
IBM VisualAge DataAtlas Multiplatform

Dictionary and Designer User’s Guide
Version 2.5

SC26-9134-00

IBM

IBM VisualAge DataAtlas Multiplatform

Dictionary and Designer User’s Guide
Version 2.5

SC26-9134-00

IBM

Note!

Before using this information and the product it supports, be sure to read the general
information under “Notices” on page vii.

First Edition (September 1997)

This edition applies to IBM VisualAge DataAtlas Multiplatform, Version 2.5, Program Number 5648-A48, and to any
subsequent releases and modifications until otherwise indicated in new editions or technical newsletters. Make sure
you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.

If you have comments about this publication, please go to the DataAtlas Web site, select “Browse or participate in the
DataAtlas threaded discussion group,” and add a comment to the “Online Information and Publications” thread. The
Web site is located at http://www.software.ibm.com/ad/datatlas.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices vii
Trademarks vii

About This Book ix
How This Book Is Organized. ix
Related Publications. x
DataAtlas Web Site x
Terminology Note x

Summary of Changes xi

Part 1. Dictionary User’s Guide . . 1

Chapter 1. Introduction to DataAtlas
Dictionary 3
DataAtlas Dictionary Functions 4

Populating 4
Reconciling. 5
Creating and Deleting 5
Updating 6
Generating 6
Querying 6

Becoming Familiar with the Interface . . . 7
Using Online Information 8

The Online Tutorial 8
Online Help 8

Chapter 2. Getting Started 9
Launching DataAtlas Dictionary and
Designer 9
DataAtlas and TeamConnection 10

TeamConnection Overview 10
How Workfolders Relate to
TeamConnection 11

The Profile Notebook 11
DataAtlas Naming Scheme 12

Chapter 3. Searching for Objects in the
TeamConnection Database 15
Creating a Workfolder 15
Searching for Objects from a Workfolder . . 15

Chapter 4. Creating and Deleting Objects . 19

Creating Relational Database Objects . . . 19
Creating IMS Objects 21
Creating Included Source Definitions . . . 22
Creating Shareable Data Elements 24
Creating Shareable Data Structures 24
Deleting Objects 27

Chapter 5. Populating the
TeamConnection Database 29
Populate Considerations When Using
DataAtlas Modeler or Designer 30

Relational Design 30
Physical Design 30

Populating the TeamConnection Database
from DB2 Catalogs 31
Using a Reconcile Mapping Table during
DB2 Populate 33
Populating IMS Definitions 33

Using a Reconcile Mapping Table during
IMS Populate 35

Populating COBOL and PL/I Data
Structures 35

Using a Reconcile Mapping Table with
COBOL or PL/I 37

Running a Trial Run 37
Reconciling Data Definitions during
Populate 38
Creating Shareable Data Components
without Reconciling 39
Mapping Tables 39

Structure of a Mapping Table 39
Examples of Entries 41
Creating a Mapping Table from a
Prototype 41

Chapter 6. Updating Objects 43
Updating Relational Database Objects . . . 43
Updating IMS DBD Objects 45
Updating IMS PSB Objects 46
Updating COBOL or PL/I Included Source
Definitions 47
Updating Shareable Data Structures . . . 49

Chapter 7. Generating Definitions . . . 53

© Copyright IBM Corp. 1996, 1997 iii

Generating Definitions from DataAtlas . . 53
HLL Cross-Generation 54
Generating Definitions with a Build Script . 55
Using DataAtlas DDL on a DB2/400 . . . 55

Chapter 8. Running TeamConnection SQL
Queries 57
Running a Query. 57
Supplied Queries. 57
Running a Supplied Query 58
Writing TeamConnection SQL 61

The Department-Employees Example . . 61
Advantages of Querying an Object Data
Model 63
Using Qualifiers with Nested Collections. 63
Querying across Multiple Object Classes . 64
Queries with an Outer Join 64

TeamConnection’s Views and Attributes . . 65

Part 2. Designer User’s Guide . . 67

Chapter 9. Introduction to DataAtlas
Designer 69

Chapter 10. Database Design Concepts . 71
The Central Concept: The Table 71
Relational Design 71
Physical Design 72

Data Load and Work Load 72
Storage 73
Access 74

Knowledge of Database Design 74

Chapter 11. Database Design with
DataAtlas Designer 75
Design Modes. 75

Design Using Notebooks 75
Design Using Design Support 75

Design Areas 77
Designing Single Objects 77
Designing a Set of Objects. 78

Design Information 78
Design Reports 79
Design Scenarios 79

Creating a New Database 80
Optimizing an Existing Database . . . 80

Chapter 12. Using DataAtlas Designer . . 83

Configuring the Design Environment . . . 83
Requesting Design Support from a Physical
Design 84
Requesting Design Support from a
Workfolder 85
Designing Database Objects Using
Notebooks 86

Designing by Tuning an Object’s
Definition 86
Requesting Design Support from a
Notebook 88

Selecting Design Actions 88
Requesting Design Reports 90
Evaluating Design Support Reports . . 90
Accepting Design Proposals 92
Selecting from a Choice of Proposals . . 93
Executing Design Proposals 93

Chapter 13. Designing Tables 95
Available Design Support for Tables . . . 96
Specifying General Information 96
Viewing the Shareable Table Definition . . 97
Viewing the Columns 97
Adding and Deleting Columns 97
Optimizing the Table Layout 98
Assigning the Table to a Physical Design . . 98
Specifying Routines and Options 99
Creating and Modifying a Primary Key . . 99
Creating and Modifying Unique Keys . . . 100
Creating and Modifying Foreign Keys. . . 101
Creating Indexes 102
Assigning the Table to a Table Space and a
Database 103
Creating Table Partitions 103
Modifying Table Partitions 104
Specifying the Data Load 105
Specifying the Work Load 105
Extracting DB2 Actual Values 106

Chapter 14. Designing Columns 107
Available Design Support for Columns . . 107
Defining a Column 108
Setting Options 109
Specifying the Data Load 109
Specifying the Work Load 110
Viewing DB2 Actual Values 110

Chapter 15. Designing Indexes 111
Available Design Support for Indexes . . . 111

iv Dictionary and Designer User’s Guide

Specifying General Information 112
Assigning the Index to a Physical Design . 112
Defining an Index 112
Specifying Index Columns 113
Specifying the Sorting Order 113
Specifying Storage Information 114
Viewing Index Partitions 114
Specifying Type and Storage Information of
an Index Partition 114
Viewing DB2 Actual Values 115

Chapter 16. Designing Table Spaces . . 117
Available Design Support for Table Spaces . 117
Specifying General Information 118
Assigning the Table Space to a Physical
Design 118
Assigning the Table Space to a Database . . 119
Setting Options 119
Creating Table Space Partitions 119
Specifying Type and Storage Information of
a Table Space Partition 120
Specifying Storage Information 120
Assigning Tables 121
Selecting a Buffer Pool 121
Specifying Design Information 121
Extracting DB2 Actual Values 121

Chapter 17. Designing Databases . . . 123
Available Design Support for Databases . . 123
Specifying General Information 124
Setting Options 124
Specifying Design Information 124
Viewing Assigned Table Spaces 124
Assigning the Database to a Storage Group . 125
Selecting a Buffer Pool 125
Assigning the Database to a Physical Design

.125

Chapter 18. Designing Storage Groups . 127
Available Design Support for Storage
Groups 127
Specifying General Information 128
Assigning the Storage Group to a Physical
Design 128
Specifying Storage Information 128
Assigning Databases 129
Viewing Assigned Table Spaces 129
Viewing Assigned Indexes 129
Specifying the Usage Intent 130

Specifying the Required Space 130
Converting the Used Space Value 130
Viewing DB2 Actual Values 131

Chapter 19. Designing Views 133
Specifying General Information 133
Defining a View 133
Assigning the View to a Physical Design . . 134

Chapter 20. Designing an Alias/Synonym . 135
Specifying General Information 135
Defining an Alias/Synonym 135
Assigning the Alias/Synonym to a Physical
Design 136

Appendix A. Sample Files Shipped with
DataAtlas 137
DB2 UDB Sample Tables 137
IMS Sample Files. 138
COBOL Sample Files 138
PL/I Sample Files 139
Sample Reconcile Mapping Tables 139
Sample COBOL Command File 139
Sample PL/I Command File 139

Appendix B. Qualifiers for Object Names. 141
Relational Qualifiers. 142
IMS Qualifiers. 143
Prefix Qualifiers 144

Appendix C. Using the D ATATLAS.EXE
Build Script 145
Sample Build Script 145
Input Parameters. 145
TeamConnection Build 146
TeamConnection DataAtlas Objects. . . . 146
DataAtlas DB2 Sample Script Settings . . . 147

Input Parameters. 147
Special Considerations 148
Return Codes 148

DataAtlas Oracle Sample Script Settings . . 149
Input Parameters. 149
Return Codes 149

Special Considerations 149
DataAtlas IMS Sample Script Settings . . . 150

Input Parameters. 150
Return Codes 150
Special Considerations 150

DataAtlas COBOL Sample Script Settings . 150

Contents v

Input Parameters. 150
Return Codes 151
Special Considerations 151

DataAtlas PL/I Sample Script Settings . . 151
Input Parameters. 151
Return Codes 152
Special Considerations 152

Appendix D. TeamConnection
Considerations 153
Renaming Objects 153
Workfolders and the TeamConnection Cache

.153
TeamConnection Locking 154
Concurrent Versus Serial Development . . 155

Appendix E. PL/I Supported Data and
Nondata Attributes 157

Appendix F. Views and Attributes of
Object Types 161

Appendix G. Actions and Rules 211
Object Types, Functions, and Actions . . . 211
Rule Explanations 214

Appendix H. Performance
Considerations 225
Populating 225
Maintenance 225
Queries 226
Designer 226
Modeler 226

Glossary 227

Index 229

vi Dictionary and Designer User’s Guide

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (1) the exchange of information between independently
created programs and other programs (including this one) and (2) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Department W92/H3, P.O. Box 49023, San Jose, CA 95161-9023.
Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

DataAtlas IMS
DataGuide OS/2
DB2 OS/390
DB2 Universal Database TeamConnection
Electronic Showcase Visual Age
IBM

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft
Corporation.

© Copyright IBM Corp. 1996, 1997 vii

Other company, product, and service names may be trademarks or service
marks of others.

viii Dictionary and Designer User’s Guide

About This Book

Read this book to find out how to use the Dictionary and Designer
components of IBM VisualAge DataAtlas Multiplatform. The Dictionary
component, DataAtlas Dictionary, is an advanced data dictionary that enables
you to populate, create, update, and generate data definitions for database
management systems and high-level languages. The Designer component,
DataAtlas Designer, is a set of design functions that checks the correctness and
completeness of relational database objects, proposes design improvements,
and implements the proposals at your request.

This book assumes you have installed and started DataAtlas on your desktop.
Instructions for installing and starting DataAtlas are under the “Installation”
topic on the CD-ROM’s Electronic Showcase.

You should know how to work with objects in OS/2 or in Windows NT. You
should also be familiar with the concepts of your installed database
management system, and how to use it.

How This Book Is Organized

This book has two parts and a set of appendixes with supplemental
information. Part 1 is a guide to using DataAtlas Dictionary. It introduces
DataAtlas Dictionary and leads you through scenarios for these tasks:
v Searching for objects in the TeamConnection database
v Creating and deleting objects in the TeamConnection database
v Populating the TeamConnection database
v Updating objects in the TeamConnection database
v Generating definitions from the TeamConnection database
v Running TeamConnection SQL queries

Part 2 is a guide to using DataAtlas Designer. It introduces DataAtlas
Designer, explains design concepts, and describes the interface for using the
design functions. Its chapters show you how to use the design functions for
each of these DB2/390 objects: tables, columns, indexes, table spaces,
databases, storage groups, views, and alias or synonyms.

© Copyright IBM Corp. 1996, 1997 ix

Related Publications

DataAtlas has a third component, DataAtlas Modeler. It’s a data modeling tool
that supports the entity-relationship approach to conceptual data modeling. To
find out how to use it, read Modeler User’s Guide, SC26-9041.

For general information on how to install DataAtlas, refer to Installation
Overview, SC26-9042. This booklet is supplemented by instructions under the
“Installation” topic on the CD-ROM’s Electronic Showcase.

For information about using TeamConnection, refer to TeamConnection User’s
Guide, SC34-4499.

To order these publications, contact your local IBM representative. In the
United States, you can order these publications directly by calling
1-800-879-2755.

DataAtlas Web Site

The DataAtlas Web site provides the latest product information. It also lets
you communicate directly with members of the product development team
and provides product service updates.

If you have comments about this publication, please go to the DataAtlas Web
site, select “Browse or participate in the DataAtlas threaded discussion
group,” and add a comment to the “Online Information and Publications”
thread. The Web site is located at http://www.software.ibm.com/ad/datatlas.

Terminology Note

This book and the DataAtlas user interface contain two repeatedly used
abbreviations that may be unfamiliar to you:
v DB2/390, which refers to any of these DB2 enterprise data servers: DB2

Version 3, DB2 for MVS Version 4, and DB2 for OS/390 Version 5.
v DB2 UDB, which refers to DB2 Universal Database Version 5.

x Dictionary and Designer User’s Guide

Summary of Changes

This book contains information that was formerly in two DataAtlas
publications: Dictionary User’s Guide and Designer User’s Guide. The merged
information has been modified to reflect these enhancements to Version 2.5 of
IBM VisualAge DataAtlas Multiplatform:
v Support for the latest DB2 products

DataAtlas now supports DB2 Universal Database. The abbreviation “DB2
UDB” is used in task scenarios to identify objects associated with this
product.

v Support for generating PL/I include files

“Chapter 7. Generating Definitions” on page 53 shows that the Generate
function can now export PL/I include files.
“Appendix C. Using the DATATLAS.EXE Build Script” on page 145 gives
instructions for generating PL/I include files using the DATATLAS.EXE
build script.

v Integration with Component Broker

“Launching DataAtlas Dictionary and Designer” on page 9 describes an
enhancement to DataAtlas’s command interface that enables Component
Broker and DataAtlas to communicate efficiently.

v Addition of prototype mapping tables

“Creating a Mapping Table from a Prototype” on page 41 explains what
prototype mapping tables are, how to create them, and how they help you
quickly produce mapping tables to use in reconcile operations.

v Extended design support for DB2 for OS/390 Version 5

When DataAtlas Designer proposes and validates Version 5 table space
definitions, it ensures they agree with index definitions. The new design
rules that provide this support are explained in “Appendix G. Actions and
Rules” on page 211.

Along with these changes, the book’s appendixes have been extended:

v “Appendix D. TeamConnection Considerations” on page 153 has been
supplemented with new information.

v “Appendix F. Views and Attributes of Object Types” on page 161 has been
extended to include entries for IMS object types.

v “Appendix H. Performance Considerations” on page 225 is a new appendix
that will help you optimize the performance of DataAtlas.

© Copyright IBM Corp. 1996, 1997 xi

xii Dictionary and Designer User’s Guide

Part 1. Dictionary User’s Guide

© Copyright IBM Corp. 1996, 1997 1

2 Dictionary and Designer User’s Guide

Chapter 1. Introduction to DataAtlas Dictionary

DataAtlas Dictionary gives you a method to control, share, and standardize
the data definitions associated with relational databases, IMS databases, and
high-level language (HLL) applications. DataAtlas Dictionary uses
TeamConnection for storing, maintaining, and sharing these data objects with
DataAtlas Modeler and Designer, and with other tools in IBM’s application
development environments.

A primary mechanism for controlling data definitions is through the use of
shareable objects which can be used in many database and HLL applications.
The shareable objects you can create and maintain with DataAtlas Dictionary
are shareable data elements, shareable data structures and shareable table definitions.
Shareable data elements specify the data characteristics of elementary pieces
of information, such as a zip code or employee name. Shareable data
structures collect and order a related set of elementary information to be used
as a unit, such as street, city, state, zip code and country which together
constitute an address. Shareable table definitions specify the layout of a
relational database table, such as an employee record or inventory
maintenance table. Shareable table definitions can include shareable data
elements. Shareable data structures can include both shareable data elements
and nested shareable data structures. Shareable data components is a term used
throughout this book to refer to shareable data elements or shareable data
structures.

TeamConnection allows you to control and monitor access to your shared
objects. Using the component structure in TeamConnection, you can separate
shareable and non-shareable objects, and control access to the objects. For
more information about TeamConnection components, see TeamConnection
User’s Guide.

Version 2.5 of DataAtlas Dictionary supports:
v DB2/390 databases

“DB2/390” refers to any of these DB2 enterprise data servers: DB2 Version
3, DB2 for MVS Version 4, and DB2 for OS/390 Version 5.

v DB2 UDB databases
“DB2 UDB” refers to DB2 Universal Database Version 5.

v DB2 Common Server Version 2 databases
DB2 Common Server isn’t mentioned elsewhere in this book, but wherever
support for DB2 UDB is discussed, support for DB2 Common Server is
implied as well.

© Copyright IBM Corp. 1996, 1997 3

v Oracle Version 7.3 databases
v IMS full-function and Fast Path databases

DataAtlas supports all the versions of IMS/ESA through Version 6.
v COBOL COPY files

DataAtlas supports IBM VisualAge for COBOL for OS/2 and Windows
Version 2.0; IBM VisualAge for COBOL, Professional for OS/2 Version 2.0;
and IBM VisualAge for COBOL Version 1.2 Refresh.

v PL/I include files
DataAtlas supports IBM PL/I for OS/2 Professional Version 1.2; and IBM
PL/I for Windows Version 1.2. DataAtlas requires the compilers to be at the
CSD#4 service level or higher.

DataAtlas Dictionary Functions

DataAtlas Dictionary lets you import data definitions from existing production
environments into the TeamConnection database. You can also create data
definitions directly by initializing settings notebooks.

Once a data definition is in the TeamConnection database, you can update it
to suit your changing requirements. When you want to put a new or updated
data definition back into your operating environment, you can generate a
workstation file containing definition language that conforms to the definition
in the TeamConnection database.

Here is a closer look at each of DataAtlas Dictionary’s principal functions, all
available via DataAtlas Dictionary’s object-oriented graphical interface.

Populating

Populating is the process DataAtlas uses to create objects in a TeamConnection
database. The objects are based on data definitions in DB2 and IMS databases.
They can also be based on COBOL COPY files and PL/I include files; in this
case, the populated objects are called included source definitions.

In populating DB2/390 and DB2 UDB tables, DataAtlas refers to the
appropriate catalog and additionally populates the indexes, views, synonyms,
aliases, table spaces, databases, and storage groups the tables need.

IMS data definitions are accessed from a workstation file, after they’re
downloaded; source code comments on the DBDs and PSBs are also
populated into the TeamConnection database.

4 Dictionary and Designer User’s Guide

COBOL COPY files and PL/I include files are accessed from workstation files.
COPY files used with another COBOL compiler such as COBOL for MVS &
VM can be populated if the data descriptions can be compiled with the
VisualAge for COBOL compiler.

If you plan to populate COBOL or PL/I data structures using DataAtlas, you
need to install or have access to an installed copy of a compiler listed above.

The compilers must be installed with the COBOL Compiler and Runtime
Library or PL/I Compiler and Runtime Library option selected. Additional
compiler installation options may be selected, but they are not required by
DataAtlas. Changes made to your OS/2 CONFIG.SYS file or Windows NT
registry during the compiler installation process must be in effect when using
the COBOL and PL/I Populate and Generate functions.

You can populate the TeamConnection database in a “trial run” manner,
where the definitions are processed by DataAtlas but are not saved and a
report is generated. After you are sure of the definitions, you can perform the
actual populate.

IBM DB/DC Data Dictionary users can migrate existing data definitions to the
TeamConnection database by:
1. Applying the fixes for APARs PN87038 and PQ07716
2. Using the dialogs supplied by these fixes to extract data
3. Running the extracted data through IBM VisualAge Exchange Version 2.5
4. Using the Import function of TeamConnection

Reconciling

When you populate the TeamConnection database, DataAtlas Dictionary gives
you the ability to reconcile data definitions. This allows you to create and use
shareable data components. Reconciling data definitions also prevents the
creation of duplicate data definitions. When populating an object, you can
create a new shareable data component or use a shareable data component
that already exists in the TeamConnection database. If you don’t reconcile the
data, any new object that you populate is defined as a local data component,
and won’t be shareable among TeamConnection database objects.

Creating and Deleting

DataAtlas Dictionary makes it easy to create objects of these types:
v DB2 UDB - Tables, indexes, databases, table spaces, and views
v DB2/390 - Tables, indexes, views, storage groups, synonyms, aliases, table

spaces, and databases

Chapter 1. Introduction to DataAtlas Dictionary 5

v Oracle - Tables, indexes, table spaces, and views
v IMS - DBDs, PSBs, and PCBs
v COBOL and PL/I - Included source definitions
v Shareable data elements

v Shareable data structures

You can also delete an object from the TeamConnection database. Before
deleting an object, DataAtlas Dictionary shows you how other objects will be
affected, and gives you a chance to delete them as well.

Updating

With DataAtlas Dictionary, you can easily change an object’s characteristics,
such as its name, length, and connection to a shareable data element.
DataAtlas Dictionary checks the contents of notebook fields to help prevent
you from entering invalid data.

Generating

DataAtlas Dictionary generates source statements from data in the
TeamConnection database. The Generate function is, more or less, the opposite
of the Populate function; it exports COBOL COPY files, PL/I include files,
DBD and PSB macro statements, and SQL DDL to workstation files. To run
your generated output in an OS/390 environment, you must upload it to the
host.

You can generate data definitions by using the DataAtlas Dictionary user
interface or by using a build script. A sample build script, DATATLAS.EXE, is
shipped with DataAtlas. See “Appendix C. Using the DATATLAS.EXE Build
Script” on page 145 for more information.

Querying

You can use TeamConnection SQL to run queries about the data definitions
stored in the TeamConnection database. DataAtlas Dictionary provides many
predefined queries, which you can modify, or you can create your own.
TeamConnection SQL, based on an object data model, is slightly different from
the standard SQL, which is based on a relational data model. For more
information on TeamConnection SQL and the predefined queries, see
“Chapter 8. Running TeamConnection SQL Queries” on page 57.

6 Dictionary and Designer User’s Guide

Becoming Familiar with the Interface

Before you begin to use DataAtlas Dictionary’s functions, you need to be
familiar with the Main Folder window. The Main Folder window opens when
you start DataAtlas Dictionary and Designer.

Here’s what the Main Folder window looks like:

The window consists of these parts:
v The menu bar. It shows the actions you can perform with DataAtlas.
v Folders. They represent the main DataAtlas functions.
v The information line. Located at the bottom of the window, the

information line describes whatever menu-bar choice or icon you select.

In brief, here’s what you’ll find in the folders:
v Populate from folder. Objects inside this folder enable you to populate

objects into the TeamConnection database from two sources: DB2 catalogs
and workstation directories. For more information on populating objects
into the TeamConnection database, see “Chapter 5. Populating the
TeamConnection Database” on page 29.

v Profile folder. It contains an initial Profile notebook where you set default
values for the DataAtlas Dictionary functions.

v Workfolders folder. Double-click this icon to see your workfolders or to
create a new workfolder. A workfolder is a place for collecting objects that
belong to the same version. A version is a given family, release, and work

Chapter 1. Introduction to DataAtlas Dictionary 7

area within TeamConnection. From DataAtlas Dictionary, the workfolder is
the primary way to access data that is in the TeamConnection database.
Once you have a workfolder, you can search for an object or update an
object in the TeamConnection database. For more information on creating a
workfolder and searching for objects, see “Chapter 3. Searching for Objects
in the TeamConnection Database” on page 15.

v Report folder. It holds the results of DataAtlas query reports.
v SQL Query folder. A query is a request for information from the

TeamConnection database based on conditions you specify through the
command interface for SQL statements. For more information about queries,
see “Chapter 8. Running TeamConnection SQL Queries” on page 57.

With your mouse pointer over any of the folders, click the right mouse button
to see a pop-up menu of available actions. Double-click a folder to open it.

Using Online Information

DataAtlas provides online help and an online tutorial to help you learn about
and maneuver through the product.

The Online Tutorial

Using the online tutorial and the sample files, you can do many of the
DataAtlas Dictionary and Designer tasks described in this book and in
DataAtlas Designer User’s Guide. To use the online tutorial:
1. From any window with a menu bar, click Help, then Tutorial.

Result: The Tutorial window opens.
2. Take a few of the lessons to get “hands-on” experience with DataAtlas

Dictionary.
3. When you’re done, double-click the small icon at the top-left corner of the

Tutorial window.
Result: A Close message box appears. Click OK to close the tutorial.

Online Help

You can get comprehensive online help on DataAtlas Dictionary and Designer
tasks, concepts, terms, and windows from any window with a menu bar. Just
click Help on the menu bar and select from the pull-down menu.

To get an explanation of the window you’re viewing, click Help on the
window or put the mouse pointer anywhere in the window and press F1.

8 Dictionary and Designer User’s Guide

Chapter 2. Getting Started

Before you can begin using DataAtlas Dictionary, you must:
v Install TeamConnection and create a TeamConnection family.
v Create TeamConnection components to hold the DataAtlas Dictionary

objects you will create.
v Create the TeamConnection release and work area that will be used to

manage the versions of your DataAtlas objects.

To use DataAtlas with DB2 UDB or DB2/390 databases, you or someone with
database administrator authority must issue the following commands in the
client subdirectory (in OS/2) or bin subdirectory (in Windows NT) under the
directory where DataAtlas is installed.
v To connect to the DB2/390 or DB2 UDB database issue:

db2 connect to databasename

v To enable DataAtlas to populate data definitions from a DB2/390 or DB2
UDB database, issue:
db2 bind ewsddb2x.bnd

If you get authorization errors with this command, modify it by identifying
the collection referenced in the bind file:
db2 bind ewsddb2x.bnd collection atlasrdb

v To grant authority to users who will populate data definitions from existing
DB2 databases and select from system catalog tables, issue:
db2 grant bind, execute on package atlasrdb.ewsddb2x to userid

where userid is the user ID of each user to be granted authority.

If a user does not already have connect authority to a DB2 database, you must
issue the following commands:

db2 connect to databasename

db2 grant connect on database to userid

Launching DataAtlas Dictionary and Designer

You can launch DataAtlas Dictionary and Designer in either of two ways:
v Double-click the DataAtlas Dictionary and Designer icon on your desktop.

© Copyright IBM Corp. 1996, 1997 9

v Run the command ewsuiv2.exe in the client subdirectory (in OS/2) or bin
subdirectory (in Windows NT) under the directory where DataAtlas is
installed.

Using the ewsuiv2.exe command, you can bring up DatatAtlas Dictionary and
Designer with the windows of your choice already open. To do so, add the
-file filename parameters to the command. Statements in the named file
identify the windows you want to be open when DataAtlas comes up. Each
statement begins with EWS_Open and specifies the TeamConnection version,
object type, and object name. For example:
EWS_Open, atlas|r|w, DSRMRDPhysicalDesign <>MyPhysDes<:>

This statement directs DataAtlas to open the physical design MyPhysDes in the
Team Connection family atlas, release r, work area w. Component Broker uses
this interface to communicate with DataAtlas and examine physical designs.

DataAtlas and TeamConnection

DataAtlas works with TeamConnection to provide a comprehensive means of
maintaining complex databases. DataAtlas lets you create and update
database objects; TeamConnection lets you track such changes in complex
development and maintenance environments.

TeamConnection Overview

All TeamConnection activities are performed within a version context, which
represents the family, release, work area, and component that your objects are
related to. The first time you start DataAtlas Dictionary, you will be prompted
to enter a default version context, which will be stored in your DataAtlas
Dictionary profile and can be revised at any time. You must be authorized to
a version context before that version context can be used to access the
TeamConnection database. Your TeamConnection user ID is identified to
TeamConnection either via the TC_USER environment variable on OS/2 or
the Windows NT user name.

TeamConnection groups objects into units called components, which you must
have authority to use. For example, a TeamConnection administrator may
create a component for relational objects, one for IMS objects, and another for
high-level language objects, and grant authority to different subsets of users.
The authority level will allow you to perform all DataAtlas functions.

You won’t normally run into complications when creating and updating
objects within a single component; however, you should be aware of the
implications of updating objects with relationships between components.

10 Dictionary and Designer User’s Guide

When a relationship is created between two objects in two different
components, you are required only to have authority to update objects in the
component where the source object resides. For example, you may wish to
connect a column in the DB2 UDB table EMP_RECORD (in component RDB)
with a shareable data element ZIPCODE (in component DE). You can do this
if you have update authority for the RDB component; you are not required to
have update authority for the DE component.

How Workfolders Relate to TeamConnection

DataAtlas workfolders represent TeamConnection work areas or, more
specifically, a particular version within which changes are made. When a
DataAtlas workfolder is created, it must be associated with a specific family,
release, and work area combination. All activities that occur within that
workfolder will occur within the version of TeamConnection represented by
the workfolder. Changes to a workfolder, which would involve adding or
removing objects that are being maintained, are stored within
TeamConnection and managed by DataAtlas. Because of this, you should
close a workfolder so that its contents can be saved before performing any
work area activity from the TeamConnection tool. For example, before
refreshing, freezing, or integrating a work area, all workfolders within that
version should be closed.

Multiple workfolders can co-exist in DataAtlas to represent different versions.
All workfolders are grouped within the Workfolders folder on the DataAtlas
Main Folder Window. You should keep the names of your workfolders unique
across families and versions.

See “Appendix D. TeamConnection Considerations” on page 153 for more
information on using DataAtlas with TeamConnection.

The Profile Notebook

You can use the Profile notebook to set up information such as working
directory, report locations, and settings to use when creating objects in the
TeamConnection database.

To open a Profile notebook, double-click the Profile folder in the DataAtlas
Main Folder window. Then double-click the icon to open your Profile
notebook. Your Profile notebook looks like this:

Chapter 2. Getting Started 11

Looking through its settings pages, you see references to DataAtlas functions
that aren’t in the Main Folder window. For example, on the General page,
you can specify the path where you’d like the reports from Query, Populate,
and Generate to reside.

The TeamConnection page is a place for identifying the default values
(family, release, and work area) you’re working with. You can override the
default values. Your TeamConnection data administrator can advise you about
these settings.

Most of the remaining pages contain settings to be used when a DB2, Oracle,
IMS, COBOL, or PL/I object is populated into or generated from the
TeamConnection database.

DataAtlas Naming Scheme

All DataAtlas objects adhere to a consistent naming scheme, which makes it
easy to locate and identify objects in any DataAtlas component.

Each DataAtlas object has a multipart name of the form:

<prefix>access-name<variation:revision>

12 Dictionary and Designer User’s Guide

prefix The foremost qualifier in the names of some objects. It identifies an
owning object. DataAtlas, not the user, adds it to the name, uses it,
and maintains it.

access-name
The short, simple name of an object; the name by which it is best
known outside the context of DataAtlas.

variation
An optional qualifier for the name of an object. It can be useful in
distinguishing between similar objects that have different uses. For
example, two shareable data elements could have the access name,
ZIPCODE, but have different data characteristics for different
applications. The variation qualifier could designate the application to
which each belongs.

revision
An optional qualifier for the name of an object. It can be useful in
distinguishing between objects that have to be available at the same
time. For example, there could be two revisions of the same shareable
data element named ZIPCODE: one representing a 9-digit zip code,
one representing a 5-digit zip code, both co-existing within the same
TeamConnection version. The revision qualifier could be used to
differentiate them.

Some database objects have additional name qualifiers. The qualifiers precede
the access name and indicate a hierarchy in which the object exists. For
example, PAYROLL_TABLE, a table object, has the name
<>m78serv3:userid:servsamp::PAYROLL_TABLE<v:r>. The system qualifier is
m78serv3, the creator qualifier is userid, and the database qualifier is
servsamp. Notice that qualifiers are separated from each other by a colon and
from the access name by a double colon.

The only part of a name that is required is the access name, which you choose
and maintain. The full length of the name, qualifiers included, can be up to
255 characters long, including special characters. No limit exists on any part
of a name, except for variation and revision which each have a limit of 30
characters. When you choose an access name, variation, and revision, take
into account the length of the other qualifiers. Since the characters < and >
and : are used to separate the parts of a name, they cannot be used within the
access name, variation or revision values. In addition, TeamConnection does
not allow \ (backslash) or | (vertical bar) in part names. See “Appendix
B. Qualifiers for Object Names” on page 141 for more information about using
object name qualifiers.

Examples for Valid Object Names:

Chapter 2. Getting Started 13

DB2 UDB table
<>m78serv3:userid:servsamp::PAYROLL_TABLE<:r1>

Oracle table space
<>m78serv2::::CUSTLST<:>

IMS DBD
<>BE3ORDER<V1:R1>

IMS PSB
<>PE3ORDER<:>

IMS PCB
<>PE3ORDER::PCB1<:>

Included source definition
<>ABC.CPY<:>

Data element alias
<ZIPCODE_9>zipcode<:>

Shareable data element
<>ZIPCODE_9<V1:R0>

Shareable data structure
<>EMPLOYEE_REC<v1:r1>

14 Dictionary and Designer User’s Guide

Chapter 3. Searching for Objects in the TeamConnection
Database

To view an object in the TeamConnection database, you will first need to
create a TeamConnection work area in the family and release in which your
object exists. When you are using TeamConnection change control, any task
you perform is determined by a defect or feature. The work area is created to
collect all the new and changed parts associated with the defect or feature.
See TeamConnection User’s Guide for instructions on creating and using a
TeamConnection work area.

After you have created a TeamConnection work area, you can access objects in
TeamConnection using a DataAtlas workfolder. A workfolder is a place to
keep all the objects you need to perform a certain task, such as extending a
database design by adding or modifying an IMS DBD or a set of relational
tables. After the objects are in a workfolder, you can open a notebook view of
the object, generate database or HLL (high-level language) source statements,
or delete the object from the TeamConnection database. In this chapter, you
learn how to create a workfolder and use it to search for objects in the
TeamConnection database.

Creating a Workfolder

To create a workfolder:
1. Double-click the Workfolders icon in the DataAtlas Main Folder window.

Result: The Workfolders window opens.
2. Click Folder, then Create workfolder.

Result: The Workfolder notebook opens.
3. On the General page, enter a workfolder name and the component that

the workfolder is to be associated with. On the TeamConnection page, fill
in the Family, Release, and Work Area fields. Click OK.
Result: The workfolder is created in the TeamConnection database. When
the store is complete, the details view of the new workfolder appears in
the Workfolders window.

Searching for Objects from a Workfolder

To search for an object from a workfolder:

© Copyright IBM Corp. 1996, 1997 15

1. In the Workfolders window, open a workfolder by double-clicking its icon.
(If you’re continuing from the last section, you will already have a
workfolder open.)
Result: The window for the selected workfolder opens.

2. Click Workfolder, then Search TeamConnection database.
Result: The TeamConnection Database - Search notebook opens.

3. On the General page, double-click each object type in the Object types list
that you want included in the search. You can also use the right and left
arrows to move objects between Object types and Types selected.
Result: The types you selected are added to the Types selected list. You
can deselect an object type in this list by double-clicking it.

4. You can qualify the search by specifying a Name, Variation, or Revision.
Using % as a wildcard in each of these fields will find all instances of the
object types you selected, within the family, release, and work area
assigned to the workfolder.

5. Click Search.
Result: The definitions matching the types you selected are displayed in
the TeamConnection database - Search Results window.

16 Dictionary and Designer User’s Guide

The following screen shows the results of a search after populating some
IMS DBDs from the sample files:

6. Select the objects you want to put into your workfolder. To select a list of
items, select the first item, and press Shift and the left mouse button on
the last item. To select separate items, select each by pressing Ctrl and the
left mouse button. Click OK.
Result: The objects are added to your workfolder.

Chapter 3. Searching for Objects in the TeamConnection Database 17

18 Dictionary and Designer User’s Guide

Chapter 4. Creating and Deleting Objects

In DataAtlas, you can create these objects:
v DB2 UDB databases, tables, views, systems, indexes, and table spaces
v DB2/390 databases, tables, views, indexes, table spaces, storage groups,

aliases, and synonyms
v Oracle tables, indexes, table spaces, and views
v IMS DBDs, PSBs, and PCBs
v COBOL and PL/I included source definitions
v Shareable data elements
v Shareable data structures
v Relational designs
v Physical designs
v Relational systems

Relational designs, physical designs, and relational systems are objects special
to DataAtlas and don’t correspond to objects in relational databases.

To create an object, you create its notebook, fill in the settings, and close the
notebook to save your definition. You can press PF1 for help information on
any field you are working on.

Creating Relational Database Objects

To create a DB2 or Oracle object, you must first create a relational system. A
relational system represents an instance of a DB2 or Oracle catalog. Since the
names of DB2 or Oracle objects must be unique within a catalog but tables
with the same name may exist in different catalogs, the relational system
name is used as part of the table name in the TeamConnection database.

To create a relational system:
1. In the DataAtlas Main Folder window, double-click the Workfolders icon.
2. Double-click the icon of the workfolder to which the system will belong.

Result: The Workfolder window opens.
3. Click Workfolder, then Create object.

Result: The Create Object window opens.
4. Click the plus sign to the left of Relational Objects.

© Copyright IBM Corp. 1996, 1997 19

Result: The list expands.
5. Click Relational system.

Result: A notebook for a new relational system object opens.
6. On the General page, enter a name in the Name field.
7. On the System page, select DB2/390, DB2 UDB, or Oracle in the Type

field. Select the correct version for the system in the Version field. Enter
either a Creator ID in the Creator field, or a Schema ID in the Schema
field, and click Add.

8. Click OK.
Result: The System - Store window appears.

9. Click Store.
Result: The newly created relational system is saved in the
TeamConnection database and the window closes. The new relational
system object appears in the workfolder.

In some cases, before a DB2 object can be created, a database must first be
created. To create a DB2 database, select Database in the Create Object
window, and select a release that agrees with the release you specified in
creating the relational system object. The remaining steps are as follows:
1. In the Database notebook, click Search to fill in the System and

Component fields.
2. Click OK.

Result: The System — Store window appears.
3. Click Store.

Result: The newly created DB2 database is saved in the TeamConnection
database and the window closes. The new DB2 database object appears in
the workfolder.

To create and define a relational table, table space, view, or index:
1. Click Workfolder, then Create object.

Result: The Create Object window opens.
2. Click the plus sign to the left of Relational objects.

Result: An expansion list is shown.
3. Click the plus sign to the left of either table, table space, view, or index.

Result: An expansion list is shown.
4. Select either DB2 Version 3.2, DB2 for MVS Version 4.1, DB2 for OS/390

Version 5.1, DB2 Common Server Version 2.1, or Oracle Version 7.3.
5. Click Create.

Result: The notebook opens.

20 Dictionary and Designer User’s Guide

6. On the General page, enter a name in the Name field. Click Search to fill
in the required fields (Schema, Creator, and/or Database) for the object
you are creating.

7. On the Definition page, complete the definition of the DB2 or Oracle
object.

8. Click OK.
Result: The System - Store window appears, where you can enter remarks.

9. Click Store.
Result: The newly created relational object is saved in the TeamConnection
database and the window closes. A representation of the object appears in
the workfolder.

Creating IMS Objects

To create and define an IMS DBD, PSB, or PCB:
1. In the DataAtlas Main Folder window, double-click the Workfolders icon.
2. Double-click the icon of the workfolder to which the DBD, PSB, or PCB

will belong.
3. Click Workfolder, then Create object.

Result: The Create Object window opens.
4. Select IMS DBD, IMS PCB, or IMS PSB from the list.
5. Click Create.

Result: The notebook opens.
6. For a DBD, select the access method from the list, and select Set Access

Method. For a PCB, select the PCB Type from the list, and select Set Type.
Result: Additional definition pages are added to the notebook.

7. On the General page, enter a name in the Name field. Fill in the fields on
the other notebook pages.

8. Click OK.
Results: The System - Store window appears, where you can enter remarks.

9. Click Store.
Result: The newly created definition is saved in the TeamConnection
database and the window closes. The new IMS object appears in the
workfolder.

Chapter 4. Creating and Deleting Objects 21

Creating Included Source Definitions

To create and define a COBOL or PL/I included source definition:
1. In the DataAtlas Main Folder window, double-click the Workfolders icon.
2. Double-click the icon of the workfolder to which the COBOL or PL/I

object will belong.
3. Click Workfolder, then Create.

Result: The Create Object window opens.
4. Select Included Source Definition from the list.
5. Click Create.

Result: The notebook opens.

22 Dictionary and Designer User’s Guide

6. On the General page, enter a name in the Name field.
7. On the Tree View page, select either COBOL or PL/I from the

Representation list.
8. Use the Tree View page to define the objects nested in an included source

definition. The left-hand side of this page presents a tree view of the
nested objects while the right-hand side of the page presents the details for
each selected object. You can add new objects, modify existing objects, or
remove objects from the structure.

9. To add a data item, select the type of item you want to add; then click
either Add Sibling or Add Child, as appropriate. If the data item is based
on an existing shareable data component, use the details information on
the right-hand side of the page to specify the data component name as
follows:
a. If you choose to add an elemental item, select Use existing shareable

data element to connect the item to an existing shareable data element.
b. If you choose to add a group item, you must use an existing shareable

data structure.
c. Click Search to fill in the Name of the data component you want to

share.

To modify a selected data item, update the associated details information
on the right-hand side of the page. If the data item uses an existing
shareable data element or structure, then use Open to open and update
the data component’s notebook as necessary.

To disassociate a selected data item from a shareable data element, deselect
Use existing shareable data element. This does not remove the selected
item, but makes it non-shareable instead. Note that structures contained in
an included source definition must be shareable.

To delete a data item from the data structure, select the item in the tree
view; then click Remove.

10. Click OK.
Result: The System - Store window appears, where you can enter
remarks.

11. Click Store.
Result: The newly created included source definition is saved in the
TeamConnection database and the window closes. A new included source
definition appears in the workfolder.

Chapter 4. Creating and Deleting Objects 23

Creating Shareable Data Elements

A data element is the most elementary object used by IMS fields, DB2
columns, Oracle columns, and COBOL and PL/I elementary data items.
DataAtlas Dictionary allows you to create shareable data elements, data elements
that can be reused. An example of a data element that may be useful as a
shareable data element is ZIPCODE. You can create a shareable data element
of ZIPCODE and have other objects use it. Reusing a definition makes data
more consistent and easier to administer.

To create a shareable data element:
1. In the DataAtlas Main Folder window, double-click the Workfolders icon.
2. Double-click the icon of the workfolder to which the data element will

belong.
3. Click Workfolder, then Create object.

Result: The Create Object window opens.
4. Select Shareable Data Element from the list.
5. Click Create.

Result: The notebook opens. The Representation list on the Definition
page determines the details used to describe the shareable data element.

6. Fill in the fields in the notebook.
7. Click OK.

Result: The System - Store window appears, where you can enter remarks.
8. Click Store.

Result: The newly created shareable data element is saved in the
TeamConnection database and the window closes. A new shareable data
element appears in the workfolder.

You can now associate the new data element with another object by opening
the other object’s notebook and filling in the appropriate field.

Creating Shareable Data Structures

A data structure is a collection of data elements. In the following steps, you’ll
learn how to create and define a shareable data structure. Making a data
structure shareable means that it can be used repeatedly to define IMS
segments or HLL data structures. Like the shareable data element, using
shareable data structures makes data more consistent and easier to administer.

To create a shareable data structure:
1. In the DataAtlas Main Folder window, double-click the Workfolders icon.

24 Dictionary and Designer User’s Guide

2. Double-click the icon of the workfolder to which the data structure will
belong.

3. Click Workfolder, then Create object.
Result: The Create Object window opens.

4. Select Shareable Data Structure from the list.
5. Click Create.

Result: The notebook opens. The Representation list on the Tree View
page of the notebook determines the details used to describe the shareable
data structure.

6. Fill in the fields in the notebook.
Use the Tree View page to define the objects nested in a shareable data
structure. The left-hand side of this page presents a tree view of the nested

Chapter 4. Creating and Deleting Objects 25

objects while the right-hand side of the page presents the details for each
selected object. You can add new objects, modify existing objects, or
remove objects from the structure.
To add a data item, select the type of item you want to add; then click
Add Sibling or Add Child, as appropriate. If the data item is based on an
existing shareable data component, use the details information on the
right-hand side of the page to specify the data component name as
follows:
a. If you choose to add an elemental item, select Use existing shareable

data element to connect the item to an existing shareable data element.
b. If you choose to add a group item, select Use an existing shareable

data structure to connect the item to an existing shareable data
structure.

c. Click Search to fill in the Name of the data component you want to
share.

To modify a selected data item, update the associated details information
on the right-hand side of the page. If the data item uses an existing
shareable data element or structure, then use Open to open and update
the data component’s notebook as necessary.

To disassociate a selected data item from a shareable data component,
deselect Use existing shareable data element or Use existing shareable
data structure. This does not remove the selected item, but makes it
non-shareable instead.

To delete a data item from the data structure, select the item in the tree
view; then click Remove.

7. Click OK.
Result: The System - Store window appears, where you can enter remarks.

8. Click Store.
Results: The newly created data structure is saved in the TeamConnection
database and the window closes. A new shareable data structure appears
in the workfolder.

You can now associate the new data structure with another definition by
opening the other definition’s notebook and filling in the appropriate fields.

26 Dictionary and Designer User’s Guide

Deleting Objects

You can delete objects from a workfolder or from the TeamConnection
database. If you delete an object from a workfolder, it still remains in the
TeamConnection database. To delete an object from either location, it must
first exist in a workfolder.

To delete an object from a workfolder:
1. Double-click a workfolder to open it.
2. Click the object you want to delete with the right mouse button.

Result: A pop-up menu opens.
3. Click Delete.

Result: The object’s icon disappears from the workfolder.

To delete an object from TeamConnection:
1. Double-click a workfolder to open it.
2. Click the objects you want to delete with the right mouse button.

Result: A pop-up menu opens.
3. Click Original, then Delete.

Result: The Workfolder name - Original Delete Object notebook opens.
4. The objects you selected for deletion appear in the Objects to be deleted

list. Related objects are objects that are contained in or used by objects that
you’re deleting. These objects appear in the Related objects to be deleted
list. In general, all related objects should be deleted when the selected
object is deleted. You can use the query function to better understand
where a particular object is used if you are unsure about whether the
object should be deleted. See the topic “Supplied queries to use before
deleting” in the online Help information.

5. You can deselect objects you do not want to delete from the Related
objects to be deleted list.

Chapter 4. Creating and Deleting Objects 27

6. Select the next object to be deleted from Objects to be deleted.
Result: Other objects will appear in the Related objects to be deleted list.
Deselect any objects you do not want to delete. Repeat this process until
you have made a deletion decision about all the objects related to each of
the entries in the Objects to be deleted list.

7. Select Confirm on delete if you want a report of the objects you’ve
selected for deletion.

8. When you’re done selecting objects for deletion, click Delete.
Result: If you selected Confirm on delete, a list of the objects you selected
appear in the Delete Confirmation window. If you want to delete all the
objects, click Delete. If not, you must cancel the window and begin the
object selection process over again.
If you didn’t select Confirm on delete, all selected objects are deleted from
the TeamConnection database.

28 Dictionary and Designer User’s Guide

Chapter 5. Populating the TeamConnection Database

You can populate the TeamConnection database with DB2 data definitions that
are defined in mainframe or workstation catalogs, from IMS source definitions
and COBOL data definitions (from COBOL COPY files) that are stored in
workstation files. DB2 data definitions are populated by specifying the name
of a relational table. Any objects related to the relational table, such as
indexes, views, databases, table spaces, and storage groups are populated
automatically.

In this chapter, you’ll learn how to populate a DB2 UDB table from the
DA_CELD database, an IMS DBD, and a COBOL COPY file. The scenarios use
sample files located in workstation directories created during the installation
of DataAtlas. See “Appendix A. Sample Files Shipped with DataAtlas” on
page 137 for a complete listing of the sample files shipped with DataAtlas.1
When you finish the scenarios, you can try to populate your own data.

The basic scenario for populating from any of these sources is the same. First,
select the appropriate source under Populate from in the Main Folder
window. Then, from the source’s pop-up menu, click Populate to see a list of
candidates. Last, fill out the appropriate Populate notebook fields and click
Populate.

Unless otherwise specified, the populate function creates a local data element
for subcomponents such as a field within a DBD. You have the option of
making that local data element a shareable data element, with the Reconcile
function, as described in “Reconciling Data Definitions during Populate” on
page 38 . During a COBOL Populate, a shareable data structure is
automatically created for each 01-level data item structure. For other
subcomponents, local data elements are created. Local data elements,
shareable data elements, and shareable data structures are described in
“Chapter 1. Introduction to DataAtlas Dictionary” on page 3.

1. Check with your administrator for the location of the sample files.

© Copyright IBM Corp. 1996, 1997 29

Populate Considerations When Using DataAtlas Modeler or Designer

Populate is an important step. It is usually done only once for each table in
your system. After you have populated all the tables you want to manage
with DataAtlas, there is no need to populate again. DataAtlas Designer has
additional requirements that can be specified during populate.2 The Populate
notebook contains an entry field for Relational Design and Physical Design.
When you specify values for either or both of these fields during populate,
you are grouping the tables you selected to be used with DataAtlas Modeler
and Designer. If you omit this step when populating, you must later update
relational and physical design notebooks.

Relational and physical design objects are created using the Relational Design
notebook from a workfolder. You must create these objects before you
populate. See “Chapter 4. Creating and Deleting Objects” on page 19 for
instructions on creating objects. The following section describes relational
design and physical design objects:

Relational Design

This object is required by DataAtlas Modeler. Database design from a
relational perspective focuses on table objects and the relationships between
them. A relational design object in DataAtlas allows you to collect tables that
you want to treat as a unit when using DataAtlas Modeler. You must specify
the relational design name when you transform your tables from the relational
definition used by DB2 to the entity-relationship used by DataAtlas Modeler.
Since you may be populating many tables at once, it’s important to identify
the related tables and how they will be part of the same relational design.

Physical Design

Physical designs are a convenient way to organize your relational objects. For
DB2/390, the physical design also allows you to access the DataAtlas
Designer functions. Database design from a physical perspective focuses on a
table’s storage and access structures within the specific target database system.
Typical tasks in a physical design are the creation of indexes to optimize the
access path or the assignment of tables to appropriate table spaces. A physical
design object in DataAtlas allows you to collect all the tables, indexes, table
spaces, storage groups, and databases that you want to treat as a unit when
using DataAtlas Designer.

2. See DataAtlas Designer User’s Guide for complete information.

30 Dictionary and Designer User’s Guide

Since you may be populating many tables at once, it is important to identify
related tables and how they should be part of the same physical design. In
most cases, the tables you associate with a given relational design will also be
associated with a given physical design during Populate. The additional
physical objects that are populated with the table (indexes, views, databases,
table spaces, and storage groups) also become related to this physical design
object name.

Populating the TeamConnection Database from DB2 Catalogs

In the following scenario, you’ll learn to populate the TeamConnection
database with a sample table from the DA_CELD sample database.

Before you start, make sure you have:
1. Installed the DA_CELD sample database sent with the DataAtlas package
2. Started DB2 UDB (see “Chapter 2. Getting Started” on page 9 for more

information).

3. Created a workfolder, DB2 system of the correct type, and a DB2 UDB
database. A DB2 UDB database is necessary only when populating DB2
UDB tables. (See “Chapter 3. Searching for Objects in the TeamConnection
Database” on page 15 for instructions on creating these).

4. If you will be using the DataAtlas Modeler or Designer, you must create
relational and physical design objects using the Relational Design
notebook from your workfolder. (See “Chapter 3. Searching for Objects in
the TeamConnection Database” on page 15 for instructions on creating
objects.)

To populate the CUSTSHIP table:

1. In the DataAtlas Main Folder window, click the plus sign to the left of the
Populate from folder.
Result: The folder expands to show its contents.

2. Click the DB2 Catalog icon with the right mouse button.
Result: The pop-up menu opens.

3. Click Populate DB2.
Result: The DB2 Subsystem - Search window opens.

Chapter 5. Populating the TeamConnection Database 31

4. Type ’DA_CELD’ in the Database alias field and click Refresh.
Result: ’DA_CELD’ appears in the list of database aliases next to the
Refresh button.

5. Select ’DA_CELD’ from the list.
6. Enter the user ID of the database creator in the Creator field.
7. Enter ’CUSTSHIP’ in the Table field and click the adjacent Refresh button.

Result: ’CUSTSHIP’ appears in the list of tables next to the Refresh button.
8. Select ’CUSTSHIP’ from the list.
9. Click Continue.

Result: The DB2 Subsystem - Populate notebook opens, showing the
selected table listed in the Tables selected list next to its new
TeamConnection database name.

10. Click Search to fill in the System, Relational Design, and Physical
Design fields.

11. Go to the TeamConnection page, and ensure the Family, Release, and
Work Area fields are correct. The default values are those specified in the
profile.

12. Click Populate.
Result: The selected table and its related objects are stored in the
TeamConnection database and a Populate report is produced.

13. Close the report and cancel out of both the Populate notebook and the
DB2 Subsystem - Populate window.

32 Dictionary and Designer User’s Guide

14. It is recommended that you freeze your TeamConnection work area
before ending this session. See TeamConnection User’s Guide for
information.

Using a Reconcile Mapping Table during DB2 Populate

During a DB2 Populate, the reconcile mapping table can be used to find
existing shareable data components in the TeamConnection database that
match the ones in the mapping table. Shareable data components that are
listed in the mapping table that don’t already exist in the TeamConnection
database are created as a result of populating.

Populating IMS Definitions

In this section, you’ll learn how to populate an IMS DBD. The process for
populating PSBs is the same as for DBDs.

You can populate IMS data definitions only source code. IMS DBDs and PSBs
in object code, typically members in a DBDLIB or PSBLIB, can be populated
after you convert them to source code. You can do this with the product IMS
System Utilities/Data Base Tools (DBT) Version 2. It contains several useful
functions: DBD/PSB/ACB Compare, Mapper, and Reversal. The function you
use to convert object code to source code is Reversal.

You must populate some IMS data definitions in a prescribed sequence.
Populate all the DBDs used by a PSB before you populate the PSB. Populate
physical DBDs before you populate the logical DBDs that depend on them.

To populate the BE3PARTS DBD:
1. In the DataAtlas Main Folder window, click the plus sign to the left of the

Populate from folder.
Result: The folder expands to show its contents.

2. Click the IMS Source icon with the right mouse button.
Result: The pop-up menu opens.

3. Click Populate IMS DBD.
Result: The IMS DBD - Search window opens.

Chapter 5. Populating the TeamConnection Database 33

4. Select the drive where the sample files are located. 3

Result: The Directory and File lists are updated to reflect the directories
and files found on the drive you selected.

5. In the Directory list, double-click the subdirectory where the sample files
are located.
Result: The sample files are listed in the File list box.

6. Double-click BE3PARTS.DBD from the File list box. (You can also select
multiple files, which will be populated sequentially.)
Result: The IMS - Populate notebook opens, showing the selected file in
the Files selected list next to its TeamConnection database name.

3. You can ignore this step and Step 5 if you’ve already identified a path to the sample files in your profile.

34 Dictionary and Designer User’s Guide

7. Go to the TeamConnection page and ensure the Family, Release, and
Work Area fields are correct. The default values are those specified in the
profile.

8. Click Populate.
Result: The IMS DBD is populated into the TeamConnection database and
a Populate report is produced.

9. Close the report.
Result: You are back where you started with one important difference...you
successfully added an IMS data definition to the TeamConnection
database.

Using a Reconcile Mapping Table during IMS Populate

During an IMS DBD or PSB Populate, the reconcile mapping table can be
used to find an existing DBD to relate to the new DBD. This information is
specified in the mapping table as a special entry that has DSDBD specified as
the source object type and the target object type. An example of an entry is
shown in “Examples of Entries” on page 41.

The reconcile mapping table can also be used to process IMS segments and
IMS fields. During an IMS Populate, a segment can be reconciled to a data
structure. Fields within the segment can be reconciled to data items within the
data structure. Segments and fields are processed prior to the normal
reconciliation of data items to shareable data elements described later in this
section.

Populating COBOL and PL/I Data Structures

In this section, you’ll learn how to populate COBOL and PL/I data structures
— that is, COBOL COPY files and PL/I include files. When populated, both
exist in the TeamConnection database as included source definitions.

Don’t try to populate COBOL or PL/I programs. DataAtlas may respond
unpredictably, and may import incomplete data into the TeamConnection
database.

Before you populate, try a COBOL or PL/I compilation from the session
command line to be sure that the compiler is set up correctly.

The following steps show how to populate COBOL data structures. The same
steps apply to populating PL/I data structures.
1. In the DataAtlas Main Folder window, click the plus sign to the left of the

Populate from folder.

Chapter 5. Populating the TeamConnection Database 35

Result: The folder expands to show its contents.
2. Click the COBOL Source icon with the right mouse button.

Result: The pop-up menu opens.
3. Click Populate COBOL.

Result: The COBOL - Search window opens.
4. Select the drive where the sample files are located. 4

Result: The Directory and File lists are updated to reflect the directories
and files found on the drive you selected.

5. In the Directory list, double-click the subdirectory where the sample files
are located.
Result: The sample files are listed in the File list box.

6. Double-click ORDER.CPY from the File list box. (You can also select
multiple files which will be populated sequentially.)
Result: The COBOL - Populate notebook opens, showing the selected file in
the Files selected list next to its repository name. The repository name can
be changed by holding the ALT key while clicking on the name,
overwriting it with the new name and clicking within the list.

7. Go to the TeamConnection page and ensure the Family, Release, and
Work Area fields are correct. The default values are those specified in the
profile.

4. You can ignore this step and Step 5 if you’ve already identified a path to the sample files in your profile.

36 Dictionary and Designer User’s Guide

The COBOL Populate function invokes the VisualAge for COBOL for OS/2
compiler with the ADATA, NOC, and NOEXIT options. This is the
minimum set of options needed to produce the information required to
populate a COBOL COPY file into the TeamConnection database. These
options are shown on the Compiler page under Compile options.
You can specify additional options before clicking Populate, but they must
be compatible with the options used by DataAtlas. For example, you may
not specify NODATA as an additional option because the compiler would
not generate SYSADATA.

8. Click Populate.
Result: The COBOL included source definition is populated into the
TeamConnection database and a Populate report is produced.

9. Close the report and cancel out of the Populate notebook and the COBOL
- Populate window.

When you populate a COBOL COPY or PL/I include file, a shareable data
structure is created automatically for each 01-level data item in the COBOL
COPY or PL/I include file.

Using a Reconcile Mapping Table with COBOL or PL/I

When you populate a COBOL COPY or PL/I include file, the reconcile
mapping table can be used to find existing shareable data structures or
shareable data items to relate to the new data items in a COBOL COPY or
PL/I include file.

When you populate a COBOL COPY or PL/I include file, data structures
(data items containing subitems) and data items can be reconciled by checking
the Reconcile using mapping table box and specifying a mapping table name
in the Mapping table field. This allows you to create a new shareable data
element or shareable data structure (or use an existing shareable data
component) for each data item whose name, data type, and data length
appear in the mapping table. See “Reconciling Data Definitions during
Populate” on page 38 for more information.

Running a Trial Run

If you want to test a populate procedure without actually creating any
TeamConnection database objects, click Trial Run. A Populate report is created
for you to review and no objects are stored in the TeamConnection database.
A trial run is useful when you are preparing a mapping table for reconciling
objects.

Chapter 5. Populating the TeamConnection Database 37

Reconciling Data Definitions during Populate

With the Reconcile function, you use a mapping table to determine which of
the local data components should be reconciled (mapped) to existing
shareable data components, or which local data components should be made
into shareable data components. A local data component can be a local data
element or a local data structure. The mapping table contains a list of source
object identifiers for local data components and a corresponding list of target
object identifiers for shareable data components.

Check the Reconcile using mapping table box on the Populate notebooks if
you want DataAtlas to use a shareable data component that might already
exist in the TeamConnection database in place of the local data component
that the default Populate action uses.

The Reconcile using mapping table check box applies only to objects that can
be reconciled: IMS segments and fields, data items in language structures, or
relational database column definitions. The box will be checked if you selected
Reconcile using mapping table as the default in the profile for the type of
object you are populating.

For each reconcilable object being populated, the DataAtlas Dictionary looks
through a mapping table for a source name whose name, data type, and data
length match the object. If a match is found, the corresponding shareable data
component specified in the mapping table is used instead of the local data
component being populated. If the target object does not exist, a new
shareable data component is created and given the name specified in the
mapping table. The new shareable data component is then used instead of the
local data component being populated.

If a local data component being populated does not appear in the mapping
table, it is not processed by Reconcile. This means that it is not shareable and
is known only within the context in which it was populated.

Recommendation: If you plan to share data structures between IMS and
COBOL or PL/I, populate and reconcile the COBOL and PL/I definitions
before you populate and reconcile the IMS definitions. Populating in that
order will preserve all the level of structure in the COBOL and PL/I
definitions. Populating in the opposite order causes you to lose the COBOL
and PL/I level of structure during reconcile processing.

You can customize the default mapping table supplied with DataAtlas, or you
can create your own. See “Creating Shareable Data Components without
Reconciling” on page 39 for instructions on setting up a custom mapping
table.

38 Dictionary and Designer User’s Guide

To reconcile objects during Populate:

1. Check the Reconcile using mapping table box on any of the Populate
notebooks.

2. If the mapping table name that was specified in your Profile notebook is
acceptable, continue to the next step. Otherwise, specify the appropriate
name and path for the mapping table.

3. Click Populate.
Result: Shareable data components are created in the TeamConnection
database where matches are found in the mapping table. A Reconcile
section within a Populate report is produced. The Reconcile section
contains the name of the mapping table used and a message describing
how each shareable data component was processed. Possible results are:
v A new shareable data component is created
v The local data component was mapped to an existing shareable data

component
v The local data component was not found in the mapping table

Creating Shareable Data Components without Reconciling

When you populate a DB2 table, you can ask DataAtlas to treat every column
as if it were specified in a mapping table, even though you’re not using a
mapping table. To do so, you check the Use or create data elements for all
columns check box. If you use a mapping table and this check box, you’re
assured of creating shareable data elements for columns that aren’t in the
mapping table.

When you populate a COBOL COPY file or a PL/I include file, a shareable
data structure is created automatically for each 01-level group data item.

Mapping Tables

The Reconcile function requires a mapping table, a table that shows
associations between local data components and shareable data components.
This section shows the structure of a mapping table and explains how to
create one.

Structure of a Mapping Table

After a mapping table has been created and edited, its entries have this form:

SrcObjType SrcName SrcDataType SrcDataLength TargObjType |TargName|

Chapter 5. Populating the TeamConnection Database 39

where:
SrcObjType = the source object type: DSDataItem (for an IMS field or a
language structure field), DSRColumnDefinition (for a relational column),
DSDBD (for an IMS DBD), DSSegment (for an IMS segment), or DSField
(for an IMS field within a segment) are the only classes of objects that can
be reconciled.
SrcName = the source name. This is an access name (a name with no prefix,
version, or revision qualifier).
SrcDataType = the source data type. A 2-digit number, which represents the
data type for elementary data items (DSDataItem and
DSRColumnDefintiion). For all other source object types, SrcDataType
should be 00. SrcDataType appears in the Reconcile report produced by a
Populate trial run that uses the Reconcile using mapping table option.

Table 1. Source Data Types
Type Code Description Applicable to

SrcDataLength
00 Binary number N
01 Packed decimal number N
02 Zoned decimal number N
03 Floating-point binary number N
04 Floating-point decimal number N
05 Bit string Y
06 Single-byte character string Y
07 Double-byte character string Y
08 Mixed-character string Y
09 Date Y
10 Time Y
11 Timestamp Y
12 Index N
13 Undefined N

SrcDataLength = a 5-digit number that contains the precision for numeric
data items and length for string data items. This value is shown in the
Reconcile report. For other data types, SrcDataLength should be 00000.
TargObjType= the target object type: DSDataElement (for DSDataItem or
DSRColumnDefinition), DSDBD (for an IMS DBD), or DSDataStructure (for
DSDataItem structure or IMS Segment).
TargName = the target name enclosed in vertical bars (|). The TargName can
be a fully qualified name (access name with variation and revision) or
simply an access name.

40 Dictionary and Designer User’s Guide

A minimal amount of error checking is performed for the mapping table. If
any errors are detected, such as too few fields in an entry, no Reconcile
processing is performed, the Populate is terminated, and no objects are
stored.

Examples of Entries

Below are some examples of mapping table entries:

KEYL, CITY, and MONTH are fields within IMS DBDs. The entries beginning
with DSDBD are special entries that are used by IMS Populate and not by the
Reconcile function. For a description of how they are used, see “Using a
Reconcile Mapping Table during IMS Populate” on page 35.

Creating a Mapping Table from a Prototype

If you use a mapping table that contains no entries for some of the local data
components, DataAtlas creates a prototype mapping table for them. The created
table is called a prototype because the source names and the target names are
the same; you’ll probably have to edit the prototype to get the target names
you want.

To create a prototype mapping table that represents all the local data
components you want to populate and reconcile, you have to be sure of two
things:
v The populate operation that creates the prototype mapping table must be a

trial run; that is, nothing must be actually populated.
v The mapping table used in the trial run must contain none of the local data

components you eventually want to populate; otherwise, the prototype
mapping table will have no entries for these components. For this purpose,
you can use the sample mapping table that’s shipped with DataAtlas.

Here are the steps to follow:
1. In the Populate notebook, check the Reconcile box.

DSRColumnDefinition CUSTNO 06 00007 DSDataElement |CustNbr<x:y>|
DSRColumnDefinition CUSTNAME 06 00040 DSDataElement |CustNam<a:>|
DSRColumnDefinition REPNO 06 00005 DSDataElement |SalesRep<:01>|
DSRColumnDefinition BAL90 01 00009 DSDataElement |DA_Balance|
DSDataItem KEYL 06 00004 DSDataElement |KEYL|
DSDataItem CITY 06 00060 DSDataElement |City<:>|
DSDataItem MONTH 06 00002 DSDataElement |Month<:12>|
DSDataItem CON_ADDR 00 00000 DSDataStructure |StdAddress|
DSDBD COMMINDX 00 00000 DSDBD |TAGENCY<:>|
DSDBD HLPIMAN 00 00000 DSDBD |HLPISEC<:>|
DSSegment <DBDA>SEGA<:> 00 00000 DSDataStructure |Structure01|
DSField <DBDA.SEGA>FLDA 00 00000 DSDataItem |ABC|

Chapter 5. Populating the TeamConnection Database 41

2. In the Use mapping table field, enter the path and file name of the sample
mapping table:

<DataAtlasInstallPath>\lang\en_us\samples\datatlas.map

Where <DataAtlasInstallPath> is the root directory where DataAtlas is
installed.

3. Click Trial Run.
Result: No objects are stored in the TeamConnection database. The
populate operation produces a report and a prototype mapping table.
Their file names are the same except for the extensions: .RPT and .MAP,
respectively.

4. Close the report window and cancel out of the Populate notebook.
5. Edit the prototype mapping table to reflect the target names you want for

your shareable data components. (You’ll find the prototype mapping table
in the directory specified on the General page of your Profile notebook.)

42 Dictionary and Designer User’s Guide

Chapter 6. Updating Objects

You can update any object in three steps: double-click the object’s icon,
modify its notebook, and close the notebook to save your changes.

In this chapter, you’ll see how to update relational database objects, an IMS
DBD object, an IMS PSB object, an included source definition, and a shareable
data object.

Updating Relational Database Objects

The following steps apply to a DB2 UDB table but similar steps are used to
update any relational database object.

To update a DB2 UDB definition:
1. Double-click the workfolder that contains the object.
2. Double-click the icon for a DB2 UDB table.

To locate objects use the Search function. See “Chapter 3. Searching for
Objects in the TeamConnection Database” on page 15 for information on
searching.
Result: The properties notebook opens.

© Copyright IBM Corp. 1996, 1997 43

3. Update the fields in the notebook. Select a notebook tab to go from one
page to another.
To add a column to the table:
a. Go to the Definition page.
b. Click Create.
c. In the displayed notebook, enter the column’s name and other relevant

information.

If the column is based on a shareable data element, do this also:
a. Enter a type in the Type field or click the arrow in the Type field and

select from the expansion list. Leave the Type field blank to search for
any sharable data element.

b. Click Search.
c. In the Search window, enter search criteria if none are already set, and

click Search.
d. When the search results appear, select the data element you want and

click Accept.

44 Dictionary and Designer User’s Guide

To disassociate a selected shareable data element from a column, click
Remove; then click OK. This will erase all data type information.

To delete a column from the table, select the column name in the column
list; then click Delete.

4. Click OK.
Result: The System - Store window appears, where you can enter remarks.

5. Click Store.
Result: The notebook saves your updates and closes.

Updating IMS DBD Objects

To update an IMS DBD object:
1. Double-click a DBD icon in a workfolder.

To locate definitions use the Search function. See “Chapter 3. Searching for
Objects in the TeamConnection Database” on page 15 for information on
searching.
Result: The notebook appears. As an example, here is the notebook for one
of the sample databases, BE3PARTS:

2. To add a segment to the database, click Create. A Segment notebook
opens. You can later create new fields or delete fields from the segment.
These actions change only the view of the underlying shareable data

Chapter 6. Updating Objects 45

structure. To change the shareable data structure, click Open to open the
notebook for the shareable data structure.

3. To delete a segment, select the segment in the notebook you want to delete
and click Delete.

4. After you’re done updating the notebook, click OK.
Result: The System - Store window appears, where you can enter remarks.

5. Click Store.
Result: The notebook saves your updates and closes.

Updating IMS PSB Objects

To update an IMS PSB object:
1. Double-click a PSB icon in a workfolder.

To locate definitions use the Search function. See “Chapter 3. Searching for
Objects in the TeamConnection Database” on page 15 for information on
searching.
Result: The notebook opens. As an example, here is the notebook for a
sample PSB, PE3PARTS:

2. To add a PCB to the PSB, click Create. A PCB notebook opens. Describe
the new PCB by filling in the notebook fields, then click OK.

3. To delete a PCB, select the PCB in the notebook you want to delete and
click Delete.

46 Dictionary and Designer User’s Guide

4. After you’re done updating the notebook, click OK.
Result: The System - Store window appears, where you can enter remarks.

5. Click Store.
Result: The notebook saves your updates and closes.

Updating COBOL or PL/I Included Source Definitions

To update an included source definition:
1. Double-click the icon for the included source definition.

To locate these definitions use the Search or Query functions. See
“Chapter 3. Searching for Objects in the TeamConnection Database” on
page 15 for information on searching, and “Chapter 8. Running
TeamConnection SQL Queries” on page 57 for information on running
queries.
Result: The notebook opens.

Chapter 6. Updating Objects 47

2. Update the fields in the notebook.
Use the Tree View page to define the objects nested in an included source
definition. The left-hand side of this page presents a tree view of the
nested objects while the right-hand side of the page presents the controls
for each selected object. You can add new objects, modify existing objects,
or remove objects from the structure.
To add a data item, select the type of object to add; then click Add Sibling
or Add Child, as appropriate. If the data item is based on an existing
shareable data component, use the control information on the right-hand
side of the page to specify the data component name as follows:
a. If you choose to add an elemental item, select Use existing shareable

data element to connect the item to an existing shareable data element.

48 Dictionary and Designer User’s Guide

b. If you choose to add a group item, you must use an existing shareable
data structure.

c. Click Search to fill in the Name of the data component you want to
share.

To modify the selected data item, update the associated details information
on the right-hand side of the page. If the item is associated with a
shareable data component, then use Open to open and update its
notebook.

To disassociate a shareable data component from the selected data item,
deselect Use existing shareable data structure or Use existing shareable
data element. This does not remove the selected item, but makes it
nonshareable instead.

To delete a data item from the data structure, select the item in the tree
view; then click Remove.

3. After you’re done updating the notebook, click OK.
Result: The System - Store window appears, where you can enter remarks.

4. Click Store.
Result: The notebook saves your updates and closes.

Updating Shareable Data Structures

To update a shareable data structure:
1. Double-click the icon for the shareable data structure.

To locate these definitions use the Search or Query functions. See
“Chapter 3. Searching for Objects in the TeamConnection Database” on
page 15 for information on searching, and “Chapter 8. Running
TeamConnection SQL Queries” on page 57 for information on running
queries.
Result: The notebook opens. The Representation list on the Definition
page determines the Details used to describe the shareable data structure.

Chapter 6. Updating Objects 49

2. Update the fields in the notebook.
Use the Tree View page to define the objects nested in a shareable data
structure. The left-hand side of this page presents a tree view of the nested
objects while the right-hand side of the page presents the controls for each
selected object. You can add new objects, modify existing objects, or
remove objects from the structure.
To add a data item, select the type of item you want to add; then click
either Add Child or Add Sibling, as appropriate. If the data item is based
on an existing shareable data component, use the control information on
the right-hand side of the page to specify the data component name as
follows:
a. If you choose to add an elemental item, select Use existing shareable

data element to connect the item to an existing shareable data element.

50 Dictionary and Designer User’s Guide

b. If you choose to add a group item, select Use existing shareable data
structure to connect the item to an existing shareable data structure.

c. Click Search to fill in the Name of the data component you want to
share.

To modify a selected data item, update the associated details information
on the right-hand side of the page. If the item is associated with a
shareable data component, then use Open to open and update the
component’s notebook as necessary.

To disassociate a shareable data component from the selected data item,
deselect Use existing shareable data element or Use existing shareable
data structure. This does not remove the selected item, but makes it
non-shareable instead.

To delete a data item from the data structure, select the representation of
the element in the tree view; then click Remove.

3. After you’re done updating the notebook, click OK.
Result: The System - Store window appears, where you can enter remarks.

4. Click Store.
Result: The notebook saves your updates and closes.

Chapter 6. Updating Objects 51

52 Dictionary and Designer User’s Guide

Chapter 7. Generating Definitions

When you generate a definition, you’re doing almost the opposite of a
populate: you are generating source statements from the objects that reside in
the TeamConnection database. DataAtlas Dictionary retrieves the data from
the TeamConnection database and writes the data as source statements. With
DB2/390, DB2 UDB, and Oracle, the destination of the source statements must
be a workstation file; if you want the source to execute on an OS/390 system,
you must upload the file to the host. You also have the option of appending
the new source statements to an existing file, or replacing an existing file
altogether.

You can generate definitions for the following objects:
v DB2/390: DDL for tables, indexes, views, storage groups, databases,

synonyms, and table spaces
v DB2 UDB: DDL for tables, views, and indexes
v Oracle: DDL for tables, indexes, views, and table spaces
v COBOL: COBOL COPY files
v PL/I: PL/I include files
v IMS: IMS macro statements for DBDs and PSBs
v Physical designs: DDL for all the objects in a physical design

If comments or labels have been specified, COMMENT ON or LABEL ON
statements will be generated.

You can also generate description text, for use with DataGuide, for DB2 tables,
Oracle tables, IMS DBDs, and IMS PSBs. To generate the text, request it from
the Generate to File notebook.

Generating Definitions from DataAtlas

To generate data definitions from the DataAtlas user interface:
1. Select from a workfolder one or more objects that reside in the

TeamConnection database.
2. Click one of the selected objects with the right mouse button.

Result: The pop-up menu opens.
3. Click Generate to file.

© Copyright IBM Corp. 1996, 1997 53

Result: The Generate to File notebook opens. Each page in the notebook
represents a different type of selected object. The exception to this is the
included source object which also has a compiler page.

4. For IMS, COBOL, PL/I, and physical design objects, specify a workstation
drive and directory in the Output directory field. The output file can be
changed by holding the ALT key down while clicking on the name,
overwriting it with the new name and clicking on the list. For DB2 objects,
specify the full path name for the file name.

5. If you use DataGuide, check the box called Generate object descriptions
for DataGuide.
Result: For IMS PSBs and IMS DBDs, descriptions are inserted in the
generated output as comments. For DB2 UDB, DB2/390, and Oracle, the
descriptions are put in a separate file with the name creator.tablename.
DataGuide has special extractors for these description files.

6. Click Generate.
Result: Definitions are generated to files in the locations you specified.

7. If the source you are generating is for execution on a 390 system, you need
to upload the generated workstation file to the appropriate system.

HLL Cross-Generation

You can generate a COBOL COPY file from the PL/I representation of an
included source definition. Likewise, you can generate a PL/I include file
from the COBOL representation of an included source definition. However,
you may first have to modify the included source definition to get successful
results. Some of the syntax in each language is not supported by the other.

54 Dictionary and Designer User’s Guide

Generating Definitions with a Build Script

As an alternative to using the DataAtlas Dictionary user interface, you can use
TeamConnection build scripts to generate data definitions. The
TeamConnection builder uses a build script to invoke tools that transform one
set of TeamConnection parts into another. You can create build scripts that
invoke the DataAtlas program, DATATLAS.EXE, to generate DB2/390 DDL,
DB2 UDB DDL, Oracle DDL, IMS DBD source, IMS PSB source, COBOL
COPY files, and PL/I include files from data definitions stored in the
TeamConnection database. For more information about using TeamConnection
builders and build scripts, see TeamConnection User’s Guide.

A sample build script is shipped with DataAtlas Dictionary. See “Appendix
C. Using the DATATLAS.EXE Build Script” on page 145 for more
information.

Using DataAtlas DDL on a DB2/400

DDL generated from DB2 UDB tables can be used on a DB2/400. Here are the
steps to change, transfer, run, and view the DDL on a DB2/400.

Changing the Generated DDL on a DB2/400:

1. Create a collection for your user ID.
2. Remove any use of LONG.
3. Qualify VARCHAR fully (for example, VARCHAR(32739)).
4. When running RUNSQLSTM, make *SQL the naming convention.
5. Create a *LIB for your user ID.
6. Use Column 1 only for comments.

Transferring, Running, and Viewing DDL on a DB2/400:

Note: The following steps may not apply to all DB2/400 configurations.
1. Copy the DDL to a shared folder on the DB2/400.
2. Run CPYFRMPCD, on a DB2/400, to change the ASCII version of DDL to

library text.
3. Run RUNSQLSTM, on a DB2/400, to create the database.
4. Use WRKSPLF, on a DB2/400, to view the listing.

Chapter 7. Generating Definitions 55

56 Dictionary and Designer User’s Guide

Chapter 8. Running TeamConnection SQL Queries

This chapter shows you how to run TeamConnection SQL queries. It also
includes a list of supplied TeamConnection SQL queries and instructions on
how to write TeamConnection SQL queries. TeamConnection SQL is a
superset of the SQL entry-level standard of 1992.

Running a Query

To run your own query (rather than one that DataAtlas has supplied), do the
following:
1. In the Main Folder window, double-click the SQL Query folder.

Result: The SQL Query folder opens.
2. Double-click the query you want to run. If the query is not among those in

the SQL Query folder, click Folder, then Create SQL Query.
Result: The General page of the SQL Query notebook opens.

3. If the query was not in the SQL Query folder, type in a unique file name
or press the Search button to locate the file containing the SQL query.

4. Go to the Query page of the notebook and type in your SQL statement. If
the query already exists, go to the Query page of the notebook to see the
SQL statement.

5. Click Run.
Result: The query runs and the SQL Report notebook is displayed with the
query results.

6. To save your query to use or modify later, press OK to save the query and
close the notebook. Press Apply to save the query and leave the notebook
open.
You can save the SQL query results in this report to view it later from
DataAtlas. You can also export the results to an ASCII file, which can then
be imported into a spreadsheet or reporting tools such as Lotus 123 or
Lotus Approach.

Supplied Queries

DataAtlas supplies a set of queries to help you find what data is already
defined in the TeamConnection database and what impact new data
definitions may have on existing databases and application programs. You can
also use TeamConnection SQL to write your own queries.

© Copyright IBM Corp. 1996, 1997 57

You can access the supplied TeamConnection SQL queries through the SQL
Query folder in the Main Folder.

DataAtlas provides the following types of queries:

Impact analysis
The impact analysis asks what objects use the object in question. For
example, you can query what objects use the shareable data element
and shareable table definition objects so you can understand the
impact of revising the shared data.

Glossary
The glossary queries show all the characteristics of an object or list of
objects.

Relationship
The relationship queries provide a list of objects that are somehow
related to the principal object. These queries are widely used for
objects that are primarily containers of other objects, such as a
Relational Design or DB2 System.

Running a Supplied Query

To run a supplied query:
1. Use the table in Table 2 to find the query type and name.

2. Double-click the SQL Query folder.
Result: The SQL Query folder notebook opens, showing the supplied
queries by query name.

3. Double-click the query you want to run.
Result: The General page of the SQL Query notebook appears.

4. Go to the Query page of the notebook to view the query’s description.
5. Click Run to run the query.

Result: The supplied query is run against the sample data shipped with
DataAtlas. You can modify the supplied queries to run against your own
objects.

Table 2. DataAtlas Supplied Queries
Object Name Query Type Query Name File Name
Data Element Impact analysis DataElementAliasUsage EWSQDEAU.QRY

COBOL and PL/I Objects

58 Dictionary and Designer User’s Guide

Table 2. DataAtlas Supplied Queries (continued)
Object Name Query Type Query Name File Name
Included Source
Definition

Glossary IncludedSourceGlossary EWSQISG.QRY

IMS Objects
IMS DBD Impact analysis

Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary
Glossary

DBDUsage
DBDSegmentName
DBDAccessMethod
DBDFieldName
DBDIncomplete
GSAMdbdData
MSDBdbdData
HSAMdbdData
DEDBdbdData
HDAMdbdData
HISAMdbdData
HIDAMdbdData
LOGICALdbdData
INDEXdbdData
SimpleSegmentData
DEDBSegmentData
ComplexSegmentData
HISAMSegmentData
LogicalSegmentData
IMSfieldData

EWSQDU.QRY
EWSQDSN.QRY
EWSQDAM.QRY
EWSQDFN.QRY
EWSQDI.QRY
EWSQID1G.QRY
EWSQID2G.QRY
EWSQID3G.QRY
EWSQID4G.QRY
EWSQID5G.QRY
EWSQID6G.QRY
EWSQID7G.QRY
EWSQID8G.QRY
EWSQID9G.QRY
EWSQIS1G.QRY
EWSQIS2G.QRY
EWSQIS3G.QRY
EWSQIS4G.QRY
EWSQIS5G.QRY
EWSQIFG.QRY

IMS PCB Impact analysis
Glossary

PCBUsage
PCBGlossary

EWSQPU.QRY
EWSQPG.QRY

Relational Database Objects
Relational Design Relationship RelationalDesignContents EWSQRDC.QRY
DB2/390 Physical
Design

Relationship DB2390PhysicalDesignContents EWSQDMPD.QRY

Relational Database
system

Relationship RelationalSystemContents EWSQRSC.QRY

Owner ID Relationship RelationalOwnerContents EWSQROC.QRY
DB2/390 Alias Glossary DB2390Alias EWSQRA.QRY
DB2/390 Synonym Glossary DB2390Synonym EWSQRS.QRY
DB2/390 Database Relationship DB2390DatabaseContents EWSQDMDC.QRY
DB2/390 Table Space Relationship

Glossary
DB2390TablespaceContents
DB2390TablespaceGlossary

EWSQDMTC.QRY
EWSQDMTS.QRY

Chapter 8. Running TeamConnection SQL Queries 59

Table 2. DataAtlas Supplied Queries (continued)
Object Name Query Type Query Name File Name
DB2/390 Table Impact analysis

Glossary
Glossary
Glossary
Glossary

DB2390TableForeignKeys
DB2390TableColumnName
DB2390TableColumnData
DB2390TableGlossary
DB2390TableIncomplete

EWSQDMFK.QRY
EWSQDMCN.QRY
EWSQDMCD.QRY
EWSQDMTG.QRY
EWSQDMTI.QRY

DB2/390 Index Glossary DB2390IndexGlossary EWSQDMIG.QRY
DB2/390 View Glossary DB2390ViewGlossary EWSQDMVG.QRY
DB2/390 Buffer Pool Impact analysis DB2390BufferpoolUsage EWSQDMBP.QRY
DB2/390 Storage
group

Impact analysis
Glossary

DB2390StorageGroupUsage
DB2390StorageGroupGlossary

EWSQDMSG.QRY
EWSQDMGG.QRY

MVS Volume Impact analysis OS390VolumeUsage EWSQMVU.QRY
ICF Catalog Impact analysis OS390ICFCatalogUsage EWSQMICU.QRY
DB2 UDB Database Relationship DB2udbDatabaseContents EWSQD2DC.QRY
DB2 UDB Table Space Glossary DB2udbTablespaceGlossary EWSQD2TS.QRY
DB2 UDB Table Impact analysis

Glossary
Glossary
Glossary
Glossary

DB2udbTableForeignKeys
DB2udbTableColumnName
DB2udbTableColumnData
DB2udbTableGlossary
DB2udbTableIncomplete

EWSQD2FK.QRY
EWSQD2CN.QRY
EWSQD2CD.QRY
EWSQD2TG.QRY
EWSQD2TI.QRY

DB2 UDB Index Glossary DB2udbIndexGlossary EWSQD2IG.QRY
DB2 UDB View Glossary DB2udbViewGlossary EWSQD2VG.QRY
DB2 UDB Physical
Design

Relationship DB2udbPhysicalDesignContents EWSQD2PD.QRY

Oracle Table Space Glossary OracleTablespaceGlossary EWSQDOTS.QRY
Oracle Table Impact analysis

Glossary
Glossary
Glossary
Glossary

OracleTableForeignKeys
OracleTableColumnName
OracleTableColumnData
OracleTableGlossary
OracleTableIncomplete

EWSQORFK.QRY
EWSQORCN.QRY
EWSQORCD.QRY
EWSQORTG.QRY
EWSQORTI.QRY

Oracle Index Glossary OracleIndexGlossary EWSQORIG.QRY
Oracle View Glossary OracleViewGlossary EWSQORVG.QRY
Oracle Physical Design Relationship OraclePhysicalDesignContents EWSQORPD.QRY

Shareable Objects
Shareable Data
Element

Impact analysis
Glossary
Glossary
Glossary

DataElementUsage
DataElementDataCharacteristics
DataElementAlias
DataElementGlossary

EWSQDEU.QRY
EWSQDEDC.QRY
EWSQDEA.QRY
EWSQDEG.QRY

60 Dictionary and Designer User’s Guide

Table 2. DataAtlas Supplied Queries (continued)
Object Name Query Type Query Name File Name
Shareable Data
Structure

Impact analysis
Glossary
Glossary
Impact analysis

DataStructureUsage
DataStructureGlossary
DataStructureAlias
DataStructureAliasUsage

EWSQDSU.QRY
EWSQDSG.QRY
EWSQDSA.QRY
EWSQDSAU.QRY

Shareable Table
Definition

Impact analysis
Impact analysis
Glossary
Glossary
Glossary

TableDefinitionUsage
TableDefinitionForeignKeys
TableDefinitionColumnName
TableDefinitionColumnData
TableDefinitionGlossary

EWSQTDU.QRY
EWSQTDFK.QRY
EWSQTDCN.QRY
EWSQTDCD.QRY
EWSQTDG.QRY

Writing TeamConnection SQL

If you have written SQL queries, they probably refer to a relational data
model—a model in which data is represented tabularly, in columns and rows.
TeamConnection, in contrast, uses an object data model; data is represented as
objects that have attributes and relationships among themselves.

Writing queries for an object data model offers you both a performance
advantage and notational simplifications. However, you aren’t required to use
these simplifications. You can always write your queries as if they were
against a relational data model, and the results will be the same.

Before you see what is different about TeamConnection SQL queries, consider
the following comparison of the data models.

The Department-Employees Example

Imagine a company that keeps relational data in a department (DEPT) table
and in an employee (EMP) table. The DEPT table has columns for department
names (DNAME) and department numbers (DNUM). The EMP table has
columns for employee names (ENAME), employee numbers (ENUM),
department numbers (DEPTNUM), and phone numbers (PHONE). The
relational tables look like this:

Chapter 8. Running TeamConnection SQL Queries 61

Notice that the tables have columns with common data, DNUM and
DEPTNUM. This data enables you to join the tables. You could, for example,
write an SQL query that said, “Show me all the department names and, for
each, the names of the employees in that department.” The query would look
like this:
select d.DNAME,e.ENAME from DEPT d,EMP e

where d.DNUM = e.DEPTNUM;

In the object data model, DEPT would be the class of all the objects that
contain department data, and EMP would be the class of all the objects that
contain employee data. DEPT objects would have the attributes DNAME and
DNUM, and relationships (call them ELINKS) to the EMP objects for the
employees who work in a given department. EMP objects would have the
attributes ENAME, ENUM, and PHONE. You can still visualize DEPT and
EMP as tables and DNAME, DNUM, ELINKS, ENAME, ENUM, and PHONE
as columns of these tables. The object tables (classes) would, in part, look like
this:

There are three important points to notice here:

Figure 1. Relational Data Tables

Figure 2. Object Data Tables

62 Dictionary and Designer User’s Guide

v The rows of the DEPT and EMP tables correspond to objects within each
class.

v The ELINKS column represents one-to-many relationships that objects in
DEPT have with objects in EMP.

v These relationships, not duplicate data, are the means by which objects are
linked. That’s why there is no need for a DEPTNUM attribute in EMP.

Advantages of Querying an Object Data Model

TeamConnection SQL exploits the fact that objects are linked by their
relationships. In gives you a new notation, the dot-dot operator, to express the
linkage in queries. You can use this operator to write the above query (“Show
me all the department names and, for each, the names of the employees in
that department.”) in a shorter form:
select d.DNAME,d.ELINKS..ENAME from DEPT d;

The dot-dot operator, written as two dots, shows the path from the
relationships (ELINKS) in the source objects to the target attributes (ENAME)
in the target objects. The values for the attributes DNAME and ENAME are
returned in response to the query. Because of the linkage between objects, the
response may be faster than the response to the conventional SQL query.

Using Qualifiers with Nested Collections

In the queries shown above, the d is called a qualifier; it says we are referring
to the current instance of DEPT objects as d. In the object data model, an
object can be related to many other objects. For example, a department can be
related to multiple employees; the collection of employees is nested within the
department object. You can name a new qualifier to refer to that nested
collection.

For example, the query
select d.DNAME,d.ELINKS..ENAME from DEPT d;

can be written as
select d.DNAME,e.ENAME from DEPT d,(d.ELINKS)e;

In the second query, the qualifier e is bound to the collection d.ELINKS such
that, whenever d is positioned on a department, e is positioned on the
employees in that department. So writing e.ENAME is the same as writing
d.ELINKS..ENAME. A restriction on using this notation is that the relationships
being represented—ELINKS in this example—must be one-to-many
relationships.

Chapter 8. Running TeamConnection SQL Queries 63

Of course, the simplicity of this example saves little notationally, but suppose
you wanted to ask for more in the query, like department names and all the
attributes in the EMP objects. Clearly, you could save time by simply writing
select d.DNAME,e.ENAME,e.ENUM,e.PHONE from DEPT d,(d.ELINKS)e;

Caution: Be careful in using multiple qualifiers to refer to the same collection.
Each qualifier is bound to a different instance of objects. In a relational model,
using the query 'select * from EMP e1, EMP e2' names two qualifiers for the
same table. In TeamConnection SQL, if you use the dot-dot operator to
navigate a one-to-many relationship, an implicit qualifier is created. If you
also explicitly name a qualifier for the nested collection, the qualifiers are
bound to two instances of the collection, which is probably not what you
want. In most cases you should name a qualifier for the nested collection and
use that qualifier throughout the query.

Querying across Multiple Object Classes

You can use the dot-dot operator to query objects from multiple classes.
Imagine, for example, that EMP objects have the relationships PROJLINKS to
PROJ objects. These are objects that contain information about the projects
employees are working on. PROJ objects might have attributes like
PROJNAME, PROJLEADER, and PROJSCHEDULE.

Suppose you wanted to write a query that said, “Show me all the department
names and, for each, the names of the employees in the department and the
names of the projects they’re working on.” The query would look like this:
select d.DNAME,d.ELINKS..ENAME,d.ELINKS..PROJLINKS..PROJNAME

from DEPT d;

Using qualifiers for simplification, you could write this equivalent query:
select d.DNAME,e.ENAME,p.PROJNAME from DEPT d,(d.ELINKS)e,

(d.ELINKS..PROJLINKS)p;

Again, the usefulness of this shorthand depends on how extensive the query
is.

Queries with an Outer Join

The queries in the examples above would not have returned any department
names for departments without an employee. Nor would they have returned
employee names for employees without a project. To see such cases returned
in a query’s results, you use the keyword OUTER in the query. This keyword
produces results similar to a left outer join in the relational data model. In the
context of the previous query, the OUTER keyword would look like this:
select d.DNAME,d.ELINKS..ENAME,d.ELINKS..PROJLINKS..PROJNAME

from OUTER DEPT d;

64 Dictionary and Designer User’s Guide

The results of this query would show a null under ENAME and PROJNAME
for departments that have no employees. They would also show a null under
PROJNAME for employees that have no projects.

TeamConnection’s Views and Attributes

TeamConnection contains named views of all the object types that can be
stored in its database. Each view contains named attributes for the object type
it represents. For example, the view DAQDB2390Table is for DB2/390 table
objects. The attributes db2390Table and tableDescription (two of many) refer
to the name and description, respectively, of a DB2/390 table. “Appendix
F. Views and Attributes of Object Types” on page 161 identifies all the views
and attributes, and groups them by object type.

The supplied queries are built from these views and attributes. The SELECT
clauses are made up of attributes appropriate to the query; the FROM clauses
specify views or relationships to views. When you want to query the
TeamConnection database, you can use these views and attributes to build
your own query. But before you build one, consider starting with a supplied
query and substituting attributes to produce the query report you want.

Chapter 8. Running TeamConnection SQL Queries 65

66 Dictionary and Designer User’s Guide

Part 2. Designer User’s Guide

© Copyright IBM Corp. 1996, 1997 67

68 Dictionary and Designer User’s Guide

Chapter 9. Introduction to DataAtlas Designer

Database design is the link between your business data and optimum
performance of your database system.

DataAtlas Designer is targeted to assist you, the database designer or the
database administrator, in your complex and often time-consuming activities.
DataAtlas Designer supports relational database design for the DB2 family of
database systems, initially focusing on the MVS and OS/390 platforms.

DataAtlas Designer can help you after you create a relational design, a design
that shows the relationships between tables and columns in terms of keys and
constraints. You then use DataAtlas Designer to create a physical design to
add physical information to the tables that will optimize storage of and access
to your data. In creating a physical design, you take steps like the following:
v Estimate the data load and the work load for the application under design
v Define and associate additional resources (such as indexes, table spaces,

buffer pools)
v Decide on physical adjacency of data (such as clustering indexes)
v Decide on placement of data (such as partitioning)

DataAtlas Designer provides notebooks that are structured for designing and
maintaining database objects. In addition, DataAtlas Designer offers built-in
design support through a powerful set of rules that compile and exploit DB2
internal knowledge. You get the following types of design support:
v Information on potential design problems
v Design proposals
v Validation of current designs

On request, proposed design steps are carried out automatically.

The process of database design can be viewed from two main perspectives:
v Forward engineering, the activity of creating databases
v Reverse engineering, the activity of improving existing databases

DataAtlas Designer supports both. In a forward engineering scenario, you use
DataAtlas Designer to create a physical model from a relational model created
with DataAtlas Modeler. With DataAtlas Designer, you add the physical
information that is needed to achieve optimum performance for your
applications on the target database system. The physical model is then

© Copyright IBM Corp. 1996, 1997 69

implemented in the database system, using the DataAtlas Dictionary function
that generates the data definition language (DDL) needed for the database.

In a reverse engineering scenario, you use DataAtlas Dictionary to extract the
data definition of an existing database from the database catalog and
transform it into a physical model. Then you redesign this physical model
with DataAtlas Designer. A redesign may be necessary, because you want to
improve the performance, or because data load and work load conditions of
the application changed. The improved physical model is then
re-implemented in the database system.

70 Dictionary and Designer User’s Guide

Chapter 10. Database Design Concepts

This chapter contains a brief introduction to the main concepts encountered in
database design for a relational database system, and how DataAtlas Designer
deals with these concepts.

The Central Concept: The Table

The central concept in database design is the table object. The table object
plays the central role from both perspectives, the relational perspective and
the physical perspective.

Relational design focuses on tables and their interrelationships. Physical
design focuses on how to store and access the tables in an optimum way.

DataAtlas Designer supports both types of design.

Relational Design

Database design from a relational perspective focuses on table objects and the
relationships between them. This type of design is referred to as logical
design, or, in the context of relational database systems, as relational design.

Typical tasks in relational design are the specification of primary keys, and the
specification of foreign keys together with the referential constraints on them.

The following objects are involved when the focus of database design is on
table objects and the relationship between them:
v Table
v Column
v Primary key
v Foreign key
v Unique key
v View

© Copyright IBM Corp. 1996, 1997 71

Physical Design

Database design from a physical perspective focuses on a table’s storage and
access structures within the specific target database system.

Typical tasks in physical design are the creation of indexes to optimize the
access path for minimal costs, or the assignment of tables to appropriate table
spaces.

The physical database objects depend on the specific type of database system.
Physical database objects for DB2/3905 comprise the following objects:
v Table
v Column
v Index
v Table space
v Database
v Buffer pool
v Storage group

Data Load and Work Load

For a specific database application, you must collect data load and work load
information for each column of a table and for the table itself. This type of
design information is crucial for adequate physical database design, whether
you design your database objects directly or use DataAtlas Designer’s design
support. In all cases, the data load and work load data determines the
adequate configuration of a table’s storage and access structures.

Data load information is the basis for reasonable calculation of storage
structures and related space allocations. Work load information, together with
data load information, determines the configuration of the most efficient
access path, which you achieve through the creation of indexes.

As data load information you need to provide, for example, the following
input:
v Initial number of rows in a table
v Growth and delete rate
v Average column length for variable-length columns

5. This abbreviation refers to any of these DB2 enterprise data servers: DB2 Version 3, DB2 for MVS Version 4, and
DB2 for OS/390 Version 5.

72 Dictionary and Designer User’s Guide

The work load is characterized by a set of operations and their relative
frequency of application. The operations to investigate here are:
v Query
v Insert
v Update
v Delete
v Unload or Reload
v Reorg

Data load and work load information is essential for DataAtlas Designer’s
built-in design support. The rules that control the calculation of, for example,
design proposals apply the current data load and work load data. If you don’t
enter sufficient data load information, DataAtlas Designer tells you what
information is missing for the calculations it’s making on your behalf. One of
the most important data load values is the value for the initial number of
rows. DataAtlas Designer uses it for many of the calculations it carries out.

In some cases, DataAtlas Designer assumes default values. DataAtlas Designer
notifies you about the usage of default values so that, if needed, you can
change them to actual values.

Storage

The assignment of appropriate storage resources is a major physical design
task. For each table and index you create, you need to allocate auxiliary
storage. DB2 provides the following concepts: Tables are assigned to table
spaces and storage groups are used to allocate storage for table spaces and
indexes. You can request design support from DataAtlas Designer for the
optimum assignment.

If you do not want to use storage groups, you can also manage the allocation
of storage yourself. In this case, you cannot request design support from
DataAtlas Designer.

The major steps for data placement and space optimization are:
v Choose the appropriate type of table space for a table (simple, segmented,

or partitioned)
v Calculate the space and free space requirements for the table space
v Use storage groups with appropriate device characteristics to split data

according to its usage patterns (for example, indexes on fast devices)
v Identify wasted space situations and optimize by modifying the record

length

Chapter 10. Database Design Concepts 73

DataAtlas Designer offers you design support on these design steps. Or, you
can try to reach the same design objectives by adjusting values in object
notebooks.

Access

The creation of indexes guarantees the most efficient access path to your data.

To create the optimum index configuration, you must have an overview of the
work load of a given set of tables.

The goal is to minimize the total processing cost by selecting a set of
appropriate indexes for each table. The total processing cost is the
frequency-weighted sum of the expected costs for executing each statement,
including access, tuple update, and index maintenance cost. An index
configuration can consist of a set of clustered and non-clustered indexes.

For the creation of indexes, DataAtlas Designer offers you design support. Or,
you can create the necessary indexes yourself by creating and initializing
Index notebooks.

Knowledge of Database Design

Relational and physical database design is driven by a database designer’s
heuristic knowledge of database design.

DataAtlas Designer’s notebooks take this heuristic knowledge into account
and present a well-structured form for designing database objects.

In addition to common design functions, DataAtlas Designer offers design
support based on rules. The rules represent collection of heuristic knowledge
of DB2 database design. You can tailor the set of rules and customize
individual rules to meet the needs of your application.

74 Dictionary and Designer User’s Guide

Chapter 11. Database Design with DataAtlas Designer

This chapter presents some characteristics of DataAtlas Designer and its
approach to database design.

Design Modes

DataAtlas Designer provides two modes of design:
v Using notebooks
v Using built-in design support

For direct, manual design, DataAtlas Designer offers a set of notebooks.
Design support can be requested for many design steps. It is based on a
comprehensive set of heuristic rules, which you can tailor to your needs.

Both design modes are equally available throughout the database design
process. From anywhere in a notebook, you can request design support. From
a design advice report, you can open the notebook of an object that has been
proposed, or for which potential design problems were detected.

You can apply both types of design to the creation as well as the optimization
of databases.

Design Using Notebooks

DataAtlas Designer facilitates your database design by providing notebooks.

When you use notebooks for your database design, you are responsible for
the data you enter into the provided fields. However, even though you may
not make use of the design proposals DataAtlas Designer offers, you can still
use the information and validation functions of DataAtlas Designer to check
and verify the data you entered.

Design Using Design Support

DataAtlas Designer’s most important feature is its function of design support.
Design support is based on a collection of heuristic rules on database design.
These heuristic rules take the provided data load and work load information
as input for rendering reasonable design advice. For many design items,
DataAtlas Designer can provide advice on the right step to take.

© Copyright IBM Corp. 1996, 1997 75

The type of support is threefold (the DataAtlas Designer function is given in
brackets):
v Check completeness (Inform)
v Check correctness (Validate)
v Suggest improvements (Propose)

With each function, you can choose from a list of design items for which
DataAtlas Designer can offer support. The advice is given in the form of a
report that lists the design steps to consider. When design proposals are
requested, you can accept a proposed design step, and DataAtlas Designer can
carry out this step for you.

DataAtlas Designer gives information on potential design problems for all
significant physical design objects:
v Storage group
v Database
v Table space
v Index
v Table
v Column

Design proposals can be requested from DataAtlas Designer for the following
set of objects:
v Storage group
v Table space
v Index
v Table

Validation of current designs is available for the same set of objects.

Tailoring the Rule Set

Each design advice action is connected to a set of heuristic rules. You can
access this set of rules and tailor it to your needs:
v Activate rules
v Deactivate rules
v Modify rules

Rules can be activated or deactivated. If all rules for an action are deactivated,
the design step itself is deactivated.

76 Dictionary and Designer User’s Guide

Modifying the Rules

Some rules contain threshold values. They are enclosed in brackets (< >).
These values can be modified as needed.

Other values that can be modified are DataAtlas Designer default values.
DataAtlas Designer accesses data load and work load values when it
generates a design proposal. If no information is available, or if it is
incomplete, DataAtlas Designer uses predefined default values with its rules.
DataAtlas Designer default values are listed after the rule. You can change the
listed value, if needed.

Design Areas

With DataAtlas Designer, you can choose to conduct your database design on
either of the following:
v Single database objects
v A set of database objects

Designing Single Objects

Single database objects are the basic area of design. For each type of object, a
notebook is available that presents the needed items of design in a
well-structured manner.

Notebooks are available for the following database objects:
v Table
v Column
v Index
v Table space
v Database
v Storage group
v View
v Alias/Synonym

No notebooks are provided for buffer pools and volumes. Both are important
storage facilities to which other database objects are assigned, but they do not
need to be designed the same way as the other database objects. The design
information for volumes is connected to the storage group notebook. For
buffer pools, no separate design information is entered.

Chapter 11. Database Design with DataAtlas Designer 77

Designing a Set of Objects

Predominantly, the tasks that apply to the entire set of objects cover the
configuration of your design environment, such as setting your profile or
setting specific defaults (see section “Configuring the Design Environment” on
page 83).

When you use design support, both the Inform and the Validate function can
operate on a set of objects. However, the Propose function is available only for
single objects.

Design Information

When you begin your database design, you collect the estimated data load
and work load for your database application. You collect the data load and
work load for each column of a table and for the tables themselves. This type
of design information determines the adequate configuration of the storage of
and the access to the tables of your database application. DataAtlas Designer’s
design support function takes the data load and work load values as input for
the calculation of adequate design proposals. Refer to section “Data Load and
Work Load” on page 72 for a description of the required data and work load
values.

After you implemented the physical model of your database application into
your target database system, DB2 keeps statistic records of your application in
the DB2 catalog. DataAtlas Designer allows you to extract the most important
DB2 statistical values from the DB2 catalog. You extract these values from the
following database objects:

v Table object
v Table space object

From the table object, you extract the statistical values for the table itself, for
all of its columns, and for all of the indexes you created for the table. From
the table space object, you extract the statistical values for that table space
object and for the storage group it is assigned to. You find the statistical
values for the database objects on the DB2 Actuals page of the corresponding
notebook. (See the online help for a description of the statistical values on the
DB2 Actuals pages.) As soon as the table or the table space object has been
implemented, you can extract the statistical values from the DB2 catalog,
using the Extract Statistics function on the DB2 Actuals page of their
notebooks.

78 Dictionary and Designer User’s Guide

The DB2 actual values are helpful design information for the optimization of
database objects. From time to time, you extract the statistical values from the
DB2 catalog, you compare these actual values with your initial data load and
work load estimations, you refresh the estimates with actual values, and you
enter new data load and work load estimations. This way, you not only get
information on the current status of design, but also on the progress of your
design. Based on the new data load and work load data, you can again
request DataAtlas Designer to calculate the optimum design steps for you.

Design Reports

The design advice reports show you the results DataAtlas Designer generated
for your selected set of design steps and actions. The structure of the report
depends on the requested design function (Inform, Validate, or Propose) and
the type of object being designed.

Each line represents an object, such as an index, a table space, or a proposed
attribute value. The reported objects are the ones that DataAtlas Designer
proposes to create or modify. You can accept single proposals or the complete
list of proposals. DataAtlas Designer then creates new objects (for example, a
new index) or changes existing objects. Alternatively, you can reject proposals,
and no action is carried out by DataAtlas Designer.

If design information for an object is missing, DataAtlas Designer informs you
about it in the report. You can directly open the notebook of the
corresponding object from the report, and you can correct the necessary
information.

In a validation report, each line represents an object in error. In an information
report, each line represents an object together with the advice given on its
potential design problems. Again, you can switch to the objects to correct
them.

You can get more details for each report item. When requested, you see the
detailed rule on which the calculation for the selected design step is based.

Design Scenarios

DataAtlas Designer allows for the following types of database design:
v Creating a new database
v Optimizing an existing database

Chapter 11. Database Design with DataAtlas Designer 79

Creating a New Database

After you create a relational model with a modeling tool like DataAtlas
Modeler, specify entities and relationships, map them onto table definitions
and tables, and normalized the tables, you can add the necessary physical
information to them as follows:
v Enter necessary data into notebooks.
v Collect data load and work load information.
v Design the database objects:

– Use notebooks.
– Request design proposals.

v Get information on potential design problems.
v Validate the physical design.
v Implement the design by using DataAtlas Dictionary to generate DDL.

Optimizing an Existing Database

A need for optimization of database design objects is given when data load or
work load data of an application has changed. There are two different ways to
optimize your database:
v Optimizing an entire database design
v Optimizing single database objects

Optimizing an entire database design involves the following steps:
v Getting DB2 catalog information, using the Populate function
v Defining work environment
v Entering current data load and work load information
v Updating existing physical database objects
v Requesting proposals for optimum design
v Validating the current design
v Implementing the changes by generating the DDL

Optimizing single database objects involves the following steps:
v Selecting database objects to optimize
v Extracting DB2 actual values for these objects, using DataAtlas Designer’s

Extract Statistics function
v Reviewing estimated and actual data load information:

– Refreshing the estimates with actual data load values
– Entering new estimates for data load

v Updating the selected objects and their related database objects:

80 Dictionary and Designer User’s Guide

– Entering necessary data into notebooks
– Requesting design proposals

v Validating the revised design
v Implementing the changes by generating the DDL

Chapter 11. Database Design with DataAtlas Designer 81

82 Dictionary and Designer User’s Guide

Chapter 12. Using DataAtlas Designer

This chapter shows you how to use DataAtlas Designer for the design of a
complete physical design or the design of single database objects. For each
database design object, you find a section with a description of all the relevant
design aspects of that object.

You get an overview of the design modes DataAtlas Designer provides: the
use of notebooks, and the use of the design support. And you find
instructions on how to configure your design environment.

Configuring the Design Environment

At the beginning of a comprehensive database design, you need to configure
your system environment. Usually, you carry out these configuration tasks
only once, and the values you set are valid throughout the entire physical
design.

Configuring your global design environment consists of the following tasks:
v Setting default values
v Specifying the system environment data

You can set default values for the following items:
v System
v Database
v Creator
v Physical design

The following values are required as system environment information:
v Database name
v Storage group
v Buffer pools
v Storage management system
v Close option
v Mixed data
v Prefix and suffix for name generation:

– Index suffix
– Index prefix

© Copyright IBM Corp. 1996, 1997 83

– Table space prefix
– Foreign key prefix

You specify the system environment data in the Profile notebook. For a
description of the Profile notebook, refer to “The Profile Notebook” on page 11
.

Requesting Design Support from a Physical Design

You can request design support from a physical design. It contains all the
database objects belonging to a specific database application. In a physical
design, you get an overview of the involved objects; you can then select the
specific objects you want to design.

To request design support from a physical design, do the following:
1. Open a physical design in one of the following ways:
v From a workfolder:

a. Open a workfolder that contains a DB2/390 physical design.
b. Double-click the physical design.

v From a Relational Design notebook:
a. Open a Relational Design notebook and go to the DB2/390 page.
b. Select a physical design.
c. Click Open.

In the Physical Design notebook, you’ll see a separate page for each of the
object types that can belong to a physical design. On each page, you’ll find
a list of the objects in the physical design that correspond to the page tab.

Figure 3 on page 85 shows an example of available table objects on the
Table page of a Physical Design notebook.

84 Dictionary and Designer User’s Guide

2. Select the objects you want to design.
3. Click the push button that represents the design support you want:

Inform, to check the objects’ completeness
Validate, to check their correctness
Propose, to see suggestions for improvements

Requesting Design Support from a Workfolder

To request design support from a workfolder:
1. Open the workfolder and select the DB2/390 objects you want to design.
2. Click Selected on the menu bar, and then Designer.
3. Click a design function on the submenu.

Figure 4 on page 86 shows what a workfolder looks like when you click
Designer on the menu bar.

Figure 3. Table Objects in a Physical Design Notebook

Chapter 12. Using DataAtlas Designer 85

You can also request design support by opening an object’s notebook from a
workfolder and then invoking DataAtlas Designer from the notebook.
“Requesting Design Support from a Notebook” on page 88 tells you where to
look in a notebook for design support.

Designing Database Objects Using Notebooks

From an object’s notebook, you can affect its design in three ways. You can
design the object by tuning its definition in the notebook, you can request
design support from the notebook, or you can do both.

Designing by Tuning an Object’s Definition

At a high level, this is how to design an object by tuning its definition in a
notebook:
1. Open a workfolder that contains the object you want to design.
2. Double-click its icon to open its notebook.
3. On the General page, fill in any blank fields that are required. (They have

dark-pink labels.)

Figure 4. Design Functions on the Workfolder’s Menu Bar

86 Dictionary and Designer User’s Guide

4. On the other notebook pages, define or redefine the object using the entry
fields and options there. Figure 5 shows column data on the Definition
page of a Table notebook.

5. Click OK when you’re done.
6. Reopen the notebook from the workfolder when you want to tune the

object’s design further.

For a description of the fields in an object’s notebook, click Help on the
notebook.

For information on creating a new database object, refer to “Chapter 4.
Creating and Deleting Objects” on page 19.

Figure 5. Table Notebook

Chapter 12. Using DataAtlas Designer 87

Requesting Design Support from a Notebook

To request design support from an object’s notebook:
1. Click Designer on the menu bar.

The pull-down menu shows the available design functions.
2. Click the design function you want.

The notebooks for columns, tables, indexes, storage groups, and table spaces
have a Designs page with push buttons for the design functions available for
these objects.

Selecting Design Actions

When you request design support, DataAtlas Designer opens a window
showing the actions available for the design function you chose. Figure 6
shows the actions available when you click Propose for a table object.

Each action consists of a number of action items. You determine which ones to
select, and which of these to modify to meet the needs of your application.

To tailor a set of actions:

1. Select one or more.
2. Click Rules.

Figure 6. Available Proposal Actions for a Table Object

88 Dictionary and Designer User’s Guide

The notebook of the selected action opens. If you selected several actions,
the notebook of the first-selected action opens.
On the Rules page, you see the rules that can be applied to carry out the
selected action. By default, all the rules are selected.
Figure 7 shows the Action notebook for the creation of indexes.

3. Deselect the rules you don’t want to include in the action.
4. Open the notebook page of a rule.

You see the detailed description of the rule.
5. Where appropriate, change the necessary parameters.
6. Click OK.

Your settings for the selected action are saved, and you see the list of
actions again.

7. Repeat these steps, if you selected several actions.

Note: If you selected several objects, your settings apply to all of the objects.

Figure 7. Settings Notebook for the Creation of Indexes

Chapter 12. Using DataAtlas Designer 89

Next, you can request a report.

Requesting Design Reports

After you select a specific design action and tailor its properties, you can
request a design report. For a design proposal, you can request a report for
only one action at a time. For design information and validation, you can
request a report for several actions.

To get a report, click Get report for the selected action or actions.

Evaluating Design Support Reports

Depending on the type of design support, a report contains information
messages, design proposals, or warning messages. The report messages are
headed by an icon. With design proposals, there is an additional column with
the title Accepted. It indicates whether a proposal has been accepted or
rejected.

A report with information on potential design problems contains information
messages. A design validation report contains warning messages. A report
with design proposals contains design proposals as well as information
messages. Here, the information messages inform you about design
information that is missing, but necessary for the creation of an appropriate
proposal.

Figure 8 on page 91 shows a report with proposals and information messages
for the creation of indexes.

90 Dictionary and Designer User’s Guide

For all types of messages, you can ask for the action item that caused the
message:

1. Select a report item; then click Selected on the menu bar. (Or just click the
item with the right mouse button).

2. Click Rule on either menu.
You see the detailed description of the rule on which the action item is
based:

Also, for each message, you can look at the affected objects:
1. Click a report item with the right mouse button.

A pop-up menu appears.
2. Click Details.

A window lists the report item again, and presents icons for the affected
objects:

3. Double-click the icon to open the object’s notebook and look at its
specifications.

With a validation report item or an information report item, you only see an
icon for the object you are currently designing, because it is the only one
affected. With a design proposal item, you also get icons for the proposed
objects.

See the next section for a detailed description of how to accept proposals.

Figure 8. Proposal Report

Chapter 12. Using DataAtlas Designer 91

Sometimes you see report items where you have to make a choice from
several proposals (see the section “Selecting from a Choice of Proposals” on
page 93 for a detailed description).

For a detailed description of how you can execute accepted design proposals,
see the section “Executing Design Proposals” on page 93.

Accepting Design Proposals

You have several possibilities for accepting design proposals.

To accept design proposals from the Report Item window, do the following:
1. From a design proposal report, select a report item with the right mouse

button.
A pop-up menu appears.

2. Click Details.
A window lists the report item again, and presents icons for the current
and for the proposed objects.

3. Double-click the icon of the proposed object or the object with proposed
changes that you want to accept.
The object’s notebook opens. The notebook already contains the proposed
values.

4. Leave the notebook by clicking OK.
5. Close the Report Item window.

In the report, the corresponding report item is marked Accepted - Yes, and
the icon gets a check mark.

To accept design proposals from the design proposals report, do the following:
1. Select a proposed item.
2. From the Selected pull-down menu:
v Click Accept if you agree with the proposal.

The accepted proposals are marked Accepted - Yes, and the icon gets a
check mark.

v Click Reject if you do not agree with the proposal.
The rejected proposals are marked Accepted - No.

Figure 9 on page 93 shows a report with accepted and rejected design
proposals.

92 Dictionary and Designer User’s Guide

Selecting from a Choice of Proposals

Sometimes you have to choose between various proposals:
1. Click the multiple-proposal report item with the right mouse button.

A pop-up menu appears.
2. Click Details.

A window lists the report item again, and presents the icons of the objects
to choose from.

3. Select the appropriate object.
The corresponding notebook opens.

4. Click OK to accept and save the proposed values.
The notebook closes, and you are back on the Report Item window.

5. Click Cancel to leave the Report Item window.
You see the report again. The report item is marked Accepted - Yes, and
the icon gets a check mark.

For a detailed description of how you can execute design proposals from the
design proposals report, see the next section.

Executing Design Proposals

If you want to save the proposed changes to objects or the proposed new
objects, do the following:
1. Mark the items you want to save with Accepted - Yes.

(See the previous sections for how to accept proposed items.)

Figure 9. Accepted and Rejected Design Proposals

Chapter 12. Using DataAtlas Designer 93

2. Click Execute.
The proposals that are marked Accepted - Yes are executed.
After execution, the proposals are marked Executed. If new objects are
created, a window will ask you whether you want the objects to be
represented in a workfolder.

Figure 10 shows a report with executed design proposals.

Figure 10. Executed Design Proposals

94 Dictionary and Designer User’s Guide

Chapter 13. Designing Tables

The physical design is carried out with notebooks. The notebook sections
indicate the different design areas.

You perform the physical design by filling in the necessary fields on the
notebook pages. In addition, DataAtlas Designer offers design support. For
the table object, all the types of design support are available:
v Information on potential design problems
v Design proposals
v Design validations

The design of the table object consists of the following tasks:
v Specifying general information
v Viewing the shareable table definition
v Viewing the columns
v Adding and deleting columns
v Optimizing the table layout
v Assigning the table to a physical design
v Specifying routines and options
v Creating and modifying a primary key
v Creating and modifying unique keys
v Creating and modifying foreign keys
v Creating indexes
v Assigning the table to a table space and a database
v Creating table partitions
v Modifying table partitions
v Specifying the data load
v Specifying the work load
v Extracting DB2 actual values

Below, you find a detailed description of these tasks.

© Copyright IBM Corp. 1996, 1997 95

Available Design Support for Tables

For the table object, the following design support is available:
v Inform — Information on potential design problems:

– Identification of tables with default values
– Identification of tables with potential column problems
– Identification of tables with potential primary key problems
– Identification of tables with missing design information
– Identification of tables without an explicit clustered index
– Identification of large tables
– Identification of columns with missing design information
– Calculation of wasted space

v Propose — Design proposals:
– Assignment of the table to a table space
– Creation of a primary key
– Creation of foreign keys
– Creation of indexes
– Creation of a partitioned index for a partitioned table

v Validate — Design validations:
– Identification of tables with invalid primary or foreign keys
– Identification of tables with column inconsistencies
– Identification of incomplete tables

Refer to the section “Selecting Design Actions” on page 88, for a description of
how to request design support for the listed areas of design.

Specifying General Information

To specify the general information of the table object, do the following:
1. Open the Table notebook to the General page.
2. Specify the listed general information items:
v Relational Database Qualifiers:

– System
– Creator

v Name
v Variation

96 Dictionary and Designer User’s Guide

v Revision
v Component
v Description

Some fields are mandatory, others optional.

Viewing the Shareable Table Definition

To view the shareable table definition, do the following:
1. Open the Table notebook to the Definition page.
2. Click Open to open the notebook of the table definition.

The column information related to the table definition is listed in the
Columns table.

Note: When you use a shareable table definition, you must be careful: When
you change the column definitions, the changes are propagated to all of
the table objects using this shareable table definition.

Viewing the Columns

To view all of the columns of a table, do the following:
1. Open the Table notebook to the Definition page.

You see the columns defined for the table listed in the Columns table.
2. Click Open to open a column’s notebook and look at its characteristics.

Adding and Deleting Columns

To add a new column to the table, do the following:
1. Open the Table notebook to the Definition page.
2. Click Create from the Columns table.

An empty column notebook opens.
3. If you want to use shareable data elements, click Search on the Definition

page of the Column notebook.
4. To disassociate a shareable data element from a column, click Remove.

The data element’s name is cleared from the entry field. Values in the data
definition fields are also cleared.

The specified information is listed in the Columns table.

Chapter 13. Designing Tables 97

For the design of the column, refer to the section “Chapter 14. Designing
Columns” on page 107 for a detailed description.

To delete a column from the table, do the following:

1. Open the Table notebook to the Definition page.
2. Select a column from the Columns table.
3. Click Delete.

The column is deleted from the table object, and its information is removed
from the Columns table.

Note: When you change the column information of a table, it causes a change
in the shareable table definition, too.

Optimizing the Table Layout

To optimize the table layout, do the following:
1. Open the Table notebook to the Definition page.

The table’s columns and their characteristics are listed in the Columns
table.

2. Select the column you want to reposition.
3. Click Move up.

The column is moved up in the table.
4. Click Move down.

The column is moved down in the table.

Assigning the Table to a Physical Design

Only when an object is assigned to a physical design, can you fully exploit the
design support functions available for the entire physical design. For example,
from the physical design, you can request design proposals for several objects
at a time.

To assign the table object to a physical design, do the following:
1. Open the Table notebook to the Designs page.
2. Click Search to search for an appropriate physical design.
3. Select a physical design from the resulting list.

98 Dictionary and Designer User’s Guide

Specifying Routines and Options

To specify routines and set the options for the table object, do the following:
1. Open the Table notebook to the Options page.
2. Specify the following optional information in the corresponding fields:
v Procedures

– EDITPROC
– VALIDPROC

v OBID
v Audit

– None
– Changes
– All

v Data capture
– None
– Changes

v Label
v Comment

(Use this field for your own notes and remarks on the table object.)

Creating and Modifying a Primary Key

The primary key clearly identifies the rows of a table. It can consist of one or
more columns. Only unique values are allowed in primary key columns.

For the creation of a primary key, you have the choice between two different
design modes:
v Directly performing this design step in the notebook
v Getting a design proposal from DataAtlas Designer

If you want to directly create the table’s primary key, do the following:
1. Open the Table notebook to the Primary Key page.
2. From the Available list box, select the columns of which the primary key

should be composed.
3. Click Add.

The selected columns are listed in the Selected list box. The primary key is
composed of these columns.

Chapter 13. Designing Tables 99

Or, to request a design proposal for the creation of a primary key, click
Propose on the Designer pull-down, and then Create primary key.

Note: The primary key is a unique key. If you assign unique keys, you must
also assign unique indexes. Otherwise you cannot use the implemented
table.

When you want to modify the primary key, do the following:
1. From the Selected list box, select the columns you want to remove from

the primary key.
2. Click Remove.

The selected columns are not part of the primary key any more.

Note: You cannot modify a primary key that is referenced by a foreign key.

Creating and Modifying Unique Keys

Like primary keys, unique keys are a way of allowing only unique values in a
column.

To create unique keys, do the following:
1. Open the Table notebook to the Unique Keys page.
2. From the Available list box, select the columns of which the unique key

should be composed.
3. Click Add.

The selected columns are listed in the Selected list box.
4. Click Remove to remove selected columns from the Selected list box.
5. Click Create.

The columns of the Selected list box are listed as unique key in the
Unique keys list box, separated by an exclamation mark (!). Each line
represents one unique key.

If you want to modify a unique key, do the following:
1. Select a unique key from the Unique keys list box.

The corresponding unique key columns are listed in the Selected list box.
2. Modify the set of unique key columns by adding or removing columns.
3. Click Modify.

The changed set of columns is listed as unique key in the Unique keys list
box.

100 Dictionary and Designer User’s Guide

4. Click Delete if you want to delete a selected unique key from the Unique
keys list box.

Note: If you assign unique keys, you must also assign unique indexes.
Otherwise you cannot use the implemented table.

Creating and Modifying Foreign Keys

The foreign key is used to specify a referential constraint on the table. You can
create more than one foreign key on the table.

Parent table primary key columns and foreign key columns of the current,
dependent table must match in the following aspects:
v Number of columns
v Data types
v Field procedures

For the creation of foreign keys, you have the choice between two different
design modes:
v Directly performing this design step in the notebook
v Getting a design proposal from DataAtlas Designer

If you want to create a foreign key directly, do the following:
1. Open the Table notebook to the Foreign Keys page.
2. Click Search to search for the parent table whose primary key corresponds

to the foreign key that you want to create.
The primary key columns of the referenced parent table are listed as
Parent table primary key columns. The columns of the current table
whose data type values match the ones of the referenced key columns are
listed as Matching columns.

3. Select the matching columns that should compose the foreign key.
4. Specify a name in the Constraint name entry field.
5. Specify the type of delete rule for the newly specified key.
6. Click Create.

The newly specified foreign key is listed in the Constraint list list box.
7. Repeat these steps if you want to create further foreign keys.

If you want to modify a foreign key, do the following:
1. Select a foreign key from the Constraint list list box.

Chapter 13. Designing Tables 101

All of the columns of the table are listed in the Matching columns list box.
The current columns of the selected foreign key are marked.

2. Modify the set of foreign key columns by marking different columns.
3. Change the constraint name if appropriate.
4. Click Modify.

The constraint with its changed set of columns is listed in the Constraint
list list box.

If you want to request a design proposal for the creation of foreign keys, click
Propose on the Designer pull-down, and then Create foreign keys.

Creating Indexes

Create indexes to optimize the access path.

For the creation of indexes, you have the choice between two different design
modes:
v Directly performing this design step in the notebook
v Getting a design proposal from DataAtlas Designer

If you want to create indexes directly, do the following:
1. Open the Table notebook to the Indexes page.

In the Indexes list box, you see all of the table’s current indexes.
2. Click Create.

An empty index notebook displays into which you can enter the required
data. For a detailed description, refer to the section “Chapter 15. Designing
Indexes” on page 111. After closing the index notebook, the new index is
also listed in the Indexes list box.

To change an index, do the following:

1. Select an index from the Indexes list box.
The columns belonging to the selected index are displayed in the Columns
of selected index list box.

2. Click Open to open the corresponding notebook and change the necessary
data.

If you want to request a design proposal for the creation of indexes, click
Propose on the Designer pull-down, and then click Create index.

102 Dictionary and Designer User’s Guide

Assigning the Table to a Table Space and a Database

A table must be stored in an appropriate table space. Assign the table
explicitly to a table space to avoid that the DB2 default assignments are used.

For the assignment of the table to a table space, you have the choice between
two different design modes:
v Directly performing this design step in the notebook
v Getting a design proposal from DataAtlas Designer

If you want to directly assign the table to a table space, do the following:
1. Open the Table notebook to the Table Space page.
2. Click Search to select an appropriate table space from the list of existing

table spaces.

The selected table space appears in the corresponding entry field. If the table
space is assigned to a database, this database is automatically assigned to the
table, too, and the name of the database is listed in the corresponding entry
field.

If the selected table space is not assigned to a database, no database is directly
assigned to the table. DB2 then assigns the table to the default database
DSNDB04.

If you do not want to explicitly assign the table to a table space, you can also
first select the database. If the database contains exactly one table space, this
table space is listed in the table space entry field. If the database contains
more than one table space, the table space entry field remains empty. If you
do not explicitly select one of the assigned table spaces in the course of your
physical design, the DB2 default table space is used then. The DB2 default
table space is also used, if the database has no table space assigned.

If you want to request a design proposal for the table to table space
assignment, click Propose on the Designer pull-down, and then Assign table
to table space.

Creating Table Partitions

To optimize the performance, large tables are best assigned to partitioned
table spaces. To support the table’s assignment to a partitioned table space,
DataAtlas Designer lets you create table partitions. Only, if you created table
partitions, you can specify a partitioned table space or a partitioned index.

Chapter 13. Designing Tables 103

DataAtlas Designer’s design support function also only proposes a partitioned
table space or a partitioned index for the table if you created table partitions
before.

Note: Table, table space, and index partitions should always match in
number.

You create table partitions like this:
1. Open the Table notebook to the Partitions page.
2. Specify the number of partitions you want to create.
3. Click Accept.

The numbered partitions are listed in the Partitions table.
4. From the Available list box, select the columns for the partition.
5. Click Add.

The selected columns are listed in the Selected list box. In addition, they
are inserted into the Partitions table.

6. Select a partition from the Partitions table.
7. Click Open to specify range values for the columns of the partition.

A Table Partitions window displays. The number of the partition is listed.
The names of the columns for which you create ranges are inserted
automatically.

8. For each column, specify the target UPPER value delimiting its range.
The concatenation of specified column ranges determines the partition.

9. Close the Table Partitions window by clicking OK.
The partition and its specified column ranges are listed in the Partitions
table.

You can modify a partition at any time (see the corresponding section below).

Note: Be aware that DB2 uses only the first 40 bytes of the concatenated
range values. The bytes exceeding this range are ignored.

Modifying Table Partitions

Changes you make to the table partitions do not affect DDL generation. If you
want to keep the table partitions as a source for the table space and index
partitions, you must either change the partitioned table space and partitioned
index manually or request a design proposal for the creation of a new table
space and index.

To modify a table partition, do the following:

104 Dictionary and Designer User’s Guide

1. Open the Table notebook to the Partitions page.
2. From the Partitions table, select the partition you want to modify.
3. Click Open.

The Table Partitions window opens. You see the number of the partition
and the current target UPPER values delimiting the ranges of the columns.

4. Change the range values where necessary.
5. Close the Table Partitions window.

The changes are listed in the Partitions table.

Specifying the Data Load

Together with the work load values, the data load values determine the
adequate configuration of a table’s storage and access structures. Many of the
design functions DataAtlas Designer offers make use of these values. The
most important value here is the initial number of rows value.

To specify the data load of the table, do the following:
1. Open the Table notebook to the Data Load page.

You see a read-only table with the data load for the listed partitions.
2. Select a partition.
3. Click Change.

The Table Partitions Data Load window opens.
4. Enter the necessary data load information.
5. Click OK to close the window.

Your specifications are listed in the data load table.

The data load values are required, for example, for the calculation of index
proposals.

For a detailed description of the fields, see DataAtlas online help.

Specifying the Work Load

Together with the data load values, the work load values determine the
adequate configuration of a table’s storage and access structures.

The work load information for a table consists in specifications of frequency
and concurrency values for a number of operations.

To specify the work load, do the following:

Chapter 13. Designing Tables 105

1. Open the Table notebook to the Work Load page.
You see a read-only table with the work load for the listed partitions.

2. Select a partition.
3. Click Change.

The Table Partition Work Load window opens.
4. Specify the necessary frequency and concurrency data.
5. Click OK to close the window.

Your specifications are listed in the work load table.

The work load values are required, for example, for the calculation of index
proposals.

For a detailed description of the fields, see DataAtlas online help.

Extracting DB2 Actual Values

Here you extract the most important DB2 statistic values of the table from the
DB2 catalog. Together with the statistic values for the table, the statistic values
of all columns and assigned indexes are retrieved.

To extract the statistic values of the table object, do the following:
1. Open the Table notebook to the DB2 Actuals page.
2. Click Search to look for the database that contains the DB2 catalog from

which you want to extract the statistic values.
3. Click Extract statistics to extract the DB2 statistic values of the table from

the DB2 catalog.
The values are listed in the corresponding fields.

For a description of the fields, see DataAtlas online help.

Note: No data is available for extraction as long as the object has not been
implemented.

106 Dictionary and Designer User’s Guide

Chapter 14. Designing Columns

The physical design of the column object is carried out with the column
notebook. It is accessed from the Definition page of the Table notebook.

Design advice for the column object is given in terms of information on
potential design problems.

The design of the column object consists of the following tasks:
v Defining a column
v Setting options
v Specifying the data load
v Specifying the work load
v Viewing DB2 actual values

Below, you find a detailed description of these tasks.

Available Design Support for Columns

For the column object, the following design support is available:
v Inform — Information on potential design problems:

– Columns with data type problems
– Columns with missing design information

No Propose or Validate functions are available for the column object.

Refer to the section “Selecting Design Actions” on page 88 for a description of
how to request design support for the listed areas of design:

Note: Since columns are part of a table, their design actions are also part of
the ones for the corresponding table.

© Copyright IBM Corp. 1996, 1997 107

Defining a Column

To specify the parameters by which the column is defined:
1. Do one of the following on the Definition page of the Table notebook:
v Click Create if you want to create a new column.

An empty column notebook displays.
v Select a column and click Open if you want to work with an existing

column.
The corresponding notebook opens.

2. Open the Definition page of the Column notebook.
3. Specify the listed parameters:
v Name

The Name is mandatory.
You can change the name of a column at any time.

v Owning table definition
This field is read-only. It shows the table definition that the column
belongs to.

v Shareable data element
If you want to use predefined shareable data elements, click Search to
search for an appropriate one.
Click Open to open the notebook of the shareable data element.
Click Remove. The data element’s name is cleared from the entry field.
Values in the data definition fields are also cleared.

v Data type
– Precision
– Scale
– Length
– Byte count

v Subtype:
– Bit
– Mixed
– SBCS
– None

A shareable data element has its own data type. Therefore, if the column is
based on a shareable data element, the Data type fields are filled and
read-only. They can only be changed in the notebook of the shareable data
element.

108 Dictionary and Designer User’s Guide

For a description of the fields, see DataAtlas online help.

Setting Options

To specify options for the column object, do the following:
1. Open the Column notebook to the Options page.
2. Specify the following values:
v Field Procedure:

– Name
– Parameters

v Allow nulls:
– Yes
– No
– Default
– Unique

The Comment field gives you room for your own notes and comments on the
object you are currently designing.

After the table has been implemented, the field procedure for the table cannot
be changed, added, or deleted.

The field procedure is optional. If you omit it, the column has no field
procedure.

For a detailed description of the fields, see DataAtlas online help.

Specifying the Data Load

Together with the work load values, the data load values of the column
determine the adequate configuration of the storage and access structures of
the corresponding table.
1. Open the Column notebook to the Data Load page.
2. Enter the necessary data load information.

The data load values are required, for example, for the calculation of index
proposals.

For a description of the fields, see DataAtlas online help.

Chapter 14. Designing Columns 109

Specifying the Work Load

Together with the data load values, the work load values of the column
determine the adequate configuration of the storage and access structures of
the corresponding table.
1. Open the Column notebook to the Work Load page.
2. Enter the necessary work load information.

The work load values are required, for example, for the calculation of index
proposals.

For a description of the fields, see DataAtlas online help.

Viewing DB2 Actual Values

Statistic values of a column can be extracted through the Extract statistics
function on the DB2 Actuals page of the Table notebook.

To view these values, open the Column notebook to the DB2 Actuals page.
You see the most important statistic values of the column from the DB2
catalog.

For a description of the fields, see DataAtlas online help.

110 Dictionary and Designer User’s Guide

Chapter 15. Designing Indexes

The physical design is carried out with notebooks. The notebook sections
indicate the different design areas.

You perform the physical design by filling in the necessary fields on the
notebook pages. In addition, DataAtlas Designer offers design support. For
the index object, all the types of design support are available:
v Information on potential design problems
v Design proposals
v Design validations

The design of the index object consists of the following tasks:
v Specifying general information
v Assigning the index to a physical design
v Defining an index
v Specifying index columns
v Specifying the sorting order
v Specifying the storage information
v Viewing and modifying index partitions
v Specifying type and storage information of an index partition
v Viewing DB2 actual values

Below, you find a detailed description of these tasks.

Available Design Support for Indexes

For the index object, the following design support is available:
v Inform — Information on potential design problems:

– Identification of indexes that can result in increased maintenance cost
– Identification of indexes that could be dropped

v Propose — Design proposals:
– Calculation of space requirements
– Setting of options

v Validate — Design validations:
– Identification of indexes with column inconsistencies

© Copyright IBM Corp. 1996, 1997 111

Refer to the section “Selecting Design Actions” on page 88 for a description of
how to request design support for the listed areas of design.

Specifying General Information

To specify the general information of the index object, do the following:
1. Open the Index notebook to the General page.
2. Specify the listed general information items:
v Relational Database Qualifiers:

– System
– Creator
– Database

v Name
v Variation
v Revision
v Component
v Description

Some fields are mandatory, others optional.

Assigning the Index to a Physical Design

Only, when an object is assigned to a physical design, you can fully exploit
the design support functions available for the entire physical design. For
example, you can request design proposals for several objects at a time from
the physical design.

To assign the index object to a physical design, do the following:
1. Open the Index notebook to the Designs page.
2. Click Search to search for an appropriate physical design.
3. Select a physical design from the resulting list.

Defining an Index

To specify the parameters by which the index is defined, do the following:
1. Open the Index notebook to the Definition page.
2. Specify the listed parameters:
v Owning table

112 Dictionary and Designer User’s Guide

Click Open to open the notebook of the owning table. Click Search to
search for the table on which you want to define the index.

v Password
v Subpages
v Buffer pool
v Defer
v Close
v Organization

– Unique
– Clustered

- Partitioned
v Number of partitions

Note: You cannot specify a partitioned index if the owning table is not
partitioned.

For a detailed description of the fields, see DataAtlas online help.

Specifying Index Columns

To specify the columns on which you want to define an index, do the
following:
1. Open the Index notebook to the Columns page.
2. From the Available Columns list box, select the columns on which you

want to define the index.
3. Click Add to add the selected columns to the index.

The selected columns are added to the Selected Columns list box.
4. Click Remove if you want to remove selected columns from the index.

The selected columns are dropped from the Selected Columns list box.

Specifying the Sorting Order

To specify the sorting order of index columns, do the following:
1. Open the Index notebook to the Columns page.
2. From the columns in the Selected Columns list box, select a column.

The type of sorting order of this column is listed. It can be either of the
following orders:
v Ascending

Chapter 15. Designing Indexes 113

v Descending
3. You can change the sorting order, if needed.

Specifying Storage Information

To specify the storage information of the index, do the following:
1. Open the Index notebook to the Storage page.
2. Specify the listed storage information.

For a detailed description of the fields, see DataAtlas online help.

Viewing Index Partitions

You can only view the existing index partitions on this page. To create an
index partition, switch to the notebook of the owning table and request a
proposal for the creation of indexes.

Note: Only, when the table is partitioned, you can get a proposal for a
partitioned index. To view the existing index partitions, do the

following:
1. Open the Index notebook to the Partitions page.
2. In the Partition definition list box, you see how many index partitions

exist, and for which columns they are defined.
3. In the Partitions list box, you see the type and storage information of each

partition.
Click Open to open the Index Partition window where you can specify the
type and the storage information of each partition (see the corresponding
section below).

Specifying Type and Storage Information of an Index Partition

To specify the type and the storage information of index partitions, do the
following:
1. From the Partitions table, select the partition for which you want to

specify the type and the storage information.
2. Click Open.

The Index Partition window displays.
3. Fill in the listed type and storage information.
4. Close the window.

114 Dictionary and Designer User’s Guide

You see the values you specified in the Partitions table. The Type column
shows whether you selected to manage the data sets for the index yourself
(VCAT option), or whether you want DB2 to do this for you (Storage
Group option).

For a detailed description of the fields, see DataAtlas online help.

Viewing DB2 Actual Values

To view the index statistic values from the DB2 catalog, open the Index
notebook to the DB2 Actuals page. The current values of the index or index
partitions are displayed.

The index values are extracted from the DB2 catalog through extraction of the
values of the owning table.

No data is available for extraction as long as the owning table object has not
been implemented.

Chapter 15. Designing Indexes 115

116 Dictionary and Designer User’s Guide

Chapter 16. Designing Table Spaces

The physical design is carried out with notebooks. The notebook sections
indicate the different design areas.

You perform the physical design by filling in the necessary fields on the
notebook pages. In addition, DataAtlas Designer offers design support. For
the table space object, all the types of design support are available:
v Information on potential design problems
v Design proposals
v Design validations

The design of the table space object consists of the following tasks:
v Specifying general information
v Assigning the table space to a physical design
v Assigning the table space to a database
v Setting options
v Creating table space partitions
v Specifying type and storage information of a table space partition
v Specifying storage information
v Assigning tables
v Selecting a buffer pool
v Specifying design information
v Extracting DB2 actual values

Below, you find a detailed description of these tasks.

Available Design Support for Table Spaces

For the table space object, the following design support is available:
v Inform — Information on potential design problems:

– Identification of table spaces with default values
– Identification of table spaces with design inconsistencies

v Propose — Design proposals:
– Calculation of space requirements
– Calculation of SEGSIZE

© Copyright IBM Corp. 1996, 1997 117

– Setting options
v Validate — Design validations:

– Identification of invalid table spaces assigned to DSNDB07
– Identification of invalid table spaces
– Identification of incomplete table spaces

Refer to the section “Selecting Design Actions” on page 88 for a description of
how to request design support for the listed areas of design.

Specifying General Information

To specify the general information of the table space object, do the following:
1. Open the Table Space notebook to the General page.
2. Specify the listed general information items:
v Relational Database Qualifiers:

– System
– Creator
– Database

v Name
v Variation
v Revision
v Component
v Description

Some fields are mandatory, others optional.

Assigning the Table Space to a Physical Design

Only, when an object is assigned to a physical design, you can fully exploit
the design support functions available for the entire physical design. For
example, you can request design proposals for several objects at a time from
the physical design.

To assign the table space object to a physical design, do the following:
1. Open the Table Space notebook to the Designs page.
2. Click Search to search for an appropriate physical design.
3. Select a physical design from the resulting list.

118 Dictionary and Designer User’s Guide

Assigning the Table Space to a Database

To assign the table space to a database, do the following:
1. Open the Table Space notebook to the General page.
2. Click Search with the database entry field to search for an existing

database to which you can assign the table space.

The database is listed in the corresponding entry field.

Note: For a detailed description of the search procedure, refer to the
corresponding section in the DataAtlas Dictionary User’s Guide or to
DataAtlas online help.

Setting Options

To set the options for a table space object, do the following:
1. Open the Table Space notebook to the Options page.
2. Specify the following values:
v Type

– Simple
– Segmented

- Segment size
– Partitioned

- Number of partitions
v Locking size
v Password
v Close Option

For a detailed description of the fields, see DataAtlas online help.

Creating Table Space Partitions

To create table space partitions, do the following:
1. Open the Table Space notebook to the Partitions page.
2. Click Create.

The Table Space Partition window opens.
3. Specify the running number of the partition that you want to edit.
4. Specify the necessary type and storage information.

Chapter 16. Designing Table Spaces 119

5. Click OK.
You are back on the Partitions page and the values you specified are listed
in the Partitions table.

For a detailed description of the fields, see DataAtlas online help.

Note: With a partitioned table space, you must specify a partitioned index for
the table that is assigned to the table space.

If you do not specify a partition’s information on using block, free block, or
compress, the table space’s values as specified on the Storage page also hold
for the partition.

Specifying Type and Storage Information of a Table Space Partition

To specify the type and the storage information of a table space partition, do
the following:
1. Open the Table Space notebook to the Partitions page.
2. From the partitions table, select the partition whose information you want

to specify.
3. Click Open.

The Table Space Partition window opens.
4. Specify the necessary type and storage information.
5. Click OK.

You are back on the Partitions page and the values you specified are listed
in the Partitions table.

For a detailed description of the fields, see DataAtlas online help.

Note: If you do not specify a partition’s information on using block, free
block, or compress, the table space’s values as specified on the Storage
page also hold for the partition.

Specifying Storage Information

To specify the storage information of the table space, do the following:
1. Open the Table Space notebook to the Storage page.
2. Specify the necessary type and storage information.

For a detailed description of the fields, see DataAtlas online help.

120 Dictionary and Designer User’s Guide

Assigning Tables

To assign tables to the table space, do the following:
1. Open the Table Space notebook to the Tables page.
2. Click Search to search for existing tables to assign to the table space.
3. Click Remove to remove selected tables from the present table space.

The assigned tables are listed in the list box.

Selecting a Buffer Pool

To select a buffer pool for the table space, do the following:
1. Open the Table Space notebook to the Buffer Pool page.
2. From the list box, select the appropriate buffer pool for the table space.

The selected buffer pool is listed in the Buffer pool entry field.

Specifying Design Information

To specify the design information for the table space, do the following:
1. Open the Table Space notebook to the Design Info page.
2. Specify the following values:
v Keep in main storage
v Usage intent

For a detailed description of the fields, see DataAtlas online help.

Extracting DB2 Actual Values

Here, you extract the most important DB2 statistic values of the table space
from the DB2 catalog. Together with the statistic values for the table space, the
statistic values of the assigned storage group are retrieved.

To extract the statistic values of the table space object, do the following:
1. Open the Table Space notebook to the DB2 Actuals page.
2. Click Search to look for the database that contains the DB2 catalog from

which you want to extract the statistic values.
3. Click Extract statistics to extract the DB2 statistic values of the table space

from the DB2 catalog.

Chapter 16. Designing Table Spaces 121

Note: No data is available for extraction as long as the table space has not
been implemented.

122 Dictionary and Designer User’s Guide

Chapter 17. Designing Databases

The physical design is carried out with notebooks. The notebook sections
indicate the different design areas.

You perform the physical design by filling in the necessary fields on the
notebook pages. In addition, DataAtlas Designer offers design support. For an
existing database object, you can get design support in terms of information
on potential design problems.

The design of the database object consists of the following tasks:
v Specifying general information
v Setting options
v Specifying design information
v Viewing assigned tables spaces
v Assigning the database to a storage group
v Selecting a buffer pool
v Assigning the database to a physical design

Below, you find a detailed description of these tasks.

Available Design Support for Databases

For a database object, the following design support is available:
v Inform — Information on potential design problems:

– Identification of databases with default values
– Identification of databases with performance problems

No Propose or Validate functions are available for a database object.

To get design support, click Inform on the Designer pull-down of the
Database notebook.

© Copyright IBM Corp. 1996, 1997 123

Specifying General Information

To specify the general information of the database object, do the following:
1. Open the Database notebook to the General page.
2. Specify the listed general information items:
v Relational Database Qualifiers:

– System
– Creator

v Name
v Variation
v Revision
v Component
v Description

Some fields are mandatory, others optional.

Setting Options

To set the options for a database object, do the following:
1. Open the Database notebook to the Options page.
2. Specify the listed options.

For a detailed description of the fields, see DataAtlas online help.

Specifying Design Information

To specify the design information of a database object, do the following:
1. Open the Database notebook to the Design Info page.
2. Specify the listed design information.

For a detailed description of the fields, see DataAtlas online help.

Viewing Assigned Table Spaces

To view the table space objects assigned to a database object, do the following:
1. Open the Database notebook to the Table Spaces page.

In the Assigned table spaces list box, you see the table spaces currently
assigned to the database.

124 Dictionary and Designer User’s Guide

Click Open to open the notebook of a selected table space.

You cannot assign table spaces to the database on this page. To assign a table
space to the database, you need to open the notebook of the table space.

Assigning the Database to a Storage Group

To assign the database to a storage group, do the following:
1. Open the Database notebook to the Storage Group page.
2. Click Search to search for an existing storage group to which you can

assign the database.

Selecting a Buffer Pool

To select a buffer pool for the database object, do the following:
1. Open the Database notebook to the Buffer Pool page.
2. From the list box, select the appropriate buffer pool for the database.

The selected buffer pool is listed in the Buffer pool entry field.

Assigning the Database to a Physical Design

To assign the database to a physical design, do the following:
1. Open the Database notebook to the Designs page.
2. Click Search to search for an existing physical design.
3. Select a physical design from the resulting list.

Chapter 17. Designing Databases 125

126 Dictionary and Designer User’s Guide

Chapter 18. Designing Storage Groups

The physical design is carried out with notebooks. The notebook sections
indicate the different design areas.

You perform the physical design by filling in the necessary fields on the
notebook pages. In addition, DataAtlas Designer offers design support. For
the storage group object, all the types of design advice are available:
v Information on potential design problems
v Design proposals
v Design validations

The design of the storage group object consists of the following tasks:
v Specifying general information
v Assigning the storage group to a physical design
v Specifying storage information
v Assigning databases
v Viewing assigned table spaces
v Viewing assigned indexes
v Specifying the usage intent
v Specifying the required space
v Converting the used space value
v Viewing DB2 actual values

Below, you find a detailed description of these tasks.

Available Design Support for Storage Groups

You can get design support from anywhere in the notebook.

For the storage group object, the following design support is available:
v Inform — Information on potential design problems:

– Identification of storage groups with SMS usage
v Validate — Design validations:

– Identification of storage groups with invalid definitions
– Identification of incomplete storage groups

v Propose — Design proposals:

© Copyright IBM Corp. 1996, 1997 127

– Calculation of required space

To get design support in any of these design areas, click the appropriate
design function on the Designer pull-down of the Storage Group notebook.

Specifying General Information

To specify the general information of the storage group object, do the
following:
1. Open the Storage Group notebook, page General.
2. Specify the listed general information items:
v Relational Database Qualifiers:

– System
– Creator

v Name
v Variation
v Revision
v Component
v Description

Some fields are mandatory, others optional.

Assigning the Storage Group to a Physical Design

To assign the storage group to a physical design, do the following:
1. Open the Storage Group notebook to the Designs page.
2. Click Search to search for an existing physical design.
3. Select a physical design from the resulting list.

Specifying Storage Information

For the specification of the storage information of a storage group, do the
following:
1. Open the Storage Group notebook, page Storage.
2. Enter the volume catalog (VCAT) name in the provided entry field.
3. Specify whether the volume catalog is password protected, and enter the

password, if necessary.
4. Specify the kind of device type.

128 Dictionary and Designer User’s Guide

5. Select one of the following types of storage management:
v Storage management by the system (SMS)
v Storage management by the user

If you decide to manage the storage yourself, specify the volumes:
a. Click Add volume to add the volume specified in the entry field to the

list of available volumes.
b. Click Delete volume to delete the volume specified in the entry field

from the list of available volumes.
c. Click Add to add selected volumes from the list of available volumes

to the list of volumes selected for allocation.
d. Click Remove to remove selected volumes from the list of volumes

selected for allocation.

Assigning Databases

To assign databases to a storage group object, do the following:
1. Open the Storage Group notebook to the Databases page.
2. Click Search to search for existing databases to assign to the storage

group.
3. Click Remove to remove selected databases from the present storage

group.

The currently assigned databases are listed in the list box.

Viewing Assigned Table Spaces

To view the table space objects assigned to a storage group object, open the
Storage Group notebook to the Table Spaces page. You see a list box with the
table spaces currently assigned to the storage group.

You cannot assign any table spaces to the storage group on this page. To
assign a table space to the storage group, you need to open the notebook of
the table space.

Viewing Assigned Indexes

To view the index objects assigned to a storage group object, open the Storage
Group notebook to the Indexes page. You see a list box with the indexes
currently assigned to the storage group.

Chapter 18. Designing Storage Groups 129

You cannot assign any indexes to the storage group on this page. To assign an
index to the storage group, you need to open the notebook of the index.

Specifying the Usage Intent

To specify the usage intent of a storage group, do the following:
1. Open the Storage Group notebook to the Design Info page.
2. Specify one of the following:
v Table spaces (general)
v Indexes (general)
v Table spaces
v Indexes
v None

Click Search to search for the appropriate table space or index.

Specifying the Required Space

To specify the space required by a storage group, do the following:
1. Open the Storage Group notebook to the Design Info page.
2. Fill in the entry field for required space.
3. Click Convert if you want to see the required space value converted from

kilobytes to the number of cylinders or tracks.

Note: On request, DataAtlas Designer calculates the required space value and
offers a proposal.

For an optimum proposal, you need to have assigned all table spaces
and indexes. Also, the following table data load specifications are
needed:
v Initial number of rows
v Confidence factor

Converting the Used Space Value

The amount of space used by a storage group is given in terms of kilobytes.

To see this value converted from kilobytes to the number of cylinders or
tracks, do the following:
1. Open the Storage Group notebook to the DB2 Actuals page.

130 Dictionary and Designer User’s Guide

2. Click Convert.
The Conversion Utility window is displayed.

3. Choose the appropriate device type.
You see the used space value converted from kilobytes to the number of
cylinders or tracks.

Viewing DB2 Actual Values

To view the storage group statistic values from the DB2 catalog, open the
Storage Group notebook to the DB2 Actuals page. The current values are
displayed.

The storage group values are extracted through extraction of the values of one
of the table spaces assigned to the storage group.

If the table spaces have not been implemented yet, no extraction data is
available.

Chapter 18. Designing Storage Groups 131

132 Dictionary and Designer User’s Guide

Chapter 19. Designing Views

The physical design of the database design objects is carried out with
notebooks. The notebook sections indicate the different design areas.

The design of the view object consists of the following tasks:
v Specifying general information
v Defining a view
v Assigning the view to a physical design

Below, you find a detailed description of these tasks.

Specifying General Information

To specify the general information of the view object, do the following:
1. Open the View notebook to the General page.
2. Specify the listed general information items:
v Relational Database Qualifiers:

– System
– Creator
– Database

v Name
v Variation
v Revision
v Component
v Description

Some fields are mandatory, others optional.

Defining a View

To define a view object, do the following:
1. Open the View notebook to the Definition page.
2. Specify the following items:
v SQL select statement (Subselect)
v Check option

© Copyright IBM Corp. 1996, 1997 133

v Comment
v Label

3. Optionally, you can list the participating (View) Columns.

For a detailed description of the fields, see DataAtlas online help.

Assigning the View to a Physical Design

To assign the view to a physical design, do the following:
1. Open the View notebook to the Designs page.
2. Click Search to search for an existing physical design.
3. Select a physical design from the resulting list.

134 Dictionary and Designer User’s Guide

Chapter 20. Designing an Alias/Synonym

The physical design of the database design objects is carried out with
notebooks. The notebook sections indicate the design areas of an object.

The design of the alias/synonym object consists of the following tasks:
v Specifying general information
v Defining an alias/synonym
v Assigning the alias/synonym to a physical design

Below, you find a detailed description of these tasks.

Specifying General Information

To specify the general information of the alias/synonym object, do the
following:
1. Open the Alias/Synonym notebook to the General page.
2. Specify the listed general information items:
v Relational Database Qualifiers:

– System
– Creator

v Name
v Variation
v Revision
v Component
v Description

Some fields are mandatory, others optional.

Defining an Alias/Synonym

To define an alias/synonym object, do the following:
1. Open the Alias/Synonym notebook to the Definition page.
2. Specify one of the following:
v Synonym
v Alias

© Copyright IBM Corp. 1996, 1997 135

– Comment
– Label

3. Select the type of your database management system from the list box.

Your choice of alias/synonym and type of database management system
determines your further specification:
v Synonym (or Alias) for either of the following objects:

– Table
– View

Click Search to get a list of table or view objects that can be entered into
the corresponding field. If you select an object from the list, it will appear
in the field.

Click Clear to clear the corresponding entry field so that you can search for
another object.

For a detailed description of the fields, see DataAtlas online help.

Assigning the Alias/Synonym to a Physical Design

To assign the alias/synonym to a physical design, do the following:
1. Open the Alias/Synonym notebook to the Designs page.
2. Click Search to search for an existing physical design.
3. Select a physical design from the resulting list.

136 Dictionary and Designer User’s Guide

Appendix A. Sample Files Shipped with DataAtlas

DataAtlas is packaged with sample files that can help you get familiar with its
interface and functions. Sample files are stored in a workstation subdirectory
that is created when you install DataAtlas. The directory path is
<DataAtlasInstallPath>\lang\en_us\samples, with subdirectories celdial,
ims, cobol, query, and build. <DataAtlasInstallPath> is the root directory
where DataAtlas is installed.

DB2 UDB Sample Tables

Sample files are provided to create the DA_CELD database and to put data
into its tables, views, and indexes. CELDIAL.CMD is used to create the
DA_CELD database. See “Installing DataAtlas” on the CD-ROM’s Electronic
Showcase for more information about how to create the DA_CELD database.

The DA_CELD database tables are:
CUSTOMER
CUSTSHIP
LEADS
CUSTNO
PRODSHOW
PRODUCT
PRODINV
ORDER_SUMMARY
ORDER_DETAIL
ORDER_HIST_SUM
ORDER_HIST_DET
AR_HISTORY
COMPONENTS
PRODCOMP

© Copyright IBM Corp. 1996, 1997 137

IMS Sample Files

These files are IMS DBDs and PSBs. The file extension shows which is which:
B00INP01.DBD (GSAM)
B00OUT01.DBD (GSAM)
BE3ORDER.DBD (HIDAM)
BE3ORDRX.DBD (primary index)
BE3PARTS.DBD (HDAM)
BE3PSID1.DBD (secondary index)
HLPILMN.DBD (logical DBD)
HLPIMAN.DBD (HIDAM)
HLPINDX.DBD (primary index)
HLPISEC.DBD (HDAM)
HLPBPSB.PSB
HLPLPSB.PSB
PE3CPPUR.PSB
PE3ORDER.PSB
PE3PARTS.PSB

The PSBs beginning with PE3 complement the B00 and BE3 DBDs. The PSBs
beginning with HLP complement the HLP DBDs.

You must populate physical DBDs, then logical DBDs, and then PSBs, in that
order. It is more efficient to populate index DBDs first, but not required.
Therefore, you should populate your IMS objects in this order:
1. Index DBDs
2. Physical DBDs
3. Logical DBDs
4. PSBs

COBOL Sample Files

The following sample COBOL COPY files are shipped with DataAtlas
Dictionary. When you populate COBOL COPY files into the TeamConnection
database, they are stored as included source definitions. CUSTOMER.CPY and
ORDER.CPY present the data in the DA_CELD database as COBOL objects.

CUSTOMER.CPY
ORDER.CPY

138 Dictionary and Designer User’s Guide

PL/I Sample Files

The following sample PL/I Include files are shipped with DataAtlas
Dictionary. When you populate PL/I Include files into the TeamConnection
database, they are stored as included source definitions. CUSTOMER.INC and
ORDER.INC present the data in the DA_CELDP database as PL/I objects.

CUSTOMER.INC
ORDER.INC

Sample Reconcile Mapping Tables

DA_CELD.MAP
This file contains sample entries for use with the DB2 UDB and COBOL
Populate scenarios.
DATATLAS.MAP
This file contains sample entries for reconciling column definitions in a
DB2 UDB table, data items in a IMS DBD, and data items in a COBOL
COPY file.
DA_CELDP.MAP
This file contains sample entries for reconciling data items in a PL/I
include file.

Sample COBOL Command File

EWSLPGM.CMD
This file contains code to invoke IBM VisualAge for COBOL for OS/2
compiler. The only changes that can be made to this file are to modify the
compiler options or to change the file to be compiled.

Sample PL/I Command File

EWSLPPG.CMD
This file contains code to invoke IBM PL/I for OS/2 compiler. The only
changes that can be made to this file are to modify the compiler options or
to change the file to be compiled.

Appendix A. Sample Files Shipped with DataAtlas 139

140 Dictionary and Designer User’s Guide

Appendix B. Qualifiers for Object Names

Objects in TeamConnection that can be accessed by name must have a name
that is unique within the TeamConnection family and release. The names of
some objects maintained by DataAtlas may not be unique based solely on
their simplest name. For example, there could be two DB2/390 tables named
ACCOUNT. Usually an object’s name is unique within some collection of
objects. DataAtlas has created collector objects that represent these collections
of objects. The simple object name can be qualified by the name of the
collector object to provide a unique TeamConnection name.

The following objects are collector objects in DataAtlas Dictionary:

Relational system
A relational system represents a DB2 UDB, DB2/390, or Oracle
catalog. It is a grouping mechanism for all tables and associated
objects populated into TeamConnection from that catalog. A relational
system object must exist in TeamConnection to represent a given
catalog prior to creating new relational tables.

Creator/Schema
A creator (or schema, in DB2 UDB and Oracle) represents the user ID
that originally created the associated relational objects in the catalog.

Database
A database is a relational object whose origin is the database name as
defined in the catalog. The database name can be a qualifier for those
relational objects associated with a specific relational database.

Table definition
The shareable table definition represents the basic definition of a
relational table. Keys and columns that are part of the table definition
will have names that include the access name of the owning table
definition.

PSB An IMS PSB contains a set of PCBs. An IMS PSB name is used as a
qualifier for an IMS PCB.

Relational design
The relational design name is used as a qualifier for a physical design
object. The relational design object is used by the DataAtlas Modeler
to identify a set of relational table definitions.

See “Populate Considerations When Using DataAtlas Modeler or Designer” on
page 30 for more information on relational design objects.

© Copyright IBM Corp. 1996, 1997 141

DataAtlas Dictionary ensures that the appropriate qualifiers are included in
the name of an object when it is created. Table 3 lists the qualifiers for
relational objects, and the position in the name where the qualifier is specified.
Table 4 on page 143 lists the qualifiers for IMS objects, and the position in the
name where the qualifier is specified.

Relational Qualifiers

Relational objects that have qualifiers have the form:

<prefix>qualifier4:qualifier3:qualifier2:qualifier1:access-name
<variation:revision>

Table 3 summarizes the name qualifiers used for relational objects.

Table 3. Relational Name Qualifiers
Relational Database Object Qualifier Position
System none
Creator/Schema System Qualifier 4
DB2/390 storage group System Qualifier 4
DB2/390 ICF catalog System Qualifier 4
DB2/390 volume System Qualifier 4
DB2/390 database System Qualifier 4
DB2 UDB database System Qualifier 4
DB2/390 buffer pool System Qualifier 4
DB2 UDB table space System Qualifier 4
Oracle table space System Qualifier 4
DB2/390 table space System

Database
Qualifier 4
Qualifier 2

DB2/390 table System
Creator

Qualifier 4
Qualifier 3

Oracle table System
Schema

Qualifier 4
Qualifier 3

DB2/390 index System
Creator

Qualifier 4
Qualifier 3

Oracle index System
Schema

Qualifier 4
Qualifier 3

142 Dictionary and Designer User’s Guide

Table 3. Relational Name Qualifiers (continued)
Relational Database Object Qualifier Position
DB2/390 view System

Creator
Qualifier 4
Qualifier 3

Oracle view System
Schema

Qualifier 4
Qualifier 3

Alias/Synonym System
Creator

Qualifier 4
Qualifier 3

DB2/390 index space System
Creator

Qualifier 4
Qualifier 3

DB2 UDB table System
Creator
Database

Qualifier 4
Qualifier 3
Qualifier 2

DB2 UDB index System
Creator
Database

Qualifier 4
Qualifier 3
Qualifier 2

DB2 UDB view System
Creator
Database

Qualifier 4
Qualifier 3
Qualifier 2

Table definition none
View definition none
Key definition Table definition Qualifier 1
Relational design none
Physical design Relational design Qualifier 1

IMS Qualifiers

IMS objects that have qualifiers have the form:

<prefix>qualifier2:qualifier1:access-name <variation:revision>

The following table summarizes the name qualifiers used for IMS objects.

Table 4. IMS Name Qualifiers
IMS Database Object Qualifier Position
DBD none
PSB none

Appendix B. Qualifiers for Object Names 143

Table 4. IMS Name Qualifiers (continued)
IMS Database Object Qualifier Position
PCB PSB name Qualifier 2

Prefix Qualifiers

In some cases, DataAtlas uses a prefix qualifier instead of the colon-separated
qualifiers.

There are three object types that use the prefix:
Workfolder
Data element alias
Data structure alias

The prefix value for the workfolder is the TC_BECOME environment variable
for the creator of the workfolder.

The prefix value for a data element alias and data structure alias depends on
how these objects are used.

When a data element alias and data structure alias refer to the name of the
shareable data element or shareable data structure used by a relational, IMS,
COBOL, or PL/I object, the prefix value is the name of the shareable data
element or shareable data structure. For example, when a column (CUSTNO)
uses the shareable data element (CustomerNumber), DataAtlas creates a data
element alias named <CustomerNumber>CUSTNO<:>.

When a data element alias refers to the names of fields and a data structure
alias refers to the names of segments in an IMS DBD, the prefix varies. For a
segment, the prefix of the data structure alias is the DBD name. For a field,
the prefix of the data element alias is the DBD name and the segment name
separated by a period (for example, <DBDPT.SEGPN>FLDPN<:>).

144 Dictionary and Designer User’s Guide

Appendix C. Using the D ATATLAS.EXE Build Script

An executable file called DATATLAS.EXE is delivered with the DataAtlas
product. This executable can be used by TeamConnection as a binary build
script to generate data definitions. It can also be invoked from within another
build script that you have written to better meet your environmental or
user-specific needs. For a complete discussion of how to create or modify
build scripts, see TeamConnection User’s Guide.

This appendix describes the sample build script shipped with DataAtlas
Dictionary and the steps to perform a TeamConnection build. The input
parameters and return codes associated with each type of object are listed,
along with any special considerations that may apply.

Sample Build Script

DATATLAS.EXE creates DB2 DDL, Oracle DDL, IMS DBD and PSB source,
COBOL COPY, and PL/I include files. The resultant DDL, IMS source,
COBOL COPY, and PL/I include files are automatically stored in
TeamConnection. Source files can be extracted from TeamConnection and
uploaded to OS/390 or distributed to networked servers for installation.

DATATLAS.EXE is located in <DataAtlasInstallPath>\client in OS/2 and in
<DataAtlasInstallPath>\bin in Windows NT.

Input Parameters

The current parameter processing information that applies to all objects is as
follows:

The input parameters to DATATLAS.EXE may be specified in three ways:
v On the TeamConnection builder that uses DATATLAS.EXE as a binary build

script,
v On the TeamConnection part that uses the builder (these are used IN

PLACE OF parameters specified for the builder),
v When invoking the build command (these are used IN ADDITION TO

parameters that are specified for the builder of the part, but if there are
conflicts, these are used IN PLACE OF the other parameters).

In all cases, the parameters are specified in the form:

© Copyright IBM Corp. 1996, 1997 145

<parameter>=<value>

Where <parameter> and <value> differ depending on the type of object that is
being generated (see the following sections for details).

Note that the <parameter> must always be specified in uppercase characters
while the <value> is not case-sensitive. Also, blanks should not be used
within the <value> or to separate the equal sign from the <parameter> or
<value>.

TeamConnection Build

After your TeamConnection administrator has set up a TeamConnection build
server, follow these steps:
1. Create a builder for the sample script.
2. Create an empty file part to receive the output from the build, and

associate the builder with it. This output file is only empty until you
invoke the first build. Subsequent builds will overlay its contents.

3. Connect the parts that you want to build to the empty file part, creating a
build tree with the output file part at the top of the tree.

4. Build the output file part at the top of the build tree.

For more information about using the TeamConnection build facility to build
applications, see TeamConnection User’s Guide.

TeamConnection DataAtlas Objects

The following TeamConnection DataAtlas objects are included in a build tree
and built using the sample build scripts shipped with DataAtlas Dictionary:

DB2 UDB Objects

v DSRORDTable
v DSRORDIndex
v DSRORDView
v DSRORDTablespace
v DSRORDPhysicalDesign

DB2/390 Objects

v DSRMRDStoragegroup
v DSRMRDDatabase
v DSRMRDTablespace

146 Dictionary and Designer User’s Guide

v DSRMRDTable
v DSRMRDIndex
v DSRMRDView
v DSRMRDAlternateName
v DSRMRDPhysicalDesign

Oracle Objects

v DSROracleTable
v DSROracleIndex
v DSROracleView
v DSROracleTablespace
v DSROraclePhysicalDesign

IMS Objects

v DSDBD
v DSPSB

COBOL and PL/I Objects

v DSIncludedSourceDef

For IMS DBD and PSB objects, COBOL, and PL/I IncludedSourceDef objects,
whenever one of these objects or one of its component objects is modified
using DataAtlas, TeamConnection will only build those objects in the build
tree that have been modified since the last build, unless you specify otherwise
when invoking the build.

For DB2 and Oracle objects, the ability to detect changes in an object or its
component objects will be implemented in a future release, so for now, you’ll
need to build an entire build tree, building unchanged objects along with
changed objects.

DataAtlas DB2 Sample Script Settings

Input Parameters

The following information, DDLTYPE and DBALIAS, correspond with the
<parameter> and the other terms correspond with the <value>. See “Input
Parameters” on page 145 for general discussion on parameters.

DDLTYPE
Create | Drop | DropAndCreate | Alter

Default is Create

Appendix C. Using the DATATLAS.EXE Build Script 147

DBALIAS
The alias name of the database as cataloged in DB2 UDB or related
product, such as DDCS/2. This parameter is only necessary for
generating ALTER DDL. The TeamConnection build server must be
able to access the database for which you want to generate ALTER
DDL, so DB2 UDB or a related product must be installed on the build
server, and the databases for which you expect to generate ALTER
DDL must be cataloged.

DBALIAS has no default value.

DBUSER
When DDLTYPE=Alter, specifies the USER option that is passed to the
DB2 CONNECT command to connect to the DB2 system specified by
DBALIAS.

If omitted, you are prompted for a value.

DBUSING
When DDLTYPE=Alter, specifies the USING option that is passed to
the DB2 CONNECT command to connect to the DB2 system specified
by DBALIAS.

If omitted, you are prompted for a value.

Special Considerations

DataAtlas generates ALTER TABLE ADD FOREIGN KEY DDL when
generating CREATE TABLE DDL, even if the DDL for the table that is the
parent of the foreign key has not been generated yet. For this reason, the DB2
sample build script reorders the ALTER DDL at the end of the DDL output
file before exiting.

However, it is more difficult to correctly reorder CREATE VIEW DDL so that
it is sequentially correct with respect to the creation of VIEWS referenced by
other VIEWS. You might have to manually reorder the generated CREATE
VIEW DDL before installing it on your target DB2/390 or DB2 UDB database.

The output part can have multiple inputs, but they must all belong to the
same technology. For example, the output part may have several DB2 UDB
tables, views, and indexes, but it cannot have both a DB2 UDB table and a
DB2/390 table. If the output part has an invalid combination of inputs, the
build will fail.

Return Codes

0 Successful build
8 DataAtlas generate exception; generate attempts to process input file

objects after the object that could not be generated

148 Dictionary and Designer User’s Guide

12 TeamConnection exception caused DataAtlas generate to fail

View the Build Message for complete details of the build.

DataAtlas Oracle Sample Script Settings

Input Parameters

DDLTYPE corresponds with the <parameter> that is referred to in the general
parameters discussion. See “Input Parameters” on page 145 for more
information on input parameters.

DDLTYPE
Create | Drop | DropAndCreate | CreateOrReplace |
DropAndCreateOrReplace

Default is Create.

Return Codes

0 Successful build
8 DataAtlas generate exception; generate attempts to process input file

objects after the object that could not be generated
12 TeamConnection exception caused DataAtlas generate to fail

View the Build Message for complete details of the build.

Special Considerations

DataAtlas generates ALTER TABLE ADD FOREIGN KEY DDL when
generating CREATE TABLE DDL, even if the DDL for the table that is the
parent of the foreign key has not been generated yet. For this reason, the
Oracle sample build script reorders the ALTER DDL at the end of the DDL
output file before exiting.

However, it is more difficult to correctly reorder CREATE VIEW DDL so that
it is sequentially correct with respect to the creation of VIEWS referenced by
other VIEWS. You might have to manually reorder the generated CREATE
VIEW DDL before installing it on your target Oracle database.

You can have multiple Oracle objects in one output part, but you cannot mix
Oracle objects with other types of objects. If you do, you get an error while
executing the build.

Appendix C. Using the DATATLAS.EXE Build Script 149

DataAtlas IMS Sample Script Settings

Input Parameters

See “Input Parameters” on page 145 for a general discussion on input
parameters.

Return Codes

0 Successful build
8 DataAtlas generate exception; generate attempts to process input file

objects after the object that could not be generated
12 TeamConnection exception caused DataAtlas generate to fail

View the Build Message for complete details of the build.

Special Considerations

If you connect more than one DBD or PSB to the output file object in your
build tree, the build will fail. This also is true if you connect a mixture of
DBDs and PSBs.

You should connect only one DBD or PSB per output file object per build tree.
You can always generate multiple build trees by connecting them to an output
object associated with a NULL builder. For more information about generating
multiple build trees, see TeamConnection User’s Guide.

DataAtlas COBOL Sample Script Settings

Input Parameters

See “Input Parameters” on page 145 for a general discussion on input
parameters.

PREFIX
String appended to the beginning of a data name

Default is NULL

SUFFIX
String appended to the end of a data name

Default is NULL

SLEVEL
Begin numbering highest-level data names with this value

Default is 1

150 Dictionary and Designer User’s Guide

ILEVEL
Increment level numbering by this value

Default is 5

LANG
Do a COBOL generate if the value is COBOL

Default is COBOL

The parameter names are case-sensitive. Their values, on the other hand, are
not case-sensitive; in fact, their case will be maintained, since case-sensitivity
could be important to an installation’s data naming conventions. For example,
the ’Parameters’ field of the ’Create Builder’ window or the ’Create Parts’
window could be PREFIX=prd SUFFIX=test SLEVEL=5 ILEVEL=10. Not all
parameters need to be specified; those that are not specified will use the
default value.

Return Codes

0 Successful build
8 DataAtlas generate exception; generate attempts to process input file

objects after the object that could not be generated
12 TeamConnection exception caused DataAtlas generate to fail
16 DATATLAS.EXE did not receive a redirected file as input

View the Build Message for complete details of the build

Special Considerations

If you connect more than one such object to the output file object, results are
unpredictable.

You should connect only one IncludedSourceDef object per output file object
per build tree. You can generate multiple build trees by connecting them to an
output object associated with a NULL builder. For more information about
generating multiple build trees, see TeamConnection User’s Guide.

DataAtlas PL/I Sample Script Settings

Input Parameters

See “Input Parameters” on page 145 for a general discussion on input
parameters.

SLEVEL
Begin numbering highest-level data names with this value

Appendix C. Using the DATATLAS.EXE Build Script 151

Default is 1

ILEVEL
Increment level numbering by this value

Default is 1

LANG
Do a PL/I generate if the value is PL/I or PLI

Default is COBOL

The parameter names are case-sensitive. Their values, on the other hand, are
not case-sensitive; in fact, their case will be maintained, since case-sensitivity
could be important to an installation’s data naming conventions. For example,
the ’Parameters’ field of the ’Create Builder’ window or the ’Create Parts’
window could be SLEVEL=5 ILEVEL=10. Not all parameters need to be
specified; those that are not specified will use the default value.

Return Codes

0 Successful build
8 DataAtlas generate exception; generate attempts to process input file

objects after the object that could not be generated
12 TeamConnection exception caused DataAtlas generate to fail
16 DATATLAS.EXE did not receive a redirected file as input

View the Build Message for complete details of the build

Special Considerations

If you connect more than one such object to the output file object, results are
unpredictable.

You should connect only one IncludedSourceDef object per output file object
per build tree. You can generate multiple build trees by connecting them to an
output object associated with a NULL builder. For more information about
generating multiple build trees, see TeamConnection User’s Guide.

152 Dictionary and Designer User’s Guide

Appendix D. TeamConnection Considerations

This appendix contains points to keep in mind about TeamConnection’s
interaction with DataAtlas.

Renaming Objects

Renaming an object is a special maintenance activity because it occurs in a
separate TeamConnection transaction from any other changes made to an
object. Because of this, it is possible to make changes to an object, including
renaming it, and commit all the changes but fail to change its name. If this
occurs, you receive a Store Failure message. If the failure applies to the
rename activity, it is likely that the other changes you made to the object have,
in fact, succeeded. This becomes obvious if you cancel out of the notebook
after receiving the error message and then try to reopen the object. If your
other changes are intact, you see them displayed in the notebook.

Another complexity of renaming occurs when multiple users are making
changes to the same object. It is possible for two users to search for the same
object and bring it into their DataAtlas workfolders. If one user subsequently
changes the name of that object, the other user can search again and find the
object with the name changed, but the name change will not be reflected in
the workfolder until the workfolder is closed and reopened.

Workfolders and the TeamConnection Cache

When an object is opened from a workfolder, it’s loaded from the
TeamConnection server into a cache in the DataAtlas client machine’s local
memory. Even after the object’s notebook is closed, it remains in the cache, so
that it can be reopened quickly without having to access the TeamConnection
server. Only when both the notebook and the workfolder are closed is the
cached copy of the object removed from local memory. This means that if
someone else makes a change to an object after you have reviewed it,
reopening the object will still show the unchanged cached copy rather than
the updated object on the TeamConnection server. If you close the workfolder
and reopen it, opening the object’s notebook will load the updated object.

If more than one workfolder is open and one of the workfolders holds a
cached copy of an object that is related to an object in another workfolder,
closing the first workfolder may not remove the object from the
TeamConnection cache, as it can be held in the cache by the relationship. For

© Copyright IBM Corp. 1996, 1997 153

example, if workfolder work1 is open and contains a table T1 while
workfolder work2 is open and contains table T1’s table space TS1, and if both
the table and table space have been opened and closed, then workfolder work1
and table T1 will still be in the cache after closing. Only when all notebooks
and workfolders for all related objects are closed is it certain that an object is
no longer in the TeamConnection cache. You can avoid these complexities by
having only one workfolder open at a time, and by closing notebooks whose
workfolders you have already closed.

TeamConnection Locking

To make DataAtlas Dictionary and Designer easier to use, all notebooks use
an “optimistic” TeamConnection locking policy. To understand this policy,
consider what happens when you make changes to a relational table:
1. You double-click the table’s icon in the workfolder.
2. DataAtlas goes to the TeamConnection server and loads a copy of the

current version of the table into local memory. The table’s notebook
appears.

3. You make all your changes, click OK, enter any check-in remarks, and
press click Store.

4. DataAtlas locks the table on the server.
5. DataAtlas copies your updated version of the table to the server and

unlocks the table.

This process is “optimistic” in that the table isn’t locked before you begin to
edit it. So if you are just browsing its definition, or if you decide to cancel
your changes, DataAtlas doesn’t have to explicitly unlock the table. Compare
this to a “pessimistic” policy: DataAtlas would have to explicitly lock the
table before you made changes and unlock it after you saved them.

The optimistic policy works well because simultaneous editing is rare. In the
example, if someone else had made a change to the same table and saved
their changes while you were still working, DataAtlas would detect that your
copy of the table was “stale” in step 4 and give you a warning. You would
have to refresh the table in your TeamConnection cache and re-edit it.

If you choose, you can use TeamConnection to lock DataAtlas objects to
prevent any other user from updating them. Each object will remain locked
until you store it using DataAtlas or until you unlock it using
TeamConnection. Remember that if you decide not to change a locked object,
you’ll have to explicitly unlock it before anyone else can change it.

154 Dictionary and Designer User’s Guide

Concurrent Versus Serial Development

TeamConnection allows releases to be defined for either concurrent or serial
development. In serial development, DataAtlas users in different work areas
are prevented from making changes to the same objects, so one user’s changes
aren’t inadvertently overwritten by another’s. If one user changes an object in
a work area, a user of another work area can change the same object only by:
v Waiting until the first work area is integrated and then refreshing the

second work area, or
v Linking the second work area to the first work area

In concurrent development, both users can make their changes independently
of each other, but if the objects changed in the work areas overlap, the
changes have to be merged. The integration of the first work area occurs
normally. The work area integrated last must be refreshed, which generates
collision records for any objects changed in both work areas. For file parts, the
TeamConnection Merge utility can merge the two versions of each common
file, so both users’ changes can be retained. DataAtlas objects, however, cannot
be merged this way. If a work area refresh results in collision records, the user
must choose between these options for each object changed in both work
areas:
1. Manually update the second version of the object to include the first

version’s changes, and then reject the collision record (which causes the
second version to replace the first when integrated).

2. Leave the first version of the object alone by accepting the collision record.

After all the collision records are accepted or rejected, the second work area
can be integrated. If any collision records are accepted (leaving the objects
unchanged), the user can create a new work area in which to make the
remaining changes. Option 1 is preferable because option 2 leaves an interval
when some of the new changes are unintegrated.

Only the objects that overlap the two work areas are in conflict, but if the
overlap is large or complex, another option is to abandon the second work
area completely, create a new one based on the other user’s integrated
changes, and make all the changes again. For example, if the changes in the
first work area substantially affect the environment or assumptions under
which the second work area is developed, its changes might require a large
amount of rework before integration.

With serial development, conflicts are identified sooner and the first-saved
changes can’t be inadvertently overwritten. With concurrent development,
conflicts are identified later and the last-saved changes can overwrite the
first-saved. For these reasons, you should use serial development releases with

Appendix D. TeamConnection Considerations 155

DataAtlas objects, unless your project requires the independent work
supported by concurrent development. If you use concurrent development,
you should have good project procedures to manage the complexity.

156 Dictionary and Designer User’s Guide

Appendix E. PL/I Supported Data and Nondata Attributes

The following table summarizes the PL/I supported data attributes. PL/I data
attributes are used to describe computational data, program-control data, and
program characteristics. DataAtlas supports only those data attributes that can
be associated with computational data.

Table 5. PL/I Data Attributes

Attribute Populate support
SDE Notebook
support

IS/SDS Notebook
support

Area no n/a no
Binary yes yes yes
Bit yes yes yes
Character yes yes yes
Complex yes yes yes
Decimal yes yes yes
Dimension yes n/a yes
Entry no no no
File no no no
Fixed yes yes yes
Float yes yes yes
Format no no no
Graphic yes yes yes
Handle no no no
Label no no no
Nonvarying (SAA2
only)

yes yes yes

Offset no n/a no
Ordinal no no no
Picture yes yes yes
Pointer yes no yes
Precision yes yes yes
Real yes yes yes
Returns no no no
Signed (WS only) yes yes yes
Structure yes n/a yes
Task no no no
Type no no no
Unsigned (WS only) yes yes yes
Union (WS only) no n/a no

© Copyright IBM Corp. 1996, 1997 157

Table 5. PL/I Data Attributes (continued)

Attribute Populate support
SDE Notebook
support

IS/SDS Notebook
support

Varying yes yes yes
VaryingZ (WS Only) yes yes yes

The following table summarizes PL/I nondata attributes. PL/I nondata
attributes are used to describe nondata elements (for example, built-in
functions) or provide additional descriptions for elements that have other data
attributes. Data Atlas will only support those attributes that provide
additional description for elements.

Table 6. PL/I Nondata Attributes
Attribute Populate support IS/SDS Notebook support
Abnormal (WS only) no no
Aligned yes yes
Assignable (WS only) no no
Automatic yes yes
Based yes (But only the attribute

is supported. The
locator-reference for
BASED is not populated.)

yes (Your specifications are
used when you generate an
include file.)

Buffered no no
Builtin no no
Byaddr no no
Byvalue no no
Condition no no
Connected (WS Only) no no
Controlled yes yes
Defined no yes (An item that DEFINES

another item can only
define a sibling, the most
recent, non-DEFINES
sibling under the parent.
This follows the same rule
as the COBOL for
REDEFINES clause. The
acceptable value is derived
and filled in if one is
possible. Your specifications
are used when you
generate an include file.)

Direct no no

158 Dictionary and Designer User’s Guide

Table 6. PL/I Nondata Attributes (continued)
Attribute Populate support IS/SDS Notebook support
Environment no no
Exclusive no no
External yes yes
Generic no no
Hexadec no no
IEEE no no
Initial no yes (Your specifications are

used when you generate an
include file.)

Input no no
Internal yes yes
Keyed no no
Like no no
List no no
Native (WS only) no no
Nonassignable (WS only) no no
Nonconnected (WS only) no no
Nonnative (WS only) no no
Normal (WS only) no no
Optional (WS only) no no
Options no no
Output no no
Parameter no no
Position (w/Defined) no no
Print no no
Record no no
Reserved (WS only) no no
Sequential no no
Segmented no no
Static yes yes
Stream no no
Unaligned yes yes
Unbuffered no no
Update no no
Value (WS only) no no
Variable no no

Appendix E. PL/I Supported Data and Nondata Attributes 159

160 Dictionary and Designer User’s Guide

Appendix F. Views and Attributes of Object Types

Table 7 identifies the views (boldface) and attributes of object types in the
TeamConnection database.

Attributes shown with a dot-dot (..) connection to a view are relationships.
For example, under DAQDataElement:
elementAliases..DAQDEAlias

indicates a connection between the relationship elementAliases and the view
DAQDEAlias. When you use a relationship in a SELECT clause, enter an
attribute of the target view in place of the view name. For example:
elementAliases..elementAlias

Table 7. Views and Attributes of Object Types
View / Attribute Name Data Type Description

Shareable Data Element
DAQDataElement
dataElement character name of shareable data element
elementDescription character description of shareable data element
elementDescType character type of description
elementAliases..DAQDEAlias relationship to data element alias
asBitData boolean flag indicating character string should be

treated as bit (binary) data
genericPicture character language-independent picture
isComplex boolean flag indicating real or complex number
isSigned boolean flag indicating unsigned or signed number
isLOB boolean flag indicating string is a large object (LOB)
numericPrecision smallint numeric precision in bits or digits depending

on data type
scale smallint position of binary or decimal point
stringLength integer maximum length of string data in bits, bytes

or double-bytes
stringVaryingCode integer indication of variable length string: 0-varying,

1-varyingZ (PL/I), 2-nonvarying

© Copyright IBM Corp. 1996, 1997 161

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
typeCode integer data type code: 0-binary number, 1-packed

decimal, 2-zoned decimal, 3-binary floating
point, 4-decimal floating point, 5-bit string,
6-character string, 7-double-byte character,
8-mixed double/single-byte, 9-date, 10-time,
11-timestamp, 12-index (COBOL),
13-undefined, 14-rowid (Oracle), 15-MLSLabel
(Oracle)

vagSignFormat boolean VisualAge Generator sign format
DAQDEAlias
elementAlias character alias or usage name of shareable data element
forDataElement..DAQDataElement relationship to shareable data element
DAQDataElementUsage
dataElement character name of shareable data element
elementDescription character description of shareable data element
elementDescType character type of description
columnName character name of column in a relational table which

uses the data element
inTableDefinition..
DAQTableDefinitionUsage

relationship to table definition which owns the
column

imsField character name of field in IMS DBD which uses the data
element

imsSegment character name of segment in IMS DBD which owns the
field

inDBD..DAQDBDUsage relationship to IMS DBD which owns the
segment

imsFieldS character name of field in IMS DBD which is mapped
by a data structure and uses the data element

imsSegmentS character name of segment in IMS DBD which owns the
field

inDBDs..DAQDBDUsage relationship to IMS DBD which owns the
segment

vagDataItem name of VisualAge Generator data item which
uses the data element

inDataStructure..DAQDSUsage character relationship to shareable data structure which
uses the data element

inIncludedSource..DAQIncludedSource character relationship to included source definition
which uses the data element

inDataModel name of data model which uses the data
element

Relational Objects

162 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
DAQTableDefinitionUsage
tableDefinition character name of shareable table definition
tableDefDescription character description of shareable table definition
tableDefDescType character type of description
definesDB2csTable..DAQDB2csTable relationship to DB2 UDB Table
definesDB2390Table..DAQDB2390Table relationship to DB2/390 Table
definesOracleTable..DAQOracleTable relationship to OracleTable
DAQTableDefinition
tableDefinition character name of shareable table definition
tableDefDescription character description of shareable table definition
tableDefDescType character type of description
inRelationalDesign..DAQRelationalDesign name of relational design which contains the

table definition
columnName character name of column in the table definition
columnDesignName character name of attribute which defined the column
columnDescription character description of column
columnDescriptionType character type of description
usesDataElement..DAQDataElement relationship to shareable data element
localDataTypeCode integer data type code: 0-binary number,1-packed

decimal, 2-zoned decimal, 3-binary floating
point, 4-decimal floating point, 5-bit string,
6-character string, 7-double-byte character,
8-mixed double/single-byte, 9-date, 10-time,
11-timestamp, 12-index (COBOL),
13-undefined, 14-rowid (Oracle), 15-MLSLabel
(Oracle)

localStringLength integer maximum length of string data in bits, bytes
or double-bytes

localStringVaryingFlag integer indication of variable length string: 0-varying,
1-varyingZ (PL/I), 2-nonvarying

localNumericPrecision smallint numeric precision in bits or digits depending
on data type

localDecimalScale smallint position of binary or decimal point
localAsBitData boolean flag indicating character string should be

treated as bit (binary) data
localIsLOB boolean flag indicating string is a large object (LOB)
definedByColumnName character name of primary key column which defines

the foreign key column
inSourceTableDefinition..
DAQTableDefinition

table definition containing primary key which
defines the foreign key column

Appendix F. Views and Attributes of Object Types 163

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
allowNulls character indicates whether null values are allowed (Y

or N)
defaultOption character Y-system default,I-initialValue,N-null,C-

current SQLID,U-User ID,D-current
date,T-Current time,S-current
timestamp,K-castFunction and value in
initialValue,O-castFunction and current
timestamp,P-castFunction and current
time,Q-castFunction and current date

initialValue character initial value for the column
castFunctionName character name of cast function used to set default

column value
columnComment character SQL comment on the column
columnLabel character SQL label for the column
fieldProc character name of field procedure for the column

(DB2/390 only)
constants character list of constants needed for field procedure

(DB2/390 only)
averageLength smallint average length of a VARCHAR or LONG

VARCHAR column (DB2/390 only)
initialNoOfDistinctValues integer initial number of distinct values of the column

(DB2/390 only)
arithmeticFunctionsFrequency smallint how frequently SQL statements containing

arithmetic functions reference the column
(DB2/390 only)

joinFrequency smallint how frequently SQL join statements use the
column (DB2/390 only)

rangePredicatesFrequency smallint how frequently SQL statements containing <,
>, <=, >=, LIKE, BETWEEN reference the
column (DB2/390 only)

skewingFactor smallint number of most frequently occurring values
(DB2/390 only)

skewingPercentage smallint percentage of all rows in which the most
frequently occurring values appear (DB2/390
only)

sortingFunctionFrequency smallint how frequently SQL statements containing
GROUP BY, ORDER BY, DISTINCT reference
the column (DB2/390 only)

updateFrequency smallint how frequently the column is updated
(DB2/390 only)

164 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
whereClauseFrequency smallint how frequently SQL WHERE statements

reference the column (DB2/390 only)
loggedLOB boolean whether changes to the LOB column are

logged (DB2 UDB only)
compactLOB boolean whether data in the LOB column should be

compact (DB2 UDB only)
primaryFlag character whether the column participates in the

primary key (Y or N) (DB2 UDB only)
auditOption character type of auditing on table: N-none, C-changes,

A-all
tableComment character SQL comment on the table
tableLabel character SQL label for the table
hasKeyDefinition..DAQKeyDefinition relationship to definition of primary, foreign,

or unique key
primaryKeyFlag boolean indicates a primary key
foreignKeyFlag boolean indicates a foreign key
uniqueFlag character indicates whether key columns are unique (Y

or N)
pkConstraintName character primary key constraint name (DB2 UDB only)
pkConstraintComment character SQL comment on the primary key constraint
hasPrimaryKey..DAQKeyDefinition relationship to definition of key columns of

the primary key
checkConstraintName character name of check constraint on the table
checkConstraintComment character SQL comment on check constraint
checkConstraintCondition character check constraint condition clause
definesTable character name of DB2/390, DB2 UDB or Oracle table

defined by the table definition
entityName character name of the entity transformed into the table
dataModel character name of the dataModel which contains the

entity
DAQKeyDefinition
keyDefinition character name of the definition of columns forming a

key
keyColumnName character name of a column in the key
ascDescFlag character indicates whether the column is sorted

ascending (A) or descending (D) when the key
definition is used by an index

inTableDefinition..DAQTableDefinition relationship to table definition which contains
the column

foreignKeyConstraintName character constraint name of the foreign key

Appendix F. Views and Attributes of Object Types 165

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
fkConstraintComment character SQL comment on the foreign key constraint
foreignKeyDeleteOption character delete option of the foreign key: C-cascade,

R-restrict, N-set null, A-no action
parentKeyDefinition character name of the key definition of the parent table
parentTableDef..DAQTableDefinition relationship to the table definition of the

parent table
parentKeyIsPrimary boolean whether parent key is a primary key
parentKeyIsUnique character whether the primary key is a unique key (Y or

N)
foreignKeyDependentTable character name of DB2/390, DB2 UDB or Oracle table

which contains the foreign key
foreignKeyParentTable character name of DB2/390, DB2 UDB or Oracle table

which is a parent table of the foreign key
dependentConstraintName character constraint name of a foreign key using the

primary or unique key
dependentTableDef..DAQTableDefinition relationship to the table definition of the

dependent table
primaryKeyParentTable character name of DB2/390, DB2 UDB or Oracle table

which contains the primary key
primaryKeyDependentTable character name of DB2/390, DB2 UDB or Oracle table

which is dependent upon the primary key
usedByIndex character name of DB2/390, DB2 UDB or Oracle index

which uses the key definition
relationshipName character name of the relationship transformed into the

foreign key
dataModel character name of the dataModel which contains the

relationship
DAQViewDefintion
viewDefinition character name of shareable view definition
viewDefDescription character description of shareable view definition
viewDefDescType character type of description
inRelationalDesign..DAQRelationalDesign name of relational design which contains the

view definition
columnName character name of a column in the view definition
columnComment character SQL comment on the column
viewComment character SQL comment on the view
viewLabel character SQL label of the view

166 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
checkOption character whether the DBMS should check the results of

updates to the view against the view’s search
condition. Valid values are: Y - use local
check, C - use CASCADED check, N - no
check

DAQRelationalDesign
relationalDesign character name of the relational design
relDesignDescription character description of relational design
relDesignDescType character type of description
containsTableDef..DAQTableDefinition relationship to table definition
containsViewDef..DAQViewDefinition relationship to view definition
hasDB2390PhysicalDesign..
DAQDB2390PhysicalDesign

relationship to DB2/390 physical design

hasDB2csPhysicalDesign..
DAQDB2csPhysicalDesign

relationship to DB2 UDB physical design

hasOraclePhysicalDesign..
DAQOraclePhysicalDesign

relationship to Oracle physical design

dataModel character data model which represents the relational
design

DAQDB2390PhysicalDesign
db2390PhysicalDesign character name of DB2/390 physical design
physDesignDescription character description of DB2/390 physical design
physDesignDescType character type of description
inRelationalDesign..DAQRelationalDesign relationship to relational design which

contains the physical design
aliasOrSynonym..DAQDB2390AliasSynonym relationship to a DB2/390 alias or synonym in

the physical design
db2390Table..DAQDB2390Table relationship to a DB2/390 table in the physical

design
db2390Tablespace..DAQDB2390Tablespace relationship to a DB2/390 table space in the

physical design
db2390Storagegroup..
DAQDB2390Storagegroup

relationship to a DB2/390 storage group in
the physical design

db2390View..DAQDB2390View relationship to a DB2/390 view in the physical
design

db2390Index..DAQDB2390Index relationship to a DB2/390 index in the
physical design

db2390Database..DAQDB2390Database relationship to a DB2/390 database in the
physical design

Appendix F. Views and Attributes of Object Types 167

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
db2390Bufferpool..DAQDB2390Bufferpool relationship to a DB2/390 buffer pool in the

physical design
DAQDB2csPhysicalDesign
db2csPhysicalDesign character name of DB2 UDB physical design
physDesignDescription character description of DB2 UDB physical design
physDesignDescTyp character type of description
inRelationalDesign..DAQRelationalDesign relationship to relational design which

contains the physical design
db2csTable..DAQDB2csTable relationship to a DB2 UDB table in the

physical design
db2csTablespace..DAQDB2csTablespace relationship to a DB2 UDB table space in the

physical design
db2csView..DAQDB2csView relationship to a DB2 UDB view in the

physical design
db2csIndex..DAQDB2csIndex relationship to a DB2 UDB index in the

physical design
db2csDatabase..DAQDB2csDatabase relationship to a DB2 UDB database in the

physical design
DAQOraclePhysicalDesign
oraclePhysicalDesign character name of Oracle physical design
physDesignDescription character description of Oracle physical design
physDesignDescTyp character type of description
inRelationalDesign..DAQRelationalDesign relationship to relational design which

contains the physical design
oracleTable..DAQOracleTable relationship to a Oracle table in the physical

design
oracleTablespace..DAQOracleTablespace relationship to a Oracle table space in the

physical design
oracleView..DAQOracleView relationship to a Oracle view in the physical

design
oracleIndex..DAQOracleIndex relationship to a Oracle index in the physical

design
DAQRelationalSystem
relationalSystem character name of the relational system
rdbProductName character name of the relational database product
rdbProductVersion character version of the relational database product
sysplex boolean identifies the DB2 for MVS system as in a

data sharing environment
systemDescription character description of the relational system
systemDescType character type of description

168 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
creatorID character name of a creator or schema in the relational

system
db2csTable..DAQDB2csTable relationship to a DB2 UDB table in the system
db2csView..DAQDB2csView relationship to a DB2 UDB view in the system
db2csIndex..DAQDB2csIndex relationship to a DB2 UDB index in the

system
oracleTable..DAQOracleTable relationship to a Oracle table in the system
oracleView..DAQOracleView relationship to a Oracle view in the system
oracleIndex..DAQOracleIndex relationship to a Oracle index in the system
db2390Table..DAQDB2390Table relationship to a DB2/390 table in the system
db2390View..DAQDB2390View relationship to a DB2/390 view in the system
db2390AliasSynonym..
DAQDB2390AliasSynonym

relationship to a DB2/390 alias or synonym in
the system

db2390Index..DAQDB2390Index relationship to a DB2/390 index in the system
db2390Indexspace..
DAQDB2390Indexspace

relationship to a DB2/390 index space in the
system

mvsICFCatalogIS..DAQICFCatalog relationship to a ICF Catalog used by a index
space in the system

mvsICFCatalogISP..DAQICFCatalog relationship to a ICF Catalog used by a index
space partition in the system

db2390Tablespace..
DAQDB2390Tablespace

relationship to a DB2/390 table space in the
system

mvsICFCatalogTS..DAQICFCatalog relationship to a ICF Catalog used by a table
space in the system

mvsICFCatalogTSP..DAQICFCatalog relationship to a ICF Catalog used by a table
space partition in the system

db2390Database..DAQDB2390Database relationship to a DB2/390 database in the
system

db2390StorageGroup..
DAQDB2390Storagegroup

relationship to a DB2/390 storage group in
the system

mvsICFCatalogSG..DAQICFCatalog relationship to a ICF Catalog used by a
storage group in the system

mvsVolume..DAQMVSVolume relationship to a MVS volume used by a
storage group in the system

db2390Bufferpool..DAQDB2390Bufferpool relationship to a DB2/390 buffer pool in the
system

oracleTablespace..DAQOracleTablespace relationship to a Oracle table space in the
system

db2csTablespace..DAQDB2csTablespace relationship to a DB2 UDB table space in the
system

Appendix F. Views and Attributes of Object Types 169

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
db2csDatabase..DAQDB2csDatabase relationship to a DB2 UDB database in the

system
DAQDB2390Table
db2390Table character name of DB2/390 table
tableDescription character description of table
tableDescType character type of description
creatorID character authorization ID of the creator of the table
inRelationalSystem..
DAQRelationalSystem

relationship to the relational system which
owns the table

usesTableDefinition..DAQTableDefinition relationship to the table definition which
defines the table

inDatabase..DAQDB2390Database relationship to the database which contains
the table

inTablespace..DAQDB2390Tablespace relationship to the table space which contains
the table

inPhysicalDesign..
DAQDB2390PhysicalDesign

relationship to the physical designs which
contain the table

hasIndex..DAQDB2390Index relationship to the indexes defined on the
table

hasAliasOrSynonym..
DAQDB2390AliasSynonym

relationship to alias or synonym of the table

clusteringIndexName character name of the clustering index of the table
cardinality integer total number of rows in the table from last

time statistics were gathered from DB2
catalogOBID smallint an internal identifier of the table
ccsid character value to specify in the CCSID clause: E -

EBCDIC or A - ASCII
nPages integer the total number of pages on which rows of

the table appear the last time statistics were
gathered from DB2

dataCaptureFlag character value to specify in the DATACAPTURE
clause: N - None C - Changes

editProc character name of the edit proc associated with the
table

pctPages smallint percentage of active table space pages that
contain rows of the table the last time
statistics were gathered from DB2

restrictDrop boolean whether or not the RESTRICT ON DROP
clause is to be generated for the table

170 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
pctRowComp smallint percentage of rows, multiplied by 100,

compressed within the total number of active
rows in the table the last time statistics were
gathered from DB2

recLength smallint maximum length of any record in the table
the last time statistics were gathered from DB2

statsTime character the date and time when the last invocation of
DB2 RUNSTATS updated the catalog statistics.
The timestamp has a maximum of 26 digits
and separators formatted as:
yyyy-mm-dd-hh.mm.ss.nnnnnn.. Where: yyyy
- year, mm - month, dd - day, hh - hour, mm -
minute, ss second, nnnnnn - microsecond

catalogStatus character status of the table when the latest statistics
were gathered from DB2: I - tables’s definition
is incomplete because it lacks a primary index
X - table has a primary index blank - table has
no primary key, or is a catalog table

validProc character name of the valid proc associated with the
table

randomUpdate boolean whether the rows in the table will be updated
randomly or sequentially

numPartitions smallint number of table partitions. A table partition is
specified as part of the physical design and is
the basis for the proposal of a table space
partition

partitionNumber smallint table partitionidentifier
partitionColumnName character name of a column in the partitioning index
confidenceFactor smallint confidence factor of the growth and delete

rate values
deletePeriod character period of the delete rate D - daily W - weekly

M - monthly Q - quarterly
deleteRate smallint relative rate of DELETE operations on the

table (1-10)
growthPeriod character period of the growth rate. D - daily W -

weekly M - monthly Q - quarterly
growthRate smallint relative rate of increase in the number of rows

in the table (1-10)
initialNoOfRows integer predicted initial number of rows in the table
maintenancePeriod smallint amount of time for which the growth and

delete rates are calculated

Appendix F. Views and Attributes of Object Types 171

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
alterTableFrequency smallint how frequently an alter table is executed on

the table
deleteFrequency smallint how frequently a delete statement is executed

on the table
insertFrequency smallint how frequently an insert statement is executed

on the table
reorgFrequency smallint how frequently an reorg is executed on the

table
selectFrequency smallint how frequently a select statement is executed

on the table
unloadReloadFrequency smallint how frequently an unload and reload

operation is executed on the table
updateFrequency smallint how frequently an update statement is

executed on the table
concurrency character concurrency requirements. L - low M -

medium H - high
securityOptionSet boolean whether the data is security sensitive (the

basis of the proposing the ERASE option)
DAQDB2390View
db2390View character name of DB2/390 view
viewDescription character description of view
viewDescType character type of description
creatorID character authorization ID of the creator of the view
inRelationalSystem..
DAQRelationalSystem

relationship to the relational system which
owns the view

usesViewDefinition..DAQViewDefinition relationship to the view definition which
defines the view

select character select statement using actual table or view
names

inPhysicalDesign..
DAQDB2390PhysicalDesign

relationship to the physical designs which
contain the view

hasAliasOrSynonym..
DAQDB2390AliasSynonym

relationship to alias or synonym of the view

DAQDB2390AliasSynonym
db2390AliasOrSynonym character name of DB2/390 alias or synonym
aliasSynonymDescription character description of alias or synonym
aliasSynonymDescType character type of description
synonymAliasFlag character indicates whether the is a synonym (S) or

alias (A)
creatorID character authorization ID of the alias or synonym

172 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
inRelationalSystem..
DAQRelationalSystem

relationship to the relational system which
owns the alias or synonym

comment character SQL comment on the alias or synonym
label character SQL label for the alias or synonym
inDB2390PhysicalDesign..
DAQDB2390PhysicalDesign

relationship to DB2/390 physical design
which contains the alias/synonym

forDB2390Alias..
DAQDB2390AliasSynonym

relationship to DB2/390 alias or synonym
which this is alias of

forDB2390Table..DAQDB2390Table relationship to DB2/390 table which this is
alias of

forDB2390View..DAQDB2390View relationship to DB2/390 view which this is
alias of

hasAliasOrSynonym..
DAQDB2390AliasSynonym

relationship to a DB2/390 alias or synonym of
this alias

DAQDB2390Index
db2390Index character name of DB2/390 index
indexDescription character description of index
indexDescType character type of description
creatorID character authorization ID of the creator of the view
inRelationalSystem..
DAQRelationalSystem

relationship to the relational system which
owns the view

usesKeyDefinition..DAQKeyDefinition relationship to definition of columns in the
index

forTable..DAQDB2390Table relationship to DB2/390 table on which index
is created

inPhysicalDesign..
DAQDB2390PhysicalDesign

relationship to DB2/390 physical design
which contains the index

isClusterIndexFor..DAQDB2390Table relationship to DB2/390 table which is
clustered by the index

partitionsTablespace..
DAQDB2390Tablespace

relationship to DB2/390 table space which is
partitioned by the index

indexType character identifies the index as Type 1 or Type 2
uniqueFlag character Y - unique N - not unique
whereNotNull boolean whether the WHERE NOT NULL clause is

specified for the Index
pieceSize integer value in Kilobytes for the PIECESIZE clause

for the index
clusterFlag character whether CLUSTER is specified for the index

(Y/ N)

Appendix F. Views and Attributes of Object Types 173

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
clusterRatio integer percentage of rows that are in clustering order

the last time statistics were gathered from DB2
firstKeyCard integer number of distinct values of the first key

column the last time statistics were gathered
from DB2

fullKeyCard integer number of distinct values of the key the last
time statistics were gathered from DB2

numLeafs integer number of active leaf pages in the index the
last time statistics were gathered from DB2

numLevels integer number of levels in the index tree the last
time statistics were gathered from DB2

space integer number of kilobytes of DASD storage
allocated to the index the last time statistics
were gathered from DB2

statsTime character date and time when the last invocation of
RUNSTATS updated the statistics. The
timestamp has a maximum of 26 digits and
separators formatted as: yyyy-mm-dd-
hh.mm.ss.nnnnnn.. Where: yyyy - year, mm -
month, dd - day, hh - hour, mm - minute, ss -
second, nnnnnn - microsecond

numRows integer predicted number of rows represented in the
index

numDistinctValues integer predicted number of distinct values in the
index

inIndexspace..DAQDB2390Indexspace relationship to the index space containing the
index

DAQDB2390Indexspace
db2390Indexspace character name of the index which uses the index space
closeRule character close rule option for an index Y - yes: data set

is eligible for closing. N - no: data set is not
eligible for closing

dsetPasswordFlag character whether the data sets of index space are
password protected (Y/N)

dsetPassword character password for the data sets of the index
deferRule character whether the index is built during execution of

the CREATE INDEX statement N - The index
is built (this is the default.) Y - The index is
not built

subPages smallint number of subpages for each physical page

174 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
idxFreePage smallint number of pages that are loaded before a page

is left as free space
idxPercentFree smallint percentage of each subpage or nonleaf page

that is left as free space
idxGBPCache character whether or not the GBPCACHE block is to be

generated for the index and the value to be
set. If this attribute is null, no GBPCACHE
will be generated. Other values are ’C’ -
changed or ’A’ - all

usesBufferpool..DAQDB2390Bufferpool relationship to buffer pool used by the index
idxICFCatalog..DAQICFCatalog relationship

to ICF
catalog used
by the index

idxStorageGroup..
DAQDB2390Storagegroup

relationship to the storage group used by the
index

idxEraseRule character action to be performed when the index is
dropped: Y - erase N - do not erase

idxPrimaryQty integer primary space allocation for DB2 defined data
sets in kilobytes

idxSecondaryQty integer secondary space allocation for DB2 defined
data sets in kilobytes

numPartitions smallint number of partitions
idxPartNumber smallint the partition number. when zero statistics

apply to entire index space
idxPartHighKeyValues character value for each partition. These values are

concatenated, and the concatenation of all the
values is the highest value of the key in the
corresponding partition of the index

idxPartFreePages smallint number of pages that are loaded before a page
is left as free space

idxPartPctFree smallint percentage of each subpage or nonleaf page
that is left as free space

idxPartGBPCache character whether or not the GBPCACHE block is to be
generated for this index and the value to be
set. If this attribute is null, no GBPCACHE
will be generated. Other values are ’C’ -
changed or ’A’ - all

idxPartStogroup..
DAQDB2390Storagegroup

relationship to the storage group used by the
index partition

Appendix F. Views and Attributes of Object Types 175

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
idxPartEraseRule character action to be performed when the index is

dropped: Y - erase N - do not erase
idxPartPrimaryQty integer primary space allocation for DB2 defined data

sets in kilobytes
idxPartSecondaryQty integer secondary space allocation for DB2 defined

data sets in kilobytes
idxPartICFCatalog..DAQICFCatalog relationship to ICF catalog used by the index

partition
idxPartCardinality integer the number of rows referred to by index

partition
idxPartSpace integer number of kilobytes of DASD storage

allocated to the index space partition
idxPartFarOffOpt integer number of referred to rows far from optimal

position because of an insert into a full page
idxPartNearOpt integer number of referred to rows near, but not at

optimal position because of an insert into a
full page

idxPartLeafDis integer 100 times the average number of pages
between successive leaf pages of the index

idxPartStatsTime character date and time when the last invocation of
RUNSTATS updated the statistics. The
timestamp has a maximum of 26 digits and
separators formatted as: yyyy-mm-dd-
hh.mm.ss.nnnnnn.. Where: yyyy - year, mm -
month, dd - day, hh - hour, mm - minute, ss -
second, nnnnnn - microseconds

DAQDB2390Tablespace
db2390Tablespace character name of DB2/390 table space
tablespaceDescription character description of table space
tablespaceDescType character type of description
inRelationalSystem..
DAQRelationalSystem

relationship to the relational system which
owns the table space

inDatabase..DAQDB2390Database relationship to the database which contains
the table space

inPhysicalDesign..
DAQDB2390PhysicalDesign

relationship to the physical designs which
contain the table space

containsTable..DAQDB2390Table relationship to the tables in the table space
partitionedByIndex..DAQDB2390Index relationship to the index that is the

partitioning index of the table space
usesBufferpool..DAQDB2390Bufferpool relationship to the buffer pool used by the

table space

176 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
lockSize character locksize for the table space: A - any, P - page,

R- row, S - table space, T - table
lockmax character whether or not the LOCKMAX clause is to be

generated for the table space and the value to
be set. If this attribute is null, no LOCKMAX
will be generated. Other values are ’S’ -
system or ’V’ - value specified in “maxValue”

maxValue integer the user-defined value for the LOCKMAX
keyword

lockPart boolean whether or not the LOCKPART clause will be
generated

maxRows smallint maximum number of rows DB2 will put on a
page (1 to 255)

closeRule character close rule option for the table space Y - yes:
data set is eligible for closing. N - no: data set
is not eligible for closing

ccsid character whether or not the CCSID clause is to be
generated for the table space and the value to
be set. If this attribute is null, no CCSID will
be generated. Other values are E - EBCDIC or
A - ASCII

largeTS boolean whether or not the LARGE keyword will be
generated on a CREATE TABLESPACE
statement

dsetPasswordFlag character whether the data sets of table space are
password protected (Y/N)

dsetPassword character password for the data sets of the table space
compressFlag character whether data compression applies to the rows

of the table space. Y - yes N - no
tsFreePage smallint number of pages that are loaded before a page

is left as free space
tsPercentFree smallint percentage of each subpage or nonleaf page

that is left as free space
tsGBPCache character whether or not the GBPCACHE block is to be

generated for the table space and the value to
be set. If this attribute is null, no GBPCACHE
will be generated. Other values are ’C’ -
changed or ’A’ - all

nActivePages integer number of active pages in the table space
space integer number of kilobytes of DASD storage

allocated to the table space

Appendix F. Views and Attributes of Object Types 177

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
usageIntent character applications the database will be used for: Q -

QMF B - batch T - test R - random
segSize smallint the size of each segment in a segmented table

space (must be 4 <= segsize <= 64)
usesStorageGroup..
DAQDB2390Storagegroup

relationship to the storage group used by the
table space

tsEraseRule character action to be performed when the table space
is dropped: Y - erase N - do not erase

tsPrimaryQty integer primary space allocation for DB2 defined data
sets in kilobytes

tsSecondaryQty integer secondary space allocation for DB2 defined
data sets in kilobytes

tsICFCatalog..DAQICFCatalog relationship to ICF catalog used by the table
space

numPartitions smallint number of partitions
tsPartNumber smallint the partition number. when zero statistics

apply to entire table space
tsPartFreePage smallint number of pages that are loaded before a page

is left as free space
tsPartPctFree smallint percentage of each subpage or nonleaf page

that is left as free space
tsPartGBPCache character whether or not the GBPCACHE block is to be

generated for this table space and the value to
be set. If this attribute is null, no GBPCACHE
will be generated. Other values are ’C’ -
changed or ’A’ - all

tsPartStogroup..
DAQDB2390Storagegroup

relationship to the storage group used by the
table space partition

tsPartEraseRule character action to be performed when the table space
is dropped: Y - erase N - do not erase

tsPartPrimaryQty integer primary space allocation for DB2 defined data
sets in kilobytes

tsPartSecondaryQty integer secondary space allocation for DB2 defined
data sets in kilobytes

tsPartICFCatalog..DAQICFCatalog relationship to ICF catalog used by the table
space partition

tsPartCardinality integer the number of rows referred to by table space
partition

tsPartSpace integer number of kilobytes of DASD storage
allocated to the table space partition

178 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
tsPartFarOffOpt integer number of referred to rows far from optimal

position because of an insert into a full page
tsPartNearOpt integer number of referred to rows near, but not at

optimal position because of an insert into a
full page

tsPartPctActive smallint percentage of space occupied by rows of data
from active tables

tsPartPctDropped smallint percentage of space occupied by rows of
dropped tables

tsPartPageSave smallint percentage of pages, multiplied by 100, saved
in the table space or partition as a result of
using data compression

tsPartStatsTime character date and time when the last invocation of
RUNSTATS updated the statistics. The
timestamp has a maximum of 26 digits and
separators formatted as: yyyy-mm-dd-
hh.mm.ss.nnnnnn.. Where: yyyy - year, mm -
month, dd - day, hh - hour, mm - minute, ss -
second, nnnnnn - microseconds

DAQDB2390Database
db2390Database character name of DB2/390 database
databaseDescription character description of database
databaseDescType character type of description
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the database
inPhysicalDesign..
DAQDB2390PhysicalDesign

relationship to the physical designs which
contain the database

containsIndex..DAQDB2390Index relationship to the indexes in the database
containsTablespace..
DAQDB2390Tablespace

relationship to the table spaces in the database

containsTable..DAQDB2390Table relationship to the tables in the database
ccsid character whether or not the CCSID clause is to be

generated for the database and the value to be
set. If this attribute is null, no CCSID will be
generated. Other values are E - EBCDIC or A -
ASCII

roShareFlag character how the database will be using shared
read-only data. O - owner R - read only

usesBufferpool..DAQDB2390Bufferpool relationship to buffer pool used by the
database

Appendix F. Views and Attributes of Object Types 179

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
usesStoragegroup..
DAQDB2390Storagegroup

relationship to the storage group used by the
database

usageIntent character applications the database will be used for: Q -
QMF N - others

DAQDB2390Storagegroup
db2390Storagegroup character name of DB2/390 storage group
storagegroupDescription character description of storage group
storagegroupDescType character type of description
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the storage group
inPhysicalDesign..
DAQDB2390PhysicalDesign

relationship to the physical designs which
contain the storage group

usedByDatabase..DAQDB2390Database relationship to databases which use the
storage group

usedByTablespace..
DAQDB2390Tablespace

relationship to the table spaces which use the
storage group

usedByPartTablespace..
DAQDB2390Tablespace

relationship to partitioned table spaces which
use the storage group

tsPartNumber smallint partition number of the table space partition
which uses the storage group

usedByIndex..DAQDB2390Index relationship to the indexes which use the
storage group

usedByPartIndex..DAQDB2390Index relationship to partitioned indexes which use
the storage group

idxPartNumber smallint partition number of the index partition which
uses the storage group

passwordFlag character whether the ICF catalog is password protected
(Y/N)

password character VSAM control or master level password of the
ICF catalog

usesICFCatalog..DAQICFCatalog relationship to the ICF catalog used by the
storage group

usesVolume..DAQMVSVolume relationship to the volumes of the storage
group

requiredSpace smallint space required as calculated by the physical
database design function

usageIntent character whether storage group should be reserved for
table spaces (T) or indexes (I)

space integer number of kilobytes of DASD storage
allocated to the storage group as determined
by the last execution of the STOSPACE utility

180 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
DAQDB2390Bufferpool
db2390Bufferpool character name of DB2/390 buffer pool
bufferpoolDescription character description of buffer pool
bufferpoolDescType character type of description
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the buffer pool
inPhysicalDesign..
DAQDB2390PhysicalDesign

relationship to the physical designs which
contain the buffer pool

usedByDatabase..DAQDB2390Database relationship to databases which use the buffer
pool

usedByTablespace..
DAQDB2390Tablespace

relationship to table spaces which use the
buffer pool

usedByIndex..DAQDB2390Index relationship to indexes which use the buffer
pool

bufferPoolNo character buffer pool number
pageSize character buffer pool page size: A - 4K page size B - 32K

page size
usageIntent character
DAQMVSVolume
MVSVolume character name of the MVS volume
volumeID character volume ID which identifies volume serial

number of an OS/VS storage volume
usedByStoragegroup..
DAQDB2390Storagegroup

relationship to storage groups which use the
volume

DAQICFCatalog
ICFCatalog character name of the ICF Catalog
usedByStoragegroup..
DAQDB2390Storagegroup

relationship to storage groups which use the
ICF catalog

usedByTablespace..
DAQDB2390Tablespace

relationship to table spaces which use the ICF
catalog

usedByPartTablespace..
DAQDB2390Tablespace

relationship to partitioned table spaces which
use the ICF catalog

tsPartNumber smallint partition number of the table space partition
which uses the ICF catalog

usedByIndex..DAQDB2390Index relationship to indexes which use the ICF
catalog

usedByPartIndex..DAQDB2390Index relationship to partitioned indexes which use
the ICF catalog

idxPartNumber smallint partition number of the index partition which
uses the ICF catalog

Appendix F. Views and Attributes of Object Types 181

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
DAQDB2CSTable
db2csTable character name of DB2 UDB table
tableDescription character description of the DB2 UDB table
tableDescType character type of description
schema character schema which owns the DB2 UDB table
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the table
usesTableDefinition..DAQTableDefinition relationship to the table definition which

defines the table
inPhysicalDesign..
DAQDB2csPhysicalDesign

relationship to the physical designs which
contain the table

inDatabase..DAQDB2csDatabase relationship to the database which contains
the table

inPrimaryTablespace..
DAQDB2csTablespace

relationship to the table space that contains
the table

usesIndexTablespace..
DAQDB2csTablespace

relationship to the table space which contains
indexes on the table

usesLongTablespace..
DAQDB2csTablespace

relationship to the table space which contains
LOB data in the table

hasIndex..DAQDB2csIndex relationship to the indexes defined on the
table

DAQDB2CSIndex
db2csIndex character name of DB2 UDB index
indexDescription character description of the DB2 UDB index
indexDescType character type of description
schema character schema which owns the DB2 UDB index
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the index
usesKeyDefinition..DAQKeyDefinition relationship to the key definition which

defines the table
inPhysicalDesign..
DAQDB2csPhysicalDesign

relationship to the physical designs which
contain the index

inDatabase..DAQDB2csDatabase relationship to the database which contains
the index

forTable..DAQDB2csTable relationship to the table on which the index is
created

comment character SQL comment on the index
uniqueFlag character Y - unique N - not unique
DAQDB2CSView
db2csView character name of DB2 UDB view

182 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
viewDescription character description of the DB2 UDB view
viewDescType character type of description
schema character schema which owns the DB2 UDB view
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the view
usesViewDefinition..DAQViewDefinition relationship to the view definition which

defines the view
select character select statement using actual table or view

names
inPhysicalDesign..
DAQDB2csPhysicalDesign

relationship to the physical designs which
contain the view

inDatabase..DAQDB2csDatabase relationship to the database which contains
the view

DAQDB2CSDatabase
db2csDatabase character name of DB2 UDB database
databaseDescription character description of the DB2 UDB database
databaseDescType character type of description
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the view
inPhysicalDesign..
DAQDB2csPhysicalDesign

relationship to the physical designs which
contain the view

containsTable..DAQDB2csTable relationship to the tables in the database
containsView..DAQDB2csView relationship to the views in the database
containsIndex..DAQDB2csIndex relationship to the indexes in the database
DAQDB2CSTablespace
db2csTablespace character name of DB2 UDB table space
tablespaceDescription character description of the DB2 UDB table space
tablespaceDescType character type of description
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the view
inPhysicalDesign..
DAQDB2csPhysicalDesign

relationship to the physical designs which
contain the view

tsType character type of table space: R - regular L - long (can
hold LOB data) T - temporary (only for
temporary tables)

containsTable..DAQDB2csTable relationship to tables in the table space
containsIndexForTable..DAQDB2csTable relationship to tables for which indexes are in

the table space
containsLOBForTable..DAQDB2csTable relationship to tables for which large object

(LOB) columns are in the table space

Appendix F. Views and Attributes of Object Types 183

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
DAQOracleTable
oracleTable character name of Oracle table
tableDescription character description of the Oracle table
tableDescType character type of description
schema character schema which owns the Oracle table
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the table
usesTableDefinition..DAQTableDefinition relationship to the table definition which

defines the table
inPhysicalDesign..
DAQOraclePhysicalDesign

relationship to the physical designs which
contain the table

inTablespace.. DAQOracleTablespace relationship to the table space which contains
the table

hasIndex..DAQOracleIndex relationship to the indexes defined on the
table

DAQOracleIndex
oracleIndex character name of Oracle index
indexDescription character description of the Oracle index
indexDescType character type of description
schema character schema which owns the DB2 UDB index
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the index
usesKeyDefinition..DAQKeyDefinition relationship to the key definition which

defines the table
inPhysicalDesign..
DAQOraclePhysicalDesign

relationship to the physical designs which
contain the index

inDatabase..DAQOracleDatabase relationship to the database which contains
the index

forTable..DAQOracleTable relationship to the table on which the index is
created

comment character SQL comment on the index
uniqueFlag character Y - unique N - not unique
DAQOracleView
oracleView character name of Oracle view
viewDescription character description of the Oracle view
viewDescType character type of description
schema character schema which owns the Oracle view
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the view

184 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
usesViewDefinition..DAQViewDefinition relationship to the view definition which

defines the view
select character select statement using actual table or view

names
inPhysicalDesign..
DAQOraclePhysicalDesign

relationship to the physical designs which
contain the view

force boolean whether or not the FORCE clause is to be
generated

withOption character whether or not the WITH clause is to be
generated for the view and the value to be set.
If this attribute is null, no clause will be
generated. Other values are ’RO’ - read only
or ’CO’ - check option

constraintName character constraint name that is part of the WITH
CHECK OPTION clause

DAQOracleTablespace
oracleTablespace character name of Oracle table space
tablespaceDescription character description of the Oracle space
tablespaceDescType character type of description
inRelationalSystem..DAQRelationalSystem relationship to the relational system which

owns the view
containsTable..DAQOracleTable relationship to tables in the table space
containsIndex..DAQOracleIndex relationship to indexes in the table space
inPhysicalDesign..
DAQOraclePhysicalDesign

relationship to the physical designs which
contain the view

IMS Objects
DAQgsamDBD
dbdName character name of Data Base Definition (DBD)
accessMethod character DBD access method - expected to be GSAM

for this view
osAccess boolean Operating system access method - TRUE for

VSAM, false for BSAM
passwordFlag boolean Flag for PASSWD keyword. TRUE for

PASSWD=YES, FALSE for PASSWD=NO.
Value is ignored when osAccess is FALSE.

versionString character value for VERSION= keyword
ddName1 character DDname for input file (DD1= keyword)
ddName2 character DDname for output file (DD2= keyword)
recordFormat character File record format (RECFM= keyword). Valid

values are ″F″, ″V″, ″FB″, ″VB″, ″U″.

Appendix F. Views and Attributes of Object Types 185

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
inputRecordLength integer Maximum or fixed record length (first

parameter for RECLEN= keyword)
outputRecordLength integer Minimum record length (second parameter for

RECLEN= keyword)
size1 integer Record size (SIZE= keyword)
primaryBlockingFactor integer Blocking factor (BLOCK= keyword)
pcbName character name of PCB based on this DBD
psbName character name of PSB containing a PCB based on this

DBD.
dbdLabel character type of description
dbdDescription character description of DBD
DAQmsdbDBD
dbdName character name of Data Base Definition (DBD)
accessMethod character DBD access method - expected to be MSDB

for this view
msdbType character Type of MSDB - ″NO″, ″FIXED″, ″TERM″ or

″DYNAMIC″

msdbField character Field name for DYNAMIC MSDB
versionString character value for VERSION= keyword
pcbName character name of PCB based on this DBD
psbName character name of PSB containing a PCB based on this

DBD
dbdLabel character type of description
dbdDescription character description of DBD
usesDataStructure character name of ShareableDataStructure that maps a

segment in this DBD.
usesDataElement character name of ShareableDataElement that is used as

a Field by this DBD.
segmentName character name of segment (NAME= keyword).
maximumLength integer length of segment (BYTES= keyword).
frequency character segment frequency (FREQ= keyword).
mappingStruct..DAQDataStructure relationship to shareable data structure that

maps the segment.
segmLabel character type of description
segmDescription character description of segment
logSegmName character name of logical segment that uses this

segment as its source.
logDBDname character name of logical DBD with a segment that uses

this segment as its source.
fieldName character name of field (NAME= keyword).

186 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
sequenceField boolean flag defining whether the field is a sequence

field (SEQ keyword)
uniqueSequence boolean Flag defining whether the sequence field is

unique. TRUE corresponds to parameter value
of ’U’. This value is ignored when
sequenceField is FALSE.

fieldLabel character type of description
fieldDescription character description of field
defaultName character default name of data item attached to this

field.
offsetFromLevel01 integer 1 less than the start position for the field

(STARTPOS= keyword).
pSharedElement..DAQDataElement relationship to shareable data element that

holds data for the data item.
pSharedStructure..DAQDataStructure relationship to shareable data structure that

holds data for the data item.
diName1 character Local name for data item stored in a data

element type of alias.
diName2 character Local name for data item stored in a data

element type of alias.
isConstant boolean flag
asBitData boolean flag indicating character string should be

treated as bit (binary) data
genericPicture character language-independent picture
isComplex boolean flag indicating real or complex number
isSigned boolean flag indicating unsigned or signed number
isLOB boolean flag indicating string is a large object (LOB)
numericPrecision smallint numeric precision in bits or digits depending

on data type
scale smallint position of binary or decimal point
strLength integer maximum length of string data in bits, bytes

or double-bytes
strVaryingFlag integer indication of variable length string: 0-varying,

1-varyingZ (PL/I), 2-nonvarying
typeCode integer data type code: 0-binary number, 1-packed

decimal, 2-zoned decimal, 3-binary floating
point, 4-decimal floating p string,
7-double-byte character, 8-mixed
double/single-byte, 9-date, 10-time,
11-timestamp, 12-index (COBOL),
13-undefined, 14-rowid (Oracle), 15

Appendix F. Views and Attributes of Object Types 187

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
DAQhsamDBD
dbdName character name of Data Base Definition (DBD)
accessMethod character DBD access method - expected to be HSAM,

SHSAM or SHISAM for this view
versionString character value for VERSION= keyword
passwordFlag boolean Flag for PASSWD keyword. TRUE for

PASSWD=YES, FALSE for PASSWD=NO.
pcbName character name of PCB based on this DBD
psbName character name of PSB containing a PCB based on this

DBD
dbdLabel character type of description
dbdDescriptioncharacter description

of DBD
usesDataStructure character name of ShareableDataStructure that maps a

segment in this DBD.
usesDataElement character name of ShareableDataElement that is used as

a Field by this DBD.
ddName1 character DDname for input file (DD1= keyword)
ddName2 character DDname for output file (DD2= keyword)
dsDevice character Type of data storage hardware (DEVICE=

keyword). Supported values are 2305, 2319,
3330, 3340, 3350, 3375, 3380,

dsModel character Model of data storage hardware (MODEL=
keyword). Supported values are ″1″, ″2″, ″11″.
The value here is relevant only when the
dsDevice is ″3330″ or ″2305″.

inputRecordLength integer Record length of input file (first parameter for
RECLEN= keyword)

outputRecordLength integer Record length of output file (second
parameter for RECLEN= keyword)

size1 integer Input record size (first parameter for SIZE=
keyword)

size2 integer Output record size (second parameter for
SIZE= keyword)

primaryBlockingFactor integer Input file blocking factor (first parameter for
BLOCK= keyword)

overflowBlockingFactor integer Output file blocking factor (second parameter
for BLOCK= keyword)

captureRoutine character name of data capture exit (for EXIT=
keyword)

188 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
exitData boolean flag for DATA or NODATA
exitPath boolean flag for PATH or NOPATH
exitKey boolean flag for KEY or NOKEY
cascade boolean flag for CASCADE or NOCASCADE
cascadeData boolean flag for DATA or NODATA
cascadeKey boolean flag for KEY or NOKEY
cascadePath boolean flag for PATH or NOPATH
logFlag boolean flag for LOG or NOLOG
segmentName character name of segment (NAME= keyword).
maximumLength integer length of segment (BYTES= keyword).
frequency character segment frequency (FREQ= keyword).
mappingStruct..DAQDataStructure relationship to shareable data structure that

maps the segment.
segmLabel character type of description
segmDescription character description of segment
logSegmName character name of logical segment that uses this

segment as its source.
logDBDname character name of logical DBD with a segment that uses

this segment as its source.
segmCaptureRoutine character name of data capture exit (for EXIT=

keyword)
segmExitData boolean flag for DATA or NODATA
segmExitPath boolean flag for PATH or NOPATH
segmExitKey boolean flag for KEY or NOKEY
segmCascade boolean flag for CASCADE or NOCASCADE
segmCascadeData boolean flag for DATA or NODATA
segmCascadeKey boolean flag for KEY or NOKEY
segmCascadePath boolean flag for PATH or NOPATH
segmLogFlag boolean flag for LOG or NOLOG
fieldName character name of field (NAME= keyword).
sequenceField boolean flag defining whether the field is a sequence

field (SEQ keyword)
uniqueSequence boolean Flag defining whether the sequence field is

unique. TRUE corresponds to parameter value
of ’U’. This value is ignored when
sequenceField is FALSE.

fieldLabel character type of description
fieldDescription character description of field
defaultName character default name of data item attached to this

field.

Appendix F. Views and Attributes of Object Types 189

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
offsetFromLevel01 integer 1 less than the start position for the field

(STARTPOS= keyword).
pSharedElement..DAQDataElement relationship to shareable data element that

holds data for the data item.
pSharedStructure..DAQDataStructure relationship to shareable data structure that

holds data for the data item.
diName1 character Local name for data item stored in a data

element type of alias.
diName2 character Local name for data item stored in a data

element type of alias.
isConstant boolean flag
asBitData boolean flag indicating character string should be

treated as bit (binary) data
genericPicture character language-independent picture
isComplex boolean flag indicating real or complex number
isSigned boolean flag indicating unsigned or signed number
isLOB boolean flag indicating string is a large object (LOB)
numericPrecision smallint numeric precision in bits or digits depending

on data type
scale smallint position of binary or decimal point
strLength integer maximum length of string data in bits, bytes

or double-bytes
strVaryingFlag integer indication of variable length string: 0-varying,

1-varyingZ (PL/I), 2-nonvarying
typeCode integer data type code: 0-binary number, 1-packed

decimal, 2-zoned decimal, 3-binary floating
point, 4-decimal floating p string,
7-double-byte character, 8-mixed
double/single-byte, 9-date, 10-time,
11-timestamp, 12-index (COBOL),
13-undefined, 14-rowid (Oracle), 15

DAQdedbDBD
dbdName character name of Data Base Definition (DBD)
versionString character value for VERSION= keyword
pcbName character name of PCB based on this DBD
psbName character name of PSB containing a PCB based on this

DBD
dbdLabel character type of description
dbdDescription character description of DBD

190 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
usesDataStructure character name of ShareableDataStructure that maps a

segment in this DBD.
usesDataElement character name of ShareableDataElement that is used as

a Field by this DBD.
accessMethod character DBD access method - expected to be DEDB

for this view
rmName character name of randomizing module
stage integer randomizing stage
extendedCall boolean randomizing XCI
ddName1 character DDname for input file (DD1= keyword)
dsDevice character Type of data storage hardware (DEVICE=

keyword). Supported values are 2305, 2319,
3330, 3340, 3350, 3375, 3380,

dsModel character Model of data storage hardware (MODEL=
keyword). Supported values are ″1″, ″2″, ″11″.
The value here is relevant only when the
dsDevice is ″3330″ or ″2305″.

areaSize integer Input record size (first parameter for SIZE=
keyword)

root integer Root bytes (first parameter for ROOT=
keyword)

rootOverflow integer Root overflow (second parameter for ROOT=
keyword)

uow integer Units of work (first parameter for UOW=
keyword)

uowOverflow integer Units of work (second parameter for UOW=
keyword)

captureRoutine character name of data capture exit (for EXIT=
keyword)

exitData boolean flag for DATA or NODATA
exitPath boolean flag for PATH or NOPATH
exitKey boolean flag for KEY or NOKEY
cascade boolean flag for CASCADE or NOCASCADE
cascadeData boolean flag for DATA or NODATA
cascadeKey boolean flag for KEY or NOKEY
cascadePath boolean flag for PATH or NOPATH
logFlag boolean flag for LOG or NOLOG
segmentName character name of segment (NAME= keyword).
parentSegmName character name of parent segment (PARENT= keyword).
exitFlag boolean flag for EXIT=NO

Appendix F. Views and Attributes of Object Types 191

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
maximumLength integer length of segment (BYTES= keyword).
minimumLength integer minimum length of segment (BYTES=

keyword).
rules character placement rules (RULES= keyword).
directDependent boolean segment type (TYPE= keyword). TRUE for

DIR, FALSE for SEQ, ignored on root
segment.

subsetPointers integer number of subset pointers (SSPTRS=
keyword). Ignored unless
directDependent=TRUE.

routine character name of compression routine (for COMPRTN=
keyword)

initialization boolean flag for INIT subparameter on COMPRTN=
keyword

dataOnly boolean flag for DATA or KEY subparameter on
COMPRTN= keyword. TRUE is DATA, FALSE
is KEY.

segmCaptureRoutine character name of data capture exit (for EXIT=
keyword)

segmExitData boolean flag for DATA or NODATA
segmExitPath boolean flag for PATH or NOPATH
segmExitKey boolean flag for KEY or NOKEY
segmCascade boolean flag for CASCADE or NOCASCADE
segmCascadeData boolean flag for DATA or NODATA
segmCascadeKey boolean flag for KEY or NOKEY
segmCascadePath boolean flag for PATH or NOPATH
segmLogFlag boolean flag for LOG or NOLOG
mappingStruct..DAQDataStructure relationship to shareable data structure that

maps the segment.
segmLabel character type of description
segmDescription character description of segment
logSegmName character name of logical segment that uses this

segment as its source.
logDBDname character name of logical DBD with a segment that uses

this segment as its source.
fieldName character name of field (NAME= keyword).
sequenceField boolean flag defining whether the field is a sequence

field (SEQ keyword)

192 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
uniqueSequence boolean Flag defining whether the sequence field is

unique. TRUE corresponds to parameter value
of ’U’. This value is ignored when
sequenceField is FALSE.

fieldLabel character type of description
fieldDescription character description of field
defaultName character default name of data item attached to this

field.
offsetFromLevel01 integer 1 less than the start position for the field

(STARTPOS= keyword).
pSharedElement..DAQDataElement relationship to shareable data element that

holds data for the data item.
pSharedStructure..DAQDataStructure relationship to shareable data structure that

holds data for the data item.
diName1 character Local name for data item stored in a data

element type of alias.
diName2 character Local name for data item stored in a data

element type of alias.
isConstant boolean flag
asBitData boolean flag indicating character string should be

treated as bit (binary) data
genericPicture character language-independent picture
isComplex boolean flag indicating real or complex number
isSigned boolean flag indicating unsigned or signed number
isLOB boolean flag indicating string is a large object (LOB)
numericPrecision smallint numeric precision in bits or digits depending

on data type
scale smallint position of binary or decimal point
strLength integer maximum length of string data in bits, bytes

or double-bytes
strVaryingFlag integer indication of variable length string: 0-varying,

1-varyingZ (PL/I), 2-nonvarying
typeCode integer data type code: 0-binary number, 1-packed

decimal, 2-zoned decimal, 3-binary floating
point, 4-decimal floating p string,
7-double-byte character, 8-mixed
double/single-byte, 9-date, 10-time,
11-timestamp, 12-index (COBOL),
13-undefined, 14-rowid (Oracle), 15-

DAQhdamDBD
dbdName character name of Data Base Definition (DBD)

Appendix F. Views and Attributes of Object Types 193

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
accessMethod character DBD access method - expected to be HDAM

for this view
versionString character value for VERSION= keyword
osAccess boolean Operating system access method - TRUE for

VSAM, false for OSAM
passwordFlag boolean Flag for PASSWD keyword. TRUE for

PASSWD=YES, FALSE for PASSWD=NO.
Value is ignored when osAccess is FALSE.

rmName character name of randomizing module
relativeBlockNumber integer RBN value
rootAnchorPoints integer number of RAPS
rootMaxBytes integer Bytes value
pcbName character name of PCB based on this DBD
psbName character name of PSB containing a PCB based on this

DBD
dbdLabel character type of description
dbdDescription character description of DBD
usesDataStructure character name of ShareableDataStructure that maps a

segment in this DBD.
usesDataElement character name of ShareableDataElement that is used as

a Field by this DBD.
datasetLabel character label for segment reference
ddName1 character DDname for input file (DD1= keyword)
dsDevice character Type of data storage hardware (DEVICE=

keyword). Supported values are 2305, 2319,
3330, 3340, 3350, 3375, 3380,

dsModel character Model of data storage hardware (MODEL=
keyword). Supported values are ″1″, ″2″, ″11″.
The value here is relevant only when the
dsDevice is ″3330″ or ″2305″.

size1 integer Input record size (first parameter for SIZE=
keyword)

freeBlockFrequency integer fbff value
freeSpacePercentage integer fspf value
primaryBlockingFactor integer Input blocking factor(BLOCK= keyword)
scanCylinders integer number of cylinders to search (SCAN=

keyword)
searchAlgorithm integer search algorithm to use (SEARCHA=

keyword)

194 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
captureRoutine character name of data capture exit (for EXIT=

keyword)
exitData boolean flag for DATA or NODATA
exitPath boolean flag for PATH or NOPATH
exitKey boolean flag for KEY or NOKEY
cascade boolean flag for CASCADE or NOCASCADE
cascadeData boolean flag for DATA or NODATA
cascadeKey boolean flag for KEY or NOKEY
cascadePath boolean flag for PATH or NOPATH
logFlag boolean flag for LOG or NOLOG
segmentName character name of segment (NAME= keyword).
parentSegmName character name of parent segment (PARENT= keyword).
pcPointer character SNGL or DBLE flag for physical parent

pointer (second part of PARENT= keyword).
segmPointer character segment pointer - can be TWIN, TWINBWD,

HIER, HIERBWD, NOTWIN (first part of
POINTER= keyword).

ddName character DDname of dataset in which this segment is
stored.

maximumLength integer length of segment (BYTES= keyword).
minimumLength integer length of segment (second subparameter for

BYTES= keyword).
rules character placement rules - can be FIRST, LAST, HERE

(RULES= keyword).
deleteRule character delete rule can be V, L, P, B (RULES=

keyword).
replaceRule character replace rule can be V, L, P (RULES= keyword).
insertRule character insert rule can be V, L, P (RULES= keyword).
routine character name of compression routine (for COMPRTN=

keyword)
initialization boolean flag for INIT subparameter on COMPRTN=

keyword
dataOnly boolean flag for DATA or KEY subparameter on

COMPRTN= keyword. TRUE is DATA, FALSE
is KEY.

segmCaptureRoutine character name of data capture exit (for EXIT=
keyword)

segmExitData boolean flag for DATA or NODATA
segmExitPath boolean flag for PATH or NOPATH
segmExitKey boolean flag for KEY or NOKEY

Appendix F. Views and Attributes of Object Types 195

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
segmCascade boolean flag for CASCADE or NOCASCADE
segmCascadeData boolean flag for DATA or NODATA
segmCascadeKey boolean flag for KEY or NOKEY
segmCascadePath boolean flag for PATH or NOPATH
segmLogFlag boolean flag for LOG or NOLOG
mappingStruct..DAQDataStructure relationship to shareable data structure that

maps the segment.
segmLabel character type of description
segmDescription character description of segment
logSegmName character name of logical segment that uses this

segment as its source.
logDBDname character name of logical DBD with a segment that uses

this segment as its source.
indexDBDname character name of secondary index DBD
indexSegmName character name of secondary index segment
ddataFieldName character name of duplicate data fields on XDFLD

statement.
searchFieldName character name of search fields on XDFLD statement.
subseqFieldName character name of subsequence fields on XDFLD

statement.
sourceSegmName character name of index source segment on XDFLD

statement.
exitRoutine character name of suppression routine on XDFLD

statement.
constant character value for CONST keyword on XDFLD

statement.
nullValue character value for NULLVAL keyword on XDFLD

statement.
symbolic boolean value for POINTER keyword on LCHILD

statement. TRUE is SYMB, FALSE is INDX.
xdfldName character name of XDFLD statement.
lchildDBDname character name of logical child DBD.
lchildSegmName character name of logical segment DBD.
lchildPairDBDname character name of DBD for logical pair.
lchildPairSegmName character name of logical pair segment (PAIR= on

LCHILD statement).
lcPointer character value for POINTER keyword on LCHILD

statement - values are SNGL, DBLE, NONE
rules character value for RULES keyword - values are FIRST,

LAST, HERE

196 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
lparentDBDname character name of logical parent DBD.
lparentSegmName character name of logical parent DBD.
counter boolean flag to specify addition of CTR to segment

POINTER= keyword
lparent boolean flag to specify addition of LPARNT to

segment POINTER= keyword
ltwin character value of logical twin pointers for segment

POINTER= keyword - can be LTWIN or
LTWINBWD

virtualParent boolean VIRTUAL or PHYSICAL for logical parent
statement

pairDBDname character name of DBD that has segment paired to this
segment

pairSegmName character name of segment paired to this segment
(SOURCE= keyword).

fieldName character name of field (NAME= keyword).
sequenceField boolean flag defining whether the field is a sequence

field (SEQ keyword)
uniqueSequence boolean Flag defining whether the sequence field is

unique. TRUE corresponds to parameter value
of ’U’. This value is ignored when
sequenceField is FALSE.

fieldLabel character type of description
fieldDescription character description of field
defaultName character default name of data item attached to this

field.
offsetFromLevel01 integer 1 less than the start position for the field

(STARTPOS= keyword).
pSharedElement..DAQDataElement relationship to shareable data element that

holds data for the data item.
pSharedStructure..DAQDataStructure relationship to shareable data structure that

holds data for the data item.
diName1 character Local name for data item stored in a data

element type of alias.
diName2 character Local name for data item stored in a data

element type of alias.
isConstant boolean flag
asBitData boolean flag indicating character string should be

treated as bit (binary) data
genericPicture character language-independent picture

Appendix F. Views and Attributes of Object Types 197

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
isComplex boolean flag indicating real or complex number
isSigned boolean flag indicating unsigned or signed number
isLOB boolean flag indicating string is a large object (LOB)
numericPrecision smallint numeric precision in bits or digits depending

on data type
scale smallint position of binary or decimal point
strLength integer maximum length of string data in bits, bytes

or double-bytes
strVaryingFlag integer indication of variable length string: 0-varying,

1-varyingZ (PL/I), 2-nonvarying
typeCode integer data type code: 0-binary number, 1-packed

decimal, 2-zoned decimal, 3-binary floating
point, 4-decimal floating p string,
7-double-byte character, 8-mixed
double/single-byte, 9-date, 10-time,
11-timestamp, 12-index (COBOL),
13-undefined, 14-rowid (Oracle), 15-

DAQhidamDBD
dbdName character name of Data Base Definition (DBD)
accessMethod character DBD access method - expected to be HDAM

for this view
versionString character value for VERSION= keyword
osAccess boolean Operating system access method - TRUE for

VSAM, false for OSAM
passwordFlag boolean Flag for PASSWD keyword. TRUE for

PASSWD=YES, FALSE for PASSWD=NO.
Value is ignored when osAccess is FALSE.

primaryDBDname character name of primary index DBD
primarySegmName character name of primary index segment
rootFieldName character name of root segment sequence field
pcbName character name of PCB based on this DBD
psbName character name of PSB containing a PCB based on this

DBD
dbdLabel character type of description
dbdDescription character description of DBD
usesDataStructure character name of ShareableDataStructure that maps a

segment in this DBD.
usesDataElement character name of ShareableDataElement that is used as

a Field by this DBD.
datasetLabel character label for segment reference

198 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
ddName1 character DDname for input file (DD1= keyword)
dsDevice character Type of data storage hardware (DEVICE=

keyword). Supported values are 2305, 2319,
3330, 3340, 3350, 3375, 3380,

dsModel character Model of data storage hardware (MODEL=
keyword). Supported values are ″1″, ″2″, ″11″.
The value here is relevant only when the
dsDevice is ″3330″ or ″2305″.

size1 integer Input record size (first parameter for SIZE=
keyword)

freeBlockFrequency integer fbff value
freeSpacePercentage integer fspf value
primaryBlockingFactor integer Input blocking factor(BLOCK= keyword)
scanCylinders integer number of cylinders to search (SCAN=

keyword)
searchAlgorithm integer search algorithm to use (SEARCHA=

keyword)
captureRoutine character name of data capture exit (for EXIT=

keyword)
exitData boolean flag for DATA or NODATA
exitPath boolean flag for PATH or NOPATH
exitKey boolean flag for KEY or NOKEY
cascade boolean flag for CASCADE or NOCASCADE
cascadeData boolean flag for DATA or NODATA
cascadeKey boolean flag for KEY or NOKEY
cascadePath boolean flag for PATH or NOPATH
logFlag boolean flag for LOG or NOLOG
segmentName character name of segment (NAME= keyword).
parentSegmName character name of parent segment (PARENT= keyword).
pcPointer character SNGL or DBLE flag for physical parent

pointer (second part of PARENT= keyword).
segmPointer character segment pointer - can be TWIN, TWINBWD,

HIER, HIERBWD, NOTWIN (first part of
POINTER= keyword).

ddName character DDname of dataset in which this segment is
stored.

maximumLength integer length of segment (BYTES= keyword).
minimumLength integer length of segment (second subparameter for

BYTES= keyword).

Appendix F. Views and Attributes of Object Types 199

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
rules character placement rules - can be FIRST, LAST, HERE

(RULES= keyword).
deleteRule character delete rule can be V, L, P, B (RULES=

keyword).
replaceRule character replace rule can be V, L, P (RULES= keyword).
insertRule character insert rule can be V, L, P (RULES= keyword).
routine character name of compression routine (for COMPRTN=

keyword)
initialization boolean flag for INIT subparameter on COMPRTN=

keyword
dataOnly boolean flag for DATA or KEY subparameter on

COMPRTN= keyword. TRUE is DATA, FALSE
is KEY.

segmCaptureRoutine character name of data capture exit (for EXIT=
keyword)

segmExitData boolean flag for DATA or NODATA
segmExitPath boolean flag for PATH or NOPATH
segmExitKey boolean flag for KEY or NOKEY
segmCascade boolean flag for CASCADE or NOCASCADE
segmCascadeData boolean flag for DATA or NODATA
segmCascadeKey boolean flag for KEY or NOKEY
segmCascadePath boolean flag for PATH or NOPATH
segmLogFlag boolean flag for LOG or NOLOG
mappingStruct..DAQDataStructure relationship to shareable data structure that

maps the segment.
segmLabel character type of description
segmDescription character description of segment
logSegmName character name of logical segment that uses this

segment as its source.
logDBDname character name of logical DBD with a segment that uses

this segment as its source.
indexDBDname character name of secondary index DBD
indexSegmName character name of secondary index segment
ddataFieldName character name of duplicate data fields on XDFLD

statement.
searchFieldName character name of search fields on XDFLD statement.
subseqFieldName character name of subsequence fields on XDFLD

statement.
sourceSegmName character name of index source segment on XDFLD

statement.

200 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
exitRoutine character name of suppression routine on XDFLD

statement.
constant character value for CONST keyword on XDFLD

statement.
nullValue character value for NULLVAL keyword on XDFLD

statement.
symbolic boolean value for POINTER keyword on LCHILD

statement. TRUE is SYMB, FALSE is INDX.
xdfldName character name of XDFLD statement.
lchildDBDname character name of logical child DBD.
lchildSegmName character name of logical segment DBD.
lchildPairDBDname character name of DBD for logical pair.
lchildPairSegmName character name of logical pair segment (PAIR= on

LCHILD statement).
lcPointer character value for POINTER keyword on LCHILD

statement - values are SNGL, DBLE, NONE
rules character value for RULES keyword - values are FIRST,

LAST, HERE
lparentDBDname character name of logical parent DBD.
lparentSegmName character name of logical parent DBD.
counter boolean flag to specify addition of CTR to segment

POINTER= keyword
lparent boolean flag to specify addition of LPARNT to

segment POINTER= keyword
ltwin character value of logical twin pointers for segment

POINTER= keyword - can be LTWIN or
LTWINBWD

virtualParent boolean VIRTUAL or PHYSICAL for logical parent
statement

pairDBDname character name of DBD that has segment paired to this
segment

pairSegmName character name of segment paired to this segment
(SOURCE= keyword).

fieldName character name of field (NAME= keyword).
sequenceField boolean flag defining whether the field is a sequence

field (SEQ keyword)
uniqueSequence boolean Flag defining whether the sequence field is

unique. TRUE corresponds to parameter value
of ’U’. This value is ignored when
sequenceField is FALSE.

Appendix F. Views and Attributes of Object Types 201

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
fieldLabel character type of description
fieldDescription character description of field
defaultName character default name of data item attached to this

field.
offsetFromLevel01 integer 1 less than the start position for the field

(STARTPOS= keyword).
pSharedElement..DAQDataElement relationship to shareable data element that

holds data for the data item.
pSharedStructure..DAQDataStructure relationship to shareable data structure that

holds data for the data item.
diName1 character Local name for data item stored in a data

element type of alias.
diName2 character Local name for data item stored in a data

element type of alias.
isConstant boolean flag
asBitData boolean flag indicating character string should be

treated as bit (binary) data
genericPicture character language-independent picture
isComplex boolean flag indicating real or complex number
isSigned boolean flag indicating unsigned or signed number
isLOB boolean flag indicating string is a large object (LOB)
numericPrecision smallint numeric precision in bits or digits depending

on data type
scale smallint position of binary or decimal point
strLength integer maximum length of string data in bits, bytes

or double-bytes
strVaryingFlag integer indication of variable length string: 0-varying,

1-varyingZ (PL/I), 2-nonvarying
typeCode integer data type code: 0-binary number, 1-packed

decimal, 2-zoned decimal, 3-binary floating
point, 4-decimal floating p string,
7-double-byte character, 8-mixed
double/single-byte, 9-date, 10-time,
11-timestamp, 12-index (COBOL),
13-undefined, 14-rowid (Oracle), 15-

DAQhisamDBD
dbdName character name of Data Base Definition (DBD)
accessMethod character DBD access method - expected to be HDAM

for this view
versionString character value for VERSION= keyword

202 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
passwordFlag boolean Flag for PASSWD keyword. TRUE for

PASSWD=YES, FALSE for PASSWD=NO.
pcbName character name of PCB based on this DBD
psbName character name of PSB containing a PCB based on this

DBD
dbdLabel character type of description
dbdDescription character description of DBD
usesDataStructure character name of ShareableDataStructure that maps a

segment in this DBD.
usesDataElement character name of ShareableDataElement that is used as

a Field by this DBD.
ddName1 character DDname for primary file (DD1= keyword)
ddName2 character DDname for overflow file (OVFLW= keyword)
dsDevice character Type of data storage hardware (DEVICE=

keyword). Supported values are 2305, 2319,
3330, 3340, 3350, 3375, 3380,

dsModel character Model of data storage hardware (MODEL=
keyword). Supported values are ″1″, ″2″, ″11″.
The value here is relevant only when the
dsDevice is ″3330″ or ″2305″.

inputRecordLength integer Record length of primary file (first parameter
for RECLEN= keyword)

outputRecordLength integer Record length of overflow file (second
parameter for RECLEN= keyword)

size1 integer Primary record size (first parameter for SIZE=
keyword)

size2 integer Overflow record size (second parameter for
SIZE= keyword)

primaryBlockingFactor integer Primary file blocking factor (first parameter
for BLOCK= keyword)

overflowBlockingFactor integer Overflow file blocking factor (second
parameter for BLOCK= keyword)

captureRoutine character name of data capture exit (for EXIT=
keyword)

exitData boolean flag for DATA or NODATA
exitPath boolean flag for PATH or NOPATH
exitKey boolean flag for KEY or NOKEY
cascade boolean flag for CASCADE or NOCASCADE
cascadeData boolean flag for DATA or NODATA
cascadeKey boolean flag for KEY or NOKEY

Appendix F. Views and Attributes of Object Types 203

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
cascadePath boolean flag for PATH or NOPATH
logFlag boolean flag for LOG or NOLOG
segmentName character name of segment (NAME= keyword).
parentSegmName character name of parent segment (PARENT= keyword).
pcPointer character SNGL or DBLE flag for physical parent

pointer (second part of PARENT= keyword).
segmPointer character segment pointer - can be TWIN, TWINBWD,

HIER, HIERBWD, NOTWIN (first part of
POINTER= keyword).

ddName character DDname of dataset in which this segment is
stored.

maximumLength integer length of segment (BYTES= keyword).
minimumLength integer length of segment (second subparameter for

BYTES= keyword).
frequency character segment frequency (FREQ= keyword).
rules character placement rules - can be FIRST, LAST, HERE

(RULES= keyword).
deleteRule character delete rule can be V, L, P, B (RULES=

keyword).
replaceRule character replace rule can be V, L, P (RULES= keyword).
insertRule character insert rule can be V, L, P (RULES= keyword).
routine character name of compression routine (for COMPRTN=

keyword)
initialization boolean flag for INIT subparameter on COMPRTN=

keyword
dataOnly boolean flag for DATA or KEY subparameter on

COMPRTN= keyword. TRUE is DATA, FALSE
is KEY.

segmCaptureRoutine character name of data capture exit (for EXIT=
keyword)

segmExitData boolean flag for DATA or NODATA
segmExitPath boolean flag for PATH or NOPATH
segmExitKey boolean flag for KEY or NOKEY
segmCascade boolean flag for CASCADE or NOCASCADE
segmCascadeData boolean flag for DATA or NODATA
segmCascadeKey boolean flag for KEY or NOKEY
segmCascadePath boolean flag for PATH or NOPATH
segmLogFlag boolean flag for LOG or NOLOG
mappingStruct..DAQDataStructure relationship to shareable data structure that

maps the segment.

204 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
segmLabel character type of description
segmDescription character description of segment
logSegmName character name of logical segment that uses this

segment as its source.
logDBDname character name of logical DBD with a segment that uses

this segment as its source.
indexDBDname character name of secondary index DBD
indexSegmName character name of secondary index segment
ddataFieldName character name of duplicate data fields on XDFLD

statement.
searchFieldName character name of search fields on XDFLD statement.
subseqFieldName character name of subsequence fields on XDFLD

statement.
sourceSegmName character name of index source segment on XDFLD

statement.
exitRoutine character name of suppression routine on XDFLD

statement.
constant character value for CONST keyword on XDFLD

statement.
nullValue character value for NULLVAL keyword on XDFLD

statement.
symbolic boolean value for POINTER keyword on LCHILD

statement. TRUE is SYMB, FALSE is INDX.
xdfldName character name of XDFLD statement.
lchildDBDname character name of logical child DBD.
lchildSegmName character name of logical segment DBD.
lchildPairDBDname character name of DBD for logical pair.
lchildPairSegmName character name of logical pair segment (PAIR= on

LCHILD statement).
lcPointer character value for POINTER keyword on LCHILD

statement - values are SNGL, DBLE, NONE
rules character value for RULES keyword - values are FIRST,

LAST, HERE
lparentDBDname character name of logical parent DBD.
lparentSegmName character name of logical parent DBD.
counter boolean flag to specify addition of CTR to segment

POINTER= keyword
lparent boolean flag to specify addition of LPARNT to

segment POINTER= keyword

Appendix F. Views and Attributes of Object Types 205

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
ltwin character value of logical twin pointers for segment

POINTER= keyword - can be LTWIN or
LTWINBWD

virtualParent boolean VIRTUAL or PHYSICAL for logical parent
statement

pairDBDname character name of DBD that has segment paired to this
segment

pairSegmName character name of segment paired to this segment
(SOURCE= keyword).

fieldName character name of field (NAME= keyword).
sequenceField boolean flag defining whether the field is a sequence

field (SEQ keyword)
uniqueSequence boolean Flag defining whether the sequence field is

unique. TRUE corresponds to parameter value
of ’U’. This value is ignored when
sequenceField is FALSE.

fieldLabel character type of description
fieldDescription character description of field
defaultName character default name of data item attached to this

field.
offsetFromLevel01 integer 1 less than the start position for the field

(STARTPOS= keyword).
pSharedElement..DAQDataElement relationship to shareable data element that

holds data for the data item.
pSharedStructure..DAQDataStructure relationship to shareable data structure that

holds data for the data item.
diName1 character Local name for data item stored in a data

element type of alias.
diName2 character Local name for data item stored in a data

element type of alias.
isConstant boolean flag
asBitData boolean flag indicating character string should be

treated as bit (binary) data
genericPicture character language-independent picture
isComplex boolean flag indicating real or complex number
isSigned boolean flag indicating unsigned or signed number
isLOB boolean flag indicating string is a large object (LOB)
numericPrecision smallint numeric precision in bits or digits depending

on data type
scale smallint position of binary or decimal point

206 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
strLength integer maximum length of string data in bits, bytes

or double-bytes
strVaryingFlag integer indication of variable length string: 0-varying,

1-varyingZ (PL/I), 2-nonvarying
typeCode integer data type code: 0-binary number, 1-packed

decimal, 2-zoned decimal, 3-binary floating
point, 4-decimal floating p string,
7-double-byte character, 8-mixed
double/single-byte, 9-date, 10-time,
11-timestamp, 12-index (COBOL),
13-undefined, 14-rowid (Oracle), 15-

DAQindexDBD
dbdName character name of Data Base Definition (DBD)
accessMethod character DBD access method - expected to be HDAM

for this view
versionString character value for VERSION= keyword
passwordFlag boolean Flag for PASSWD keyword. TRUE for

PASSWD=YES, FALSE for PASSWD=NO.
dosCompatibility boolean Flag for DOSCOMP keyword.
protect boolean Flag for PROTECT keyword.
pcbName character name of PCB based on this DBD
psbName character name of PSB containing a PCB based on this

DBD
dbdLabel character type of description
dbdDescription character description of DBD
usesDataStructure character name of ShareableDataStructure that maps a

segment in this DBD.
usesDataElement character name of ShareableDataElement that is used as

a Field by this DBD.
ddName1 character DDname for primary file (DD1= keyword)
ddName2 character DDname for overflow file (OVFLW= keyword)
dsDevice character Type of data storage hardware (DEVICE=

keyword). Supported values are 2305, 2319,
3330, 3340, 3350, 3375, 3380,

dsModel character Model of data storage hardware (MODEL=
keyword). Supported values are ″1″, ″2″, ″11″.
The value here is relevant only when the
dsDevice is ″3330″ or ″2305″.

inputRecordLength integer Record length of primary file (first parameter
for RECLEN= keyword)

Appendix F. Views and Attributes of Object Types 207

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
outputRecordLength integer Record length of overflow file (second

parameter for RECLEN= keyword)
size1 integer Primary record size (first parameter for SIZE=

keyword)
size2 integer Overflow record size (second parameter for

SIZE= keyword)
primaryBlockingFactor integer Primary file blocking factor (first parameter

for BLOCK= keyword)
overflowBlockingFactor integer Overflow file blocking factor (second

parameter for BLOCK= keyword)
segmentName character name of segment (NAME= keyword).
maximumLength integer length of segment (BYTES= keyword).
frequency character segment frequency (FREQ= keyword).
mappingStruct..DAQDataStructure relationship to shareable data structure that

maps the segment.
segmLabel character type of description
segmDescription character description of segment
logSegmName character name of logical segment that uses this

segment as its source.
logDBDname character name of logical DBD with a segment that uses

this segment as its source.
hidamDBDname character name of primary index target DBD
hidamRootName character name of primary index target segment
indexedFieldName character name of sequence field in primary index

target segment
targetDBDname character name of primary index target DBD
targetSegmName character name of primary index target segment
ddataFieldName character name of duplicate data fields on XDFLD

statement.
searchFieldName character name of search fields on XDFLD statement.
subseqFieldName character name of subsequence fields on XDFLD

statement.
sourceSegmName character name of index source segment on XDFLD

statement.
exitRoutine character name of suppression routine on XDFLD

statement.
constant character value for CONST keyword on XDFLD

statement.
nullValue character value for NULLVAL keyword on XDFLD

statement.

208 Dictionary and Designer User’s Guide

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
symbolic boolean value for POINTER keyword on LCHILD

statement. TRUE is SYMB, FALSE is INDX.
xdfldName character name of XDFLD statement.
fieldName character name of field (NAME= keyword).
sequenceField boolean flag defining whether the field is a sequence

field (SEQ keyword)
uniqueSequence boolean Flag defining whether the sequence field is

unique. TRUE corresponds to parameter value
of ’U’. This value is ignored when
sequenceField is FALSE.

fieldLabel character type of description
fieldDescription character description of field
defaultName character default name of data item attached to this

field.
offsetFromLevel01 integer 1 less than the start position for the field

(STARTPOS= keyword).
pSharedElement..DAQDataElement relationship to shareable data element that

holds data for the data item.
pSharedStructure..DAQDataStructure relationship to shareable data structure that

holds data for the data item.
diName1 character Local name for data item stored in a data

element type of alias.
diName2 character Local name for data item stored in a data

element type of alias.
isConstant boolean flag
asBitData boolean flag indicating character string should be

treated as bit (binary) data
genericPicture character language-independent picture
isComplex boolean flag indicating real or complex number
isSigned boolean flag indicating unsigned or signed number
isLOB boolean flag indicating string is a large object (LOB)
numericPrecision smallint numeric precision in bits or digits depending

on data type
scale smallint position of binary or decimal point
strLength integer maximum length of string data in bits, bytes

or double-bytes
strVaryingFlag integer indication of variable length string: 0-varying,

1-varyingZ (PL/I), 2-nonvarying

Appendix F. Views and Attributes of Object Types 209

Table 7. Views and Attributes of Object Types (continued)
View / Attribute Name Data Type Description
typeCode integer data type code: 0-binary number, 1-packed

decimal, 2-zoned decimal, 3-binary floating
point, 4-decimal floating p string,
7-double-byte character, 8-mixed
double/single-byte, 9-date, 10-time,
11-timestamp, 12-index (COBOL),
13-undefined, 14-rowid (Oracle), 15-

DAQlogicalDBD
dbdName character name of Data Base Definition (DBD)
accessMethod character DBD access method - expected to be

LOGICAL for this view
versionString character value for VERSION= keyword
pcbName character name of PCB based on this DBD
psbName character name of PSB containing a PCB based on this

DBD
dbdLabel character type of description
dbdDescription character description of DBD
segmLabel character type of description
segmDescription character description of segment
segmentName character name of segment (NAME= keyword).
parentSegmName character name of parent segment (PARENT= keyword).
sourceSegmName character name of physical segment that is the source of

this segment.
sourceDBDname character name of physical DBD on which this DBD is

based.

210 Dictionary and Designer User’s Guide

Appendix G. Actions and Rules

This appendix contains two tables that show the actions and underlying rules
DataAtlas Designer associates with any object type and function (for example,
“table” and “inform”) you submit to it.

The first table, “Object Types, Functions, and Actions,” associates only actions
with object types and functions. The rightmost column of the table contains
rule IDs that index into the second table, “Rule Explanations.” This table
explains the rules that determine what DataAtlas Designer informs you of,
what it considers invalid, what it proposes to do, and how it carries out
proposals.

The “Rule Explanations” table also contains a “Version” column. It tells you
the lowest level release of DB2/390 a rule applies to. In some cases, the
column specifies that the rule applies to only one version of DB2/390.

Object Types, Functions, and Actions

Table 8. Object Types, Functions, and Actions
Object Type Function Action Rule ID
Column Inform Identify columns with data type problems COLI01

COLI02
COLI03

Identify columns with missing design information COLI04
Database Inform Identify databases with defaults DBSI01

DBSI02
Identify databases with performance problems DBSI03

DBSI04

© Copyright IBM Corp. 1996, 1997 211

Table 8. Object Types, Functions, and Actions (continued)
Object Type Function Action Rule ID
Index Inform Identify indexes that can result in increased maintenance

cost
INXI01
INXI02
INXI03
INXI04

Identify indexes that could be dropped INXI05
Identify Indexes with default values INXI06

Propose Calculate space requirements INXP01
INXP02
INXP03
INXP04
INXP05
INXP06

Set options INXP07
Validate Identify indexes with column inconsistencies INXV01

INXV02
INXV03

Storage group Inform Identify storage groups with SMS usage STGI01
Propose Calculate required space STGP01
Validate Identify storage groups with invalid definitions STGV01

STGV02
Identify incomplete storage groups STGV03

STGV04

212 Dictionary and Designer User’s Guide

Table 8. Object Types, Functions, and Actions (continued)
Object Type Function Action Rule ID
Table Inform Identify tables with default values TBLI01

TBLI02
Identify tables with potential column problems TBLI03
Identify tables with potential primary key problems TBLI04

TBLI05
TBLI06

Identify tables with missing design problems TBLI07
TBLI08

Identify tables with an explicit clustering index TBLI09
Identify large tables TBLI10
Calculate wasted space TBLI11

Propose Assign table to table space TBLP01
TBLP02
TBLP03
TBLP04

Create primary key TBLP05
Create foreign keys TBLP06
Create index TBLP07

TBLP08
TBLP09
TBLP10
TBLP11
TBLP12
TBLP13
TBLP14
TBLP15

Create partitioning index for partitioned table TBLP16
Validate Identify tables with invalid primary/foreign keys TBLV01

TBLV02
TBLV03
TBLV04
TBLV05
TBLV06
TBLV07
TBLV08
TBLV09

Identify tables with column inconsistencies TBLV10
TBLV11

Identify incomplete tables TBLV12

Appendix G. Actions and Rules 213

Table 8. Object Types, Functions, and Actions (continued)
Object Type Function Action Rule ID
Table spaces Inform Identify table spaces with default values TSPI01

TSPI02
TSPI03
TSPI04
TSPI05
TSPI06
TSPI07
TSPI08

Identify table spaces with design inconsistencies TSPI09
TSPI10
TSPI11
TSPI12
TSPI13
TSPI14

Propose Calculate space requirements TSPP01
TSPP02
TSPP03
TSPP04

Calculate the segment size TSPP05
Set options TSPP06

TSPP07
TSPP08
TSPP09
TSPP10

Validate Identify Invalid table spaces assigned to DS NDB07 TSPV01
Identify invalid table spaces TSPV02

TSPV03
Identify incomplete table spaces TSPV05

TSPV05

Rule Explanations

Table 9. Rule Explanations
Rule ID Version Rule explanation
COLI01 V3 Tables are identified that have variable-length columns with a length of

<18> bytes. When you use a variable-length column, the range should be
sufficiently large. If the variable-length is less than or equal to <18> it is
recommend that you use a fixed-length column instead of a variable-length
column. (Valid: 1 - 127).

214 Dictionary and Designer User’s Guide

Table 9. Rule Explanations (continued)
Rule ID Version Rule explanation
COLI02 V3 Tables are identified that have variable-length columns for which the

difference between maximum and average length is too low. It is
recommended that you use a fixed-length column instead of a
variable-length column if the difference between the average length and the
maximum length of variable-length column is 20% of its maximum length,
and the maximum length is less than or equal to 254 bytes.

COLI03 V3 Tables are identified that have columns with data type GRAPHIC,
VARGRAPHIC, or LONGVARGRAPIC. These data types should only be
used if a column contains double-byte character.

COLI04 V3 Missing data load or work load is identified for the columns of a table.
Some design proposals cannot be processed if data load or work load
specifications are incomplete.

DBSI01 V3 If no buffer pool is specified, the DB2 default (BP0) is used.
DBSI02 V3 If no storage group is specified, the DB2 default (SYSDEFLT) is used.
DBSI03 V3 If a database has table spaces assigned with usage intent QMF and the

database usage intent is different, there can be performance problems. QMF
users who create their own tables should be allowed to maintain their own
databases.

DBSI04 V3 If the buffer pool assigned to the database has no size value, or if the
buffer pool is a 32KB buffer pool, there can be performance problems. If
the buffer pool is a 32KB buffer pool, BP0 is used as default for all
assigned indexes. For all other tables, a 32KB buffer has a negative
performance impact. If the assigned buffer pool has no size value, you
should check if table spaces or indexes using this buffer pool should be
reassigned to an appropriate buffer pool.

INXI01 V3 Index columns with an UPDATE frequency greater than X (X=<6>) are
identified. If index columns with an UPDATE frequency greater than X
(X=<6>) (Valid: 1 - 10) are used, maintenance could be more time and cost
consuming.

INXI02 V3 Index columns with variable-length data types are identified. Maintenance
is more time and cost consuming if the index columns have these
variable-length data types: VARCHAR, LONG VARCHAR, VARGRAPHIC,
LONG VARGRAPHIC.

INXI03 V3 Index are identified whose row length is greater than 40 bytes.
Maintenance is more time and cost consuming if the index row length is
greater than 40 bytes (Valid: 1 - 111). Index columns longer than 40 bytes
build multilevel indexes and require additional I/O.

INXI04 V3 Indexes are identified where the number of referenced table rows is very
small and where there is only little access to them. An index should be
dropped if the table is too small and if the table frequency values are too
low for the UPDATE, INSERT, DELETE and SELECT operation.

Appendix G. Actions and Rules 215

Table 9. Rule Explanations (continued)
Rule ID Version Rule explanation
INXI05 V3 Index columns are identified whose number of distinct values is too low.

An index should be dropped if the number of distinct values for the first
column is less that <10> (valid: 1 - 999999999) for a nonclustered index.

INXI06 V4 The index type has not been specified. The installation default (if any) or
type 2 will be assumed.

INXP01 V3 The FREEPAGE values for the index space is calculated based on the
average workload of the corresponding table. If table design information is
missing, the default is proposed, Default: <0> (Valid: 0 - 255)

INXP02 V3 The PCTFREE value for the index space is calculated based on the
workload of the corresponding table. If table design information is missing,
the default is proposed. Default: <10> (Valid: 0 - 99)

INXP03 V3 The number of subpages is calculated based on the workload of the
corresponding table and the usage intent of the corresponding table space.
If the table work load information is incomplete or if the table space usage
intent is missing, the default is used for the SUBPAGES value. Default for a
type 1 index: <4> (Valid: 1, 2, 4, 8, 16). For a type 2 index, the number of
subpages is always 1.

INXP04 V3 Only The PRIQTY value for the index space is calculated based on the index
length, the number of SUBPAGES, the values for FREEPAGE and
PCTFREE, the dataload of the corresponding table, and the number of
distinct values of the index columns. If you did not also request the
calculation of the FREEPAGE, PCTFREE, or SUBPAGES values with this
proposal, the proposed PRIQTY value is based on the current table space
values for FREEPAGE, PCTFREE, and SUBPAGES. Default: <12> KB (Valid:
12 - 4194304)

INXP05 V3 The SECQTY value for the index space is calculated based on the PRIQTY
value and the confidence factor. If you did not request the proposal for the
SECQTY value, the proposed SECQTY value is based on current table
space value for PRIQTY. Default: <12> KB (Valid: 12 - 131068)

INXP06 V4 The PRIQTY value for the index space is calculated based on the index
length, the values for FREEPAGE and PCTFREE, the dataload of the
corresponding table, and the number of distinct values of the index
columns. If you did not also request the calculation of the FREEPAGE or
PCTFREE with this proposal, the proposed PRIQTY value is based on the
current table space values for FREEPAGE and PCTFREE. The PRIQTY
value has been adjusted for large table spaces in DB2/390 Version 5.
Default: <12> KB (Valid: 12 - 4194304)

INXP07 V3 The ERASE option of the index is set if the Security option is set for the
corresponding table. The ERASE option ensures that, before the index is
dropped, DB2 overwrites with zeros all data sets related to the index that
may contain confidential data.

INXV01 V3 An index is invalid if the number of columns exceeds 64.

216 Dictionary and Designer User’s Guide

Table 9. Rule Explanations (continued)
Rule ID Version Rule explanation
INXV02 V3 Only An index is invalid if the index row length exceeds the maximum row

length. The maximum row length depends on the number of SUBPAGES
and the UNIQUE indicator.

INXV03 V4 An index is invalid if the index row length exceeds the maximum row
length.

STGI01 V3 If the VOLUMES attribute is set to '*', the Storage Management System
(SMS) is used. In this case, SMS manages all data sets created for the
storage group.

STGP01 V3 The required space value for a storage group is calculated, based on the
storage requirement values of the table spaces and indexes assigned to the
storage group. The storage requirement is defined as : PRIQTY + (<1> *
SECQTY). (Valid: 0 - 999999999) If PRIQTY and SECQTY values are not
available, defaults are used.

STGV01 V3 A storage group definition is invalid if a volume serial number is specified
more than once.

STGV02 V3 A storage group definition is invalid if the attribute VOLUMES is set '*'
and the usage of the Storage Management System (SMS) is set to 'NO'. An
asterisk for the VOLUMES attribute indicates the usage of the Storage
Management System (SMS). On the other hand, the specification of the
volume serial numbers indicates storage management by the user.

STGV03 V3 A storage group is incomplete if the required space value is not yet
calculated. The value is used as a base for requesting volume IDs.

STGV04 V3 A storage group is incomplete if no volumes are defined for the storage
group and SMS is not used.

TBLI01 V3 Tables are identified for which the AUDIT option is not specified. If the
AUDIT option is not specified, the DB2 default NONE is used. No audit
trail is produced.

TBLI02 V3 Tables are identified for which the DATA CAPTURE option is not specified.
If the DATA CAPTURE option is not specified, the DB2 default NONE is
used.

TBLI03 V3 Tables are identified in which variable-length columns precede fixed-length
columns. When variable-length columns occur at the beginning of a row, it
is more difficult to calculate the positions of subsequent fixed-length
columns. It is recommended that you change the column order such that
the variable-length columns occur at the end of a row.

TBLI04 V3 Tables without a primary key are identified. To establish relationships
between parent tables and dependent tables, you need to specify a primary
key in parent tables.

Appendix G. Actions and Rules 217

Table 9. Rule Explanations (continued)
Rule ID Version Rule explanation
TBLI05 V3 Primary keys with default values are identified. Primary key columns

defined as 'NOT NULL WITH DEFAULT' and with a data type other that
TIMESTAMP can cause problems, because only one zero or blank row with
default values is allowed.

TBLI06 V3 Primary key columns with an UPDATE frequency greater than 0 are
identified. Avoid using primary key columns that are updated because they
can cause integrity constraint problems at run time. Primary key values in
rows that have at least one dependent must not be changed.

TBLI07 V3 Tables or table partitions with missing data load or work load information
are identified. Some design proposals cannot be processed if data load or
work load specifications are incomplete.

TBLI08 V3 Tables are identified for which the Security option is not set. It is possible
to process the proposal for the ERASE option of the table’s table space and
index only if the Security option is set for a table.

TBLI09 V3 Tables are identified for which no explicit clustered index is created. If
none of the table’s indexes is explicitly created as clustered, DB2 defines
the first index of a table as clustered.

TBLI10 V3 The number of table space pages required by a table is calculated. If the
required space of a table exceeds <10000> pages, it is recommended that
you use a partitioned table space for it.

TBLI11 V3 The total amount of wasted space is calculated using the following input
values:

v Usable page size (4K or 32K pages)

v Initial number of rows per table (required)

v Growth rate, DELETE rate, and maintenance period (optional)

v PCTFREE, FREEPAGE (optional)

v Compress option set or not set

v Row length of the table (calculated)

If any of the required information is missing, wasted space cannot be
calculated.

TBLP01 V3 If n partitions are defined for the table, a table space with n partitions is
created. The partitioned table is assigned to the partitioned table space.

TBLP02 V3 A medium-sized table is assigned to a single-table segmented table space.
A medium sized table is assumed to be a table with a storage requirement
of between <1000> and <10000> pages. (Valid: 1 - 999999999). The required
pages are calculated based on the value for the initial number of rows and
the table’s row length.

218 Dictionary and Designer User’s Guide

Table 9. Rule Explanations (continued)
Rule ID Version Rule explanation
TBLP03 V3 If a small table that is not partitioned has key relationships to tables that

are assigned to multi-table segmented table spaces, these table space are
proposed for assignment of the small table. From the list of proposed table
spaces, select the table space to which you want to assign the small table.
For a small table without any key relationships, a new table space is
proposed. The size of a small table is less than the lower limit of a
medium-sized table.

TBLP04 V3 By default, a table is assigned to a simple table space.
TBLP05 V3 For the creation of a primary key, all of the unique columns are proposed.

From the list of proposed unique columns, select the columns on which
you want to define the primary key.

TBLP06 V3 For the creation of a foreign key, a list of potential foreign keys is
proposed. Potential foreign keys fulfill the following criteria:

v If they have the same data type as primary key columns of another table

v If they have the same number of distinct values as primary key columns
of another table.

From the list of proposed foreign keys, select the appropriate ones.
TBLP07 V3

Filter criterion: If you selected to create an index, create the index only on
columns with the highest number of distinct values. If no design
information is available, all columns have the same priority. This rule does
not apply to the creation of partitioning indexes, or when an index is
created on the basis of existing primary, foreign, or unique indexes.

TBLP08 V3
Filter criterion: If you selected to create an index, create the index only if
the number of table rows is greater than X (X=<100>) and the number of
existing indexes is less than Y (Y=<5>) (Valid: 1 999999999). The values of
X and Y depend on the relationships between the table frequency values
for the INSERT, DELETE, and SELECT operation.

TBLP09 V3 If a table has a primary key, a unique index is created on all primary key
columns.

TBLP10 V3 For each unique key of a table, a unique index is created on all of the
corresponding unique key columns.

TBLP11 V3
Filter criterion: If you selected to create and index, create the index only on
the columns with the lowest UPDATE frequency. Columns without design
information on the update rate have the lowest priority. This rule does not
apply to the creation of partitioning indexes. This rule does not apply to
the creation of partitioning indexes or when an index is created on the
basis of existing primary foreign or unique keys.

Appendix G. Actions and Rules 219

Table 9. Rule Explanations (continued)
Rule ID Version Rule explanation
TBLP12 V3 If no clustered index is created on the table, a clustered index is created on

the columns of the foreign key with the maximum frequency of join
operations on its columns. A nonclustered index is created on the columns
of the remaining foreign keys.

TBLP13 V3 An index is created on columns with a high value for the frequency of the
Sorting operation. (Value > <6>). Valid 0 - 10).

TBLP14 V3 An index is created on columns frequently used in join predicates. (Value >
<3>). (Valid 0 - 10).

TBLP15 V3 An index is created on columns with a high value for the frequency of the
WHERE clause. (Value > <3>). (Valid 0 - 10).

TBLP16 V3 If a partitioned table is assigned to a partitioned table space, a partitioning
clustered index is created. A partitioning clustered index can only be
created if the table and table space have the same number of partitions.

TBLV01 V3 The primary key of a table is invalid if there is no unique index on the
primary key columns.

TBLV02 V3 The key of a table (primary, foreign, or unique) is invalid if the number of
key columns exceeds 64.

TBLV03 V3 The primary key or the unique key of a table is invalid if the sum of the
length attributes exceeds 254.

TBLV04 V3 The foreign key of a table is invalid if the sum of the length attributes
exceeds 254-n, where n is the number of columns that allow NULL values.

TBLV05 V3 The foreign key of a table is invalid if the referenced table has no primary
key.

TBLV06 V3 The foreign key of a table is invalid if the number of foreign key columns
do not match the number of primary key columns of the parent table.

TBLV07 V3 The foreign key of a table is invalid if the program name of the field
procedures exit routine (FieldProc) and the parameters passed on to it
differ between the foreign key columns and the primary key columns of
the parent table.

TBLV08 V3 The foreign key of a table is invalid if the data types of the foreign key
columns do not match the data types of the primary key columns of the
parent table.

TBLV09 V3 The primary key of a table is invalid if one of the primary key columns
allows NULL values.

TBLV10 V3 The definition of a table is invalid if the sum of byte count values of the
columns exceeds the table maximum row size. The maximum row size of a
table depends on the page size of the assigned buffer pool and on whether
the edit procedure (EditProc) is specified.

220 Dictionary and Designer User’s Guide

Table 9. Rule Explanations (continued)
Rule ID Version Rule explanation
TBLV11 V3 The definition of a column is invalid if the column data type is VARCHAR

with a length value greater than 254 and the field procedure exit routine
FieldProc is specified, or if the column data type is VARGRAPHIC with a
length value greater than 127 and the field procedure exit routine
(’FieldProc’) is specified.

TBLV12 V3 The definition of a table is incomplete if no columns are defined for the
table.

TSPI01 V3 If the table space is not assigned to a database, the DB2 default database
DSNDB04 is used.

TSPI02 V3 If no buffer pool is specified for the table space, the buffer pool of the
database is used. If the database has no buffer pool the DB2 default buffer
pool BP0 is used.

TSPI03 V3 If the locking size value is not specified, the DB2 default ANY is used.
TSPI04 V3 If neither storage group not VCAT is specified, the storage group assigned

to the database is used. If no storage group is assigned to the database, the
DB2 default storage group SYSDEFLT is used. Note that if you use the
default storage group, the table space is restricted to the default space
allocation.

TSPI05 V3 If the Close option is not specified, the DB2 default NO (not set) is used. If
the limit of open files in your DB2 subsystem is reached, you should set
the Close option.

TSPI06 V3 If the Compress option is not specified, the DB2 default NO (not set) is
used. Before you set the compress option, you should carefully consider
the following:

v Compression increases processing costs.

v Only tables with similar kinds of data should be put into the same table
space.

v For small table spaces, the size of the compression dictionary (8 KB to 64
KB) can offset the space savings provided by the compression.

TSPI07 V3 If FREEPAGE is not specified, the DB2 default 0 is used. For read-only
tables, FREEPAGE 0 is appropriate. For tables with a high INSERT
frequency or updates that lengthen the row, a higher amount of
FREEPAGE is useful because the table rows are stored closer together. This
applies especially to tables that have columns with variable-length data
types. The drawback is the higher amount of space needed.

TSPI08 V3 Table space with a default PCTFREE value are identified. If PCTFREE is
not specified, the DB2 default 5 is used. For read-only tables, PCTFREE is
appropriate. For tables with a higher INSERT frequency, a higher amount
of PCTFREE is useful, because the table rows will be stored together. This
applies especially to tables that have columns with variable-length data
types. The drawback is the higher amount of space needed.

Appendix G. Actions and Rules 221

Table 9. Rule Explanations (continued)
Rule ID Version Rule explanation
TSPI09 V3 A table space has a potential design problem if a simple table space has

more than one table assigned. Consider using a segmented table space
instead.

TSPI10 V3 The database DSNDB07 is a special DB2 database for temporary work file
table spaces. They are used by DB2 for sorting. To distribute I/Os, each
temporary work file table space should be assigned to a different volume.
Other frequently used data sets should not be placed on the same volume.
In addition to the defaults set by DB2, additional temporary work file table
space should be defined.

TSPI11 V3 A table space assigned to storage group SYSDEFLT should only be used for
prototyping or test purposes.

TSPI12 V3 Partitioned table spaces with no matching partitioned tables are identified.
The partitioning information of a table space should be checked if a
partitioned table space has a NUMPARTS value that does not match the
number of table partitions of the assigned table.

TSPI13 V4 All indexes on all tables in a table space must be a type 2 to use row-level
locking. A table space has a potential design problem if LOCKSIZE=ROW
is specified and any index defined on any table in the table space is not a
type 2 index.

TSPI14 V5 A type 1 index is not allowed for a table in a large table space.
TSPP01 V3 The FREEPAGE value is calculated based on the average workload of the

assigned tables. Default: <0> (Valid: 0 - 255)
TSPP02 V3 The PCTFREE value is calculated based on the average workload of the

assigned tables. Default: <5> (Valid: 0 - 99)
TSPP03 V3 THE PRIQTY value is calculated based on the space requirements of all

assigned tables. The space requirement of a table depends on: the data
load, the row length, FREEPAGE and PCTFREE values and the assigned
buffer pool. If the calculation of the values for FREEPAGE and PCTFREE is
not requested for this proposal, the proposed PRIQTY value is based on
the current table space values for FREEPAGE and PCTFREE. Default: 4K
pages, <12> KB; 32K pages, <96>KB (Valid: 12 - 4194304)

TSPP04 V3 THE SECQTY value is calculated based on the PRIQTY value and the
confidence factor. If the calculation of the PRIQTY value is not requested
with this proposal, the proposed SECQTY value is based on the current
table space value for PRIQTY. Default: 4K pages, <12> KB; 32K pages,
<96> KB (Valid: 12 - 131040)

222 Dictionary and Designer User’s Guide

Table 9. Rule Explanations (continued)
Rule ID Version Rule explanation
TSPP05 V3 A SEGSIZE value greater than 0 indicates that the table space is

segmented. If the SEGSIZE value of an existing segmented table space is
changed, the existing table space must be dropped and a new one must be
created. The proposed SEGSIZE value depends on the size of the largest
table in the table space.

Size of table <= 28 pages : SEGSIZE 4 to 28

Size of table < 128 pages : SEGSIZE 32

Size of table >= 128 pages : SEGSIZE 64

Default <4> (Valid n*4 where n is 1 - 16)
TSPP06 V3 The Close option default is <NO>. (Valid: NO, YES)
TSPP07 V3 If the Security option is set for at least one table assigned to a simple or

segmented table space, the ERASE option is set too. Otherwise, the ERASE
option is NOT set. For partitioned table spaces the ERASE option is set
according to the Security option setting in the table partition. If the
Security option is not set for all tables assigned to the table space, the
default value is set for the ERASE option. Default: <NO>

TSPP08 V3 Only The Locking size value ’TABLESPACE’ should be used if all assigned
tables are read-only or if the concurrency is low. The Locking size value
’ANY’ should be used if the concurrency is medium or high.

Read only means that INSERT, UPDATE, and DELETE frequency values
are 0. A partitioned table is read-only if all partitions are read-only. The
concurrency of a partitioned table is low if the concurrency value on all
partitions is low.

TSPP09 V4 Propose LOCKSIZE=TABLESPACE, if all assigned tables are read only, else,
LOCKSIZE=ANY is proposed. Read only means, that insert, update and
delete frequency values are 0; A partitioned table is read only if all
partitions are read only. Propose LOCKSIZE=ROW, if all assigned tables
are updated randomly. If design information is mising, the default value
for the locking size is proposed which is ANY.

TSPP10 V3 If there is a table in the TS with row length > 4056 Bytes, a 32K buffer pool
is proposed. If no buffer pools are available, the DB2 default buffer pool is
used: Default: 4K pages, <BPO>; 32K pages, <BP32K>

TSPV01 V3 A table space assigned to the database DSNDB07 is invalid if one or all of
the following parameters are specified:

NUMPARTS

FREEPAGE

PCTFREE
TSPV02 V3 A nonsegmented table space is invalid if the value of the locking size is

’TABLE’.

Appendix G. Actions and Rules 223

Table 9. Rule Explanations (continued)
Rule ID Version Rule explanation
TSPV03 V3 A partitioned table space is invalid if the table assigned to the table space

has no partitioning index.
TSPV04 V3 A table space is incomplete if there is no table assigned.
TSPV05 V3 A table space is incomplete if no volume identifiers are specified for the

assigned storage group.

224 Dictionary and Designer User’s Guide

Appendix H. Performance Considerations

Certain DataAtlas operations, described below as “CPU-intensive,” may
degrade the performance of other DataAtlas operations that would otherwise
perform well. If many users will be active in DataAtlas concurrently, schedule
CPU-intensive operations for a time when the expected user load will be light.

In each execution of DataAtlas, there is an initial overhead for the first access
of each object type in the TeamConnection database. Later accesses do not
incur this overhead.

If you run the DataAtlas client on a separate machine from your
TeamConnection server, the performance of most DataAtlas tasks will
improve.

With the TeamConnection server on its own machine, set the
OS_CACHE_SIZE environment variable for the TeamConnection server
daemons to total at least half the total memory of the machine, but leave at
least 16MB available. For example, on a server machine with 64MB RAM with
two server daemons, set OS_CACHE_SIZE for each daemon to at least 16MB
(16MB*2 is half of 64MB) but no more than 24MB (24MB*2 is 48MB, which
leaves 16MB). This will improve the performance of the largest DataAtlas
tasks, such as populates and Modeler transforms.

Populating

Populating can be quite CPU-intensive, depending on the number of objects
being populated. To obtain adequate performance during a populate
operation, close any workfolders that contain objects used during the
operation. This allows DataAtlas to clean up the local cache memory as the
operation progresses.

Maintenance

Opening notebooks for certain DB2/390 objects also loads information for
related objects into local memory. For example, opening an index loads
information about the related table; opening a table loads other tables for
which it has a foreign key. Retrieving this additional information slows the
performance of opening the notebook. However, after the additional
information is in local memory, the performance of opening the related objects
improves.

© Copyright IBM Corp. 1996, 1997 225

Objects that are generated or viewed via their notebooks may take up space in
local memory while a workfolder is open, and performance is degraded over
time. Periodically close your workfolders to clean up local memory. This
practice improves performance and saves the state of the workfolders. Also,
close and restart DataAtlas each day for a complete local memory cleanup.

Queries

Queries that involve many DataAtlas objects or that span many objects can be
very CPU-intensive. To get the best performance from your SQL queries, write
queries that reference only the columns you are interested in. A few view
types have hundreds of columns, so returning all the columns can be slow.
For example:

1) SELECT d.* FROM OUTER DataAtlasDBD d; --> potentially long-running
2) SELECT d.rootDBDname FROM OUTER DataAtlasDBD d; --> faster query

Designer

These DataAtlas Designer activities are CPU-intensive:
v Concurrent propose, validate, or inform tasks on many objects
v The Propose Foreign Key task on a given table when the physical design

contains many tables
v Opening a physical design group (DB2/390 table, DB2/390 table space, and

so on) with more than 50 objects in the group

Modeler

DataAtlas Modeler”s forward and reverse transform operations can be very
CPU-intensive. If a model has more than 100 entities, do these operations on a
client machine with more than 32MB RAM.

226 Dictionary and Designer User’s Guide

Glossary

active window. The window currently in use. It
receives keyboard input and is distinguishable by
the unique color of its title bar and window
borders.

build. The process used to create applications
within TeamConnection.

build script. An executable or command file
that specifies the steps that should occur during
a TeamConnection build operation.

build tree. A graphical representation of the
dependencies that the parts in a TeamConnection
application have on one another. If you change
the relationship of one part to another, the build
tree changes accordingly.

data definition. Data that describes data, also
known as “metadata.” In relational database
systems, tables, table spaces, indexes, views,
storage groups, synonyms, and aliases have data
definitions. In IMS, DBDs and PSBs have data
definitions. In COBOL and PL/I, COPY files and
include files have them.

data component. A data element or a data
structure.

data element. The most elementary data
type—for example, a field in an IMS segment or
a column in a relational table.

data structure. A collection of data elements.

dot-dot operator. TeamConnection SQL notation
that expresses linkage in queries.

generate. To produce a data definition for use in
an operating environment by using object
information in the TeamConnection database.

HLL. High-level language.

included source definition. An object that
defines an included source file. For COBOL, an
included source file is a COPY file; for PL/I, an
include file.

local data component. A local data element or a
local data structure.

local data element. The smallest unshared data
unit within a data definition; for example, a
relational table column, an IMS database field, or
a COBOL or PL/I elementary item.

local data structure. An unshared data structure
containing local data elements.

mapping table. A table that shows associations
between local data components and shareable
data components. See also prototype mapping table.

object data model. A data model in which data
is represented as objects that have attributes and
relationships between objects.

populate. To import a data definition into the
TeamConnection database from an external
source.

prototype mapping table. A mapping table
DataAtlas produces when the mapping table
being used has no entries for some of the local
data components being processed. It’s a
prototype because the source names and target
names in its entries are identical; you’ll probably
want to differentiate the names of your shareable
data components.

query. A request for information from the
TeamConnection database qualified by specified
conditions.

reconcile. To replace newly populated data
items with references to shareable objects.

© Copyright IBM Corp. 1996, 1997 227

relational data model. A data model with a
pattern of organization based on a set of
relations defined in the form of tables, in rows
and columns.

shareable data component. a shareable data
element or a shareable data structure.

shareable data element. A TeamConnection
object that can be used repeatedly to define data
items like relational table columns, IMS database
fields, COBOL elementary items, and PL/I
elementary items.

shareable data structure. A TeamConnection
object that can be used repeatedly to define data
structures like IMS segments, COBOL group
items, and PL/I group items.

shareable table definition. A shareable object
representing the basic definition of a relational
table.

TeamConnection SQL. A superset of the SQL
entry-level standard of 1992. TeamConnection
SQL is based on an object data model, where
data is represented as objects that have attributes
and relationships between the objects.

version. A given family, release, and work area
within TeamConnection.

workfolder. A place for collecting
TeamConnection database objects that belong to
the same version.

228 Dictionary and Designer User’s Guide

Index

A
accepting design proposals 92
access to tables 74
adding

columns to a table 44
data items to a data structure 26

, 48
data items to a shareable data

structure 50
fields to a segment 45
PCBs to a PSB 46
segments to a database 45

adding, data items to a data
structure 22

adding columns 97
alias/synonym

assigning to physical design 136
defining 135
designing 135
specifying general information

135
assigning

alias/synonym to physical design
136

database to physical design 125
database to storage group 125,

129
index to physical design 112
storage group to physical design

128
table space to a database 119
table space to a physical design

118
table to physical design 98
table to table space 103, 121
view to physical design 134

B
buffer pool

design of 77
for database 125
for table space 121
in physical design 72

build script
description 55
editing 145
sample 145
using 145

C
COBOL

build script settings 150
creating objects 22
cross-generation form PL/I 54
generating COPY files 53
populating COPY files 35
sample command file 139
sample files 138

column
adding to a table 97, 44
available design advice and

support 107
creating new 97
data type 108
defining 108
deleting from a table 97, 45
designing 107
in physical design 72
in relational design 71
index 113
setting options 109
specifying data load 109
specifying work load 110
subtype 108
viewing DB2 actuals 110

concurrent development 155
configuring design environment 83
converting IMS object code 33
converting used space value of

storage group 130
creating

COBOL objects 22
columns 97
DB2/390 objects 19
DB2 UDB objects 19
foreign key 101
IMS objects 21
index 102
new database 80
Oracle objects 19
PL/I objects 22
primary key 99
prototype mapping tables 41
relational database objects 19
shareable data components

without reconciling 39
shareable data element 24

creating (continued)
shareable data structures 24
table partitions 103
table space partitions 119
unique key 100

D
data definition language (DDL) 69
data items

adding to a data structure 26,
48

adding to a shareable data
structure 50

deleting from a data structure
23, 49

deleting from a shareable data
structure 51

data items, adding to a data
structure 22

data load
design information 78
for column 109
for table 105
overview 72

data type of column 108
DataAtlas

Designer considerations 30
Help information 8
Main Folder window 7
Modeler considerations 30
Profile notebook 11
tutorial 8

DataAtlas Dictionary 69
DataAtlas Modeler 69
database

assigning to physical design 125
assigning to storage group 125,

129
available design support 123
designing 123
in physical design 72
selecting buffer pool 125
setting options 124
specifying design information

124
specifying general information

124

© Copyright IBM Corp. 1996, 1997 229

database design
concepts 71
knowledge on 74
physical 69, 74
process 69
relational 69, 74
starting from a notebook 86
starting from a physical design

84
with DataAtlas Designer 75

database objects
designing using notebooks 86
optimizing 80
physical 72
relational 71

database system 69
DB/DC Data Dictionary, migrating

definitions from 5
DB2/390

generating 53
sample build script settings 147

DB2/390 sample build script settings
147

DB2/400, using DataAtlas DDL 55
DB2 actual values 78
DB2 UDB

generating 53
populating tables 31
sample build script settings 147
sample files 137

DB2 values
of column 110
of index 115
of storage group 131
of table 106
of table space 121

defining
alias/synonym 135
column 108
index 112
view 133

definitions, generating 53
deleting

columns from a table 45
data items from a data structure

23, 49
data items from a shareable data

structure 51
fields from a segment 46
PCBs from a PSB 46
segments from a database 46

deleting columns 97
design

scenarios 79

design (continued)
using design support 75
using notebooks 75

design actions
selecting 88
tailoring 88

design areas 77
design environment, configuring 83
design information

overview 78
specifying for database 124
specifying for table space 121

design modes 75
design proposals

accepting 92
executing 93
selecting from a choice of 93

design report
evaluating 90
requesting 90

design reports 79
design support

evaluating report 90
for column 107
for database 123
for index 111
for storage group 127
for table 96
for table space 117
overview 75
report 79
requesting from a notebook 88
requesting from a physical design

84
requesting from a workfolder 85
requesting report 90
types of 75

Designer, considerations when
populating 30

designing
alias/synonym 135
column 107
database 123
index 111
set of objects 78
single objects 77
storage group 127
table 95
table space 117
view 133

disassociating shareable data
elements

from a column 45
from a data structure 23, 49

disassociating shareable data
elements (continued)

from a field in a segment 46
from a shareable data structure

51

E
engineering

forward 69
reverse 69

existing database, optimizing 80
extracting DB2 values

for table 106
for table space 121

F
fields

adding to a segment 45
deleting from a segment 46

foreign key in relational design 71
forward engineering 69

G
general information

for alias/synonym 135
for database 124
for index 112
for storage group 128
for table 96
for table space 118
for view 133

generating
data definitions from DataAtlas

53
description text for DataGuide

53
using datatlas.exe build script

145

H
help information 8
HLL cross-generation 54

I
IMS build script settings 150
IMS DBD

populating 33
updating 45

IMS name qualifiers 143
IMS objects

converting to source code 33
creating 21
generating 53

IMS PSB
populating 33

230 Dictionary and Designer User’s Guide

IMS PSB (continued)
updating 46

IMS sample build script settings
150

IMS sample files 138
included source definition 35
index

assigning to physical design 112
available design advice and

support 111
columns 113
creating 102
defining 112
designing 111
in physical design 72
of storage group 129
sorting order 113
specifying general information

112
storage 114
viewing DB2 values 115
viewing partitions 114

index partition
storage 114
type 114

K
key

foreign 101
primary 99
unique 100

L
launching DataAtlas 9
locking considerations 154

M
Main Folder window 7
mapping table

examples of entries 41
prototype 41
structure 39

migrating data definitions 5
model

physical 69
relational 69

Modeler, considerations when
populating 30

modifying
foreign key 101
primary key 99
table partitions 104
unique key 100

N
naming

conventions 12
examples 13
IMS name qualifiers 143
object name qualifiers 141
relational name qualifiers 142

notebooks
design with 75
requesting design support from

88

O
object

creating 19
deleting 27
renaming 153
searching for 15
updating 43

object name qualifiers
IMS qualifiers 143
relational qualifiers 142

online information
DataAtlas help 8
DataAtlas tutorial 8

optimizing
existing database 80
single database objects 80
table layout 98

optimizing access path 102
options

for column 109
for database 124
for table 99
for table space 119

Oracle, sample build script settings
149

Oracle objects, generating 53

P
PCBs

adding to a PSB 46
deleting from a PSB 46

performance considerations 225
physical design

assigning aliases/synonyms to
136

assigning databases to 125
assigning indexes to 112
assigning storage groups to 128
assigning table spaces to 118
assigning tables to 98
assigning views to 134
requesting design support from

physical design (continued)
84

physical designs, generating 53
PL/I

build script settings 151
creating objects 22
cross-generation form COBOL

54
generating include files 53
populating include files 35
sample command file 139
sample files 139
supported data and nondata

attributes 157
populating

COBOL COPY file 35
DB2 UDB tables 31
Designer and Modeler

considerations 30
from DB2 UDB catalogs 31
from workstation directories 33
IMS DBD 33
PL/I include file 35

primary key in relational design 71
Profile notebook

overview 11
version information 12

prototype mapping tables 41

Q
qualifiers

IMS object name 143
prefix 144
relational object name 142

queries
running supplied queries 58
running your own 57
supplied queries 57
writing TeamConnection SQL 61

R
reconcile mapping table samples

139
reconciling similar objects 38
relational database objects, creating

19
relational name qualifiers 142
renaming objects 153
report, design support 90
required space, of storage group

130
reusing objects 38
reverse engineering 69
routines for table 99

Index 231

rules
basis for design support 75
explanations 214
IDs 211
modifying 77
tailoring the set 76

S
sample build script settings

for COBOL objects 150
for DB2 objects 147
for IMS objects 150
for Oracle objects 149
for PL/I objects 151

sample files
COBOL command file 139
COBOL COPY files 138
DB2 UDB 137
IMS 138
PL/I command file 139
PL/I include files 139
reconcile mapping tables 139

scenarios 79
searching

for TeamConnection database
objects 15

from a workfolder 15
segments

adding to a database 45
deleting from a database 46

selecting
buffer pool for database 125
buffer pool for table space 121
from a choice of proposals 93

serial development 155
setting

options for column 109
options for database 124
table space options 119

shareable data component 38
creating without reconciling 39

shareable data element 97, 108
shareable data elements

creating 24
disassociating from a column 45
disassociating from a data

structure 23, 49
value of 24

shareable data structures
creating 24
value of 24

shareable table definition 97
sorting order of index 113

specifying
data load for column 109
data load for table 105
design information for database

124
design information for table

space 121
index columns 113
required space of storage group

130
sorting order of index 113
storage information of storage

group 128
storage of index 114
storage of index partition 114
storage of table space 120
storage of table space partitions

120
table routines and options 99
type of index partition 114
type of table space partitions

120
usage intent of storage group

130
work load for column 110
work load for table 105

storage group
assigning database 129
assigning to physical design 128
available design support 127
converting used space value 130
designing 127
in physical design 72
specifying general information

128
specifying required space 130
specifying storage information

128
specifying usage intent 130
viewing DB2 values 131

storage information, for storage
group 128

storage of index 114
storage of table space 120
storage of table space partition 120
storage of tables 73

T
table 71

assigning to physical design 98
assigning to table space 103, 121
available design advice and

support 96
creating foreign key 101
creating partitions 103

table (continued)
creating primary key 99
creating unique key 100
designing 95
extracting DB2 values 106
in physical design 72
in relational design 71
layout 98
modifying foreign key 101
modifying partitions 104
modifying primary key 99
modifying unique key 100
optimizing layout 98
specifying data load 105
specifying general information

96
specifying routines and options

99
specifying work load 105
viewing shareable definition 97
viewing the columns 97

table partition
creating 103
modifying 104

table space
assigning table 121
assigning tables 103
assigning to a database 119
assigning to a physical design

118
available design support 117
creating partitions 119
designing 117
extracting DB2 values 121
in physical design 72
of database 124
of storage group 129
selecting buffer pool 121
setting options 119
specifying design information

121
specifying general information

118
table space partition

creating 119
storage 120
type 120

tables, relationship between 69
TeamConnection

build script 55
cache and workfolders 153
concurrent development 155
considerations 153
locking 154

232 Dictionary and Designer User’s Guide

TeamConnection (continued)
serial development 155
setup overview 10

TeamConnection SQL queries 61
trial run

making a prototype mapping
table 41

running 37
tutorial for DataAtlas 8

U
unique key in relational design 71
updating

COBOL included source
definitions 47

DB2/390 definitions 43
DB2 UDB definitions 43
IMS DBD objects 45
PL/I included source definitions

47
relational database objects 43
shareable data structures 49

usage intent, of storage group 130
used space value, of storage group

130

V
version information in Profile

notebook 12
view

assigning to physical design 134
defining 133
designing 133
in relational design 71
specifying general information

133
viewing

DB2 actuals of column 110
DB2 actuals of index 115
DB2 actuals of storage group

131
index partitions 114
indexes of storage group 129
shareable table definition 97
table spaces of database 124
table spaces of storage group

129
the table columns 97

VisualAge Exchange, using to
migrate definitions 5

volume 77

W
work load

design information 78

work load (continued)
for column 110
for table 105
overview 72

workfolder
and TeamConnection cache 153
creating 15
naming 11
relation to TeamConnection 11
requesting design support from

85
searching from 15
specifying version information

for 12

Index 233

234 Dictionary and Designer User’s Guide

IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-9134-00

