
DCL2INC(1) DCL2INC(1)

NAME

dcl2inc − postprocess ftnchek .dcl files to create separate INCLUDE files

SYNOPSIS

dcl2inc *.dcl

DESCRIPTION

dcl2inc postprocessing declaration files output by ftnchek(1), replacing unique COMMON block defini-

tions by Fortran INCLUDE statements. For each input .dcl file, a modified output .dcn file is produced,

together with include files named by the COMMON block name, with filename extension .inc.

In addition, dcl2inc produces on stdout a list of Makefile dependencies for the UNIX make(1) utility.

These can be appended to the project Makefile to ensure that any subsequent changes to .inc files provoke

recompilation of source files that include them.

dcl2inc warns about COMMONs which differ from their first occurrence, and simply copies them to the

output .dcn file, instead of replacing them with an INCLUDE statement. Thus, any COMMON statements

that are found in the output .dcn files should be examined carefully to determine why they differ: they may

well be in error.

Replication of identical data, and bugs arising from subsequent modification of only part of it, is a signifi-

cant reason why Fortran programming projects should require that COMMON declarations occur in sepa-

rate include files, so that there is only a single point of definition of any global object.

Even though the Fortran INCLUDE statement was tragically omitted from the 1977 Standard, it has long

been implemented by virtually all compiler vendors, and is part of the 1990 Standard. In practice, there is

therefore no portability problem associated with use of INCLUDE statements, provided that one avoids

nonportable file names. As long as the code obeys Fortran’s limit of six-character alphanumeric names, the

filenames generated by dcl2inc will be acceptable on all current popular operating systems.

Fortran’s default, or IMPLICIT, variable typing is deprecated in modern programming languages, because

it encourages sloppy documentation, and worse, bugs due to misspelled variables, or variables that have

been truncated because they extend past column 72. If all variables used are explicitly typed, and a com-

piler option is used to reject all program units with untyped variables, variable spelling and truncation

errors can be eliminated.

Variable declarations that have been produced automatically by a tool like ftnchek(1) or pfort(1) have a

consistent format that facilitates application of stream editors (e.g. to change array dimensions or rename

variables), and simple floating-point precision conversion tools like d2s(1), dtoq(1), dtos(1), qtod(1),

s2d(1), and stod(1).

CAVEAT

The current version (2.9) of ftnchek(1) does not produce Fortran EQUIVALENCE statements in .dcl files,

so you must be careful to preserve them when replacing original declarations with new ones from .dcl or

.dcn files.

SEE ALSO

d2s(1), dtoq(1), dtos(1), ftnchek(1), make(1), pfort(1), qtod(1), s2d(1), stod(1).

AUTHOR

Nelson H. F. Beebe, Ph.D.

Center for Scientific Computing

Department of Mathematics

University of Utah

Salt Lake City, UT 84112

Tel: +1 801 581 5254

FAX: +1 801 581 4148

Email: <beebe@math.utah.edu>

Version 1.00 12 March 1995 1


