'.

(dbx) t

> 0 StartTestBinTr() ["testbint.mod":13, 0x4023e4]

1 main(0x7fffee94, 0x0, 0x0, 0x0, 0x0) ["/tmp/bld1597.c":25, 0x4002c4]

The arrow at level 0 shows the `activation level' of the stack, that is, the active scope or

stack frame. This is usually a procedure. The most recently called procedure is numbered

zero. Procedure main appears in every program. It is created by build and consists of

initialization calls to the bodies of all imported modules. In this case there are no such calls,

because BinTree de�nes an ADT and not some object which requires initialization of its

hidden state information.

main �nishes by calling the program module body which has the name \Startmodule-

name".

Setting another breakpoint

Now to set another breakpoint | this time in a procedure.

(dbx) stop in Insert_BinTree

[5] stop in Insert_BinTree

Note the di�erence between \stop at" (or `b') which stops at a line, and \stop in" or

`bp' which stops in a speci�ed procedure. gpm names exported program procedures by

concatenating the module name and the procedure name.

Continuing after a breakpoint

To continue execution type `continue' or `c'.

(dbx) c

[5] stopped at [Insert_BinTree:19 ,0x40223c] NEW (root);

(dbx) t

> 0 Insert_BinTree(root = 0x10001df4, ch = 116) ["bintree.mod":19, 0x40223c]

1 StartTestBinTr() ["testbint.mod":13, 0x4023f8]

2 main(0x7fffee94, 0x0, 0x0, 0x0, 0x0) ["/tmp/bld1597.c":25, 0x4002c4]

The use of the stack trace command `t' shows the current activation levels. Note the param-

eters of Insert_BinTree. root is displayed as a hexadecimal value, while ch is displayed in

decimal, in this case the ASCII code for `t'. This is because root is a pointer while ch is a

character.

The type of any procedure or variable may be determined by using the `whatis' command

followed by the variable name. Unfortunately the information is displayed as a language C

type and so is of limited use when debugging a MODULA-2 program.

APPENDIX C. GETTING STARTED WITH DBX 148

Removing a breakpoint

Suppose we wish to take out a breakpoint. This may be accomplished by the following

sequence | which �rst examines the status of the session, and then asks for the removal of

the e�ect of the numbered command using the delete command.

(dbx) status

[4] stop at "testbint.mod":13

[5] stop in Insert_BinTree

[2] record input input.dbx (8 lines)

[3] record output output.dbx (13 lines)

(dbx) delete 4

(dbx) status

[5] stop in Insert_BinTree

[2] record input input.dbx (10 lines)

[3] record output output.dbx (16 lines)

The breakpoint `stop at "testbint.mod":13' which had the status number 4 has been

deleted, so that dbx will no longer trap the program at that point.

Stepping through the program execution

To continue, then print out the information about current procedure:

(dbx) c

[5] stopped at [Insert_BinTree:19 ,0x40223c] NEW (root);

(dbx) dump

Insert_BinTree(root = 0x10005004, ch = 106) ["bintree.mod":19, 0x40223c]

Note that this procedure has been called but it has yet to be executed. To execute on a

line by line basis use `step n' where n is the number of lines to be executed. The default is

1. The short form of the step command is `s'.

A line is displayed before it is executed, so to execute a series of lines `s' must be typed

after the line that we wish to execute is displayed. This means that an additional line will

be displayed as below |

(dbx) s

[Insert_BinTree:20 ,0x402248] root^.info := ch;

(dbx) s

[Insert_BinTree:21 ,0x40225c] root^.left := NIL;

(dbx) s

[Insert_BinTree:22 ,0x402270] root^.right := NIL;

(dbx) s

[Insert_BinTree:23 ,0x402284] ELSIF ORD (ch) < ORD (root^.info) THEN

APPENDIX C. GETTING STARTED WITH DBX 149

Examining variables

To print out the value of a variable the `print' or `p' command is used. Note that dbx

understands Modula's selection operators for indexing, �eld selection and pointer dereference,

f '[]', '.', '^'g, to be used

1

. The next command shows the use of the dereference

operator to select a pointer target datum.

(dbx) p root^.info

106

The speci�ed �eld contained the value 106

1

0 Variables in scopes outside the current activation

level are able to be displayed provided their names are not occluded by a more local variable

with the same name. For example the loop counter i in StartTestBinTr() may be printed as

shown.

(dbx) p i

2

To see how i changes, the loop is continued 4 times |

(dbx) c

[5] stopped at [Insert_BinTree:19 ,0x40223c] NEW (root);

(dbx) c

[5] stopped at [Insert_BinTree:19 ,0x40223c] NEW (root);

(dbx) c

[5] stopped at [Insert_BinTree:19 ,0x40223c] NEW (root);

(dbx) c

[5] stopped at [Insert_BinTree:19 ,0x40223c] NEW (root);

The stack trace now shows the recursion clearly.

(dbx) t

> 0 Insert_BinTree(root = 0x10005034, ch = 103) ["bintree.mod":19, 0x40223c]

1 Insert_BinTree(root = 0x10005014, ch = 103) ["bintree.mod":24, 0x4022c0]

2 Insert_BinTree(root = 0x10005004, ch = 103) ["bintree.mod":24, 0x4022c0]

3 Insert_BinTree(root = 0x10001df4, ch = 103) ["bintree.mod":24, 0x4022c0]

4 StartTestBinTr() ["testbint.mod":13, 0x4023f8]

5 main(0x7fffee94, 0x0, 0x0, 0x0, 0x0) ["/tmp/bld1597.c":25, 0x4002c4]

(dbx) p i

6

As expected, i is now 2 + 4 = 6

Any variable may be traced using the command `trace varname', where varname is the

name of the variable. In this case dbx informs the user at which point the variable changed

values, and prints its old and new values. However a variable cannot be traced beyond the

1

beware however of the di�culties caused by variant records (which have synthetic union �eld names), and

the normalization of arrays so as to index from 0 as expected by languge C

APPENDIX C. GETTING STARTED WITH DBX 150

end of a program, and to obtain a normal termination, the trace must be deleted from the

status list before the termination of a program.

Suppose we now wish to trace the behaviour of the recursive procedure Insert_BinTree().

Having the call chain displayed, we may change the activation level to 3 using the `func'

command:

(dbx) func 3

Insert_BinTree: 24 Insert(root^.left, ch);

If we were to now type `t' we would �nd the arrow pointing at activation level 3. We may

now print the values of this instance of Insert_BinTree |

(dbx) p root^.info

116

Since 116 > 103 (the value of ch) we would expect that ch would be inserted into the left

subtree of the tree.

(dbx) p root^.left

0x10005010

Since this value is not nil, there is a non-empty left subtree. To examine this node we may

go down one activation level (that is, toward the top of the stack.

(dbx) down

Insert_BinTree: 24 Insert(root^.left, ch);

The activation level is now 2. To check that this subtree is indeed the left branch of the subtree

we observed at level 3 we may print the value of root. Note that we cannot determine the

value of root from the parameter on the stack because it is a VAR parameter, and hence is

a reference to the value. We may thus use the dereference operator to display the value.

(dbx) p root^

0x10005010

This con�rms parameter is unchanged across procedure call.

Traversing the data structure

We could print out the values at this activation level, but we do not need to do so in order

to traverse the tree structure |

(dbx) p root^.info

106

(dbx) p root^.left^.info

105

Since ch is still less than the value held in the tree we must descend another level in the tree.

The activation level should be one, so we obtain call chain to check this.

APPENDIX C. GETTING STARTED WITH DBX 151

(dbx) down

Insert_BinTree: 24 Insert(root^.left, ch);

(dbx) t

0 Insert_BinTree(root = 0x10005034, ch = 103) ["bintree.mod":19, 0x40223c]

> 1 Insert_BinTree(root = 0x10005014, ch = 103) ["bintree.mod":24, 0x4022c0]

2 Insert_BinTree(root = 0x10005004, ch = 103) ["bintree.mod":24, 0x4022c0]

3 Insert_BinTree(root = 0x10001df4, ch = 103) ["bintree.mod":24, 0x4022c0]

4 StartTestBinTr() ["testbint.mod":13, 0x4023f8]

5 main(0x7fffee94, 0x0, 0x0, 0x0, 0x0) ["/tmp/bld1597.c":25, 0x4002c4]

Since there is only one more activation level, we would expect that there is no left subtree at

this point. That is, root^.left should have the value nil.

(dbx) p root^.left

(nil)

Tracing calls and returns

We may now go down and single step through the sequence that sets up a leaf node:

(dbx) down

Insert_BinTree: 19 NEW (root);

(dbx) s

[Insert_BinTree:20 ,0x402248] root^.info := ch;

(dbx) s

[Insert_BinTree:21 ,0x40225c] root^.left := NIL;

(dbx) s

[Insert_BinTree:22 ,0x402270] root^.right := NIL;

(dbx) s

[Insert_BinTree:23 ,0x402284] ELSIF ORD (ch) < ORD (root^.info) THEN

Since NEW has assigned a new value to root at level 0, this value should also be the value of

the activation level 1. To see if this is the case, �rst print the value of root at level 0, then

continue the single stepping until activation level 1 becomes activation level 0, that is, until

procedure return is made and the previous stack frame is discarded.

(dbx) p root^

0x10005050

now check the call chain to determine parameter of level 1

(dbx) up

Insert_BinTree: 24 Insert(root^.left, ch);

(dbx) t

0 Insert_BinTree(root = 0x10005034, ch = 103) ["bintree.mod":23, 0x402284]

> 1 Insert_BinTree(root = 0x10005014, ch = 103) ["bintree.mod":24, 0x4022c0]

2 Insert_BinTree(root = 0x10005004, ch = 103) ["bintree.mod":24, 0x4022c0]

APPENDIX C. GETTING STARTED WITH DBX 152

3 Insert_BinTree(root = 0x10001df4, ch = 103) ["bintree.mod":24, 0x4022c0]

4 StartTestBinTr() ["testbint.mod":13, 0x4023f8]

5 main(0x7fffee94, 0x0, 0x0, 0x0, 0x0) ["/tmp/bld1597.c":25, 0x4002c4]

We now go back down and single step to the end of the procedure, then step into the �rst

line of the next procedure and check the call chain.

(dbx) down

Insert_BinTree: 23 ELSIF ORD (ch) < ORD (root^.info) THEN

(dbx) s

[Insert_BinTree:27 ,0x402300] END;

(dbx) s

[Insert_BinTree:25 ,0x4022c4] ELSIF ORD (ch) # ORD (root^.info) THEN

(dbx) t

> 0 Insert_BinTree(root = 0x10005014, ch = 103) ["bintree.mod":25, 0x4022c4]

1 Insert_BinTree(root = 0x10005004, ch = 103) ["bintree.mod":24, 0x4022c0]

2 Insert_BinTree(root = 0x10001df4, ch = 103) ["bintree.mod":24, 0x4022c0]

3 StartTestBinTr() ["testbint.mod":13, 0x4023f8]

4 main(0x7fffee94, 0x0, 0x0, 0x0, 0x0) ["/tmp/bld1597.c":25, 0x4002c4]

As may be seen, the stack has been cut back by one frame. Note that to step across a

procedure call or return we use the `s' command, whereas if we wished to avoid stepping into

new procedures the command `next' or 'n' should be used.

We may now check the value of the root of the left subtree.

(dbx) p root^.left

0x10005050

It is expected value.

To run the program to the end we may remove the breakpoint and issue the continue

command.

(dbx) status

[5] stop in Insert_BinTree

[2] record input input.dbx (48 lines)

[3] record output output.dbx (75 lines)

(dbx) delete 5

Note that the program output is displayed on screen interspersed with dbx output.

(dbx) c

g i j o q r t w y

Program terminated normally

The �rst line is the program output demonstrating that the information is in an ordered

sequence.

APPENDIX C. GETTING STARTED WITH DBX 153

Quitting dbx

To exit dbx type `quit' or `q'.

(dbx)q

$ _

We are now back at the unix shell prompt.

Table of commands used in this appendix

Command Alias Description of command

record input ri records command input to nominated �le

record output ro records dbx output to nominated �le

stop at b set a breakpoint in the code produced from the

nominated �le at the nominated line

run r start execution of program

where t display trace of activation frames

stop in bp set a breakpoint at start of procedure

continue c continue execution after a breakpoint

status display status information

delete d deletes speci�ed status item

dump displays variable information for the active

procedure

step s execute a line of source text

next n execute a line in the current procedure

print p prints the value of the speci�ed designator

func f moves activation to speci�ed level on the stack

down moves activation down one level on the stack

up moves activation up one level on the stack

quit q terminates dbx

Listings of example program

1 DEFINITION MODULE BinTree;

2 TYPE BType;

3 PROCEDURE Create (VAR root: BType);

4 PROCEDURE Insert (VAR root: BType; ch: CHAR);

5 PROCEDURE Display (root: BType);

6 END BinTree.

APPENDIX C. GETTING STARTED WITH DBX 154

1 MODULE TestBinTree;

2 FROM InOut IMPORT Write,Read,WriteString,WriteLn;

3 FROM BinTree IMPORT BType, Create, Insert, Display;

4

5 VAR bt1: BType;

6 arr: ARRAY [1..10] OF CHAR;

7 i : INTEGER;

8

9 BEGIN

10 arr := 'tjwiogqrty';

11 Create (bt1);

12 FOR i := 1 TO 10 DO

13 Insert(bt1,arr[i]);

14 END;

15 Display(bt1);

16 WriteLn;

17 END TestBinTree.

1 IMPLEMENTATION MODULE BinTree;

2 FROM Storage IMPORT ALLOCATE;

3 FROM InOut IMPORT Write;

4

5 TYPE BType = POINTER TO NodeType;

6 NodeType = RECORD

7 info : CHAR;

8 left, right : BType;

9 END;

10

11 PROCEDURE Create (VAR root: BType);

12 BEGIN

13 root := NIL;

14 END Create;

15

16 PROCEDURE Insert (VAR root: BType; ch : CHAR);

17 BEGIN

18 IF root = NIL THEN

19 NEW (root);

20 root^.info := ch;

21 root^.left := NIL;

22 root^.right := NIL;

23 ELSIF ORD (ch) < ORD (root^.info) THEN

24 Insert (root^.left, ch);

25 ELSIF ORD (ch) # ORD (root^.info) THEN

26 Insert (root^.right, ch);

27 END;

28 END Insert;

APPENDIX C. GETTING STARTED WITH DBX 155

29

30

31 PROCEDURE Display (root: BType);

32 BEGIN

33 IF root # NIL THEN

34 Display (root^.left);

35 Write (root^.info);

36 Write (' ');

37 Display (root^.right);

38 END;

39 END Display;

40

41 END BinTree.

Appendix D

Using XDB to obtain a stack

unwind listing

Program Termination and the Coredump

When a program aborts with a runtime error, the runtime system will attempt to create a

memory coredump in a �le in the current directory called core. The debugger utility xdb

may be used to analyse this �le, in order to locate the position in the program where the

fault occurred. The use of a coredump �le from an aborted program to diagnose cause of the

exception is called post-mortem debugging.

The program xdb is capable of performing quite detailed analysis on coredump �les. It

may also be used as a runtime debugger, allowing programs to be executed under the control of

xdb with the setting and clearing of breakpoints. In most cases the more detailed information

is only available if the source �le has been compiled with special options. However, the

simplest, and most basic analysis is available to all programs, provided the object �le has

not been passed through the strip utility. strip removes symbol �le information from the

�le which is needed to report procedure names. The information which is available for all

programs is the stack unwind list. This list gives the sequence of procedure calls which gave

rise to the program abort. For this reason the information is also called the procedure call

chain.

The core dump �le may be thought of as a snapshot of the data of the program at the

instant that the exception occurred. One of the important data structures of the program is

the procedure call chain which is held on the runtime stack. This information is on a stack

so that as the procedures return in last-in-�rst-out order, the chain of procedure calls may be

retraced. The runtime stack also holds procedure local variables and actual parameters. By

\unwinding" the sequence of procedure activation records from the runtime stack, as frozen

in the coredump, the procedure call chain may be reconstructed.

Example

Consider the following program |

1 MODULE Crash;

2

156

APPENDIX D. USING XDB TO OBTAIN A STACK UNWIND LISTING 157

3 VAR array : ARRAY [0..2] OF CHAR;

4

5 PROCEDURE RecurseUntilDead(x : CARDINAL);

6 BEGIN

7 array[x] := 0C;

8 RecurseUntilDead(x + 1);

9 END RecurseUntilDead;

10

11 BEGIN

12 RecurseUntilDead(0);

13 END Crash.

This program, as the name of the procedure hints, recurses until �nally the value of the

formal parameter x causes an index bounds violation in the access to the array array. When

this program is compiled and then executed, a runtime error results.

$ gpm -g crash.mod

$ build crash

$ crash

**** m2rts: index error: 3 > 2 ****

abort - core dumped

$

The message indicates that the upper bound of the array index has been exceeded by one,

and that a core dump �le has been produced. The program xdb may now be started.

$ xdb crash core

xdb begins by printing information regarding the invocation and �nally gives the user

input prompt, which in this case is `>'

$ xdb crash core

Copyright Hewlett-Packard Co. 1985. All Rights Reserved.

<<<< XDB Version A.07.05 HP-UX >>>>

Procedures: 2

Files: 1

Child died due to: IOT instruction.

(file unknown): _raise +0x0000001f: (line unknown)

>

In this appendix the only xdb commands described are t, which produces the stack

unwind list, T which gives the stack unwind list with more information, and quit which exits

the program. There are of course many other commands which are described in detail in the

documentation which came with your system.

As mentioned above, the stack unwind listing is obtained by typing `t' at the command

prompt. In the example this produces the following result:

APPENDIX D. USING XDB TO OBTAIN A STACK UNWIND LISTING 158

> t

0 _raise + 0x0000001f (0, 0, 0, 0x40012f66)

1 _abort + 0x0000002c (0, 0, 0, 0)

2 _catcher + 0x00000054 (0, 0, 0, 0)

3 _ixChk + 0x0000004c (0, 0, 0, 0)

4 Crash_RecurseUntilDead (x = 3) [crash.mod: 7]

5 Crash_RecurseUntilDead (x = 2) [crash.mod: 9]

6 Crash_RecurseUntilDead (x = 1) [crash.mod: 9]

7 Crash_RecurseUntilDead (x = 0) [crash.mod: 9]

8 StartCrash () [crash.mod: 13]

9 main + 0x00000028 (0, 0, 0, 0)

10 _start + 0x000000068 (0, 0, 0, 0)

In this particular example the programwas compiled with the {g option and has additional

information shown which would not otherwise be present. Procedures from the �le compiled

with the {g option have the parameters listed in symbolic form. The other routines in the

trace only have the parameter register values shown.

If the xdb command T is used, the same information is produced, but any local variables

in the procedures are shown. To demonstrate this two local variables i and j are added to

the crash program, so that the code now appears as:

1 MODULE Crash;

2

3 VAR array : ARRAY [0..2] OF CHAR;

4

5 PROCEDURE RecurseUntilDead(x : CARDINAL);

6 VAR i,j : INTEGER;

7 BEGIN

8 i := 3;

9 j := 4;

10 array[x] := 0C;

11 RecurseUntilDead(x + 1);

12 END RecurseUntilDead;

13

14 BEGIN

15 RecurseUntilDead(0);

16 END Crash.

If the program is then recompiled as before and xdb is invoked and the T command is

used the following is produced |

> T

0 _raise + 0x0000001f (0, 0, 0, 0x40012f66)

1 _abort + 0x0000002c (0, 0, 0, 0)

2 _catcher + 0x00000054 (0, 0, 0, 0)

3 _ixChk + 0x0000004c (0, 0, 0, 0)

4 Crash_RecurseUntilDead (x = 3) [crash.mod: 10]

APPENDIX D. USING XDB TO OBTAIN A STACK UNWIND LISTING 159

i = 3

j = 4

5 Crash_RecurseUntilDead (x = 2) [crash.mod: 12]

i = 3

j = 4

6 Crash_RecurseUntilDead (x = 1) [crash.mod: 12]

i = 3

j = 4

7 Crash_RecurseUntilDead (x = 0) [crash.mod: 12]

i = 3

j = 4

8 StartCrash () [crash.mod: 16]

9 main + 0x00000028 (0, 0, 0, 0)

10 _start + 0x000000068 (0, 0, 0, 0)

The xdb program is terminated by typing in the quit command q.

Reading the Procedure Call Chain

The procedure call chain is printed by xdb in the order in which the procedure activation

records are unwound from the stack, that is, last-in-�rst-out. Each entry is in the format

called-procedure (parameters) [�lename: line-num]

local variable = value

1

The list in the example shows that the last procedure called was the system procedure

raise. raise was called from abort which produces the coredump. abort was called from

catcher, an internal procedure of the exception handler in the gpm runtime system. catcher

is the procedure which catches all exceptions, trapping back to the valid exception handler

if there is one, or printing a message and calling abort in the absence of a handler.

In the example, catcher was called from ixChk, the index range check procedure, which

in turn was called by the user's procedure Crash RecurseUntilDead. The recursive calls of

RecurseUntilDead were launched by the main line of module Crash. The call to the main

module of every program always has an entry point which is known to the linker by the

synthetic name Startmodule. In the event that a user de�ned symbol has an internal name

which clashes with this synthetic name, the internal name is changed by adding a pre�x.

The procedure main occurs in every call chain. main is the name of the function created by

the load builder build, which constructs the module initialization calls. If it should happen

that a program crashes during the initialization of an imported module body, then this

is recognizable because the symbol called from main has the synthetic name Initmodule.

The procedure main consists of initialization calls to the bodies of all imported modules

which bodies are not empty, using the module name pre�xed by Init as the entry symbol.

Procedure main �nishes with a call to the body of the program module, which has an entry

symbol formed from the module name with the pre�x Start.

1

only for T command

APPENDIX D. USING XDB TO OBTAIN A STACK UNWIND LISTING 160

The line numbers in the procedure call chain correspond to the line after the procedure

call is made from the program. That is, the line number which is saved is the line where

execution must begin when the calling procedure is reactivated. In the example above the

�rst call to RecurseUntilDead is on line 12 of the program. However, line number 13 is saved

because when the StartCrash code begins execution after return from the procedure call on

line 12, execution will start at line 13. Similarly, the recursive calls to RecurseUntilDead all

occur on line 8 so line number 9 is stored. The call to ixChk is di�erent in that there will

be no return from this procedure and the call to it is hidden on line 7.

Errors and Di�culties

The only signi�cant di�culty which arises in practice, occurs when a bad memory reference

has actually destroyed the procedure call chain. This sometimes occurs when a bad pointer

value has been accessed, and also when an array argument on the stack has been accessed

out of bounds. If this should occur, xdb will announce that it cannot unwind the stack data

structure in the coredump.

Although the example shown here used the {g option, it is quite satisfactory to produce

stack unwind traces without this. Information on the parameters of each call are much less

helpful, but otherwise all information shown in the stack unwind trace itself is unchanged. In

particular the �le line numbers are still present. It is as well to know that the use of the {g

option is incompatible with many code optimizations since it requires variables to be written

to memory, rather than to be held in registers. Use of this option thus causes signi�cant

decrease in execution speed of some object codes.

Appendix E

Using adb to obtain a stack unwind

listing (HP-UX)

Program termination and the coredump

When a program aborts with a runtime error, the runtime system will attempt to create

a memory coredump in a �le in the current directory called core. On HP-UX systems the

standard UNIX utility adb may be used to analyse this �le, in order to locate the position

in the program in which the fault occurred. The use of a coredump �le from an aborted

program to diagnose the cause of the exception is called post-mortem debugging.

The program adb is capable of performing quite detailed analysis on coredump �les.

In most cases the more detailed information is only available if the source �le has been

compiled with the {g option. However, the simplest, and most basic analysis is available

to all programs, provided the object �le has not been passed through the strip utility. The

strip utility removes symbol �le information from the �le which is needed to report procedure

names. The information which is available for all programs is the stack unwind list. This list

gives the sequence of procedure calls which gave rise to the program abort. For this reason

the information is also called the procedure call chain.

The core dump �le may be thought of as a snapshot of the data of the program at the

instant that the exception occurred. One of the important data structures of the program is

the procedure call chain which is held on the runtime stack. This information in on a stack

so that as the procedures return in last-in-�rst-out order, the chain of procedure calls may be

retraced. The runtime stack also holds procedure local variables and actual parameters. By

\unwinding" the sequence of procedure activation records from the runtime stack, as frozen

in the coredump, the procedure call chain may be reconstructed.

161

APPENDIX E. USING ADB TO OBTAIN A STACK UNWIND LISTING (HP-UX) 162

Example

Consider the following program.

MODULE Crash;

VAR array : ARRAY [0 .. 2] OF CHAR;

PROCEDURE RecurseUntilDead(x : CARDINAL);

BEGIN

array[x] := 0C;

RecurseUntilDead(x + 1);

END RecurseUntilDead;

BEGIN

RecurseUntilDead(0);

END Crash.

This program, as the name of the procedure hints, recurses until �nally the value of the

formal parameter x causes an index bounds violation in the access to the array array.

When this program is compiled and then executed, a runtime error results.

$ gpm crash.mod

$ build crash

$ crash

**** m2rts: index error: 3 > 2 ****

abort - core dumped

$

The message indicates that the upper bound of the array index has been exceeded by one,

and that a core-dump �le has been produced.

The program adb may now be started.

$ adb crash

The program actually takes a second argument, but substitutes the default (core from the

current directory) if no argument is supplied. The program does not give any prompts or

indications, but waits for a command to be entered. The command to produce a stack unwind

listing is `$c'. Note that unlike the above examples, the dollar character is not the system

prompt, but is entered by the user

$c

abort() from _catcher+30

_catcher() from _ixChk+3C

_ixChk() from RecurseUntilDead+24

RecurseUntilDead() from RecurseUntilDead+34

RecurseUntilDead() from RecurseUntilDead+34

RecurseUntilDead() from RecurseUntilDead+34

RecurseUntilDead() from StartCrash+10

APPENDIX E. USING ADB TO OBTAIN A STACK UNWIND LISTING (HP-UX) 163

StartCrash() from main+28

main() from _start+14

_start() from $START$+30

adb then waits for another command.

The program is terminated by typing in the quit command `$q'.

Reading the procedure call chain

The procedure call chain is printed by adb in the order in which the procedure activation

records are unwound from the stack, that is, last-in-�rst-out. Each entry is in the format

called-procedure `() from ' calling-procedure `+' code-o�set

The list in the example shows that the last procedure called was the system procedure abort,

which causes the coredump to be produced. abort was called from _catcher, an internal

procedure of the exception handler in the gpm runtime system. _catcher is the procedure

which catches all exceptions, trapping back to the valid exception handler if there is one, or

printing a message and calling abort in the absence of a handler.

In the example, _catcher was called from _ixChk, the index range check procedure, which

in turn was called by the user's procedure RecurseUntilDead. The recursive calls of Recurse-

UntilDead were launched by the main line of module Crash. The call to the main module of

every program always has an entry point which is known to the linker by the synthetic name

Startmodule. In the event that a user de�ned symbol has an internal name which clashes

with this synthetic name, the internal name is changed by adding a pre�x.

The procedure main occurs in every call chain. main is the name of the function created by

the load builder build, which constructs the module initialization calls. If it should happen

that a program crashes during the initialization of an imported module body, then this

is recognizable because the symbol called from main has the synthetic name Initmodule.

The procedure main consists of initialization calls to the bodies of all imported modules

whose bodies are not empty, using the module name pre�xed by Init as the entry symbol.

Procedure main �nishes with a call to the body of the program module, which has an entry

symbol formed from the module name with the pre�x Start.

Errors and di�culties

The only signi�cant di�culty which arises in practice, occurs when a bad memory reference

has actually destroyed the procedure call chain. This sometimes occurs when a bad pointer

value has been accessed, and also when an array argument on the stack has been accessed

out of bounds. If this should occur, adb will announce that it cannot unwind the stack data

structure in the coredump.

It is as well to know that use of the {g compiler option is incompatible with many code

optimizations, since it requires variables to be written to memory, rather than to be held in

registers. Use of this option thus causes a signi�cant decrease in execution speed of some

object codes.

Appendix F

Using the Pro�ling Tools

(mips-architecture machines)

One of the most important tools in the tuning of application programs for maximum speed

is a runtime pro�ler. Using this tool it is possible to �nd out exactly where the program is

spending its time, so that attention may be given to seeking improvements to the code in

those parts where signi�cant bene�t may be obtained.

There are two kinds of information which are used in pro�ling: procedure call-counts,

and percentage time analysis. Gardens point modula provides a simple-to-use interface to

the standard UNIX tool prof to obtain both kinds of information. If a program is pro�led

to obtain call counts, the number of times each procedure was called during the execution of

the program is produced. This information is always exact. Percentage time analysis seeks

to �nd out what percentage of the total execution time is spent in each procedure of the

program. Because of the method of measurement, this information is statistical in nature

and is only accurate for very long-running programs.

Computers based on the mips architecture have a unique tool pixie available which

produces pro�ling information which is much more detailed and accurate than the information

provided by other systems. This chapter describes the way in which gpm interfaces with

pixie.

F.1 Getting execution time percentages

If only the percentage time distribution is required, the modules of the program are compiled

as usual, but are linked with a special version of the builder called bldprf. This version

accepts exactly the same options as build but generates a linkage to the standard UNIX

pro�ling system.

Example

Suppose it is wished to pro�le the well known dhrystone benchmark program. After compi-

lation of the modules of the program the optional version of the builder is invoked and the

program subsequently executed.

164

APPENDIX F. USING THE PROFILING TOOLS 165

$ bldprf dhry

Circular imports, initialization order is

<Dhry3> (empty body)

<Dhry2> (empty body)

$ dhry

Benchmark running...

elapsed time : 26

machine benchmarks at 19056 dhrystones per second

$

The results of pro�ling may now be analyzed by the program prof, using the command

prof �lename. This �rst example of output shows the complete output including the header.

Later examples have the headers deleted.

$ prof dhry

Profile listing generated Wed Apr 11 16:06:48 1990 with:

prof dhry

--

* -p[rocedures] using pc-sampling; *

* sorted in descending order by total time spent in each procedure; *

* unexecuted procedures excluded *

--

Each sample covers 8.00 byte(s) for 0.015% of 68.7100 seconds

%time seconds cum % cum sec procedure (file)

26.5 18.1800 26.5 18.18 StdStrings_Compare (stdstrin.mod)

15.6 10.7500 42.1 28.93 strcpy (strcpy.s)

13.4 9.2400 55.6 38.17 Dhry2_Proc1 (dhry2.mod)

13.1 9.0300 68.7 47.20 Dhry2_Proc0 (dhry2.mod)

7.1 4.8500 75.8 52.05 Dhry3_Func2 (dhry3.mod)

5.7 3.9100 81.4 55.96 Dhry3_Proc6 (dhry3.mod)

5.0 3.4200 86.4 59.38 Dhry3_Proc8 (dhry3.mod)

3.2 2.2200 89.7 61.60 Dhry3_Func1 (dhry3.mod)

2.7 1.8500 92.3 63.45 Proc4 (dhry2.mod)

2.2 1.5400 94.6 64.99 Dhry2_Proc2 (dhry2.mod)

2.2 1.5300 96.8 66.52 Dhry2_Proc3 (dhry2.mod)

1.4 0.9300 98.2 67.45 Func3 (dhry3.mod)

1.2 0.8300 99.4 68.28 Dhry3_Proc7 (dhry3.mod)

0.6 0.4100 100.0 68.69 Proc5 (dhry2.mod)

0.0 0.0100 100.0 68.70 write (write.s)

0.0 0.0100 100.0 68.71 malloc (malloc.c)

APPENDIX F. USING THE PROFILING TOOLS 166

This output shows that the dhrystone program spends about 25% of its time in the string

comparison function Compare from module StdStrings, and another 16% in the string copy

function strcpy. The other entries in the table are the various procedures of the program,

listed by their linker names as generated by gpm.

The information provided by pro�ling is statistical in nature, and may vary from run to

run. Nevertheless, for programs which run for a signi�cant length of time the statistics will

be fairly accurate. In this case there are only small variations in the percentages.

F.2 How pro�ling works

The pro�ler works by interrupting the program at every clock tick, and checking to see which

procedure is currently being executed. Since these interrupts only occur �fty or sixty times

per second of runtime, it is not possible to accurately pro�le programs which run for only a

few seconds. In such cases it may be necessary to run your program repeatedly, and average

the results of many executions.

Under unusual circumstances, where a program exhibits cyclic behavior which synchro-

nizes with the clock ticks, it is possible to get very misleading results from using prof. These

occurrences are rare, but should always be borne in mind if inexplicable results are encoun-

tered. If in doubt, repeat the experiment several times.

F.3 Basic-block counting (using pixie)

The program pixie allows pro�les to be generated which show the number of actual processor

cycles spent in each procedure of a program. It is also possible to count the calls of each

procedure, and to �nd how many of these calls originate from any particular line in the

program. Finally, it is possible to �nd out how many processor cycles are spent on each line

of the program. This information is exact.

To obtain all this information, the program to be analyzed is compiled and linked in the

normal way. No additional compiler options are used, and the normal builder program build

is used. After the program is built, the program pixie is invoked.

$ pixie -o dhry.pixie dhry

pixie registers r31, r23, and r30

oldcode 31024 bytes, new code 88756 bytes (2.9x)

$

The program takes the executable �le dhry and produces a new �le dhry.pixie. This new

�le is executed to perform the pro�ling.

The new, \pixi�ed" version of the �le is usually about three times the size of the orig-

inal. It executes correspondingly slower, producing output to two �les dhry.Addrs and

dhry.Counts.

$ dhry.pixie

Benchmark running...

elapsed time : 64

machine benchmarks at 7812 dhrystones per second

$

APPENDIX F. USING THE PROFILING TOOLS 167

The timing of this execution should be ignored, since it includes all of pixie's processing.

The true information is obtained by running the pro�ling program with the {pixie option.

Three options of prof {pixie are shown here. First, procedure cycle counts, are produced

with the {p[rocedure] option. Only the �rst few lines are shown, and most of the header

has been deleted |

Profile listing generated Wed Apr 11 16:13:02 1990 with:

prof -pixie -proc dhry

353509999 cycles

cycles %cycles cum % cycles bytes procedure (file)

/call /line

104500000 29.56 29.56 209 15 StdStrings_Compare (stdstrin.mod)

66000402 18.67 48.23 132 5 strcpy (strcpy.s)

43000085 12.16 60.39 43000085 19 Dhry2_Proc0 (dhry2.mod)

36000000 10.18 70.58 72 17 Dhry2_Proc1 (dhry2.mod)

22500000 6.36 76.94 45 19 Dhry3_Proc8 (dhry3.mod)

21500000 6.08 83.02 43 25 Dhry3_Func2 (dhry3.mod)

13500000 3.82 86.84 27 22 Dhry3_Proc6 (dhry3.mod)

12000000 3.39 90.24 8 12 Dhry3_Func1 (dhry3.mod)

8500000 2.40 92.64 17 10 Dhry2_Proc2 (dhry2.mod)

8000000 2.26 94.91 16 12 Dhry2_Proc3 (dhry2.mod)

6000000 1.70 96.60 4 8 Dhry3_Proc7 (dhry3.mod)

5500000 1.56 98.16 11 13 Func3 (dhry3.mod)

4500000 1.27 99.43 9 12 Proc4 (dhry2.mod)

...

Note that the percentages are slightly di�erent to those obtained by PC-sampling. It is

speculated that this is due to memory caching not being taken into account in the counting

of cycles.

Procedure invocation counts are obtained by using the {i[nvocations] option. The pro-

cedures in this case are ordered by number of calls. Note that in the 500 000 cycles of the

dhrystone benchmark the function Func1 is called three times per cycle: twice from procedure

Proc0 at line 141 of �le dhry2.mod, and once from Func2 at line 71 of �le dhry3.mod.

Profile listing generated Wed Apr 11 16:15:22 1990 with:

prof -pixie -i dhry

called procedure #calls %calls from line, calling procedure (file):

Dhry3_Func1 1000000 66.67 141 Dhry2_Proc0 (dhry2.mod)

500000 33.33 72 Dhry3_Func2 (dhry3.mod)

Dhry3_Proc7 500000 33.33 43 Dhry2_Proc3 (dhry2.mod)

500000 33.33 75 Dhry2_Proc1 (dhry2.mod)

500000 33.33 135 Dhry2_Proc0 (dhry2.mod)

APPENDIX F. USING THE PROFILING TOOLS 168

strcpy 500000 100.00 130 Dhry2_Proc0 (dhry2.mod)

2 0.00 37 Terminal_WriteCard (terminal.c)

1 0.00 116 Dhry2_Proc0 (dhry2.mod)

1 0.00 118 Dhry2_Proc0 (dhry2.mod)

0 0.00 19 ProgArgs_VersionTime (/tmp/bld13

0 0.00 16 ProgArgs_EnvironString (/tmp/bld

0 0.00 12 ProgArgs_GetArg (/tmp/bld13294.c

Dhry2_Proc1 500000 100.00 139 Dhry2_Proc0 (dhry2.mod)

StdStrings_Compare 500000 100.00 79 Dhry3_Func2 (dhry3.mod)

Dhry2_Proc2 500000 100.00 146 Dhry2_Proc0 (dhry2.mod)

Dhry3_Proc6 500000 100.00 73 Dhry2_Proc1 (dhry2.mod)

...

It may be noticed that this pro�le shows those procedure calls which were never exercised.

The program is thus useful for determining code coverage in program testing.

The �nal example given here is of the l[ine] option. This option shows the number of

cycles spent on each line of source text. Once again only the �rst few lines have been shown.

Things to note in the output from this example are the very high cycle counts in those parts

of the Compare function which are inside the loop which compares characters of the two

strings. In the dhrystone program, the strings which are compared are of length 20.

Profile listing generated Wed Apr 11 16:19:01 1990 with:

prof -pixie -l dhry

procedure (file) line bytes cycles %cycles

StdStrings_Compare (stdstrin.mod) 246 20 2500000 0.71

250 16 1000000 0.28

252 16 1500000 0.42

253 8 500000 0.14

255 12 1500000 0.42

256 28 3500000 0.99

258 8 19000000 5.37

259 16 18000000 5.09

260 20 36000000 10.18

261 28 20000000 5.66

284 12 1000000 0.28

strcpy (strcpy.s) 104 4 500004 0.14

110 4 500004 0.14

111 4 500004 0.14

112 4 500004 0.14

113 4 500004 0.14

114 4 500004 0.14

115 4 500004 0.14

116 4 500004 0.14

117 4 500004 0.14

118 4 500004 0.14

APPENDIX F. USING THE PROFILING TOOLS 169

119 4 500004 0.14

120 4 500004 0.14

...

F.4 Summary

Percentage time analysis is of most use for programs which have substantial execution time,

as an aid to locating the pro�table areas for code improvement. Unless the runtime is sub-

stantial, or some averaging is performed between multiple executions, the statistics produced

are of limited accuracy.

Basic block counting is a very useful technique for programs with complex control ow

since the counts can reveal information which is otherwise non-obvious. For example call

counting can determine the average number of calls to the StdStrings.Compare procedure

which are made for each call of Lookup in a binary tree based implementation of a symbol

table. At the cost of a single, much slower execution of the program, a wealth of information

is obtained for detailed tuning of the �nal code.

A word of advice

It is a common and costly mistake to attempt to optimize programs too soon. The issues

in software engineering are correctness, algorithmic elegance, and execution speed, in that

order. Without correctness, programs are untrustworthy, a bad choice of algorithm can throw

away orders of magnitude in execution speed. Only when these issues have been adequately

addressed should attention be given to the last 10 or 20% of improvement in speed which the

use of pro�ling promises.

Appendix G

Interpreting the stack unwind trace

on gpm-pc

Program completion and abnormal termination

When a program aborts with a runtime error, the runtime system will attempt to return to

DOS in an orderly fashion. Because of the unprotected nature of the hardware environment,

there are possible circumstances in which this is impossible, and the machine may \hang-up"

and require rebooting. The gpm-pc interpreter attempts to minimize the occurrence of such

events.

Inside the runtime support system, all errors are channeled into a utility procedure

__catcher which produces the error message and then calls another utility _m2_abort. Some

errors detected in the interpreter call _m2_abort directly. This last procedure attempts to

perform a diagnostic unwinding of the procedure stack before actually exiting the program.

When a typical runtime error occurs, a message of the following general form is sent to

the standard error stream |

**** m2rts: assert error: <sqrt of negative value> ****

abnormal program termination

<foreign stack frame>

RealMath_sqrt Line-num = ??, file [realmath.mod]

GetAndTestValue Line-num = 18, file [mathtest.mod]

StartMathTest Line-num = 33, file [mathtest.mod]

The �rst two lines are produced by the runtime system, and give general information about

the error, while the rest are produced by the stack unwinder.

Unwinding the stack

At any point in the execution of a program, there is a dynamic call chain. This chain is

the ordered sequence of procedures which have been called but have not yet completed.

In conventional implementations of procedural langauges such as Modula, space for local

variables is allocated on a runtime stack. Each procedure invocation in the dynamic call

chain has space allocated for its local variables and parameters on the runtime stack in a data

170

APPENDIX G. INTERPRETING THE STACK UNWIND TRACE ON GPM-PC 171

structure called a stack frame. In the case of procedures called recursively, every separate

call of the procedure has its own stack frame.

When a program crashes, it is possible to �nd out information about the state of the

program at the time of the crash by examining the information in the runtime stack. This is

done by two main methods. Either the whole memory state of the machine may be dumped

to a �le for later analysis, or some helpful information may be extracted at the time. In the

case of gpm-pc, the second approach is adopted. In UNIX versions of gpm the so-called

post-mortem analysis of core-dump �les is the normal method.

Consider the following example program |

MODULE Crash;

VAR array : ARRAY [0 .. 2] OF CHAR;

PROCEDURE RecurseUntilDead(x : CARDINAL);

BEGIN

array[x] := 0C;

RecurseUntilDead(x + 1);

END RecurseUntilDead;

BEGIN

RecurseUntilDead(0);

END Crash.

This program, as the name of the procedure hints, recurses until �nally the value of the

formal parameter x causes an index bounds violation which causes the program to terminate.

The sequence of events, when the program is run is as follows. Various procedures are called

which initialize parts of the runtime system. These return, and �nally the main module

body is called. This \procedure" is always given the synthetic name Startmodule-name,

so in this case the procedure is called StartCrash. The main module calls the procedure

RecurseUntilDead, which in turn calls itself from the second line of its code. Finally, an array

bounds violation occurs in the �rst line of RecurseUntilDead, terminating the program.

Running the program produces the following output |

C:\gpm\wrk> crash

**** m2rts: index error: 3 not in [0 .. 2] ****

abnormal program termination

<foreign stack frame>

RecurseUntilDead Line-num = 7, file [crash.mod]

RecurseUntilDead Line-num = 8, file [crash.mod]

RecurseUntilDead Line-num = 8, file [crash.mod]

RecurseUntilDead Line-num = 8, file [crash.mod]

StartCrash Line-num = 12, file [crash.mod]

The top frame on the stack at the time of the crash is a runtime support procedure, and

does not have any diagnostic information available. The next frame belongs to the �nal call

APPENDIX G. INTERPRETING THE STACK UNWIND TRACE ON GPM-PC 172

of the procedure and terminated at line number 7 which just happens to be the �rst line of

the procedure.

The three next frames are the recursive calls of the procedure with actual parameter

values of 2,1 and 0. Note that in each case the procedure was at line number 8 when it

suspended its execution by the next procedure call.

The �nal frame on the stack belongs to the module body. In this case the line number

is 12, corresponding to the fact that the call instruction is the very �rst instruction in the

procedure.

Note that any procedures which have been called and have returned are not listed in the

stack unwind. Only procedures currently active have stack frames on the runtime stack.

The stack unwinder is always able to �nd the names of the procedures on the stack, even

when they belong to coroutines other than the main one. However the module needs to be

compiled with the {g option to have the line number information stored.

Now let us consider the �rst example in more detail.

**** m2rts: assert error: <sqrt of negative value> ****

abnormal program termination

<foreign stack frame>

RealMath_sqrt Line-num = ??, file [realmath.mod]

GetAndTestValue Line-num = 18, file [mathtest.mod]

StartMathTest Line-num = 33, file [mathtest.mod]

The �rst line tells us that an assert error has been detected in the program, and the error

has the associated message sqrt of negative value. This is a very speci�c clue.

The stack unwind lines tell us that the error was detected in the procedure RealMath_sqrt

from the �le realmath.mod. This �rst is the linker name for the procedure RealMath.sqrt

from the standard library RealMath. The line number is not of practical importance, since

the source of this module is not released to users. In fact, the module has been compiled

without the {g switch, so that the no line number is shown.

The next line tells us that the sqrt procedure was called from a procedure

GetAndTestValue in the �le mathtest.mod. (The fact that the module name is not prepended

to the procedure name shows that this is not an exported procedure.) This procedure was, in

turn, called from the procedure with the synthetic name StartMathTest. This \procedure"

is the body of the main module of the program. In this case the mathtest module has been

compiled with the {g switch.

Procedures which are not implemented in D-code do not create the characteristic inter-

preter stack frames. In such cases, the stack unwinder skips over the frame, emitting the

message

<foreign stack frame>

If procedures with foreign implementations call D-code procedures, the foreign stack frames

may even appear in the middle of the stack unwind record.

Stack unwinding and coroutines

When a program crashes in a coroutine other than the main coroutine the stack unwinder

is invoked in the usual way. In this case the procedure call chain appears to start out of

nowhere, since the base of the coroutine is not a module body.

APPENDIX G. INTERPRETING THE STACK UNWIND TRACE ON GPM-PC 173

**** m2rts: assert error: <sqrt of negative value> ****

abnormal program termination

<foreign stack frame>

RealMath_sqrt Line-num = ??, file [realmath.mod]

GetAndTestValue Line-num = 18, file [cotest3.mod]

Body1 Line-num = 47, file [cotest3.mod]

<foreign stack frame>

In practice, the procedure Coroutines.NEWCOROUTINE always sets up a dummy base

frame on the stack. This frame appears to be a call from the runtime support routine

__endTrp. This deception ensures that termination of a coroutine \returns" to the trap. The

trap is responsible for producing the Coroutine ended without transfer message.

Thus the stack unwinding of crashed coroutines always appears to start with a foreign

stack frame. This is the dummy frame which points to the end trap. In the case of programs

which abort because a coroutine has ended without a transfer, the endtrap routine is all that

is left on the stack and the following characteristic message is produced |

**** m2rts: Coroutine ended without TRANSFER

abnormal program termination

<foreign stack frame>

This indicates that the procedure call chain of the coroutine has underowed, and that no

Modula stack frames are currently active.

Using the {g option

If the {g option is not used, a useful stack unwind record is still produced, with both procedure

and �lenames shown for all the procedures implemented in Modula-2. However, in order to

gain maximum debugging information it is necessary to compile with the option on.

When the option is used, the compiler places special line-marker D-codes in the object

�le. These D-codes are treated as no-op instructions by the interpreter, but enable the line

numbers to be found for an aborting program. The presence of these additional bytes in the

object �le expands the �le by a small amount (less than 2000 extra bytes in a typical 1000

line program). It also slows the execution by about 5 percent, as the dummy codes have to

be fetched and skipped. These extra overheads usually constitute a worthwhile investment

during the development of programs.

Appendix H

The PC-speci�c libraries

There are three special libraries for gpm-pc. These are Wildcards, PcProcesses and a special

version of the normal UxFiles module, which understands DOS �le attributes.

Some libraries in gpm-pc are di�erent in ways which do not a�ect the user. It is possible

that libraries which are FOREIGN in UNIX versions are implemented in Modula in the pc

version. RealInOut is an example.

Similarly, libraries which are INTERFACE in UNIX versions might be FOREIGN in

gpm-pc. This is the case for FREXP , which is implemented as part of the oating point

simulator in the interpreter of gpm-pc.

All other supplied libraries have the same de�nitions and as far as possible the same

semantics as the UNIX versions. However, the chapter in the release notes on portability

should be consulted for any other slight di�erences which are enforced by the di�erences in

the underlying operating systems.

174

APPENDIX H. THE PC-SPECIFIC LIBRARIES 175

H.1 The PcProcesses library

This library provides a mapping to the DOS system facilities for spawning of programs.

For some programs, these libraries can replace the facilities provided by UxProcesses. For

example, the driver programs build and gpm use the Spawns function to execute the compiler

(and, if necessary the editor). In the UNIX versions fork, exec and wait calls provide the

same functionality.

(* === *)

(* Preliminary library module for Gardens Point Modula *)

(* === *)

FOREIGN DEFINITION MODULE PcProcesses;

IMPORT IMPLEMENTATION FROM "pcprocesses.obj";

FROM Types IMPORT SHORTINT;

FROM SYSTEM IMPORT ADDRESS;

IMPORT BuildArgs;

PROCEDURE Spawns(comPath : ARRAY OF CHAR;

argStrn : ARRAY OF CHAR) : SHORTINT;

(* Spawns another process, and waits for return result *)

(* comPath is an absolute pathname, with extension. *)

(* argStrn is the additional arguments of the command *)

(* Arg-0 of command is comPath, others from argStrn. *)

(* Result is exit code of the spawned process *)

PROCEDURE Spawnv(comPath : ARRAY OF CHAR;

argvBlk : BuildArgs.ArgPtr) : SHORTINT;

(* Spawns another process, and waits for return result *)

(* Discards zero-th argument and concatenates the rest *)

(* to form a standard command string for Spawns. *)

(* Arg-0 of command is comPath, others from argbBlk. *)

(* Result is exit code of the spawned process *)

PROCEDURE System(command : ARRAY OF CHAR) : SHORTINT;

(* Spawns another copy of the command processor as *)

(* specified by the environment variable COMSPEC, this *)

(* executes the command. Returns non-zero on failure *)

PROCEDURE PSP() : ADDRESS;

END PcProcesses.

There are three avours for the spawn command. All of them work by releasing all memory

above the current top of the heap. The DOS exec function then spawns and executes the

APPENDIX H. THE PC-SPECIFIC LIBRARIES 176

speci�ed program. After the speci�ed program has executed, control passes back to the caller,

or parent process. All available memory is once more allocated to the parent process, so that

the parent may expand the heap to larger sizes than before the spawning operation.

System works by spawning a copy of the command processor and passing the command

parameter to that program. Ususally the commmand processor, speci�ed by the environment

variable COMSPEC is the program COMMAND.COM. This command is the simplest to use, since

the command processor automatically appends the required .bat, .com, .exe extension

and searches the speci�ed path.

In cases where it is important to give as much space as possible to the child process, one

of the Spawn family is often a better choice than System. Additionally, the Spawn functions

are able to return the exit code of the child process, but System cannot.

The Spawns function takes two strings as parameters. The �rst is the name of the program

to be spawned, while the second is the command string to be passed to the program. It is

important to realise that the �rst parameter must be an absolute pathname, unless the

�le is in the current directory. In any case, the �le must have an explicit extension such

as f:\bin\vi.exe. The second string provides the additional arguments to the spawned

program. It is commonly the case that the procedure PathLookup.FindAbsName must be

used to �nd the �le on the executable path. The overhead of including and linking this

library is very much less than the space used by an additional copy of COMMAND.COM.

The Spawnv function takes a UNIX style argument block as second parameter. The type

is a pointer to a NIL terminated array of Ascii.nul terminated character strings. The module

BuildArgs provides portable facilities for manipulating these blocks as abstract data types.

It is normal under UNIX for the �rst argument in such an argument block to be the program

name. The Spawnv function actually discards the �rst argument and concatenates the rest

to form a command line, then chains internally to the underlying Spawns function. Using

Spawns is more in the UNIX style, and will require less work to transform into a Fork and

Exec call.

Under UNIX a program, say testargs, invoked using

Exec("/usr/bin/testargs",Arg2("testargs","foo"));

will have �rst argument "testargs", and second argument "foo". By contrast, under dos,

the call

Spawnv("\usr\bin\testargs.exe",Arg2("testargs","foo"));

will have �rst argument "\usr\bin\testargs.exe", and second argument "foo". This pass-

ing of the absolute pathname to the program is the closest DOS can come to emulating the

UNIX behaviour, and only works for versions of DOS later than 3.0.

APPENDIX H. THE PC-SPECIFIC LIBRARIES 177

H.2 The DOS version of UxFiles

This library has di�erences only in the �le permission bits, which have a di�erent role under

DOS. In this case they indicate whether the �le has the archive bit set, whether it is a

directory and so on. The attributes are exactly the bits de�ned by Microsoft in the �le

control block documentation.

(* === *)

(* Preliminary library module for Gardens Point Modula *)

(* === *)

FOREIGN DEFINITION MODULE UxFiles;

IMPORT IMPLEMENTATION FROM "uxfiles.obj";

(*

* WARNING WARNING: THIS IS THE MSDOS VERSION. FILE *

* PERMISSION BITS ARE DIFFERENT TO THE UNIX VERSIONS *

*

* This module provides the low level interface to the *

* UNIX file system, it links to the library <stdio.h> *

* The user programs are protected against the UNIX *

* identifiers which are introduced in the header file *)

FROM SYSTEM IMPORT ADDRESS, BYTE;

TYPE

File;

OpenMode = (ReadOnly, WriteOnly, ReadWrite);

FilePermissionBits =

(rdOnly,hidden,system,volId,subDir,archive);

FileMode = SET OF FilePermissionBits;

FileAttrib = FilePermissionBits; (* synonyms for use by *)

FileAttSet = FileMode; (* WildCards library *)

PROCEDURE GetMode(name : ARRAY OF CHAR;

VAR mode : FileMode;

VAR done : BOOLEAN);

(* precondition : name must be a nul-terminated variable

array,or a literal string.

postcondition : if done then mode has permission bits *)

... Continued

APPENDIX H. THE PC-SPECIFIC LIBRARIES 178

PROCEDURE SetMode(name : ARRAY OF CHAR;

mode : FileMode;

VAR done : BOOLEAN);

(* precondition : name must be a nul-terminated variable

array,or a literal string.

postcondition : if done then file has permission bits *)

PROCEDURE Open(VAR f: File; (* Open an existing file *)

name: ARRAY OF CHAR;

mode: OpenMode;

VAR done: BOOLEAN);

PROCEDURE Create(VAR f: File; (* Open a new file *)

name: ARRAY OF CHAR;

VAR done: BOOLEAN);

PROCEDURE Close(VAR f: File; (* Close a file *)

VAR done: BOOLEAN);

PROCEDURE Delete(str : ARRAY OF CHAR;

VAR ok : BOOLEAN);

PROCEDURE Reset(f: File);

(* Position the file at the beginning and set to "ReadMode" *)

PROCEDURE ReadNBytes(f: File;

buffPtr: ADDRESS;

requestedBytes: CARDINAL;

VAR read: CARDINAL);

(* Read requested bytes into buffer at address *)

(* 'buffPtr', number of effectively read bytes *)

(* is returned in 'read' *)

PROCEDURE WriteNBytes(f: File;

buffPtr: ADDRESS;

requestedBytes: CARDINAL;

VAR written: CARDINAL);

(* Write requested bytes from buffer at address *)

(* 'buffPtr', number of effectively written bytes *)

(* is returned in 'written' *)

... Continued

APPENDIX H. THE PC-SPECIFIC LIBRARIES 179

PROCEDURE ReadByte(f: File; (* Read a byte from file *)

VAR b: BYTE);

PROCEDURE WriteByte(f: File; (* Write a word to file *)

b: BYTE);

PROCEDURE EndFile(f : File) : BOOLEAN;

(* returns true if an attempt has been made

to read past the physical end of file *)

PROCEDURE GetPos(f : File;

VAR p : CARDINAL);

PROCEDURE SetPos(f : File;

p : CARDINAL);

(* GetPos and SetPos get and set the file position *)

PROCEDURE AccessTime(path : ARRAY OF CHAR;

VAR time : CARDINAL;

VAR ok : BOOLEAN);

(* finds time of last access to named file *)

PROCEDURE ModifyTime(path : ARRAY OF CHAR;

VAR time : CARDINAL;

VAR ok : BOOLEAN);

(* finds time of last modification to file *)

PROCEDURE StatusTime(path : ARRAY OF CHAR;

VAR time : CARDINAL;

VAR ok : BOOLEAN);

(* finds time of last status change of file *)

END UxFiles.

APPENDIX H. THE PC-SPECIFIC LIBRARIES 180

H.3 The WildCards library

This library provides a straightforward interface to the standard DOS functions for searching

for wildcard �lenames.

(* === *)

(* Preliminary library module for Gardens Point Modula *)

(* This module is part of the gpm-pc distribution. It is *)

(* required because the DOS shell does not expand wildcards. *)

(* === *)

FOREIGN DEFINITION MODULE Wildcards;

IMPORT IMPLEMENTATION FROM "wildcard.obj";

IMPORT Types, UxFiles;

TYPE FileAttrib = UxFiles.FileAttrib;

(* rdOnly,hidden,system,volId,subDir,archive *)

FileAttSet = UxFiles.FileAttSet;

(* SET OF FileAttSet *)

TYPE FfBlk = RECORD

reserved : ARRAY [0 .. 21] OF CHAR;

fftime : Types.Int16;

ffdate : Types.Int16;

ffsize : CARDINAL;

ffname : ARRAY [0 .. 12] OF CHAR;

END;

PROCEDURE FileAttOf(ffBlk : FfBlk) : FileAttSet;

(* extracts attribute set from the given FfBlk *)

PROCEDURE FindFirst(pathNm : ARRAY OF CHAR;

attrib : FileAttSet;

VAR ffBlk : FfBlk;

VAR found : BOOLEAN);

PROCEDURE FindNext (VAR ffBlk : FfBlk;

VAR found : BOOLEAN);

END Wildcards.

Examples of use

Here is a simple program which demonstrates usage of the WildCards library. It accepts

arguments from the command line, and then �nds any �les that match these patterns in the

current directory. A more complex example on the distribution is the source code for the

APPENDIX H. THE PC-SPECIFIC LIBRARIES 181

compiler driver program gpd.mod. This �le demonstrates the use of both the WildCards and

PcProcesses libraries.

MODULE WildTest; (* demonstrates the Wildcards library *)

FROM ProgArgs IMPORT ArgNumber, GetArg;

FROM InOut IMPORT WriteString, WriteLn;

FROM Wildcards IMPORT

FileAttOf, FindFirst, FindNext, FileAttrib, FileAttSet, FfBlk;

VAR ffblk : FfBlk;

found : BOOLEAN;

count : CARDINAL;

VAR cArg : ARRAY [0 .. 79] OF CHAR;

BEGIN

FOR count := 1 TO ArgNumber() - 1 DO

GetArg(count,cArg);

WriteLn;

WriteString("Command line arg -- ");

WriteString(cArg);

WriteLn;

FindFirst(cArg, FileAttSet{subDir}, ffblk, found);

WHILE found DO

WriteString(ffblk.ffname);

IF subDir IN FileAttOf(ffblk) THEN WriteString(" <dir>") END;

WriteLn;

FindNext(ffblk,found);

END; (* while *)

END;

END WildTest.

The second example program uses the FileMode type of the DOS version of UxFiles to

print information regarding the mode of named �les. The program interactively accepts

�lenames from the user, looks up the �les, displaying their attributes if found.

The program displays the characters r a s h to indicate if the �le has the read-only,

archive, system, and hidden attributes. It is a simple exercise to combine the ideas of the two

demonstration programs to print the attributes of �les found as a result of wildcard lookups.

MODULE ModeTest;

IMPORT InOut, UxFiles;

FROM InOut IMPORT Write;

VAR str : ARRAY [0 .. 127] OF CHAR;

ok : BOOLEAN;

mod : UxFiles.FileMode;

APPENDIX H. THE PC-SPECIFIC LIBRARIES 182

index : CARDINAL;

BEGIN

InOut.WriteString("File mode-test : type a filename, ^C to exit");

InOut.WriteLn;

LOOP

InOut.WriteString(">> ");

InOut.ReadString(str);

UxFiles.GetMode(str,mod,ok);

IF ok THEN

IF UxFiles.subDir IN mod THEN

InOut.WriteString("directory");

ELSIF UxFiles.volId IN mod THEN

InOut.WriteString("volume-ID");

ELSE

IF UxFiles.rdOnly IN mod THEN Write("r") ELSE Write(".") END;

IF UxFiles.archive IN mod THEN Write("a") ELSE Write(".") END;

IF UxFiles.system IN mod THEN Write("s") ELSE Write(".") END;

IF UxFiles.hidden IN mod THEN Write("h") ELSE Write(".") END;

END;

ELSE InOut.WriteString("ModeTest: file not found");

END;

InOut.WriteLn;

END;

END ModeTest.

