HiTest

Enhanced Lotus Notes API

Version 1.0

Programmer’s Reference

Edge Research Inc.

Copyright 1994, Edge Research Inc. All Rights Reserved.
HiTest, tGLUE, and htVISUAL are trademarks of Edge Research Inc.

Microsoft, Word for Windows, and Windows are trademarks of Microsoft
Corporation.

0OS/2 is a trademark of IBM Corporation.
Lotus and Lotus Notes are trademarks of Lotus Corporation.

All other trademarks are property of their respective owners.

Edge Research Inc.

One Harbour Place, Suite 455
Portsmouth, NH 03801
(USA)

Phone: (603) 431-5300
FAX: (603) 427-2541

TABLE OF CONTENTS

1. OVERVIEW OF HITEST 1
Lol GEICTAL ...ttt ettt h et e h bt h e h e b bttt et n et et eat bt beeae b 1
1.2 BOIETIES..ueeuiiieieet ettt b bbbttt e h e bbbt eh e bbb st et b et et ereen 1
1.3 BASIC STIUCTUIC.cueuteieiieiieiet ettt ettt ettt sttt e e e s e st e st e bt ebeebeeb e bt sb e et e besse s ens et eneeneeneeneeneeneeneeans 2
2. INSTALLING HITEST 3
B O U111 15 o) o DO OSSR 3
2.2 SAIMPLES. ...ttt ettt et ettt ettt et h et e e bt et e e bt e bt eh e et e eh e e bt ea e e ebe e bt ehe e beehe e beebt e beententeeean 4
3. PROGRAMMING TO THE HITEST API 5
3.1 REQUITECITIEIIES. ...ttt ettt sttt et e et e e et e bt ene et e eneeeseensesseenseese e seesee st ense st enseeneansesneanseennneeenseeenns 5
3.2 PrO@ram FIOW......cicciiiuieieiiieie ittt ettt ettt et e e saeestesseesbesseesseessessaessesaessesseessenseensesnsaeenssessnseennses 6
T I D - T) o1 OO OO PP R URPPPROPP 10
I 003 11 L OO OO OO OSSOSO U PP RR PSR PURPP 12
3.5 EIrOr HANAIING.....c..ioviiiiieieiecieciect ettt ettt sttt be et et e esb e baessesseesbasseessasseessesseessesseesssaeenssens 15
3.6 Mixing HiTest with the standard Notes APL.........cccooiiiiiiiiiie e 16
4. HITEST FUNCTIONS 18
4.1 OVEIVIEW....utietieeitietieeieeteesteeeteestteesseestseessaeasseeaseassseasseessseasseassearssaasseeaseassseasseesssaasseasseanseaseessseenseennns 18
4.2 FUNCLION DESCIIPHIONS. 1...euveeitetieiietieteetiesie e st e e st e e seteteste e e eseenteeseesseeneeseensesseensesseensesneensesseenneeennnes 20
(11010 1) O SRURSP 21
RUECOMVEIT. ..ttt ettt et et e et et et et e b e b et e bt e bt et e e b e e bt eb e e b e eb e eb e e b e sbe et e neensaeenteens 22
NECONVEITLENGEN.eeiiiiieiieieceeeee ettt ettt et e bt et este et e e beesbessaessaenseensesssesseensesssesssensaensesnnssaeanns 24
REGEIEIIVSIIIIE. ¢ttt ettt e b e b et e eat e e bt e s bt et e ea b e sbe e bt et e sbteabeeteenbbeeenabeeeenns 25
REGEEIINTO. ..ttt h ettt h e bt e bt e bt bt e st e bt e st e bt e a e en e e st en s e st e st ensenten s et et et et e bentetenen 26
FIEITIIE. 1ttt ettt ettt ettt et et b st e st ete s et b et e b st e b et ese s ek e b ese b est s e st et e s ese s es e b enteneenbeessenbeenes 27
RESEEENVSIIINE. ...ttt ettt b e bt et e st e e bt et e e st e eate s bt e bt eabesht e bt enbeesbeebee bt anbeenbesbeenbeeeanns 28
htSetOption
RUETRIIIL. ...ttt ettt b ettt b e e et b e bbbt bt et e b e e bt ea e bt bt eaeeb e bt bt et eab e st e e b eane
N 14 3 TSRS
REAAAINGELINIEIVALctiitiiiiiiiiiiieee ettt ettt ettt et et et ettt e e s e e b e enne 33
htAddinPutMsg
REAAAINSEINTEIVAL ...c..etieitiie ettt ettt e ettt ae st e st ea e ese e st ese e st ese e s e eseeseeneeneeneeneeenne 35
REAQAINSEESTALUS. ...ttt ettt ettt et e et e st e e bt et e es b e eb e e bt eabeeatesbee bt enbesnbeesanbeeesnnbeeenns 36
htAddinYield
(OS] | OO PRUPRRP
RECEIIBING. ...ttt ettt ettt sttt b e b et b e a e sb e bbbt be e ae bttt ae bt ettt ettt eneens
ECRIIFEICR. ..ttt ettt ettt ettt ettt a et e b e s bt st e b e e bt ebe e bt enbeensaeenneens
htCellLength........ccceveeieeiiinieiieiecieeeieee
htCellUnbind
LO70) 111511 o PO OSSPSR
RECOIUMNCOUNL. ...ttt ettt ettt et sh e bt et e eateeb e et e eate e st e sb e e bt eabesstesbeenbeenbesaeanbeenseensenseens 45
RECOIUMNLISE. ...ttt ettt et b e bt e et e s bt e bt et e e st e ebe et e enbeeabesbe e bt enbesaeeennbeeeanes 46
LO70) 1010 S0 LRSS 47
ECOMPCOPY ...ttt ettt sttt ettt et b et b e bt ea e bt b e et e st eb e et es e e st et et et et et et et et et a e aeneene e 48
NEC OMPCOPYSUDSEL. ... eeuvieerieereetiesieeteeteseesteeteettesteeteesseassesseesseassessseseessesssenssessaessesssenseesseansesssesseansensssseesssenanns 49
NECOMPCICALE. ... eeuvieeietieieeieeie ettt et e et e et e b e ettestt e teesseeseessaesseassesssanseansessseassasseenseassesssanseessesssessensennsesssensssaennes 51
RECOMPEXDPOTL. .ottt ettt at e b et eb e s bt e bt e et e eb e e bt et e eateebtenbeenbbeeesabbeesnbbeeenane 52
LT @031 010) 25 40 Te 4 5 L TR PSTUPSRPROY 53

RECOMPGEINTO. ..ottt et a et a e a e st e e bt e et e sbte bt enbeeateebeenbeenbeeabesbeenbeenabeeaanns 54

Contents ii

RECOMPGEIOSFON. ...ttt ettt ettt a e bt ettt e s bt e bt eab e eabesb e e beenbeeatesbeebeesnbeeesnbbeeenns 55
NECOMPIIMIPOTL. ..ottt ettt ettt ettt et e e st e s ttebeesseeate st e enbeessesseenseensessseeseanseensesnsessaenssaessnsseesnsseaennes 56
RECOMPIMPOTTLISE. ...ttt sttt et sb e bbbt et besbeebeeaeeae et eaneebee e .57

N OMPLASTTEX . 1.t vvevieeteeieeieste et et e et e st este et e e seesteesseessessaesseesseessesseesseessessseassessaenseassesssenseessesssenssessennnns58
htCompMerge...........60
RECOMPPULOSFONL. ...ttt b et a e s bt bt et s bt e bt e bt e st e eatesbe e bt eabesbeesbeenbeenaeeens 61
LO0] 101) (<1« SRS P TP
htComprecCount. .
RECOMPIECDICICLE. ...ttt b ettt h e bt et e st e e bt e bt eabeeatesb e e bt eabesstesbeenbeenbeenbbeeeanbaeenas
RECOMPIECFEICN. ...ttt ettt st st et e st e e st e st e e beeabesseesseenseentesaeenseenseensessaenseenns
htComprecGetPtr... .
NG OMPIECINSEIT. .. eeuvieiiieeiesiieteeie et et et ettt et et e e tte s st esbeesbessee st eseesseessessaesseessesseenseessasssanssessansseassaeesnsseeensssannnes
NECOMPIECLENGEN.....c.tiiiiiiieiieieeeeeee ettt ettt e st e s be et e s sae s st esbeesseessessaesseansessaesseensasssesssesnssaeeenssenanns
htComprecList .
NECOMPIECUPAALE. ...ttt ettt ettt ettt et e b et et e e b e e e b e sbeeeeebeebeebeebeebeseeebeaneenseeamneanns
CUTSOT . et tteette et estte ettt et e ete e teesebeebeessseesaeasseesseeasseesseesssaenseessseenseeasseenseansseensaesssaanseessseansseesanssseeennssseaenns
RECUTCIOSE. ...ttt b et e a e e b et e bt eat e s bt e bt ea b e sb e e bt et e emteebe e bt em bt esbesbeenbeenbesnbeebeensbeeannee
RECUTGEINTO. ...ttt ettt ettt ettt ettt e b et et e aesae b e
htCurOpen .
RECUTRESEL. ...ttt h bbbt a st es e s et e st e s et ea s e st e e et et et et e be st et enbeensneenteeans
ECUISEIOPTION. ..e.teteeeteeie ettt ete ettt et ete et e stee bt essesese st esseesseessessaesseassesssenseansesssessensaenseessensaenseansesssenseennssasanns
Database.................
htDbGetPath...
htDbList.......... -
EDDLASTCAL. c.. ettt ettt st e bttt e b e e bt e bt ea bt e hte s bt ea bt e et e s bt e bt ea b e eh b e bt et e en bt ehbeebe e bt eab e e e enbbeeebbeeeante
DALELIMIE. ... ettt ettt ettt et e e b e e bt e s ebe e bt e stbe e beeesse e beessseesseessbeesseesaseesaeasbeensaeenseeseessseennrns
htDatetimeCompare .
REDALEHIMECTEALE. ...ttt ettt ettt ettt b et b e s bbbt sb et e bt b e et e e bt eb e e bt ekt ebe e bt ekt ebeebees e e bt ebeeneeemteesnneenne
REDAtEtIMEDITT ...ttt a ettt ettt ettt ae e e ens 93
htDatetimeGetlnfo....
htDatetimeUpdate.....
Document...........cccc........ -
IEDOCCIOSE. ...ttt ettt ettt s h e bt et h e eh e bt e st e eu b e s bt em bt eabe s bt e bt et e ea b e eh e e ke en bt eatesb e e bt e sn bt e e ebbeeeenee
EDOCCOPY e vveevtetieiie ettt et et et e bt e e st e e st e e teesteestesseenseensessee st enseeate st e st e enbeanteeheenbeenteee e e st enseenteestetaenbeentenraeane
htDocCreate....
REDIOCDIEIELE. ...ttt bbbt b bbbt h bt eb bt h e e bt h e h e a e bt a et e bt e st en st nt e teeeatee
EDIOCEEICH. ..ttt b ettt b e bt bbbt b e bbbt b e bt bbbt et b bbbt
htDocGetlnfo
REDOCOPETI. ...ttt ettt ettt s b e bt et e at e e bt et e bt e h b sb e e bt et e bt e ebe et et e saneshe e nee it
IEDIOCPUL. ...ttt et e et e et e e bt e e abeeeabeeeabeeeabeeeabeeaabeeesbeeeabeeeabeeatbeeasbeesbeesaeeataaaaeeeannes

htErrorFetch
REETTOTS EEBUTTET. ...ttt ettt e et e et e et e e ae e e teeeaaeeeateesaseeeateeeeeeennrseeeeeans
REETTOTSEEPTOC. ... ettt et et ettt e et e et e et e e aeeeateeeateeeateesaseeeaseeeenaaseeeeeeeensnseens

htFileDelete....
REFTIEFEECI. ... ettt e et e et e et e e e e et e e e teeeetaeeetsseeateeereeeeteeeteeeeeeenaraeeens
EFTIELLIST. ..ttt ettt et e et e et e et e e aeeeaaeeebeeeteeeteeeateeeaeeereeenteeenreeereeaareaens
htFilePut

REFOTIMICOPY ..ottt ettt et b bttt e a e bt et e e a e e ht e s bt e bt e st e sb e e bt et e eateeht e bt e bt eabesbee bt enbeenteennnee
NEFOTIMDICIETE. ...ttt ettt ettt e et e e e tte e tse e tae e aseeeaaeesaeeaeeeseeenseeenseeensaeenssaeeeeennnes
htFormGetAttrib
htFormGetld..........

118 21e) 501 51 SO T OO USSP PURTTRRN

Contents iii

EFOIIISEL. ... e e e ettt e e et e e e e ett e e e eeate e e e eaae e e eeaaeeeeetaeeeeeataeeeeeeeeeeeeeeaeaaas 129
NEFOTMITEIMPIALE. ..ottt ettt st et e e et estee s s e enbeesaesseenseenbessee st esseenseensesseenseensesseenseasanes 130
FOIMIULA.......ooiiiiiiiiiie e ettt et e et e e e te e e b e eeteeeaeeaeeeabeeeseeeaseebseeaseensaeenseenseesabeeeanes 131
NEFOIMUIACONCAL.veiivieeiieectee ettt ettt et e et e e et eeae e eaaeeeaeeeaseeeaseeeaseeeteeessseeesseeesseeeeeensseeeeeeeanes 132
htFormulaConcatf..... 133
REFOTMUIACOPY ..ottt ettt et b et e e e bt s bt e bt et sbtesb e e bt emteebbesbee bt eanesbbeeesanee 134
NEFOIMUIAEXEC. ...ttt e e e ettt e e e et e e e e taa e e e etaeeeeeataeeeeeasseeessseeeeansseeeeansaeeeanns 135
htFormulaLength... 136
NEFOIMUIARESEL. ...t e e e ettt e e e et e e e e eae e e e eeaae e e e e aaeeeeeateeeeeeaaeeseetaaeaeeeeas 137
)T > R ORRRUTRRRRRRRT 138
NEINAEXCOUNL.......eiietieiiie ettt et e et e e et e e e tbeestbeeetbeeetbeeeaseeease e aseesseesseeensseensseeasseansesenseeeannnsseeeeeennnes 139
RINAEXGELINTO. ...ttt ettt e et e et e e ae e e aeeeteeeateeeaseeeaseesaseeenseeeaseenaseessreeanes 140
NUINAEXGELPOS. ... ettt ettt e e et e et e e e e e teeeateeeaaeeeaseesaseeeaseeeaseeeaeeeateeeateeeeaeeeeaaeeeareeas 141
NUINAEXGEETIEEPOS. ...ttt ettt e e et e et e e e e e e ee e et e e eateeeaeeeeteeeeseeeesseeesseeesssaeeeeeeenntseeeeeaans 142
REINAEXINAVIZALE. ...ttt ettt ettt et et e b e s e et e b e e b e b e b e b e et e beebe et et e ebe et e ebeabeeneebeaneennes 143
htIndexRefresh 145
NEINAEXSEAICI. ... ettt e e e e ettt e e e et e e et e e e e ettt e e e et e e e e ettt e e e e e e e e e e e eeaaas 146
NUINAEX SEEPOS. ...ttt ettt et e e et e e tb e e e tbeeeabeeeabeeetbe e tb e e ta e e taeeetreeeabeeaaee e nnraraeeeeeanes 148
NUINAEX SEETTEEPOS. ...ttt ettt e et e e et e et e e aeeeetbeeeaaeeeaseesaeesaeesaeensseesaeenseeeeennssaeaeeans 149
1753 ' O R SRS UUUU PRSPPI 150
RIIEEMBING. ...t et e et e e e e et e e et e e e tae e tt e e eateeeteeeeaeeeeabeeeaee e teeereeeteeeeeeanes 152
NI OUNL. ...t et e e e e et e e e et e e e e eaaaeeeeeabeeeeesteeeaastaseeeenbeeeeesssaeeantaeeaaeaeaeaeans 154
118 005 101 D)) (1 RSO PP 155
518 (6301 211 /o) s WU NSO UU T S U UUUU USROS 156
518 (<300 L@ 114 511 {o JONUUUU O T T U T O s TS ST U T TR 158
NUEEIMIGEEPL. ...ttt ettt et e et e et e e te e e te e e teeeteeeeaeeeabeeeabeeeabeeeabeeeabeeerraeeeannraaaeeeeaanes 159
htltemLength 161
118 0055 101 5] SO SUP PR 162
REEEIMPUL. ...ttt et e et e et e ete e e teeeteeeaeeeaaeeeaseeeabeeeaseesaseeeaseesaseeeeennraeeeeeeanes 163
164
165
EMIACTOC OPY ettt ettt ettt ettt ettt ettt h e bt et e at e e bt e bt eab e shtesh e e bt en b e eat e bt e bt enbeeabesbee bt enbeentenheeebbeeennnee 166
htMacroDelete... 167
htMacroExec...... 168
htMacroGetld..... 170
100\ 10 (o) 5 T SO U TSRO 171
1A, RO 172
htMailSend............... 173
Server........coueeun.... 175
htServerExec 176
htServerGetlnfo 177
S EIVEILIST. ...ttt ettt ettt ettt e et e e te e et e e teeebeeeaseeeaseeeaseesaseeeaseeesseeesbeeesbeeeabeeetbeaeeeaanraeeeeeeaanes 178
TEXELLAST .ottt ettt ettt ettt et e ettt eete e et e e e tb e e b e e eteeeabe e teeeabeetaeeabe e beeeabeentaeeabeeteeeabeebaeeabeeenraeeeant 179
RETEXELASTCOUNL. ...ttt ettt ettt e et e et e e aeeeaaeeeaseeeaseeeaseeeaseeaaseeesseeesseeesseeesseeesseeseesssseeeeeans 180
R TEXULASTFEICI. ...ttt ettt e e et e e e tbeeeae e e eaaeeeaeeeeaaeeaeeeseeeseeeseeennnsseeeeeannn 181
P X L ISTGEEPLttt e et e e e et e e e ettt e e e eaaeeeeaateeeeetaseeeentaaeeeassseeeeateeeeantaeeeanareeeas 182
ETEXELASTLEIEN. ...ttt ettt a ettt bbbt a e e st e bt e st esees e e st eneeneeneeneeneeneenees 183
VIEW ettt ettt e ettt e e e et e e e e e ——eeeeea——tteeaaa———teeeeaa——tteeeai———teeee e ateeeeeaarterarraataas 184
REVIEW 0D ..ttt ettt ettt et bt e bt e a e e bt e eb e e bt e a bt e bt e e bt e bt e et e eb e e bt et e eateehtenbe et e eateeenbbeeene 186
NEVIEWIDIEIETC.ottt et ettt e et e e tb e e eab e e etaeeetee e tse e tseeseeeasaeeesaeenssesasaeenseeenseeeeeensssaeeaeeans 187
htViewGetAttrib....
REVIEWGELIA. ... ettt ettt et e et e et e e te e e te e eteeeteeeteeeateeeaseeeaseeenseeenseeenreennreennn 189
EVIEWLLISE. ...ttt ettt e e et e e et e e et e e e tteeetaeeeaseeetae e taeeetaeeteeeaeeeteeeaeeeteeeeeeeatrraeeeeeaas 190
EVEEWS L. ..ottt e e et e e e e et e et e e ete e e eaeeeeaeeeaeeeae e e te e e teeetaeetaeeteeataraeeeeearrraaeeeeans 191
GLOSSARY 192

INDEX 197

1. Overview of HiTest

1.1 General

The HiTest API (Application Programming Interface) is an alternative higher level C interface to the API provided
by Lotus for Lotus Notes. Program development is significantly faster and requires a fraction of the API code
needed with the standard API.

HiTest API programmers should have some familiarity with C programming. Also useful is some familiarity with
either Lotus Notes or the standard Lotus Notes API. The glossary defines terms related to Lotus Notes and the
HiTest API.

This manual is organized into the following chapters:

Overview of the HiTest API

Instructions and requirements for installing HiTest
Instructions for building HiTest API applications
HiTest function descriptions

b S

1.2 Benefits

Some of the major benefits of the HiTest API are:

o Protective API layer catches invalid handles and operations which, under the standard API, cause crashes.
o Simple browsing functions for everything from servers and databases through attachments and items.
o Abstraction of metadata (forms and views) for quick, single function access to form and view information.

Additional field and column browsing functions let developers avoid completely the internal Notes BLOBs
containing the metadata.

o Simple data transfer -- by binding document items and view cells, a single function call will load, store, or
update multiple items and cells.

o Automatic data conversion implicitly when fetching or storing data, or explicitly with a single conversion
function.

o Internal handling of components that are cumbersome in the standard Notes API, such as ID tables,
collections, memory blocks, and composite data.

. Simple high-level creation, access, and manipulation of composite data (including single-function import
and export) far above the standard API's byte level with composite data functions.

o Integrated single-function support for macro execution and full text search.

. Support for server or client add-in programs with a built-in scheduler.

o Remote server console support lets clients control server activities such as replication and program
execution.

o Automatic management of response hierarchies, including the ability to copy or delete an entire hierarchy
of unlimited breadth and depth with a single function call, as well as easy creation and management of responses.

o Advanced mail interface for sending mail from a structure, from an existing document, from bound
memory, or from any combination with a single function call.

o Three error handling methods so developers can use the method with which they are most comfortable.

. High-level object-based HiTest API facilitates rapid program development.

Chapter 1 Overview of HiTest 2

1.3 Basic Structure

HiTest offers a consistent interface to the various components of Lotus Notes. The highest level of abstraction is the
set of HiTest objects, covering the various components of Lotus Notes. The following diagram shows the object
containment hierarchy:

Process
Cursor | Server | Addin
. Database . Error
|
-1 Document .) Form | Formula Mail
| Item IL Field 1 DMacro
| Textlist o) View T . Index
| Datetime L Column L Cell
= l(_‘omposite
L Comprecord
o File

The object-based design of HiTest has two major usability benefits. First, abstraction of objects that the standard
API simply considers data (form, field, view, column, macro, cell, file, and composite) often lets single function
calls replace medium-sized functions. Second, HiTest was designed as a consistent high-level Notes interface, rather
than a collection of low-level internal functions. Common actions, such as iterating through an object, are done
through common interfaces (e.g., most objects contain a List function, which works similarly across objects).

2. Installing HiTest

2.1 Installation

The HiTest API is built over the standard Notes API. Therefore, any machine used to build or run programs with
HiTest must have a licensed copy of the Lotus Notes software (client or server, version 3.0 or higher). In addition,
the machine must satisfy the hardware and software requirements to run the Lotus Notes software.

The HiTest API consists of the following files:

HTNOTES.H Include in all programs calling HiTest
HTxNOTES.LIB Import library for the HiTest DLL
HTxNOTES.DLL HiTest DLL - required to run HiTest programs

The import library and DLL filenames contain an 'x', which varies with the operating system. The ‘x’ is replaced
with '"W' for Windows 3.1, 'O' for OS/2 1.3 (16-bit), and ‘2’ for OS/2 2.x (32-bit).

The HiTest API is installed from a ZIP file. First, create a HiTest API directory (e.g., C:\HITEST) and copy the file
into this directory. Next, unzip the ZIP file from either a DOS window or an OS/2 window with the HiTest directory
as the current directory. Use the -d option when unzipping to extract the subdirectories as well as the files. The
installation process creates the following directories and files under the HiTest installation directory:

INCLUDE directory
HTNOTES.H HiTest API include file

LIB directory
HTWNOTES.LIB
HTONOTES.LIB

Windows 3.1 import library
0S/2 1.3 16-bit import library

HT2NOTES.LIB
DLL directory
HTWNOTES.DLL
HTONOTES.DLL
HT2NOTES.DLL
SAMPLES directory

DOC dir;ctory
HITEST.RTF
HITESTxx.NSF

0S/2 2.x 32-bit import library

Windows 3.1 DLL

0S/2 1.3 16-bit DLL

0S/2 2.x 32-bit DLL

Sample programs in subdirectories

Each subdirectory contains one sample program

Microsoft RTF format HiTest reference manual
Notes database format HiTest reference manual

xx represents the version number
(e.g., HITEST10.NSF for HiTest v1.0)

Next, modify the INCLUDE and LIB environment variables needed by the compiler to find the HiTest files. Add the
HiTest INCLUDE directory to the INCLUDE environment variable for the compiler to find the HTNOTES.H
include file. Add the HiTest LIB directory to the LIB environment variable for the linker to find the proper import
library. To run HiTest API programs, the HiTest DLL must be available to the operating system. For Windows, the
DLL is usually placed in the WINDOWS\SYSTEM directory, but may be in the WINDOWS directory or elsewhere
in the PATH. For OS/2, the DLL should be in a directory in the LIBPATH environment variable.

To run HiTest API programs, the NOTES.INI file must be available in a directory in the PATH environment variable.
Most Notes installations locate this file in either the Windows or Notes program directory, in which case it should

Chapter 2 Installing HiTest 4

already be in the PATH. Some installations, though, locate this file in the Notes data directory. If this is the case,
then add this directory (or another directory if NOTES.INI is elsewhere) to the PATH if not already included.

2.2 Samples

The HiTest installation includes various sample programs. These programs demonstrate common activities
performed with the HiTest API. One subdirectory under the SAMPLES directory exists for each sample program.
Each sample program includes the following files:

README.TXT describes the sample program

MAKEFILE builds the sample program. Invoke with an operating system constant
(e.g.: “NMAKE WIN”, “NMAKE 08217, or “NMAKE 0S22”).

HTSAMPLE.H generic sample program header file

PROGRAM.C sample program-specific source code

PROGRAM.H optional sample program header file

Build and run the sample program SIMPLE to test for proper installation of HiTest. The other sample programs are
described below:

Program Description

DBMETA Demonstrates database and metadata access by connecting to a database and
generating all metadata for the database to a file.

VIEWDMP Demonstrates creation and navigation of a view-based index and its cell data. The
view is rendered without formatting to a file.

DOCITEM Demonstrates document item access by item binding and by direct item access. The
item data for all documents in a flat index is written to a file.

DOC2NSF Converts and parses the HiTest documentation into a Notes database. The
documentation is imported into a composite item, which is then parsed to produce one
Notes document for each function in the HiTest API. This sample is a detailed
example of creation and manipulation of composite data.

3. Programming to the HiTest API

3.1 Requirements

This section contains requirements and instructions for writing HiTest API programs.

The different HiTest platforms support different compilers. Building Windows 3.1 programs requires the Microsoft
C compiler version 7.0 or greater. Building OS/2 1.3 16-bit programs requires the Microsoft C compiler version 6.0
(the last version which supported OS/2). Building OS/2 2.x 32-bit programs requires the IBM C Set++ compiler, as
well as certain compiler options to interact properly with the 16-bit Notes code beneath HiTest. The options are /Gt
(tiled memory to avoid crossing 64K boundaries) and /Spl (1-byte structure packing). The /Gs option (remove stack
probes) is not required, but is recommended. Programs which call the HiTest API must be compiled as large memory
model programs (on 16-bit platforms where memory model is relevant). The minimum stack size for HiTest API
programs is 10K (15K for OS/2 2.x), and programs of moderate size or complexity should increase the stack size
beyond 10K.

The following table summarizes requirements by platform:

Platform Requirements

Windows 3.1 Microsoft C compiler version 7.0 or greater
large memory model (compiler option /AL)
10K or greater stack
OS WIN compilation constant

0S/2 1.3 (16-bit) Microsoft C compiler version 6.0
large memory model (compiler option /AL)
10K or greater stack
OS 0S21 compilation constant

08/2 2.x (32-bit) IBM C Set++ compiler
15K or greater stack
OS_0822 compilation constant
Compiler options /Gt and /Sp1
(The use of compiler option /Gs is recommended)

When building a program, to set the stack size in a module definition file use the following statement:
STACKSIZE 10240
To set the stack size on the linker command line use the following link option:
/ST:10240
Increase the value for larger programs.
All source code modules using HiTest must declare an operating system before including the HTNOTES.H include

file. Define one of the OS constants OS WIN, OS_0S21, or OS_0S22. To define the constant from within a C
program, use the following statement:

Chapter 3 Programming to the HiTest API 6

#define OS_ WIN
To define the constant during compilation, use the following compilation option:
/DOS_WIN

The compilation option supports multiple compilations of the same program with different OS constants to run
under multiple operating systems.

Every HiTest API program must initialize and terminate the HiTest API. All other HiTest functions will fail unless
preceded by a call to the initialization function htlnit. Additionally, the program must call the htTerm function after
all HiTest function calls are complete and before the program terminates. Calling the termination function is crucial
to avoid leaving the system in a dangerous state.

3.2 Program Flow

A basic HiTest API program involves reading and writing Notes data. The flowcharts on the following pages show
basic program flow including opening a cursor, producing an index (result set), reading and writing data, and closing
the connection.

Chapter 3 Programming to the HiTest API

Establishing a connection (cursor] and producing a result set (index)

hitinit

¥Yes/” More options to

htCurOpen

Strict Binding?

htFormSet

Produce
view-based result
set?

htFormulaConcat

htViewSet

L

htFormulaExec ‘—"'J

Goto Chart 3 Using Binding ?

Goto Chart 2

Chapter 3 Programming to the HiTest API

Accessing and modifyving data in an index using data binding

Chart 2 (Data
access with
binding)

More ltemsto
Bind?

htltemBind J

More Cellsto

htCellBind Bind?

htindexNavigate hiCurClose
successful?
Yes l
A
hiDocFetch htTerm

Modify data of
bound items

.

“+ hiDocUpdate

Chapter 3 Programming to the HiTest API

Accessing and medifving data 1n an index using explicit functions

Chart 3 (Manual
data access)

htlndexMavigate

htCurClose
successful?

htTerm More Cells to Fetch? htCellFetch

Access or
modify document
data?

No

htDocOpen

htltemFetch or

2
htltemGet Ptr More ltemsto read?

Maore Items to write? htDocClose —

htltemPut

Chapter 3 Programming to the HiTest API 10

3.3 Data Types

This section describes the HiTest API data types. Standard Notes data comes in three ‘flavors’:

5. Single value data types (NUMBER, TEXT, and DATETIME) contain a single data value (e.g., 3.14).

6. Multiple value data types (TEXT LIST, NUMBER LIST, and TIME LIST) contain one or more values of
similar types (e.g., “ABC”, “DEF” is a two-element text list). For number or time lists, each individual value is
either an exact value or a two-value range (e.g., 3, 5, 7-10 is a three-element number list, where the third element is
arange).

7. Composite data type (COMPOSITE) is a collection of individual composite records of different subtypes.
Composite data may contain multiple record types, including formatted text, images, links, etc. For a full description
of composite record types, see the composite record section in the function descriptions.

HiTest supports all the standard Notes data types. In addition, HiTest supports a special data type (REF) which is a
response’s reference to a parent document. The constant HTLEN ITEM DATA defines the maximum data length
for all types except composite. Composite data may be of unlimited length.

The following table describes the data types, with internal formats and any notes. The constant representing each
datatype is constructed by prefixing HTTYPE (e.g., HTTYPE INT).

Standard types Description

INT C long integer. Although Notes stores all numbers as double-precision floating-
point values, many numeric items represent integer values. In these cases it is
convenient to use the integer type, which HiTest automatically converts to and
from the Notes internal number format.

NUMBER C double precision floating-point. This is the type used by Notes to store all
numeric values. The constant HTLEN NUMBER TEXT defines the
maximum length of a NUMBER converted to text.

TEXT Variable length text string. Although Notes stores text without null terminators,
all text values transferred to and from the HiTest API use a NULL terminator.
It is crucial that all text buffers allow an extra byte for the NULL terminator.
The terminator is not included in the text length (e.g., the length of “ABCDE”
is five bytes, but a buffer supplied by the calling program must be six bytes).
This is true not only for data, but for informational items (e.g., server names,
error messages, etc.). The exception is functions that retrieve direct data
pointers (GetPtr functions), where text values may not contain a NULL
terminator. Handle these values by length rather than with standard C string
functions.

DATETIME 8-byte data object representing a date and time. Use the htDatetime functions
to manipulate datetime values (do not directly manipulate the datetime data).
The HiTest representation is the same as the standard Notes API representation.
The range is from year | through year 32767, and the precision is one-
hundredth of a second. Datetime values are time zone specific. The constant
HTLEN DATETIME TEXT defines the maximum length of a DATETIME
converted to TEXT.

Chapter 3 Programming to the HiTest API 11

TEXT_LIST A multiple-value collection of zero or more text strings. Use the htTextList
functions for easy access to the contents of a text list. The text values within a
text list are not NULL terminated. The format of a text list containing N entries
is:

WORD number of entries (N)
WORD length of entry #1
WORD length of entry #2

WORD length of entry #N

text text of entry #1
text text of entry #2
text text of entry #N

NUMBER LIST A multiple-value collection of zero or more C double-precision floating-point
values and ranges. The format of a number list containing N values and M
ranges is:

WORD number of values (N)
WORD number of ranges (M)
double value #1
double value #2

double value #N
double low value of range #1
double high value of range #1

double low value of range #M
double high value of range #M

TIME LIST A multiple-value collection of zero or more DATETIME values and ranges.
The format of a time list is the same as a number list, with HTDATETIME
values in place of doubles.

COMPOSITE A composite is an ordered list of composite records. Each composite record is
of a type within the HTCOMP_ xxx enumeration. Unlike other Notes types
stored as a single document item, a composite may consist of multiple items.
One of the benefits of the HiTest API is the abstraction of a composite object as
a single object regardless of the number of document items in that composite.
For more information, see the htComp and htComprec function descriptions.

Nonstandard types Description

REF The HiTest representation of a reference to a parent document. Notes stores
response information within the child as a reference to the parent. Reference
items are always of the same item name -- “$SREF” (use the constant
HTNAME REF). In HiTest, a reference item’s value is the HTDOCID of the
parent document (internally, Notes uses a more complex representation). Forms
do not contain reference fields, so reference items are handled independently of
strict binding and form fields.

HiTest supports implicit and explicit data conversion between types. Use the htConvert function to perform explicit
conversion. Implicit conversion occurs in functions which fetch or put data (htDocFetch, htDocPut, htDocUpdate,
htltemFetch, htltemGetPtr, htltemPut, htCellFetch). While HiTest supports most conversions, certain conversions do
not make sense and are invalid. No conversions between numeric (INT, NUMBER, and NUMBER LIST) and time

Chapter 3 Programming to the HiTest API 12

(DATETIME and TIME LIST) are allowed. Additionally, COMPOSITE can only be converted to and from TEXT.
REF cannot be converted. If an unsupported conversion is required, perform two conversions, using type TEXT as
the intermediary (e.g., convert from type X to TEXT, and then from TEXT to type Y). Certain conversions may
result in a loss of information (e.g., converting a composite item to text will retain only ASCII text information).

3.4 Context

Objects within the HiTest API are represented by either an identifier or a handle. Simple objects need only an
identifier. An identifier’s type depends on the object. For example, a server’s identifier is a string, a document’s
identifier is an ID, and a view column’s identifier is a number. Larger or more complex objects must be ‘opened’ and
‘closed’ and require a handle. Cursors, documents, and composite items use handles. Certain actions on objects are
only valid within the context of other objects. The simplest example is that of an open document. Closing a cursor
containing an open document closes the document and invalidates its handle.

A cursor represents a single HiTest session. Each process or task can contain multiple cursors at any point in time.
Multiple cursors may be open to a single database. All actions performed against a database occur through a cursor.
A cursor contains a state which consists of an active form, an active view, an index, bindings, and open documents.
Any operation which cancels or replaces part of a cursor’s state destroys the previous value. For example, producing
a new index destroys the previous index.

The following table lists the HiTest functional contexts in a simplified state transition table. Each context lists
objects and functions which are valid from within that context (an object name indicates that all functions of that
object are valid in the context). The context ordering is from highest level to lowest. When entering a lower context
from a higher context, all functions in the previous context are still valid . For example, after entering the Open
Composite context from the Open Document context, the htltemPut function is still valid even though it is not listed
in the Open Composite. Each context also lists those functions which cause a transition to a different context. When
entering a lower context from a higher context, all transitions in the previous context are still valid. For example,
performing htCurClose from the Open Document context causes a return to the Initialized context. Multiple contexts
may exist simultaneously. For example, calling htDocCreate when in the Fetched Document context will create a
valid Open Document context. These document contexts may operate independently, but a call to htCurClose would
close them both by closing their ‘parent’ context.

Chapter 3

Programming to the HiTest API

Context Valid Transitions

Uninitialized none htlnit (Initialized)

Initialized Global, Addin, | htCurOpen (Open Cursor)
Server, Database, | htTerm (Uninitialized)
TextList,
Datetime, Error

Open Cursor Cursor, Form, | htCurClose (Initialized)
View, Field, | htltemBind (Bound Item)
Column, Macro, | htFormulaExec (Active Index)
Formula, Mail htDocOpen, htDocCreate (Open Document)

Bound Item htDocPut htCurReset (Open Cursor),

htFormulaExec (Active Index)

Active Index

Index, Cell*

htCurReset (Open Cursor)
htCellBind* (Active Index/Bound Cell)
htltemBind (Active Index/Bound Item)

Active Index /| htDocFetch htCurReset (Open Cursor)
Bound Cell htIndexSearch, htFormulaExec (Active Index)
htltemBind (Active Index/Bound Item)
Active Index /| htDocPut htIndexSearch, htFormulaExec (Active Index)
Bound Item htDocFetch (Fetched Document)
Open Document Document, Item, | htDocClose (Open Cursor),
File htltemFetch/htltemGetPtr to type HTTYPE COMPOSITE
(Open Composite)
htCompImport, htCompCreate (Open Composite)
Fetched Document | Document, Item, | htDocClose (Active Index/Bound Item)

File, htDocUpdate

htIndexNavigate, htIndexSetPos, htindexSetTreePos
(Active Index/Bound Item)
htIndexSearch, htFormulaExec (Active Index)
htltemFetch/htltemGetPtr to type HTTYPE COMPOSITE
(Open Composite)
htCompImport, htCompCreate (Open Composite)

Open Composite

Composite,
Comprecord

none

* Cell functions are only valid in view-based indices.

Context Transition Table

13

Chapter 3 Programming to the HiTest API

In HiTest, higher contexts contain lower contexts. The following diagram shows context containment.

Uninitialized

Initialized

Cursor

Bind Open Document

Open Composite

Active Index

Active Index/Bound Cell

Active Index/Bound Item

Fetched Document

Open Composite

Context Containment Diagram

14

Chapter 3 Programming to the HiTest API 15

Program context affects the method of data access. Often data is accessible with either a Fetch operation or a GetPtr
operation. The Fetch operation transfers data to a buffer supplied by the calling program. When the data source
becomes invalid (e.g., by closing the document), this data is still valid since it is a copy into memory managed by
the calling program. The GetPtr operation simply returns a pointer to memory managed by HiTest. The GetPtr
operation is more efficient than the Fetch operation when retrieving the same data value repeatedly. When the data
source becomes invalid in this case, the data pointer becomes invalid. The calling program can no longer access the
data, and should not free the data pointer itself since HiTest manages the memory.

3.5 Error Handling

The HiTest API supports three styles of error handling, so developers can implement error handling in the manner
with which they are most familiar and comfortable. HiTest handles errors on a process level (i.e., errors in multiple
cursors in a single process are stored in a single location). When an error occurs, there are three pieces of
information available: the error code, the error severity, and the error string. The next HiTest API call automatically
clears error information (except htError functions, which do not affect the current error information). For more detail
on error functions, see the htError function descriptions.

The first style of error handling is the most basic. Most HiTest functions return an HTSTATUS value representing
the error code. When this value indicates an error condition, use the htErrorFetch function to get more error
information. Error return values are easily checked by comparing them against zero since successful operation
(HTSUCCESS) is always equal to zero, and nonzero indicates an error condition.

The second style of error handling involves assigning writeback buffers with htErrorSetBuffer. The calling program
assigns buffers to receive one or more of the error code, severity, and string when an error occurs. Just before
returning, each HiTest function checks for an error condition and automatically writes any error information to the
error buffers. Return values may still be used to check status.

The third style of error handling assigns a callback function with htErrorSetProc. The calling program defines a
callback function to be called by HiTest when an error occurs. Declare this function to match the HTERRORPROC
type. When invoked, the callback function receives as input parameters the error code, error severity, and error string
pointer. In addition, HiTest passes a parameter, supplied by the calling program to htErrorSetProc, to the callback
function. This supplies access to information and context from the calling program within the callback function.
HiTest functions call the callback function as the last action before returning an error code. If a program uses both
this method and writeback buffers (they are usually used exclusively), HiTest writes to the writeback buffers before
calling the callback function. Return values may still be used to check status.

A summary of HiTest errors and severities follows:

Class Error constant Description
General ~ HTFAIL_NOTES_ERROR Standard Notes API error
HTFAIL_PROGRAM Software error -- contact Edge Research technical support
HTFAIL ILLEGAL ENUM An enumeration parameter value is invalid
HTFAIL_NULL_ PARAMETER A parameter is NULL when a value is required
HTFAIL_OVERFLOW A data value cannot fit in the supplied buffer
HTFAIL DUPLICATE Name is already in use
HTFAIL_BAD_ FORMAT A parameter value is formatted incorrectly
HTFAIL_END OF DATA The last data value has been retrieved
HTFAIL_DATA UNAVAIL Requested data is unavailable
Global HTFAIL_INCORRECT DLL Program compiled with an incompatible version of HiTest

HTFAIL_ALREADY_INIT
HTFAIL_NOT_INIT
HTFAIL_INVALID CONVERT

htlnit called when HiTest is already initialized
HiTest function other than htlnit called when not initialized
The requested conversion is not legal

Chapter 3

Programming to the HiTest API 16

Db HTFAIL _INVALID DATABASE No such database exists
Cursor HTFAIL_INVALID CURSOR The cursor is invalid
HTFAIL_OPEN_ DOCUMENTS htCurClose called without force and documents are open
HTFAIL_ACTIVE_RESULT An active result prevents the requested operation
Form HTFAIL_INVALID FORM No such form exists in the database
HTFAIL_FORM_UNAVAIL Strict binding is on, but no active form is set
View HTFAIL_INVALID VIEW No such view exists in the database
Field HTFAIL_INVALID FIELD No such field exists in the form
Column HTFAIL INVALID COLUMN No such column exists in the view
Macro HTFAIL_INVALID MACRO No such macro exists in the database
Formula HTFAIL INVALID FORMULA The formula is invalid
Index HTFAIL_INVALID NAVTYPE View-style navigation attempted on a flat (non-view) index
Doc HTFAIL_INVALID DOCUMENT The document handle or ID is invalid
Item HTFAIL_INVALID ITEM No such item exists in the document
File HTFAIL_INVALID DIRECTORY No such directory exists
HTFAIL_INVALID FILE ITEM No such file attachment exists in the document
Comp HTFAIL_INVALID COMPOSITE Invalid composite handle
HTFAIL_INVALID_ IMPEXP No such import/export format exists
HTFAIL INVALID FONT No such font exists in the document font table
Severity Description
HTSEVERITY_ NOERROR No error

HTSEVERITY WARNING
HTSEVERITY NONFATAL
HTSEVERITY USAGE
HTSEVERITY FATAL
HTSEVERITY PROGRAM

Warning-level error

Normal error

Error in calling program's usage

Fatal error

Internal software error - contact Edge Research

3.6 Mixing HiTest with the standard Notes API

The HiTest API is sufficient to perform the vast majority of Notes API programming. There are two situations,
though, where a program needs some mixture of standard Notes API code and HiTest API code. The first occurs
when migrating or expanding a program written against the standard Notes API to HiTest. The second occurs when
an API program needs some of the more esoteric Notes API functionality not available with HiTest, such as user
registration. In either case, the mixture is straightforward as long as a few guidelines are followed:

8. Replace NotesInit and NotesTerm calls with htlnit and htTerm calls. These calls include embedded
NotesInit and NotesTerm calls.
9. Obtain the standard Notes API database or document handle for a HiTest cursor or document with the

Getlnfo functions (i.e., htCurGetlnfo or htDocGetInfo). With the Notes API handle programs can use the standard
Notes API to manipulate an object opened with HiTest.

10. Use care when manipulating the same object (database, document, etc.) with both APIs. For example, a
document opened in HiTest can be manipulated through the standard Notes API by obtaining the NOTEHANDLE
with htDocGetInfo. Using the standard Notes API to append an item is legal, but using the standard API to delete the
document is not legal.

17

4. HiTest Functions

4.1 Overview

The HiTest API divides functions into functional groupings by object. The actions to perform are verbs and are
generally consistent between objects. Each function name consists of four parts, describing the function with an
object, a verb, and an optional modifier. The first part is always the prefix ‘ht’. The second part is the object name.
Functions in the global grouping omit this part. The third part is the verb. The fourth part, only sometimes used, is
the modifier. Taking htDocGetInfo as an example, the object is ‘Doc’, the verb is ‘Get’, and the modifier is ‘Info’.

The following summary tables describe the objects and verbs with modifiers.

Objects Verbs used with modifiers

(Global) Init, Term, SetOption, Getlnfo, GetEnvString, SetEnvString, ConvertLength, Convert

Addin SetStatus, PutMsg, SetInterval, Getlnterval, Yield

Server List, GetInfo, Exec

Database List, ListCat, GetPath

Cursor Open, Close, GetInfo, SetOption, Reset

Form List, Getld, GetAttrib, Copy, Delete, Set, Template

View List, Getld, GetAttrib, Copy, Delete, Set

Field Count, List, GetInfo

Column Count, List

Macro List, Getld, Copy, Delete, Exec

Formula Concat, Concatf, Length, Copy, Reset, Exec

Index Getlnfo, Count, Navigate, GetPos, SetPos, GetTreePos, SetTreePos, Refresh, Search

Document Fetch, Put, Copy, Open, Close, Create, GetInfo, Update, Delete

Item Bind, Unbind, Count, List, GetInfo, Length, Fetch, GetPtr, Put, Delete

Cell Bind, Unbind, Length, Fetch

File List, Fetch, Put, Delete

Mail Send

Composite Getlnfo, Merge, Create, Copy, CopySubset, ListText, ImportList, ExportList, Import,
Export, GetOSFont, PutOSFont

Comprec Count, List, Insert, Update, Delete, Length, Fetch, GetPtr

TextList Count, Length, Fetch, GetPtr

Datetime Create, GetInfo, Compare, Diff, Update

Error Fetch, SetBuffer, SetProc

Chapter 4 HiTest Functions 18

Verbs Modifiers Used

Get EnvString, Interval, Path, Info, Id, Attrib, Pos, TreePos, Ptr, OSFont
Set EnvString, Option, Status, Interval, Pos, TreePos, Buffer, Proc
List Cat, Text
Count

Open

Close

Reset

Copy Subset
Create

Delete

Convert Length
Bind

Unbind

Exec

Concat

Length

Fetch

Put OSFont, Msg
Update

Merge

Insert

Compare

Diff

Import List
Export List
*Init

*Term

*Yield

*Template

*Concatf

*Navigate

*Refresh

*Search

*Send

* - While most verbs apply to multiple objects, certain objects also support actions specific to that group. Verbs marked with an
asterisk are specific to one object.

HiTest orders function parameters with input parameters first and output parameters last. Most functions return an
HTSTATUS type return code, which is HTSUCCESS (zero) for success, and one of the nonzero HTFAIL constant
values for failure. These functions put all output values into parameters passed by reference to the function. A few
functions return a value when there is no significant failure information beyond a NULL or zero value. These
functions’ return values are commonly used as input to other functions.

Whenever reasonable, the same verb within different objects uses the same parameters (e.g., most GetInfo function
prototypes look similar). Parameter use is also generally consistent across functions. For example, for most
functions an input buffer length of zero directs HiTest to determine the length, and an output buffer length of zero
indicates the buffer is sufficiently large. Some parameters are optional and allow a NULL or zero value. The
function parameter descriptions describe the effects of a NULL or zero value.

Chapter 4 HiTest Functions 19

4.2 Function Descriptions

The function descriptions are divided into HiTest API functional groupings by object. The objects are listed
alphabetically, and the functions alphabetically within their object. The global functions are provided first, since they
do not comprise an object, but rather miscellaneous top-level functions. A description of the object itself precedes
each group of functions. The object description includes structures, enumerations, and flags relevant to an object’s
functions. Various objects and functions use fonts, which are described in their own section.

The function descriptions use the following format:

htObjectVerbModifier

Summary

Syntax

Description

Parameters

Returns

Example

See Also

One-line summary of the function.

RETURN TYPE htObjectVerbModifier (parml name,
parm2 name) ;

HTTYPE PARMI1 parml name; /* Input/Output spec
* / o o

HTTYPE PARM2 parm2_ name; /* Input/Output spec
*/

Detailed description of the function.

PARMI NAME

Description of parameter 1.

PARM2 NAME

Description of parameter 2.

RETURN TYPE with description. Functions returning HTSTATUS values list common failure
conditions. This section does not list generic HTSTATUS errors (e.g.,
HTFAIL NULL PARAMETER, HTFAIL NOT INIT) since most functions can return these
errors.

htObjectVerbModifier (parml, parm2);

List of related functions

Chapter 4 HiTest Functions 20

(Global)

These functions are global within a process or task. These functions have no context beneath the process level (i.e.,
no other functions affect their operation), and are always usable (after calling htlnit). While there are other functions
with no context, these functions are in the global classification because they do not apply to any object.

Every HiTest API program must initialize and terminate the HiTest API. Until calling the HiTest initialization
function htlnit, all other functions will fail. Additionally, every HiTest program must call the htTerm function after
all HiTest function calls are complete and before the program terminates. It is crucial to call the termination function
to avoid leaving the system in a dangerous state.

The global group contains the following functions:

htConvert Converts data between data types

htConvertLength Returns the length of data converted as indicated
htGetEnvString Retrieves the value of a Notes environment string variable
htGetInfo Obtains a piece of process-level information

htlnit Initializes the HiTest API

htSetEnvString Assigns the value of a Notes environment string variable
htSetOption Assigns the value of a global option

htTerm Terminates the HiTest API

Chapter 4 HiTest Functions 21

src len, src buffer,

dest len, dest buffer,

/* Input */

/* Input, Optional */

/* Input */

/* Input, Optional

/* Output, Optional */

Converts data between HiTest data types. HiTest writes the converted data into a supplied buffer,
and optionally returns the new length. HiTest supports conversion between any data types, with
two exceptions. First, HiTest cannot convert between any numeric type (INT, NUMBER,
NUMBER LIST) and any datetime type (DATETIME, TIME LIST). Second, the only valid

htConvert
Summary Converts data between data types.
Syntax HTSTATUS htConvert (src type,
dest type,
actual len);
HTTYPE src_type;
HTINT src_len;
void *src buffer; /* Input */
HTTYPE dest type;
HTINT dest len;
*/ o
void *dest buffer; /* Output */
HTINT *actual len;
Description
conversion involving COMPOSITE is to and from TEXT.
Parameters SRC TYPE

The data type of the source data.

SRC_LEN

The length of the source data. A value of zero directs HiTest to determine the length.

SRC_BUFFER

A pointer to the source data.

DEST TYPE

The data type to convert to in the destination buffer.

Chapter 4 HiTest Functions 22

DEST LEN

The length of the destination buffer. A value of zero indicates that the buffer is large enough to
hold the result data. A length which is insufficient to contain the result is only valid when the
destination type is HTTYPE TEXT and the global option TEXT TRUNCATE is active. In this
case, the resulting text is truncated to fit in the buffer.

DEST BUFFER

The destination buffer.

ACTUAL LEN

If given, this parameter receives the length of the result buffer data.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CONVERT (source type does not convert to destination type);
HTFAIL OVERFLOW (destination buffer is too small);
HTFAIL BAD FORMAT (source data conversion to destination type failed).

Example HTSTATUS status;
HTINT newlen;
HTDATETIME date;
status = htConvert (HTTYPE TEXT, 0, "Jan 29, 1966",
HTTYPE DATETIME, sizeof (HTDATETIME),

&date, &newlen);

See Also htConvertLength, htSetOption

Chapter 4 HiTest Functions 23

htConvertLength
Summary Returns the length of data converted as indicated.
Syntax HTINT htConvertLength (src type, src len, src buffer,
dest type);
HTTYPE src_type; /* Input */
HTINT src_len; /* Input, Optional */
void *src buffer; /* Input */
HTTYPE dest type; /* Input */
Description Determines the length of data resulting from the indicated conversion. Used to determine the

buffer length needed when converting to a variable length type. See the htConvert description for a
list of invalid conversions.

Parameters SRC_TYPE

The data type of the source data.

SRC_LEN

The length of the source data. A value of zero directs HiTest to determine the length.

SRC_BUFFER

A pointer to the source data.

DEST TYPE

The destination data type.

Returns HTINT length of result data. Returns zero for an invalid or illegal conversion.

Example char *string = NULL;
HTINT length;
double number = 3.456;

HTSTATUS htstatus;

See Also

Chapter 4 HiTest Functions 24

length = htConvertLength (HTTYPE NUMBER, 0, &number,
HTTYPE TEXT) ;
if (length != 0)
{
string = malloc (length + 1);
status = htConvert (HTTYPE NUMBER, 0, &number,

HTTYPE TEXT, length, string, NULL);

htConvert

Chapter 4 HiTest Functions 25

htGetEnvString

Summary

Syntax

Description

Parameters

Returns

Retrieves the value of a Notes environment string variable.

HTSTATUS htGetEnvString (name, length, wvalue);

char *name; /* Input */
HTINT length; /* Input, Optional */
char *value; /* Output */

Retrieves the value of a Notes environment string variable. Notes stores environment variables in
the NOTES.INI file. Use the htSetEnvString function to modify Notes environment variables. To
retrieve import/export formats, which are stored in multiple environment variables, use the
functions htCompImportList and htCompExportList.

NAME

The name of the environment variable to retrieve. In the NOTES.INI file, this is the string to the
left of the equal sign. Some examples of useful standard Notes environment variables are:

“Directory” Notes data directory

“MailServer” Server name on which Notes user’s mailbox resides
“MailFile” Database filename of Notes user’s mailbox
“Domain” Notes user’s domain

LENGTH

The length of the value buffer to receive the environment variable value. The constant
HTLEN _ENV_STRING defines the maximum length of an environment variable string. A length
of zero indicates that the buffer is large enough to hold the result.

VALUE

The buffer to receive the environment variable The constant HTLEN _ENV_STRING defines the
maximum length of an environment variable string. In the NOTES.INI file, this is the string to the
right of the equal sign.

HTSTATUS return code. Failures include:

HTFAIL DATA UNAVAIL (no such environment string).

Example

See Also

Chapter 4 HiTest Functions

char env_string [HTLEN ENV_STRING + 1];

HTSTATUS status;
status = htGetEnvString ("VARNAME", 0, env string);

htSetEnvString, htCompImportList, htCompExportList

26

Chapter 4 HiTest Functions 27

htGetinfo
Summary Obtains a piece of process-level information.
Syntax HTSTATUS htGetInfo (item, buffer);
HTGLOBINFO item; /* Input */
void *pbuffer; /* Output */
Description Fetches one of various process-level information items into a supplied buffer. Each item has a data
type, and the buffer must be large enough to hold the result.
Parameters ITE

One value from an enumeration of global items. Each item corresponds to a type (and length, for
variable length types). The following table lists legal items with their corresponding data types
and, where relevant, lengths:

constant type

HTGLOBINFO USERNAME char [HTLEN USERNAME + 1]
HTGLOBINFO SERVERNAME char [HTLEN SERVERNAME +
1]

HTGLOBINFO CURRENTTIME HTDATETIME

HTGLOBINFO TIMEZONE HTINT

HTGLOBINFO DST HTBOOL

HTGLOBINFO HTVERSION char [HTLEN VERSION + 1]

USERNAME obtains the Notes user name in the Notes ID file;
SERVERNAME obtains the name of the locally running Notes server, if any;
CURRENTTIME obtains the current datetime;

TIMEZONE obtains the local time zone as an integer relative to GMT;

DST indicates whether daylight savings time is currently in effect;

VERSION returns the version of HiTest.

BUFFER

The buffer to receive the requested information. This buffer should be of sufficient length to
handle the result.

Returns

Example

See Also

Chapter 4 HiTest Functions

HTSTATUS return code. Failures include:
HTFAIL ILLEGAL _ENUM (invalid item).

char username [HTLEN USERNAME + 1];
HTSTATUS status;

status = htGetInfo (HTGLOBINFO USERNAME,

htInit

username) ;

28

htinit

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Chapter 4 HiTest Functions 29

Initializes the HiTest API.

HTSTATUS htInit (void);

For each process or task which uses HiTest functions, htlnit must be the first HiTest function
called. Any other function called before htInit will fail. Note that it is crucial that every HiTest API
program invoke both htlnit to start and htTerm when complete.

none.

HTSTATUS return code. Failures include:

HTFAIL_ALREADY INIT (htInit already called);

HTFAIL INCORRECT DLL (program compiled with an incompatible HiTest version).

HTSTATUS status;

status = htInit ()

htTerm

Chapter 4 HiTest Functions 30

htSetEnvString

Summary

Syntax

Description

Parameters

Returns

Assigns the value of a Notes environment string variable.

HTSTATUS htSetEnvString (name, value, create,
overwrite) ;

char *name; /* Input */

char *value; /* Input */

HTBOOL create; /* Input */

HTBOOL overwrite; /* Input */

Assigns a value to a Notes environment string variable. The calling program controls whether to
create a new environment variable and whether to overwrite an existing one. Notes stores
environment variables in the NOTES.INI file. Use the htGetEnvString function to retrieve Notes
environment variables. Use care when modifying Notes environment variables, since they affect
the Notes client and server programs.

NAME

The name of the environment variable to assign. In the NOTES.INI file, this is the string to the left
of the equal sign.

VALUE

The value to assign to the environment variable. The constant HTLEN ENV_STRING defines the
maximum length of an environment variable string. In the NOTES.INI file, this is the string to the
right of the equal sign.

CREATE

Whether to create the environment variable if it doesn’t exist (TRUE enables creation).

OVERWRITE

Whether to overwrite the environment variable if it does exist (TRUE enables overwrite).

HTSTATUS return code. Failures include:
HTFAIL DUPLICATE (name exists and overwrite is FALSE);
HTFAIL DATA_ UNAVAIL (name does not exist and create is FALSE);

HTFAIL_OVERFLOW (value is longer than the maximum environment string length).

Chapter 4 HiTest Functions 31

Example HTSTATUS status;
status = htSetEnvString ("VARNAME", "Variable Value",
TRUE,

FALSE) ;

See Also htGetEnvString

Chapter 4 HiTest Functions 32

htSetOption

Summary Assigns the value of a global option.

Syntax HTSTATUS htSetOption (option, number, string);
HTGLOBOPT option; /* Input */
HTINT number; /* Input, Optional */
char *string; /* Input, Optional */

Description Assigns a value to a global option or new cursor default. Depending on the option, the new value
is supplied in either the number or string parameter. When setting the value of cursor defaults, the
new value has no effect on existing cursors.

Parameters OPTION

One value from an enumeration of global options. Each option corresponds to either a string or
integer value. The option value indicates whether to use the string or numeric parameter (the
function ignores the other parameter). The following table lists legal options with their
corresponding data types, parameters, and defaults:

constant type parameter default
HTGLOBOPT BULK STORE HTBOOL number FALSE
HTGLOBOPT STRICT BIND HTBOOL number TRUE
HTGLOBOPT VIEW POSITION HTBOOL number FALSE
HTGLOBOPT FETCH SUMMARY HTBOOL number FALSE
HTGLOBOPT SUMMARY LIMIT HTINT number
8192
HTGLOBOPT LOCAL SERVERNAME char * string NULL
HTGLOBOPT TEXT TRUNCATE HTBOOL number TRUE

The basic functions of the options are described below:

When bulk store is active, HiTest does not commit changes in document data to disk during a
document close, but rather when closing the cursor itself. When bulk store is inactive, closing a
document commits all changes to disk.

Chapter 4 HiTest Functions 33

When strict binding is active, HiTest filters all document items through a form (i.e., HiTest uses
the form metadata for type-checking). Therefore, items in a document which are either not in the
document’s form or are of a different data type than the corresponding field in the document’s
form will not be accessible. When strict binding is inactive, the items in a document are not tied to
the form’s metadata. This option also affects certain indices. When executing a formula to produce
a flat index and strict binding is active, the index only includes documents of the active form.
Strict binding has no effect on the documents included in a view-based index, although it does
affect items within documents accessed from a view-based index.

When view position is active, view-based indices always keep depth-first ordinal position
information. This enables functions which use index positioning (e.g., htIndexGetPos and
htIndexSetPos) to find any element in a view-based index by ordinal location. This functionality
may significantly reduce speed. When view position is inactive, HiTest performs view-based
positioning off the top-level entries within the index and is much more efficient. This option has
no effect on flat indices.

When fetch summary is active, htDocFetch operations open documents with summary data only.
Use htDocFetch or the HTDOCHANDLE that it returns to access summary items only. When non-
summary items (composite and some other large items) are not needed, this option increases fetch
speed. When fetch summary is inactive, documents fetched always have all data available.

The value of summary limit determines the maximum length of an item which will have its
summary flag set. If the summary items for a single document exceed the value
HTLEN SUMMARY DATA, then Notes may not display the document properly in views, and
cell values may not be accessible. If the length of any single item exceeds
HTLEN SUMMARY DATA, then that item is not usable by Notes in any view. The default value
of this option is 8K. The constant HTLEN _SUMMARY DATA (15K) defines the maximum value
of this option).

When local servername is set, the string value assigned for the option is usable in place of NULL
to indicate the local server. Also, the list of available servers from htServerList includes this string.

When text truncate is active, retrieval of data as text supports truncation of results. Calls to
htConvert, htDocFetch, htltemFetch, and htCellFetch with the destination type set to
HTTYPE TEXT will truncate results if necessary, and will not generate an error. Conversions to
types other than text do not allow truncation. When text truncate is inactive, no conversions allow
truncation.

NUMBER

The numeric or boolean value for an option. When setting the value of a boolean option, use the
constants TRUE and FALSE.

STRING

The string value for an option.

Chapter 4 HiTest Functions 34

Returns HTSTATUS return code. Failures include:
HTFAIL ILLEGAL ENUM (invalid option);
HTFAIL OVERFLOW (value out of bounds).

Example HTSTATUS status;
status = htSetOption (HTGLOBOPT LOCAL SERVERNAME, O,

"Local") ;

See Also htConvert, htServerList, htCurOpen, htCurSetOption, htIndexGetPos, htindexSetPos, htDocFetch,
htltemFetch, htCellFetch

Chapter 4 HiTest Functions 35

htTerm
Summary Terminates the HiTest API.
Syntax HTSTATUS htTerm (void);
Description Shuts down the HiTest API for the current process or task. Before terminating, this function closes

any open cursors by calling htCurClose. After calling htTerm, no other HiTest functions may be
called except htlnit. It is crucial that every HiTest program call htTerm.

Parameters none.
Returns HTSTATUS return code.
Example HTSTATUS status;

status = htTerm () ;

See Also htInit, htCurClose

Chapter 4 HiTest Functions 36

Addin

The addin functions are for scheduling, server console control, and message logging. These functions allow a
program to exercise some control over a local Notes server console. Additionally, HiTest contains a scheduler which
programs can use to schedule actions at periodic intervals. Programs using addin functionality often run on a Notes
server, but this is not a requirement. Addin programs are written and run like any other HiTest API program, but use
the htAddin functions.

The addin group contains the following functions:

htAddinGetlnterval Polls for scheduling interval events

htAddinPutMsg Logs an event in the Notes log and to the Notes server console
htAddinSetInterval Sets a scheduling interval

htAddinSetStatus Sets a Notes server console task status line

htAddinYield Yields processor control for a specified period

Chapter 4 HiTest Functions 37

htAddinGetinterval

Summary Polls for scheduling interval events.

Syntax HTSTATUS htAddinGetInterval (wait, interval,
iteration);

HTBOOL wait; /* Input */

HTINT *interval; /* Output */

HTINT *iteration; /* Output, Optional
*/

Description Polls the HiTest scheduler to determine if any assigned intervals have occurred. Programs may set

intervals with the htAddinSetInterval function. Each time an interval occurs, a call to
htAddinGetInterval succeeds and returns information about the interval. Programs can either poll
this function periodically or temporarily surrender program control. When a program surrenders
control, HiTest waits for the next interval and then returns. HiTest can manage multiple
simultaneous intervals.
When giving control to this function under Windows, messages are passed through to the calling
application by HiTest. A WM_QUIT message in this state causes this function to return to the
calling application for a normal shutdown. A nested call to this function or htAddinYield while
processing a message will fail.

Parameters WAIT

Returns

Whether to wait for the next interval. A value of TRUE directs htAddinGetlnterval to yield
processing until the next interval occurs. A value of FALSE directs htAddinGetInterval to return
immediately, regardless of whether an interval has occurred.

INTERVAL

The buffer to receive the interval which occurred. The interval is the same value set with
htAddinSetInterval. If no interval has occurred, HiTest sets this value to zero.

ITERATION

The buffer to receive the execution count for this interval. The first time an interval occurs, HiTest
sets this value to one, and then one greater each succeeding interval. This is useful for performing
an action after an interval occurs a certain number of times. If no interval has occurred, HiTest sets
this value to zero.

HTSTATUS return code. Failures include:

Example

See Also

Chapter 4 HiTest Functions

HTFAIL DATA UNAVAIL (no intervals set or no interval has occurred);

38

HTFAIL_END_ OF DATA (Windows nested callback or WM_QUIT received).

HTINT interval, iteration;
HTSTATUS status;
status = htAddinSetInterval (60);

while ('htAddinGetInterval (TRUE,
&iteration))

printf ("\nAnother %1d seconds
interval);

htAddinSetInterval, htAddinYield

&interval,

have passed",

Chapter 4 HiTest Functions 39

htAddinPutMsg
0S/2 1.3 only

Summary Logs an event in the Notes log and to the Notes server console.
Syntax HTSTATUS htAddinPutMsg (error, string);
HTBOOL error; /* Input */
char *string; /* Input */
Description Logs a message or error to the Notes log and server console. The message is of the format

<DATE> <TIME> <string>:<error>. This function controls the contents of the string and whether
to have HiTest append the error string. If there is no locally running Notes server, the message
appears on the standard output instead. When using this function, HiTest programs must be built
with a STRINGTABLE resource using the constant HTADDIN RESOURCE MSG with a
resource value of “%s”.

Parameters ERROR

Whether to append the current HiTest error message to the string. A value of TRUE and a valid
current error message will append a colon followed by the error message.

STRING

The string to use in the message.

Returns HTSTATUS return code. Failures include:
HTFAIL BAD FORMAT (no message data - string is NULL and error is FALSE)

Example HTSTATUS status;

status = htAddinPutMsg (TRUE, "Received an error
message") ;

See Also htAddinSetStatus, htErrorFetch

Chapter 4 HiTest Functions 40

htAddinSetinterval

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Sets a scheduling interval.

HTSTATUS htAddinSetInterval (interval);

HTINT interval; /* Input */

Sets or removes a scheduling interval for the HiTest scheduler. After setting an interval,
htAddinGetInterval will successfully return the interval event every “interval” seconds. HiTest can
manage multiple simultaneous intervals.

INTERVAL

The interval to set, in seconds. A negative interval removes the interval (e.g., -5 will remove any 5
interval). An interval of zero clears all intervals.

HTSTATUS return code. Failures include:

HTFAIL DUPLICATE (the interval exists);
HTFAIL DATA UNAVAIL (cannot remove an interval which isn’t set).

HTSTATUS status;

status = htAddinSetInterval (60);

htAddinGetlInterval, htAddinYield

Chapter 4 HiTest Functions 41

htAddinSetStatus
0S/2 1.3 only

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Sets a Notes server console task status line.

HTSTATUS htAddinSetStatus (show, status);
HTBOOL show; /* Input */

char *status; /* Input, Optional */

Controls the contents of any Notes server console status line for this task. When a HiTest program
is running on a Notes server, it may create a task status line on the Notes server. This line appears
in response to the SHOW TASKS console command (executable with the htServerExec function).
The line consists of a program name and status. For a program name to display, build the HiTest
program with a STRINGTABLE resource using the constant HTADDIN RESOURCE NAME.
Notes will display the value of this resource as the program name. This function controls whether
to display the status line, and the contents of the status part of the line. HiTest removes any status
line on termination.

SHOW

Whether to show a status line on the Notes server console. All programs start with no status line. A
value of TRUE displays the status line. A value of FALSE removes any displayed status line.

STATUS

The status value to display. HiTest ignores this parameter if the show parameter is FALSE. To
display a status line but no status value, use NULL or the empty string.

HTSTATUS return code. Failures include:
HTFAIL DATA UNAVAIL (HiTest cannot set the status line).

HTSTATUS status;

status = htAddinSetStatus (TRUE, "Addin task status
line");

htAddinPutMsg, htServerExec, htTerm

Chapter 4 HiTest Functions 42

htAddinYield

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Yields processor control for a specified period.

HTSTATUS htAddinYield (delay msec);

HTINT delay msec; /* Input */

Suspends processing of the current task or process for a specified time. This functionality is also
available within the htAddinGetInterval function, in the form of waiting for a scheduler interval.
When running under Windows and not using the wait option of htAddinGetlnterval, programs
should call this function periodically with a delay of zero to allow other tasks to run.

When giving control to this function under Windows, messages are passed through to the calling
application by HiTest. A WM_QUIT message in this state causes this function to return to the
calling application for a normal shutdown. A nested call to this function or htAddinGetlnterval
while processing a message will fail.

DELAY_MSEC

The number of milliseconds to wait before resuming processing. A value of zero will surrender
only the current timeslice.

HTSTATUS return code. Failures include:

HTFAIL BAD FORMAT (negative delay is invalid);
HTFAIL _END OF DATA (Windows nested callback or WM_QUIT received).

HTSTATUS status;

status = htAddinYield (1000);

htAddinSetInterval, htAddinGetInterval

Chapter 4 HiTest Functions 43

Cell

A Notes view contains both metadata and data. The metadata part is a set of columns. The data part is a set of cells.
Each row in a view represents a document, a category, or totals. The overall view data creates an NxM table of data
cells, where N is the number of columns and M is the number of documents. Notes computes these read-only cells
from document data. The primary attributes of a cell are a column number, a view row, and a data value.

To render cell data into a view resembling the Notes UI format, programs must follow certain guidelines. The Notes
UI normally truncates the data for a given cell at the right boundary of the cell’s column. In two situations, though, a
cell’s data overruns the right boundary, and no more cell data exists for the row. The first case is for response
documents in response-only columns (indicated by the flags field in the column attributes structure). The second
case is for category rows (indicated by the document ID returned from htindexNavigate. Additionally, when a view
row is beneath the top level (i.e., a response document or a cascading category), the indent returned from
htIndexNavigate indicates the number of indentation levels. The Notes Ul represents each indentation level with
three spaces preceding the row’s data. Finally, if a column’s attributes have the ICON flag set, then the cell data
indicates the Notes icon to use in place of the data value. There are five icons, represented by the values “1” through
“5”, which are described in the Lotus Notes application documentation.

The cell group contains the following functions:

htCellBind Binds a cell column to a program variable
htCellFetch Converts and retrieves the data for a cell into a supplied buffer
htCellLength Obtains the length of a cell as converted to a specified data type

htCellUnbind Removes the binding of a cell column

Chapter 4 HiTest Functions 44

htCellBind

Summary

Syntax

Description

Parameters

Binds a cell column to a program variable.

HTSTATUS htCellBind (cursor, column, type, length,
buffer,

datalen);
HTCURSOR cursor; /* Input */
HTINT column; /* Input */
HTTYPE type; /* Input, Optional */
HTINT length; /* Input, Optional */
void *buffer; /* Input */
HTINT *datalen; /* Input, Optional

*/

Creates a ‘binding’ between a variable in the calling program and a cell / view column in the
active view-based index. Use htDocFetch to fetch data for bound cells from the current entry in a
view-based index. Use cell binding when fetching the same set of cells from multiple view rows.
Create cell bindings after using htFormulaExec to produce a view-based index. Remove cell
bindings with htFormulaExec, htCurReset, or htCellUnbind with the same column number.
Fetching a document causes all bound cells to be converted and transferred from the current view
row to the bound buffers. Unlike bound items, cell binding is not relevant for data storing
(htDocPut and htDocUpdate).

CURSOR

The cursor containing the desired index.

COLUMN

The column number to bind. The first column number in a view is one.

TYPE

The data type for data in the supplied buffer. When fetching, HiTest converts cell data to this type
before writing it into the buffer. This enables automatic conversion between a cell’s data and the
supplied buffer. A value of zero directs HiTest to use the type HTTYPE TEXT.

Returns

Example

See Also

Chapter 4 HiTest Functions

LENGTH

The maximum length of the supplied buffer. Use zero when supplying a buffer known to be of

sufficient length.

BUFFER

The buffer into which to copy the cell data.

DATALEN

The buffer to receive the fetched cell data length. When fetching a cell, HiTest sets this value to

the actual length of the data retrieved. Use NULL to omit this functionality.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL DATA UNAVAIL (no active view-based index);
HTFAIL INVALID COLUMN (column number is out of range).

char date string [HTLEN DATETIME TEXT + 1];
HTSTATUS status;

status = htCellBind (cursor, 1, HTTYPE TEXT,
date string,

NULL) ;

htCellUnbind, htFormulaExec, htDocFetch, htitemBind, htCurReset

0,

Chapter 4 HiTest Functions 46

htCellFetch

Summary Converts and retrieves the data for a cell into a supplied buffer.

Syntax HTSTATUS htCellFetch (cursor, column, type, length,
buffer);

HTCURSOR cursor; /* Input */

HTINT column; /* Input */

HTTYPE *type; /* Input/Output, Optional */
HTINT *length; /* Input/Output, Optional
*/

void *buffer; /* Output */

Description Transfers the cell’s data from the current view-based index entry to a supplied buffer. If requested,
HiTest converts the data before writing it to the buffer. Use htCellLength to determine the required
buffer length.

Parameters CURSOR

The cursor containing the view-based index.

COLUMN

The column number from which to retrieve cell data.

TYPE

The data type representing the destination type -- HiTest converts the cell data to this type before
writing it into the supplied buffer. A value directs HiTest to use the type HTTYPE TEXT.

LENGTH

The length of the supplied buffer. A value zero or a NULL pointer indicates that the buffer is large
enough to hold the result data. A value of zero directs HiTest to return the retrieved data length in
this location. Use htCellLength to determine the length before retrieving the data. A length which
is insufficient to contain the result is valid only when the destination type is HTTYPE TEXT and
the global option TEXT TRUNCATE is active. In this case, the resulting text is truncated to fit in
the buffer.

BUFFER

The buffer to receive the converted data value.

Returns

Example

See Also

Chapter 4 HiTest Functions

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL DATA UNAVAIL (no active view-based index);

HTFAIL INVALID COLUMN (column number is out of range);

HTFAIL INVALID CONVERT (cell type does not convert to requested type);

HTFAIL OVERFLOW (retrieved data does not fit in supplied buffer).

HTINT length = 0;

HTTYPE type = HTTYPE DATETIME;
HTDATETIME datetime;

HTSTATUS status;

status = htCellFetch (cursor, 1,
&datetime) ;

htCellLength, htFormulaExec, htiIndexNavigate

&type,

47

&length,

Chapter 4 HiTest Functions 48

htCellLength
Summary Obtains the length of a cell as converted to a specified data type.
Syntax HTSTATUS htCelllength (cursor, column, type, length);
HTCURSOR cursor; /* Input */
HTINT column; /* Input */
HTTYPE *type; /* Input/Output, Optional */
HTINT *length; /* Output */
Description Obtains the length of a cell’s data from the current view-based index entry as converted to a

specified data type. Use this length to allocate a buffer of the proper length for htCellFetch.

Parameters CURSOR

The cursor used containing the view-based index.

COLUMN

The column number for which the length is determined.

TYPE

The data type representing the destination type -- the length returned is the length of the cell data
as converted to this type. A value directs HiTest to use the type HTTYPE TEXT.

LENGTH

The buffer to receive the data length. This is the length of the data as converted to the requested
type.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL DATA UNAVAIL (no active view-based index);
HTFAIL INVALID COLUMN (column number is out of range);
HTFAIL INVALID CONVERT (cell type does not convert to requested type).

Example HTINT length;

Chapter 4 HiTest Functions 49

HTSTATUS status;

status = htCelllLength (cursor, 1,

HTTYPE TEXT,
&length) ;

See Also htCellFetch

Chapter 4 HiTest Functions 50

htCellUnbind
Summary Removes the binding of a cell column.
Syntax HTSTATUS htCellUnbind (cursor, column);
HTCURSOR cursor; /* Input */
HTINT column; /* Input */
Description Cancels the effects of any htCellBind performed with the same column number. Producing a new

index automatically cancels all bindings.

Parameters CURSOR

The cursor used in the binding operation.

COLUMN

The column number used in the binding operation.
Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL INVALID COLUMN (column number is not bound).

Example HTSTATUS status;

status = htCellUnbind (cursor, 1);

See Also htCellBind, htCurReset

Chapter 4 HiTest Functions 51

Column

A column defines one data column and optionally one index within a view. Notes produces rows (documents,
categories, and totals) when computing a view. The meeting of one column and one row is a cell. The primary
attributes of a column are a title and index.

The following flags define column attributes in the HTCOLUMN structure:

HTCOLUMN_ SORT Column is sorted (indexed)
HTCOLUMN SORT_CAT Column is a category

HTCOLUMN SORT_ DESC Sort descending (default is ascending)
HTCOLUMN HIDDEN Column is hidden

HTCOLUMN_ RESPONSE Column is a response-only column
HTCOLUMN_HIDE DETAIL Hide detail on subtotaled columns
HTCOLUMN ICON Display icon instead of text
HTCOLUMN JUSTIFY RIGHT Right justify (default is left)
HTCOLUMN JUSTIFY CENTER Center justify (default is left)

The column attributes may include no more than one of the following flags:

HTCOLUMN TOTAL Total all values
HTCOLUMN AVG PER CHILD Average per child
HTCOLUMN_PCT OF VIEW Percent of total view
HTCOLUMN PCT OF PARENT Percent of parent category
HTCOLUMN_ AVG_PER DOC Average per document

Use the HTCOLUMN MASK TOTAL constant to exclude non-totals attributes from column flags (e.g., flags &
HTCOLUMN_MASK_TOTAL).
htColumnList returns the following column attribute structure:

typedef struct
{

char name [HTLEN COLUMNNAME + 1]; /* Column name */
HTINT width; /* Display width in 1/8 avg. char
units */

HTFLAGS flags; /* Column flags (HTCOLUMN xxx)
*/

HTFONT font; /* Column font information */
} HTCOLUMN; /* Column attribute structure
*/

The column group contains the following functions:

htColumnCount Obtains the number of columns in a view

htColumnList Iterates through columns in a view

Chapter 4 HiTest Functions 52

htColumnCount

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Obtains the number of columns in a view.

HTSTATUS htColumnCount (cursor, viewid, colcount);

HTCURSOR cursor; /* Input */
HTVIEWID viewid; /* Input */
HTINT *colcount; /* Output */

Obtains the number of columns in the indicated view.

CURSOR

The cursor containing the view.

VIEWID

The view from which to obtain the column count.

COLCOUNT

The buffer to receive the number of columns in the view.

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID_ VIEW (view does not exist).

HTINT colcount;
HTSTATUS status;

status = htColumnCount (cursor, viewid, colcount);

htViewGetld, htColumnList

Chapter 4 HiTest Functions 53

htColumnList
Summary Iterates through columns in a view.
Syntax HTSTATUS htColumnList (cursor, viewid, first, column);
HTCURSOR cursor; /* Input */
HTVIEWID viewid; /* Input */
HTBOOL first; /* Input */
HTCOLUMN *column; /* Output */
Description Returns the first or next column information from the list of columns in the view.
Parameters CURSOR
The cursor containing the view.
VIEWID
The view from which to list columns.
FIRST
Whether to get the first or next column. TRUE resets the column list, FALSE obtains the next
column in the list. This value is always TRUE on the first call for a given view.
COLUMN
The structure to receive information on the column. See the Column object section preceding the
htColumn functions for a description of this structure and its contents.
Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID_ VIEW (view does not exist);
HTFAIL END OF DATA (no more columns).
Example HTCOLUMN column;

HTSTATUS status;

status = htColumnList (cursor, FALSE, &column);

See Also

Chapter 4

htViewGetld, htColumnCount

HiTest Functions

54

Chapter 4 HiTest Functions 55

Composite

Composite objects are a special free-form data type within Lotus Notes. Each composite consists of one or more
subcomponents called composite records. Internally, Notes stores a composite object as one or more items within a
document. When using multiple items, the name is the same for all the items, and HiTest handles and presents them
as a single item. The primary attributes of a composite are an item name, a handle, and a value. HiTest uses the
constant NULLHANDLE to represent an invalid composite handle. Composite data is synonymous with rich text or
compound text.

A composite handle represents an existing or new composite item. Obtain a handle to an existing composite item by
retrieving the item’s value with htDocFetch, htltemFetch, or htltemGetPtr. The composite handle is the value
retrieved by these functions. Certain composite functions (htCompCreate, htCompCopy, htCompCopySubset, and
htComplmport) create a new composite item in a supplied document. Normally, when closing a document
containing one or more open composite handles, HiTest stores the new composite values in the document (unless
discarding the changes -- see htDocClose). Alternatively, a composite item created with the htComp functions with a
NULL or empty item name is a temporary composite value discarded when the composite handle becomes invalid.
This functionality is useful as a composite scratchpad or when manipulating composite data from a composite item
considered read-only. HiTest supports multiple nameless composite items within a document (i.e., the composite
handles are different for each).

The composite group contains the following functions:

htCompCopy Creates a new composite whose contents are a copy of another composite
htCompCopySubset Creates a new composite whose contents are a partial copy another composite
htCompCreate Creates a new, empty composite within a document

htCompExport Exports a composite to a file in a selected format

htCompExportList Iterates through available composite export formats

htCompGetInfo Obtains a piece of information from and about an open composite
htCompGetOSFont Obtains operating system-specific font information from a Notes font
htCompImport Imports and converts a file into a new composite

htCompImportList Iterates through available composite import formats

htCompListText Iterates through text in a composite.

htCompMerge Merges the contents of one composite into another composite

htCompPutOSFont Generates a Notes font from operating system-specific font information

Chapter 4 HiTest Functions 56

htCompCopy

Summary

Syntax

Description

Parameters

Returns

Creates a new composite whose contents are a copy of another composite.

HTSTATUS htCompCopy (src_comphand, dest dochand,
itemname,

dest comphand) ;

HTCOMPHANDLE src_comphand; /* Input */

HTDOCHANDLE dest dochand; /* Input */

char *itemname; /* Input, Optional
*/

HTCOMPHANDLE *dest comphand; /* Output */

Creates a new composite within a document from the data in an existing composite. The new
composite becomes an item in the document with the given item name. Creating a composite with
no item name results in a temporary composite that is destroyed when closing the document.

SRC_COMPHAND

The composite to copy.

DOCHAND

The document in which to create the new composite.

ITEMNAME

The item name for the new composite. An item name of NULL or the empty string creates a
temporary composite for use as a scratchpad. Closing the containing document destroys a
temporary composite.

NEWCOMP

The buffer to receive the handle to the new composite.

HTSTATUS return code. Failures include:

HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL INVALID FIELD (field is not in the document’s form).

Example

See Also

Chapter 4 HiTest Functions

HTCOMPHANDLE newcomp;
HTSTATUS status;

status = htCompCopy (oldcomp,
&newcomp) ;

htCompCreate, htCompCopySubset

dochand,

57

"NewBody",

Chapter 4 HiTest Functions 58

htCompCopySubset

Summary

Syntax

Description

Parameters

Creates a new composite whose contents are a partial copy of another composite.

HTSTATUS htCompCopySubset (src comphand, start, count,
dest dochand, itemname,
dest comphand) ;

HTCOMPHANDLE src_comphand; /* Input */

HTINT start; /* Input */

HTINT count; /* Input */
HTDOCHANDLE dest dochand; /* Input */

char *itemname; /* Input, Optional
*/

HTCOMPHANDLE *dest comphand; /* Output */

Creates a new composite within a document from part of the data in an existing composite. The
new composite becomes an item in the document with the given item name. Creating a composite
with no item name results in a temporary composite destroyed when closing the document.

SRC_COMPHAND

The composite to copy.

START

The composite record index in the source composite at which to begin the data copy. The first
composite record is index one. Use the htComprecCount function to obtain the last index for a
particular composite.

COUNT

The number of composite records to copy from the source composite.

DOCHAND

The document in which to create the new composite.

Chapter 4 HiTest Functions 59

ITEMNAME

The item name for the new composite. An item name of NULL or the empty string creates a
temporary composite for use as a scratchpad. Closing the containing document destroys a
temporary composite.

NEWCOMP

The buffer to receive the handle to the new composite.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL INVALID_ FIELD (field is not in the document’s form);

HTFAIL END OF DATA (index is invalid).

Example HTCOMPHANDLE newcomp;
HTSTATUS status;
status = htCompCopySubset (oldcomp, 1, 20, dochand,

"NewBody", &newcomp) ;

See Also htCompCopy, htComprecCount

Chapter 4 HiTest Functions 60

htCompCreate

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Creates a new, empty composite within a document.

HTSTATUS htCompCreate (dochand, itemname, newcomp) ;

HTDOCHANDLE dochand; /* Input */

char *itemname; /* Input, Optional
*/

HTCOMPHANDLE *newcomp; /* Output */

Creates a new empty composite within a document. The new composite becomes an item in the
document with the given item name. Creating a composite with no item name results in a
temporary composite destroyed when closing the document.

DOCHAND

The document in which to create the composite.

ITEMNAME

The item name for the new composite. An item name of NULL or the empty string creates a
temporary composite for use as a scratchpad. Closing the containing document destroys a
temporary composite.

NEWCOMP

The buffer to receive the handle to the new composite.

HTSTATUS return code. Failures include:
HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL INVALID FIELD (field is not in the document’s form).

HTCOMPHANDLE comphand;
HTSTATUS status;

status = htCompCreate (dochand, "NewBody", &comphand);

htCompGetlnfo, htCompCopy, htCompImport

Chapter 4 HiTest Functions 61

htCompExport

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Exports a composite to a file in a selected format.

HTSTATUS htCompExport (comphand, filename, format);
HTCOMPHANDLE comphand; /* Input */
char *filename; /* Input */

char *format; /* Input */

Creates a file from a composite object. HiTest supports export to any export format normally
supported by Notes.

COMPHAND

The composite to export.

FILENAME

The file in which the exported data goes. Use the fully specified path if the file is not in the current
working directory.

FORMAT

The composite export format to use for conversion. Use htCompExportList to obtain a list of
available export formats.

HTSTATUS return code. Failures include:
HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL INVALID IMPEXP (invalid export format).

HTSTATUS status;
status = htCompExport (comphand, "filename.rtf",

"MicrosoftWord RTFE") ;

htCompExportList, htCompImport

Chapter 4 HiTest Functions 62

htCompExportList
Summary Iterates through available composite export formats.
Syntax HTSTATUS htCompExportList (first, format, extensions);
HTBOOL first; /* Input */
char *format; /* Output */
char *extensions; /* Output, Optional */
Description Returns the first or next composite export format information from the list of composite export
formats.
Parameters FIRST
Whether to get the first or next composite export format information. TRUE resets the export
format list, FALSE simply obtains the next export format in the list. The value is always TRUE on
the first call after htlnit.
FORMAT
The buffer to receive the composite export format string. Each format string defines one export
format for the htCompExport function. The constant HTLEN IMPEXPINFO defines the
maximum format string length.
EXTENSIONS
The buffer to receive the composite export format file extensions. Commas separate the
extensions, which include the period (e.g., “.txt,.asc”’). The constant HTLEN IMPEXPINFO
defines the maximum extension string length.
Returns HTSTATUS return code. Failures include:
HTFAIL END_ OF DATA (no more export formats).
Example char format [HTLEN IMPEXPINFO + 1];
char extensions [HTLEN IMPEXPINFO + 1];
HTSTATUS status;
status = htCompExportList (FALSE, format, extensions);
See Also htCompExport, htCompImportList

Chapter 4 HiTest Functions 63

htCompGetinfo

Summary

Syntax

Description

Parameters

Obtains a piece of information from and about an open composite.

HTSTATUS htCompGetInfo (comphand, item, buffer);

HTCOMPHANDLE comphand; /* Input */
HTGLOBINFO item; /* Input */
void *pbuffer; /* Output */

Fetches one of various composite-level information items into a supplied buffer. Each item has a
data type and the buffer must be sufficiently large to hold the result.

COMPHAND

The composite on which to obtain information.

ITE

One value from an enumeration of composite items. Each item corresponds to a type. The
following table lists legal items with their corresponding data types and, where relevant, lengths:

constant type

HTCOMPINFO ITEMNAME char [HTLEN FIELDNAME + 1]
HTCOMPINFO ISDIRTY HTBOOL

HTCOMPINFO HTDOCHANDLE HTDOCHANDLE
HTCOMPINFO HTCURSOR HTCURSOR

ITEMNAME obtains the name of the composite item in the document.
ISDIRTY obtains a boolean which indicates whether data has been altered;
HTDOCHANDLE obtains the HiTest document handle containing this composite;

HTCURSOR obtains the HiTest cursor in which this composite’s document was opened.

BUFFER

The buffer to receive the requested information. This buffer should be of sufficient length to
handle the result.

Chapter 4 HiTest Functions 64

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL ILLEGAL _ENUM (invalid item).

Example char compitem [HTLEN FIELDNAME + 1];

HTSTATUS status;

status = htCompGetInfo (comphand, HTCOMPINFO ITEMNAME,

compitem) ;

See Also htltemFetch, htDocOpen, htDocFetch, htCompCreate

Chapter 4 HiTest Functions 65

htCompGetOSFont
Windows only
Summary Obtains operating system-specific font information from a Notes font.
Syntax HTSTATUS htCompGetOSFont (comphand, htfont, osfont);
HTCOMPHANDLE comphand; /* Input */
HTFONT *font; /* Input */
OSFONT *osfont; /* Output */
Description Given a Notes font, obtains operating system-specific font information. HiTest represents OS-

specific information with an OS-specific structure.

Parameters COMPHAND

The composite containing the font.

FONT

The Notes font about which to obtain operating system-specific information. If the font is not a
standard Notes font, HiTest obtains the information from an internal font item in the composite’s
document.

OSFONT

The operating system-specific font information. The OSFONT is an operating system-specific
typedef. Currently only the Windows version of HiTest supports this function, which defines
OSFONT as LOGFONT.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL INVALID FONT (cannot find font in document).

Example OSFONT osfont;
HTSTATUS status;

status = htCompGetOSFont (comphand, htfont, &osfont);

See Also htCompPutOSFont

Chapter 4 HiTest Functions 66

htComplimport
Summary Imports and converts a file into a new composite.
Syntax HTSTATUS htCompImport (dochand, itemname, filename,
format,
default font, comphand);
HTDOCHANDLE dochand; /* Input */
char *itemname; /* Input, Optional
*/
char *filename; /* Input */
char *format; /* Input */
HTFONT *default font; /* Input, Optional
*/
HTCOMPHANDLE *comphand; /* Output */
Description Creates a new composite and imports data from a file into the composite. HiTest supports import
to Notes format from any import format normally supported by Notes.
Parameters DOCHAND

The document in which to create the composite.

ITEMNAME

The item name for the new composite. An item name of NULL or the empty string creates a
temporary composite usable as a scratchpad. Closing the containing document destroys a
temporary composite.

FILENAME

The file to import. Use the fully specified path if the file is not in the working directory.

FORMAT

The composite import format to use for conversion. Use htCompImportList to obtain a list of
available import formats.

Chapter 4 HiTest Functions 67

DEFAULT FONT

The default font to use in the new composite. A value of NULL uses the standard default font.

COMPHAND

The buffer to receive the handle to the new composite.

Returns HTSTATUS return code. Failures include:
HTFAIL NULL PARAMETER (comphand and itemname are null - no destination);
HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL INVALID FIELD (field is not in the document’s form).
HTFAIL INVALID IMPEXP (invalid import format).

Example HTCOMPHANDLE comphand;
HTSTATUS status;
status = htCompImport (dochand, "Body", "filename.rtf",
"MicrosoftWord RTF", NULL,

&comphand) ;

See Also htCompImportList, htCompExport, htCompCreate

Chapter 4 HiTest Functions 68

htComplimportList
Summary Iterates through available composite import formats.
Syntax HTSTATUS htCompImportList (first, format, extensions);
HTBOOL first; /* Input */
char *format; /* Output */
char *extensions; /* Output, Optional */
Description Returns the first or next composite import format information from the list of composite import
formats.
Parameters FIRST
Whether to get the first or next composite import format information. TRUE resets the import
format list, FALSE simply obtains the next import format in the list. The value is always TRUE on
the first call after htlnit.
FORMAT
The buffer to receive the composite import format string. Each format string defines one import
format for the htComplmport function. The constant HTLEN IMPEXPINFO defines the
maximum format string length.
EXTENSIONS
The buffer to receive the composite import format file extensions. Commas separate the
extensions, which include the period (e.g., “.txt,.asc”’). The constant HTLEN IMPEXPINFO
defines the maximum extension string length.
Returns HTSTATUS return code. Failures include:
HTFAIL END_OF DATA (no more import formats).
Example char format [HTLEN IMPEXPINFO + 1];
char extensions [HTLEN IMPEXPINFO + 1];
HTSTATUS status;
status = htCompImportList (FALSE, format, extensions);
See Also htCompImport, htCompExportList

Chapter 4 HiTest Functions 69

htCompListText

Summary Iterates through text in a composite.

Syntax HTSTATUS htCompListText (comphand, first, word wrap,
tab spaces, newline, length,
buffer, actual len);

HTCOMPHANDLE comphand; /* Input */

HTBOOL first; /* Input */

HTINT word wrap; /* Input,
Optional */

HTINT tab spaces; /* Input, Optional
*/

char *newline; /* Input, Optional
*/

HTINT length; /* Input */

char *buffer; /* Output */

HTINT *actual len; /* Output, Optional
*/

Description Returns the first or next text data from a composite. Unlike standard conversion with htConvert,
this function can retrieve and apply formatting to all text within a composite by iterating through
the text in the composite. Non-text elements in the composite are ignored. This function optionally
performs certain text formatting: word wrap, tab replacement with spaces, and a program-defined
newline string. Multiple calls to this function for a single composite retrieves all text from the
composite.

Parameters COMPHAND

The composite from which to retrieve text.

FIRST

Whether to get the first or next text. TRUE resets the current text location marker, FALSE simply
obtains the next text in the composite. The value is always TRUE on the first call for a given
composite handle.

Chapter 4 HiTest Functions 70

WORD_WRAP

The character position at which to begin a new line. No lines will extend past this position, and
this function moves words which run past this position to the next line. A value of zero results in
no word wrapping. When using word wrapping, lines of text returned will not be split across calls
to this function.

TAB_COUNT

The number of spaces which replace each tab character. A value of zero directs HiTest to strip tabs
from text without replacement. A value of HTCOMP_TAB KEEP directs HiTest to keep tabs in
the text buffer rather than replace them.

NEWLINE

The string to use in the retrieved text for each newline. A value of NULL directs HiTest to use the
default newline string “\r\n” as the newline delimiter.

LENGTH

The length of the supplied buffer to receive the text.

BUFFER

The buffer to receive the text.

ACTUAL LEN

The buffer to receive the length of text placed in the buffer. When using word wrapping, this may
be up to one line less than the buffer supplied, even though more text is available.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL OVERFLOW (length of zero or less than one line with word wrap is invalid);
HTFAIL END OF DATA (no more text in the composite).

Example char *buffer;
HTINT length;
HTSTATUS status;

buffer malloc (BUFLEN + 1);

status htCompListText (comphand, TRUE, 80, 8, NULL,

See Also

Chapter 4

htConvert, htltemFetch, htltemGetPtr

HiTest Functions

BUFLEN, buffer,

&length) ;

71

Chapter 4 HiTest Functions 72

htCompMerge

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Merges the contents of one composite into another composite.

HTSTATUS htCompMerge (maincomp, addcomp, index);

HTCOMPHANDLE maincomp; /* Input */
HTCOMPHANDLE addcomp; /* Input */

HTINT index; /* Input, Optional
*/

Inserts the contents of one composite into another composite at a specified index. The insertion
does not affect the composite being added into the other composite.

MAINCOMP

The ‘main’ composite, into which to merge the added composite (i.c., the composite which is
changing).

ADDCOMP

The composite to merge into the main composite.

INDEX

The composite record index in the main composite at which to perform the merge. The first
composite record is index one. Use the htComprecCount function to obtain the last index for a
particular composite. A value of zero directs HiTest to use the location past the last composite
record, resulting in concatenation.

HTSTATUS return code. Failures include:

HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL DUPLICATE (cannot merge a composite into itself);
HTFAIL_END_OF_DATA (index is invalid).

HTSTATUS status;

status = htCompMerge (maincomp, addcomp, O0);

htComprecCount

Chapter 4 HiTest Functions 73

htCompPutOSFont

Windows only

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Generates a Notes font from operating system-specific font information.

HTSTATUS htCompPutOSFont (comphand, osfont, htfont);
HTCOMPHANDLE comphand; /* Input */
OSFONT *osfont; /* Input */

HTFONT *font; /* Output */

Given an operating system-specific font, generates a Notes font. A font not currently used in the
composite’s document is stored in an internal font item in the document. HiTest represents OS-
specific information with an OS-specific structure.

COMPHAND

The composite which will contain the font.

OSFONT

The operating system-specific font information. The OSFONT is an operating system-specific
typedef. Currently, only the Windows of HiTest supports this function, which defines OSFONT as
LOGFONT.

FONT

The buffer to receive the Notes font.

HTSTATUS return code. Failures include:
HTFAIL INVALID COMPOSITE (invalid composite handle).

HTFONT htfont;
HTSTATUS status;

status = htCompPutOSFont (comphand, osfont, &htfont);

htCompGetOSFont

Chapter 4 HiTest Functions 74

Comprec

Comprec is an abbreviation for composite record. One or more ordered composite records make up a composite. The
primary attributes of a composite record are a composite record type, an index, and a value. Currently, HiTest does
not support all composite record types available within Lotus Notes, although the common types are supported.
Each composite record type is manipulated with a composite record structure prefixed with HTC .

The following constants define PABDEF justification flags in the HTC_PABDEF structure:

HTPABJUSTIFY LEFT Left justification
HTPABJUSTIFY RIGHT Right justification
HTPABJUSTIFY FULL Full (left and right) justification
HTPABJUSTIFY CENTER Center justification
HTPABJUSTIFY NONE No word wrap

The following flags define PABDEF flags in the HTC PABDEF structure:

HTPAB_PAGE_ BEFORE Paragraph starts a new page

HTPAB_KEEP WITH NEXT Keep with next paragraph

HTPAB KEEP TOGETHER Don't split lines in paragraph

HTPAB_PROPAGATE Propagate PAGE_BEFORE and KEEP_ WITH_NEXT
HTPAB_HIDE READ Hide paragraph in view mode

HTPAB_HIDE EDIT Hide paragraph in edit mode

HTPAB HIDE PRINT Hide paragraph when printing

HTPAB DISPLAY RIGHT Honor right margin when displaying

HTPAB_HIDE COPY Hide paragraph when copying/forwarding

Use the constant TWIPS PER INCH to manipulate HTC_PABDEF margin fields in inches. A TWIP is a term used
in Notes as a fraction (1/1440) of an inch.

The following flags define DDE and OLE clipboard flags in the HTC DDE and HTC OLE structures:

HTCLIP_TEXT Text
HTCLIP_METAFILE Metafile or MetafilePict
HTCLIP_BITMAP Bitmap

HTCLIP_RTF Rich text format

The following flags define DDE flags in the HTC DDE structure:

HTDDE HOTLINK Hot DDE link
HTDDE WARMLINK Warm DDE link
HTDDE ISEMBED Embedded document is used

The following flags define OLE flags in the HTC OLE structure:

HTOLE _EMBEDDED Object is an embedded OLE object
HTOLE LINK Object is an OLE link object
HTOLE HOTLINK The OLE link object is automatic (hot)

HTOLE_WARMLINK The OLE link object is manual (warm)

Chapter 4 HiTest Functions

The following table describes the composite record types:

HTCOMP
enumeration Description and structure
PABDEF A Paragraph Attribute Block Definition. A PABDEF defines the format of a paragraph.
While multiple paragraphs may use the same PABDEF, each PABDEF normally occurs
only once. After each paragraph begins, a PABREF references the proper PABDEF by its
identifier (PABID) field. A PABDEF must come before any references to that PABDEF.
The structure for an HTCOMP PABDEF record is an HTC PABDEF, and contains no
variable length component:
typedef struct
{
WORD pabid; /* ID for this PABDEF */
WORD justify; /* Justification method
(HTPABJUSTIFY xxx) */
WORD linespace; /* 2 * (line spacing - 1) */
WORD paraspace before; /* Linespace units before paragraph */
WORD paraspace after; /* Linespace units after paragraph */
WORD left margin; /* Left margin, in twips (1/1440 inch)
Notes default is TWIPS PER INCH */
WORD right margin; /* Right margin, in twips
Zero means 1" from right edge */
WORD first left margin; /* First line left margin, in twips */
WORD tab count; /* Number of tab stops in tabs table */
short int tabs [20]; /* Tab stops, in twips
Negative value means decimal tab */
WORD flags; /* PABDEF flags (HTPAB xxx) */
} HTC PABDEF; /* Composite record PAB definition */
PABREF A Paragraph Attribute Block Reference. This record occurs at the beginning of a
paragraph and indicates the PABDEF paragraph definition to use for the current
paragraph. A paragraph with no PABREF uses the PABDEF from the previous paragraph.
A PABREF contains only an identifier indicating the PABDEF to use. The structure for an
HTCOMP_PABREF record is an HTC PABREF, and contains no variable length
component:
typedef struct
{
WORD pabid; /* ID of the PABDEF to reference */
} HTC PABREF; /* Composite record PAB reference */
PARA An indicator to begin a new paragraph. A PARA does not contain any information or

value. The textual representation of a PARA is a newline. There is no structure for an
HTCOMP_PARA record, since it contains no data.

75

Chapter 4 HiTest Functions

TEXT

A run of text. Each TEXT value contains a font and a variable length text component. To
change fonts, use a new TEXT record. Notes displays consecutive text runs consecutively
(e.g., Notes displays the runs “ABC” and “DEF” as “ABCDEF”). Notes can represent a
newline within a text record by a NULL character, but usually uses a paragraph record for
a newline. Since embedded NULLs within text runs are valid, a NULL terminator cannot
be used to determine string length. When storing a text record, a length of zero indicates
no text rather than NULL terminated text. When reading text with htComprecFetch,
programs should allocate an extra NULL terminator byte, since HiTest adds a NULL after
the text run. This NULL is useful for string manipulation of text runs known to contain no
NULLs. The text length does not include this NULL, which does not represent a newline.
The structure for an HTCOMP_TEXT record is an HTC _TEXT, and contains a variable
length component:

typedef struct
{

HTFONT font; /* Text font */
HTINT length; /* Length of data. Zero indicates no text */
char *buffer; /* Pointer to data */

} HTC TEXT; /* Composite record text block */

BLOB

A catch-all composite record type for unknown composite record types. Manipulation of
BLOB contents requires knowledge of the internal structure of composite items defined in
the standard Notes API. A BLOB contains variable length data, including the internal
composite record signature. Any composite type may be retrieved as a BLOB, which is
the only composite conversion allowed. The structure for an HTCOMP_BLOB record is
an HTC_BLOB, and contains a variable length component:

typedef struct
{
HTINT length; /* Length of data (including header) */
char *buffer; /* Pointer to data (including header) */
} HTC BLOB; /* Generic composite record structure */

76

Chapter 4 HiTest Functions

DOCLINK

A Notes doclink. A doclink is a link to another Notes document, or any replica of that
document. The document is represented by a cursor, a view ID, and a document handle of
the document to which the link points. Additionally, each doclink contains a comment
normally constructed by HiTest (of the form “Database ‘Db title’, View ‘View title’,
Document ‘Document title’”). Programs can override this comment by setting the
comment and comment length structure fields when inserting a new doclink record.
When accessing a doclink, the read_comment only field determines whether to access the
comment information only or to access the entire doclink. When accessing the entire
doclink (read comment only = FALSE), HiTest creates both a cursor and document
handle which the calling program must close. HiTest ignores the read comment only
field when creating new doclinks.

typedef struct

{
HTCURSOR cursor; /* Cursor containing document */
HTVIEWID viewid; /* View to which the link points */

HTDOCHANDLE dochand;
WORD comment length;

char *comment;

/* Document to which

/* Length of display
Use zero on input

/* Link comment. If
(empty or NULL),

the link points */

comment

for null term */
omitted on input
built by HiTest */

HTBOOL read comment only; /* When reading, whether to only
retrieve the comment (TRUE), or to
open the cursor and document handle
(FALSE) */

} HTC_ DOCLINK; /* Composite record doclink */

DDE

A DDE link definition and starting point. A DDE link always begins with a DDE record
and must end with a DDE_END record. The DDE data is stored between these records as
other composite records. A simple DDE record contains values for the server, topic, and
item names; the value HTDDE HOTLINK for flags, and the value HTCLIP_TEXT for
clipboard. If a DDE link contains an embedded document (flag HTDDE ISEMBED flag,
embed count = 1), then the embedded document name is a variable length component at
embed name. The structure for an HTCOMP_DDE record is an HTC _DDE, and contains
a variable length component:

typedef struct

{
char server name [HTLEN DDE SERVER]; /* DDE server name */
char topic name [HTLEN DDE TOPIC]; /* DDE topic name */
char item name [HTLEN DDE ITEM]; /* DDE item name */
HTINT flags; /* DDE flags (HTDDE_ xxx) */
WORD embed count; /* Number of embedded docs (0 or 1) */
WORD clipboard; /* Clipboard format (HTCLIP xxx) */
WORD embed length; /* Length of embedded document name */
char *embed name; /* Embedded document name */

} HTC DDE; /* Composite record DDE object

starting point */

DDE_END

An indicator to end a DDE object. It is crucial that every DDE record has a matching
DDE _END record. A DDE_END does not contain any information or value. There is no
structure for an HTCOMP_DDE_END record, since it contains no data.

77

Chapter 4 HiTest Functions

OLE

An OLE 1.0 link definition and starting point. An OLE link always begins with an OLE
record and must end with an OLE_END record. The OLE data is stored between these
records as other composite records. An OLE object is either linked or embedded, and if
linked is either a hot or warm link. The OLE file is included in the document as a file
attachment. The name buffer field contains the name of the file attachment. When
creating a new OLE record, HiTest automatically attaches the specified file to the
document (do not use htFilePut). The file name must be given as a fully specified path.
HiTest constructs the filename of the attachment using an internally generated unique
number different from the filename submitted by the calling program. The generated
filename is stored in the composite record. When retrieving an OLE record, obtain the
attached file with the htFileFetch function, using the filename stored in the name buffer.

The name buffer field also stores the optional class and template names, if used. The name
buffer is a variable length component consisting of 1-3 strings (file name required, class
and template names optional) concatenated together. The lengths of each string are
defined in the file length, class length, and template length fields. Strings in the name
buffer are not NULL terminated. The structure for an HTCOMP_OLE record is an
HTC OLE, and contains a variable length component:

typedef struct
{

HTINT flags; /* OLE flags (HTOLE xxx) */

WORD clipboard; /* Clipboard format (HTCLIP xxx) */

WORD file length; /* Length of attached file name -
First string in name buffer */

WORD class_ length; /* Length of class name (optional) -
Second string in name buffer */

WORD template length; /* Length of template name (optional) -
Third string in name buffer */

char *name buffer; /* Name buffer containing 1-3 names,
lengths given in xxx length fields */

} HTC OLE; /* Composite record OLE object

starting point */

OLE_END

An indicator to end an OLE object. It is crucial that every OLE record has a matching
OLE END record. An OLE END does not contain any information or value. There is no
structure for an HTCOMP_OLE END record, since it contains no data.

The composite record group contains the following functions:

htComprecCount Obtains the number of composite records in a composite
htComprecDelete Deletes one or more consecutive composite records from a composite
htComprecFetch Retrieves the data from a composite record

htComprecGetPtr Retrieves the values and a data pointer from a composite record
htComprecInsert Inserts a single composite record into an existing composite
htComprecLength Obtains the length of the variable length portion of a composite record

htComprecList

Iterates through composite records in a composite

78

htComprecUpdate

Chapter 4 HiTest Functions

Modifies the contents of a single composite record

79

Chapter 4 HiTest Functions 80

htComprecCount

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Obtains the number of composite records in a composite.
HTSTATUS htComprecCount (comphand, count):;
HTCOMPHANDLE comphand; /* Input */

HTINT *count; /* Output */

Obtains the number of composite records in the composite. Each composite element (e.g., text run,
paragraph, etc.) is a single composite record.

COMPHAND

The composite from which to obtain the composite record count.

COUNT

The buffer to receive the number of composite records in the composite.

HTSTATUS return code. Failures include:
HTFAIL INVALID COMPOSITE (invalid composite handle).

HTINT count;
HTSTATUS status;

status = htComprecCount (comphand, &count);

htComprecList

Chapter 4 HiTest Functions 81

htComprecDelete

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Deletes one or more consecutive composite records from a composite.

HTSTATUS htComprecDelete (comphand, start, count);

HTCOMPHANDLE comphand; /* Input */
HTINT start; /* Input */
HTINT count; /* Input */

Deletes one or more consecutive composite records from a composite.

COMPHAND

The composite containing the composite records to delete.

START

The index of the first composite record to delete. The first index is one. Use htComprecCount to
obtain the last valid index.

COUNT

The number of composite records to delete.
HTSTATUS return code. Failures include:
HTFAIL INVALID COMPOSITE (invalid composite handle);

HTFAIL _END OF DATA (index is invalid).

HTSTATUS status;

status = htComprecDelete (comphand, 10, 5);

htComprecInsert, htComprecUpdate

Chapter 4 HiTest Functions 82

htComprecFetch

Summary

Syntax

Description

Parameters

Retrieves the data from a composite record.

HTSTATUS htComprecFetch (comphand, index, comptype,

compdata) ;

HTCOMPHANDLE comphand; /* Input */

HTINT index; /* Input */

HTCOMP *comptype; /* Input/Output, Optional
*/

void *compdata; /* Output */

Obtains the data from a specified composite record and copies it into a supplied structure. HiTest
also copies any variable length component into a supplied buffer within the structure. Certain
composite record types have no variable length component (e.g., PAB definition, paragraph).
Other composite record types do have a variable length component (e.g., text, blob). Composite
record data structures (HTC _ structures) with a pointer element have variable length components.
Use htComprecLength to determine the length of the variable length component for a specific
composite. The pointer element in the composite record structure must indicate a buffer (allocated
by the calling program) of this length. To obtain a faster read-only, temporary direct pointer to the
variable length component, use the similar function htComprecGetPtr.

COMPHAND

The composite containing the composite record.

INDEX

The index of the composite record from which to obtain the data. The first index is one. Use
htComprecCount to obtain the last valid index.

COMPTYPE

The type to fetch the composite record as. This value must be either HTCOMP_ BLOB, the type of
the composite record, or zero. If this value is zero, HiTest returns the composite record’s type in
this buffer. This type determines the format of the data at compdata.

COMPDATA

The data from the composite record. The data is one of multiple composite record structures
(structure names prefixed with HTC). The value of comptype determines the structure to use (i.e.,
if comptype is HTCOMP_TEXT, then compdata points to an HTC TEXT structure). If the
composite record structure has variable length data, allocate the buffer and set the pointer in the

Chapter 4 HiTest Functions 83

composite record structure before calling this function. Use htComprecLength to determine the
length of the buffer required.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL END OF DATA (index is invalid);
HTFAIL OVERFLOW (record variable length component pointer is NULL);
HTFAIL INVALID CONVERT (composite records only convert to BLOB);
HTFAIL_DATA UNAVAIL (cannot find doclink $LINKS item information);
HTFAIL INVALID DATABASE (cannot find doclink database);
HTFAIL INVALID DOCUMENT (cannot find doclink document);
HTFAIL INVALID VIEW (cannot find doclink view).

Example HTC PABDEF pabdef;
HTCOMP comptype = HTCOMP PABDEF;
HTSTATUS status;

status = htComprecFetch (comphand, 1, &comptype,
&pabdef) ;

See Also htComprecLength, htComprecGetPtr

Chapter 4 HiTest Functions 84

htComprecGetPtr

Summary

Syntax

Description

Parameters

Retrieves the values and a data pointer from a composite record.

HTSTATUS htComprecGetPtr (comphand, index, comptype,

compdata) ;

HTCOMPHANDLE comphand; /* Input */

HTINT index; /* Input */

HTCOMP *comptype; /* Input/Output, Optional
*/

void *compdata; /* Output */

Obtains the data from a specified composite record and copies it into a supplied structure. HiTest
also returns a temporary, read-only pointer to any variable length component in the structure.
Certain composite record types have no variable length component (e.g., PAB definition,
paragraph). Other composite record types do have a variable length component (e.g., text, blob).
Composite record data structures (HTC _ structures) with a pointer element have variable length
components. To obtain a modifiable copy of the data contents, use the similar function
htComprecFetch. This function is faster than htComprecFetch when accessing composite records
with variable length data.

COMPHAND

The composite containing the composite record.

INDEX

The index of the composite record from which to obtain the data. The first index is one. Use
htComprecCount to obtain the last valid index.

COMPTYPE

The type to retrieve the composite record as. This value must be either HTCOMP_BLOB, the type
of the composite record, or zero. If this value is zero, HiTest returns the composite record’s type in
this buffer. This type determines the format of the data at compdata.

COMPDATA

The data from the composite record. The data is one of multiple composite record structures
(structure names prefixed with HTC). The value of comptype determines the structure to use (i.e.,
if comptype is HTCOMP_TEXT, then compdata points to an HTC TEXT structure). If the
composite record structure has variable length data, then HiTest returns the pointer to this data in

Chapter 4 HiTest Functions 85

the structure. This data should not be modified or freed by the calling program. The pointer
becomes invalid at the next HiTest function call.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL END OF DATA (index is invalid);
HTFAIL INVALID CONVERT (composite records conversion not allowed);
HTFAIL DATA UNAVAIL (cannot find doclink $LINKS item information);
HTFAIL INVALID DATABASE (cannot find doclink database);
HTFAIL INVALID DOCUMENT (cannot find doclink document);
HTFAIL _INVALID VIEW (cannot find doclink view).

Example HTC PABDEF pabdef;
HTCOMP comptype = HTCOMP PABDEF;
HTSTATUS status;

status = htComprecGetPtr (comphand, 1, &comptype,
&pabdef) ;

See Also htComprecLength, htComprecFetch

Chapter 4 HiTest Functions 86

htComprecinsert
Summary Inserts a single composite record into an existing composite.
Syntax HTSTATUS htComprecInsert (comphand, index, comptype,
compdata) ;
HTCOMPHANDLE comphand; /* Input */
HTINT index; /* Input, Optional
*/
HTCOMP comptype; /* Input */
void *compdata; /* Input */
Description Inserts a new composite record into an existing composite at a specified location.
Parameters COMPHAND

The composite into which to insert the composite record.

INDEX

The index at which to insert the composite record. The current composite record at this index will
follow the new composite record. The first index is one. Use htComprecCount to obtain the last
valid index. A value of zero directs HiTest to append this composite record to the end of the
composite -- use index zero in multiple calls to append to a composite.

COMPTYPE

The composite record type of the new composite record. This type determines the format of the
data at compdata.

COMPDATA

The data for the new composite record. The data is one of multiple composite record structures
(structure names prefixed with HTC). The value of comptype determines the structure to use
(e.g., if comptype is HTCOMP_ TEXT, then compdata points to an HTC_TEXT structure).

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL END OF DATA (index is invalid);
HTFAIL BAD FORMAT (cannot create composite record from compdata value);

Chapter 4 HiTest Functions 87

HTFAIL INVALID CURSOR (doclink cursor is invalid);
HTFAIL INVALID DOCUMENT (doclink document handle is invalid);
HTFAIL INVALID VIEW (doclink view ID is invalid).

Example HTSTATUS status;
HTC PABREF pabref;
pabref.pabid = 2;
status = htComprecInsert (comphand, 10, HTCOMP PABREF,

&pabref) ;

See Also htComprecUpdate, htComprecDelete

Chapter 4 HiTest Functions 88

htComprecLength

Summary

Syntax

Description

Parameters

Returns

Obtains the length of the variable length portion of a composite record.

HTSTATUS htCompreclLength (comphand, index, comptype,

length) ;
HTCOMPHANDLE comphand; /* Input */
HTINT index; /* Input */
HTCOMP *comptype; /* Output */
HTINT *length; /* Output */

Obtains the length of the variable length portion of a specified composite record. Certain
composite record types have no variable length component (e.g., PAB definition, paragraph).
Other composite record types do have a variable length component (e.g., text, blob). Composite
record data structures (HTC _ structures) with a pointer element have variable length components.

COMPHAND

The composite containing the composite record.

INDEX

The index of the composite record whose length is to be determined. The first index is one. Use
htComprecCount to obtain the last valid index.

COMPTYPE

The buffer to receive the composite record type of the specified composite record. This type
determines the format of the data returned by a call to htComprecFetch or htComprecGetPtr.

LENGTH

The buffer to receive the length of the variable length component. If there is no variable length
component, HiTest sets this value to zero.

HTSTATUS return code. Failures include:

HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL END OF DATA (index is invalid);

HTFAIL _INVALID CONVERT (composite records only convert to BLOB).

Chapter 4 HiTest Functions 89

Example HTINT length;
HTCOMP comptype;

HTSTATUS status;

status = htComprecLength (comphand, 1, &comptype,
&length) ;

See Also htComprecFetch, htComprecGetPtr

Chapter 4 HiTest Functions 90

htComprecList

Summary Iterates through composite records in a composite.

Syntax HTSTATUS htCompreclList (comphand, first, comptype,
index) ;

HTCOMPHANDLE comphand; /* Input */

HTBOOL first; /* Input */

HTCOMP *comptype; /* Input/Output, Optional
*/

HTINT *index; /* Output */

Description Returns the first or next composite record information from the list of composite records in the
composite. Use this function to list all composite records, or find those of a specific composite
record type.

Parameters COMPHAND
The composite from which to list composite records.

FIRST

Whether to get the first or next composite record. TRUE resets the composite record list, FALSE
simply obtains the next composite record in the list. The value is always TRUE on the first call for
a given composite handle.

COMPTYPE

Either the composite record type to find, or the buffer to receive the next composite record type. If
nonzero, htComprecList finds the next composite record of this type. If zero, htComprecList finds
the next composite record and returns its type in this location. To iterate through all composite
records, remember to set this value to zero before each call.

INDEX

The buffer to receive the index of the composite record within the composite. Depending on the
use of the comptype parameter, this will either be an incrementing index, or will jump (when
finding records of a specific type). This index is useful as input to the various htComp and
htComprec functions which require a composite record index.

Returns HTSTATUS return code. Failures include:

HTFAIL INVALID COMPOSITE (invalid composite handle);

Chapter 4 HiTest Functions 91

HTFAIL _END OF DATA (no more composite records).

Example HTCOMP comptype = 0;
HTINT index;

HTSTATUS status;

status = htCompreclList (comphand, FALSE, &comptype,
&index) ;

See Also htComprecCount

Chapter 4 HiTest Functions 92

htComprecUpdate

Summary

Syntax

Description

Parameters

Returns

Modifies the contents of a single composite record.

HTSTATUS htComprecUpdate (comphand, index, comptype,

compdata) ;

HTCOMPHANDLE comphand; /* Input */
HTINT index; /* Input */
HTCOMP comptype; /* Input */
void *compdata; /* Input */

Modifies the contents of a specified composite record. This is equivalent to deleting and then
inserting a single composite record.

COMPHAND

The composite containing the composite record to update.

INDEX

The index of the composite record to update. The first index is one. Use htComprecCount to
obtain the last valid index.

COMPTYPE

The composite record type of the new composite record. This type determines the format of the
data at compdata.

COMPDATA

The data for the new composite record. The data is one of multiple composite record structures
(structure names prefixed with HTC). The value of comptype determines the structure to use
(e.g., if comptype is HTCOMP_ TEXT, then compdata points to an HTC_TEXT structure).

HTSTATUS return code. Failures include:

HTFAIL INVALID COMPOSITE (invalid composite handle);
HTFAIL END OF DATA (index is invalid);

HTFAIL BAD FORMAT (cannot create composite record from compdata value);
HTFAIL INVALID_CURSOR (doclink cursor is invalid);

Example

See Also

Chapter 4 HiTest Functions 93

HTFAIL INVALID DOCUMENT (doclink document handle is invalid);
HTFAIL _INVALID VIEW (doclink view ID is invalid).

HTSTATUS status;

HTC PABREF pabref;

pabref.pabid = 2;

status = htComprecUpdate (comphand, 10, HTCOMP_ PABREF,

&pabref) ;

htComprecInsert, htComprecDelete

Chapter 4 HiTest Functions 94

Cursor

The cursor object has no context beneath the process level. Many of the remaining objects exist within the context of
a cursor. Some objects use a cursor directly and some indirectly through a document, which is only valid in the
context of its cursor. A cursor represents a session, which includes an open Lotus Notes database and state
information. Each process or task can contain multiple cursors at any point in time. Multiple cursors may be open to
a single database. All actions performed against a database occur through a cursor.

A cursor’s state consists of an active form, an active view, an index, bindings, and open documents. Any operation
which cancels or replaces part of a cursor’s state destroys the previous value. For example, producing a new index
destroys the previous index. Any state within the context of a cursor, including documents opened in the cursor,
becomes invalid when closing the cursor. A cursor itself is a handle often used as a synonym for the session that it
represents. HiTest uses the constant NULLHANDLE to represent an invalid cursor. The primary attributes of a
cursor are the same as those of a database plus a handle.

The cursor group contains the following functions:

htCurClose Closes an open cursor

htCurGetlnfo Obtains a piece of information from and about a cursor
htCurOpen Opens a HiTest cursor

htCurReset Resets the state of a cursor

htCurSetOption Assigns the value of a cursor option

Chapter 4 HiTest Functions 95

htCurClose

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Closes an open cursor.

HTSTATUS htCurClose (cursor, force);
HTCURSOR cursor; /* Input */

HTBOOL force; /* Input */

Closes an open cursor. All data within the context of the cursor becomes invalid (e.g., all
document and composite handles). This function commits changes to documents stored in this
cursor with the bulk store option.

CURSOR

The cursor to close.

FORCE

Indicates whether to force open documents in the cursor to close. If TRUE, HiTest closes and
commits any open documents in the cursor with an internal call to htDocClose. If FALSE, any
open documents cause the close to fail.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL OPEN_DOCUMENTS (cursor contains open documents and force is FALSE).

HTSTATUS status;

status = htCurClose (cursor, TRUE):;

htCurOpen, htDocClose, htTerm

Chapter 4 HiTest Functions 96

htCurGetinfo

Summary Obtains a piece of information from and about a cursor.
Syntax HTSTATUS htCurGetInfo (cursor, item, buffer);
HTCURSOR cursor; /* Input */
HTCURINFO item; /* Input */
void *pbuffer; /* Output */
Description Fetches one of various cursor-level information items into a supplied buffer. Each item has a data

type, and the buffer must be large enough to hold the result.

Parameters CURSOR

The cursor to use.

ITE

One value from an enumeration of cursor items. Each item corresponds to a type (and length, for
variable length types). The following table lists legal items with their corresponding data types
and, where relevant, lengths:

constant type

HTCURINFO_SERVERNAME char [HTLEN_SERVERNAME +
1]

HTCURINFO_FILENAME char [HTLEN_FILENAME + 1]
HTCURINFO_FORMNAME char [HTLEN_DESIGNNAME + 1]
HTCURINFO_VIEWNAME char [HTLEN_DESIGNNAME + 1]
HTCURINFO_DBTITLE char [HTLEN_DATABASEINFO
+ 1]

HTCURINFO_DBCATEGORIES char [HTLEN_DATABASEINFO
+ 1]

HTCURINFO_DBTEMPLATE char [HTLEN_DATABASEINFO
+ 1]

HTCURINFO_DBDESIGNTEMPLATE char [HTLEN_DATABASEINFO
+ 1]

HTCURINFO DBHANDLE standard Notes API: DBHANDLE

Returns

Example

See Also

Chapter 4 HiTest Functions 97

HTCURINFO DBID standard Notes API: DBID

SERVERNAME obtains the server name on which the database exists;
FILENAME obtains the database file name the cursor represents;
FORMNAME obtains the form name of the active form;
VIEWNAME obtains the view name of the active view;

DBTITLE obtains the database title;

DBCATEGORIES obtains the database categories;

DBTEMPLATE obtains the database template name;

DBDESIGNTEMPLATE obtains the database design template name;

The following items are only useful when combining HiTest calls with calls to the standard Notes
API, and should be used carefully:

DBHANDLE obtains the standard Notes API database handle

DBID obtains the standard Notes API database ID

BUFFER

The buffer to receive the requested information. This buffer should be of sufficient length to
handle the result.

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL ILLEGAL _ENUM (invalid item).

char dbtitle [HTLEN DATABASEINFO + 1];
HTSTATUS status;

status = htCurGetInfo (cursor, HTCURINFO DBTITLE,
dbtitle);

htCurOpen

Chapter 4 HiTest Functions 98

htCurOpen

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Opens a HiTest cursor.

HTSTATUS htCurOpen (server, datapath, cursor);

char *server; /* Input, Optional */
char *datapath; /* Input */
HTCURSOR *cursor; /* Output */

Creates and returns a new cursor. The cursor represents a connection to the indicated database.
Multiple cursors may be open at one time, including multiple cursors to a single database. All
access to metadata and data within a database occurs through a cursor. Use the function
htCurClose to close a cursor.

SERVER

The server on which to open the database. To open a local database, use either NULL, the empty
string, or the string assigned as the local server name with htSetOption.

DATAPATH

The file name and path relative to the Notes data directory of the database to open.

CURSOR

The buffer to receive the new cursor on successful operation.

HTSTATUS return code. Failures include:
HTFAIL INVALID DATABASE (database does not exist).

HTCURSOR cursor;
HTSTATUS status;

status = htCurOpen ("MyServer", "mail\JSmith.nsf",
&cursor) ;

htSetOption, htCurClose

Chapter 4 HiTest Functions 99

htCurReset
Summary Resets the state of a cursor.
Syntax HTSTATUS htCurReset (HTCURSOR cursor) ;
HTCURSOR cursor; /* Input */
Description Clears the state of a cursor, as relates to the active index. This function performs the following
actions:

1) clears the formula buffer,
2) clears the current (active) index,

3) clears all active bindings.

Parameters CURSOR

The cursor to reset.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR.

Example HTSTATUS status;

status = htCurReset (cursor);

See Also htFormulaReset, htFormulaExec, htltemBind, htCellBind

Chapter 4 HiTest Functions 100

htCurSetOption
Summary Assigns the value of a cursor option.
Syntax HTSTATUS htSetOption (cursor, option, number, string);
HTCURSOR cursor; /* Input */
HTGLOBOPT option; /* Input */
HTINT number; /* Input, Optional */
char *string; /* Input, Optional */
Description Assigns a value to the indicated cursor option. Depending on the option, the new value is supplied
in either the number or string parameter.
Parameters CURSOR

The cursor to use.

OPTION

One value from an enumeration of cursor options. Each option corresponds to either a string or
integer value. This option indicates whether to use the string or numeric parameter (HiTest ignores
the other parameter). The following table lists legal options with their corresponding data types,
parameters, and defaults:

constant type parameter default

HTCUROPT BULK STORE HTBOOL number FALSE

HTCUROPT STRICT BIND HTBOOL number TRUE

HTCUROPT VIEW POSITION HTBOOL number FALSE

HTCUROPT FETCH SUMMARY HTBOOL number FALSE

HTCUROPT SUMMARY LIMIT HTINT number
8192

See the htSetOption function for a description of the options.

NUMBER

The numeric or boolean value for an option. When setting the value of a boolean option, use the
constants TRUE and FALSE.

Returns

Example

See Also

Chapter 4 HiTest Functions

STRING

The string value for an option.

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL ILLEGAL ENUM (invalid option);
HTFAIL OVERFLOW (value out of bounds).

HTSTATUS status;

status = htCurSetOption (cursor,
TRUE,

NULL)

htCurOpen, htSetOption

101

HTGLOBOPT BULK STORE,

Chapter 4 HiTest Functions 102

Database

The database object has no context beneath the process level, but represents Lotus Notes databases as distinct
objects. The primary attributes of a database are the server name, database name, and database file path (relative to
the Notes data directory).

A database is a file used by Notes to store data in the form of documents. A database also contains metadata in the
form of forms, views, and macros. A database can be accessed directly or through a Notes server. When accessed
directly, Notes security is bypassed. When accessed through a Notes server, security is imposed, and the server
properly handles multiple connections to a database.

The database group contains the following functions:

htDbGetPath Obtains a database filename from a database title
htDbList Iterates through available Notes databases and directories on a given server

htDbListCat Iterates through databases in a database catalog

Chapter 4 HiTest Functions 103

htDbGetPath

Summary

Syntax

Description

Parameters

Obtains a database filename from a database title.

HTSTATUS htDbGetPath (server, directory, title,
catalog,

datapath) ;

char *server; /* Input, Optional */
char *directory; /* Input, Optional */
char *title; /* Input */

HTBOOL catalog; /* Input */

char *datapath; /* Output */

This function determines the filename of a database from the database’s title by either performing
a directory search or scanning the database catalog on a server. The calling program must supply
the server name on which the database exists. This function is an inefficient way of finding
databases (programs should try to retain database filepaths to avoid needing this function).

SERVER

The server on which the database is located. To perform a local search, use either NULL, the
empty string, or the string assigned as the local server name with htSetOption.

DIRECTORY

The directory to search for databases, relative to the Notes data directory. To search the data
directory itself, use either NULL or the empty string. Catalog searches ignore this parameter (see
catalog parameter).

TITLE

The title of the database to find. If two databases have the same title, this function will only find
the first one.

CATALOG

Whether to perform a catalog search or a directory search. If TRUE, HiTest searches the database
catalog (CATALOG.NSF) on the server for the title. If FALSE, HiTest performs a directory search
in the directory indicated by the directory parameter.

Chapter 4 HiTest Functions 104

DATAPATH

A character buffer which receives the database file name and path relative to the Notes data
directory. The constant HTLEN FILENAME defines the maximum datapath length.

Returns HTSTATUS return code. Failures include:

HTFAIL INVALID DATABASE (cannot find database).

Example char dbfile [HTLEN_FILENAME + 17;
HTSTATUS status;
status = htDbGetPath ("MyServer", "mail", "JSmith.NSF",

FALSE, dbfile);

See Also htDbList, htDbListCat

Chapter 4 HiTest Functions 105

htDbList

Summary

Syntax

Description

Parameters

Iterates through available Notes databases and directories on a given server.

HTSTATUS htDbList (server, searchdir, operation,
recurse,

isdatabase, database, datafile);

char *server; /* Input, Optional */

char *searchdir; /* Input, Optional */
HTLIST operation; /* Input */

HTBOOL recurse; /* Input */

HTBOOL *isdatabase; /* Output, Optional */

char *database; /* Output, Optional */
char *datafile; /* Output, Optional */

Returns the first or next database information from the current database list. HiTest obtains the
database list with a directory search depending on the input parameters. The database information
available from this function consists of the database title and the database filename or filepath. In
addition, this function returns directory entries. HiTest uses the values of the search parameters
(server, searchdir, and recurse) to produce the database list.

SERVER

The server from which to obtain the database list. To perform a local search, use either NULL, the
empty string, or the string assigned as the local server name with htSetOption.

SEARCHDIR

The directory to search for databases, relative to the Notes data directory. To search the data
directory itself, use either NULL or the empty string.

OPERATION

An element of the HTLIST enumeration that indicates whether and how to reset the database list.
Use HTLIST REFRESH to discard the database list and obtain a new list from Notes. If operation
is HTLIST FIRST and any of the search parameters are different from the values used in the
previous search, then HiTest produces a new list using the new parameters. Then HiTest sets the
next element in the list to the first element. Use HTLIST NEXT to obtain the element following
the last fetched element (HiTest ignores search parameters). The first call to this function
following htlnit always uses the value HTLIST REFRESH.

Returns

Example

Chapter 4 HiTest Functions 106

RECURSE

Indicates whether to perform a recursive or flat search. A recursive search (TRUE) obtains all
databases in or under the search directory. A nonrecursive search (FALSE) obtains databases and
subdirectories in the search directory.

ISDATABASE

A boolean buffer set to TRUE if the current item is a database, and FALSE if the current item is a
directory. For a recursive search, this value is always TRUE.

DATABASE

A character buffer which receives the database title. This will be the empty string for a directory.
The constant HTLEN DATABASEINFO defines the maximum title length.

DATAFILE

A character buffer which receives the database file. When performing a nonrecursive search, this
buffer receives the filename only, and not the path. When performing a recursive search, this
buffer receives the full file name and path relative to the Notes data directory. The constant
HTLEN_ FILENAME defines the maximum datafile length.

HTSTATUS return code. Failures include:

HTFAIL END OF DATA (no more results).

char dbtitle [HTLEN DATABASEINFO + 1];

char dbfile [HTLEN FILENAME + 1];

HTBOOL isdb;

HTLIST list op = HTLIST FIRST;

printf ("List of Local Notes Databases:");

while (!htDbList (NULL, NULL, list op, FALSE, &isdb,

dbtitle, dbfile))

{
if (!isdb)
continue;
printf ("\n Title: '"%s', Filename: '$%s' ",
dbtitle,

dbfile);

Chapter 4 HiTest Functions 107

list op = HTLIST NEXT;

See Also htDbListCat, htSetOption

Chapter 4 HiTest Functions 108

htDbListCat

Summary

Syntax

Description

Parameters

Returns

Iterates through databases in a database catalog.

HTSTATUS htDbListCat (server, operation, database,

datapath) ;

char *server; /* Input, Optional */
HTLIST operation; /* Input */

char *database; /* Output, Optional */
char *datapath; /* Output, Optional */

Returns the first or next database information for the databases in a database catalog. A database
catalog must be available on the selected Notes server.

SERVER

The server on which to examine the database catalog. To use the local database catalog, use either
NULL, the empty string, or the string assigned as the local server name with htSetOption. There
must be a database catalog CATALOG.NSF in the Notes data directory on the server.

OPERATION

An element of the HTLIST enumeration that indicates whether and how to reset the database list.
Use HTLIST REFRESH to discard the database list and obtain a new list from the database
catalog. If operation is HTLIST FIRST and the server name is different from the value used in the
previous search, then HiTest uses the new server’s catalog. Then HiTest sets the next element in
the list to the first element. Use HTLIST NEXT to obtain the element following the last fetched
element (HiTest ignores search parameters). The first call to this function following htlnit always
uses the value HTLIST REFRESH.

DATABASE

A character buffer which receives the database title. HiTest returns the empty string for a directory.
The constant HTLEN DATABASEINFO defines the maximum title length.

DATAPATH

A character buffer which receives the database file name and path relative to the Notes data
directory. The constant HTLEN FILENAME defines the maximum datapath length

HTSTATUS return code. Failures include:

Example

See Also

Chapter 4 HiTest Functions 109

HTFAIL DATA UNAVAIL (requested server catalog is unavailable);
HTFAIL_END_ OF DATA (no more catalog entries).

char dbtitle [HTLEN DATABASEINFO + 1];
char dbfile [HTLEN FILENAME + 1];
HTLIST list op = HTLIST FIRST;

printf ("List of Databases 1in Server 'MyServer'
Catalog:");

while ('htDbListCat ("MyServer", list op, dbtitle,
dbfile))

if (isdb)

printf ("\n Title: Filename:

o°
0
~

dbtitle, dbfile);

list op = HTLIST NEXT;

htDbList, htDbGetPath

Chapter 4 HiTest Functions 110

Datetime

Use Datetime functions to access and manipulate the components of datetime items. These functions allow simple
control of datetime data. The internal structure of a datetime is not accessible to API programs.

The following structure represents a datetime, but should not be manipulated directly

typedef struct

{
DWORD innards [2];
} HTDATETIME; /* Datetime structure */

Use the following structure to create, access, and update datetimes on a by-component basis

typedef struct

{
short int vyear; /* Year (1-32767) */
short int month; /* Month (1-12) */
short int dom; /* Day of month (1-31) */
short int weekday; /* Day of week (1-7 where Sunday = 1) */
short int hour; /* Hour (0-23) */
short int minute; /* Minute (0-59) */
short int second; /* Second (0-59) */
short int hundsec; /* Hundredths of second (0-99) */
HTBOOL dst; /* Whether daylight savings is in effect */
short int zone; /* Time zone (-11 to 11) */
} HTTIMESUMM; /* Datetime component structure */

The datetime group contains the following functions:

htDatetimeCompare Relatively compares two datetimes

htDatetimeCreate Creates a datetime from individual components
htDatetimeDiff Absolutely compares two datetimes

htDatetimeGetInfo Obtains a piece of information from and about a datetime

htDatetimeUpdate Modifies a datetime to produce a new datetime

Chapter 4 HiTest Functions 111

htDatetimeCompare

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Relatively compares two datetimes.

HTINT htDatetimeCompare (datetimel, datetime2);
HTDATETIME *datetimel; /* Input */

HTDATETIME *datetime2; /* Input */

Compares two datetimes and returns whether the first is greater than, equal to, or less than the
second. To determine the absolute difference in time between two datetimes, use the
htDatetimeDiff function.

DATETIME]

A pointer to the first datetime.

DATETIME2

A pointer to the second datetime.

HTINT relation of the first and second datetimes. If the first datetime is greater than the second,
returns greater than zero. If the first datetime is less than the second, returns less than zero. If the
two datetimes are equal, returns zero.

HTINT compare;

compare = htDatetimeCompare (&datetimel, &datetime?2);

htDatetimeGetInfo, htDatetimeDiff

Chapter 4 HiTest Functions 112

htDatetimeCreate

Summary

Syntax

Description

Parameters

Returns

Example

Creates a datetime from individual components.

HTSTATUS htDatetimeCreate (timesumm, autozone,
datetime) ;

HTTIMESUMM *timesumm; /* Input */
HTBOOL autozone; /* Input */
HTDATETIME *datetime; /* Output */

Creates a datetime from individual date and time components. The time zone and daylight savings
time status may be provided as input or determined automatically from the Notes installation.

TIMESUMM

A pointer to the structure containing the datetime components. This function ignores the weekday
field.

AUTOZONE

Whether to determine automatically the time zone and daylight savings time status from the Notes
installation. A value of TRUE ignores these components in the timesumm structure and
automatically determines them. A value of FALSE uses the values in the timesumm structure.

DATETIME

The buffer to receive the new datetime value.

HTSTATUS return code. Failures include:

HTFAIL BAD_FORMAT (the timesumm values do not represent a valid datetime).

HTDATETIME datetime;
HTTIMESUMM timesumm;
HTSTATUS status;

timesumm.year = 1999;
timesumm.month = 12;

timesumm.dom = 31;

See Also

Chapter 4 HiTest Functions

timesumm.hour = 23;
timesumm.minute = 59;
timesumm.second = 59;
timesumm.hundsec = 99;

status = htDatetimeCreate (×umm, TRUE,

htDatetimeGetInfo, htDatetimeUpdate

113

&datetime) ;

Chapter 4 HiTest Functions 114

htDatetimeDiff

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Absolutely compares two datetimes.

HTINT htDatetimeDiff (datetimel, datetime?2);
HTDATETIME *datetimel; /* Input */

HTDATETIME *datetime2; /* Input */

Compares two datetimes and returns the number of seconds difference between the two. To simply
determine which datetime is greater, use the faster htDatetimeCompare function.

DATETIME]

A pointer to the first datetime.

DATETIME2

A pointer to the second datetime.

HTINT number of seconds between the first and second datetimes. If the first datetime is greater
than the second, the value is positive. If the first datetime is less than the second, the value is
negative. If the two datetimes are equal, returns zero.

HTINT seconds;

seconds = htDatetimeDiff (&datetimel, &datetime?2);

htDatetimeGetInfo, htDatetimeCompare

Chapter 4 HiTest Functions 115

htDatetimeGetinfo

Summary Obtains a piece of information from and about a datetime.

Syntax HTSTATUS htDatetimeGetInfo (datetime, item, buffer);
HTDATETIME datetime; /* Input */
HTTIMEINFO item; /* Input */
void *pbuffer; /* Output */

Description Fetches one of various datetime-level information items into a supplied buffer. Each item has a

data type, and the buffer must be large enough to hold the result.

Parameters DATETIME

The datetime to use.

ITE

One value from an enumeration of datetime items. Each item corresponds to a type (and length,
for variable length types). The following table lists legal items with their corresponding data types
and, where relevant, lengths:

constant type

HTTIMEINFO JULIAN HTINT
HTTIMEINFO TICKS HTINT
HTTIMEINFO HTTIMESUMM HTTIMESUMM

JULIAN obtains the julian date from the date component of the datetime;
TICKS obtains the number of ticks (hundredths of a second) since midnight;

HTTIMESUMM obtains the datetime components.

BUFFER

The buffer to receive the requested information. This buffer should be of sufficient length to
handle the result.

Returns HTSTATUS return code. Failures include:

Chapter 4 HiTest Functions 116

HTFAIL BAD FORMAT (invalid datetime);
HTFAIL ILLEGAL ENUM (invalid item).

Example HTINT julian;
HTSTATUS status;

status = htDatetimeGetInfo (&datetime,
HTTIMEINFO JULIAN,

&julian) ;

See Also htDatetimeCreate

Chapter 4 HiTest Functions 117

htDatetimeUpdate

Summary

Syntax

Description

Parameters

Returns

Example

Modifies a datetime to produce a new datetime.

HTSTATUS htDatetimeUpdate (timesumm, datetime);

HTTIMESUMM *timesumm; /* Input */

HTDATETIME
Output */

datetime; / Input,

Modifies the components of a datetime to produce a new datetime.

TIMESUMM

A pointer to the structure containing the modifications. HiTest adds the value of each component
to the datetime (e.g., a month field of two increases the month of the datetime by two). This
function ignores the weekday, time zone, and daylight savings time status.

DATETIME

A pointer to the datetime to update.

HTSTATUS return code. Failures include:
HTFAIL OVERFLOW (the update would result in an invalid datetime).

HTTIMESUMM timesumm;
HTSTATUS status;
timesumm.year = 1;
timesumm.month = 1;
timesumm.dom = 1;

timesumm.hour = 1;

timesumm.minute = 1;

timesumm.second = 1;

timesumm.hundsec = 1;

status = htDatetimeUpdate (×umm, &datetime);

Chapter 4 HiTest Functions 118

See Also htDatetimeCreate, htDatetimeGetInfo

Chapter 4 HiTest Functions 119

Document

Documents are the primary components of databases. Each document in turn contains items. Each document has a
document ID which is unique within the document’s database. Use this ID to reference individual documents. Sets
of documents may be obtained from an index, which is produced by executing a formula. The primary attribute of a
document is the document ID.

To access or manipulate the contents of a document, the document must be opened. HiTest represents an open

document by a document handle. A document handle is valid until closing either the document itself or the cursor
containing the open document. HiTest uses the constant NULLHANDLE to represent an invalid document handle.

The document group contains the following functions:

htDocClose Closes an open document, optionally discarding all changes
htDocCopy Copies a document, and optionally its hierarchy, between cursors
htDocCreate Creates a new, empty document

htDocDelete Deletes a document, and optionally its hierarchy

htDocFetch Opens the next document in the active index, and loads all bound data
htDocGetlnfo Obtains a piece of information from and about an open document
htDocOpen Opens a document for data access or modification

htDocPut Creates a new document from bound items

htDocUpdate Updates modifications to bound items back to the last fetched document

Chapter 4 HiTest Functions 120

htDocClose
Summary Closes an open document, optionally discarding all changes.
Syntax HTSTATUS htDocClose (dochand, commit):;
HTDOCHANDLE dochand; /* Input */
HTBOOL commit; /* Input */
Description Closes a document, invalidating the handle. This function also controls whether to save or discard

changes made to the document. Documents not closed with this function are eventually closed by
either htCurClose or htTerm, both of which automatically commit changes.

Parameters DOCHAND

Handle of the document to close.

COMMIT

Whether to save changes. If FALSE, HiTest discards all changes to the document. If TRUE and
there are changes to document items, then HiTest saves those changes into the database.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID DOCUMENT (invalid document handle);

Example htDocClose (dochand, TRUE);

See Also htDocOpen, htDocCreate, htCurClose, htTerm

Chapter 4 HiTest Functions 121

htDocCopy
Summary Copies a document, and optionally its hierarchy, between cursors.
Syntax HTSTATUS htDocCopy (src cursor, src docid, dest cursor,
view docid, dest docid);
HTCURSOR src_cursor; /* Input */
HTDOCID src_docid; /* Input */

HTCURSOR dest cursor; /* Input */
HTVIEWID viewid; /* Input, Optional */

HTDOCID *dest docid; /* Output, Optional */

Description Creates a copy of the source document in the destination cursor. This function optionally also
copies the source document’s response hierarchy into the destination cursor.

Parameters SRC_CURSOR

The cursor containing the source document.

SRC_DOCID

The document to copy.

DEST_CURSOR

The cursor into which to copy the document.

VIEWID

This parameter determines whether to perform a hierarchy copy. Use NULLID to copy the source
document only. To copy a document and its entire response hierarchy, use the HTVIEWID of the
view containing the document and the hierarchy. When copying a single document, using a view
reduces performance.

DEST_DOCID

The buffer to receive the document ID for the new copy of the source document.

Returns HTSTATUS return code. Failures include:

Example

See Also

Chapter 4 HiTest Functions

HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID DOCUMENT (document does not exist);
HTFAIL INVALID VIEW (view does not exist).

HTDOCID new docid;
HTSTATUS status;

status = htDocCopy (cursorl, old docid,
viewid,

&new docid);

htDocDelete, htViewGetld

122

cursor?2,

Chapter 4 HiTest Functions 123

htDocCreate

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Creates a new, empty document.
HTSTATUS htDocCreate (cursor, formname, dochand);
HTCURSOR cursor; /* Input */

char *formname; /* Input, Optional

*/
HTDOCHANDLE *dochand; /* Output */

Creates and opens a new document in the cursor. Once created, the document behaves like any
other document. If bulk storage is active, then this document will not have a valid document ID
until the containing cursor is closed.

CURSOR

The cursor in which to create the new document.

FORMNAME

The form to use for the new document. A form is required when strict binding is in effect.

DOCHAND

The buffer to receive the new document handle. Use htDocClose to close the new document.

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL FORM_UNAVAIL (strict binding requires an active form).

DOCHANDLE dochand;
HTSTATUS status;

status = htDocCreate (cursor, "Person", &dochand);

htDocOpen, htDocClose

Chapter 4 HiTest Functions 124

htDocDelete

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Deletes a document, and optionally its hierarchy.

HTSTATUS htDocDelete (cursor, docid, viewid);

HTCURSOR cursor; /* Input */
HTDOCID docid; /* Input */
HTVIEWID viewid; /* Input, Optional */

Deletes the indicated document. This function optionally also deletes the document’s response
hierarchy.

CURSOR

The cursor containing the document.

DOCID

The document to delete.

VIEWID

This parameter determines whether to perform a hierarchy delete. Use NULLID to delete the
indicated document only. To delete a document and its entire response hierarchy, use the
HTVIEWID of the view containing the document and the hierarchy. When copying a single
document, using a view reduces performance.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL INVALID DOCUMENT (document does not exist);
HTFAIL INVALID VIEW (view does not exist).

HTSTATUS status;

status = htDocDelete (cursor, docid, viewid);

htViewGetld, htDocCopy

Chapter 4 HiTest Functions 125

htDocFetch

Summary

Syntax

Description

Parameters

Returns

Opens the next document in the active index, and loads all bound data.

HTSTATUS htDocFetch (cursor, dochand);
HTCURSOR cursor; /* Input */

HTDOCHANDLE *dochand; /* Output,
Optional */

Loads all bound data from the next document in the active index. Bound data consists of all items
and cells bound since the last htFormulaExec. Use this function when loading the same data from
multiple documents in an index. This function performs a document open, data access of multiple
items and cells, and automatic conversion as one operation. The document remains open as long as
it is the current document in the active index. During this time, the document handle returned from
this function is a valid document handle. HiTest closes the document handle when navigating
within the index or destroying the index.

If the cursor option FETCH_SUMMARY is active, only summary document items are available.
This is more efficient than loading non-summary data, but prevents access to composite items and
some other large items. The global option TEXT TRUNCATE causes automatic truncation of data
retrieved as text to fit in buffers bound with insufficient lengths. Other retrievals (to types other
than text, or to text when TEXT TRUNCATE is inactive) do not allow truncation. If there are no
bound items (i.e., only cells), then the document is not opened, and the document handle is
unavailable.

Use this function with htDocUpdate to allow easy modification and updating of multiple bound
items.

CURSOR

The cursor containing the relevant index.

DOCHAND

The buffer to receive the fetched document’s handle. When fetching a document, the document
remains opened as long as it is the current entry in the index (i.e., until index navigation or
destruction). HiTest closes the document (and reuses the document handle) when it is no longer
the current index entry. If there are no bound items, the document is not opened (this buffer
receives the value NULLHANDLE).

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

Chapter 4 HiTest Functions 126

HTFAIL DATA UNAVAIL (no active index);
HTFAIL_OVERFLOW (data does not fit in bound buffer).

Example HTDOCHANDLE dochand;
HTSTATUS status;

status = htDocFetch (cursor, &dochand);

See Also htSetOption, htCurReset, htFormulaExec, htIndexNavigate, htltemBind, htCellBind, htDocUpdate

Chapter 4 HiTest Functions 127

htDocGetiInfo

Summary Obtains a piece of information from and about an open document.

Syntax HTSTATUS htDocGetInfo (dochand, item, buffer)
HTDOCHANDLE dochand; /* Input */
HTGLOBINFO item; /* Input */
void *pbuffer; /* Output */

Description Fetches one of various document-level information items into a supplied buffer. Each item has a

data type, and the buffer must be sufficiently large to hold the result.

Parameters DOCHAND

The document on which to obtain information.

ITE

One value from an enumeration of document items. Each item corresponds to a type (and length,
for variable length types). The following table lists legal items with their corresponding data types
and, where relevant, lengths:

constant type

HTDOCINFO CREATED HTDATETIME
HTDOCINFO LASTMODIFIED HTDATETIME

HTDOCINFO FORMNAME char [HTLEN DESIGNNAME + 1]

HTDOCINFO TITLELENGTH HTINT

HTDOCINFO TITLESTRING char [HTDOCINFO TITLELENGTH +
1]

HTDOCINFO ISDIRTY HTBOOL

HTDOCINFO HTDOCID HTDOCID

HTDOCINFO HTCURSOR HTCURSOR
HTDOCINFO FILECOUNT HTINT
HTDOCINFO NOTEID Standard Notes API: NOTEID

HTDOCINFO NOTEHANDLE Standard Notes API: NOTEHANDLE

Returns

Example

Chapter 4 HiTest Functions 128

CREATED obtains the document’s original creation time;
LASTMODIFIED obtains the document’s last modified time;
FORMNAME obtains the document’s form name, if any;

TITLELENGTH obtains the length of the document window title;
TITLESTRING obtains the document window title;

ISDIRTY obtains a boolean which indicates whether data has been altered;
HTDOCID obtains the HiTest document ID;

HTCURSOR obtains the HiTest cursor in which this document was opened;

FILECOUNT obtains the number of file attachments in the document.

Use the following items carefully, since they are only useful when integrating HiTest calls with
calls to the standard Notes API:

NOTEID obtains the standard Notes API note ID,;

NOTEHANDLE obtains the standard Notes API note handle.

The document window title has some special properties. To provide a buffer of sufficient size,
predetermine the length by calling the function htDocGetlnfo with the
HTDOCINFO_TITLELENGTH item. Additionally, some window titles may contain view-specific
results (e.g., number of responses). If this document is the current document in the active view-
based index, then the title includes the view information (otherwise, this function deletes view-
specific information from the title string).

BUFFER

The buffer to receive the requested information. This buffer should be of sufficient length to
handle the result.

HTSTATUS return code. Failures include:
HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL ILLEGAL _ENUM (invalid item).

HTDATETIME last_mod;
HTSTATUS status;
status = htDocGetInfo (dochand, HTDOCINFO LASTMODIFIED,

&last mod) ;

Chapter 4 HiTest Functions 129

See Also htDocFetch, htDocOpen, htDocCreate

Chapter 4 HiTest Functions 130

htDocOpen

Summary

Syntax

Description

Parameters

Returns

Opens a document for data access or modification.

HTSTATUS htDocOpen (cursor, docid, objects, dochand);

HTCURSOR cursor; /* Input */
HTDOCID docid; /* Input */
HTBOOL summary; /* Input */
HTDOCHANDLE *dochand; /* Output */

Opens a document and returns a handle. Use this handle in other HiTest functions to obtain and
modify data in the document. Close the document with htDocClose to store or discard changes to
the document data. The cursor’s active form has no relevance for documents opened with this
function -- the document uses its own form.

Use this method of data access when handling single or multiple documents inconsistently. Use
htDocFetch when performing the same actions on multiple documents in an index.

CURSOR

The cursor containing the document.

DOCID

The document to open.

SUMMARY

Whether to load only summary items. Composite items are never summary items, and other items
usually are (this is not always true, since a document may contain no more than 15K of summary
data). If this parameter is TRUE, then only summary items will be available from this document.
If FALSE, then all document items will be available. Do not load non-summary objects unless
required, since they are often large.

DOCHAND

The buffer to receive the new document handle. This handle is valid until the document or the
containing cursor is closed.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

Chapter 4 HiTest Functions 131

HTFAIL INVALID DOCUMENT (document does not exist).

Example HTDOCHANDLE dochand;

HTSTATUS status;

status = htDocOpen (cursor, docid, TRUE, &dochand);

See Also htDocClose, htDocFetch, htDocGetInfo, htindexNavigate, htCurClose

Chapter 4 HiTest Functions 132

htDocPut

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Creates a new document from bound items.

HTSTATUS htDocPut (cursor, docid);
HTCURSOR cursor; /* Input */

HTDOCID *docid; /* Output, Optional */

Creates a new document and new items in that document from bound items. All bound items (not
bound cells) are converted and stored in the new document. If strict binding is in effect, then the
new document uses the active form. If this is the first call to htDocPut since a call to
htFormTemplate, then this document uses a form template from htFormTemplate. In this case,
form creation of the virtual form precedes the new document’s creation. The created form has the
same fields as the document’s items.

CURSOR

The cursor in which to create the document.

DOCID

The buffer to receive the new document’s ID. If bulk storage is active, then documents created
with htDocPut do not have a valid document ID until the containing cursor is closed, and this
value will be NULLID. Otherwise, this document ID behaves like any normal document.

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL FORM_UNAVAIL (strict binding requires an active form).

HTDOCID docid;
HTSTATUS status;

status = htDocPut (cursor, &docid);

htCurReset, htltemBind

Chapter 4 HiTest Functions 133

htDocUpdate

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Updates modifications to bound items back to the last fetched document.

HTSTATUS htDocUpdate (cursor);

HTCURSOR cursor; /* Input */

Updates certain bound items back to the previously fetched document. This function is only valid
following a htDocFetch, and while the fetched document is still the current document in the active
index. This function copies into the document any modifications to bound items in memory.
Modifications include not only the item data, but also any bound length and null indicators). This
function only updates an item if the item’s bound update boolean assigned with htltemBind is set
to TRUE.

CURSOR

The cursor containing the index.
HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL DATA UNAVAIL (no open fetched document from an active index).

HTSTATUS status;

status = htDocUpdate (cursor);

htIndexNavigate, htDocFetch, htltemBind, htCurReset

Chapter 4 HiTest Functions 134

Error

Each HiTest process or task contains error information accessible in various ways. Since different programmers
prefer different methods, HiTest has three error handling methods: simple error retrieval, error writeback buffers,
and an error callback procedure. Each process or task has its own error information. Calling a HiTest function will
clear any error information from a previous function call. This does not apply to the htError functions, which have
no effect on the current error information.

See the “Error Handling” section of Chapter 3, “Programming to the HiTest API” for a discussion of error handling
and a list of error codes and severities.

The error group contains the following functions:

htErrorFetch Obtains the current error information
htErrorSetBuffer Sets writeback buffers to receive error information on any HiTest error

htErrorSetProc Assigns an error callback function

Chapter 4 HiTest Functions 135

htErrorFetch

Summary

Syntax

Description

Parameters

Returns

Example

Obtains the current error information.

HTINT htErrorFetch (length, status, severity, message);

HTINT length; /* Input, Optional */
HTSTATUS *status; /* Output, Optional */
HTSEVERITY *severity; /* Output, Optional
*/

char *message; /* Output, Optional */

Obtains the information for any error produced by the most recent HiTest function call. This
information consists of an error status code, an error severity, and an error message. When an error
occurs, the error information is accessible until the next HiTest call (excluding htError functions),
at which time HiTest resets the error information.

LENGTH

The length of the supplied error message buffer in the message parameter. Use a value of zero if
the buffer is of sufficient size to hold the message. The constant HTLEN ERROR defines the
maximum error message length.

STATUS

The buffer to receive the error status code.

SEVERITY

The buffer to receive the severity of the error code.

MESSAGE

The buffer to receive the error message string. Supply the buffer length in the length parameter.

HTINT error string length. Returns zero if there is no current error or the message parameter is
NULL.

char message [HTLEN ERROR + 1];

HTINT length;

See Also

Chapter 4 HiTest Functions

HTSTATUS status;
HTSEVERITY severity;

length = htErrorFetch (0,
&message) ;

htErrorSetBuffer, htErrorSetProc

&status,

136

&severity,

Chapter 4 HiTest Functions 137

htErrorSetBuffer

Summary

Syntax

Description

Parameters

Returns

Example

Sets writeback buffers to receive error information on any HiTest error.

void htErrorSetBuffer (length, buffer, status,
severity);

HTINT length; /* Input, Optional */
char *buffer; /* Input, Optional */
HTSTATUS *status; /* Input, Optional */

HTSEVERITY *severity; /* Input, Optional
*/

Sets writeback buffers which will automatically receive the error string, error status code, and
error severity when a HiTest function generates an error. If there is an assigned error callback
function (by htErrorSetProc), then HiTest writes the error information to the writeback buffers
before calling the callback function. Normally, using both writeback buffers and a callback
function is unnecessary.

LENGTH

The length of the buffer which will receive the error message. The constant HTLEN ERROR
defines the maximum error message length. A value of zero indicates that the buffer is of sufficient
length to contain the result.

BUFFER

The buffer to receive the error message string.

STATUS

The buffer to receive the error code.

SEVERITY

The buffer to receive the error severity.

void.

char error [HTLEN ERROR + 1];

HTSTATUS status;

See Also

Chapter 4 HiTest Functions

HTSEVERITY severity;

htErrorSetBuffer (HTLEN ERROR,
&severity);

htErrorFetch, htErrorSetProc

error,

138

&status,

Chapter 4 HiTest Functions 139

htErrorSetProc

Summary Assigns an error callback function.

Syntax HTERRORPROC htErrorSetProc (errproc, errparam);
HTERRORPROC errproc; /* Input */
void *errparam; /* Input, Optional
*/

Description Assigns an error callback function. When a HiTest function generates an error, HiTest calls the
callback function before the HiTest function returns. If there are assigned error writeback buffers
(by htErrorSetBuffer), then HiTest writes the error information to the writeback buffers before
calling the callback function. Normally, using both writeback buffers and a callback function is
unnecessary.

Parameters ERRPROC

The address of the callback function. Define the callback function based on the HTERRORPROC
prototype declaration:

typedef HTSTATUS (far HTAPIERRTYPE HTERRORPROC)
(HTSTATUS code,
HTSEVERITY severity,
char far *errmsg,

void far *buffer);

The callback function parameters are:
code is the error status code;
severity is the error severity;
errmsg is a read-only pointer to the error message string;

buffer is the errparam parameter supplied to htErrorSetProc.

The constant HTAPIERR defines the platform independent calling convention for error callback
functions.

Chapter 4 HiTest Functions 140

ERRPARAM

A parameter supplied when HiTest calls the callback function. This provides a method for the
calling program to transmit its own context information to the callback function.

Returns HTERRORPROC pointer to the callback function prior to this function call. Returns NULL if
there was no previous callback function.

Example HTSTATUS HTAPIERR HiTestErrorProc (HTSTATUS code,
HTSEVERITY severity,
char far *errmsg,

void far *buffer);

HTERRORPROC old errorproc;

old errorproc = htErrorSetProc (HiTestErrorProc,
context) ;

See Also htErrorFetch, htErrorSetBuffer

Chapter 4 HiTest Functions 141

Field

A field is the component of a form which describes a single data item within a document. Each form contains one or
more fields. The primary attributes of a field are a name and data type. When strict binding is in effect, all items
within a document must have a corresponding field within the document’s form.

The following flags define field attributes in the HTFIELD structure:

HTFIELD READWRITERS Field contains readwriter names
HTFIELD EDITABLE Field may be edited

HTFIELD NAMES Field contains distinguished names
HTFIELD STOREDV Always store default values
HTFIELD READERS Field contains document readers
HTFIELD SECTION Field contains a section

HTFIELD COMPUTED Computed field

HTFIELD KEYWORDS Keywords field

HTFIELD PROTECTED Field is protected

HTFIELD REFERENCE Name is reference to a shared field
HTFIELD_ SIGN Field is signed

HTFIELD SEAL Field is sealed (encrypted)
HTFIELD KWD UI STD Keywords Ul is standard
HTFIELD KWD_ UI CHECK Keywords Ul is a checkbox
HTFIELD KWD_ UI RADIO Keywords Ul is a radio button
HTFIELD KWD UI NEW Allow new keywords

htFieldList and htFieldGetInfo return the following field attribute structure:

typedef struct
{

HTTYPE type; /* Field data type */
char name [HTLEN FIELDNAME + 1]; /* Field name */
HTFLAGS flags; /* Field flags (HTFIELD xxX)
*/
HTINT desc len; /* Length of the field
description */
HTINT keylist len; /* Length of the keywords text
list */
} HTFIELD; /* Field attribute structure
*/

The field group contains the following functions:

htFieldCount Obtains the number of fields in a form
htFieldGetInfo Obtains a piece of information about a form field

htFieldList Iterates through fields in a form

Chapter 4 HiTest Functions 142

htFieldCount

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Obtains the number of fields in a form.

HTSTATUS htFieldCount (cursor, formid, fieldcount);

HTCURSOR cursor; /* Input */
HTFORMID formid; /* Input */
HTINT *fieldcount; /* Output */

Obtains the number of fields in the indicated form.

CURSOR

The cursor containing the form.

FORMID

The form from which to obtain the field count.

FIELDCOUNT

The buffer to receive the number of fields in the form.

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID FORM (form does not exist).

HTINT fieldcount;
HTSTATUS status;

status = htFieldCount (cursor, formid, fieldcount);

htFormGetld, htFieldList

Chapter 4 HiTest Functions 143

htFieldGetinfo
Summary Obtains a piece of information about a form field.
Syntax HTSTATUS htFieldGetInfo (cursor, formid, fieldname,
item,
buffer);
HTCURSOR Cursor; /* Input */
HTFORMID formid; /* Input */
char *fieldname; /* Input */
HTFIELDINFO item; /* Input */
void *buffer; /* Output */
Description Fetches one of various field information items into a supplied buffer. Each item has a data type,

and the buffer must be sufficiently large to hold the result. To obtain either the field description or
field keywords list, determine the required buffer length from the field’s HTFIELD structure.
Lengths of zero indicate that the information is not used for the field. HiTest returns keywords as a
text list (see the htTextList functions).

Parameters CURSOR

The cursor containing the form.

FORMID

The form from which to obtain the field information.

FIELDNAME

The name of the desired field within the form.

ITE

One value from an enumeration of field items. Each item corresponds to a type (and length, for
variable length types). The following table lists legal items with their corresponding data types
and, where relevant, lengths:

constant type

HTFIELDINFO HTFIELD HTFIELD *

Returns

Example

See Also

Chapter 4 HiTest Functions 144

HTFIELDINFO DESCRIPTION char [HTFIELD.desc len]
HTFIELDINFO KEYWORDS HTTYPE TEXT LIST,

length: HTFIELD.keylist len

HTFIELD obtains the HTFIELD information structure.
DESCRIPTION obtains the field description;

KEYWORDS obtains the field keywords text list. Each element in this text list is one keyword.
Each keyword may contain one or more synonyms in the form of “KEY1KEY2”, where the
leftmost string is the value displayed in the UI, and the rightmost string is the value stored in the
item;

BUFFER

The buffer to receive the requested information. This buffer should be of sufficient length to
handle the result.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID FORM (form does not exist);
HTFAIL INVALID_ FIELD (no such field in the form);
HTFAIL ILLEGAL ENUM (invalid item).

HTFIELD htfield;
HTSTATUS status;

status = htFieldGetInfo (HTFIELDINFO HTFIELD, &field);

htFormGetld, htFieldList

Chapter 4 HiTest Functions 145

htFieldList
Summary Iterates through fields in a form.
Syntax HTSTATUS htFieldList (cursor, formid, first, field);
HTCURSOR cursor; /* Input */
HTFORMID formid; /* Input */
HTBOOL first; /* Input */
HTFIELD *field; /* Output */
Description Returns the first or next field information from the list of fields in the form.
Parameters CURSOR

The cursor containing the form.

FORMID

The form from which to list fields.

FIRST

Whether to get the first or next field. TRUE resets the field list, FALSE obtains the next field in
the list. This value is always TRUE on the first call for a given form.

FIELD

The structure to receive information on the field. See the Field object section preceding the htField
functions for a description of this structure and its contents. The description and keyword list
lengths define the required buffer length for htFieldGetInfo when obtaining the field description
and keywords, respectively.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID FORM (form does not exist);
HTFAIL END OF DATA (no more fields).

Example HTFIELD field;

Chapter 4 HiTest Functions 146

HTSTATUS status;

status = htFieldList (cursor, FALSE, &field);

See Also htFormGetld, htFieldCount, htFieldGetInfo

Chapter 4 HiTest Functions 147

File

Internally, Lotus Notes stores file attachments as items of a particular data type. The HiTest API handles files
differently since they may have different actions performed on them, specifically attaching and extracting. Notes
stores files attached to a document within items named “$FILE”, and these are the items accessed by the file
functions. The primary attribute of a file is a file name (which does not include any path information).

The file group contains the following functions:

htFileDelete Deletes a file attachment from a document
htFileFetch Extracts a file attachment from a document to a file
htFileList Iterates through file attachments in a document

htFilePut Attaches a file to a document

Chapter 4 HiTest Functions 148

htFileDelete
Summary Deletes a file attachment from a document.
Syntax HTSTATUS htFileDelete (dochand, filename);
HTDOCHANDLE dochand; /* Input */
char *filename; /* Input */
Description Deletes a file attachment from a document. Notes represents file attachments by file name and

extension, not the full path.

Parameters DOCHAND

The document containing the file attachment.

FILENAME

The filename of the attached file. Use htFileList to obtain a list of files within a document.
Returns HTSTATUS return code. Failures include:
HTFAIL INVALID DOCUMENT (invalid document handle);

HTFAIL INVALID FILE ITEM (no such file attachment in the document).

Example HTSTATUS status;

status = htFileDelete (dochand, "filename.txt");

See Also htFileList, htFilePut

Chapter 4 HiTest Functions 149

htFileFetch

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Extracts a file attachment from a document to a file.

HTSTATUS htFileFetch (dochand, directory, filename);

HTDOCHANDLE dochand; /* Input */
char *directory; /* Input, Optional */
char *filename; /* Input */

Extracts a file attachment from a document to an operating system file. A directory into which to
extract the file may be specified.

DOCHAND

The document containing the file attachment.

DIRECTORY

The directory into which to extract the file. A NULL pointer or empty string directs HiTest to use
the current working directory. Valid directory values are a fully specified path with or without the
drive (e.g., “C:\HITEST\DOC” or “\HITEST\DOC”), or a path relative to the current directory
(e.g., “DOC” when the current directory is HITEST).

FILENAME

The filename of the attached file. Use htFileList to obtain a list of files within a document.

HTSTATUS return code. Failures include:
HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL INVALID FILE ITEM (no such file attachment in the document).

HTFAIL INVALID DIRECTORY (extraction directory is invalid).

HTSTATUS status;

status = htFileFetch (dochand, "C:\NOTES",
"filename.txt")

htFileList

Chapter 4 HiTest Functions 150

htFileList

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Iterates through file attachments in a document.

HTSTATUS htFilelList (dochand, first, filename);

HTDOCHANDLE dochand; /* Input */
HTBOOL first; /* Input */
char *filename; /* Output */

Returns the first or next file attachment filename from the list of file attachments in the document.
Use this filename with the other htFile functions to manipulate file attachments.

DOCHAND

The document from which to list file attachments.

FIRST

Whether to get the first or next file attachment. TRUE resets the attachment list, FALSE simply
obtains the next attachment in the list. The value always acts as TRUE on the first call for a given
document handle.

FILENAME

The buffer to receive the filename string. Attached files store only the file name and extension, not
the full path. The constant HTLEN FILENAME defines the maximum filename length.

HTSTATUS return code. Failures include:
HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL END_ OF DATA (no more files).

char filename [HTLEN FILENAME + 1];
HTSTATUS status;

status = htFilelList (dochand, FALSE, filename);

htFileFetch

Chapter 4 HiTest Functions 151

htFilePut
Summary Attaches a file to a document.
Syntax HTSTATUS htFilePut (dochand, filepath);
HTDOCHANDLE dochand; /* Input */
char *filepath; /* Input */
Description Attaches a file to a document. Once attached, Notes represents file attachments by file name and
extension, not the full path.
Parameters DOCHAND
The document containing the file attachment.
FILENAME
The filename of the file to attach. If the file is not in the current working directory, use the full
path.
Returns HTSTATUS return code. Failures include:
HTFAIL INVALID DOCUMENT (invalid document handle).
Example HTSTATUS status;

See Also

status = htFilePut (dochand, "C:\WINDOWS\NOTES.INI") ;

htFileFetch, htFileDelete

Chapter 4 HiTest Functions

Font

Notes uses fonts in various objects, including composite records, views, and columns. A font does not support any
functions, but does need documentation. Notes normally supports three basic fonts (roman, swiss, and typewriter).
Any document which uses fonts beyond this set contains a composite item named “$FONTS” to define the
additional fonts. HiTest provides operating system-specific font representation of fonts (currently available only for
Windows) with the functions htCompGetOSFont and htCompPutOSFont. These functions simplify manipulation of
font information within a document. A font contains four components: font face, font attributes, font color, and font

size.

The face component describes the basic font. This component is either one of the values in the following list or a

number equal to or greater than the constant HTFONT FACE USERDEF MIN:

HTFONT FACE ROMAN Default
HTFONT FACE_SWISS
HTFONT FACE_TYPEWRITER

The following flags define font attributes in the HTFONT structure:
HTFONT ATTRIB BOLD

HTFONT ATTRIB_ITALIC

HTFONT ATTRIB UNDERLINE

HTFONT ATTRIB_STRIKEOUT

HTFONT ATTRIB_SUPER

HTFONT ATTRIB SUB

The following constants define font color in the HTFONT structure:
HTFONT _COLOR_BLACK Default

HTFONT COLOR_WRITE

HTFONT COLOR_RED

HTFONT COLOR_GREEN

HTFONT COLOR BLUE

HTFONT_COLOR_MAGENTA

HTFONT _COLOR_YELLOW

HTFONT COLOR_CYAN

Each font has a size in points. Since this is simply an integer number, the only constant defined is the default

constant HTFONT SIZE DEFAULT, which is ten.

The following structure represents a font:

typedef struct

{
HTBYTE face; /* Font face (HTFONT FACE xxx) */
HTBYTE attrib; /* Font attributes

*/
HTBYTE color; /* Font color (HTFONT COLOR_xXxXXx)
HTBYTE size; /* Font size in points */

} HTFONT;

*/

152

(HTFONT ATTRIB xxx)

Chapter 4 HiTest Functions 153

Form

A form is one of two primary types of metadata (the other is a view). Each database contains zero or more forms,
which describe the format of documents. A form consists of various attributes and one or more fields. HiTest can
automatically filter data through forms, providing a more consistent representation of data. The filtering occurs only
when the strict binding option is active (the default state), in which case HiTest type-checks all data transferred
against the relevant form. Lotus Notes represents forms as simply data, and the standard Lotus Notes API supplies
no abstraction of this data. The HiTest form abstraction accurately represents forms as metadata, and supports easy
access to that metadata. The primary attributes of a form are a name and ID. HiTest uses the constant NULLID to
represent an invalid form ID.

The following flags define form attributes in the HTFORM structure:

HTFORM_USE REFERENCE Use reference note

HTFORM_MAIL ON_SAVE Mail when saving document
HTFORM_RESPOSE TO RESP Save REFID to response
HTFORM_RESPONSE TO DOC Save REFID to main parent
HTFORM_RECALC FIELDS Recalc fields when focus is lost
HTFORM_FORM IN DOC Store form in document
HTFORM_USE FORE COLOR Use foreground color to paint
HTFORM_OLE ACT COMP Activate OLE objects at compose
HTFORM_OLE ACT EDIT Activate OLE objects at edit
HTFORM_OLE ACT READ Activate OLE objects at read
HTFORM_SHOW_WIN COMP Show editor window if OLE ACT COMP
HTFORM_SHOW_WIN_EDIT Show editor window if OLE ACT EDIT
HTFORM_SHOW_WIN READ Show editor window if OLE_ ACT READ
HTFORM_UPDATE IS RESP Updates become responses
HTFORM_UPDATE IS PARENT Updates become parents

htFormList returns the following form summary structure:

typedef struct

{
HTFORMID formid; /* Form ID */
HTBOOL hidden; /* Whether form is hidden in
UuI */
char name [HTLEN DESIGNNAME + 1]; /* Form name */
char display namel [HTLEN DISPLAYNAME + 1]; /* Primary
display
name */
char display name2 [HTLEN DISPLAYNAME + 1]; /* Secondary
display
name */
} HTFORMSUMM; /* htFormList summary structure */

htFormGetAttrib returns the following form attribute structure:

typedef struct

{
HTFLAGS flags; /* Form flags (HTFORM xxx) */

Chapter 4 HiTest Functions 154

WORD color; /* Background color */
HTBOOL hidden; /* Whether form is hidden in
uI */
char name [HTLEN DESIGNNAME + 1]; /* Form name */
char display namel [HTLEN DISPLAYNAME + 1]; /* Primary
display
name */
char display name2 [HTLEN DISPLAYNAME + 1]; /* Secondary
display
name */
} HTFORM; /* Form attribute

structure */

The three name fields in the HTFORM and HTFORMSUMM structures handle Notes’ multiple naming of objects.
Forms may have multiple names, and the first name may consists of two parts. The name field contains the string
which Notes uses internally to refer to a given form. The display namel field contains the name which appears in
the Notes UL For a cascading form name, the display name? field contains the cascading component of the Notes
UI name. When a form has only one name, the name field is equal to either display namel (if not cascading) or
display namel/display name?2 (if cascading). The hidden field indicates whether the Notes Ul Compose menu
normally displays the form. A hidden form has either its display name enclosed in parenthesis or the form attribute
“Include in Compose Menu” unchecked.

The form group contains the following functions:

htFormCopy Copies a form from one cursor to another
htFormDelete Deletes a form from a database
htFormGetAttrib Obtains the attributes of a form
htFormGetld Obtains a form ID from the form name
htFormList Iterates through forms in a database
htFormSet Assigns the active form for a cursor

htFormTemplate Creates a virtual form from the next inserted document’s bindings

Chapter 4 HiTest Functions 155

htFormCopy
Summary Copies a form from one cursor to another.
Syntax HTSTATUS htFormCopy (src_cursor, src_formid,
dest cursor,
dest formname, dest formid);
HTCURSOR src_cursor; /* Input */
HTFORMID src formid; /* Input */
HTCURSOR dest cursor; /* Input */
char *dest formname; /* Input, Optional
*/
FORMID *dest formid; /* Output, Optional */
Description Copies a form between cursors, optionally assigning a new name. Notes requires form names
within a database to be unique.
Parameters SRC_CURSOR

The cursor from which to copy the form.

SRC_FORMID

The form to copy within the source cursor.

DEST_CURSOR

The cursor into which to copy the new form.

DEST _FORMNAME

The name for the new form in the destination cursor. To keep the original name, use NULL or the
empty string. Otherwise, the name formatting follows the Notes UI rules (“display namel\
display name2 | name” -- see the Lotus Notes Application Developer’s Reference). A new name
must be supplied when the source and destination cursors are connected to the same database.

DEST_FORMID

The buffer which receives the form ID for the new form.

Chapter 4 HiTest Functions 156

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID FORM (source form does not exist);
HTFAIL DUPLICATE (a form exists in the destination cursor with the same title);

HTFAIL _OVERFLOW (new form title is too long).

Example HTFORMID new formid;
HTSTATUS status;

status = htFormCopy (cursorl, formid, cursor?2,
"NewForm",

&¢new formid) ;

See Also htFormGetld, htFormDelete

Chapter 4 HiTest Functions 157

htFormDelete

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Deletes a form from a database.

HTSTATUS htFormDelete (cursor, formid);
HTCURSOR cursor; /* Input */

HTFORMID formid; /* Input */

Deletes a form from a database. A cursor’s active form cannot be deleted.

CURSOR

The cursor containing the form.

FORMID

The form to delete.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL INVALID FORM (form does not exist);

HTFAIL ACTIVE RESULT (cannot delete the active form).

HTSTATUS status;

status = htFormDelete (cursor, formid);

htFormGetld, htFormCopy, htFormSet

Chapter 4 HiTest Functions 158

htFormGetAttrib
Summary Obtains the attributes of a form.
Syntax HTSTATUS htFormGetAttrib (cursor, formid, form);
HTCURSOR cursor; /* Input */
HTFORMID formid; /* Input */
HTFORM *form; /* Output */
Description Obtains complete attributes for a form.
Parameters CURSOR

The cursor containing the form.

FORMID

The form for which to obtain attributes.

FORM

The structure to receive form attributes. See the Form object section preceding the htForm
functions for a description of this structure and its contents.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID FORM (form does not exist).

Example HTFORM form;
HTSTATUS status;

status = htFormGetAttrib (cursor, formid, form);

See Also htFormList, htFormGetld

Chapter 4 HiTest Functions 159

htFormGetid

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Obtains a form ID from the form name.

HTFORMID htFormGetId (HTCURSOR cursor, char *formname) ;
HTCURSOR cursor; /* Input */

char *formname; /* Input */

Given a form name, obtains the form ID of the indicated form.

CURSOR

The cursor containing the form.

FORMNAME

The form name for which to obtain the ID.

HTFORMID for the requested form. Returns NULLID if the form does not exist.

HTFORMID formid;

formid = htFormGetId (cursor, "Memo"):;

htFormList, htFormGetAttrib

Chapter 4 HiTest Functions 160

htFormList

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Iterates through forms in a database.

HTSTATUS htFormList (cursor, operation, formsumm);

HTCURSOR cursor; /* Input */
HTLIST operation; /* Input */
HTFORMSUMM *formsumm; /* Output */

Returns the first or next form summary information from the list of forms in the cursor’s database.

CURSOR

The cursor from which to list forms.

OPERATION

An element of the HTLIST enumeration that indicates whether and how to reset the form list. Use
HTLIST REFRESH to discard the form list and obtain a new list from Notes. Use
HTLIST FIRST to set the next element in the list to the first element. Use HTLIST NEXT to
obtain the element following the previously fetched element. The first call to this function after
opening the cursor always uses the value HTLIST REFRESH.

HTFORMSUMM

The structure to receive the form’s summary information. See the Form object section preceding
the htForm functions for a description of this structure and its contents.

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL END OF DATA (no more forms).

HTFORMSUMM formsumm;
HTSTATUS status;

status = htFormList (cursor, HTLIST NEXT, &formsumm);

htFormGetAttrib

Chapter 4 HiTest Functions 161

htFormSet

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Assigns the active form for a cursor.

HTSTATUS htFormSet (HTCURSOR cursor, HTFORMID formid) ;
HTCURSOR cursor; /* Input */

HTFORMID formid; /* Input */

Sets the active form for a cursor, which is required when strict binding is in effect to filter results.
When producing a flat index, the index only includes documents of this form. When loading or
storing items, the items must exist in this form and be of the proper type. The active form is only
used when strict binding is in effect. Use the htCurGetInfo function to obtain a cursor’s active
form. This function is invalid in a cursor containing an active index.

CURSOR

The cursor in which to set the active form.

FORMID

The form to set as the active form. Use NULLID to clear the active form.

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID FORM (form does not exist);

HTFAIL_ACTIVE RESULT (cannot set the active form with an active index)

HTSTATUS status;

status = htFormSet (cursor, "Memo")

htFormGetld, htCurSetOption, htCurGetInfo, htFormulaExec, htltemBind

Chapter 4 HiTest Functions 162

htFormTemplate

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Creates a virtual form from the next inserted document’s bindings.
HTSTATUS htFormTemplate (cursor, formname);
HTCURSOR cursor; /* Input */

char *formname; /* Input */

Defines a virtual form which is created at the next htDocPut call. This function is invalid in a
cursor containing an active index. After calling this function, any htltemBind calls create virtual
items in the virtual form. The next htDocPut call creates a form from the virtual form containing
the same items as the new document.

CURSOR

The cursor in which to create the form template.

FORMNAME

The form name to use for the new form. The name formatting follows the Notes UI rules
(“display_namel\display name2 | name” -- see the Lotus Notes Application Developer’s
Reference).

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL DUPLICATE (a form with the given form name exists in this cursor);
HTFAIL ACTIVE RESULT (clear the active result to enable this operation).

HTSTATUS status;

status = htFormTemplate (cursor, "NewForm");

htFormSet, htltemBind, htDocPut

Chapter 4 HiTest Functions 163

Formula

Each cursor contains a formula buffer to construct formulas in one or more pieces. On execution, HiTest assembles
the entire formula internally. Formula execution produces an index. An empty formula produces the same results as
“SELECT @ALL”. When producing a view-based index, the formula buffer must be empty. The syntax of Notes
selection formulas is defined in the Lotus Notes Application Developer’s Reference.

The formula group contains the following functions:

htFormulaConcat Concatenates a string to the formula buffer

htFormulaConcatf Concatenates a printf-style formatted string to the formula buffer
htFormulaCopy Copies a portion of the current formula buffer

htFormulaExec Executes the formula buffer and produces an index
htFormulaLength Returns the length of the current formula buffer

htFormulaReset Clears the formula buffer

Chapter 4 HiTest Functions 164

htFormulaConcat

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Concatenates a string to the formula buffer.
HTSTATUS htFormulaConcat (cursor, string);
HTCURSOR cursor; /* Input */

char *string; /* Input */

Concatenates a string to the cursor’s formula buffer. This supports construction of a formula a
piece at a time, or in a single call. Use the htFormulaConcatf function for printf-style string
formatting. Both the htCurReset and htFormulaReset functions clear the formula buffer.

CURSOR

The cursor to use.

STRING

The string to concatenate to the formula buffer.

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR.

HTSTATUS status;

status = htFormulaConcat (cursor, "SELECT QA11l")

htFormulaConcatf, htFormulaReset, htCurReset

Chapter 4 HiTest Functions

htFormulaConcatf

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Concatenates a printf-style formatted string to the formula buffer.

HTSTATUS htFormulaConcatf (cursor, format,

HTCURSOR cursor; /* Input */

char *format; /* Input */

C)

165

Concatenates a printf-style formatted string to the cursor’s formula buffer. This supports
construction of a formula a piece at a time, or in a single call. This function supports multiple
arguments and the format string is any valid printf format string. Use the htFormulaConcat

function for simple (non-formatted) formula concatenation.
htFormulaReset functions clear the formula buffer.

CURSOR

The cursor to use.

FORMAT

The printf-style format string to concatenate to the formula buffer.

... (VARIABLE PARAMETERS)

Variable parameters for the printf-style formatting.

HTSTATUS return code. Failures include:
HTFAIL _INVALID CURSOR.

HTSTATUS status;

status = htFormulaConcatf (cursor,
— \"%S\"",

formname)

htFormulaConcat, htFormulaReset, htCurReset

Both the

"SELECT

htCurReset and

Form

Chapter 4 HiTest Functions 166

htFormulaCopy

Summary Copies a portion of the current formula buffer.

Syntax HTINT htFormulaCopy (cursor, start, count, buffer);
HTCURSOR cursor; /* Input */
HTINT start; /* Input, Optional */
HTINT count; /* Input, Optional */
char *pbuffer; /* Output */

Description Copies some or all of the cursor’s formula buffer to a supplied buffer.

Parameters CURSOR
The cursor to use.
START
The character index in the formula buffer from which to start the copy (the first character is index
zero). If start is greater than the formula length, the result is the empty string.
COUNT
The number of characters to copy. Use zero to copy until the end of the formula buffer. If there are
not enough characters, the copy stops at the last character.
BUFFER
Buffer into which to copy the formula fragment.

Returns HTINT number of bytes copied.

Example char formula fragment [20];
length = htFormulaCopy (cursor, 0, 19,
formula fragment);

See Also htFormulaLength

Chapter 4 HiTest Functions 167

htFormulaExec

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Executes the formula buffer and produces an index.

HTSTATUS htFormulaExec (HTCURSOR cursor);

HTCURSOR cursor; /* Input */

Produces an index in the cursor by executing the contents of the formula buffer as a Notes
formula. The empty formula produces the same effects as the formula “SELECT @ALL”. See the
Lotus Notes Application Developer’s Reference for a description of valid formula syntax. After
execution, the htIndex functions support manipulation of the index produced. The type of index
depends on whether there is an active view.

If there is no active view, then this function produces a flat index. HiTest executes the formula
against the cursor’s database, producing a list of documents. Any active form must be set before
calling this function (any attempts to do so with an active index will fail). If strict binding is in
effect, then this function requires an active form, and the index will only contain documents of the
active form. After execution, navigation through the resulting index is possible with the functions
htIndexNavigate, htIndexSetPos, or htIndexSetTreePos.

If there is an active view, then that view produces the hierarchical index. The formula buffer must
be empty. This function will lose efficiency if the VIEW_POSITION cursor-level option is active.
Access to view data with the htCell functions requires a view-based index.

CURSOR

The cursor in which to execute the formula buffer.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL FORM_UNAVAIL (search formula with strict bind requires an active form);
HTFAIL INVALID FORMULA (formula contains incorrect syntax).

HTSTATUS status;

status = htFormulaExec (cursor):;

htFormulaConcat, htFormulaConcatf, htFormulaReset, htFormSet, htViewSet, htIndexNavigate,
htIndexSetPos, htindexSetTreePos, htCurReset, htSetOption

Chapter 4 HiTest Functions 168

htFormulalLength

Summary Returns the length of the current formula buffer.
Syntax HTINT htFormulalength (cursor);

HTCURSOR cursor; /* Input */
Description Returns the string length of the cursor’s current formula buffer.
Parameters CURSOR

The cursor to use.
Returns HTINT formula buffer length. Returns zero if the formula buffer is empty.
Example HTINT length;

length = htFormulalength (cursor);
See Also htFormulaConcat, htFormulaConcatf, htFormulaCopy

Chapter 4

htFormulaReset

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Clears the formula buffer.

HTSTATUS htFormulaReset

HTCURSOR cursor;

Clears the cursor’s formula buffer.

CURSOR

The cursor to use.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR.

htFormulaReset

htCurReset

(cursor) ;

HiTest Functions

(HTCURSOR cursor) ;

/* Input */

169

Chapter 4 HiTest Functions 170

Index

Each cursor may contain one active index. An index is a set of documents produced by executing a formula against
a database, executing a full text search query against a database or index, or accessing a view. An index may be flat
or hierarchical (view-based). There are two ways to move through an index: navigation relative to the current
position, and assignment of an absolute position. A cursor in which an index has been produced contains an active
index. This prevents certain operations (e.g., setting the active form or view) without first clearing the active index.
Full text search can produce a new index or refine an existing index.

Setting an absolute position within a view-based index has two usages. The default usage (when the VIEW
POSITION option is FALSE) is to position based on top-level entries within the view. This enables rapid movement
through a view-based index, and is much quicker than normal navigation when moving over large distances. Set the
VIEW POSITION option to TRUE to allow programs to locate any position within the view by ordinal number. This
method causes a significant slowdown when moving through a view-based index, and should generally be avoided.
Large databases will aggravate the slowdown. The preferred method for view-based positioning is the default of
using the top-level entries.

The index group contains the following functions:

htIndexCount Obtains the number of documents in an index

htIndexGetInfo Obtains a piece of information about the active index
htIndexGetPos Obtains the current position in the index

htIndexGetTreePos Obtains the current hierarchical position in a view-based index
htIndexNavigate Navigates through the documents in an index

htIndexRefresh Refreshes a view-based index

htIndexSearch Performs a full text search

htIndexSetPos Assigns the current position in the index

htIndexSetTreePos Assigns the current hierarchical position in a view-based index

Chapter 4 HiTest Functions 171

htindexCount

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Obtains the number of documents in an index.

HTINT htIndexCount (cursor);

HTCURSOR cursor; /* Input */

Obtains the number of elements in the cursor’s active index. Use this count as the maximum index
position for the htindexGetPos and htIndexSetPos functions. For a view-based index, the count
depends on the VIEW_POSITION option. When it is inactive (the default), this function obtains
the number of top-level entries in the index. When it is active, this function obtains the total
number of entries in the index.

CURSOR

The cursor containing the relevant index.

HTINT number of document in the cursor’s active index. Returns zero if there is no active index.

HTINT count;

count = htIndexCount (cursor):;

htFormulaExec, htindexGetPos, htindexSetPos, htSetOption

Chapter 4 HiTest Functions 172

htindexGetinfo
Summary Obtains a piece of information about the active index.
Syntax HTSTATUS htIndex (cursor, item, buffer);
HTCURSOR cursor; /* Input */
HTINDEXINFO item; /* Input */
void *pbuffer; /* Output */
Description Fetches one of various index information items into a supplied buffer. Each item has a data type,
and the buffer must be sufficiently large to hold the result.
Parameters CURSOR

The cursor containing the relevant index.

ITE

One value from an enumeration of index items. Each item corresponds to a type (and length, for
variable length types). The following table lists legal items with their corresponding data types
and, where relevant, lengths:

constant type
HTINDEXINFO ISSELECT HTBOOL
HTINDEXINFO ISVIEWBASED HTBOOL
HTINDEXINFO ISFTSEARCH HTBOOL
HTINDEXINFO VIEWDEPTH HTINT
HTINDEXINFO FTSCORE HTINT

ISSELECT indicates whether the cursor contains an active index;

ISVIEWBASED indicates whether the current index is view-based.
ISFTSEARCH indicates whether the current index is a result of full text search.
VIEWDEPTH obtains the hierarchical depth of the current view-based index entry.

FTSCORE obtains the full text search relevance score of the current full text index entry.

Chapter 4 HiTest Functions 173

BUFFER

The buffer to receive the requested information. This buffer should be of sufficient length to
handle the result.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL ILLEGAL _ENUM (invalid item).

Example HTBOOL isviewbased;
HTSTATUS status;
status = htIndexGetInfo (HTINDEXINFO ISVIEWBASED,

&isviewbased) ;

See Also htFormulaExec, htiIndexSearch, htCurReset

Chapter 4 HiTest Functions

htindexGetPos

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Obtains the current position in the index.

HTINT htIndexGetPos (cursor);

HTCURSOR cursor;

Obtains the current position in the cursor’s index. The first element’s position

/* Input */

htIndexCount function to get the last element’s position.

CURSOR

The cursor containing the relevant index.

174

is one. Use the

HTINT one-based position in the active index. Returns zero if there is no active index.

HTINT position;

position = htIndexGetPos

htIndexCount, htindexSetPos

(cursor) ;

Chapter 4 HiTest Functions 175

htindexGetTreePos

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Obtains the current hierarchical position in a view-based index.

HTSTATUS htIndexGetTreePos (cursor, length, position);

HTCURSOR cursor; /* Input */
HTINT length; /* Input, Optional */
char *position; /* Output */

Obtains the current hierarchical position in the cursor’s view-based index. This position is in the
format of a Notes @DocNumber value (e.g., “13.2.4”). The position represents a ‘pointer’ to an
exact view element. Use htIndexSetTreePos to move directly to this position. This function is only
available on view-based indices when the VIEW_POSITION option is inactive.

CURSOR

The cursor containing the relevant index.

LENGTH

The length of the buffer which will receive the position string. A value of zero indicates that the
buffer is of sufficient length to contain the result.

POSITION

The buffer to receive the hierarchical position string.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL DATA UNAVAIL (no active view-based index);

HTFAIL _OVERFLOW (position string is too long for supplied buffer).

char position [81];
HTSTATUS status;

status = htIndexGetTreePos (cursor, 80, position);

htIndexSetTreePos, htiIndexGetPos

Chapter 4 HiTest Functions 176

htindexNavigate

Summary

Syntax

Description

Parameters

Navigates through the documents in an index.

HTSTATUS htIndexNavigate (cursor, direction, docid,
indent) ;

HTCURSOR cursor; /* Input */

HTNAV direction; /* Input */
HTDOCID *docid; /* Output, Optional */
HTINT *indent; /* Output, Optional */

Navigates through the cursor’s index using a navigation style (direction). More styles are available
for view-based indices than for flat indices. To retrieve each of the entries in an index, use the
HTNAV_NEXT direction (since position zero is before the first entry, this will iterate through all
entries in the index). Every entry in a flat index is a document. The entries (rows) in a view-based
index can be of three types: a document, a category, or a totals row. Navigation loses efficiency
against a view-based index when the view position option is active.

CURSOR

The cursor containing the relevant index.

DIRECTION

The style of navigation to use. This value is an element of the HTNAV enumeration, combined
with zero or more HTNAV flags. The following table defines HTNAV values:

DIRECTION MEANING

HTNAV_NEXT Locate the next document
HTNAV_END Go to the last document
HTNAV_PEER* Go to the next peer
HTNAV_CHILD* Go to the next child
HTNAV_PARENT* Go to the next parent
HTNAV_MAIN* Go to the next main document
HTNAV_CURRENT Don’t change the position
FLAGS MEANING

HTNAV_PEEK When done, restore the position prior to call

Returns

Example

Chapter 4 HiTest Functions 177

HTNAV_BACKWARD Navigate backwards (invalid with CHILD)
HTNAV_NOCATEGORY* Skip category entries
HTNAV_NOVIEWTOTALS* Skip totals entries

*values marked with an asterisk are only valid for hierarchical indices

DOCID

The buffer to receive the document ID of the new entry. Special constant values indicate a
category or totals row. The document ID value for a category row is the constant
HTINDEX DOCID CATEGORY and the document ID value for a totals row is the constant
HTINDEX DOCID_VIEWTOTAL. These special values are negative, and all valid document are
positive.

INDENT

The buffer to receive the view cell indentation of the new entry. This value is always zero for flat
indices. For document rows in a view-based index, the top level document is zero, the first
response is one, etc. For category rows, this value is the depth of cascading category indentation
levels. A totals row has an indent value of zero. When rendering a view visually, the indentation
determines the number of three space prefixes to add before the view row. To determine the
hierarchical depth of an index entry, use the htlndexGetInfo function with the
HTINDEXINFO VIEWDEPTH item.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL ILLEGAL ENUM (invalid direction);

HTFAIL INVALID NAVTYPE (direction is invalid with the active index);
HTFAIL END OF DATA (no more results available);

HTFAIL DATA UNAVAIL (no active index) OR;

HTFAIL DATA UNAVAIL (direction current with invalid view-based index position).

HTINT indent;
HTDOCID docid;
HTSTATUS status;
status = htIndexNavigate (cursor,
HTNAV NEXT + HTNAV BACKWARD,

&docid, &indent);

Chapter 4 HiTest Functions 178

See Also htFormulaExec, htIndexGetInfo, htIndexSetPos, htindexRefresh, htDocFetch, htDocUpdate,
htSetOption

Chapter 4 HiTest Functions 179

htindexRefresh

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Refreshes a view-based index.

HTSTATUS htIndexRefresh (cursor);

HTCURSOR cursor; /* Input */

Performs a view refresh for the cursor’s index. This functionality is only available for view-based
indices. Changes such as deleting a document which affect a view require either this function or
recomputation with htFormulaExec to integrate them into the index. After refreshing the index, the
function attempts to restore the index position prior to this call.

CURSOR

The cursor containing the relevant index.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL DATA UNAVAIL (no active view-based index).

HTSTATUS status;

status = htIndexRefresh (cursor);

htFormulaExec

Chapter 4 HiTest Functions 180

htindexSearch

Summary Performs a full text search.
Syntax HTSTATUS htIndexSearch (cursor, query, flags, limit);

HTCURSOR cursor; /* Input */

char *query; /* Input */

HTFLAGS flags; /* Input */

HTINT limit; /* Input, Optional */
Description Performs a full text search against the documents in the active index (or the entire database if there

is no active index). The results produced are either a flat or view-based index, depending on the
index prior to the search. For view-based results, the search index does not contain a hierarchy
(i.e., there is only one level and hierarchical navigation styles don’t work), but still supports access
to cell data. The index produced replaces any previous index, but canceling the full text search
index with the HTSEARCH_CANCEL flag restores the original index.

Results of a full text search are available with the standard htindex functions. Hierarchical
navigation styles (e.g., CHILD, PARENT, etc.) do not work. Use the htIndexGetInfo function with
the HTINDEXINFO FTSCORE item to obtain scores produced from the full text search (see
HTSEARCH_SCORE flag below).

Parameters CURSOR

The cursor containing the relevant index.

QUERY

The full text query to execute. See the Lotus Notes Application Developers Reference for the
syntax of a full text search query.

FLAGS

The options which affect the full text search. The HTSEARCH flags may be OR-ed together,
although the HTSEARCH CANCEL flag overrides all others. The following table describes the

valid HTSEARCH flags:
FLAGS MEANING
HTSEARCH_SCORE Produce relevance scores (see htindexGetInfo)

HTSEARCH_SORT DATE Sort results by date (descending)

Returns

Example

See Also

Chapter 4 HiTest Functions 181

HTSEARCH_SORT ASCEND Sort results in ascending order (default descending)

HTSEARCH STEM_ WORDS Stem words in search

HTSEARCH REFINE Refine a previous search. HiTest requires an active
full text search index. If not used, HiTest destroys
any existing full text search index and performs this
search against the original non-full text search
index (if any)

HTSEARCH CANCEL Cancel existing full text search index, restoring the

original non-full text search index (if any)

LIMIT

The maximum number of results to produce. The search will stop after finding this number of
documents. Use zero for no limit, in which case the search returns all documents. The maximum
limit value is 65535.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL OVERFLOW (limit too large);

HTFAIL DATA_UNAVAIL (cancel or refine requires an active full text index);
HTFAIL END OF DATA (no documents found or query is the empty string).

HTSTATUS status;
status = htIndexSearch (cursor, "x and y",

HTSEARCH SORT DATE, 100);

htFormulaExec, htindexGetInfo, htIndexNavigate, htIndexGetPos, htIndexSetPos, htCurReset

Chapter 4 HiTest Functions 182

htindexSetPos

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Assigns the current position in the index.

HTSTATUS htIndexSetPos (cursor, position);
HTCURSOR cursor; /* Input */

HTINT position; /* Input */

Assigns the current position in the cursor’s index. The first element’s position is one. Use the
htIndexCount function to get the last element’s position. This function loses efficiency on a view-
based index when the VIEW_POSITION option is active.

CURSOR

The cursor containing the relevant index.

POSITION

The position to set in the index. One is the first index entry.

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL DATA UNAVAIL (no active index);
HTFAIL_END_ OF DATA (position is invalid).

HTSTATUS status;

status = htIndexSetPos (cursor, 30);

htIndexCount, htIndexGetPos, htSetOption

Chapter 4 HiTest Functions 183

htindexSetTreePos

Summary Assigns the current hierarchical position in a view-based index.

Syntax HTSTATUS htIndexSetPos (cursor, position);
HTCURSOR cursor; /* Input */
char *position; /* Input */

Description Assigns the current hierarchical position in the cursor’s index. The position is in the format of a
Notes @DocNumber (e.g., “13.2.4”). Programs can either use htindexGetTreePos to obtain the
current position or construct a position string programatically. This function is only available on
view-based indices when the VIEW_POSITION option is inactive.

Parameters CURSOR
The cursor containing the relevant index.

POSITION
The hierarchical position to set in the index.
Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL DATA UNAVAIL (no active view-based index);
HTFAIL END OF DATA (position is invalid);
HTFAIL _OVERFLOW (multi-level position is invalid in a full-text search index).

Example HTSTATUS status;
status = htIndexSetPos (cursor, "13.2.4");

See Also htIndexGetTreePos, htindexSetPos, htiIndexSearch

Chapter 4 HiTest Functions 184

Item

Notes stores individual data values in items, which in turn make up documents. Notes uses both the terms ‘item’ and
‘field’ to describe data within a document. HiTest uses a single term for clarity, and item represents document data
as opposed to form fields. The primary attributes of an item are an item name, a data type, and a data value. With
HiTest, items can be accessed either from open documents, or by binding items to the results in an index. While
Lotus Notes itself imposes no restrictions on items within a document, HiTest adds a minimal set of qualifications
which support basic access and facilitate simpler item access.

HiTest allows only one item of a given name within a given document. This restriction does not apply to file
attachments (which all use the same name) or composite items (which are stored in multiple items of the same
name). Use the htFile functions to manipulate file attachments. HiTest represents all composite items of the same
name as a single item. Use the htComp and htComprec functions to manipulate composite items.

Another optional restriction imposes a form of type-checking. When the STRICT BIND option is in effect, all items
in a document must match (name and data type) a field within that document’s form. Disable this option with either
the htSetOption or htCurSetOption functions, STRICT BIND option.

Several item functions use two data type parameters (type and itemtype) to implement automatic conversion. In
these functions the type parameter is the data type of data as seen by the calling program. The itemtype parameter is
the data type of the item within the document. HiTest performs any conversions automatically when loading data to
or storing data from the calling program.

When storing an item into a document, HiTest obtains the item flags from the form field (if strict binding is active)
and automatically stores them with the item. For example, using htltemPut to create a “SendTo” item in a document
created with the “Memo” form would automatically get the item flag NAMES from the form field. HiTest sets this
flag in the “SendTo” document item, indicating that the item contains distinguished names.

One item flag assigned independently from the form’s fields is the summary flag. For an item to be accessible from
within a view, the item’s summary flag must be set. If the summary items for a single document exceed the value
HTLEN _SUMMARY _ DATA (15K), then the document may not display properly in views, and cell values may not
be accessible. If the length of any single item exceeds HTLEN COMPUTE DATA (also 15K), then that item is not
usable in a view or any other form of computation. By default, items of length less than
HTDEFAULT SUMMARY LIMIT (8K) are stored with their summary flag set. Use the htSetOption or
htCurSetOption functions to change this limit to any value up to HTLEN SUMMARY DATA.

The following flags define item attributes:

HTITEM_SIGN Signed field

HTITEM_SEAL Sealed field (encrypted)
HTITEM_SUMMARY Summary field (usable in formulas)
HTITEM READWRITERS Author Names field
HTITEM_NAMES Names field
HTITEM_PROTECTED To edit field requires Editor access
HTITEM_READERS Reader Names field

Use the HTNAME REF constant (defined as “$SREF”) with the HTTYPE REF data type to retrieve and insert
reference items for response documents.

htltemList returns the following form attribute structure:

Chapter 4 HiTest Functions 185

typedef struct

{
HTTYPE type; /* Item data type */
char name [HTLEN FIELDNAME + 1]; /* Item name */
HTFLAGS flags; /* Item flags (HTITEM xxx) */
HTINT length; /* Item value length */
void *value; /* Item value (if requested) */
} HTITEM; /* Item summary structure */

The item group contains the following functions:

htltemBind Binds an item name to a program variable

htltemCount Obtains the number of items in a document

htltemDelete Deletes an item from a document

htltemFetch Converts and retrieves the data for an item into a supplied buffer
htltemGetInfo Obtains a piece of information about a document item

htltemGetPtr Returns a pointer to an item’s data converted to a specified type

htltemLength Obtains the length of an item as converted to a specified data type

htltemList Iterates through items in a document

htltemPut Writes an item to a document, overwriting any existing item of the same name

htltemUnbind Removes the binding of an item name

Chapter 4 HiTest Functions 186

htltemBind

Summary

Syntax

Description

Parameters

Binds an item name to a program variable.

HTSTATUS htItemBind (cursor, itemname, type, length,

itemtype, buffer, datalen, nullind,

update) ;
HTCURSOR cursor; /* Input */
char *itemname; /* Input */
HTTYPE type; /* Input, Optional */
HTINT length; /* Input, Optional */
HTTYPE itemtype; /* Input, Optional */
void *buffer; /* Input */
HTINT *datalen; /* Input, Optional
*/
HTBOOL *nullind; /* Input, Optional */
HTBOOL *update; /* Input, Optional */

Creates a ‘binding’ between a variable in the calling program and an itemname in the active index.
This binding is used by the htDocFetch, htDocPut, and htDocUpdate functions. Use item binding
when operating on the same set of items in multiple documents. Create bindings after using
htFormulaExec to produce an index. Remove bindings with htFormulaExec, htCurReset, or
htltemUnbind with the same item name.

Fetching a document causes all bound items to be converted and transferred from the document to
the bound buffers. Updating a document writes certain bound items (those with their update
parameter changed to TRUE) back to the last fetched document. Putting a document converts and
transfers data from the bound buffers into items in the new document. Binding a composite item
generates an error when the cursor option FETCH_SUMMARY is active, since only summary
data is available.

CURSOR

The cursor containing the desired index.

ITEMNAME

The name of the item to bind. When strict binding is in effect, this item must exist as a field in the
active form.

Chapter 4 HiTest Functions 187

TYPE

The data type for data in the supplied buffer. When fetching, HiTest converts the item data to this
type before copying it into the buffer. When storing (with htDocPut or htDocUpdate), HiTest
converts data from this type to the item’s type before writing it to the document. This enables
automatic conversion between an item’s data and the supplied buffer. A value of zero directs
HiTest to use the item’s data type (if strict binding is inactive, the item’s data type must be
supplied in the itemtype parameter).

LENGTH

The maximum length of the supplied buffer. Use zero when a buffer is known to be of sufficient
length. HiTest ignores this value when storing data (with htDocPut or htDocUpdate).

ITEMTYPE

The data type of the item. When strict binding is active, use either zero or the data type of the
corresponding field in the form. A value of zero directs HiTest to use the item’s data type (if strict
binding is inactive, the item’s data type must be supplied in the type parameter).

BUFFER

The buffer into which to fetch or store data for this item.

DATALEN

The buffer to use to specify a specific item’s data length. When fetching the item, HiTest sets this
value to the length of the data written to the data buffer. When storing the item (with htDocPut or
htDocUpdate), set this value to nonzero to supply the length of the item value. A value of zero
directs HiTest to determine the length. Use NULL to omit this functionality.

NULLIND

The buffer to use to specify a specific item’s null indicator. When fetching an item not in the
document, HiTest sets this value to TRUE (otherwise FALSE). When storing the item (with
htDocPut or htDocUpdate), setting this value to TRUE results in a NULL item (i.e., HiTest does
not store the item in the document) regardless of other values. Use NULL to omit this
functionality.

UPDATE

The buffer to use to specify a specific item’s update indicator. When fetching the item, HiTest sets
this value to FALSE. Setting this value to TRUE and then calling htDocUpdate directs HiTest to
write the new item value back to the fetched document. Bind multiple items with the same update
indicator buffer to perform multiple item updates by setting a single update indicator to TRUE and
calling htDocUpdate. Use NULL to omit this functionality.

Returns

Example

See Also

Chapter 4 HiTest Functions 188

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR

HTFAIL FORM_UNAVAIL (strict binding requires an active form);
HTFAIL INVALID FIELD (no such field exists in the active form);

HTFAIL DATA UNAVAIL (cannot bind a composite item if fetch summary is active).

char date string [HTLEN DATETIME TEXT + 1];

HTBOOL nullind, update;

HTSTATUS status;

status = htItemBind (cursor, "Date", HTTYPE TEXT, O,
HTTYPE DATETIME, date string, NULL,

&nullind, &update);

htltemUnbind, htDocFetch, htDocPut, htDocUpdate, htCellBind, htFormulaExec, htCurReset

Chapter 4 HiTest Functions 189

htitemCount

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Obtains the number of items in a document.

HTSTATUS htItemCount (dochand, itemcount);
HTDOCHANDLE dochand; /* Input */

HTINT *itemcount; /* Output */

Obtains the number of items in the document, including composite items and excluding file
attachments. HiTest counts (and handles with the htComp functions) all composite items of the
same name as one item. This count does not include file attachments, which are handled with the
htFile functions.

DOCHAND

The document from which to obtain the item count.

ITEMCOUNT

The buffer to receive the number of items in the document.

HTSTATUS return code. Failures include:
HTFAIL INVALID DOCUMENT (invalid document handle).

HTINT count;
HTSTATUS status;

status = htItemCount (dochand, &count);

htltemList

Chapter 4 HiTest Functions 190

htltemDelete

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Deletes an item from a document.

HTSTATUS htItemDelete (dochand, itemname);
HTDOCHANDLE dochand; /* Input */

char *itemname; /* Input */

Deletes an item from a document. This function does not work on file attachments (use the htFile
functions to manipulate or delete file attachments). Deleting a composite item deletes all items of
that name from the document (HiTest considers all composite items of the same name as single
item). Deleting an open composite item (i.e., represented by a valid composite handle) invalidates
that composite handle.

DOCHAND

The document containing the item.

ITEMNAME

The name of the item to delete. When strict binding is in effect, this item must exist as a field in
the document’s form.

HTSTATUS return code. Failures include:

HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL INVALID FIELD (field is not in the document’s form);
HTFAIL INVALID_ITEM (item does not exist in the document).

HTSTATUS status;

status = htItemDelete (dochand, "Date");

htDocClose

Chapter 4 HiTest Functions 191

htltemFetch
Summary Converts and retrieves the data for an item into a supplied buffer.
Syntax HTSTATUS htItemFetch (dochand, itemname, type, length,
itemtype, buffer);
HTDOCHANDLE dochand; /* Input */
char *itemname; /* Input */
HTTYPE *type; /* Input/Output, Optional */
HTINT *length; /* Input/Output, Optional
*/
HTTYPE *itemtype; /* Input/Output, Optional
*/
void *buffer; /* Output */
Description Transfers the item’s data from a document item to a supplied buffer. If requested, HiTest converts
the data before writing it to the buffer. Use htltemLength to determine the required buffer length.
To have HiTest manage the buffer, use the similar htitemGetPtr function.
Parameters DOCHAND

The document containing the item.

ITEMNAME

The name of the item to fetch. When strict binding is in effect, this item must exist as a field in the
document’s form.

TYPE

The data type representing the type of data retrieved -- HiTest converts the item to this type. A
value of zero directs HiTest to use the item’s data type (if strict binding is inactive, the item’s data
type must be supplied in the itemtype parameter) and to return the item’s type in this location.

LENGTH

The length of the supplied buffer. A value zero or a NULL pointer indicates that the buffer is large
enough to hold the result data. A value of zero directs HiTest to return the length of data retrieved
in this location. Use htltemLength to determine the length before retrieving the data. A length
which is insufficient to contain the result is valid only when the destination type is

Returns

Example

See Also

Chapter 4 HiTest Functions 192

HTTYPE TEXT and the global option TEXT TRUNCATE is active. In this case, the resulting
text is truncated to fit in the buffer.

ITEMTYPE

The data type of the item. When strict binding is active, use either zero or the data type of the
corresponding field in the form. When strict binding is inactive, use either zero or the data type of
the item within the document. A value of zero directs HiTest to use the item’s data type (if strict
binding is inactive, the item’s data type must be supplied in the type parameter) and to return the
item’s type in this location.

BUFFER

The buffer to receive the converted data value.

HTSTATUS return code. Failures include:

HTFAIL INVALID DOCUMENT (invalid document handle);

HTFAIL INVALID FIELD (field is not in the document’s form);

HTFAIL INVALID_ITEM (item does not exist in the document);

HTFAIL INVALID CONVERT (item type does not convert to requested type);
HTFAIL _OVERFLOW (retrieved data does not fit in supplied buffer).

char buffer [HTLEN DATETIME TEXT + 1];

HTTYPE type = HTTYPE TEXT, itemtype = HTTYPE DATETIME;
HTINT length = 0;

HTSTATUS status;

status = htItemFetch (dochand, "Date", &type, &length,

&itemtype, buffer);

htltemLength, htltemGetPtr

Chapter 4 HiTest Functions 193

htitemGetinfo

Summary Obtains a piece of information about a document item.

Syntax HTSTATUS htItemGetInfo (dochand, itemname, item,
buffer);
HTDOCHANDLE dochand; /* Input */
char *itemname; /* Input */
HTITEMINFO item; /* Input */
void *buffer; /* Output */

Description Fetches one of various item-level information items into a supplied buffer. Each item has a data
type, and the buffer must be sufficiently large to hold the result.

Parameters DOCHAND

The document containing the item.

ITEMNAME

The name of the desired item within the form.

ITEM

One value from an enumeration of item information values. Each value corresponds to a type (and
length, for variable length types). The following table lists legal values with their corresponding
data types and, where relevant, lengths:

constant type
HTITEMINFO TYPE HTTYPE
HTITEMINFO FLAGS HTFLAGS
HTITEMINFO LENGTH HTINT

TYPE obtains the item’s data type;
FLAGS obtains the item’s flags;

LENGTH obtains the item’s data length, in its stored format.

Returns

Example

See Also

Chapter 4 HiTest Functions 194

BUFFER

The buffer to receive the requested information. This buffer should be of sufficient length to
handle the result.

HTSTATUS return code. Failures include:

HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL INVALID_ITEM (item does not exist in the document);
HTFAIL ILLEGAL ENUM (invalid item parameter).

HTFLAGS flags;
HTSTATUS status;

status = htItemGetInfo (dochand, "Date",
HTITEMINFO_FLAGS ’

&flags) ;

htltemList

Chapter 4 HiTest Functions 195

htitemGetPtr

Summary

Syntax

Description

Parameters

Returns a pointer to an item’s data converted to a specified type.

HTSTATUS htItemGetPtr (dochand, itemname, type, length,

itemtype, buffer);

HTDOCHANDLE dochand; /* Input */

char *itemname; /* Input */

HTTYPE *type; /* Input/Output, Optional */
HTINT *length; /* Output, Optional */
HTTYPE *itemtype; /* Input/Output, Optional
*/

void **puffer; /* Output */

Transfers the item’s data from a document item to a buffer allocated and managed by HiTest. If
requested, HiTest converts the data before writing it to the buffer. The calling program cannot
modify the contents of this buffer, and HiTest frees the buffer when closing the document. To fetch
data into a buffer managed by the calling program, use the similar htltemFetch function.

DOCHAND

The document containing the item.

ITEMNAME

The name of the item to fetch. When strict binding is in effect, this item must exist as a field in the
document’s form.

TYPE

The data type representing the type of data retrieved -- HiTest converts the item to this type. A
value of zero directs HiTest to use the item’s data type (if strict binding is inactive, the item’s data
type must be supplied in the itemtype parameter) and to return the item’s type in this location.

LENGTH

The buffer to receive the length of the retrieved data.

Returns

Example

See Also

Chapter 4 HiTest Functions 196

ITEMTYPE

The data type of the item. When strict binding is active, use either zero or the data type of the
corresponding field in the form. When strict binding is inactive, use either zero or the data type of
the item within the document. A value of zero directs HiTest to use the item’s data type (if strict
binding is inactive, the item’s data type must be supplied in the type parameter) and to return the
item’s type in this location.

BUFFER

The buffer to receive the pointer to the converted data value. Do not modify or free this data.

HTSTATUS return code. Failures include:

HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL INVALID FIELD (field is not in the document’s form);
HTFAIL INVALID_ITEM (item does not exist in the document);

HTFAIL INVALID CONVERT (item type does not convert to requested type).

char *buffer;

HTTYPE type = HTTYPE TEXT, itemtype = HTTYPE DATETIME;
HTINT length;

HTSTATUS status;

status = htlItemGetPtr (dochand, "Date", &type, &length,

&itemtype, &buffer);

htltemFetch

Chapter 4 HiTest Functions 197

htltemLength
Summary Obtains the length of an item as converted to a specified data type.
Syntax HTSTATUS htItemLength (dochand, itemname, type,
itemtype,
length) ;
HTDOCHANDLE dochand; /* Input */
char *itemname; /* Input */
HTTYPE *type; /* Input/Output, Optional */
HTTYPE *itemtype; /* Input/Output, Optional
*/
HTINT *length; /* Output */
Description Obtains the length of an item’s data as converted to a specified data type. Use this length to
provide a buffer of the proper length for htltemFetch.
Parameters DOCHAND

The document containing the item.

ITEMNAME

The name of the item whose length is to be determined. When strict binding is in effect, this item
must exist as a field in the document’s form.

TYPE

The data type representing the destination type -- the length returned is the length of the item as
converted to this type. A value of zero directs HiTest to use the item’s data type (if strict binding is
inactive, the item’s data type must be supplied in the itemtype parameter) and to return the item’s
type in this location.

ITEMTYPE

The data type of the item. When strict binding is active, use either zero or the data type of the
corresponding field in the form. When strict binding is inactive, use either zero or the data type of
the item within the document. A value of zero directs HiTest to use the item’s data type (if strict
binding is inactive, the item’s data type must be supplied in the type parameter) and to return the
item’s type in this location.

Returns

Example

See Also

Chapter 4 HiTest Functions 198

LENGTH

The buffer to receive the data length. This is the length of the data as converted to the requested
type.

HTSTATUS return code. Failures include:

HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL INVALID_FIELD (field is not in the document’s form);
HTFAIL INVALID_ITEM (item does not exist in the document).

HTTYPE type = HTTYPE TEXT, itemtype = HTTYPE DATETIME;
HTINT length;

HTSTATUS status;

status = htItemLength (dochand, "Date", &type,
&itemtype,

&length) ;

htltemFetch

Chapter 4 HiTest Functions 199

htltemList

Summary

Syntax

Description

Parameters

Returns

Example

Iterates through items in a document.

HTSTATUS htItemList (dochand, first, getvalue, item);

HTDOCHANDLE dochand; /* Input */
HTBOOL first; /* Input */
HTBOOL getvalue; /* Input */
HTITEM *item; /* Output */

Returns the first or next item information from the list of items in the document. This function also
optionally obtains a read-only pointer to the item’s value.

DOCHAND

The document from which to list items.

FIRST

Whether to get the first or next item. TRUE resets the item list, FALSE simply obtains the next
item in the list. The value is always TRUE on the first call for a given document handle.

GETVALUE

Whether to obtain a read-only pointer to the item’s value. The pointer is in the HTITEM structure,
and must not be modified or freed by the calling program. The pointer becomes invalid when the
document is closed.

ITEM

The structure to receive information on the item. The item information consists of the item name,
item data type, item flags, and length and value pointer. Use a getvalue parameter value of TRUE
to retrieve the length and value results (otherwise they are zero and NULL, respectively).

HTSTATUS return code. Failures include:
HTFAIL INVALID DOCUMENT (invalid document handle);

HTFAIL END OF DATA (no more items).

HTITEM item;

Chapter 4 HiTest Functions 200

HTSTATUS status;

status = htItemList (dochand, FALSE, TRUE, &item);

See Also htltemCount, htlitemGetInfo

Chapter 4 HiTest Functions 201

htitemPut
Summary Writes an item to a document, overwriting any existing item of the same name.
Syntax HTSTATUS htItemPut (dochand, itemname, type, length,
itemtype, buffer);
HTDOCHANDLE dochand; /* Input */
char *itemname; /* Input */
HTTYPE type; /* Input */
HTINT length; /* Input, Optional
*/
HTTYPE itemtype; /* Input, Optional
*/
void *buffer; /* Input */
Description Writes data from a buffer to a document item. If requested, HiTest converts the data before writing
it to the document. This function deletes any existing item of the same name.
Parameters DOCHAND

The document to receive the new item.

ITEMNAME

The name of the item to put. When strict binding is in effect, this item must exist as a field in the
document’s form.

TYPE

The data type representing the type of data in the buffer -- HiTest converts the data from this type
to the item’s type.

LENGTH

The length of the supplied data. A value zero directs HiTest to determine the length.

ITEMTYPE

The data type of the item. When strict binding is active, use either zero or the data type of the
corresponding field in the form. When strict binding is inactive, use either zero or the data type of

Chapter 4 HiTest Functions 202

the item within the document. A value of zero directs HiTest to use the item’s data type (if strict
binding is inactive, the item’s data type is supplied in the type parameter).

BUFFER

The buffer containing the item’s new value.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID DOCUMENT (invalid document handle);
HTFAIL INVALID_FIELD (field is not in the document’s form);
HTFAIL INVALID_ CONVERT (type does not convert to item type).

Example HTSTATUS status;
status = htItemPut (dochand, "Date", HTTYPE TEXT, O,

HTTYPE DATETIME, "1/29/66");

See Also htltemFetch, htDocClose

Chapter 4 HiTest Functions

htltemUnbind

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Removes the binding of an item name.

HTSTATUS htItemUnbind (cursor,

itemname) ;

HTCURSOR cursor; /* Input */

char *itemname;

/* Input */

203

Cancels the effects of any htltemBind performed with the same item name. Producing a new index

automatically cancels all bindings.

CURSOR

The cursor used in the binding operation.

ITEMNAME

The name of the item used in the binding operation.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR
HTFAIL INVALID_ITEM (no such item bound).

HTSTATUS status;

status = htItemUnbind (cursor,

htltemBind, htDocFetch, htCurReset

"Date") ;

Chapter 4 HiTest Functions 204

Macro

A macro is a stored set of formulas which perform an action. Each database contains zero or more macros. A macro
runs against either all or some of the documents in a database. In addition, a macro may select or modify existing
documents or create new documents. A search macro also performs a full text search. The primary attributes of a
macro are a name and ID. HiTest uses the constant NULLID to represent an invalid macro ID.

htMacroList returns the following macro summary structure:

typedef struct

{
HTMACROID macroid; /* Macro ID */
HTBOOL hidden; /* Whether macro 1is hidden in
Uur */
char name [HTLEN DESIGNNAME + 1]; /* Macro name
*/
char display namel [HTLEN DISPLAYNAME + 1]; /* Primary
display
name */
char display name2 [HTLEN DISPLAYNAME + 1]; /* Secondary
display
name */
} HTMACROSUMM; /* htMacroList summary structure */

The three name fields in the HTMACROSUMM structure handles Notes’ multiple naming of objects. Macros may
have multiple names, and the first name may consists of two parts. The name field contains the string which Notes
uses internally to refer to a given macro. The display namel field contains the name which appears in the Notes UL
For a cascading macro name, the display name? field contains the cascading component of the Notes Ul name.
When a macro has only one name, the name field is equal to either display namel (if not cascading) or
display namel/display name? (if cascading). The hidden field indicates whether Notes normally displays the macro
in the Notes UI Run-Macro menu. A hidden macro has its “Include in ‘Tools Run Macros’ Menu” option unchecked.

The macro group contains the following functions:

htMacroCopy Copies a macro from one cursor to another
htMacroDelete Deletes a macro from a database
htMacroExec Executes a macro

htMacroGetld Obtains a macro ID from the macro name

htMacroList Iterates through macros in a database

Chapter 4 HiTest Functions 205

htMacroCopy

Summary Copies a macro from one cursor to another.

Syntax HTSTATUS htMacroCopy (src_cursor, src_macroid,
dest cursor,

dest macroname, dest macroid);

HTCURSOR src_cursor; /* Input */
HTMACROID src macroid; /* Input */
HTCURSOR dest cursor; /* Input */
char *dest macroname; /* Input, Optional
*/
MACROID *dest macroid; /* Output, Optional
*/

Description Copies a macro between cursors, optionally assigning a new name. Notes requires macro names
within a database to be unique.

Parameters SRC_CURSOR

The cursor from which to copy the macro.

SRC_MACROID

The macro to copy within the source cursor.

DEST_CURSOR

The cursor into which to copy the new macro.

DEST _MACRONAME

The name for the new macro in the destination cursor. To keep the original name, use NULL or the
empty string. Otherwise, the name formatting follows the Notes UI rules (“display namel\
display name?2 | name” -- see the Lotus Notes Application Developer’s Reference). A new name is
required when the source and destination cursors are the same.

DEST MACROID

The buffer which receives the macro ID for the new macro.

Returns

Example

See Also

Chapter 4 HiTest Functions 206

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL INVALID MACRO (source macro does not exist);

HTFAIL DUPLICATE (a macro exists in the destination cursor with the same title);

HTFAIL _OVERFLOW (new macro title is too long).

HTMACROID new macroid;
HTSTATUS status;

status = htMacroCopy (cursorl, macroid, cursorz,
"NewMacro",

&new macroid) ;

htMacroGetld, htMacroDelete

Chapter 4 HiTest Functions

htMacroDelete

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Deletes a macro from a database.

HTSTATUS htMacroDelete (cursor,

macroid) ;

HTCURSOR cursor; /* Input */

HTMACROID macroid; /* Input */

Deletes a macro from a database.

CURSOR

The cursor containing the macro.

MACROID

The macro to delete.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID MACRO (macro does not exist);

HTSTATUS status;

status = htMacroDelete (cursor,

htMacroGetld, htMacroCopy

macroid) ;

207

Chapter 4 HiTest Functions 208

htMacroExec
Summary Executes a macro.
Syntax HTSTATUS htMacroExec (cursor, macroid, total count,
action count) ;

HTCURSOR cursor; /* Input */

HTMACROID macroid; /* Input */

HTINT *total count; /* Output, Optional */

HTINT *action count; /* Output, Optional */
Description Executes a macro within a cursor. Notes macros contain execution parameters and a formula. The

execution parameters define where to run the macro, the documents on which to run the macro,
and how to affect documents. Where to run a macro (e.g., from the Notes Ul menu; as a
background macro; etc.) is not relevant to this function. The other options have a significant effect
on this function.

All macros define a set of documents on which to run. The following list defines the effect of this
option:

11. Run on all documents in database: Run the macro on all documents in the database. This option operates
the same in HiTest as in the Notes Ul

12. Run on documents not yet processed by macro: Run the macro on all documents in the database on which it
has not previously been run. This option operates the same in HiTest as in the Notes Ul

13. Run on documents not yet marked read by you: Run the macro on all documents in the database, since
Notes user unread information is only available in the Notes Ul This option does not operate the same in HiTest as
in the Notes UL

14. Run on all documents in view: Run the macro on all documents in the current view-based index. Requires
an active view-based index. This option operates the same in HiTest as in the Notes Ul Search macros created from
the Notes Ul use this option.

15. Run on selected documents in view: Run the macro on all documents in the current index, since selected
information is a property of the Notes Ul. Run against either a view-based or flat index, or against the entire
database if there is no active index. This option does not operates the same in HiTest as in the Notes UL

All macros define an operation to perform on a subset of documents which the macro runs against.
The following list describes the effect of this option:

16. Update existing document when run: Modify documents affected by the macro. This option operates the
same in HiTest as in the Notes UL

Chapter 4 HiTest Functions 209

17. Select document when run: Produce a new flat index from documents selected by the macro. This option
destroys any existing index. This option provides the same basic selection functionality as in the Notes UI, differing
only in the presentation of results (on-screen selection is a property of the Notes UI).

18. Create new document when run: Create new documents with relevant modifications from documents
affected by the macro. This option operates the same in HiTest as in the Notes Ul.

Due to anomalous behavior in the standard Notes V3 API, macros which perform document
deletion (i.e., use the @DeleteDocument function) may not delete documents. To work around this
problem, rewrite the macro formula and embed the deletion in an @If function. For example, the
formula

SELECT Form = "FormName"; @DeleteDocument"

will not work, but the formula

SELECT @If (Form = "FormName"; @DeleteDocument;

" ")

will successfully delete the proper documents.

Parameters CURSOR

The cursor containing the macro.

MACROID

The macro to execute.

TOTAL_COUNT

Buffer to receive the total number of documents selected by the macro. For macros which modify
documents, this is not necessarily equivalent to the total number of documents affected (see
action_count parameter).

ACTION_COUNT

Buffer to receive the total number of documents acted on by the macro. For a selection macro, this
is the same as total count. For macros which modify or create documents, this is the number of
documents modified or created, which is equal to or less than the value for the total count
parameter.

Returns HTSTATUS return code. Failures include:

Chapter 4 HiTest Functions 210

HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL _INVALID MACRO (macro does not exist or is invalid);

HTFAIL DATA UNAVAIL (macro requires an active index);

Example HTINT total count, action count;

HTSTATUS status;
status = htMacroExec (cursor, macroid, &total count,

&action count) ;

See Also htMacroList, htMacroGetld, htViewSet, htFormulaExec, htindexNavigate

Chapter 4 HiTest Functions

htMacroGetlid

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Obtains a macro ID from the macro name.

HTMACROID htMacroGetId (HTCURSOR cursor,
*macroname) ;

HTCURSOR cursor; /* Input */

char *macroname; /* Input */

Given a macro name, obtains the macro ID of the indicated macro.

CURSOR

The cursor containing the macro.

MACRONAME

The macro name for which to obtain the ID.

HTMACROID for the requested macro. Returns NULLID if the macro does not exist.

HTMACROID macroid;

macroid = htMacroGetId (cursor, "Memo");

htMacroList, htMacroExec

21

char

Chapter 4 HiTest Functions 212

htMacroList

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Iterates through macros in a database.

HTSTATUS htMacrolList (cursor, operation, macrosumm) ;

HTCURSOR cursor; /* Input */
HTLIST operation; /* Input */
HTMACROSUMM *macrosumm; /* Output */

Returns the first or next macro summary information from the list of macros in the cursor’s
database.

CURSOR

The cursor from which to list macros.

OPERATION

An element of the HTLIST enumeration that indicates whether and how to reset the macro list.
Use HTLIST REFRESH to discard the macro list and obtain a new list from Notes. Use
HTLIST FIRST to set the next element in the list to the first element. Use HTLIST NEXT to
obtain the element following the previously fetched element. The first call to this function after
opening the cursor always uses the value HTLIST REFRESH.

HTMACROSUMM

The structure to receive the macro’s summary information. See the Macro object section preceding
the htMacro functions for a description of this structure and its contents.

HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL END OF DATA (no more macros).

HTMACROSUMM macrosumm;
HTSTATUS status;

status = htMacroList (cursor, HTLIST NEXT, ¯osumm);

htMacroGetld, htMacroExec

Chapter 4 HiTest Functions 213

Mail

Mail within Notes is usually the act of sending documents of the form “memo”. Notes can actually send any
document. The mail functions simplify sending mail documents.

The following flags affect mail operations:

HTMAIL PRIORITY LOW Set mail priority to low

HTMAIL PRIORITY HIGH Set mail priority to high

HTMAIL REPORT NONE No delivery report

HTMAIL REPORT CONFIRM Confirmed delivery report

HTMAIL RETURN_ RECEIPT Request return receipt

HTMAIL SAVE Save mail document

HTMAIL SAVE MAILDB Save mail document in Notes user’s mail database
HTMAIL BOUND_ ITEMS Add bound items to mail document

HTMAIL EMBED FORM Embed form within mail document

The following item name constants define common mail items:

HTMAIL_ITEM_SENDTO SendTo
HTMAIL ITEM_COPYTO CopyTo
HTMAIL_ITEM BLINDCOPYTO BlindCopyTo
HTMAIL_ITEM_SUBJECT Subject
HTMAIL_ITEM_BODY Body

HTMAIL_ITEM DELIVERYPRIORITY DeliveryPriority
HTMAIL_ITEM DELIVERYREPORT DeliveryReport
HTMAIL_ITEM RETURNRECEIPT ReturnReceipt

htMailSend uses the following structure to easily submit common mail items and simple mail messages to the
htMailSend function:

typedef struct
{

char *sendto; /* Separate names with semicolons
or commas */
char *copyto; /* Separate names with semicolons
or commas */
char *blindcopyto; /* Separate names with semicolons
or commas */
char *subject; /* Subject field */
char *body text; /* If this is NULL, use body comp */
HTCOMPHANDLE body comp; /* If this 1is NULL, use body text
*/
} HTMEMO; /* Simple mail memo structure */

The mail group contains the following function:

htMailSend Sends a mail message

Chapter 4 HiTest Functions 214

Chapter 4 HiTest Functions 215

htMailSend

Summary Sends a mail message.

Syntax HTSTATUS htMailSend (cursor, maildoc, memo, flags);
HTCURSOR cursor; /* Input */

HTDOCID maildoc; /* Input, Optional */
HTMEMO *memo ; /* Input, Optional */
HTFLAGS flags; /* Input */

Description Creates and sends a mail message, using data from various sources. The contents of the message
can come from an existing document, a C structure, bound items, or from any combination of
these sources. Items in any existing document supersede all others, and items in the C structure
supersede bound items (e.g., if the subject is in all three places, HiTest uses the value in the
document). Every mail message must have at least one valid addressee in the SendTo item. The
ability to sign or encrypt mail is unavailable since this functionality is not currently available in
the standard Lotus Notes API.

Parameters CURSOR

The cursor in which to base the message document. This is the source for the maildoc and bound
items, if given. The HTMAIL SAVE flag saves the mail document into this database.

MAILDOC

The document to send. HiTest adds data from the other sources to this document before sending
the message. If there is no base document use NULLID and HiTest will create a new document.
HiTest requires this parameter with the HTMAIL EMBED FORM flag. Embedding a form
removes the Form item from the document, and embeds the form data itself within the document.
Use form embedding when sending a document of a form which is not available in the recipient’s
mail database. Otherwise, when the recipient opens the received document, the form is unavailable
and Notes cannot properly display the document.

MEMO

The C structure that contains standard memo items. HiTest adds these items to the message
document. Using this structure and no other data sources is an easy way to send messages with the
standard items. When using information from this structure to create a mail message with no base
document (i.e., the maildoc parameter is NULL), the created document is of form “Memo”.
Programs must set all unused fields in this structure to NULL. See the Mail object section
preceding the htMail functions for a description of this structure and its contents.

Returns

Example

See Also

Chapter 4 HiTest Functions 216

FLAGS

Zero or more HTMAIL flags OR-ed together. The HTMAIL BOUND ITEMS flag directs HiTest
to insert bound items into the message (they are not added otherwise). The
HTMAIL EMBED FORM flag directs HiTest to embed the mail document’s form within the
mail message (see maildoc parameter above). The HTMAIL SAVE flag directs HiTest to save a
copy of the mailed document in the supplied cursor’s database. The HTMAIL SAVE MAILDB
flag directs HiTest to save a copy of the mailed document in the Notes user’s mail database. See
the Mail object section preceding the htMail functions for a list and description of mail flags.

HTSTATUS return code. Failures include:

HTFAIL INVALID_ CURSOR (invalid cursor);

HTFAIL DATA UNAVAIL (no data to send or no SendTo value);

HTFAIL INVALID DATABASE (cannot find mail database to save message in);
HTFAIL INVALID FORM (cannot find form to embed);

HTFAIL INVALID DOCUMENT (embed form requires a valid maildoc).

HTSTATUS status;

HTMEMO memo;

memset (&memo, 0, sizeof (HTMEMO))
memo.sendto = "David Letterman";
memo.subject = "Stupid Pet Tricks";

status = htMailSend (cursor, NULLID, &memo,

HTMAIL SAVE
HTMAIL RETURN RECEIPT) ;

htCurOpen, htltemBind

Chapter 4 HiTest Functions 217

Server

The server object has no context beneath the process level, but represents Lotus Notes servers as distinct objects.
HiTest normally represents the local or NULL server by a NULL or empty string. Programs may assign an alternate
value for the local server with the htSetOption function and HTGLOBOPT LOCAL_SERVERNAME enumeration
(e.g., the Lotus Notes UI would use the value "Local"). The primary attribute of a server is the server name.

Remote Notes databases are accessed through a server, which imposes Notes security restrictions on those
databases. The server functions support access to basic server information and the ability to execute commands as if
entering them at the Notes server.

The server group contains the following functions:

htServerExec Remotely executes a Notes server console command
htServerGetInfo Obtains a piece of information from and about a server

htServerList Iterates through available Notes servers

Chapter 4 HiTest Functions 218

htServerExec

Summary Remotely executes a Notes server console command.

Syntax HTSTATUS htServerkExec (server, command);
char *server; /* Input */
char *command; /* Input */

Description Executes a command against the indicated Notes server as if entering that command into the
server’s console. Use htServerGetlnfo to retrieve the results of the most recent htServerExec call.
Successful use of this function requires administrator access. See the Lotus Notes Administrator
Guide for the syntax of server console commands. Two powerful console commands which lend
themselves to remote use are REPLICATE (to initiate replication remotely) and LOAD (to load a
program remotely).

Parameters SERVER
The server on which to execute the command.
COMMAND
The command to execute on the server. See the Lotus Notes Administrator Guide for a list of valid
server console commands.

Returns HTSTATUS return code. Failures include:
HTFAIL DATA_ UNAVAIL (the local server is invalid -- use a true server name).

Example char *buffer;

HTINT length;

HTSTATUS status;

status = htServerExec ("MyServer", "SHOW TASKS") ;
if (!status)

{

status = htServGetInfo (cursor,
HTSERVINFO_RESPLEN,

&length) ;

buffer = malloc (length + 1);

Chapter 4 HiTest Functions 219

status = htServGetInfo (cursor,
HTSERVINFO_RESPSTR,

buffer);

See Also htServerList, htServerGetInfo

Chapter 4 HiTest Functions 220

htServerGetinfo
Summary Obtains a piece of information from and about a server.
Syntax HTSTATUS htServerGetInfo (server, item, buffer);
char *server; /* Input */
HTSERVINFO item; /* Input */
void *pbuffer; /* Output */
Description Fetches one of various server-level information items into a supplied buffer. Each item has a data
type, and the buffer must be large enough to hold the result.
Parameters SERVER

Returns

The server about which to obtain information.

ITE

One value from an enumeration of server items. Each item corresponds to a type (and length, for
variable length types). The following table lists legal items with their corresponding data types
and, where relevant, lengths:

constant type

HTSERVINFO PING HTBOOL

HTSERVINFO RESPLEN HTINT

HTSERVINFO RESPSTR char [HTSERVINFO RESPLEN]

PING determines whether the server is available;
RESPLEN obtains the length of the server’s response from the most recent htServerExec;

RESPSTR obtains the text of the server’s response from the most recent htServerExec.

BUFFER

The buffer to receive the requested information. This buffer should be of sufficient length to
handle the result.

HTSTATUS return code. Failures include:

Chapter 4 HiTest Functions 221

HTFAIL DATA UNAVAIL (current response results are not for the indicated server);
HTFAIL ILLEGAL _ENUM (invalid item).

Example HTBOOL exists;
HTSTATUS status;

status = htServerGetInfo ("MyServer", HTSERVINFO PING,

&exists);

See Also htServerList, htServerExec

Chapter 4 HiTest Functions 222

htServerList

Summary Iterates through available Notes servers.

Syntax HTSTATUS htServerList (operation, server);
HTLIST operation; /* Input */
char *server; /* Output */

Description Returns the first or next server name from the list of available Notes servers. The local server is
normally not returned as a server. Assigning a local server name value with the htSetOption
function will cause this function to return the local server string as the first server name in the
server list.

Parameters OPERATION
An element of the HTLIST enumeration that indicates whether and how to reset the server list.
Use HTLIST REFRESH to discard the server list and obtain a new list from Notes. Use
HTLIST FIRST to set the next element in the list to the first element. Use HTLIST NEXT to
obtain the element following the last fetched element. The first call to this function following
htlnit always uses the value HTLIST REFRESH.

SERVER
A character buffer which receives the server name. The constant HTLEN SERVERNAME defines
the maximum server name length.

Returns HTSTATUS return code. Failures include:

HTFAIL _END OF DATA (no more servers).
Example char server name [HTLEN SERVERNAME + 1];

HTLIST list op = HTLIST FIRST;
HTSTATUS status;
printf ("List of Notes Servers:");
while (!htServerList (list op, server name))
{
printf ("\n '$s' ", server name);

list op = HTLIST NEXT;

Chapter 4 HiTest Functions 223

See Also htSetOption

Chapter 4 HiTest Functions 224

TextList

Use text list functions to access the components of text list items. These functions provide simple interfaces to
access the elements of a text list. See the “Data Types” section of Chapter 3, “Programming to the HiTest API” for a
description of text list data.

The text list group contains the following functions:

htTextListCount Returns the number of text elements in a text list
htTextListFetch Copies a text list element into a supplied buffer
htTextListGetPtr Returns a pointer to a text list element

htTextListLength Returns the length of either one text list element, or the entire text list

Chapter 4 HiTest Functions

htTextListCount

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Returns the number of text elements in a text list.

HTSTATUS htTextListCount (textlist);

void *textlist; /* Input */

Returns the number of text elements in a text list.

TEXTLIST

A pointer to the text list data.

HTINT number of text elements in the text list.

HTINT count;

count = htTextListCount (textlist ptr);

htTextListLength, htTextListFetch, htTextListGetPtr

225

Chapter 4 HiTest Functions 226

htTextListFetch
Summary Copies a text list element into a supplied buffer.
Syntax HTINT htTextListFetch (textlist, index, buffer);
void *textlist; /* Input */
HTINT index; /* Input */
char *pbuffer; /* Output */
Description Copies the data for a specified text list element into a supplied buffer. To simply obtain a pointer to
the data within the text list data itself, use the similar function htTextListGetPtr.
Parameters TEXTLIST
A pointer to the text list data.
INDEX
The index of the text list element to copy into the supplied buffer. The first element is one. Use
htTextListCount to obtain the last element’s index.
BUFFER
The buffer into which to copy the text element. This buffer must be of sufficient length. Use
htTextListLength to determine the length of a specific text list element.
Returns HTINT length of the text copied into the buffer. Returns zero if index is invalid.
Example char *buffer;
HTINT length;
buffer = malloc (htTextListLength (textlist ptr, 1) +
1)
length = htTextListFetch (textlist ptr, 1, buffer);
See Also htTextListCount, htTextListLength, htTextListGetPtr

Chapter 4 HiTest Functions 227

htTextListGetPtr

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Returns a pointer to a text list element.

char *htTextListGetPtr (textlist, index, length);

void *textlist; /* Input */
HTINT index; /* Input */
HTINT *length; /* Output, Optional */

Returns the pointer to a specified text list element, and obtains the length. Modifying data at this
pointer would modify the data in the text list buffer, which is not a valid action on a text list
obtained with a GetPtr function. To copy the data into a supplied buffer, use the similar function
htTextListFetch.

TEXTLIST

A pointer to the text list data.

INDEX

The index of the text list element to obtain. The first element is one. Use htTextListCount to obtain
the last element’s index.

LENGTH

The buffer to receive the length of the text element at the pointer returned. HiTest sets this value to
zero if the index is invalid.

char * pointer to the text list element within the textlist data. Returns NULL if index is invalid.

char *buffer;
HTINT length;

buffer = htTextListGetPtr (textlist ptr, 1, &length);

htTextListCount, htTextListLength, htTextListFetch

Chapter 4 HiTest Functions 228

htTextListLength

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Returns the length of either one text list element, or the entire text list.
HTINT htTextListLength (textlist, index);
void *textlist; /* Input */

HTINT index; /* Input, Optional */

Returns the length of either a single text list element, or the entire text list (depending on the
element index).

TEXTLIST

A pointer to the text list data.

INDEX

The index of the text list element whose length is to be determined. The first element is one. Use
htTextListCount to obtain the last element’s index. A value of zero determines the length of the
entire text list.

HTINT length of one element or the entire text list.

HTINT length;

length = htTextListLength (textlist ptr, 1);

htTextListCount, htTextListFetch, htTextListGetPtr

Chapter 4 HiTest Functions 229

View

A view is one of two primary types of metadata (the other is a form). Each database contains one or more views,
which describe one representation of some or all of the documents in a database. A view consists of various
attributes and one or more columns. In addition, each view defines an index. A view's index is a hierarchical, sorted
collection of documents. A view also contains data, in the form of a table of cells. Lotus Notes represents views as
simply data, and the standard Lotus Notes API supplies no abstraction of this data. The HiTest view abstraction
supports easy access to view metadata. The primary attributes of a view are a name and ID. HiTest uses the constant
NULLID to represent an invalid view ID.

The following flags define view attributes in the HTVIEW structure:

HTVIEW_COLLAPSED Open view collapsed (default is expanded)

HTVIEW_NO HIERARCHY View is flat (no responses)

HTVIEW_DISP_ALL UNREAD Display unread markers in margin for all documents
HTVIEW_DISP_CONFLICT Display replication conflicts

HTVIEW_DISP_ MAIN _UNREAD Display unread markers in margin only for main documents
HTVIEW_USES TOTALS One or more columns are totaled

htViewList returns the following view summary structure:

typedef struct
{

HTVIEWID viewid; /* View ID */

HTBOOL hidden; /* Whether view is hidden in
Ul */

char name [HTLEN DESIGNNAME + 1]; /* View name */

char display namel [HTLEN DISPLAYNAME + 1]; /* Primary
display

name */

char display name2 [HTLEN DISPLAYNAME + 1]; /* Secondary

display
name */

} HTVIEWSUMM; /* htViewList summary structure */
htViewGetAttrib returns the following view attribute structure:
typedef struct
{

HTFLAGS flags; /* View flags (HTVIEW xxx) */

WORD background color; /* Background color */

HTFONT title border font; /* Font for title and borders
*/

HTFONT unread font; /* Font for unread rows */

HTFONT totals font; /* Font for totals and
statistics */

WORD update interval; /* Seconds between automatic

updates

Chapter 4 HiTest Functions 230

Use zero for no auto update */

HTBOOL hidden; /* Whether view 1s hidden in
Uur */
char name [HTLEN DESIGNNAME + 1]; /* View name */
char display namel [HTLEN DISPLAYNAME + 1]; /* Primary
display
name */
char display name2 [HTLEN DISPLAYNAME + 1]; /* Secondary
display
name */
} HTVIEW; /* View attribute

structure */

The three name fields in the HTVIEW and HTVIEWSUMM structures handle Notes’ multiple naming of objects.
Views may have multiple names, and the first name may consists of two parts. The name field contains the string
which Notes uses internally to refer to a given view. The display namel field contains the name which appears in
the Notes Ul For a cascading view name, the display name? field contains the cascading component of the Notes
UI name. When a view has only one name, the name field is equal to either display namel (if not cascading) or
display _namel/display name? (if cascading). The hidden field indicates whether Notes normally displays the view
in the Notes Ul View menu. A hidden view has its the display name enclosed in parenthesis.

The view group contains the following functions:

htViewCopy Copies a view from one cursor to another
htViewDelete Deletes a view from a database
htViewGetAttrib Obtains the attributes of a view
htViewGetld Obtains a view ID from the view name
htViewList Iterates through views in a database

htViewSet Assigns the active view for a cursor

Chapter 4 HiTest Functions 231

htViewCopy
Summary Copies a view from one cursor to another.
Syntax HTSTATUS htViewCopy (src_cursor, src_viewid,
dest cursor,
dest viewname, dest viewid);
HTCURSOR src_cursor; /* Input */
HTVIEWID src viewid; /* Input */
HTCURSOR dest cursor; /* Input */
char *dest viewname; /* Input, Optional
*/
VIEWID *dest viewid; /* Output, Optional */
Description Copies a view between cursors, optionally assigning a new name. Notes requires view names
within a database to be unique.
Parameters SRC_CURSOR

The cursor from which to copy the view.

SRC_VIEWID

The view to copy within the source cursor.

DEST_CURSOR

The cursor into which to copy the new view.

DEST VIEWNAME

The name for the new view in the destination cursor. To keep the original name, use NULL or the
empty string. Otherwise, the name formatting follows the Notes UI rules (“display namel\
display name2 | name” -- see the Lotus Notes Application Developer’s Reference). A new name is
required when the source and destination cursors are the same.

DEST_VIEWID

The buffer which receives the view ID for the new view.

Chapter 4 HiTest Functions 232

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID VIEW (source view does not exist);
HTFAIL DUPLICATE (a view exists in the destination cursor with the same title);

HTFAIL _OVERFLOW (new view title is too long).

Example HTVIEWID new viewid;
HTSTATUS status;

status = htViewCopy (cursorl, viewid, cursor?2,
"NewView",

&new viewid) ;

See Also htViewGetld, htViewDelete

Chapter 4 HiTest Functions 233

htViewDelete

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Deletes a view from a database.

HTSTATUS htViewDelete (cursor, viewid);
HTCURSOR cursor; /* Input */

HTVIEWID viewid; /* Input */

Deletes a view from a database. A cursor’s active view cannot be deleted.

CURSOR

The cursor containing the view.

VIEWID

The view to delete.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL INVALID_ VIEW (view does not exist);

HTFAIL ACTIVE RESULT (cannot delete the active view).

HTSTATUS status;

status = htViewDelete (cursor, viewid):;

htViewGetld, htViewCopy, htViewSet

Chapter 4 HiTest Functions 234

htViewGetAttrib
Summary Obtains the attributes of a view.
Syntax HTSTATUS htViewGetAttrib (cursor, viewid, view);
HTCURSOR cursor; /* Input */
HTVIEWID viewid; /* Input */
HTVIEW *view; /* Output */
Description Obtains complete attributes for a view.
Parameters CURSOR

The cursor containing the view.

VIEWID

The view for which to obtain attributes.

VIE

The structure to receive view attributes. See the View object section preceding the htView
functions for a description of this structure and its contents.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL INVALID VIEW (view does not exist).

Example HTVIEW view;
HTSTATUS status;

status = htViewGetAttrib (cursor, viewid, view);

See Also htViewList, htViewGetld

Chapter 4 HiTest Functions 235

htViewGetld

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Obtains a view ID from the view name.

HTVIEWID htViewGetId (HTCURSOR cursor, char *viewname);
HTCURSOR cursor; /* Input */

char *viewname; /* Input */

Given a view name, obtains the view ID of the indicated view.

CURSOR

The cursor containing the view.

VIEWNAME

The view name for which to obtain the ID.

HTVIEWID for the requested view. Returns NULLID if the view does not exist.

HTVIEWID viewid;

viewid = htViewGetId (cursor, "All By Date");

htViewList, htViewGetAttrib

Chapter 4 HiTest Functions 236

htViewList
Summary Iterates through views in a database.
Syntax HTSTATUS htViewList (cursor, operation, viewsumm) ;
HTCURSOR cursor; /* Input */
HTLIST operation; /* Input */
HTVIEWSUMM *viewsumm; /* Output */
Description Returns the first or next view information from the list of views within the cursor’s database.
Parameters CURSOR

The cursor from which to list views.

OPERATION

An element of the HTLIST enumeration that indicates whether and how to reset the view list. Use
HTLIST REFRESH to discard the view list and obtain a new list from Notes. Use
HTLIST FIRST to set the next element in the list to the first element. Use HTLIST NEXT to
obtain the element following the previously fetched element. The first call to this function after
opening the cursor always uses the value HTLIST REFRESH.

HTVIEWSUMM

The structure to receive the view’s summary information. See the View object section preceding
the htView functions for a description of this structure and its contents.

Returns HTSTATUS return code. Failures include:
HTFAIL INVALID CURSOR (invalid cursor);
HTFAIL END OF DATA (no more views).

Example HTVIEWSUMM viewsumm;
HTSTATUS status;

status = htViewlList (cursor, HTLIST NEXT, &viewsumm);

See Also htViewGetAttrib

Chapter 4 HiTest Functions 237

htViewSet

Summary

Syntax

Description

Parameters

Returns

Example

See Also

Assigns the active view for a cursor.

HTSTATUS htViewSet (HTCURSOR cursor, HTVIEWID viewid) ;
HTCURSOR cursor; /* Input */

HTVIEWID viewid; /* Input */

Sets the active view for a cursor. Producing a view-based index requires an active view. When
there is an active view, calling htFormulaExec with no formula produces a hierarchical index from
the view. Use the htCurGetInfo function to obtain a cursor’s active view. This function is invalid
in a cursor containing an active index.

CURSOR

The cursor in which to set the active view.

VIEWID

The view to set as the active view. Use NULLID to clear the active view.

HTSTATUS return code. Failures include:

HTFAIL INVALID CURSOR (invalid cursor);

HTFAIL INVALID_ VIEW (view does not exist);

HTFAIL ACTIVE RESULT (cannot set the active view with an active index).

HTSTATUS status;

status = htViewSet (cursor, "All By Date")

htViewGetld, htCurSetOption, htCurGetInfo, htFormulaExec, htCellBind

Glossary

This section defines some of the Notes-related terms used throughout this document. In addition, some of the
terminology in this document relates to database APIs in general, and some familiarity in this area is helpful,

238

although not required. Some of these terms are also described below.

API

attachment

bound dataspace

category

child

cell

column

composite

composite record

compound text

context

API stands for Application Programming Interface, a set of functions and
supporting code and documentation which provides a clean interface to some
application. HiTest is a high-level API to Lotus Notes.

A file not contained within a document, but bound to a document. Any
document may have any number of attachments. Although the attachment is
not stored in the document, Notes stores it in the document’s database.

A set of memory locations related to a set of specified document items and/or
view cells. Using HiTest, data can be fetched to or inserted or updated from
these memory locations to the assigned document items and view cells by a
single function call.

A row within a view which represents a grouping of documents with some
commonality. When a column is categorized, Notes groups all documents with
the same value for that column together. Notes produces an extra non-
document row for each grouping, and the cells in the categorized column for
those rows contains the category value. The cells for the categorized column
are empty for all other rows.

See response.

A data value within a view-based index. Each column and row combination
represents a cell. Cell contents cannot be modified -- they exist within Notes as
read-only values.

A single piece of metadata within a view. HiTest describes a column by its
integer location (e.g., column 1, column 2, ...), as well as other attributes. The
data value within a column for a single view row is a cell.

A Lotus Notes data type constructed from some number of smaller components
called composite records. Each composite record may be in any of a set of data
formats (e.g., bitmap, formatted text, audio). Also called rich text or compound
text.

A component of a composite. One or more composite records make up a
composite item. Each composite record is of a specific type (e.g., formatted
text, graphic, doclink, etc.).

See composite data.

The conditions under which an action or object is valid. Certain actions and
objects are only valid within the context of another object. For example, a
composite handle is only valid within the context of its containing document
handle, which in turn is only valid within its containing cursor. Closing the
cursor closes and invalidates the document and composite handles.

cursor

database

document

fetch

field

file attachment

formula

formula buffer

formula language

form

full text search

handle

Chapter 4 HiTest Functions

A handle which indicates a single API session. Programs may open multiple
cursors. A cursor contains the following components: a Notes database handle;
options; a formula buffer; an active form, view, and index; and open
documents and composites.

A collection of documents and metadata within a single .NSF file. Each cursor
connects to exactly one database, although multiple cursors may
simultaneously connect to the same database.

A collection of data items. A document is how Notes stores data. Data within a
database is stored in documents.

The process of retrieving data. When fetching a document, a single function
call retrieves and converts multiple bound items and cells.

A single piece of metadata within a form. A field consists of a data type, a
name, and other attributes. When using strict binding, all items within a
document must also exist within the document’s form as fields.

See attachment.

A statement executed against a database to perform a specific action.
Currently, only selection formulas (i.e., those which produce an index) are
valid through the HiTest API. The Lotus Notes formula language defines the
syntax of a formula.

A buffer used for constructing formulas for execution. Each cursor contains
one formula buffer. After construction, the formula in the formula buffer may
be executed.

The grammar specification which defines the valid syntax for formulas. The
Lotus Notes application documentation defines the Lotus Notes formula
language syntax.

A form is the type of metadata which defines the format for the creation or
interpretation of documents. A document often, but not always, contains an
item which indicates the document's form. While documents do not require a
form (see strict binding), they should unless there is a good reason not to be
based on a form. A single database may contain multiple forms.

A search of all text within a set of documents. Lotus Notes has the ability to
index a database for full text search. Programs may execute a full text search
query against some or all of the documents within that database, and any
documents which match the query are selected. A full text search query
normally consists of one or more words or phrases. The Lotus Notes
application documentation defines the Lotus Notes full text search query
syntax.

A handle is a simple (usually integer) value used to indicate some context
within the API. Operations which create open data objects (e.g., opening a
cursor or document) produce a handle. An open object’s handle indicates a
particular open object to the API when multiple instances of that type of object
may exist. For example, when multiple documents are open, the integer handle
indicates which open document to use for a given operation.

239

hierarchical

HiTest

index

insert

item

macro

mail

metadata

navigation

null

parent

query

Chapter 4 HiTest Functions

A tree-based set. In HiTest, view-based indices are hierarchical since each
document in them may have a parent document and/or child documents.

The name of the enhanced Notes API described in this documentation.

A set of documents produced by executing a selection formula within a cursor.
The primary attribute of any index is an ordered collection of documents.
There are two types of indices: flat and hierarchical (view-based). Flat indices
are produced by a full database search or full text query, and have no hierarchy.
Hierarchical indices are produced from the set of documents within a view, and
contain a set of cells corresponding to the view display for each document. The
process of moving through the documents within an index is navigation. Result
set is another term for index. A cursor in which a formula has been executed
and results are available contains an active index.

The process of creating a new document in a Notes database. Programs
usually do this with bound dataspace or by creating an empty document and
adding items one at a time.

A data value within a document, on which the HiTest API supports retrieval
and assignment. When strict binding is in effect, every item in a document
must correspond in name and data type to a field in that document’s form.

A stored Notes object which performs a specified action on request or on
schedule. Macro execution can create, modify, or select documents, depending
on the type of macro.

A message sent between e-mail users. Notes supports addressing and sending
of documents as mail.

Data which describes data. The types of metadata relevant to the API (listed
with their corresponding data object) are:

forms (corresponding to documents);

fields within forms (corresponding to items within documents);

views (corresponding to the set of documents within views);

columns (corresponding to cells within views).

The process of moving through an index. From any point within an index,
there are various navigation styles (e.g., next, first, previous parent, etc.) usable
to move to other documents in the index. View-based indices support a greater
range of navigation styles than flat indices.

A special undefined value for any data type. This is different from zero-values
such as numeric zero and the empty string. In Notes documents, HiTest
represents a NULL value by the absence of an item within a document, since
Notes has no concept of a NULL value as data.

A parent document is a document to which another document is a response
(child). One parent may have multiple responses. The only way to determine a
document’s responses is by view-based navigation.

A statement executed against a database to perform an action. In Notes, a
query is used to perform a full text search of some or all text within a database.
The Lotus Notes application documentation defines the syntax of a query.

240

response

response hierarchy

rich text

row

selection formula

server

session

state

strict binding

summary item

update

view

Chapter 4 HiTest Functions

A document which references another document as its parent. Programs can
determine a document’s parent either by view-based navigation or by the value
of the document’s reference item. The term response is synonymous with child.

The set and organization of responses beneath a given document is that
document's response hierarchy, and may consist of multiple levels (responses
may have responses). While a document may have many responses, it may
only have one parent.

See composite data.

A single horizontal entry within a view. Each row (document, category, or
totals) in a view contains one cell for each column in the view.

A formula which produces an index, which consists of a subset of the
documents within a database.

A named Notes server program that receives and processes requests from
clients, contains and maintains a set of Notes databases, and implements
security on the databases it controls.

One API connection, with its own internal state and data. A given process may
open multiple sessions, each of which may perform independent functions at
the same time. Each session is indicated by a cursor.

Each process has a state which defines valid operations at the current time (i.e.,
data is not accessible from a document which is not open). Certain operations
within one state result in a different state.

There is no requirement in Notes that items within a document match the fields
within that document's form, or even that a document have a form. Since this
may cause confusion, and normally the ability to have documents differ in
format from forms is unnecessary, the API enforces strict binding by default.
This filters document access through the document's form, and forces a
consistent structure on items in documents. Strict binding is a cursor-level
option.

Notes stores certain items as summary items, which may be used in
computations and are usually smaller than other non-summary items.
Composite items cannot be summary items. In general, most other items are
summary items (up to the Notes limit of 15 K of summary data per document).

The process of modifying an existing document in a Notes database.
Programs perform updates by using bound dataspace or by adding or replacing
items one at a time.

A view contains a sorted and indexed hierarchical set of documents within a
database. The set of documents within a view are accessible as a view-based
index. A view also contains metadata in the form of columns and data in the
form of cells.

241

242

Index

Instead of the conventional back-of-the-book tabular index, this document is also supplied as a Notes database that
can be full text searched. Use the Notes Ul to build a full text search index. Then use full text search to produce an
interactive index with the additional search capabilities (relevance scores, sorting, etc.). We believe that a searchable
documentation database coupled with a complete table of contents is the most effective indexing methodology for a
structured manual such as this one.

