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Abstract. A structuring algorithm for arbitrary control ow graphs is

presented. Graphs are structured into functional, semantical and struc-

tural equivalent graphs, without code replication or introduction of new

variables. The algorithm makes use of a set of generic high-level language

structures that includes di�erent types of loops and conditionals. Gotos

are used only when the graph cannot be structured with the structures

in the generic set.

This algorithm is adequate for the control ow analysis required when

decompiling programs, given that a pure binary program does not con-

tain information on the high-level structures used by the initial high-level

language program (i.e. before compilation). The algorithm has been im-

plemented as part of the dcc decompiler, an i80286 decompiler of DOS

binary programs, and has proved successful in its aim of structuring de-

compiled graphs.

1 Introduction

A decompiler is a software tool that reverses the compilation process by trans-

lating a pure binary input program to an equivalent high-level language (HLL)

target program. The input program does not have symbolic information within

it, and the HLL used to compile this binary program need not be the same as

the target HLL produced by the decompiler.

Although decompilers have not been greatly studied in the literature, there

are a variety of applications that could bene�t from them, including the obvious

maintenance of old code and recovery of lost source code, but also the debug-

ging of binary programs, migration of applications to a new hardware environ-

ment [26], veri�cation of generated code by the compiler [23], and translation of

code written in an obsolete language.

When binary programs are decompiled, the control ow graph of the pro-

gram is constructed and analyzed for data and control ow. Data ow analysis

transforms the intermediate representation of the binary program into a higher

level representation that resembles a high-level language. Control ow analy-

sis determines the underlying structure of the program; that is, the high-level

control structures used in each subroutine.
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A structured control ow graph is a graph that can be decomposed into

subgraphs that represent control structures of a high-level language. These sub-

graphs always have one entry point and one exit point. Unstructured graphs are

generated by the use of goto statements in a program, such that the transfer of

control leads to subgraphs with two or more entry points, division of the sub-

graphs representing a control structure due to an entry into the middle of the

structure, or tail-recursive calls in languages such as Lisp [21] and Scheme [16].

Unstructured graphs can also be introduced by the optimizer phase of the com-

piler, when code motion is used. It is not hard to demonstrate that structured

high-level languages that do not make use of the goto statement generate re-

ducible graphs [18, 14].

During decompilation, a generic set of high-level control structures needs

to be de�ned �rst in order to decompose a program's control ow graph into

these �xed set of structures. The generic set of high-level structures should be

general enough to cater for di�erent control structures available in commonly

used languages such as C, Pascal, Modula-2 and Fortran. Generic control struc-

tures will always include loops and conditionals. We distinguish di�erent types of

loops: pre-test loop (while()), post-test loop (repeat..until()), and in�nite

loop (endless loop). The for loop is a special case of the while() loop, so it is

not considered a generic structure. Di�erent types of conditionals must also be

identi�ed: 2-way conditionals are represented by if..then and if..then..else

structures, and n-way conditionals are represented by case control structures.

Goto statements are used only when the graph cannot be structured using the

previous set of generic structures. This means that multiexit loops are structured

as a loop with one real exit, and all other exits will make use of goto exits. As a

general rule of thumb, it is always desirable to structure abnormal loops as mul-

tiexit loops rather than multientry loops. This is due to the fact that multientry

loops are harder to understand and can produce irreducible graphs.

The rest of this paper is presented in the following way: x2 gives a brief

introduction to the intermediate representation used in the dcc decompiler, x3

describes the order of application of the loop and conditional algorithms, x4

describes an algorithm to structure loops, x5 describes an algorithm to structure

2-way conditionals, x6 briey mentions how code generation is done based on

structured graphs, x7 mentions previous work done in the area and compares

this approach to others, and x8 gives the summary and conclusions of this work.

2 Intermediate Representation of dcc

The intermediate representation of a binary program in dcc is in the form of a

call graph with a control ow graph for each subroutine, and an intermediate

language which has two levels: a low-level stage which is used initially when the

program has not been analyzed, and a high-level stage that resembles a HLL [11].

The data ow analysis phase of the decompiler analyzes intermediate instruc-

tions to remove all references to low-level concepts such as condition codes and

registers, and re-introduces high-level concepts such as expressions and param-



eter passing. The high-level instructions that are generated by this analysis are:

asgn (assign), jcond (conditional jump), jmp (unconditional jump), call (sub-

routine call), and ret (subroutine return). No control structure instructions are

restored by this phase. This phase preceeds the control ow analysis phase and

is described in [10]. This paper concentrates on the control ow analysis phase.

We present a sample control ow graph in Fig. 1 with intermediate instruc-

tion information. The intermediate code has been analyzed by the data ow

analysis phase, and without loss of generality, all variables have been given

names for ease of understanding (names are normally given by the code gen-

erator). From observation of Fig. 1, there are several control structures: there is

a nested repeat loop inside a while() loop, several 2-way conditionals (some

belong to loops, others stand alone), and a short-circuit evaluated expression.

This graph is used throughout the paper to illustrate the structuring algorithms.

The convention used in all graphs with 2-way conditional nodes is the following:

the right arrow is the true branch and the left arrow is the false branch.

loc1 = loc1 + 1

loc2 = loc2 + 1

printf ("...", loc1, loc2)

loc2 = loc1jcond (loc3 < loc4) B9

jcond ((loc4 * 2) <= loc3) B10

loc3 = loc3 + loc4 - 10

loc4 = loc4 / 2

loc1 = 0

loc4 = loc4 << 3

loc3 = loc3 * loc4

jcond ((loc3 * 4) <= loc4) B4

loc3 = 5

loc4 = loc3 * 5

jcond (loc3 >= loc4) B5

printf ("...", loc3, loc4)

ret
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Fig. 1. Sample Control Flow Graph



3 Application Order

The structuring algorithms presented in the next sections determine the header,

follow and latching nodes of subgraphs that represent high-level loops and 2-way

structures. The header node is the entry node of a structure. The follow node

is the �rst node that is executed after a possibly nested structure has �nished.

In the case of non-properly nested structures, the follow node is the one after

the last execution of a nested structure. The latching node is the last node in a

loop; the one that takes as immediate successor the header of a loop.

The algorithms presented in the next sections cannot be applied in a random

order since they do not form a �nite Church-Rosser system. For example, if

node B6 in Fig. 1 is structured �rst as the header of a 2-way conditional, an

if..then..else structure would be agged for this node, and node B15 would

have to use a goto jump to node B6 as it cannot be part of a loop (the header

node of this loop would already belong to another structure, and hence it cannot

belong to two di�erent structures at the same nesting level). Therefore, loops are

structured before 2-way conditionals to ensure the boolean condition that forms

part of pre-tested or post-tested loops is part of the loop, rather than the header

of a 2-way conditional subgraph. Once a 2-way conditional has been marked as

being in the header or latching node of a loop, it is not considered for further

structuring.

4 Structuring Loops

In order to structure loops, a loop needs to be de�ned in terms of a graph repre-

sentation. This representation must be able to not only determine the extent of a

loop, but also provide a nesting order for the loops. As pointed out by Hecht [14],

the representation of a loop by means of cycles is too �ne a representation since

loops are not necessarily properly nested or disjoint. On the other hand, the use

of strongly connected components as loops is too coarse a representation as there

is no nesting order. Also, the use of strongly connected regions does not provide

a unique coverage of the graph, and does not cover the entire graph.

Interval

2

theory and the derived sequence of graphs

3

G

1

: : :G

n

was formu-

lated by F.Allen and J.Cocke in the early 1970's [12, 1, 4]. Interval theory was

2

An interval I(h) is the maximal, single-entry subgraph in which h is the only entry

node and in which all closed paths contain h. The unique interval node h is called the

header node. By selecting the proper set of header nodes, graph G can be partitioned

into a unique set of disjoint intervals I = fI(h

1

); I(h

2

); : : : ; I(h

n

)g, for some n � 1.

3

The derived sequence of graphs, G

1

: : : G

n

is based on the intervals of graph G.

The �rst order graph, G

1

, is G. The second order graph, G

2

, is derived from G

1

by collapsing each interval in G

1

into a node. The immediate predecessors of the

collapsed node are the immediate predecessors of the original header node which are

not part of the interval. The immediate successors are all the immediate, non-interval

successors of the original exit nodes. Intervals for G

2

are found and the process is

repeated until a limit ow graph G

n

is found. G

n

has the property of being a single

node or an irreducible graph.



used as an optimization technique for data ow analysis [2, 3, 5]. However, the

use of intervals does provide a representation that satis�es the abovementioned

conditions for loops: one loop per interval, and a nesting order provided by the

derived sequence of graphs. This was �rst pointed out by Housel [15].
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Fig. 2. Intervals of the Control Flow Graph of Fig. 1

Given an interval I(h

j

) with header h

j

, there is a loop rooted at h

j

if there

is a back-edge to the header node h

j

from a latching node n

k

2 I(h

j

). Consider

the graph in Fig. 2, which is the same graph from Fig. 1 without intermediate

instruction information, and with intervals delimitered by dotted lines; nodes are

numbered in reverse postorder. There are 3 intervals: I

1

rooted at basic block

B1, I

2

rooted at node B6, and I

3

rooted at node B13.

In this graph, interval I

3

contains the loop (B14,B13) in its entirety, and

interval I

2

contains the header of the loop (B15,B6), but its latching node is in

interval I

3

. If each of the intervals are collapsed into individual nodes, and the

intervals of that new graph are found, the loop that was between intervals I

3

and I

2

must now belong to the same interval. Consider the derived sequence of

graphs G

2

: : :G

4

in Fig. 3. In graph G

2

, the loop between nodes I

3

and I

2

is in



interval I

5

in its entirety. This loop represents the corresponding loop of nodes

(B15,B6) in the initial graph. It is also noted that there are no more loops in

these graphs, and that the initial graph is reducible since the trivial graph G

4

was derived by this process. It is noted that the length of the derived sequence

is proportional to the maximum depth of nested loops in the initial graph.
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Once a loop has been found, the type of loop (e.g. pre-tested, post-tested,

endless) is determined by the type of header and latching nodes of the loop.

A while() loop is characterized by a 2-way header node and a 1-way latch-

ing node, a repeat..until() is characterized by a 2-way latching node and a

non-conditional header node, and a endless loop loop is characterized by a 1-

way latching node and a non-conditional header node. Heuristics are used when

other combinations of header/latching nodes are used. In our example, the loop

(B15,B6) has a 2-way header node and a 1-way latching node, hence the loop is

equivalent to a while(). In a similar way, the loop (B14,B13) has a 1-way header

node and a 2-way latching node, hence it is equivalent to a repeat..until().

The nodes that belong to the loop are also agged as being in a loop, in order to

prevent nodes from belonging to two di�erent loops; such as in overlapping, or

multientry loops. In the case of nested loops, a node will be marked as belonging

to the most nested loop it belongs to.

Finally, the follow of the loop, that is, the �rst node that is reached from

the exit of the loop is determined. In the case of a while(), the follow node

is the target node of the header that does not form part of the loop. In a

repeat..until(), the follow node is the target node of the latching node that is

not a back-edge. And in an endless loop, there could be no follow node if there

are no exits from the loop, otherwise, the follow is the closest node to the loop

(i.e. the smallest node in reverse postorder numbering).

Given a control ow graph G = G

1

with interval information, the derived

sequence of graphs G

1

; : : : ; G

n

of G, and the set of intervals of these graphs,

I

1

: : : I

n

, an algorithm to �nd loops is as follows: each header of an interval



in G

1

is checked for having a back-edge from a latching node that belongs to

the same interval. If this happens, a loop has been found, so its type is deter-

mined, and the nodes that belong to it are marked. Next, the intervals of G

2

,

I

2

are checked for loops, and the process is repeated until intervals in I

n

have

been checked. Whenever there is a potential loop (i.e. a header of an interval

that has a predecessor with a back-edge) that has its header or latching node

marked as belonging to another loop, the loop is disregarded as it belongs to an

unstructured loop. These loops always generate goto jumps during code gener-

ation. In this algorithm no goto jumps and target labels are determined as this

is done during the traversal of the graph during code generation. The complete

algorithm is given in Fig. 4. This algorithm �nds the loops in the appropriate

nesting level, from innermost to outermost loop. The loop follow node is the

�rst node that is reached once the loop is terminated. This node is determined

during the loop analysis and used during code generation to traverse the tree of

structures.

5 Structuring 2-way Conditionals

Both a single branch conditional (i.e. if..then) and an if..then..else con-

ditional subgraph have a common follow node that has the property of being

immediately dominated by the 2-way header node. Whenever these subgraphs

are nested, they can have di�erent follow nodes or share the same common fol-

low node. Consider the graph in Fig. 5, which is the same graph from Fig. 1

without intermediate instruction information, and with immediate dominator

4

information. The nodes are numbered in reverse postorder.

In this graph there are six 2-way conditional nodes; namely, nodes 1, 2, 6, 9,

11, and 12. As seen during loop structuring (x4), a 2-way node that belongs to

either the header or the latching node of a loop is marked as being part of the

loop, and must therefore not be processed during 2-way conditional structuring.

Hence, nodes 6 and 9 in Fig. 5 are not considered in this analysis. Whenever two

or more conditionals are nested, it is always desirable to analyze the innermost

nested conditional �rst, and then the outer ones. In the case of the conditionals

at nodes 1 and 2, node 2 must be analyzed �rst than node 1 since it is nested in

the subgraph headed by 1; in other words, the node that has a greater reverse

postorder numbering needs to be analyzed �rst since it was last visited �rst

in the depth �rst search traversal that numbered the nodes. In this example,

both subgraphs share the common follow node 5; therefore, there is no node

that is immediately dominated by node 2 (i.e. the inner conditional), but 5 is

immediately dominated by 1 (i.e. the outer conditional), and this node is the

follow node for both conditionals. Once the follow node has been determined, the

type of the conditional can be known by checking whether one of the branches of

the 2-way header node is the follow node; in which case, the subgraph is a single

branching conditional, otherwise it is an if..then..else. In the case of nodes

4

A node n

i

dominates n

k

if n

i

is on every path from the header of the graph to n

k

.

It is said that n

i

immediately dominates n

k

if it is the closest dominator to n

k

.



procedure loopStruct (G = (N;E; h))

/* Pre: G

1

: : : G

n

has been constructed.

* I

1

: : : I

n

has been determined.

* 8j 2 f1 : : : ng � I

i

= fI

i

1

(h

j1

); : : : ; I

i

m

(h

jm

)g

* 8i; j � I

i

j

(h

ij

) is the jth interval of G

i

with header h

ij

.

* Post: all nodes of G that belong to a loop are marked.

* all loop header nodes have information on the type of loop and the

* latching node. */

for (G

i

:= G

1

: : : G

n

)

for (all I

i

j

(h

ij

) 2 I

i

)

/* �nd latching node x */

if ((9x 2 N

i

� (x; h

ij

) 2 E

i

)^ (inLoop(x) == False))

for (all n 2 loop (x; h

ij

))

inLoop(n) = True

end for

/* determine loop type */

if (nodeType(x) == 2-way)

if (nodeType(h

ij

) == 1-way)

loopType(h

ij

) = Post-tested

else /* 2-way header node */

use heuristics to determine best type of loop

else /* 1-way latching node */

if (nodeType(h

ij

) == 2-way)

loopType(h

ij

) = Pre-Tested

else

loopType(h

ij

) = Endless

end if

/* determine loop follow */

case (loopType(h

ij

))

Pre-Tested:

if (inLoop(successor(h

ij

,1)))

loopFollow(h

ij

) = successor(h

ij

,2)

else

loopFollow(h

ij

) = successor(h

ij

,1)

Post-Tested:

if (inLoop(successor(x,1)))

loopFollow(h

ij

) = successor(x,2)

else

loopFollow(h

ij

) = successor(x,1)

Endless:

determine follow node (if any) by traversing all nodes in the loop

end case

end if

end for

end for

end procedure

Fig. 4. Loop Structuring Algorithm
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Fig. 5. Control Flow Graph with Immediate Dominator Information

11 and 12, node 12 is analyzed �rst and no follow node is determined since no

node takes it as immediate dominator. This node is left in a list of unresolved

nodes, because it can be nested in another conditional structure (whether fully

nested or not). When node 11 is analyzed, nodes 12, 13, and 14 are possible

candidates for follow node, since nodes 12 and 13 reach node 14; this last node

is taken as the follow (i.e. the node that encloses the most number of nodes in a

subgraph; the largest node, given that the subgraphs at nodes 11 and 12 are not

properly nested). Node 12, that is in the list of unresolved follow nodes, is also

marked as having a follow node of 14. It is seen from the graph that these two

conditionals are not properly nested, and a goto jump can be used during code

generation. A generalization of this example provides the algorithm to structure

conditionals, and it is shown in Fig. 6.

N-way conditionals are structured in a similar way to 2-way conditionals.

Nodes are traversed from bottom to top of the graph in order to �nd nested n-

way conditionals �rst, followed by the outer ones. For each n-way node, a follow

node is determined. This node will optimally have n in-edges coming from a

path from the n succesor nodes of the n-way header node, and be immediately



procedure struct2Way (G=(N,E,h))

/* Pre: G is a graph numbered in reverse postorder.

* Post: 2-way conditionals are marked in G.

* the follow node for all 2-way conditionals is determined. */

unresolved = fg

for (all nodes m 2 N in descending order)

if ((nodeType(m) == 2-way) ^ (: isLoopHeader(m)) ^

(: isLoopLatchingNode(m)))

if (9 n � n = maxfi j immedDom(i) = m^ #inEdges(i) � 2g)

follow(m) = n

for (all x 2 unresolved)

follow(x) = n

unresolved = unresolved - fxg

end for

else

unresolved = unresolved [ fmg

end if

end if

end for

end procedure

Fig. 6. 2-way Conditional Structuring Algorithm for Graph G

dominated by such header node. The method is slightly more complex given the

existance of more nodes in the structure. For more information refer to [9].

5.1 Compound Conditions

When structuring graphs in decompilation, not only the structure of the under-

lying structures is to be considered, but also the underlying intermediate instruc-

tions information. Most high-level languages allow for short-circuit evaluation of

compound boolean conditions. In these languages, the generated control ow

graphs for these conditional expressions become unstructured since an exit can

be performed as soon as enough conditions have been checked and determined

the expression is true or false as a whole. For example, if the expression x and y

is compiled with short-circuit evaluation, and expression x is false, the whole

expression becomes false as soon as x is evaluated and therefore the expression

y is not evaluated. In a similar way, an x or y expression is partially evaluated

if the expression x is true. Figure 7 shows the four di�erent subgraph sets that

arise from compound conditions during compilation. The top graphs represent

the logical condition that is under consideration, and the bottom graphs repre-

sent the short-circuit evaluated graphs for each compound condition. In these

graphs, t stands for the then node and e stands for the else node.
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Fig. 7. Compound Conditional Graphs

During decompilation, whenever a subgraph of the form of the short-circuit

evaluated graphs is found, it is checked for the following properties:

1. Nodes x and y are 2-way nodes.

2. Node y has only 1 in-edge.

3. Node y has a unique instruction; a conditional jump (jcond) high-level in-

struction.

4. Nodes x and y must branch to a common t or e node.

The �rst, second, and fourth properties are required in order to have an isomor-

phic subgraph to the bottom graphs given in Fig. 7, and the third property is

required to determine that the graph represents a compound condition, rather

than an abnormal conditional graph. Consider the subgraph of Fig. 1, in Fig. 8,

with intermediate instruction information. Nodes B7 and B8 are 2-way nodes,

node B8 has 1 in-edge, node B8 has a unique instruction (a jcond), and both

the true branch of node B7 and the false branch of node B8 reach node B9; i.e.

this subgraph is of the form :x ^ y in Fig. 7.

The algorithm to structure compound conditionals makes use of a traversal

from top to bottom of the graph, as the �rst condition in a compound conditional

expression is higher up in the graph (i.e. it is tested �rst). For all 2-way nodes

that are not a header or latching node of a loop, the then and else nodes are

checked for a 2-way condition. If either of these nodes represents one high-level

conditional instruction (jcond), and the node has no other entries (i.e. the only

in-edge to this node comes from the header 2-way node), and the node forms one

of the bottom 4 subgraphs illustrated in Fig. 7, these two nodes are merged into



jcond (loc3 < loc4) B9

jcond ((loc4 * 2) <= loc3) B10

loc3 = loc3 + loc4 - 10

loc4 = loc4 / 2

printf ("...", loc3, loc4)

ret
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Fig. 8. Subgraph of Fig. 1 with Intermediate Instruction Information

a unique node that has the equivalent semantic meaning of the compound con-

dition (i.e. depends on the structure of the subgraph), and the node is removed

from the graph. This process is repeated until no more compound conditions are

found (i.e. there could be 3 or more compound ands and ors, so the process is

repeated with the same 2-way node until no more conditionals are found). The

algorithm is omitted in this paper and is described in [9].

6 Code Generation from Structured Graphs

The code generation phase of a decompiler generates high-level language code

from the intermediate representation of the program. Each procedure's graph is

traversed according to the type of basic block and the control structures available

in the graph. Basic blocks are checked for being the header of a control structure,

in which case, appropriate code is generated for that structure, followed by a

depth-�rst traversal of the nodes associated with the structure; that is, until

the follow node is reached. Once code has been generated for the subgraph

of a structure, the generation of code is continued with the follow node of the

structure. Within a basic block, code is generated sequentially for each statement

of the intermediate representation. Once code has been generated for a basic

block, the block is marked as having been visited. If during code generation a

marked node is reached again, the code for this node is not repeated (i.e. no code

replication is used), but a unique label is placed on the �rst statement of this

block, and a goto statement is used to reach it. In this way, gotos are generated

only by the code generator, and no labels are placed on the graph on the earlier

control ow analysis phase.



7 Previous Work

Most structuring algorithms have concentrated on the removal of goto state-

ments from control ow graphs at the expense of introduction of new boolean

variables [8, 29, 22, 28, 6, 13], code replication [17, 27, 29], the use of multilevel

exits [7, 24], or the use of a set of high-level structures not available in commonly

used languages [25]. None of these methods are applicable to a decompiler be-

cause: the introduction of new boolean variables modi�es the semantics of the

underlying program, as these variables did not form part of the original program;

code replication modi�es the structure of the program, as code that was written

only once gets replicated one or more times; and the use of multilevel exits or

high-level structures that are not available in most languages restricts the gener-

ality of the method and the number of languages in which the structured version

of the program can be written in.

Lichtblau [19] presented a series of transformation rules to transform a con-

trol ow graph into a trivial graph by identifying subgraphs that represent

high-level control structures; such as 2-way conditionals, sequence, loops, and

multiexit loops. Whenever no rules were applicable to the graph, an edge was

removed from the graph and a goto was generated in its place. This transfor-

mation system was proved to be �nite Church-Rosser, thus the transformations

can be applied in any order and the same �nal answer is reached. Lichtblau for-

malized the transformation system by introducing context-free owgraph gram-

mars, which are context-free grammars de�ned by production rules that trans-

form one graph into another [20]. He proved that given a rooted context-free

owgraph grammar GG, it is possible to determine whether a owgraph g can

be derived from GG. Although the detection of control structures by means of

graph transformations does not modify the semantics or functionality of the un-

derlying program, Lichtblau's transformations do not take into account graphs

generated from short-circuit evaluation languages, where the operands of a com-

pound boolean condition are not all necessarily evaluated, and thus generate

unstructured graphs according to this methodology.

In contrast, the structuring algorithms presented in this paper transform an

arbitrary control ow graph into a functional, semantical and structural equiv-

alent ow graph that is structured under a set of generic control structures

available in most commonly used high-level languages, and that makes use of

goto jumps whenever the graph cannot be structured with the generic structures.

These algorithms take into account graphs generated by short-circuit evaluation,

and thus do not generate unnecessary goto jumps for these subgraphs.

8 Summary and Conclusions

This paper describes a set of structuring algorithms for transforming arbitrary

graphs generated by any imperative programming language, into functional, se-

mantical and structural equivalent graphs, without the introduction of new vari-

ables or code replication. The algorithm is adequate for the analysis needed in



the control ow analysis phase of a decompiler, and has been implemented as

part of the dcc decompiler; a decompiler for the i286 and the DOS operating

system [9]. This set of algorithms are shown to be non Church-Rosser with a

counter example.

Structured graphs contain high-level language control structures. Unstruc-

tured graphs are introduced by the use of gotos, tail-recursion calls and by

optimizations produced by the compiler. In a binary program, it is unknown

what type of language or compiler was used on the original source program.

This means that we cannot determine whether the graph is structured or not,

and therefore we assume the general case of unstructured graphs.

The generic control structures that are considered by this structuring algo-

rithm are: if..then, if..then..else, case, while(), repeat..until() and

endless loop loops. Gotos are used only when the graph cannot be structured

with any of the above structures. All other structures available in high-level lan-

guages (e.g. for, multiexit loops) can be modelled by a second structuring stage

that is targeted at the language-speci�c control structures.
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