Programming with

L ogic

| nheritance
F unctions

E quations

(An Introduction)

Hassan Ait-Kaci I

Simon Fraser University
Intelligent Sofware Group

Outline

e History

e Generalities

e LIFE’s Basic Data Structure: ¢)-Terms
e Predicates

e Functions

e Sorts

e Toy Programming Examples

e Conclusion

History

LIFE was originally conceived ca. 1986 by Hassan
Ait-Kaci and colleagues at MCC, in Austin, Texas.

e |dea:
Reconcile programming with predicate logic, func-
tions, and structured object inheritance.

o Key:
Use a universal, simple, but powerful, formal
data structure called -term.

e How?
By solving equational and entailment constraints
over order-sorted feature graphs.

History

Still LIFE was the first prototype of LIFE, done
at MCC in 1987-88 by David Plummer in Quintus
Prolog.

e |dea:
To experiment with the prototype to have a feel

of worth.

e Plus:
Fun to see it work, surprising convenience, fixed

the syntax.

e Minus:
Incomplete, slow, and MCC proprietary.

History

Wild LIFE is the successor of Still LIFE, done by
Richard Meyer at Digital’'s Paris Research Labora-

tory in C.

e |dea:
Full independent reimplementation in C.

e Plus:
Much more complete, reasonably fast, good user

conveniences, convincingly solid to support se-
rious applications.

e Minus:
Interpreted, big, still incomplete (not by much).

A compiler is currently in the works...

History
Wild LIFE Contributors:

e Richard Meyer
90% of Wild LIFE, and the compiler

e Peter Van Roy
the missing 10%, and the compiler

e Bruno Dumant
graphics toolkit, term expansion, static analyzer

e Jean-Claude Herveée
basic X interface

e Kathleen Milsted
LIFE shell

e Andreas Podelski
theorems, theorems, theorems...

e Hassan Ait-Kaci
watching the rest work and taking all the credit!

Generalities

LIFE is a generalization of Prolog: most Prolog
program run under LIFE.

Same syntactic conventions:

Except for these differences:

e queries are terminated with a ?

e assertions are terminated with a .

7=-Terms

o 42

e int

e -5.66

e real

e "a piece of rope"

e string

e foo bar

o '$* PsyCH(a)oTic**SyMboL!'’
e date (friday, 13)

e date (1 => friday, 2 => 13)
e freddy (nails => long, face => ugly)

e [this,is,a,list]

e cons (this, cons (too, []))

Sorts

Sorts are the data constructors of LIFE.
Sorts are partially ordered by <| in a sort hierarchy.
@ is the most general sort (T).

{} is the least sort (_L).

values are sorts like all others.

Variables and Tags

Like Prolog, LIFE’s variables start with _or an upper
case letter,

Unlike Prolog, LIFE’s variables are not restricted to
appear only as leaves of terms.

Thus, variables can be used as (reference) tags
within a -term’s structure.

They are used as explicit handles for referencing
the part of i)-term they tag.

These references may be cyclic; that is, a variable
may occur within a -term tagged by it.

Variables and Tags

Tagging of a v-term t by a variable x is of the form
X:t.

If a variable occurs not as a -term’s tag but as a
simple isolated variable, it is implicitly be tagging T,
exactly as if it had been written X: @.

If the same variable needs to be constrained to be
the conjunction of two terms, it is written using the
& connective, as in X:t1&t2. This is equivalent to
writing X=t1, X=t2.

Disjunctive terms

A disjunctive term is an expression of the form:

n > 0, where each is either a -term or a
disjunctive term.

In Wild LIFE, disjunctive terms are enumerated
using a left-right depth-first backtracking strategy,
exactly as Prolog’s (and LIFE’s!) predicate level
resolution.

e A={1;2;3}? is like A=1;A=2;A=3? where ;
signifies “or” in Edinburgh Prolog syntax.

e p({a;b}) . islike assertingp (a) . p(b).

e write (vehicle&four wheels) ? first prints
car then on backtracking will print truck.

Backtrackable Tag Assignment

The statement x<-y X with Y.

The tags x and Y reference standard (backtrackable)
Y-terms.

Backtracking past this statement will restore the
original value of x.

For example:

> X=5, (X <- 6;X <- 7),write(X),nl,6 fail?
6

7

**x* No

This predicate is very useful for building “black
boxes” that have clean logical behavior when viewed
from the outside but that need destructive assign-
ment to be implemented efficiently.

Sort intersection

bike <| two_wheels.
bike <| vehicle.

truck <| four_wheels.
truck <| vehicle.

car <| four_wheels.

car <| vehicle.

toy_car <| four_wheels.
rolls_royce <| car.

e two wheels /A vehicle — bike
e four wheels A vehicle = {car;truck}
e two wheels N four wheels = |

e rolls royce N car = rolls royce

e truck AN @ = truck

7=-Term Unification

person

/ \
student employee
/ \ / \
—————— \ staff faculty
/ |\ \ / |\ / | \
bob piotr pablo workstudy art Jjudy don john sheila
/ \
simon elena

student <| person.
employee <| person.

staff <| employee. workstudy <| student.
faculty <| employee. workstudy <| staff.
bob <| student. don <| faculty.
piotr <| student. john <| faculty.
pablo <| student. sheila <| faculty.
elena <| workstudy. art <| staff.
simon <| workstudy. judy <| staff.

7=-Term Unification

X = workstudy
(advisor => don
(assistant => _A,
secretary => _B: workstudy
(rep => _B)),

helper => simon (spouse => _A),

roommate => _B),

Predicates

LIFE’s predicates are defined exactly as Prolog’s,
except that terms are replaced by -terms.

They are executed using -term unification.

> truck <| vehicle.

* % % Yes

> mobile (vehicle).

**x* Yes

> useful (truck).

* % % Yes
> mobile (X),useful (X)?

* % % Yes
X = truck.

Compatibility with Prolog

A difference with Prolog is that LIFE terms have no
fixed arity.

pred(A,B,C) :- write(A,B,C).
n (SICStus) Prolog:

?- pred(1,2,3).
123

?- pred(A,B,C).
_26_60_94

?- pred(A,B,C,D).

WARNING: predicate ’'pred/4’ undefined.
?—- pred(A,B).

WARNING: predicate ’'pred/2’ undefined.

Compatibility with Prolog

In Wild LIFE:

User interaction

Interaction with user is more flexible than Prolog’s:
Once a query is answered, a user can extend it in
the current context by entering:

(C'R) to abandon this query and go back to the
previous level,

; to force backtracking and look for another
answer,

a goal followed by ? to extend this query,
. to pop to top-level from any depth.

Example:
father (john, harry) .

father (john,mike) .
father (harry,michael) .

grandfather (X,Y) :—- father (X, Z),
father (Z,Y).

User interaction

> grandfather (A,B)?

* % % Yes

A = john, B = michael.
——1> father(A,C)?

* %% Yes

A = john, B = michael,
—_————2> ;

* % % Yes

A = john, B = michael,
—_————2> ;

**%* NoO

A = john, B = michael.
——1> father (C,B)?

* % % Yes

A = john, B = michael,
————2> father(A,C)?

* % % Yes

A = john, B = michael,

______ 3>

*** No

A = john, B = michael,
—_————2>

harry.

mike.

harry.

harry.

harry.

Functions

LIFE’s function are defined exactly as rewrite rules
transforming -terms into v -terms.

They are executed using -term matching,
unification.

fact (0) —> 1.
fact (N:int) -> N*fact (N-1).

> write(fact (5))?
120
* % % Yes

Residuation

> A=fact (B)?

%* % % Yes

A =@, B = Q@~.
—=1> B=real?

%* % % Yes

A =@, B = real~.
——==2> B=5?

%* % % Yes

A = 120, B = 5.

A = (@, B = real~.
———=2> A=1237

* % % Yes

A = 123, B = real~.

Functions

Functions are deterministic---no value guessing nor
backtracking.

Calling £ (foo,bar) definition £ (x,x) ->
. if foo and bar are ; otherwise, it
. It will use it only if, and when, the two

args are unified by the context.

Arithmetic functions are inverted---e.g., the goal
0=B-C causes B and C to be unified.

> A =F(B), F = /(2=>A), A = 5?
**%* Yes
A =5, B

25, F = /(2 => A).

Note that here / (division) is curryed before being
inverted.

Currying

Currying is not the same as residuation, because
the result of currying is a function, not T.

In curryed form, £(a => X,b => Y) Is:
f(a => X) & @Q(b => Y)
but also:

f(b => Y) & @(a => X)

> £(X,Y,2) —> [X,Y,Z].
* % % Yes

> A=f(a,3 => ¢)°?

* % % Yes

A= f(a,3 => c).

—1> A=f(2 => b)?

* % % Yes

A = [a,b,c].

Functional variables

Functional variables are allowed.

That is, a functional expression may have a variable
where a root symbol is expected.

map (F, [1) —> [].
map (F, [H|T]) -> [F(H) |map(F,T)].

> L=M(F, [1,2,3,4])"?

* % % Yes

F=@Q L=@Q M= @~.

—-=1> M=map?

* % % Yes

F = @v~~~, L = [@,@,@Q,Q@], M = map.
———=2> F= +(2=>1)7

* % % Yes

F=+4+(2=>1), L = 1[2,3,4,5], M = map.

Functions

Residuation, currying, and functional variables give
functions extreme flexibility:

quadruple —-> * (2=>4) .
pick_arg({5;3;7}).
pick_func ({quadruple; fact}).

test :— R=F(4),
pick_arg(A),
pick_func (F),
write ("function ", F,
" applied to ",A,
" is ",R),

nl,
fail.

Functions

> test?

function *(2 => 4) applied to 5 is 20
function fact applied to 5 is 120
function *(2 => 4) applied to 3 is 12
function fact applied to 3 is 6
function *(2 => 4) applied to 7 is 28
function fact applied to 7 is 5040

**x* No

Quote and eval

LIFE’s functions use eager evaluation. This can be
prevented using a quoting operator .

> X =1+427

**%* Yes

X = 3.

-——=1> Y="(14+2)°?
**%* Yes

X =3, ¥Y=14+ 2

Dually, a function called eval may be used to
compute the result of a quoted form.

———=2> Z=eval(Y)?
***Yes
X=3,Y=1+2, 2= 3.

Note that eval the quoted form.

Another function called evalin works like eval but
evaluates the expression side-effecting it “in-place.”

Arbitr-Arity

In LIFE everything is a y-term!

This can be exploited to great benefit to express that
some predicates or functions take an unspecified
number of arguments.

> X = sum(1,2,3,4)?

* % % Yes

X = 10.

—=1> ¥=sum(1l,2,3,4,5)?
* % % Yes

X =10, ¥ = 15.

—_———2>

Constrained sorts

One can attach properties to sorts:

These properties will be verified during execution,
and also inherited by subsorts.

> :: person(age => int).
**%* Yes

> man <| person.

**%* Yes

> A=man?

**%* Yes

A = man(age => int).
—1>

Constrained sorts

vehicle (make => string,
number_of_wheels => int).

car (number_of_wheels => 4).
car <| vehicle.
> X=car?

% % % Yes
X

car (make => string,
number_of_wheels => 4).

——1>

Constrained sorts

man := person(gender => male).

IS sugaring for:

tree := { leaf ; node(left => tree,
right => tree) }.

IS sugaring for:

Constrained sorts

rectangle (long_side => L:real,
short_side => S:real,
area => L*S).

square := rectangle(side => S,
long_side => S,
short_side => S).

> R=rectangle (area => 16,
short_side => 4)?
*** Yes
R = rectangle (area => 16,
long_side => 4,
short_side => 4).
——1> R=square?
*** Yes
R = square (area => 16,
long_side => _A: 4,
short_side => _A,
side => _A).

—_——2>

Constrained sorts

devout (faith => F, pray_to => X)
| holy_figure(F,X).

holy_figure (muslim,allah).
holy_figure (jewish, yahveh) .
holy_figure (christian, jesus_christ).

> X=devout?

* %% Yes

X = devout (faith => muslim,
pray_to => allah).

—1> ;

* % % Yes

X = devout (faith => jewish,
pray_to => yahveh).

—1> ;

* % % Yes

X = devout (faith => christian,
pray_to => jesus_christ).

——1>

14

**x* No

Constrained sorts
Impromptu demons:

> :: I:int | write(I," ").

* % % Yes

> A=5%*7?

5 7 35

* % % Yes

A = 35.

—=1> B=fact (5)?
514131211101126 24 120

A = 35, B = 120.

—_———2>

> :: C:cons | write(C.1l), nl.
**k* Yes

> A=[a,b,c,d] ?

d

c

b

a

**k* Yes

Constrained sorts

Recursive sorts can also be defined. For example,
the (built-in) list sort is defined as:

list := {[] ; [@|list]}.
But there is a form of recursion and an unsafe
one:

the recursive occurrence of the
sort is in a strictly more specific sort.

e unsafe recursion: the recursive occurrence of
the sort is in an equal or more general sort.

Constrained sorts

Example of unsafe recursion:

:: person (best_friend => person).

This loops for ever...

Temporary workaround IS to specify:

> delay_check (person) ?

That will prevent checking the definition of person
if it has no attributes.

Constrained sorts

P:person (best_friend => Q:person)
| get_along (P, Q).

* %% Yes

> delay_check (person) ?

* % % Yes

> cleopatra := person(nose => pretty,

occupation => queen).

* % % Yes

> julius := person(last_name => caesar).

* % % Yes

> get_along(cleopatra, julius).

* % % Yes

> A=person?

* %% Yes

A = person.

——1> A=Q (nose => pretty)?

* % % Yes

A = cleopatra(best_friend => julius,
nose => pretty,

occupation => queen).

Classes and Instances

It is important to relate LIFE’s concepts to concepts
that are empirically known in O-O programming, like
that of class and instance.

Classes are declared by sort definitions:

Like a struct, this adds fields to a class definition.

Tosaythat class1 inherits all properties of class2:

Classes and Instances

Instances are created by mentioning the class name
in the program. For example, executing:

> X=int?

creates an instance of the class int. Each men-
tion of int creates a fresh instance. Therefore,
executing:

> X=int, Y¥Y=int?

creates two different instances of the class int in X
and Y. We can do:

> X=int, Y¥=int, X=56, Y¥=237

This would not be possible if x and Y were the same
instance.

Classes and Instances

Wild LIFE assumes that mentioning a class name in
the program always creates a fresh instance that is
different from all other instances of the class.

For example:
> X=23, Y=237

creates two different instances of the class 23.

If we have the function defined as:

then the call £ (%,) will not fire, since X and Y are
different instances.

Classes and Instances

To make £ (x,Y) fire, X and Y must be the
instance.

In Wild LIFE, the only way to do this is to unify them
explicitly:

> X=23, ¥=23, X=Y, write(f(X,Y))?

will write 1 (i.e., the function £ will fire).

Hamming numbers

mult_list (F,N, [H|T]) —>
cond(R: (F*H) =< N,
[R|mult_list (F,N,T)],
[1).
merge (L, []) —-> L.
merge ([],L) -> L.
merge (L1:[H1|T1],L2: [H2|T2]) —>
cond(H1 =:= H2,
[H1 |merge (T1,T2)],
cond (H1 > H2,
[H2 |merge (L1,T2)],
[H1 |merge (T1,L2)])).
hamming (N) -—>
S:[1|merge(mult_list(2,N,S),
merge (mult_1list (3,N, S),
mult_list (5,N,S)))].

> H=hamming(26) ?
H=1[1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25]
* %% Yes

>

Quick Sort

q_sort (L, order => 0)
—> undlist (dgsort (L, order => 0)).

undlist (X\Y) —> x | ¥=[].

dgsort ([]) —> L\L.
dqsort([H|T],order => 0)

-> (L1\L2)
| (Less,More)=split (H,T, ([1,[]1),order => 0),
(Ll\[H|L3])=dqsort(Less,order => 0),
(L3\L2) =dgsort (More, order => O).

split (@, [],P) —> P.
split(x,[H|T],(Less,More),order => 0)
-> cond(O(H,X),
split(X,T,([HlLess],More),order => 0),
split(x,T,(Less,[H|More]),order => 0)).

SEND+MORE=MONEY

solve

o\o oo

o°

o°

o°

o°

M=0 is uninteresting:

M=1,

Arithmetic constraints:

C3 +S + M=
= N + 10*C3,

C2 + E +

o
Cl + N+ R =
E =Y + 10*C1,

D +

O + 10*M,

E + 10*C2,

Disequality constraints:
diff_list([S,E,N,D,M,O,R,Y]),
Generate binary digits:

Cl=carry,
C2=carry,
C3=carry,

Generate decimal digits:

S=decimal,
N=decimal,
O=decimal,

Y=decimal,

E=decimal,

D=decimal,

R=decimal,

SEND+MORE=MONEY

% Print the result:
nl, write(" SEND ",S,E,N,D), nl,
write("+MORE +",M,O,R,E), nl,
write("————— ————-— "),nl,
write ("MONEY ",M,O,N,E,Y), nl,
% Fail to iterate:
fail.

decimal -> {0;1;2;3;4;5;6;7;8;9}.
carry —> {0;1}.

diff list([]).

diff_list ([H|T]) :-
generate_diffs(H,T),
diff l1list (T),
H=<9,
H>=0.

generate_diffs(H, []) .

generate_diffs(H,[AlT]) T -
generate_diffs(H,T),
A=\=H.

Dictionary

delay_check (tree)?

tree (name => string,
def => string,
left => tree,
right => tree).

contains (tree (name => N,def => D),N,D).
contains (T:tree (name => N),6 Name, Def)
:— cond (N $> Name,
contains (T.left, Name, Def),
contains (T.right, Name, Def)).

Dictionary

test_dictionary :-

o°

o°

o°

A

CN = "cat", CD
DN = "dog", DD = "furry canine",

"furry feline",

Insert cat definition
contains (T,CN,CD),
Insert dog definition
contains (T,DN,DD),
Look up cat definition
contains (T, CN, Def),
nl,write("A ",CN," is a ",Def),nl,!.

test_dictionary?

cat is a furry feline

* % % Yes

Primes

prime := P:int
| factors (P) = one.

factors(N) —> cond(N < 2,

{},
factors_from(N, 2)) .

factors_from(N:int,P:int) -—>
cond (P*P > N,
one,
cond(R: (N/P) =:= floor(R),
many,
factors_from(N,P + 1))).

primes_to(N:int) :-
write (int_to(N) & prime),
nl, fail.

int_to(N:int) —>
cond(N < 1,

{},
{1;1 + int_to(N-1)1}).

Primes

> primes_to (30)?
2: prime
3: prime
5: prime
7: prime
11: prime
13: prime
17: prime
19: prime
23: prime
29: prime

**x* No

>

PERT Scheduling
Define the class of activity objects:

:: A:activity(duration => D:real,
earlyStart => earlyCalc(R),
lateStart => {1e500;real},
prerequisites => R:{[];1list})
| !, lateCalc(A,R).

Wait until the value is an integer before assigning it:

assign(A,B:int) -> succeed | A<-B.

PERT Scheduling
Pass 1: Calculate the earliest time that A can start.

earlyCalc([]) —-> O.
earlyCalc([BlListOfActs]) ->
max (B.earlyStart+B.duration,
earlyCalc (ListOfActs)).

Pass 2: Calculate the latest time that A’'s prerequi-
sites can start and still finish before A starts.

lateCalc (A, []) —> succeed.
lateCalc(A,[B:activitylListOfActs])
-> lateCalc (A, ListOfActs)
| assign (LSB: (B.lateStart),
min (LSB, A.earlyStart-B.duration)).

PERT Scheduling

A sample input for the PERT scheduler: any permu-
tation of the specified order of activities would work,
illustrating that calculations in LIFE do not depend
on order of execution.

schedule :-

Al=activity (duration=>10),

A2=activity (duration=>20),

A3=activity (duration=>30),

Ad=activity (duration=>18, prerequisites=>[Al,6A2]),
AS5=activity (duration=>8 ,prerequisites=>[A2,A3]),
A6=activity (duration=>3 ,prerequisites=>[Al,6A4]),
A7=activity (duration=>4 ,prerequisites=>[A5,6A6]),
visualize ([Al,A2,A3,A4,A5,A6,A7]).

PERT Scheduling

> schedule?
Activity 1: **kxkkkkkkx

ACthlty 2: *hkkhkkkhkkkkkkkkkkhkkkkk

ACthlty 3: F*hkkkkkkkkkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhd

Activity 4: khkkkkkkkkkkkkkkkkk
Activity 5: ok dkkdhKk
Activity 6: __—__:::
Activity 7: ___****
**x* Yes

>

Encapsulated programming

Create a routine that behaves like a process with
encapsulated data. The caller cannot access the
routine’s local data except through the access func-
tions (“methods™) provided by the routine.

Initialization:
new_counter (C) :— counter(C,0).

Access predicate:

send(X,C) :- C=[X]|c2], c<-c2.

Encapsulated programming The
counter:

counter([inclS],V)
-> counter(S,V+1l).
counter([set(X)lS],V)
-> counter (S, X).
counter([see(X)lS],V)
-> counter (S,V) | X=V.
counter([stoplS],V)
=> true
| write ("Counter stopped.").
counter([],V)
=> true
| write("Counter end-of-stream.").
counter([_JS],V)
-> counter (S,V)

| write ("Unknown message."), nl.

Encapsulated programming

Access to the process is by a logical variable. The
internal state of the process is the value of the
counter, which is held in the second argument.

> new_counter (C)?

* % % Yes

C = (@~.

—=1> send(inc¢,C)?

* % % Yes

C = (@~.

———=2> send(inc,C)?
* % % Yes

C = (@~.

—————— 3> send(see(X),C)?
* % % Yes

C =(Q@~, X = 2.

This creates a new counter object (with initial value
0) which is accessed through c¢. The counter is
incremented twice and then its value is accessed.

Tiny linguistics
A simple term expansion facility:

op (1200, xfx, ——>)?

(A ——> B) :-
Rule = (gram(A&Q(L:[]),In,Out)
:— expand (B, In,Out,L)),
assert (Rule) .

expand((A,B) ,In,Out,6 History)
-> gram (A, In,Out2),
expand (B, Out2, Out,h H2) |
History <- [A|H2].

expand (A, In,Out, H)
—> gram (A, In,Out)
| H <- [Aa].

Tiny linguistics

The main call is:

dynamic (gram) ?

gram(A:Q (X), [X|T],T) :- X :=< A.

analyse (P) :-—
gram(A,P, []),
pretty_write (A),nl,nl,
fail.

Tiny linguistics

A tiny French grammar:

phrase

phrase

phrase

phrase

phrase

-——>

-——>

-——>

-——>

-——>

sujet,

verbe_intransitif_?

sujet,

verbe_transitif_,
complement_d_objet ?
sujet,

pronom_,

verbe_transitif ?

sujet,

verbe_transitif indirect_,
complement_d_objet_indirect °?
sujet,

verbe_etre_,

adjectif_?

Tiny linguistics

complement_d_objet --> groupe_nominal ?
complement_d_objet_indirect
——> conjonction_,
groupe_nominal ?

sujet --> groupe_nominal °?

groupe_nominal --> article_,
nom_commun__?

groupe_nominal --> article_,
nom_commun__,
adjectif_postfixe_?

groupe_nominal --> article_,
adjectif_prefixe_,
nom_commun__?

groupe_nominal --> nom_propre_"?

Tiny linguistics

Higher classes of words:

adjectif_postfixe_ <| adjectif_.
adjectif_prefixe_ <| adjectif_.
article_indefini_ <| article_.
nom_propre_ <| etre_anime_ .
verbe_etre_ <| verbe_transitif_.

Tiny linguistics
A lexicon of word sorts:

a <| conjonction_.

a <| verbe_transitif_.

anglais <| adjectif_postfixe_.
anglais <| nom__commun__.

animal <| etre_anime_.

apres <| conijonction_.

article <| nom_commun_.

belle <| adjectif_prefixe_.
belle <| nom_commun__.

blanc <| adjectif_postfixe_.
blanche <| adjectif_postfixe_.
blanche <| femme. % Special!

femme <| personne.

fille <| personne.

francais <| adjectif_postfixe_.
francais <| nom_commun__.

garcon <| personne_.

Tiny linguistics

A lexicon of word sorts:

la

<| article_.
la <| pronom_.
le <| article_.
le <| pronom_.

les <| pronom_.
noir <| adjectif_postfixe_.
noir <| homme. % Special!

noire <| adjectif_ postfixe_.

porte <| nom_commun_.
porte <| verbe_transitif_ .

voile <| nom_commun__.

voile <| verbe_transitif .

Tiny linguistics

demo :—- analyse([la, femme,blanche, porte,le,voile]).
demo :—- analyse([richard, est,un,noir,blanc]).

demo :—- analyse([richard, est,noir]).

> demo?

phrase ([sujet ([groupe_nominal
([article_(1la),
nom_commun__(femme) ,
adjectif_postfixe_ (blanche)])]),
verbe_transitif_ (porte),
complement_d_objet
([groupe_nominal
([article_(1le),
nom_commun__(voile)])]1)1])

phrase ([sujet ([groupe_nominal ([nom_propre_ (richard)])]),
verbe_transitif_ (est),
complement_d_objet
([groupe_nominal
([article_(un),
nom_commun__(noir),
adjectif_postfixe_(blanc)])]1)1)

phrase ([sujet ([groupe_nominal ([nom_propre_ (richard)])]),
verbe_etre_(est),

adjectif_(noir)])

Conclusion

LIFE is still an experimental language. Neverthe-
less, it offers conveniences meant to reconcile dif-
ferent programming styles.

It is particularly suited for:

e natural linguistics
e constrained graphics
e expert systems

There are other feature to complement it with like:

e other CLP constraint domains (arithmetic, boolean,
finite domains, intervals)

e better language features (extensional sorts, par-
tial features, lexical scoping, method encapsula-
tion, etc...)

