
CThrough - Programming with Classes, not with Files

© Copyright BISS GmbH 1

Table of Contents

Table of Contents 1

Introduction 2

Browse, Edit and Document C++ Classes 2

Keep Track of Class Changes and Versions 6

Build and Test *.OBJ, *.EXE and *.DLL 11

Networking 15

Requirements 15

History 16

Availability 16

CThrough - Programming with Classes, not with Files

2 © BISS GmbH, 1994

Introduction
Welcome to CThrough, a full-scale, integrated, graphical development environment for C

and C++. This introduction is intended as a ”tour d'horizon” for programmers who are

already familiar with structured programming in C or object-oriented programming in

C++.

The first thing to learn about CThrough is that it does a lot more than just browsing and

source code editing. It is a set of highly integrated tools that cover the following tasks:

• Source management (browse, edit and document C++ sources)

• Change management (keep track of class changes and versions, show and merge librar-

ies and class deltas)

• Application building (build *.obj, *.exe and *.dll files)

• Test support (handle OS/2 exceptions within applications and analyze heap problems)

Support for each of these tasks is described in the following sections. The screen shots will

give you an idea of CThrough's versatile graphical user interface. With respect to the

individual windows it is useful to remember that

• most of the views can have multiple, simultaneously used instances

• drag and drop is the primary interaction scheme for various views

• almost all panes of the described windows have context-sensitive popup menus and

extensive online help available.

Browse, Edit and Document C++ Classes
Working with classes instead of files is a main objective of CThrough. All class sources

should be processed as logical units, e.g. C++ function and/or data members, and should

not be treated as raw text. Object-oriented programming in C++ provides some powerful

abstraction mechanisms, for example inheritance. Without appropriate tools it is easy to

get lost in this ”3rd dimension”. To be a successful OO programmer, you have to under-

stand both, the programming language and your class library. Complex class libraries

easily extend to more than two thousand methods. In order to make efficient (re)use possi-

ble, you must structure this information and provide different views.

The picture on the next page shows the most frequently used views of CThrough. The first

window that comes up after starting the system is named the Controller. It logs all devel-

oper activities such as login, function changes, relationship changes, etc. and controls

session related topics (e.g. setting user preferences or toggling source code logging). It can

also be used to launch additional tools. Closing the controller terminates the current

CThrough session. The Controller is CThrough's main application window; it is the only

window that cannot have multiple instances concurrently.

CThrough - Programming with Classes, not with Files

© Copyright BISS GmbH 3

Navigate through your classes (HierarchyViewer and ClassEditor)

After a short initialization phase (typically less than 10 seconds for 300 classes on a 66

MHz 486 system) the HierarchyViewer comes up. This view shows the contents of the

class library. It is divided into four panes:

• DirectoryPane

• AttributePane

• ClassPane

• GraphPane

The DirectoryPane shows all directories where CThrough is looking for C++ source files.

Directories are searched in a predefined way (from top to bottom). Classes with identical

names located in several directories are shown only once (i.e. if a class is found in more

than one directory, the first occurrence will be used). You can view class locations and

move or copy classes between directories. The list of directories initially scanned is one of

many settings you can define in a user configuration file.

Selecting a class (e.g. by clicking the mouse in the ClassPane, see below), automatically

indicates the corresponding directory within the DirectoryPane. Similarly, selecting a

directory in the DirectoryPane shows only classes contained in the selected directory.

The AttributePane may be used to further narrow the display of classes in the ClassPane.

You may define arbitrary attributes ("categories") to show just classes that match (or don't

match) the specified selection criteria. Attributes are user defined names, such as <PM>

(for Presentation Manager related class) or <Test>, that can be attached to classes.

The ClassPane shows an alphabetical list of all matching classes (with appropriate attrib-

utes or within a specified location/directory). Most functions used for day-to-day work can

be launched via the popup menu of this pane. There are functions that work on the se-

lected class only (e.g. open the ClassEditor) and also functions that operate on all se-

lected/marked classes (e.g. build/update class archives). The ClassPane can be expanded to

CThrough - Programming with Classes, not with Files

4 © BISS GmbH, 1994

show additional information such as corresponding file sizes, date and time of file crea-

tion/modification and all attached categories.

The GraphPane shows the inheritance relationships of the currently selected class. There

are several display options to control how the inheritance graph is built. If the <bases>

option is checked, then all the base classes of the selected class are displayed. If <childs>

is checked, then all classes derived from the selected class are displayed. Most of the class

manipulation functions available for the ClassPane can be also activated from the Graph-

Pane with identical semantics. Within the GraphPane the group functions work on all

classes displayed in the graph.

The ClassEditor is the most important tool of all. It is used to display and edit a single

class and its associated source code. The ClassEditor consists of three panes:

• DataPane

• FunctionPane

• FunctionDefinitionPane

The DataPane shows all data members of the class. Each line starts with symbols for the

standard attributes of the corresponding data member. The first symbol shows the associa-

tion (<instance>, <class> or <global>). The second symbol is used to represent the

access level (<private>, <protected> or <public>). There is an optional third sym-

bol used for combinations of other attributes such as <extern>. The next column shows

the type of the data member, followed by its boldfaced name. If a line is selected within the

DataPane, then the FunctionPane shows only those function members that use the selected

data member. Entering new data members and modifying existing ones is accomplished

via a special dialog that can be launched from the DataMember’s popup menu. A filter

dialog enables the selective display of data members; attributes like association, access

level or user defined categories similar to those used at class level may be specified. New

data members are entered via another interactive dialog, which also takes care of C++

syntax specifics. This dialog is also used for modification of existing data members.

The FunctionPane is responsible for displaying all function members of the class managed

by the ClassEditor. Like the DataPane, the FunctionPane uses one line per function mem-

ber to show its association, access level and additional attributes together with the return

type, boldfaced name and signature. Symbols are used to show C++ characteristics, e.g.

<inline> or <virtual> function members. Selecting a function member within this

pane loads its corresponding definition into the FunctionDefinitionPane. New function

members are specified via a dialog, which also takes care of attribute dependencies. Func-

tion signatures may also be entered directly via the FunctionDefinitionPane.

The FunctionDefinitionPane is used to display and edit a particular function definition (its

source code). It always holds just one function definition at a time. This pane is essentially

an editor used to enter or change the function source code. In addition to traditional edit-

ing capabilities it allows you to record and play back keyboard macros, match all kinds of

braces or find and replace text. There are even provisions for displaying online help for

selected functions or querying the implementors of methods used within the system - just

place the cursor on the keyword in question and choose Info or Implementors from the

pane's popup menu. Context-sensitive help is also available.

One important aspect of the ClassEditor deserves special attention: developers do not

have to deal with the C++ class definition code because it is completely managed by the

ClassEditor. Based on the member definitions (name, type and attributes) entered in the

FunctionDefinitionPane or using the associated dialog, the class definition is generated

automatically by CThrough.

Two additional types of information used within a typical C++ class can be specified with

the ClassEditor: Imports and Inserts.

CThrough - Programming with Classes, not with Files

© Copyright BISS GmbH 5

Imports map to C++ #includes. They can be entered by opening the associated dialog

and using drag/drop techniques (e.g. selecting a class within the HierarchyViewer and

dragging it onto the import dialog). The same technique may be used for "traditional"

header files (e.g. string.h) using CThrough's HeaderBrowser (alternatively you can simply

enter the name of the desired import file within the import dialog). Class imports are

shown as class names instead of filenames.

Inserts are simply pieces of unparsed text that can be included into the class. Usually they

contain local type definitions, enums, typedefs and similar kind of information.

The user has complete control over the order and the position of imports and inserts. The

possible options are (a) preceding the class definition, (b) following the class definition or

(c) preceding the implementation section.

More tools to analyze and edit a class

The picture above shows additional windows that can be spawned from the ClassEditor.

The FunctionDialog, as already mentioned, is used to enter new functions and to modify

existing ones. Using the function dialog there is no need to remember the intricacies of the

syntactic details of a C++ function definition. As an example, to inline a function member,

just select the appropriate checkbox. CThrough not only inserts the required C++ key-

words at the correct place but also automatically moves the function body into the header

section of the class file. Unchecking the <inline> option reverses this action.

Various reports can be generated for a class. All of them are displayed using the same type

of TextWindow that can be used to modify and/or print the report text. Following you will

find some reports available for a class:

1. Import Report. This report shows all imports of the class either hierarchically (using

the preprocessor #include order) or alphabetically sorted (with all users of the par-

CThrough - Programming with Classes, not with Files

6 © BISS GmbH, 1994

ticular import appended). This is useful to detect problems such as infinite recursive

mutual imports. The displayed screenshot example shows a hierarchical (tree) report.

2. Users Report. This report shows all users of a class, together with the particular im-

port position (pre, post or implementation).

3. Statistics Report. This report lists various statistical information for the class (number

of base classes, number of derived classes, data members, function members, lines of

code, number of comment lines, etc.).

4. The HierarchyViewer in this screen shot shows two different display options com-

pared with the HierarchyViewer displayed in the first picture. The GraphPane has

been "zoomed" in order to provide more room and a detailed class display has been se-

lected. This display shows selected data and function members of a class in alphabeti-

cal order within the inheritance graph. Although this is not an ideal way to display all

members in a class hierarchy, it is a good feature when focusing on a specific function-

ality that works across multiple inheritance levels. It also proves invaluable for en-

hancing textual documents.

To document a class you first generate an outline of the class’ description. This is done

automatically using CThrough’s document creation tool. The outline file is essentially a

structured synopsis of the class and its components (data and functions members, bases,

friends, etc.). You can view and edit the file using the OutlineBrowser, a tool for editing

hierarchically structured texts. Usually in the next step you will add descriptions of the

various class components and the class itself. Don’t worry if the class changes after you

have documented it; the new class and the existing description can be merged automati-

cally. Also forget about complex formatting and layout. Just type in the text, concentrating

on the contents.

Selecting the appropriate menu option in the OutlineBrowser you may now generate your

favorite format using predefined descriptor files. These descriptor files use a simple lan-

guage to facilitate the conversion of CThrough’s internal outline format into almost any

format you like. Provided with the current release of CThrough are descriptor files for the

IPF format (OS/2 native help language) and TeX (so you can use one of the publicly avail-

able TeX tools to generate a ready-to-print document). Of course you may write your own

descriptor files to support further conversions.

The OutlineBrowser may also be used to capture and administer error lists, user reports,

todo-lists or any kind of hierarchically structured texts. It supports selective report facili-

ties, queries and user defineable categories to group text into various sections.

Keep Track of Class Changes and Versions
As the number of classes grows, it becomes increasingly important to keep track of

changes. Since it is an OOP objective to increase code reuse, many classes are often used

in different projects. Changes of a class caused by one project could adversely effect other

users of the class. If the class is a potential base class, things may be even worse because

changes of implementation details may have an effect as well. There is only one way to

handle such problems: a close tracking of all changes. Since changes have to be under-

stood afterwards, it is again important that logging them is done in logical units (class,

member etc.) compared to a simple file basis (filename, lines).

The basis for CThrough's logging mechanism is a unique class identification scheme.

Each class file contains information about the location (point in space, i.e. machine and

path) and revision number (point in time) of the particular class. Each time a class is

CThrough - Programming with Classes, not with Files

© Copyright BISS GmbH 7

modified (e.g. by saving a modified function definition), the revision number increases

automatically. This means that every change can be identified by specifying a location and

a corresponding revision number (e.g. <BsaEntry [MyMachine e:\mypath 123]>).

This information is displayed in various views (e.g. ClassEditor title bar, Log-file entries,

etc.).

As mentioned earlier, every programming action such as saving a function or adding an

import is logged in the Controller. The corresponding log entry is not only displayed but

also written to a log-file. The system can even be configured to use multiple log-files si-

multaneously (e.g. one log-file could be private to the user, another one could be shared by

a developer group). Each log entry includes information concerning date, time, user id,

operation (add, modify, remove), class name, class location, class revision number, the

type (e.g. function) and the name of the changed item (e.g. function name). Also the sym-

bolic machine name is logged to enable a precise subsequent log analysis.

The LogFileBrowser is used to analyze the contents of the log file. It is used not only to

display the contents in a structured way but also to answer specific questions using prede-

fined queries. Questions like "Show all function modifications for class String done by

Fred M. after March 16th, 1994" may be answered by a few mouse clicks.

Basic logging mechanisms

The pane in the upper half displays all change dates, all changed classes with locations

and revision numbers, the names of all developers who have performed changes and all

types of change operations. Selecting an entry in one of these panes filters information to

the right of it. Essentially this connects all selected entries by a logical „and“. Selecting a

date results in the display of all changes done since that date. The pane in the lower half

lists all matching log events showing information similar to the one displayed by the Con-

troller. Below the menubar a list of CheckBoxes enables filtering by item type. Checking

CThrough - Programming with Classes, not with Files

8 © BISS GmbH, 1994

only <func> results in the display of events logged for function members only. The num-

ber of entries of this particular type is appended in braces.

The contents of the item changed, such as the function's source code, may also be included

in the log file. This is particularly useful when performing sensitive modifications, e.g. on

classes with a high fan-out. The logging mechanism for sources can be activated on a class

or session basis. On a class basis, all changes for a particular class are logged in a class

related file. Using session based logging, all changes done during a CThrough session are

logged in a user selectable file. Class logging can be toggled using a ClassEditor menu

option. Session logging can be activated or disactivated using a Controller menu option.

Class logging may also be automated by attaching the special attribute <monitor> to a

class. Each time a ClassEditor is opened on such a class source-based logging is done

automatically.

All resulting change-files can be browsed using the ChangeBrowser. Its upper three

panes show the dates, the user names and the types of change operations that appear in the

change-file. Similar to the LogBrowser, these panes can be used to filter the entries dis-

played in the middle pane. The middle pane shows matching change log entries using the

same format as the LogBrowser. Selecting an entry in the middle pane updates the lower

pane, displaying the appropriate text or function definition. It is of course possible to re-

store changes back to the current class.

Monitoring alterations to change-files is a useful mechanism for sensitive operations and

classes, but it produces some overhead that might not always be appropriate for all classes.

This is where the archive mechanism comes in. A CThrough archive is essentially a ZIP

(compressed) file that may even be handled outside of CThrough using publicly available

tools. Archives are kept in user configurable directories, e.g. on a dedicated server. There

are two types of archives:

Archive class revisions and change-files

