Steve Atkin



Preliminaries

Developed 1987

Haskell 98

Hindley-Milner type system
Purely functional




Pure (Vs.) Impure

¢ Pure

» Haskell, Miranda

e NO side effects
e Nonstrict — all arguments need not be defined

¢ [mpure

= ML, Scheme
e Strict — all arguments must be defined



Pure

* Explicit dataflow

= Vaue of expression based only on free variabl
e Referential transparency

= Computation order irrelevant
e Lazy evaluation



Types

+ Polymorphic

ength :: [a] -> Integer
ength[] =0

ength (x:xs) =1 + length xs




User Defined Types

dataPointa=Ptaa

Pt 2.0 3.0 :: Point Float

dataTreea= Leaf a|Branch (Treea) (Treee
type String = [Char]

type Name = String




Functions

add :: Integer -> Integer -> Integer
addxy=x+y
=« Curried

m addele2=(addel) e2

= Applying add to el yields a new function whic
IS then applied to €2



Functions

add :: (Integer, Integer) -> Integer
add (X, y)=x+y

= Uncurried

= Tuple



L ambda Abstractions

add=\xy->x+y
IncC=\x->x+1

Infix function composition
(.) :: (b->0)->(a->b)->(a->c)
F.G=\x->f(gx)



Infix Operators

¢ Functions
= Symbols
= Partial application (section)
(+) ;. a>a>a
. (X+) =\ly->Xx+y
s (ty) =\X->X+Yy
= (1) =Xy ->xty



Infix Operators

* Coerce:

¢+ |nfix operator into functional value
inc = (+ 1)
add = (+)

¢ Functional value into Infix operator
X “add’ y
add x y



L ayout

¢ |_ayout — shorthand for an explicit groupin

let{ y=a*b lety =a*b
Ix=Xx+y)ly = fIx=(X+y)ly
} iInfc+fd

InNfc+1fd



Problems

¢ Blessing and a curse

« Ultimate in modularity
e Data in and data out manifest and accessible
e Maximum flexibility

= Obscurity
e Algorithms buried in plumbing



Exceptions

¢ To add error handling:
= Pure.
e Modify each call to check for and handle errors.

= [mpure.
e Use exceptions, no code restructuring required.



Output

¢ To add an execution trace:
= Pure.
e Modify each call to pass around traces.

= [mpure.
e Use output as a side effect, no restructuring.



State

* To keep a count of operations.
= Pure.
e Modify each call to pass counts around.

= [mpure.
e |ncrement a global variable, no restructuring.



References

¢ A Gentle Introduction to Haskell 98
= Paul Hudak, John Peterson, and Joseph Fasel

¢ Monads for Functional Programming
= Philip Wadler

* Monads for the Working Haskell
Programmer

= | heodore Norvdll



References

¢ Systematic Design of Monads
= John Hughes and Magnus Carlsson

¢ |mperative Functional Programming
= Simon Jones and Philip Wadler

¢ \What the Hell are Monads
= Noel Winstanley



