
FFTPAK 87/32 Lite

Shareware Version 1.0

Precision Plus Software

38 Longview CRT

London, ON N6K 4J1

Canada

Tel: (519) 657-0633

Fax: (519) 657-0283

E-Mail: 70401.2606@compuserve.com

June 28, 1995

Abstract

This package contains FFTPAK 87/32 Lite, Shareware Version 1.0 | a 32-

bit assembler coded Fast Fourier Transform (FFT) Library. All software

and documentation in this package is
c
 Copyright 1995, Precision Plus

Software. All rights reserved.

This software is being distributed as Shareware. If you use this software

for 30 days or more, you are expected to register it. Please read the chapter

\Shareware" in the documentation for further details.

DISCLAIMER OF WARRANTY

This software and manual are provided \as is" and without war-

ranties as to performance or merchantability.

This software is provided without any express or implied

warranties whatsoever. Because of the diversity of conditions

and hardware under which this software may be used, no war-

ranty of fitness for a particular purpose is offered. The user

is advised to test this software thoroughly before relying on

it. The user must assume the entire risk of using this software.

Having said all this, Precision Plus Software nevertheless has

an interest in maintaining the reliability and efficiency of the

software and will make corrections and improvements wher-

ever practical. (Users are not likely to use and register a

shareware product that doesn't perform very well).

All the information in this document is believed to be cor-

rect at the time of publication. Precision Plus Software does,

however, reserve the right to make any changes in product

specifications and/or availability without notice.

DOCUMENTATION

Full documentation for this product is provided in postscript format in

the �le MANUAL.PS and in HP LaserJet Plus compatible format in the �le

MANUAL.HP. This manual was printed by printing one of these �les.

Contents

1 Introduction 1

1.1 General : 1

1.2 Hardware Requirements : 3

1.3 Software Requirements : 3

1.4 Software Installation : 3

2 FFT Basics 4

2.1 Background : 4

2.2 Theory : 5

3 Using FFTPAK 87/32 Lite 9

3.1 A Programming Example : 9

3.2 FFTPAK 87/32 with Borland C++ for OS/2 : : : : : : : : : 12

3.3 FFTPAK 87/32 with IBM CSet++ : : : : : : : : : : : : : : 12

3.4 Overview of Functions in Shareware Version : : : : : : : : : : 12

3.5 Additional Functions in Registered Version : : : : : : : : : : 13

4 Function Descriptions 15

4.1 De�nitions and Function Prototypes : : : : : : : : : : : : : 15

4.2 Fixed Length Complex Forward Transforms : : : : : : : : : 17

4.2.1 fft2 | Length 2 Forward Transform : : : : : : : : : 17

4.2.2 fft4 | Length 4 Forward Transform : : : : : : : : : 17

4.2.3 fft8 | Length 8 Forward Transform : : : : : : : : : 18

4.2.4 fft16 | Length 16 Forward Transform : : : : : : : : 18

4.2.5 fft32 | Length 32 Forward Transform : : : : : : : : 18

4.2.6 fft64 | Length 64 Forward Transform : : : : : : : : 18

4.2.7 fft128 | Length 128 Forward Transform : : : : : : : 19

4.2.8 fft256 | Length 256 Forward Transform : : : : : : : 19

i

4.2.9 fft512 | Length 512 Forward Transform : : : : : : : 19

4.2.10 fft1024 | Length 1024 Forward Transform : : : : : 19

4.3 Fixed Length Complex Inverse Transforms : : : : : : : : : : 20

4.3.1 fftinv2 | Length 2 Inverse Transform : : : : : : : : 20

4.3.2 fftinv4 | Length 4 Inverse Transform : : : : : : : : 20

4.3.3 fftinv8 | Length 8 Inverse Transform : : : : : : : : 20

4.3.4 fftinv16 | Length 16 Inverse Transform : : : : : : 21

4.3.5 fftinv32 | Length 32 Inverse Transform : : : : : : 21

4.3.6 fftinv64 | Length 64 Inverse Transform : : : : : : 21

4.3.7 fftinv128 | Length 128 Inverse Transform : : : : : 21

4.3.8 fftinv256 | Length 256 Inverse Transform : : : : : 22

4.3.9 fftinv512 | Length 512 Inverse Transform : : : : : 22

4.3.10 fftinv1024 | Length 1024 Inverse Transform : : : : 22

4.4 Variable Length Complex Transforms : : : : : : : : : : : : : 22

4.4.1 fft Variable Length Forward Transform : : : : : : : 23

4.4.2 fftinv | Variable Length Inverse Transform : : : : 23

4.5 Utility Functions : 23

4.5.1 fftsort | Complex FFT Bit-Reversed Sort : : : : : 23

4.5.2 scalecv | Scale Complex Vector : : : : : : : : : : : 23

4.5.3 scalev | Scale Real Vector : : : : : : : : : : : : : : 24

4.5.4 conjcv | Conjugate Complex Vector : : : : : : : : : 24

5 Shareware 25

5.1 Shareware Concept and Registration : : : : : : : : : : : : : : 25

5.2 License Terms : 26

5.3 Support : 26

A Related Software Products 27

A.1 FFTPAK 87/32 : 27

A.2 FFTPAK INT/32 : 28

A.3 FFTPAK 87/16 : 29

A.4 MATHPAK 87/32 : 29

A.4.1 Supported Compilers : : : : : : : : : : : : : : : : : : : 30

A.4.2 MATHPAK 87/32 Library Contents : : : : : : : : : : 30

A.5 MATHPAK 87 : 32

A.5.1 Supported Compilers : : : : : : : : : : : : : : : : : : : 33

A.5.2 MATHPAK 87 Library Contents : : : : : : : : : : : : 33

B Registration 36

ii

Chapter 1

Introduction

1.1 General

Thank you for your interest in the FFTPAK 87/32 Lite Fast Fourier Trans-

form (FFT) library. This product is one of a family of high performance

scienti�c and engineering software packages by Precision Plus Software. By

distributing this software package as Shareware, we invite you to evaluate

it for up to 30 days. If you use this software for more than 30 days, you are

expected to register it. Please read the chapter \Shareware" in the documen-

tation for details. We would also like to acquaint you with other scienti�c

and engineering software packages published by Precision Plus Software.

FFTPAK 87/32 Lite is a set of 32-bit assembler coded FFT functions,

as well as related scaling and unscrambling functions. The FFT functions in

this library are faster than those of any other available FFT library. Unlike

earlier 16-bit functions, they are not limited to small FFT's (64 KB) but

can handle FFT's of practically unlimited size.

FFTPAK 87/32 Lite shareware version includes a set of double precision

complex FFT routines. If this package meets your needs, you can become

a registered and licensed user for the modest fee of $89 (US). When you

register the software, you will be sent the latest registered version, which

also includes a complete set of even faster single precision functions and a

printed manual.

For users with a broader set of needs, we also sell the professional version

FFTPAK 87/32, which includes all the functions in FFTPAK 87/32 Lite,

as well as special 32-bit assembler coded functions for real valued data,

two-dimensional FFTs, fast cosine transforms, fast sine transforms, real and

1

complex correlation, real and complex autocorrelation, real and complex

convolution, and various one and two dimensional window functions. The

cost of FFTPAK 87/32 is $149 (US). We believe that this is the best and

fasted FFT library for the PC available at any price.

A special 32-bit integer FFT transform package FFTPAK INT/32 is also

available for processing integer data, such as normally acquired by a real-

time data acquisition system. This package includes 32-bit integer FFTs

for real and complex data. The integer functions do not require a math

coprocessor, and have accuracy comparable to single precision oating point

FFTs. However, they run faster than oating point FFTs, particularly on

the Pentium processor which has two parallel integer execution units. The

cost of FFTPAK INT/32 is $199 (US).

For 16-bit DOS and Windows programming, a separate product FFT-

PAK 87/16 is available. This package is functionally identical to FFT-

PAK 87/32, but is designed to work with 80286/80287 and earlier proces-

sors. The FFT functions in FFTPAK 87/16 are limited to 64 KB data size.

(For a single precision real valued FFT, the largest possible transform size

is 16384.) The FFT functions in this package are almost as fast as those in

FFTPAK 87/32. The cost of FFTPAK 87/16 is $149 (US).

The complete source code for FFTPAK 87/32 is available for licensing.

If you require the source code, please inquire for current pricing and license

terms. However, unless you are interested in looking at thousands of lines

of assembler code, you will probably �nd that the binary versions of the

library are all that you need.

The technology used to produce the FFTPAK 87/32, FFTPAK 87/16

and FFTPAK INT/32 libraries is not limited to Intel 80x86 processors, but

is retargetable to other processors, including DSP and RISC processors. If

you have such a special application we may be able to help.

For general mathematical analysis, including solution of linear equation,

solution of nonlinear equations, optimization, vector and matrix manipula-

tion, etc., 32-bit MATHPAK 87/32 and 16-bitMATHPAK 87 mathematical

libraries are available. Almost every major compiler under DOS, Windows

and OS/2 is supported. The numerically intensive portions of these libraries

are coded in assembler for speed. MATHPAK 87 has over 10,000 users in

universities and industry. The cost of MATHPAK 87 is $129 (US) (object

code only) or $198 (US) with complete source code.

We hope that the FFTPAK 87/32 Lite library will prove itself worthy

of your support.

2

1.2 Hardware Requirements

FFTPAK 87/32 Lite will run on a 80386/80387 or later processors. It was

developed under OS/2 Warp using Borland C++, taking advantage of Bor-

land's inline assembler. Under OS/2, a math coprocessor is not required

(although highly recommended), since math coprocessor emulation is pro-

vided by the operating system if the math coprocessor is not present. The

DOS and Windows versions of the FFTPAK 87/32 libraries will run under

emulation if an emulator library is linked to your program.

1.3 Software Requirements

FFTPAK 87/32 Lite requires OS/2 2.0 (or later), Windows 95, Win32, or

a 32-bit DOS extender to run. (As mentioned above, a separate product

FFTPAK 87/16 is available to support 16-bit DOS and Windows users.)

1.4 Software Installation

FFTPAK 87/32 Lite is not a stand-alone program, but a library of functions

that you link to your program. For OS/2, Windows 95, and Win32 users,

FFTPAK 87/32 Lite provides a standard LIB �le that contains the objects

that you link to when building your program. A 32-bit DLL (dynamic link

library) that can be linked to at run-time can also be provided to registered

users upon special request.

For successful linking, you need to place the FFTPAK 87/32 LIB (or

DLL) �les where they can be found at link time. Please follow the guidelines

that come with your compiler about linking to external routines.

For C and C++ programmers, the header �le FFTPAK87.H is provided

with prototypes for all the functions. A sample C program fftdemo.c is

provided to illustrate how to compile and link a typical program.

Please be sure to read the READ.ME since this �le may contain hints and

last minute changes that you should know about.

3

Chapter 2

FFT Basics

2.1 Background

There are a number of textbooks that give a good account of the theory and

application of the FFT. A few good books are:

1. E.O. Brigham, The Fast Fourier Transform, Prentice Hall, Englewood

Cli�s, N.J., 1974.

2. L.R. Rabiner and B. Gold, Theory and Application of Digital Signal

Processing, Prentice Hall, Englewood Cli�s, N.J., 1975.

3. H.J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms,

Springer-Verlag, N.Y., 1982.

4. D.F Elliot and K.R. Rao, Fast Transforms: Algorithms, Analyses,

Applications, Academic Press, N.Y., 1982.

5. C.S. Burrus and T.W. Parks, DFT/FFT and Convolution Algorithms,

John Wiley & Sons, 1985.

6. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Nu-

merical Recipes in C, Second Edition, Cambridge University Press,

1992.

For a detailed understanding of the FFT, you should consult one or more of

the these references. For the purposes of this manual, discussion of theory

is brief. This manual is not intended to be a textbook on the FFT.

4

The importance of the FFT since its �rst successful implementation by

Cooley and Tukey

1

has been nothing short of staggering. Applications of the

FFT have been found in diverse �elds ranging from digital signal processing

to solution of nonlinear integral equations in molecular physics. Cooley and

Tukey were not the �rst to discover the \tricks" that are at the core of the

FFT, but the publication of their algorithm quickly lead to its widespread

use.

The FFT is in essence a clever way of calculating a discrete Fourier

transform (DFT) while drastically reduces computation time from O(N

2

)

to O(N log

2

N). For large data sets, the decrease in computation time may

range from a factor of a thousand to a million or more.

In spite of the e�ciency of the FFT algorithm, every additional im-

provement in e�ciency, even by a factor of two or three is welcome. This

is because in many applications FFT computation is still a major compu-

tational bottleneck, and it is likely to remain so for the foreseeable future.

For example, in image processing, resolution is often limited by the rate at

which gathered data can be processed. If we can process the data faster,

the image becomes sharper. A faster FFT algorithm, therefore directly con-

tributes to better image quality. Similarly, in the solution of convolution

type integral equations, a faster FFT algorithm allows larger problems to

be solved economically.

2.2 Theory

A Fourier transformX(f) in frequency domain f of a signal x(t) in the time

domain is de�ned as

X(f) =

Z

1

�1

x(t)e

�2�ift

dt: (2.1)

The inverse Fourier transform is

x(t) =

Z

1

�1

X(f)e

2�ift

df: (2.2)

where i =

p

�1. In these equations, if t is measured in seconds, then the

frequency f is in cycles per second (Hz)

2

. The Fourier transform may there-

fore be viewed as an expansion of a signal as a superposition of exponentials,

1

J.W. Cooley and J.W. Tukey, An algorithm for the machine calculation of complex

Fourier series, Math. Comput. 19, (April 1965), 297{301.

2

In some texts, the sign in the exponential terms in the forward transform and inverse

transforms is reversed. This is just a matter of convention.

5

in which the frequencies take on all real values. The Fourier transform is a

\continuous-frequency" signal representation with no requirement that the

signal be periodic.

A discrete-time signal is usually obtained from a continuous-time signal

by sampling at equally spaced intervals in time. If the discrete-time signal

is denoted as x

n

then the sampling of x(t) every T seconds gives:

x

n

= x(nT); n = : : : ;�2;�1; 0; 1; 2; : : : (2.3)

In the case of a bandlimited signal, with highest frequency B Hz, it can

be uniquely recovered from its samples as long as the sampling rate is

higher than 2B samples per second. Lower sampling rates may result in

a phonomenon known as aliasing, where the original signal cannot be un-

ambiguously reconstructed. The frequency 2B is known as the Nyquist

critical frequency.

By bandlimited, it is meant that the truncated (bandlimited) inverse

Fourier transform written as

x

0

(t) =

Z

B

�B

X(f)e

2�ift

df (2.4)

is the best approximation to x(t) using frequencies limited to the band

(�B;B) in the sense that the integrated squared error, de�ned as

E =

Z

1

�1

�

x(t)� x

0

(t)

�

2

dt (2.5)

is minimized.

Suppose that we haveN consecutive sampled values x

n

at times t

n

= nT

where n = 0; 1; : : : ; N � 1. Suppose also that N is even (for convenience).

Then if we estimate the Fourier transform X(f) corresponding to the lower

and upper limits of the Nyquist critical frequency range:

f

k

=

k

NT

; k = �

N

2

; : : : ;

N

2

; (2.6)

by approximating the integral in the continuous-time transform by a discrete

sum, it follows that

X

k

=

N�1

X

n=0

x

n

e

�2�ikn=N

(2.7)

and

X(f

k

) � TX

k

: (2.8)

6

The discrete inverse Fourier transform that recovers the set of x

n

's exactly

from the X

k

's is

x

n

=

1

N

N�1

X

k=0

X

k

e

2�ikn=N

: (2.9)

The only di�erence from the forward transform is the factor 1=N and the

sign in the exponential term. It should be noted that to obtain reciprocity

between the forward and inverse transforms, the 1=N factor could have been

applied to the forward transform instead of the inverse transform. This is

largely a matter of convenience.

For two dimensional DFTs, given a two dimensional array x, the two

dimensional forward X is de�ned as:

X

k;l

=

N

1

�1

X

n=0

N

2

�1

X

m=0

x

n;m

exp[�i2�(nk=N

1

+ml=N

2

)]: (2.10)

The inverse transform is de�ned as:

x

n;m

=

1

N

1

N

2

N

1

�1

X

k=0

N

2

�1

X

l=0

X

k;l

exp[+i2�(nk=N

1

+ml=N

2

)]: (2.11)

From these de�nitions it follows that a forward transform followed by an

inverse transforms will recover the original vector.

Until the mid 1960's, the usual method for calculating a DFT was to

directly apply the above equations for the forward and inverse transforms.

The number of complex multiplications was thereforeN

2

for a 1 dimensional

transform.

A particularly lucid derivation of the FFT algorithm is given by Daniel-

son and Lanczos

3

and Singleton

4

.

Danielson and Lancsoz showed that a discrete Fourier transform of length

N can be rewritten as the sum of two discrete Fourier transforms of length

N=2, with one formed from the even-numbered points, and the other from

the odd-numbered points of the original N . The proof is as follows:

X

k

=

N�1

X

n=0

x

n

e

�2�ink=N

3

G.C. Danielson and C. Lanczos,Some improvements in practical Fourier analysis and

their application to X-ray scattering from liquids, J. Franklin Inst. 233 365{380; 435{

452 (1942).

4

R.C. Singleton, On Computing the Fast Fourier Transform, Communications of

the ACM 10(10), 647{654 (1967).

7

=

N=2�1

X

n=0

x

2n

e

�2�ik(2n)=N

+

N=2�1

X

n=0

x

2n+1

e

�2�ik(2n+1)=N

=

N=2�1

X

n=0

x

2n

e

�2�ikn=(N=2)

+ e

�2�ik=N

N=2�1

X

n=0

x

2n+1

e

�2�ikn=(N=2)

= X

e

k

+ e

�2�ik=N

X

o

k

(2.12)

where X

e

k

is the k-th component of the Fourier transform of length N=2

formed from the even components, and X

o

k

is the corresponding transform

of length N=2 formed from the odd components.

The signi�cant thing about this derivation is that recursive computation

of the FFT requires only Nlog

2

N complex multiplications.

Perhaps the shortest way to code the FFT algorithm is to have a recur-

sively called FFT function following the above FFT derivation. However,

an equivalent non-recursive algorithm is usually preferred for reasons of ef-

�ciency.

Some of the complex multiplications in the FFT can be simpli�ed or

eliminated. For example, if n = 0 the exponential term becomes unity. An

e�cient algorithm takes advantage of these types of simpli�cations wherever

possible. Also, the sine and cosine values that arise from the exponential

term can be precomputed so as to eliminate the need for their time consum-

ing calculation. FFTPAK 87/32 Lite uses these and many other techniques

for making the FFT calculation as e�cient as possible.

8

Chapter 3

Using FFTPAK 87/32 Lite

3.1 A Programming Example

Suppose we have a complex vector of length N = 16, how do we calculate

the FFT? The following simple program shows how to do this:

/* example01.c */

#include <stdio.h>

#include "fftpak.h"

static struct LONGCOMPLEX x[16];

static int i, m, N;

void main(){

m = 4; /* FFT length = 2^m = 16 */

N = 1 << m; /* N = 1 << m = 16 */

/* define a data vector */

for (i=0; i<N; i++) {

x[i].r = 1.0/(1.0 + i); /* define real component */

x[i].i = 0.0; /* define imaginary component */

};

fft16(x); /* compute the FFT */

fftsort(x, m); /* sort results into natural order */

/* print the results */

printf("16-point FFT Results\n");

for (i=0; i<N; i++)

printf("x[%2d] = (%e,%e)\n",i,x[i].r,x[i].i);

/* recover the original function */

fftinv16(x);

scalecv(x, m, n);

9

fftsort(x, m);

printf("Recovered 16-point vector\n");

for (i=0; i<N; i++)

printf("x[%2d] = (%e,%e)\n",i,x[i].r,x[i].i);

};

The output from this example program is given below:

16-point FFT Results

x[0] = (3.380729e+00,0.000000e+00)

x[1] = (1.345578e+00,-7.673311e-01)

x[2] = (9.869736e-01,-5.737437e-01)

x[3] = (8.345081e-01,-4.292854e-01)

x[4] = (7.542680e-01,-3.172619e-01)

x[5] = (7.081796e-01,-2.248500e-01)

x[6] = (6.814025e-01,-1.443064e-01)

x[7] = (6.672900e-01,-7.058799e-02)

x[8] = (6.628719e-01,0.000000e+00)

x[9] = (6.672900e-01,7.058799e-02)

x[10] = (6.814025e-01,1.443064e-01)

x[11] = (7.081796e-01,2.248500e-01)

x[12] = (7.542680e-01,3.172619e-01)

x[13] = (8.345081e-01,4.292854e-01)

x[14] = (9.869736e-01,5.737437e-01)

x[15] = (1.345578e+00,7.673311e-01)

Recovered 16-point vector

x[0] = (1.000000e+00,1.387779e-17)

x[1] = (5.000000e-01,-1.734723e-17)

x[2] = (3.333333e-01,1.040834e-17)

x[3] = (2.500000e-01,-1.040834e-17)

x[4] = (2.000000e-01,0.000000e+00)

x[5] = (1.666667e-01,1.387779e-17)

x[6] = (1.428571e-01,-1.387779e-17)

x[7] = (1.250000e-01,1.387779e-17)

x[8] = (1.111111e-01,-1.387779e-17)

x[9] = (1.000000e-01,1.734723e-17)

x[10] = (9.090909e-02,-1.040834e-17)

x[11] = (8.333333e-02,1.040834e-17)

x[12] = (7.692308e-02,0.000000e+00)

x[13] = (7.142857e-02,-1.387779e-17)

x[14] = (6.666667e-02,1.387779e-17)

x[15] = (6.250000e-02,-1.387779e-17)

The LONGCOMPLEX structure referred to in this example is de�ned in the

header �le fftpak.h as

10

struct LONGCOMPLEX {

double r, i;

};

In this example, the FFT is computed using the function fft16 and then

sorted using fftsort. The FFTPAK 87/32 Lite library contains specially

coded functions for FFTs of length 2, 4, 8, 16, 32, 64, 128, 256, 512 and

1024. These functions are named fft2, fft4, : : :, fft1024. For FFTs of

any length there is also a general purpose function fft that could have

been used. In this case, we would replace the function call fft16(x) with

fft(x,m). The function fft calls fft16 in any case, so by calling fft16

directly, a small amount of overhead is avoided. In general, FFTPAK 87/32

gives you to maximum control at every step of FFT calculation. That is why

fftsort must be explicitly called. When the FFT calculation is �nished,

the results are in bit reversed order. In most cases you will want to sort

then into natural (ascending) order. However, if a circular convolution is

being performed, it is possible to eliminate a sorting step.

In the last part of the example, the original vector is recovered by scaling

the transformed complex vector by the factor 2

4

= 1=16 using the scalecv

function, applying the fftinv16 FFT inverse function, and once again sort-

ing the results into natural order using the fftsort function. Note that

the recovered vector has non-zero imaginary components due to roundo�

error in the calculation. These roundo� errors are negligible for all practical

purposes, but they can be avoided altogether by using the real valued FFT

functions in the full version of FFTPAK 87/32. For large FFTs (N > 512),

the real valued FFT functions also have the advantage of executing in ap-

proximately half the time of the corresponding complex FFT functions.

The scalecv function that is used to scale the complex vector by the

factor 1=16 is very fast and involves no roundo� error, since it only adjusts

the binary exponent of the oating point numbers. It doesn't even use the

math coprocessor, since only a portion of each oating point number must

be adjusted.

A detailed description of every FFTPAK 87/32 Lite function is given in

Chapter 4.

You can compile this program just as you would any other C program.

The easiest way to link to the FFTPAK 87/32 Lite functions to add the

FFTPAK87.LIB �le to the list of libraries to which you are linking.

11

3.2 FFTPAK 87/32 with Borland C++ for OS/2

Borland C++ for OS/2 provides an easy to use integrated development

environment (IDE). The simplest way to use FFTPAK 87/32 is to create a

project that includes your source �les, as well as the �le FFTPAK87.LIB. Also

make sure that the header �le fftpak.h is in your #include path. Borland

C++ will compile and link to the FFTPAK87.LIB �le just as for any other

library. Also, be sure that the line

#define pascal _Pascal

at the top of the fftpak.h header �le is commented out.

3.3 FFTPAK 87/32 with IBM CSet++

If you are using the IBM CSet++ compiler, you need to uncomment out the

statement

#define pascal _Pascal

at the top of the fftpak.h header �le. The IBM's CSet++ compiler can then

be used to compile and link the program exampl01.c using the command:

icc exampl01.c FFTPAK87.LIB

3.4 Overview of Functions in Shareware Version

The following double precision functions are provided in the shareware ver-

sion of FFTPAK 87/32 Lite:

fft2 | complex FFT of length 2.

fft4 | complex FFT of length 4.

fft8 | complex FFT of length 8.

fft16 | complex FFT of length 16.

fft32 | complex FFT of length 32.

fft64 | complex FFT of length 64.

fft128 | complex FFT of length 128.

fft256 | complex FFT of length 256.

fft512 | complex FFT of length 512.

12

fft1024 | complex FFT of length 1024.

fft | complex FFT of length 2

m

.

fftinv2 | complex inverse FFT of length 2.

fftinv4 | complex inverse FFT of length 4.

fftinv8 | complex inverse FFT of length 8.

fftinv16 | complex inverse FFT of length 16.

fftinv32 | complex inverse FFT of length 32.

fftinv64 | complex inverse FFT of length 64.

fftinv128 | complex inverse FFT of length 128.

fftinv256 | complex inverse FFT of length 256.

fftinv512 | complex inverse FFT of length 512.

fftinv1024 | complex inverse FFT of length 1024.

fftinv | complex FFT of length 2

m

.

fftsort | bit reverse sort for complex FFT of length 2

m

.

scalecv | scale complex vector of length N by factor 2

-m

.

scalev | scale real vector of length N by factor 2

-m

.

conjcv | complex conjugate of complex vector of length N .

3.5 Additional Functions in Registered Version

The registered version of FFTPAK 87/32 Lite contains the following addi-

tional functions:

fft2_s | single precision complex FFT of length 2.

fft4_s | single precision complex FFT of length 4.

fft8_s | single precision complex FFT of length 8.

fft16_s | single precision complex FFT of length 16.

fft32_s | single precision complex FFT of length 32.

fft64_s | single precision complex FFT of length 64.

fft128_s | single precision complex FFT of length 128.

fft256_s | single precision complex FFT of length 256.

fft512_s | single precision complex FFT of length 512.

13

fft1024_s | single precision complex FFT of length 1024.

fft_s | single precision complex FFT of length 2

m

.

fftinv2_s | single precision complex inverse FFT of length 2.

fftinv4_s | single precision complex inverse FFT of length 4.

fftinv8_s | single precision complex inverse FFT of length 8.

fftinv16_s | single precision complex inverse FFT of length 16.

fftinv32_s | single precision complex inverse FFT of length 32.

fftinv64_s | single precision complex inverse FFT of length 64.

fftinv128_s | single precision complex inverse FFT of length 128.

fftinv256_s | single precision complex inverse FFT of length 256.

fftinv512_s | single precision complex inverse FFT of length 512.

fftinv1024_s | single precision complex inverse FFT of length 1024.

fftinv_s | single precision complex FFT of length 2

m

.

fftsort_s | single precision bit reverse sort for FFT of length 2

m

.

scalecv_s | scale single precision complex vector of length N by factor 2

-m

.

scalev_s | scale single precision real vector of length N by factor 2

-m

.

conjcv_s | complex conjugate of single precidion complex vector of length N .

14

Chapter 4

Function Descriptions

4.1 De�nitions and Function Prototypes

The FFTPAK 87/32 header �le FFTPAK.h contains de�nitions and proto-

types for all FFTPAK 87/32 Lite functions. This �le is listed below for

reference:

/**/

/* fftpak.h */

/* Copyright (C) 1995 Precision Plus Software */

/* All rights reserved. */

/**/

#define twopi 6.283185307179586

/* uncomment the line below for IBM CSet++

#define pascal _Pascal

*/

struct LONGCOMPLEX {

double r;

double i;

};

struct COMPLEX {

float r;

float i;

};

void pascal fft2(struct LONGCOMPLEX *x);

15

void pascal fft4(struct LONGCOMPLEX *x);

void pascal fft8(struct LONGCOMPLEX *x);

void pascal fft16(struct LONGCOMPLEX *x);

void pascal fft32(struct LONGCOMPLEX *x);

void pascal fft64(struct LONGCOMPLEX *x);

void pascal fft128(struct LONGCOMPLEX *x);

void pascal fft256(struct LONGCOMPLEX *x);

void pascal fft512(struct LONGCOMPLEX *x);

void pascal fft1024(struct LONGCOMPLEX *x);

void pascal fft(struct LONGCOMPLEX *x, int m);

void pascal fftinv2(struct LONGCOMPLEX *x);

void pascal fftinv4(struct LONGCOMPLEX *x);

void pascal fftinv8(struct LONGCOMPLEX *x);

void pascal fftinv16(struct LONGCOMPLEX *x);

void pascal fftinv32(struct LONGCOMPLEX *x);

void pascal fftinv64(struct LONGCOMPLEX *x);

void pascal fftinv128(struct LONGCOMPLEX *x);

void pascal fftinv256(struct LONGCOMPLEX *x);

void pascal fftinv512(struct LONGCOMPLEX *x);

void pascal fftinv1024(struct LONGCOMPLEX *x);

void pascal fftinv(struct LONGCOMPLEX *x, int m);

void pascal fftsort(struct LONGCOMPLEX *x, int m);

void pascal scalecv(struct LONGCOMPLEX *x, int m, int N);

void pascal scalev(double *x, int m, int N);

void pascal conjcv(struct LONGCOMPLEX *x, int N);

void pascal fft2_s(struct COMPLEX *x);

void pascal fft4_s(struct COMPLEX *x);

void pascal fft8_s(struct COMPLEX *x);

void pascal fft16_s(struct COMPLEX *x);

void pascal fft32_s(struct COMPLEX *x);

void pascal fft64_s(struct COMPLEX *x);

void pascal fft128_s(struct COMPLEX *x);

void pascal fft256_s(struct COMPLEX *x);

void pascal fft512_s(struct COMPLEX *x);

void pascal fft1024_s(struct COMPLEX *x);

void pascal fft_s(struct COMPLEX *x, int m);

void pascal fftinv2_s(struct COMPLEX *x);

void pascal fftinv4_s(struct COMPLEX *x);

void pascal fftinv8_s(struct COMPLEX *x);

void pascal fftinv16_s(struct COMPLEX *x);

16

void pascal fftinv32_s(struct COMPLEX *x);

void pascal fftinv64_s(struct COMPLEX *x);

void pascal fftinv128_s(struct COMPLEX *x);

void pascal fftinv256_s(struct COMPLEX *x);

void pascal fftinv512_s(struct COMPLEX *x);

void pascal fftinv1024_s(struct COMPLEX *x);

void pascal fftinv_s(struct COMPLEX *x, int m);

void pascal fftsort_s(struct COMPLEX *x, int m);

void pascal scalecv_s(struct COMPLEX *x, int m, int N);

void pascal scalev_s(float *x, int m, int N);

void pascal conjcv_s(struct COMPLEX *x, int N);

4.2 Fixed Length Complex Forward Transforms

This section describes a special set of forward complex FFTs for lengths 2

to 1024. These very fast individually coded routines use precomputed sine

and cosine values.

4.2.1 fft2 | Length 2 Forward Transform

The function prototypes for the double precision function fft2 and the

corresponding single precision function fft2_s are:

void pascal fft2(struct LONGCOMPLEX *x);

void pascal fft2_s(struct COMPLEX *x);

This function calculates the FFT of the complex vector x of length 2 in

place.

4.2.2 fft4 | Length 4 Forward Transform

The function prototypes for the double precision function fft4 and the

corresponding single precision function fft4_s are:

void pascal fft4(struct LONGCOMPLEX *x);

void pascal fft4_s(struct COMPLEX *x);

This function calculates the FFT of the complex vector x of length 4 in

place. The results are in bit-reversed order.

17

4.2.3 fft8 | Length 8 Forward Transform

The function prototypes for the double precision function fft8 and the

corresponding single precision function fft8_s are:

void pascal fft8(struct LONGCOMPLEX *x);

void pascal fft8_s(struct COMPLEX *x);

This function calculates the FFT of the complex vector x of length 8 in

place. The results are in bit-reversed order.

4.2.4 fft16 | Length 16 Forward Transform

The function prototypes for the double precision function fft16 and the

corresponding single precision function fft16_s are:

void pascal fft16(struct LONGCOMPLEX *x);

void pascal fft16_s(struct COMPLEX *x);

This function calculates the FFT of the complex vector x of length 16 in

place. The results are in bit-reversed order.

4.2.5 fft32 | Length 32 Forward Transform

The function prototypes for the double precision function fft32 and the

corresponding single precision function fft32_s are:

void pascal fft32(struct LONGCOMPLEX *x);

void pascal fft32_s(struct COMPLEX *x);

This function calculates the FFT of the complex vector x of length 32 in

place. The results are in bit-reversed order.

4.2.6 fft64 | Length 64 Forward Transform

The function prototypes for the double precision function fft64 and the

corresponding single precision function fft64_s are:

void pascal fft64(struct LONGCOMPLEX *x);

void pascal fft64_s(struct COMPLEX *x);

This function calculates the FFT of the complex vector x of length 64 in

place. The results are in bit-reversed order.

18

4.2.7 fft128 | Length 128 Forward Transform

The function prototypes for the double precision function fft128 and the

corresponding single precision function fft128_s are:

void pascal fft128(struct LONGCOMPLEX *x);

void pascal fft128_s(struct COMPLEX *x);

This function calculates the FFT of the complex vector x of length 128 in

place. The results are in bit-reversed order.

4.2.8 fft256 | Length 256 Forward Transform

The function prototypes for the double precision function fft256 and the

corresponding single precision function fft256_s are:

void pascal fft256(struct LONGCOMPLEX *x);

void pascal fft256_s(struct COMPLEX *x);

This function calculates the FFT of the complex vector x of length 256 in

place. The results are in bit-reversed order.

4.2.9 fft512 | Length 512 Forward Transform

The function prototypes for the double precision function fft512 and the

corresponding single precision function fft512_s are:

void pascal fft512(struct LONGCOMPLEX *x);

void pascal fft512_s(struct COMPLEX *x);

This function calculates the FFT of the complex vector x of length 512 in

place. The results are in bit-reversed order.

4.2.10 fft1024 | Length 1024 Forward Transform

The function prototypes for the double precision function fft1024 and the

corresponding single precision function fft1024_s are:

void pascal fft1024(struct LONGCOMPLEX *x);

void pascal fft1024_s(struct COMPLEX *x);

This function calculates the FFT of the complex vector x of length 1024 in

place. The results are in bit-reversed order.

19

4.3 Fixed Length Complex Inverse Transforms

This section describes a special set of inverse complex FFTs for lengths 2

to 1024. These very fast individually coded routines use precomputed sine

and cosine values.

4.3.1 fftinv2 | Length 2 Inverse Transform

The function prototypes for the double precision function fftinv2 and the

corresponding single precision function fftinv2_s are:

void pascal fftinv2(struct LONGCOMPLEX *x);

void pascal fftinv2_s(struct COMPLEX *x);

This function calculates the inverse FFT of the complex vector x of length

2 in place. The results are in bit-reversed order.

4.3.2 fftinv4 | Length 4 Inverse Transform

The function prototypes for the double precision function fftinv4 and the

corresponding single precision function fftinv4_s are:

void pascal fftinv4(struct LONGCOMPLEX *x);

void pascal fftinv4_s(struct COMPLEX *x);

This function calculates the inverse FFT of the complex vector x of length

4 in place. The results are in bit-reversed order.

4.3.3 fftinv8 | Length 8 Inverse Transform

The function prototypes for the double precision function fftinv8 and the

corresponding single precision function fftinv8_s are:

void pascal fftinv8(struct LONGCOMPLEX *x);

void pascal fftinv8_s(struct COMPLEX *x);

This function calculates the inverse FFT of the complex vector x of length

8 in place. The results are in bit-reversed order.

20

4.3.4 fftinv16 | Length 16 Inverse Transform

The function prototypes for the double precision function fftinv16 and the

corresponding single precision function fftinv16_s are:

void pascal fftinv16(struct LONGCOMPLEX *x);

void pascal fftinv16_s(struct COMPLEX *x);

This function calculates the inverse FFT of the complex vector x of length

16 in place. The results are in bit-reversed order.

4.3.5 fftinv32 | Length 32 Inverse Transform

The function prototypes for the double precision function fftinv32 and the

corresponding single precision function fftinv32_s are:

void pascal fftinv32(struct LONGCOMPLEX *x);

void pascal fftinv32_s(struct COMPLEX *x);

This function calculates the inverse FFT of the complex vector x of length

32 in place. The results are in bit-reversed order.

4.3.6 fftinv64 | Length 64 Inverse Transform

The function prototypes for the double precision function fftinv64 and the

corresponding single precision function fftinv64_s are:

void pascal fftinv64(struct LONGCOMPLEX *x);

void pascal fftinv64_s(struct COMPLEX *x);

This function calculates the inverse FFT of the complex vector x of length

64 in place. The results are in bit-reversed order.

4.3.7 fftinv128 | Length 128 Inverse Transform

The function prototypes for the double precision function fftinv128 and

the corresponding single precision function fftinv128_s are:

void pascal fftinv128(struct LONGCOMPLEX *x);

void pascal fftinv128_s(struct COMPLEX *x);

This function calculates the inverse FFT of the complex vector x of length

128 in place. The results are in bit-reversed order.

21

4.3.8 fftinv256 | Length 256 Inverse Transform

The function prototypes for the double precision function fftinv256 and

the corresponding single precision function fftinv256_s are:

void pascal fftinv256(struct LONGCOMPLEX *x);

void pascal fftinv256_s(struct COMPLEX *x);

This function calculates the inverse FFT of the complex vector x of length

256 in place. The results are in bit-reversed order.

4.3.9 fftinv512 | Length 512 Inverse Transform

The function prototypes for the double precision function fftinv512 and

the corresponding single precision function fftinv512_s are:

void pascal fftinv512(struct LONGCOMPLEX *x);

void pascal fftinv512_s(struct COMPLEX *x);

This function calculates the inverse FFT of the complex vector x of length

512 in place. The results are in bit-reversed order.

4.3.10 fftinv1024 | Length 1024 Inverse Transform

The function prototypes for the double precision function fftinv1024 and

the corresponding single precision function fftinv1024_s are:

void pascal fftinv1024(struct LONGCOMPLEX *x);

void pascal fftinv1024_s(struct COMPLEX *x);

This function calculates the inverse FFT of the complex vector x of length

1024 in place. The results are in bit-reversed order.

4.4 Variable Length Complex Transforms

The variable length FFTs described in this section call very fast �xed length

FFTs described in previous sections for lengths 2 to 1024. For larger trans-

forms, computation of additional sine and cosine values is required.

22

4.4.1 fft Variable Length Forward Transform

The function prototypes for the double precision function fft and the cor-

responding single precision function fft_s are:

void pascal fft(struct LONGCOMPLEX *x, int m);

void pascal fft_s(struct COMPLEX *x, int m);

This function calculates the FFT of the complex vector x of length 2

m

in

place. The results are in bit-reversed order.

4.4.2 fftinv | Variable Length Inverse Transform

The function prototypes for the double precision function fftinv and the

corresponding single precision function fftinv_s are:

void pascal fftinv(struct LONGCOMPLEX *x, int m);

void pascal fftinv_s(struct COMPLEX *x, int m);

This function calculates the inverse FFT of the complex vector x of length

2

m

in place. The results are in bit-reversed order.

4.5 Utility Functions

4.5.1 fftsort | Complex FFT Bit-Reversed Sort

The function prototypes for the double precision function fftsort and the

corresponding single precision function fftsort_s are:

void pascal fftsort(struct LONGCOMPLEX *x, int m);

void pascal fftsort_s(struct COMPLEX *x, int m);

This function sorts the complex vector x of length 2

m

in place. If the input

vector is in bit-reversed order, then on output the results are in natural

order.

4.5.2 scalecv | Scale Complex Vector

The function prototypes for the double precision function scalecv and the

corresponding single precision function scalecv_s are:

void pascal scalecv(struct LONGCOMPLEX *x, int m, int N);

void pascal scalecv_s(struct COMPLEX *x, int m, int N);

23

This function scales complex vector x of length N by the factor 2

-m

. This

procedure is very fast since it works by adjusting the binary exponent of the

oating point numbers, and involves no multiplies or divides.

4.5.3 scalev | Scale Real Vector

The function prototypes for the double precision function scalev and the

corresponding single precision function scalev_s are:

void pascal scalev(double *x, int m, int N);

void pascal scalev_s(float *x, int m, int N);

This function scales real vector x of length N by the factor 2

-m

. This pro-

cedure is very fast since it works by adjusting the binary exponent of the

oating point numbers, and involves no multiplies or divides.

4.5.4 conjcv | Conjugate Complex Vector

The function prototypes for the double precision function conjcv and the

corresponding single precision function conjcv_s are:

void pascal conjcv(struct LONGCOMPLEX *x, int N);

void pascal conjcv_s(struct COMPLEX *x, int N);

This function conjugates complex vector x of length N. This procedure is

very fast since it works by ipping the sign bit of the imaginary component

numbers.

24

Chapter 5

Shareware

5.1 Shareware Concept and Registration

The FFTPAK 87/32 Lite software package is distributed as Shareware.

If you try this software and continue to use it, you are expected to register

it with Precision Plus Software. You are granted a 30 day evaluation period

before you are required to either register the product or discontinue using

it.

This software can be freely distributed, as long as no money is charged

for it, all the �les are included, unmodi�ed, and with their modi�cation

dates preserved.

The library �les that contain the FFTPAK 87/32 Lite object code can-

not be distributed as a part of another product. Registered users who have

paid the registration fee for this software package are granted a license to

compile and link to FFTPAK 87/32 Lite functions and distribute the re-

sulting executable �le(s) without further license fees. Upon registration, you

will receive the latest version of the product, a complete set of even faster

single precision FFT functions, and a printed manual.

This software cannot be used in a commercial environment without the

payment of the proper license fee.

Our success will depend not only on the quality of this software but

on the willingness of every individual user to \support" its developers. If

you use this product, please send in the registration form in the back of

this document, along with your registration fee. You may also register this

product through CompuServe and other online services. Please refer to the

READ.ME �le for details. Place orders for related software products described

25

in Appendix A directly with Precision Plus Software.

Whether or not you use this product, please give complete copies of this

software to others.

5.2 License Terms

Before you register this product and become a licensed user, you are granted

a limited 30 day license to evaluate the product to determine whether or

not it will �t your needs. Use of this software for any other purpose, before

registration and without our written consent, is expressly forbidden.

Registered users are given a non-exclusive license to use this software on

any machine that they have access to, but not on more than one at a time

(the \treat this software like a book" idea).

Registered users may include portions of the library and runtime code

in the programs developed by them, and use or distribute these programs

without payment of any additional license fees to Precision Plus Software as

long as the FFTPAK 87/32 Lite code is embedded in the users executable

program. The FFTPAK 87/32 Lite library �les may not be distributed with

user programs. (FFTPAK 87/32 Lite dynamic link libraries may be licensed

for distribution with user program under a separate license from Precision

Plus Software.)

5.3 Support

Support for this product is available to registered users by telephone (519)

657-0633, fax (519) 657-0283, E-Mail 70401.2606@compuserve.com, or mail:

Precision Plus Software, 38 Longview CRT, London, ON, Canada N6K 4J1.

User comments are always welcome. Please feel free to send us your

suggestions by fax, E-Mail or mail. We will try to accomodate user requests

for new features in future releases of this software.

If you are reporting a bug, please specify:

� version of FFTPAK 87/32 Lite software in use;

� operating system and compiler in use;

� problem description, with a small sample program to illustrate the

problem.

26

Appendix A

Related Software Products

Precision Plus Software publishes a range of mathematical software libraries

for scientists and engineers. Precision Plus Software's MATHPAK 87 prod-

uct has been available since 1985 and is used by more than 10,000 scientists

and engineers around the world. Current uses for the software include radar

signal processing, speech recognition, image analysis, linear and nonlinear

systems analysis, and even econometric models. The software is also used

in a variety of embedded systems applications.

One thing that all these products have in common is ease of use, ex-

ceptional performance, and modest price. The philosophy used to write the

software has been to choose the best available algorithms, implement time-

critical portions in assembler, and provide simple interfaces to support all

major compilers in the DOS, Windows and OS/2 environments.

The sections below describe the range of software available today. For

ordering information, please refer to the order form in the back of this man-

ual.

A.1 FFTPAK 87/32

FFTPAK 87/32 is a set of 32-bit assembler coded FFT functions, as well

as related scaling and unscrambling functions. The FFT functions in this

library are faster than those of any other available FFT library. Unlike

earlier 16-bit functions, they are not limited to small FFT's (64 KB) but

can handle FFT's of practically unlimited size.

FFTPAK 87/32 contains single and double precision functions for:

� complex FFTs;

27

� real valued data FFTs;

� real valued data and complex two-dimensional FFTs;

� fast cosine transforms;

� fast sine transforms;

� real and complex correlation;

� real and complex autocorrelation;

� real and complex circular convolution;

� various one and two dimensional window functions.

A.2 FFTPAK INT/32

FFTPAK INT/32 is a special 32-bit integer FFT transform package for pro-

cessing integer data, such as normally acquired by a real-time data acquisi-

tion system. This package includes 32-bit integer FFTs for real and complex

data. The integer functions do not require a math coprocessor, and have

accuracy comparable to single precision oating point FFTs. However, they

run faster than oating point FFTs, particularly on the Pentium processor

which has two parallel integer execution units. FFTPAK INT/32 contains

32-bit integer functions for:

� complex FFTs;

� real valued data FFTs;

� real valued data and complex two-dimensional FFTs;

� fast cosine transforms;

� fast sine transforms;

� real and complex correlation;

� real and complex autocorrelation;

� real and complex circular convolution;

� various one and two dimensional window functions.

28

A.3 FFTPAK 87/16

FFTPAK 87/16 is a set of 16-bit assembler coded FFT functions, as well

as related scaling and unscrambling functions. The FFT functions in this

library are faster than those of any other available 16-bit FFT library. The

16-bit functions are limited to small FFT's (64 KB).

FFTPAK 87/16 contains single and double precision functions for:

� complex FFTs;

� real valued data FFTs;

� real valued data and complex two-dimensional FFTs;

� fast cosine transforms;

� fast sine transforms;

� real and complex correlation;

� real and complex autocorrelation;

� real and complex circular convolution;

� various one and two dimensional window functions.

A.4 MATHPAK 87/32

MATHPAK 87/32 is a set of highly optimized 32-bit assembler coded rou-

tines to perform some of the most common mathematical operations used

in numerically intensive programs. This is a new product which is upwardly

compatible with the 16-bit MATHPAK 87 product described in the next

section.

WithMATHPAK 87/32 you can solve a system of linear equations, invert

a matrix, or calculate a fast Fourier transform (FFT) all in one line of

your program by simply calling the appropriate MATHPAK 87/32 routine.

You can also perform many simple but time consuming operations that are

commonly found in program, for example: summing an array of numbers,

calculating mean and standard deviation of a set of data, linear regression,

vector and matrix operations and much more | all at the limit of your

computer's speed. Using MATHPAK 87/32, your programs become shorter,

are �nished sooner and run faster.

29

MATHPAK 87/32 routines are written speci�cally to fully utilize the

Intel 80387 and later oating point coprocessors. MATHPAK 87/32's speed

makes practical many programs that were previously beyond the reach of

your computer and allows you to streamline many of your existing programs

to make them run faster and with improved accuracy. Another bene�t of

using MATHPAK 87/32 is that it increases your productivity by freeing you

to think about how to solve your problem, rather than how to code complex

but standard routines for mathematical operations such as matrix inversion,

matrix eigenvalue and eigenvector computation, least squares data �tting,

et cetera. MATHPAK 87/32 routines are powerful but easy to use. A short

tutorial will get you started in minutes.

MATHPAK 87/32 routines typically run from 3 to 10 times faster than

equivalent routines written in a high-level language such as C or Pascal.

Because the numerically intensive parts are written in assembler, oating

point calculations proceed as fast as your hardware allows.

A.4.1 Supported Compilers

MATHPAK 87/32 supports most common 32-bit OS/2, DOS and Windows

compilers C/C++. A Pascal version for Speed Pascal for OS/2 is also being

developed. Currently supported compilers include Borland C++, Microsoft

Visual C++, IBM C-Set++, and Watcom C++.

A.4.2 MATHPAK 87/32 Library Contents

The MATHPAK 87/32 library contains the following functions:

� 5 80x87 math coprocessor control functions to determine coprocessor

type, save and restore 80x87 contents, store and load 80x87 control

word;

� 6 missing functions are provided for Pascal users: log10, sinh, cosh,

tanh, XtoY, tan.

� 44 vector and vector-scalar routines. These include routines to �ll

a vector with a scalar, copy vectors, swap vectors, sum vector, sum

square of vector elements, dot product, cross product, �nd vector min-

imum or maximum, convert integer vector to oating point vector, etc.

� 28 vector and vector-scalar \skip" routines. These routines allow oper-

ation on non-consecutive elements. For example, these routines allow

30

you to sum every third element of a vector, etc.

� 24 complex number routines to e�ciently manipulate complex num-

bers. These include functions to multiply complex numbers and cal-

culate the square root of a complex number.

� 27 complex vector and vector-scalar routines to manipulate arrays of

complex numbers;

� 7 polynomial manipulation routines. These routines include polyno-

mial and polynomial derivative calculation, polynomial multiplication

and division, and polynomial root �nding.

� 11 simple matrix and vector-matrix routines. These include routines

to �ll a matrix, copy a matrix, multiply a matrix by a scalar, multiply

a matrix times a vector, multiply a matrix times a matrix, add and

subtract matrices, calculate a matrix transpose, calculate a matrix

plus scalar times matrix, etc.

� 10 routines for solving systems of linear equations. These include rou-

tines for LU decomposition and backsolving of real and complex ma-

trices, Gauss-Jordan matrix inversion, Gauss-Seidel solution of linear

equations, LU decomposition and backsolving of tridiagonal systems,

etc.

� 3 routines for solving systems of nonlinear equations. These include

Newton-Raphson and Broyden nonlinear equation solvers, and a rou-

tine to calculate a Jacobian matrix by �nite di�erences.

� 2 routines for multidimensional nonlinear minimization. These include

a conjugate gradient method and a BFGS method.

� A Levenburg-Marquardt nonlinear parameter �tting routine.

� 8 eigenvalue and eigenvector routines. These include routines for cal-

culating the eigenvalues and eigenvectors of a general real matrix, and

specialized routines for symmetric matrices.

� A singular value decomposition (SVD) routine;

� A minimal polynomial extrapolation (MPE) routine for extrapolation

of vector sequences.

31

� Mean, standard deviation, and linear regression routines.

� 8 FFT routines for complex vectors, real vectors, convolution, and

two-dimensional FFT.

� 6 spectral analysis routines including Hamming Window, Parzen win-

dow, and Cosine window.

� Romberg adaptive numerical integration routine.

� Hamming predictor-corrector and fourth-order Runge-Kutta numeri-

cal integration routines.

MATHPAK 87/32 also contains example programs for stress analysis,

network analysis, polynomial least squares curve �tting, and multicompo-

nent distillation.

A.5 MATHPAK 87

MATHPAK 87 is a set of highly optimized 16-bit assembler coded routines

to perform some of the most common mathematical operations used in nu-

merically intensive programs. WithMATHPAK 87 you can solve a system of

linear equations, invert a matrix, or calculate a fast Fourier transform (FFT)

all in one line of your program by simply calling the appropriate MATH-

PAK 87 routine. You can also perform many simple but time consuming

operations that are commonly found in program, for example: summing an

array of numbers, calculating mean and standard deviation of a set of data,

linear regression, vector and matrix operations and much more | all at

the limit of your computer's speed. Using MATHPAK 87, your programs

become shorter, are �nished sooner and run faster.

MATHPAK 87 routines are written speci�cally to fully utilize the In-

tel 80x87 oating point coprocessors and to allow your microcomputer to

perform oating point calculations at speeds rivalling those of much bigger

machines. MATHPAK 87's speed makes practical many programs that were

previously beyond the reach of your computer and allows you to streamline

many of your existing programs to make them run faster and with improved

accuracy. Another bene�t of using MATHPAK 87 is that it increases your

productivity by freeing you to think about how to solve your problem, rather

than how to code complex but standard routines for mathematical opera-

tions such as matrix inversion, matrix eigenvalue and eigenvector compu-

32

tation, least squares data �tting, et cetera. MATHPAK 87 routines are

powerful but easy to use. A short tutorial will get you started in minutes.

MATHPAK 87 routines typically run from 3 to 10 times faster than

equivalent routines written in a high-level language such as C, Pascal, Basic

or Fortran. Because the numerically intensive parts are written in assembler,

oating point calculations proceed as fast as your hardware allows.

A.5.1 Supported Compilers

MATHPAK 87 versions are available for most DOS and Windows compilers.

Each version comes with a detailed and easy to read manual (approx. 180

pages) with lots of example programs. C programmers get a manual with

C example programs and documentation, Pascal programmers get a Pascal

manual, etc. Speci�c versions have been developed for each compiler. The

following versions are presently supported:

� MATHPAK 87 for Borland C++ and Turbo C++;

� MATHPAK 87 for Microsoft C, Quick C, and Visual C++;

� MATHPAK 87 for Microsoft Quickbasic;

� MATHPAK 87 for Microsoft Fortran;

� MATHPAK 87 for Turbo Pascal, Borland Pascal, and Delphi.

A.5.2 MATHPAK 87 Library Contents

TheMATHPAK 87 Version 3.0 and later library contains the following func-

tions:

� 5 80x87 math coprocessor control functions to determine coprocessor

type, save and restore 80x87 contents, store and load 80x87 control

word;

� 6 missing functions are provided for Pascal users: log10, sinh, cosh,

tanh, XtoY, tan.

� 44 vector and vector-scalar routines. These include routines to �ll

a vector with a scalar, copy vectors, swap vectors, sum vector, sum

square of vector elements, dot product, cross product, �nd vector min-

imum or maximum, convert integer vector to oating point vector, etc.

33

� 28 vector and vector-scalar \skip" routines. These routines allow oper-

ation on non-consecutive elements. For example, these routines allow

you to sum every third element of a vector, etc.

� 24 complex number routines to e�ciently manipulate complex num-

bers. These include functions to multiply complex numbers and cal-

culate the square root of a complex number.

� 27 complex vector and vector-scalar routines to manipulate arrays of

complex numbers;

� 7 polynomial manipulation routines. These routines include polyno-

mial and polynomial derivative calculation, polynomial multiplication

and division, and polynomial root �nding.

� 11 simple matrix and vector-matrix routines. These include routines

to �ll a matrix, copy a matrix, multiply a matrix by a scalar, multiply

a matrix times a vector, multiply a matrix times a matrix, add and

subtract matrices, calculate a matrix transpose, calculate a matrix

plus scalar times matrix, etc.

� 10 routines for solving systems of linear equations. These include rou-

tines for LU decomposition and backsolving of real and complex ma-

trices, Gauss-Jordan matrix inversion, Gauss-Seidel solution of linear

equations, LU decomposition and backsolving of tridiagonal systems,

etc.

� 3 routines for solving systems of nonlinear equations. These include

Newton-Raphson and Broyden nonlinear equation solvers, and a rou-

tine to calculate a Jacobian matrix by �nite di�erences.

� 2 routines for multidimensional nonlinear minimization. These include

a conjugate gradient method and a BFGS method.

� A Levenburg-Marquardt nonlinear parameter �tting routine.

� 8 eigenvalue and eigenvector routines. These include routines for cal-

culating the eigenvalues and eigenvectors of a general real matrix, and

specialized routines for symmetric matrices.

� A singular value decomposition (SVD) routine;

34

� A minimal polynomial extrapolation (MPE) routine for extrapolation

of vector sequences.

� Mean, standard deviation, and linear regression routines.

� 8 FFT routines for complex vectors, real vectors, convolution, and

two-dimensional FFT.

� 6 spectral analysis routines including Hamming Window, Parzen win-

dow, and Cosine window.

� Romberg adaptive numerical integration routine.

� Hamming predictor-corrector and fourth-order Runge-Kutta numeri-

cal integration routines.

MATHPAK 87 also contains example programs for stress analysis, net-

work analysis, polynomial least squares curve �tting, and multicomponent

distillation.

The MS QuickBasic version ofMATHPAK 87 does not contain functions

that require a pointer to a function to be passed to another function (i.e.,

as used in optimization functions), since this feature is missing from the

QuickBasic language.

35

Appendix B

Registration

Please complete and send in the registration form on the following page.

You may also register this shareware product online using CompuServe and

other online service providers. Please see the READ.ME �le for details. Orders

for one or more of the related software products described in Appendix A

must be placed directly with Precision Plus Software.

Upon registration of this product, you will receive a complete set of even

faster single precision FFT functions and a printed manual.

36

Registration and Product Order Form

Please mail this form to

Precision Plus Software

38 Longview CRT

London, ON

CANADA N6K 4J1

If paying by credit card, you may fax this form to (519) 657-0283.

Name:___

Company:__

Address:__

City, State, Zip:_________________________________

Country:__

Telephone:____________, Fax:____________, E-Mail:_______________

QTY

___ x FFTPAK 87 Lite registration @ $89.00 _________

___ x FFTPAK 87/32 professional version @ $149.00 _________

___ x FFTPAK INT/32 professional version @ $199.00 _________

___ x MATHPAK 87/32 @ $129.00 _________

Specify compiler:_____________________

___ x MATHPAK 87/32 with source code @ $198.00 _________

Specify compiler:_____________________

___ x MATHPAK 87 @ $129.00 _________

Specify compiler:_____________________

___ x MATHPAK 87 with source code @ $198.00 _________

Specify compiler:_____________________

___ X Air mail shipping outside US and Canada (*) _________

Total enclosed: _________

Note: MATHPAK 87/32 works with MS Visual C++, Borland C++ (DOS/Windows, OS/2),

IBM C-Set++, Watcom C++, Speed Pascal for OS/2, etc. MATHPAK 87 (16-bit) is available for

Borland C++, MS Visual ++, Borland/Turbo Pascal/Delphi, MS QuickBasic, and MS Fortran.

CREDIT CARD ORDER INFORMATION

[] MasterCard [] American Express

Card Number: _______________________________, Expiry Date: _____

Signature:______________________

(*) We pay air mail shipping in USA and Canada. Add $10 (US) for international air mail.

Cheque or money order payable in US dollars please!

37

