
Programming with

L ogic
I nheritance

F unctions
E quations

(An Introduction)

Hassan Aı̈t-Kaci

Simon Fraser University

Intelligent Sofware Group

1

Outline

� History

� Generalities

� LIFE’s Basic Data Structure: -Terms

� Predicates

� Functions

� Sorts

� Toy Programming Examples

� Conclusion

2

History

LIFE was originally conceived ca. 1986 by Hassan

Aı̈t-Kaci and colleagues at MCC, in Austin, Texas.

� Idea:

Reconcile programming with predicate logic, func-

tions, and structured object inheritance.

� Key:

Use a universal, simple, but powerful, formal

data structure called -term.

� How?

By solving equational and entailment constraints

over order-sorted feature graphs.

3

History

Still LIFE was the first prototype of LIFE, done

at MCC in 1987-88 by David Plummer in Quintus

Prolog.

� Idea:

To experiment with the prototype to have a feel

of worth.

� Plus:

Fun to see it work, surprising convenience, fixed

the syntax.

� Minus:

Incomplete, slow, and MCC proprietary.

4

History

Wild LIFE is the successor of Still LIFE, done by

Richard Meyer at Digital’s Paris Research Labora-

tory in C.

� Idea:

Full independent reimplementation in C.

� Plus:

Much more complete, reasonably fast, good user

conveniences, convincingly solid to support se-

rious applications.

� Minus:

Interpreted, big, still incomplete (not by much).

A compiler is currently in the works...

5

History

Wild LIFE Contributors:

� Richard Meyer

90% of Wild LIFE, and the compiler

� Peter Van Roy

the missing 10%, and the compiler

� Bruno Dumant

graphics toolkit, term expansion, static analyzer

� Jean-Claude Hervé

basic X interface

� Kathleen Milsted

LIFE shell

� Andreas Podelski

theorems, theorems, theorems...

� Hassan Aı̈t-Kaci

watching the rest work and taking all the credit!

6

Generalities

LIFE is a generalization of Prolog: most Prolog

program run under LIFE.

Same syntactic conventions:

� variables are capitalized (or start with)

� other identifiers start with a lower-case letter

� the unification predicate is =

� defining Horn clauses uses :-

� the cut control operator is !

� etc.

Except for these differences:

� queries are terminated with a ?

� assertions are terminated with a .

7

	-Terms

� 42

� int

� -5.66

� real

� "a piece of rope"

� string

� foo bar

� ’%* PsyCH(a)oTic**SyMboL!’

� date(friday,13)

� date(1 => friday, 2 => 13)

� freddy(nails => long,face => ugly)

� [this,is,a,list]

� cons(this,cons(too,[]))

8

Sorts

Sorts are the data constructors of LIFE.

Sorts are partially ordered by <| in a sort hierarchy.

@ is the most general sort (>).

fg is the least sort (?).

values are sorts like all others.

9

Variables and Tags

Like Prolog, LIFE’s variables start with or an upper

case letter,

Unlike Prolog, LIFE’s variables are not restricted to

appear only as leaves of terms.

Thus, variables can be used as (reference) tags

within a -term’s structure.

They are used as explicit handles for referencing

the part of -term they tag.

These references may be cyclic; that is, a variable

may occur within a -term tagged by it.

10

Variables and Tags

Tagging of a -term t by a variable X is of the form

X:t.

If a variable occurs not as a -term’s tag but as a

simple isolated variable, it is implicitly be tagging >,

exactly as if it had been written X:@.

If the same variable needs to be constrained to be

the conjunction of two terms, it is written using the

& connective, as in X:t1&t2. This is equivalent to

writing X=t1, X=t2.

11

Disjunctive terms

A disjunctive term is an expression of the form:

{t1; ... ;tn}

n � 0, where each ti is either a -term or a

disjunctive term.

In Wild LIFE, disjunctive terms are enumerated

using a left-right depth-first backtracking strategy,

exactly as Prolog’s (and LIFE’s!) predicate level

resolution.

� A=f1;2;3g? is like A=1;A=2;A=3? where ;
signifies ‘‘or’’ in Edinburgh Prolog syntax.

� p(fa;bg). is like asserting p(a). p(b).

� write(vehicle&four wheels)? first prints

car then on backtracking will print truck.

12

Backtrackable Tag Assignment

The statement X<-Y overwrites X with Y.

The tagsX and Y reference standard (backtrackable)

 -terms.

Backtracking past this statement will restore the

original value of X.

For example:

> X=5,(X <- 6;X <- 7),write(X),nl,fail?
6
7
*** No
>

This predicate is very useful for building ‘‘black

boxes’’ that have clean logical behavior when viewed

from the outside but that need destructive assign-

ment to be implemented efficiently.

13

Sort intersection

bike <| two_wheels.
bike <| vehicle.
truck <| four_wheels.
truck <| vehicle.
car <| four_wheels.
car <| vehicle.
toy_car <| four_wheels.
rolls_royce <| car.

� two wheels ^ vehicle = bike

� four wheels ^ vehicle = fcar;truckg

� two wheels ^ four wheels =?

� rolls royce ^ car = rolls royce

� truck ^ @ = truck

14

	-Term Unification

person
|

/ \

student employee
/ \ / \

------ \ staff faculty
/ | \ \ / | \ / | \

bob piotr pablo workstudy art judy don john sheila
/ \

simon elena

student <| person.
employee <| person.

staff <| employee. workstudy <| student.
faculty <| employee. workstudy <| staff.

bob <| student. don <| faculty.
piotr <| student. john <| faculty.
pablo <| student. sheila <| faculty.

elena <| workstudy. art <| staff.
simon <| workstudy. judy <| staff.

15

	-Term Unification

X = student
(roommate => employee(rep => S),
advisor => don(secretary => S)),

Y = employee
(advisor => don(assistant => A),
roommate => S:student(rep => S),
helper => simon(spouse => A)),

X= Y?

X = workstudy
(advisor => don

(assistant => _A,
secretary => _B: workstudy

(rep => _B)),
helper => simon(spouse => _A),
roommate => _B),

Y = X.

16

Predicates

LIFE’s predicates are defined exactly as Prolog’s,

except that terms are replaced by -terms.

They are executed using -term unification.

> truck <| vehicle.

*** Yes
> mobile(vehicle).

*** Yes
> useful(truck).

*** Yes
> mobile(X),useful(X)?

*** Yes
X = truck.

17

Compatibility with Prolog

A difference with Prolog is that LIFE terms have no

fixed arity.

pred(A,B,C) :- write(A,B,C).

In (SICStus) Prolog:

?- pred(1,2,3).
123
?- pred(A,B,C).
_26_60_94
?- pred(A,B,C,D).
WARNING: predicate ’pred/4’ undefined.
?- pred(A,B).
WARNING: predicate ’pred/2’ undefined.

18

Compatibility with Prolog

In Wild LIFE:

> pred(1,2,3)?
123
*** Yes
> pred(A,B,C)?
@@@
*** Yes
A = @, B = @, C = @.
--1>
*** No
> pred(A,B,C,D)?
@@@
*** Yes
A = @, B = @, C = @, D = @.
--1>
*** No
> pred?
@@@
*** Yes

19

User interaction

Interaction with user is more flexible than Prolog’s:

Once a query is answered, a user can extend it in

the current context by entering:

hCRi to abandon this query and go back to the

previous level,

; to force backtracking and look for another

answer,

a goal followed by ? to extend this query,

. to pop to top-level from any depth.

Example:

father(john,harry).
father(john,mike).
father(harry,michael).

grandfather(X,Y) :- father(X,Z),
father(Z,Y).

20

User interaction

> grandfather(A,B)?
*** Yes
A = john, B = michael.
--1> father(A,C)?
*** Yes
A = john, B = michael, C = harry.
----2> ;
*** Yes
A = john, B = michael, C = mike.
----2> ;
*** No
A = john, B = michael.
--1> father(C,B)?
*** Yes
A = john, B = michael, C = harry.
----2> father(A,C)?
*** Yes
A = john, B = michael, C = harry.
------3>
*** No
A = john, B = michael, C = harry.
----2> .
>

21

22

Functions

LIFE’s function are defined exactly as rewrite rules

transforming -terms into -terms.

They are executed using -term matching, NOT

unification.

fact(0) -> 1.
fact(N:int) -> N*fact(N-1).

> write(fact(5))?
120
*** Yes

23

Residuation

> A=fact(B)?
*** Yes
A = @, B = @~.
--1> B=real?
*** Yes
A = @, B = real~.
----2> B=5?
*** Yes
A = 120, B = 5.
------3>
*** No
A = @, B = real~.
----2> A=123?
*** Yes
A = 123, B = real~.
------3> B=6?
*** No
A = 123, B = real~.
------3>

24

Functions

Functions are deterministic---no value guessing nor

backtracking.

Calling f(foo,bar) skips definition f(X,X) ->
... if foo and bar are non-unifiable; otherwise, it

residuates. It will use it only if, and when, the two

args are unified by the context.

Arithmetic functions are inverted---e.g., the goal

0=B-C causes B and C to be unified.

> A = F(B), F = /(2=>A), A = 5?
*** Yes
A = 5, B = 25, F = /(2 => A).

Note that here / (division) is curryed before being

inverted.

25

Currying

Currying is not the same as residuation, because

the result of currying is a function, not >.

In curryed form, f(a => X,b => Y) is:

f(a => X) & @(b => Y)

but also:

f(b => Y) & @(a => X)

Argument order is irrelevant!

> f(X,Y,Z) -> [X,Y,Z].
*** Yes
> A=f(a,3 => c)?
*** Yes
A = f(a,3 => c).
--1> A=f(2 => b)?
*** Yes
A = [a,b,c].

26

Functional variables

Functional variables are allowed.

That is, a functional expression may have a variable

where a root symbol is expected.

map(F,[]) -> [].
map(F,[H|T]) -> [F(H)|map(F,T)].

> L=M(F,[1,2,3,4])?
*** Yes
F = @, L = @, M = @~.
--1> M=map?
*** Yes
F = @~~~~, L = [@,@,@,@], M = map.
----2> F= +(2=>1)?
*** Yes
F = +(2 => 1), L = [2,3,4,5], M = map.
------3>

27

Functions

Residuation, currying, and functional variables give

functions extreme flexibility:

quadruple -> *(2=>4).

pick_arg({5;3;7}).

pick_func({quadruple;fact}).

test :- R=F(A),
pick_arg(A),
pick_func(F),
write("function ",F,

" applied to ",A,
" is ",R),

nl,
fail.

28

Functions

> test?
function *(2 => 4) applied to 5 is 20
function fact applied to 5 is 120
function *(2 => 4) applied to 3 is 12
function fact applied to 3 is 6
function *(2 => 4) applied to 7 is 28
function fact applied to 7 is 5040
*** No

29

Quote and eval

LIFE’s functions use eager evaluation. This can be

prevented using a quoting operator ‘.

> X =1+2?
*** Yes
X = 3.
--1> Y=‘(1+2)?
*** Yes
X = 3, Y = 1 + 2

Dually, a function called eval may be used to

compute the result of a quoted form.

----2> Z=eval(Y)?
*** Yes
X = 3, Y = 1 + 2, Z = 3.

Note that eval does not modify the quoted form.

Another function called evalinworks like eval but

evaluates the expression side-effecting it ‘‘in-place.’’

30

31

Arbitr-Arity

In LIFE everything is a -term!

This can be exploited to great benefit to express that

some predicates or functions take an unspecified

number of arguments.

S:sum -> add(features(S),S).

add([H|T],V) -> V.H+add(T,V).
add([],V) -> 0.

> X = sum(1,2,3,4)?
*** Yes
X = 10.
--1> Y=sum(1,2,3,4,5)?
*** Yes
X = 10, Y = 15.
----2>

32

Constrained sorts

One can attach properties to sorts: attributes or

arbitrary relational or functional dependency con-

straints.

These properties will be verified during execution,

and also inherited by subsorts.

> :: person(age => int).
*** Yes
> man <| person.
*** Yes
> A=man?
*** Yes
A = man(age => int).
--1>

33

Constrained sorts

:: vehicle(make => string,
number_of_wheels => int).

:: car(number_of_wheels => 4).

car <| vehicle.

> X=car?
*** Yes
X = car(make => string,

number_of_wheels => 4).
--1>

34

Constrained sorts

man := person(gender => male).

is sugaring for:

man <| person.
:: man(gender => male).

tree := { leaf ; node(left => tree,
right => tree) }.

is sugaring for:

leaf <| tree.
node <| tree.
:: node(left => tree, right => tree).

35

Constrained sorts

:: rectangle(long_side => L:real,
short_side => S:real,
area => L*S).

square := rectangle(side => S,
long_side => S,
short_side => S).

> R=rectangle(area => 16,
short_side => 4)?

*** Yes
R = rectangle(area => 16,

long_side => 4,
short_side => 4).

--1> R=square?
*** Yes
R = square(area => 16,

long_side => _A: 4,
short_side => _A,
side => _A).

----2>

36

Constrained sorts

:: devout(faith => F, pray_to => X)
| holy_figure(F,X).

holy_figure(muslim,allah).
holy_figure(jewish,yahveh).
holy_figure(christian,jesus_christ).

> X=devout?
*** Yes
X = devout(faith => muslim,

pray_to => allah).
--1> ;
*** Yes
X = devout(faith => jewish,

pray_to => yahveh).
--1> ;
*** Yes
X = devout(faith => christian,

pray_to => jesus_christ).
--1> ;
*** No

37

Constrained sorts
Impromptu demons:

> :: I:int | write(I," ").
*** Yes
> A=5*7?
5 7 35
*** Yes
A = 35.
--1> B=fact(5)?
5 1 4 1 3 1 2 1 1 1 0 1 1 2 6 24 120
*** Yes
A = 35, B = 120.
----2>

> :: C:cons | write(C.1), nl.
*** Yes
> A=[a,b,c,d] ?
d
c
b
a
*** Yes
A = [a,b,c,d].

38

Constrained sorts

Recursive sorts can also be defined. For example,
the (built-in) list sort is defined as:

list := {[] ; [@|list]}.

But there is a safe form of recursion and an unsafe

one:

� safe recursion: the recursive occurrence of the

sort is in a strictly more specific sort.

� unsafe recursion: the recursive occurrence of

the sort is in an equal or more general sort.

39

Constrained sorts

Example of unsafe recursion:

:: person(best_friend => person).

This loops for ever...

Temporary workaround (hmm... hack!) is to specify:

> delay_check(person)?

That will prevent checking the definition of person
if it has no attributes.

40

Constrained sorts

:: P:person(best_friend => Q:person)
| get_along(P,Q).
*** Yes
> delay_check(person)?
*** Yes
> cleopatra := person(nose => pretty,

occupation => queen).
*** Yes
> julius := person(last_name => caesar).
*** Yes
> get_along(cleopatra,julius).
*** Yes
> A=person?
*** Yes
A = person.
--1> A=@(nose => pretty)?
*** Yes
A = cleopatra(best_friend => julius,

nose => pretty,
occupation => queen).

41

Classes and Instances

It is important to relate LIFE’s concepts to concepts

that are empirically known in O-O programming, like

that of class and instance.

Classes are declared by sort definitions:

:: class(field1=>value1,
field2=>value2,
...).

Like a struct, this adds fields to a class definition.

To say thatclass1 inherits all properties ofclass2:

class1 <| class2.

42

Classes and Instances

Instances are created by mentioning the class name

in the program. For example, executing:

> X=int?

creates an instance of the class int. Each men-

tion of int creates a fresh instance. Therefore,

executing:

> X=int, Y=int?

creates two different instances of the class int in X
and Y. We can do:

> X=int, Y=int, X=56, Y=23?

This would not be possible if X and Y were the same

instance.

43

Classes and Instances

Wild LIFE assumes that mentioning a class name in

the program always creates a fresh instance that is

different from all other instances of the class.

For example:

> X=23, Y=23?

creates two different instances of the class 23.

If we have the function defined as:

f(A,A) -> 1.

then the call f(X,Y) will not fire, since X and Y are

different instances.

44

Classes and Instances

To make f(X,Y) fire, X and Y must be the same

instance.

In Wild LIFE, the only way to do this is to unify them

explicitly:

> X=23, Y=23, X=Y, write(f(X,Y))?

will write 1 (i.e., the function f will fire).

45

Hamming numbers

mult_list(F,N,[H|T]) ->
cond(R:(F*H) =< N,

[R|mult_list(F,N,T)],
[]).

merge(L,[]) -> L.
merge([],L) -> L.
merge(L1:[H1|T1],L2:[H2|T2]) ->

cond(H1 =:= H2,
[H1|merge(T1,T2)],
cond(H1 > H2,

[H2|merge(L1,T2)],
[H1|merge(T1,L2)])).

hamming(N) ->
S:[1|merge(mult_list(2,N,S),

merge(mult_list(3,N,S),
mult_list(5,N,S)))].

> H=hamming(26)?
H = [1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25]
*** Yes
>

46

Quick Sort

q_sort(L,order => O)
-> undlist(dqsort(L,order => O)).

undlist(X\Y) -> X | Y=[].

dqsort([]) -> L\L.
dqsort([H|T],order => O)

-> (L1\L2)
| (Less,More)=split(H,T,([],[]),order => O),
(L1\[H|L3])=dqsort(Less,order => O),
(L3\L2) =dqsort(More,order => O).

split(@,[],P) -> P.
split(X,[H|T],(Less,More),order => O)

-> cond(O(H,X),
split(X,T,([H|Less],More),order => O),
split(X,T,(Less,[H|More]),order => O)).

47

SEND+MORE=MONEY

solve :-
% M=0 is uninteresting:

M=1,
% Arithmetic constraints:

C3 + S + M = O + 10*M,
C2 + E + O = N + 10*C3,
C1 + N + R = E + 10*C2,

D + E = Y + 10*C1,
% Disequality constraints:

diff_list([S,E,N,D,M,O,R,Y]),
% Generate binary digits:

C1=carry,
C2=carry,
C3=carry,

% Generate decimal digits:
S=decimal, E=decimal,
N=decimal, D=decimal,
O=decimal, R=decimal,
Y=decimal,

48

SEND+MORE=MONEY

% Print the result:
nl, write(" SEND ",S,E,N,D), nl,

write("+MORE +",M,O,R,E), nl,
write("----- -----"),nl,
write("MONEY ",M,O,N,E,Y), nl,

% Fail to iterate:
fail.

decimal -> {0;1;2;3;4;5;6;7;8;9}.
carry -> {0;1}.

diff_list([]).
diff_list([H|T]) :-

generate_diffs(H,T),
diff_list(T),
H=<9,
H>=0.

generate_diffs(H,[]).
generate_diffs(H,[A|T]) :-

generate_diffs(H,T),
A=\=H.

49

Dictionary

delay_check(tree)?

:: tree(name => string,
def => string,
left => tree,
right => tree).

contains(tree(name => N,def => D),N,D).
contains(T:tree(name => N),Name,Def)

:- cond(N $> Name,
contains(T.left, Name, Def),
contains(T.right, Name, Def)).

50

Dictionary

test_dictionary :-
CN = "cat", CD = "furry feline",
DN = "dog", DD = "furry canine",

% Insert cat definition
contains(T,CN,CD),

% Insert dog definition
contains(T,DN,DD),

% Look up cat definition
contains(T,CN,Def),
nl,write("A ",CN," is a ",Def),nl,!.

> test_dictionary?

A cat is a furry feline

*** Yes

51

Primes

prime := P:int
| factors(P) = one.

factors(N) -> cond(N < 2,
{},
factors_from(N,2)).

factors_from(N:int,P:int) ->
cond(P*P > N,

one,
cond(R:(N/P) =:= floor(R),

many,
factors_from(N,P + 1))).

primes_to(N:int) :-
write(int_to(N) & prime),
nl, fail.

int_to(N:int) ->
cond(N < 1,

{},
{1;1 + int_to(N-1)}).

52

Primes

> primes_to(30)?
2: prime
3: prime
5: prime
7: prime
11: prime
13: prime
17: prime
19: prime
23: prime
29: prime

*** No
>

53

PERT Scheduling

Define the class of activity objects:

:: A:activity(duration => D:real,
earlyStart => earlyCalc(R),
lateStart => {1e500;real},
prerequisites => R:{[];list})

| !, lateCalc(A,R).

Wait until the value is an integer before assigning it:

assign(A,B:int) -> succeed | A<-B.

54

PERT Scheduling

Pass 1: Calculate the earliest time that A can start.

earlyCalc([]) -> 0.
earlyCalc([B|ListOfActs]) ->

max(B.earlyStart+B.duration,
earlyCalc(ListOfActs)).

Pass 2: Calculate the latest time that A’s prerequi-
sites can start and still finish before A starts.

lateCalc(A,[]) -> succeed.
lateCalc(A,[B:activity|ListOfActs])

-> lateCalc(A,ListOfActs)
| assign(LSB:(B.lateStart),
min(LSB, A.earlyStart-B.duration)).

55

PERT Scheduling

A sample input for the PERT scheduler: any permu-

tation of the specified order of activities would work,

illustrating that calculations in LIFE do not depend

on order of execution.

schedule :-
A1=activity(duration=>10),
A2=activity(duration=>20),
A3=activity(duration=>30),
A4=activity(duration=>18,prerequisites=>[A1,A2]),
A5=activity(duration=>8 ,prerequisites=>[A2,A3]),
A6=activity(duration=>3 ,prerequisites=>[A1,A4]),
A7=activity(duration=>4 ,prerequisites=>[A5,A6]),
visualize([A1,A2,A3,A4,A5,A6,A7]).

56

PERT Scheduling

> schedule?
Activity 1: **********

Activity 2: ********************

Activity 3: ******************************

Activity 4: ******************

Activity 5: ********

Activity 6: ***

Activity 7: ****
*** Yes
>

57

Encapsulated programming

Create a routine that behaves like a process with

encapsulated data. The caller cannot access the

routine’s local data except through the access func-

tions (‘‘methods’’) provided by the routine.

Initialization:

new_counter(C) :- counter(C,0).

Access predicate:

send(X,C) :- C=[X|C2], C<-C2.

58

Encapsulated programming The

counter:

counter([inc|S],V)
-> counter(S,V+1).

counter([set(X)|S],V)
-> counter(S,X).

counter([see(X)|S],V)
-> counter(S,V) | X=V.

counter([stop|S],V)
-> true
| write("Counter stopped.").

counter([],V)
-> true
| write("Counter end-of-stream.").

counter([_|S],V)
-> counter(S,V)
| write("Unknown message."), nl.

59

Encapsulated programming

Access to the process is by a logical variable. The
internal state of the process is the value of the
counter, which is held in the second argument.

> new_counter(C)?
*** Yes
C = @~.
--1> send(inc,C)?
*** Yes
C = @~.
----2> send(inc,C)?
*** Yes
C = @~.
------3> send(see(X),C)?
*** Yes
C = @~, X = 2.
--------4>

This creates a new counter object (with initial value

0) which is accessed through C. The counter is

incremented twice and then its value is accessed.

60

Tiny linguistics

A simple term expansion facility:

op(1200,xfx, -->)?

(A --> B) :-
Rule = (gram(A&@(L:[]),In,Out)

:- expand(B,In,Out,L)),
assert(Rule).

expand((A,B),In,Out,History)
-> gram(A,In,Out2),

expand(B,Out2,Out,H2) |
History <- [A|H2].

expand(A,In,Out,H)
-> gram(A,In,Out)
| H <- [A].

61

Tiny linguistics

The main call is:

gram(Analysis,Instream,Leftover)

dynamic(gram)?

gram(A:@(X),[X|T],T) :- X :=< A.

analyse(P) :-
gram(A,P,[]),
pretty_write(A),nl,nl,
fail.

62

Tiny linguistics

A tiny French grammar:

phrase --> sujet,
verbe_intransitif_?

phrase --> sujet,
verbe_transitif_,
complement_d_objet ?

phrase --> sujet,
pronom_,
verbe_transitif_?

phrase --> sujet,
verbe_transitif_indirect_,
complement_d_objet_indirect ?

phrase --> sujet,
verbe_etre_,
adjectif_?

63

Tiny linguistics

complement_d_objet --> groupe_nominal ?
complement_d_objet_indirect

--> conjonction_,
groupe_nominal ?

sujet --> groupe_nominal ?

groupe_nominal --> article_,
nom_commun_?

groupe_nominal --> article_,
nom_commun_,
adjectif_postfixe_?

groupe_nominal --> article_,
adjectif_prefixe_,
nom_commun_?

groupe_nominal --> nom_propre_?

64

Tiny linguistics

Higher classes of words:

adjectif_postfixe_ <| adjectif_.
adjectif_prefixe_ <| adjectif_.
article_indefini_ <| article_.
nom_propre_ <| etre_anime_.
verbe_etre_ <| verbe_transitif_.

65

Tiny linguistics

A lexicon of word sorts:

a <| conjonction_.
a <| verbe_transitif_.
anglais <| adjectif_postfixe_.
anglais <| nom_commun_.
animal <| etre_anime_.
apres <| conjonction_.
article <| nom_commun_.
belle <| adjectif_prefixe_.
belle <| nom_commun_.
blanc <| adjectif_postfixe_.
blanche <| adjectif_postfixe_.
blanche <| femme. % Special!
...
femme <| personne.
fille <| personne.
francais <| adjectif_postfixe_.
francais <| nom_commun_.
garcon <| personne_.

66

Tiny linguistics

A lexicon of word sorts:

...
la <| article_.
la <| pronom_.
le <| article_.
le <| pronom_.
les <| pronom_.
...
noir <| adjectif_postfixe_.
noir <| homme. % Special!
noire <| adjectif_postfixe_.
...
porte <| nom_commun_.
porte <| verbe_transitif_.
...
voile <| nom_commun_.
voile <| verbe_transitif_.

67

Tiny linguistics

demo :- analyse([la,femme,blanche,porte,le,voile]).
demo :- analyse([richard,est,un,noir,blanc]).
demo :- analyse([richard,est,noir]).

> demo?
phrase([sujet([groupe_nominal

([article_(la),
nom_commun_(femme),
adjectif_postfixe_(blanche)])]),

verbe_transitif_(porte),
complement_d_objet

([groupe_nominal
([article_(le),

nom_commun_(voile)])])])

phrase([sujet([groupe_nominal([nom_propre_(richard)])]),
verbe_transitif_(est),
complement_d_objet

([groupe_nominal
([article_(un),

nom_commun_(noir),
adjectif_postfixe_(blanc)])])])

phrase([sujet([groupe_nominal([nom_propre_(richard)])]),
verbe_etre_(est),
adjectif_(noir)])

68

Conclusion

LIFE is still an experimental language. Neverthe-

less, it offers conveniences meant to reconcile dif-

ferent programming styles.

It is particularly suited for:

� natural linguistics

� constrained graphics

� expert systems

There are other feature to complement it with like:

� other CLP constraint domains (arithmetic, boolean,

finite domains, intervals)

� better language features (extensional sorts, par-

tial features, lexical scoping, method encapsula-

tion, etc...)

This is just a beginning...

