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Introduction

One of the major differences between combinatorial computing and other areas of
computing such as statistics, numerical analysis and linear programming is the use of
complex data types. Whilst the built-in types, such as integers, reals, vectors, and
matrices, usually suffice in the other areas, combinatorial computing relies heavily on
types like stacks, queues, dictionaries, sequences, sorted sequences, priority queues,
graphs, points, segments, ... In the fall of 1988, we started a project (called LEDA for
Library of Efficient Data types and Algorithms) to build a small, but growing library
of data types and algorithms in a form which allows them to be used by non-experts.
We hope that the system will narrow the gap between algorithms research, teaching,

and implementation. The main features of LEDA are:

1. LEDA provides a sizable collection of data types and algorithms in a form which
allows them to be used by non-experts. In the current version, this collection
includes most of the data types and algorithms described in the text books of the

area.

2. LEDA gives a precise and readable specification for each of the data types and
algorithms mentioned above. The specifications are short (typically, not more than
a page), general (so as to allow several implementations), and abstract (so as to

hide all details of the implementation).

3. For many efficient data structures access by position is important. In LEDA, we
use an item concept to cast positions into an abstract form. We mention that
most of the specifications given in the LEDA manual use this concept, i.e., the

concept is adequate for the description of many data types.

4. LEDA contains efficient implementations for each of the data types, e.g., Fibonacci

heaps for priority queues, skip lists and dynamic perfect hashing for dictionaries,

5. LEDA contains a comfortable data type graph. It offers the standard iterations
such as “for all nodes v of a graph G do” or “for all neighbors w of v do”, it allows
to add and delete vertices and edges and it offers arrays and matrices indexed
by nodes and edges,... The data type graph allows to write programs for graph

problems in a form close to the typical text book presentation.

6. LEDA is implemented by a C++ class library. It can be used with allmost any
C++ compiler (e.g., cfront2, cfront3, g++-1, g++-2, bec, ztc).



7.

LEDA is available by anonymous ftp from

ftp.cs.uni-sb.de (134.96.252.31) /pub/LEDA

The Distribution contains all sources, installation instructions, a technical report,
and the LEDA user manual.

LEDA is not in the public domain, but can be used freely for research and teaching.

A commercial license is available from the autor.

This manual contains the specifications of all data types and algorithms currently

available in LEDA. Users should be familiar with the C++ programming language

(see [S91] or [L89]). The main concepts and some implementation details of LEDA
are described in [MN89] and [N92]. The manual is structured as follows: In chapter

one, which is a prerequisite for all other chapters, we discuss the basic concepts and

notations used in LEDA. The other chapters define the data types and algorithms

available in LEDA and give examples of their use. These chapters can be consulted

independently from one another.

Version 3.0

The most important changes with respect to previous versions are

a)

See

Parameterized data types are realized by C++ templates. In particular, declare
macros used in previous versions are now obsolete and the syntax for a parameterized
data type D with type parameters Ty,...,T} is D<Ty,...,Tx> (cf. section 1.2).
For C++ compilers not supporting templates there is still a non-template variant

(LEDA-N-3.0) available.

Arbitrary data types (not only pointer and simple types) can be used as actual

type parameters (cf. section 1.2).

For many of the parameterized data types (in the current version: dictionary,
priority queue, d_array, and sortseq) there exist variants taking an additional data

structure parameter for choosing a particular implementation (cf. section 1.3).

The LEDA memory management system can be customized for user-defined classes
(cf. section 7.3)

The efficiency of many data types and algorithms has been improved.

also the “Changes” file in the LEDA root directory.



1. Basics

1.1 A First Example

The following program can be compiled and linked with LEDA’s basic library l:bL.a
(cf. section 1.10). When executed it reads a sequence of strings from the standard
input and then prints the number of occurrences of each string on the standard output.

More examples of LEDA programs can be found throughout this manual.

#include <LEDA /d_array.h>

main()

{

d_array<string,int> N(0);
string s;
while (cin >> s ) N[s]++;

forall defined(s, N) cout << s << ” ” << NJs] << endl;

The program above uses the parameterized data type dictionary array (d_array<I, E>)
from the library. This is expressed by the include statement (cf. section 1.9 for more
details). The specification of the data type d_array can be found in section 4.4. We
use it also as a running example to discuss the principles underlying LEDA in sections
1.2 to 1.10.

Parameterized data types in LEDA are realized by templates, inheritance and dynamic
binding (see [N92] for details). For C++ compilers not supporting templates there is
still available a non-template version of LEDA using declare macros as described in

[N90].

1.2 Specifications

In general the specification of a LEDA data type consists of four parts: a definition of
the set of objects comprising the (parameterized) abstract data type, a description of
how to create an object of the data type, the definition of the operations available on the
objects of the data type, and finally, information about the implementation. The four
parts appear under the headers definition, creation, operations, and implementation

respectively.



e Definition

This part of the specification defines the objects (also called instances or elements)

comprising the data type using standard mathematical concepts and notation.
Example, the generic data type dictionary array:

An object a of type d_array<I, E> is an injective function from the data type I to
the set of variables of data type E. The types I and E are called the index and the

element type respectively, a is called a dictionary array from I to E.

Note that the types I and E are parameters in the definition above. Any built-in,
pointer, item, or user-defined class type T can be used as actual type parameter of a

parameterized data type. Class types however have to provide the following operations:

a) a constructor taking no arguments T:T()

b) a copy constructor T::T(const T&)
¢) an input function void Read(T&, istream&)
d) an output function void Print(const T&, ostream&)

A compare function “int compare(const T&, const T&)” (cf. section 1.6) has to be
defined if the data type requires that T is linearly ordered. Section 1.4 contains a

complete example.

e Creation

A variable of a data type is introduced by a C++ variable declaration. For all LEDA
data types variables are initialized at the time of declaration. In many cases the
user has to provide arguments used for the initialization of the variable. In general a

declaration
XY Z<ty,...,te>  y(z1,...,20);

introduces a variable y of the data type “XY Z<t;,...,%x>” and uses the arguments

z1,...,2¢ to initialize it. For example,
d_array<string,int> A(0)

introduces A as a dictionary array from strings to integers, and initializes A as
follows: an injective function a from string to the set of unused variables of type int
is constructed, and is assigned to A. Moreover, all variables in the range of a are

initialized to 0. The reader may wonder how LEDA handles an array of infinite size.
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The solution is, of course, that only that part of A is explicitly stored which has been

accessed already.

For all data types, the assignment operator (=) is available for variables of that type.
Note however that assignment is in general not a constant time operation, e.g., if L; and
L, are variables of type ltst<T> then the assignment L; = L, takes time proportional

to the length of the list L, times the time required for copying an object of type T.

Remark: For most of the complex data types of LEDA, e.g., dictionaries, lists, and
priority queues, it is convenient to interpret a variable name as the name for an object
of the data type which evolves over time by means of the operations applied to it.
This is appropriate, whenever the operations on a data type only “modify” the values
of variables, e.g., it is more natural to say an operation on a dictionary D modifies D
than to say that it takes the old value of D, constructs a new dictionary out of it, and
assigns the new value to D. Of course, both interpretations are equivalent. From this
more object-oriented point of view, a variable declaration, e.g., dictionary<string,int>
D, is creating a new dictionary object with name D rather than introducing a new
variable of type dictionary<string,int>; hence the name “creation” for this part of a

specification.

e Operations

In this section the operations of the data types are described. For each operation the

description consists of two parts

a) The interface of the operation is defined using the C++ function declaration syntax.
In this syntax the result type of the operation (void if there is no result) is followed
by the operation name and an argument list specifying the type of each argument.

For example,

list item L.nsert (E z, list_item it, rel_pos p = after)
defines the interface of the insert operation on a list L of elements of type F
(cf. section 3.7). Insert takes as arguments an element z of type E, a list_item it

and an optional relative position argument p. It returns a list_item as result.

E& A[l z]
defines the interface of the access operation on a dictionary array A. It takes an

element of I as an argument and returns a variable of type E.

b) The effect of the operation is defined. Often the arguments have to fulfill certain

preconditions. If such a condition is violated the effect of the operation is undefined.
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Some, but not all, of these cases result in error messages and abnormal termination
of the program (see also section 7.5). For the insert operation on lists this definition
reads:

A new item with contents z is inserted after (if p = after) or before (if p = be fore)

item ¢t into L. The new item is returned. (precondition: item it must be in L)

For the access operation on dictionary arrays the definition reads:

returns the variable A(z).

¢ Implementation

The implementation section lists the (default) data structures used to implement the
data type and gives the time bounds for the operations and the space requirement.

For example,

Dictionary arrays are implemented by randomized search trees ([AS89]). Access oper-
ations A[z]| take time O(log dom(A)). The space requirement is O(dom(A)).

1.3 Implementation Parameters

For many of the parameterized data types (in the current version: dictionary, priority
queue, d_array, and sortseq) there exist variants taking an additional data structure
parameter for choosing a particular implementation (cf. section 4). Since C++ does
not allow to overload templates we had to use different names: the variants with an
additional implementation parameters start with an underscore, e.g., _d_array<I,E,impl>.
We can easily modify the example program from section 1.1 to use a dictionary array
implemented by a particular data structure, e.g., skip lists ([Pu89]), instead of the
default data structure (cf. section 4.4.5).

#include <LEDA /d_array.h>
#include <LEDA /impl/skiplist.h>

main()
{ _d_array<string,int,skiplist> N(0);
string s;
while (cin >> s ) N[s]++;
forall defined(s, N) cout << s << ” ” << NJs] << endl;

}

Any type XYZ<Ty,..., T, zyz_tmpl>is derived from the corresponding “normal” param-
eterized type XYZ<T,...,Ty>,i.e., an instance of type _XYZ<Ty,..., T, xzyz_tmpl> can

6



be passed as argument to functions with a formal parameter of type XYZ<Ty,..., Ti>&.
This provides a mechanism for choosing implementations of data types in pre-compiled

algorithms. See “prog/graph/dijkstra.c” for an example.

LEDA offers several implementations for each of the data types. For instance, skip
lists, randomized search trees, and red-black trees for dictionary arrays. Users can
also provide their own implementation. A data structure “xyz_impl” can be used as
actual implementation parameter for a data type XY Z if it provides a certain set
of operations and uses certain virtual functions for type dependent operations (e.g.
compare, initialize, copy, ...). Section 9 lists all data structures contained in the
current version and gives the exact requirements for implementations of dictionaries,
priority _queues, sorted sequences and dictionary arrays. A detailed description of the
mechanism for parameterized data types and implementation parameters used in LEDA
can be found in [N92].

1.4 Arguments

e Optional Arguments

The trailing arguments in the argument list of an operation may be optional. If these
trailing arguments are missing in a call of an operation the default argument values
given in the specification are used. For example, if the relative position argument in the
list insert operation is missing it is assumed to have the value after, i.e., L.insert(it,y)

will insert the item <y> after item it into L.

e Argument Passing

There are two kinds of argument passing in C++ | by value and by reference. An
argument z of type type specified by “type z” in the argument list of an operation
or user defined function will be passed by value, i.e., the operation or function is
provided with a copy of z. The syntax for specifying an argument passed by reference
is “type& z”. In this case the operation or function works directly on z ( the variable

z is passed not its value).

Passing by reference must always be used if the operation is to change the value of
the argument. It should always be used for passing large objects such as lists, arrays,
graphs and other LEDA data types to functions. Otherwise a complete copy of the
actual argument is made, which takes time proportional to its size, whereas passing

by reference always takes constant time.



e Functions as Arguments

Some operations take functions as arguments. For instance the bucket sort operation
on lists requires a function which maps the elements of the list into an interval of

integers. We use the C++ syntax to define the type of a function argument f:
T (*f)(T]_,TZ, e ,Tk)
declares f to be a function taking k arguments of the data types T4, ..., Tk, respectively,
and returning a result of type T, i.e, f:Th X ... x T — T .
1.5 Overloading

Operation and function names may be overloaded, i.e., there can be different interfaces

for the same operation. An exampleis the translate operations for points (cf. section 6.1).

point p.translate(vector v)

point p.translate(double o, double dist)

It can either be called with a vector as argument or with two arguments of type double

specifying the direction and the distance of the translation.

An important overloaded function is discussed in the next section: Function compare,

used to define linear orders for data types.

1.6 Linear Orders

Many data types, such as dictionaries, priority queues, and sorted sequences require
linearly ordered subtypes. Whenever a type T is used in such a situation, e.g. in

dictionary<T,...> the function
int compare(T,T)
must be declared and must define a linear order on the data type T.

A binary relation rel on a set T is called a linear order on T if for all z,y,z € T":

1
2

)z rely

)

3) z rel yory rel z
)

z rel y and y rel z implies = rel z

4) ¢ rel y and y rel ¢ implies ¢ =y



A function int compare(T,T) is said to define the linear order rel on T if

<0, ifzrelyand z#y

compare(z,y) { =0, fz=y
>0, ifyrel z and z #£y

For each of the simple data types char, short, int, long, float, double, string, and
point a function compare is predefined and defines the so-called default ordering on
that type. The default ordering is the usual < - order for the built-in numerical types,
the lexicographic ordering for string, and for point the lexicographic ordering of the
cartesian coordinates. For all other types T' there is no default ordering, and the user

has to provide a compare function whenever a linear order on T is required.

Example: Suppose pairs of real numbers shall be used as keys in a dictionary with
the lexicographic order of their components. First we declare class pair as the type
of pairs of real numbers, then we define the I/O operations Read and Print and the

lexicographic order on pair by writing an appropriate compare function.

class pair {
double w;

double y;

par() { z =y =0; }
pair(const pair& p) { z =p.x; y=py; }

friend void Read(pair& p, istream& is) { is >> p.z >> p.y; }
friend void Print(const pair& p, ostream& os) { os << p.z << “” << p.y; }

friend int compare(const pair&, const pair&);

b

int compare(const pair& p, const pair& q)
{ if (p.z < ¢.z) return -1;

if (p.z > ¢.z) return 1;

if (p.y < q.y) return -1;

if (p.y > q.y) return  1;

return 0; }
Now we can use dictionaries with key type pair, e.g.,

dictionary<pair,int> D;



Sometimes, a user may need additional linear orders on a data type T which are
different from the order defined by compare, e.g., he might want to order points in the
plane by the lexicographic ordering of their cartesian coordinates and by their polar
coordinates. In this example, the former ordering is the default ordering for points.
The user can introduce an alternative ordering on the data type point (cf. section 6.1)
by defining an appropriate comparing function int emp(const point&, const point&)
and then calling the macro DEFINE LINEAR_ORDER(point, cmp, point,). After this
call point; is a new data type which is equivalent to the data type point, with the only
exception that if point; is used as an actual parameter e.g. in dictionary<pointy,...>,

the resulting data type is based on the linear order defined by cmp.

In general the macro call
DEFINE_LINEAR_ORDER(T,cmp,T})

introduces a new type T equivalent to type T with the linear order defined by the

compare function cmp.

In the example, we first declare a function pol_cmp and derive a new type pol_point

using the DEFINE_LINEAR_ORDER macro.
int pol_cmp(const point& z, cosnt point& y)

{ // lexicographic ordering on polar coordinates }

DEFINE_LINEAR_ORDER(point,pol_cmp,pol_point)

Now, dictionaries based on either ordering can be used.

dictionary<pol_point,int> Di; // polar ordering

dictionary<point,int> Dy; // default ordering

Remark: We have chosen to associate a fixed linear order with most of the simple
types (by predefining the function compare). This order is used whenever operations
require a linear order on the type, e.g., the operations on a dictionary. Alternatively,
we could have required the user to specify a linear order each time he uses a simple

type in a situation where an ordering is needed, e.g., a user could define
dictionary<point,lexicographic_ordering,...>

This alternative would handle the cases where two or more different orderings are
needed more elegantly. However, we have chosen the first alternative because of the

smaller implementation effort.
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1.7 Items

Many of the advanced data types in LEDA (e.g. dictionaries), are defined in terms of
so-called items. An item is a container which can hold an object relevant for the data
type. For example, in the case of dictionaries a dic_ttem contains a pair consisting of
a key and an information. A general definition of items will be given at the end of

this section.

We now discuss the role of items for the dictionary example in some detail. A popular
specification of dictionaries defines a dictionary as a partial function from some type
K to some other type I, or alternatively, as a set of pairs from K x I, i.e., as the
graph of the function. In an implementation each pair (k,7) in the dictionary is stored
in some location of the memory. Efficiency dictates that the pair (k,7) cannot only
be accessed through the key k& but sometimes also through the location where it is
stored, e.g., we might want to lookup the information 7 associated with key k (this
involves a search in the data structure), then compute with the value ¢ a new value 7',
and finally associate the new value with k. This either involves another search in the
data structure or, if the lookup returned the location where the pair (k,¢) is stored,
can be done by direct access. Of course, the second solution is more efficient and we
therefore wanted to provide it in LEDA.

In LEDA items play the role of positions or locations in data structures. Thus an
object of type dictionary<K,I>, where K and I are types, is defined as a collection
of items (type dic_item) where each item contains a pair in K x I. We use <k,i> to
denote an item with key k and information ¢ and require that for each k € K there
is at most one ¢ € I such that <k,7> is in the dictionary. In mathematical terms this
definition may be rephrased as follows: A dictionary d is a partial function from the
set dic_item to the set K x I. Moreover, for each k € K there is at most one ¢ € T
such that the pair (k,7) is in d.

The functionality of the operations

dicitem D.lookup(K k)
I D.inf(dic_ttem it)
void D.change inf(dic_item it, I ¢')

is now as follows: D.lookup(k) returns an item ¢t with contents (k,¢), D.inf(¢t) extracts

¢ from it, and a new value ¢’ can be associated with k by D.change inf(¢¢,7").

Let us have a look at the insert operation for dictionaries next:

dicitem D.insert(K k, I 1)

11



There are two cases to consider. If D contains an item it with contents (k,¢') then '
is replaced by ¢ and it is returned. If D contains no such item, then a new item, i.e.,
an item which is not contained in any dictionary, is added to D, this item is made to
contain (k,¢) and is returned. In this manual (cf. section 4.3) all of this is abbreviated

to

dicitem D.nsert(K k, I i) associates the information ¢ with the key k.
If there is an item <k,7> in D then j is
replaced by i, else a new item <k,:> is added

to D. In both cases the item is returned.

We now turn to a general discussion. With some LEDA types XY Z there is an associated
type XY Z 2tem of items. Nothing is known about the objects of type XY Z item except
that there are infinitely many of them. The only operations available on XY Z items
besides the one defined in the specification of type XY Z is the equality predicate
“==" and the assignment operator “=" . The objects of type XY Z are defined as
sets or sequences of XY Z items containing objects of some other type Z. In this
situation an XY Z item containing an object z € Z is denoted by <z>. A new or

unused XY Z atem is any XY Z _item which is not part of any object of type XY Z.

Remark: For some readers it may be useful to interpret a dic_item as a pointer to
a variable of type K x I. The differences are that the assignment to the variable
contained in a dic_item is restricted, e.g., the K-component cannot be changed, and
that in return for this restriction the access to dic_ttems is more flexible than for

ordinary variables, e.g., access through the value of the K-component is possible.

1.8 Iteration

For many data types LEDA provides iteration macros. These macros can be used to
iterate over the elements of lists, sets and dictionaries or the nodes and edges of a
graph. Iteration macros can be used similarly to the C++ for statement. Examples

are

for all item based data types:

forall_items(¢t, D) { the items of D are successively assigned to variable it}

for lists and sets:

forall(z, L) { the elements of L are successively assigned to z}

12



for graphs:
forall nodes(v,G) { the nodes of G are successively assigned to v}
forall edges(e,G) { the edges of G are successively assigned to e}

forall adj_edges(e,v) { all edges adjacent to v are successively assigned to e}

1.9 Header Files

LEDA data types and algorithms can be used in any C++ program as described in this
manual. The specifications (class declarations) are contained in header files. To use a
specific data type its header file has to be included into the program. In general the
header file for data type xyz is <LEDA /xyz.h>. Exceptions to this rule are described
in Table 10.1 and 10.2.

1.10 Libraries

The implementions of all LEDA data types and algorithms are precompiled and
contained in 5 libraries (libL.a, libG.a, libP.a, libWs.a, libWx.a) which can be linked
with C++ application programs. In the following description it is assumed that these
libraries are installed in one of the systems default library directories (e.g. /usr/lib),

”

which allows to use the “-1...” compiler option.

a) libL.a is the main LEDA library, it contains the implementations of all simple
data types (section 2), basic data types (section 3), dictionaries and priority queues
(section 4). A program prog.c using any of these data types has to be linked with the
libL.a library like this:

CC prog.c -1L

b) libG.a is the LEDA graph library. It contains the implementations of all graph
data types and algorithms (section 5). To compile a program using any graph data

type or algorithm the libG.a and libL.a library have to be used:
CC prog.c -1G -1L
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¢) libP.a is the LEDA library for geometry in the plane. It contains the implementations
of all data types and algorithms for two-dimensional geometry (section 6). To compile
a program using two-dimensional data types or algorithms the libP.a, 1ibG.a, libL.a

and maths libraries have to be used:

CC prog.c -1P -1G -IL -lm

d) libWx.a, libWs.a are the LEDA libraries for graphic windows under the X11
(xview) or SunView window systems. Application programs using data type window

(cf. section 6.7) have to be linked with one of these libraries:

a) For the X11 (xview) window system:

CC prog.c -1P -1G -IL -1Wx -lxview -lolgx -1X11 -Im

b) For the SunView window system:

CC prog.c -1P -1G -1L -1Ws -lsuntool -lsunwindow -lpixrect -lm

Note that the libraries must be given in the order -IP -1G -1L and that the window
library (-1Wx or -1Ws) has to appear after the plane library (-1P).
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2. Simple Data Types

2.1 Boolean Values (bool)

An instance of the data type bool has either the value true or false. The usual

C++ logical operators && (and), || (or), ! (negation) are defined for bool.

2.3 Strings (string)

Data type string is the LEDA equivalent of charx in C++ . The differences to the
charx-type are that assignment, compare and concatenation operators are defined and
that argument passing by value works properly, i.e., there is passed a copy of the
string and not only a copy of a pointer. Furthermore a few useful operations for string

manipulations are available.

1. Creation of a string

a) string s;

b) string s(char x p);

b) string s(char c);

introduces a variable s of type string. s is initialized with the empty string (variant

a), the string constant p (variant b), or the one-character string “c¢” (variant c).

2. Operations on a string s

int s.length() returns the length of string s

char& s [int 1] returns the character at position
Precondition: 0 <17 < s.length()—1

string s (int 1, int j) returns the substring of s starting at
position ¢ and ending at position j
Precondition: 0 <1 < j < slength()—1

string s.tail(int 1) returns the last ¢ characters of s
string s.head(int 1) returns the first ¢ characters of s
int s.pos(string si1) returns the first position of s; in s if s; is

15



int

string

string

string

string

string

string
string
string
string

void

vord
vord
vord
string
string&
bool
bool
bool
bool
bool
bool

a substring of s, —1 otherwise

s.pos(string s1, int ) returns the first position of s; in s right of
position ¢ (-1 if no such position exists)
s.insert(string si, int ¢) returns s(0,72 —1) 4+ s1 + s(3,s.length() — 1)
Precondition: 0 <17 < s.length()—1
s.replace(string s1, string sz, int ¢ = 1)
returns the string created from s by replacing

the :-th occurence of s; in s by s,
s.replace_all(string si, string s2)
returns the string created from s by replacing
all occurences of s; in s by s»
s.replace(int i, int j, string s1)
returns the string created from s by replacing
S(i,j) by s1
s.replace(int i, string sp)

returns the string created from s by replacing

sli] by s1
s.del(string s1, int ¢ = 1) returns s.replace(sy,””,1)
s.del_all(string si1) returns s.replace_all(s1,””)
s.del(int ¢, int j) returns s.replace(¢,s,””)
s.del(int 1) returns s.replace(z,””)
s.read(istream I, char delim =" ')

reads characters from input stream I into s

until the first occurence of character delim

s.read(char delim =' ') read(cin,delim)

s.read line(istream I) read(Z,’\n’)

s.read line() read line(cin)

s+ s returns the concatenation of s and s;

s + = s appends s; to s and returns s

§ == 8 true iff s and s; are equal

sl= s true iff s and s; are not equal

s < 81 true iff s is lexicographically smaller than s;
s> 8 true iff s is lexicographically greater than s;
s <= 81 returns (s < s1) || (s == s1)

§ >= 81 returns (s > s1) || (s == s1)
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ostream& O << s writes string s to the output stream O

istream& I >> s read(I,” )

3. Implementation

Strings are implemented by C++ character vectors. All operations on a string s take

time O(s.length()).

2.4 Real-Valued Vectors (vector)

An instance of the data type vector is a vector of real variables.

1. Creation

a) wvector v(int d);

b) wvector v(double a, double b);

c) vector wv(double a, double b, double c);

creates an instance v of type vector; v is initialized to the zero vector of dimension
d (variant a), the two-dimensional vector (a,b) (variant b) or the three-dimensional

vector (a,b,c) (variant c).

2. Operations on a vector v

int v.dim() returns the dimension of v.

double v.length() returns the Euclidean length of v
double v.angle(vector w) returns the angle between v and w.
double& v [int i returns i-th component of v.

Precondition: 0 <17 < v.dim()—1.
vector v + v Addition

Precondition: v.dim() = v;.dim().

vector v — v Subtraction

Precondition: v.dim() = v;.dim().

double v ok vy Scalar multiplication

17



Precondition: v.dim() = v;.dim().

vector v ok r Componentwise multiplication with double »
bool v == v Test for equality

bool v!i= v Test for inequality

ostreem& O << v writes v componentwise to the output stream O
istream& I >> v reads v componentwise from the input stream [

3. Implementation

Vectors are implemented by arrays of real numbers. All operations on a vector v
take time O(v.dim()), except of dim and | | which take constant time. The space

requirement is O(v.dim()).

2.5 Real-Valued Matrices (matrix)

An instance of the data type matriz is a matrix of double variables.

1. Creation
matric  M(int n, int m);

creates an instance M of type matriz, M is initialized to the n X m - zero matrix.

2. Operations on a matrix M

int M .dim1() returns n, the number of rows of M.
int M .dim2() returns m, the number of cols of M.
vector M .row(int 1) returns the i-th row of M (an m-vector).

Precondition: 0<1<n —1.

vector M .col(int 1) returns the i-th column of M (an n-vector).
Precondition: 0<1<m —1.

matriz M .trans() returns M T (m X n - matrix).

double M .det() returns the determinant of M.

Precondition: M is quadratic.

18



matriz

vector

double&

matriz

matriz

matriz

matriz

vector

ostreamé&

istream&

M .inv()

M .solve(vector b)

M (int i, int j)

M + M,
M — M,
M x M1
M * P
M * v
O << M
I > M

3. Implementation

returns the inverse matrix of M.

Precondition: M .det() # 0.

returns vector ¢ with M -z = b.
Precondition: M.diml() = M.dim2() = b.dim()
and M.det() # 0.

returns M ;.
Precondition: 0<i1<n—1and0<j3<m—1.

Addition
Precondition: M.diml() = M;.dim1() and
M.dim2() = M;.dim2().

Subtraktion
Precondition: M.diml() = M;.dim1() and
M.dim2() = M;.dim2().

Multiplication
Precondition: M.dim2() = M;.dim1().

Multiplication with double
Multiplication with vector

Precondition: M.dim2() = v.dim().
writes matrix M to the output stream O

reads matrix M from the input stream I

Data type matriz is implemented by two-dimensional arrays of double numbers.

Operations det, solve, and inv take time O(n®), dim1, dim2, row, and col take constant

time, all other operations take time O(nm). The space requirement is O(nm).
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3. Basic Data Types

3.1 One Dimensional Arrays (array)

1. Definition

An instance A of the parameterized data type array<E> is a mapping from an interval

I = [a..b] of integers, called the index set of A, to the set of variables of data type F,

called the element type of A. A(¢) is called the element at position <.

2. Creation

array<E> A(int a, int b);

creates an instance A of type array<E> with index set [a..b].

3. Operations

FE&
int
int

void

void

int

void

A [int §]

Alow()

A.high()

A.sort(int (xemp)(E&, E&))

returns A(7). Precondition: a <1 <b
returns the minimal index a
returns the maximal index b

sorts the elements of A, using function cmp

to compare two elements, i.e., if (ing,...,inp)
and (outg,...,outy) denote the values of the
variables (A(a),...,A(b)) before and after the
call of sort, then emp(out;,out;) <0 for i < j
and there is a permutation 7 of [a..b] such that

out; = in,;) for a < <b.

A.sort(int (xemp)(E&, E&), int I, int h)

applies the above defined sorting operations to

the sub-array A[l..h].

A.binary search(E z, int (xemp)(E&, E&))

A.read(istream I)

performs a binary search for z. Returns
with A[¢{] =2 if z in A, Alow() — 1

otherwise. Function ¢mp is used to compare
two elements. Precondition: A must be sorted

according to cmp.

reads b — a + 1 objects of type F from the

21



input stream I into the array A using the

overloaded Read function (cf. section 1.5)

void A.read() Calls A.read(cin) to read A from the

standard input stream cin.

votd  A.read(string s) As above, uses string s as a prompt.

votd  A.print(ostream O, char space = ')
Prints the contents of array A to the output
stream O using the overload Print function
(cf. section 1.5) to print each element. The

elements are separated by the character space.

votd  A.print(char space = ') Calls A.print(cout, space) to print A on

the standard output stream cout.
votd  A.print(string s, char space = '')

As above, uses string s as a header.

4. Implementation

Arrays are implemented by C++ vectors. The access operation takes time O(1), the
sorting is realized by quicksort (time O(nlogn)) and the binary_search operation takes

time O(logn), where n = b — a + 1. The space requirement is O(|I|).
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3.2 Two Dimensional Arrays (array2)
1. Definition

An instance A of the parameterized data type array2<E> is a mapping from a set of
pairs I = [a..b] X [c..d], called the index set of A, to the set of variables of data type F,
called the element type of A, for two fixed intervals of integers [a..b] and [b..c]. A(%,7)
is called the element at position (i, j).

2. Creation

array2<E> A(a,b,c,d);

creates an instance A of type array2<E> with index set [a..b] X [c..d].

3. Operations

E& A (int ¢, int j) returns A(7,7).
Precondition: a <1 <band ¢ <j <d.
int Alowl() returns a
int A.highl() returns b
int Alow2() returns c
int A.high2() returns d

4. Implementation

Two dimensional arrays are implemented by C++ vectors. All operations take time

O(1), the space requirement is O(|I|).

23



3.3 Stacks (stack)
1. Definition

An instance S of the parameterized data type stack<E> is a sequence of elements of
data type F, called the element type of S. Insertions or deletions of elements take
place only at one end of the sequence, called the top of S. The size of S is the length

of the sequence, a stack of size zero is called the empty stack.

2. Creation
stack<E> S,

creates an instance S of type stack<E>. S is initialized with the empty stack.

3. Operations

E S.top() returns the top element of S
Precondition: S is not empty.

E S.pop() deletes and returns the top element of S
Precondition: S is not empty.

void S.push(E z) adds = as new top element to S.

void S.clear() makes S the empty stack.

int S .size() returns the size of S.

bool S.empty() returns true if S is empty, false otherwise.

4. Implementation

Stacks are implemented by singly linked linear lists. All operations take time O(1),

except clear which takes time O(n), where n is the size of the stack.
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3.4 Queues (queue)
1. Definition

An instance @ of the parameterized data type queue<E> is a sequence of elements
of data type E, called the element type of ). Elements are inserted at one end (the
rear) and deleted at the other end (the front) of ). The size of Q is the length of the

sequence, a queue of size zero is called the empty queue.

2. Creation
queue<FE> Q;

creates an instance @ of type queue<E>. @ is initialized with the empty queue.

3. Operations

E Q.top() returns the front element of Q
Precondition: @ is not empty.

E Q.pop() deletes and returns the front element of Q
Precondition: @ is not empty.

void Q.append(F ) appends x to the rear end of Q.

void Q.clear() makes @ the empty queue.

int Q.size() returns the size of Q.

bool Q.empty() returns true if Q is empty, false otherwise.

4. Implementation

Queues are implemented by singly linked linear lists. All operations take time O(1),

except clear which takes time O(n), where n is the size of the queue.
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3.5 Bounded Stacks (b_stack)
1. Definition
An instance S of the parmaterized data type b_stack<E> is a stack (see section 2.3)

of bounded size.

2. Creation
b_stack<E> S(n);

creates an instance S of type b_stack<E> that can hold up to n elements. S is initialized

with the empty stack.

3. Operations

E S.top() returns the top element of S
Precondition: S is not empty.

E S.pop() deletes and returns the top element of S
Precondition: S is not empty.

void S.push(E z) adds = as new top element to S
Precondition: S.size() < n.

void S.clear() makes S the empty stack.

int S .size() returns the size of S.

bool S.empty() returns true if S is empty, false otherwise.

4. Implementation

Bounded Stacks are implemented by C++ vectors. All operations take time O(1). The

space requirement is O(n).
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3.6 Bounded Queues (b_queue)
1. Definition
An instance @ of the paramerized data type b_queue<E> is a queue (see section 2.4)

of bounded size.

2. Creation
b_queue<E> Q(n);
creates an instance @ of type b_queue<FE> that can hold up to n elements. @ is

initialized with the empty queue.

3. Operations

E Q.top() returns the front element of Q
Precondition: @ is not empty.

E Q.pop() deletes and returns the front element of Q
Precondition: @ is not empty.

void Q.append(F ) appends x to the rear end of Q
Precondition: Q.size()< n.

void Q.clear() makes @ the empty queue.

int Q.size() returns the size of Q.

bool Q.empty() returns true if Q is empty, false otherwise.

4. Implementation

Bounded Queues are implemented by circular arrays. All operations take time O(1).

The space requirement is O(n).
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3.7 Linear Lists (list)

1. Definition

An instance L of the parameterized data type list<E> is a sequence of items (list_item).

Each item in L contains an element of data type E, called the element type of L. The
number of items in L is called the length of L. If L has length zero it is called the

empty list. In the sequel < = > is used to denote a list item containing the element

z and L[i] is used to denote the contents of list item ¢ in L.

2. Creation

list<E> L;

creates an instance L of type list<E> and initializes it to the empty list.

3. Operations

a) Access Operations

int

int

bool
list_item
list_item

list_item

list_item

list_item

list_item

list_item

L.length()
L .size()
Lempty()
L first()
Llast()

L.succ(list_item it)

L.pred(list_item it)

L.cyclic_succ(list_item it)

L.cyclic_pred(list_item it)

L.search(E =)

returns the length of L.

returns L.length().

returns true if L is empty, false otherwise.
returns the first item of L.

returns the last item of L.

returns the successor item of item ¢, nil
if ¢t = L.last().

Precondition: it is an item in L.

returns the predecessor item of item ¢, nil
if ¢t = L.first().

Precondition: it is an item in L.

returns the cyclic successor of item i, i.e.,
L first() if it = L.last(), L.succ(st) otherwise.

returns the cyclic predecessor of item i, i.e,

Llast() if ¢t = L.first(), L.pred(it) otherwise.

returns the first item of L that contains z,

nil if  is not an element of L
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=

int

L.contents(list_item it)

L.inf(list_item it)

L .head()

L .tail()

L.rank(E z)

b) Update Operations

returns the contents L[it] of item it

Precondition: it is an item in L.
returns L.contents(it).

returns the first element of L, i.e. the contents
of L.first().

Precondition: L is not empty.

returns the last element of L, i.e. the contents
of L.last().

Precondition: L is not empty.

returns the rank of = in L, i.e. its first
position in L as an integer from [1...|L|]
(0 if  is not in L).

list item L.insert(E wz,list_item it, direction dir = after)

list item L.push(E z)

list item L.append(E z)

E

void

void

void

L.del item(list item it)

L.pop()

L.Pop()

L.assign(list item it, E z)

L.conc(list& L1)

inserts a new item < z > after (if dir = after)
or before (if dir = before) item it into L and

returns it. Precondition: it is an item in L.

adds a new item < z > at the front of L and
returns it ( L.insert(z, L.first(),before) )

appends a new item < z > to L and returns
it ( L.insert(z, L.last(),after) )
deletes the item ¢t from L and returns its

contents L[it].

Precondition: it is an item in L.

deletes the first item from L and returns its
contents.

Precondition: L is not empty.

deletes the last item from L and returns its
contents.

Precondition: L is not empty.

makes = the contents of item it.

Precondition: it is an item in L.

appends list L1 to list L and makes L1 the
empty list

L.split(list_item it,list& L1, L2)

splits L at item ¢t into lists L1 and L2
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void L.apply(void (xf)(E&))

void L.sort(int (xemp)(E&, E&))

and makes L the empty list. More precisely,
if L=21,...,2%-1,tt,Zk+1,...,2L, then
Ll1=21,...,2p—1 and L2 =1tt,z41,...,2p
Precondition: 1t is an item in L.

for all items < # > in L function f is

called with argument z (passed by reference).

sorts the items of L using the ordering defined
by the compare function emp: E X E — int,
<0,ifa<b
with emp(a,b) =0,if a =5
<0,ifa>b
More precisely, if L = (z1,...,z,) before the sort
then L = (zx(1),...,&x(n)) for some permutation
m of [1..n] and emp(L[z;], L{z;11]) <0 for
1 <3 < n after the sort.

void L.bucket_sort(int 1, int j, int (xf)(E&))

void L.permute()
void L.clear()

¢) Input and Output

sorts the items of L using bucket sort,

where f: E — int with f(z) € [i..5] for

all elements x of L. The sort is stable,

ie., if f(z) = f(y) and < z > is before <y > in
L then < z > is before < y > after the sort.

the items of L are randomly permuted.

makes L the empty list

void L.read(istream I, char delim ='\n')

reads a sequence of objects of type F terminated
by the delimiter delim from the input stream [
using the overloaded Read function (section 1.5)
L is made a list of appropriate length and the

sequence is stored in L.

void L.read(char delim =' \n')  Calls L.read(cin, delim) to read L from
the standard input stream cin.
void L.read(string s, char delim ='\n')
As above, but uses string s as a prompt.
void L.print(ostream O, char space =' ')

Prints the contents of list L to the output

stream O using the overload Print function
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void L.print(char space =" ')

(cf. section 1.5) to print each element. The

elements are separated by the character space.

Calls L.print(cout, space) to print L on

the standard output stream cout.

void L.print(string s, char space =" ')

d) Iterators

As above, but uses string s as a header.

Each list L has a special item called the iterator of L. There are operations to read

the current value or the contents of this iterator, to move it (setting it to its successor
or predecessor) and to test whether the end (head or tail) of the list is reached. If

the iterator contains a list_ttem # nil we call this item the position of the iterator.

Iterators are used to implement iteration statements on lists.

void L.set iterator(list_item it)

void L .init _iterator()

list item L.get iterator()

assigns item it to the iterator

Precondition: 1t is in L or it = nil.
assigns nil to the iterator

returns the current value of the iterator

list item L.move.iterator(direction dir = forward)

bool L.current_element(E& )
bool L.next_element(E& )
bool L.prev_element(E& z)

e) Operators
E& L [list_item it]
list<E>& L = I,

moves the iterator to its successor (predecessor)
if dir = forward (backward) and to the first
(last) item if it is undefined (= nil), returns

the iterator.

if the iterator is defined (# nil) its contents is
assigned to = and true is returned else false

is returned

L.move_iterator( forward) +
z)

return L.current_element (

L.move_iterator(backward) +

return L.current_element(x)

returns a reference to the contents of it.

The assignment operator makes L a copy of
list L. More precisely if L; is the sequence

of items z1,x5,...2, then L is made a
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sequence of items y1,¥y2,...y, with
Lly;] = Lq[z;] for 1 <7 < n.

4. Iteration

forall items(¢t, L) { “the items of L are successively assigned to it” }

forall(z, L) { “the elements of L are successively assigned to z” }

5. Implementation

The data type list is realized by doubly linked linear lists. All operations take constant
time except for the following operations. Search and rank take linear time O(n),
bucket_sort takes time O(n + j — ¢) and sort takes time O(n - ¢-logn) where ¢ is the

time complexity of the compare function. n is always the current length of the list.
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3.8 Sets (set)
1. Definition

An instance S of the parameterized data type set<E> is a collection of elements of the
linearly ordered type E, called the element type of S. The size of S is the number of

elements in S, a set of size zero is called the empty set.

2. Creation
set<E> S,

creates an instance S of type set<E> and initializes it to the empty set.

3. Operations

void S.insert(E ) adds = to S

void S.del(E z) deletes = from S

bool S.member(E z) returns true if z in S, false otherwise
E S.choose() returns an element of S.

Precondition: S is not empty.

bool S.empty() returns true if S is empty, false otherwise
int S .size() returns the size of S
void S.clear() makes S the empty set

4. Tteration

forall(z, S) { “the elements of S are successively assigned to z” }

5. Implementation

Sets are implemented by randomized search trees ([AS89]). Operations insert, del,
member take time O(logn), empty, size take time O(1), and clear takes time O(n),

where n is the current size of the set.
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3.9 Integer Sets (int_set)
1. Definition
An instance S of the data type int_set is a subset of a fixed interval interval [a..b] of

the integers.

2. Creation
int_set S(a,b);
creates an instance S of type int_set for elements from [a..b] and initializes it to the

empty set.

2. Operations

void S.insert(int ) adds z to S
Precondition: a <z <b.
void S.del(int ) deletes z from S

Precondition: a <z <b.

bool S.member(int ) returns true if z in S, false otherwise
Precondition: a <z <b.

void S.clear() makes S the empty set

int_set S1 = 52 assignment

int_set S1| 52 returns the union of S1 and 52
int_set  S1 & 52 returns the intersection of S1 and 52
int_set " S returns the complement of S

3. Implementation

Integer sets are implemented by bit vectors. Operations insert, delete, member,empty,
and size take constant time. Clear, intersection, union and complement take time

Ob—a+1).
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3.10 Partitions (partition)
1. Definition

An instance of the data type partition consists of a finite set of items (predefined type

partition_item) and a partition of this set into blocks.

2. Creation
partition P;

Creates an instance P of type partition and initializes it to the empty partition.

2. Operations

partition_item  P.make block() returns a new partition_ttem it and adds
the block {it} to partition P.

partition_item  P.find(partition_item p)
returns a canonical item of the block that
contains item p, i.e., if P.same block(p, q)

then P.find(p) = P.find(q).

Precondition: p is an item in P.

bool P .same block(partition_item p, partition_item q)
returns true if p and ¢ belong to the same
block of partition P.
Precondition: p and ¢ are items in P.
void P .union _blocks(partition_item p, partition_item q)
unites the blocks of partition P containing
items p and gq.

Precondition: p and ¢ are items in P.

3. Implementation

Partitions are implemented by the union find algorithm with weighted union and path
compression (cf. [T83]). Any sequence of n make block and m > n other operations

takes time O(ma(m,n)).

4. Example
Spanning Tree Algorithms (cf. graph)
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3.11 Dynamic collections of trees (tree_collection)

1. Definition

An instance D of the parameterized data type tree_collection<I> is a collection of vertex

disjoint rooted trees, each of whose vertices has a double-valued cost and contains an

information of type I, called the information type of D.

2. Creation

tree_collection<I> D;

creates an instance D of type tree_collection<I>, initialized with the empty collection.

3. Operations

d_vertez

d_vertez

d_vertez

void

void

void

D.maketree(I z)

D.inf(d_vertez v)
D findroot(d_vertex v)

Adds a new tree to D containing a single
vertex v with cost zero and information z,

and returns v.
Returns the information of vertex v.

Returns the root of the tree containing v.

D findcost(d_vertex v, double& )

Sets z to the minimum cost of a vertex on the
tree path from v to findroot(v) and returns
the last vertex (closest to the root) on this

path of cost .

D.addcost(d_vertex v, double z)

Adds double number z to the cost of every vertex

on the tree path from v to findroot(v).

D link(d_vertezx v, dvertex w)

D.cut(d_vertezx v)

Combines the trees containing vertices v and w
by adding the edge (v,w). (We regard tree
edges as directed from child to parent.)
Precondition: v and w are in different trees

and v is a root.

Divides the tree containing vertex v into
two trees by deleting the edge out of v.

Precondition: v is not a tree root.
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4. Implementation

Dynamic collections of trees are implemented by partitioning the trees into vertex
disjoint paths and representing each path by a self-adjusting binary tree (see [T83]). All

operations take amortized time O(log n) where n is the number of maketree operations.
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4. Priority Queues and Dictionaries

4.1 Priority Queues (priority_queue)
1. Definition

An instance @ of the parameterized data type priority_queue<K,I> is a collection of
items (type pg_item). Every item contains a key from type K and an information
from the linearly ordered type I. K is called the key type of @ and I is called the
information type of . The number of items in @ is called the size of Q. If @ has
size zero it is called the empty priority queue. We use < k,z > to denote a pg_item

with key k& and information <.

2. Creation
a) priority_queue<K,I> @Q;
b) _priority_queue<K,I,prio_impl> Q;

creates an instance ) of type priority_queue<K,I> and initializes it with the empty
priority queue. Variant a) chooses the default data structure (cf. 4.1.4), and variant
b) chooses class prio_tmpl as the implementation of the queue (cf. section 9 for a list

of possible implementation parameters).

3. Operations

K Q.key(pg_item it) returns the key of item it.

Precondition: it is an item in Q.

I Q.inf(pg_ttem it) returns the information of item <t.

Precondition: it is an item in Q.
pg-item Q.insert(K k,I 1) adds a new item < k,7 > to @ and returns it.
pg-ttem @Q.find_min() returns an item with minimal information
(nil if @ is empty)
void Q.del item(pg_ttem it) removes the item ¢t from Q.

Precondition: it is an item in Q.

K Q.del_min() removes the item it = Q.find_min() from @
and returns the key of .

Precondition: @ is not empty.
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void

void

void
bool

int

Q.decrease_inf(pg_item ¢t, I i) makes i the new information of item ¢
Precondition: it is an item in @ and ¢

is not larger then in f(it).
Q.change key(pg_ttem it, K k) makes k the new key of item it

Precondition: it is an item in Q.

Q.clear() makes @ the empty priority queue
Q.empty() returns true, if Q) is empty, false otherwise
Q.size() returns the size of Q.

4. Implementation

Priority queues are implemented by Fibonacci heaps ([FT84]|. Operations insert,

del.item, del_min take time O(logn), find min, decrease inf, key, inf, empty take time

O(1) and clear takes time O(n), where n is the size of Q). The space requirement is

O(n).

5. Example

Dijkstra’s Algorithm (cf. section 8.1)
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4.2 Bounded Priority Queues (b_priority queue)
1. Definition

An instance @ of the parameterized data type b_priority_queue<K> is a priority _queue

(cf. section 4.1) whose information type is a fixed interval [a..b] of integers.

2. Creation
b_priority_queue<K> Q(a,b);

creates an instance @ of type b_priority_queue<K> with information type [a..b] and

initializes it with the empty priority queue.

3. Operations on a b_priority_queue Q

The operations are the same as for the data type priority_queue with the additional

precondition that any information argument must be in the range [a..b].

4. Implementation

Bounded priority queues are implemented by arrays of linear lists. Operations insert,
find_min, delitem, decreaseinf, key, inf, and empty take time O(1), del.min ( =
del.item for the minimal element) takes time O(d), where d is the distance of the
minimal element to the next bigger element in the queue ( = O(b — a) in the worst
case). clear takes time O(b — a4 n) and the space requirement is O(b — a + n), where

n is the current size of the queue.
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4.3 Dictionaries (dictionary)

1. Definition

An instance D of the parameterized data type dictionary<K,I> is a collection of

items (dic_item). Every item in D contains a key from the linearly ordered data type

K, called the key type of D, and an information from the data type I, called the

information type of D. The number of items in D is called the size of D. A dictionary

of size zero is called the empty dictionary. We use < k,z > to denote an item with

key k and information 7 (7 is said to be the information associated with key k). For
each k € K there is at most one ¢ € I with < k,z >€ D.

2. Creation

a) dictionary<K,I> D;

b) _dictionary<K,I,dic.impl> D ;

creates an instance D of type dictionary<K,I> and initializes it with the empty

dictionary. Variant a) chooses the default data structure (cf. 4.3.4), and variant b)

chooses class dic_impl as the implementation of the dictionary (cf. section 9 for a list

of possible implementation parameters).

3. Operations

K D key(dic_item it)
I D.inf(dic_ttem it)

dic_item D.insert(K k, I 1)

dic_item D.lookup(K k)

I D.access(K k)

void D.del(K k)

returns the key of item it.

Precondition: it is an item in D.

returns the information of item <.

Precondition: it is an item in D.

associates the information ¢ with the key k.

If there is an item < k,7 > in D then j is
replaced by i, else a new item < k,7 > is added
to D. In both cases the item is returned.
returns the item with key k& (nil if no such
item exists in D).

returns the information associated with key k&
Precondition: there is an item with key k in D.

deletes the item with key k& from D

(null operation, if no such item exists).
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void D.del item(dic_item it) removes item ¢t from D.

Precondition: it is an item in D.

vord D.change inf(dic_item it, I ¢) makes ¢ the information of item ¢t.

Precondition: it is an item in D.

void D.clear() makes D the empty dictionary.
bool D.empty() returns true if D is empty, false otherwise.
int D size() returns the size of D.

4. Implementation

Dictionaries are implemented by randomized search trees ([AS89]). Operations insert,
lookup, del item, del take time O(logn), key, inf, empty, size, changeinf take time
O(1), and clear takes time O(n). Here n is the current size of the dictionary. The

space requirement is O(n).

5. Example

Using a dictionary to count the number of occurrences of the elements in a sequence

of strings, terminated by string “stop”.

#include <LEDA /dictionary.h>

main()

{

dictionary<string,int> D;
string s;
dicitem t;
while (cin >> s)
{ it = D.lookup(s);
if (¢¢ == nil) D.insert(s,1);
else D.change inf(:it,D.inf(it)+1);
}

forall_items(¢t, D) cout << D.key(it) << “: ” << D.inf(it) << “\n”;
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4.4 Dictionary Arrays (d_array)
1. Definition

An instance A of the parameterized data type d_array<I, E> (dictionary array) is an
injective mapping from thelinearly ordered data type I, called the index type of A4, to
the set of variables of data type F, called the element type of A.

2. Creation
a) d.array<I,E> A(z);
b) _d_array<I, E,impl> A(z) ;

creates an injective function a from I to the set of unused variables of type E, assigns =
to all variables in the range of a and initializes A with a. Variant a) chooses the default
data structure (cf. 4.4.5), and variant b) chooses class impl as the implementation of

the dictionary (cf. section 9 for a list of possible implementation parameters).

3. Operations

E& A [I z] returns the variable A(z)
bool A.defined(I =) returns true if z € dom(A4), false otherwise; here

dom(A) is the set of all z € I for which A[z] has
already been executed.

4. Tteration

forall defined(z, A) { “the elements from dom(A) are successively assigned to z” }

5. Implementation

Dictionary arrays are implemented by randomized search trees ([AS89]). Access oper-
ations A[z]| take time O(log dom(A)). The space requirement is O(dom(A)).

44



6. Example

Program 1: Using a dictionary array to count the number of occurences of the

elements in a sequence of strings.

#include <LEDA /d_array.h>

main()

{

d_array<string,int> N(0);
string s;
while (cin >> s) N[s] + +;

forall defined(s, N) cout << s << “” << NJ[s] << “\n”;

Program 2: Using a d_array to realize an english/german dictionary.

#include <LEDA /d_array.h>

main()

{

d_array<string,string> trans;

trans[“hello”] = “hallo”;

trans[“world”] = “Welt”;

trans[“book”] = “Buch”;

trans[“key”] = “Schluessel”;

string s;

forall_defined(s,trans) cout << s << “ 7 << trans[s] << “\n”;
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4.5 Hashing arrays (h_array)
1. Definition

An instance A of the parameterized data type h_array<l, E> (hashing array) is an
injective mapping from the data type I, called the index type of A, to the set of
variables of data type FE, called the element type of A. I must be an integer, pointer,

or item type.

2. Creation
h_array<Il, E> A(z);

creates an injective function a from I to the set of unused variables of type E, assigns

z to all variables in the range of a and initializes A with a.

3. Operations

E& A [I z] returns the variable A(z)

bool A.defined(I =) returns true if z € dom(A4), false otherwise; here
dom(A) is the set of all z € I for which A[z] has

already been executed.
4. TIteration

forall defined(z, A) { “the elements from dom(A) are successively assigned to z” }

5. Implementation

Hashing arrays are implemented by dynamic perfect hashing ((DKMMRT88]). Access
operations A[z] take time O(1). Hashing arrays are more efficient than dictionary

arrays.
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4.6 Sorted Sequences (sortseq)
1. Definition

An instance S of the parameterized data type sortseq<K,I> is a sequence of items
(seq_item). Every item contains a key from the linearly ordered data type K, called
the key type of S, and an information from data type I, called the information type
of §. The number of items in S is called the size of S. A sorted sequence of size zero
is called empty. We use < k,t > to denote a seq_ttem with key k and information ¢
(called the information associated with key k). For each k € K there is at most one
item < k,t >€ S.

The linear order on K may be time-dependent, e.g., in an algorithm that sweeps
an arrangement of lines by a vertical sweep line we may want to order the lines by
the y-coordinates of their intersections with the sweep line. However, whenever an
operation (except of reverse.items) is applied to a sorted sequence S, the keys of S
must form an increasing sequence according to the currently valid linear order on K.

For operation reverse_items this must hold after the execution of the operation.

2. Creation
a) sortseqg<K,I> S;
b) _sortseg<K,I,seq_impl> S ;

creates an instance S of type sortseq<K,I> and initializes it to the empty sorted
sequence. Variant a) chooses the default data structure (cf. 4.6.4), and variant b)
chooses class seq_tmpl as the implementation of the sorted sequence (cf. section 9 for

a list of possible implementation parameters).

3. Operations

K S key(seq_item it) returns the key of item it

Precondition: it is an item in S.

I S.inf(seq_ttem it) returns the information of item it

Precondition: it is an item in S.

seq_ttem S.lookup(K k) returns the item with key &

( nil if no such item exists in S )
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seq_item

seq_item

seq_item

seq_item

seq_item

seq_item

seq_item

seq_item

void

void

void

void

S.insert(K k,I 1)

associates information ¢ with key k: If
there is an item < k,7 > in S then j is
replaced by ¢, else a new item < k,7 > is

added to 5. In both cases the item is

returned.

S.insert_at(seq_item it, K k,I 1)

S.locate(K k)

S.locate_pred(K k)

S.succ(seq_item it)

S.pred(seq_item it)

S.max()

S.min()

S.delitem(seq_item it)

S.del(K k)

S.change_ inf(seq_item it, I 1)

Like insert(k,7), the item it gives the
position of the item < k,7 > in the sequence
Precondition: 1t is an item in S with either
key(¢t) is maximal with key(it) < k or
key(¢t) is minimal with key(it) > k

returns the item < k',7 > in S such that

k' is minimal with &' >= %k ( nil if no

such item exists).

returns the item < k',7 > in S such that

k' is maximal with k' <=k ( nil if no

such item exists).

returns the successor item of it, i.e., the
item < k,t > in S such that k is minimal
with & > key(it) (nil if no such item exists).

Precondition: it is an item in S.

returns the predecessor item of i, i.e., the
item < k,z > in S such that k is maximal
with k < key(it) (nil if no such item exists).

Precondition: t is an item in S.
returns the item with maximal key
(nil if S is empty).

returns the item with minimal key
(nil if S is empty).

removes the item it from S.

Precondition: it is an item in S.

removes the item with key &k from S

(null operation if no such item exists).

makes 7 the information of item :%.

Precondition: it is an item in S.

S.reverseitems(seq_item a, seq_item b)

the subsequence of S from a to b is reversed.

Precondition: a appears before b in S.
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void S.split(seq_item it, sortseq < K,I > & S1, sortseq < K,I > & S5)
splits S at item it into sequences S; and S-
and makes S empty. More precisely, if
S=z1,...,25-1,,Lk41,...,Z, then
Sl=21,...,25_1,tt and S2 = 2g41,...,Z,
Precondition: 1t is an item in S.

sortseq <HKedne(ortseq < K,I > & S1) appends S; to S, makes S; empty and

returns S. Precondition:

S.key(S.max()) < Sp.key(S1.min()).

void S.clear() makes S the empty sorted sequence.
int S .size() returns the size of S.
bool S.empty() returns true if S is empty, false otherwise.

4. Implementation

Sorted sequences are implemented by (2,4)-trees. Operations lookup, locate, insert, del,
split, conc take time O(logn), operations succ, pred, max, min, key, inf, insert_at_item
and delitem take time O(1). Clear takes time O(n) and reverse_items O(f), where £
is the length of the reversed subsequence. The space requirement is O(n). Here n is

the current size of the sequence.

5. Example

Using a sorted sequence to list all elements in a sequence of strings lying lexicographically

between two given search strings.

#include <LEDA /sortseq.h>

main()
{ sortseq<string,int> S;

string s1,892;

while ( cin >> s; && s; != “stop” ) S.insert(s;,0);

while ( cin >> s; >> 55 )

{ seq-item stop = S.locate(ss);
for (seq.item it = S.locate(sy); it != stop; it = S.succ(it))
cout << S.key(it) << “\n”;
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4.7 Persistent Dictionaries (p_dictionary)
1. Definition

The difference between dictionaries (cf. section 4.3) and persistent dictionaries lies in
the fact that update operations performed on a persistent dictionary D do not change
D but create and return a new dictionary D'. For example, D.del(k) returns the
dictionary D' containing all items ¢ of D with key(it) # k.

An instance D of the parameterized data type p_dictionary<K, I> is a set of items (type
p-dic_item). Every item in D contains a key from the linearly ordered data type K,
called the key type of D, and an information from data type I, called the information
type of D. The number of items in D is called the size of D. A dictionary of size
zero is called empty. We use < k,72 > to denote an item with key k& and information
¢ (7 is said to be the information associated with key k). For each k € K there is at
most one item < k,1z >€ D.

2. Creation
p_dictionary<K,I> D;

creates an instance D of type p_dictionary<K, I> and initializes D to an empty persistent

dictionary.

3. Operations

K D key(p_dic_item it) returns the key of item it.
Precondition: 1t € D.

I D.inf(p_dic_item it) returns the information of item it.
Precondition: 1t € D.

p_dic_item D .lookup(K k) returns the item with key k& (nil if no such

item exists in D).

I D.access(K k) returns the information associated with &

Precondition: there is an item with key k&

in D.
p-dictionary(K,I) D.del(K k) returns { ¢ €D | key(z) # k }.
p-dictionary(K,I) D.delitem(p_dic_item it)

returns { z €D | z # it }.
p-dictionary(K,I) D.nsert(K k, I i) returns D.del(k) U {< k,7 >}.
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p-dictionary(K,I) D.changeinf(p_dic_item it, I 1)
Let k = key(it), returns D.del item(st) U
{< k,t >}. Precondition: it € D.

p-dictionary(K,I) D.clear() returns an empty persistent dictionary.
bool D.empty() returns true if D is empty, false otherwise.
int D size() returns the size of D.

4. Implementation

Persistent Dictionaries are implemented by leaf oriented persistent red black trees
(cf. [DSST89]). Operations insert, lookup, del.item, del take time O(logn), key, inf,
empty, size, changeinf and clear take time O(1). The space requirement is O(1) for

each update operation.
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5. Graphs and Related Data Types

5.1 Directed graphs (graph)
1. Definition

An instance G of the data type graph consists of a list of nodes V' and a list of edges
E (node and edge are predefined data types). Every edge e € E is a pair of nodes
(v,w) € VXV, vis called the source of e and w is called the target of e. With every
node v the list of its adjacent edges adj_list(v) = { e € E |source(e) = v }, called the
adjacency list of v, is associated.

2. Creation

graph G

creates an instance G of type graph and initializes it to the empty graph.

3. Operations

a) Access operations

int G.indeg(node v) returns the indegree of node v

int G.outdeg(node v) returns the outdegree of node v
node G.source(edge e) returns the source node of edge e
node G.target(edge e) returns the target node of edge e
int G.number_of nodes() returns the number of nodes in G
int G.number of_edges() returns the number of edges in G
list<node> G.all_nodes() returns the list V' of all nodes of G
node G first node() returns the first node in V

node G.last_node() returns the last node in V

node G.succ_node(node v) returns the successor of node v in V

(nil if it does not exist)

node G.pred node(node v) returns the predecessor of node v in V

(nil if it does not exist)
list<edge> G.all_edges() returns the list E of all edges of G
edge G first_edge() returns the first edge in E
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edge
edge

edge

G.last_edge()
G.succ_edge(edge e)

G.pred_edge(edge e)

list<edge> G.adj-edges(node v)

list<node> G.adj-nodes(node v)

edge
edge
edge

edge

edge

edge

node

edge

G first_adj_edge(node v)
G.last_adj_edge(node v)
G.adj_succ(edge e)

G.adj_pred(edge e)

G.cyclic_adj_succ(edge e)

G.cyclic_adj_pred(edge )

(.choose node()
G.choose_edge()

b) Update operations

node

void

edge

edge

void

void

G.new_node()
G.del_node(node v)

G.new_edge(node v, w)

G.new_edge(edge e, node w,

G.del_edge(edge e)
(.del_all_nodes()

returns the last edge in F

returns the successor of edge e in E

(nil if it does not exist)

returns the predecessor of edge ¢ in E

(nil if it does not exist)

returns the list of all edges adjacent to v
returns the list of all nodes adjacent to v
returns the first edge in the adjacency list of v
returns the last edge in the adjacency list of v

returns the successor of edge e in the
adjacency list of source(e)

(nil if it does not exist)

returns the predecessor of edge e in the
adjacency list of source(e)

(nil if it does not exist)

returns the cyclic successor of edge e in the

adjacency list of source(e)

returns the cyclic predecessor of edge e in the

adjacency list of source(e)
returns a node of G (nil if G is empty)
returns an edge of G (nil if G is empty)

adds a new node to G and returns it
deletes v and all edges adjacent to v

from G. Precondition: indeg(v) = 0.
adds a new edge (v,w) to G by appending

it to the adjacency list of v and returns it.
rel_pos dir = after)

adds a new edge €' = (source(e),w) to G by
inserting it after (dir=after) or before (dir
=before) edge e into the adjacency list of

source(e), returns e'.
deletes the edge e from G

deletes all nodes from G
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void G.del_all_edges()
edge G.rev_edge(edge e)

void G.rev()

deletes all edges from G

reverses the edge e = (v,w) by removing it
from G and inserting the edge ¢’ = (w,v)
into G by appending it to the adjacency list

of w, returns e’

all edges in G are reversed

void G.sort_nodes(int(xcmp)(node&, node&))

void G.sort_nodes(node_array<T>

the nodes of G are sorted according to the
ordering defined by the comparing function
cmp. Subsequent executions of forall nodes
step through the nodes in this order.

(cf. TOPSORT1 in section 8.1)

4)

the nodes of G are sorted according to the
entries of node_array A (cf. section 5.7)

Precondition: T must be linearly ordered

void G.sort_edges(int(xcmp)(edge&, edge&))

the edges of G are sorted according to the
ordering defined by the comparing function
cmp. Subsequent executions of forall edges
step through the edges in this order.

(cf. TOPSORT1 in section 8.1)

void G.sort_edges(edge_array<T> A)

list<edge> G.insert_reverse_edges()

void G.make_undirected()
void G.make_directed()
void G.clear()

the edges of G are sorted according to the
entries of edge_array A (cf. section 5.7)

Precondition: T must be linearly ordered

for every edge (v,w) in G the reverse edge
(w,v) is inserted into G. The list of all

inserted edges is returned.

every edge (v,w) in @ is inserted into the

adjacency list of w.

every edge (v,w) in G is removed from the

adjacency list of w.

makes G the empty graph
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c) Iterators

With the adjacency list of every node v is associated a list iterator called the adjacency

iterator of v (cf. list). There are operations to initialize, move, and read these iterators.

They are used to implement iteration statements (forall_adj_edges, forall_adj nodes).

void G.init_adj_iterator(node v) assigns nil to the adjacency iterator of node v

bool G.current_adj_edge(edge& e, node v)
if the adjacency iterator of v is defined (# nil)
its contents is assigned to e and true is returned
else false is returned.

bool G.next_adj_edge(edge& e, node v)
moves the adjacency iterator of v forward (to the
first item of adj_list(v) if it is nil) and returns
G.current_adj_edge(e,v)

bool G.current_adj node(node& w, node v)
if G.current_adj_edge(e, v) = true then assign
target(e) to w and return true, else return
false

bool G.next_adjnode(node& w, node v)
if G.next_adj_edge(e, v) = true then assign
target(e) to w and return true, else return
false

void G.reset() assign nil to all adjacency iterators in G

d) Miscellaneous operations

void G.write(ostream O = cout)writes a compressed representation of G to
the output stream O.

void G.write(string s) writes a compressed representation of G to
the file with name s.

void G.read(istream I = cin) reads a compressed representation of G from
the input stream I.

void G.read(string s) reads a compressed representation of G from
the file with name s.

void G.print_node(node v, ostream O = cout)

writes a readable representation of node v to

the output stream O
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void G.print_edge(edge e, ostream O = cout)
writes a readable representation of edge e to

the output stream O

void G.print(ostream O = cout) writes a readable representation of G to the
output stream O

4. Iteration

forall nodes(v,G) { “the nodes of G are successively assigned to v” }

forall edges(e,G) { “the edges of G are successively assigned to e” }

forall_adj_edges(e,w)

{ “the edges adjacent to node w are successively assigned to e” }
forall_adj nodes(v,w)

{ “the nodes adjacent to node w are successively assigned to v” }
5. Implementation

Graphs are implemented by doubly linked adjacency lists. Most operations take constant
time, except of all nodes, all edges, del_all nodes, del_all edges, clear, write, and read
which take time O(n + m), where n is the current number of nodes and m is the

current number of edges. The space requirement is O(n + m).

5.2 Undirected graphs (ugraph)
1. Definition

An instance G of the data type ugraph consists of a set of nodes V and a set of
undirected edges E. Every edge e € F is a set of two nodes {v,w}, v and w are
called the endpoints of e. With every node v is associated the list of its adjacent edges
adj list(v) ={ ec E |[vece}.

2. Creation

ugraph G;

creates an instance G of type ugraph and initializes it to the empty undirected graph.
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3. Operations

Most operations are the same as for directed graphs. The following operations are

either additional or have different effects.

node
int

edge

edge

edge

edge

edge

edge

G.opposite(node v, edge e)
G.degree(node v)

G.new_edge(node v, node w)

returns w if e = {v,w}, nil otherwise
returns the degree of node v.

inserts the undirected edge {v,w} into G by
appending it to the adjacency lists of both

v and w and returns it

G.new_edge(node v, node w, edge el, edge €2, dirl = after, dir2 = after)

G.adj_succ(edge e, node v)

G.adj_pred(edge e, node v)

G.cyclic_adj_succ(edge e, node

inserts the undirected edge {v,w} after (if dirl
= after) or before (if dirl = before) the edge
el into the adjacency list of v and after (if dir2
= after) or before (if dir2 = before) the edge

€2 into the adjacency list of w and returns it

returns the successor of edge e in the

adjacency list of v.

returns the predecessor of edge e in the
adjacency list of v.

v)

returns the cyclic successor of edge e in the

adjacency list of v.

G.cyclic_adj_pred(edge e, node v)

4. Implementation

returns the cyclic predecessor of edge e in the

adjacency list of v.

Undirected graphs are implemented like directed graphs by adjacency lists. The

adjacency list of a node v contains all edges {v,w} of the graph. Most operations take

constant time, except of all_ nodes, all_edges, del_all nodes, del_all edges, clear, write,

and read which take time O(n + m), where n is the current number of nodes and m

is the current number of edges. The space requirement is O(n + m).
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5.3 Planar Maps (planar map)
1. Definition

An instance M of the data type planar_map is the combinatorial embedding of a

planar graph.

2. Creation
planar_map M(graph G);

creates an instance M of type planar_map and initializes it to the planar map represented
by the directed graph G. Precondition: G represents an undirected planar map, i.e.
for every edge (v,w) in G the reverse edge (w,v) is also in G and there is a planar
embedding of G such that for every node v the ordering of the edges in the adjacency
list of v corresponds to the counter-clockwise ordering of these edges around v in the

embedding.

3. Operations

Most operations are the same as for directed graphs. The following operations are

either additional or have different effects.

face M .adj_face(edge e) returns the face of M to the right of e.

list<face> M .all faces() returns the list of all faces of M.

list<face> M .adj_faces(node v) returns the list of all faces of M adjacent
to node v in counter-clockwise order.

list<edge> M .adj_edges(face f) returns the list of all edges of M bounding
face f in clockwise order.

list<node> M .adj_nodes(face f) returns the list of all nodes of M adjacent
to face f in clockwise order.

edge M .reverse(edge e) returns the reversal of edge e in M.

edge M first_face_edge() returns the first edge of face f in M.

edge M .succ_face_edge(edge ¢) returns the successor edge of e in face f

i.e., the next edge in clockwise order.

edge M .pred_face_edge(edge e) returns the predecessor edge of e in face f,

i.e., the next edge in counter-clockwise order.

59



edge M new_edge(edge e, edge es)
inserts the edge e = (source(e; ), source(es))
and its reversal edge into M. Precondition:
e; and e, are bounding the same face F.

The operation splits F' into two new faces.

edge M .del_edge(edge e) deletes the edge e from M. The two faces
adjacent to e are united to one face.

edge M .split_edge(edge e) splits edge e = (v,w) and its reversal r = (w,v)
into edges (v,u), (u,w), (w,u), and (u,v).
Returns the edge (u,w).

node M new_node(face f) splits face f into triangles by inserting a new

node u and connecting it to all nodes of f.

Returns u.

node M new_node(list<edge> el) splits the face bounded by the edges in el by
inserting a new node u and connecting it to all
source nodes of edges in el. Precondition:

all edges in el bound the same face.

list<edge> M .triangulate() triangulates all faces of M by inserting new

edges. The list of inserted edges is is returned.

int M .straight line_embedding(node_array(int) zcoord, node_array(int) ycoord)
computes a straight line embedding for M with
integer coordinates zcoord[v], ycoord[v]) in the
range 0...2(n — 1) for every node v of M,

and returns the maximal used coordinate.

4. TIteration
forall faces(f, M) { “the faces of M are successively assigned to f” }

forall adj_edges(e, f)

{ “the edges adjacent to face f are successively assigned to e” }

5. Implementation

Planar maps are implemented by parameterized directed graphs. All operations take
constant time, except of, new_edge and del_edge which take time O(f) where f is the
number of edges in the created faces, and triangulate and straight line_embedding take

time O(n) where n is the current size (number of edges) of the planar map.
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5.4 Parameterized Graphs (GRAPH)
1. Definition

A parameterized graph G is a graph whose nodes and edges contain additional (user
defined) data. Every node contains an element of a data type vtype, called the node
type of G and every edge contains an element of a data type etype called the edge
type of G. We use < v,w,y > to denote an edge (v,w) with information y and < z >

to denote a node with information z.

All operations defined on instances of the data type graph are also defined on instances
of any parameterized graph type GRAP H<vtype,etype>. For parameterized graphs
there are additional operations to access or update the information associated with its
nodes and edges. Instances of a parameterized graph type can be used wherever an
instance of the data type graph can be used, e.g., in assignments and as arguments to
functions with formal parameters of type graph&. If a function f(graph& G) is called
with an argument Q) of type GRAP H<vtype, etype> then inside f only the basic graph
structure of @ (the adjacency lists) can be accessed. The node and edge entries are
hidden. This allows the design of generic graph algorithms, i.e., algorithms accepting

instances of any parametrized graph type as argument.

2. Creation

G RAP H<vtype, etype> G,

creates an instance G of type GRAP H<vtype,etype> and initializes it to the empty
graph.

3. Operations

In addition to the operations of the data type graph (see section 2):

vtype G.inf(node v) returns the information of node v

etype G.inf(edge e) returns the information of edge e

void G.assign(node v, vtype #) makes z the information of node v

void G.assign(edge e, etype y)  makes y the information of edge e

node G.new_node(vtype ) adds a new node < z > to G and returns it
edge G.new_edge(node v, w, etype )

adds a new edge e =< v,w,z > to G by
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edge

void

void

void

int

G.new_edge(edge e, node w,

G.sort_nodes()

G.sort_edges()

G.write(string fname)

G.read(string fname)

4. Operators

viype&

etype&

G [node v]
G [edge €]

5. Implementation

appending it to the adjacency list of v

and returns e.

etype z, dir = after)

adds a new edge €' =< source(e),w,z > to G
by inserting it after (dir=after) or before (dir
=before) edge e into the adjacency list of

source(e) and returns e'.

the nodes of G are sorted according to their
contents. Precondition: vtype is linearly

ordered.

the edges of G are sorted according to their
contents. Precondition: etype is linearly

ordered.

writes G to the file with name fname. The
output functions Print(vtype,ostream) and

Print(etype, ostream) (cf. section 1.6) must

be defined.

reads G from the file with name fname. The
input functions Read(vtype,istream) and
Read(etype,istream) (cf. section 1.6) must
be defined. Returns error code

1 if file frname does not exist

if graph is not of type GRAP H<vtype, etype>

2
3 if file fname does not contain a graph
0

otherwise.

returns a reference to G.inf(v).

returns a reference to G.inf(e).

Parameterized graphs are derived from directed graphs. All additional operations for

manipulating the node and edge entries take constant time.
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5.5 Parameterized undirected graphs (UGRAPH)
1. Definition

A parameterized undirected graph G is an undirected graph whose nodes and edges
contain additional (user defined) data. Every node contains an element of a data type
viype, called the node type of G and every edge contains an element of a data type
etype called the edge type of G. We use < {v,w},y > to denote the undirected edge

{v,w} with information y and < z > to denote a node with information .

2. Creation
UG RAP H<vtype, etype> G,

creates an instance G of type UGRAP H<vtype, etype>and and initializes it to the
empty graph.

3. Operations

In addition to the operations of the data type ugraph (see section 5.3):

vtype G.inf(node v) returns the information of node v

etype G.inf(edge e) returns the information of edge e

void G.assign(node v, vtype #) makes z the information of node v

void G.assign(edge e, etype ) makes z the information of edge e

node G.new_node(vtype ) adds a new node < z > to G and returns it
edge G.new_edge(node v, node w, etype x)

inserts the undirected edge < {v,w},z > into
G by appending it to the adjacency lists of

both v and w and returns it

edge G.new_edge(node v, node w, edge el, edge e2, etype z, rel_pos dirl =)
after, rel_pos dir2 = after)
inserts the undirected edge < {v,w},z > after
(if dirl = after) or before (if dirl = before)
the edge el into the adjacency list of v and
after (if dir2 = after) or before (if dir2 =
before) the edge e2 into the adjacency list

of w and returns it.
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4. Implementation

Parameterized undirected graphs are derived from undirected graphs. All additional

operations for manipulating the node and edge entries take constant time.

5.6 Parameterized planar maps (PLANAR MAP)
1. Definition

A parameterized planar map M is a planar map whose nodes and faces contain
additional (user defined) data. Every node contains an element of a data type vtype,
called the node type of M and every face contains an element of a data type ftype
called the face type of M. All operations of the data type planar_map are also defined
for instances of any parameterized planar_map type. For parameterized planar maps

there are additional operaations to access or update the node and face entries.

2. Creation
PLAN AR_M AP<vtype, ftype> M(GRAPH (vtype, ftype) G);

creates an instance M of type PLAN AR_M A P<vtype, ftype> and initializes it to the
planar map represented by the parameterized directed graph G. The node entries of
G are copied into the corresponding nodes of M and every face f of M is assigned the
information of one of its bounding edges in G. Precondition: G represents a planar

map.

3. Operations

In addition to the operations of the data type planar_map:

vtype M .inf(node v) returns the information of node v
ftype M .inf(face f) returns the information of face f
void M .assign(node v, vtype ) makes & the information of node v
void M .assign(face f, ftype y) makes y the information of face f
edge M new_edge(edge e1, edge es, ftype y)

inserts the edge e = (source(e; ), source(es))
and its reversal edge €' into M. Precondition:

e; and e, are bounding the same face F.
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The operation splits F' into two new faces f,

adjacent to edge e and f', adjacent to edge
¢/ with inf(f) = inf (F') and inf(f') = y.

4. Implementation

Parameterized planar maps are derived from planar maps. All additional operations

for manipulating the node and edge contents take constant time.

5.7 Node and edge arrays (node_array, edge array)

1. Definition

An instance A of the parameterized data type node_array< E> (edge_array<E>) is a
partial mapping from the node set (edge set) of a (u)graph G to the set of variables
of data type F, called the element type of the array. The domain I of A is called the
index set of A and A(z) is called the element at position z. A is said to be valid for

all nodes (edges) in I.

2. Creation

a) node/edge_array<E> A;

b) node/edge_array<E> A(graph G);

¢) node/edge_array<E> A(graph G, E z);

d) node/edge_array<E> A(graph G, int n, E z);

creates an instance A of type node_array(E) or edge_array(F). Variant a) initializes
the index set of A to the empty set, Variants b) and c¢) initialize the index set of
A to be the entire node (edge) set of graph G, i.e., A is made valid for all nodes
(edges) currently contained in G. Variant c) in addition initializes A(¢) with z for all
nodes (edges) ¢ of G. Variant d) makes A a node/edge_array(E) valid for up to n
nodes/edges of G, Precondition: n > |V| (|E|), this is useful if you want to use the

array for later inserted nodes/edges.
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3. Operations

void A.init(graph G) sets the index set I of A to the node (edge)
set of G, i.e., makes A valid for all nodes

(edges) of G.

void A.init(graph G, E ) makes A valid for all nodes (edges) of G
and sets A(¢) = z for all nodes (edges) of G

void A.init(graph G, int n, E z)
makes A valid for at most n nodes (edges)
of G and sets A(7) = z for all nodes (edges)
of G. Precondition: n > |V| (n > |E|).

E& A [node/edge 1] access the variable A(7).

Precondition: A must be valid for .

4. Implementation

Node (edge) arrays for a graph G are implemented by C++ vectors and an internal
numbering of the nodes and edges of G. The access operation takes constant time,
init takes time O(n), where n is the number of nodes (edges) currently in G. The

space requirement is O(n).

Remark: A node (edge) array is only valid for a bounded number of the nodes
(edges) contained in G. This number is either the total number of nodes of G at
the moment of the array creation (variants a) ...c)) or it is explicitely set by the
user (variant d)). Access operations for additional later added nodes (edges) are not
allowed. Fully dynamic node and edge arrays can be realized by using hashing arrays,

e.g., h_array(node,...) (cf. section 4.5).
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5.8 Two dimensional node arrays (node matrix)

1. Definition

An instance M of the parameterized data type node matriz<E> is a partial mapping
from the set of node pairs V x V of a graph to the set of variables of data type F,
called the element type of M. The domain I of M is called the index set of M. M is
said to be valid for all node pairs in I. A node matrix can also be viewed as a node

array with element type node_array(E) (node_array(node_array(E))).
2. Creation

a) node_matriz<E> M;

b) node_matriz<E> M(G);

¢) node_matriz<E> M(G,z);

creates an instance M of type node_matriz<E>. Variant a) initializes the index set of
M to the empty set, Variants b) and ¢) initialize the index set of A to be the set of
all node pairs of graph G, i.e., M is made valid for all pairs in V x V where V is the
set of nodes currently contained in G. Variant ¢) in addition initializes M (v,w) with

z for all nodes v,w € V.

3. Operations

void M .init(graph G) sets the index set of M to V x V, where
V is the set of all nodes of G
void M .init(graph G, E z) sets the index set of M to V x V, where

V is the set of all nodes of G and initializes

M(v,w) to & for all v,w € V.

E& M (node v, node w) returns the variable M (v,w).
Precondition: M must be valid for v and w.
node_array(E)& Mv] returns the node_array M(v).

4. Implementation

Node matrices for a graph G are implemented by vectors of node arrays and an
internal numbering of the nodes of G. The access operation takes constant time, the

init operation takes time O(n?), where n is the number of nodes currently contained

67



in G. The space requirement is O(n?). Note that a node matrix is only valid for the
nodes contained in G at the moment of the matrix declaration or initialization (init).

Access operations for later added nodes are not allowed.

5.9 Sets of nodes and edges (node set, edge set)

1. Definition

An instance S of the data type node_set (edge_set) is a subset of the nodes (edges) of
a graph G. S is said to be valid for the nodes (edges) of G.

2. Creation

node_set S(G);
edge_set S(G);

creates an instance S of type node_set (edge_set) valid for all nodes (edges) currently

contained in graph G and initializes it to the empty set.

3. Operations on a node/edge set S

void S.insert(z) adds node (edge) z to S

void S.del(z) removes node (edge) z from S

bool S.member(z) returns true if z in S, false otherwise
node/edge S.choose() return a node (edge) of S

int S .size() returns the size of S

bool S.empty() returns true iff S is the empty set
void S.clear() makes S the empty set

4. Implementation

A node (edge) set S for a graph G is implemented by a combination of a list L of
nodes (edges) and a node (edge) array of list_items associating with each node (edge)
its position in L. All operations take constant time, except of clear which takes time

O(|S]). The space requirement is O(n), where n is the number of nodes (edges) of G.
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5.10 Node partitions (node_partition)
1. Definition

An instance of the data type node_partition is a partition of the nodes of a graph G.

2. Creation
node_partition P(G);

creates a node_partition P containing for every node v in G a block {v}.

3. Operations on a node_partition P

bool P .same block(node v, node w)  returns true if v and w belong to the

same block of P.

votd  P.union_blocks(node v, node w) unites the blocks of P containing nodes

v and w.

node  P.find(node v) returns a canonical representative node of

the block that contains node v.

4. Implementation

A node partition for a graph G is implemented by a combination of a partition P
and a node array of partitton_ittem associating with each node in G a partition item
in P. Initialization takes linear time, union_blocks takes time O(1) (worst-case), and
same_block and find take time O(a(n)) (amortized). The space requirement is O(n),

where n is the number of nodes of G.
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5.11 Node priority queues (node_pq)

1. Definition

An instance @ of the parameterized data type node_pg<I> is a partial function from
the nodes of a graph G to the linearly ordered type I.

2. Creation

node_pg<I> Q(G);

creates an instance @Q ot type node_pg<I> for the nodes of graph G with dom(Q) = 0.

3. Operations

votd  Q.insert(node v, I 1) adds the node v with information 7 to

Q. Precondition: v ¢ dom(Q).

I Q.inf(node v) returns information of node wv.
bool Q.member(node v) returns true if v in @, false otherwise.
void  Q.decrease.inf(node v, I 1) makes ¢ the new information of node v

(Precondition: 1 < Q(v)).
node  Q.find_min() returns a node with the minimal
information(nil if @ is empty)
votd  Q.del(node v) removes the node v from Q

node  Q.del_min() removes a node with the minimal
information from ) and returns it

(nil if @ is empty)

int Q.size() returns |dom(Q)|.
void  Q.clear() makes () the empty node priority queue.
bool Q.empty() returns true if @ is the empty node

priority queue, false otherwise.

4. Implementation

Node priority queues are implemented by fibonacci heaps and node arrays. Operations
insert, del node, del_min take time O(logn), find min, decrease_inf, empty take time
O(1) and clear takes time O(m), where m is the size of Q). The space requirement is

O(n), where n is the number of nodes of G.
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5.12 Graph Algorithms

This sections gives a summary of the graph algorithms contained in LEDA. All algorithms
are generic, i.e., they accept instances of any user defined parameterized graph type

G RAP H<vtype, etype> as arguments.

5.12.1 Basic Algorithms

e Topological Sorting
bool TOPSORT (graph& G, node_array<int>& ord)

TOPSORT takes as argument a directed graph G(V, E). It sorts G topologically (if G is
acyclic) by computing for every node v € V an integer ord[v] such that 1 < ord[v] < |V|
and ord[v] < ord[w] for all edges (v,w) € E. TOPSORT returns true if G is acyclic

and false otherwise.

The algorithm ([Ka62]) has running time O(|V| + |E|).

¢ Depth First Search
list<node> DFS(graph& G, node s, node_array<bool>& reached)

DFS takes as argument a directed graph G(V,E), a node s of G and a node_array
reached of boolean values. It performs a depth first search starting at s visiting all
reachable nodes v with reached[v] = false. For every visited node v reached[v] is

changed to true. DFS returns the list of all reached nodes.
The algorithm ([T72]) has running time O(|V| + |E|).

list<edge> DFS_NUM(graph& G, node_array<int>& df snum,

node_array<int>& compnum)

DFS_NUM takes as argument a directed graph G(V, E). It performs a depth first search
of G numbering the nodes of G in two different ways. dfsnum is a numbering with
respect to the calling time and compnum a numbering with respect to the completion
time of the recursive calls. DFS_NUM returns a depth first search forest of G (list of
tree edges).

The algorithm ([T72]) has running time O(|V| + |E|).
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¢ Breadth First Search
list<node> BFS(graph& G, node s, node_array<int>& dist)

BFS takes as argument a directed graph G(V,E) and a node s of G. It performs
a breadth first search starting at s computing for every visited node v the distance
dist[v] from s to v. BFS returns the list of all reached nodes.

The algorithm ([M84]) has running time O(|V| + |E]).

e Connected Components
int COMPONENTS(ugraph& G, node_array<int>& compnum)

COMPONENTS takes an undirected graph G(V, E) as argument and computes for
every node v € V an integer compnum[v] from [0...c — 1] where ¢ is the number

of connected components of G and v belongs to the :-th connected component iff

compnum|v] = i. COMPONENTS returns c.

The algorithm ([M84]) has running time O(|V| + |E]).

e Strong Connected Components
int STRONG_COMPONENTS(graph& G, node_array<int>& compnum)

STRONG_COMPONENTS takes a directed graph G(V, E) as argument and computes
for every node v € V an integer compnum[v] from [0...c — 1] where ¢ is the number

of strongly connected components of G and v belongs to the 2-th strongly connected

component iff compnum|[v] =i. STRONG_COMPONENTS returns c.

The algorithm ([M84]) has running time O(|V| + |E]).

e Transitive Closure
graph TRANSITIVE_CLOSURE(graph& G)

TRANSITIVE_CLOSURE takes a directed graph G(V, E) as argument and computes
the transitive closure of G(V, E). It returns a directed graph G'(V',E') with V! =V
and (v,w) € E' & there is a path form v to w in G.

The algorithm ([GK79]) has running time O(|V| - |E|).
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5.12.2 Network Algorithms

Most of the following network algorithms are overloaded. They work for both integer

and real valued edge costs.

e Single Source Shortest Paths

void DIJKSTRA(graph& G, node s, edge_array<int> cost, node_array<int> dist,
node_array<edge> pred)

votd DIJKSTRA(graph& G, node s, edge_array<double> cost, node_array<double> dist,
node_array<edge> pred)

DIJKSTRA takes as arguments a directed graph G(V,E), a source node s and an
edge_array cost giving for each edge in G a non-negative cost. It computes for each
node v in G the distance dist[v] from s (cost of the least cost path from s to v) and

the predecessor edge pred[v] in the shortest path tree.
The algorithm ([Di59,FT87]) has running time O(|E|+ |V|log |V]).

bool BELLMAN_FORD(graph& G, node s, edge_array<int> cost,
node_array<int> dist,

node_array<int> pred)

bool BELLMAN_FORD(graph& G, node s, edge_array<double> cost,
node_array<double> dist,
node_array<edge>  pred)

BELLMAN_FORD takes as arguments a graph G(V,E), a source node s and an
edge_array cost giving for each edge in G a real (integer) cost. It computes for each
node v in G the distance dist[v] from s (cost of the least cost path from s to v) and the
predecessor edge pred|v] in the shortest path tree. BELLMAN_FORD returns false if

there is a negative cycle in G and true otherwise

The algorithm ([Be58]) has running time O(|V] - |E]).

e All Pairs Shortest Paths
void ALL_PAIRS SHORTEST PATHS(graph& G, edge_array<int>& cost,
node_matriz<int>& dist)

votd ALL_PAIRS SHORTEST PATHS(graph& G, edge_array<double>& cost,
node_matriz<double>& dist)
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ALL_PAIRS SHORTES_PATHS takes as arguments a graph G(V, E) and an edge_array
cost giving for each edge in G a real (integer) valued cost. It computes for each node
pair (v,w) of G the distance dist(v,w) from v to w (cost of the least cost path from

v to w).

The algorithm ([Be58,F162]) has running time O(|V|-|E| + |V |*log|V|).

¢ Maximum Flow

int MAX_FLOW(graph& G, node s, node t, edge_array<int>& cap,
edge_array<int>& flow)

int MAX_FLOW(graph& G, node s, node t, edge_array<double>& cap,
edge_array<double>& flow)

MAX_FLOW takes as arguments a directed graph G(V, E), a source node s, a sink
node ¢ and an edge_array cap giving for each edge in G a capacity. It computes for

every edge e in G a flow flow[e| such that the total flow from s to ¢ is maximal and
flow[e] < caple] for all edges e. MAX_FLOW returns the total flow from s to .

The algorithm ([GT88]) has running time O(|V]?).

e Maximum Cardinality Matching
list<edge> MAX_CARD_MATCHING(graph& G)

MAX_CARD _MATCHING(G) computes a maximum cardinality matching of G, i.e., a
maximal set of edges M such that no two edges in M share an end point. It returns

M as a list of edges.

The algorithm ([E65,T83]) has running time O(|V| - |E| - a(|E|)).

¢ Maximum Cardinality Bipartite Matching

list<edge> MAX_CARD_BIPARTITE MATCHING (graph& G, list<node>& A,
list<node>& B)

MAX_CARD _BIPARTITE MATCHING takes as arguments a directed graph G(V, E)
and two lists A and B of nodes. All edges in G must be directed from nodes in A to

nodes in B. It returns a maximum cardinality matching of G.

The algorithm ([HK75]) has running time O(|E|+/|V|).
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¢ Maximum Weight Bipartite Matching
list<edge> MAX_WEIGHT _BIPARTITE_MATCHING(graph& G,
list<node>& A,
list<node>& B,
edge_array<int>& weight)
list<edge> MAX_WEIGHT _BIPARTITE_MATCHING(graph& G,
list<node>& A,
list<node>& B,
edge_array<double>& weight)

MAX WEIGHT _BIPARTITE MATCHING takes as arguments a directed graph G,
two lists A and B of nodes and an edge_array giving for each edge an integer (real)
weight. All edges in G must be directed from nodes in A to nodes in B. It computes
a maximum weight bipartite matching of G, i.e., a set of edges M such that the sum

of weights of all edges in M is maximal and no two edges in M share an end point.

MAX WEIGHT _BIPARTITE MATCHING returns M as a list of edges.

The algorithm ([FT87]) has running time O(|V |- |E|).

e Spanning Tree

list<edge> SPANNING_TREE(ugraph& G)

SPANNING_TREE takes as argument an undirected graph G(V,E). It computes a
spanning tree T of G, SPANNING_TREE returns the list of edges of T'.

The algorithm ([M84]) has running time O(|V| + |E]).

¢ Minimum Spanning Tree

list<edge> MIN_SPANNING_TREE(ugraph&G, edge_array<int>& cost)

list<edge> MIN_SPANNING_TREE(ugraph&G, edge_array<double>& cost)

MIN_SPANNING_TREE takes as argument an undirected graph G(V,FE) and an
edge_array cost giving for each edge an integer cost. It computes a minimum spanning

tree T' of GG, i.e., a spanning tree such that the sum of all edge costs is minimal.

MIN_SPANNING_TREE returns the list of edges of T'.

The algorithm ([Kr56]) has running time O(|E|log |V]).
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5.12.3 Algorithms for Planar Graphs

e Planarity Test
bool PLANAR(graph&G)

PLANAR takes as input a directed graph G(V, F) and performs a planarity test for G.
If G is a planar graph it is transformed into a planar map (a combinatorial embedding
such that the edges in all adjacency lists are in clockwise ordering). PLANAR returns

true if G is planar and false otherwise.

The algorithm ([HT74]) has running time O(|V| + |E|).

e Triangulation
list<edge> TRIANGULATE PLANAR _MAP(graph& G)

TRIANGULATE _PLANAR_MAP takes a directed graph G representing a planar map.
It triangulates the faces of G by inserting additional edges. The list of inserted edges

is returned.

The algorithm ([HU89]) has running time O(|V| + |E]|).

e Straight Line Embedding
int STRAIGHT _LINE_EMBEDDING(graph& G, node_array<int>& zcoord,
node_array<int>& ycoord)

STRAIGHT _LINE_EMBEDDING takes as argument a directed graph G represent-
ing a planar map. It computes a straight line embedding of G by assigning non-

negative integer coordinates (zcoord and ycoord) in the range 0..2(n — 1) to the nodes.

STRAIGHT_LINE_EMBEDDING returns the maximal coordinate.

The algorithm ([Fa48]) has running time O(|V|?).

76



5.13 Miscellaneous

5.13.1 Some useful functions

votd complete_graph(graph& G, int n)

creates a complete graph G with n nodes.

votd random graph(graph& G, int n, int m)
creates a random graph G with n nodes

and m edges.
void test_graph(graph& G) creates interactively a user defined graph G.

void test_bigraph(graph& G, nodelist& A, nodelist& B)
creates interactively a user defined bipartite
graph G with sides A and B. All edges are
directed from A to B.

bool compute_correspondence(graph& G, edge_array(edge)& reversal)
computes for every edge e = (v,w) in G its
reversal reversalle] = (w,v) in G ( nil if
not present). Returns true if every edge has a

reversal and false otherwise.

void eliminate_parallel_edges(graph& G)

removes all parallel edges from G.

votd cmdline_graph(graph& G, int arge, char®* argv)
builds graph G as specified by the command line

arguments:

prog — test_graph()

prog n — complete_graph(n)
prog n m — test_graph(n,m)
prog file — G.read_graph(file)
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6. Data Types For Two-Dimensional Geometry
6.1 Basic two-dimensional objects

LEDA provides a collection of simple data types for two-dimensional geometry, such
as points, segments, lines, circles, and polygons. All these types can be used as
type parameters in parameterized data types. Their declarations are contained in the
header file <LEDA /plane.h>. Furthermore, some basic algorithms (section 6.1.6)

are included.

6.1.1 Points (point)
1. Definition

An instance of the data type point is a point in the two-dimensional plane R?. We use

(a,b) to denote a point with first (or x-) coordinate a and second (or y-) coordinate b.
2. Creation

a) point p(double z, double y);

b) point p;

introduces a variable p of type point initialized to the point (z,y). Variant b) initializes

p to the point (0,0).

3. Operations

double p.xcoord() returns the first coordinate of point p

double p.ycoord() returns the second coordinate of point p

double p.distance(point q) returns the euclidean distance between p
and gq.

double p.distance() returns the euclidean distance between p
and (0,0).

point p.translate(vector v) returns p 4+ v, i.e., p translated by vector

v. Precondition: v.dim() = 2.

point p.translate(double o, double d)
returns the point created by translating

p in direction a by distance d. The
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direction is given by its angle with a

right oriented horizontal ray.

point p.rotate(point g, double ayeturns the point created by a rotation of p

point p.rotate(double )

4. Operators

bool point == point
bool point = point
point point + vector

Input and output operators:

ostream&  ostream << point

tstream&  istream >> point

6.1.2 Segments (segment)

1. Definition

about point ¢ by angle «.
returns p.rotate(point(0,0), ).

test for equality
test for inequality

translation by vector

writes a point to an output stream

reads the coordinates of a point (two doubles)

from an input stream

An instance s of the data type segment is a directed straight line segment in the

two-dimensional plane, i.e., a straight line segment [p, g] connecting two points p, g € RZ.

p is called the start point and ¢ is called the end point of s. The length of s is the

euclidean distance between p and gq. The angle between a right oriented horizontal ray
and s is called the direction of s. The segment [(0,0),(0,0)] is said to be empty.

2. Creation

a) segment s(point p, point q);

b) segment s(double z1, double y1, double x5, double ys);

c) segment s(point p, double o, double d);

d) segment

»

introduces a variable s of type segment. s is initialized to the segment from p to ¢

(variant a), to the segment from (z1,y1) to (z2,y2) (variant v), to the segment with
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start point p, direction «, and length d (variant c), or to the empty segment (variant

d).

3. Operations

point

point

double
double
double
double
double
double

double

double
bool
bool
double

bool

segment

segment

segment

segment

s.start() returns the start point of segment s.
s.end() returns the end point of segment s.
s.xcoord1() returns the x-coordinate of s.start().
s.ycoordl() returns the y-coordinate of s.start().
s.xcoord2() returns the x-coordinate of s.end().
s.ycoord2() returns the y-coordinate of s.end().
s.length() returns the length of s.

s.direction() returns the direction of s as an angle in

the intervall (—m,n].

s.angle(segment t) returns the angle between s and ¢, i.e.,

t.direction() - s.direction().

s.angle() returns s.direction().
s.horizontal() returns true iff s is horizontal.
s.vertical() returns true iff s is vertical.
s.slope() returns the slope of s.

Precondition: s is not vertical.

s.intersection(segment t, point& p)
if s and ¢ are not collinear and intersect the
intersection point is assigned to p and true is

returned, otherwise false is returned.
s.rotate(point ¢, double a)returns the segment created by a rotation of s
about point ¢ by angle «.
s.rotate(double ) returns s.rotate(s.start(),a).
s.translate(vector v)
returns s + v, i.e., the segment created by

translating s by vector v. Precondition: v

has dimension 2.

s.translate(double alpha, double d)
returns the segment created by a translation of

s in direction a by distance d.
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3. Operators

bool segment == segment test for equality
bool segment = segment test for inequality
segment segment + vector translation by vector

Input and output operators:

ostream&  ostream << segment writes a segment to an output stream.

istream&  istream >> segment reads the coordinates of a segment (four doubles)

from an input stream.

6.1.3 Straight Lines (line)
1. Definition

An instance [ of the data type line is a directed straight line in the two-dimensional

plane. The angle between a right oriented horizontal line and [ is called the direction

of [.

2. Creation

a) line I(point p, point q);
b) line I(segment s);

c) line I(point p, double a);
d) line I

introduces a variable [ of type line. [ is initialized to the line passing through points
p and ¢ directed form p to ¢ (variant a), to the line supporting segment s (variant
b), to the line passing through point p with direction « (variant c), or a line through
(0,0) with direction 0 (variant d).

3. Operations

double [.direction() returns the direction of [.

double l.angle(line g) returns the angle between [ and g, i.e.,
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double
bool
bool
double

double

double

double

bool

bool

line

line

line

line

segment

g.direction() - I.direction().

l.angle() returns [.direction().
[.horizontal() returns true iff [ is horizontal.
l.vertical() returns true iff [ is vertical.
l.slope() returns the slope of [.

Precondition: [ is not vertical.

l.y_proj(double z) returns p.ycoord(), where p € [ with p.xcoord()

= z. Precondition: [ is not vertical.

l.x_proj(double y) returns p.xcoord(), where p € [ with p.ycoord()

= y. Precondition: [ is not horizontal.

l.y_abs() returns the y-abscissa of [ (I.y_proj(0)).

Precondition: [ is not vertical.

lintersection(line g, point& p)
if [ and ¢ are not collinear and intersect the
intersection point is assigned to p and true is

returned, otherwise false is returned.

lintersection(segment s, point& p)
if [ and s are not collinear and intersect the
intersection point is assigned to p and true is

returned, otherwise false is returned.

[.translate(vector v)
returns [ 4+ v, i.e., the line created by
translating [ by vector v. Precondition: v

has dimension 2.

l.translate(double a, double d)
returns the line created by a translation of

[ in direction a by distance d.

l.rotate(point g, double a)returns the line created by a rotation of [

about point ¢ by angle «.
l.rotate(double ) returns [.rotate(point(0,0), ).

l.perpendicular(point p) returns the nromal of p with respect to I.

4. Operators

bool
bool

line == line test for equality

line '= line test for inequality
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6.1.4 Polygons (polygon)

1. Definition

An instance P of the data type polygon is a simple polygon in the two-dimensional

plane defined by the sequence of its vertices in clockwise order. The number of vertices

is called the size of P. A polygon with empty vertex sequence is called empty.

2. Creation

a) polygon P(list<point> pl);

b) polygon P;

introduces a variable P of type polygon. P is initialized to the polygon with vertex

sequence pl. Precondition: The vertices in pl are given in clockwise order and define

a simple polygon. Variant b) creates the empty polygon and assigns it to P.

3. Operations

list<point>

P .vertices()

list<segment>P .segments()

list<point>

list<point>

list<polygon> P.intersection(polygon Q)

bool

bool

polygon

polygon

polygon

P .intersection(line 1)

P .intersection(segment s)

P .inside(point p)

P.outside(point p)

P .translate(vector v)

returns the vertex sequence of P.

returns the sequence of bounding segments

of P in clockwise order.

returns P N[ as a list of points.
returns P N's as a list of points.
returns P N @ as a list of points.

returns true if p lies inside of P,

false otherwise.

returns !P.inside(p).

returns P + v, i.e., the polygon created by
translating P by vector v. Precondition: v

has dimension 2.

P .translate(double o, double d)

returns the polygon created by a translation

of P in direction a by distance d

P.rotate(point ¢q, double ayeturns the polygon created by a rotation of

P about point ¢ by angle «.
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double P size() returns the size of P.

bool P.empty() returns true if P is empty, false otherwise.

4. Operators

bool polygon == polygon test for equality
bool polygon = polygon test for inequality

6.1.5 Circles (circle)
1. Definition

An instance C of the data type circle is a circle in the two-dimensional plane, i.e., the
set of points having a certain distance r from a given point p. r is called the radius
and p is called the center of C. The circle with center (0,0) and radius 0 is called the

empty circle.

2. Creation

a) circle C(point p, double r);

b) circle C(double z, double y, double r);
c) crcle Cj

introduces a variable C of type circle. C is initialized to the circle with center p and
radius r (variant a), to the circle with center (z,y) and radius r (variant b), or to the

empty circle (variant c).

3. Operations

double C .radius() returns the radius of C.
point C .center() returns the center of C.
list<point> C.intersection(line 1) returns C N as a list of points.

list<point> C.intersection(segment s) returns C' N s as a list of points.

list<point> C.intersection(circle D) returns C N D as a list of points.

(
(
(
segment C left tangent(point p) returns the line segment starting in p tangent
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segment C .right_tangent(point p)

to C and left of segment [p,C.center()].

returns the line segment starting in p tangent

to C and right of segment [p,C.center()].

double C .distance(point p) returns the distance between C and p
(negative if p inside C).

double C .distance(line [) returns the distance between C and [
(negative if [ intersects C).

double C .distance(circle D) returns the distance between C and D
(negative if D intersects C).

bool C .inside(point p) returns true if P lies inside of C,
false otherwise.

bool C .outside(point p) returns !C.inside(p).

circle C .translate(vector v) returns C + v, i.e., the circle created by
translating C by vector v. Precondition:
v.dim = 2.

circle C .translate(double o, double d)
returns the circle created by a translation of
C in direction a by distance d.

circle C .rotate(point g, double o)

4. Operators

bool circle == circle

bool circle '= circle

returns the circle created by a rotation of C

about point ¢ by angle «.

test for equality

test for inequality
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6.1.6 Algorithms

e Line segment intersection
votd SEGMENT INTERSECTION(list<segment>& L, list<point>& P);

SEGMENT INTERSECTION takes a list of segments L as input and computes the

list of intersection points between all segments in L.

The algorithm ([BO79]) has running time O((n + k)logn), where n is the number of

segments and k is the number of intersections.

e Convex hull of point set
polygon CONVEX_HULL(list<point> L);

CONVEX_HULL takes as argument a list of points and returns the polygon representing

the convex hull of L. It is based on a randomized incremental algorithm.

Running time: O(nlogn) (with high probability), where n is the number of points.

¢ Voronoi Diagrams

votd VORONOI(list<point>& sites, double R, GRAP H<point,point>& G)

VORONOI takes as input a list of points sites and a real number R. It computes a
directed graph G representing the planar subdivision defined by the Voronoi-diagram
of sites where all “infinite” edges have length R. For each node v G.inf(v) is the
corresponding Voronoi vertex (point) and for each edge e G.inf(e) is the site (point)

whose Voronoi region is bounded by e.

The algorithm ([De92]) has running time O(nlogn) (with high probability), where n

is the number of sites.
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6.2 Two-dimensional dictionaries (d2_dictionary)
1. Definition

An instance D of the parameterized data type d2_dictionary<K1, K2,I> is a collection
of items (dic2_item). Every item in D contains a key from the linearly ordered data
type K1, a key from the linearly ordered data type K2, and an information from data
type I. K1 and K2 are called the key types of D, and I is called the information type
of D. The number of items in D is called the size of D. A two-dimensional dictionary
of size zero is said to be empty. We use < kj,k2,2 > to denote the item with first
key ki, second key k2, and information i. For each pair (ki,k2) € K1 x K2 there is
at most one item < ki, ks,t >€ D. Additionally to the normal dictionary operations,

the data type d2_dictionary supports rectangular range queries on K1 x K2.

2. Creation
d2_dictionary<K1,K2,I> D;

creates an instance D of type d2_dictionary<K1, K2,I> and initializes D to the empty

dictionary.

3. Operations

K1 D keyl(dic2_item it) returns the first key of item it.

Precondition: it is an item in D.

K2 D key2(dic2_item it) returns the second key of item it.

Precondition: it is an item in D.

I D.inf(dic2_item it) returns the information of item s%.

Precondition: it is an item in D.

dic2_item D.max keyl() returns the item with maximal first key.
dic2_item D.max key2() returns the item with maximal second key.
dic2_item D.min key1() returns the item with minimal first key.
dic2_item D.min key2() returns the item with minimal second key.
dic2_item D.insert(K1 ki, K2 ky, I 1)

associates the information ¢ with the keys
ki1 and ko. If there is an item < ki, k2,7 >
in D then j is replaced by i, else a new
item < ki,ks,t > is added to D. In both

88



cases the item is returned.

dic2_item D.lookup(K1 ki, K2 k»)
returns the item with keys k; and k&,

(nil if no such item exists in D).
list<dic2_item> D.range search(K1 a, K1 b, K2 ¢, K2 d)

returns the list of all items < kq,ky,0 >€ D
with ¢ < k; <b and ¢ < ky <d.

list<dic2 item> D.all items() returns the list of all items of D.

vord D.del(K1 ki, K2 k») deletes the item with keys k; and ks
from D.

void D.del item(dic2_item it) removes item ¢t from D.

Precondition: it is an item in D.

void D.change inf(dic2_item it, I 1)
makes 7 the information of item 2¢.

Precondition: it is an item in D.

void D.clear() makes D the empty d2_dictionary.
bool D.empty() returns true if D is empty, false otherwise.
int D size() returns the size of D.

4. Implementation

Two-dimensional dictionaries are implemented by dynamic two-dimensional range trees
[Wi85, Lu78] based on BB[a] trees. Operations insert, lookup, del_item, del take time
O(log® n), range_search takes time O(k + log®n), where k is the size of the returned
list, key, inf, empty, size, change_ inf take time O(1), and clear takes time O(nlogn).

Here n is the current size of the dictionary. The space requirement is O(nlogn).
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6.3 Sets of two-dimensional points (point_set)
1. Definition

An instance S of the parameterized data type point_set<I> is a collection of items
(ps_item). Every item in S contains a two-dimensional point as key (data type point),
and an information from data type I, called the information type of S. The number
of items in S is called the size of S. A point set of size zero is said to be empty. We
use < p,t > to denote the item with point p, and information :. For each point p there
is at most one item < p,7 >€ S. Beside the normal dictionary operations, the data
type point_set provides operations for rectangular range queries and nearest neighbor

queries.

2. Creation
point_set<I> S;

creates an instance S of type point_set<I> and initializes S to the empty set.

3. Operations

point S key(ps_item it) returns the point of item 7t.

Precondition: it is an item in S.

I S.inf(ps_item it) returns the information of item it.

Precondition: it is an item in S.

ps_ttem S.insert(point p, I 1) associates the information ¢ with point p.
If there is an item < p,7 > in S then j
is replaced by ¢, else a new item < p,7 >
is added to S. In both cases the item is

returned.

ps_item S lookup(point p) returns the item with point p (nil if no

such item exists in 5).

ps_ttem S.nearest_neighbor(point q) returns the item < p,z > € S such that

the distance between p and ¢ is minimal.

list<ps_item> S.range search(double zg, double z1, double yo, double y1)
returns all items < p,2 > € S with
zo < p.xcoord() < z; and

yo < p.ycoord() <y

list<ps_item> S.convex hull() returns the list of items containing all
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points of the convex hull of S in clock-

wise order.
void S.del(point p) deletes the item with point p from S

void S.del item(ps_itemit) removes item it from S.

Precondition: it is an item in S.

void S.change inf(ps_ttem it, I ¢) makes ¢ the information of item ¢t.

Precondition: it is an item in S.

list<ps_item> S.all items() returns the list of all items in S.
list<point>  S.all_points() returns the list of all points in S.
void S.clear() makes S the empty point_set.
bool S.empty() returns true iff S is empty.

int S .size() returns the size of S.

4. Implementation

Point sets are implemented by a combination of two-dimensional range trees [Wi85, Lu78]
and Voronoi diagrams. Operations insert, lookup, del item, del take time O(log2 n),
key, inf, empty, size, change inf take time O(1), and clear takes time O(nlogn). A
range_search operation takes time O(k + log? n), where k is the size of the returned
list. A nearest neighbor query takes time O(n?), if it follows any update operation
(insert or delete) and O(logn) otherwise. Here n is the current size of the point set.

The space requirement is O(n?).
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6.4 Sets of intervals (interval set)
1. Definition

An instance S of the parameterized data type interval_set<I> is a collection of items
(is_item). Every item in S contains a closed interval of the real numbers as key and
an information from data type I, called the information type of S. The number of
items in S is called the size of S. An interval set of size zero is said to be empty. We
use < #,y,t > to denote the item with interval [z,y| and information ¢, = (y) is called
the left (right) boundary of the item. For each interval [z,y] C R there is at most one
item < z,y,2 >€ S.

2. Creation
interval_set<I> S,

creates an instance S of type interval_set<I> and initializes S to the empty set.

3. Operations

double S left(is_item it) returns the left boundary of item it.

Precondition: it is an item in S.

double S.right(¢s_item it) returns the right boundary of item <.

Precondition: it is an item in S.

I S.inf(¢s_ttem it) returns the information of item s%.

Precondition: it is an item in S.

1s_item S.insert(double z, double y, I 1)
associates the information ¢ with interval
[z,y]. If there is an item < z,y,j > in S
then j is replaced by ¢, else a new item
< z,y,t > is added to S. In both cases

the item is returned.

1s_item S.lookup(double z, double y)returns the item with interval [z, y]

(nil if no such item exists in 5).

list<is_item> S.intersection(double a, double b)

returns all items < z,y,2 > € S with
[z, 9] N [a,b] # 0.
void S.del(double z, double y)  deletes the item with interval [z,y]
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from S.

void S.del item(zs_item it) removes item ¢t from S.

Precondition: it is an item in S.

vord S.change inf(is_item it, I ¢) makes 7 the information of item it.

Precondition: it is an item in S.

void S.clear() makes S the empty interval_set.
bool S.empty() returns true iff S is empty.
int S .size() returns the size of S.

4. Implementation

Interval sets are implemented by two-dimensional range trees [Wi85, Lu78]. Operations
insert, lookup, del_item and del take time O(log? n), intersection takes time O(k+log® n),
where k is the size of the returned list. Operations left, right, inf, empty, and size
take time O(1), and clear O(nlogn). Here n is always the current size of the interval

set. The space requirement is O(nlogn).
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6.5 Sets of parallel segments (segment set)

1. Definition

An instance S of the parameterized data type segment_set<I> is a collection of items

(seg_item). Every item in S contains as key a line segment with a fixed direction «

(see data type segment) and an information from data type I, called the information

type of S. « is called the orientation of S. We use < s,t > to denote the item with

segment s and information ¢:. For each segment s there is at most one item < s,¢ >€ S.

2. Creation
a) segment_set<I> S(double a);

b) segment_set<I> S;

creates an empty instance S of type segment_set<I> with orientation «. Variant b)

creates a segment set of orientation zero, i.e., for horizontal segments.

3. Operations

segment S key(seg_ttem it)

I S.inf(seg_item it)
seg_item S.insert(segment s, I 1)
ps_item S.lookup(segment s)

list<seg_item> S.intersection(segment q)

list<seg_item> S.intersection(line )

void S.del(segment s)

94

returns the segment of item :t.

Precondition: it is an item in S.

returns the information of item it.

Precondition: it is an item in S.

associates the information ¢ with segment
s. If there is an item < s,7 > in S

then j is replaced by ¢, else a new item
< 8,t > 1s added to S. In both cases the

item is returned.
returns the item with segment s (nil

if no such item exists in §).

returns all items < s,¢ > € S with
sN q# 0. Precondition: q is

orthogonal to the segments in S.

returns all items < s,¢ > € S with
sN1+#0. Precondition: [ is

orthogonal to the segments in S.

deletes the item with segment s



from S.

void S.del item(seg_itemit) removes item it from S.
Precondition: t is an item in S.
void S.change inf(seg_ttem it, I 1)
makes ¢ the information of item <.

Precondition: it is an item in S.

void S.clear() makes S the empty segment set.
bool S.empty() returns true iff S is empty.
int S .size() returns the size of S.

4. Implementation

Segment sets are implemented by dynamic segment trees based on BB|a]| trees ([Wi85,
Lu78]) trees. Operations key, inf, change inf, empty, and size take time O(1), insert,
lookup, del, and del_item take time O(log2 n) and an intersection operation takes time
O(k + log2 n), where k is the size of the returned list. Here n is the current size of

the set. The space requirement is O(nlogn).
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6.6 Planar Subdivisions (subdivision)

1. Definition

An instance S of the parameterized data type subdivision<I> is a subdivision of the
two-dimensional plane, i.e., an embedded planar graph with straight line edges (see
also sections 5.3 and 5.6). With each node v of S is associated a point, called the
position of v and with each face of S is associated an information from data type I,

called the information type of S.
2. Creation
subdivision<I> S(GRAPH (point,I) G);

creates an instance S of type subdivision<I> and initializes it to the subdivision
represented by the parameterized directed graph G. The node entries of G (of type
point) define the positions of the corresponding nodes of S. Every face f of S is
assigned the information of one of its bounding edges in G. Precondition: G represents

a planar subdivision, i.e., a straight line embedded planar map.

2. Operations

point S.position(node v) returns the position of node v.
ftype S.inf(face f) returns the information of face f.
face S.locate_point(point p) returns the face containing point p.

3. Implementation

Planar subdivisions are implemented by parameterized planar maps and an additional
data structure for point location based on persistent search trees ([DSST89]). Operations
position and inf take constant time, a locate_point operation takes time O(log2 n).

Here n is the number of nodes. The space requiremnt and the initialization time is

O(n?).
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6.7 Graphic Windows (window)
1. Definition

The data type window provides an interface for the input and output of basic two-
dimensional geometric objects (cf. section 5.1) using the X11 or SunView window system.
There are two object code libraries libWx.a, and libWs.a containing implementations
for both the X11 (xview toolkit) and the SunView environments. Application programs

using data type window have to be linked with one of these libraries (cf. section 1.6):

a) For the X11 (xview) window system:

CC prog.c -1P -1G -IL -1Wx -lxview -lolgx -1X11 -Im

b) For the SunView window system:

CC prog.c -1P -1G -1L -1Ws -lsuntool -lsunwindow -lpixrect -lm

An instance W of the data type window is an iso-oriented rectangular window in
the two-dimensional plane. The default representation of W on the screen is a 850 X
850 pixel square positioned in the upper right corner (cf. creation, variant c)). The
coordinates and scaling of W used for drawing operations are defined by three double
parameters: zo, the x-coordinate of the left side, z;, the x-coordinate of the right side,
and yg, the y-coordinate of the bottom side. The y-coordinate of the top side of W
is determined by the current size and shape of the window on the screen, which can
be changed interactively. A graphic window supports operations for drawing points,
lines, segments, arrows, circles, polygons, graphs, ...and for graphical input of all
these objects using the mouse input device. Most of the drawing operations have an
optional color argument. Possible colors are black (default), white, blue, green, red,
violet, and orange. On monochrome displays all colors different from white are turned

to black. There are 6 parameters used by the drawing operations:

1. The line width parameter (default value 1 pixel) defines the width of all kinds of

lines (segments, arrows, edges, circles, polygons).

2. The line style parameter defines the style of lines. Possible line styles are solid
(default), dashed, and dotted.

3. The node width parameter (default value 10 pixels) defines the diameter of nodes

created by the draw_ node and draw_filled_node operations.

4. The text mode parameter defines how text is inserted into the window. Possible

values are transparent (default) and opagque.
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5. The drawing mode parameter defines the logical operation that is used for setting
pixels in all drawing operations. Possible values are src.mode (default) and
zor_mode. In src_mode pixels are set to the respective color value, in zor_mode

the value is bitwise added to the current pixel value.

6. The redraw function parameter is used to redraw the entire window, whenever a
redrawing is necessary, e.g., if the window shape on the screen has been changed.

Its type is pointer to a void-function taking no arguments, i.e., void (*F)();

2. Creation

a) window W(int zpiz, int ypiz, int zpos, int ypos);
b) window W (int zpiz, int ypiz);

¢) window W;j

Variant a) creates a window W of physical size zpiz X ypiz pixels with its upper left
corner at position (zpos,ypos) on the screen, variant b) places W into the upper right
corner of the screen, and variant c¢) creates a 850 x 850 pixel window positioned into

the upper right corner.

All three variants initialize the coordinates of W to 0 = 0, z1 = 100 and y0 = 0. The
init operation (see below) can later be used to change the window coordinates and

scaling.

3. Operations

3.1 Initialization

void W .init(double z¢, double z1, double yp)

sets the coordinates of W to z¢,z1, and yj

void W .set_grid_mode(int d)
Adds a rectangular grid with integer coordinates and
grid distance d to W, if d > 0. Removes grid from
W, if d <0.

void W .init(double z¢, double z1, double yo, int d)
like init(zg,z1,yo) followed by set_grid(d)

void W .clear() W is erased.
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3.2 Setting parameters

int W .set line_width(int piz)
Sets the line width parameter to piz pixels and

returns its previous value.

line_style W .set line_style(linestyle s)
Sets the line style parameter to s and returns its

previous value.

int W .set_node_width(int piz)
Sets the node width parameter to piz pixels and

returns its previous value.

text_mode W .set_text_mode(text-mode m)
Sets the text mode parameter to m and returns

its previous value.

drawing_mdde.set_mode(drawing mode m)
Sets the drawing mode parameter to m and returns

its previous value.

void W .set_redraw(void (xF)())

Sets the redraw function parameter to F.

3.3 Reading parameters and window coordinates

int W .get line_width() returns the current line width.
line_style W .get line_style() returns the current line style.
int W .get_node_width() returns the current node width.
text_mode W .get_text_mode() returns the current text mode.

drawing mdde.get_mode()

returns the current drawing mode.

double W .xmin() returns xo, the minimal x-coordinate of W.
double W .ymin() returns yo, the minimal y-coordinate of W.
double W .xmax() returns x;, the maximal x-coordinate of W.
double W .ymax() returns y;, the maximal y-coordinate of W.
double W .scale() returns the number of pixels of a unit length

line segment.
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3.4 Drawing points

void W .draw _point(double z, double y, color ¢ = black)
draws the point (z,y) as a cross of a vertical

and a horizontal segment intersecting at (z,y).

void W .draw _point(point p, ¢ = black)
draws point (p.xcoord(),p.ycoord()).

3.5 Drawing line segments
void W .draw segment(double z1, double y1, double x5, double y2, color ¢ = black)
draws a line segment from (z1,y1) to (z2,y2).

void W .draw segment(point p, point g, color ¢ = black)

draws a line segment from point p to point gq.

void W .draw segment(segment s, color ¢ = black)

draws line segment s.

3.6 Drawing lines

void W .draw line(double z1, double y;, double x5, double y,, color ¢ = black)

draws a straight line passing through points

(w17y1) and (w27y2)‘

void W .draw line(point p, point g, color ¢ = black)
draws a straight line passing through points
p and q.

void W .draw line(line I, color ¢ = black)

draws line [.

void W .draw hline(double y, color ¢ = black)

draws a horizontal line with y-coordinate y.

void W .draw vline(double =, color ¢ = black)
draws a vertical line with x-coordinate .
3.7 Drawing arrows

void W .draw_arrow(double z1, double y;, double z2, double y», color ¢ = black)

draws an arrow pointing from (z1,y1) to (z2,y2).
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void W .draw_arrow(point p, point ¢, color ¢ = black)

draws an arrow pointing from point p to point gq.

void W .draw_arrow(segment s, color ¢ = black)

draws an arrow pointing from s.start() to s.end().

3.8 Drawing circles
void W .draw circle(double =, double y, double r, color ¢ = black)
draws the circle with center (z,y) and radius r.

void W .draw circle(point p, double r, color ¢ = black)

draws the circle with center p and radius r.

void W .draw circle(circle C, color ¢ = black)

draws circle C.

3.9 Drawing discs
void W .draw disc(double z, double y, double r, color ¢ = black)
draws a filled circle with center (z,y) and radius r.

void W .draw _disc(point p, double r, color ¢ = black)

draws a filled circle with center p and radius r.

void W .draw disc(circle C, color ¢ = black)
draws filled circle C.

3.10 Drawing polygons
void W .draw _polygon(list<point> lp, color ¢ = black)
draws the polygon with vertex sequence Ip.

void W .draw _polygon(polygon P, color ¢ = black)
draws polygon P.

void W .draw filled_polygon(list<point> lp, color ¢ = black)
draws the filled polygon with vertex sequence Ip.

void W .draw filled_polygon(polygon P, color ¢ = black)
draws filled polygon P.
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3.11 Drawing functions

void W .plot xy(double z¢, double z1, (double)(xF')(double), color ¢ = black)
draws function F' in range [zg,z1], i.e., all points
(z,y) with y = F(2) and o <z < 2

void W .plot_yx(double yo, double y1, (double)(xF)(double), color ¢ = black)
draws function F' in range [yo,y1], i-e., all points
(z,y) with 2 = F(y) and yo <y <y

3.12 Drawing text
void W .draw text(double z, double y, string s, color ¢ = black)
writes string s starting at position (z,y).

void W .draw text(point p, string s, color ¢ = black)

writes string s starting at position p.

void W .draw _ctext(double z, double y, string s, color ¢ = black)

writes string s centered at position (z,y).

void W .draw _ctext(point p, string s, color ¢ = black)

writes string s centered at position p.

3.13 Drawing nodes
void W .draw node(double zq, double yo, color ¢ = black)
draws a node at position (zg,yo).

void W .draw node(point p, color ¢ = black)

draws a node at position p.

void W .draw filled_node(double zo, double yq, color ¢ = black)

draws a filled node at position (zg,yo).

void W .draw filled_node(point p, color ¢ = black)

draws a filled node at position p.

void W .draw text_node(double z, double y, string s, color ¢ = black)

draws a node with label s at position (z¢,yo)-

void W .draw _text_node(point p, string s, color ¢ = black)

draws a node with label s at position p.

void W .drawint_node(double z, double y, int i, color ¢ = black)

102



draws a node with integer label 7 at position
(w07y0)‘

void W .draw.int_node(point p, int ¢, color ¢ = black)

draws a node with integer label 7 at position p.

3.14 Drawing edges

void W .draw_edge(double z1, double y,, double x5, double ys, color ¢ = black)

draws an edge from (z1,y1) to (z2,y2).

void W .draw_edge(point p, point q, color ¢ = black)

draws an edge from p to gq.

void W .draw_edge(segment s, color ¢ = black)

draws an edge from s.start() to s.end().

void W .draw_edge_arrow(double z1, double y;, double x5, double y2, color ¢ = black)

draws a directed edge from (z1,y1) to (z2,y2).

void W .draw_edge_arrow(point p, point g, color ¢ = black)

draws a directed edge from p to gq.

void W .draw_edge_arrow(segment s, color ¢ = black)

draws a directed edge from s.start() to s.end().

3.15 Mouse Input

int W .read _mouse() displays the mouse cursor until a button is pressed.
Returns integer 1 for the left, 2 for the middle, and
3 for the right button (-1,-2,-3, if the shift key is

pressed simultaneously).

int W .read mouse(double& z, double& y)
displays the mouse cursor on the screen until a
button is pressed. When a button is pressed the
current position of the cursor is assigned to

to (z,y) and the pressed button is returned.

int W .read _mouse seg(double zg, double yo, double& z, double& y)
displays a line segment from (zo,yo) to the
current cursor position until a mouse button is
pressed. When a button is pressed the current

position is assigned to (z,y) and the pressed
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int

int

bool

void

int

int

int

double

string

void

void

button is returned.

W .read _mouse rect(double z¢, double yo, double& z, double& y)
displays a rectangle with diagonal from (z¢, o)
to the current cursor position until a mouse button
is pressed. When a button is pressed the current
position is assigned to (z,y) and the pressed

button is returned.

W .read _mouse circle(double zg, double yo, double& z, double& y)
displays a circle with center (z¢,yo) passing
through the current cursor position until a mouse
button is pressed. When a button is pressed the
current position is assigned to (z,y) and the

pressed button is returned.

W .confirm(string s) displays string s and asks for confirmation.

Returns true iff the answer was “yes”.

W .acknowledge(string s)

displays string s and asks for acknowledgement.

W .read_panel(string h, int n, string x S)
displays a panel with header A and an array S[1..n]
of n string buttons, returns the index of the selected
button.

W .read_vpanel(string h, int n, string x S)

like read_panel with vertical button layout
W .read_ int(string p)
displays a panel with prompt p for integer input,
returns the input
W .read real(string p)
displays a panel with prompt p for real input

returns the input

W .read_string(string p)
displays a panel with prompt p for string input,

returns the input
W .message(string s) displays message s (each call adds a new line).

W .del_message() deletes the text written by all previous message

operations.
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3.16 Input and output operators

For input and output of basic geometric objects in the plane such as points, lines, line

segments, circles, and polygons the << and >> operators can be used. Similar to

C++ input streams windows have an internal state indicating whether there is more

input to read or not. Its initial value is true and it is turned to false if an input

sequence is terminated by clicking the right mouse button (similar to ending stream

input by the eof character). In conditional statements objects of type window are

automatically converted to boolean by returning this internal state. Thus, they can be

used in conditional statements in the same way as C++ input streams. For example, to

read a sequence of points terminated by a right button click, use “ while (W >> p)

...}

3.16.1 Output

window&
window&
window&
window&

window&

3.16.2 Input

window&

window&

window&

window&

window&

T T ¥ % S

<<

<<

<<

<<

<<

>>

>>

>>

>>

>>

potnt p
segment s
line [
circle C

polygon P

like W .draw_point(p)
like W .draw_segment(s)
like W.draw line(l)

like W .draw_circle(C)
like W .draw_polygon(P)

reads a point p: clicking the left button

assigns the current cursor position to p.

reads a segment s: use the left button to input

the start and end point of s.

reads a line [: use the left button to input

two different points on [

reads a circle C': use the left button to input

the center of C and a point on C

reads a polygon P: use the left button to input
the sequence of vertices of P, end the sequence
by clicking the middle button.

As long as an input operation has not been completed the last read point can be erased

by simultaneously pressing the shift key and the left mouse button.
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6.8 Panels (panel)

1. Definition

Panels are windows used for displaying text messages and updating the values of

variables. A panel P consists of a set of panel items and a set of buttons. With each

item (except of text items) is associated a variable of a certain type (int, bool, string,

double, color) whose value can be manipulated through the item and a string label.

2. Creation

panel P(string h);

creates an empty panel P with header h.

3. Operations

void

void

void

void

void

void

void

void

void

P .text item(string s) adds a text_item s to P.
P.bool item(string s, bool& )

adds a boolean item with label s and variable = to P.

P .real item(string s, doubel& )

adds a real item with label s and variable z to P.

P .color item(string s, color& )
adds a color item with label s and variable z to P.
P.int_item(string s, int& z)
adds an integer item with label s and variable z to P.
P.int_item(string s, int& z, int min, int maz)
adds an integer slider item with label s, variable z, and
range min,...,maz to P.
P.int_item(string s, int& z, int low, int high, int step)
adds an integer choice item with label s, variable z,
range low,..., high, and step size step to P.
P string item(string s, string& )
adds a string item with label s and variable z to P.
P string item(string s, string& w,list<string> L)
adds a string item with label s, variable =, and menu L

to P.
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void

void

int
void

int

P .choice_item(string s, int& z, list<string> L)
adds an integer item with label s, variable #, and choices

from L to P

P .choice_item(string s, int& z, stringsi, string S2,...,Sk)
adds an integer item with label s, variable #, and choices
S1y «..y S to P (k <5)

P .button(string s) adds a button with label s to P and returns its number
P.new_button line() starts a new line of buttons

P.open() P is displayed on the screen until a button of P is

selected. Returns the number of the button.
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7. Miscellaneous

This section describes some additional useful data types, functions and macros of
LEDA. They can be used in any program that includes the <LEDA /basic.h> header
file.

7.1 Streams

The stream data types described in this section are all derived from the C++ stream
types istream and ostream. Some of these types may be obsolete in combination with
the latest versions of the standard C++ I/O library.

7.1.1 File input streams (file istream)
1. Definition

An instance I of the data type file_istream is an C++ istream connected to a file F,

i.e., all input operations or operators applied to I read from F.

2. Creation

file_istream  I(string s);

creates an instance I of type fileistream connected to the file with name s.
3. Operations

All operations and operators (>>) defined for C++ istreams can be applied to file

input streams as well.

7.1.2 File output streams (file ostream)
1. Definition

An instance O of the data type file_ostream is an C++ ostream connected to a file

F, i.e., all output operations or operators applied to O write to F.
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2. Creation

file_ostream  O(string s);

creates an instance O of type file_ostream connected to the file with name s.
3. Operations

All operations and operators (<<) defined for C++ ostreams can be applied to file

output streams as well.

7.1.3 String input streams (string istream)
1. Definition

An instance I of the data type string istream is an C++ istream connected to a string

s, i.e., all input operations or operators applied to I read from s.

2. Creation

string_tstream  I(string s);

creates an instance I of type string istream connected to the string s.

3. Operations

All operations and operators (>>) defined for C++ istreams can be applied to string
input streams as well.

7.1.4 String output streams (string ostream)

1. Definition

An instance O of the data type string_ostream is an C++ ostream connected to an
internal string buffer, i.e., all output operations or operators applied to O write into

this internal buffer. The current value of the buffer is called the contents of O.
2. Creation
string_ostream  O;

creates an instance O of type string ostream.
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3. Operations

string  O.clear() clears the contents of O

string O.str() returns the current contents of O

All operations and operators (<<) defined for C++ ostreams can be applied to string
output streams as well.

7.1.5 Command input streams (cmd istream)

1. Definition

An instance I of the data type ecmd_istream is an C++ istream connected to the output
of a shell command c¢md, i.e., all input operations or operators applied to I read from

the standard output of command emd.

2. Creation

cmd_istream  I(string cmd);

creates an instance I of type cmd_istream connected to the output of command cmd.
3. Operations

All operations and operators (>>) defined for C++ istreams can be applied to command
input streams as well.

7.1.6 Command output streams (cmd ostream)

1. Definition

An instance O of the data type cmd_ostream is an C++ ostream connected to the
input of a shell command emd, i.e., all output operations or operators applied to O

write into the standard input of command cmd.
2. Creation
cmd_ostream  O(string cmd);

creates an instance O of type cmnd_ostream connected to the input of command cmd.
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3. Operations

All operations and operators (< <) defined for C++ ostreams can be applied to command

output streams as well.

7.2 Some useful functions and macros

int read int(string s = “”)  prints s and reads an integer

char read_char(string s = “”) prints s and reads a character

double read real(string s = “”) prints s and reads a real number

string  read_string(string s = “”) prints s and reads a line of input

bool Yes(string s = “7) returns (read_char(s) == ‘y’)

void init_random() initializes the random number generator.

double random() returns a real valued random number in [0,1]

int random(int a, int b) returns a random integer in [a..b]

float used_time() returns the currently used cpu time in seconds.

float used_time(float& T') returns the cpu time used by the program from
T up to this moment and assings the current
time to T'.

void print _statistics() prints a summary of the currently used memory

newline cout << “\n”

forever for(;)

loop(a,b,c) for (a =bja <=c;a+ +)

in_range(a,b,c) (b<=a && a<=r¢)

Max(a,b) ((a>b)7a : b)

Min(a,b) ((a>b)7b : a)
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7.3 Memory Management

LEDA offers an efficient memory management system that is used internally for all
node, edge and item types. This system can easily be customized for user defined
classes by the “LEDA_MEMORY” macro. You simply have to add the macro call
“LEDA_MEMORY(T)” to the declaration of a class T. This creates new and delete
operators for type T allocating and deallocating memory using LEDA’s internal memory

manager. We continue the example from section 1.5:

struct pair {
double w;

double y;

par() { z =y =0; }
pair(const pair& p) { z =p.x; y=py; }

friend ostream& operator<<(ostreamé&,const pair&) { ...}
friend istream& operator>>(istream&,pair&) { ...}
friend int compare(const pair& p, const pair& ¢) { ...}

LEDA _MEMORY (pair)
}s

dictionary<pair,int> D;

7.4 Error Handling

LEDA tests the preconditions of many (not all!) operations. Preconditions are never
tested, if the test takes more than constant time. If the test of a precondition fails
an error handling routine is called. It takes an integer error number  and a charx
error message string s as arguments. It writes s to the diagnostic output (cerr) and
terminates the program abnormally if ¢ = 0. Users can provide their own error handling

function handler by calling
set_error_handler(handler).
After this function call handler is used instead of the default error handler. handler

must be a function of type void handler(int,charx). The parameters are replaced by

the error number and the error message respectively.
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8. Programs

8.1 Graph and network algorithms

In this section we list the C++ sources for some of the graph algorithms in the library
(cf. section 5.12).

Depth First Search

#include <LEDA /graph.h>
#include <LEDA /stack.h>

list<node> DFS(graph& G, node v, node_array<bool>&reached)
{

list<node> L;

stack<node> S;

node w;

if (! reached[v] )

{ reached[v] = true;
L.append(v);
S.push(v);

}

while ( !S.empty() )

{ v = S.pop();
forall_ adj nodes(w,v)

if ( !reached|w] )

{ reached[w] = true;
L.append(w);
S.push(w);

}

}

return L;
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Breadth First Search

#include <LEDA /graph.h>
#include <LEDA /queue.h>

void BFS(graph& G, node v, node_array<int>& dist)

{

queue<node> Q;

node w;

forall nodes(w, @) distjw] = —1;

dist[v] = 0;

Q.append(v);

while ( !Q.empty() )

{ v =Q.pop();
forall_ adj nodes(w,v)
if (dist[w] < 0)
{ Q.append(w);
dist|w] = dist[v] + 1;

}

}

Connected Components

#include <LEDA /graph.h>

int COMPONENTS(ugraph& G, node_array<int>& compnum)
{

node v, w;

list<node> S;

int count = 0;

node_array(bool) reached(G, false);

forall nodes (v, G)
if ( !reached|v] )
{ § = DFS(G,v,reached);
forall (w,S) compnum|[w] = count;
count 4 +;

}

return count;
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Depth First Search Numbering

#include <LEDA /graph.h>
int dfs_countl, dfs_count2;

void d_f_s(node v, node_array<bool>& S, node_array<int>& dfsnum,
node_array<int>& compnum,
list<edge> T )

{ // recursive DFS

node w;
edge e;
Sv] = true;
df snum[v] = + + df s_countl;
forall_adj_edges (e,v)
{ w = G.target(e);
if ( !S[w] )
{ T.append(e);
dfs(w, S, df snum, compnum,T);
¥
¥

compnum|v] = + + df s_count2;

list<edge> DFS_NUM(graph& G, node_array<int>& dfsnum, node_array<int>& compnum )
{

list<edge> T

node_array<bool> reached(G, false);

node v;

df s_countl = df s_count2 = 0;

forall nodes (v, G)

if ( !reached[v] ) d{fs(v,reached,df snum,compnum,T);

return T’
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Topological Sorting

#include <LEDA /graph.h>

bool TOPSORT (graph& G, node_array<int>&ord)

{
node_array<int> INDEG(G);

list<node> ZEROINDEG;
int count = 0;
node v, w;
edge e;
forall nodes(v,G)
if (INDEG[v]=G.indeg(v))==0) ZEROINDEG.append(v);
while (ZZEROINDEG.empty())
{ v = ZEROINDEG.pop();
ord[v] = + + count;
forall_ adj nodes(w,v)
if (——INDEG|[w]==0) ZEROINDEG.append(w);
}

return (count==G.number of nodes());

//TOPSORT1 sorts node and edge lists according to the topological ordering:

bool TOPSORT1(graph& G)
{ node_array<int> node_ord(G);

)

)

edge_array<int> edge_ord(G

)
if (TOPSORT(G,node_ord))
{ edge ¢;

forall edges(e,G) edge_ord[e]=node_ord[target(e)];
G.sort_nodes(node_ord);

G.sort_edges(edge_ord);

return true;

}

return false;

}
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Strongly Connected Components

#include <LEDA /graph.h>
#include <LEDA /array.h>

int STRONG_COMPONENTS(graph& G, node_array<int>& compnum)
{

node v, w;

int n = G.number_of nodes();

int count = 0;

int 2;

array<node> V(1,n);

list<node> S;

node_array<int> df s_num(Q), compl_num(G);
node_array<bool> reached(G, false);

DFS_NUM(G, df s_.num, compl_num);
forall nodes (v,G) V]compl_num[v]] = v;
G.rev();
for (i=mn; ¢ >0; ¢ ——)
if ( !reached[V]i]] )
{ § = DFS(G, V[i],reached);
forall (w,S) compnum|[w] = count;
count 4 +;

}

return count;
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Dijkstra’s Algorithm

#include <LEDA /graph.h>
#include <LEDA /node_pq.h>

void DIJKSTRA(graph& G, node s, edge_array<int>& cost,
node_array<int>& dist, node_array<edge>& pred )
{ node_pg<int> PQ(G);

int ¢;

node u,v;

edge e;

forall nodes(v,G)
{ predjo] = 0

dist[v] = infinity;
PQ.insert(v, dist[v]);
¥
dist[s] = 0;
PQ.decrease inf(s,0);
while (! PQ.empty())
{ v = PQ.del_min()
forall adj_edges(e,u)
{ v = G.target(e);
¢ = dist[u] + cost[e];
if ( ¢ < dist[v])

{ dist[v] = ¢;
pred[v] = e;
PQ.decrease inf(v, ¢);
}

} /% forall_adj_edges */
} /* while %/
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Bellman/Ford Algorithm

#include <LEDA /graph.h>
#include <LEDA /queue.h>

bool BELLMAN_FORD(graph& G, node s, edge_array<int>& cost,
node_array<int>& dist, node_array<edge>& pred)
{ node_array<bool> in_Q(G, false);
node_array<int> count(G,0);
int n = G.number_of nodes();
queue<node> Q(n);
node u,v;
edge e;
int ¢;
forall nodes (v,G) { pred[v] = 0;
dist[v] = infinity;
}
dist[s] = 0;
Q.append(s);
in_Q[s] = true;
while (1Q.empty())
{ v = Q.pop();
in_Q[u] = false;
if (+ 4 count[u] > n) return false; //negative cycle
forall_adj_edges (e,u)
{ v = G.target(e);
¢ = dist[u] + cost[e];
if (¢ < dist[v])

{ dist[v] = ¢;
pred[v] = e;
if (lin_Q[v])

{ Q.append(v);
in_Q[v] = true;
}

}
} /% forall_adj_edges */

} /% while %/

return true;
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All Pairs Shortest Paths

#include <LEDA /graph.h>

void all_pairs_shortest_paths(graph& G, edge_array<double>& cost,
node_matrix<double>& DIST)

// computes for every node pair (v,w) DIST(v,w) = cost of the least cost
// path from v to w, the single source shortest paths algorithms BELLMAN_FORD
// and DIJKSTRA are used as subroutines

edge e;

node v;

double C = 0;

forall edges(e,G) C+ = fabs(cost|e]);

node s = G.new_node(); // add s to G

forall nodes(v,G) G.new_edge(s,v); // add edges (s,v) to G
node_array<double> distl(G);

node_array<edge> pred(G);

edge_array<double> costl(G);

forall edges(e,G) costlle] = (G.source(e) ==s) 7 C : cost[e];
BELLMAN_FORD(G, s, costl, distl, pred);

G.del_node(s); // delete s from G
edge_array(double) cost2(G);

forall edges(e, G) cost2]e] = distl[G.source(e)] + costle] — distl[G.target(e)];
forall nodes(v,G) DIJKSTRA(G, v, cost2, DIST[v], pred);

forall nodes(v,G)
forall nodes(w,G) DIST(v,w) = DIST(v,w) — distl[v] + distl|w];
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Minimum Spanning Tree

#include <LEDA /graph.h>
#include <LEDA /node_partition.h>

void MIN_SPANNING _TREE(graph& G, edge_array<double>& cost, list<edge>& EL)
{

node v, w;

edge e;

node_partition Q(G);

G.sort_edges(cost);

EL.clear();
forall edges(e, G)
{ v = G.source(e);
w = G.target(e);
if (!(Q.same_block(v,w))
{ Q.union_blocks(v,w);
EL.append(e);

}
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8.2 Geometry

Using a persistent dictionary (cf. section 4.7) for planar point location (sweep line

algorithm).

#include <LEDA/plane.h>
#include <LEDA/prio.h>
#include <LEDA/sortseq.h>
#include <LEDA/p_dictionary.h>

double X_P0S; // current position of sweep line

int compare(segment si,segment s2)
{ line 11(s1);
line 12(s2);

double yi1
double y2

11.y_proj(X_P0S);
12.y_proj(X_P0S);

return compare(yl,y2);

}

typedef priority_queue<segment,point> X_structure;

typedef p_dictionary<segment,int> Y_structure;
sortseq<double,Y_structure> HISTORY;

void SWEEP(list<segment>& L)
{ // Precondition: L is a list of non-intersecting

// from left to right directed line segments

X_structure X;
Y_structure Y;
segment s;
forall(s,L) // initialize the X_structure

{ X.insert(s,s.start());

X.insert(s,s.end());

}

HISTORY.insert (-MAXDOUBLE,Y); // insert empty Y_structure at -infinity

while( ! X.empty() )
{ point P;

segment s;

124



X.del_min(s,p);
X_P0OS = p.xcoord();

if (s.start()==p)
Y Y.insert(s,0);

else
Y

Y.del(s);

HISTORY.insert(X_P0S,Y);
}

HISTORY.insert (MAXDOUBLE,Y);

segment LOCATE(point p)
{ X_P0S = p.xcoord();

// next event: endpoint p of segment s

// p is left end of s

// p is right end of s

// insert Y into history sequence

// insert empty Y_structure at +infinity

Y_structure Y = HISTORY.inf(HISTORY.pred(X_P0S));

p_dic_item pit = Y.succ(segment(p,0,1));

if (pit != nil)
return Y.key(pit);

else
return segment(0);
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9. Implementations

9.1 List of data structures

This section lists the data structures for dictionaries, dictionary arrays, priority queues,

and geometric data types currently contained in LEDA. For each of the data structures

its name and type, the list of LEDA data types it can implement, and a literature

reference are given. Before using a data structures zyz the corresponding header file
<LEDA /impl/zyz.h> has to be included (cf. section 1.2 for an example).

9.1.1 Dictionaries

ab_tree a-b tree

avl_tree AVL tree

bb_tree BBla]| tree
ch_hashing  hashing with chaining
dp_hashing dyn. perf. hashing
pers_tree persistent tree
rb_tree red-black tree

rs_tree rand. search tree
skiplist skip lists

9.1.2 Priority Queues

f_heap Fibonnacci heap
p_heap pairing heap
k_heap k-nary heap
m_heap monotonic heap
eb_tree Emde-Boas tree

9.1.3 Geometry

range_tree range tree

seg_tree segment tree
ps_tree priority search tree
1w_tree interval tree

delaunay_tree delaunay tree

dictionary, d_array, sortseq
dictionary, d_array
dictionary, d_array, sortseq
dictionary, d_array

h_array

p_dictionary

dictionary, d_array, sortseq
dictionary, d_array, sortseq

dictionary, d_array, sortseq

priority_queue
priority _queue
priority _queue
priority _queue

priority _queue

d2_dictionary, point_set

seg_set

interval_set

point_set
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9.2 User Implementations

In addition to the data structures listed in the previous section user-defined data
structures can also be used as actual implementation parameters provided they fulfill

certain requirements.

9.2.1 Dictionaries

Any class dic_ampl that provides the following operations can be used as actual implemen-
tation parameter for the _dictionary<K,I,dicampl> and the _d_array<I, E,dic.impl>
data types (cf. sections 4.3 and 4.4).

typedef ... dic_impl_item;

class dic_impl {

virtual int cmp(GenPtr, GenPtr) comnst = 0;
virtual int int_type() const = 0;
virtual void clear_key(GenPtr&) const = 0;
virtual void clear_inf(GenPtr&) const = O;
virtual void copy_key(GenPtr&) const = 0;
virtual void copy_inf(GenPtr&) const = 0;
public:

dic_impl();

dic_impl(const dic_impl&);

virtual “dic_impl();
dic_impl& operator=(const dic_impl&);

GenPtr key(dic_impl_item) comnst;

GenPtr inf(dic_impl_item) comnst;

dic_impl_item insert(GenPtr,GenPtr);
dic_impl_item lookup(GenPtr) const;
dic_impl_item first_item() const;

dic_impl_item next_item(dic_impl_item) const;
dic_impl_item item(void* p) const { return dic_impl_item(p); I}

void change_inf(dic_impl_item,GenPtr);

void del_item(dic_impl_item);
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void del(GenPtr);

void clear();

int size() comnst;

+;

9.2.2 Priority Queues

Any class prioimpl that provides the following operations can be used as actual
implementation parameter for the _priority_queue<K,I,prio_impl> data type (cf. sec-
tion 4.1).

typedef ... prio_impl_item;

class prio_impl {

virtual int cmp(GenPtr, GenPtr) comnst = 0;
virtual int int_type() const = 0;
virtual void clear_key(GenPtr&) const = 0;
virtual void clear_inf(GenPtr&) const = O;
virtual void copy_key(GenPtr&) const = 0;
virtual void copy_inf(GenPtr&) const = 0;
public:

prio_impl();

prio_impl(int);
prio_impl(int,int);
prio_impl(const prio_impl&);

virtual “prio_impl();
prio_impl& operator=(const prio_impl);

prio_impl_item insert(GenPtr,GenPtr);
prio_impl_item find_min() const;
prio_impl_item first_item() comnst;

prio_impl_item next_item(prio_impl_item) const;
prio_impl_item item(void* p) const { return prio_impl_item(p); I}

GenPtr key(prio_impl_item) comnst;

GenPtr inf(prio_impl_item) comnst;
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void del_min();

void del_item(prio_impl_item);

void decrease_key(prio_impl_item,GenPtr);
void change_inf(prio_impl_item,GenPtr);

void clear();

int size() const;

+;

9.2.3 Sorted Sequences

Any class seqimpl that provides the following operations can be used as actual

implementation parameter for the _sortseq<K, I, seq_tmpl> data type (cf. section 4.6).

typedef ... seq_impl_item;

class seq_impl {

virtual int cmp(GenPtr, GenPtr) comnst = 0;
virtual int int_type() const = 0;
virtual void clear_key(GenPtr&) const = 0;
virtual void clear_inf(GenPtr&) const = O;
virtual void copy_key(GenPtr&) const = 0;
virtual void copy_inf(GenPtr&) const = 0;
public:

seq_impl();

seq_impl(const seq_impl&);

virtual “seq_impl();

seq_impl& operator=(const seq_impl&);

seq_impl& conc(seq_impl&);

seq_impl_item insert(GenPtr,GenPtr);

seq_impl_item insert_at_item(seq_impl_item,GenPtr,GenPtr);
seq_impl_item lookup(GenPtr) const;

seq_impl_item locate(GenPtr) const;

seq_impl_item locate_pred(GenPtr) const;

seq_impl_item succ(seq_impl_item) const;

seq_impl_item pred(seq_impl_item) const;

seq_impl_item item(void* p) const { return seq_impl_item(p); }
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GenPtr key(seq_impl_item) const;

GenPtr inf(seq_impl_item) const;

void del(GenPtr);

void del_item(seq_impl_item);

void change_inf(seq_impl_item,GenPtr);

void split_at_item(seq_impl_item,seq_impl&,seq_impl&);
void reverse_items(seq_impl_item,seq_impl_item);

void clear();

int size() const;

+;
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10. Tables

10.1 Data Types

Name

array
array2
b_priority_queue
b_queue
b_stack

bool

circle

cmd _istream
cmd _ostream
d2_dictionary
d_array
dictionary
edge_array
edge_set
file_istream
file_ostream
graph
GRAPH
h_array
int_set
interval _set
line

list

matrix
node_array
node_matrix
node_partition
node_pq
node_set
panel
partition
planar_map
point
point_set

polygon

Item

b_pq_item

d2_dic_item

dic_item

node/edge
node/edge

is_item

list_item

partition_item

node/edge/face

psitem

Header

array.h
array.h
b_prio.h
b_queue.h
b_stack.h
basic.h
plane.h
stream.h
stream.h
d2_dictionary.h
d_array.h
dictionary.h
graph.h

edge _set.h
stream.h
stream.h
graph.h
graph.h
h_array.h
int_set.h
interval_set.h
plane.h

list.h
matrix.h
graph.h
graph.h
node_partition.h
node_pq.h
node_set.h
window.h
partition.h
planar_map.h
plane.h
point_set.h
plane.h
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Library

libL.a
libL.a
libL.a
libL.a
libL.a
libL.a
libP.a
libL.a
libL.a
libP.a
libL.a
libL.a
libG.a
libG.a
libL.a
libL.a
libG.a
libG.a
libL.a
libL.a
libP.a
libP.a
libL.a
libL.a
libG.a
libG.a
libG.a
libG.a
libG.a

libP.a/libWx.a

libL.a
libG.a
libP.a
libP.a
libP.a

Page

21
23
41
27
26
15
85
110
110
88
44
42
65
68
109
109
53
61
46
34
92
82
28
19
65
67
69
70
68
106
35
59
79
90
84



priority _queue
p_dictionary
PLANAR _MAP
queue

segment
segment _set
set

sortseq

stack

string
string_istream
string_ostream
subdivision
tree_collection
ugraph
UGRAPH
vector

window

pqitem
p_dic_item

node/edge/face

seg item

seq_item

node/face
d_vertex

node/edge
node/edge

prio.h
p_dictionary.h
planar_map.h
queue.h
plane.h
segment _set.h
set.h
sortseq.h
stack.h
basic.h
stream.h
stream.h
subdivision.h
tree_collection.h
ugraph.h
ugraph.h
vector.h

window.h
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libP.a
libL.a
libG.a
libL.a
libP.a
libP.a
libL.a
libL.a
libL.a
libL.a
libL.a
libL.a
libP.a
libL.a
libG.a
libG.a
libL.a
libP.a/libWx.a

39
50
64
25
80
94
33
47
24
15
111
111
96
36
57
63
17



10.2 Algorithms

Name

ALL_PAIRS_SHORTEST_PATHS
BELLMAN_FORD

BFS

COMPONENTS
CONVEX_HULL

DFS

DFS_NUM

DIJKSTRA
MAX_CARD_MATCHING
MAX_CARD_BIPARTITE MATCHING
MAX_FLOW

MAX WEIGHT _BIPARTITE MATCHING
MIN_SPANNING_TREE
PLANAR

SEGMENT_ INTERSECTION
SPANNING_TREE
STRAIGHT_LINE_EMBEDDING
STRONG_COMPONENTS
TOPSORT
TRANSITIVE_CLOSURE
TRIANGULATE_PLANAR_MAP
VORONOI
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Header

graph_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
plane_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
plane_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
graph_alg.h
plane_alg.h

Library

libG.a
libG.a
libG.a
libG.a
libP.a
libG.a
libG.a
libG.a
libG.a
libG.a
libG.a
libG.a
libG.a
libG.a
libP.a
libG.a
libG.a
libG.a
libG.a
libG.a
libG.a
libP.a

Page

73
73
72
72
87
71
71
73
74
74
74
75
75
76
87
75
76
72
71
72
76
87
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