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Summary

The structure of a decompiler is presented, along with a thorough description of the di�er-

ent modules that form part of a decompiler, and the type of analyses that are performed on the

machine code to regenerate high-level language code. The phases of the decompiler have been

grouped into three main modules: front-end, universal decompiling machine, and back-end. The

front-end is a machine dependent module that performs the loading, parsing and semantic anal-

ysis of the input program, as well as generating an intermediate representation of the program.

The universal decompiling machine is a machine and language independent module that performs

data and control 
ow analysis of the program based on the intermediate representation, and the

program's control 
ow graph. The back-end is a language dependent module that deals with the

details of the target high-level language.

In order to increase the readability of the generated programs, a decompiling system has been

implemented which integrates a decompiler, dcc, and an automatic signature generator, dccSign.

Signatures for libraries and compilers are stored in a database that is read by the decompiler, thus,

the generated programs can make use of known library names, such as WriteLn() and printf().

dcc is a decompiler for the Intel 80286 architecture and the DOS operating system. dcc takes

as input binary programs from a DOS environment and generates C programs as output. Sample

code produced by this decompiler is given.
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Introduction

A decompiler, or reverse compiler, is a program that attempts to perform the inverse process of the compiler:

given an executable program compiled in any high-level language, the aim is to produce a high-level language

program that performs the same function as the executable program. Thus, the input is machine dependent, and

the output is language dependent.

Several practical problems are faced when writing a decompiler. The main problem derives from the represen-

tation of data and instructions in the Von Neumann architecture: they are indistinguishable. Thus, data can be

located in between instructions, such as many implementations of indexed jump (case) tables. This representa-

tion and self-modifying code practices makes it hard to decompile a binary program.

Another problem is the great number of subroutines introduced by the compiler and the linker. The compiler

will always include start-up subroutines that set up its environment, and runtime support routines whenever re-

quired. These routines are normally written in assembler and in most cases are untranslatable into a higher-level

representation. Also, most operating systems do not provide a mechanism to share libraries, consequently, binary

programs are self-contained and library routines are bound into each binary image. Library routines are either

written in the language the compiler was written in or in assembler. This means that a binary program contains

not only the routines written by the programmer, but a great number of other routines linked in by the linker. As

an example of the amount of extra subroutines available in a binary program, a \hello world" program compiled

in C generates 23 di�erent procedures. The same program compiled in Pascal generates more than 40 procedures.

All we are really interested in is the one procedure, main.

Despite the above-mentioned limitations, there are several uses for a decompiler, including two major software

areas: maintenance of code and software security. From a maintenance point of view, a decompiler is an aid in

the recovery of lost source code, the migration of applications to a new hardware platform, the translation of code

written in an obsolete language into a newer language, the structuring of old code written in an unstructured
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way (e.g. \spaghetti" code), and a debugger tool that helps in �nding and correcting bugs in an existing binary

program. From a security point of view, a binary program can be checked for the existance of malicious code

(e.g. viruses) before it is run for the �rst time on a computer, in safety-critical systems where the compiler is not

trusted, the binary program is validated to do exactly what the original high-level language program intended to

do, and thus, the output of the compiler can be veri�ed in this way.

Di�erent attempts at writing decompilers have been made in the last 20 years. Due to the amount of information

lost in the compilation process, to be able to regenerate high-level language (HLL) code, all of these experimental

decompilers have limitations in one way or another, including decompilation of assembly �les[1, 2, 3, 4, 5] or object

�les with or without symbolic debugging information[6, 7], simpli�ed high-level language[1], and the requirement

of the compiler's speci�cation[8, 9]. Assembly programs have helpful data information in the form of symbolic

text, such as data segments, data and type declarations, subroutine names, subroutine entry point, and subrou-

tine exit statement. All this information can be collected in a symbol table and the decompiler would not need

to address the problem of separating data from instructions, or the naming of variables and subroutines. Object

�les with debugging information contain the program's symbol table as constructed by the compiler. Given the

symbol table, it is easy to determine which memory locations are instructions, as there is a certainty on which

memory locations represent data. In general, object �les contain more information than binary �les. Finally, the

requirement to have access to the compiler's speci�cations is impractical, as these speci�cations are not normally

disclosed by compiler manufacturers, or do not even exist.

Our decompiler, dcc, di�ers from previous decompilation projects in several ways; it analyses binary programs

rather than assembler or object �les, performs idiom

1

analysis to capture the essence of a sequence of instructions

with a special meaning, performs data 
ow analysis on registers and condition codes to eliminate them, and

structures the program's control 
ow graph into a generic set of high-level structures that can be accommodated

1

An idiom is a sequence of instruction that forms a logical entity and has a meaning that cannot be derived

by considering the primary meanings of the individual instructions
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into di�erent high-level languages, eliminating as much as possible the use of the goto statement.

The rest of this paper is structured in the following way; a thorough description of the structure of a decompiler

is given, followed by the description of our implementation of an automatic decompiling system, and conclusions.

The paper is followed by the de�nitions of graph theoretical concepts used throughout the paper (Appendix A),

and sample output from di�erent phases of the decompilation of a program (Appendix B).

The Decompiler Structure

Figure 1 about here

A decompiler can be structured in a similarway to a compiler, that is, a series of modules that deal with machine

or language dependent features. Three main modules are required: a machine-dependent module that reads in the

program, loads it into virtual memory and parses it (the front-end), a machine and language independent module

that analyses the program in memory (the universal decompiling machine), and a language-dependent module

that writes formatted output for the target language (the back-end) (see Figure 1). This modular representation

makes it easier to write decompilers for di�erent machine/target language pairs, by writing di�erent front-ends

for di�erent machines, and di�erent back-ends for di�erent target languages. This result is true in theory, but in

practical applications is always limited by the generality of the intermediate language used.

The Front-end

The front-end module deals with machine dependent features and produces a machine independent represen-

tation. It takes as input a binary program for a speci�c machine, loads it into virtual memory, parses it, and
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produces an intermediate representation of the program, as well as the program's control 
ow graph (see Fig-

ure 2).

Figure 2 about here

The parser disassembles code starting at the entry point given by the loader, and follows the instructions

sequentially until a change in 
ow of control is met. Flow of control is changed due to a conditional, unconditional

or indexed branch, or a procedure call; in which case the target branch label(s) start new instruction paths to

be disassembled. A path is �nished by a return instruction or program termination. All instruction paths are

followed in a recursive manner. Problems are introduced by machine instructions that use indexed or indirect

addressing modes. To handle these, heuristic methods are implemented. For example, while disassembling code,

the parser must check for sequences of instructions that represent a multiway branch (e.g. a switch statement),

normally implemented as an index jump in a jump table[10, 11]. Finally, the intermediate code is generated and

the control 
ow graph is built.

Two levels of intermediate code are required; a low-level representation that resembles the assembler from

the machine, and a higher-level representation that resembles statements from a high-level language. The initial

level, or low-level intermediate code, is a simple m : 1 mapping of machine instructions to assembler mnemon-

ics. Compound instructions (such as rep movs) are represented by a unique low-level intermediate intruction

(e.g. rep_movs). The second level, or high-level intermediate code, is generated by the interprocedural data 
ow

analysis, as explained in Section , and maps n : 1 low-level to high-level instructions. The front-end generates a

low-level representation.
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The semantic analysis phase performs idiom analysis and type propagation. Idioms are replaced by an ap-

propriate functionally equivalent intermediate instruction. For example, Figure 3 illustrates two di�erent idioms:

the one on the left-hand side is a negation of a long variable, represented in this case by registers dx:ax. The

idiom on the right-hand side is the prologue code of a high-level language procedure. In this case, space for 6

bytes is being reserved on the stack for local variables. There are a number of di�erent idioms widely known in

the compiler community, and the decompiler must code them in order to generate clearer high-level code.

Figure 3 about here

Type information is propagated after the idioms have been recognized. For example, if a long local variable is

found at stack o�sets -1 to -4, all references to [bp-2] and [bp-4] must be merged into references to such a long

variable, e.g. [bp-2]:[bp-4]. Other type information can be propagated in the same way, such as �elds (o�sets)

of a record.

An optimization phase is performed on the control 
ow graph as well. Due to the nature of machine code

instructions, the compiler might need to introduce intermediate branches in an executable program, because there

is no machine instruction capable of branching more than a certain maximum distance in bytes (architecture

dependent). An optimization pass over the control 
ow graph removes this redundancy, by replacing the target

branch location of all conditional or unconditional jumps that branch to an unconditional jump (and any recursive

branches in this format) with the �nal target basic block. While performing this process, some basic blocks are

not going to be referenced any more, as they were used only for intermediate branches. These nodes must be

eliminated from the graph as well.
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The Universal Decompiling Machine

The universal decompiling machine (UDM) is an intermediate module that is totally machine and language

independent. It deals with 
ow graphs and the intermediate representation of the program, and performs all the


ow analysis the input program needs (see Figure 4).

Figure 4 about here

Data Flow Analysis

The aim of the data 
ow analysis phase is to transform the low-level intermediate representation into a higher-

level representation that resembles a HLL statement. It is therefore necessary to eliminate the concept of condition

codes (or 
ags) and registers, as these concepts do not exist in high-level languages, and to introduce the concept

of expressions, as these can be used in any HLL program. For this purpose, the technology of compiler optimiza-

tion has been appropriated.

The �rst analysis is concerned with condition codes. Some condition codes are used only by hand-crafted as-

sembly code instructions, and thus are not translatable to a high-level representation. Therefore, condition codes

are classi�ed in two groups: HLCC which is the set of condition codes that are likely to have been generated

by a compiler (e.g. over
ow, carry), and NHLCC which is the set of condition codes that are likely to have

been generated by assembly code (e.g. trap, interrupt). The HLCC set is the one that can be analysed further.

Instructions that use condition codes in the NHLCC set mean that the subroutine is most likely non high-level,

and is therefore 
agged as being so; assembler is all that can be generated for these subroutines.

A use/de�nition, or reaching de�nition, analysis is performed on condition codes. In this way, for a given use

of a condition code c at instruction j, the use/de�nition chain (ud-cc()) determines which instruction(s) de�ned
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this condition. In practical cases, there is always only one instruction that de�ned the condition(s) used in the

instruction at j; (i.e. ud-cc(x) = fig). This set can be computed by a forward-
ow any-path algorithm[12, 13].

Once the set of de�ned/used instructions is known (i.e. (i; j)), these low-level instructions can be replaced by a

unique conditional high-level instruction that is semantically equivalent to the given instructions. Let us consider

the example in Figure 5, which illustrates this point. Instruction 2 uses the sign (SF) and zero (ZF) condition

codes. These 
ags were previously de�ned by instruction 1, which also de�nes the carry 
ag (CF). Given that

this instruction de�nes all 
ags used by the conditional jump, they can be merged into one high-level instruction

that compares the registers for the greater condition; i.e. JCOND (ax > bx).

Figure 5 about here

The second analysis is concerned with registers. The elimination of temporary registers leads to the elimination

of intermediate instructions by replacing several low-level instructions by one high-level instruction that does not

make use of the intermediate register. As with condition codes, some machine instructions are hand-crafted by

assembler programmers, and are untranslatable to a higher representation. We therefore classify the low-level

instructions into two sets: HLI which is the set of instructions that are representable in a high-level language

(e.g. mov, add), and NHLI which is the set of instructions that are likely to be generated only by assembly code

(e.g. cli, ins). This analysis is concerned only with instructions from the HLI set. Instructions from the NHLI

set belong to subroutines that are likely to have been written in assembler, or are untranslatable, and therefore

are 
agged as being so, and assembler is generated for them.

Two preliminary analyses are required for the elimination of registers. A de�nition/use analysis on registers is

needed to determine how many uses there are for a de�nition of a register. Note that register variables are not

eliminated by this analysis, as they represent local variables and thus are required in the �nal output program.
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This analysis can be solved in a backward-
ow any-path problem[12, 13]. Also, an interprocedural live register

analysis is required, to ascertain which registers are live on entrance and on exit from a basic block. This analysis

is also solved by known algorithms[12, 13].

Figure 6 about here

The method to eliminate registers has been named forward substitution as, by performing a forward substitution

of the symbolic contents of a de�ned register that is only used once on the instruction that uses it, the temporary

register is eliminated, the temporary instruction that de�ned the register is also eliminated, and the �nal

instruction that used the register is now de�ned in terms of an expression. Let us consider a modulo 10 example,

described in Figure 6. The registers si and di are register variables in this example. Register tmp is a virtual

register introduced by the parser whenever a DIV instruction is found, as DIV is equivalent to two low-level

instructions; a division and a modulus. Because they use the same registers as operands, and they rede�ne these

registers, a tmp register is introduced to hold the initial value of dx:ax. The substitution up to instruction 32 is

illustrated in the following code:

28 MOV ax, di ; ASGN ax, di

29 MOV bx, 0Ah ; ASGN bx, 0Ah

30 CWD ; ASGN dx:ax, di (substitute 28->30)

31 MOV tmp, dx:ax ; ASGN tmp, di (substitute 30->31)

32 DIV bx ; ASGN ax,tmp / bx (eliminate instruction)

Instruction 32 de�nes a register that is not going to be used, therefore this instruction is redundant and must

be eliminated. Any uses of the registers in the right-hand side of the instruction that is redundant need to be

backpatched to re
ect the non-existence of the instruction. After this step, the code would look like this:

29 MOV bx, 0Ah ; ASGN bx, 0Ah ; du(bx) = {33}

31 MOV tmp, dx:ax ; ASGN tmp, di

33 MOD bx ; ASGN dx, tmp % bx

34 MOV si, dx ; ASGN si, dx
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and the �nal substitutions would give the �nal result in instruction 34:

29 MOV bx,0Ah ; ASGN bx, 0Ah

31 MOV tmp,dx:ax ; ASGN tmp, di

33 MOD bx ; ASGN dx, di % 0Ah (substitute 31->33)

(substitute 29->33)

34 MOV si, dx ; ASGN si, di % 0Ah (substitute 33->34)

A complete algorithm that describes this data 
ow analysis can be found in References [14] and [15].

Control Flow Analysis

The control 
ow analyzer structures the control 
ow graph into generic high-level control structures that are

available in most languages. These are conditional (if..then[..else]), multiway branch (case), and di�erent

types of loops (while(), repeat..until(), and endless loop). Di�erent methods have been speci�ed in the

literature to structure graphs, most of them dealing with the elimination of goto statements from the graph,

by the introduction of new variables[16, 17], code replication[18, 19, 20] or the use of multilevel exit[21, 22].

Both the introduction of new variables and code replication modify the apparent semantics of the program, and is

therefore not desirable when decompiling binary programs, given that we want to decompile the code \as is". The

use of multilevel exit statements is not supported by commonly used languages (e.g. Pascal, C), and thus cannot

be part of the generic set of high-level control constructs that can be generated. We developed an algorithm

that structures the graph into the set of generic high-level control structures, and, whenever it determines that a

particular subgraph is not one of the generic constructs, it uses a goto. Note that the minimumnumber of gotos

is always used. This algorithm is described in Reference [23].

A second structuring phase can be implemented to check for short circuit evaluation graphs. These graphs

can be transformed into simpler graphs that hold two or more compound conditions on the one basic block,

rather than requiring to generate high-level code that uses two or more nested if..then statements. Figure 7

illustrates an example of a compound or condition. The top basic block checks for the equality of (si * 5) and

50. If this is false, a printf() node is reached. On the other hand, if the equality is true, a second condition is

checked; di < si. If this condition is true, the same printf() basic block is reached, otherwise some other code
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is reached. Rather than generating C code for these conditions that require a goto (as these conditions are not

properly nested), they can be merged into a compound or that negates the �rst condition, as the printf() node

is reached whenever the �rst condition is false, and leaves the second condition as it is, given that this condition

also reaches printf() when it is true. The intermediate basic block and edges are removed from the graph. The

complete structuring algorithm is described in References [24] and [15].

Figure 7 about here

The Back-end

The back-end module is language dependent, as it deals with the target high-level language. This module,

optionally restructures the graph into control constructs available only in the particular target language, and then

generates code for this language (see Figure 8).

Figure 8 about here

The restructuring phase is optional and aims at structuring the graph even further, so that control struc-

tures available in the target language but not present in the generic set of control structures of the structuring

algorithm, described in Section , are utilized. For instance, if the target language is Ada, multilevel exits are

allowed. After the graph has been structured, multilevel exits look like a loop with abnormal goto exits. The

restructuring phase can check the target destination of each goto, and determine if an exit(i) statement is

suitable instead. Another example is the for loop; such a loop is equivalent to a while() loop that makes use of

an induction variable. In this case, the induction variable needs to be found.
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The �nal phase is the HLL code generation, which generates code for the target HLL based on the cfg

and the associated high-level intermediate code. This phase de�nes global variables, and emits code for each

procedure/function followinga depth �rst traversal of the call graph of the program. Each procedure has comments

on information that was collected during the analysis of such procedure, such as whether the procedure is likely

to be low-level (in which case assembler is produced for the procedure), whether there were register arguments

used, which registers returned a function return value, and so on. While generating code, if a goto instruction is

required, a unique label identi�er is created and placed before the instruction that takes the label. Variables and

procedures are given names of the form loc1, proc2, as there is no information concerning their initial high-level

name. A user interface can be built to allow the user to name these variables and procedures with more signi�cant

names.

The Decompiling System

As mentioned in the introduction, the compiler start-up code is linked into the executable program, as well as

any library routines invoked by the program. Start-up code and library routines are often written in assembler,

and therefore may contain low-level machine instructions, making these routines untranslatable or di�cult to

translate into a HLL representation. In order to get as much information as possible on the program to be de-

compiled, we have developed a decompiling system that integrates a decompiler, dcc, and an automatic signature

generator, dccSign, as illustrated in Figure 9.

Figure 9 about here

A signature generator is a front-end module that generates signatures for compilers and library functions of

those compilers. Such signatures are stored in a database, and are accessed by dcc to check whether a subroutine is

a library function or not, in which case, the function is not analysed by dcc, but replaced by its library name (e.g.
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printf()). This module is completely automatic, and takes as input library functions[25]. A library signature

is a unique series of instructions that identi�es a library function for a particular compiler. Correspondently, a

compiler signature is a unique series of instructions that identi�es a particular version of a compiler. In practice,

di�erent compiler signatures are required for di�erent memory models (in the Intel architecture). Determining

compiler signatures helps the decompiler determine where the real entry to the program is, i.e. the main(), and

knowing the names of libraries functions makes the �nal program more readable.

At present, dccSign has been tested with Borland Turbo C, versions 2.1 and 3.0, Microsoft C, versions 5.0 and

8.0, and Borland Turbo Pascal version 4.0 and 5.0. The start-up code for these compilers is di�erent enough to

easily di�erentiate them. Borland and Microsoft provide the source code for their start-up code as part of their

compiler distribution, therefore, it is a matter of �nding the instruction that invokes main() to determine the

entry point to the original high-level program. This process eliminates the need to analyze about 10 procedures

that set up the environment for the particular compiler, and depend heavily on low-level machine instructions.

dcc is an experimental decompiler for the DOS operating system and the Intel i80286 architecture. As input,

dcc reads .com and .exe �les, and produces C programs as output (see Figure 10 for the structure of this de-

compiler). A disassembler is also part of dcc, so the user has the option of generating assembler �les, C �les,

or both. As seen in Figure 10, dcc does not implement the restructuring phase of the back-end. This is due to

the choice of target language, C in this instance, for which dcc generates good enough code without the need for

restructuring of control structures.

Figure 10 about here
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A signature checker module is inbuilt in dcc. This module determines if a known compiler is used, and therefore

returns the main() to that program. It also scans at each procedure entry the �rst n bytes of instructions with

a pattern-matching algorithm to see if the instructions correspond to any of the library routines of the compiler

used. If a correspondence exists, the rest of the procedure is disregarded for further HLL analysis and code

generation, its name and o�set are placed in the symbol table, and any references to this procedure are replaced

with the procedure's name. The decompilation of a sample program is given in Appendix B. The intermediate

representation and �nal program are given.

Summary and Conclusions

This paper presents a methodology for decompilation of binary programs, and describes the current devel-

opment state of dcc, a decompiler for the Intel 80286 architecture. The decompiler structure resembles that

of a compiler; three main modules are distinguished: the front-end which is machine-dependent, the universal

decompiling machine (UDM) which is machine- and language-independent, and the back-end which is language-

dependent.

The front-end deals with the loading of the binary program, parsing it, and producing an intermediate rep-

resentation of the program, and the program's control 
ow graph. The UDM performs data 
ow analysis in

order to eliminate non high-level language concepts, such as condition codes and registers, from the intermediate

representation, and to introduce the concept of expressions. The UDM also structures the control 
ow graph by

determining which high-level structures are used in the program. Finally, the back-end optionally performs the

restructuring needed to accommodate the structures found in the program into structures available in the target

high-level language, and generates high-level code for each procedure.

The introduction of a module for compiler and library signature detection, dccSign, has reduced the number

of routines to be decompiled, making the decompilation process faster, and providing better documentation of

the output C programs. Binary programs that do not match against any of the compiler signatures of dcc are
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decompiled entirely, i.e. all compiler start-up code, runtime support routines, and library subroutines are decom-

piled and analyzed.

This project has proven the feasibility of writing a decompiler for a contemporary machine architecture. Many

uses are envisaged for this decompiler, including software maintenance and security.
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A Graph Theoretical De�nitions

A basic block is a sequence of instructions that has a single entry point and a single exit point. These re-

quirements give the basic block the property that, if one instruction is executed, then all other instructions are

executed as well.

A control 
ow graph G is a tuple (N;E; h), where N is the set of nodes, E is the set of directed edges, and h

is the root of the graph. A node n 2 N represents a basic block. A path from n

1

to n

m
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1

! n
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, is

a sequence of edges (n
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; n
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; : : :g be the �nite set of procedures of a program. A call graph C is a tuple (N;E; h), where N
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2 P, E is the set of edges and (n

i
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j
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represents one or more references of p

i

to p

j

, and h is the main procedure.
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A du-chain for register x at statement i is the set of statements j where x could be used, given that x is de�ned

at statement i.

A ud-chain for register x at statement j is the set of statements i where x was de�ned.

B Example

This section illustrates an example of the decompilation of a simple C program. The sample program (see

Figure 16) calculates the �bonacci number of a given input number. Figure 11 illustrates the relevant machine

code of this binary. No library and compiler start up code is included. Figures 13 and 14 are the disassembly

of the binary program. All calls to library routines were detected by dccSign, and thus not included in the

analysis. Figure 15 is the �nal output from dcc. This C program can be compared with the original C program in

Figure 16. The decompiled program is functionally equivalent to the original C program, although some di�erences

are noticed. First of all, the recursive procedure proc_1() uses 2 local variables: one to copy a parameter, and

another to hold the �nal result of the function. The use of the �rst local could have been avoided if data 
ow

analysis was done across basic blocks. The second local cannot be deleted as this is the way the compiler compiled

the C program. Second, there is no unsigned use of the identi�ers in proc_1() to be able to know that the result

is an unsigned integer rather than a signed integer. Finally, the main() procedure makes use of a while() rather

than a for. In this program, 85 low-level instructions were converted into 16 high-level instructions; a reduction

in the number of instructions of 81.78%.

Figure 11 about here
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Figure 12 about here

Figure 13 about here
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neg dx push bp

neg ax mov bp, sp

sbb dx, 0 sub bp, 6

+

neg dx:ax enter 6,0

Figure 3: Sample Idioms and their Transformation
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ow graph

Figure 4: UDM Phases
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1 cmp ax, bx ; def: SF,ZF,CF

2 jg labZ ; use: SF,ZF ; ud-cc(SF,ZF) = {1}

+

JCOND (ax > bx)

Figure 5: Condition Code Example

.. ... ; other code here

28 MOV ax, di ; ASGN ax, di ; du(ax) = {30}

29 MOV bx, 0Ah ; ASGN bx, 0Ah ; du(bx) = {32,33}

30 CWD ; ASGN dx:ax, ax ; du(ax) = {31}, du(dx) = {31}

31 MOV tmp, dx:ax ; ASGN tmp, dx:ax ; du(tmp) = {32,33}

32 DIV bx ; ASGN ax, tmp / bx ; du(ax) = {}

33 MOD bx ; ASGN dx, tmp % bx ; du(dx) = {34}

34 MOV si, dx ; ASGN si, dx

.. ... ; other code here, no use of ax

+

ASGN si, di % 0Ah

Figure 6: Simple Expression Example
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jcond ((si * 5) == 50)

jcond (di < si)

printf()

other

.....

jcond (((si * 5) != 50) or (di < si))

printf() other

Figure 7: Short-circuit Evaluation Graph

?

?

?

HLL program

HLL Code Generation

Restructuring

high-level intermediate code

structured control 
ow graph

Figure 8: Back-end Phases

25



� 


�

�

�




J

Ĵ
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55 8B EC 83 EC 04 56 57 1E B8 94 00 50 9A

0E 00 3C 17 59 59 16 8D 46 FC 50 1E B8 B1 00 50

9A 07 00 F0 17 83 C4 08 BE 01 00 EB 3B 1E B8 B4

00 50 9A 0E 00 3C 17 59 59 16 8D 46 FE 50 1E B8

C3 00 50 9A 07 00 F0 17 83 C4 08 FF 76 FE 9A 7C

00 3B 16 59 8B F8 57 FF 76 FE 1E B8 C6 00 50 9A

0E 00 3C 17 83 C4 08 46 3B 76 FC 7E C0 33 C0 50

9A 0A 00 49 16 59 5F 5E 8B E5 5D CB 55 8B EC 56

8B 76 06 83 FE 02 7E 1E 8B C6 48 50 0E E8 EC FF

59 50 8B C6 05 FE FF 50 0E E8 E0 FF 59 8B D0 58

03 C2 EB 07 EB 05 B8 01 00 EB 00 5E 5D CB

Figure 11: Machine Code (hexadecimal format)

File type is EXE

Signature = 4D5A

File size % 512 = 0176

File size / 512 = 0018 pages

# relocation items = 006A

Offset to load image = 0020 paras

Minimum allocation = 0000 paras

Maximum allocation = FFFF paras

Load image size = 2D76

Initial SS:SP = 02D9:00E6

Initial CS:IP = 0010:0000

Figure 12: Information provided by the Loader
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proc_1 PROC FAR

000 00053C 55 PUSH bp

001 00053D 8BEC MOV bp, sp

002 00053F 56 PUSH si

003 000540 8B7606 MOV si, [bp+6]

004 000543 83FE02 CMP si, 2

005 000546 7E1E JLE L1

006 000548 8BC6 MOV ax, si

007 00054A 48 DEC ax

008 00054B 50 PUSH ax

009 00054C 0E PUSH cs

010 00054D E8ECFF CALL near ptr proc_1

011 000550 59 POP cx

012 000551 50 PUSH ax

013 000552 8BC6 MOV ax, si

014 000554 05FEFF ADD ax, 0FFFEh

015 000557 50 PUSH ax

016 000558 0E PUSH cs

017 000559 E8E0FF CALL near ptr proc_1

018 00055C 59 POP cx

019 00055D 8BD0 MOV dx, ax

020 00055F 58 POP ax

021 000560 03C2 ADD ax, dx

023 00056B 5E L2: POP si

024 00056C 5D POP bp

025 00056D CB RETF

026 000566 B80100 L1: MOV ax, 1

027 000569 EB00 JMP L2

proc_1 ENDP

main PROC FAR

000 0004C2 55 PUSH bp

001 0004C3 8BEC MOV bp, sp

002 0004C5 83EC04 SUB sp, 4

003 0004C8 56 PUSH si

004 0004C9 57 PUSH di

005 0004CA 1E PUSH ds

006 0004CB B89400 MOV ax, 94h

007 0004CE 50 PUSH ax

008 0004CF 9A0E004D01 CALL far ptr printf

009 0004D4 59 POP cx

010 0004D5 59 POP cx

011 0004D6 16 PUSH ss

012 0004D7 8D46FC LEA ax, [bp-4]

013 0004DA 50 PUSH ax

014 0004DB 1E PUSH ds

Figure 13: Low-level Intermediate Code
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015 0004DC B8B100 MOV ax, 0B1h

016 0004DF 50 PUSH ax

017 0004E0 9A07000102 CALL far ptr scanf

018 0004E5 83C408 ADD sp, 8

019 0004E8 BE0100 MOV si, 1

021 000528 3B76FC L3: CMP si, [bp-4]

022 00052B 7EC0 JLE L4

023 00052D 33C0 XOR ax, ax

024 00052F 50 PUSH ax

025 000530 9A0A005A00 CALL far ptr exit

026 000535 59 POP cx

027 000536 5F POP di

028 000537 5E POP si

029 000538 8BE5 MOV sp, bp

030 00053A 5D POP bp

031 00053B CB RETF

032 0004ED 1E L4: PUSH ds

033 0004EE B8B400 MOV ax, 0B4h

034 0004F1 50 PUSH ax

035 0004F2 9A0E004D01 CALL far ptr printf

036 0004F7 59 POP cx

037 0004F8 59 POP cx

038 0004F9 16 PUSH ss

039 0004FA 8D46FE LEA ax, [bp-2]

040 0004FD 50 PUSH ax

041 0004FE 1E PUSH ds

042 0004FF B8C300 MOV ax, 0C3h

043 000502 50 PUSH ax

044 000503 9A07000102 CALL far ptr scanf

045 000508 83C408 ADD sp, 8

046 00050B FF76FE PUSH word ptr [bp-2]

047 00050E 9A7C004C00 CALL far ptr proc_1

048 000513 59 POP cx

049 000514 8BF8 MOV di, ax

050 000516 57 PUSH di

051 000517 FF76FE PUSH word ptr [bp-2]

052 00051A 1E PUSH ds

053 00051B B8C600 MOV ax, 0C6h

054 00051E 50 PUSH ax

055 00051F 9A0E004D01 CALL far ptr printf

056 000524 83C408 ADD sp, 8

057 000527 46 INC si

058 JMP L3 ;Synthetic inst

main ENDP

Figure 14: Low-level Intermediate Code { cont
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/* Input file : fibo.exe

* File type : EXE

*/

int proc_1 (int arg0)

/* Takes 2 bytes of parameters.

* High-level language prologue code.

* C calling convention.

*/

{

int loc1;

int loc2; /* ax */

loc1 = arg0;

if (loc1 > 2) {

loc2 = (proc_1 ((loc1 - 1)) + proc_1 ((loc1 + -2)));

}

else {

loc2 = 1;

}

return (loc2);

}

void main ()

/* Takes no parameters.

* High-level language prologue code.

*/

{

int loc1;

int loc2;

int loc3;

int loc4;

printf ("Input number of iterations: ");

scanf ("%d", &loc1);

loc3 = 1;

while ((loc3 <= loc1)) {

printf ("Input number: ");

scanf ("%d", &loc2);

loc4 = proc_1 (loc2);

printf ("fibonacci(%d) = %u\n", loc2, loc4);

loc3 = (loc3 + 1);

} /* end of while */

exit (0);

}

Figure 15: Final C Program
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#include <stdio.h>

int main()

{ int i, numtimes, number;

unsigned value, fib();

printf("Input number of iterations: ");

scanf ("%d", &numtimes);

for (i = 1; i <= numtimes; i++)

{

printf ("Input number: ");

scanf ("%d", &number);

value = fib(number);

printf("fibonacci(%d) = %u\n", number, value);

}

exit(0);

}

unsigned fib(x) /* compute fibonacci number recursively */

int x;

{

if (x > 2)

return (fib(x - 1) + fib(x - 2));

else

return (1);

}

Figure 16: Initial C Program
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