
LEDA

A Library of E�cient Data Types and Algorithms *

Kurt Mehlhorn and Stefan N�aher

Max-Planck-Institut f�ur Informatik

D-6600 Saarbr�ucken, Federal Republic of Germany

Key words: abstract data type, reusable software, e�cient algorithms, object oriented

programming

Abstract

LEDA is a library of e�cient data types and algorithms. At present, its

strength is graph algorithms and related data structures. The computational

geometry part is evolving. The main features of the library are

{ a sizable collection of data types and algorithms,

{ the precise and readable speci�cation of these types,

{ the inclusion of many of the most recent and e�cient implementations,

{ a comfortable data type graph,

{ its extendibility, and

{ its ease of use.

I. Introduction

There is no standard library of the data structures and algorithms of combinatorial comput-

ing. This is in sharp contrast to many other areas of computing. There are, e.g., packages in

statistics (SPSS), numerical analysis (LINPACK, EISPACK), symbolic computation (MAC-

SYMA, SAC-2) and linear programming (MPSX).

In fact the situation is worse, since even within small groups, say the algorithms group at

our home institution, software frequently is not shared. Rather, each researcher starts from

scratch and, e.g., develops his own version of a balanced tree. Of course, this continuous

\reimplementation of the wheel" slows down progress, within research and even more so

outside. This is due to the fact that outside research the investment for implementing an

e�cient solution frequently is not made, because it is doubtful whether the implementation

* This research was supported by the ESPRIT II Basic Research Action Program, ESPRIT

P. 3075 { ALCOM. Most of this work was carried out while the authors were a�liated with

Fachbereich Informatik, Universit�at des Saarlandes.

1

can be reused, and therefore methods which are known to be less e�cient are used instead.

Thus the scienti�c discoveries migrate only slowly into practice.

One of the major di�erences between combinatorial computing and other areas of computing

such as statistics, numerical analysis and linear programming is the use of complex data types.

Whilst the built-in types, such as integers, reals, vectors, and matrices, usually su�ce in the

other areas, combinatorial computing relies heavily on types like stacks, queues, dictionaries,

sequences, sorted sequences, priority queues, graphs, points, planes, : : :

In 1989, we started a project (called LEDA, for Library of E�cient Data types and Algo-

rithms) to build a library of the data types and algorithms of combinatorial computing. The

features of LEDA are:

� LEDA provides a sizable collection of data types and algorithms in a form which allows

them to be used by non-experts. In the �rst version of LEDA, which has been completed

in the spring of 1990, this collection included most of the data types and algorithms

described in the text books of the area(e.g. [AHU83],[M84],[T83],[CLR90]), i.e., stacks,

queues, lists, sets, dictionaries, ordered sequences, partitions, priority queues, directed,

undirected, and planar graphs, lines, points, planes and basic algorithms in graph and

network theory and computational geometry. We refer the reader to the LEDA man-

ual([N90]) for the list of data types and algorithms available as of Fall 1990.

� LEDA gives a precise and readable speci�cation for each of the data types and algorithms

mentioned above. The speci�cations are short (typically, not more than a page), general

(so as to allow several implementations), and abstract (so as to hide all details of the

implementation). For many e�cient data structures access by position is important. In

LEDA, we use an item concept to cast positions into an abstract form. We introduce this

concept in section II and demonstrate its usefulness on several examples. We mention

that most of the speci�cations given in the LEDA manual use this concept, i.e., the

concept is adequate for the description of many data types.

� LEDA contains e�cient implementations for each of the data types, e.g., Fibonacci heaps

and redistributive heaps for priority queues, red-black trees and dynamic perfect hashing

for dictionaries, ...

� LEDA contains a comfortable data type graph. It o�ers the standard iterations such as

\for all nodes v of a graph G do" (written forall nodes(v;G)) or \for all neighbors w of v

do" (written forall adj nodes(w; v)), it allows to add and delete vertices and edges and

it o�ers arrays and matrices indexed by nodes and edges,..., cf. section III for details.

The data type graph allows to write programs for graph problems in a form close to the

typical text book presentation. We emphasize that all examples given in this paper show

executable code. A long term goal is the equation \Algorithm + LEDA = program".

In this paper we describe the status of the project. We hope that LEDA will narrow the gap

between algorithms research, teaching, and implementation. Other projects with similar goals

are described in ([B87],[Lin89],[So89]); however, all of these projects settle for a considerably

smaller collection of data types and algorithms than LEDA. Our approach to reach the goals

of LEDA is standard. Similarly to the other projects we employ

1. a strict separation between abstract data types and the concrete data structures used to

implement them,

2

2. parameterized data types, and

3. object oriented programming.

The implementation language of LEDA is C

++

. We have chosen C

++

because of its
exibility

and availability. All data types and algorithms are precompiled modules which can be linked

with application programs. Polymorphic types are implemented as described in ([St86]).

This paper is organized as follows. In section II we discuss data types and data structures,

and in section III the data type graph and the interaction of graphs and other data types. In

section IV we brie
y comment on the extendibility and in section V on the internal structure

of LEDA. Section VI gives a short summary.

The design of LEDA is joint work by the two authors, the implementation was mostly done

by the second author. The library can be used under UNIX with the C

++

compilers AT&T

cfront 2.0, cfront 2.1 and GNU g++ (version 1.37). It is available from the authors for a

handling charge of DM 100.

II. Data Types and Items

In this section we discuss the speci�cation of data types in LEDA on the basis of three

examples: dictionaries, priority queues, and partitions.

Example 1: Dictionaries

A popular speci�cation of dictionaries de�nes a dictionary as a partial function from some

type K to some other type I, or alternatively, as a set of pairs from K � I, i.e., as the

graph of the function. In an implementation each pair (k; i) in the dictionary is stored in

some location of the memory. E�ciency dictates that the pair (k; i) cannot only be accessed

through the key k but also through the location where it is stored, e.g., we might want to

lookup the information i associated with key k (this involves a search in the data structure),

then compute with the value i a new value i

0

, and �nally associate the new value with k. This

either involves another search in the data structure or, if the lookup returned the location

where the pair (k; i) is stored, can be done by direct access. Of course, the second solution is

more e�cient and we therefore wanted to provide it in LEDA.

In LEDA, the abstraction of a position or location is called an item. An item is a container

which can hold an object relevant for the data type. In the case of dictionaries a dic item

contains a pair consisting of a key and an information. An object of type dictionary(K; I),

where K and I are types, is thus de�ned as a collection of items (of type dic item) where

each item contains a pair in K � I. We use < k; i > to denote an item with key k and

information i and require that for each k 2 K there is at most one i 2 I such that < k; i >

is in the dictionary. In mathematical terms this de�nition may be rephrased as follows: A

dictionary D is a partial function from the set dic item to the set K � I. Moreover, for each

k 2 K there is at most one i 2 I such that the pair (k; i) is in the range of D.

The semantics of the operations

dic item D.lookup(K k)

I D.inf(dic item it)

3

void D.change inf(dic item it; I i

0

)

is now as follows: D.lookup(k) takes a key k and returns the item it with contents (k; i) (it

returns nil if there is no such item), D.inf(it) extracts i from it, and a new value i

0

can be

associated with k by D.change inf(it; i

0

).

Let us have a look at the insert operation for dictionaries next:

dic item D.insert(K k; I i)

There are two cases to consider. If D contains an item it with contents (k; i

0

) then i

0

is

replaced by i and it is returned. If D contains no such item, then a new item, i.e., an item

which is not contained in any dictionary, is added to D, this item is made to contain (k; i)

and is returned.

Remarks:

1. In LEDA speci�cations we use \T

0

XYZ.op(T

1

t

1

; : : : ; T

k

t

k

)" to denote an operation

op applied to an object XYZ with result type T

0

and arguments t

1

; : : : ; t

k

of types

T

1

; : : : ; T

k

respectively.

2. Some readers may �nd it useful to interpret a dic item as a pointer to a variable of type

K � I. The di�erence is that the assignment to the variable contained in a dic item

is restricted, e.g., the K-component cannot be changed, and that in return for this

restriction the access to dic items is more
exible than for ordinary variables, e.g., access

through the value of the K-component is possible.

Dictionaries are implemented by leaf-oriented red-black trees. Operations insert and lookup

take time O(log n), key, inf, and change inf take time O(1). Here n is the current size of the

dictionary. The space requirement is O(n).

We next give a simple application of the dictionary data type. Program 1 reads a sequence

of strings terminated by \stop" and counts the number of occurrences of each string in the

sequence. The number of occurrences is then listed for each string in the sequence.

(1) declare2(dictionary, string, int)

(2) main()

(3) f

(4) dictionary(string, int) D;

(5) string s;

(6) dic item it;

(7) while ((cin >> s) && (s != \stop"))

(8) f it = D.lookup(s);

(9) if (it == nil) D.insert(s; 1);

(10) else D.change inf(it,D.info(it)+1);

(11) g

(12) forall dic items(it;D) cout << D.key(it) << \ " << D.inf(it) << \nn";

(13) g

Program 1: Counting the number of occurrences of each element of a sequence of strings

The details are as follows. In line (1) the dictionary type dictionary(string,int) is de�ned.

Note that the dictionary module provides dictionaries from K to I where K and I are type

4

variables. A speci�c dictionary type is introduced as shown in line (1). Line (4) introduces D

as the name of an object of type dictionary(string,int); D is initialized to the empty dictionary

Lines (7) to (11) step through the input sequence. For each string s we look for an item with

key s (line 8). If there is no such item in D the lookup operation returns nil and we insert the

pair (s; 1) (line 9). If there is such an item we increase its information (line 10). Finally, line

(12) steps through all items in D and prints the corresponding key and information values.

The running time of program 1 on a sequence of n strings is O(n log n), since the program

executes n lookup and at most n insert operations on D for a cost of O(log n) each and since

the remaining O(n) operations take constant time each. The use of items is not essential

for the asymptotic running time of program 1. Even if a change inf operation would have

cost O(log n), the asymptotic running time would still be O(n log n), although with a larger

constant factor. For the next example the use of items is essential.

Example 2: Priority Queues

Priority queues are a variation of dictionaries; they di�er in three aspects from dictionaries:

�rstly, the set I of informations must be linearly ordered, secondly, there is an operation

�ndmin() which returns an item with minimal information, and thirdly, there is a restricted

change inf operation decrease inf(it; i) which decreases the information stored in item it to i.

The operation raises an error if i is larger than the old information stored in item it. Figure 1

shows the speci�cation of the data type priority queue as given in the LEDA manual ([N90]).

Priority queues are frequently used in network algorithms, e.g., shortest paths, minimum

spanning tree, and maximum
ow computations. In these applications the decrease inf op-

eration is typically executed more often than the other priority queue operations, e.g., in

Dijkstra's algorithm for shortest paths (cf. program 3 in section III) decrease inf is executed

m times and the other operations are executed n times. Here m and n denote the number of

edges and vertices of the network respectively. Note that m can be as large as n

2

.

Several recent papers, e.g. [FT87] and [AMOT90], have shown that the decrease inf operation

can be realized in time O(1) and all other operations in time O(log n). This led to a O(m +

n log n) implementation of Dijkstra's algorithm. For the constant time implementation of

decrease inf it is absolutely crucial that the information to be changed in the data structure

is accessed directly through its position in the data structure and not through the associated

key. A lookup by key would necessarily have logarithmic cost. In LEDA access by position is

achieved by the item concept in a natural way by simply de�ning priority queues as collections

of pq items and making the �rst argument of decrease inf a pq item.

Remark: The speci�cation of priority queues given above di�ers from the one given in

[FT87], [AMOT90] and [CLR90]. There, insert takes a new item with a prede�ned contents

(k; i) as argument and inserts it into the queue, i.e., it is the application program's task

to create new items. This either requires the application to know the internal structure of

items, which violates the information hiding principle of abstract data types, or it requires

an additional operation to create items, which is, however, not part of the speci�cation given

in these papers. In LEDA the queue itself creates the items. This point of view leads to an

elegant speci�cation which completely separates data type and application program.

5

Priority Queues (priority queue)

An instance Q of the data type priority queue is a collection of items (pq item). Every item

contains a key from a type K and an information from a type I. K is called the key type of

Q and I is called the information type of Q. The number of items in Q is called the size of

Q. If Q has size zero it is called the empty priority queue. We use < k; i > to denote the

pq item with key k and information i. There must exist a linear order on I.

1. Declaration of a priority queue type

declare2(priority queue;K; I)

introduces a new data type with name priority queue(K; I) consisting of all priority queues

with key type K and information type I.

2. Creation of a priority queue

priority queue(K; I) Q;

creates an instance Q of type priority queue(K; I) and initializes it to the empty queue.

3. Operations on a priority queue Q

K Q.key(pq item it) returns the key of item it.

Precondition: it is an item in Q.

I Q.inf(pq item it) returns the information of item it.

Precondition: it is an item in Q.

pq item Q.insert(K k; I i) adds a new item < k; i > to Q and returns it.

pq item Q.�nd min() returns an item with minimal information

(nil if Q is empty)

void Q.del item(pq item it) removes the item it from Q.

Precondition: it is an item in Q.

K Q.del min() removes an item with minimal information

from Q and returns its key.

Precondition: Q is not empty.

pq item Q.decrease inf(pq item it; I i) makes i the new information of item it

Precondition: it is an item in Q and i

is not larger then inf(it).

void Q.clear() makes Q the empty priority queue

bool Q.empty() returns true, if Q is empty, false otherwise

int Q.size() returns the size of Q.

Priority queues are implemented by Fibonacci Heaps. Operations insert, del item, del min

take time O(log n), �nd min, decrease inf, key, inf, empty take time O(1) and clear takes

time O(n), where n is the size of the queue. The space requirement is O(n).

Figure 1: The speci�cation of priority queues.

6

Example 3: Partitions or Disjoint Sets

In this example we discuss partitions of �nite sets, frequently called the union-�nd problem.

An application of partitions is shown in program 4 of section III.

An object P of type partition consists of a �nite set of partition items and a partition of this

set into blocks. The declaration partition P introduces P as the name of a partition and

initializes it to the empty partition. There are three operations.

partition item P:make block() returns a new partition item it

and adds the block fitg to the

partition P .

int P:same block(partition item p; q) returns true if p and q belong to

the same block of the partition P .

void P:union blocks(partition item p; q) unites the blocks of P containing

items p and q.

We want to stress that the make block-operation has no parameter. It is not given an object

which it is supposed to add to the partition P , but the operation itself chooses an item it,

returns it and adds the block fitg to the partition P . The user has no idea what it is and

he does not need to know. The only thing, that is important to him, is the partition of the

items into blocks. This usage of items is similar to the usage of atoms in SETL.

Remark: In the text books ([AHU83], [M84], [T83]) make block takes an item as input and

therefore the remark made in the priority queue example applies here also. We feel that the

speci�cation given above is more natural.

Access by position instead of key is abundant in the design of e�cient data structures; e.g.,

lists are accessed by position, all operations in the union-�nd problem use access by position,

the decrease-inf operation in priority queues is based on it, and �ngers in �nger trees are

positions. Thus the position concept is crucial for the design of e�cient data structures. In

LEDA we use items as an abstraction of positions. Many operations take items as arguments

or return items as results. The examples given above show that the item concept leads to

natural speci�cations of data types. More examples can be found in [N90].

III. Graphs

Graph algorithms are a prime example of combinatorial computing. LEDA contains several

graph types and data types related with graphs allowing elegant and e�cient implementations

of graph and network algorithms.

graph is the data type of directed graphs. It provides operations for the updating (inserting

and deleting nodes and edges) and accessing internal informations (number of nodes or edges,

out- and indegree of nodes, endpoints of edges, list of edges adjacent to a given node, : : :)

of directed graphs. Furthermore there are several iteration statements that can be used to

iterate over the nodes and edges (for all nodes, for all edges, : : :).

Program 2 gives a short demonstration of some graph operations as they are used to test a

directed graph G for acyclicity. The algorithm uses the data types graph and node set whose

7

speci�cations are contained in the header �le \LEDA/graph.h" which is included in line 1. In

line 4 a node set zero for the nodes of graph G is declared. It is initialized in line 6 with all

nodes of indegree 0. In lines 7-15 the algorithm repeatedly deletes all edges starting in nodes

of zero and adds the new nodes with indegree 0 to zero. More precisely, a node v is selected

and deleted from zero. Then all edges e starting in v are removed from G. If the removal of

edge e decreases the indegree of its target node w to zero, then w is added to zero. Finally,

G is acyclic if all edges are removed in the end.

(1) #include <LEDA/graph.h>

(2) bool ACYCLIC(graph G)

(3) f // Tests if G is acyclic by repeatedly deleting edges starting in nodes with indegree 0.

(4) node set zero; // Set of all nodes v with indeg(v) = 0

(5) node v;w;

(6) forall nodes(v;G) if (G.indeg(v)==0) zero.insert(v);

(7) while (!zero.empty())

(8) f v = zero.choose();

(9) zero.del(v);

(10) forall adj edges(e; v)

(11) f w = G.target(e);

(12) G.del edge(e);

(13) if (G.indeg(w)==0) zero.insert(w);

(14) g

(15) g

(16) return G.number of edges() == 0;

(17) g

Program 2: Testing a directed graph for acyclicity.

Many graph algorithms, especially network algorithms, use additional informations associated

with the nodes and edges (node labels, edge costs, : : :). LEDA provides two ways for

associating informations with the nodes and edges of graphs:

1. Parameterized Graphs

A parameterized graph G is a graph whose nodes and edges contain additional (user

de�ned) informations. Every node contains an element of a data type vtype, called the

node type of G and every edge contains an element of a data type etype called the edge

type of G. All operations de�ned on instances of the data type graph are also de�ned on

instances of any parameterized graph type GRAPH(vtype; etype). For parameterized

graphs there are additional operations to access or update the informations associated

with its nodes and edges.

Instances of a parameterized graph type can be used wherever an instance of the data

type graph can be used, e.g., in assignments and as arguments to functions with formal

parameters of type graph&. If a function f(graph& G) is called with an argument

Q of type GRAPH(vtype; etype) then inside f only the basic graph structure of Q

(the adjacency lists) can be accessed. The node and edge informations are hidden.

For example, function ACYCLIC accepts instances of any parameterized graph type as

argument.

8

2. Node and Edge Arrays

node array and edge array are parameterized data types. An instance of the data type

node array(T) (edge array(T)) is an array which is indexed by the nodes (edges) of some

graph and whose entries are values of type T . Thus a node (edge) array is a mapping from

the nodes (edges) of a graph into a set of variables of type T . Node (edge) arrays allow

the passing of node and edge informations of networks to algorithms separatedly from

its basic graph structure. In this way reusable network algorithms accepting instances

of arbitrary graph types as arguments can be designed.

Examples for reusable network algorithms are the following programs DIJSKTRA (single

source shortest paths) and MST (minimum spanning tree). We use them to illustrate LEDA's

comfortable graph type and its interaction with other data types. Program 3 shows Dijk-

stra's algorithm (cf. [AHU83], [M84,section IV.7.2], [T83]) for the single source shortest path

problem in digraphs with non-negative edge costs.

(1) #include <LEDA/graph.h>

(2) #include <LEDA/prio.h>

(3) declare2(priority queue,node,int)

(4) declare(node array,pq item)

(5) void DIJKSTRA(graph& G, node s, edge array(int)& cost,

(6) node array(int)& dist, node array(edge)& pred)

(7) f priority queue(node,int) PQ;

(8) node array(pq item) I(G;nil);

(9) int c;

(10) node u; v;

(11) edge e;

(12) forall nodes(v;G)

(13) f pred[v] = nil;

(14) dist[v] = infinity;

(15) I[v] = PQ.insert(v; dist[v]);

(16) g

(17) dist[s] = 0;

(18) PQ.decrease inf(I[s]; 0);

(19) while (!PQ.empty())

(20) f u = PQ.del min()

(21) forall adj edges(e; u)

(22) f v = G:target(e);

(23) c = dist[u] + cost[e];

(24) if (c < dist[v])

(25) f dist[v] = c;

(26) pred[v] = e;

(27) PQ.decrease inf(I[v]; c);

(28) g

(29) g

(30) g // while

(31) g

Program 3: Dijkstra's shortest paths algorithm

9

The algorithm uses the data types graph and priority queue (lines (1) and (2)). The input to

the algorithm is a graph G, a node s of G and a non-negative cost for each edge. It returns

for each node v the length of a shortest path from s to v (array dist) and the last edge on

such a shortest path (array pred). In LEDA we use edge- and node-arrays for the latter three

parameters. A node array(edge) is a mapping from nodes to edges. The algorithm maintains

for each node v a temporary distance label dist[v]. Initially, dist[s] = 0 and dist[v] = 1 for

v 6= s, cf. lines (12){(18). In LEDA the loop forall nodes(v;G)f: : :g can be used to iterate

over all nodes v of a graph G.

Dijkstra's algorithm uses a priority queue PQ. The priority queue contains pairs (v; dist[v])

and hence has type priority queue(node; int). The type priority queue(node; int) is de�ned

in line (3) and in line (7) the queue PQ is created. Each node v of the graph needs to know

the position of the item < v; dist[v] > in the priority queue. We therefore declare the data

type node array(pq item) in line (4) and declare node array(pq item) I(G;nil) in line (8).

In this declaration the parameter G tells LEDA that we want an array which is indexed by

the nodes of G and the second parameter tells it that we want all entries initialized to the

pq item nil.

Initially, the items < s; 0 > and < v; infinity > for v 6= s are put into PQ, cf. line (14).

Then in each iteration we select and delete an item it with minimal inf from PQ and store

its key in u, cf. line (20). We now iterate through all edges e starting in node u, cf. line (21).

Let e = (u; v) and let c = dist[u] + cost[e] be the cost of reaching v through edge e, cf. lines

(22) and (23). If c is smaller than the temporary distance label dist[v] of v then we change

dist[v] to c and record e as the new predecessor of v and decrease the information associated

with v in the priority queue., cf. lines (24) to (28).

The running time of this algorithm for a graph G with n nodes and m edges is O(n +m +

T

declare

+ n(T

insert

+ T

Deletemin

+ T

get inf

) +m � T

Decrease key

) where T

declare

is the cost of

declaring a priority queue and T

XYZ

is the cost of operation XY Z. With the time bounds

stated in section II we obtain an O(m + n log n) algorithm.

Program 3 is very similar to the way Dijkstra's algorithm is presented in textbooks ([AHU83],

[M84], [T83]). The main di�erence is that program 3 is executable code whilst the textbooks

still require the reader to �ll in (non-trivial) details.

We use the minimum spanning tree problem to further discuss the interaction between graphs

and data types. Program 4 shows the minimum spanning tree algorithm of Kruskal. It starts

with a spanning forest of n isolated vertices (in line (12) a partition P is initialized with one

block for each vertex of G) and then steps through the edges in order of increasing cost (line

(13) constructs the list OEL of all edges of G, line (15) sorts this list and the forall statement

in line (18) iterates over the edges in OEL). When an edge e is considered, it is checked

whether the two endpoints v and w belong to the same tree of the spanning forest (line 21).

If not, the two trees are united and the edge e is added to the spanning forest (lines 22 and

23). We refer the reader to [M84, section IV.8] for the proof of correctness.

(0) #include <LEDA/graph.h>

(1) #include <LEDA/partition.h>

(2) declare(node array,partition item);

(3) edge array(int) �C;

(4) int cmp(edge e1, edge e2) f return (�C[e1]� �C[e2]); g

10

(5) void MST(graph& G, edge array(int)& cost, edgelist& EL)

(6) // the input is an undirected graph G together with a cost function

(7) // cost on the edges; output: list of edges EL of a minimum spanning tree

(8) f node v;w;

(9) edge e;

(10) partition P ;

(11) node array(partition item) I(G);

(12) forall nodes(v;G) I[v] = P .make block();

(13) edgelist OEL = G.all edges();

(14) C = &cost;

(15) OEL.sort(cmp);

(16) // OEL is now the list of edges of G ordered by increasing cost

(17) EL.clear();

(18) forall(e;OEL)

(19) f v = G:source(e);

(20) w = G:target(e);

(21) if (!(P .same block(I[v]; I[w])))

(22) f P .union blocks(I[v]; I[w]);

(23) EL.append(e);

(24) g

(25) g

(26) g

Program 4: Kruskal's minimum spanning tree algorithm

Programs 3 and 4 show some similarities. In both cases a node array(item) is used and in both

cases the program starts by creating one item for each node of the graph. Similar statements

occur in many graph algorithms. A user of LEDA may want to incorporate all of these state-

ments into the declaration of the partition or the priority queue. He can do so (in fact we have

done it already) by deriving a data type node partition from the data type partition and sim-

ilarly for priority queue. A node partition Q consists of a node array(partition item) I and

a partition P . The declaration node partition Q(G) will then execute lines (3), (10), (11),

and (12). The operations on node partitions are also easily derived, e.g., Q:same block(v;w)

just calls P:same block(I[v]; I[w]). For details see section IV.

IV. Extendibility

The goal of the LEDA project is the design of a library of reusable data types and algorithms

that can easily be included into user programs. Of course, such a library can never be

complete, i.e., there will always be situations requiring data types not contained in the library.

Therefore there should be a possibility for users to extend the library by adding new data

types and algorithms.

LEDA is extendible in two ways:

1. New data types can be added by writing the appropriate C

++

modules. This way of

extending the library is suitable for users having a detailed knowledge of data structures,

and with experience in C

++

programming.

11

2. New data types can also be constructed by combining already existing LEDA data types.

This method allows non-experts to build data types on a higher level of description (the

level of most example programs in this paper). An example of such a combination of

two LEDA data type is the data type node partition (cf. section III). It is implemented

by combining partitions and node arrays of partition items as follows:

class node partition f

// A node partition is a partition of the nodes of some graph G.

// It consists of a node array of partition items and a partition.

node array(partition item) I;

partition P ;

public:

node partition(graph& G)

f // constructs a node partition for the nodes of graph G

node v;

I.init(G;nil);

forall nodes(v;G) I[v] = P .make block();

g

void union blocks(node v; node w) f P.union blocks(I[v]; I[w]); g

int same block(node v; node w) f return P .same block(I[v]; I[w]); g

g;

V. Implementation of LEDA

This section comments on the implementation of LEDA. LEDA is written in C

++

which is

an extension of the C programming language. In addition to the facilities of C, C

++

provides

data abstraction, data hiding, object oriented programming, operator overloading and many

other features suitable for implementing abstract data types. For details of the C

++

language

see [St86] or [Lip89].

Each data type in LEDA is realized by one or more C

++

classes. The operations and operators

are member functions of the corresponding classes. In C

++

a class de�nition consists of

a declaration part and an implementation part. The declaration of a class describes the

interfaces of its member functions (return and parameter types) and the private data of each

instance of the class. The former part of a class declaration corresponds to the abstract

speci�cation of the data type. The implementation part of a class �lls in the C

++

code to

realize the member functions.

C

++

does not provide parameterized data types directly. However, [St86] discusses how the

macro facilities of C

++

can be used to simulate parameterized data types. The parameterized

data types of LEDA are realized by Stroustrup's method.

LEDA provides various kinds of iteration statements, cf. programs 1 to 4. All iteration

statements are implemented by macros which expand the iteration into more complicated

for-statements.

LEDA can be used under UNIX with the C

++

compilers AT&T cfront 2.0, cfront 2.1, and

GNU g++ (version 1.37). All modules are precompiled and contained in 3 libraries: basic data

12

types, graph data types and algorithms, and data types and algorithms for computational

geometry. The total size of the libraries is about 2 Mbyte.

VI. Summary

LEDA is a library of e�cient data types and algorithms. At present, its strength is graph

algorithms and the data structures related to them. The computational geometry part is

evolving.

There are several other projects which aim for similar goals as LEDA, e.g. [B88, So89, Lin89].

We believe, that LEDA compares well with these systems because of

{ its sizable collection of data types and algorithms

{ the precise and readable speci�cation of these types

{ the item concept for positions and pointers

{ the natural syntax, and

{ the inclusion of many of the most recent and most e�cient data structures and algorithms.

Acknowledgement: We want to thank our colleagues G. Hotz, J. Loeckx, W. R�ulling,

K. Sieber and R. Wilhelm for many helpful discussions and our students D. Basenach, J.

Dedorath, E. Haak, M. Muth, M. Wenzel and W. Zimmer for implementation work.

VII. References

[AHU83] A.V. Aho, J.E. Hopcroft, J.D. Ullman: \Data Structures and Algorithms",

Addison-Wesley Publishing Company, 1983

[AMOT90] R.K. Ahuja, K. Mehlhorn, J.B. Orlin, R.E. Tarjan: \Faster Algorithms for

the Shortest Path Problem", JACM, Vol. 37, 213-233, 1990

[B87] G. Booch: \Software Components with Ada", Benjamin/Cummings Publ.

Company, 1987

[CLR90] T.H. Cormen, C.E. Leiserson, R.L. Rivest: \Introduction to Algorithms",

MIT Press/McGraw-Hill Book Company, 1990

[FT87] M.L. Fredman, and R.E. Tarjan: \Fibonacci Heaps and Their Uses in Im-

proved Network Optimization Algorithms", JACM, Vol. 34, 596-615, 1987

[Lin89] C. Lins: \The Modula-2 Software Component Library", Springer Publishing

Company, 1989

[Lip89] S.B. Lippman: \C

++

Primer", Addsion-Wesley Publishing Company, 1989

[M84] K. Mehlhorn: \Data Structures and Algorithms", Vol. 1{3, Springer Pub-

lishing Company, 1984

13

[N90] S. N�aher: \LEDA User Manual Version 2.0", TR A17/90, Univ. des Saar-

landes, Saarbr�ucken, 1990

[So89] J. Soukup: \Organized C", Typescript, 1988

[St86] B. Stroustrup: \ The C

++

Programming Language", Addison-Wesley Pub-

lishing Company, 1986

[T83] R.E. Tarjan: \Data Structures and Network Algorithms", CBMS-NSF Re-

gional Conference Series in Applied Mathematics, Vol. 44, 1983

14

