
A Methodology for Decompilation

�

Cristina Cifuentes K.John Gough

cifuente@�tmail.qut.edu.au gough@�tmail.qut.edu.au

School of Computing Science

Queensland University of Technology

GPO Box 2434, Brisbane, QLD 4001, Australia

Abstract

A proposed methodology for decompilation of binary

programs is presented, along with a description of a

particular implementation of this methodology, dcc.

dcc is a decompiler for the Intel 80x86 architecture,

which takes as input a binary program from a DOS

environment and produces C programs as output.

The decompiler has been divided into three separate

modules which resemble the structure of the compiler.

The front-end module is machine dependent and per-

forms the loading and parsing of the program, as well

as the generation of an intermediate representation.

The universal decompiling machine module is machine

and language independent, and performs all the 
ow

analysis of the program. Finally, the back-end module

is language dependent and deals with the details of the

target high level language.

Even though the problem of decompilation is insol-

uble in general, a partial solution can be found, which

gives information about the binary program. This pa-

per describes some of the results found so far.

[Key words: decompiler, reverse compiler, halting

problem]

1 Introduction

A compiler is an executable program that takes as

input a program written in a high level language and

produces as output an executable program for a tar-

get machine; in other words, the input is language

dependent and the output is machine dependent. A

0

appeared in XIX Conferencia Latinoamericana de In-

form�atica, Buenos Aires, Argentina, 2-6 August 1993, pp. 257-

266.

decompiler, or reverse compiler, attempts to perform

the inverse process: given an executable program the

aim is to produce a high level language program that

performs the same function as the executable program.

The input in this case is machine dependent, and the

output is language dependent.

Compilers have been around since the early 1950s

and there are widely known methods for writing com-

pilers for any language. Decompilers, on the other

hand, have been around only since the 1960s and there

is no accepted methodology for their construction. It

would be desirable for decompilers to perform auto-

matic program translation as compilers do, but unfor-

tunately this is not possible as decompilation is insol-

uble in general.

A naive approach to decompilation attempts to

enumerate all valid phrases of an arbitrary attribute

grammar, and then to perform a reverse match of

these phrases to their original source code. An al-

gorithm to solve this problem has been proved to be

halting problem equivalent[1]. A more sensible ap-

proach is to try to determine which addresses con-

tain data and which ones contain instructions in the

given binary program. Given that in a Von Neumann

machine, data and instructions are represented in the

same way in the computer memory, an algorithm that

solves this data/instruction problem would also solve

the halting problem[2], and that is impossible. This

means that the decompilation problem belongs to the

class of non-computable problems; it is equivalent to

the halting problem, and is therefore only partially

computable[3]. In other words, we can build a decom-

piler which produces the right output for some input

programs, but not for all input programs in general.

The reader might ask, \why are we interested in build-

ing a decompiler". There are two reasons: �rst, to get

a solution for the cases for which it is possible (i.e. to



recover source code), and second, to get some infor-

mation about the underlying algorithm used by the

input program in the cases that do not have a com-

plete solution.

This paper proposes a methodology for decompila-

tion, and describes the current development state of

dcc, a decompiler project currently under development

at the Queensland University of Technology (QUT). A

brief description of the use of decompilers throughout

the last decades is given, the proposed methodology

and phases are explained, followed by an explanation

of the implementation of dcc, a summary and conclu-

sions.

1.1 Previous Work

The �rst decompilers were used as tools in the

translation of software from second to third genera-

tion machines in the 1960s. The very �rst decompiler

was developed by Maurice Halstead at the Navy Elec-

tronic Labs[4]. This decompiler took machine code for

the IBM 7094

R


as input and produced Neliac code for

the Univac 1108

R


, whenever possible. It 
agged am-

biguities and produced inline assembler for pieces of

code that could not be decompiled.

In the 1970s and 1980s, decompilers were used to

port programs, recreate lost source code, modify ex-

isting binaries, document, and debug binaries. The

Piler system[5] was an attempt at a general decom-

piler for a large class of source-target language pairs.

Because of the large number of languages and oper-

ating systems it tried to cover, it was never �nished.

The decomp decompiler[6] took as input VAX

R


BSD

4.2

R


object �les and produced C-like code. Although

this decompiler worked correctly, it is not a complete

decompiler given that it takes as input an object �le

with symbol table information (i.e. the program must

have been compiled with the debugging 
ag on), in-

stead of a binary �le without symbol table informa-

tion. In general, di�erent techniques for decompila-

tion were implemented, including pattern matching

of assembler instructions[7]; which does not prove to

be ideal, and graph oriented methods[8, 9] which are

suitable for this job. Most of these methods limited

themselves to the analysis of the underlying graph and

took as granted the problem of separation of data from

instructions, given that their input programs were as-

sembler �les rather than binary �les. This assumption

simpli�es the problem considerably.

Figure 1: Decompiler Modules

In the 1990s, decompilation has become part of

a wider area, reverse engineering. In brief, reverse

engineering attempts to produce source code from

object code by the use of disassemblers, decompilers,

debuggers, and related tools. Some people believe

that reverse engineering commercial programs violates

an author's copyright and exclusive right to make

copies, whereas others debate that this is not the case

since fair use permits the copying of programs for the

purpose of learning the idea behind the product; the

idea not being protected by the copyright law[10]. In

Europe, the European Parliament decided to permit

reverse engineering of products for the sole purpose

of interoperability[11], and a similar law has been

proposed in Australia[12]. USA and Japan have laws

to permit reverse compilation; in Japan's case there

is no provision for fair use, whereas in the USA

decompilation is permitted if it quali�es under fair

use[13].

2 Proposed Methodology

This section presents a proposed methodology for

reverse compilation of programs. We are not con-

cerned at this moment with any particular machine

or language, all we are given is a binary program and

we need to produce another program in a high level

language. The output language is not necessarily the

language from which the program was compiled.



binary program

Loader

Intermediate Code
Generator

Parser

intermediate code

Figure 2: Front-end Phases

A decompiler can be structured in a similar way

to a compiler, that is, by a series of modules that

deal with machine or language dependent features.

It is proposed to have three main modules dedicated

to these features; a machine dependent module that

reads in the program, loads it into virtual memory and

parses it (the front-end), a machine and language inde-

pendent module that analyses the program in mem-

ory (the universal decompiling machine), and a lan-

guage dependent module that writes formatted output

for the target language (the back-end) (refer to Fig-

ure 1). In this way, di�erent front-ends can be used

for di�erent machines, and di�erent back-ends can be

built for di�erent target languages; this makes it eas-

ier to write decompilers for di�erent machine/target

language pairs.

2.1 The Front-end

The front end module deals with machine depen-

dent features and produces a machine independent

representation. It takes as input a binary program

for a speci�c machine, loads it into virtual memory,

parses it, and produces an intermediate representa-

tion of the program (see Figure 2).

The loader is an operating system program that

loads an executable program into memory if there is

su�cient free memory available, sets up the segment

registers and the stack, and transfers control to the

program. The decompiler's loader must perform a

similar function by allocating dynamic memory (vir-

tual memory) to load the program, loading it, relocat-

ing addresses speci�ed in the relocation table, and set-

ting up the initial contents of registers. Note that ex-

ecutable �les do not contain much information about

which segments are used as data and which ones are

used as code, data segments can contain code and/or

addresses.

The parser decides the type of machine instruction

at a given memory location, determines its operands

and any o�sets involved. The parsing of machine in-

structions is not as easy as it might appear. First of

all, there are addressing modes that depend on the

value of variables or registers at runtime. Second,

indexed and indirect access to memory locations are

di�cult to resolve. Third, the complex machine in-

struction sets in today's machines utilize almost all

combination of bytes, and therefore it is very hard to

determine if a given byte is an instruction or is data.

Fourth, there is no di�erence as to how data and in-

structions are stored in memory in a Von Neumann

machine. Finally, idioms

1

are used by compiler writ-

ers to perform a function in the minimal number of

machine cycles, and therefore a group of instructions

will make sense only in a logical way, but not individ-

ually.

In order to determine which bytes of information

are instructions and which ones are data, we start at

the unique entry point to the program, given by the

loader. This entry point must the �rst instruction for

the program, in order to begin execution. From there

on, instructions are parsed sequentially, until the 
ow

of control changes due to a branch, a procedure call,

etc. In this case, the target location is like a new entry

point to part of the program, and from there onwards,

instructions can be parsed in the previous way. Once

there are no more instructions to parse, due to an end

of procedure or end of program, we return to where

the branch of control occurred and continue parsing

at that level. This method traverses all possible in-

struction paths. At the same time, data references

are placed in a global or local symbol table, depend-

ing on where the data is stored (i.e. as an o�set on

the stack, or at a de�nite memory location).

A major problem is introduced by the access of in-

dexed and indirect memory instructions and locations.

1

An idiom is a sequence of instructions which forms a logical

entity and has a meaning that cannot be derived by considering

the primary meanings of the individual instructions.



To handle these, heuristic methods need to be imple-

mented to determine as much information as possible;

analytic methods, such as emulation, cannot provide

the whole range of solutions anyway. In general, it

is impossible to solve these types of problems as they

are equivalent to solving the halting problem, as pre-

viously mentioned.

Di�erent problems are introduced by self-modifying

code and virus tricks. A way to tackle these cases is

to 
ag the sections of code involved, and comment

them in the �nal program. Assembler code might be

all that can be produced in these cases. Even more,

a suggested optimal algorithm for parsing consists in

�nding the maximumnumber of trees that contain in-

structions; this is a combinatorial method that has

been proved to be NP-complete[2]. For dense ma-

chine instruction sets, this algorithm does not solve

the problem of data residing in code segments.

The intermediate code generator produces an

intermediate representation of the program. It works

close together with the parser, invoking it to get the

next instruction. Each machine instruction gets trans-

lated into an intermediate code instruction, such rep-

resentation being machine and language independent.

De�ned/used (du) chains of registers are also attached

to the intermediate instruction; these are used later in

the data 
ow analysis phase.

The quality of the intermediate code can be im-

proved by an optimization stage that eliminates any

redundant instructions, �nds probable idioms, and re-

places them by an appropriate intermediate instruc-

tion. Many idioms are machine dependent and reveal

some of the semantics associated with the program at

hand. Such idioms represent low level functions that

are normally provided by the compiler at a higher level

(e.g. multiplication and division of integers by pow-

ers of 2). Other idioms are machine independent and

they re
ect a shortcut used by the compiler writer

in order to get faster code (i.e. fewer machine cycles

for a given function), such as the addition and sub-

straction of long numbers. Some of these idioms are

widely known in the compiler community, and should

be coded into the decompiler.

2.2 The Universal Decompiling Machine

The universal decompiling machine (UDM) is an

intermediate module which is totally machine and lan-

guage independent. It deals with 
ow graphs and the

CFG generator

Control Flow
Analysis

Data Flow
Analysis

intermediate code

control flow graph
&

intermediate code

Figure 3: UDM phases

intermediate representation of the program, and per-

forms all the 
ow analysis the input program needs

(see Figure 3).

The control 
ow graph (cfg) generator con-

structs a cfg of basic blocks

2

for each procedure. A cfg

is a connected, directed graph with nodes represent-

ing basic blocks and directed arcs representing 
ow of

control from one node to another. Each basic block

needs to record information such as predecessors, suc-

cessors, and associated intermediate code. The type of

a basic block is determined by the �nal intermediate

instruction that changes the 
ow of control, such as

unconditional or conditional branch, procedure call,

procedure return, self loops, n-way branch, and end of

program. When any of these instructions is met, the

end of a basic block is reached as well. There is one

other type of basic block, the one that falls through a

labelled

3

basic block. Given that backward branches

may split a basic block into two, and hence create a

labelled basic block, two passes are needed to generate

the graph; one to create a list of basic blocks, and the

next to transform this list into a graph of basic blocks.

Due to the nature of machine code instructions,

the compiler might need to introduce intermediate

branches in an executable program, because there is no

machine instruction capable of branching more than a

2

A basic block is a sequence of instructions that has a single

entry point and a single exit point.

3

A labelled basic block is one whose entry point is the target

of a branch.



certain maximum distance in bytes (architecture de-

pendent). An optimization pass over the cfg removes

this redundancy, by replacing the target branch lo-

cation of all conditional or unconditional jumps that

branch to an unconditional jump (and any recursive

branches in this format) with the �nal one. While per-

forming this process, some basic blocks are not going

to be referenced any more, as they were used only for

intermediate branches. These nodes must be elimi-

nated from the graph as well.

The control 
ow analysis phase is concerned

with the analysis of the 
ow of control of the cfg. First

of all, this phase needs to determine the type of graph

it is dealing with (reducible or irreducible), and then,

for reducible graphs only, structure the graph into a

set of high level language constructs.

Flow graphs produced by structured languages

that do not make use of the goto statement are

reducible[14, 15]. Structured control constructs such

as while loops, for loops, if..then..elses, case

statements, multiexit loops, and multilevel exits,

found in commonly used languages such as C, Pas-

cal, Modula-2 and Ada, will always produce reducible


ow graphs. Unstructuredness is introduced by the

use of goto statements, either available in the lan-

guage (e.g. C, Pascal) or introduced by the optimizer.

Given that we do not know whether the optimizer has

unstructured a graph or not, it is not safe to say that

even languages that do not implement the goto (e.g.

Modula-2, Bliss), will produce structured graphs. And

given that most languages allow for the use of gotos,

there is a small probability that the graph at hand is

irreducible and needs to be converted into a reducible

one.

Graph reducibility is a concept introduced by

Frances Allen [16, 17] and de�ned in terms of inter-

vals, a graph construct de�ned by John Cocke [18].

An interval headed at node h is the maximal single-

entry subgraph in which h is the unique entry node

and in which all closed paths contain h. By selecting

the proper set of header nodes, a 
ow graph G can

be partitioned into a unique set of disjoint intervals.

The process of reducibility consists in constructing a

series of graphs, G

1

: : :G

n

, by collapsing the intervals

of the graph into a single node. The limit 
ow graph

G

n

determines whether the original graph G � G

1

is

reducible; if G

n

is a trivial graph, G is reducible, oth-

erwise it is irreducible.

Irreducible graphs can always be transformed into

functionally equivalent reducible graphs by a method

of node replication known as node splitting; di�erent

algorithms have been speci�ed in the literature[19, 18,

14]. Although node splitting does not assure the gen-

eration of a reducible graph, successive applications of

interval reduction and node splitting will always trans-

form an irreducible graph into a reducible one[14]. In

practical cases, node splitting needs to be applied only

once.

A structuring algorithm determines which high

level language (hll) structures are present in the graph.

We are concerned with control structures that are

available in most languages; loops, conditionals, and

case statements, and that form the basis for the cre-

ation of other control structures. The structuring al-

gorithm determines where hll constructs are, as well

as their extent. A predetermined set of hll con-

structs should be selected from the most commonly

used constructs in current high level languages. This

set forms the basis for the algorithm. Common con-

structs should include loops and conditionals. When-

ever there is a piece of code that cannot be structured

using the selected constructs, a goto is used instead

and the target node is 
agged as needing a label dur-

ing code generation.

The data 
ow analysis phase makes use of com-

piler optimization theory to analyse the data and de-

termine its type, temporary variables used for inter-

mediate operations, expressions described in the inter-

mediate code, arguments to procedures and functions,

and values returned by functions. Def/use chains have

been built for registers during the parsing stage, and

they are now used to determine expressions. Aliases

and value sets of each variable are tracked in order

to generate better and easier to understand high level

language code. In order to collect as much informa-

tion as possible, global data 
ow analysis would be

desirable.

2.3 The Back-end

The back end module is language dependent, as

it deals with the target high level language. This

module, optionally, restructures the graph into con-

trol constructs available only in the particular target

language, and then generates code for this language

(see Figure 4).



C code generator

hll program

Restructur ing

control flow graph
&

intermediate code

Figure 4: Back-end Phases

The restructuring stage is optional and it aims

at structuring the graph even further, so that con-

trol structures available in the target language but not

present in the set of control structures of the structur-

ing algorithm (see section 2.2) are utilized. For in-

stance, if the target language is Ada, multilevel exits

are allowed. After the graph has been structured, mul-

tilevel exits will look like a loop with abnormal goto

exits. The restructuring stage can check the target

destination of each goto, and determine if an exit(i)

statement is suitable instead. Another example is the

for loop; such a loop is equivalent to a while loop

that makes use of an induction variable. In this case,

the induction variable needs to be found.

The �nal stage is the code generation, which

emits code for the target language based on the cfg and

the associated intermediate code. First of all, global

variables are de�ned according to their type, described

in the global symbol table. Then, code is emitted

on a procedure by procedure basis, following a depth

�rst traversal of the cfg. For each procedure, local

variables are de�ned according to the type speci�ed in

the local symbol table. The 
ow of control is given by

the type of basic block in hand, and sequential code

is produced for each basic block from its associated

intermediate code. Whenever a basic block has been


agged as needing a label, a unique label is emitted

and any branches to the entry of this basic block are

replaced by gotos. All variables get assigned names

of the form, var1, var2, etc, given that there is not

enough information concerning their use. In the same

way, procedures are named proc1, proc2, and so on.

Any data types and simple functions not supported

binary program
(exe, com)

CFG generator

C code generator

Loader

Asm code
generator

C program

asm program

Intermediate Code
Generator

Parser

Control Flow
Analysis

Data Flow
Analysis

Figure 5: Structure of dcc

by the target language must be placed in a header �le

which should be imported by the decompiled program.

3 The RevComp Project

The Reverse Compilation project (RevComp) is

currently under development by the School of Com-

puting Science at QUT. Its aim is to produce a de-

compiler for the Intel 80x86

R


architecture, dcc, which

takes as input .exe or .com �les from a DOS envi-

ronment and produces C programs as output. C was

selected as the target output language, given its 
exi-

bility, ease of low level manipulation, and portability.

This decompiler is currently being implemented on a

DECstation 3100

R


where a virtual 80x86 machine is

built.

The dcc decompiler di�ers from previous decompi-

lation projects in several ways. First of all, binary

programs are analysed instead of assembler or object

�les. Given that we are dealing with Von Neumann

machines, heuristic methods are used to separate in-

structions from data. Second, reducibility of the un-

derlying program's control 
ow graph is checked for,



as irreducible programs can be produced by the op-

timizer (even if the language does not use gotos, as

previously discussed). Third, well known idioms de-

pendent on the computer architecture are checked for

and replaced by their logical meaning. Fourth, a data


ow analysis phase is to be implemented to determine

the type of data being used and related data issues.

Finally, restructuring of control structures according

to the target high level language constructs has been

introduced as an optional stage, in order to eliminate

as much as possible the use of gotos, and maximize

the number of hll constructs used.

The main structure of dcc is illustrated in Figure 5.

This structure follows the proposed method, and it

also integrates a disassembler in the system, given that

assembler code can be produced once the program is

parsed; no constructs or data need to be analysed in

this case. The following paragraphs highlight some of

the more important aspects of this project.

3.1 Implementation aspects

One of the heuristic methods implemented in dccis

a widely known implementation of case statements

by the use of indexed tables. Figure 6 is a par-

ticular implementation of case statements in the

8086. In this case, an assembler statement of the

form jmp word ptr CS:0DE0[bx] does not provide

the necessary information to calculate the target jump

address. A known idiom is to check for lower and

upper bounds before indexing into a table. In this

way, the statements preceding the indexed jump will

very likely have the information that we need; the

bounds of the bx register. This heuristic method

works in most cases. In our example, the statements

cmp ax,17h and jbe labA check for the contents of

the register ax to be between 0 and 23, in which case

the o�set into the table is calculated in register bx and

the indexed jump is performed; otherwise, an uncon-

ditional jump to the end of the case statement code

occurs.

Heuristics are also needed when building the con-

trol 
ow graph, speci�cally, when trying to determine

the extent of a basic block that reaches the end of

program. In any DOS executable, there are 7 di�er-

ent possible ways of exiting a program. They are all

based on interrupts and some of them depend on the

contents of certain registers. Our approach is to sim-

ulate the state of the virtual machine for most of the

registers, so that when an interrupt is reached, the

...

cmp ax,17h

jbe labA

jmp labZ

labA:

mov bx,ax

shl bx,1

jmp word ptr CS:0DE0[bx]

CS:0DE0 dw lab1

CS:0DE2 dw lab2

...

CS:0EOE dw lab24

CS:0E10 lab1:

...

CS:11C7 lab24:

...

CS:11F4 labZ: ; end of case

...

Figure 6: An implementation of indexed tables

contents of the required registers can be checked for.

A di�cult case is presented with indirect procedure

calls or indexed branches that do not �t into our case

statement idiom. No heuristic method has been imple-

mented yet for these cases, and therefore, we 
ag the

corresponding basic block as going nowhere. No more

instructions are parsed after such instructions along

the current path, and the basic block is �nished. In

the case of indirect and indexed data accesses, these

locations are not placed in the symbol table, and we

expect later data 
ow analysis to provide us with a

plausible data type for these variables, based upon

their use.

Several idioms are considered, some machine depen-

dent and others more general. Amongst the machine

dependent idioms are: procedure entry preamble, pro-

cedure exit postamble, and number of local variables

de�ned in the stack by decreasing the contents of reg-

ister sp. General idioms are machine independent,

and cover functions like: multiplication and division

of integers by powers of 2 by shifting the register left

or right, swapping variables, and access to local vari-

ables as o�sets on the stack.

The intermediate language used in this project is a

simple, assembler-like, 3-address code representation



where all the operands are made explicit; it has been

named Icode. Icode provides an n:1 mapping of as-

sembler to Icode instructions (e.g. all assembler add

instructions (0x00..0x05) are handled by the one Icode

add instruction).

Once the control 
ow graph has been built, the op-

timization pass that removes redundant intermediate

branches has reduced the size of the cfg by up to 50%

in di�erent programs tested by dcc. This simpli�es

the structure of the graphs in hand.

Checking for reducibility has been implemented by

constructing the derived sequence of graphs G

1

: : :G

n

and �nding their intervals; the implementation makes

use of pointers. If the cfg is found to be irreducible,

the graph is 
agged at this stage; node splitting has

not yet been implemented as only a minority of graphs

are found to be irreducible.

The set of high level language constructs that was

selected as the base set for the structuring algorithm

are: if..then, if..then..else, case statement,

while loop, repeat loop, and endless loop. These

constructs are used in most high level languages (e.g.

C, Modula2, Pascal, Ada). These constructs belong

to three major groups; loops, cases (n-way branch),

and conditionals. The algorithm makes use of the

G

1

: : :G

n

graphs to �nd nested loops, and the immedi-

ate dominators to �nd conditionals and n-way branch

(a reverse walk of the underlying tree is performed in

these cases). Any abnormal exits from these control

structures make use of a goto statement. A detailed

explanation of this algorithm can be found in [20].

The data 
ow analysis stage has not yet been im-

plemented. Instead, code generation has been imple-

mented to get a feel for the type of output expected

from dcc.

3.2 Results

At present, the output C programs from dcc re
ect

the control structures of the program, but the instruc-

tions are still low level (i.e. assembler-like). More

idioms are currently being coded into dcc. Such id-

ioms are mostly machine independent as they give a

semantic interpretation to a group of instructions. For

example, the absolute value of a number placed in reg-

ister eax can be calculated in the following way: the

sign of the number is moved to the carry bit, a tem-

porary register, ecx, is substracted with borrow from

itself (in order to get all zeros for positive numbers

bt eax, 31 ; sign -> carry

sbb ecx, ecx ; all 0s or 1s

sbb eax, 0 ; -1 if negative

xor eax, ecx ; not if negative

Figure 7: Idiom for an absolute value

or all ones for negative numbers), then zero is sub-

stracted from the original number in eax; resulting in

-1 if the number is negative, and �nally an xor of both

registers (eax, ecx) will negate a negative number, or

leave a positive number unmodi�ed. This sequence of

instructions should be translated to a abs(x), where

x is the variable placed in eax (refer to Figure 7).

Programs decompiled by dcc make use of an in-

clude header �le which de�nes simple data types (byte,

word), has macros to manipulate such data types, de-

�nes macros to manipulate the registers (accessed in

C with a union REGS structure that is de�ned to be

global for the whole program), de�nes constants such

as true and false, and includes simple functions not

supported by C, such as swap.

One of the major problems that we face is the

amount of extra code included by the compiler, such as

setup procedures and libraries (i.e. not all included li-

brary functions are normally invoked by the program),

that is indistinguishable from procedures written by a

programmer (given that most of the library procedures

have a procedure preamble and postamble, just as any

other user procedure). This means that for a program

that displays `hello world' on the screen with the use

of printf in C, 23 procedures are decompiled. The

same program written in Pascal produces more than

40 procedures. An initial solution was to check for

compiler signatures

4

, but this is not feasible as, even

if we know the compiler that compiled the code, not

even pattern matching of the decompiled code with

the start of each library procedure would be possible

given that di�erent memory models in the PC pro-

duce di�erent entries for the same piece of code. Our

new solution is to let the user decide for himself which

procedures he is interested in, after decompiling all

4

A compiler signature is a string placed by the compiler in a

data section of the binary �le. Normally it contains such details

as the company name, compiler, and release version.



the available procedures and giving some indication as

to which procedures appear to be low level (possibly

hand-coded in assembler due to the machine instruc-

tions that are used, and by not having a procedure

preamble or postamble).

There is an obvious need for a data 
ow analysis

stage, which is planned to be implemented next. This

stage will be able to determine expressions, temporary

variables that can be removed, and provide a more pre-

cise data type for the variables (i.e. according to the

use of the variable).

The output from dcc provides comments at di�er-

ent levels depending on the switch speci�ed by the user

when running dcc. By default, procedures have com-

ments for most of the DOS interrupts, to re
ect the

function that has been invoked. Available switches for

extra information are, `v' for verbose and `V' for very

verbose. The `v' switch displays information about

the binary �le (�le size, �le type, number of relocation

items, and maximummemory allocated), a tree of the

procedures found, along with any 
ags that were set

up during this procedure, and the basic blocks found

during the creation of the graph. The `V' switch dis-

plays the relocation table (if any), the control 
ow

graph, and the derived sequence of graphs, along with

all their interval information.

Other switches available in dcc are: `a' to produce

assembler output, `m' to display the memory map (i.e.

data, instructions, bytes used as data and instructions,

and unknown areas), `p' to print the procedure list,

and `s' to print statistics about the graph optimization

stage.

4 Summary and Conclusions

This paper has proposed a methodology for decom-

pilation of binary programs, and describes the current

development state of dcc, a decompiler for the Intel

80x86 architecture, built upon the proposed method-

ology. The decompiler structure resembles that of a

compiler; three main modules are distinguished: the

front-end which is machine dependent, the universal

decompilingmachine (udm) which is machine and lan-

guage independent, and the back-end which is lan-

guage dependent.

The front-end deals with the loading of the binary

program, parsing it, and producing an intermediate

representation of the program (Icode). The udm con-

structs a graph for each procedure, associates the in-

termediate representation with each node, checks for

graph reducibility, determines which high level struc-

tures are used in the program, and performs a data


ow analysis in order to learn how data is used in the

program and be able to determine probable data types

for the existing variables. Finally, the back-end per-

forms the restructuring needed to accommodate the

structures found in the program into structures avail-

able in the target high level language, and emits global

variable information and code for each procedure.

The dcc decompiler takes as input DOS executable

programs (.exe and .com) and produces C programs as

output. It is in its � stage, and it implements most of

the stages de�ned in the proposed methodology. Cur-

rently, data 
ow analysis has not been implemented,

therefore the output C programs are still assembler-

like. The control structures of the program are well

de�ned, and variables are de�ned in terms of the types

byte, word, or string. Even though the decompila-

tion problem is insoluble in general, partial solutions

provide some information about the original program.

Future releases are expected.

Acknowledgements

We would like to thank Je� Lederman for clarifying

some of the concepts associated with this project.

This research is partly funded by Australian Research

Council (ARC) grant no.A49130261.

References

[1] P.T.Breuer and J.P.Bowen, \Decompilation: The

enumeration of types and grammars," Tech. Rep.

PRG-TR-11-92, Oxford University Computing

Laboratory, 11 Keble Road, Oxford OX1 3QD,

1992.

[2] R.N.Horspool and N.Marovac, \An approach to

the problem of detranslation of computer pro-

grams," The Computer Journal, vol. 23, no. 3,

pp. 223{229, 1979.

[3] L.Goldschlager and A.Lister, Computer Science:

A modern introduction. Prentice-Hall Interna-

tional, 1982.

[4] M.H.Halstead, Machine-independent computer

programming, ch. 11, pp. 143{150. Spartan

Books, 1962.



[5] P.Barbe, \The piler system of computer program

translation," tech. rep., Probe Consultants Inc.,

Sept. 1974.

[6] J. Reuter, \decomp.tar.z." Public domain soft-

ware. Anonymous ftp cs.washington.edu, direc-

tory /pub, 1988.

[7] C.R.Hollander, Decompilation of Object Pro-

grams. PhD dissertation, Stanford University,

Computer Science, Jan. 1973.

[8] B.C.Housel, A Study of Decompiling Machine

Languages into High-Level Machine Independent

Languages. PhD dissertation, Purdue University,

Computer Science, Aug. 1973.

[9] G.L.Hopwood, Decompilation. PhD dissertation,

University of California, Irvine, Computer Sci-

ence, 1978.

[10] H.Swartz, \The case for reverse engineering,"

Business Computer Systems, vol. 3, pp. 22{25,

Dec. 1984.

[11] Anon., \Software protection," Edge: Work-

Group Computing Report, vol. 2, p. 7, 22 Apr

1991.

[12] S.McNamara, \Australia: proposals open reverse

engineering debate," Newsbytes, p. ??, 18 Oct

1991.

[13] G.Burkill, \Reverse compilation of computer pro-

grams and its permissibility under the berne

convention," Computer Law & Practice, vol. 6,

pp. 114{119, mar-apr 1990.

[14] M.S.Hecht, Flow Analysis of Computer Pro-

grams. 52 Vanderbilt Avenue, New York, New

York 10017: Elsevier North-Holland, Inc, 1977.

[15] S.R.Kosaraju, \Analysis of structured pro-

grams," Journal of Computer and System Sci-

ences, vol. 9, no. 3, pp. 232{255, 1974.

[16] F.E.Allen, \Control 
ow analysis," SIGPLAN

Notices, vol. 5, pp. 1{19, July 1970.

[17] F.E.Allen, \A basis for program optimization,"

in Proc. IFIP Congress, (Amsterdam, Holland),

pp. 385{390, North-Holland Pub.Co., 1972.

[18] J.Cocke, \Global common subexpression elimina-

tion," SIGPLAN Notices, vol. 5, pp. 20{25, July

1970.

[19] F.E.Allen and J.Cocke, \Graph theoretic con-

structs for program control 
ow analysis," Tech.

Rep. RC 3923 (No. 17789), IBM, Thomas J. Wat-

son Research Center, Yorktown Heights, New

York, July 1972.

[20] C.Cifuentes, \A structuring algorithm for de-

compilation," in XIX Conferencia Latinoameri-

cana de Inform�atica, (Buenos Aires, Argentina),

pp. 267{276, Centro Latinoamericano de Estu-

dios en Inform�atica, 2-6 August 1993.


