
CThrough - Programming with Classes, not with Files

© Copyright BISS GmbH 9

1. A Class Archive that is managed on a class and location basis. This means that every

class in a specific location has its own class archive. The archive holds two types of

files: class revisions and change-files. A class revision is a compressed copy of a com-

plete class file. A change file is a compressed copy of changes containing source code

that has been logged between two revisions.

2. Group archives contain compressed copies of different classes and are used mainly as a

distribution mechanism (e.g. all classes for a particular application, in a particular lo-

cation).

The ArchiveBrowser can be used to view the contents of all available class archives. It

has two panes. The left pane shows symbolic names that have been attached to class revi-

sions, e.g. <rel 1.1>. Selecting one of these names results in the display of only those

class archives that contain classes with the selected attribute attached to them. These

names are primarily used to identify class library releases, such as a snapshot of all class

revisions at a particular date/time. The right pane shows all matching archive entries al-

phabetically sorted by class name. Several options are available via a set of controls in the

upper portion of the window. Either all archived revisions of a class or only the most re-

cent ones can be displayed. It is also possible to get the <nearest> archived revision of

each class for a particular date. This is useful to get a ”best guess” state of the class library

that was not a named release. Alternatively a <since> option allows to display all ar-

chives since a particular date.

A read-only ClassEditor on the selected archive entry can be opened to view the contents

of the archived class by using the popup menu of the entry pane.

Compare and merge with a different class set

The ArchiveViewer can be used to take a closer look at the contents of a class archive. It

consists of two panes. The upper pane shows all entries (files) contained in the archive.

CThrough - Programming with Classes, not with Files

10 © BISS GmbH, 1994

Class revision entries are marked with a small symbol and a single revision number.

Change-file entries are marked with a different bitmap and displayed with the range of

changes (e.g. <6-7> meaning changes between and including revision number 6 and 7)

that are covered by this file. The lower pane shows multiline comments either for the

whole archive or for the selected archive entry. Existing entries can be loaded into a

ClassEditor (for a revision entry) or to a ChangeBrowser (for a change-file entry) by

double-clicking on them or by using the pane’s popup menu. New entries can be added

using the menubar (i.e. <Archive current version>, <Archive current

change-file>) and a special archive dialog. This dialog is used to specify symbolic

release names and also to enter multiline comments. After a change-file has been ar-

chived, it is emptied to prevent redundant archiving.

As for any library operation involving multiple classes, the HierarchyViewer can be used

to update the class archives for a set of classes. Using this mechanism it is possible to

specify the release name just once and perform all necessary archive updates in the back-

ground. If the current revision of a class is found to be already archived, only the release

name is appended to the particular archive entry. No multiple archive entries are included

for the same revision number of a class.

During application development it may be necessary to work on classes in parallel. The

resulting developer efforts must then be merged into one consistent class library.

The picture shows the DirectoryMerger which is used to compare the current class li-

brary with the contents of a different directory holding class sources. It is the primary tool

to compare and merge different class libraries. The DirectoryMerger has four child win-

dows.

The DirCompareView is used to display similarities and/or differences between the two

class libraries and consists of three panes. The upper pane lists all classes found in the

library that differ from classes with same names found in the external directory. For each

entry, the location, revision number and date is displayed for both the library and the ex-

ternal version of the class. The most recently changed version is marked with an asterisk.

The middle pane lists all classes found only in the external directory. The lower pane lists

classes that are present only in the current class library. Using popup menus, it is possible

to copy a class or a group of classes from the external directory to a library location. If a

class is updated from an external location, the own revision number is kept unchanged,

and a history record, stating the source of the update, i.e. the external location and revision

number, is added to the class file.

Selecting an entry in the upper pane (the pane containing differing classes) opens three

additional views: a ClassCompareView, a ClassEditor on the library version of the class

and a ClassEditor on the external version of the class. Selecting an entry in one of the

lower panes opens only the particular ClassEditor.

The ClassCompareView has the same functionality as the DirCompareView with respect

to two different versions of a particular class. It also has three panes used to display differ-

ing, external-only and library-only items of that class. The type of the item being displayed

(e.g. function, data, import, etc.) is controlled with a set of buttons located in the upper

portion of the ClassCompareView window. Like in the LogBrowser, the number of dif-

ferent/external/own entries is shown in braces underneath the corresponding button. Se-

lecting an entry in one of the three panes positions both ClassEditors on the correspond-

ing item (e.g. a function member); differences are marked by highlighting the correspond-

ing source line (e.g. different function body lines). Again it is possible to update the own

class with the selected item from the external class using the popup menu.

CThrough - Programming with Classes, not with Files

© Copyright BISS GmbH 11

Build and Test *.OBJ, *.EXE and *.DLL
When changing classes you have to keep track of the changes and their fan-out. For exam-

ple adding a virtual function to a base class requires all dependent classes to be recom-

piled; using template classes requires the instantiation of all used types exactly once in

order to reduce memory consumption.

Automatically build applications or libraries

The tool used to manage all this, to compile classes into *.obj files and to link objects

into executables (or dynamic link libraries) is the ApplicationBuilder. It represents an

interactive substitute for the standard MAKE tool and automates all necessary compiler

and linker calls that are transparent to the user.

The ApplicationBuilder window consists of two panes:

• ClassPane (upper half)

• LibPane (lower half)

The ApplicationBuilder can be launched from the HierarchyViewer or the ClassEditor

and may be used with all classes that have appropriate attributes (<app> or <dll>). When

opened, the ApplicationBuilder determines which classes are required for the application

and performs several checks on them: each class is checked to see if it has an outdated

object file, i.e. if the object file is older than the corresponding source file; compiler

switches used to compile the existing object file are also compared against the current

settings; you may even let CThrough determine the inheritance graph for a class and se-

lectively recompile all depending classes. The classes are shown in the ClassPane with all

classes that need recompilation being marked by a small checkmark (bitmap). Additional

information may be shown: the attributes or switches of each object, e.g. compiled <opti-

CThrough - Programming with Classes, not with Files

12 © BISS GmbH, 1994

mized>, <inline>, <debug>, are shown using small bitmaps. For classes whose object

files have already been built, the size of the corresponding object file in bytes is shown

behind the class name. The popup menu of the ClassPane can be used to launch several

analysis and statistic tools. These tools can provide details about the users of a class, im-

ports, layers, listings of corresponding *.lst and *.asm files, etc.

The LibPane shows a list of all *.lib files required for linking the application. This list

is determined automatically from a library description entry in CThrough's configuration

file that can be defined by the user. The user has complete control over the library list and

can add other libraries and also remove existing ones using the popup menu of the pane.

The actual build operations, namely compile and link, are started using the menu bar op-

tions.

The <Compileùù> option causes all entries in the ClassPane marked for either optional or

forced update, to be recompiled according to the switches specified by the ButtonPane

located at the top of the window. These switches affect compiler flags, such as <debug>,

<profile>, <optimize> and <inline>. They also control the generation of additional

information files, such as *.map, *.lst, *.asm, and the usage of compile and link op-

tions for several runtime analysis tools such as heaptrace, EXTRA and IPMD. The actual

compiler switches, e.g. </O+> for <optimize>, can be set in a special configuration

file.1

<Buildùù> starts the compiler just as the <Compileùù> option does. However, after suc-

cessful compilation it also starts the linker to bind the objects and the specified libraries.

Linkage type depends on selected linker flags, such as pm, vio, full. Depending on the

attributes of the project a *.dll, *.lib or *.exe file is created.

A build run started by <Compileùù> or <Buildùù> may be aborted any time using the

<Stopùù> option of the bar menu.

When detecting compiler errors the ApplicationBuilder pops up a MessageViewer show-

ing information about the sources of the error and the error itself. Each entry holds details

about the file and the line number where the problem is located, and also the compiler

generated error description. Error specific *.INF information can be shown using the

popup menu.

To examine and correct an error, its corresponding entry can be dragged from the Mes-

sageViewer on a ClassEditor that is then automatically positioned at the class part that

caused the error. In case no ClassEditor is opened you can launch one using the popup

menu of the MessageViewer.

If an *.exe has been successfully built, it can be started via the <App> submenu. If spe-

cial build options were specified, e.g. <debug> or <profile>, the appropriate tool, i.e.

IPMD or IXTRA resp., is started automatically taking the application name as parameter.

Optional parameters for the application may be specified using a Dialog.

The <Show> submenu is used to list and analyze additional information files, e.g. mapfile,

heaptrace, etc. For a description of some of these, see the following section.

As mentioned above, several additional information files may be generated by the Appli-

cationBuilder. The picture above shows tools used to analyze two of them - the

AsmViewer and the MapfileViewer.

Compiling an *.obj with the <asm> attribute set creates an optional *.asm file. This

compiler-generated assembly file can be viewed using the AsmViewer which consists of

two panes. The upper pane lists all public entries found in the *.asm file. Selecting an

1 Available switches depend on the compiler used. Information shown is available only with the IBM C/Set++
™

compiler and Toolkit.

CThrough - Programming with Classes, not with Files

© Copyright BISS GmbH 13

entry causes the corresponding assembler code to be displayed in the lower pane. This tool

is mainly used for optimization purposes.

The MapfileViewer analyzes a compressed version of the *.map information created for

applications built with the <map> attribute set. From top to bottom, it shows a list of the

application segments, the exported and the imported functions. It also lists all public func-

tions of the application which can be sorted either by name or by address. Selecting a seg-

ment within the pane causes the function list to show all functions located in the selected

segment. Selecting a function in turn marks the segment in which this function is located.

More views on compiled classes (mapfile and disassembly view)

This tool is useful to detect locations of runtime errors, such as general protection faults,

in applications built without debug information. For large applications, it is often not fea-

sible to use debug information for every incorporated class because of the implications on

the compilation speed and size of the executable.

Entering the address of an exception into the Entryfield (top left) causes the Map-

fileViewer to select the function in which the error has occurred. This information is often

sufficient to locate the error in the source code. Where the information is not sufficient, it

provides at least a good starting point for deciding which classes have to be recompiled

using the <debug> setting.

Heap problems are some of the most intricate ones C++ can present to the developer. A

production quality application or class library should be "heap-checked" in order to pre-

vent, for example memory leaks.

CThrough comes with support classes to ease this type of debugging. An application that

uses the supplied heap classes and that was built using the <heaptrace> attribute logs all

heap operations, i.e. new and delete, on a special file. The contents of this file may be

CThrough - Programming with Classes, not with Files

14 © BISS GmbH, 1994

subsequently analyzed by the HeapTracer. This tool is primarily used to detect memory

leaks. It consists of three panes:

• ModulePane (upper)

• TypePane (middle)

• OperationPane (lower)

The ModulePane shows statistic information about classes that have issued heap opera-

tions, e.g. number of new and delete operations, allocated bytes, etc.

Additional test tools (HeapTracer with MemTileViewer)

A type-based view is provided by the TypePane. This pane displays the number of allo-

cated instances of a specific built-in or user-defined type, the number of instances freed,

and the total number of bytes allocated. Each of these figures is also accompanied by its

percentage representation.

Perhaps the most important pane is the OperationPane. All heap operations ever per-

formed during the lifetime of the application are shown in the order of their execution.

Each entry consists of the operation type, i.e. new or delete, its address space, the mod-

ule or class which caused that operation, the storage type and the allocated memory size.

The selected entry can be dragged onto an open ClassEditor that is automatically posi-

tioned on the code that performed the heap operation. The OperationPane contents may be

filtered using the RadioButton selection to the left of it. For example, selecting <alloc>

shows only active, i.e. not freed, allocation entries. Depending on the state of the applica-

tion, such entries might be memory leaks. The HeapTracer may be used in parallel with

the execution of an application (communicating with the application via pipes) or after the

application has been terminated (analysing a log file).

CThrough - Programming with Classes, not with Files

© Copyright BISS GmbH 15

Heapspace fragmentation can be viewed using the MemTileViewer which can be

launched from the HeapTracer. This window displays the cluster based memory alloca-

tion for a specified memory range. It is useful for the analysis of the heap behavior.

Networking
CThrough can be used in a networked environment. The usual network configuration has

a set of server directories that hold the classes available to all programmers. In addition,

each programmer has one or more local directories for private classes or classes that are

not yet ready for public use. The settings for the server directories and the local directories

can be modified using one of CThrough’s configuration files..

Classes can also be locked on a class file basis. All users, except the one that owns the

lock, have read-only access to a locked class. Lock information, such as the name of the

lock owner ("who locked it"), date/time of the lock process ("when was it locked"), and an

arbitrary lock reason specified by the lock owner ("for what purpose was it locked"), may

be displayed when accessing a locked class. The lock may be released only by the lock

owner.

Requirements
In order to install CThrough you need

• OS/2 2.1 or higher

• IBM C/Set++ and Toolkit

• 6 MByte of disk space (for the binaries)

• 1024 x 768 display (or above) recommended, although VGA may also be used

• 486 processor recommended

• >= 8 MB recommended

Although this depends on personal preference, it is strongly felt that an appropriate dis-

play system is a top priority item on the requirement list. Much of CThrough’s productiv-

ity momentum depends on being able to deal with a lot of information simultaneously.

This is only possible using display formats larger than VGA.

Since many CThrough operations make heavy use of the file system, a fast harddisk is

also highly recommended.

CThrough - Programming with Classes, not with Files

16 © BISS GmbH, 1994

History
CThrough is part of a software development environment based on C++ called BSA (BISS

Software Architecture). BSA consists of an underlying technology, CThrough, more than

four hundred C++ classes, and a graphical tool used to manipulate and link objects. BSA

classes cover almost all OS/2 programming tasks, providing support for GUI design, proc-

ess/thread/file/pipe handling, database access, generic containers, help management, etc.

The library has matured in more than four years being heavily used in commercial projects

by several large European companies. All classes have been developed using CThrough.

CThrough has also been used to build itself.

Availability
CThrough currently supports the IBM C/Set++

™
 compiler and Toolkit. Version for Bor-

land, WATCOM and MetaWare compilers will be available soon.

For ordering information please contact:

BISS GmbH

Chaukenweg 12

D-26388 Wilhelmshaven

Germany

Phone: +49 4423 9289-0

Fax: +49 4423 9289-99

CIS: 100031,1733 (CompuServe ID)

Internet:100031.1733@CompuServe.com

