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Abstract

Reverse engineering of software systems has tra-

ditionally centered upon the generation of high-level

abstractions or speci�cations from high-level code or

databases. In this paper we report on a reverse engineer-

ing environment for low-level executable code: a reverse

compilation or decompilation environment that aids in

the understanding of the underlying executable program.

The reverse compilation process recovers high-level

code from executable programs at a higher representa-

tion level than that produced by disassemblers; in fact,

disassembly is part of the �rst stage in this process. Sev-

eral tools aid in the process of reverse compilation, these

are: loaders, signature generators, library prototype gen-

erators, disassemblers, library bindings, and language to

language translators. The integration of these tools in

the whole process is presented in this paper.

The results obtained by the prototype reverse com-

pilation system dcc are encouraging: high-level code is

regenerated with correct use of expressions and control

structures, and the complete elimination of registers and

condition codes. An elimination rate of low-level in-

structions of over 75% was reached, representing the

overall improvement this decompiler system has made

over previous decompilers and disassemblers (where the

rate tends to be nil). A sample decompilation program

is given.

Keywords: reverse engineering, reverse compiler,

disassembler, signatures, DOS, i80286, C language.

1 Introduction

Reverse engineering of software systems has been de-

�ned as the analysis of a subject system to identify

the system's components and their interrelationships,

and to create a representation of the system in another

form or at a higher level of abstraction [1]. The aim

of reverse engineering of software systems is to gain an

�

This research was partly funded by Australian Research

Council (ARC) Grant No.A49130261 while the author was with

the Queensland University of Technology, Brisbane, Australia.

understanding of the system and its structure for the

purposes of maintenance, which is unlike the case of re-

verse engineering of hardware systems where the system

is normally analyzed to create a duplicate copy of it.

Most reverse engineering environments reported in

the literature concentrate on the generation of high-level

speci�cations or graphical representations for Cobol and

Fortran source code [2, 3], and the extraction of de-

sign representations and speci�cation documents from

source code [4]. Also, the recovery of design informa-

tion from a database has been incorporated into CASE

(Computer-Aided Software Engineering) tools such as

ADW. In this paper we concentrate on reverse engineer-

ing tools at a lower level: tools that recover high-level

source code from executable programs. Tools in this

category include disassemblers, debuggers, decompilers,

disk editors, and unpacking utilities; we are interested

in disassemblers and decompilers. It has long been ar-

gued that decompilers are di�cult to write due to the

variety of output of each vendor's compiler [5], in this

paper we present a suite of tools that help in the process

of decompilation and disassembly.

A disassembler is a program that reads an executable

program and translates it into an equivalent assembler

program; a decompiler goes a step further by translat-

ing the program into an equivalent high-level language

(such as C or Pascal) program. In both cases, the ex-

ecutable program to be translated is an arbitrary pro-

gram compiled from any high-level language. In general,

a decompiler comprises a disassembler since this step is

intermediate in the generation of high-level code. As

with most reverse engineering tools, disassemblers and

decompilers are semi-automated tools rather than fully

automated tools.

1.1 Uses of decompilation in the 90s

Traditionally, decompilation has been used to help

in the migration of computer software from an old to a

new machine architecture. In the 90s, with the advent

of high-performance machines, a transitional migration

platform is needed to provide users with the same soft-



ware they run on their soon-to-become-old-machines, on

the new machine. A technique known as binary trans-

lation was developed which makes use of disassembly

and decompilation techniques, but which also provides

a run-time support environment to run code that could

not be successfully translated to the new machine; this

environment was �rst developed by Digital to aid in the

translation of VAX and mx software to the new Alpha

machine [6].

As with the Alpha binary translation environment,

several other uses of decompilation require other tools

to help in the process of extraction of high-level infor-

mation. This is mainly due to the fact that software

has become very large and complex, and also because

decompilation on its own is an incomplete process.

In the UK, the Nuclear Electric plc developed a de-

compiler to verify the code produced by a proprietary

compiler; such code was to be run in PROM in a safety

critical environment and therefore the compiler was not

trusted. Their environment incorporated a decompiler

that made use of data type information from the orig-

inal high-level language program, decompiled the exe-

cutable program, and determined whether the high-level

code regenerated was similar in functionality to the ini-

tial high-level code [7].

Also in the UK, a group at Oxford University has

worked on the automatic generation of decompilers

based on compiler speci�cations using logic and func-

tional languages [8, 9], and recently such approach was

used to generate a decompiler for a subset of a C++

compiler [10]. This research was aimed at the provision

of reverse engineering tools for maintenance.

In China, a decompiler for 8086 executable programs

compiled with the Microsoft C Version 5.0 compiler was

written [11]. This decompiler made use of the recogni-

tion of library functions by a hand-crafted method. An

attempt at high-level data type recognition, such as ar-

rays and structures is mentioned but not much detail is

given in the paper. The use of this decompiler is not

mentioned either.

In Australia, the dcc decompiler was written to help

in the detection of virus code in an executable program,

and to aid in the maintenance of legacy code by the

extraction of source code from these systems [12]. In

the former case, the decompiler reports on any suspi-

cious malicious code in the comments of the generated

high-level language program, and in the latter case the

decompiler produces a high-level program that aids in

the understanding of the legacy system, which can then

be rewritten in a di�erent (newer) language.

1.2 The need for extra tools

There are several theoretical and practical limita-

tions for writing decompilers. Some of these problems

can be solved by the use of heuristic methods, others

cannot be determined completely. Due to these limita-

tions, a decompiler performs automatic program trans-

lation of some source programs, and semi-automatic

program translation of other source programs. This

di�ers from a compiler, which performs an automatic

program translation of all source programs, but is in-

line with the semi-automation of reverse engineering

tools [13].

The main problem in disassembly derives from the

representation of data and instructions in the Von Neu-

mann architecture: they are indistinguishable. Thus,

data can be located in between instructions, such as

many implementations of indexed jump (case) ta-

bles. This representation along with idioms

1

and self-

modifying code practices makes it hard to disassemble

an executable program. In fact, the separation of data

and instructions is unsolvable in general as if there was

an algorithm to determine such separation, this algo-

rithm would also solve the halting problem [14].

Another problem is the great number of subroutines

introduced by the compiler and the linker, and bound in

the executable program. The compiler introduces start-

up subroutines that set up its environment, and runtime

support routines whenever required. These routines are

normally written in assembler and in most cases are un-

translatable into a higher-level representation. Also, in

operating systems that do not provide a mechanism to

share libraries, executable programs are self-contained

and library routines are bound into each binary image.

Library routines are either written in the language the

compiler was written in or assembler. This means that

an executable program contains not only the routines

written by the programmer, but a great number of other

routines linked in by the linker. For example, a \hello

world" program compiled in C generates over 25 di�er-

ent subroutines in the executable program. The same

program compiled in Pascal generates more than 40 sub-

routines. When decompiling this example, we are only

interested in the main() subroutine, rather than the

other 25 or so subroutines.

1.3 Legal issues

Several questions have been raised in the last years

regarding the legality of decompilation. A debate be-

tween supporters of decompilation who claim fair com-
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An idiom is a sequence of instructions which form a logical

entity, and which taken together have a meaning that cannot be

derived by considering the primary meanings of the instructions.



petition is possible with the use of decompilation tools,

and the opponents of decompilation who claim copy-

right is infringed by decompilation, is currently being

held; in fact, this debate has been reported in the liter-

ature since 1984 [15]. The law in di�erent countries is

being modi�ed to determine in which cases decompila-

tion is lawful. At present, commercial software is being

sold with software agreements that ban the user from

disassembling or decompiling the product. For example,

part of the Lotus software agreement reads like this:

You may not alter, merge, modify or adapt this

Sofware in any way including disassembling or

decompiling.

It is not the purpose of this paper to debate the legal

implications of decompilation. This topic is not further

covered in this paper.

The rest of this paper is structured in the follow-

ing way: x2 describes a complete reverse compilation

system, x3 reports on results achieved by the imple-

mentation of the dcc system, x4 provides a sample de-

compilation of a benchmark multiplication program, x5

compares this work with previous work, and x6 provides

the conclusions of this work.

2 A reverse compilation system

The steps involved in a typical \decompilation" of

a contemporary executable program are shown in Fig-

ure 1. In this �gure, all text in boxes represent tools

that aid in the process of decompilation; all other text

represents data �les. This system is completely auto-

mated and provides partial results which aid in the un-

derstanding of the underlying program. In general, one

can consider the user to be another source of informa-

tion in this process, in particular when separating data

from code; this option was not included in this system.

2.1 Loader

Typical information contained in an executable pro-

gram is: the header (which contains information on the

sizes of segments, default values for registers, and the

entry-point to the program), the relocation table, the

code segment and the data segment. The loader reads

the header information of the executable program, de-

termines the amount of memory required to load the

binary image of the program (both code and data seg-

ments), allocates memory, loads it, and performs reloca-

tion of the data elements found in the relocation table.

The loader also determines the entry-point to the pro-

gram.

2.2 Signature generator

The signature generator is a program that automat-

ically determines library signatures. A signature is a bi-

nary pattern that uniquely identi�es each compiler and

each library subroutine of a particular library �le. The

use of these signatures attempts to reverse the task per-

formed by the linker, which links in compiler start-up

code and library subroutines into the executable pro-

gram. The disassembler and decompiler uses this infor-

mation to determine linked-in subroutines that are not

required to be analyzed but rather eliminated (in the

case of start-up code) or replaced by their name (in the

case of library routines). All other subroutines are likely

to have been user compiled from the initial high-level

language program. Library signatures are needed for

statically-linked libraries, which is the case of all DOS

executable programs and of Windows programs that do

not use DDLs (dynamic-link libraries).

For example, in the compiled C program that dis-

plays \hello world" and has over 25 di�erent subroutines

in the executable program, 16 subroutines are added by

the compiler to set-up its environment, 9 routines that

form part of printf() are added by the linker, and 1

subroutine only forms part of the initial C program. The

determination of library signatures aids in the match-

ing of printf() and its complete subtree of subroutines

called. Compiler signatures aid in the determination of

the real entry-point to the main program (rather than

to the code introduced by the compiler for setting up of

the environment), hence allowing the disassembler and

decompiler to skip all compiler set-up routines (16 in

this example).

The use of a signature generator not only reduces

the number of subroutines to analyze, but also increases

the documentation of the �nal programs by using li-

brary names rather than arbitrary subroutine names.

The lookup of these signatures can be implemented

with a perfect minimal hashing algorithm, hence a con-

stant O(1) lookup is expected at all time to determine

whether a subroutine matches a signature of any known

subroutine signatures in the library. An automatic

method for generating library signatures is described

in [16, 17].

2.3 Prototype generator

The prototype generator is a program that automat-

ically determines the types of the formal arguments of

library subroutines, and the type of the return value for

functions. For C programs, these prototypes are derived

from the library header �les provided with any C com-

piler; in the case of Pascal, this information is stored in

the library �le itself and hence it can be determined by

parsing this �le. This information is used by the decom-

piler to determine the type of the arguments to library

subroutines, the number of such arguments (whenever

possible), and the return type of functions.



?

?

?

?

?

?

?

?

�

?

?

�

X

X

X

X

X

Xy

�

�

�

�

�

�9

?

library signatures

?

assembler program

library bindings

absolute machine code

loader

disassembler

decompiler

HLL program

postprocessor

HLL program

executable program

(relocatable machine code)

prototype generator

library prototypes

library headers

compiler signatures

libraries

signature generator

Figure 1: A decompilation system

2.4 Disassembler

The disassembler parses the binary image of the pro-

gram to translate it to assembler. With the aid of com-

piler signatures, the disassembler �rstly determines if

the �rst bytes at the entry point provided by the loader

match a known compiler signature, if so, the real entry-

point to the main program can be determined and code

is disasssembled from this point onwards. If no com-

piler signature is matched, code is disassembled from

the given entry-point, and hence all the compiler's set-

up routines are disassembled. Note that the use of com-

piler signatures is done without lose of generality; the

disasembler performs the same parsing algorithm based

on any given entry-point.

The main problem encountered by the disassembler

is determining what is data and what is an instruction.

Parsing of the program is performed by traversing all

paths from the program's entry-point, assuming that

all paths are followed in the program. New paths are

determined by transfers of control to other sections of

code (i.e. new entry-points) by means of conditional

or unconditional jumps, or subroutine calls. The algo-

rithm stops when all paths have been searched. Note

that some paths may be only partially searched due to

an instruction that cannot be decoded. In general, such

is the case for indexed or indirect jumps which rely in

the value in a register. In some cases, heuristics can

be applied to determine the bounds of the register, for

example, in the implementationof indexed case instruc-

tions. Whenever an instruction cannot be decoded, it

is 
agged for commenting during the generation of the

�nal high-level program. This conventional approach is

able to disassemble a great percentage of the executable

program.

A disasembler on its own normally only generates

an assembler program, but, if used as part of a decom-

piler, it also needs to provide a control 
ow graph of the

program (i.e. the call graph with control 
ow graphs at-

tached to each subroutine node). This graph is needed

for the analysis that the decompiler performs.

2.5 Decompiler

The decompiler transforms a low-level representa-

tion of a program into a high-level language represen-

tation. In this section we treat decompilation as the

complete process of translation from the binary image

to the high-level language program, hence, in this dis-

cussion, a disassembler is incorporated as part of the

decompiler, and assembler code is used as the interme-

diate code which is analysed and transformed by the

decompiler.

Conceptually, a decompiler is structured in a similar

way to a compiler, by a series of phases that transform

the source executable program from one representation

to another. These phases are grouped for implementa-

tion purposes into three di�erent modules: front-end,

udm, and back-end; as seen in Figure 2.

In theory, the grouping of phases in a decompiler

makes it easy to write di�erent decompilers for di�erent

machines and languages; by writing di�erent front-ends



?

?

?

?

(language dependent)

binary program

(machine dependent)

(analysis)

udm

Front-end

Back-end

HLL program
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for di�erent machines, and di�erent back-ends for dif-

ferent target languages. In practical applications, this

result is always limited by the generality of the interme-

diate language used.

The front-end consists of those phases that are ma-

chine and machine-language dependent. This module

parses the binary image of the program (i.e. imple-

ments a disassembler) and stores it in an intermediate

language representation, analyzes the disassembled code

for the determination of base data types such as inte-

gers, long integers, and reals, and constructs the control


ow graph of the program.

The udm is the universal decompiling machine; an

intermediate module that is completely machine and

language independent, and that performs the core of

the decompiling analysis. Two phases are included in

this module;

1. Data 
ow analysis: this phase improves the inter-

mediate code by eliminatingmachine low-level con-

cepts such as register and condition codes, and by

regenerating high-level language concepts such as

expressions. For example, the following intermedi-

ate language code:

asgn ax, [bp-0Eh]

asgn bx, [bp-0Ch]

asgn bx, bx * 2

asgn ax, ax + bx

asgn [bp-0Eh], ax

is converted into the following high-level expression

asgn [bp-0Eh], [bp-0Eh] + [bp-0Ch] * 2

which does not rely on registers any more.

This phase makes use of traditional compiler op-

timization theory and not only implements an ex-

tended register copy propagation algorithm to elim-

inate registers, regenerate high-level expressions,

and eliminate intermediate language instructions

such as push and pop; but it also performs inter-

and intra-procedural live register analysis to deter-

mine register variables and function return regis-

ters. Complete algorithms to perform this analysis

are described in [17].

A further analysis of data types is done at this stage

to attempt to recover compound data types such as

arrays and structures.

2. Control 
ow analysis: this analysis structures the

control 
ow graph of each subroutine of the pro-

gram into a generic set of high-level language con-

structs. This generic set contains control instruc-

tions available in most languages; such as loop-

ing and conditional transfers of control. In our

implementation, the generic set was composed of

if..then, if..then..else, and case condition-

als, and while(), repeat..until(), and endless

loop loops. Language-speci�c constructs are not

allowed as they are not available in most other

languages. Figure 3 shows two sample control


ow graphs: an if..then..else conditional and

a while() loop. The aim of the structuring al-

gorithm is to detect the underlying generic con-

trol structures of the program, and eliminate as

much as possible the use of unconditional trans-

fers of control (i.e. goto statements). Note that

the goto construct forms part of the generic set of

control structures since languages such as Pascal

and C allow the use of this construct; hence, the

underlying graph might only be representable in

a higher-level language that makes use of the goto

statement. Complete algorithms for structuring ar-

bitrary graphs are based in graph theory and are

given in [17].

The back-end generates the �nal high-level lan-

guage code based on the control 
ow graph and the

improved intermediate code of each subroutine. Vari-

able names are selected for all local variables (stack and

register-variables), and for all arguments. Subroutine

names are also selected for the di�erent routines found

in the program. Control structures and intermediate

instructions are translated into a high-level language

statement.

2.6 Library bindings

Whenever the target high-level language generated

by the decompiler is di�erent to the original language
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used to compile the executable source program, if the

generated target code makes use of library names (i.e. li-

brary signatures were detected), although this program

is correct, it cannot be recompiled in the target language

since it does not use library routines for that language

but for another one. The introduction of library bind-

ings solves this problem, by binding the subroutines of

one language to the other.

ISO committee SC22 of Working Group 11 is con-

cerned with the creation of standards for language in-

dependent access to service facilities. This work can be

used to de�ne language independent bindings for lan-

guages such as C and Modula-2. Information on library

bindings can be placed in a �le and used by the back-end

of the decompiler to produce target code that uses the

target language's library routines, instead of the ones

matched during disassembly.

2.7 Postprocessor

A postprocessor is a program that transforms a high-

level language program into a semantically equivalent

high-level program written in the same language. For

example, if the target language is C, the following code

loc1 = 1;

while (loc1 < 50) {

/* some code in C */

loc1 = loc1 + 1;

}

would be converted by a postprocessor into

for (loc1 = 1; loc1 < 50; loc1++) {

/* some code in C */

}

which is a semantically equivalent program that makes

use of control structures available in the C language, but

not present in the generic set of structures decompiled

by the decompiler.

3 Experimental results

dcc is a prototype decompiler system written in C

for the DOS operating system. dcc was initially de-

veloped on a DecStation 3000 running Ultrix, and was

ported to the Intel architecture under DOS. dcc takes

as input .exe and .com �les for the Intel i80286 archi-

tecture, and produces target C and assembler programs.

This decompiler was built using the techniques summa-

rized in this paper and fully described in [17], and is

composed of the phases shown in Figure 4. As can be

seen, the decompiler has a built-in loader and disassem-

bler, and there is no library bindings or postprocessing

phase. Compiler and library signatures were generated

for several compilers, including Borland Turbo C and

Microsoft Visual C++. This prototype decompiler de-

termines base types (i.e. byte, integer, long, pointer),

but is not able to determine compound types such as

arrays and structures because it has not been imple-

mented yet.

Library signatures

Library prototypes

?

-

-

-

?

?

?

?

?

?

?

?

Compiler signatures

Assembler

-

?

binary program

Parser

Loader

generator

C program

Semantic analyzer

Data 
ow analyzer

Control 
ow analyzer

C code generator

generator

Control 
ow graph

Intermediate code

code

generation

assembler

program

Figure 4: Structure of the dcc decompiler system

This section reports on a test suite of .exe pro-

grams originally written in C and compiled with Bor-

land Turbo C under DOS. These programs make use of

base type variables, and illustrate di�erent aspects of

the decompilation process. These programs were run in



batch mode, generating the disassembly �le .a2, the C

�le .b, the call graph of the program, and statistics on

the intermediate code instructions. The statistics re
ect

the percentage of intermediate instruction reduction on

all subroutines for which C is generated; subroutines

which translate to assembler are not considered in the

statistics. For each program, a total count on interme-

diate instructions before and after analysis, and a total

percentage reduction is given.

The programs in the test suite are as follow: the �rst

three programs deal with arithmetic operations on the

di�erent three base types (byte, integer, long integer);

the original C programs had the same code, but their

variables were de�ned of a di�erent type. The next four

programs are benchmark programs from the Plum-Hall

benchmark suite. These programs were written by Eric

S. Raymond and are freely available on the network [18].

These programs were modi�ed to ask for the arguments

to the program with scanf() rather than scanning for

them in the argv[] command line array since arrays are

not supported by dcc yet. Finally, the last three pro-

grams calculate Fibonacci numbers, compute the cyclic

redundancy check (CRC) for a character, and multiply

two matrixes. The latter program was used to illustrate

how array address computation is left in dcc in terms

of an expression, rather than being analyzed and type

propagated as an array.

Figure 5 presents summary results for the 10 pro-

grams considered in the test suite. The total number

of intermediate instructions before the analysis is 963,

compared with the �nal 306 intermediate instructions;

which gives a reduction of instructions of 76.25%. This

reduction of instructions is mainly due to the optimiza-

tions performed during data 
ow analysis, particularly

the elimination of registers across subroutines and the

reconstruction of high-level expressions. The recogni-

tion of idioms in the initial intermediate code also re-

duces the number of instructions and helps in the deter-

mination of data types such as long integers. Decom-

piled programs have the same number of user subrou-

tines, plus any runtime support routines used in the pro-

gram. These latter routines are sometimes translatable

into a high-level representation; assembler is generated

whenever they are untranslatable.

The percentage reduction rate represents the code

explosion performed by the compiler when translating

a high-level language to a machine language. This rate

needs to be fully reverted in a decompiler if a high-level

of abstraction is to be expected. Note that the reduction

rate for a disassembler would be zero as the disassembler

does not need to generate a higher representation, but

merely translate the machine instructions into assembler

Program Before After % Reduction

intops 45 10 77.78

byteops 58 10 82.76

longops 117 48 58.97

benchsho 101 25 75.25

benchlng 139 28 79.86

benchmul 88 12 86.36

benchfn 82 36 56.10

�bo 78 15 80.77

crc 171 38 77.78

matrixmu 84 11 86.90

total 963 306 76.25

Figure 5: Results for test suite programs

(i.e. a 1:1 mapping).

4 Example

We present the decompilation of benchmul, a bench-

mark program from the Plum-Hall benchmarks. This

program benchmarks integer multiplication by execut-

ing 1000 multiplications in a loop. The disassembly pro-

gram is shown in Figure 7, the decompiled C program

in Figure 8, and the initial C program in Figure 9.

Benchmul makes use of two long variables to loop a

large number of times through the program, and three

integer variables that perform the operations; one of

these variables is not actually used in the program. As

seen from the disassembly, the long variables are located

on the stack at o�sets -4 and -8, and the integer vari-

ables are at o�sets -12, -10, and on the register variable

si. The �nal C code is identical to the initial C code,

and a reduction of 86.36% of instructions was achieved

by this program, as seen in Figure 5.

5 Comparison with previous work

Decompilers have been used since the 1960s for a va-

riety of purposes; these are summarized in Figure 10. In

the 60s, decompilers were used to help in the migration

of 2nd to 3rd generation machines (e.g. the Neliac de-

compiler [19]) and in the conversion of languages such

as Autocoder to Cobol (reported in [20]).

In the 70s decompilers were used in the automatic

migration of programs, with systems such as Piler which

attempted to support a large number of source and tar-

get languages [21], the design of a language for an air-

craft system [22], and several theses described di�er-

ent methodologies for decompilation; the most complete

ones are [20, 23].



main PROC NEAR

PUSH bp

MOV bp, sp

SUB sp, 0Ch

PUSH si

LEA ax, [bp-4]

PUSH ax

MOV ax, 194h

PUSH ax

CALL near ptr scanf

POP cx

POP cx

PUSH word ptr [bp-2]

PUSH word ptr [bp-4]

MOV ax, 198h

PUSH ax

CALL near ptr printf

ADD sp, 6

LEA ax, [bp-0Ch]

PUSH ax

MOV ax, 1B2h

PUSH ax

CALL near ptr scanf

POP cx

POP cx

LEA ax, [bp-0Ah]

PUSH ax

MOV ax, 1B5h

PUSH ax

CALL near ptr scanf

POP cx

POP cx

MOV word ptr [bp-6], 0

MOV word ptr [bp-8], 1

L1: MOV dx, [bp-6]

MOV ax, [bp-8]

CMP dx, [bp-2]

JL L2

JG L3

CMP ax, [bp-4]

JBE L2

L3: PUSH word ptr [bp-0Ch]

MOV ax, 1B8h

PUSH ax

CALL near ptr printf

POP cx

POP cx

POP si

MOV sp, bp

POP bp

RET

L2: MOV si, 1

L4: CMP si, 28h

JLE L5

Figure 6: Benchmul.a2

In the 80s decompilers were written to recover inac-

cessible source code, such is the case of Decomp [24],

and in the documentation of assembler code migrated

from one machine to another [25]. Sample decompilers

written in the 90s were previously mentioned in x1.1.

ADD word ptr [bp-8], 1

ADC word ptr [bp-6], 0

JMP L1 ;Synthetic inst

L5: MOV ax, [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MUL word ptr [bp-0Ch]

MOV dx, 3

MUL dx

MOV [bp-0Ch], ax

INC si

JMP L4 ;Synthetic inst

main ENDP

Figure 7: Benchmul.a2 { Continued

Due to the amount of information lost in the com-

pilation process, to be able to regenerate high-level lan-

guage (HLL) code, all of these experimental decompil-

ers have limitations in one way or another, including

decompilation of source assembly �les [20, 22, 23, 25] or

object �les with or without symbolic debugging infor-

mation [24], simpli�ed compiler source high-level lan-

guage used to compile the source executable program

fed into the decompiler [20], and the requirement of the

compiler's speci�cation [8, 9].

Our decompilation system, dcc, di�ers from previ-

ous decompilation projects in several ways; it analy-

ses source executable programs rather than assembler

or object �les, performs idiom analysis to capture the

essence of a sequence of instructions with a special

meaning, performs data 
ow analysis on registers and

condition codes to eliminate them and regenerate high-

level expressions, and structures the program's control


ow graph into a generic set of high-level structures

that can be accommodated into di�erent high-level lan-

guages, eliminating as much as possible the use of the



/*

* Input file : benchmul.exe

* File type : EXE

*/

#include "dcc.h"

void main ()

/* Takes no parameters.

* High-level language prologue code.

*/

{

int loc1;

int loc2;

long loc3;

long loc4;

int loc5;

scanf ("%ld", &loc4);

printf ("executing %ld iterations\n", loc4);

scanf ("%d", &loc1);

scanf ("%d", &loc2);

loc3 = 1;

while ((loc3 <= loc4)) {

loc5 = 1;

while ((loc5 <= 40)) {

loc1 = (((((((((((((((((((((((((loc1

* loc1) * loc1) * loc1) * loc1)

* loc1) * loc1) * loc1) * loc1)

* loc1) * loc1) * loc1) * loc1)

* loc1) * loc1) * loc1) * loc1)

* loc1) * loc1) * loc1) * loc1)

* loc1) * loc1) *

loc1) * loc1) * 3);

loc5 = (loc5 + 1);

}

loc3 = (loc3 + 1);

}

printf ("a=%d\n", loc1);

}

Figure 8: Benchmul.b

goto statement. dcc also makes use of compiler and

library signatures, and library prototypes, if available

at decompilation time.

6 Conclusions

This paper presents an overview of a set of tools

used in the reverse engineering of executable programs;

such tools are: loader, disassembler, signature genera-

tor, prototype generator, and decompiler. We report

on results obtained from the implementation of this

system in a prototype decompiler system for the In-

tel i80286 architecture and the DOS operating system:

dcc. The structure of the dcc decompiler is based on

the structure of a compiler; several phases which are

implemented in machine- or language- dependent or in-

dependent modules: the front-end which is machine-

dependent, the universal decompiling machine which is

/* benchmul - benchmark for int multiply

* Thomas Plum, Plum Hall Inc, 609-927-3770

* If machine traps overflow, use an unsigned type

* Let T be the execution time in milliseconds

* Then average time per operator = T/major usec

* (Because the inner loop has exactly 1000

* operations)

*/

#define STOR_CL auto

#define TYPE int

#include <stdio.h>

main (int ac, char *av[])

{ STOR_CL TYPE a, b, c;

long d, major;

scanf ("%ld", &major);

printf("executing %ld iterations\n", major);

scanf ("%d", &a);

scanf ("%d", &b);

for (d = 1; d <= major; ++d)

{

/* inner loop executes 1000 selected

operations */

for (c = 1; c <= 40; ++c)

{

a = 3 *a*a*a*a*a*a*a*a * a*a*a*a*a*

a*a*a * a*a*a*a*a*a*a*a * a;

/* 25 * */

}

}

printf("a=%d\n", a);

}

Figure 9: Benchmul.c

Use Example

60 Migration: 2nd ! 3rd Neliac

Language conversion Autocoder

70 Migration Piler System

Language design F4 trainer aircraft

Methodology description 4 theses

80 Recover inaccessible code Decomp

Modify binaries

Documentation Zebra

90 Migration Binary translation

Security PROM comparator

Automatic generation Decompiler-compiler

Maintenance dcc

Figure 10: Uses of decompilation throughout the

decades

machine- and language-independent, and the back-end

which is language-dependent.

The results reported in this paper are based on a

test suite of programs that make use of base data type

variables such as byte, integer, and long integer. The



statistics obtained show that on average there is a re-

duction in the number of intermediate instructions of

76.25%. This reduction is only possible by the complete

data 
ow analysis of the program, and it represents the

overall improvement this decompiler has made over pre-

vious decompilers which generate \high-level code" that

looks like assembler (and hence their reduction rate is

almost nil).

The resultant C programs make use of variables (as

opposed to registers) and the correct type of control

structures (with the minimumuse of goto statements).

Some comments are also provided by the system. The

decompiler generates assembler code for untranslatable

subroutines, and C for the rest. The decompiler makes

use of compiler and library signatures if they are avail-

able; otherwise it disassembles all code and analyses all

subroutines (including low-level subroutines included by

the compiler for setting up the environment, and all li-

brary routines linked in by the linker).
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