
THE INTERCAL PROGRAMMING LANGUAGE

REVISED REFERENCE MANUAL

Donald R. Woods

and

James M. Lyon

C-INTERCAL revisions:

Louis Howell

and

Eric S. Raymond

Copyright (C) 1973 by Donald R. Woods

and James M. Lyon

Copyright (C) 1996 by Eric S. Raymond

Redistribution encouraged under GPL

(This version distributed with C-INTERCAL 0.15)

- 1 -

1. INTRODUCTION

The names you are about to ignore are true. However, the story has been changed significantly. Any
resemblance of the programming language portrayed here to other programming languages, living or dead,
is purely coincidental.

1.1 Origin and Purpose

The INTERCAL programming language was designed the morning of May 26, 1972 by Donald R. Woods
and James M. Lyon, at Princeton University. Exactly when in the morning will become apparent in the
course of this manual.

Eighteen years later (give or take a few months) Eric S. Raymond perpetrated a UNIX-hosted INTERCAL
compiler as a weekend hack. The C-INTERCAL implementation has since been maintained and extended
by an international community of technomasochists, including Louis Howell, Steve Swales, Michael Ernst,
and Brian Raiter.

(There was evidently an Atari implementation sometime between these two; notes on it got appended to the
INTERCAL-72 manual. The culprits have sensibly declined to identify themselves.)

INTERCAL was inspired by one ambition: to have a compiler language which has nothing at all in
common with any other major language. By ’major’ was meant anything with which the authors were at all
familiar, e.g., FORTRAN, BASIC, COBOL, ALGOL, SNOBOL, SPITBOL, FOCAL, SOLVE, TEACH,
APL, LISP, and PL/I. For the most part, INTERCAL has remained true to this goal, sharing only the basic
elements such as variables, arrays, and the ability to do I/O, and eschewing all conventional operations
other than the assignment statement (FORTRAN "=").

1.2 Acronym

The full name of the compiler is "Compiler Language With No Pronounceable Acronym", which is, for
obvious reasons, abbreviated "INTERCAL".

1.3 Acknowledgments

The authors are deeply indebted to Eric M. Van and Daniel J. Warmenhoven, without whose unwitting
assistance this manual would still have been possible.

- 2 -

2. FUNDAMENTAL CONCEPTS

In this section an attempt is made to describe how and why INTERCAL may be used; i.e., what it is like
and what it is good for.

2.1 Sample Program

Shown below is a relatively simple INTERCAL program which will read in 32-bit unsigned integers, treat
them as signed, 2’s-complement numbers, and print out their absolute values. The program exits if the
absolute value is zero. Note in particular the inversion routine (statements 6 through 14), which could be
greatly simplified if the subroutine library (see section 7) were used.

A more detailed analysis of a program is made in section 8 of this manual.

DO (5) NEXT
(5) DO FORG ET # 1

PLEA SE WR I TE I N : 1
DO . 1 < - ’ V− " : 1 ˜ ’ # 3 2 7 6 8 ¢ # 0 ’ " ¢ # 1 ’ ˜ # 3
DO (1) NEXT
DO : 1 < - " ’ V− " : 1 ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ " ¢ # 6 5 5 3 5 ’

˜ ’ # 0 ¢ # 6 5 5 3 5 ’ " ¢ " ’ V− " : 1 ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ "
¢ # 6 5 5 3 5 ’ ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ "

DO : 2 < - # 1
PLEA SE DO (4) NEXT

(4) DO FORG ET # 1
DO . 1 < - "V− ’ : 1 ˜ : 2 ’ ¢ # 1 " ˜ # 3
DO : 1 < - " ’ V− " : 1 ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ " ¢ " : 2 ˜ ’ # 6 5 5 3 5

¢ # 0 ’ " ’ ̃ ’ # 0 ¢ # 6 5 5 3 5 ’ " ¢ " ’ V− " : 1 ˜ ’ # 0
¢ # 6 5 5 3 5 ’ " ¢ " : 2 ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ " ’ ̃ ’ # 0 ¢ # 6 5 5 3 5 ’ "

DO (1) NEXT
DO : 2 < - " : 2 ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ "

¢ " ’ " : 2 ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ " ¢ # 0 ’ ˜ ’ # 3 2 7 6 7 ¢ # 1 ’ "
DO (4) NEXT

(2) DO RESUM E . 1
(1) PLEAS E DO (2) NEXT

PLEA SE FORG ET # 1
DO READ OUT : 1
PLEA SE DO . 1 < - ’ V− " ’ : 1 ˜ : 1 ’ ̃ # 1 " ¢ # 1 ’ ˜ # 3
DO (3) NEXT
PLEA SE DO (5) NEXT

(3) DO (2) NEXT
PLEA SE G I VE UP

2.2 Uses for INTERCAL

INTERCAL’s main advantage over other programming languages is its strict simplicity. It has few
capabilities, and thus there are few restrictions to be kept in mind. Since it is an exceedingly easy language
to learn, one might expect it would be a good language for initiating novice programmers. Perhaps
surprising, than, is the fact that it would be more likely to initiate a novice into a search for another line of
work. As it turns out, INTERCAL is more useful (which isn’t saying much) as a challenge to professional
programmers. Those who doubt this need only refer back to the sample program in section 2.1. This
22-statement program took somewhere from 15 to 30 minutes to write, whereas the same objectives can be
achieved by single-statement programs in either SNOBOL;

PLEASE INPUT POS(0) (’-’ ! ’’)
+ (SPAN(’0123456789’) $ OUTPUT)
+ *NE(OUTPUT) :S(PLEASE)F(END)

or APL;

- 3 -

[1] →0≠ ←

Admittedly, neither of these is likely to appear more intelligible to anyone unfamiliar with the languages
involved, but they took roughly 60 seconds and 15 seconds, respectively, to write. Such is the
overwhelming power of INTERCAL!

The other major importance of INTERCAL lies in its seemingly inexhaustible capacity for amazing one’s
fellow programmers, confounding programming shop managers, winning friends, and influencing people. It
is a well-known and oft-demonstrated fact that a person whose work is incomprehensible is held in high
esteem. For example, if one were to state that the simplest way to store a value of 65536 in a 32-bit
INTERCAL variable is:

DO :1 <- #0¢#256

any sensible programmer would say that that was absurd. Since this is indeed the simplest method, the
programmer would be made to look foolish in front of his boss, who would of course happened to turn up,
as bosses are wont to do. The effect would be no less devastating for the programmer having been correct.

- 4 -

3. DESCRIPTION

The examples of INTERCAL programming which have appeared in the preceding sections of this manual
have probably seemed highly esoteric to the reader unfamiliar with the language. With the aim of making
them more so, we present here a description of INTERCAL.

3.1 Variables

INTERCAL allows only 2 different types of variables, the 16-bit integer and the 32-bit integer. These are
represented by a spot (.) or two-spot (:), respectively, followed by any number between 1 and 65535,
inclusive. These variables may contain only non-negative numbers; thus they hav e the respective ranges of
values: 0 to 65535 and 0 to 4294967295. Note: .123 and :123 are two distinct variables. On the other hand,
.1 and .0001 are identical. Furthermore, the latter may NOT be written as 1E-3.

3.2 Constants

Constants are 16-bit values only and may range from 0 to 65535. They are prefixed by a mesh (#).
Caution! Under no circumstances confuse the mesh with the interleave operator, except under confusing
circumstances!

3.3 Arrays

Arrays are represented by a tail (,) for 16-bit values, or a hybrid (;) for 32-bit values, followed by a number
between 1 and 65535, inclusive. The number is suffixed by the word SUB, followed by the subscripts,
separated optionally by spaces. Subscripts may be any expressions, including those involving subscripted
variables. This occasionally leads to ambiguous constructions, which are resolved as discussed in section
3.4.3. Definition of array dimensions will be discussed later in greater detail, since discussing it in less
detail would be difficult. As before, ,123 and ;123 are distinct. In summary, .123, :123, #123, ,123, and
:123 are all distinct.

3.4 Operators

INTERCAL recognizes 5 operators -- 2 binary and 3 unary. Please be kind to our operators: they may not
be very intelligent, but they’re all we’ve got. In a sense, all 5 operators are binary, as they are all bit-
oriented, but it is not our purpose here to quibble about bits of trivia.

3.4.1 Binary Operators

The binary operators are interleave (also called mingle) and select, which are represented by a change (¢)
and a sqiggle [sic] (˜), respectively. (In C-INTERCAL’S ASCII environment, EBCDIC ¢ is replaced by a
big money ($).)

The interleave operator takes two 16-bit values and produces a 32-bit result by alternating the bits of the
operands. Thus, #65535¢#0 has the 32-bit binary form 101010....10 or 2863311530 decimal, while
#0¢#65535 = 0101....01 binary = 1431655765 decimal, and #255¢#255 is equivalent to #65535.

The select operator takes from the first operand whichever bits correspond to 1’s in the second operand, and
packs these bits to the right in the result. Both operands are automatically padded on the left with zeros to
32 bits before the selection takes place, so the variable types are unrestricted. If more than 16 bits are
selected, the result is a 32-bit value, otherwise it is a 16-bit value. For example, #179˜#201 (binary value
10110011˜11001001) selects from the first argument the 8th, 7th, 4th, and 1st from last bits, namely, 1001,
which = 9. But #201˜#179 selects from binary 11001001 the 8th, 6th, 5th, 2nd, and 1st from last bits, giving
10001 = 17. #179˜#179 has the value 31, while #201˜#201 has the value 15.

3.4.1.1 Return type of SELECT

INTERCAL-72 defined the return type of a SELECT operation to depend on the number of bits
SELECTed. The C-INTERCAL compiler takes the easier route of defining the return type to be that of the
right operand, independent of its actual value. This form has the advantage that all types can be determined
at compile time. Putting in run time type checking would add significant overhead and complication, to
effect a very minor change in language semantics.

- 5 -

The only time this distinction makes any difference is when a unary operator is applied to the SELECT
result. This happens extremely rarely in practice, the only known instance being the 32-bit greater-than test
in the standard library, where an XOR operator is applied to the result of SELECTing a number against
itself. The INTERCAL-72 authors first SELECT the result against #65535¢#65535 to insure that XOR
sees a 32-bit value. With the current compiler this extra step is unnecessary, but harmless.

The cautious programmer should write code that does not depend on the compiler version being used. We
therefore suggest the following guideline for determining the SELECT return type:

A SELECT operation with a 16-bit right operand returns a 16-bit value. The return type of a SELECT
operation with a 32-bit right operand is undefined, but is guaranteed to be an acceptable input to a
MINGLE operation so long as 16 or fewer bits are actually selected. Correct code should not depend on
whether the return type is 16 or 32 bits.

Perhaps a simpler way of understanding the operation of the select operator would be to examine the logic
diagram on the following page (Figure 1), which performs the select operation upon two 8-bit values, A and
B. The gates used are Warmenhovian logic gates, which means the outputs have four possible values: low,
high, undefined (value of an uninitialized flip-flop), and oscillating (output of a NOR gate with one input
low and the other input connected to the output). These values are represented symbolically by ’0’, ’1’, ’?’,
and ’∅ ’. Note in particular that, while NOT-0 is 1 and NOT-1 is 0 as in two-valued logic, NOT-? is ? and
NOT-∅ is ∅ . The functions of the various gates are listed in Table 1.

- 6 -

6

6

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

1

7

4

3

3

3

7

3

7

3

1

3

3

4

4

3

3

3

3

3

1

4

5

5

4

5

4

3

2

1

B

U

S

L

I

N

E

8

TO
NEW

YORK
TO

NEW
YORK

TO
NEW

YORK
TO

NEW
YORK

TO
NEW

YORK
TO

NEW
YORK

TO
NEW

YORK
TO

NEW
YORK

TO
NEW

YORK
TO

NEW
YORK

TO
NEW

YORK
TO

NEW
YORK

TO
NEW

YORK
TO

NEW
YORK

TO
NEW

YORK
TO

PHILA-
DELPHIA

A
8

B
8

A
7

B
7

A
6

B
6

A
5

B
5

A
4

B
4

A
3

B
3

A
2

B
2

A
1

B
1

FIGURE 1. CIRCUITOUS DIAGRAM

- 7 -

_ _

| \ \

| \ 1 . Lo g i c g a t e . I n p u t s A , B . Ou t p u t O = AB . \

| \ \

| \ \ 2 . Lo g i c g a t e . I n p u t s A , B , C . Ou t p u t O = A+BC . \

| | \ \ \

| | \ \ 3 . Lo g i c g a t e . I n p u t s A , B . Ou t p u t O = A+AB . \

| | \ \ \

| | | \ \ 4 . Lo g i c g a t e . I n p u t s A , B . Ou t p u t O = AB + - (A+ - B) \

| | | \ \ \

| | | \ \ 5 . Lo g i c g a t e . I n p u t s A , B . Ou t p u t O = A+A + AA \

| | | \ \ \

| | | \ \ 6 . Un i n i t i a l i z e d fl i p - fl o p . I n p u t s n o n e . Ou t p u t O = ? \

| | | \ \ \

| | | \ \ 7 . F l i p - fl o p - fl a p . I n p u t s A , B , C . Ou t p u t O = 1 i f \

| | | \ \ A= 0 o r B+C= 0 a n d A= 1 . O = 0 i f AC= 1 , B= 0 . O = ∅ i f \

| | | \ \ AB= 1 , C= 0 . O = ? i f ABC = 1 . O a s y e t u n d e t e rm i n e d \

| | | \ \ f o r o t h e r Wa rme n h o v i a n i n p u t s . S e e F i g u r e 2 . \

| | | \ \ \

| | | \ \ 8 . Bu s l i n e . \

| | | \ \ _ \

| | | \ | |

| | | | | _ |

| | | | | | | | | | | |

| | | | | | | | | | | |

| | | | | | | | | | | |

| | | | | | | | | | | |

| | | | | | | | | | | |

\ | _ _ | | | | \ | _ _ | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

\ | _ _ | \ | _ _ |

Table 1. Logical (and other) functions.

- 8 -

A

B

C

1

D

FIGURE 2. FLIP FLAP FLOP

- 9 -

9
GATE TYPE 9. BLACK BOX
INPUTS A1-8, B1-8.
OUTPUT D1-8 = A1-8˜B1=8

FIGURE 1 (CONTINUED). NEW YORK

- 10 -

3.4.2 Unary Operators

The unary operators are & (logical AND), V (logical OR), and V− (logical XOR). This last character is
obtained by overpunching a worm (−) on a V (V). (In C-INTERCAL’S ASCII environment, EBCDIC V− is
replaced by the what (?). The compiler recognizes -<backspace>V as a valid equivalent, in case you are
concerned about compatibility with the Princeton compiler. The operator is inserted between the spot, two-
spot, mesh, or what-have-you, and the integer, thus: .&123, #V−123. Multiple unary operators may not be
concatenated, thus the form #V−&123 is invalid. This will be covered later when precedence is discussed.
These operators perform their respective logical operations on all pairs of adjacent bits, the result from the
first and last bits going into the first bit of the result. The effect is that of rotating the operand one place to
the right and ANDing, ORing, or XORing with its initial value. Thus, #&77 (binary = 1001101) is binary
0000000000000100 = 4, #V77 is binary 1000000001101111 = 32879, and #V−77 is binary
1000000001101011 = 32875.

3.4.3 Precedence

Precedence of operators is as follows:

(The remainder of this page intentionally left blank)1

1. Keep in mind that the aim in designing INTERCAL was to have no precedents.

- 11 -

This precedence (or lack thereof) may be overruled by grouping expressions between pairs of sparks (’) or
rabbit-ears ("). Thus ’#165¢#203’˜#358 (binary value ’10100101¢11001011’˜101100110) has the value 15,
but #165¢’#203˜#358’ has the value 34915, and #165¢#203˜#358 is invalid syntax and is completely
valueless (except perhaps as an educational tool to the programmer). A unary operator is applied to a
sparked or rabbit-eared expression by inserting the operator immediately following the opening spark or
ears. Thus, the invalid expression #V−&123, which was described earlier, could be coded as ’V−#&123’ or
’V−"{"’. Note: In the interests of simplifying the sometimes overly-complex form of expressions,
INTERCAL allows a spark-spot combination (’.) to be replaced with a wow (!). Thus ’.1˜.2’ is equivalent to
!1˜.2’, and ’V.1¢.2’ is equivalent to "V!1¢.2’".

Combining a rabbit-ears with a spot to form a rabbit (".) is not permitted, although the programmer is free to
use it should he find an EBCDIC reader which will properly translate a 12-3-7-8 punch.

Sparks and/or rabbit-ears must also be used to distinguish among such otherwise ambiguous subscripted
and multiply-subscripted expressions as:

,1 SUB #1 ˜ #2
,1 SUB ,2 SUB #1 #2 #3
,1 SUB " ,2 SUB " ,3 SUB #1 " #2 " " #3 "

The third case may be isolated into either of its possible interpretations by simply changing some pairs of
rabbit-ears to sparks, instead of adding more ears (which would only confuse the issue further). Ambiguous
cases are defined as those for which the compiler being used finds a legitimate interpretation which is
different from that which the user had in mind. See also section 12.

- 12 -

4. STATEMENTS

In this section is described the format of INTERCAL statements.

4.1 General Format

Statements may be entered in ’free format’. That is, more than one statement may occur on a single card,
and a statement may begin on one card and end on a later one. Note that if this is done, all intervening cards
and portions thereof must be part of the same statement. That this restriction is necessary is immediately
apparent from the following example of what might occur if statements could be interlaced.

DO .1 <- ".1¢’&:51˜"#V−1c!12˜;&75SUB"V−’V.1˜
DO .2 <- ’"!1¢"&’;V−79SUB",&7SUB:173"’˜!V−9¢
.2’¢,&1SUB:5˜#33578"’"’"˜’#65535¢"V−’V#&85’"’
#8196’"’˜.1"¢.2’˜’#&5¢"’#1279¢#4351’˜#65535"’

The above statements are obviously meaningless. (For that matter, so are the statements

DO .1 <- ".1¢"&:51˜"#V−1¢!12˜;&75SUB"V−’V.1˜
.2’¢,&1SUB:5˜#333578"’"’"˜#65535¢"V−’V#&85’"’
DO .2 <- ’"!1¢"&’;V−79SUB",&7SUB:173"’˜!V−9¢
#8196’"’˜.1"¢.2’˜’#&5¢"’#1279¢#4351’˜#65535"’

but this is not of interest here.)

Spaces may be used freely to enhance program legibility (or at least reduce program illegibility), with the
restriction that no word of a statement identifier (see section 4.3) may contain any spaces.

4.2 Labels

A statement may begin with a logical line label enclosed in wax-wane pairs (()). A statement may not have
more than one label, although it is possible to omit the label entirely. A line label is any integer from 1 to
65535, which must be unique within each program. The user is cautioned, however, that many line labels
between 1000 and 1999 are used in the INTERCAL System Library functions.

4.3 Identifiers and Qualifiers

After the line label (if any), must follow one of the following statement identifiers: DO, PLEASE, or
PLEASE DO. These may be used interchangeably to improve the aesthetics of the program. The identifier
is then followed by either, neither, or both of the following optional parameters (qualifiers): (1) either of the
character strings NOT or N’T, which causes the statement to be automatically abstained from (see section
4.4.9) when execution begins, and (2) a number between 0 and 100, preceded by a double-oh-seven (%),
which causes the statement to have only the specified percent chance of being executed each time it is
encountered in the course of execution.

4.4 Statements

Following the qualifiers (or, if none are used, the identifier) must occur one of the 13 valid operations.
(Exception: see section 4.5.) These are described individually in sections 4.4.1 through 4.4.14.2.

4.4.1 Calculate

The INTERCAL equivalent of the half-mesh (=) in FORTRAN, BASIC, PL/I, and others, is represented by
an angle (<) followed by a worm (-). This combination is read ’gets’. 32-bit variables may be assigned
16-bit values, which are padded on the left with 16 zero bits. 16-bit variables may be assigned 32-bit values
only if the value is less than 65535. Thus, to invert the least significant bit of the first element of 16-bit
2-dimensional array number 1, one could write:

,1SUB#1#1 <- ’V−,1SUB#1#1¢#1’˜’#0¢#65535’

Similarly to SNOBOL and SPITBOL, INTERCAL uses the angle-worm to define the dimensions of arrays.
An example will probably best describe the format. To define 32-bit array number 7 as 3-dimensional, the
first dimension being seven, the second being the current value of 16-bit variable number seven, and the

- 13 -

third being the current value of the seventh element of 16-bit array number seven (which is one-
dimensional) mingled with the last three bits of 32-bit variable number seven, one would write (just before
they came to take him away):

;7 <- #7 BY .7 BY ",7SUB#7"¢’:7˜#7’

This is, of course, different from the statement:

;7 <- #7 BY .7 BY ,7SUB"#7¢’:7˜#7’"

INTERCAL also permits the redefining of array dimensioning, which is done the same way as is the initial
dimensioning. All values of items in an array are lost upon redimensioning, unless they hav e been
STASHed (see section 4.4.5), in which case restoring them also restores the old dimensions.

4.4.2 NEXT

The NEXT statement is used both for subroutine calls and for unconditional transfers. This statement takes
the form:

DO (label) NEXT

(or, of course,

PLEASE DO (label) NEXT

etc.), where (label) represents any logical line label which appears in the program. The effect of such a
statement is to transfer control to the statement specified, and to store in a push down list (which is initially
empty) the location from which the transfer takes place. Items may be removed from this list and may be
discarded or used to return to the statement immediately following the NEXT statement. These operations
are described in sections 4.4.3 and 4.4.4 respectively. The programmer is generally advised to discard any
stack entries which he does not intend to utilize, since the stack has a maximum depth of 79 entries. A
program’s attempting to initiate an 80th level of NEXTing will result in the fatal error message,
"PROGRAM HAS DISAPPEARED INTO THE BLACK LAGOON."

4.4.3 FORGET

The statement PLEASE FORGET exp, where exp represents any expression (except colloquial and facial
expressions), causes the expression to be evaluated, and the specified number of entries to be removed from
the NEXTing stack and discarded. An attempt to FORGET more levels of NEXTing than are currently
stacked will cause the stack to be emptied, and no error condition is indicated. This is because the condition
is not considered to be an error. As described in section 4.4.2, it is good programming practice to execute a
DO FORGET #1 after using a NEXT statement as an unconditional transfer, so that the stack does not get
cluttered up with unused entries:

DO (1 2 3) NEXT
.
.

(1 2 3) DO FORG ET # 1

4.4.4 RESUME

The statement PLEASE RESUME exp has the same effect as FORGET, except that program control is
returned to the statement immediately following the NEXT statement which stored in the stack the last
entry to be removed. Note that a rough equivalent of the FORTRAN computed GO TO and BASIC ON exp
GO TO is performed by a sequence of the form:

- 14 -

DO (1) NEXT
.
.

(1) DO (2) NEXT
PLEA SE FORG ET # 1
.
.

(2) DO RESUM E . 1

Unlike the FORGET statement, an attempt to RESUME more levels of NEXTing than been stacked will
cause program termination. See also section 4.4.11.

4.4.5 STASH

Since subroutines are not explicitly implemented in INTERCAL, the NEXT and RESUME statements must
be used to execute common routines. However, as these routines might use the same variables as the main
program, it is necessary for them to save the values of any variables whose values they alter, and later
restore them. This process is simplified by the STASH statement, which has the form DO STASH list,
where list represents a string of one or more variable or array names, separated by intersections (+). Thus

PLEASE STASH .123+:123+,123

stashes the values of two variables and one entire array. The values are left intact, and copies thereof are
saved for later retrieval by (what else?) the RETRIEVE statement (see section 4.4.6). It is not possible to
STASH single array items.

4.4.6 RETRIEVE

PLEASE RETRIEVE list restores the previously STASHed values of the variables and arrays named in the
list. If a value has been stashed more than once, the most recently STASHed values are RETRIEVEd, and a
second RETRIEVE will restore the second most recent values STASHed. Attempting to RETRIEVE a
value which has not been STASHed will result in the error message, "THROW STICK BEFORE
RETRIEVING."

4.4.7 IGNORE

The statement DO IGNORE list causes all subsequent statements to have no effect upon variables and/or
arrays named in the list. Thus, for example, after the sequence

DO .1 <- #1
PLEASE IGNORE .1
DO .1 <- #0

16-bit variable number 1 would have the value 1, not 0. Inputting (see section 4.4.12) into an IGNOREd
variable also has no effect. The condition is annulled via the REMEMBER statement (see section 4.4.8).
Note that, when a variable is being IGNOREd, its value, though immutable, is still available for use in
expressions and the like.

Though the INTERCAL-72 manual laid down that the value of an IGNOREd variable cannot change, it
was unclear about whether or not a statement which appears to change an IGNOREd variable is executed or
not. This may appear to be a "If a tree falls in the forest..." type of question, but if the statement in question
has other side effects it is not.

Since another mechanism already exists for ABSTAINing from a statement, C-INTERCAL’s IGNORE
only prevents the changing of the specific variable in question, not the execution of the entire statement. In
the present version of the language this only makes a difference for the WRITE IN statement. Attempting
to WRITE IN to an IGNOREd variable will cause a number to be read from the input, which will be
discarded since it cannot be stored in the variable.

- 15 -

4.4.8 REMEMBER

PLEASE REMEMBER list terminates the effect of the IGNORE statement for all variables and/or arrays
named in the list. It does not matter if a variable has been IGNOREd more than once, nor is it an error if the
variable has not been IGNOREd at all.

4.4.9 ABSTAIN

INTERCAL contains no simple equivalent to an IF statement or computed GO TO, making it difficult to
combine similar sections of code into a single routine which occasionally skips around certain statements.
The IGNORE statement (see section 4.4.7) is helpful in some cases, but a more viable method is often
required. In keeping with the goal of INTERCAL having nothing in common with any other language, this
is made possible via the ABSTAIN statement.

This statement takes on one of two forms. It may not take on both at any one time. DO ABSTAIN FROM
(label) causes the statement whose logical line label is (label) to be abstained from. PLEASE ABSTAIN
FROM gerund list causes all statements of the specified type(s) to be abstained from, as in

PLEASE ABSTAIN FROM STASHING
PLEASE ABSTAIN FROM IGNORING + FORGETTING
PLEASE ABSTAIN FROM NEXTING

or PLEASE ABSTAIN FROM CALCULATING

Statements may also be automatically abstained from at the start of execution via the NOT or N’T
parameter (see section 4.3).

If, in the course of execution, a statement is encountered which is being abstained from, it is ignored and
control passes to the next statement in the program (unless it, too, is being abstained from).

The statement DO ABSTAIN FROM ABSTAINING is perfectly valid, as is DO ABSTAIN FROM
REINSTATING (although this latter is not usually recommended). However, the statement DO ABSTAIN
FROM GIVING UP is not accepted, even though DON’T GIVE UP is.

4.4.10 REINSTATE

The REINSTATE statement, like the ABSTAIN, takes as an argument either a line label or a gerund list. No
other form of argument is permitted. For example, the following is an invalid argument:

Given: x≠0, y≠0, Prove: x+y=0
Since x≠0, then x+1≠1, x+a≠a, x+y≠y.
But what is y? y is anything but 0.
Thus x+y ≠ anything but 0.
Since x+y cannot equal anything but 0, x+y=0.

Q.E.D.

REINSTATEment nullifies the effects of an abstention. Either form of REINSTATEment can be used to
"free" a statement, regardless of whether the statement was abstained from by gerund list, line label, or
NOT. Thus, PLEASE REINSTATE REINSTATING is not necessarily an irrelevant statement, since it might
free a DON’T REINSTATE command or a REINSTATE the line label of which was abstained from.
However, DO REINSTATE GIVING UP is invalid, and attempting to REINSTATE a GIVE UP statement
by line label will have no effect. Note that this insures that DON’T GIVE UP will always be a "do-nothing"
statement.

4.4.11 GIVE UP

PLEASE GIVE UP is used to exit from a program. It has the effect of a PLEASE RESUME #80. DON’T
GIVE UP, as noted in section 4.4.10, is effectively a null statement.

4.4.12 Input

Input is accomplished with the statement DO WRITE IN list, where list represents a string of variables
and/or elements or arrays, separated by intersections. Numbers are represented on cards, each number on a

- 16 -

separate card, by spelling out each digit (in English) and separating the digits with one or more spaces. A
zero (0) may be spelled as either ZERO or OH. Thus the range of (32-bit) input values permissible extends
from ZERO (or OH) through FOUR TWO NINE FOUR NINE SIX SEVEN TWO NINE FIVE. (For the
convenience of aviators, C-INTERCAL accepts the spelling NINER for NINE. In the service of
internationalization, C-INTERCAL also accepts input digits in Sanskrit, Basque, Tagalog, Classical
Nahuatl, Georgian, Kwakiutl, and Volapuk.

Attempting to write in a value greater than or equal to SIX FIVE FIVE THREE SIX for a 16-bit variable
will result in the error message, "DON’T BYTE OFF MORE THAN YOU CAN CHEW."

4.4.13 Output

Values may be output to the printer, one value per line, via the statement DO READ OUT list, where the
list contains variables, array elements, and/or constants. Output is in the form of "extended" Roman
numerals (also called "butchered" Roman numerals), with an overline () indicating the value below is
"times 1000", and lower-case letters indicating "times 1000000". Zero is indicated by an overline with no
character underneath. Thus, the range of (32-bit) output values possible is from through
ivccxcivCMLXV I ICCXCV. Note: For values whose residues modulo 1000000 are less than 4000, M is
used to represent 1000; for values whose residues are 4000 or greater, I is used. Thus #3999 would read out
as MMMCMXCIX 2 while #4000 would readout as IV. Similar rules apply to the use of M and i for
1000000, and to that of m and i for 1000000000.

4.4.14 COME FROM

In which we try to precisely define a statement that should never hav e been born, but is nevertheless one of
the more useful statements in INTERCAL.

4.4.14.1 Background

The earliest known description of the COME FROM statement in the computing literature is in [R. L.
Clark, "A linguistic contribution to GOTO-less programming," Commun. ACM 27 (1984), pp. 349--350],
part of the famous April Fools issue of CACM. The subsequent rush by language designers to include the
statement in their languages was underwhelming, one might even say nonexistent. It was therefore decided
that COME FROM would be an appropriate addition to C-INTERCAL.

4.4.14.2 Description

There are two useful ways to visualize the action of the COME FROM statement. The simpler is to see that
it acts like a GOT O when the program is traced backwards in time. More precisely, the statements

(1) DO <any statement>
.
.
.

(2) DO COME FROM (1)

should be thought of as being equivalent to

(1) DO <any statement>
(2) DO GOTO (3)

.

.

.
(3) DO NOTHING

if INTERCAL actually had a GOTO statement at all, which of course it doesn’t.

What this boils down to is that the statement DO COME FROM (label), anywhere in the program, places a

2. The original INTERCAL-72 manual claimed that #3999 should render as MMMIM, but the C-INTERCAL developers have

been unable to find an algorithm that does this and is consistent with the rest of the rules.

- 17 -

kind of invisible trap door immediately after statement (label). Execution or abstention of that statement is
immediately followed by an unconditional jump to the COME FROM, unless the (label)ed statement is an
executed NEXT, in which case the jump occurs if the program attempts to RESUME back to that NEXT
statement. It is an error for more than one COME FROM to refer to the same (label).

Modification of the target statement by ABSTAIN or by the % qualifier affects only that statement, not the
subsequent jump. Such modifications to the COME FROM itself, however, do affect the jump.
Encountering the COME FROM statement itself, rather than its target, has no effect.

4.5 Comments

Unrecognizable statements, as noted in section 9, are flagged with a splat (*) during compilation, and are
not considered fatal errors unless they are encountered during execution, at which time the statement (as
input at compilation time) is printed and execution is terminated. This allows for an interesting (and, by
necessity, unique) means of including comments in an INTERCAL listing. For example, the statement:

* PLEASE NOTE THAT THIS LINE HAS NO EFFECT

will be ignored during execution due to the inclusion of the NOT qualifier. User-supplied error messages
are also easy to implement:

* DO SOMETHING ABOUT OVERFLOW IN ;3

as are certain simple conditional errors:

* (1 2 3) DON ’ T YOU REAL I ZE TH I S STAT EME N T SHOU L D ON LY BE ENCOUN TERED
ON CE ?

PLEA SE RE I NS TAT E (1 2 3)

This pair of statements will cause an error exit the second time they are encountered. Caution!! The
appearance of a statement identifier in an intended comment will be taken as the beginning of a new
statement. Thus, the first example on the preceding page could not have been:

* PLEASE NOTE THAT THIS LINE DOES NOTHING

The third example, however, is valid, despite the appearance of two cases of D-space-O, since INTERCAL
does not ignore extraneous spaces in statement identifiers.

- 18 -

5. OUTSIDE COMMUNICATION

In which we try to remedy the fact that, due to I/O limitations, INTERCAL can not even in principle
perform the same tasks as other languages. It is hoped that this addition will permit INTERCAL users to
waste vast quantities of computer time well into the 21st century.

5.1 Motivation

One of the goals of INTERCAL was to provide a language which, though different from all other
languages, is nevertheless theoretically capable of all the same tasks. INTERCAL-72 failed to accomplish
this because its I/O functions could not handle arbitrary streams of bits, or even arbitrary sequences of
characters. A language which can’t even send its input directly to its output can hardly be considered as
capable as other languages.

5.2 Turing Text Model

To remedy this problem, character I/O is now provided in a form based on the "Turing Text" model,
originally proposed by Jon Blow. The C-INTERCAL programmer can access this capability by placing a
one- dimensional array in the list of items given to a WRITE IN or READ OUT statement. On execution of
the statement, the elements of the array will, from first to last, be either loaded from the input or sent to the
output, as appropriate, in the manner described below. There is currently no support for I/O involving
higher-dimensional arrays, but some form of graphics might be a possible 2-D interpretation.

The heart of the Turing Text model is the idea of a continuous loop of tape containing, in order, all the
characters in the machine’s character set. When a character is received by the input routine, the tape is
advanced the appropriate number of spaces to bring that character under the tape head, and the number of
spaces the tape was moved is the number that is actually seen by the INTERCAL program. Another way to
say this is that the number placed in an INTERCAL array is the difference between the character just
received and the previous character, modulo the number of characters in the machine character set.

Output works in just the opposite fashion, except that the characters being output come from the other side
of the tape. From this position the characters on the tape appear to be in reverse order, and are individually
backwards as well. (We would show you what it looks like, but we don’t hav e a font with backwards letters
available. Use your imagination.) The effect is that a number is taken out of an INTERCAL array,
subtracted from the last character output--- i.e., the result of the last subtraction---and then sent on down the
output channel. The only catch is that the character as seen by the INTERCAL program is the mirror-
image of the character as seen by the machine and the user. The bits of the character are therefore taken in
reverse order as it is sent to the output. Note that this bit reversal affects only the character seen by the
outside world; it does not affect the character stored internally by the program, from which the next output
number will be subtracted. All subtractions are done modulo the number of characters in the character set.

Tw o different tapes are used for input and for output to allow for future expansion of the language to
include multiple input and output channels. Both tapes start at character 0 when a program begins
execution. On input, when an end of file marker is reached the number placed in the array is one greater
than the highest- numbered character on the tape.

5.3 Example Program

If all this seems terribly complicated, it should be made perfectly clear by the following example program,
which simply maps its input to its output (like a simplified UNIX "cat"). It assumes that characters are 8
bits long, but that’s fine since the current version of C-INTERCAL does too. It uses the standard library
routines for addition and subtraction.

- 19 -

DO ,1 <- #1
DO .4 <- #0
DO .5 <- #0
DO COME FROM (30)
DO WRITE IN ,1
DO .1 <- ,1SUB#1
DO (10) NEXT
PLEASE GIVE UP

(20) PLEASE RESUME ’?.1$#256’˜’#256$#256’
(10) DO (20) NEXT

DO FORGET #1
DO .2 <- .4
DO (1000) NEXT
DO .4 <- .3˜#255
DO .3 <- !3˜#15’$!3˜#240’
DO .3 <- !3˜#15’$!3˜#240’
DO .2 <- !3˜#15’$!3˜#240’
DO .1 <- .5
DO (1010) NEXT
DO .5 <- .2
DO ,1SUB#1 <- .3

(30) PLEASE READ OUT ,1

For each number received in the input array, the program first tests the #256 bit to see if the end of file has
been reached. If not, the previous input character is subtracted off to obtain the current input character.
Then the order of the bits is reversed to find out what character should be sent to the output, and the result
is subtracted from the last character sent. Finally, the difference is placed in an array and given to a READ
OUT statement. See? We told you it was simple!

- 20 -

6. TriINTERCAL

In which it is revealed that bitwise operations are too ordinary for hard-core INTERCAL programmers, and
extensions to other bases are discussed. These are not, strictly speaking, extensions to INTERCAL itself,
but rather new dialects sharing most of the features of the parent language.

6.1 Motivation

INTERCAL is really a pretty sissy language. It tries hard to be different, but when you get right down to its
roots, what do you find? You find bits, that’s what. Plain old ones and zeroes, in groups of 16 and 32, just
like every other language you’ve ever heard of. And what operations can you perform on these bits? The
INTERCAL operators may arrange and permute them in weird and wonderful ways, but at the bit level the
operators are the same AND, OR and XOR you’ve seen countless times before.

Once the prospective INTERCAL programmer masters the unusual syntax, she finds herself working with
the familiar Boolean operators on perfectly ordinary unsigned integer words. Even the constants she uses
are familiar. After all, who would not immediately recognize #65535 and #32768? It may take a just a
moment more to figure out #65280, and #21845 and #43690 could be puzzles until she notices that they
sum to #65535, but basically she’s still on her home turf. The 16-bit limit on constants actually works in
the programmer’s favor by insuring that very long anonymous constants can not appear in INTERCAL
programs. And this is in a language that is supposed to be different from any other!

6.2 Abandon All Hope...

Standard INTERCAL is based on variables consisting of ordinary bits and familiar Boolean operations on
those bits. In pursuit of uniqueness, it seems appropriate to provide a new dialect, otherwise identical to
INTERCAL, which instead uses variables consisting of trits, i.e. ternary digits, and operators based on
tritwise logical operations. This is intended to be a separate dialect, rather than an extension to INTERCAL
itself, for a number of reasons. Doing it this way avoids word-length conflicts, does not spoil the elegance
of the Spartan INTERCAL operator set, and dodges the objections of those who might feel it too great an
alteration to the original language. Primarily, though, giving INTERCAL programmers the ability to
switch numeric base at will amounts to excessive functionality. So much better that a programmer choose a
base at the outset and then be forced to stick with it for the remainder of the program.

6.3 Compiler Operation

The same compiler, ick, supports both INTERCAL and TriINTERCAL. This has the advantage that future
bug fixes and additions to the language not related to arithmetic immediately apply to both versions. The
compiler recognizes INTERCAL source files by the extension ’.i’, and TriINTERCAL source files by the
extension ’.3i’. It’s as simple as that. There is no way to mix INTERCAL and TriINTERCAL source in
the same program, and it is not always possible to determine which dialect a program is written in just by
looking at the source code.

6.4 Data Types

The two TriINTERCAL data types are 10-trit unsigned integers and 20-trit unsigned integers. All
INTERCAL syntax for distinguishing data types is ported to these new types in the obvious way. Small
words may contain numbers from #0 to #59048, large words may contain numbers from #0$#0 to
#59048$#59048. Errors are signaled for constants greater than #59048 and for attempts to WRITE IN
numbers too large for a given variable or array element to hold.

Note that though TriINTERCAL considers all numbers to be unsigned, nothing prevents the programmer
from implementing arithmetic operations that treat their operands as signed. Three’s complement is one
obvious choice, but balanced ternary notation is also a possibility. This latter is a very pretty and
symmetrical system in which all 2 trits are treated as if they had the value -1.

6.5 Operators

The TriINTERCAL operators are designed to inherit the relevant properties of the standard INTERCAL
operators, so that both can be considered as merely different aspects of the same Platonic ideal. (Not that
the word "ideal" is ever particularly relevant when used in connection with INTERCAL.)

- 21 -

6.5.1 Binary Operators I

The binary operators carry over from the original language with only minor changes. The MINGLE
operator ($) creates a 20-trit word by alternating trits from its two 10-trit operands. The SELECT operator
(˜) is a little more complicated, since the ternary tritmask may contain 0, 1, and 2 trits. If we observe that
the SELECT operation on binary operands amounts to a bitwise AND and some rearrangement of bits, it
seems appropriate to base the SELECT for ternary operands on a tritwise AND in the analogous fashion.
We therefore postpone the definition of SELECT until we know what a tritwise AND looks like.

6.5.2 Unary Operators

The unary operators in INTERCAL are all derived from the familiar Boolean operations on single bits. To
extend these operations to trits, we first ask ourselves what the important properties of these operations are
that we wish to be preserved, then design the tritwise operators so that they behave in a similar fashion.

6.5.2.1 Unary Logical Operators

Let’s start with AND and OR. To begin with, these can be considered "choice" or "preference" operators,
as they always return one of their operands. AND can be described as wanting to return 0, but returning 1
if it is given no other choice, i.e., if both operands are 1. Similarly, OR wants to return 1 but returns 0 if
that is its only choice. From this it is immediately apparent that each operator has an identity element that
"always loses", and a dominator element that "always wins".

AND and OR are commutative and associative, and each distributes over the other. They are also
symmetric with each other, in the sense that AND looks like OR and OR looks like AND when the roles of
0 and 1 are interchanged (De Morgan’s Laws). This symmetry property seems to be a key element to the
idea that these are logical, rather than arithmetic, operators. In a three-valued logic we would similarly
expect a three- way symmetry among the three values 0, 1 and 2 and the three operators AND, OR and (of
course) BUT.

The following tritwise operations have all the desired properties: OR returns the greater of its two operands.
That is, it returns 2 if it can get it, else it tries to return 1, and it returns 0 only if both operands are 0. AND
wants to return 0, will return 2 if it can’t get 0, and returns 1 only if forced. BUT wants 1, will take 0, and
tries to avoid 2. The equivalents to De Morgan’s Laws apply to rotations of the three elements, e.g., 0 -> 1,
1 -> 2, 2 -> 0. Each operator distributes over exactly one other operator, so the property "X distributes over
Y" is not transitive. The question of which way this distributivity ring goes around is left as an exercise for
the student.

In TriINTERCAL programs the whirlpool (@) symbol denotes the unary tritwise BUT operation. You can
think of the whirlpool as drawing values preferentially towards the central value 1. Alternatively, you can
think of it as drawing your soul and your sanity inexorably down...

On the other hand, maybe it’s best you not think of it that way.

A few comments about how these operators can be used. OR acts like a tritwise maximum operation.
AND can be used with tritmasks. 0’s in a mask wipe out the corresponding elements in the other operand,
while 1’s let the corresponding elements pass through unchanged. 2’s in a mask consolidate the values of
nonzero elements, as both 1’s and 2’s in the other operand yield 2’s in the output. BUT can be used to
create "partial tritmasks". 0’s in a mask let BUT eliminate 2’s from the other operand while leaving other
values unchanged. Of course, the symmetry property guarantees that the operators don’t really behave
differently from each other in any fundamental way; the apparent differences come from the intuitive view
that a 0 trit is "not set" while a 1 or 2 trit is "set".

6.5.2.2 Binary Operators II

At this point we can define SELECT, since we now know what the tritwise AND looks like. SELECT takes
the binary tritwise AND of its two operands. It shifts all the trits of the result corresponding to 2’s in the
right operand over to the right (low) end of the result, then follows them with all the output trits
corresponding to 1’s in the right operand. Trits corresponding to 0’s in the right operand, which are all 0
anyway, occupy the remaining space at the left end of the output word. Both 10-trit and 20-trit operands

- 22 -

are accepted, and are padded with zeroes on the left if necessary. The output type is determined the same
way as in standard INTERCAL.

6.5.2.3 Unary Arithmetic Operators

Now that we’ve got all that settled, what about XOR? This is easily the most-useful of the three unary
INTERCAL operators, because it combines in one package the operations ADD WITHOUT CARRY,
SUBTRACT WITHOUT BORROW, BITWISE NOT-EQUAL, and BITWISE NOT. In TriINTERCAL we
can’t hav e all of these in the same operator, since addition and subtraction are no longer the same thing.
The solution is to split the XOR concept into two operators. The ADD WITHOUT CARRY operation is
represented by the new sharkfin (ˆ) symbol, while the old what (?) symbol represents SUBTRACT
WITHOUT BORROW. The reason for this choice is so that what (?) will also represent the TRITWISE
NOT-EQUAL operation.

Note that what (?), unlike the other four unary operators, is not symmetrical. It should be thought of as
rotating its operand one trit to the right (with wraparound) and then subtracting off the trits of the original
number. These subtractions are done without borrowing, i.e., trit-by-trit modulo 3.

6.5.3 Examples

The TriINTERCAL operators really aren’t all that bad once you get used to them. Let’s look at a few
examples to show how they can be used in practice. In all of these examples the input value is contained in
the 10-trit variable .3.

In INTERCAL, single-bit values often have to be converted from {0,1} to {1,2} for use in RESUME
statements. Examples of how to do this appear in the original manual. In TriINTERCAL the expression
"ˆ.3$#1"˜#1 sends 0 -> 1 and 1 -> 2. If the 1-trit input value can take on any of its three possible states,
however, we will also have to deal with the 2 case. The expression "V.3$#1"˜#1 sends {0,1} -> 1 and 2 ->
2. To test if a trit is set, we can use "V’"&.3$#2"˜#1’$#1"˜#1, sending 0 -> 1 and {1,2} -> 2. To rev erse the
test we use "?’"&.3$#2"˜#1’$#1"˜#1, sending 0 -> 2 and {1,2} -> 1. Note that we have not been taking full
advantage of the new SELECT operator. These last two expressions can be simplified into
"V!3˜#2’$#1"˜#1 and "?!3˜#2’$#1"˜#1, which perform exactly the same mappings. Finally, if we need a
3-way test, we can use "@’"ˆ.3$#7"˜#4’$#2"˜#10, which obviously sends 0 -> 1, 1 -> 2, and 2 -> 3.

For an unrelated example, the expression "ˆ.3$.3"˜"#0$#29524" converts all of the 1-trits of .3 into 2’s and
all of the 2-trits into 1’s. In balanced ternary, where 2-trits represent -1 values, this is the negation
operation.

6.6 Beyond Ternary...

While we’re at it, we might as well extend this multiple bases business a little farther. The ick compiler
actually recognizes filename suffixes of the form ’.Ni’, where N is any number from 2 to 7. 2 of course
gives standard INTERCAL, while 3 gives TriINTERCAL. We cut off before 8 because octal notation is the
smallest base used to facilitate human-to-machine communication, and this seems quite contrary to the
basic principles behind INTERCAL. The small data types hold 16 bits, 10 trits, 8 quarts, 6 quints, 6 sexts,
or 5 septs, and the large types are always twice this size.

As for operators, ’?’ is always SUBTRACT WITHOUT BORROW, and ’ˆ’ is always ADD WITHOUT
CARRY. ’V’ is the OR operation and always returns the max of its inputs. ’&’ is the AND operation,
which chooses 0 if possible but otherwise returns the max of the inputs. ’@’ is BUT, which prefers 1, then
0, then the max of the remaining possibilities. Rather than add more special symbols forever, a numeric
modifier may be placed directly before the ’@’ symbol to indicate the operation that prefers one of the
digits not already represented. Thus in files ending in ’.5i’, the permitted unary operators are ’?’, ’ˆ’, ’&’,
’@’, ’2@’, ’3@’, and ’V’. Use of such barbarisms as ’0@’ to represent ’&’ are not permitted, nor is the
use of ’@’ or ’ˆ’ in files with either of the extensions ’.i’ or ’.2i’. Why not? You just can’t, that’s why.
Don’t ask so many questions.

As a closing example, we note that in balanced quinary notation, where 3 means -2 and 4 means -1, the
negation operation can be written as either

- 23 -

DO .1 <- "ˆ’"ˆ.3$.3"˜"#0$#3906"’$’"ˆ.3$.3"˜"#0$#3906"’"˜"#0$#3906"

or as

DO .1 <- "ˆ.3$.3"˜"#0$#3906"
DO .1 <- "ˆ.1$.1"˜"#0$#3906"

These work because multiplication by -1 is the same as multiplication by 4, modulo 5.

Now go beat your head against the wall for a while.

- 24 -

7. SUBROUTINE LIBRARY

INTERCAL provides several built-in subroutines to which control can be transferred to perform various
operations. These operations include many useful functions which are not easily representable in
INTERCAL, such as addition, subtraction, etc.

7.1 Usage

In general, the operands are .1, .2, etc., or :1, :2, etc., and the result(s) are stored in what would have been
the next operand(s). For instance, one routine adds .1 to .2 and store the sum in .3, with .4 being used to
indicate overflow. All variables not used for results are left unchanged.

7.2 Available Functions

At the time of this writing, only the most fundamental operations are offered in the library, as a more
complete selection would require prohibitive time and coree to implement. These functions, along with
their corresponding entry points (entered via DO (entry) NEXT) are listed below.

(1 0 0 0) . 3 < - . 1 p l u s . 2 , e r r o r e x i t o n o v e r fl ow
(1 0 0 9) . 3 < - . 1 p l u s . 2

. 4 < - # 1 i f n o o v e r fl ow, e l s e . 4 < - # 2
(1 0 1 0) . 3 < - . 1 m i n u s . 2 , n o a c t i o n o n o v e r fl ow
(1 0 2 0) . 1 < - . 1 p l u s # 1 , n o a c t i o n o n o v e r fl ow
(1 0 3 0) . 3 < - . 1 t i me s . 2 , e r r o r e x i t o n o v e r fl ow
(1 0 3 9) . 3 < - . 1 t i me s . 2

. 4 < - # 1 i f n o o v e r fl ow, e l s e . 4 < - # 2
(1 0 4 0) . 3 < - . 1 d i v i d e d b y . 2

. 3 < - # 0 i f . 2 i s # 0
(1 0 5 0) . 2 < - : 1 d i v i d e d b y . 1 , e r r o r e x i t o n o v e r fl ow

. 2 < - # 0 i f . 1 i s # 0
(1 0 6 0) . 3 < - l o g i c a l o r o f . 1 a n d . 2

(1 0 7 0) . 3 < - l o g i c a l a n d o f . 1 a n d . 2
(1 0 8 0) . 3 < - l o g i c a l x o r o f . 1 a n d . 2

(1 5 0 0) : 3 < - : 1 p l u s : 2 , e r r o r e x i t o n o v e r fl ow
(1 5 0 9) : 3 < - : 1 p l u s : 2

: 4 < - # 1 i f n o o v e r fl ow, e l s e : 4 < - # 2
(1 5 1 0) : 3 < - : 1 m i n u s : 2 , n o a c t i o n o n o v e r fl ow
(1 5 2 0) : 1 < - . 1 c o n c a t e n a t e d w i t h . 2
(1 5 2 5) Th i s s u b r o u t i n e i s i n t e n d e d s o l e l y f o r i n t e r n a l

u s e w i t h i n t h e s u b r o u t i n e l i b r a r y a n d i s t h e r e f o r e
n o t d e s c r i b e d h e r e . I t s e f f e c t i s t o s h i f t . 3
l o g i c a l l y 8 b i t s t o t h e l e f t .

(1 5 3 0) : 1 < - . 1 t i me s . 2
(1 5 4 0) : 3 < - : 1 t i me s : 2 , e r r o r e x i t o n o v e r fl ow
(1 5 4 9) : 3 < - : 1 t i me s : 2

: 4 < - # 1 i f n o o v e r fl ow, e l s e : 4 < - # 2
(1 5 5 0) : 3 < - : 1 d i v i d e d b y : 2

: 3 < - # 0 i f : 2 i s # 0

(1 9 0 0) . 1 < - u n i f o rm r a n d om n o . f r om # 0 t o # 6 5 5 3 5
(1 9 1 0) . 2 < - n o rma l r a n d om n o . f r om # 0 t o . 1 , w i t h

s t a n d a r d d e v i a t i o n . 1 d i v i d e d b y # 1 2

7.3 Automagical Inclusion Of The Subroutine Library

The C-INTERCAL compiler will automatically include the system library if a DO (1xxx) NEXT statement
is used, and if no (1xxx) labels are defined anywhere, where (1xxx) is a label in the 1000-1999 range,

- 25 -

inclusive. This was not an INTERCAL-72 feature.

- 26 -

8. PROGRAMMING HINTS

For the user looking to become more familiar with the INTERCAL language, we present in this section an
analysis of a complex program, as well as some suggested projects for the ambitious programmer.

Considering the effort involved in writing an INTERCAL program, it was decided in putting together this
manual to use an already existing program for instructive analysis. Since there was only one such program
available, we have proceeded to use it. It is known as the "INTERCAL System Library."

8.1 Description

The program listing begins on the second page following. It is in the same format as would be produced by
the Princeton INTERCAL compiler in FORMAT mode with WIDTH=62 (see section 12). For a description
of the functions performed by the Library, see section 7.2.

8.2 Analysis

We shall not attempt to discuss here the algorithms used, but rather we shall point out some of the general
techniques applicable to a wide range of problems.

Statements 10, 14, 15, and 26 make up a virtual "computed GO TO". When statement 10 is executed,
control passes eventually to statement 16 or 11, depending on whether .5 contains #1 or #2, respectively.
The value of .5 is determined in statement 9, which demonstrates another handy technique. To turn an
expression, exp, with value #0 or #1, into #1 or #2 (for use in a "GO TO"), use "V−’exp’¢#1"˜#3. To rev erse
the condition (i.e., convert #0 to #2 and leave #1 alone) use "V−’exp’¢#2"˜#3.

Certain conditions are easily checked. For example, to test for zero, select the value from itself and select
the bottom bit (see statement 54). To test for all bits being 1’s, select the value from itself and select the top
bit (see statement 261). The test for greater than, performed in statements 192 and 193 on 32-bit values,
employs binary logical operations, which are performed as follows:

’V−.1¢.2’˜’#0¢#65535’

for 16-bit values or, for 32-bit values:

"’V−":1˜’#65535¢30’"¢":2˜’#65535¢#0’"’˜’#0
¢#65535’"¢"’V−":1˜’#0¢#65535’"¢":2˜’#0
¢#65535’"’˜’#0¢#65535’"

(The proofs are left as an exercise to the reader.)

Testing for greater-than with 16-bit values is somewhat simpler and is done with the pair of statements:

DO .C <- ’V−.Ac.B’˜’#0¢#65535’
DO .C <- ’&"’.A˜.C’˜’"V−’V−.C˜.C’¢#32768"

˜"#0¢#65535"’"¢".C˜.C"’˜#1

This sets .C (a dummy variable) to #1 if .A > .B, and #0 otherwise. The expression may be expanded as
described above to instead set .C to #1 or #2.

Note also in statement 220 the occurrence of ˜"#65535¢#65535". Although these operations select the
entire value, they are not extraneous, as they ensure that the forthcoming V−s will be operating on 32-bit
values.

In several virtual computed GO TOs the DO FORGET #1 (statement 15 in the earlier example) has been
omitted, since the next transfer of control would be a DO RESUME #1. By making this a DO RESUME #2
instead, the FORGET may be forgotten.

In statement 64, note that .2 is STASHed twice by a single statement. This is perfectly legal.

Lastly, note in statements 243 and 214 respectively, expressions for shifting 16- and 32-bit variables
logically one place to the left. Statement 231 demonstrates right-shifting for 32-bit variables.

- 27 -

8.3 Program Listing

1 (1 0 0 0) PLEA SE I GNO RE . 4
2 PLEAS E AB STA I N FROM (1 0 0 5)
3 (1 0 0 9) DO STA S H . 1 + . 2 + . 5 + . 6
4 DO . 4 < - # 1
5 DO (1 0 0 4) NEXT
6 (1 0 0 4) PLEA SE FORG ET # 1
7 DO . 3 < - ’ V− . 1 ¢ . 2 ’ ˜ ’ # 0 ¢ # 6 5 5 3 5 ’
8 DO . 6 < - ’& . 1 ¢ . 2 ’ ˜ ’ # 0 ¢ # 6 5 5 3 5 ’
9 PLEAS E DO . 5 < - "V− ! 6 ˜ # 3 2 7 6 8 ’ ¢ # 1 " ˜ # 3

1 0 DO (1 0 0 2) NEXT
1 1 DO . 4 < - # 2
1 2 (1 0 0 5) DO (1 0 0 6) NEXT

* 1 3 (1 9 9 9) DOU BLE OR S I NGL E PREC I S I ON OVE RFLOW
1 4 (1 0 0 2) DO (1 0 0 1) NEXT
1 5 (1 0 0 6) PLEA SE FORG ET # 1
1 6 DO . 5 < - ’ V− " ! 6 ˜ . 6 ’ ̃ # 1 " ¢ # 1 ’ ˜ # 3
1 7 DO (1 0 0 3) NEXT
1 8 DO . 1 < - . 3
1 9 DO . 2 < - ! 6 ¢ # 0 ’ ˜ ’ # 3 2 7 6 7 ¢ # 1 ’
2 0 DO (1 0 0 4) NEXT
2 1 (1 0 0 3) DO (1 0 0 1) NEXT
2 2 DO RE I NS TAT E (1 0 0 5)
2 3 (1 0 0 7) PLEA SE RETR I EVE . 1 + . 2 + . 5 + . 6
2 4 DO REMEMBER . 4
2 5 PLEAS E RE SUME # 2
2 6 (1 0 0 1) DO RESUM E . 5
2 7 (1 0 1 0) DO STA S H . 1 + . 2 + . 4
2 8 DO . 4 < - . 1
2 9 DO . 1 < - ’ V− . 2 ¢ # 6 5 5 3 5 ’ ˜ ’ # 0 ¢ # 6 5 5 3 5 ’
3 0 DO (1 0 2 0) NEXT
3 1 PLEAS E DO . 2 < - . 4
3 2 PLEAS E DO (1 0 0 9) NEXT
3 3 DO RETR I EVE . 1 + . 2 + . 4
3 4 PLEAS E RE SUME # 1
3 5 (1 0 2 0) DO STA S H . 2 + . 3
3 6 DO . 2 < - # 1
3 7 PLEAS E DO (1 0 2 1) NEXT
3 8 (1 0 2 1) DO FORG ET # 1
3 9 DO . 3 < - "V− ! 1 ˜ . 2 ’ ¢ # 1 " ˜ # 3
4 0 PLEAS E DO . 1 < - ’ V− . 1 ¢ . 2 ’ ˜ ’ # 0 ¢ # 6 5 5 3 5 ’
4 1 DO (1 0 2 2) NEXT
4 2 DO . 2 < - ! 2 ¢ # 0 ’ ˜ ’ # 3 2 7 6 7 ¢ # 1 ’
4 3 DO (1 0 2 1) NEXT
4 4 (1 0 2 3) PLEA SE RESUM E . 3
4 5 (1 0 2 2) DO (1 0 2 3) NEXT
4 6 PLEAS E RE TR I EVE . 2 + . 3
4 7 PLEAS E RE SUME # 2
4 8 (1 0 3 0) DO ABS TA I N FROM (1 0 3 3)
4 9 PLEAS E AB STA I N FROM (1 0 3 2)
5 0 (1 0 3 9) DO STA S H : 1 + . 5
5 1 DO (1 5 3 0) NEXT
5 2 DO . 3 < - : 1 ˜ # 6 5 5 3 5
5 3 PLEAS E DO . 5 < - : 1 ˜ ’ # 6 5 2 8 0 ¢ # 6 5 2 8 0 ’

- 28 -

5 4 DO . 5 < - ’ V− " ! 5 ˜ . 5 ’ ̃ # 1 " ¢ # 1 ’ ˜ # 3
5 5 DO (1 0 3 1) NEXT
5 6 (1 0 3 2) DO (1 0 3 3) NEXT
5 7 DO (1 9 9 9) NEXT
5 8 (1 0 3 1) DO (1 0 0 1) NEXT
5 9 (1 0 3 3) DO . 4 < - . 5
6 0 DO RE I NS TAT E (1 0 3 2)
6 1 PLEAS E RE I NS TAT E (1 0 3 3)
6 2 DO RETR I EVE : 1 + . 5
6 3 PLEAS E RE SUME # 2
6 4 (1 0 4 0) PLEA SE STA S H . 1 + . 2 + . 2 + : 1 + : 2 + : 3
6 5 DO . 2 < - # 0
6 6 DO (1 5 2 0) NEXT
6 7 DO STA S H : 1
6 8 PLEAS E RE TR I EVE . 2
6 9 DO . 1 < - . 2
7 0 DO . 2 < - # 0
7 1 PLEAS E DO (1 5 2 0) NEXT
7 2 DO : 2 < - : 1
7 3 DO RETR I EVE . 1 + . 2 + : 1
7 4 DO (1 5 5 0) NEXT
7 5 PLEAS E DO . 3 < - : 3
7 6 DO RETR I EVE : 1 + : 2 + : 3
7 7 DO RESUM E # 1
7 8 (1 0 5 0) PLEA SE STA S H : 2 + : 3 + . 5
7 9 DO : 2 < - . 1
8 0 PLEAS E DO (1 5 5 0) NEXT
8 1 DO . 5 < - : 3 ˜ ’ # 6 5 2 8 0 ¢ # 6 5 2 8 0 ’
8 2 DO . 5 < - ’ V− " ! 5 ˜ . 5 ’ ̃ # 1 " ¢ # 1 ’ ˜ # 3
8 3 DO (1 0 5 1) NEXT
8 4 DO (1 9 9 9) NEXT
8 5 (1 0 5 1) DO (1 0 0 1) NEXT
8 6 DO . 2 < - : 3
8 7 PLEAS E RE TR I EVE : 2 + : 3 + . 5
8 8 DO RESUM E # 2
8 9 (1 5 0 0) PLEA SE ABS TA I N FROM (1 5 0 2)
9 0 PLEAS E AB STA I N FROM (1 5 0 6)
9 1 (1 5 0 9) PLEA SE STA S H : 1 + . 1 + . 2 + . 3 + . 4 + . 5 + . 6
9 2 DO . 1 < - : 1 ˜ # 6 5 5 3 5
9 3 PLEAS E DO . 2 < - : 2 ˜ # 6 5 5 3 5
9 4 DO (1 0 0 9) NEXT
9 5 DO . 5 < - . 3
9 6 PLEAS E DO . 6 < - . 4
9 7 DO . 1 < - : 1 ˜ ’ # 6 5 2 8 0 ¢ # 6 5 2 8 0 ’
9 8 DO . 2 < - : 2 ˜ ’ # 6 5 2 8 0 ¢ # 6 5 2 8 0 ’
9 9 DO (1 0 0 9) NEXT

1 0 0 DO . 1 < - . 3
1 0 1 PLEAS E DO (1 5 0 3) NEXT
1 0 2 DO . 6 < - . 4
1 0 3 DO . 2 < - # 1
1 0 4 DO (1 0 0 9) NEXT
1 0 5 DO . 1 < - . 3
1 0 6 DO (1 5 0 1) NEXT
1 0 7 (1 5 0 4) PLEA SE RESUM E . 6

- 29 -

1 0 8 (1 5 0 3) DO (1 5 0 4) NEXT
1 0 9 (1 5 0 1) DO . 2 < - . 5
1 1 0 DO . 5 < - ’ V− " ’& . 6 ¢ . 4 ’ ˜ # 1 " ¢ # 2 ’ ˜ # 3
1 1 1 DO (1 5 0 5) NEXT
1 1 2 (1 5 0 6) DO (1 5 0 2) NEXT
1 1 3 PLEAS E DO (1 9 9 9) NEXT
1 1 4 (1 5 0 5) DO (1 0 0 1) NEXT
1 1 5 (1 5 0 2) DO : 4 < - . 5
1 1 6 DO (1 5 2 0) NEXT
1 1 7 DO : 3 < - : 1
1 1 8 PLEAS E RE TR I EVE : 1 + . 1 + . 2 + . 3 + . 4 + . 5 + . 6
1 1 9 DO RE I NS TAT E (1 5 0 2)
1 2 0 DO RE I NS TAT E (1 5 0 6)
1 2 1 PLEAS E RE SUME # 3
1 2 2 (1 5 1 0) DO STA S H : 1 + : 2 + : 4
1 2 3 DO : 1 < - " ’ V− " : 2 ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ " ¢ # 6 5 5 3 5 ’ ˜ ’ # 0 ¢ # 6 5 5 3

5 ’ " ¢ " ’ V− " : 2 ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ " ¢ # 6 5 5 3 5 ’ ˜ ’ # 0 ¢ # 6 5 5 3 5
’ "

1 2 4 DO : 2 < - # 1
1 2 5 DO (1 5 0 9) NEXT
1 2 6 PLEAS E RE TR I EVE : 1
1 2 7 DO : 2 < - : 3
1 2 8 PLEAS E DO (1 5 0 9) NEXT
1 2 9 DO RETR I EVE : 2 + : 4
1 3 0 PLEAS E RE SUME # 1
1 3 1 (1 5 2 0) PLEA SE STA S H . 3 + . 4
1 3 2 DO . 3 < - . 1 ˜ # 4 3 6 9 0
1 3 3 DO (1 5 2 5) NEXT
1 3 4 PLEAS E DO . 4 < - ’ V. 3 ¢ " . 2 ˜ # 4 3 6 9 0 " ’ ˜ ’ # 0 ¢ # 6 5 5 3 5 ’
1 3 5 DO . 3 < - . 1 ˜ # 2 1 8 4 5
1 3 6 PLEAS E DO (1 5 2 5) NEXT
1 3 7 DO : 1 < - . 4 ¢ " ’ V. 3 ¢ " . 2 ˜ # 2 1 8 4 5 " ’ ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ "
1 3 8 PLEAS E RE TR I EVE . 3 + . 4
1 3 9 DO RESUM E # 1
1 4 0 (1 5 2 5) DO . 3 < - ’ " ’ " ’ " ! 3 ¢ # 0 ’ ˜ ’ # 3 2 7 6 7 ¢ # 1 ’ " ¢ # 0 ’ ˜ ’ # 3 2 7 6 7

¢ # 1 ’ " ¢ # 0 ’ ˜ ’ # 1 6 3 8 3 ¢ # 3 ’ " ¢ # 0 ’ ˜ ’ # 4 0 9 5 ¢ # 1 5 ’
1 4 1 PLEAS E RE SUME # 1
1 4 2 (1 5 3 0) DO STA S H : 2 + : 3 + . 3 + . 5
1 4 3 DO : 1 < - # 0
1 4 4 DO : 2 < - . 2
1 4 5 DO . 3 < - # 1
1 4 6 DO (1 5 3 5) NEXT
1 4 7 (1 5 3 5) PLEA SE FORG ET # 1
1 4 8 DO . 5 < - "V− ! 1 ˜ . 3 ’ ¢ # 1 " ˜ # 3
1 4 9 DO (1 5 3 1) NEXT
1 5 0 DO (1 5 0 0) NEXT
1 5 1 DO : 1 < - : 3
1 5 2 PLEAS E DO (1 5 3 3) NEXT
1 5 3 (1 5 3 1) PLEA SE DO (1 0 0 1) NEXT
1 5 4 (1 5 3 3) DO FORG ET # 1
1 5 5 DO . 3 < - ! 3 ¢ # 0 ’ ˜ ’ # 3 2 7 6 7 ¢ # 1 ’
1 5 6 DO : 2 < - " : 2 ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ " ¢ " ’ " : 2 ˜ ’ # 3 2 7 6 7 ¢ # 0 ’ " ¢ #

0 ’ ̃ ’ # 3 2 7 6 7 ¢ # 1 ’ "
1 5 7 PLEAS E DO . 5 < - "V− ! 3 ˜ . 3 ’ ¢ # 1 " ˜ # 3

- 30 -

1 5 8 DO (1 5 3 2) NEXT
1 5 9 DO (1 5 3 5) NEXT
1 6 0 (1 5 3 2) DO (1 0 0 1) NEXT
1 6 1 PLEAS E RE TR I EVE : 2 + : 3 + . 3 + . 5
1 6 2 DO RESUM E # 2
1 6 3 (1 5 4 0) PLEA SE ABS TA I N FROM (1 5 4 1)
1 6 4 DO ABS TA I N FROM (1 5 4 2)
1 6 5 (1 5 4 9) PLEA SE STA S H : 1 + : 2 + : 4 + : 5 + . 1 + . 2 + . 5
1 6 6 DO . 1 < - : 1 ˜ # 6 5 5 3 5
1 6 7 PLEAS E DO . 2 < - : 2 ˜ ’ # 6 5 2 8 0 ¢ # 6 5 2 8 0 ’
1 6 8 DO . 5 < - : 1 ˜ ’ # 6 5 2 8 0 ¢ # 6 5 2 8 0 ’
1 6 9 DO (1 5 3 0) NEXT
1 7 0 DO : 3 < - : 1
1 7 1 DO . 2 < - : 2 ˜ # 6 5 5 3 5
1 7 2 PLEAS E DO (1 5 3 0) NEXT
1 7 3 DO : 5 < - : 1
1 7 4 DO . 1 < - . 5
1 7 5 DO (1 5 3 0) NEXT
1 7 6 DO : 4 < - : 1
1 7 7 PLEAS E DO : 1 < - " : 3 ˜ ’ # 6 5 2 8 0 ¢ # 6 5 2 8 0 ’ " ¢ " : 5 ˜ ’ # 6 5 2

8 0 ¢ # 6 5 2 8 0 ’ "
1 7 8 DO . 5 < - ’ : 1 ˜ : 1 ’ ̃ # 1
1 7 9 DO . 2 < - : 2 ˜ ’ # 6 5 2 8 0 ¢ # 6 5 2 8 0 ’
1 8 0 DO (1 5 3 0) NEXT
1 8 1 PLEAS E DO . 5 < - ’ " ’ : 1 ˜ : 1 ’ ̃ # 1 " ¢ . 5 ’ ˜ # 3
1 8 2 DO . 1 < - : 3 ˜ # 6 5 5 3 5
1 8 3 DO . 2 < - # 0
1 8 4 DO (1 5 2 0) NEXT
1 8 5 PLEAS E DO : 2 < - : 1
1 8 6 PLEAS E DO . 1 < - : 4 ˜ # 6 5 5 3 5
1 8 7 DO (1 5 2 0) NEXT
1 8 8 DO (1 5 0 9) NEXT
1 8 9 DO . 5 < - ! 5 ¢ " : 4 ˜ # 3 " ’ ˜ # 1 5
1 9 0 DO : 1 < - : 3
1 9 1 DO : 2 < - : 5
1 9 2 DO (1 5 0 9) NEXT
1 9 3 PLEAS E DO . 5 < - ! 5 ¢ " : 4 ˜ # 3 " ’ ˜ # 6 3
1 9 4 DO . 5 < - ’ V− " ! 5 ˜ . 5 ’ ̃ # 1 " ¢ # 1 ’ ˜ # 3
1 9 5 PLEAS E RE TR I EVE : 4
1 9 6 (1 5 4 1) DO : 4 < - . 5
1 9 7 DO (1 5 4 3) NEXT
1 9 8 (1 5 4 2) DO (1 5 4 4) NEXT
1 9 9 PLEAS E DO (1 9 9 9) NEXT
2 0 0 (1 5 4 3) DO (1 0 0 1) NEXT
2 0 1 (1 5 4 4) DO RE I NS TAT E (1 5 4 1)
2 0 2 PLEAS E RE I NS TAT E (1 5 4 2)
2 0 3 PLEAS E RE TR I EVE : 1 + : 2 + : 5 + . 1 + . 2 + . 5
2 0 4 DO RESUM E # 2
2 0 5 (1 5 5 0) DO STA S H : 1 + : 4 + : 5 + . 5
2 0 6 DO : 3 < - # 0
2 0 7 DO . 5 < - ’ V− " ’ : 2 ˜ : 2 ’ ̃ # 1 " ¢ # 1 ’ ˜ # 3
2 0 8 PLEAS E DO (1 5 5 1) NEXT
2 0 9 DO : 4 < - # 1
2 1 0 PLEAS E DO (1 5 5 3) NEXT

- 31 -

2 1 1 (1 5 5 3) DO FORG ET # 1
2 1 2 DO . 5 < - ’ V− " : 2 ˜ ’ # 3 2 7 6 8 ¢ # 0 ’ " ¢ # 2 ’ ˜ # 3
2 1 3 DO (1 5 5 2) NEXT
2 1 4 DO : 2 < - " : 2 ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ " ¢ " ’ " : 2 ˜ ’ # 3 2 7 6 7 ¢ # 0 ’ " ¢ #

0 ’ ̃ ’ # 3 2 7 6 7 ¢ # 1 ’ "
2 1 5 PLEAS E DO : 4 < - " : 4 ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ " ¢ " ’ " : 4 ˜ ’ # 3 2 7 6 7

¢ # 0 ’ " ¢ # 0 ’ ˜ ’ # 3 2 7 6 7 ¢ # 1 ’ "
2 1 6 DO (1 5 5 3) NEXT
2 1 7 (1 5 5 2) DO (1 0 0 1) NEXT
2 1 8 (1 5 5 6) PLEA SE FORG ET # 1
2 1 9 DO : 5 < - " ’ V− " : 1 ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ " ¢ " : 2 ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ " ’

˜ ’ # 0 ¢ # 6 5 5 3 5 ’ " ¢ " ’ V− " : 1 ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ " ¢ " : 2 ˜ ’ # 0 ¢
6 5 5 3 5 ’ " ’ ̃ ’ # 0 ¢ # 6 5 5 3 5 ’ "

2 2 0 DO . 5 < - ’ V− " ’&" ’ : 2 ˜ : 5 ’ ̃ ’ " ’ V− " ’ V− " : 5 ˜ : 5 " ̃ " # 6 5 5 3 5 ̃
6 5 5 3 5 " ’ ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ " ¢ # 3 2 7 6 8 ’ ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ "
¢ " ’ V− " : 5 ˜ : 5 " ̃ " # 6 5 5 3 5 ¢ # 6 5 5 3 5 " ’ ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ " ’
" ¢ " ’ : 5 ˜ : 5 ’ ̃ # 1 " ’ ˜ # 1 " ¢ # 2 ’ ˜ # 3

2 2 1 DO (1 5 5 4) NEXT
2 2 2 DO : 5 < - : 3
2 2 3 DO (1 5 1 0) NEXT
2 2 4 PLEAS E DO : 1 < - : 3
2 2 5 DO : 3 < - " ’ V" : 4 ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ " ¢ " : 5 ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ " ’

˜ ’ # 0 ¢ # 6 5 5 3 5 ’ " ¢ " ’ V" : 4 ˜ ’ # 0 ¢ # 6 5 5 3 5 ’ " ¢ " : 5 ˜ ’ # 0 ¢
6 5 5 3 5 ’ " ’ ̃ ’ # 0 ¢ # 6 5 5 3 5 ’ "

2 2 6 DO (1 5 5 5) NEXT
2 2 7 (1 5 5 4) PLEA SE DO (1 0 0 1) NEXT
2 2 8 (1 5 5 5) DO FORG ET # 1
2 2 9 DO . 5 < - "V− ’ : 4 ˜ # 1 ’ ¢ # 2 " ˜ # 3
2 3 0 DO (1 5 5 1) NEXT
2 3 1 DO : 2 < - " : 2 ˜ ’ # 0 ¢ # 6 5 5 3 4 ’ " ¢ " : 2 ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ "
2 3 2 DO : 4 < - " : 4 ˜ ’ # 0 ¢ # 6 5 5 3 4 ’ " ¢ " : 4 ˜ ’ # 6 5 5 3 5 ¢ # 0 ’ "
2 3 3 PLEAS E DO (1 5 5 6) NEXT
2 3 4 (1 5 5 1) DO (1 0 0 1) NEXT
2 3 5 PLEAS E RE TR I EVE : 1 + : 4 + : 5 + . 5
2 3 6 PLEAS E RE SUME # 2
2 3 7 (1 9 0 0) DO STA S H . 2 + . 3 + . 5
2 3 8 DO . 1 < - # 0
2 3 9 DO . 2 < - # 1
2 4 0 PLEAS E DO (1 9 0 1) NEXT
2 4 1 (1 9 0 1) DO FORG ET # 1
2 4 2 DO %5 0 . 1 < - ’ V. 1 ¢ . 2 ’ ˜ ’ # 0 ¢ # 6 5 5 3 5 ’
2 4 3 DO . 2 < - ! 2 ¢ # 0 ’ ˜ ’ # 3 2 7 6 7 ¢ # 1 ’
2 4 4 PLEAS E DO . 5 < - "V− ! 2 ˜ . 2 ’ ¢ # 1 " ˜ # 3
2 4 5 DO (1 9 0 2) NEXT
2 4 6 DO (1 9 0 1) NEXT
2 4 7 (1 9 0 2) DO (1 0 0 1) NEXT
2 4 8 DO RETR I EVE . 2 + . 3 + . 5
2 4 9 PLEAS E RE SUME # 2
2 5 0 (1 9 1 0) PLEA SE STA S H . 1 + . 3 + . 5 + : 1 + : 2 + : 3
2 5 1 DO . 3 < - # 6 5 5 2 4
2 5 2 DO : 1 < - # 6
2 5 3 DO (1 9 1 1) NEXT

* 2 5 4 PLEAS E NO TE THAT YOU CAN ’ T GET THE R E FROM HERE
2 5 5 (1 9 1 2) DO (1 0 0 1) NEXT

- 32 -

2 5 6 (1 9 1 1) DO FORG ET # 1
2 5 7 PLEAS E DO (1 9 0 0) NEXT
2 5 8 DO : 2 < - . 1
2 5 9 DO (1 5 0 0) NEXT
2 6 0 PLEAS E DO : 1 < - : 3
2 6 1 DO . 1 < - . 3
2 6 2 DO (1 0 2 0) NEXT
2 6 3 PLEAS E DO . 3 < - . 1
2 6 4 DO . 5 < - ’ V− " ! 3 ˜ . 3 ’ ̃ # 1 " ¢ # 2 ’ ˜ # 3
2 6 5 DO (1 9 1 2) NEXT
2 6 6 DO . 1 < - # 1 2
2 6 7 PLEAS E DO (1 0 5 0) NEXT
2 6 8 DO RETR I EVE . 1
2 6 9 DO (1 5 3 0) NEXT
2 7 0 DO : 2 < - # 3 2 7 6 8
2 7 1 DO (1 5 0 0) NEXT
2 7 2 PLEAS E DO . 2 < - : 3 ˜ ’ # 6 5 2 8 0 ¢ # 6 5 2 8 0 ’
2 7 3 PLEAS E RE TR I EVE . 3 + . 5 + : 1 + : 2 + : 3
2 7 4 DO RESUM E # 1

2 7 5 (1 0 6 0) DO . 3 < - ’ V" . 1 ¢ . 2 " ’ ̃ ’ # 0 ¢ # 6 5 5 3 5 ’
2 7 6 (1 0 7 0) DO . 3 < - ’&" . 1 ¢ . 2 " ’ ̃ ’ # 0 ¢ # 6 5 5 3 5 ’
2 7 7 (1 0 8 0) DO . 3 < - ’ V− " . 1 ¢ . 2 " ’ ̃ ’ # 0 ¢ # 6 5 5 3 5 ’

- 33 -

8.4 Programming Suggestions

For the novice INTERCAL programmer, we provide here a list of suggested INTERCAL programming
projects:

Write an integer exponentiation subroutine. :1 <- .1 raised to the .2 power.

Write a double-precision sorting subroutine. Given 32-bit array ;1 of size :1, sort the contents into
numerically increasing order, leaving the results in ;1.

Generate a table of prime numbers.

Put together a floating-point library, using 32-bit variables to represent floating-point numbers (let the upper
half be the mantissa and the lower half be the characteristic). The library should be capable of performing
floating-point addition, subtraction, multiplication, and division, as well as the natural logarithm function.

Program a Fast Fourier Transform (FFT). This project would probably entail the writing of the floating-
point library as well as sine and cosine functions.

Calculate, to :1 places, the value of pi.

(The first three and last one of the preceding suggested projects from the INTERCAL-72 manual are
included in the C-INTERCAL distribution’s pit directory of sample code. The floating-point library and
FFT routine remain as worthy challenges...)

- 34 -

9. ERROR MESSAGES

Due to INTERCAL’s implementation of comment lines (see section 4.5), most error messages are produced
during execution instead of during compilation. All errors except those not causing immediate termination
of program execution are treated as fatal.

9.1 Format

All error messages appear in the following form:

ICLnnnI (error message)
ON THE WAY TO STATEMENT nnnn
CORRECT SOURCE AND RESUBMIT

The message varies depending upon the error involved. For undecodable statements the message is the
statement itself. The second line tells which statement would have been executed next had the error not
occurred. Note that if the error is due to 80 attempted levels of NEXTing, the statement which would have
been executed next need not be anywhere near the statement causing the error.

9.2 Messages

Brief descriptions of the different error types are listed below according to message number.

000 An undecodable statement has been encountered in the course of execution. Note that keypunching
errors can be slightly disastrous, since if ’FORGET’ were misspelled F-O-R-G-E-R, the results
would probably not be those desired. Extreme misspellings may have even more surprising
consequences. For example, misspelling ’FORGET’ R-E-S-U-M-E could have drastic results.

017 An expression contains a syntax error.

079 Improper use has been made of statement identifiers.

099 Improper use has been made of statement identifiers.

123 Program has attempted 80 levels of NEXTing.

129 Program has attempted to transfer to a non-existent line label.

139 An ABSTAIN or REINSTATE statement references a non-existent line label.

182 A line label has been multiply defined.

197 An invalid line label has been encountered.

200 An expression involves an unidentified variable.

240 An attempt has been made to give an array a dimension of zero.

241 Invalid dimensioning information was supplied in defining or using an array.

275 A 32-bit value has been assigned to a 16-bit variable.

436 A retrieval has been attempted for an unSTASHed value.

533 A WRITE IN statement or interleave (¢) operation has produced a value requiring over 32 bits to
represent.

562 Insufficient data.

579 Input data is invalid.

621 The expression of a RESUME statement evaluated to #0.

632 Program execution was terminated via a RESUME statement instead of GIVE UP.

633 Execution has passed beyond the last statement of the program.

- 35 -

774 A compiler error has occurred (see section 12).

778 An unexplainable compiler error has occurred.

The following error codes are new in C-INTERCAL:

111 You tried to use a C-INTERCAL extension with the ‘traditional’ flag on.

127 Can’t find syslib.i file when it’s needed for magical inclusion.

222 Out of stash space.

333 Too many variables.

444 A COME FROM statement references a non-existent line label.

555 More than one COME FROM references the same label.

666 Too many source lines.

777 No such source file.

888 Can’t open C output file

999 Can’t open C skeleton file.

998 Source file name with invalid extension (use .i or .[3-7]i).

997 Illegal possession of a controlled unary operator.

- 36 -

10. The C-INTERCAL Compiler

10.1 Character Set

The C-INTERCAL compiler uses ASCII rather than EBCDIC. We follow the Atari implementation by (a)
replacing the change sign (¢) with big money ($) as the mingle operator, and (b) replacing the bookworm
(V−) symbol with what (?) as the exclusive-or operator.

10.2 Usage and Compilation Options

To compile an INTERCAL program ‘foo.i’ to executable code, just do

ick foo.i

There’s a -c option that leaves the generated C code in place for inspection (suppressing compilation to
machine code), a -d option that enables verbose parse reporting from the yacc/bison parser, a -t option that
requires strict INTERCAL-72 compliance (rejecting COME FROM and the extensions for bases other than
two), a -b option that disables the INTERCAL-72 random-bug feature (E774), and an -O option that
enables the (hah!) optimizer. Inv oking ick -? prints a usage message.

Another compilation switch affects C-INTERCAL’s runtime behavior. The ‘-C’ option forces output in
"clockface" mode, for superstitious users who believe writing "IV" upside-down offends IVPITER and
would rather see IIII.

10.3 Runtime Options

Every C-INTERCAL runtime also accepts certain options at runtime. These include [+/-]help,
[+/-]traditional, and [+/-]wimpmode. The help option (with either + or -) triggers a ’usage’ message. The
+traditional option is presently a no-op.

Steve explains: "The wimpmode option is the most interesting. I found myself always running my test
programs with filters on both ends to work around the ’nifty’ INTERCAL number representations. This was
so painful that I decided it would be LESS painful (and a lot less code) if I added a ’wimp’ option. With
the +wimpmode option, the user is subjected to a humiliating message about what a wimp he or she is to
use this mode, but after that is allowed to use conventional numerical notation. While such a mode
doubtless violates to some extent the INTERCAL philosophy, the fact that a ’unbutcher’ command has
been posted clearly indicates the need for it. Anyway... if you don’t like it, don’t use it... the default is
-wimpmode (i.e. NOT wimp mode)."

10.4 PLEASE Politesse Checking

A feature of INTERCAL-72 not documented in the original manual was that it required a certain level of
politesse from the programmer. If fewer than 1/5th of the program statements included the PLEASE
qualifier, the program would be rejected as insufficiently polite. If more than 1/3rd of them included
PLEASE, the program would be rejected as excessively polite.

This check has been implemented in C-INTERCAL. To assist programmers in coping with it, the
intercal.el mode included with the distribution randomly expands "do " in entered source to "DO PLEASE"
or "PLEASE DO" 1/4th of the time.

- 37 -

11. The Atari Implementation

The Atari implementation of INTERCAL differs from the original Princeton version primarily in the use of
ASCII rather than EBCDIC. Since there is no "change" sign (¢) in ASCII, we have substituted the "big
money" ($) as the mingle operator. We feel that this correctly represents the increasing cost of software in
relation to hardware. (Consider that in 1970 one could get RUNOFF for free, to run on a $20K machine,
whereas today a not quite as powerful formatter costs $99 and runs on a $75 machine.) We also feel that
there should be no defensible contention that INTERCAL has any sense. Also, since overpunches are
difficult to read on the average VDT, the exclusive-or operator may be written ?. This correctly expresses
the average person’s reaction on first encountering exclusive-or, especially on a PDP-11. Note that in both
of these cases, the over-punched symbol may also be used if one is masochistic, or concerned with
portability to the Princeton compiler. The correct over-punch for "change" is "c<backspace>/" and the
correct over-punch for V− is "V<backspace>-". These codes will be properly printed if you have a proper
printer, and the corresponding EBCDIC code will be produced by the /IBM option on the LIST command.

- 38 -

12. The Princeton Compiler

The Princeton compiler, written in SPITBOL (a variant of SNOBOL), performs the compilation in two
stages. First the INTERCAL source is converted into SPITBOL source, then the latter is compiled and
executed.

It should be noted that the Princeton compiler fails to properly interpret certain multiply-subscripted
expressions, such as:

",1SUB",2SUB#1"#2"

This is not a "bug". Being documented, it is merely a "restriction". Such cases may be resolved by
alternating sparks and ears in various levels of expression nesting:

",1SUB’,2SUB#1’#2"

which is advisable in any case, since INTERCAL expressions are unreadable enough as is.

Since there is currently no catalogued procedure for invoking the compiler, the user must include the in-line
procedure shown on the following page in his job before the compilation step. Copies of this in-line
procedure may be obtained at any keypunch if the proper keys are struck.

The compiler is then executed in the usual manner:

// EXEC INTERCAL[,PARM=’parameters’]
//COMPILE.SYSIN DD *
{INTERCAL source deck}
/*
//EXECUTE.SYSWRITE DD *
{input data}
/*

The various parameters are described following the in-line procedure. At most one parameter from each set
may apply to a given compilation; if more than one are specified, the results are undefined, and may vary
depending upon the particular set of options. The default parameters are underlined.

//INTERCAL PROC
//COMPILE EXEC PGM=INTERCAL
//STEPLIB DD DSN=U.INTERCAL.LIBRARY,DISP=SHR
// DD DSN=SYS1.FORTLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=992,LRECL=137,RECFM=VBA)
//SYSPUNCH DD DUMMY
//SCRATCH DD DSN=&COMPSET,UNIT=SYSDA,SPACE=(CYL,(3,1)),DISP=(,PASS)
//EXECUTE EXEC PGM=EXECUTE,COND=(4,LT) 3

//SOURCES DD DSN=U.INTERCAL.SOURCES,DISP=SHR
//STEPLIB DD DSN=U.INTERCAL.LIBRARY,DISP=SHR
// DD DSN=SYS5.SPITLIB,DISP=SHR
// DD DSN=SYS1.FORTLIB,DISP=SHR
//SYSIN DD DSN=&COMPSET,DISP=(OLD,DELETE)
//SYSOBJ DD SYSOUT=B,DCB=(BLKSIZE=80,LRECL=80,RECFM=F)
//SYSPRINT DD SYSOUT=A,DCB=(BLKSIZE=992,LRECL=137,RECFM=VBA)
//SYSPUNCH DD DUMMY
// PEND

Figure 3. Inline procedure for using INTERCAL.

OPT

- 39 -

NOOPT
In the default mode, the compiler will print a list of all options in effect, including the defaults for
unspecified parameter groups and the effective option for those sets where one was specified. If
NOOPT is requested, it causes the default mode to be assumed.

OPTSUB

NOOPTSUB
NOSUB

Unless ’NOOPTSUB’ is requested, the System Library is optimized, resulting in much more rapid
NOSUB processing of function calls. Specifying NOOPTSUB causes the non-optimized INTERCAL
code shown in section 6.3 to be used, whereas NOSUB requests that the System Library be omitted
altogether.

IAMBIC
PROSE

The IAMBIC parameter permits the programmer to use poetic license and thus write in verse. If the
reader does not believe it possible to write verse in INTERCAL, he should send the authors a
stamped, self-addressed envelope, along with any INTERCAL program, and they will provide one
which is verse.

FORMAT

NOFORMAT
In FORMAT mode, each statement printed is put on a separate line (or lines). In NOFORMAT mode,
the free-format source is printed exactly as input. In this latter case, statement numbers are provided
only for the first statement on a card, and they may be only approximate. Also, unrecognizable
statements are not flagged.

SEQ
NOSEQ

If the source deck has sequence numbers in columns 73 through 80, specifying ’SEQ’ will cause
them to be ignored.

SOURCE
NOSOURCE

If NOSOURCE is selected, all source listing is suppressed.

LIST
NOLIST

If LIST is specified, the compiler will provide a list of statement numbers catalogued according to
type of statement. The compiler uses this table to perform abstentions by gerund.

WIDTH=nn
This sets the width (in number of characters) of the output line for FORMAT mode output. The
default is 132.

3. Pending acquisition of SPITBOL release 3.0, the SOURCES DD card must be replaced by the five cards:

//NOOPTPFX DD DSN=U.INTERCAL.SOURCES(NOOPTPFX),DISP=SHR
//NOOPTSUB DD DSN=U.INTERCAL.SOURCES(NOOPTSUB),DISP=SHR
//OPTPFX DD DSN=U.INTERCAL.SOURCES(OPTPFX),DISP=SHR
//OPTSUB DD DSN=U.INTERCAL.SOURCES(OPTSUB),DISP=SHR
//PRELIM DD DSN=U.INTERCAL.SOURCES(PRELIM),DISP=SHR

- 40 -

CODE
NOCODE

Include ’CODE’ in the parameter list to obtain a listing of the SPITBOL code produced for each
INTERCAL statement.

LINES=nn
This determines the number of lines per page, during both compilation and execution. The default is
60.

DECK
NODECK

Selecting ’DECK’ will cause the compiler to punch out a SPITBOL object deck which may then be
run without reinvoking the INTERCAL (or SPITBOL) compiler.

KIDDING

NOKIDDING
Select NOKIDDING to eliminate the snide remarks which ordinarily accompany INTERCAL error
messages.

GO

NOGO
Specifying ’NOGO’ will cause the program to be compiled but not executed.
EXECUTE/NOEXECUTE may be substituted for GO/NOGO, but this will result in an error, and GO
will be assumed.

BUG

NOBUG
Under the default, there is a fixed probability of a fatal compiler bug being worked at random into the
program being compiled. Encountering this bug during execution results in error message 774 (see
section 7.2). This probability is reduced to zero under ’NOBUG’. This does not affect the probability
(presumably negligible) of error message 778.

12.1 Other INTERCAL Compilers

There are no other INTERCAL compilers. 4

4. This assertion in the INTERCAL-72 manual was blatantly contradicted by some notes on an Atari implementation included at

the end of the manual. So, you expect compiler manuals to be consistent?

- 41 -

TONSIL A

The Official INTERCAL Character Set

Tabulated on page 42 are all the characters used in INTERCAL, excepting letters and digits, along with
their names and interpretations. Also included are several characters not used in INTERCAL, which are
presented for completeness and to allow for future expansion.

4. Since all other reference manuals have Appendices, it was decided that the INTERCAL manual should contain some other type

of removable organ.

4. 5 This footnote intentionally unreferenced.

- 42 -

Character Name Use (if any)

. spot identify 16-bit variable
: two-spot identify 32-bit variable
, tail identify 16-bit array
; hybrid identify 32-bit array
mesh identify constant
= half-mesh
´ spark grouper
‘ backspark
! wow equivalent to spark-spot
? what unary exlusive OR (ASCII)

" rabbit-ears grouper
". rabbit equivalent to ears-spot
| spike
% double-oh-seven percentage qualifier
− worm used with angles
< angle used with worms
> right angle
(wax precedes line label
) wane follows line label
[U turn
] U turn back
{ embrace
} bracelet
* splat flags invalid statements
& ampersand7 unary logical AND
V V (or book) unary logical OR
V− bookworm (or universal qualifier) unary exclusive OR
$ big money binary mingle (ASCII)

¢ change binary mingle
˜ sqiggle binary select
_ flat worm

overline indicates "times 1000"
+ intersection separates list items
/ slat
\ backslat
@ whirlpool
¬ hookworm
ˆ shark (or simply sharkfin)
#* blotch

Table 2 (top view). INTERCAL character set.

7. Got any better ideas?

