
FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

NAME

ftnchek − Fortran program checker

SYNOPSIS

ftnchek [−arguments=num] [−array=num] [−[no]backslash] [−[no]calltree]

[−columns=num] [−common=num] [−[no]crossref] [−[no]declare]

[−[no]division] [−[no]extern] [−[no]f77] [−[no]help] [−[no]hollerith]

[−include=str] [−[no]library] [−[no]list] [−makedcls=num] [−[no]novice]

[−output=str] [−[no]portability] [−[no]pretty] [−[no]project] [−[no]pure]

[−[no]reference] [−[no]resource] [−[no]sixchar] [−[no]sort] [−[no]symtab]

[−[no]tab] [−[no]truncation] [−usage=num] [−[no]verbose]

[−[no]volatile] [−wordsize=num] [−wrap=num] [files ...]

DESCRIPTION

ftnchek (short for Fortran checker) is designed to detect certain errors in a Fortran program that a compiler

usually does not. ftnchek is not primarily intended to detect syntax errors. Its purpose is to assist the user

in finding semantic errors. Semantic errors are legal in the Fortran language but are wasteful or may cause

incorrect operation. For example, variables which are never used may indicate some omission in the pro-

gram; uninitialized variables contain garbage which may cause incorrect results to be calculated; and vari-

ables which are not declared may not have the intended type. ftnchek is intended to assist users in the

debugging of their Fortran program. It is not intended to catch all syntax errors. This is the function of the

compiler. Prior to using ftnchek, the user should verify that the program compiles correctly.

This document first summarizes how to inv oke ftnchek. That section should be read before beginning to

use ftnchek. Later sections describe ftnchek’s options in more detail, give an example of its use, and

explain how to interpret the output. The final sections mention the limitations and known bugs in ftnchek.

INVOKING FTNCHEK

ftnchek is invoked through a command of the form:

$ ftnchek [-option -option ...] filename [filename ...]

The brackets indicate something which is optional. The brackets themselves are not actually typed. Here

options are command-line switches or settings, which control the operation of the program and the amount

of information that will be printed out. If no option is specified, the default action is to print error mes-

sages, warnings, and informational messages, but not the program listing or symbol tables.

Each option begins with the ’−’ character. (On VAX/VMS or MS-DOS systems you may use either ’/’ or

’−’.) The options are described at greater length in the next section.

ftnchek options fall into two categories: switches, which are either true or false, and settings, which have a

numeric or string value. The name of a switch is prefixed by ’no’ to turn it off: e.g. −nopure would turn off

the warnings about impure functions. The ’no’ prefix can also be used with numeric settings, having the

effect of turning off the corresponding warnings. Only the first 3 characters of an option name (not count-

ing the ’−’) need be provided. A colon may be used in place of an equals sign for option value assign-

ments; however, we show only the equals sign form below.

The switches and settings which ftnchek currently recognizes are:

−arguments=num

Set level of strictness in checking subprogram arguments. Min is 0 (no checking). Max is 3 (most

checking). Default = 3.

−array=num

Set level of strictness in checking array arguments of subprograms. Min is 0 (least strict). Max is

3 (most strict). Default = 3.

−backslash

Handle UNIX-style backslash escapes in character strings. Default = no.

2 June 1995 1

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

−calltree

Print tree of subprogram call hierarchy. Default = no.

−columns=num

Set maximum line length to num columns. (Beyond this is ignored.) Max is 132. Default = 72.

−common=num

Set level of strictness in checking COMMON blocks. Min is 0 (no checking). Max is 3 (must be

identical). Default = 3.

−crossref

Print cross-reference list of subprogram calls and COMMON block use. Default = no.

−declare

Print a list of all identifiers whose datatype is not explicitly declared. Default = no.

−division

Warn wherever division is done (except division by a constant). Default = no.

−extern

Warn if external subprograms which are invoked are never defined. Default = yes.

−f77 Warn about extensions to the Fortran 77 Standard. Default = no.

−help Print command summary. Default = no.

−hollerith

Warn about Hollerith constants if −portability option is in effect. Default = yes.

−include=path

Define a directory to search for INCLUDE files. Cumulative.

−library

Begin library mode: do not warn about subprograms in file that are defined but never used.

Default = no.

−list Print source listing of program. Default = no.

−makedcls=num

Prepare a file of declarations. Min is 0 (no declaration file). Max is 511. Default = 1 if this option

is specified with an out-of-range numeric value.

−novice

Give output suitable for novice users. Default = yes.

−output= filename

Send output to the given file. Default is to send output to the screen. (Default filename extension

is . lis).

−portability

Warn about non-portable usages. Default = no.

−pretty

Give warnings for possibly misleading appearance of source code. Default = yes.

−project

Create project file (see explanation below). Default = no.

−pure Assume functions are pure, i.e. have no side effects. Default = yes.

−reference

Print table of subprograms referenced by each subprogram. Default = no.

−resource

Print amount of resources used in analyzing the program. Default = no.

2 June 1995 2

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

−sixchar

List any variable names which clash at 6 characters length. Default = no.

−sort Print list of subprograms sorted in prerequisite order. Default = no.

−symtab

Print symbol table for each subprogram. Default = no.

−tab Accept DEC-style tab-formatted source. Default = no.

−truncation

Check for possible loss of accuracy by truncation. Default = yes.

−usage=num

Control warnings about unused variables, etc. Min is 0 (no checking). Max is 3 (most checking).

Default = 3.

−verbose

Produce full amount of output. Default = yes.

−volatile

Assume COMMON blocks lose definition between activations. Default = no.

−wordsize=num

Set the default word size for numeric quantities to num bytes. Default = 4 bytes.

−wrap=num

Set output column at which to wrap long error messages and warnings to the next line. If set to 0,

turn off wrapping. Default = 79.

When more than one option is used, they should be separated by a blank space, except on systems such as

VMS where options begin with slash (/). No blank spaces may be placed around the equals sign (=) in a

setting. ftnchek "?" will produce a command summary listing all options and settings.

When giving a name of an input file, the extension is optional. If no extension is given, ftnchek will first

look for a project file with extension . prj, and will use that if it exists. If not, then ftnchek will look for a

Fortran source file with the extension . for for VMS systems, . f for UNIX systems. More than one file

name can be given to ftnchek, and it will process the modules in all files as if they were in a single file.

Wildcards are allowed in the specification of filenames on the command line for the VMS and MS-DOS

versions, as also of course under UNIX and any other system that performs wildcard expansion in the com-

mand processor.

If no filename is given, ftnchek will read input from the standard input.

OPTIONS

This section provides a more detailed discussion of ftnchek command-line options. Options and filenames

may be interspersed on a command line. Most options are positional: each option remains in effect from

the point it is encountered until it is overridden by a later change. Thus for example, the listing may be sup-

pressed for some files and not for others. Exceptions are: the −wordsize setting, which cannot be changed

once processing of input files has started; the −arguments, −array, −calltree, −common, −crossref,

−extern, −reference, −resource, −sort, and −volatile options, where the action depends only on the value

of the option after the processing of input files is finished; and the −include setting, which is cumulative.

The option names in the following list are in alphabetical order.

−arguments=num

Controls warnings about mismatches between actual and dummy subprogram arguments. (An

actual argument is an argument passed to the subprogram by the caller; a dummy argument is an

argument received by the subprogram.)

The meanings of the setting values are as follows:

2 June 1995 3

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

0: turn off all such warnings.

1: warn only about different number of arguments.

2: warn only about mismatch of data type of arguments and of function itself.

3: all warnings.

Default = 3.

This setting is provided mainly to suppress warnings when you wish to use ftnchek for some other

purpose than checking for errors, for example when you only want to print the call tree. It does

not apply to checking invocations of intrinsic functions or statement functions.

See also: −array, −library, −usage.

−array=num

Controls the degree of strictness in checking agreement between actual and dummy subprogram

arguments that are arrays. The warnings controlled by this setting are for constructions that might

legitimately be used by a knowledgeable programmer, but that often indicate programming errors.

The meanings of the setting values are as follows:

0: only warn about cases that are seldom intentional (see note below).

1: warn if the arguments differ in their number of dimensions, or if the actual argument is an

array element while the dummy argument is a whole array.

2: warn if both arguments are arrays, but they differ in number of elements.

3: give both types of warnings.

Default = 3.

Note: A warning is always given reg ardless of this setting if the actual argument is an array while

the dummy argument is a scalar variable, or if the actual argument is a scalar variable or expres-

sion while the dummy argument is an array. No warning is ever giv en if the actual argument is an

array element while the dummy argument is a scalar variable. Variable-dimensioned arrays and

arrays dimensioned with 1 or asterisk match any number of array elements. There is no check of

whether multi-dimensional arrays agree in the size of each dimension separately.

See also: −arguments, −library, −usage.

−backslash

Handle UNIX-style backslash escapes in character strings. The escape sequence following the

backslash will be evaluated according to the ANSI standard for strings in C: up to three digits sig-

nify an octal value, an x signifies the start of a hexadecimal constant, any of the letters a b f n r t

signify special control codes, and any other character (including newline) signifies the character

itself. When this option is in effect, a non-standard warning will be given if the −f77 flag is set.

Default = no.

If this option is turned off (the default), the backslash will be treated like any other normal charac-

ter, but a warning about portability will be generated if the −portability flag is set. Because of the

fact that some compilers treat the backslash in a nonstandard way, it is possible for standard-

conforming programs to be non-portable if they use the backslash character in strings.

Since ftnchek does not do much with the interpreted string, it is seldom necessary to use this

option. It is needed in order to avoid spurious warnings only if (a) the program being checked

uses backslash to embed an apostrophe or quote mark in a string instead of using the standard

mechanism of doubling the delimiter; (b) the backslash is used to escape the end-of-line in order

to continue a string across multiple source lines; or (c) a PARAMETER definition uses an intrinsic

string function such as LEN with such a string as argument, and that value is later used to define

array dimensions, etc.

2 June 1995 4

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

−calltree

Causes ftnchek to print out the call structure of the complete program in the form of a tree. The

tree is printed out starting from the main program, which is listed on the first line at the left mar-

gin. Then on the following lines, each routine called by the main program is listed, indented a few

spaces, followed by the subtree starting at that routine. Default = no.

If a routine is called by more than one other routine, its call subtree is printed only the first time it

is encountered. Later calls give only the routine name and the notice ‘‘(see above)’’.

Note that the call tree will be incomplete if any of the input files are project files containing more

than one module that were created in −library mode. See the discussion of project files below.

Technical points: Each list of routines called by a given routine is printed in alphabetical order. If

multiple main programs are found, the call tree of each is printed separately. If no main program

is found, a report to that effect is printed out, and the call trees of any top-level non-library rou-

tines are printed. This flag only controls the printing of the call tree: ftnchek constructs the call

tree in any case because it is used to determine which library modules will be cross-checked. See

the discussion of the −library flag.

See also: −crossref, −library, −reference, −sort, −symtab.

−columns=num

Set maximum statement length to num columns. (Beyond this is ignored.) This setting is pro-

vided to allow checking of programs which may violate the Fortran standard limit of 72 columns

for the length of a statement. According to the standard, all characters past column 72 are ignored.

If this setting is used when the −f77 option is in effect, a warning will be given for any lines in

which characters past column 72 are processed. Max is 132. Default = 72.

−common=num

This setting varies the strictness of checking of COMMON blocks.

The different levels are:

0: no checking.

1: in each declaration of a given COMMON block, corresponding memory locations (words or

bytes) must agree in data type.

2: also warn if different declarations of the same block are not equal in total length.

3: corresponding variables in each declaration of a block must agree in data type and (if arrays)

in size and number of dimensions.

Default = 3.

The Fortran 77 Standard requires each named common block, but not blank common, to be the

same length in all modules of the program. Level 3 provides an extra degree of checking to sup-

port a frequent programming practice.

See also: −library, −usage, −volatile.

−crossref

Specifies that a cross-reference table be printed. This table lists each subprogram followed by a

list of the routines that call it. Also prints a table listing each COMMON block followed by a list

of the routines that access it. Default = no.

The cross-reference listing omits library modules that are not in the call tree of the main program.

The list is alphabetized. The routines listed as using a COMMON block are those in which some

variables in the block are accessed, not simply those routines that declare the block. (To find out

what routines declare a COMMON block but do not use it, see the −usage flag.)

2 June 1995 5

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

See also: −calltree, −reference, −sort, −symtab.

−declare

If this flag is set, all identifiers whose datatype is not declared in each module will be listed. This

flag is useful for helping to find misspelled variable names, etc. The same listing will be given if

the module contains an IMPLICIT NONE statement. Default = no.

See also: −sixchar, −usage.

−division

This switch is provided to help users spot potential division by zero problems. If this switch is

selected, every division except by a constant will be flagged. (It is assumed that the user is intelli-

gent enough not to divide by a constant which is equal to zero!) Default = no.

See also: −portability, −truncation.

−extern

Causes ftnchek to report whether any subprograms invoked by the program are never defined, or

are multiply defined. Ordinarily, if ftnchek is being run on a complete program, each subprogram

other than the intrinsic functions should be defined once and only once somewhere. Turn off this

switch if you just want to check a subset of files which form part of a larger complete program, or

to check all at once a number of unrelated files which might each contain an unnamed main pro-

gram. Subprogram arguments will still be checked for correctness. Default = yes.

See also: −library.

−f77 Use this flag to catch language extensions which violate the Fortran 77 Standard. Such extensions

may cause your program not to be portable. Examples include the use of underscores in variable

names; variable names longer than six characters; statement lines longer than 72 characters; and

nonstandard statements such as the DO ... ENDDO structure. ftnchek does not report on the use of

lowercase letters. Default = no.

See also: −portability, −pretty, −wordsize.

−help Prints a list of all the command-line options with a short description of each along with its default

value. This command is identical in function to the ‘‘?’’ argument, and is provided as a con-

venience for those systems in which the question mark has special meaning to the command inter-

preter. Default = no.

The help listing also prints the version number and patch level of ftnchek and a copyright notice.

Note: the ‘‘default’’ values printed in square brackets in the help listing are, strictly speaking, not

the built-in defaults but the current values after any environment options and any command-line

options preceding the −help option have been processed.

−hollerith

Hollerith constants (other than within FORMAT specifications) are a source of possible portability

problems, so when the −portability flag is set, warnings about them will be produced. If your

program uses many Hollerith constants, these warnings can obscure other more serious warnings.

So you can set this flag to ‘‘no’’ to suppress the warnings about Holleriths. This flag has no effect

unless the −portability flag (which is off by default) is turned on. Default = yes.

See also: −portability.

2 June 1995 6

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

−include=path

Specifies a directory to be searched for files specified by INCLUDE statements. Unlike other com-

mand-line options, this setting is cumulative; that is, if it is given more than once on the command

line, all the directories so specified are placed on a list that will be searched in the same order as

they are given. The order in which ftnchek searches for a file to be included is: the current direc-

tory; the directory specified by environment variable FTNCHEK_INCLUDE if any; the directories

specified by any −include options; the directory specified by environment variable INCLUDE; and

finally in a standard systemwide directory (/usr/include for UNIX, SYS$LIBRARY for

VMS, and \include for MSDOS).

−library

This switch is used when a number of subprograms are contained in a file, but not all of them are

used by the application. Normally, ftnchek warns you if any subprograms are defined but never

used. This switch will suppress these warnings. Default = no.

This switch also controls which subprogram calls and COMMON block declarations are checked.

If a file is read with the −library flag in effect, the subprogram calls and COMMON declarations

contained in a routine in that file will be checked only if that routine is in the main program’s call

tree. On the other hand, if the −library switch is turned off, then ftnchek checks the calls of every

routine by every other routine, regardless of whether those routines could ever actually be invoked

at run time, and likewise all COMMON block declarations are compared for agreement.

(If there is no main program anywhere in the set of files that ftnchek has read, so that there is no

call tree, then ftnchek will look for any non-library routines that are not called by any other rou-

tine, and use these as substitutes for the main program in constructing the call tree and deciding

what to check. If no such top-level non-library routines are found, then all inter-module calls and

all COMMON declarations will be checked.)

See also: −arguments, −calltree, −common, −extern.

−list Specifies that a listing of the Fortran program is to be printed out with line numbers. If ftnchek

detects an error, the error message follows the program line with a caret (ˆ) specifying the loca-

tion of the error. If no source listing was requested, ftnchek will still print out any line containing

an error, to aid the user in determining where the error occurred. Default = no.

See also: −symtab, −verbose.

−makedcls=num

Prepare a neatly-formatted file of declarations of variables, common blocks, and namelist lists, for

possible merging into the source code. The declarations are stored in a file of the same name as

the source code, but with the extension changed to .dcl. If no declarations are written to the file, it

is deleted to reduce clutter from empty files.

If input comes from standard input, instead of a named file, then declarations are written to stan-

dard output.

Variables are declared in alphabetical order within each declaration class and type, with integer

variables first, because of their later possible use in array dimensions.

PARAMETER statements are an exception to the alphabetical order rule, because the Fortran 77

Standard requires that the expressions defining parameter values refer only to constants and

already-defined parameter names. This forces the original source file order of such statements to

be preserved in the declaration files.

Explicit declaration of all variables is considered good modern programming practice. By using

compiler options to reject undeclared variables, misspelled variable names (or names extending

past column 72) can be caught at compile time. Explicit declarations also greatly facilitate chang-

ing floating-point precision with filters such as dtoq(1L), dtos(1L), fd2s(1L), fs2d(1L), qtod(1L),

2 June 1995 7

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

and stod(1L). These programs are capable of changing types of explicit floating-point type decla-

rations, intrinsic functions, and constants, but because they do not carry out rigorous lexical and

grammatical analysis of the Fortran source code, they cannot provide modified type declarations

for undeclared variables.

The setting values are given by the sum of selected option values from the following list:

0: Do not write a declaration file.

1: Write a declaration file.

2: Normally, all variables are included in the declaration file. With this option, include only

undeclared variables. This setting is useful if you want to check for undeclared variables,

since Fortran source files with all variables properly declared will not result in a .dcl file.

With this option, common blocks and namelist lists will not be included in the declaration

file, since by their nature they cannot be undeclared.

4: The declarations are normally prettyprinted to line up neatly in common columns, as in the

declaration files output by the Extended PFORT Verifier, pfort(1L). This option value

selects instead compact output, without column alignment.

8: Causes continuation lines to be used where permissible. The default is to begin a new dec-

laration on each line. This option is appropriate to use with the option for compact output.

16: Output Fortran keywords in lowercase, instead of the default uppercase.

32: Output variables and constants in lowercase, instead of the default uppercase. Character

string constants are not affected by this option.

64: Omit declarations of internal integer variables produced by the SFTRAN3 preprocessor,

xsf3(1L), as part of the translation of structured Fortran statements to ordinary Fortran.

These variables have six-character names of the form NPRddd , NXdddd , N2dddd , and

N3dddd , where d is a decimal digit. Because they are invisible in the SFTRAN3 source

code, and will change if the SFTRAN3 code is modified, such variables should not be

explicitly declared. Instead, they should just assume the default Fortran INTEGER data

type based on their initial letter, N .

128: Use an asterisk as the comment character; the default is otherwise ’C’.

256: Use ’c’ instead of ’C’ or ’*’ as the comment character.

If any non-zero value is specified, then declaration output is selected, even if the value 1 was not

included in the sum.

The declaration files contain distinctive comments that mark the start and end of declarations for

each program unit, to facilitate using text editor macros for merging the declarations back into the

source code.

−novice

This flag is intended to provide more helpful output for beginners. It has two effects:

(a) provides an extra message to the effect that a function that is used but not defined anywhere

might be an array which the user forgot to declare in a DIMENSION statement (since the syn-

tax of an array reference is the same as that of a function reference).

(b) modifies the form of the error messages and warnings. If the flag is turned off by −nonovice,

these messages are printed in a style more resembling UNIX lint.

Default = yes.

In versions of ftnchek prior to 2.6, this option could take on various numerical values, as a way of

controlling various classes of warnings. These warnings are now controlled individually by their

own flags. Novice level 1 is now handled by the −array flag; level 2 has been eliminated; level 3

is equivalent now to setting −novice to yes; level 4 is handled by the −pure flag.

2 June 1995 8

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

−output= filename

This setting is provided for convenience on systems which do not allow easy redirection of output

from programs. When this setting is given, the output which normally appears on the screen will

be sent instead to the named file. Note, however, that operational errors of ftnchek itself (e.g. out

of space or cannot open file) will still be sent to the screen. The extension for the filename is

optional, and if no extension is given, the extension . lis will be used.

−portability

ftnchek will give warnings for a variety of non-portable usages. Examples include the use of tabs

except in comments or inside strings, the use of Hollerith constants, and the equivalencing of vari-

ables of different data types. This option does not produce warnings for supported extensions to

the Fortran 77 Standard, which may also cause portability problems. To catch those, use the −f77

option. Default = no.

See also: −backslash, −f77, −hollerith, −pretty, −wordsize.

−pretty

Controls certain messages related to the appearance of the source code. These warn about things

that might be deceptive to the reader. Default = yes.

The warnings controlled by this flag include such things as comments that are interspersed among

the continuation lines of a statement, lack of space between a keyword and a following variable

name, and statement lines containing characters past column 72.

See also: −f77, −portability.

−project

ftnchek will create a project file from each source file that is input while this flag is in effect. The

project file will be given the same name as the input file, but with the extension . f or . for replaced

by . prj. (If input is from standard input, the project file is named ftnchek. prj.) Default = no.

A project file contains a summary of information from the source file, for use in checking agree-

ment among FUNCTION, SUBROUTINE, and COMMON usages in other files. It allows incremen-

tal checking, which saves time whenever you have a large set of files containing shared subrou-

tines, most of which seldom change. You can run ftnchek once on each file with the −project flag

set, creating the project files. Usually you would also set the −library and −noextern flags at this

time, to suppress messages relating to consistency with other files. Only error messages pertaining

to each file by itself will be printed at this time. Thereafter, run ftnchek without these flags on all

the project files together, to check consistency among the different files. All messages internal to

the individual files will now be omitted. Only when a file is altered will a new project file need to

be made for it.

Naturally, when the −project flag is set, ftnchek will not read project files as input.

Project files contain only information needed for checking agreement between files. This means

that a project file is of no use if all modules of the complete program are contained in a single file.

A more detailed discussion is given in the section on Using Project Files.

−pure Assume functions are ‘‘pure’’, i.e., they will not have side effects by modifying their arguments or

variables in a COMMON block. When this flag is in effect, ftnchek will base its determination of

set and used status of the actual arguments on the assumption that arguments passed to a function

are not altered. It will also issue a warning if a function is found to modify any of its arguments or

any COMMON variables. Default = yes.

When this flag is turned off, actual arguments passed to functions will be handled the same way as

actual arguments passed to subroutines. This means that ftnchek will assume that arguments may

be modified by the functions. No warnings will be given if a function is found to have side effects.

2 June 1995 9

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

Because stricter checking is possible if functions are assumed to be pure, you should turn this flag

off only if your program actually uses functions with side effects.

−reference

Specifies that a who-calls-who table be printed. This table lists each subprogram followed by a

list of the routines it calls. Default = no.

The reference list omits routines called by unused library modules. Thus it contains the same

information as for the −calltree flag, namely the hierarchy of subprogram calls, but printed in a

different format. This prints out a breadth-first traversal of the call tree whereas −calltree prints

out a depth-first traversal. If both −calltree and −reference flags are given, only the reference

form of the table will be produced.

See also: −calltree, −crossref, −library, −sort, −symtab.

−resource

Prints the amount of resources used by ftnchek in processing the program. This listing may be

useful in analyzing the size and complexity of a program. It can also help in choosing larger sizes

for ftnchek’s internal tables if they are too small to analyze a particular program. Default = no.

In this listing, the term ‘‘chunk size’’ is the size of the blocks of memory allocated to store the

item in question, in units of the size of one item, not necessarily in bytes. When the initially allo-

cated space is filled up, more memory is allocated in chunks of this size. The following is an

explanation of the items printed:

Source lines processed:

Total number of lines of code, with separate totals for statement lines and comment lines.

Comment lines include lines with ’C’ or ’*’ in column 1 as well as blank lines and lines con-

taining only an inline comment. Statement lines are all other lines, including lines that have

an inline comment following some code. Continuation lines are counted as separate lines.

Lines in include files are counted each time the file is included.

Total executable statements:

Number of statements in the program, other than specification, data, statement-function, FOR-

MAT, ENTRY, and END statements.

Total number of modules:

A module is any external subprogram, including the main program, subroutines, functions,

and block data units. This count is of modules defined within the source, not modules refer-

enced. Statement functions are not included. A subprogram with multiple entry points is only

counted once.

Max identifier name chars:

Number of characters used for storing identifier names. An identifier is a variable, subpro-

gram, or common block name. Local names are those of local variables in a subprogram,

whereas global names refer to subprogram and common block names, as well as dummy argu-

ment names and common variable names. Actual argument text (up to 15 characters for each

argument) is also included here. The space used for local names is recovered at the end of

each module, whereas the global space grows until the whole program is analyzed. Unfortu-

nately, this figure may include some common block names and arguments stored more than

once, although a heuristic is used that will avoid duplicates in many cases.

Max token text chars:

A token is the smallest syntactic unit of the FORTRAN language above the level of individual

characters. For instance a token can be a variable name, a numerical constant, a quoted text

string, or a punctuation character. Token text is stored while a module is being processed. For

technical reasons, single-character tokens are not included in this total. Items that are not rep-

resented in the symbol table may be duplicated. The space for token text is recovered at the

2 June 1995 10

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

end of each module, so this figure represents the maximum for any one module.

Max local symbols:

This is the largest number of entries in the local symbol table for any module. Local symbol

table entries include all variables and parameters, common block names, statement functions,

external subprograms and intrinsic functions referenced by the module. Literal constants are

not stored in the local symbol table.

Max global symbols:

This is the number of entries in the global symbol table at the end of processing. Global sym-

bol table entries include external subprogram and common block names. Intrinsic functions

and statement functions are not included.

Max number of tokenlists:

A token list is a sequence of tokens representing the actual or dummy argument list of a sub-

program, or the list of variables in a common block or namelist. Therefore this number repre-

sents the largest sum of COMMON, CALL, NAMELIST and ENTRY statements and function

invocations for any one module. The space is recovered at the end of each module.

Max token list/tree space:

This is the largest number of tokens in all the token lists and token trees of any one module. A

token tree is formed when analyzing an expression: each operand is a leaf of the tree, and the

operators are the nodes. Therefore this number is a measure of the maximum complexity of

an individual module. For instance a module with many long arithmetic expressions will have

a high number. Note that unlike token text described above, the number of tokens is indepen-

dent of the length of the variable names or literal constants in the expressions.

Number of subprogram invocations:

This is the sum over all modules of the number of CALL statements and function invocations

(except intrinsic functions and statement functions).

Number of common block decls:

This is the sum over all modules of the number of common block declarations. That is, each

declaration of a block in a different module is counted separately. (The standard allows multi-

ple declarations of a block within the same module; these are counted as only one declaration

since they are equivalent to a single long declaration.)

Number of array dim & param ptrs:

This is the sum over all modules of the number of array dimension and parameter definition

text strings saved for use by the −makedcls option. The length of the text strings is not

counted. Each dimension of a multidimensional array is counted separately.

These numbers are obviously not the same when project files are used in place of the original

source code. Even the numbers for global entities may be different, since some redundant infor-

mation is eliminated in project files.

−sixchar

One of the goals of the ftnchek program is to help users to write portable Fortran programs. One

potential source of nonportability is the use of variable names that are longer than six characters.

Some compilers just ignore the extra characters. This behavior could potentially lead to two dif-

ferent variables being considered as the same. For instance, variables named AVERAGECOST and

AVERAGEPRICE are the same in the first six characters. If you wish to catch such possible con-

flicts, use this flag. Default = no.

Use the −f77 flag if you want to list all variables longer than six characters, not just those pairs

that are the same in the first six.

See also: −f77, −portability.

2 June 1995 11

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

−sort Specifies that a sorted list of all modules used in the program be printed. This list is in ‘‘prerequi-

site’’ order, i.e. each module is printed only after all the modules from which it is called have been

printed. This is also called a ‘‘topological sort’’ of the call tree. Each module is listed only once.

Routines that are not in the call tree of the main program are omitted. If there are any cycles in the

call graph (illegal in standard Fortran) they will be detected and diagnosed. Default = no.

See also: −calltree, −crossref, −reference, −symtab.

−symtab

A symbol table will be printed out for each module, listing all identifiers mentioned in the module.

This table gives the name of each variable, its datatype, and the number of dimensions for arrays.

An asterisk (*) indicates that the variable has been implicitly typed, rather than being named in an

explicit type declaration statement. The table also lists all subprograms invoked by the module, all

COMMON blocks declared, etc. Default = no.

See also: −calltree, −crossref, −list, −reference, −sort.

−tab Accept DEC-style tab-formatted source. A line beginning with an initial tab will be treated as a

new statement line unless the character after the tab is a nonzero digit, in which case it is treated as

a continuation line. The next column after the tab or continuation mark is taken as column 7. A

warning will be given in the case where the line is a continuation, if −f77 is in effect. Default =

no.

−truncation

Warn about possible truncation (or roundoff) errors. Most of these are related to integer arith-

metic. The warnings enabled when this flag is in effect are:

(a) use of the result of integer division where a real result seems intended (namely as an expo-

nent, or if the quotient is later converted to real);

(b) division in an integer constant expression that yields a result of zero;

(c) exponentiation of an integer by a negative integer (which yields zero unless the base integer is

1 in magnitude);

(d) use of a non-integer array subscript or DO index;

(e) conversion of any real type to integer, or conversion of a complex value to real or integer;

(f) conversion of a double precision value to single precision, or vice-versa (promotion). This

applies both to real types and to complex types.

Default = yes.

Note: warnings about truncating type conversions are given only when the conversion is done

automatically, e.g. by an assignment statement. If intrinsic functions such as INT are used to per-

form the conversion, no warning is given. Promotions of real types from single to double preci-

sion are included here because such conversions imply a possible loss of accuracy that is similar to

the corresponding demotions.

See also: −portability, −wordsize.

−usage=num

Warn about unused or possible uninitialized variables and unused common blocks.

The meanings of the setting values are as follows:

0: no warnings.

1: warn if variables are (or may be) used before they are set.

2 June 1995 12

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

2: warn if variables are declared or set but never used.

3: give both types of warnings.

Default = 3.

Sometimes ftnchek makes a mistake about these warnings. Usually it errs on the side of giving a

warning where no problem exists, but in rare cases it may fail to warn where the problem does

exist. See the section on Bugs for examples. If variables are equivalenced, the rule used by

ftnchek is that a reference to any variable implies the same reference to all variables it is equiv-

alenced to. For arrays, the rule is that a reference to any array element is treated as a reference to

all elements of the array.

This setting controls warnings not only for local variables but also for variables in COMMON

blocks. Level 2 also controls whether a warning is given when an entire COMMON block is

unused. When checking for used-before-set errors involving COMMON variables, ftnchek does

not do a thorough enough analysis of the calling sequence to know which routines are called

before others. So warnings about this type of error will only be given for cases in which a variable

is used in some routine but not set in any other routine. Checking of individual COMMON vari-

ables is done only if the −common setting is 3 (variable by variable agreement).

See also: −common, −declare, −volatile.

−verbose

This option is on by default. Turning it off reduces the amount of output relating to normal opera-

tion, so that error messages are more apparent. This option is provided for the convenience of

users who are checking large suites of files. The eliminated output includes the names of project

files, and the message reporting that no syntax errors were found. (Some of this output is turned

back on by the −list and −symtab options.) Default = yes.

−volatile

Assume that COMMON blocks are volatile. Default = no.

Many Fortran programmers assume that variables, whether local or in COMMON, are static, i.e.

that once assigned a value, they retain that value permanently until assigned a different value by

the program. However, in fact the Fortran 77 Standard does not require this to be the case. Local

variables may become undefined between activations of a module in which they are declared.

Similarly, COMMON blocks may become undefined if no module in which they are declared is

active. (The technical term for this behavior is ‘‘automatic’’, but ftnchek uses the word ‘‘volatile’’

since it is clearer to the nonspecialist.) Only COMMON blocks declared in a SAVE statement, or

declared in the main program or in a block data subprogram remain defined as long as the program

is running. Variables and COMMON blocks that can become undefined at some point are called

volatile.

If the −volatile flag is turned on, ftnchek will warn you if it finds a volatile COMMON block. If,

at the same time, the −usage setting is 1 or 3 (check used before set), ftnchek will try to check

whether such a block can lose its defined status between activations of the modules where it is

declared. ftnchek does not do a very good job of this: the rule used is to see whether the block is

declared in two separated subtrees of the call tree. For instance, this would be the case if two

modules, both called from the main program, shared a volatile COMMON block. A block can

also become undefined between two successive calls of the same subprogram, but ftnchek is not

smart enough to tell whether a subprogram can be called more than once, so this case is not

checked for.

The −volatile flag does not affect the way ftnchek checks the usage of local variables.

See also: −common, −usage.

2 June 1995 13

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

−wordsize=num

Specifies the default word size to be num bytes. This is the size of logical and single-precision

numeric variables that are not given explicit precisions. Double-precision and complex variables

will be twice this value, and double complex variables four times. Explicit precisions for non-

character variables are an extension to the Fortran 77 Standard, and are given by type declarations

such as REAL*8 X. Default = 4 bytes.

If you want to change the built-in default value of this setting, compile ftnchek with the macro

name BpW (Bytes per Word) set to the desired default value. This is not critical: the word size

value does not matter for checking standard-conforming programs that do not declare explicit pre-

cisions for non-character variables or store Hollerith data in variables. This setting also does not

affect the default size of character variables, which is always 1 byte. Hollerith constants also are

assumed to occupy 1 byte per character.

The word size is used to determine whether truncation occurs in assignment statements, and to

catch precision mismatches in subprogram argument lists and common block lists. The exact

warnings that are issued will depend on the status of other flags. Under both the −portability or

−nowordsize flags, any mixing of explicit with default precision objects (character expressions not

included) is warned about. This applies to arithmetic expressions containing both types of objects,

and to subprogram arguments and COMMON variables. Under the −truncation flag, a warning is

given for assignment of an expression to a shorter variable of the same type, or for promotion of a

lower precision value to higher precision in an arithmetic expression or an assignment statement.

Giving a word size of 0, or equivalently, using −nowordsize means that no default value will be

assumed. Use this instead of −portability if you want to check only for those aspects of portabil-

ity related to mixing default and explicit precision, for example to flag places where REAL*8 is

treated as equivalent to DOUBLE PRECISION.

See also: −portability, −truncation.

−wrap=col

Controls the wrapping of error messages. Long error messages that would run past the specified

column will be broken up into separate lines between the words of the message for better readabil-

ity. If turned off with −nowrap, each separate error message will be printed on one line, leaving it

up to the display to wrap the message or truncate it. Default = 79.

CHANGING THE DEFAULTS

ftnchek includes a mechanism for changing the default values of all options by defining environment vari-

ables. When ftnchek starts up, it looks in its environment for any variables whose names are composed by

prefixing the string FTNCHEK_ onto the uppercased version of the option name. If such a variable is

found, its value is used to specify the default for the corresponding switch or setting. In the case of settings

(for example, the −common strictness setting) the value of the environment variable is read as the default

setting value. In the case of switches, the default switch will be taken as true or yes unless the environment

variable has the value 0 or NO. Of course, command-line options will override these defaults the same way

as they override the built-in defaults.

Note that the environment variable name must be constructed with the full-length option name, which must

be in uppercase. For example, to make ftnchek print a source listing by default, set the environment vari-

able FTNCHEK_LIST to 1 or YES or anything other than 0 or NO. The names FTNCHEK_LIS (not the

full option name) or ftnchek_list (lower case) would not be recognized.

Here are some examples of how to set environment variables on various systems. For simplicity, all the

examples set the default −list switch to YES.

1. UNIX, Bourne shell: $ FTNCHEK_LIST=YES; export FTNCHEK_LIST

2. UNIX, C shell: % setenv FTNCHEK_LIST YES

2 June 1995 14

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

3. VAX/VMS: $ DEFINE FTNCHEK_LIST YES

4. MSDOS: $ SET FTNCHEK_LIST=YES

USING PROJECT FILES

This section contains detailed information on how to use project files most effectively, and how to avoid

some pitfalls.

Ordinarily, project files should be created with the −library flag in effect. In this mode, the information

saved in the project file consists of all subprogram declarations, all subprogram invocations not resolved by

declarations in the same file, and one instance of each COMMON block declaration. This is the minimum

amount of information needed to check agreement between files.

If the file contains more than one routine, there are some possible problems that can arise from creating the

project file in library mode, because the calling hierarchy among routines defined within the file is lost.

Also, if the routines in the file make use of COMMON blocks that are shared with routines in other files,

there will not be enough information saved for the correct checking of set and used status of COMMON

blocks and COMMON variables according to the −usage setting. Therefore if you plan to use project files

when the −usage setting is nonzero (which is the default situation), and if multiple routines in one project

file share COMMON blocks with routines in other files, the project files should be created with the

−library flag turned off. In this mode, ftnchek saves, besides the information listed above, one invocation

of each subprogram by any other subprogram in the same file, and all COMMON block declarations. This

means that the project file will be larger than necessary, and that when it is read in, ftnchek may repeat

some inter-module checks that it already did when the project file was created. If each project file contains

only one module, there is no loss of information in creating the project files in library mode.

Because of the possible loss of information entailed by creating a project file with the −library flag in

effect, whenever that project file is read in later, it will be treated as a library file regardless of the current

setting of the −library flag. On the other hand, a project file created with library mode turned off can be

read in later in either mode.

Here is an example of how to use the UNIX make utility to automatically create a new project file each

time the corresponding source file is altered, and to check the set of files for consistency. The example

assumes that a macro OBJS has been defined which lists all the names of object files to be linked together

to form the complete executable program.

tell make what a project file suffix is
.SUFFIXES: .prj

tell make how to create a .prj file from a .f file
.f.prj:

ftnchek -project -noextern -library $<

set up macro PRJS containing project filenames
PRJS= $(OBJS:.o=.prj)

"make check" will check everything that has been changed.
check: $(PRJS)

ftnchek $(PRJS)

AN EXAMPLE

The following simple Fortran program illustrates the messages given by ftnchek. The program is intended

to accept an array of test scores and then compute the average for the series.

C AUTHORS: MIKE MYERS AND LUCIA SPAGNUOLO
C DATE: MAY 8, 1989

2 June 1995 15

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

C Variables:
C SCORE -> an array of test scores
C SUM -> sum of the test scores
C COUNT -> counter of scores read in
C I -> loop counter

REAL FUNCTION COMPAV(SCORE,COUNT)
INTEGER SUM,COUNT,J,SCORE(5)

DO 30 I = 1,COUNT
SUM = SUM + SCORE(I)

30 CONTINUE
COMPAV = SUM/COUNT

END

PROGRAM AVENUM
C
C MAIN PROGRAM
C
C AUTHOR: LOIS BIGBIE
C DATE: MAY 15, 1990
C
C Variables:
C MAXNOS -> maximum number of input values
C NUMS -> an array of numbers
C COUNT -> exact number of input values
C AVG -> average returned by COMPAV
C I -> loop counter
C

PARAMETER(MAXNOS=5)
INTEGER I, COUNT
REAL NUMS(MAXNOS), AVG
COUNT = 0
DO 80 I = 1,MAXNOS

READ (5,*,END=100) NUMS(I)
COUNT = COUNT + 1

80 CONTINUE
100 AVG = COMPAV(NUMS, COUNT)

END

The compiler gives no error messages when this program is compiled. Yet here is what happens when it is

run:

$ run average
70
90
85
<EOF>
$

What happened? Why didn’t the program do anything? The following is the output from ftnchek when it

2 June 1995 16

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

is used to debug the above program:

$ ftnchek -list -symtab average

FTNCHEK Version 2.8 May 1995

File average.f:

1 C AUTHORS: MIKE MYERS AND LUCIA SPAGNUOLO
2 C DATE: MAY 8, 1989
3
4 C Variables:
5 C SCORE -> an array of test scores
6 C SUM -> sum of the test scores
7 C COUNT -> counter of scores read in
8 C I -> loop counter
9
10 REAL FUNCTION COMPAV(SCORE,COUNT)
11 INTEGER SUM,COUNT,J,SCORE(5)
12
13 DO 30 I = 1,COUNT
14 SUM = SUM + SCORE(I)
15 30 CONTINUE
16 COMPAV = SUM/COUNT

ˆ
Warning near line 16 col 20: integer quotient expr converted to real

17 END
18

Module COMPAV: func: real

Variables:

Name Type Dims Name Type Dims Name Type Dims Name Type Dims
COMPAV real COUNT intg I intg* J intg
SCORE intg 1 SUM intg

* Variable not declared. Type has been implicitly defined.

Warning: Variables declared but never referenced:
J

Warning: Variables may be used before set:
SUM

19
20 PROGRAM AVENUM
21 C
22 C MAIN PROGRAM
23 C

2 June 1995 17

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

24 C AUTHOR: LOIS BIGBIE
25 C DATE: MAY 15, 1990
26 C
27 C Variables:
28 C MAXNOS -> maximum number of input values
29 C NUMS -> an array of numbers
30 C COUNT -> exact number of input values
31 C AVG -> average returned by COMPAV
32 C I -> loop counter
33 C
34
35 PARAMETER(MAXNOS=5)
36 INTEGER I, COUNT
37 REAL NUMS(MAXNOS), AVG
38 COUNT = 0
39 DO 80 I = 1,MAXNOS
40 READ (5,*,END=100) NUMS(I)
41 COUNT = COUNT + 1
42 80 CONTINUE
43 100 AVG = COMPAV(NUMS, COUNT)
44 END

Module AVENUM: prog

External subprograms referenced:

COMPAV: real*

Variables:

Name Type Dims Name Type Dims Name Type Dims Name Type Dims
AVG real COUNT intg I intg MAXNOS intg*
NUMS real 1

* Variable not declared. Type has been implicitly defined.

Warning: Variables set but never used:
AVG

0 syntax errors detected in file average.f
6 warnings issued in file average.f

Subprogram COMPAV: argument data type mismatch
at position 1:
Dummy arg SCORE is type intg in module COMPAV line 10 file average.f
Actual arg NUMS is type real in module AVENUM line 43 file average.f

According to ftnchek, the program contains variables which may be used before they are assigned an initial

value, and variables which are not needed. ftnchek also warns the user that an integer quotient has been

converted to a real. This may assist the user in catching an unintended roundoff error. Since the −symtab

flag was given, ftnchek prints out a table containing identifiers from the local module and their

2 June 1995 18

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

corresponding datatype and number of dimensions. Finally, ftnchek warns that the function COMPAV is

not used with the proper type of arguments.

With ftnchek’s help, we can debug the program. We can see that there were the following errors:

1. SUM and COUNT should have been converted to real before doing the division.

2. SUM should have been initialized to 0 before entering the loop.

3. AVG was nev er printed out after being calculated.

4. NUMS should have been declared INTEGER instead of REAL.

We also see that I, not J, should have been declared INTEGER in function COMPAV. Also, MAXNOS was

not declared as INTEGER, nor COMPAV as REAL, in program AVENUM. These are not errors, but they may

indicate carelessness. As it happened, the default type of these variables coincided with the intended type.

Here is the corrected program, and its output when run:

C AUTHORS: MIKE MYERS AND LUCIA SPAGNUOLO
C DATE: MAY 8, 1989
C
C Variables:
C SCORE -> an array of test scores
C SUM -> sum of the test scores
C COUNT -> counter of scores read in
C I -> loop counter
C

REAL FUNCTION COMPAV(SCORE,COUNT)
INTEGER SUM,COUNT,I,SCORE(5)

C
SUM = 0
DO 30 I = 1,COUNT

SUM = SUM + SCORE(I)
30 CONTINUE

COMPAV = FLOAT(SUM)/FLOAT(COUNT)
END

C
C

PROGRAM AVENUM
C
C MAIN PROGRAM
C
C AUTHOR: LOIS BIGBIE
C DATE: MAY 15, 1990
C
C Variables:
C MAXNOS -> maximum number of input values
C NUMS -> an array of numbers
C COUNT -> exact number of input values
C AVG -> average returned by COMPAV
C I -> loop counter
C
C

INTEGER MAXNOS
PARAMETER(MAXNOS=5)
INTEGER I, NUMS(MAXNOS), COUNT
REAL AVG,COMPAV

2 June 1995 19

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

COUNT = 0
DO 80 I = 1,MAXNOS

READ (5,*,END=100) NUMS(I)
COUNT = COUNT + 1

80 CONTINUE
100 AVG = COMPAV(NUMS, COUNT)

WRITE(6,*) ’AVERAGE =’,AVG
END

$ run average
70
90
85
<EOF>
AVERAGE = 81.66666
$

With ftnchek’s help, our program is a success!

INTERPRETING THE OUTPUT

The messages given by ftnchek include not only syntax errors but also warnings and informational mes-

sages about things that are legal Fortran but that may indicate errors or carelessness. Most of these mes-

sages can be turned off by command-line options. Which option controls each message depends on the

nature of the condition being warned about. See the descriptions of the command-line flags in the previous

sections, and of individual messages below. Each message is prefixed with a word or phrase indicating the

nature of the condition and its severity.

‘‘Error’’ means a syntax error. The simplest kind of syntax errors are typographical errors, for example

unbalanced parentheses or misspelling of a keyword. This type of error is caught by the parser and appears

with the description ‘‘parse error’’ or ‘‘syntax error’’ (depending on whether the parser was built using

GNU bison or UNIX yacc respectively). This type of error message cannot be suppressed. Be aware that

this type of error often means that ftnchek has not properly interpreted the statement where the error

occurs, so that its subsequent checking operations will be compromised. You should eliminate all syntax

errors before proceeding to interpret the other messages ftnchek gives.

‘‘Warning: Nonstandard syntax’’ indicates an extension to Fortran that ftnchek supports but that is not

according to the Fortran 77 Standard. The extensions that ftnchek accepts are described in the section on

Extensions below. One example is the DO ... ENDDO construction. If a program uses these extensions,

warnings will be given only if the −f77 flag is set. The default is to give no warnings.

‘‘Warning’’ in other cases means a condition that is suspicious but that may or may not be a programming

error. Frequently these conditions are legal under the standard. Some are illegal but do not fall under the

heading of syntax errors. Usage errors are one example. These refer to the possibility that a variable may

be used before it has been assigned a value (generally an error), or that a variable is declared but never used

(harmless but may indicate carelessness). The amount of checking for usage errors is controlled by the

−usage flag, which is set for the maximum amount of checking by default.

Truncation warnings cover situations in which accuracy may be lost unintentionally, for example when a

double precision value is assigned to a real variable. These warnings are controlled by the −truncation

flag, which is on by default.

‘‘Nonportable usage’’ warns about some feature that may not be accepted by some compilers even though it

is not contrary to the Fortran 77 Standard, or that may cause the program to perform differently on different

platforms. For example, equivalencing real and integer variables is usually a non-portable practice. The

use of extensions to the standard language is, of course, another source of non-portability, but this is han-

dled as a separate case. To check a program for true portability, both the −portability and the −f77 flags

should be used. They are both turned off by default. The −wordsize setting is provided to check only

2 June 1995 20

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

those nonportable usages that depend on a particular machine wordsize.

‘‘Possibly misleading appearance’’ is used for legal constructions that may not mean what they appear to

mean at first glance. For example, Fortran is insensitive to blank space, so extraneous space within variable

names or the lack of space between a keyword and a variable can convey the wrong impression to the

reader. These messages can be suppressed by turning off the −pretty flag, which is on by default.

Other messages that are given after all the files are processed, and having to do with agreement between

modules, do not use the word ‘‘warning’’ but generally fall into that category. Examples include type mis-

matches between corresponding variables in different COMMON block declarations, or between dummy

and actual arguments of a subprogram. These warnings are controlled by the −common and −arguments

settings respectively. By default both are set for maximum strictness of checking.

Another group of warnings about conditions that are often harmless refer to cases where the array proper-

ties of a variable passed as a subprogram argument differ between the two routines. For instance, an array

element might be passed to a subroutine that expects a whole array. This is a commonly-used technique for

processing single rows or columns of two-dimensional arrays. However, it could also indicate a program-

ming error. The −array setting allows the user to adjust the degree of strictness to be used in checking this

kind of agreement between actual and dummy array arguments. By default the strictness is maximum.

‘‘Oops’’ indicates a technical problem, meaning either a bug in ftnchek or that its resources have been

exceeded.

The format of the error messages has been modified from previous versions for more clarity. The syntax

error messages and warnings now hav e the filename included along with the line number and column num-

ber. ftnchek now has two different options for the appearance of these error messages. If −novice is in

effect, which is the default, the messages are very similar in style to those of the previous version. (In

default style, the filename is not printed in messages within the body of the program if −list is in effect.)

The other style of error messages is selected by the −nonovice option. In this style, the appearance of the

messages is similar to that of the UNIX lint program.

ftnchek is still blind to some kinds of syntax errors. The two most important ones are detailed checking of

FORMAT statements, and almost anything to do with control of execution flow by means of IF, DO, and

GOTO statements: namely correct nesting of control structures, matching of opening statements such as IF
... THEN with closing statements such as ENDIF, and the proper use of statement labels (numbers). Most

compilers will catch these errors. See the section on Limitations for a more detailed discussion.

If ftnchek gives you a syntax error message when the compiler does not, it may be because your program

contains an extension to standard Fortran which is accepted by the compiler but not by ftnchek. (See the

section on Extensions.) On a VAX/VMS system, you can use the compiler option /STANDARD to cause

the compiler to accept only standard Fortran. On most UNIX or UNIX-like systems, this can be accom-

plished by setting the flag −ansi. Also, consult the README file included in the ftnchek distribution for

information on how to control which extensions ftnchek accepts.

Many of the messages given by ftnchek are self-explanatory. Those that need some additional explanation

are listed below in alphabetical order.

Common block NAME: data type mismatch at position n

The n-th variable in the COMMON block differs in data type in two different declarations of the

COMMON block. By default (−common strictness level 3), ftnchek is very picky about COM-

MON blocks: the variables listed in them must match exactly by data type and array dimensions.

That is, the legal pair of declarations in different modules:

COMMON /COM1/ A,B

and

COMMON /COM1/ A(2)

2 June 1995 21

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

will cause ftnchek to give warnings at strictness level 3. These two declarations are legal in For-

tran since they both declare two real variables. At strictness level 1 or 2, no warning would be

given in this example, but the warning would be given if there were a data type mismatch, for

instance, if B were declared INTEGER. Controlled by −common setting.

Common block NAME has long data type following short data type

Some compilers require alignment of multi-byte items so that each item begins at an address that

is a multiple of the item size. Thus if a short (e.g. single-precision real) item is followed by a long

(e.g. double precision real) item, the latter may not be aligned correctly. Controlled by −portabil-

ity option.

Common block NAME has mixed character and non-character variables

The ANSI standard requires that if any variable in a COMMON block is of type CHARACTER,

then all other variables in the same COMMON block must also be of type CHARACTER. Con-

trolled by −f77 option.

Common block NAME: varying length

For −common setting level 2, this message means that a COMMON block is declared to have dif-

ferent numbers of words in two different subprograms. A word is the amount of storage occupied

by one integer or real variable. For −common setting level 3, it means that the two declarations

have different numbers of variables, where an array of any size is considered one variable. This is

not necessarily an error, but it may indicate that a variable is missing from one of the lists. Note

that according to the Fortran 77 Standard, it is an error for named COMMON blocks (but not

blank COMMON) to differ in number of words in declarations in different modules. Given for

−common setting 2 or 3.

Error: Badly formed logical/relational operator or constant

Error: Badly formed real constant

The syntax analyzer has found the start of one of the special words that begin and end with a

period (e.g. .EQ.), or the start of a numeric constant, but did not succeed in finding a complete

item of that kind.

Error: cannot be adjustable size in module NAME

A character variable cannot be declared with a size that is an asterisk in parentheses unless it is a

dummy argument, a parameter, or the name of the function defined in the module.

Error: cannot be declared in SAVE statement in module NAME

Only local variables and common blocks can be declared in a SAVE statement.

Error: No path to this statement

ftnchek will detect statements which are ignored or by-passed because there is no foreseeable

route to the statement. For example, an unnumbered statement (a statement without a statement

label), occurring immediately after a GOTO statement, cannot possibly be executed.

Error: Parse error

This means that the parser, which analyzes the Fortran program into expressions, statements, etc.,

has been unable to find a valid interpretation for some portion of a statement in the program. If

your compiler does not report a syntax error at the same place, the most common explanations are:

(1) use of an extension to ANSI standard Fortran that is not recognized by ftnchek, or (2) the

statement requires more lookahead than ftnchek uses (see section on Bugs).

2 June 1995 22

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

NOTE: This message means that the affected statement is not interpreted. Therefore, it is possible

that ftnchek’s subsequent processing will be in error, if it depends on any matters affected by this

statement (type declarations, etc.).

Error: Statement out of order.

ftnchek will detect statements that are out of the sequence specified for ANSI standard Fortran 77.

Table 1 illustrates the allowed sequence of statements in the Fortran language. Statements which

are out of order are nonetheless interpreted by ftnchek, to prevent ‘‘cascades’’ of error messages.

--
| | implicit
| parameter |---------------------
| | other specification

format |---------------|---------------------
and | | statement-function
entry | data |---------------------

| | executable
--

Table 1

Error: Syntax error

This is the same as ‘‘Error: Parse error’’ (see above). It is generated if your version of ftnchek

was built using the UNIX yacc parser generator rather than GNU bison.

Identifiers which are not unique in first six chars

Warns that two identifiers which are longer than 6 characters do not differ in the first 6 characters.

This is for portability: they may not be considered distinct by some compilers. Controlled by

−sixchar option.

Nonportable usage: argument precision may not be correct for intrinsic function

The precision of an argument passed to an intrinsic function may be incorrect on some computers.

Issued when a numeric variable declared with explicit precision (e.g. REAL*8 X) is passed to a

specific intrinsic function (e.g. DSQRT(X)). Controlled by −portability and −wordsize.

Nonportable usage: character constant/variable length exceeds 255

Some compilers do not support character strings more than 255 characters in length. Controlled

by −portability.

Nonportable usage: File contains tabs

ftnchek expands tabs to be equivalent to spaces up to the next column which is a multiple of 8.

Some compilers treat tabs differently, and also it is possible that files sent by electronic mail will

have the tabs converted to blanks in some way. Therefore files containing tabs may not be com-

piled correctly after being transferred. ftnchek does not give this message if tabs only occur

within comments or character constants. Controlled by −portability.

Nonportable usage: non-integer DO loop bounds

This warning is only given when the DO index and bounds are non-integer. Use of non-integer

quantities in a DO statement may cause unexpected errors, or different results on different

machines, due to roundoff effects. Controlled by −portability.

2 June 1995 23

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

Possibly it is an array which was not declared

This message is appended to warnings related to a function invocation or to an argument type mis-

match, for which the possibility exists that what appears to be a function is actually meant to be an

array. If the programmer forgot to dimension an array, references to the array will be interpreted

as function invocations. This message will be suppressed if the name in question appears in an

EXTERNAL or INTRINSIC statement. Controlled by the −novice option.

Possibly misleading appearance: characters past 72 columns

The program is being processed with the statement field width at its standard value of 72, and

some nonblank characters have been found past column 72. In this case, ftnchek is not processing

the characters past column 72, and is notifying the user that the statement may not have the mean-

ing that it appears to have. These characters might be intended by the programmer to be signifi-

cant, but they will be ignored by the compiler. (A similar warning is alternatively given under the

−f77 flag if the −columns setting is used to increase the statement field width.) Controlled by

−pretty.

Possibly misleading appearance: Common block declared in more than one statement

Such multiple declarations are legal and have the same effect as a continuation of the original dec-

laration of the block. This warning is only given if the two declarations are separated by one or

more intervening statements. Controlled by −pretty.

Possibly misleading appearance: Continuation follows comment or blank line

ftnchek issues this warning message to alert the user that a continuation of a statement is inter-

spersed with comments, making it easy to overlook. Controlled by −pretty.

Possibly misleading appearance: Extraneous parentheses

Warns about parentheses surrounding a variable by itself in an expression. When a parenthesized

variable is passed as an argument to a subprogram, it is treated as an expression, not as a variable

whose value can be modified by the called routine. Controlled by −pretty.

Subprogram NAME: argument data type mismatch at position n

The subprogram’s n-th actual argument (in the CALL or the usage of a function) differs in datatype

or precision from the n-th dummy argument (in the SUBROUTINE or FUNCTION declaration).

For instance, if the user defines a subprogram by

SUBROUTINE SUBA(X)
REAL X

and elsewhere invokes SUBA by

CALL SUBA(2)

ftnchek will detect the error. The reason here is that the number 2 is integer, not real. The user

should have said

CALL SUBA(2.0)

When checking an argument which is a subprogram, ftnchek must be able to determine whether it

is a function or a subroutine. The rules used by ftnchek to do this are as follows: If the subpro-

gram, besides being passed as an actual argument, is also invoked directly elsewhere in the same

module, then its type is determined by that usage. If not, then if the name of the subprogram does

2 June 1995 24

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

not appear in an explicit type declaration, it is assumed to be a subroutine; if it is explicitly typed it

is taken as a function. Therefore, subroutines passed as actual arguments need only be declared by

an EXTERNAL statement in the calling module, whereas functions must also be explicitly typed in

order to avoid generating this error message.

Controlled by −arguments.

Subprogram NAME: argument arrayness mismatch at position n

Similar to the preceding situation, but the subprogram dummy argument differs from the corre-

sponding actual argument in its number of dimensions or number of elements. Controlled by

−array together with −arguments.

Subprogram NAME: argument mismatch at position n

A character dummy argument is larger than the corresponding actual argument, or a Hollerith

dummy argument is larger than the corresponding actual argument. Controlled by −arguments.

Subprogram NAME: argument usage mismatch

ftnchek detects a possible conflict between the way a subprogram uses an argument and the way

in which the argument is supplied to the subprogram. The conflict can be one of two types, as out-

lined below.

Dummy arg is modified, Actual arg is const or expr

A dummy argument is an argument as named in a SUBROUTINE or FUNCTION statement and

used within the subprogram. An actual argument is an argument as passed to a subroutine or func-

tion by the caller. ftnchek is saying that a dummy argument is modified by the subprogram,

implying that its value is changed in the calling module. The corresponding actual argument

should not be a constant or expression, but rather a variable or array element which can be legiti-

mately assigned to. Given for −usage setting 1 or 3.

Dummy arg used before set, Actual arg not set

Here a dummy argument may be used in the subprogram before having a value assigned to it by

the subprogram. The corresponding actual argument should have a value assigned to it by the

caller prior to invoking the subprogram. Given for −usage setting 1 or 3.

These warnings are not affected by the −arguments setting.

Subprogram NAME invoked inconsistently

Here the mismatch is between the datatype of the subprogram itself as used and as defined. For

instance, if the user declares

INTEGER FUNCTION COUNT(A)

and invokes COUNT in another module as

N = COUNT(A)

without declaring its datatype, it will default to real type, based on the first letter of its name. The

calling module should have included the declaration

INTEGER COUNT

2 June 1995 25

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

Given for −arguments setting 2 or 3.

Subprogram NAME: varying length argument lists:

An inconsistency has been found between the number of dummy arguments (parameters) a sub-

program has and the number of actual arguments given it in an inv ocation. ftnchek keeps track of

all invocations of subprograms (CALL statements and expressions using functions) and compares

them with the definitions of the subprograms elsewhere in the source code. The Fortran compiler

normally does not catch this type of error. Giv en for −arguments setting 1 or 3.

Variable not declared. Type has been implicitly defined

When printing the symbol table for a module, ftnchek will flag with an asterisk all identifiers that

are not explicitly typed and will show the datatype that was assigned through implicit typing. This

provides support for users who wish to declare all variables as is required in Pascal or some other

languages. This message appears only when the −symtab option is in effect. Alternatively, use

the −declare flag if you want to get a list of all undeclared variables.

Variables declared but never referenced

Detects any identifiers that were declared in your program but were never used, either to be

assigned a value or to have their value accessed. Variables in COMMON are excluded. Given for

−usage setting 2 or 3.

Variables set but never used

ftnchek will notify the user when a variable has been assigned a value, but the variable is not oth-

erwise used in the program. Usually this results from an oversight. Given for −usage setting 2 or

3.

Variables used before set

This message indicates that an identifier is used to compute a value prior to its initialization. Such

usage may lead to an incorrect value being computed, since its initial value is not controlled.

Given for −usage setting 1 or 3.

Variables may be used before set

Similar to used before set except that ftnchek is not able to determine its status with certainty.

ftnchek assumes a variable may be used before set if the first usage of the variable occurs prior in

the program text to its assignment. Given for −usage setting 1 or 3.

Warning: DO index is not integer

This warning is only given when the DO bounds are integer, but the DO index is not. It may indi-

cate a failure to declare the index to be an integer. Controlled by −truncation option.

Warning: integer quotient expr converted to real

The quotient of two integers results in an integer type result, in which the fractional part is

dropped. If such an integer expression involving division is later converted to a real datatype, it

may be that a real type division had been intended. Controlled by −truncation option.

Warning: Integer quotient expr used in exponent

The quotient of two integers results in an integer type result, in which the fractional part is

dropped. If such an integer expression is used as an exponent, it is quite likely that a real type

division was intended. Controlled by −truncation option.

2 June 1995 26

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

Warning: NAME not set when RETURN encountered

The way that functions in Fortran return a value is by assigning the value to the name of the func-

tion. This message indicates that the function was not assigned a value before the point where a

RETURN statement was found. Therefore it is possible that the function could return an undefined

value.

Warning: Nonstandard syntax: adjustable size cannot be concatenated here

The Fortran 77 Standard forbids concatenating character variables whose size is an asterisk in

parentheses, except in an assignment statement. Controlled by −f77.

Warning: Nonstandard syntax: characters past 72 columns

A statement has been read which has nonblank characters past column 72, with the statement field

extended beyond the standard value of 72 columns by the −col setting. Standard Fortran ignores

all text in those columns, but some compilers do not. Thus the program may be treated differently

by different compilers. Controlled by −f77 option and −columns setting.

Warning: Possible division by zero

This message is printed out wherever division is done (except division by a constant). Use it to

help locate a runtime division by zero problem. Controlled by −division option.

Warning: real truncated to intg

ftnchek has detected an assignment statement which has a real expression on the right, but an inte-

ger variable on the left. The fractional part of the real value will be lost. If you explicitly convert

the real expression to integer using the INT or NINT intrinsic function, no warning will be

printed. A similar message is printed if a double precision expression is assigned to a single preci-

sion variable, etc. Controlled by −truncation option.

Warning: subscript is not integer

Since array subscripts are normally integer quantities, the use of a non-integer expression here

may signal an error. Controlled by −truncation option.

Warning: Unknown intrinsic function

This message warns the user that a name declared in an INTRINSIC statement is unknown to

ftnchek. Probably it is a nonstandard intrinsic function, and so the program will not be portable.

The function will be treated by ftnchek as a user-defined function. This warning is not controlled

by any option, since it affects ftnchek’s analysis of the program.

LIMITATIONS AND EXTENSIONS

ftnchek accepts ANSI standard Fortran-77 programs with some minor limitations and numerous common

extensions.

Limitations:

ftnchek uses only one line of lookahead when analyzing a program into its basic syntactic ele-

ments. If a particular statement is difficult to identify, it may be handled improperly if the ambigu-

ity is not resolved on a single line. This limitation applies to complex constants except in DATA
statements, and to situations in which a variable name might be confused with a keyword. For

example, if the variable name WRITE is used for an array, then a very long statement assigning a

value to some element of this array could be mistaken as a WRITE statement if the equals sign is

not on the same line as the word WRITE.

The dummy arguments in statement functions are treated like ordinary variables of the program.

That is, their scope is the entire module, not just the statement function definition.

2 June 1995 27

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

The checking of FORMAT statements is lax, tolerating missing separators (comma, etc.) between

format descriptors in places where the Standard requires them, and allowing .d fields on descrip-

tors that should not have them. It does warn under −f77 about nonstandard descriptor types (like

O), and supported extensions.

The only checking related to control of execution flow is a warning about statements that cannot

be reached because they do not have a label and they follow an unconditional transfer. There is no

checking for correct nesting of DO loops or matching of opening statements such as IF ... THEN
with closing statements such as ENDIF, nor the proper definition and use of statement labels. For-

tunately, most compilers will catch these errors.

If a user-supplied subprogram has the same name as one of the nonstandard intrinsic functions, it

must be declared in an EXTERNAL statement in any routine that invokes it. Otherwise it will be

subject to the checking normally given to the intrinsic function. Since the nonstandard intrinsics

are not standard, this EXTERNAL statement is not required by the Fortran 77 Standard. See the

lists of supported nonstandard intrinsic functions under Extensions below.

Extensions:

All of these extensions (except lower-case characters) will generate warnings if the −f77 flag is set.

Some of the extensions listed below are part of the Fortran-90 Standard. These are indicated by

the notation (F90).

Tabs are permitted, and translated into equivalent blanks which correspond to tab stops every 8

columns. The standard does not recognize tabs. Note that some compilers allow tabs, but treat

them differently. The treatment defined for DEC FORTRAN can be achieved using the -tab

option.

Strings may be delimited by either quote marks or apostrophes. A sequence of two delimiter char-

acters is interpreted as a single embedded delimiter character. (F90)

Strings may contain UNIX-style backslash escape sequences. They will be interpreted as such if

the −backslash flag is set. Otherwise the backslash character will be treated as a normal printing

character.

Lower case characters are permitted, and are converted internally to uppercase except in character

strings. The standard specifies upper case only, except in comments and strings. (F90)

Hollerith constants are permitted, in accordance with the Fortran 77 Standard, appendix C. They

should not be used in expressions, or confused with datatype CHARACTER.

The letter ’D’ (upper or lower case) in column 1 is treated as the beginning of a comment. There

is no option to treat such lines as statements instead of comments.

Statements may be longer than 72 columns provided that the setting −column was used to increase

the limit. According to the standard, all text from columns 73 through 80 is ignored, and no line

may be longer than 80 columns.

Variable names may be longer than six characters. The standard specifies six as the maximum.

ftnchek permits names up to 31 characters long (F90).

Variable names may contain underscores and dollar signs, which are treated the same as alphabetic

letters. The default type for variables beginning with these characters is REAL. In IMPLICIT

type statements specifying a range of characters, the dollar sign follows Z and is followed by

underscore. Fortran 90 permits underscores in variable names.

The UNIX version tolerates the presence of preprocessor directives, namely lines beginning with

the pound sign (#). These are treated as comments, except for #line directives, which are inter-

preted, and are used to set the line number and source file name for warnings and error messages.

Note that #include directives are not processed by ftnchek. Programs that use them for includ-

ing source files should be passed through the preprocessor before being input to ftnchek. As

noted below, ftnchek does process INCLUDE statements, which have a different syntax.

2 June 1995 28

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

The DO ... ENDDO control structure is permitted. The syntax which is recognized is according to

either of the following two forms:

DO [label [,]] var = expr , expr [, expr]

...

END DO
or

DO [label [,]] WHILE (expr)
...

END DO
where square brackets indicate optional elements. This is a subset of the Fortran 90 do-loop syn-

tax.

The ACCEPT and TYPE statements (for terminal I/O) are permitted, with the same syntax as

PRINT.

Statements may have any number of continuation lines. The standard allows a maximum of 19.

Inline comments, beginning with an exclamation mark, are permitted. (F90)

NAMELIST I/O is supported. The syntax is the same as in Fortran 90.

FORMAT statements can contain a dollar sign to indicate suppression of carriage-return. An inte-

ger expression enclosed in angle brackets can be used anywhere in a FORMAT statement where

the Fortran 77 Standard allows an integer constant (except for the length of a Hollerith constant),

to provide a run-time value for a repeat specification or field width.

The IMPLICIT NONE statement is supported. The meaning of this statement is that all variables

must have their data types explicitly declared. Rather than flag the occurrences of such variables

with syntax error messages, ftnchek waits till the end of the module, and then prints out a list of

all undeclared variables, as it does for the −declare option. (F90)

Data types INTEGER, REAL, COMPLEX, and LOGICAL are allowed to have an optional precision

specification in type declarations. For instance, REAL*8 means an 8-byte floating point data type.

The REAL*8 datatype is not necessarily considered equivalent to DOUBLE PRECISION,

depending on the −wordsize setting. The Fortran 77 Standard allows a length specification only

for CHARACTER data.

ftnchek supports the DOUBLE COMPLEX type specification for a complex quantity whose real and

imaginary parts are double precision. Mixed-mode arithmetic involving single-precision complex

with double-precision real data, prohibited under the Standard, yields a double complex result.

The double complex counterparts of all the standard intrinsic functions for complex data are

included:

DCMPLX DCONJG DIMAG DREAL IMAG
CDABS CDSQRT CDEXP CDLOG CDSIN CDCOS
ZABS ZSQRT ZEXP ZLOG ZSIN ZCOS

The following other commonly found nonstandard intrinsic functions are provided. All except

EXIT and LOC are defined in MIL-STD 1753.

BTEST IAND IOR IBSET IBCLR
IBITS IEOR ISHFT ISHFTC NOT
EXIT LOC

For the UNIX version of ftnchek, the following common UNIX intrinsic functions are provided:

ABORT AND GETARG GETENV GMTIME
IARGC LSHIFT LTIME OR IRAND

2 June 1995 29

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

RAND RSHIFT SRAND SYSTEM TIME
XOR

Note: there are two common calling sequences for RAND and IRAND: with zero arguments or with

1 argument. By default, ftnchek accepts either form. If you wish to enforce strict adherence to

one form or the other, you should compile ftnchek with one of the two macros RAND_NO_ARG or

RAND_ONE_ARG set.

For the VAX/VMS version of ftnchek, the following common VMS intrinsic functions are pro-

vided:

DATE ERRSNS IDATE RAN SECNDS
SIZEOF TIME

Argument checking is not tight for those nonstandard intrinsics that take arrays or mixed argument

types.

ftnchek permits the INCLUDE statement, which causes inclusion of the text of the given file. The

syntax is

INCLUDE ’filename’

This is compatible with Fortran 90. When compiled for VMS, ftnchek will assume a default

extension of . for if no filename extension is given. Also for compatibility with VMS, the VMS

version allows the qualifier /[NO]LIST following the filename, to control the listing of the

included file. There is no support for including VMS text modules.

In diagnostic output relating to items contained in include files, the location of the error is speci-

fied by both its location in the include file and the location in the parent file where the file was

included.

ftnchek accepts PARAMETER definitions that involve intrinsic functions and exponentiation by a

non-integer exponent. Both of these cases are prohibited by the Fortran 77 Standard, and will be

warned about if the −f77 flag is set. If an intrinsic function is a compile-time integer constant,

ftnchek will evaluate it. This allows better checking if the parameter is used in declaring array

sizes. Fortran 90 allows intrinsic functions in PARAMETER definitions.

The intrinsic functions that are evaluated are:

ABS IABS DIM IDIM MAX
MAX0 MIN MIN0 MOD SIGN
ISIGN LEN ICHAR INDEX

The functions of integer arguments are evaluated only if the arguments are integer constant expres-

sions. (These may involve integer constants, parameters, and evaluated intrinsic functions.) The

function LEN is evaluated if its argument is an expression involving only character constants and

variables whose length is not adjustable. The functions ICHAR and INDEX are evaluated only if

the arguments are character constants. ftnchek gives a warning if it needs the value of some

intrinsic function that is not evaluated.

NEW FEATURES

Here are the changes from Version 2.7 to Version 2.8:

1. Improvements in handling command-line settings: add support for colon as assignment operator, and

extend setting switch support to include a default value to replace out-of-range values, instead of just

choosing the nearer endpoint of the valid range.

2. New options: −makedcls=num to generate variable declarations; −backslash to handle UNIX-style

backslash escapes in character strings; −resource to print out internal resource usage; −tab to accept

DEC-style tab-formatted source.

2 June 1995 30

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

3. New extensions to syntax: Accept quote marks as an alternative to apostrophes for delimiting strings.

Accept ’D’ as equivalent to ’C’ in column 1 for comments. A patch is supplied to allow ‘‘Cray

pointer’’ syntax to be tolerated. (This patch does not include checking proper use of pointers.)

4. Provide variable names and not just position numbers in warnings about mismatches in common block

declarations and subprogram argument lists.

5. Add installation validation suite to check for correct functioning after a new installation, or a new com-

pilation with a different compiler or compiler options. The validation suite also serves to record input

cases that exhibited bugs in older versions of the program, providing regression testing to ensure that

changes do not introduce new bugs, or restore old ones. This test suite uncovered compiler optimizer

errors on at least one system, errors which did not appear in older versions of ftnchek.

6. Improve memory management to avoid running out of space.

7. Update the UNIX Makefile with new targets following the Free Software Foundation standards, and

create the CHECKLIST file to record systems for which this version of ftnchek has been successfully

built and has passed the validation suite tests.

8. Add the man2ps script, and a target in the UNIX Makefile to use it for converting the manual pages file

to PostScript.

9. Correct several small typographical irregularities in these manual pages. troff preserves all input

spaces, so great care is needed in preparing troff input to avoid introducing spurious space into the

typeset output.

Grateful acknowledgement is given to Nelson H. F. Beebe of the University of Utah for providing most of

these improvements, and especially for writing most of the new code to produce variable declarations,

which represents a very substantial effort.

Here are the changes from Version 2.6 to Version 2.7:

1. Fixed bugs: to allow statement functions with no arguments; to catch extra comma in subprogram argu-

ment lists; argument of LEN does not need to have a defined value.

2. Insensitive to blanks as per the Standard.

3. Changed behavior of options: −f77 controls warnings about statement out of order and COMMON

block with mixed character and non-character data; −help option now lists patch level and copyright;

−novice controls appearance of warning messages.

4. Added handling of explicit precision and double complex data type. REAL*8 is no longer synony-

mous with DOUBLE PRECISION, depending on the machine wordsize. Checking length agreement

for character data also done properly now.

5. Checking usage status of COMMON blocks and COMMON variables.

6. Improved format of messages.

7. Support for common nonstandard intrinsic functions.

8. New options: −arguments, −crossref, −reference, −sort, −volatile, −wordsize, and −wrap.

9. Behavior when no top-level non-library modules found, changed from no cross-checking to complete

cross-checking.

10. Added expansion of wildcards for filenames on the command line to the VMS and MS-DOS versions.

11. Parser is generated by bison. Formerly yacc was used.

12. Made changes to allow the IBM PC version handle larger files.

BUGS

ftnchek still has much room for improvement. Your feedback is appreciated. We want to know about any

bugs you notice. Bugs include not only cases in which ftnchek issues an error message where no error

exists, but also if ftnchek fails to issue a warning when it ought to. Note, however, that ftnchek is not

intended to catch all syntax errors (see section on Limitations). Also, it is not considered a bug for a

2 June 1995 31

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

variable to be reported as used before set, if the reason is that the usage of the variable occurs prior in the

text to where the variable is set. For instance, this could occur when a GOTO causes execution to loop back-

ward to some previously skipped statements. ftnchek does not analyze the program flow, but assumes that

statements occurring earlier in the text are executed before the following ones.

We especially want to know if ftnchek crashes for any reason. It is not supposed to crash, even on pro-

grams with syntax errors. Suggestions are welcomed for additional features which you would find useful.

Tell us if any of ftnchek’s messages are incomprehensible. Comments on the readability and accuracy of

this document are also welcome.

You may also suggest support for additional extensions to the Fortran language. These will be included

only if it is felt that the extensions are sufficiently widely accepted by compilers.

If you find a bug in ftnchek, first consult the list of known bugs below to see if it has already been reported.

Also check the section entitled ‘‘Limitations and Extensions’’ above for restrictions that could be causing

the problem. If you do not find the problem documented in either place, then send a report including

1. The operating system and CPU type on which ftnchek is running.

2. The version of ftnchek.

3. A brief description of the bug.

4. If possible, a small sample program showing the bug.

The report should be sent to either of the following addresses:

MONIOT@FORDMULC.BITNET
moniot@mary.fordham.edu

Highest priority will be given to bugs which cause ftnchek to crash. Bugs involving incorrect warnings or

error messages may take longer to fix.

Certain problems that arise when checking large programs can be fixed by increasing the sizes of the data

areas in ftnchek. (These problems are generally signaled by error messages beginning with ‘‘Oops’’.) The

simplest way to increase the table sizes is by recompiling ftnchek with the LARGE_MACHINE macro name

defined. Consult the makefile and README file for the method of doing this.

The following is a list of known bugs.

1. Bug: Used-before-set message is suppressed for any variable which is used as the loop index in an

implied-do loop, even if it was in fact used before being set in some earlier statement. For example,

consider J in the statement

WRITE(5,*) (A(J), J=1,10)

Here ftnchek parses the I/O expression, A(J), where J is used, before it parses the implied loop

where J is set. Normally this would cause ftnchek to report a spurious used-before-set warning for J.

Since this report is usually in error and occurs fairly commonly, ftnchek suppresses the warning for J
altogether.

Prognosis: A future version of ftnchek is planned which will handle implied-do loops correctly.

2. Bug: Variables used (not as arguments) in statement-function subprograms do not have their usage sta-

tus updated when the statement function is invoked.

Prognosis: To be fixed in a future version of ftnchek.

3. Bug: VAX version does not expand wildcards in filenames on the command line if they are followed

without space by an option, e.g. ftnchek *.f/calltree would not expand the *.f. This is

because VMS-style options without intervening space are not supported by the GNU shell_mung

2 June 1995 32

FTNCHEK 2.8.3(1L) FTNCHEK 2.8.3(1L)

routine that is used to expand wildcards.

Prognosis: unlikely to be fixed.

ACKNOWLEDGEMENTS

ftnchek is a public-domain program. It was designed by Dr. Robert Moniot, professor at Fordham Univer-

sity. During the academic year of 1988-1989, Michael Myers and Lucia Spagnuolo developed the program

to perform the variable usage checks. During the following year it was augmented by Lois Bigbie to check

subprogram arguments and COMMON block declarations. Brian Downing assisted with the implementa-

tion of the INCLUDE statement. John Quinn wrote the common block usage checks. Nelson H. F. Beebe

of the University of Utah added most of the new code to implement the −makedcls feature. The −refer-

ence feature was contributed by Gerome Emmanuel, Ecole des mines, U. Nancy (slightly modified). The

patch for Cray pointer syntax was provided by John Dannenhoffer of United Technologies Research Center.

Additional features will be added as time permits. With Version 2.5, the name was changed from forchek

to ftnchek, to avoid confusion with a similar program named forcheck, dev eloped earlier at Leiden Univer-

sity.

We would like to thank John Amor of the University of British Columbia, Reg Clemens of the Air Force

Phillips Lab in Albuquerque, Markus Draxler of the University of Stuttgart, Victor Eijkhout of the Univer-

sity of Tennessee at Knoxville, Greg Flint of Purdue University, Daniel P. Giesy of NASA Langley

Research Center, Fritz Keinert of Iowa State University, Judah Milgram of the University of Maryland Col-

lege Park, Hugh Nicholas of the Pittsburgh Supercomputing Center, Dan Severance of Yale University, Phil

Sterne of Lawrence Livermore National Laboratory, Larry Weissman of the University of Washington, War-

ren J. Wiscombe of NASA Goddard, and especially Nelson H. F. Beebe of the University of Utah, for

pointing out bugs and suggesting some improvements. We also thank Jack Dongarra for putting ftnchek

into the netlib library of publicly available software.

INSTALLATION AND SUPPORT

The ftnchek program can be obtained by anonymous ftp from many software servers, including host

netlib.org (128.169.92.17) where it is located in directory /fortran.

Installation requires a C compiler for your computer. See the README file provided with the distribution

for instructions on installing ftnchek on your system. Executable binary in ZIP format for IBM PC com-

puters under MS-DOS is available by anonymous ftp from oak.oakland.edu (141.210.10.117) where

it is located in directory /SimTel/msdos/fortran, filename ftnchk28.zip. Executable binary in

binhexed stuffit format for Macintosh computers is available from sumex-aim.stanford.edu (36.44.0.6), in

directory info-mac/Development, filename ftnchek-28.hqx.

The nroff version of this document is named ftnchek.man. On UNIX systems, it can be used as the man

page or you can print it using the command nroff -man ftnchek.man | lpr. The distribution

also includes a plain ASCII version named ftnchek.doc, a PostScript version named ftnchek.ps, and a VMS

HELP version named ftnchek.hlp.

Information about the latest version and the status of the project can be obtained by the Internet command

‘‘finger ftnchek@mary.fordham.edu’’. For further information and to report bugs, you may

contact Dr. Robert Moniot at either of the following network addresses:

MONIOT@FORDMULC.BITNET
moniot@mary.fordham.edu

SEE ALSO

dcl2inc(1L), dtoq(1L), dtos(1L), f77(1), fd2s(1L), fs2d(1L), pfort(1L), qtod(1L), sf3(1L), stod(1L).

xsf3(1L).

2 June 1995 33

