

IBM C/C++ Tools:

User Interface Class Library

User’s Guide

Version 2.01

S82G-3743-00

IBM IBM C/C++ Tools:

User Interface Class Library

User’s Guide

Version 2.01

S82G-3743-00

2 User Interface Class Library User’s Guide

IBM C/C++ Tools:
User Interface Class Library

User’s Guide
Version 2.01

Document Number S82G-3743-00

 Note

Before using this information and the product it supports, be sure to read the general information

under “Notices” on page iii.

Second Edition (November 1993)

This edition applies to Version 2.01 of IBM* C/C++ Tools (Programs 82G3733, 82G3735, 82G3736) and to all

subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct

edition for the level of the product.

Order documentation by phone in the United States or Canada. Call your regular IBM ordering channel, or call:

� 1-800-342-6672 (United States)

 � 1-800-465-7999 (Canada)

You can also order documentation through your IBM representative or the IBM branch office serving your locality.

Documents are not stocked at the address given below.

A form for readers’ comments is provided at the back of this document. If the form has been removed, address your

comments to:

IBM Canada Ltd. Laboratory

 Information Development

 2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada. M3C 1V7

You can also send your comments by facsimile to (416) 448-6057 to the attention of the RCF Coordinator. Or, if you

have access to Internet, you can send your comments electronically to IBM: See “Communicating Your Comments to

IBM” for a description of the methods. This page immediately precedes the Readers’ Comment Form at the back of

this document.

Internet: torrcf@vnet.ibm.com

IBMLink*: toribm(torrcf)

IBM/PROFS*: torolab4(torrcf)

IBMMAIL: ibmmail(caibmwt9)

If you choose to respond through Internet, please include either your entire Internet network address or a postal

address.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way

it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is

subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Notices

References in this publication to IBM* products, programs, or services do not imply that

IBM intends to make these available in all countries in which IBM operates. Any

reference to an IBM product, program, or service is not intended to state or imply that

only an IBM product, program, or service can be used. Any functionally equivalent

product, program, or service that does not infringe any of IBM’s intellectual property

rights can be used instead of the IBM product, program, or service. Evaluation and

verification of operation in conjunction with other products, except those expressly

designated by IBM, is the user’s responsibility.

IBM might have patents or pending patent applications covering subject matter in this

document. The furnishing of this document does not give you any license to these

patents. You can send license inquiries, in writing, to:

IBM Director of Commercial Relations

 IBM Corporation

 Purchase, NY 10577

IBM can change this document, the product described herein, or both. These changes

will be incorporated in new editions of the document.

 Trademarks

The following terms, denoted by an asterisk (*) on their first occurrences in this

document, are trademarks of IBM Corporation in the United States or other countries:

The following terms, denoted by a double asterisk (**) on their first occurrence in this

publication, are trademarks other corporations:

BookManager

C Set ++

Common User Access

CUA

IBM

IBMLink

Operating System/2

OS/2

Presentation Manager

PROFS

WorkFrame/2

XGA

Excel Trademark of the Microsoft Corporation

Microsoft Trademark of the Microsoft Corporation

Pentium Trademark of the Intel Corporation

Windows Trademark of the Microsoft Corporation

 Copyright IBM Corp. 1993 iii

iv User Interface Class Library User’s Guide

Summary of Changes

The User Interface Class Library Version 2.01 contains the following changes and

enhancements:

� Direct manipulation (drag and drop) support

 � Interface changes

� New and enhanced classes

� New, enhanced, and deleted member functions

� New, enhanced, and deleted styles

For details on these updates, late-breaking news, and improvements or fixes to the

previous version, refer to the READ.ME file shipped with the product.

Direct Manipulation Support

Version 2.01 provides classes and default rendering mechanisms and formats (RMFs)

or types so you can add drag and drop support to your applications.

� The direct manipulation classes provide built-in support for entry field and MLE

controls. Container controls allow you to move or copy objects between source

and target containers.

� Source for default RMFs is provided.

� Drag image support for three styles of drag images is provided. You can construct

these images from an icon or bit-map resource or from a pointer or bit-map handle.

Samples shipped with the product show you how to do this.

 Interface Changes

The following classes have been renamed:

Old Class Name New Class Name

IHelpHyperTextEvent IHelpHypertextEvent

IHelpSubItemNotFoundEvent IHelpSubitemNotFoundEvent

ISubMenu ISubmenu

ISubMenu::Cursor ISubmenu::Cursor

 Copyright IBM Corp. 1993 v

The following member function names have been renamed:

Some duplicate icon styles for IMessageBox were removed. Update these styles in

your application with the appropriate style from the following chart.

Class Name Old Name New Name

I3StateCheckBox selectHalftoned

selectHalftone

isHalftoned

isHalftone

ICanvas defaultPushbutton defaultPushButton

IContainerControl detailsViewportOnWindow

detailsViewportOnWorkspace

viewportOnWindow

viewportOnWorkspace

detailsViewPortOnWindow

detailsViewPortOnWorkspace

viewPortOnWindow

viewPortOnWorkspace

IHelpHandler hyperTextSelect

showCoverpage

subItemNotFound

hypertextSelect

showCoverPage

subitemNotFound

IHelpWindow coverpageWindow coverPageWindow

IMenu addSubMenu

removeSubMenu

removeSubMenuAt

setSubMenu

addSubmenu

removeSubmenu

removeSubmenuAt

setSubmenu

IMenuItem setSubMenuHandle

subMenuHandle

setSubmenuHandle

submenuHandle

ITitle

ColorArea enumeration

active

inactive

activeFill

inactiveFill

IWindow defaultPushbutton

startHandlingEvent

defaultPushButton

startHandlingEventsFor

Retained Removed

noIcon notificationIcon

informationIcon asteriskIcon

queryIcon questionIcon

warningIcon exclamationIcon

errorIcon handIcon, criticalIcon

New and Enhanced Classes

The following class has a new nested class:

Class Name Member Function

IThread IThread::Cursor

vi User Interface Class Library User’s Guide

The IWindowHandle argument has been changed to const for classes that use this as a

constructor. The following classes are affected:

I3StateCheckBox

IBitmapControl

ICheckBox

IComboBox

IEntryField

IGroupBox

IIconControl

IListBox

IMultiLineEdit

IOutlineBox

IPushButton

IRadioButton

IStaticText

IWindow

New, Enhanced, and Deleted Member Functions

The following sections list the new, enhanced, and deleted member functions.

New Member Functions
The following classes have new member functions:

Class Name Member Function

IBitmapControl constructor

setBitmap

IComboBox first

notFound

SearchType enumeration

IContainerColumn dataAsDate

dataAsIcon

dataAsNumber

dataAsString

dataAsTime

hasHorizontalSeparator

hasVerticalSeparator

isDate

isHeadingIconHandle

isHeadingReadOnly

isHeadingString

isIconHandle

isNumber

isReadOnly

isString

isTime

IContainerColumn::HorizontalAlignment horizontalDataAlignment

horizontalHeadingAlignment

IContainerColumn::VerticalAlignment verticalDataAlignment

verticalHeadingAlignment

IContainerControl isMoveValid

splitBarOffset

IDate asCDATE

constructor

IFileDialogHandler filterName

validateName

IFrameExtension baseRectFor

totalRectFor

IFrameHandler calcRect

 Summary of Changes vii

Class Name Member Function

IFrameWindow borderHeight

borderSize

borderWidth

clientHandle

clientRectFor

defaultOrdering

frameRectFor

moveSizeToClient

setBorderHeight

setBorderSize

setBorderWidth

setDefaultOrdering

usesDialogBackground

IGUIErrorInfo throwError

IIconControl constructor

setIcon

IListBox first

notFound

SearchType enumeration

IMenu removeConditionalCascade

setConditionalCascade

IMultiCellCanvas defaultStyle

disableDragLines

disableGridLines

enableDragLines

enableGridLines

hasDragLines

hasGridLines

setDefaultStyle

INotebook notebookSize

pageSettings

IProgressIndicator initialize

IReference operator T*

IStaticText disableHalftone

disableStrikeout

disableUnderscore

enableHalftone

enableStrikeout

enableUnderscore

isHalftone

isStrikeout

isUnderscore

ISystemPointerHandle Identifier enumeration

ITime asCTIME

constructor

viii User Interface Class Library User’s Guide

Class Name Member Function

IWindow constructor

create

defaultOrdering

disableUpdate

enableUpdate

handleWithId

itemProvider

positionBehindSibling

positionBehindSiblings

positionOnSiblings

postEvent

sendEvent

setDefaultOrdering

setItemProvider

SiblingOrder enumeration

Enhanced Member Functions
The following classes have changed member functions:

Class Name Member Function

IComboBox locateText

ICommandHandler dispatchHandlerEvent

IControl setFont

IDDEClientConversation dispatchHandlerEvent

IEditHandler dispatchHandlerEvent

IFileDialogHandler dispatchHandlerEvent

IFocusHandler dispatchHandlerEvent

IFont constructor

IFontDialogHandler dispatchHandlerEvent

IFrameExtension attachTo

attachToId

drawSeparator

fixedSize

relativeSize

separatorWidth

setSize

sizeTo

IFrameWindow client

ColorArea enumeration

create

setClient

IGUIErrorInfo throwGUIError

IKeyboardHandler dispatchHandlerEvent

IListBox locateText

IListBoxDrawItemHandler dispatchHandlerEvent

IMenuDrawItemHandler dispatchHandlerEvent

IMenuHandler menuShowing

IMouseClickHandler dispatchHandlerEvent

 Summary of Changes ix

Class Name Member Function

IMultiCellCanvas constructor

IMultiLineEdit setFont

setText

INotebook pageSettings

IPageHandler dispatchHandlerEvent

IPaintHandler dispatchHandlerEvent

IResizeHandler dispatchHandlerEvent

IScrollHandler dispatchHandlerEvent

ISelectHandler dispatchHandlerEvent

IShowListHandler dispatchHandlerEvent

ISpinHandler dispatchHandlerEvent

IStaticText disableHalftone

disableStrikeout

disableUnderscore

enableHalftone

enableStrikeout

enableUnderscore

isHalftone

isStrikeout

isUnderscore

ISystemErrorInfo throwSystemError

ISystemPointerHandle Identifier enumeration

ITitle ColorArea enumeration

IWindow Layout enumeration

Deleted Member Functions
The following classes have deleted member functions:

Class Name Member Function

IFrameWindow locateClient

IObjectWindow handle

IProgressIndicator create

x User Interface Class Library User’s Guide

New, Enhanced, and Deleted Styles

The following sections list new, enhanced and deleted styles.

 New Styles
The following classes have new styles:

Class Name New Style

IFrameWindow dialogBackground

IMulticellCanvas classDefaultStyle

dragLines

gridLines

ISpinButton padWithZeros

IStaticText halftone

mnemonic

strikeout

underscore

IViewPort noViewWindowFill

 Enhanced Styles
For consistency with the rest of the library, the currentDefaultStyle style has been

changed from protected to private for the following classes:

 IMultiCellCanvas

 INotebook

 ISplitCanvas

 Deleted Style
The noDrawWhenMinimized style has been deleted from IFrameWindow.

 Summary of Changes xi

xii User Interface Class Library User’s Guide

 Contents

Notices . iii

Trademarks . iii

Summary of Changes . v

Direct Manipulation Support . v

Interface Changes . v

New and Enhanced Classes . vi

New, Enhanced, and Deleted Member Functions vii

New Member Functions . vii

Enhanced Member Functions . ix

Deleted Member Functions . x

New, Enhanced, and Deleted Styles . xi

New Styles . xi

Enhanced Styles . xi

Deleted Style . xi

Part 1. Introduction . 1

Chapter 1. About This Book . 3

About the User Interface Class Library . 4

How to Use This Book . 4

Part 2. Getting Started . 4

Part 3. Programming Advanced Features . 5

Part 4. Learning from the Sample Application 5

The Contextual Help Feature . 6

Specified Operating Environment . 6

Hardware Requirements . 6

Software Requirements . 6

Conventions Used in This Book . 7

File Names . 7

Class Names, Member Function Names, and Data Member Names 8

Additional Conventions . 10

Chapter 2. Related Documents . 11

C Set ++ Library . 11

C and C++ Related Publications and Standards 11

IBM OS/2 2.0 Publications . 12

IBM OS/2 2.0 Technical Library . 12

IBM BookManager* READ/2 Publications . 13

IBM Common User Access (CUA) Publications 13

Chapter 3. Overview of the Classes . 15

Rebuilding DDE4MUI.DLL . 17

Why You May Want to Rebuild . 17

 Copyright IBM Corp. 1993 xiii

How to Rebuild . 17

Creating Your Own Classes . 19

Supporting DBCS and National Languages . 20

Enabling National Language Support . 20

Creating DBCS Applications . 21

Part 2. Getting Started . 23

Chapter 4. Creating User Interface Class Library Applications 25

Constructing Applications . 25

Understanding a Simple Application . 27

Creating a Sample C++ Source File . 28

Defining Application Resources . 29

Creating a Sample Resource File . 30

Using the Application Classes . 31

Recording and Querying Command Line Arguments 31

Starting Event Processing . 32

Exiting from an Application . 32

Loading Resources into an Application . 32

Linking Your Application to the User Interface Class Library 33

Stack Size Requirements for Your Application 34

#pragma Priority Values . 34

Chapter 5. Creating Windows . 35

Creating a Frame Window . 35

Changing the Title Bar . 37

Adding a Menu Bar . 38

Creating a Status Area . 41

Creating an Information Area . 42

Creating Basic Window Controls . 43

Creating a Static Text Control . 43

Creating an Entry Field Control . 45

Creating a Push Button Control . 46

Creating a Check Box Control . 48

Creating a Radio Button Control . 49

Creating a Slider Control . 51

Creating Canvas Controls . 54

Creating a Split Canvas . 54

Creating a Set Canvas . 57

Creating a Multicell Canvas . 59

Creating a Viewport . 61

Adding Styles . 63

Combining Style Objects . 63

Removing a Style . 63

Setting Window Styles . 63

Creating Cursor Classes . 65

Chapter 6. Adding Events and Event Handlers 67

xiv User Interface Class Library User’s Guide

Processing Events Using Handlers . 68

Extracting Information Using Events . 70

Writing an Event Handler . 71

Chapter 7. Managing Character Data . 75

Managing Data Using IString . 75

Performing Stream I/O . 75

Querying String Characteristics . 76

Testing the Contents of a String . 77

Comparing Strings . 79

Converting Strings . 80

Editing Strings . 80

Manipulating Strings . 81

Setting and Changing Fonts . 82

Part 3. Programming Advanced Features . 83

Chapter 8. Creating Additional Controls . 85

Viewing and Editing Multiple-Line Edit Fields 85

Creating an MLE . 85

Loading and Saving a File . 86

Positioning the Cursor . 86

Performing Clipboard Operations . 87

Developing Containers . 88

Creating a Container . 88

Creating a Container Object . 89

Adding and Removing Container Objects . 90

Filtering Out Container Objects . 91

Adding an Object Cursor . 92

Adding Views to a Container . 94

Showing the Details View Using Container Columns 95

Displaying Pop-Up Menus . 98

Creating a Pop-Up Menu in a Container . 100

Organizing Information Using a Notebook . 101

Specifying Notebook Styles . 102

Setting and Changing Notebook Pages . 103

Chapter 9. Covering Advanced Topics . 105

Extending Event Handling . 105

Simplifying Tracing . 108

Redirecting Trace Output . 110

Handling Exceptions . 110

Providing a Default Exception Handler . 111

Controlling Threads and Protecting Data . 113

Accessing the Current Thread . 113

Starting a Thread . 113

Protecting Data . 117

Suspending Threads for Critical Sections of Code 118

 Contents xv

Using Direct Manipulation . 119

Enabling Direct Manipulation for an Entry Field or MLE 122

Enabling Direct Manipulation for a Container 123

Enabling a Control as a Drop Target . 124

Enabling a Control as a Drag Source . 128

Adding Images to Drag Items . 130

Providing Help Information . 132

Creating Help Information . 132

Chapter 10. Creating Dialogs . 137

Specifying Standard File Dialog Information . 137

Creating a Standard File Dialog . 138

Specifying Standard Font Dialog Information 139

Creating a Standard Font Dialog . 139

Specifying Message Box Information . 140

Creating a Message Box . 141

Part 4. Learning from the Sample Application . 143

Chapter 11. Introducing the Sample Applications 145

About the Hello World Application . 145

Running the Sample Files . 145

Reviewing the Conventions Used in the Samples 146

Chapter 12. Creating an Application with a Main Window 147

Establishing the Version 1 Window-Parent Relationships 148

Listing the Version 1 Files . 149

The Primary Source Code File . 149

The Module Definition File . 150

Exploring Version 1 . 150

Creating the Main Window . 150

Creating a Static Text Control . 151

Setting the Focus and Showing the Main Window 153

Running the Application . 153

Chapter 13. Adding a Resource File and Frame Extensions 155

Establishing the Version 2 Window-Parent Relationships 156

Listing the Version 2 Files . 157

The Primary Source Code File . 157

The AHelloWindow Class Header File . 157

The Constant Definitions File . 157

The Resource File . 157

The Icon File . 158

The Module Definition File . 158

Discussing the Advantages of the C++ File Structure 158

Exploring Version 2 . 159

Creating the Main Window . 159

Running the Current Application . 160

xvi User Interface Class Library User’s Guide

Constructing the Main Window . 161

Creating an Information Area . 164

Setting the Size of the Main Window . 165

Chapter 14. Adding an Event Handler and Menu Bars 167

Establishing the Version 3 Window-Parent Relationships 168

Listing the Version 3 Files . 169

The Primary Source Code File . 169

The AHelloWindow Class Header File . 169

The Constant Definitions File . 169

The Resource File . 169

The Icon File . 170

The Module Definition File . 170

Exploring Version 3 . 171

Creating a Status Line . 171

Setting AHelloWindow as the Event Handler 172

Creating a Menu Bar . 173

Setting an Initial Check Mark in the Pull-down Menu 174

Adding Command Processing to Align a Text String 174

Chapter 15. Adding Dialogs and Push Buttons 175

Establishing the Version 4 Window-Parent Relationships 176

Listing the Version 4 Files . 177

The Primary Source Code File . 177

The AHelloWindow Class Header File . 177

The Constant Definitions File . 178

The Text Dialog Source Code File . 178

The ATextDialog Class Header File . 178

The Resource File . 178

The Icon File . 179

The Text Dialog Template . 179

The Text Dialog Resource File . 179

The Module Definition File . 179

Exploring Version 4 . 180

Modifying the Menu Bar . 180

Adding a Cascaded Menu . 180

Creating a Dialog Box . 182

Setting Push Buttons in a Set Canvas . 184

Chapter 16. Adding a Canvas, User-Created Controls, and Help 189

Establishing the Version 5 Window-Parent Relationships 190

Listing the Version 5 Files . 191

The Primary Source Code File . 192

The AHelloWindow Class Header File . 192

The Constant Definitions File . 192

The Text Dialog Source Code File . 192

The ATextDialog Class Header File . 192

The Earth Window Source File . 192

 Contents xvii

The AEarthWindow Class Header File . 192

The Resource File . 192

The Icon File . 192

The Text Dialog Template . 193

The Text Dialog Resource File . 193

The Help Window Source File . 193

The Module Definition File . 193

Exploring Version 5 . 194

Constructing the Client Window . 194

Setting Up the Help Area . 196

Setting Up the Information Area . 199

Setting Up the Menu Bar . 200

Setting Up the Status Area . 201

Chapter 17. Enabling National Language Support and Advanced Functions 203

Establishing the Version 6 Window-Parent Relationships 204

Listing the Version 6 File Names . 205

Exploring Version 6 . 206

Appendix. Class Hierarchy by Category . 207

Application Classes . 207

Data Types and Attributes Classes . 208

Error Handling and Exception Classes . 209

Event Classes . 210

Handler Classes . 212

Settings and Styles Classes . 213

Support Classes . 214

Window Classes . 215

Glossary . 217

Index . 223

xviii User Interface Class Library User’s Guide

 Part 1. Introduction

 Copyright IBM Corp. 1993 1

2 User Interface Class Library User’s Guide

Chapter 1. About This Book

The IBM C/C++ Tools: User Interface Class Library User’s Guide (hereafter called

User’s Guide) enables you to start using the IBM C/C++ Tools: User Interface Class

Library (User Interface Class Library) classes and helps you learn some of the basic

features that the class library provides to help you develop your own applications. This

book assumes that you have OS/2 Presentation Manager* (PM) and C++ programming

knowledge and experience. Refer to the C++ Programmers Guide to review C++

programming concepts and principles.

This User’s Guide is divided into four parts. Read the “Introduction,” which includes the

chapter you are reading now through Chapter 3, “Overview of the Classes” on

page 15, an overview of the class libraries and definitions for terms used throughout

this book. Do this even if you have used class libraries before.

If you are new to C++ class libraries,
read Part 2, “Getting Started” on page 23 first to gain a general understanding of the

key concepts used in the User Interface Class Library.

If you have previously used class libraries,
browse Part 2, “Getting Started” on page 23, and then read Part 3, “Programming

Advanced Features” on page 83, to learn how you can use them in complex

applications.

If you want to use the Hello World sample application,
read Part 4, “Learning from the Sample Application” on page 143. The sample

application, “Hello World,” uses the User Interface Class Library classes in a variety of

ways to give you some examples that you can use as you develop your own code.

The Hello World application is divided into several versions. Each version shows you a

different aspect of the User Interface Class Library.

If you want to use the User Interface Class Library sample
applications,
look in the \ibmcpp\samples\iclui directory. The directory includes the Hello World

samples and others that are shipped with the User Interface Class Library.

 Copyright IBM Corp. 1993 3

About the User Interface Class Library

The User Interface Class Library is an object-oriented (OO) C++ class library that

simplifies your development of Operating System/2* (OS/2*) applications with graphical

user interfaces (GUI). You can use the library to build applications that simulate

Common User Access* (CUA*) workplace look and feel and take advantage of PM

features.

How to Use This Book

This section contains the following information to help you start using the User Interface

Class Library:

� Detailed overview of the User’s Guide

� Introduction to the contextual help and online documentation

� Hardware and software requirements

� User Interface Class Library conventions

 Part 2. Getting Started
This part introduces some of the key concepts about class libraries.

Chapter 3, “Overview of the Classes” on page 15, provides a high-level description of

the User Interface Class Library. The classes in the library are grouped into categories

based on the tasks you perform when developing applications. This chapter also

describes how you can provide double-byte character set (DBCS) and multiple

language support.

Chapter 4, “Creating User Interface Class Library Applications” on page 25, describes

the classes that make up a typical application and the classes you use to develop basic

application components.

Chapter 5, “Creating Windows” on page 35, describes the classes that enable you to

create frame extensions, basic controls, and canvas controls.

Chapter 6, “Adding Events and Event Handlers” on page 67, describes the classes that

you use to create event handlers and events, as well as explains how you can write

your own handler class.

Chapter 7, “Managing Character Data” on page 75, describes the IString and IFont

classes.

4 User Interface Class Library User’s Guide

Part 3. Programming Advanced Features
This part explains some of the more advanced features of the User Interface Class

Library.

Chapter 8, “Creating Additional Controls” on page 85, describes classes used to create

multiple-line entry field (MLE) controls, containers, and notebook controls.

In Chapter 9, “Covering Advanced Topics” on page 105, you learn about some of the

advanced features of the User Interface Class Library classes (including ways to extend

event handling, extend exception handling, simplify tracing, and ways to create threads)

that enable you to create more complex applications.

Chapter 10, “Creating Dialogs” on page 137, describes the classes that enable you to

create standard file dialogs, standard font dialogs, and message boxes.

Part 4. Learning from the Sample Application
This part of the book contains the “Hello World” sample application that helps you apply

what you learned in Parts 2 and 3.

Chapter 11, “Introducing the Sample Applications” on page 145, through Chapter 17,

“Enabling National Language Support and Advanced Functions” on page 203, take you

step-by-step through the Hello World application that is designed to illustrate many of

the features of the User Interface Class Library classes and member functions. Each

version of the Hello World application builds on concepts covered in the previous

versions and shows you a different aspect of the class library. You can find sample

code for each of the examples in the User Interface Class Library samples directory,

\ibmcpp\samples\iclui, so you can follow along and create your own examples as you

read this book.

The Appendix, “Class Hierarchy by Category” on page 207, lists all User Interface

Class Library classes.

While reading this User’s Guide, use the IBM C/C++ Tools: User Interface Class Library

Reference for complete reference details on the classes. It is available online as part

of the product, or you can order a separate hardcopy version.

 Chapter 1. About This Book 5

The Contextual Help Feature
The User Interface Class Library provides contextual help for each class and member

function. The requirements for accessing contextual help are:

� To install the DDE4UIL.INF and DDE4UIL.NDX files

� To use the Enhanced System Editor provided by OS/2 Version 2.0 or 2.1

If you meet these requirements, access contextual help by positioning the cursor over

the name of a class or member function in the text you are editing and pressing Ctrl-H.

This opens the online version of the IBM C/C++ Tools: User Interface Class Library

Reference and displays information about that class or member function.

Refer to the product installation instructions for complete details on setting the

environment variables needed to use the contextual help feature.

Specified Operating Environment

 Hardware Requirements
� Disk space: A minimum of 65MB for all the tools in IBM C/C++ Tools.

� System units: All system units supported by IBM OS/2 Version 2.0.

If you have an 80386 processor, we recommend an 80387 math co-processor

because it greatly increases the speed of floating-point operations. If you have an

80486SX processor, we recommend an 80487 math co-processor for the same

reason.

� Display: We recommend an IBM 8514 or 8515 color display with IBM 8514A

Adapter Card or IBM XGA* displaying 1024 x 768 pels. The minimum requirement

is VGA.

� Memory: A minimum of 12MB of RAM. We recommend 16MB.

� OS/2 swap file: A minimum of 30MB of disk space.

Note: Increasing RAM does not necessarily reduce swap file requirements.

 Software Requirements
� IBM OS/2 Version 2.0 or 2.1

Note: Generated object programs run under OS/2 Version 2.0 and 2.1.

� IBM C Set ++ Version 2.1, or the following products:

– IBM C/C++ Tools Version 2.01

– IBM Developer’s Toolkit for OS/2 Version 2.0 with updates or Version 2.1

6 User Interface Class Library User’s Guide

Conventions Used in This Book

The User Interface Class Library has conventions for the following:

 � File names

� Class, member function, and data member names

 � Enumerations

� Function return types

 � Function arguments

 � Additional standards

 File Names
All files provided by the User Interface Class Library begin with the letter “I” for IBM, for

example, IAPP.HPP. IBM C/C++ Tools product files begin with the letters “DDE4.” File

names have a maximum of eight characters, including the “I” or “DDE4.” The following

table lists file names, files extensions, and a brief description.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for an appendix

that contains cross-reference tables for the header files and the classes they contain.

File Name and

Extension

Description

Ixxxxxxx.H Constant definitions file

Ixxxxxxx.HPP Header file

Ixxxxxxx.INL Inline functions

DDE4MUII.LIB Import library

DDE4MUI.DLL Multi-threaded dynamic-link library

DDE4MUI.DEF Import module-definition file used to rebuild the DDE4MUI.DLL file

DDE4MUIB.LIB Static object library contains the base classes

DDE4MUIC.LIB Static object library contains the controls

DDE4MUID.LIB Static object library contains the dynamic data exchange (DDE) and

direct manipulation classes

DDE4NIL.NDX Index for online help

DDE4UIL.INF Online help

DDE4UILE.MSG Exception messages

 Chapter 1. About This Book 7

Class Names, Member Function Names, and Data Member Names

 Class names
are mixed case, with the first letter of each word capitalized, as in ICurrentApplication.

All classes in the User Interface Class Library that are global begin with the letter “I.”

Member function names and data member names
are also mixed case, except the first letter is always lower case, as in the autoSize data

member. In the User’s Guide, single-word member functions have ClassName:: added

to them, for example, IWindow::show. Here are more rules about class and member

function names:

� Acronyms are uppercase, as in IDBCSBuffer. DBCS is the acronym for

double-byte character set. Among other acronyms you will see are GUI (graphical

user interface) and DDE (dynamic data exchange).

� Abbreviations are mixed case, such as IPresSpaceHandle, which is the class for

presentation space handles.

� Member functions that query begin with a prefix that implies a query is being

conducted, such as “is” or “has.” The IDragItem class, for example, has the

isCopyable member function, which queries whether an object can be copied.

� Member functions that render an object as a different type begin with the “as”

prefix, such as asUnsignedLong, which renders an object as an unsigned long.

� Member functions that provide enabling or disabling capabilities begin with the

“enable” or “disable” prefix. The IEntryField class, for example, provides the

enableAutoScroll member function, which enables automatic scrolling.

� Member functions that set something begin with the “set” prefix. The

setDefaultStyle member function sets the default style for a class.

� Member functions that get something, however, do not have a “get” prefix.

Instead, many classes use the defaultStyle member function to get the default style

for that class.

� Member functions that act on objects are verbs, such as copy and move.

� Member function names and arguments tend to be self-explanatory. The following

example would move the IWindow object, aWindow, to the position specified by the

IPoint object, aPoint.

aWindow.moveTo(aPoint);

� Many member functions that toggle the state of an object come with an optional

Boolean argument that allows the opposite action of the function. This allows you

to use the result of a prior query function as an input argument, such as:

Boolean initialVisibility = isVisible();
hide();
/\ Do some hidden work \/
show(initialVisibility);

8 User Interface Class Library User’s Guide

Enumerations and enumeration types
conventions are:

� The first character of each enumeration name is uppercase. If two words are

joined, each begins with an uppercase letter.

� Enumerators use the same naming conventions as functions; they begin with

lowercase letters, but if two words are joined, the second begins with an uppercase

letter.

Function Return Types
for the various types of functions are:

� A Boolean (true or false). A testing function typically returns a Boolean, such as:

Boolean isValid() const;

Note: The User Interface Class Library returns a zero if false and a nonzero if

true, so do not test for == true.

� An object. Other accessor functions typically return an object, for example:

ISize size() const; //Returns an object
IWindow\ owner(); //Returns a pointer to an object
static IWindow\ desktopWindow(); //Returns a pointer that points to an
 //object

� An object reference. Functions that act on an object return an object reference,

such as:

IWindow& hide();

This allows the chaining of function calls, such as:

aWindow.moveTo(IPoint(10,10)).show();

 Chapter 1. About This Book 9

 Function Arguments
are passed by:

� Built-in types (ints, doubles) and enumerations are passed in by value.

� Objects are passed by reference (a const reference if the argument is not modified

by the function).

� Optional objects are passed by pointer. This allows a null pointer to signify that no

object is being passed.

� IWindow objects are usually passed by pointer.

� IContainerObjects are usually passed by pointer.

� Strings are passed as const char *. This enables you to pass either an IString or a

literal character array.

 Additional Conventions
These additional conventions are followed by the User Interface Class Library:

� Header files are wrapped to ensure that they are not included more than once.

� All functions that can be placed inline are placed in separate INL files with a user

option (I_NO_INLINES) to determine whether they should be placed inline into the

application code. If you do not want to place these functions inline, then define

I_NO_INLINE.

� ISYNONYM.HPP declares synonyms for the types and values nested within the

IBase class. Including this file places those names in the global name space,

which allows consistent use of classes and code derived from IBase. If these

global names conflict with other names in your application, modify

ISYNONYM.HPP.

10 User Interface Class Library User’s Guide

 Chapter 2. Related Documents

This section lists the related documents comprising the C Set ++ library referenced in

this book. The list of related IBM product documents and other related publications is

not exhaustive, but should be adequate for most C Set ++ users.

C Set ++ Library

Title Order Number

C Set ++ Library — Group 1 61G1439

IBM C/C++ Tools: Browser Introduction 61G1397

IBM C/C++ Tools: Debugger Introduction 61G1184

IBM C/C++ Tools: Developer’s Toolkit for OS/2: Getting Started 60G9284

IBM C/C++ Tools: Execution Trace Analyzer Introduction 61G1398

IBM C/C++ Tools: Programming Guide 61G1181

IBM C/C++ Tools: Reference Summary 61G1441

IBM C/C++ Tools: User Interface Class Library User’s Guide 82G3743

IBM C/C++ Tools: WorkFrame/2* Introduction Version 1.1 61G1428

IBM C/C++ Tools: WorkFrame/2 Introduction Version 2.1 82G3740

Title Order Number

C Set ++ Library — Group 2 61G1440

IBM C/C++ Tools: C Language Reference 61G1399

IBM C/C++ Tools: C Library Reference 61G1183

IBM C/C++ Tools: Collection Class Library Reference 61G1178

IBM C/C++ Tools: C++ Language Reference 61G1185

IBM C/C++ Tools: Standard Class Library Reference 61G1180

IBM C/C++ Tools: User Interface Class Library Reference 82G3738

C and C++ Related Publications and Standards

Title Order Number

Portability Guide for IBM C SC09-1405

 Copyright IBM Corp. 1993 11

You may also want to refer to the following standards:

� American National Standard for Information Systems — Programming Language C

(X3.159-1989)

� (Draft Proposed) American National Standard for Information Systems —

Programming Language C++ (X3J16/92-0060)

� International Standard C ISO/IEC 9899:1990(E)

IBM OS/2 2.0 Publications

The following books are available only as part of OS/2 2.0 or the Developer’s Toolkit

products.

Title Order Number

Developer’s Toolkit for OS/2 2.0 Getting Started 10G6199

OS/2 2.0 Getting Started 42G0237

OS/2 2.0 Installation Guide 84F8464

OS/2 2.0 Quick Reference card 42G0231

OS/2 2.0 Using the Operating System 42G0238

IBM OS/2 2.0 Technical Library

The following books make up the OS/2 2.0 Technical Library (10G3356).

Title Order Number

Application Design Guide S10G-6260

Control Program Programming Reference S10G-6263

Information Presentation Facility Guide and Reference S10G-6262

Physical Device Driver Reference S10G-6266

Presentation Driver Reference S10G-6267

Presentation Manager Programming Reference Volume 1 S10G-6264

Presentation Manager Programming Reference Volume 2 S10G-6265

Presentation Manager Programming Reference Volume 3 S10G-6272

Procedures Language 2/REXX Reference S10G-6268

Procedures Language 2/REXX User’s Guide S10G-6269

Programming Guide, Volume I S10G-6261

Programming Guide, Volume II S10G-6494

Programming Guide, Volume III S10G-6495

System Object Model Guide and Reference S10G-6309

Virtual Device Driver Reference S10G-6310

12 User Interface Class Library User’s Guide

IBM BookManager* READ/2 Publications

Title Order Number

IBM BookManager READ/2: Displaying Online Books SB35-0801

IBM BookManager READ/2: General Information GB35-0800

IBM BookManager READ/2: Getting Started and Quick Reference SX76-0146

IBM BookManager READ/2: Installation GX76-0147

IBM Common User Access (CUA) Publications

Title Order Number

Object-Oriented Interface Design: IBM Common User Access (CUA)

Guidelines

SC34-4399

 Chapter 2. Related Documents 13

14 User Interface Class Library User’s Guide

Chapter 3. Overview of the Classes

The User Interface Class Library contains over 260 classes and over 2600 member

functions. To assist you in learning about the classes and to guide you as you start

developing applications, we have categorized the classes into the following basic

categories:

 � Application

 � Data Types

 � Event

 � Exceptions

 � Handler

� Settings and Styles

 � Support

 � Window

While most applications use classes from all of these categories, the User’s Guide

focuses on the window category and its relationship with the event, event handler, and

the other categories.

Application Classes: The application classes provide support for the application,

threads, profiles, and the resources used by the application.

Data Types: The data type classes model basic data types, such as strings, points,

and rectangles. These classes hide the structure of the data, while providing the

capability to access and alter the data. In addition, a set of handler classes are

provided to access window or application-specific handlers.

Event and Handler Classes: The event and event handler classes encapsulate the

user’s interaction with application windows. The library creates event objects as a

result of some action by the user or by other applications. These event objects contain

information about what occurred; they are passed to handler objects for processing.

Each window has some default event processing; however, the application can create

instances of the handler classes to process certain event objects to override the default

behavior.

Exception Classes: The exception classes inform the application that the library

cannot complete a request. Instances of these classes capture the type of exception

and other information about the exception.

 Copyright IBM Corp. 1993 15

Settings and Style Classes: The settings and style classes change the appearance

or behavior of window classes. For example, the IFontDialog class allows you to

specify the default font and window title to be displayed through its settings class.

Setting the text alignment, specifying a minimize button on a frame, or specifying a tab

stop are three examples of styles that you can set.

Support Classes: The support classes work with other classes. An example of these

classes are cursors.

Window Classes: The window classes encapsulate the basic graphical building

blocks that are used to construct application windows. These range from the simple

graphical objects like title bars, which display the title of the window, to complex objects

like containers, which can contain other objects and provide different views on those

objects. Window classes support both parent and owner windows. This allows window

position and appearance (parent windows) to be separated from event handling (owner

windows).

To learn more about a specific category, refer to the sections listed with each category:

Categories References

Application “Using the Application Classes” on page 31

“Controlling Threads and Protecting Data” on page 113

“Application Classes” on page 207

Data types and attributes “Data Types and Attributes Classes” on page 208

Event Chapter 6, “Adding Events and Event Handlers” on page 67

“Extending Event Handling” on page 105

“Event Classes” on page 210

Exception and error handling “Handling Exceptions” on page 110

“Simplifying Tracing” on page 108

“Error Handling and Exception Classes” on page 209

Handler Chapter 6, “Adding Events and Event Handlers” on page 67

“Handler Classes” on page 212

Settings and styles “Adding Styles” on page 63

“Settings and Styles Classes” on page 213

Supporting classes “Creating Cursor Classes” on page 65

“Support Classes” on page 214

Window Chapter 5, “Creating Windows” on page 35

Chapter 8, “Creating Additional Controls” on page 85

Chapter 10, “Creating Dialogs” on page 137

“Window Classes” on page 215

16 User Interface Class Library User’s Guide

 Rebuilding DDE4MUI.DLL

Why You May Want to Rebuild
If you ship a renamed version of DDE4MUI.DLL with your application, you can reduce

the size of this DLL by rebuilding DDE4MUI.DLL and leaving out the classes that your

application does not use.

A smaller DLL takes up less space on your installation media and can also result in

faster load time for the applications that use the DLL.

How to Rebuild
Use the following steps to rebuild DDE4MUI.DLL:

1. Make \ibmcpp\icluidll your current directory. (This is the directory where this

text file resides.)

If C Set ++ is installed in \ibmcpp, type:

cd \ibmcpp\icluidll

Note: These instructions assume C Set ++ is installed in \ibmcpp.

2. Extract the needed .OBJ files from the User Interface Class Library static libraries.

To get the best performance for your rebuilt DLL, you must link the object files in

the order specified in REBUILD.RSP. To do this, extract the .OBJ files from the

User Interface Class Library static libraries instead of re-linking the DLL by using

the static libraries directly.

To extract the needed .OBJ files and put them in the \ibmcpp\icluidll directory,

type:

GETJOBS ..\LIB\DDE4MUIB.LIB
GETJOBS ..\LIB\DDE4MUIC.LIB
GETJOBS ..\LIB\DDE4MUID.LIB

Note: If your application does not use the dynamic data exchange (IDDExxx)

classes or the direct manipulation (IDMxxx) classes, you do not need to run

GETOBJS against DDE4MUID.LIB.

 Chapter 3. Overview of the Classes 17

3. Modify the DDE4MUI.DEF and REBUILD.RSP files.

To remove a class from your rebuilt DLL, you must first determine the name of the

.OBJ file in which the class implementation resides. However, be aware that some

.OBJ files contain more than one class implementation. If your application uses

any of the classes that an .OBJ file implements, you cannot remove it.

The cross-reference tables in Appendix A of the IBM C/C++ Tools: User Interface

Class Library Reference can help you determine the .OBJ file that implements a

given class. Although this table lists the .HPP file, you can generally substitute

.OBJ for .HPP to determine the right name for the .OBJ file.

For some classes, such as IString and IResourceLibrary, a single .HPP file

declares the class, but multiple .OBJ files contain the implementation. In these

cases, a number is appended to the file name to make the .OBJ file names unique.

For example, the implementations of the classes declared in IRESLIB.HPP are in

IRESLIB.OBJ, IRESLIB1.OBJ, IRESLIB2.OBJ, IRESLIB3.OBJ, and IRESLIB4.OBJ.

For sequentially numbered .OBJ files such as these, either remove all of the .OBJ

files or do not remove any.

Once you determine the .OBJ files that you do not need for your rebuilt DLL, do

the following:

� Edit REBUILD.RSP and remove the lines that list the unneeded .OBJ files.

� Edit DDE4MUI.DEF and remove all lines that export the functions contained in

the .OBJ files whose lines you removed from REBUILD.RSP.

REBUILD.RSP and DDE4MUI.DEF are both found in the \ibmcpp\icluidll

directory.

For example, if you do not want to use the ITime class, delete the two lines that

export Ordinals 358 and 359. These lines are below the comment lines that

identify the exports from ITIME.OBJ:

;
; --> Object: C:\DRVRGM3\IBASE\OBJ\ITIME.obj
;
__ls__FR7ostreamRC5ITime @358 noname ----> DELETE
asString__5ITimeCFPCc @359 noname ----> DELETE
;

The following table can help you identify groups of files that you can delete. This

table provides the wildcard .OBJ file name and the conditions under which you can

delete all files that match the pattern:

File Name Pattern Can Be Deleted if Your Application

N*.OBJ Never uses I_NO_INLINES when compiling

ICNR*.OBJ Does not use container controls

IDDE*.OBJ Does not use dynamic data exchange

IDM*.OBJ Does not use direct manipulation

18 User Interface Class Library User’s Guide

4. Build the new DLL.

Once you modify DDE4MUI.DEF and REBUILD.RSP to remove what you do not

want to include in your DLL, you are ready to link your .OBJ files. To do this, enter

the following commands:

ICC @REBUILD.RSP
IMPLIB DDE4MUII.LIB DDE4MUI.DEF

These commands create the DLL (DDE4MUI.DLL) and its corresponding import

library (DDE4MUII.LIB) in the current directory, which is \ibmcpp\icluidll. You

can now use these two files to link your application.

5. Delete unneeded .OBJ files from the \ibmcpp\icluidll directory

You can delete the .OBJ files in the current directory once you are sure you no

longer need them for rebuilding. If you do this, do not delete the DDE4UDLL.OBJ

file.

We ship this file in the \ibmcpp\icluidll directory because it is not available from

any of the static libraries. You need this file if you ever attempt to rebuild again.

(It is the DLL Init/Term routine.) You may want to put a backup copy of this file in

another directory.

A safe way to delete the unneeded files is to type the following commands:

DELETE I\.OBJ
DELETE N\.OBJ

Creating Your Own Classes

Most applications require new classes. You can derive most new classes from an

existing class. You derive new classes for two reasons:

� To inherit implementation details from a base class

� To substitute for a base class

The following table provides a starting point to determine the base class to use:

Added New Function Base Class

Attribute IBase or IVBase

Canvas class ICanvas

Control IControl or ITextControl

Cursor IVBase

Data type IBase or IVBase

Dialog window IFrameWindow

Event IEvent

Exception IException

Primary or secondary window IFrameWindow

Settings IBase

 Chapter 3. Overview of the Classes 19

Added New Function Base Class

Style IBitFlag

Window behavior IHandler

Supporting DBCS and National Languages

You can use one source file for your application code and provide double-byte

character set (DBCS) and national language support (NLS) by using separate resource

files for the languages you support. The User Interface Class Library approach

includes either of the following:

� Use a single executable file with a separate dynamic link library (DLL) for each

language.

� Use separate executable files for each language (each with a separate resource

file bound to it).

Enabling National Language Support
Because you define message strings in resource files, you can translate them easily to

another language without changing the source code. You can bind these resource files

to resource DLLs. Your application determines which resource DLLs to dynamically

load at run time. For example, in Version 6 of the Hello World application, if the user

specifies the parameter “/P” on the command line, the application dynamically loads the

Portuguese resource DLL file and generates the text in Portuguese.

The canvas classes allow you to change the window text without having to change any

code. Typically, a window’s size and position is dependent on the text it displays. As a

result, changing the text adversely affects the window’s appearance. The canvas

classes automatically size and position their child windows at run time, taking into

account the current window’s text size and font.

20 User Interface Class Library User’s Guide

Creating DBCS Applications
The following suggestions will assist you in creating DBCS-enabled applications:

� Use the IKeyboardEvent class, which provides all the keyboard action event

information, for DBCS-enabled applications. To process both single- and

double-byte character key events, use the mixedCharacter member function. To

process only single-byte characters, use the character member function.

� Use the IString class, which is DBCS-enabled and supports mixed strings that

contain both single-byte character set (SBCS) and DBCS characters. Objects of

the IString class are essentially arrays of characters. The IString class provides

functions to test the characters that make up the string. These functions help

users determine whether a character is single-byte or double-byte, and whether it

is a valid DBCS first byte.

� Use the IDBCSBuffer class, which ensures that the search functions do not

inadvertently match the second byte of a DBCS character. The IDBCSBuffer class

is derived from the IBuffer class, which holds the IString contents. The two bytes

of a DBCS character will not be split.

Use the following member functions in a DBCS-enabled application:

� Specify one of the following data type styles when you create and manage the

IEntryField and IComboBox classes:

� Specify the appDBCSStatus style when constructing an IFrameWindow to include a

DBCS status area when the frame appears in a DBCS environment. The User

Interface Class Library automatically shares DBCS status control between a parent

and child frame window.

Member Function Returns True If and Only If

isCharValid The character at the given index is in the set of valid characters

isDBCS1 The byte at the given offset is the first byte of DBCS

isPrevDBCS The character preceding the one at the given offset is a DBCS

character

Data Type Styles Allows the Following Input

anyData A mixture of SBCS and DBCS characters.

dbcsData DBCS-only data.

mixedData A mixture of SBCS and DBCS characters. Use this style if you plan

to convert data to an EBCDIC code page.

sbcsData SBCS-only data.

 Chapter 3. Overview of the Classes 21

22 User Interface Class Library User’s Guide

 Part 2. Getting Started

 Copyright IBM Corp. 1993 23

24 User Interface Class Library User’s Guide

Chapter 4. Creating User Interface Class Library Applications

To create a User Interface Class Library application, you need to know which files to

create and what goes into them. The following list describes the minimum files required

for an application. Typically, the name of each file is the same; only the extensions

differ.

filename.CPP Contains the primary C++ code for your application.

filename.HPP Contains the declaration of any class or classes that you create.

You can put each class in a separate .HPP file or all classes in one

file. If your classes are used in only one .CPP file, they can be

declared in that .CPP file instead.

Optionally, you can create the following files:

filename.RC Contains the application resource file and associated resources used

when the application requires data, such as text strings or bit maps,

from an external source. Examples of external sources include

.BMP, .ICO, and .DLG files.

filename.H Contains the header file, which defines constants used in a resource

(.RC) file.

filename.DEF Contains the module definition file, which holds information that

defines your application for the linker.

filename.IPF Contains the text and tags to produce the help information for your

application.

filename.MAK Contains the make file, which holds information to compile and link

your application.

 Constructing Applications

Write User Interface Class Library applications using the C++ programming language.

These files have the following structure:

 � #include statements

Insert #include statements at the beginning of the file to specify other files that

contain information that your application requires. The following order is

recommended for #include statements in an application:

1. Standard C library headers

2. OS/2 Toolkit headers

3. User Interface Class Library headers

4. Your class headers

Note: In certain cases, the User Interface Class Library headers can detect

whether the OS/2 Toolkit headers are included and can define some

Toolkit-specific functions in such cases.

 Copyright IBM Corp. 1993 25

Typical #include statements are:

 – #include <Ixxxxx.HPP>

Includes the header file that contains information about a User Interface Class

Library class that your application uses. You must include the header file for

each class you use. All User Interface Class Library header files begin with

the letter “I.”

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for an

appendix that contains cross-reference tables for header files and the classes

they contain.

For faster compiles, surround #include statements with #define and #endif

statements, as follows:

#ifndef _IXXXX_
 #include <IXXXX.HPP>
#endif

where IXXXX is the name of the class library header file being included

(without the .HPP extension).

 – #include "xxxxx.HPP"

Represents the inclusion of a header file for a class that you created. Include

header files for classes that you create if your source file uses those classes.

See “Creating Your Own Classes” on page 19 for more information.

 – #include "xxxxx.H"

Includes the file that defines your constants.

� Main procedure which defines the application entry point

Create the primary application window in the main procedure. Then the windows

display and event processing starts for the application. Use the run member

function within the ICurrentApplication class to do this. See “Starting Event

Processing” on page 32 for more information.

� Constructor for the application window

Use the IFrameWindow class to construct the application window.

Once the application window is constructed, your application can call other classes

to insert controls and dialogs into the window and to handle mouse and keyboard

events.

26 User Interface Class Library User’s Guide

Understanding a Simple Application

An easy way to understand how the classes and objects work together is to look at a

simple application. This application has three basic user interface components:

� A standard frame window with a title bar, system menu, border, and minimize and

maximize buttons. The window title is set to “Simple Application.”

� A menu bar that contains a single menu item called Close. When the user selects

this menu item, the application closes the window and ends.

� The rest of the window, or client area, that contains the phrase “Simple Example.”

Simple Application

Menu Bar

Title Bar

Title Text
System
Menu

Minimize
Button

Maximize
Button

Border

Client Area

Simple Example

Close

Figure 1. Simple Application Main Window

Two source files are required for this application:

� C++ source file (.CPP file)

� Resource file (.RC file)

 Chapter 4. Creating User Interface Class Library Applications 27

Creating a Sample C++ Source File
The first file is the C++ source file used by the C++ compiler to generate the executable

part of this application. A copy of the “Simple” application is in the

\ibmcpp\samples\iclui\simple directory.

Listing of the C++ source file for the simple application.:

 1 #include <iapp.hpp> //IApplication Class
 2 #include <iframe.hpp> //IFrameWindow Class
 3 #include <icmdhdr.hpp> //ICommandHandler & ICommandEvent
 4 #include <istattxt.hpp> //IStaticText Class
 5 #include <istring.hpp> //IString Class
 6
 7 #define WND_MAIN 5000 //Main Window Id
 8 #define MI_CLOSE 5001 //Command Id
 9
10 class AWindow : public IFrameWindow, //Define AWindow Class from
11 public ICommandHandler // IFrameWindow & ICommandHandler
12 {
13 public:
14 AWindow(unsigned long windowId) //Define AWindow Constructor
15 : IFrameWindow (//Call IFrameWindow constructor
16 IFrameWindow::defaultStyle() // Use default styles plus
17 | IFrameWindow::menuBar, // Get Menu Bar from Resource File
18 windowId) // Main Window Id
19 {
20 IString aString("Simple Example"); //Create text string for static text
21 IStaticText \ staticText=new //Create Static Text Control
22 IStaticText (5002, this, this); // Pass in myself as parent & owner
23 staticText->setText(aString); //Set text in Static Text Control
24 handleEventsFor(this); //Set self as command event handler
25 setClient(staticText); //Set button control in Client Area
26 setFocus(); //Set focus to main window
27 show(); //Set to show main window
28 } /\ end AWindow :: AWindow(...) \/
29
30 Boolean command(ICommandEvent& cEvent)//Define command member function
31 {
32 if (cEvent.commandId() == MI_CLOSE) //Is Command Event Id = Close Id
33 { // Yes, the command is close
34 close(); // Let's close the main window
35 return true; // Normally, you would return true
36 }; // to indicate command processed
37 return false; //Return Command not Processed
38 } /\ end AWindow :: command(...) \/
39 }; // End of AWindow class definition
40
41 void main() //Main Procedure with no parameters
42 {
43 AWindow mainWindow(WND_MAIN); //Create main window on the desktop
44 IApplication::current().run(); //Get current application & start
45 } /\ end main \/

28 User Interface Class Library User’s Guide

Lines 1-5 include the class header files needed from the class library for the

application. WND_MAIN (line 7) is used as the window ID for the main window.

MI_CLOSE (line 8) is used as the command ID for the Close menu item.

A class called AWindow is defined in lines 10-39. This class is derived from the

IFrameWindow and ICommandHandler classes (lines 10-11). The AWindow class has

a single constructor (lines 14-28) and a single member function called

AWindow::command (lines 30-39).

This application creates the following objects:

mainWindow This AWindow object is the main window for the application. It is

constructed in line 43.

staticText This is the static text control (IStaticText) object that contains the

phrase “Simple Application.” This object is constructed on line 21.

aString This IString object is constructed on line 20. It contains the phrase

“Simple Application” that is set in the staticText object on line 23.

title bar This window is created because the code specifies the default styles

on the IFrameWindow constructor on lines 15-16.

menu bar This object is constructed by the User Interface Class Library as a

result of specifying the menuBar style on the IFrameWindow

constructor on lines 15-17. Several handlers are also created

supporting the menu bar. In this application, the menu bar sends a

command event to the frame window when the user selects the

Close menu item. Line 24 specifies that we are a command handler

for ourselves. Lines 30-38 define the processing for command

events sent to the frame window.

cEvent This ICommandEvent object is created by the User Interface Class

Library, which is a parameter on the command member function on

line 30. This object returns the command ID on line 32 and is

compared against MI_CLOSE. If it is an MI_CLOSE command, the

application closes the window and ends using close on line 34;

otherwise, the member function returns false indicating that the

command has not been processed.

Defining Application Resources
Resources are defined in a resource script file, an ASCII text file that you manipulate

using a standard text editor. The menu, string table, and dialog template are examples

of the resources defined in the resource file. Each static string used in a window has a

corresponding string ID that you define in the resource file. The resource compiler

produces a compiled version of the resources, which is then incorporated into the

application’s executable code or stored in a dynamic link library (DLL) for use by one or

more applications.

A major benefit of defining such resources externally to the application is that changes

can be made to resource definitions without affecting the application code itself.

 Chapter 4. Creating User Interface Class Library Applications 29

You can also provide national language versions by storing the resources for each

language in a separate resource file. You can then build your application as separate

executable versions for each language (each with a different resource file bound to it)

or as a single executable with a separate DLL for each language.

Creating a Sample Resource File
The second file contains the resource definitions used by the resource compiler to

generate the resources for this application.

 1 #define WND_MAIN 5000 //Main window Id
 2 #define MI_CLOSE 5001 //Command Id
 3
 4 STRINGTABLE
 5 BEGIN
 6 WND_MAIN, "Simple Application" //Title bar text (main ID)
 7 END
 8
 9 MENU WND_MAIN //Main Window Menu (WND_MAIN)
10 BEGIN
11 MENUITEM "˜Close", MI_CLOSE //Close Menu Item
12 END

Line 1 defines WND_MAIN for this resource file. This number, 5000, must match the

definition on line 7 of the C++ source file. Line 2 defines MI_CLOSE for this resource

file. This number, 5001, must match the definition on line 8 of the C++ source file.

Line 6 defines a string resource containing the phrase “Simple Application” with a string

ID of WND_MAIN. Because this matches the main window ID used on line 43 of the

C++ source program, the User Interface Class Library uses this string as the default

window title. You can change the “Simple Application” title without changing the

application code.

Lines 9-12 define the menu bar used by this application. Because we specified the

menuBar style on line 17, the User Interface Class Library attempts to load the menu

with an ID equal to the window ID. In this example, the main window ID is WND_MAIN

(5000) and line 9 defines the menu with a menu ID of WND_MAIN; therefore, the User

Interface Class Library uses this menu bar for the main window.

The close menu item is defined on line 11. This menu item appears to the user as

Close with a command ID of MI_CLOSE. When the user selects this menu item, lines

30-39 in the C++ source code are executed. You can change the “Close” phrase (for

example, it could be “Quit”) without changing the application code. This is important if

you translate your application into other languages or if you make required changes for

end users. It is also possible to reorganize complex menus with many menu items and

submenus without changing the application code.

30 User Interface Class Library User’s Guide

Using the Application Classes

To develop a User Interface Class Library application, you always use IApplication and

the single instance of its derived class, ICurrentApplication.

Objects of the ICurrentApplication class represent the application that is currently

running.

There is a single instance of this class. Obtain a reference to it by using the static

member function IApplication::current. The instance of this class contains information

about the application that is accessible to the objects executing in the process.

Use the ICurrentApplication class member functions to:

� Record and query command line arguments to the application

� Start event processing

� Identify the primary resource library used by the application

� Exit from an application

Recording and Querying Command Line Arguments
With ICurrentApplication, you can record and query the command line arguments of

your application. Set the arguments by calling setArgs, passing in the arguments that

were passed to the main procedure.

To query the number of arguments, use the member function ICurrentApplication::argc.

This member function returns a nonzero value because it always has at least the name

of the application as a parameter.

To get the nth parameter, use the member function ICurrentApplication::argv, where the

argv(0) component is always the name of the application. Because argv is returned as

an IString, you can use all the overloaded operators for this class.

For example, the following code records the command line parameters.

void main(int argc , char \\argv) //Main procedure with arguments
{
 IApplication::current().setArgs(argc , argv);

...

Where

argc is the number of arguments received

argv represents the actual arguments.

See Chapter 7, “Managing Character Data” on page 75, and refer to the IBM C/C++

Tools: User Interface Class Library Reference for more information about the

ICurrentApplication and IApplication classes.

 Chapter 4. Creating User Interface Class Library Applications 31

Starting Event Processing
To start event processing for a C++ application using the User Interface Class Library,

use the run member function of the ICurrentApplication class. For example:

void main() //Main procedure with no arguments
{

AHelloWindow mainWindow (WND_MAIN); //Create our main window on the desktop
IApplication::current().run(); //Get current & run the application

} /\ end main \/

Exiting from an Application
To exit from an application, use the exit member function, highlighted in this example:

if (IApplication::current().argv(1)=="") { //If no command line arguments
IApplication::current().exit(); //Get current & exit the application

} /\ endif \/
} /\ end AHelloWindow :: AHelloWindow(...) \/

Loading Resources into an Application
Using the User Interface Class Library, you can load a resource from a DLL. Use the

ICurrentApplication member function setUserResourceLibrary to identify which resource

library will be used if none is specified on a call that loads a resource. The following

highlighted code shows an example.

void main(int argc, char \\argv) //Main procedure with no arguments
 {
 IApplication::current(). //Get current

setArgs(argc, argv); // and set command line arguments

 IString Dllname(IApplication::current().argv(1));

IApplication::current(). //Get current application
setUserResourceLibrary(Dllname.asString()); // Set the name of resource DLL .

AHelloWindow mainWindow (WND_MAIN); //Create our main window on the desktop

IApplication::current().run(); //Get current & run the application

} /\ end main \/

First the library tries to create a frame window by loading a dialog with the WND_MAIN

ID from the default user resource library.

32 User Interface Class Library User’s Guide

You can also determine the default user resource library by calling the

userResourceLibrary member function. The following highlighted code shows an

example.

AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow(windowId) //Call IFrameWindow constructor

{
hello = new IStaticText(WND_HELLO, //Create static text control

this, this); // Pass in myself as owner & parent
 hello->setText(
 IApplication::current().
 userResourceLibrary().asString());

//Set text in static text control
hello->setAlignment(//Set alignment to center in both

 IStaticText::centerCenter); // directions
setClient(hello); //Set hello control as client window

setFocus(); //Set focus to main window
show(); //Set to show main window

} /\ end AHelloWindow :: AHelloWindow(...) \/

Linking Your Application to the User Interface Class Library

Link your application to the User Interface Class Library in one of the following ways,

depending on your needs.

1. If you are developing an application, use the DDE4MUII.LIB import library.

Your application links dynamically to DDE4MUI.DLL at run time. Using this DLL

during development reduces the time it takes to link your application and the

amount of swap space used. You must also link with the following libraries:

� DDE4CCI.LIB, which resolves Collection Class library references and uses

DDE4CC.DLL.

� DDE4MBSI.LIB, which resolves C++ runtime external references and uses

DDE4MBS.DLL.

2. If you are shipping an application, use the DDE4MUIB.LIB and DDE4MUIC.LIB

static object libraries. Also use the DDE4MUID.LIB static object library when your

application includes dynamic data exchange (DDE) or direct manipulation.

Using these libraries does not create dependencies on DDE4MUI.DLL.

You must also link your application to the following libraries:

� DDE4CC.LIB, which resolves Collection Class Library references.

� DDE4SBS.LIB or DDE4MBS.LIB, which resolve C++ runtime external

references.

Note: If you use the IThread class to start multiple threads, you must use

DDE4MBS.LIB.

 Chapter 4. Creating User Interface Class Library Applications 33

The following additional rules apply when you build your application with the dynamic

libraries, instead of the static object libraries:

1. A DLL using the User Interface Class Library must link dynamically to the User

Interface Class Library code (that is, it must link with DDE4MUII.LIB).

2. An EXE using the User Interface Class Library and calling a DLL that also uses the

class library must link dynamically to the User Interface Class Library (that is, it

must link with DDE4MUII.LIB).

3. An EXE or DLL file should not link both dynamically and statically to the User

Interface Class Library code.

Stack Size Requirements for Your Application

This only applies if you are using OS/2 Version 2.0. You should build your applications

with a minimum stack size of 4K. If you encounter an insufficient stack size error at run

time, increase the size of your stack. You may also encounter false out-of-stack errors.

Note: You may increase or decrease the size of your stack by some number other

than a multiple of 4K to find a value that allows you to run your application.

#pragma Priority Values

The User Interface Class Library reserves the use of #pragma priority values in the

range of -2147482624 through -2147481600. The C++ compiler reserves the range

below that. As a result, avoid using a #pragma priority value less than -2147481599

(this is equivalent to INT_MIN + 2048) to control the order of static object construction

in your User Interface Class Library application.

See the C++ Language Reference for more information on #pragma priority values.

34 User Interface Class Library User’s Guide

 Chapter 5. Creating Windows

When you develop an application, you usually start with a window that is a composite

of the frame window, several frame-control windows, and a client window. The frame

window coordinates the actions of the frame controls and client window, enabling the

composite window to act as a single unit.

The User Interface Class Library provides classes that construct the frame window and

that allow you to add a variety of styles and controls.

For a discussion and description of frame windows, refer to the OS/2 2.0 Technical

Library Programming Guide Volume II.

Creating a Frame Window

A frame window is a window that an application uses as the base when constructing a

main window or other composite window, such as a dialog window or message box. A

frame window provides basic features, such as borders and a menu bar. It can also

have a set of resources associated with it, such as icons, menus, and accelerators.

Use the IFrameWindow class to create a frame window. The default style of the

IFrameWindow class has a title bar, system menu, minimize button, maximize button,

and border. The default style adds an entry for the frame window to the system

window list.

The IFrameWindow class also provides several other styles. You can, for example,

associate an accelerator key table to the frame window or an icon to be used when the

window is minimized.

When you construct an IFrameWindow with a style of minimizedIcon, accelerator, or

menuBar, resources corresponding to the style must be in the resource library you use

to construct the frame. This library is usually the default user library, which you use by

entering:

IApplication::current().userResourceLibrary()

However, you can also specify the resource library on the IFrameWindow constructor

by using the const IResourceId argument.

If a required resource is not found, an exception is thrown and the frame window is not

constructed.

See “Adding Styles” on page 63 for more information on setting styles. For a list of the

styles provided with IFrameWindow, refer to the IBM C/C++ Tools: User Interface Class

Library Reference.

Figure 2 shows the components of a frame window created using the IFrameWindow

class with the default style and some added controls.

 Copyright IBM Corp. 1993 35

C++ Hello World - Version 3

Menu Bar

Title Bar

Title Text
Minimized
Icon

Minimize
Button

Maximize
Button

Status Area

Border

Information Area

Client Area

Hello, World!!!

Center Alignment

Use Alt-F4 to Close Window

Alignment

Figure 2. Frame Window Components

The following example defines a frame window:

AHelloWindow :: AHelloWindow(unsigned long windowId)
 :IFrameWindow(IFrameWindow::defaultStyle())

When a frame window is minimized, the frame window hides and draws its minimized

icon. Sometimes other windows associated with the frame window are drawn on top of

its icon. This occurs when the windows are children of the frame window but not the

client window. This can also happen when frame extensions are added to the client

area, for example, instances of the IInfoArea class.

To suppress the drawing of these windows when they are supposed to be minimized,

add a handler to the frame window, detect when the frame is minimized, and hide these

windows. The windows should be visible when the frame is restored.

The User Interface Class Library minimizes the amount of work to construct an

IFrameWindow because much of the frame control and extension layout is deferred

until the frame window shows. As a result, if you query the size and position of the

frame window’s client window or frame extensions, an accurate value will not be

returned until the frame window updates.

The IWindow::show or showModally member functions automatically update the frame

window. You can force the frame window to update by calling the update member

function.

36 User Interface Class Library User’s Guide

Changing the Title Bar
The title bar is the area at the top of each frame window that contains a minimized

icon, a window title, and the maximize and minimize buttons.

You can specify the minimized icon and the window title when you create the frame

window.

If you do not provide a window title, your application sets the title to a string loaded

from the application’s resource library. If your application cannot find a string, the title

defaults to the system-generated title (typically, the name of the executable file).

The following example shows how to specify a minimized icon and the window title

when you create the frame window.

1. The icon and title text are defined in the resource file:

ICON WND_MAIN HELLO.ICO
STRINGTABLE
 BEGIN

WND_MAIN, "Title Bar Sample"
 END

WND_MAIN is the frame window identifier. The frame window uses the window

identifier (windowId) passed on the constructor to load its icon, title, menu bar, or

accelerator table resources if these components are specified in the frame window

style.

2. The following code comes from the AHELLOW3.CPP file:
...
14 void main() //Main Procedure with no parameters
15 {
16 AHelloWindow mainWindow (WND_MAIN); //Create our main window on the
17 // desktop
18 IApplication::current().run(); //Get the current application and
19 // run it
20 } /\ end main \/
...
25 AHelloWindow :: AHelloWindow(unsigned long windowId)
26 : IFrameWindow (//Call IFrameWindow constructor v2
27 IFrameWindow::defaultStyle() // Use default plus v2
28 | IFrameWindow::minimizedIcon, // Get Minimized Icon from RC file v2
29 windowId) // Main Window ID
...
52 sizeTo(ISize(400,300)); //Set the size of main window v2
53 setFocus(); //Set focus to main window
54 show(); //Set to show main window
...

When the application creates the AHelloWindow object, it constructs the

IFrameWindow base class using the default style with a minimized icon,

HELLO.ICO, and “Title Bar Sample” as the title text.

 Chapter 5. Creating Windows 37

Adding a Menu Bar
The menu bar is the area near the top of a window, below the title bar and above the

client area of the window. A menu bar contains a list of choices. When a user selects

a choice on a menu bar, a pull-down menu associated with that choice is displayed.

The following example uses the IMenuBar class to add a menu bar with only one

submenu named Alignment. When you run the example and select Alignment, the

pull-down menu is displayed. The choices in the pull-down menu are Left, Center, and

Right. When you select one of the choices, the text string in the client window aligns

to the selected position.

1. The following code from the AHELLOW3.RC file defines the text for the menu bar

and its associated pull-down menu.
...
31 MENU WND_MAIN //Main Window Menu (WND_MAIN) v3
32 BEGIN
33 SUBMENU "˜Alignment", MI_ALIGNMENT //Alignment Submenu v3
34 BEGIN
35 MENUITEM "˜Left", MI_LEFT //Left Menu Item v3
36 MENUITEM "˜Center", MI_CENTER //Center Menu Item v3
37 MENUITEM "˜Right", MI_RIGHT //Right Menu Item v3
38 END
39 END

2. The following code from the AHELLOW3.HPP file shows the addition of the

IMenuBar object to the AHelloWindow class:
...
14 class AHelloWindow : public IFrameWindow,
15 public ICommandHandler //v3
16 {
17 public: //Define the Public Information
18 AHelloWindow(unsigned long windowId); //Constructor for this class
19
20 protected: //Define Protected Member v3
21 Boolean command(ICommandEvent& cmdEvent); //v3
22
23 private: //Define Private Information
24 IStaticText \ hello; //Hello contains "Hello, World" text
25 IInfoArea \ infoArea; //Define an Information Area v2
26 // Control to create an information .
27 // area beneath the client area v2
28 IStaticText \ statusLine; //Status Line at top of client window v3
30 IMenuBar \ menuBar; //Define Menu Bar v3
31 };
32 #endif

38 User Interface Class Library User’s Guide

3. This code is from the AHELLOW3.CPP file:
...
25 AHelloWindow :: AHelloWindow(unsigned long windowId)
26 : IFrameWindow (//Call IFrameWindow constructor v2
27 IFrameWindow::defaultStyle() // Use default plus v2
28 | IFrameWindow::minimizedIcon, // Get Minimized Icon from RC file v2
29 windowId) // Main Window ID
30 {
31 hello=new IStaticText(WND_HELLO, //Create Static Text Control
32 this, this); // Pass in myself as parent & owner
33 hello->setText(STR_HELLO); //Set text in Static Text Control v2
34 hello->setAlignment(//Set Alignment to Center in both
35 IStaticText::centerCenter); // directions
36 setClient(hello); //Set hello control as Client Window
...
48 handleEventsFor(this); //Set self as event handler (commands)v3
49 menuBar=new IMenuBar(WND_MAIN, this); //Create Menu Bar for main window .
50 menuBar->checkItem(MI_CENTER); //Place Check on Center Menu Item v3
...
62 Boolean AHelloWindow :: command(ICommandEvent & cmdEvent) // .
63 { //v3
64 switch (cmdEvent.commandId()) { //Get command id v3
65
66 case MI_CENTER: //Code to Process Center Command Item v3
67 hello->setAlignment(//Set alignment of hello text to .
68 IStaticText::centerCenter); // center-vertical, center-horizontal .
69 statusLine->setText(STR_CENTER); //Set Status Text to "Center" from Res .
70 menuBar->checkItem(MI_CENTER); //Place Check on Center Menu Item .
71 menuBar->uncheckItem(MI_LEFT); //Uncheck Left Menu Item .
72 menuBar->uncheckItem(MI_RIGHT); //Uncheck Right Menu Item .
73 return(true); //Return command processed .
74 break; // v3
75

76 case MI_LEFT: //Code to Process Left Command Item v3
77 hello->setAlignment(//Set alignment of hello text to .
78 IStaticText::centerLeft); // center-vertical, left-horizontal .
79 statusLine->setText(STR_LEFT); //Set Status Text to "Left" from Res .
80 menuBar->uncheckItem(MI_CENTER); //Uncheck Center Menu Item .
81 menuBar->checkItem(MI_LEFT); //Place Check on Left Menu Item .
82 menuBar->uncheckItem(MI_RIGHT); //Uncheck Right Menu Item .
83 return(true); //Return command processed .
84 break; // v3
85
86 case MI_RIGHT: //Code to Process Right Command Item v3
87 hello->setAlignment(//Set alignment of hello text to .
88 IStaticText::centerRight); // center-vertical, right-horizontal .
89 statusLine->setText(STR_RIGHT); //Set Status Text to "Right" from Res .
90 menuBar->uncheckItem(MI_CENTER); //Uncheck Center Menu Item .
91 menuBar->uncheckItem(MI_LEFT); //Uncheck Left Menu Item .
92 menuBar->checkItem(MI_RIGHT); //Place Check on Right Menu Item .
93 return(true); //Return command processed .
94 break; // v3
95
96 } /\ end switch \/ // v3
...

 Chapter 5. Creating Windows 39

Lines 25 through 29 create the AHelloWindow object.

Lines 31 through 36 create an IStaticText control and sets it as the client window.

Line 48 adds an event handler via handleEventsFor(this) to handle events that originate

from the menu bar.

Line 49 creates an IMenuBar object.

Line 50 sets the default submenu item as Center.

Lines 62 through 96 implement a command handler to handle the selection of menu

items.

40 User Interface Class Library User’s Guide

Creating a Status Area
The status area is a small rectangular area that is usually located at the top of a

window, below the menu bar. The status area displays information about the state of

an object or the state of a particular view of an object.

To create a status area:

1. In the .HPP file, define an IStaticText object in the AHelloWindow class. This

example defines an object called statusLine.

class AHelloWindow : public IFrameWindow,
 public ICommandHandler
{
 public:

AHelloWindow(unsigned long windowId);
 virtual ˜AHelloWindow();
 protected:

Boolean command(ICommandEvent& cmdEvent);
 private:
 IMenuBar menuBar;
 IStaticText hello;
 IInfoArea infoArea;
 IStaticText statusLine;
};

2. In the .CPP file, modify the constructor of AHelloWindow to include a status area

when AHelloWindow is created.

In this example, WND_STATUS is a control ID defined in the header file.

STR_STATUS, defined in the resource file, is a string resource ID that specifies a

string to be displayed in the status area.

AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow (IFrameWindow::defaultStyle()

| IFrameWindow::minimizedIcon, windowId),
 menuBar(WND_MAIN,this),
 hello(WND_HELLO,this,this),
 infoArea(this),
 statusLine(WND_STATUS,this,this)
{
 statusLine.setText(STR_STATUS);
 addExtension(&statusLine,
 IFrameWindow::aboveClient,
 IFont(statusLine).maxCharHeight());
...
}

 Chapter 5. Creating Windows 41

Creating an Information Area
The information area is a small rectangular area that is usually located at the bottom of

a window. You can use the information area to display:

� A brief explanation of the state of an object

� Information about the completion of a process

Use the IInfoArea class to create and manage the information area. Objects of

IInfoArea class provide a frame extension to show information about the menu item

where the cursor is positioned. The string displayed in the information area is defined

in a string table in the resource file.

The following example uses the IInfoArea class to create the information area and the

text to display in it.

1. The menu bar and string table are defined in the resource file. The string table

contains strings of text and each string is associated with a menu item. When you

choose the menu item, the string related to that item is displayed in the information

area.

MENU WND_MENU
 BEGIN

SUBMENU "˜Alignment", MI_ALIGNMENT
 BEGIN
 MENUITEM "˜Left", MI_LEFT

MENUITEM "˜Center", MI_CENTER
 MENUITEM "˜Right", MI_RIGHT
 END
 END
STRINGTABLE
 BEGIN

MI_ALIGNMENT "Select Alignment Menu"
MI_LEFT "Select Left Alignment Menu Item"

 MI_CENTER "Select Center Alignment Menu Item"
MI_RIGHT "Select Right Alignment Menu Item"

 END

2. This code is from the .HPP file. The highlighted line adds an object, infoArea, to

the AHelloWindow class.

class AHelloWindow : public IFrameWindow,
 public ICommandHandler
{
 public:

AHelloWindow(unsigned long windowId);
 protected:

Boolean command(ICommandEvent& cmdEvent);
 private:
 IMenuBar menuBar;
 IStaticText hello;
 IInfoArea infoArea;
};

42 User Interface Class Library User’s Guide

3. In the .CPP file, the constructor of AHelloWindow is modified. The information

area is constructed when AHelloWindow is created.

AHelloWindow :: AHelloWindow(unsigned long windowId)
: IFrameWindow (IFrameWindow::defaultStyle()

| IFrameWindow::minimizedIcon, windowId),
 menuBar(WND_MENU,this),
 hello(WND_HELLO,this,this),
 infoArea(this)
{
...
}

Creating Basic Window Controls

A window control is a part of the user interface that allows a user to interact with data.

Controls are usually identified by text; for example, headings, labels in push buttons,

field prompts, and titles in windows.

This section explains how to code the following controls:

 � Static text

 � Entry fields

 � Push buttons

 � Check boxes

 � Radio buttons

 � Sliders

Creating a Static Text Control
Static text controls are text fields, bit maps, icons, and boxes that you can use to label

or box other controls. The IStaticText class creates and manages the static text control

window.

You can set the text and control its color, size, and position in the static text window.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for a list of the

public members provided with IStaticText.

 Chapter 5. Creating Windows 43

The following example comes from the AHELLOW1.CPP sample file.
...
 9 void main() //Main procedure with no parameters
10 {
11 IFrameWindow \ mainWindow=new //Create our main window on the desktop
12 IFrameWindow(0x1000); // Pass in our Window ID
13
14 IStaticText \ hello=new IStaticText(//Create static text control with
15 0x1010, mainWindow, mainWindow); // mainWindow as parent & owner
16 hello->setText("Hello, World!"); //Set text in Static Text Control
17 hello->setAlignment(//Set Alignment to Center in both
18 IStaticText::centerCenter); // directions
19
20 mainWindow->setClient(hello); //Set hello control as Client Window
21 mainWindow->setFocus(); //Set focus to main window
22 mainWindow->show(); //Set to show main window
23
24 IApplication::current().run(); //Get the current application and
25 // run it
26 } /\ end main \/

Lines 14 and 15 use the window ID, the parent window, and the owner window to

create the static text control and an object for it.

Line 16 sets a text string in the IStaticText class, using the setText member function,

which is inherited from ITextControl.

Lines 17 and 18 use the setAlignment member function to position the text. Figure 3

shows the nine locations for positioning text within a static text control.

HELLO1.EXE

topLeft topCenter

centerCentercenterLeft

bottomLeft bottomCenter bottomRight

centerRight

topRight

Figure 3. Aligning Text in a Window

44 User Interface Class Library User’s Guide

Creating an Entry Field Control
An entry field is a control a user can put text into.

The following example, from Version 4 of the Hello World application, shows how to

define and create an entry field.

1. This code from the ADIALOG4.DLG file defines the entry field.

 1 DLGINCLUDE 1 "AHELLOW4.H"
 2
 3 DLGTEMPLATE WND_TEXTDIALOG LOADONCALL MOVEABLE DISCARDABLE
 4 BEGIN
 5 DIALOG "Hello World Edit Dialog", WND_TEXTDIALOG, 17, 22, 137, 84,
 6 WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR
 7 BEGIN
 8 DEFPUSHBUTTON "OK", DID_OK, 6, 4, 40, 14
 9 PUSHBUTTON "Cancel", DID_CANCEL, 49, 4, 40, 14
10 LTEXT "Edit Text:", DID_STATIC, 8, 62, 69, 8
11 ENTRYFIELD "", DID_ENTRY, 8, 44, 114, 8, ES_MARGIN
12 END
13 END

Line 11 sets the field to be empty, supplies the entry field id (DID_ENTRY),

describes the dimensions of the entry field window, and adds a border.

2. This code from the ADIALOG4.CPP file creates the entry field control.
...
23 textField=new IEntryField(DID_ENTRY, //Create entry field object using dialog
24 this); // entry field
25 textField->setText(textString); //Set top current "Hello, World" text
...
44 textValue=textField->text(); //Get Text from Dialog Entry Field
...

Lines 23 through 25 create an entry field object and set the text using the member

function setText.

After an event occurs, line 44 queries the entry field for its contents using the

member function ITextControl::text. (See “The Text Dialog Source Code File” on

page 178 for complete listing of ADIALOG4.CPP.)

Figure 4 on page 46 shows the window created using this sample.

 Chapter 5. Creating Windows 45

Hello World Edit Dialog

Edit Text:

CancelOK

Hello, World!!!!

Figure 4. Example of an Entry Field Control

Creating a Push Button Control
A push button is a button that represents an action that is initiated when a user selects

it. You can label a push button with text, graphics, or both. When a user selects a

push button, the action occurs immediately if there is a handler for the generated

command event.

Use the IPushButton class to create and maintain the push button control window. By

default, a push button generates an application ICommandEvent. You can change the

default style by changing the window style value to generate a help event or an

ISysCommandEvent.

Refer to IBM C/C++ Tools: User Interface Class Library Reference for a list of the styles

provided for IPushButton.

46 User Interface Class Library User’s Guide

In Version 4 of the Hello World application, the member function setupButtons creates

three push buttons (see lines 77 through 91). Adding the IControl::tabStop into the

default style allows the user to use the Tab key to move the selection between the

push buttons.
...
 65 //\\ v4
 66 // AHelloWindow :: setupButtons \ .
 67 // Setup Buttons \ .
 68 //\\ .
 69 Boolean AHelloWindow :: setupButtons() //Setup Buttons .
 70 { // .
 71 ISetCanvas \ buttons; //Define canvas of buttons .
 72 // .
 73 buttons=new ISetCanvas(WND_BUTTONS, //Create a Set Canvas for Buttons .
 74 this, this) ; // Parent and Owner=me .
 75 buttons->setMargin(ISize()); //Set Canvas Margins to zero .
 76 buttons->setPad(ISize()); //Set Button Canvas Pad to zero .
 77 leftButton=new IPushButton(MI_LEFT, //Create Left Push Button .
 78 buttons, buttons, IRectangle(), // Parent, Owner=Button Canvas .
 79 IPushButton::defaultStyle() | // Use Default Styles plus .
 80 IControl::tabStop); // tabStop .
 81 leftButton->setText(STR_LEFTB); //Set Left Button Text .
 82 centerButton=new IPushButton(MI_CENTER,//Create center push button .
 83 buttons, buttons, IRectangle(), // Parent, Owner=Button Canvas .
 84 IPushButton::defaultStyle() | // Use Default Styles plus .
 85 IControl::tabStop); // tabStop .
86 centerButton->setText(STR_CENTERB); //Set Center Button Text .

 87 rightButton=new IPushButton(MI_RIGHT, //Create Right Push Button .
 88 buttons, buttons, IRectangle(), // Parent, Owner=Button Canvas .
 89 IPushButton::defaultStyle() | // Use Default Styles plus .
 90 IControl::tabStop); // tabStop .
 91 rightButton->setText(STR_RIGHTB); //Set Right Button Text .
 92 addExtension(buttons, //Add Buttons Canvas .
 93 IFrameWindow::belowClient, // below client and .
 94 30UL); // specify height in pixels .
 95 return true; //Return .
 96 } /\ end AHelloWindow :: setupButtons() \/ //v4
...

The command events generated by pressing the Left, Center, and Right push buttons

are handled by the AHelloWindow::command member function. The help event

generated by pressing the Help push button is handled by the keysHelpId member

function.

 Chapter 5. Creating Windows 47

Creating a Check Box Control
A check box is a square with text beside it that represents a choice. When a user

selects the choice, a check mark symbol (√) appears in the check box to indicate that

the choice is selected. By selecting the choice again, the user clears the check box.

Use a check box to set a choice in a group of choices that are not mutually exclusive.

The ICheckBox class allows you to create and maintain a check box. The selection of

a check box is processed by using the ISelectHandler class and adding the handler to

either the check box or its owner window.

Refer to Chapter 6, “Adding Events and Event Handlers” on page 67 for information

about event handlers.

The following example shows how to create a check box:

1. The text associated with the check box is defined in the resource file as string text:

STRINGTABLE
 BEGIN

STR_CHECK1 , "check box one"
STR_CHECK2 , "check box two"
STR_CHECK3 , "check box three"

 END

2. Each check box has a corresponding control ID in the .H file, for example:

#define STR_CHECK1 0x1001
#define STR_CHECK2 0x1002
#define STR_CHECK3 0x1003

3. Three ICheckBox objects are defined and constructed in the canvas called

canvas1.
...
ICheckBox checkBox1(WND_CHECK1, &canvas1, &mainwindow);
checkBox1.setText(STR_CHECK1);
ICheckBox checkBox2(WND_CHECK2, &canvas1, &mainwindow);
checkBox2.setText(STR_CHECK2);
ICheckBox checkBox3(WND_CHECK3, &canvas1, &mainwindow);
checkBox3.setText(STR_CHECK3);
...

48 User Interface Class Library User’s Guide

Creating a Radio Button Control
A radio button is a circle with text beside it. Use radio buttons to display a set of

choices from which the user can select one. A group of radio buttons contains at least

two radio buttons.

The IRadioButton class allows you to create and manage the radio button control

window. The ISelectHandler class processes the selection of a radio button and adds

the handler to either the radio button or its owner window.

Refer to Chapter 6, “Adding Events and Event Handlers” on page 67 for information

about event handlers.

The following example creates a group of radio buttons with two radio buttons, one

labeled Black, the other White.

1. The text associated with each radio button is defined in the resource file as string

text, as follows:
...
STRINGTABLE
 BEGIN
 STR_BLACK, "Black"
 STR_WHITE, "White"
 END
:
...

2. This code from the .HPP file defines a select handler class, which is inherited from

the ISelectHandler class, to handle selecting the radio button.
...
class MySelectHandler : public ISelectHandler
{
 public:
 MySelectHandler() ;
 protected:

selected(IControlEvent& evt);
 private:
...
};

 Chapter 5. Creating Windows 49

3. This code is from the .CPP file:

 1 IRadioButton radioBtBlack(WND_BLACKBT, &canvas1, &mainWindow);
 2 radioBtBlack.setText(STR_BLACK);
 3 IRadioButton radioBtWhite(WND_WHITEBT, &canvas1, &mainWindow);
 4 radioBtWhite.setText(STR_WHITE);
 5
 6 radioBtBlack.enableGroup().enableTabStop();
 7 radioBtBlack.select();
 8
 9 selectHdr.handleEventsFor(&radioBtBlack);
10 selectHdr.handleEventsFor(&radioBtWhite);
11
12 Boolean MySelectHandler::selected(IControlEvent& evt)
13 {
14 Boolean fProcess= false;
15 switch (evt.controlId())
16 {
17 case WND_BLACKBT:
18
...
19 fProcess= true;
20 break;
21 case WND_WHITEBT:
22
...
23 fProcess= true;
24 break;
25 }
26 return fProcess;
27 }

Lines 1 through 4 create two radio buttons in canvas1 using the IRadioButton

constructor. WND_BLACKBT and WND_WHITEBT are control IDs defined in the

.H file.

Line 6 sets the group styles of the controls using the enableGroup and

enableTabStop member functions.

Line 7 uses the ISettingButton::select member function to make the black button

the default selection.

Lines 9 and 10 set the select handler to handle events from the selection of the

Black and the White radio buttons.

Lines 12 through 27 provide a selected member function for the select handler

class.

50 User Interface Class Library User’s Guide

Creating a Slider Control
A slider is a control that represents a quantity and its relationship to the range of

possible values for that quantity. Users can set, display, or modify a value by moving

the slider arm.

A slider consists of a slider arm, slider shaft and, optionally, detents, tick marks, tick

text, and slider buttons. Figure 5 shows the components of a slider control.

0 1 2 3 4 5 6 7 8 9

Slider Buttons Detent Tick Text Tick Mark

Slider ShaftSlider Arm

Figure 5. Slider Components

The ISlider class inherits from the IProgressIndicator class, which is a read-only version

of the slider control. Typically, a progress indicator is used to display the percentage of

a task that is complete by filling in its shaft as the task progresses. Because the user

cannot change the value represented by a progress indicator, a slider arm and slider

buttons are not provided in a progress indicator.

 Chapter 5. Creating Windows 51

The following example shows how to create a slider in the constructor of a subclass of

IFrameWindow.

 1 AHelloWindow :: AHelloWindow(unsigned long windowId)
 2 : IFrameWindow (
 3 IFrameWindow::defaultStyle()
 4 | IFrameWindow::minimizedIcon,
 5 windowId)
 6 {
 7 clientCanvas = new IMultiCellCanvas(WND_MCCANVAS, this, this);
 8 setClient(clientCanvas);
 9
10 infoArea = new IStaticText(WND_INFO, clientCanvas, clientCanvas);
11 infoArea->setAlignment(IStaticText::centerCenter);
12 infoArea->setText(STR_INFO);
13
14 unsigned long numberOfTicks = 10;
15 unsigned long tickSpacing=0 ;
16
17 mySlider = new ISlider((unsigned long)ID_SLIDER,
18 clientCanvas, clientCanvas,
19 IRectangle(),
20 numberOfTicks,
21 tickSpacing,
22 ISlider::defaultStyle());
23
24 mySlider->setTickLength(5);
25 for (unsigned long z=0; z<10; z++)
26 mySlider->setTickText(z, (char\)(IString(z)));
27
28 unsigned long DetentId = mySlider->addDetent((unsigned long) 105) ;
29
30 clientCanvas->addToCell(infoArea, 1, 1);
31 clientCanvas->addToCell(mySlider, 1, 2);
32 clientCanvas->setColumnWidth(1,100,true);
33 clientCanvas->setRowHeight(2,100,true);
34
35 setFocus();
36 show();
37 }

Lines 7 and 8 create a multicell canvas and set it to be the client area of this frame

window.

Lines 10, 11, and 12 create a static text control to show a message string.

Lines 17 through 22 create the slider with the default style, tick marks, tick text, and

detents.

Line 24 uses the setTickLength member function to set the length of all tick marks on

the slider scale.

The setTickText member function on lines 25 and 26 sets the text associated with the

tick at the specified index.

The addDetent member function on line 28 adds a detent to the slider. The detent is

set at the pixel offset from the home position specified, and a unique ID is returned.

Use this ID to remove a detent or query its position.

Figure 6 on page 53 shows the slider control generated from this example.

52 User Interface Class Library User’s Guide

Slider Sample

The Current Value is: 2

0 1 2 3 4 5 6 7 8 9

Figure 6. Slider Sample

The default style of ISlider positions the slider horizontally and centers it in the window

with tick marks and text above it. To change the style to a vertical position, add

IProgressIndicator::vertical to the default style, as follows:

mySlider = new ISlider((unsigned long)ID_SLIDER,
 clientCanvas, clientCanvas,
 IRectangle(),
 numberOfTicks,
 tickSpacing,
 ISlider::defaultStyle()
 | IProgressIndicator::vertical);

You can also construct a slider with the tick marks and text below the shaft and place it

in any position in the window.

Several member functions inherited from IProgressIndicator provide the slider arm

operation. For example, you can use the following statements to return the current

slider arm position measured by tick offset, and then modify its position to the result

plus one.

unsigned long tickNumber= mySlider->armTickOffset ();
tickNumber++ ;
mySlider->moveArmToTick (tickNumber);

Refer to IBM C/C++ Tools: User Interface Class Library Reference for a list of the slider

control member functions.

 Chapter 5. Creating Windows 53

Creating Canvas Controls

A canvas is a control that divides the client area. With the canvas classes, you can

build windows with multiple child controls that contain fixed-size areas, user-sizeable

areas, and scrollable areas. In addition, canvas controls allow you to control tabbing

and cursor movement between child controls, providing an alternative to using dialog

boxes.

Generally, you build a complex window with a canvas control as the client area. This

canvas can contain other canvas controls to provide the required layout.

The canvas classes are:

 � ISplitCanvas

 � ISetCanvas

 � IMultiCellCanvas

 � IViewPort

Set and multicell canvases automatically size themselves to contain their child windows.

Creating a Split Canvas
A split canvas contains two or more child controls. Each child control is placed in a

pane. The panes are separated by moveable (default) or fixed split bars. A split

canvas can have its split bars oriented vertically or horizontally.

Use a split canvas to contain controls that can be resized to display more information,

such as list boxes, containers, MLEs, and notebooks.

Note: Use the noAdjustPosition style on a list box control in a split canvas.

The order in which you declare the child controls determines both their relative position

on the split canvas and the order in which tab and cursor keys switch focus between

them. For a canvas with vertical split bars, the child controls are arranged with the

control that was declared first in the leftmost pane. For a canvas with horizontal split

bars, the control that was declared first is placed in the top pane.

54 User Interface Class Library User’s Guide

The following examples show how to create a window containing two split canvases.

Each pane is occupied by a static text control.

1. This code from the header file declares the ASplitCanvas class as a subclass of

IFrameWindow.

#include <iframe.hpp> // IFrameWindow
#include <istattxt.hpp> // IStaticText
#include <isplitcv.hpp> // ISplitCanvas
class ASplitCanvas : public IFrameWindow
{
 public:

ASplitCanvas(unsigned long windowId); // Constructor

 private:
ISplitCanvas horzCanvas, // The canvases will be created

vertCanvas; // in the same order they
IStaticText lText, // are declared.

 rText,
 bText;
};

2. This code creates the window.

 1 ASplitCanvas :: ASplitCanvas(unsigned long windowId)
 2 : IFrameWindow(windowId)
 3 , horzCanvas(WND_CANVAS, this, this)
 4 , vertCanvas(WND_CANVAS2, &horzCanvas, &horzCanvas)
 5 , lText(WND_TXTL, &vertCanvas, &vertCanvas)
 6 , rText(WND_TXTR, &vertCanvas, &vertCanvas)
 7 , bText(WND_TXTB, &horzCanvas, &horzCanvas)
 8 {
 9
10 horzCanvas.setOrientation(ISplitCanvas::horizontalSplit); //Give the canvas
11 setClient(&horzCanvas); //a horizontal split bar
12 //and make it the client area
13
14 vertCanvas.setOrientation(ISplitCanvas::verticalSplit);//Give the canvas
15 //a vertical split bar
16 lText.setText(STR_TOPLEFT); //Set top left static text
17 lText.setAlignment(IStaticText::centerCenter);
18
19 rText.setText(STR_TOPRIGHT); //Set top right static text
20 rText.setAlignment(IStaticText::centerCenter);
21
22 bText.setText(STR_BOTTOM); //Set bottom static text
23 bText.setAlignment(IStaticText::centerCenter);
24
25 setFocus().show(); //Set focus and show window
26
27 } /\ end ASplitCanvas :: ASplitCanvas(...) \/

 Chapter 5. Creating Windows 55

Lines 1 through 7 create a canvas with horizontal and vertical split bars. The canvases

are created in the same order they were declared in the header file. In line 4, the

vertical canvas is defined as a child of the horizontal canvas.

Lines 10 and 11 make the horizontal canvas the client area.

Line 14 defines a canvas with vertical split bars.

Lines 16 through 23 set the text for each static control and position the text in each

pane.

Figure 7 shows the completed split canvas.

Canvas Classes Example1 - Split Canvas

Top left text Top right text

Bottom text

First pane
of vertical
split canvas

Second pane
of vertical
split canvas

Vertical split bar

Horizontal
split bar

Figure 7. Split Canvas Example

56 User Interface Class Library User’s Guide

Creating a Set Canvas
A set canvas arranges its child controls in either rows or columns. The User Interface

Class Library uses the term deck for either a row or column. You can arrange the

decks of a set canvas either horizontally or vertically. The set canvas attempts to place

the same number of controls in each deck.

Each deck is created large enough to contain the largest control in the deck. To do

this, the canvas calls the minimumSize member function for each child control. For

controls that have sizes defined by the text they contain, such as push buttons and

radio buttons, this default processing is normally sufficient. However, for a control that

does not have a fixed size, such as a notebook, you need to set its minimum size by

overriding the calcMinimizeSize member function or by calling the setMinimumSize

member function before adding it to the set canvas.

The order in which you create the child controls determines their positions on the set

canvas and the order in which tab and cursor keys switch focus between the controls.

Several styles are available to control the orientation of the decks and the placement of

controls within the decks. You can also alter the spacing between controls and

between the decks and the edge of the canvas.

The following examples use a split canvas as a client area. Two set canvases, each

with seven radio buttons, are then added to the split canvas.

1. This code from the header file declares the ASetCanvas class as a subclass of

IFrameWindow.

#include <iframe.hpp> // IFrameWindow
#include <istattxt.hpp> // IStaticText
#include <iradiobt.hpp> // IRadioButton
#include <isetcv.hpp> // ISetCanvas
#include <isplitcv.hpp> // ISplitCanvas
#define NUMBER_OF_BUTTONS 14

class ASetCanvas : public IFrameWindow
{

public: //Define the public information
ASetCanvas(unsigned long windowId); //Constructor for this class

˜ASetCanvas(); //Destructor for this class

private: //Define private information
 ISplitCanvas clientCanvas;
 IStaticText status;
 ISetCanvas vSetCanvas,
 hSetCanvas;
 IRadioButton \ radiobut[NUMBER_OF_BUTTONS];
};

 Chapter 5. Creating Windows 57

2. This code from the .CPP creates the window.

 1 ASetCanvas::ASetCanvas(unsigned long windowId)
 2 : IFrameWindow(windowId)
 3 , clientCanvas(WND_SPLITCANVAS, this, this, IRectangle(),
 4 ISplitCanvas::defaultStyle() |
 5 ISplitCanvas::horizontal)
 6 , status(WND_STATUS, &clientCanvas, &clientCanvas)
 7 , vSetCanvas(WND_VSETCANVAS, &clientCanvas, &clientCanvas)
 8 , hSetCanvas(WND_HSETCANVAS, &clientCanvas, &clientCanvas)
 9 {
10
11 setClient(&clientCanvas); //Make split canvas the client area
12
13 status.setAlignment(IStaticText::centerCenter);//Set alignment of status area text
14
15 vSetCanvas.setDeckOrientation(ISetCanvas::vertical);
16 vSetCanvas.setDeckCount(3); //Create 3 vertical decks in top canvas
17
18 hSetCanvas.setDeckOrientation(ISetCanvas::horizontal);
19 hSetCanvas.setDeckCount(3); //Create 3 horizontal decks in bottom canvas
20 hSetCanvas.setPad(ISize(10,10)); //Set some space around buttons
...

Lines 1 through 8 create the set canvas.

Line 11 makes the split canvas the client area.

Line 13 adds a static text control to the top pane of the split canvas.

Lines 15 through 20 add two set canvases to the bottom panes.

Figure 8 shows the set canvas created using this code.

Canvas Classes Example 2 - Set Canvas

Button one

Button two

Button three

Button four

Button five

Button six

Button seven

Button eight Button nine Button ten

Button eleven Button twelve

Button thirteen Button fourteen

ISplitCanvas and ISetCanvas example

Vertical set canvas
with 3 decks

Horizontal set canvas
with 3 decks

Figure 8. Set Canvas Example

58 User Interface Class Library User’s Guide

Creating a Multicell Canvas
A multicell canvas consists of a grid of rows and columns. You place child controls on

the canvas by specifying the starting cell and the number of contiguous rows and

columns that they can span. You can refer to cells in the grid by the column and row

value. The top left cell coordinate is (1,1).

The actual number of rows and columns in the canvas is the highest row and column

value used. In the following example, a radio button is placed at (4,5) and a push

button at (2,7). Therefore the canvas will have 4 columns and 7 rows.

The initial size of a row or column is determined by the size of the largest control in that

row or column. By default, the row and column sizes are fixed. You can make the

rows and columns expandable, in which case sizing the canvas also sizes them.

You can also leave rows and columns empty to provide spacing between child controls.

If you do this, specify the size of the empty rows and columns.

The following examples show you how to create a window containing a multicell

canvas. The canvas contains two check boxes, two radio buttons, three static text

controls, and a one push button.

1. This code from the header file declares the AMultiCellCanvas class as a subclass

of IFrameWindow class.

#include <iframe.hpp> // IFrameWindow
#include <istattxt.hpp> // IStaticText
#include <ipushbut.hpp> // IPushButton
#include <iradiobt.hpp> // IRadioButton
#include <icheckbx.hpp> // ICheckBox
#include <imcelcv.hpp> // IMultiCellCanvas
class AMultiCellCanvas : public IFrameWindow
{
 public:

AMultiCellCanvas(unsigned long windowId);

 private:
 IMultiCellCanvas clientCanvas;
 IStaticText status,
 title1,
 title2;

 ICheckBox check1,
 check2;
 IRadioButton radio1,
 radio2;
 IPushButton pushButton;
};

 Chapter 5. Creating Windows 59

2. This code creates the window.

 1 AMultiCellCanvas::AMultiCellCanvas(unsigned long windowId)
 2 : IFrameWindow(windowId)
 3 , clientCanvas(WND_MCCANVAS, this, this)
 4 , status(WND_STATUS, &clientCanvas, &clientCanvas)
 5 , title1(WND_TITLE1, &clientCanvas, &clientCanvas)
 6 , title2(WND_TITLE2, &clientCanvas, &clientCanvas)
 7 , check1(WND_CHECK1, &clientCanvas, &clientCanvas)
 8 , check2(WND_CHECK2, &clientCanvas, &clientCanvas)
 9 , radio1(WND_RADIO1, &clientCanvas, &clientCanvas)
10 , radio2(WND_RADIO2, &clientCanvas, &clientCanvas)
11 , pushButton(WND_PUSHBUT, &clientCanvas, &clientCanvas)
12 {
13
14 setClient(&clientCanvas); // make multicell canvas the client area
15 status.setAlignment(IStaticText::centerCenter);// set status area text
16 status.setText(STR_STATUS);
17
18 title1.setAlignment(IStaticText::centerLeft); // set text and alignment
19 title1.setText(STR_TITLE1);
20
21 title2.setAlignment(IStaticText::centerLeft); // set text and alignment
22 title2.setText(STR_TITLE2);
23
24 check1.setText(STR_CHECK1); // set check box text
25 check2.setText(STR_CHECK2);
26 radio1.setText(STR_RADIO1); // set radio button text
27 radio2.setText(STR_RADIO2);
28
29 pushButton.setText(STR_PUSHBUT);
30
31 radio2.select(); // preselect one radio button
32 check1.enableGroup().enableTabStop();// set tabStop and group styles
33 radio1.enableGroup().enableTabStop();
34 pushButton.enableGroup().enableTabStop();
35
36 clientCanvas.addToCell(&status , 1, 1, 4, 1); // add controls to canvas.
37 clientCanvas.addToCell(&title1 , 1, 3, 2, 1); // the canvas runs from
38 clientCanvas.addToCell(&title2 , 3, 3, 2, 1); // 1,1 to 4,7
39 clientCanvas.addToCell(&check1 , 2, 4); // only one row and
40 clientCanvas.addToCell(&check2 , 2, 5); // one column are
41 clientCanvas.addToCell(&radio1 , 4, 4); // expandable, as this
42 clientCanvas.addToCell(&radio2 , 4, 5); // allows the canvas to
43 clientCanvas.addToCell(&pushButton , 2, 7); // fill the client area.
44
45 clientCanvas.setRowHeight(2, 20, true); // make row 2 20 pixels high and expandable
46
47 clientCanvas.setRowHeight(6, 40); // make row 6 40 pixels high
48
49 clientCanvas.setColumnWidth(4, 40, true); // make column 4 40 pixels wide and expandable
50
51 check1.setFocus(); // set focus to first check box
52 show(); // show main window
53
54 } /\ end AMultiCellCanvas :: AMultiCellCanvas(...) \/

60 User Interface Class Library User’s Guide

Lines 1 through 11 create a multicell canvas.

Line 14 makes it the client area.

Lines 36 through 43 place the other controls on the canvas using the addToCell

member function.

Lines 45 through 49 set the sizes for rows 2 and 6 and column 4. Row 2 and column 4

are expandable.

Figure 9 shows the completed multicell canvas.

Canvas Classes Example 3 - Multi-cell Canvas

Check Boxes
check box one
check box two

Radio Buttons
radio button one
radio button two

IMultiCellCanvas example

Multicell Canvas with 4 Columns and 7 rows

Expandable
row

Row

Column

1

1

2

2

3

3

4

4
5

6

7

Expandable column

Read . . .

Figure 9. Multicell Canvas Example with 4 Columns and 7 Rows

Creating a Viewport
A viewport canvas has only one child control. The size of the child control is fixed. If

the viewport is smaller than the child control, scroll bars are added to the viewport. The

user can then use the scroll bars to view different parts of the child control.

If you need more than one control in a viewport, place the controls into another type of

canvas, which you can then make the child of the viewport.

 Chapter 5. Creating Windows 61

The following examples show how to create a window containing a viewport. The

viewport has a single bit-map control inside it.

1. This code from the header file declares the AViewPort class as a subclass of

IFrameWindow class.

#include <iframe.hpp> // IFrameWindow
#include <ivport.hpp> // IViewPort
#include <ibmpctl.hpp> // IBitmapControl
class AViewPort : public IFrameWindow
{

public: // define the public information
AViewPort(unsigned long windowId); // constructor for this class

private: // define private information
 IViewPort clientViewPort;
 IBitmapControl bitmap;
};

2. This code creates the viewport control and sets it as the client area. The bit-map

control is then made a child of the viewport.

 1 #include <ireslib.hpp> // IResourceId class
 2 AViewPort :: AViewPort(unsigned long windowId)
 3 : IFrameWindow(windowId)
 4 , clientViewPort(WND_VIEWPORT, this, this)
 5 , bitmap(WND_BITMAP, &clientViewPort, &clientViewPort
 6 , IResourceId(BMP_ID))
 7 {
 8 setClient(&clientViewPort); // make viewport the client
 9 setFocus().show(); // set focus and show window
10 } /\ end AViewPort :: AViewPort(...) \/

Figure 10 shows the viewport canvas created using this code.

Canvas Classes Example 4 - ViewPort

Figure 10. Viewport Canvas Example

62 User Interface Class Library User’s Guide

 Adding Styles

A style affects the appearance and behavior of a window. Each window class has

styles that are encapsulated in style objects. Each style object operates within the

scope of the window class that it affects.

Generic styles are defined in IWindow and IControl. Classes derived from IWindow and

IControl can combine their own styles with those of IWindow and IControl.

Each window class maintains its own default style object. You can access this default

style object using the static member function defaultStyle and then set it using the static

member function setDefaultStyle. Each window class also maintains a style object

called classDefaultStyle that corresponds to the initial setting of defaultStyle.

All window classes provide one or more constructors that accept a style object as one

parameter. You can only construct a style object from existing style objects. These

style object are only used by window constructors. The style of a window can

subsequently be changed and queried using the window class member functions. Also

some styles cannot change after a window has been created, in which case no member

function is provided to change the style.

Combining Style Objects
You can combine style objects using the bitwise OR (|) operator.

The following example creates a list box style object that you can use to construct a

multiple-selection list box:

IListBox::Style lbStyle = IListBox::defaultStyle()
 | IListBox::multipleSelect;

Removing a Style
You can remove styles from a style object by creating a negated-style object using the

negation (˜) bitwise operator and then using the bitwise AND (&) operator.

The following example creates a list box style object that you can use to construct a list

box without a horizontal scroll bar:

IListBox::Style lbStyle = IListBox::defaultStyle()
 & ˜IListBox::horizontalScroll;

Setting Window Styles
You can create a window with a specific style in the following ways:

� Create a window using a constructor that accepts the style as a parameter. The

following three examples illustrate this method.

This example shows how to create an entry field control with a style that is a

combination of styles from IWindow, IControl, and IEntryField.

 Chapter 5. Creating Windows 63

 IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20),

 IWindow::visible |
 IControl::tabStop |
 IControl::group |
 IEntryField::margin |
 IEntryField::autoScroll);

Alternatively, you can explicitly construct the style object and pass it as a

parameter:

IEntryField::Style efStyle = IWindow::visible |
 IControl::tabStop |
 IControl::group |
 IEntryField::margin |
 IEntryField::autoScroll ;
 IEntryField entryField(ID_EF1, parent, owner,

IRectangle(10, 10, 100, 20),
 efStyle);

The default style object can also be accessed using the static member function

defaultStyle. This simplifies the preceding example to:

 IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20),

 IEntryField::defaultStyle() |
 IControl::tabStop |
 IControl::group);

� Use the static member function setDefaultStyle to set the default style and then

construct the window. For example:

IEntryField::Style efStyle = IEntryField::defaultStyle() |
 IControl::tabStop |
 IControl::group ;
 IEntryField::setDefaultStyle(efStyle);
 IEntryField entryField(ID_EF1, parent, owner,

IRectangle(10, 10, 100, 20));

� Create a window with the default style and change it using member functions of the

window. The example now becomes:

 IEntryField entryField(ID_EF1, parent, owner,
IRectangle(10, 10, 100, 20));

entryField.enableGroup(); // member function of IControl
entryField.enableTabStop(); // member function of IControl
entryField.enableAutoScroll(); // member function of IEntryField

For a complete list of available styles, see the IBM C/C++ Tools: User Interface Class

Library Reference.

64 User Interface Class Library User’s Guide

Creating Cursor Classes

The cursor classes provide member functions to move through the items, either forward

or backward, and to add items after the cursor position. Window classes that can

contain one or more items generally provide a nested cursor class.

A cursor must be in a valid state to access the items in a list. A cursor is generally

created in an invalid state. Any cursor function that causes the cursor to point to an

item in the list validates the cursor. For example, the function setToFirst causes the

cursor to be valid if there are items in the list. If the contents of the list that the cursor

is iterating through changes by the addition or removal of items, the cursor becomes

invalid and cannot be used to access items in the list until it is validated again by a

function that points the cursor at a valid item.

In some cases, you may want to construct a cursor that iterates through items with a

particular property only. For example, the constructor for a list box cursor can have a

second parameter that determines whether the cursor returns all items in the list box or

just the selected items with that property.

The following example shows how to iterate through all selected items in a

multiple-selection list box:

IListBox listbox(ID_LB, parent, owner, IRectangle(),
IListBox::defaultStyle() | IListBox::multipleSelect);

 /\ ... add items to listbox ...\/
 IListBox::Cursor lbCursor(listbox);

for (lbCursor.setToFirst(); lbCursor.isValid(); lbCursor.setToNext())
 {

IString str(listbox.elementAt(lbCursor)); //Return item at cursor
unsigned long ul = lbCursor.asIndex(); //Return zero-based index
/\ ... process string or index ... \/

 }

 Chapter 5. Creating Windows 65

66 User Interface Class Library User’s Guide

Chapter 6. Adding Events and Event Handlers

The User Interface Class Library uses events and event handlers to encapsulate the

message architecture of OS/2 Presentation Manager (PM) in an object-oriented way.

The User Interface Class Library reserves message IDs beginning at 0xFFE0. If you

use the User Interface Class Library, define user messages only in the range of

WM_USER (0x1000) through 0xFFDF. Figure 11 shows the relationships between

window, event, and handler classes.

Event PM

Window

1

2

3

4

5

Handler

Figure 11. Relationship of Window, Event, and Handlers to Presentation Manager

1. Handlers are registered with the window.

2. PM messages are encapsulated in event objects, which are passed to the window

or control that had the event.

3. The window then invokes the handlers attached to it, passing the event object as a

parameter.

4. The handlers are called sequentially with the most recently added handler invoked

first. A handler indicates when processing for the event is complete by returning a

Boolean value of true.

5. If none of the handlers can process the event, it is passed to the default PM

window procedure for the window.

The distinction between window classes and handler classes allows you to separate the

event handling logic from the rest of the application. This enables reuse of this logic.

For example, you can reuse a handler to verify telephone numbers wherever an entry

field accepts telephone numbers.

 Copyright IBM Corp. 1993 67

Processing Events Using Handlers

Each handler class has one or more virtual functions that are called to process the

event. When an application processes events, it normally subclasses a handler class

and overrides the virtual function to provide its own application-specific logic.

Note: Ensure that handlers return from virtual functions within 1/10 second to avoid

locking up the system by delaying the PM message processing.

Figure 12 shows how the ICommandHandler works. All handler classes contain a

dispatchHandlerEvent function to determine whether the handler needs to process the

event or return it. If the event needs processing, it creates the appropriate event object

and calls the appropriate virtual function to process the event.

Event

IWindow

dispatch()

ICommandHandler

dispatchHandlerEvent()

command()

ICommandEvent

1

2

3a

3b

4

Figure 12. Processing within the ICommandHandler

Figure 13 on page 69 presents some common events for which you can provide

handlers. It relates the type of event, the handler for that event, and the member

function in the handler class that the application must override in order to provide its

own logic.

The IBM C/C++ Tools: User Interface Class Library Reference contains descriptions of

all handler classes and member functions.

68 User Interface Class Library User’s Guide

PM Message

WM_COMMAND

WM_SYSCOMMAND

WM_CONTROL

WM_CONTROL

WM_CHAR

WM_PAINT

WM_WINDOWPOSCHANGED

WM_CONTROL

WM_CONTROL

WM_CONTEXTMENU

WM_INITMENU

WM_MENUSELECT

WM_MENUEND

WM_CONTROL

Member Function

command

systemCommand

edit

getFocus, lostFocus

keyPress, key,

scanCodeKeyPress,

virtualKeyPress,

characterKeyPress

paintWindow

windowResize

selected

enter

makePopUpMenu

menuShowing

menuSelected

menuEnded

makePopupMenu

Handler Class

ICommandHandler

ICommandHandler

IEditHandler

IFocusHandler

IKeyboardHandler

IPaintHandler

IResizeHandler

ISelectHandler

ISelectHandler

IMenuHandler

IMenuHandler

IMenuHandler

IMenuHandler

ICnrMenuHandler

Event Class

ICommandEvent

ICommandEvent

IControlEvent

IControlEvent

IKeyboardEvent

IPaintEvent

IResizeEvent

IControlEvent

IControlEvent

IMenuEvent

IMenuEvent

IMenuEvent

IMenuEvent

IMenuEvent

Figure 13. Common Events and Their Handlers

Event Generated by

Command event by menu selection, push

button, or accelerator key

System command event by menu selection,

push button, or accelerator key

Edit event by entry field, combination box,

MLE, or slider

Gain focus or lose focus by entry field,

combination box, MLE, slider, container, or

spin button

Keyboard entry by entry field, combination

box, MLE, or other input focus control

Paint area event by all controls

Resize event by all controls

Item selected by List box, combination box,

container, check box, or radio button

Enter pressed when item selected, or

double-click on item by list box, combination

box, or container

Pop-up menu requested by mouse button or

keyboard

Menu about to be shown by pull-down menu

or pop-up menu

Menu item highlighted and ready to be

selected by mouse or keyboard

Menu removed by mouse or Esc key

Container item context menu requested by

container

C
h
a
p
te

r 6
.

A
d
d
in

g
 E

v
e
n
ts

 a
n
d
 E

v
e
n
t H

a
n
d
le

rs
6
9

Extracting Information Using Events

The IEvent class acts as the base class for the more specialized event classes. It

provides general member functions to extract the message ID and message

parameters. The subclasses of IEvent generally add more specialized functions for

extracting information specific to that type of event.

Figure 14 shows some common event classes and some of the functions they contain

to extract event information.

Figure 14. Event Classes and Accessor Functions

Event Class Accessor Function Description of Return Value

IEvent window The IWindow object pointer

IEvent handle IWindowHandle of the window

IEvent eventId ID of the event

IEvent parameter1 IEventData containing first event parameter

IEvent parameter2 IEventData containing second event parameter

ICommandEvent source An enumeration type that gives the type of control

ICommandEvent commandId The ID of the command that caused the event

IControlEvent controlId The ID of the control that caused the event

IControlEvent control Pointer to the control that caused the event

IKeyboardEvent character Single-byte character code (exception thrown if DBCS)

IKeyboardEvent mixedCharacter IString containing character (can be DBCS)

IKeyboardEvent virtualKey An enumeration type that gives the virtual key event

IMenuEvent menuItemId The ID of the selected menu Item

IMenuEvent mousePosition Position of mouse at the time the event occurred

IPaintEvent presSpaceHandle The handle of the presentation space to use for any drawing

IPaintEvent rect The screen rectangle that needs updating

The IEvent class provides a member function, setResult, for those events that require a

value to be returned.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for a complete

list of event classes and member functions.

70 User Interface Class Library User’s Guide

Writing an Event Handler

In general, writing an event handler can be divided into the following steps:

1. Determine which handler class processes the event.

2. Subclass the handler class and override the event handling functions.

3. Create an instance of your subclass.

4. Attach the instance to the window.

The Hello World application in Part 4, “Learning from the Sample Application” on

page 143, has several event handlers. The following code is from Version 3 of the

Hello World application and shows how to process user menu selection.

1. Determine which handler class processes the event.

When the user selects a menu, a command message is sent to the frame window

and the client window. The handler class for this type of event is

ICommandHandler.

2. Subclass the handler class and override the event handling function.

The Hello World application uses multiple inheritance to provide a class named

AHelloWindow that inherits from both IFrameWindow and ICommandHandler. The

class ICommandHandler has a virtual function command to process command

events. The class AHelloWindow overrides this function to provide its own

command event handling.

The following example, taken from AHELLOW3.HPP, shows the class declaration

of AHelloWindow.
...
13 //\\\
14 class AHelloWindow : public IFrameWindow,
15 public ICommandHandler //v3
16 {
17 public: //Define the Public Information
18 AHelloWindow(unsigned long windowId); //Constructor for this class
19
20 protected: //Define Protected Member v3
21 Boolean command(ICommandEvent& cmdEvent); //v3
...
31 };

 Chapter 6. Adding Events and Event Handlers 71

The definition of the command function is taken from AHELLOW3.CPP. The ID of

the menu item is extracted from the command event object using the commandId

member function.

58 //\\\
59 // AHelloWindow :: command \ .
60 // Handle menu commands \ .
61 //\\ .
62 Boolean AHelloWindow :: command(ICommandEvent & cmdEvent) // .
63 { //v3
64 switch (cmdEvent.commandId()) { //Get command id v3
65
66 case MI_CENTER: //Code to Process Center Command Item v3
...
73 return(true); //Return command processed .
74 break; // v3
75
76 case MI_LEFT: //Code to Process Left Command Item v3
...
83 return(true); //Return command processed .
84 break; // v3
85
86 case MI_RIGHT: //Code to Process Right Command Item v3
...
93 return(true); //Return command processed .
94 break; // v3
95
96 } /\ end switch \/ // v3
97
98 return(false); //Return command not processed v3
99 } /\ end HelloWindow :: command(...) \/ //v3

3. Create an instance of your subclass.

Because the window is its own command event handler, creating the window

creates an instance of the handler. If a separate handler class has been defined,

you have to create an instance of it. Normally, do this in the constructor for the

window.

72 User Interface Class Library User’s Guide

4. Attach the instance to the window.

The base class IHandler provides a member function handleEventsFor to attach a

handler to a window. In the Hello World application, AHELLOW.CPP, the handler

is attached on line 48.
...
22 //\\
23 // AHelloWindow :: AHelloWindow - Constructor for our main window \
24 //\\
25 AHelloWindow :: AHelloWindow(unsigned long windowId)
26 : IFrameWindow (//Call IFrameWindow constructor v2
27 IFrameWindow::defaultStyle() // Use default plus v2
28 | IFrameWindow::minimizedIcon, // Get Minimized Icon from RC file v2
29 windowId) // Main Window ID
30 {
31 hello=new IStaticText(WND_HELLO, //Create Static Text Control
32 this, this); // Pass in myself as parent & owner
...
47
48 handleEventsFor(this); //Set self as event handler (commands)v3
49 menuBar=new IMenuBar(WND_MAIN, this); //Create Menu Bar for main window .
50 menuBar->checkItem(MI_CENTER); //Place Check on Center Menu Item v3
51
52 sizeTo(ISize(400,300)); //Set the size of main window v2
53 setFocus(); //Set focus to main window
54 show(); //Set to show main window
55
56 } /\ end AHelloWindow :: AHelloWindow(...) \/

 Chapter 6. Adding Events and Event Handlers 73

74 User Interface Class Library User’s Guide

Chapter 7. Managing Character Data

The data type classes simulate basic data types, such as strings, points, and

rectangles. These classes hide the structure of the data while providing the capability

to access and alter the data. In addition, a set of handle classes provide access to

window or application-specific handles.

This chapter discusses two data type classes, IString and IFont.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for more

information on the data type classes.

Managing Data Using IString

The IString class contains member functions that enable you to manipulate and

manage data.

With the IString class, you can:

� Perform stream I/O

� Query string characteristics

� Test the contents of the string

� Compare strings using overloaded operators

 � Convert string

 � Edit strings

� Manipulate strings using concatenation, copy, and alignment operators

Performing Stream I/O
You can read and write an IString instance using the operators << and >>. The

highlighted lines from an application called t1 show how to do this:

#include <istring.hpp>
#include <iostream.h>
void main()
{
IString

s1="Enter a letter = ",
 s2;

cout << s1 << endl;
cin >> s2 ;

} /\ end main \/

 Copyright IBM Corp. 1993 75

Here is an example of running application t1.

[C:\]t1
Enter a letter =
a
[C:\]

Querying String Characteristics
The IString class provides accessor functions that you can use to analyze various

elements of a string. An accessor returns information about the elements of a data

type.

The following table lists the accessors for IString:

In the following code from an application called t2, the highlighted text shows you how

to use accessors:

#include <istring.hpp>
#include <iostream.h>
void main()
{
 IString
 s1("string"),
 s2;

cout << " The size of s1 is " << s1.size() << endl;
cout << "And the 5th element is " << s1[5] << endl;
cout << "And the first three characters are " << s1.subString(1,3) << endl;

} /\ end main \/

Here is an example of running application t2:

[C:\]t2
The size of s1 is 6
And the 5th element is n
And the first three characters are str
[C:\]

Accessor Returns

charType Type of the character at the argument index.

length Length of the string, not counting the terminating null character.

size Size of the string.

subString One part of the string. subString has three parameters: startPos,

length, and padCharacter.

operator[] Value of the nth position in the string.

76 User Interface Class Library User’s Guide

Testing the Contents of a String
Use the following IString member functions to test for the conditions or characteristics

of a string.

Member Function Returns True if

isASCII All characters are 0x00–0x7F

isAlphabetic All characters are A–Z or a–z

isAlphanumeric All characters are A–Z, a–z, or 0–9

isBinaryDigits All characters are either 0 or 1

isControl All characters are 0x00–0x1F or 0x7F

isDBCS All characters are double-byte characters

isDigits All characters are 0–9 only

isGraphics All characters are 0x21–0x7E

isHexDigits All characters are 0–0, A–F, or a–f

isLowerCase All characters are a–z only

isPrintable All characters are 0x20–0x7E

isPunctuation None of the characters are white space, control characters, or

alphanumeric

isSBCS All of the characters are single-byte characters

isUpperCase All characters are A–Z only

isValidDBCS No DBCS characters have a second byte of 0

isWhiteSpace All characters are 0x09–0x0D or 0x20

 Chapter 7. Managing Character Data 77

In the following code from an application called t3, the highlighted text shows you how

to test an input string and return the result.

#include <istring.hpp>
#include <iostream.h>
void main()
{
 IString s,s1;

cin >> s;
 if (s.isDigits())

{cout << "The string " << s << " contains only numbers." << endl;}
 else
 {
 if (s.isAlphabetic())
 {
 if (s.isLowerCase())

{ cout << "The string " << s << " contains only lowercase characters." << endl;}
 else
 if (s.isUpperCase())

{cout << "The string " << s << " contains only uppercase characters." << endl;}
 else

{cout << "The string " << s << " contains only mixed alphabetic characters." << endl;}
 }

 else
 {
 if (s.isAlphanumeric())

{ cout << "The string " << s << " contains only alphanumeric characters." << endl;}
 else

{ cout << "The string " << s << " contains some unusual characters." << endl; }
 }
 }
} /\ end main \/

Here are examples of running the t3 application:

[C:\]t3
ABC
The string ABC contains only uppercase characters.

[C:\]t3
abc
The string abc contains only lowercase characters.

[C:\]t3
Abc
The string Abc contains only mixed alphabetic characters.

[C:\]t3
12a
The string 12a contains only alphanumeric characters.

[C:\]t3
#@%
The string #@% contains some unusual characters.

[C:\]

78 User Interface Class Library User’s Guide

 Comparing Strings
Use the comparison operators included in the IString class to compare one IString

either to another IString or to a literal character string. The following table lists the

comparison operators for IString:

In the following code from an application called t4, you see how to compare two strings

to determine if they are equal:

#include <istring.hpp>
#include <iostream.h>
void main()
{

IString s("Name"), s1;

cin >> s1;

if (s1 == s)
cout << s1 << " is equal to " << s << endl;

 else
if (s1 != "name")

cout << s1 << " is not expected " << endl;
 else

cout << " The first letter must be capitalized. " << endl;
} /\ end main \/

Here are examples of running t4:

[C:\]t4
12
12 is not expected

[C:\]t4
name
 The first letter must be capitalized.

[C:\]t4
Name
Name is equal to Name

[C:\]

Operator Returns

== True if the strings are identical

!= True if the strings are not identical

< True if the first string is less than the second, applying the standard collating

scheme (memcmp)

<= Equivalent to (string1 < string2)||(string1 == string2)

> Equivalent to !(string1 <= string2)

>= Equivalent to !(string1 < string2)

 Chapter 7. Managing Character Data 79

 Converting Strings
You can use the member functions in the IString class to convert strings into other

values.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for conversion

member functions.

In the following code from an application called t5, you see how to convert a string into

a long integer:

#include <istring.hpp>
#include <iostream.h>
void main()
{

IString s1("11101");
int n1;

 n1=s1.asInt();
 n1+=1;
 s1=n1;
 cout << s1 << endl;

} /\ end main \/

Here is an example of running t5:

[C:\]t5
11102

[C:\]

 Editing Strings
Use member functions in the IString class to modify and align text strings. The

following table lists those member functions for IString:

Member Function Result

IString::change Changes occurrences of an argument to an argument replacement

string

IString::center Centers the receiver within a string of a specified length

leftJustify Left justifies the receiver within a string of a specified length

rightJustify Right justifies the receiver within a string of a specified length

upperCase Changes all lowercase letters in the receiver to uppercase

lowerCase Changes all uppercase letters in the receiver to lowercase

80 User Interface Class Library User’s Guide

In the following example from an application called t6, you see how to replace one

string with another, change the text alignment, and translate text from lowercase to

uppercase:

#include <istring.hpp>
#include <iostream.h>
void main()
{

IString s("text"),s1,s2,s3,s4, s5("this is a test");
s4 = s3 = s2 = s1 = s;
cout << " | " << s1.center(10,'+') << " | " << endl;
cout << " | " << s2.leftJustify(10,'<') << " | " << endl;
cout << " | " << s3.rightJustify(10,'>') << " | " << endl;
cout << " | " << s4.upperCase().center(10,' ') << " | " << endl;
cout << " | " << s4.upperCase().center(10,' ') << " | " << endl;
cout << " | " << s5.change("This","These").change("is","are")
.change("test","tests").change("a ","",8,1) << " | " << endl;

} /\ end main \/

Here is an example of running t6:

[C:\]t6
 | +++text+++ |
 | text<<<<<< |
 | >>>>>>text |
| TEXT |
| TEXT |

 | These are tests |

[C:\]

 Manipulating Strings
Use operators in the IString class to manipulate text in a variety of ways.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for IString

member functions.

In the following example from an application called t7, you see how how to concatenate

two strings:

#include <istring.hpp>
#include <iostream.h>
void main()
{

IString s("1"), s1("2"), s2;

s2 = s + s1;
if (s2 != "12") cout << " Something is wrong " << endl;
else cout << " I expected that " << endl;

} /\ end main \/

 Chapter 7. Managing Character Data 81

Here is an example of running t7:

[C:\]t7
 I expected that

[C:\]

Setting and Changing Fonts

The IFont class contains member functions to set and change the characteristics of the

fonts you use in your applications.

You can set the font of almost all objects using the member function setFont, which is

defined in the IControl class.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for more

information on the IFont class.

The highlighted lines in the following code show you how to create a font with a specific

name and point size, and then how to change the point size of different text strings:

#include <ifont.hpp>
...
 IFont Fonts("Helv",8);
...

title1 = new IStaticText(WND_TITLE1, clientCanvas, clientCanvas);
title1->setAlignment(IStaticText::centerLeft);
title1->setText(STR_TITLE1);

 Fonts.setPointSize(12);
 title1->setFont(Fonts);
...

check1 = new ICheckBox(WND_CHECK1, clientCanvas, clientCanvas);
check1->setText(STR_CHECK1);

 Fonts.setPointSize(20);
 check1->setFont(Fonts);
...

To test the font statements, include the highlighted lines in the AMCELCV.CPP file.

82 User Interface Class Library User’s Guide

Part 3. Programming Advanced Features

 Copyright IBM Corp. 1993 83

84 User Interface Class Library User’s Guide

Chapter 8. Creating Additional Controls

This chapter covers the following controls:

� Multiple-line edit fields

 � Containers

 � Notebooks

Viewing and Editing Multiple-Line Edit Fields

A multiple-line edit field (MLE) control enables users to view and edit multiple lines of

text. Use the IMultiLineEdit class to create an MLE field control. The member

functions of the IMultiLineEdit class enable you to display text files with horizontal and

vertical scrolling, read a file into and save it from an MLE, or perform basic editing

tasks, for example cut, copy, and clear.

Creating an MLE
To create an instance of the IMultiLineEdit class, include the ID of a specified MLE, the

parent and owner windows, an IRectangle instance, and one or more styles.

Styles define such functions as scrolling text, wrapping words, adding a border, and

making the field read-only.

Refer to IBM C/C++ Tools: User Interface Class Library Reference for further

information about the IMultiLineEdit class and its styles.

Use the following example to create an instance of an MLE that uses the default style

and includes horizontal scrolling. DID_MLE is the ID of an MLE defined in the resource

file.
...
AEditorWindow :: AEditorWindow(unsigned long windowId)

: IFrameWindow (//Call IFrameWindow constructor
IFrameWindow::defaultStyle() //Use default plus
| IFrameWindow::minimizedIcon, //Get minimized icon from RC file
windowId) //Main window ID

{
mtextfield = new IMultiLineEdit(DID_MLE, this, this,IRectangle(),

 IMultiLineEdit::defaultStyle() |
 IMultiLineEdit::horzScroll);
...
 setClient(mtextfield);
...

The highlighted lines create an instance of the IMultiLineEdit class. When the

IMultiLineEdit object is set in a client window, it looks like Figure 15 on page 87.

 Copyright IBM Corp. 1993 85

Loading and Saving a File
The following member functions from the IMultiLineEdit class manage files and MLEs:

Refer to IBM C/C++ Tools: User Interface Class Library Reference for descriptions of

these member functions.

The highlighted line in following example illustrates how to load a file into an MLE:
...
 filename=fd->fileName(); //

if (filename.size()) //If the name has been specified,
{ //load the file into mtextfield.

 mtextfield->importFromFile(filename.asString());
 mtextfield->setCursorAtLine(0);

} /\ endif \/ //
} /\ endif \/ //
...

Member Function Use To

importFromFile Load a file into an MLE

exportToFile Save from an MLE

exportSelectedTextToFile Save marked text in an MLE into a file

Positioning the Cursor
You can position a cursor on a specific line of an MLE or in a specific character

position, add to or remove lines from an MLE, or ask for the number of lines in an MLE.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for descriptions

of MLE member functions.

To position the cursor on the first line of an MLE after a file has been imported, use the

setCursorAtLine member function. The statement is highlighted in the following code

example:
...
 filename=fd->fileName(); //

if (filename.size()) //If the name has been specified,
{ //load the file into mtextfield.

 mtextfield->importFromFile(filename.asString());
 mtextfield->setCursorAtLine(0); //Put the cursor on the first line.

} /\ endif \/ //
} /\ endif \/ //
...

Figure 15 on page 87 shows the cursor on the first line of the MLE.

86 User Interface Class Library User’s Guide

Editor 1.0

File Options HelpEdit

DEVICE=C:\DOS\SETVER.EXE
DEVICE=C:\DOS\HIMEM.SYS
DOS=HIGH
files= 30
BREAK=ON
BUFFERS=25,8
FCBS=20,8
LASTDRIVE=Z
SHELL=C:\DOS\COMMAND.COM /P /E:2048
DEVICE=C:\DOS\ANSI.SYS /x

Cursor
position

Figure 15. Example of Positioning the Cursor

Performing Clipboard Operations
The IMultiLineEdit class has several member functions to perform clipboard operations,

including copy, cut, paste, clear, and discard. After you define an MLE and import it

into a client window, use these member functions to copy text to the clipboard, cut and

put text into the clipboard, or paste only the marked lines from the clipboard.

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for descriptions

of other member functions.

The following statements show you how to implement the MI_CUT member function:
...
case MI_CUT:

mtextfield->cut(); // cut to clipboard
 break;
...

 Chapter 8. Creating Additional Controls 87

 Developing Containers

A container control holds objects. OS/2 provides a variety of containers, such as

folders, templates, and the Workplace Shell itself. Containers can display their objects

from different views: tree, icon, text, name, and details views. Using the User Interface

Class Library, you can also develop your own containers and change their views,

behaviors, and layouts.

Figure 16 shows an example of a container.

CnrEx 1.0

Views Edit Filters

AIX Development

OS/2 Development

Figure 16. Example of a Container

Containers are defined by the Common User Access (CUA) architecture.

Creating a Container
Use the IContainerControl class to create an instance of a container object. With this

class, you can control, for example, the view of the objects inside the container. To

create a container, use the following statement:

IContainerControl cnrCtl(CNR_RESID, this, this);

Several styles are available for containers that you can use to manage such activities

as multiple-selection and automatic positioning.

You can define the styles in the constructor, or you can use member functions to set

the style required after you create an instance of the container object. An example of a

style statement is highlighted in the following:

cnrCtl = new IContainerControl (CNR_RESID, this, this);
cnrCtl->setMultipleSelection();

Refer to the IBM C/C++ Tools: User Interface Class Library Reference to learn about

other styles and related member functions.

88 User Interface Class Library User’s Guide

Creating a Container Object
Because a container has no meaning without its contents or objects, use the

IContainerObject class to create objects to put into it. At a minimum, an

IContainerObject has an icon and a name.

The following statement is an example of an IContainerObject constructor:

IContainerObject (const IString& string,
const IPointerHandle& iconHandle = 0);

Design your own objects for your applications, create a class that is derived from the

IContainerObject class. For example, if you want to create a container object with

department names, addresses, and ZIP codes for your company, define this class as

follows:

class Department : public IContainerObject
{
 public:

Department(const IString& Name,
const IPointerHandle& Icon,
const IString& Code,
const IString& Address,

 ACnrexWindow\ win);

 IString Code()
const { return strCode; }

 IString Address()
const { return strAddress; }

void setCode (IString code)
{strCode = code;}

void setAddress (IString address)
{strAddress = address;}

 private:

 IString strAddress;
 IString strCode;
};

The statements for a constructor definition are:

Department :: Department(const IString& Name, const IPointerHandle& Icon,
const IString& Code, const IString& Address, ACnrexWindow\ win):

 IContainerObject(Name, Icon),
 strCode (Code),
 strAddress (Address),
 Mywin(win)
 {}

After you define the class, create an instance of an object using the following

statements:

dept1 = new Department (
 "OS/2 Development",
 IApplication::current().userResourceLibrary().loadIcon(OSLOGO),
 "TWPD",
 "Building 71",
 this);

 Chapter 8. Creating Additional Controls 89

Adding and Removing Container Objects
After you create the objects and the container, add the objects into the container.

The following statements add objects to the container, cnrCtl. The first line simply adds

an object, dept1. The next three lines add dept2, dept3, and dept4 in a hierachy under

dept1. The last line adds dept5.

cnrCtl->addObject(dept1) // OS/2 Development
cnrCtl->addObject(dept2,dept1); // C++ Development
cnrCtl->addObject(dept3,dept1); // Platform I
cnrCtl->addObject(dept4,dept1); // OS/2 Edit and Comm Services
cnrCtl->addObject(dept5); // AIX Development

When you place the container in the client window and show the window and the

container, you see a window like the one in Figure 17:

CnrEx 1.0

dept1
object

Views Edit Filters

OS/2 Development

C++ Development

Platform I

OS/2 Edit and Comm Services

AIX Development

OS/2

Figure 17. Example of a Container Showing Objects in a Tree View

The window in Figure 17 shows a tree view of the container’s objects. This view is

discussed later.

By default, the container only removes objects when the container is deleted. It does

not delete them. You can delete all objects in the container when the container is

deleted by using the following code statement.

cnrCtl->setDeleteObjectsOnClose();

90 User Interface Class Library User’s Guide

Filtering Out Container Objects
With the User Interface Class Library, you can filter out objects in a container. The

container uses the FilterFn nested class to show a subset of the existing objects by

filtering out some of the objects.

To create a filter:

1. Define a class derived from the FilterFn class and override the member function

isMemberOf to code the conditions of a valid object.

The following example defines a FilterFn class:

class OnlySelectedObjects : public IContainerControl:FilterFn
{
virtual Boolean

isMemberOf(IContainerObject\ object,
IContainerControl\ container) const

 {
 return isSelected(object);
 }
};

The member function isMemberOf receives the container and container objects and

returns true or false. If true is returned, the container object remains displayed in

the container; if false, the object is hidden.

The isSelected member function returns true if the object has selection emphasis.

Refer to IBM C/C++ Tools: User Interface Class Library Reference for information

about the types of emphasis.

2. Apply the IContainerControl::filter member function. Use the following statements:

OnlySelectedObjects onlySelectedObjects;
cnrCtl->filter(onlySelectedObjects);

Figure 18 on page 92 shows how the container appears before and after you apply the

filter.

 Chapter 8. Creating Additional Controls 91

CnrEx 1.0

CnrEx 1.0

Before

After

OS/2 Development

OS/2 Development

AIX Development

Show Only Level Selected

Show All

Views Edit Filters

Views Edit Filters

Figure 18. Example of Filtering Container Objects

Adding an Object Cursor
Use an object cursor to apply an action to a group of objects or to show which objects

have a specific emphasis. Use the ObjectCursor nested class to iterate through a

group of container objects.

The following example creates an ObjectCursor and uses it to set the emphasis

selected to all container objects:

92 User Interface Class Library User’s Guide

IContainerControl::ObjectCursor CO1 (cnrCtl);

for (CO1.setToFirst(); CO1.isValid(); CO1.setToNext())
 {
 cnrCtl->setSelected(cnrCtl.objectAt(CO1));
 }

Figure 19 shows the before and after result of setting the selection emphasis:

CnrEx 1.0

CnrEx 1.0

Before

After

Views Edit Filters

Views Edit Filters

OS/2 Development

OS/2 Development

AIX Development

AIX Development

select All objects

deselect All objects

Figure 19. Example of Using an Object Cursor

 Chapter 8. Creating Additional Controls 93

Adding Views to a Container
You can use most of the User Interface Class Library views by using the corresponding

member function. For example, the following statement uses the member function that

causes a container to display the icon view:

cnrCtl->showIconView();

This statement provides the container view shown in Figure 20:

CnrEx 1.0

Views Edit Filters

OS/2 Development

AIX Development

Figure 20. Example of the Icon View

The following statement provides the tree icon view:

cnrCtl->showTreeIconView();

94 User Interface Class Library User’s Guide

Figure 21 shows a container with the expanded tree icon view:

CnrEx 1.0

Views Edit Filters

OS/2 Development

C++ Development

Platform I

OS/2 Edit and Comm Services

AIX Development

OS/2

Figure 21. Example of an Expanded Tree Icon View

Showing the Details View Using Container Columns
Use the IContainerColumn class to show a details view from a container object in a

container. You can use this class to set text in the heading of the columns, add

horizontal and vertical separators by column, and align the column contents.

One way to create an instance of a IContainerColumn is for you to provide the offset of

the object data to be displayed in the column and, optionally, the styles to be used for

the heading and data.

The following is an example of the constructor for IContainerColumn:

IContainerColumn (unsigned long dataOffset,
const HeadingStyle& title = defaultHeadingStyle(),
const DataStyle& data = defaultDataStyle());

To create an instance of a container column, use the following statements:

colIcon = new IContainerColumn (IContainerObject :: iconOffset(),
 IContainerColumn::defaultHeadingStyle (),
 IContainerColumn::icon |
 IContainerColumn::alignVerticallyCentered);

colName = new IContainerColumn (IContainerObject::iconTextOffset(),
 IContainerColumn::defaultHeadingStyle (),
 IContainerColumn::string |
 IContainerColumn::alignVerticallyCentered |
 IContainerColumn::alignLeft |
 IContainerColumn::horizontalSeparator);

colCode = new IContainerColumn (offsetof(Department, strCode));

colAddress = new IContainerColumn (offsetof(Department, strAddress));

 Chapter 8. Creating Additional Controls 95

Use the IContainerObject member functions iconOffset and iconTextOffset with the C++

function offsetof to obtain the necessary offsets.

In the previous example, colIcon, colName, colCode, and colAddress are defined as

members of an IFrameWindow. The statements look like this:

private: //Define private information
IContainerControl \ cnrCtl;
Department \dept1, \dept2, \dept3, \dept4, \dept5, \dept6, \dept7;
IContainerColumn \colIcon, \colName, \colCode, \colAddress;

 IMenuBar \ menuBar;

After creating the container columns, you can add heading text to them using the

following statements:

colIcon->setHeadingText("Icon");
colName->setHeadingText("Department Name");
colCode->setHeadingText("Code");
colAddress->setHeadingText("Address");

Use the member function showSeparators to add a vertical separator next to a column

or a horizontal separator under the heading text. The default adds both. To create

only one of the separators, specify it in the member function statement. The following

statements show examples of how to create separators:

//Only Horizontal Separator
colIcon->showSeparators(IContainerColumn::horizontalSeparator);

//Only Vertical Separator
colName->showSeparators(IContainerColumn::verticalSeparator);
colCode->showSeparators(); //both separator by default
colAddress->showSeparators(); //both separator by default

96 User Interface Class Library User’s Guide

After you create the container columns, add them into the container using the following

statements:

cnrCtl->addColumn(colIcon);
cnrCtl->addColumn(colName);
cnrCtl->addColumn(colCode);
cnrCtl->addColumn(colAddress);

Figure 22 is an example of a details view of a container.

CnrEx 1.0

Views FiltersEdit

Icon Code

TWPD

Address

Building 71

Building 71TAIX

Department Name

OS/2 Development

AIX Development

Figure 22. Example of the Details View

Use the following code statement to put a split bar in the details view by specifying the

last column to be viewed in the left window and the location of the split bar in pixels.

cnrCtl->setDetailsViewSplit(colName, 150);

By default, the container only removes objects, but does not delete them, when the

container is deleted. You can delete all objects in the container when the container is

deleted by using the following code statement.

cnrCtl->setDeleteObjectsOnClose();

 Chapter 8. Creating Additional Controls 97

Displaying Pop-Up Menus
A pop-up menu is a menu that is displayed next to its associated object when a user

presses the appropriate key or mouse button. A pop-up menu contains choices that

can be applied to an object at the time the menu is displayed.

The User Interface Class Library provides the IPopUpMenu class, which is inherited

from the IMenu class, to manipulate pop-up menus. Use the makePopUpMenu

member function to construct a pop-up menu.

You can construct IPopUpMenu objects in the following ways:

� Create an empty menu bar given a window ID, frame window owner and styles.

IPopUpMenu (IWindow \owner
unsigned long menuWindowId,
const Style &style = noStyle,
Boolean autoDelete = true),

� Create a menu bar with a menu resource ID and frame window owner.

IPopUpMenu (const IResourceId &menuResId,
 IWindow \owner,

Boolean autoDelete = true);

If autoDelete is true, the pop-up menu object is deleted by IMenuHandler when it is no

longer visible. The pop-up menu is not visible until its IWindow::show member function

is called. Typically, applications will override the makePopUpMenu member function in

the IMenuHandler class and create a pop-up menu.

Version 6 of the Hello World application creates a pop-up menu object to apply to the

“Hello, World” static text control area. The contents of the pop-up menu are defined in

the AHELLOWE.RC resource file, as follows:
...
MENU WND_POPUP //Popup Menu v6
 BEGIN // .

MENUITEM "Left", MI_LEFT //Left Menu Item .
MENUITEM "Center", MI_CENTER //Center Menu Item .
MENUITEM "Right", MI_RIGHT //Right Menu Item .

 END // v6
...

In the AHELLOW6.HPP file, an AMenuHandler class is defined to create the pop-up

menu.
...
//\\ v6
// Class: AMenuHandler \ .
// \ .
// Purpose: Subclass of IMenuHandler so that the a PopUp Menu can be \ .
// created. \ .
// \ .
//\\ .
class AMenuHandler: public IMenuHandler// .
{ // .

protected: //Define Protected Member .
Boolean makePopUpMenu(IMenuEvent& menuEvent); //v6

}; //v6
...

98 User Interface Class Library User’s Guide

The makePopUpMenu member function creates an IPopUpMenu object with the default

AutoDelete attribute. In the following example, from the AHELLOW6.CPP file, the

WND_POPUP menu resource ID is used to create the pop-up menu.
...
//\\ v6
// AMenuHandler :: makePopUpMenu \ .
//\\ .
Boolean AMenuHandler :: makePopUpMenu(IMenuEvent& menuEvent) // .
{ // .

IPopUpMenu \ popUp; //Define popUp variable .
popUp=new IPopUpMenu(WND_POPUP, //Create PopUp Menu with AutoDelete on .

 menuEvent.window()); // .
popUp->show(menuEvent.mousePosition());//Show PopUp Menu .

 popUp->setAutoDeleteObject(); // .
 return true; //Return .
} /\ end AMenuHandler :: makePopUpMenu(...) \/ //v6
...

The AMenuHandler is created in the setupClient member function in the

AHELLOW6.CPP file. The menu handler is set for the hello static text control.

//\\ v5
// AHelloWindow :: setupClient() \ .
// Setup Client \ .
//\\ .
Boolean AHelloWindow :: setupClient() //Setup Client Window .
{ // .
...

AMenuHandler \ mh=new AMenuHandler(); //Create Menu Handler v6
mh->handleEventsFor(hello); //Set Menu Handler for hello .
ICommandHandler::handleEventsFor(hello);//Set self as command event handler v6

...
}

The selected menu item in the pop-up menu is processed by the

AHelloWindow::command member function, which is used to handle command events

for the frame window.

 Chapter 8. Creating Additional Controls 99

Creating a Pop-Up Menu in a Container
To create a pop-up menu in a container, create a subclass of ICnrMenuHandler and

override the makePopUpMenu member function to handle the pop-up menu events.

Use the setCnr member function to set the container control and make it visible for our

class. The following statements create the class:

class ACnrMenuHandler: public ICnrMenuHandler //
{
 public:

setCnr(IContainerControl \ pcnr) { pcnrCtl = pcnr; }

protected: //Define Protected Member
Boolean makePopUpMenu(IMenuEvent& cnEvt);

 private:
IContainerControl \ pcnrCtl;

};

After overriding the makePopUpMenu member function, you can add you own

statements. The following statements create a pop-up menu displayed next to a

container object with source emphasis:

Boolean ACnrMenuHandler :: makePopUpMenu(IMenuEvent& cnEvt) //
{ //

IPopUpMenu \ popUp; //Define popUp variable
if (popupMenuObject()) {

popUp=new IPopUpMenu(ID_POPMENU, //Create PopUp Menu
 cnEvt.window()); //

if (!pcnrCtl->isDetailsView()) //Details View is only way to edit
{ // Name, Code and Address so

popUp->disableItem(MI_EDNAME); // Disable these items if not
 popUp->disableItem(MI_EDCODE); // details view.
 popUp->disableItem(MI_EDADDRESS); //
 }
 else
 {
 popUp->disableItem(MI_EDRECORD); //
 }
 popUp->setAutoDeleteObject(); //

popUp->show(cnEvt.mousePosition()); //Show PopUp Menu
 pcnrCtl->showSourceEmphasis(popupMenuObject());
 pcnrCtl->setCursor(popupMenuObject());

return true; //Return PopUp Menu
 }
 return false;
};

Figure 23 on page 101 shows the pop-up menu in a container object.

100 User Interface Class Library User’s Guide

CnrEx 1.0

Source
Emphasis

Pop-up
Menu

Views Edit Filters

AIX Development

OS/2 DevelopmentEdit Record

Edit Name

Edit Code

Edit Address

Figure 23. Example of a Pop-up Menu in a Container Object

Organizing Information Using a Notebook

A notebook control is visual component that organizes information on individual “pages”

so that a user can find and display that information. A user can select and display

pages by using a mouse or the keyboard. Use the INotebook class to create and

manage the notebook control window. You can create an instance of this class in the

following ways:

INotebook(unsigned long windowId, IWindow\ parent, IWindow\ owner,
const IRectangle& initial = IRectangle(),
const Style style = defaultStyle());

INotebook(unsigned long windowId, IWindow\ parentAndOwner);

INotebook(const IWindowHandle& handle);

The default style of this class has solid binding, square corner tabs, and left-justified

status-line text. To change the style, define an instance of the INotebook::Style class

and initialize it. For example:

INotebook::Style style = INotebook::spiralBinding |
 INotebook::roundedTabs ;

The notebook created using the preceding statements has a spiral binding and rounded

corner tabs. Figure 24 on page 102 shows an example of a notebook control.

 Chapter 8. Creating Additional Controls 101

Notebook Sample Program

Hello World Color

Select OK to change color

White
Black
Blue
Red

Pink
Green
Cyan
Yellow

Color

Text

OK Cancel

Figure 24. Notebook Control Example

Specifying Notebook Styles
The User Interface Class Library provides styles and functions to change notebook

controls. You can create a notebook, specify its style, and change the size of major

tabs and minor tabs with the following statements:

INotebook \pnoteBook;

pnoteBook= new INotebook (ID_NOTEBOOK, this , this,
 IRectangle(),
 INotebook::spiralBinding |
 INotebook::backPagesTopRight |
 INotebook::majorTabsRight |
 INotebook::statusTextLeft |
 IWindow::visible);

pnoteBook->setMajorTabSize(ISize(60,30));
pnoteBook->setMinorTabSize(ISize(80,40));

Version 6 of the Hello World example creates a notebook using these statements in the

ACOLORW6.CPP file:
...
notebook=new INotebook(WND_COLOR_NOTE,//Create Notebook Color

this, this, IRectangle(), //
 INotebook::defaultStyle()); //
notebook->setAutoDeleteObject(); //Delete C++ Obj, if PM Obj is deleted
...

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for more

information on notebook styles.

102 User Interface Class Library User’s Guide

Setting and Changing Notebook Pages
The page setting objects allow the user to change and set information about pages in a

notebook. Use the INotebook class in conjunction with the PageSettings class.

The following example of PageSettings is taken from the file ACOLORW6.CPP used in

Version 6 of the Hello World application:
...
Boolean AColorWindow :: createStaticPage()
{
 staticCanvas=new IMultiCellCanvas(

WND_STATIC_COLOR, notebook, this,
 IRectangle());
 staticCanvas->setAutoDeleteObject(); //Delete C++ Obj, if PM Obj is deleted
vellip.

INotebook::PageSettings::Attribute //Define the Page Attributes
attribute=INotebook::PageSettings::majorTab // with a Major Tab and

 | INotebook::PageSettings::autoPageSize; // AutoPageSize
staticPage=INotebook::PageSettings(attribute);//Create Static Color Page
staticPage.setTabText("1"); //Set Tab Text
notebook->addFirstPage(staticPage, //Add as First Page to notebook

 staticCanvas); //
 return true; //Return
} /\ end AColorWindow :: createStaticPage() \/
...

This page is created on a multicell canvas. The tab text is set to 1 and this page is

inserted into the notebook as the first page.

 Chapter 8. Creating Additional Controls 103

104 User Interface Class Library User’s Guide

Chapter 9. Covering Advanced Topics

This chapter covers the following topics:

 � Event handling

 � Tracing

 � Exception handling

� Threads and protecting data

Extending Event Handling

The User Interface Class Library provides handlers for common Presentation Manager

(PM) messages. However, you may find it necessary to process messages for which

there are no predefined handler classes. The User Interface Class Library makes it

easy to add new event and handler classes.

The IHandler class is designed to act as a base class for handlers. All event handlers

are derived from this class.

The following steps show you how to provide a handler for PM timer events.

1. Subclass the IHandler class by creating a class declaration for ATimerHandler.

The class is derived from IHandler and provides a virtual function timer to process

the event. For example:

class ATimerHandler : public IHandler
{
public:

/\ use default constructor \/

 Boolean
dispatchHandlerEvent(IEvent& evt);

protected:
virtual Boolean

timer(IEvent& evt);
};

2. Override the dispatchHandlerEvent member function. The function determines the

relevance of the message. If the message is not relevant, the function returns

false and passes the message to other handlers attached to the window. For

example:

Boolean ATimerHandler::dispatchHandlerEvent(IEvent& evt)
{

if (evt.eventId() == WM_TIMER) //If timer event, call
return timer(evt); // function to process

//Note: WM_TIMER is defined in the
return false; // OS/2 Developer’s Toolkit

}

 Copyright IBM Corp. 1993 105

3. Create the ATimerHandler::timer member function. This provides a default return

and acts as a base class. The default provides safe behavior when you create an

instance of the class as shown in the following example:

Boolean ATimerHandler::timer(IEvent& evt)
{
 return false;
}

The ATimerHandler class encapsulates the WM_TIMER messages generated by

PM. You can derive a class from ATimerHandler and override the

ATimerHandler::timer member function to provide whatever event handling you

require.

To prevent users of this class from having to understand how information is

encoded in the two message parameters inside the event, derive an event class

from IEvent to encapsulate this information. The following statements show an

example of how to do this:

class ATimerEvent : public IEvent
{
public:

ATimerEvent(IEvent &evt) : IEvent(evt) {;} // Define functions inline

 unsigned long
timerId() const { return parameter1().number1(); }

};

You can only construct objects of this class from an instance of IEvent. Because

of the small amount of code required, the example defines the code inline.

Change the dispatchHandlerEvent member function to create an instance of

ATimerEvent. Also, change the ATimerHandler::timer member function to accept

an ATimerEvent object as a parameter.

Boolean ATimerHandler::dispatchHandlerEvent(IEvent& evt)
{

if (evt.eventId() == WM_TIMER) //If timer event, call
{ // function to process
ATimerEvent timerEvt(evt);
Boolean rc = timer(timerEvt); //Call timer to process
evt.setResult(timerEvt.result()); //Move results to event
return rc; //Return with return code

 }

 return false;
}

The two classes now completely encapsulate timer messages. Users of the

classes do not need to know which PM messages are generated or how the

information is encoded in the message parameters.

106 User Interface Class Library User’s Guide

You can restrict the window classes to which the handler can be attached. A handler

class can override the handleEventsFor and stopHandlingEventsFor member functions

to provide a certain degree of type safety.

The following steps show you how to restrict the attachment of the ATimerHandler class

to the ITextControl class and its derived classes:

1. Write the class declaration following this example:

class ATimerHandler : public IHandler
{
public:

/\ use default constructor \/

Boolean
dispatchHandlerEvent(IEvent& evt);

virtual ATimerHandler
&handleEventsFor (ITextControl\ textWindow),
&stopHandlingEventsFor (ITextControl\ textWindow);

protected:
virtual Boolean

timer(ATimerEvent& evt);

private: //Make these functions private
virtual IHandler // so they cannot be called

&handleEventsFor (IWindow\ window),
&stopHandlingEventsFor (IWindow\ window);

};

2. Override handleEventsFor member function to accept only ITextControl objects, as

shown in the following example:

ATimerHandler &ATimerHandler::handleEventsFor(ITextControl\ textWindow)
{

IHandler::handleEventsFor(textWindow); //Call parent class
return \this; // member function

}

3. Override stopHandlingEventsFor member function to accept only ITextControl

objects. For example:

ATimerHandler &ATimerHandler::stopHandlingEventsFor(ITextControl\ textWindow)
{

IHandler::stopHandlingEventsFor(textWindow); //Call parent class
return \this; // member function

}

 Chapter 9. Covering Advanced Topics 107

 Simplifying Tracing

Use the ITrace class with its related macros to simplify the process of adding tracing

code to an application. Using the trace functions, you can write trace output to

standard output stream (STDOUT), standard error stream (STDERR), or an OS/2

queue. You can control the trace options using environment variables or by statements

in your program.

The environment variables, ICLUI TRACE and ICLUI TRACETO, provide the default

tracing options.

ICLUI TRACE has three valid values:

ICLUI TRACETO has three valid values:

The following code example shows you how to write trace information:

#include <itrace.hpp> //Include trace class
/\ ... function to trace ... \/
void myFunction(int x)
{

ITrace trc("myFunction"); //Create an ITrace object
trc.write("now at this point"); //Use static member function
ITrace::write(IString("the value is = ") + IString(x)); //write

 return;
}

If you provide message text, the ITrace instance writes a message during its

constructor and destructor to indicate the start and end of the function. Because of the

performance overhead of tracing, you may want to limit your use of the trace code to

your development and test phases. For example, to run the preceding example

program after testing it, you would remove the tracing lines and recompile the program.

Values Trace Setting

OFF Set trace off. This is the default.

ON Set trace on.

NOPREFIX Set trace on, but no prefix information is written to trace.

Values Trace Is Written To:

QUEUE 32-bit named OS/2 queue. The name is \\QUEUES\PRINTF32. This is the

default.

STDOUT Standard output stream.

STDERR Standard error stream.

108 User Interface Class Library User’s Guide

A more flexible approach to tracing is to use the predefined User Interface Class

Library macros. These macros expand to calls to the trace function only if another

macro is defined. Using this approach, the example becomes the following:

#define IC_TRACE_DEVELOP //Define trace level
#include <itrace.hpp> //Include trace class
/\ ... function to trace ... \/
void myFunction(int x)
{

IFUNCTRACE_DEVELOP(); //Trace entry and exit
ITRACE_DEVELOP("now at this point");
ITRACE_DEVELOP(IString("the value is = ") + IString(x));

 return;
}

For PM programs, information written to STDOUT and STDERR is discarded. If you

start the program from the command line, redirect these streams to a file or named

pipe. The commands to redirect the stream to a file are as follows:

[C:\]hello1 >stdout.lst <- redirect stdout to file stdout.lst
[C:\]hello1 2>stderr.lst <- redirect stderr to file stderr.lst

An example of the trace output is shown below:

<--- prefix -----> <----- trace ----------------->

00000009 000595:01 +myFunction(int x)(121) <- function entry
00000010 000595:01 >now at this point
00000011 000595:01 >the value is = 5
00000012 000595:01 -myFunction(int x) <- function exit

The prefix area shows the trace line number, process ID, and thread ID.

The IFUNCTRACE_DEVELOP macro automatically generates the trace lines that show

the entry and exit from the function. The number in brackets after the argument list is

the source code line number of the macro. The I_TRACE_DEVELOP macro produces

the other two lines.

If the IC_TRACE_DEVELOP macro is defined, the trace statements are generated;

otherwise, no trace statements are generated. This means that after testing is

complete, it is not necessary to remove all the trace lines. Instead, remove the macro

and recompile the code.

 Chapter 9. Covering Advanced Topics 109

Redirecting Trace Output

You can redirect trace output to a file at run time to help diagnose exceptions thrown by

the User Interface Class Library. Uncaught exceptions can cause the application to

end. Use the following commands to redirect trace output:

SET ICLUI TRACETO=STDERR Causes tracing to be written to the standard error device

MYAPP 2>TRACE.LOG Runs MYAPP.EXE and redirects standard error to an

output file

 Handling Exceptions

The User Interface Class Library uses the C++ exception handling to return errors to the

application. Several different classes of exception objects can be thrown. Because all

these classes are derived from the IException class, an application can catch specific

exceptions or all exceptions.

The following table lists the exception classes and the situations in which they are

typically thrown.

Typically, an application surrounds a function that might fail with a try-catch block. The

following example shows how an application attempts to set its default resource library.

If this fails, an IAccessError is thrown and the example code explicitly handles the

exception. The application passes on any other exception that is thrown.

try
{ //Try to use notfound.dll

 IApplication::current().setUserResourceLibrary("NOTFOUND");
 }
catch (IAccessError &exc) //Catch only access errors

{ //DLL probably not in libpath
const char \exText = exc.text();
unsigned long exId = exc.errorId();
/\ ... add code to process the exception ... \/

 }

Exception Class Thrown When

IAccessError A logical error occurs, such as “resource not found”

IAssertionFailure The expression in an IASSERT macro evaluates to false

IDeviceError A hardware related error occurs

IInvalidParameter An invalid parameter is passed

IInvalidRequest An object is in the wrong state for a function

IResourceExhausted A resource is exhausted or currently unavailable

IOutOfMemory The heap storage is exhausted

IOutOfSystemResource An OS/2 resource is exhausted

IOutOfWindowResource A PM resource is exhausted

110 User Interface Class Library User’s Guide

Each exception object that is thrown contains the following:

� An error number

� A severity indicator

� One or more lines of text

� Information about where the exception was thrown

The IException class provides accessor functions to extract this information from the

object. The textCount member function retrieves the number of lines of exception text,

and the ITextControl::text member function retrieves the exception text.

The ITHROW, IASSERTSTATE, IASSERTPARAM, and ITHROWGUIERROR macros

throw all exceptions in the library, and the RETHROW macro rethrows the exceptions.

These macros automatically insert into the exception object the line and program file in

which the exception was thrown. These macros also log the exception information. By

default, exception information is written to the same destination as the trace output.

However, you can provide your own function by deriving a class from

IException::TraceFn, overriding the write virtual function, and registering it using

IException::setTraceFunction.

Note: C++ exceptions are not the same as OS/2 exceptions.

Providing a Default Exception Handler
The C++ exception mechanism passes exceptions back up the function call chain until it

finds a try-catch block that can handle the exception. Uncaught exceptions are passed

to PM, which can cause your application to end unpredictably.

A User Interface Class Library application can register a default exception handler. The

event dispatching loop catches any exception thrown in a handler or function called

from a handler and passes it to the registered default exception function. This allows

the application to either try to continue or to end in a controlled way.

The following example shows you how to create a default handler that uses the tracing

functions to log the exception and display the information in a message box. The steps

to register a default exception handler are:

1. Subclass the IWindow::ExceptionFn class. The IWindow::ExceptionFn class has a

single constructor that requires a frame window in which the handler displays a

message box. The frame window acts as the owner of the message box. For

example:

class AExceptionFn : public IWindow::ExceptionFn
{
public:

AExceptionFn(IFrameWindow \frame) : owner(frame) {;}
Boolean

handleException (IException& exception, IEvent& event);
private:
 IFrameWindow \owner;
};

 Chapter 9. Covering Advanced Topics 111

2. Override the handleException member function. The last of the text messages of

the exception object is written to the trace output and displayed in a message box.

The function returns true to indicate that the exception should not be rethrown. For

example:

Boolean AExceptionFn::handleException (IException& exception, IEvent& event)
{

IFUNCTRACE_DEVELOP(); //Trace function entry/exit
unsigned long cnt = exception.textCount();
const char \text = (cnt > 0) ? exception.text(cnt-1)

: "No error text available" ;
IString str(text);
ITRACE_DEVELOP(exception.name());
ITRACE_DEVELOP(IString("text count = ") + IString(cnt));
ITRACE_DEVELOP(str);
IMessageBox msgbox(owner); //Create message box
msgbox.setTitle(exception.name());
msgbox.show((char \)str ,

 IMessageBox::okButton |
 IMessageBox::informationIcon |
 IMessageBox::applicationModal |
 IMessageBox::moveable);

return true; //Stop rethrow of exception
}

3. Create an object of this class. The object is part of the main application window

object. For example:

class aListBoxWindow : public IFrameWindow
{
 public:

aListBoxWindow(unsigned long windowId); //Constructor for this class
/\ ... other public member functions ... \/

 private:
 AExceptionFn excptHandler;

/\ ... other private data ... \/
};

4. Register using IWindow::setExceptionFunction. Create the exception function in

the constructor for the window and register it. For example:

aListBoxWindow::aListBoxWindow(unsigned long windowId)
: IFrameWindow(IFrameWindow::defaultStyle() |

 IFrameWindow::minimizedIcon,
 windowId) ,

excptHandler(this)
{
 setExceptionFunction(&excptHandler);

/\ ... rest of constructor code ... \/
}

112 User Interface Class Library User’s Guide

Controlling Threads and Protecting Data

The User Interface Class Library provides classes to implement multi-threaded

programs. The primary class you use to deal with threads is IThread. Instances of this

class represent separate threads of execution and provide the ability to start and stop

the thread, set various thread attributes, and determine the default environment for the

thread. In addition, with the ICurrentThread class you can set and query attributes for

the currently executing thread, start event processing, and suspend the current thread

until another thread has terminated.

Accessing the Current Thread
There is only a single instance of the class for each thread, and it can be accessed

using the following statement:

ICurrentThread curThread = IThread::current();

This static data member accesses information held on a per-thread basis. The member

also accesses some functions that can be applied only to the current thread. One

example is the initialization of the PM environment for a thread. A thread without a PM

environment can initialize one and later terminate it using the following statements:

IThread::current().initializePM();
/\ ... do thread processing ... \/
IThread::current().terminatePM();

If necessary, the thread can enter its event processing loop using:

IThread::current().processMsgs();

Starting a Thread
Use the IThread class to start an execution thread. Once started, the instance of

IThread provides a means of querying and stopping the thread. The thread and the

instance of IThread are independent; therefore, when the instance of IThread is

destroyed, the thread is unaffected.

The function to be dispatched on a separate thread can be either a member function or

a nonmember function. If you create an instance of IThread with the function, a thread

is created and dispatched immediately. Alternatively, you can create an instance of the

class and later dispatch it. This allows you to set arguments that affect the execution of

the thread prior to dispatching.

Starting Nonmember Functions
The IThread class dispatches nonmember functions with either of the following two

function prototypes:

void (_Optlink \)(void \)

void (_System \)(unsigned long)

They provide support for migrating code that uses either _beginthread or

DosCreateThread to start the function. The linkage directives, _Optlink (the default)

and _System, are discussed in the C++ Compiler Reference.

 Chapter 9. Covering Advanced Topics 113

To start a thread with the default environment and default options, the following

statements are needed:

void threadFn(void \pvParms); //Function to run on separate thread
void \pv;

IThread thread(threadFn, pv); //Dispatch thread with default environment

The following example shows you how to set some of the options before dispatching

the thread. The environment is created before the function is called, and appropriate

cleanup actions are taken after it terminates:

IThread thread; //Assume PM environment
thread.setStackSize(65536); //Set 64K stack size
thread.setQueueSize(32); //32 elements in PM queue
thread.start(threadFn, pv); //Dispatch thread

Other functions also exist to change the priority level of the thread, although for threads

that process events, changing the priority can adversely affect the overall system

performance.

Once you have started a thread, you can suspend, resume, or stop it. You can also

query its thread ID. The following example stops the thread if it has a thread ID of 2:

void \pv;
IThread thread(threadFn, pv); //Dispatch thread with default environment
/\ ... let thread process ... \/
if (thread.id() == IThreadId(2)) //If thread ID is 2, then stop it
 thread.stop();

Because threads often require a PM environment to be established before they work,

the User Interface Class Library automatically establishes a PM environment for all

threads created in a PM application. If this is not necessary, you can use a thread to

request that this initialization be skipped. For example:

void threadFn(void \pvParms); //Function to run on separate thread
void \pv;

IThread thread(threadFn, pv, false); //No PM environment

114 User Interface Class Library User’s Guide

Starting a Member Function
Use the IThread class to start member functions. Direct support is provided for starting

member functions that have no arguments, but you can also start functions that have

arguments.

To start a member function that takes no arguments, use the following steps:

1. Create an instance of the template class IThreadMemberFn.

2. Start a thread and pass the instance as an argument.

The following example shows how to execute the function AClass::longFn on a

separate thread. Create an instance of the template class with the class that contains

the member function. Create the instance of the template class with the operator

function new so that the instance is destroyed automatically when the thread ends.

The two arguments on the constructor are the object for which the member function is

called and the member function itself, as shown in the following example:

/\ function to run is ... void AClass::longFn() \/
AClass object; //Object to run member function against

IThreadMemberFn<AClass> \aMemberFn =
new IThreadMemberFn<AClass>(object

, AClass::longFn);
IThread thread(aMemberFn); //Dispatch thread

To start a member function that takes arguments, use the following steps:

1. Derive a class from the IThreadFn class.

2. Define a constructor that takes an object of the class and the arguments you want

to pass.

3. Override the ICurrentApplication::run member function to call the member function.

4. Create an instance of the derived class.

5. Start a thread and pass the instance as an argument.

 Chapter 9. Covering Advanced Topics 115

The following example shows how to start a function:

1. Write the class declaration. The class is derived from the IThreadFn class. It has

a single constructor that requires an instance of the AClass class and the two

parameters. The class overrides the virtual function run and calls the required

member function, as shown in the following example:

class AClass
{
 public:

void longFn(int, IString);
/\ ... rest of class declaration ... \/

};

//This class runs the member function
// AClass::longFn(...) on a separate thread

class AThreadLongFn : public IThreadFn
{
 public:

AThreadLongFn(AClass &obj, int i, IString str)
: object(obj)
, value(i)
, string(str) {;}

void run() { object.longFn(value, string); }
 private:
 AClass &object;
 int value;
 IString string;
};

2. Create an instance and dispatch it. As before, create the instance using the new

operator so that it is destroyed automatically:

AClass object; //Object to run member function against
int number = 6;
IString greeting("Hello");

/\ function to run is ... void AClass::longFn(int, IString) \/
 //Create object
 AThreadLongFn \.aMemberFn = new AThreadLongFn(object, number, greeting);

IThread thread(aMemberFn); //Dispatch thread

116 User Interface Class Library User’s Guide

 Protecting Data
If your applications have multiple threads, you typically need to serialize their access to

certain resources. The User Interface Class Library provides several classes to assist

you. Use the IPrivateResource class to serialize access to a resource within a single

process. The ISharedResource class extends this function by providing a lock that can

also be used between processes.

The simplest way to serialize access to a function is to provide a static instance of the

IPrivateResource class. You can use this instance in association with the

IResourceLock class to control access. In the following example, the function

guarantees that only one thread accesses it at one time:

static IPrivateResource resourceKey; //Key must exist when function
 // called
void serializedFunction()
{
IResourceLock resLock(resourceKey); //Create lock
/\ ... serialized code ... \/
} //Lock freed with resLock destructed

When a thread calls serializedFunction, it is blocked until any other thread executing

the function exits it. This can lead to deadlock problems, so a safer approach is to give

a timeout value, which is the number of milliseconds that a thread can be blocked. If

this timeout limit is exceeded, an IResourceExhausted exception is thrown, which can

then be caught.

The definition of the function becomes the following:

static IPrivateResource resourceKey;

void serializedFunction()
{
IResourceLock resLock(resourceKey, 100); // timeout period = 0.1 s
/\ ... serialized code ... \/
}

The code to call the function is:

try
 {
 serializedFunction();
 }
catch (IResourceExhausted exc)
 {

/\. ... handle failure to run function ... \./
 }

 Chapter 9. Covering Advanced Topics 117

Suspending Threads for Critical Sections of Code
A critical section of code is a portion of code that must be executed by one thread while

all other threads in the process are suspended. As an example, one situation would be

the need for one thread to modify global data while preventing other threads from

accessing the data until the modifications were complete.

The User Interface Class Library provides a critical section object to handle such

situations. A thread creates the critical section object before it enters a critical section

and destroys the object when it exits the section. The simplest way to do this is to

enclose the critical section in its own block and define the object at the start of the

block, as in the following:

{
ICritSec lock;
/\ ... do critical section processing here ... \/
} // lock destructed when block ends

Because a critical section freezes the other threads in the process, use it with care. In

addition, be careful when calling certain OS/2 functions within a critical section because

the results may be unpredictable.

118 User Interface Class Library User’s Guide

Using Direct Manipulation

Direct manipulation is a user interface technique that allows a user to initiate application

functions by manipulating objects. The user initiates an action by selecting an object,

pressing and holding down a mouse button while dragging it over another object in the

window. The user then drops the object over the target object by releasing the mouse

button. For this reason, direct manipulation is also know as drag and drop.

The User Interface Class Library provides four main types of objects to support direct

manipulation:

� An event handler (IDMSourceHandler or IDMTargetHandler)

� A renderer (IDMSourceRenderer or IDMTargetRenderer)

� A drag item (IDMItem)

� A drag item provider (IDMItemProvider)

IDMSourceHandler and IDMTargetHandler are derived from IDMHandler. They handle

the PM direct manipulation window messages. Objects from these classes pick up the

WM_* and DM_* messages for the source and target windows and translate them to

virtual function calls to the handler.

In addition to translating messages to virtual function calls, these handlers also manage

the second type of objects, the renderers. Renderers transfer the representation of the

object being manipulated between the source and target windows. Direct manipulation

renderers are objects of classes IDMSourceRenderer and IDMTargetRenderer, derived

from IDMRenderer.

When an IDMSourceHandler object is created, the User Interface Class Library creates

a default IDMSourceRenderer. The default source renderer support is shown in

Figure 25.

Figure 25. Default Source Renderer

Mechanism Format Item Type

IDM::rmLibrary IDM::rfProcess IDM::any

IDM::rmLibrary IDM::rfText IDM::any

IDM::rmLibrary IDM::rfSharedMem IDM::any

IDM::rmPrint IDM::rfUnknown IDM::any

IDM::rmDiscard IDM::rfUnknown IDM::any

IDM::rmFile IDM::rfUnknown IDM::any

 Chapter 9. Covering Advanced Topics 119

When an IDMTargetHandler object is created, the User Interface Class Library creates

a default IDMTargetRenderer. The default target renderer support is shown in

Figure 26.

IDM::rmLibrary is the rendering mechanism that is defined for use in the User Interface

Class Library. Other rendering mechanisms defined as part of the default renderers are

shown in Figure 27.

Several default rendering formats have been defined to assist the developer in using

the direct manipulation classes. They are shown in Figure 28.

The IDM::any type can be used to represent any drag item type.

Figure 26. Default Target Renderer

Mechanism Format Item Type

IDM::rmLibrary IDM::rfProcess IDM::any

IDM::rmLibrary IDM::rfText IDM::any

IDM::rmLibrary IDM::rfSharedMem IDM::any

IDM::rmFile IDM::rfUnknown IDM::any

Figure 27. Default Rendering Mechanisms

Mechanism Description

IDM::rmPrint Used when an User Interface Class Library object is dropped on a

printer

IDM::rmDiscard Used when an User Interface Class Library object is dropped on a

shredder

IDM::rmFile Used when an OS/2 file is dragged from the source and dragged over

or dropped on a target

Figure 28. Default Rendering Formats

Format Description

IDM::rfProcess Used to determine if the source of the direct manipulation operation and

the target are in the same process. This format must be constructed by

calling the static member function IDMItem::rfForThisProcess.

IDM::rfText Used when dragging text that has a length of 255 or less and no

embedded NULL characters.

IDM::rfSharedMem Used when a shared memory buffer is required to transfer the data

from the source to the target.

IDM::rfUnknown Used when the format is unknown.

120 User Interface Class Library User’s Guide

The native renderer is the first rendering mechanism and format defined at the creation

of the item. For example, in the declaration of the default source renderer, the native

renderer supports the library rendering mechanism, the process rendering format, and

any item type. In the declaration of the default target renderer, the native renderer

supports the library rendering mechanism, the process rendering format, and any item

type.

To create renderers for controls not supported by User Interface Class Library, you can

create your own source or target renderer by deriving from the IDMSourceRenderer or

IDMTargetRenderer, creating instances, and then adding to the handler using

setDefaultTargetRenderer and setDefaultSourceRenderer.

The third type of objects are the drag items, represented by objects of class IDMItem.

These objects encapsulate the logic that serves as the bridge between the

context-insensitive handlers and renderers and the application-specific behavior of

particular source and target windows. Thus, the drag items provide the

application-specific semantics of the direct manipulation operation.

The IDMItemProvider class is an extension of the IWindow class that provides direct

manipulation functions. Objects of the IDMItemProvider class allow generic controls,

such as an entry field, to generate context-sensitive drag items. For example, a

container that contains customer objects can generate a “customer” item; a bit map can

provide an item that can extract the picture from a .BMP file.

User Interface Class Library provides direct manipulation for:

 � Entry fields

� Multiple-line edit (MLE) fields

 � Intra-process containers

The following sections discuss how to add direct manipulation to your applications.

Sample applicaton files are provided with the User Interface Class Library product

diskettes. Complete listings of the examples used in this chapter are included in the

\ibmcpp\samples\iclui directory. This directory also includes additional samples that

illustrate advanced features not discussed in this chapter.

 Chapter 9. Covering Advanced Topics 121

Enabling Direct Manipulation for an Entry Field or MLE
To enable direct manipulation for an entry field or an MLE control, call the IDMHandler

static function enableDragDropFor().

This static function creates:

� Source and target handlers

� Source and target default renderers

� Entry field item provider

In the following sample code, the highlighted lines enable direct manipulation of text

between two entry fields in the same process. Direct manipulation is enabled the same

way for an MLE.
...
 6 void main()
 7 {
 8 IFrameWindow
 9 frame("ICLUI Direct Manipulation Sample 1");
10
11 IEntryField //Create window with two
12 client(1000, &frame, &frame), //entry fields, client and ext.
13 ext (1001, &frame, &frame);
14
15 IDMHandler::enableDragDropFor(&client);//Enable direct manipulation
16 IDMHandler::enableDragDropFor(&ext); //for both entry fields.
17
18 frame // Frame setup
19 .setClient(&client)
20 .addExtension(&ext, IFrameWindow::belowClient, 0.5)
21 .setFocus()
22 .show();
23
24 IApplication::current().run(); // Run sample
25
26 }

122 User Interface Class Library User’s Guide

Enabling Direct Manipulation for a Container
To enable direct manipulation for a container, call the IDMHandler static functions

enableDragFrom and enableDropOn.

In the following example, the dmsamp3.hpp file has defined a container control object.

The .CPP file creates the container and container objects and, in the highlighted lines,

calls enableDragFrom and enableDropOn.

 1 #include "dmsamp3.hpp"
 2
 3 void main()
 4 {
 5 MySourceWin sourceWin (WND_SOURCE);
 6 MyTargetWin targetWin (WND_TARGET);
 7 IApplication::current().run();
 8 }
...
52
53 MySourceWin :: MySourceWin (unsigned long windowId) :
54 MyWindow (windowId)
55 {
56 ITitle title (this, "C Set ++ Direct Manipulation - Source Container");
57 IDMHandler::enableDragFrom(cnrCtl);
58 };
59
60 MyTargetWin :: MyTargetWin (unsigned long windowId) :
61 MyWindow (windowId)
62 {
63 ITitle title (this, "C Set ++ Direct Manipulation - Target Container");
64 IDMHandler::enableDropOn(cnrCtl);
65 }
...

Lines 53 through 56 create a source window.

Line 57 enables the window as a source.

Lines 60 through 63 create a target window.

Line 64 enables the window as a target.

 Chapter 9. Covering Advanced Topics 123

Enabling a Control as a Drop Target
To enable other controls as drop targets, you must specifically create the item providers

that the User Interface Class Library generates automatically for entry field, MLE, and

container controls. You should:

� Derive a class from the base class IDMItem and override the targetDrop member

function.

� Write a drag item provider class for the customized item class using the

IDMItemProviderFor template class.

� Use the default target handler and renderer for the customized object.

The following example adds drop support to a bit-map control.

The header file dmsamp2.hpp defines two classes, ABitmapItem and ABitmapProvider,

and overrides the targetDrop and provideEnterSupport member functions.

 1 #include <idmprov.hpp>
 2 #include <idmitem.hpp>
 3 #include <idmevent.hpp>
 4
 5 class ABitmapItem : public IDMItem {
 6 public:
 7 ABitmapItem (const IDMItem::Handle &item);
 8
 9 virtual Boolean
10 targetDrop (IDMTargetDropEvent &);
11 };
12
13 class ABitmapProvider : public IDMItemProviderFor< ABitmapItem > {
14 public:
15 virtual Boolean
16 provideEnterSupport (IDMTargetEnterEvent &event);
17
18 };

Lines 5 through 11 declare IDMItem as the base class for objects of a specialized class

named ABitmapItem. Objects of this class provide bit-map control drop behavior when

a source bit-map file is dropped on a bit-map control that is properly configured with a

target handler and an ABitmapProvider.

Lines 13 through 17 define a drag item provider for a bit-map control and override

provideEnterSupport so that it verifies that the dragged object is a bitmap.

124 User Interface Class Library User’s Guide

The .CPP file adds the drag item provider and the target handler and uses the default

target renderer.
...
19 void main()
20 {
21 IFrameWindow
22 frame ("C Set ++ Direct Manipulation - Sample 2");
23
24 IBitmapControl // Create an empty bit-map control.
25 bmpControl (0, &frame, &frame);
26
27 // Create target handler for the bit-map control and use default renderers.
28 IDMHandler::enableDropOn (&bmpControl);
29
30 ABitmapProvider // Create a bit-map drag item provider.
31 itemProvider;
32
33 bmpControl.setItemProvider(&itemProvider);// Attach provider to the bit-map control.
34
35 bmpControl.setText("Drop .bmp files here.");// Set the bit-map control
36 frame.setClient(&bmpControl) // as the frame's client and
37 .showModally(); // display the frame.
38 }
39
40
41 ABitmapItem :: ABitmapItem (const IDMItem::Handle &item)
42 : IDMItem(item)
43 {
44 }
45
46 Boolean ABitmapItem :: targetDrop (IDMTargetDropEvent &)
47 {
48 IBitmapControl // Get pointer to target bitmap control.
49 \bmpControl = (IBitmapControl\)this->targetOperation ()->targetWindow();
50
51 IString // Construct dropped .bmp file name from this item.
52 fname = this->containerName() + "\\" + this->sourceName();
53
54 struct stat // Get file size.
55 buf;
56 stat(fname, &buf);
57
58 FILE // Open and read the file.
59 \fileptr = fopen(fname, "rb");
60 char
61 \buffer = new char[buf.st_size];
62 fread(buffer, sizeof(char), buf.st_size, fileptr);
63
64 BITMAPARRAYFILEHEADER2 // Construct the bitmap from the file.
65 \array = (BITMAPARRAYFILEHEADER2 \)buffer;
66 BITMAPFILEHEADER2
67 \header;

 Chapter 9. Covering Advanced Topics 125

 68
 69 if (array->usType == BFT_BITMAPARRAY) { // First, see if file holds array of bitmaps.
 70 header = &array->bfh2; // It is, point to first file header in array.
 71 } else {
 72 header = (BITMAPFILEHEADER2 \)buffer; // It isn't, point to file header at start of file.
 73 }
 74 if (header->usType == BFT_BMAP) { // Now check to see if this is a bitmap.
 75
 76 IPresSpaceHandle // We can proceed, first get a presentation space.
 77 hps = bmpControl -> presSpace();
 78
 79 if (hps) {
 80 IBitmapHandle // Now create the bit map from the file contents.
 81 hbm = GpiCreateBitmap(hps,
 82 &header->bmp2,
 83 CBM_INIT,
 84 (PBYTE) buffer + header->offBits,
 85 (BITMAPINFO2\)&header->bmp2);
 86 if (hbm) {
 87 IBitmapHandle // Get previously dropped bit map.
 88 old = bmpControl -> bitmap();
 89
 90 bmpControl -> setBitmap(hbm); // Set new one.
 91
 92 GpiDeleteBitmap(old); // Destroy old because we no longer need it.
 93
 94 bmpControl -> setText(fname); // Indicate name of dropped file.
 95 } else {
 96 bmpControl -> setText("Couldn't create bit map!");
 97 }
 98 bmpControl -> releasePresSpace(hps);// Release the presentation space.
 99 } else {
100 bmpControl -> setText ("Couldn't get PS!");
101 }
102 } else {
103 bmpControl -> setText(fname + " isn't a bit map!");
104 }
105
106 delete [] buffer; // Free buffer.
107
108 return true;
109 }
110
111 Boolean ABitmapProvider :: provideEnterSupport (IDMTargetEnterEvent &event)
112 {
113 //Get handle to the target operation
114 IDMTargetOperation::Handle targetOp = IDMTargetOperation::targetOperation();
115
116 IString strTypes = targetOp->item(1)->types(); //Get the types for the drag item
117 if ((strTypes.indexOf(IDM::bitmap)) || //If type is either bitmap or plainText
118 (strTypes.indexOf(IDM::plainText))) //(used by WPS), we can display the item.
119 {
120 return(true);
121 }
122 event.setDropIndicator(IDM::notOk); //Type is unrecognized,
123 return(true); //set the drop indicator to prevent drop.
124 }

126 User Interface Class Library User’s Guide

First, the .CPP file creates an empty bit-map control object called bmpControl and

then creates and attaches the handler, provider, and renderer.

Lines 24 and 25 create the bit-map control object.

Line 28 constructs a target handler, which creates a default target renderer.

Lines 30 and 31 construct a drag item provider named itemProvider.

Line 33 attaches the drag item provider to bmpControl window.

The rest of the .CPP file defines the overridden member functions, targetDrop and

provideEnterSupport, for the classes that were declared in the .HPP file.

Lines 46 through 109 define targetDrop. This member function gets the dropped file,

creates the bitmap, and displays the bitmap in the target window.

Lines 111 through 124 use the provideEnterSupport member function to verify that the

object over the target is a bit map. (This data type verification is in addition to the RMF

checking that is done by the User Interface Class Library default target renderer.) If it

is not a bit map, the drop is not allowed. This function is called when a target enter

event (IDMTargetEnterEvent) occurs on a target window.

 Chapter 9. Covering Advanced Topics 127

Enabling a Control as a Drag Source
To enable other controls as drag sources, you must specifically create the item

providers that the User Interface Class Library generates automatically for entry field,

MLE, and container controls. You should:

� Derive a class from the base class IDMItem and override the generateSourceItems

member function.

� Write a drag item provider class for the customized item class using the

IDMItemProviderFor template class.

� Use the default source handler and renderer for the customized object.

The following code example enables the user to drag objects from a static text control.

Note: This example is not included in the \ibmcpp\samples\iclui directory.

The header file defines two classes, STextItem and MyWindow, and overrides the

generateSourceItems member function.
...
 9 #include "static.h"
10
11 class STextItem : public IDMItem {
12 public:
13
14 STextItem (IDMSourceOperation \pSrcOp);
15 STextItem (const IDMItem::Handle &item);
16
17 static Boolean
18 generateSourceItems (IDMSourceOperation \pSrcOp);
19 };
20
21 class MyWindow : public IFrameWindow {
22 public:
23
24 MyWindow();
25 ˜MyWindow();
26
27 private:
28 ITitle title;
29 ISetCanvas canvas;
30 IStaticText staticText;
31 };

128 User Interface Class Library User’s Guide

The .CPP file adds the drag item provider and the source handler and uses the default

source renderer.
...
 3 void main()
 4 {
 5 MyWindow myWin;
 6 IApplication::current().run();
 7 }
 8
 9 MyWindow :: MyWindow() :
10 IFrameWindow(ID_MYWINDOW),
11 title(this, "Static Control"),
12 canvas(ID_CANVAS, this, this),
13 staticText(ID_STEXT, &canvas, &canvas)
14 {
15 setClient (&canvas); //Set the canvas as the frame client.
16
17 IDMHandler::enableDragFrom (&staticText); //Enable the static text for dragging from
18
19 // Use the IDMItemProviderFor template class to create a template
20 // for the static text item, and set it into the window.
21 IDMItemProvider \pSTProvider = new IDMItemProviderFor< STextItem >;
22 staticText.setItemProvider (pSTProvider);
23
24 staticText.setText ("Static Text"); //Put text into the static text control.
25 setFocus (); // Set the keyboard focus and show it.
26 show ();
27 }
28
29 MyWindow :: ˜MyWindow() {};
30 STextItem :: STextItem (IDMSourceOperation \pSrcOp) :
31 IDMItem (pSrcOp,
32 IDM::text,
33 (IDMItem::moveable | IDMItem::copy
34 none)
35 {
36 IStaticText \pSText = (IStaticText \)pSrcOp->sourceWindow(); //Get a pointer to the static text
37 // control from the source operation
38 setContents(pSText->text()); // Store the static text within the item
39 setRMFs(rmfFrom(IDM::rmLibrary, IDM::rfText));//Use the default RMF for text
40 }
41
42 STextItem :: STextItem (const IDMItem::Handle &item) :
43 IDMItem (item) {};
44
45 Boolean STextItem :: generateSourceItems(IDMSourceOperation \pSrcOp)
46 {
47 STextItem \pSTItem = new STextItem (pSrcOp); //Create the static text drag item
48 pSrcOp->addItem (pSTItem); //and add it to the source operation.
49
50 return(true);
51 }

 Chapter 9. Covering Advanced Topics 129

Adding Images to Drag Items
A visual image is displayed for each object while it is dragged. User Interface Class

Library provides default system images or you can change the image style and provide

your own images.

To change the drag image style, use the setImageStyle member function.

setImageStyle is called by the generateSourceItems member function of the

application’s derived item class.

The following table describes the IDMImage styles and the steps you must take to use

them:

You can attach IDMImage objects to IDMItem objects by using the IDMItem::setImage

member function:

� In the constructor of the derived item object

� In the generateSourceItems member function

The following example adds the text I-beam pointer as an image to a derived IDMItem

in its constructor:

MyItem::MyItem (IDMSourceOperation\ pIDMSrcOp)
{
...
 IDMImage image = IDMImage(ISystemPointerHandle(
 ISystemPointerHandle::text));
 setImage(image);
 }

IDMImage

Style

Description What to Code

systemImages If one item is dragged, the

ISystemPointerHandle::singleFile icon is used.

For more than one item, the

ISystemPointerHandle::multipleFile icon is used.

Any images supplied with drag items are ignored.

default

allStacked Shows each image provided in each drag item.

If no images are specified, system images are

used.

Attach IDMImage

objects to each IDMItem

object

stack3AndFade Shows the first three images provided in the drag

items and then shows a special icon that looks

like the rest of the images fading out. This is

optimal when the user can drag more than three

items. If no images are specified, system

images are used.

Attach IDMImage

objects to three IDMItem

objects.

130 User Interface Class Library User’s Guide

Drag Image Resources for stack3AndFade
When the stack3AndFade style is used, User Interface Class Library uses a fade icon

that looks like images fading out. If your application is shipped as a product and uses

the stack3AndFade option, you will need to ensure its availability to your application.

The fade icon is stored in the User Interface Class Library resource dynamic link library

DDE4U001.

If your application is dynamically linked to the User Interface Class Library take the

following steps to use the fade icon:

1. Rename the resource DLL with the DLLRNAME tool shipped with the IBM C/C++

Tools compiler.

For information on DDLRNAME, see the IBM C/C++ Tools Compiler Utilities

Reference.

2. Call ICurrentApplication::setResourceLibrary with the new DLL name as its

argument.

See ICurrentApplication in the IBM C/C++ Tools: User Interface Class Library

Reference for more information about setResourceLibrary.

If your application is linking with User Interface Class Library static libraries, take the

following steps to use the fade icon:

1. Bind the fade icon to your application .EXE file. The fade icon, fade.ico, and its

resource file, DDE4U001.RC, are in the \ibmcpp\ibmclass directory on the drive

you installed the product on.

2. Call ICurrentApplication::setResourceLibrary with 0 as its argument. The

parameter 0 indicates that the fade icon is in the application .EXE file.

See ICurrentApplication of the IBM C/C++ Tools: User Interface Class Library

Reference for more information about setResourceLibrary.

 Chapter 9. Covering Advanced Topics 131

Providing Help Information

Help information is the information about how to use a product. By describing a

product’s choices, objects, and interaction techniques, help information can assist users

in learning to use a product.

The User Interface Class Library provides an IHelpWindow class that uses the OS/2

Information Presentation Facility (IPF) to provide help information for applications. An

IHelpWindow is created and associated with one of the application’s main windows.

The User Interface Class Library also provides an IHelpHandler class to deal with help

window events. When an application window is associated with a help window, a help

event is dispatched to the handlers attached to the application window.

Creating Help Information
Use the following steps to create help information in your application:

1. Define the help submenu and the help window title in your resource file. In Version

5 of the Hello World application, the help menu is defined as follows:

STRINGTABLE
 BEGIN

STR_HTITLE, "C++ Hello World - Help Window" //Help title
 END
MENU WND_MAIN
 BEGIN

SUBMENU "˜Help", MI_HELP //Help submenu
 BEGIN

MENUITEM "˜General help...", MI_GENERAL_HELP
MENUITEM "˜Extended help...", SC_HELPEXTENDED, MIS_SYSCOMMAND
MENUITEM "˜Keys help...", SC_HELPKEYS, MIS_SYSCOMMAND
MENUITEM "Help ˜index...", SC_HELPINDEX, MIS_SYSCOMMAND

 END
 END

MI_HELP is the help menu ID. The contents of the help information are stored in

an IPF file, AHELLOW5.IPF.

132 User Interface Class Library User’s Guide

2. Define a help table in the resource file to establish the relationship between the

menu item ID and the panel ID that is defined in the IPF file.

HELPTABLE HELP_TABLE
 BEGIN
 HELPITEM WND_MAIN, SUBTABLE_MAIN, 100
 HELPITEM WND_TEXTDIALOG, SUBTABLE_DIALOG, 200
 END

HELPSUBTABLE SUBTABLE_MAIN //Main window help subtable
 BEGIN //

HELPSUBITEM WND_HELLO, 100 //Hello <-> help ID 100
HELPSUBITEM WND_LISTBOX,102 //List box help
HELPSUBITEM MI_EDIT, 110 //Edit menu
HELPSUBITEM MI_ALIGNMENT, 111 //Alignment menu
HELPSUBITEM MI_LEFT, 112 //Left menu item
HELPSUBITEM MI_CENTER, 113 //Center menu item
HELPSUBITEM MI_RIGHT, 114 //Right menu item
HELPSUBITEM MI_TEXT, 199 //Text menu item

 END //

HELPSUBTABLE SUBTABLE_DIALOG //Text dialog help subtable
 BEGIN //

HELPSUBITEM DID_ENTRY, 201 //Entry field <-> help ID 201
HELPSUBITEM DID_OK, 202 //OK button <-> help ID 202
HELPSUBITEM DID_CANCEL, 203 //OK button <-> help ID 203

 END //

WND_HELLO is a static text control ID and MI_* are menu item IDs. Each of

these IDs is related to a panel ID. The main frame window ID, WND_MAIN, is also

related to a panel ID. In this example, WND_MAIN and WND_HELLO both

correspond to help panel ID 100. That is, pressing the F1 key in the main window

area displays the same help panel as selecting General help... from the Help

menu.

3. Add a pointer help, which points to the IHelp class, into the AHelloWindow class.

An AHelpHandler, which is derived from IHelpHandler, overrides the keysHelpId

member function, so that the correct Keys Help panel is displayed when keys help

is requested.

class IHelpHandler: public IHelpHandler
{
 protected:
 virtual Boolean
 keysHelpId(IEvent& evt);
};

 Chapter 9. Covering Advanced Topics 133

4. Set the identity of the help window. The keysHelpId member function is called

when the user requests the keys help function. The default action is to set the

event result to zero, which indicates to IPF to do nothing. In the following example,

this function is overridden and the result is set to the identity of the help window

IPF is to display, in this case, the keys help panel.

Boolean AHelpHandler :: keysHelpId(IEvent& evt)
{
 evt.setResult(1000);
 return true;
}

The number 1000 is the keys help ID defined in the AHELLOW5.IPF file.

5. Add the IPF file to the help window object. The AHELLOW5.IPF file is compiled to

produce AHELLOW5.HLP and added to the help window object (pointed to by

IHelp) in the following example:

help = new IHelpWindow(HELP_TABLE,this);
help->addLibraries("AHELLOW5.HLP");

6. Use the addLibraries member function to add a library or list of libraries to the help

window object. So when you look for a help panel by panel ID, these libraries can

be used. (If multiple library names are specified, they should be separated by a

blank space).

7. Create a special help handler if you have a child frame window. You need to

attach the handler to the child frame window so that help processes correctly. For

example:

class ChildFrameHelpHandler : public IHandler {
typedef IHandler Inherited;
/\\\
\ This handler enables the OS/2 Help Manager to use help tables to display \
\ contextual help for a child frame window (one whose parent window is not \
\ the desktop). This handler should only be attached to child frame windows. \
\\\/
public:
virtual ChildFrameHelpHandler
 &handleEventsFor (IFrameWindow\ frame),
 &stopHandlingEventsFor (IFrameWindow\ frame);
protected:
virtual Boolean
 dispatchHandlerEvent (IEvent& evt);
ChildFrameHelpHandler
 &setActiveWindow (IEvent& evt, Boolean active = true);
private:
virtual IHandler
 &handleEventsFor (IWindow\ window),
 &stopHandlingEventsFor (IWindow\ window);
};

Boolean ChildFrameHelpHandler :: dispatchHandlerEvent (IEvent& evt)
{

switch (evt.eventId())
 {

134 User Interface Class Library User’s Guide

 case WM_ACTIVATE:
 setActiveWindow(evt, evt.parameter1().number1());
 break;
 case WM_INITMENU:
 setActiveWindow(evt, true);
 break;
 default:
 break;

} /\ endswitch \/

return false; // Never stop processing of event
}

ChildFrameHelpHandler&
ChildFrameHelpHandler :: setActiveWindow (IEvent& evt,

Boolean active)
{

IHelpWindow\ help = IHelpWindow::helpWindow(evt.window());
 if (help)
 {

IFrameWindow\ frame = 0;
 if (active)
 {

frame = (IFrameWindow\)evt.window();
 }
 help->setActiveWindow(frame, frame);
 }
 return \this;
}

ChildFrameHelpHandler&
ChildFrameHelpHandler :: handleEventsFor (IFrameWindow\ frame)

{
IASSERTPARM(frame != 0);

 Inherited::handleEventsFor(frame);
 return \this;
}

ChildFrameHelpHandler&
ChildFrameHelpHandler :: stopHandlingEventsFor (IFrameWindow\ frame)

{
IASSERTPARM(frame != 0);

 Inherited::stopHandlingEventsFor(frame);
 return \this;
}

IHandler& ChildFrameHelpHandler :: handleEventsFor (IWindow\ window)
{ // private to hide version in IHandler
 ITHROWLIBRARYERROR(IC_MEMBER_ACCESS_ERROR,
 IErrorInfo::invalidRequest,
 IException::recoverable);
 return \this;
}

IHandler& ChildFrameHelpHandler :: stopHandlingEventsFor (IWindow\ window)
{ // private to hide version in IHandler
 ITHROWLIBRARYERROR(IC_MEMBER_ACCESS_ERROR,
 IErrorInfo::invalidRequest,
 IException::recoverable);
 return \this;
}

 Chapter 9. Covering Advanced Topics 135

136 User Interface Class Library User’s Guide

 Chapter 10. Creating Dialogs

This chapter covers the following topics:

� Standard file dialogs

� Standard font dialogs

 � Message boxes

Specifying Standard File Dialog Information

The standard file dialog enables a user to specify a file to be opened or a file name

under which current work is to be saved. It includes the ability to switch directories and

logical drives. The IFileDialog class allows you to define the standard dialog for files.

Figure 29 shows an example of a standard file dialog:

C++ Open File Dialog

Open filename:

OK Cancel

*.hlo

<All Files> C: [OS2]

Type of file:

File:

HELLO6.HLO

Directory:

C:\

TEXTS

MLE

Drive:

HELLO6

Figure 29. Example of a File Dialog

 Copyright IBM Corp. 1993 137

Creating a Standard File Dialog
To create a file dialog, follow these steps:

1. Set up the file dialog using the optional feature of the IFileDialog class to specify

initial settings for the dialog you create. To use this feature, create an instance of

the Settings class when you create the dialog, as shown in the following:

IFileDialog::Settings fsettings;

The Settings class has several member functions, including:

 � setSaveAsDialog

 � setFileName

 � setPosition

Note: The setOpenDialog is the default. If you want a Save As dialog, use the

setSaveAsDialog member function.

To set up the dialog, use the following statements:

fsettings.setTitle(STR_FILEDLGT); //Set open dialog title from resource
fsettings.setFileName("\.hlo"); //Set FileNames to \.hlo

2. Create an instance of the IFileDialog class after setting up the dialog. Use the

following statements:

IFileDialog \ fd=new IFileDialog(//Create file open dialog
desktopWindow(), //Parent is desktop
this, //Owner is me

 fsettings); // with settings

Refer to the IBM C/C++ Tools: User Interface Class Library Reference for other

ways to define an instance of the IFileDialog class.

3. Test the response from the file dialog using the pressedOK member function. This

member function returns true if the user ended the dialog by pressing OK.

4. Read the resulting file name from the file dialog. Use the fileName member

function to return the fully qualified name that the user selected.

For the complete sample code, see the openFile member function in the

AHELLOW6.CPP file (Version 6 of the Hello World application).

138 User Interface Class Library User’s Guide

Specifying Standard Font Dialog Information

The standard font dialog enables a user to specify a choice of font names, styles, and

sizes from the range of those available in a given application. Use the IFontDialog

class to handle fonts in your applications. Figure 30 shows an example of a standard

font dialog.

C++ Open Font Dialog

Name:

OK Reset Cancel

Size

Display

Underline

Strikeout

Printer

Outline

10

Style::

Bold

System Proportional

Sample Emphasis

Figure 30. Example of a Font Dialog

Creating a Standard Font Dialog
The following example from the Hello World application shows you how to use a font

dialog.

// <in AHELLOW6.CPP>
{ // .
 IFont curFont(hello); //Define curFont .
 IFontDialog::Settings fsettings(&curFont);// .

fsettings.setTitle(STR_FONTDLGT); //Set Open Dialog Title from Resource .

IFontDialog fontd(//Create Font Open Dialiog .
(IWindow\)desktopWindow(), // Parent is Desktop .
(IWindow\)this, // Owner is me .
(IFontDialog::defaultStyle() | // Set default Style with only .

 IFontDialog::bitmapOnly), // BitMap Fonts .
 fsettings); // settings .

if (fontd.pressedOK()) //Check if ok from Font open dialog .
{ // .

hello->setFont(curFont); //Change hello font to be curFont .
} /\ endif \/ // .

 Chapter 10. Creating Dialogs 139

In the preceeding example, the font in an IStaticText control is changed to the font the

user selects from an IFontDialog. This is done by:

1. Creating an IFont object called curFont that represents the Font currently being

used by the IStaticText control pointed to by hello.

2. Passing a pointer to the curFont object on the constructor to an

IFontDialog::Settings object called fsettings.

3. Passing the fsettings object on the IFontDialog constructor.

Because fsettings is constructed using curFont, the IFontDialog initially displays the

name, style, size, and emphasis associated with curFont (for example, the font currently

used by the IStaticText object). If the user dismisses the IFontDialog by pressing OK

then curFont automatically updates to reflect the font the user chose via the

IFontDialog. The setFont() member function can be used to actually change the font of

the IStaticText control to curFont.

Refer to “Setting and Changing Fonts” on page 82 to see how to set up a font.

Specifying Message Box Information

A message box is a specialized dialog box that displays information and a limited set of

options to the user. The User Interface Class Library provides an IMessageBox class

for displaying messages in a message box.

C++ Hello World - Version 6

Could not open file:

CancelEnter

C:\TEXTS\MLE\HELLO6\t!

Figure 31. Example of a Message Box

140 User Interface Class Library User’s Guide

Creating a Message Box
You can only construct instances of the IMessageBox class by using an instance of

IWindow. The IWindow instance becomes the owner of the new message box.

Following is an example:

IMessageBox mbox(owner);

The following statements create a message box:

 1 IMessageBox msgbox(this); //Creates an instance of IMessageBox
 2 msgbox.setTitle(IResourceId(STR_MSGBOX)); //Load a String using its resource id res
 3 msgbox.show("This is a message", IMessageBox::okButton |
 4 IMessageBox::informationIcon |
 5 IMessageBox::applicationModal |
 6 IMessageBox::moveable);

On line 2, the setTitle member function sets the title of the message box. When given

a message string, the show member function on line 3 shows the message box.

The displayButtonStatus member function in the AMCELCV.HPP file provides more

examples of these statements.

 Chapter 10. Creating Dialogs 141

142 User Interface Class Library User’s Guide

Part 4. Learning from the Sample Application

 Copyright IBM Corp. 1993 143

144 User Interface Class Library User’s Guide

Chapter 11. Introducing the Sample Applications

Sample application files are provided with the User Interface Class Library product

diskettes. Install and use the samples to understand the classes. Complete listings are

included in the \ibmcpp\samples\iclui directory.

About the Hello World Application

This section gives an overview of the Hello World sample application.

The Hello World application is divided into several versions, starting with the simplest

form, Version 1, and building up to the most complicated form, Version 6. Each version

shows you a different aspect of the User Interface Class Library.

Chapters 11–16 show you how to build an application, called “Hello World,” using the

User Interface Class Library. This sample application does not teach you C++

programming. If you are not familiar with the principles and aspects of C++

programming, consult the IBM C++ Programming Guide before continuing with this

section.

Running the Sample Files

Files are included to help you compile and link each version of the Hello World sample

application. READMEn.TXT files, where “n” is the version number, contain complete

instructions for compiling and linking each version.

Notice that many versions of the sample application create pointers to new objects. For

simplicity, the Hello World versions do not always show object cleanup. When you

create pointers to objects in your applications, the objects are not destroyed unless you

delete them. Therefore, it is up to you to use the C++ delete statement or to specify

setAutoDeleteObject on your window objects to free the used memory when an object

is no longer needed in your application.

 Copyright IBM Corp. 1993 145

Reviewing the Conventions Used in the Samples

The User Interface Class Library uses conventions to enhance the usability and

readability of the code. The following conventions will help you as you create

applications.

� Class names begin with a capital letter. For example, all classes belonging to the

User Interface Class Library with a global scope begin with the letter “I,” as in

IApplication. If a class name consists of more than one word, the first letter of each

word is capitalized, such as IFrameWindow.

In keeping with this standard, the letter “A” was chosen as the first letter (for

example, AHelloWindow) for the Hello World application-defined classes. This

convention helps you distinguish the Hello World application classes from the User

Interface Class Library classes. This naming convention also helps you distinguish

the classes you create from those supplied by the class library.

� Member functions begin with a lowercase letter. If a member function name

consists of more than one word, the first letter of each word that follows the first

word is capitalized, such as setText.

� A version indicator (for example, v2 or v4) appears in columns 79-80 in the sample

code comments, indicating which statements were added to enhance the previous

version. The following example illustrates this convention:

#include <istattxt.hpp> //IStaticText Class
#include <iinfoa.hpp> //IInfoArea Class v2
#include <imenubar.hpp> //IMenuBar Class v3
#include <ifont.hpp> //IFont v3
#include <istring.hpp> //IString Class v4
#include <isetcv.hpp> //ISetCanvas Class v4

See “Conventions Used in This Book” on page 7 for information about other User

Interface Class Library conventions.

146 User Interface Class Library User’s Guide

Hello World — Version 1

Chapter 12. Creating an Application with a Main Window

Version 1 of the Hello World sample application shows you how to create a main

window and insert a text string into it using the static text control. A static text control is

a text field, bit map, icon, or box that you can use to label or box another control. In

Version 1, the “Hello World!” text string is inserted into a static text control.

Version 1 shows you how to do the following:

1. Create the main window

2. Create a static text control

3. Set the focus and show the main window

The main window for Version 1 of the application looks like this:

HELLO1.EXE

Hello, World!

Figure 32. Version 1 of the Hello World Application

 Copyright IBM Corp. 1993 147

Hello World — Version 1

Establishing the Version 1 Window-Parent Relationships

Figure 33 shows the relationships between the objects built for Version 1 of the Hello

World application:

IApplication: :current() .run()

Diagram
Key:

IFrameWindow

mainWindow

Class Name

Object Name

(Client Window)

IStaticText

hello

Figure 33. Window-Parent Relationship Diagram, Version 1

As the figure shows, Version 1 creates two objects: a main window and a static text

control. The mainWindow object is the main window of the Hello World application.

The static text control, the hello object, is an instance of the IStaticText class. The

phrase “(Client Window)” indicates that the static text control displays in the main

window’s client area. In this case, the client area is that part of the primary or main

window inside the borders and below the title bar. In general, all space not used by the

frame and its extensions belongs to the client area.

148 User Interface Class Library User’s Guide

Hello World — Version 1

Listing the Version 1 Files

The AHELLOW1.CPP file contains the source code for the main procedure. The tasks

performed by this code are described in “Exploring Version 1” on page 150 and its

related sections.

File Type of Code

AHELLOW1.CPP Source code for the main procedure

AHELLOW1.DEF Module definition file for HELLO1.EXE

The Primary Source Code File
AHELLOW1.CPP contains the source code used for Version 1. Here is a listing of the

source code:

 1 //Include IBM UI class headers:
 2 #include <iapp.hpp> //IApplication Class
 3 #include <istattxt.hpp> //IStaticText Class
 4 #include <iframe.hpp> //IFrameWindow Class Header
 5
 6 //\\\
 7 // main - Application entry point \
 8 //\\\
 9 void main() //Main procedure with no parameters
10 {
11 IFrameWindow \ mainWindow=new //Create our main window on the desktop
12 IFrameWindow(0x1000); // Pass in our Window ID
13
14 IStaticText \ hello=new IStaticText(//Create static text control with
15 0x1010, mainWindow, mainWindow); // mainWindow as parent & owner
16 hello->setText("Hello, World!"); //Set text in Static Text Control
17 hello->setAlignment(//Set Alignment to Center in both
18 IStaticText::centerCenter); // directions
19
20 mainWindow->setClient(hello); //Set hello control as Client Window
21 mainWindow->setFocus(); //Set focus to main window
22 mainWindow->show(); //Set to show main window
23
24 IApplication::current().run(); //Get the current application and
25 // run it
26 } /\ end main \/

 Chapter 12. Creating an Application with a Main Window 149

Hello World — Version 1

The Module Definition File
A module definition (.DEF) file is created to define certain aspects of the application to

the linker. This file provides the following information:

NAME Application name and type

DESCRIPTION Short description of the application

CODE Information about the attributes for the code segment, including:

LOADONCALL Specifies that the code segment is loaded when

called

MOVEABLE Specifies that the code segment is moveable

DATA Information about the data segment, including:

MOVEABLE Specifies that the data segment is moveable

MULTIPLE Causes a data segment to be created for each

instance of the executable code

AHELLOW1.DEF, the module definition file for Version 1, contains the following:

NAME HELLO1 WINDOWAPI

DESCRIPTION 'Hello World Sample C++ Program - Version 1'

CODE LOADONCALL MOVEABLE
DATA MOVEABLE MULTIPLE

Exploring Version 1

The following sections describe each of the tasks performed by Version 1 of the Hello

World application.

Creating the Main Window
The first task creates the main window, an instance of the IFrameWindow class, for the

application. To make this class available, the application must include the

IFRAME.HPP library header file, as follows:

<in AHELLOW1.CPP>
...
 4 #include <iframe.hpp> //IFrameWindow Class Header
...

150 User Interface Class Library User’s Guide

Hello World — Version 1

Now that the IFrameWindow class is available, a variable, in this case mainWindow, is

defined as a pointer to a new instance of this class. This creates the main window of

the application. For example:

<in AHELLOW1.CPP>
...
10 {
11 IFrameWindow \ mainWindow=new //Create our main window on the desktop
12 IFrameWindow(0x1000); // Pass in our Window ID
...

The window ID is assigned the hexadecimal value 0x1000.

Creating a Static Text Control
Next, create a static text control for the “Hello, World!” text string. Because this control

is an instance of the IStaticText class, another library header file, ISTATTXT.HPP, must

be included as follows:

<in AHELLOW1.CPP>
...
 3 #include <istattxt.hpp> //IStaticText Class
...

Now, define another variable, hello, as a pointer to a new instance of the IStaticText

class, which creates a static text control. Use the following code:

<in AHELLOW1.CPP>
...
14 IStaticText \ hello=new IStaticText(//Create static text control with
15 0x1010, mainWindow, mainWindow); // mainWindow as parent & owner
...

The control ID is assigned the hexadecimal value 0x1010.

The argument that follows the hexadecimal value identifies the parent of the static text

control, represented by the mainWindow variable. This positions the static text control

in relation to the main window and displays it on top of the main window.

The last argument identifies the main window as the owner of the static text control.

Controls notify their owner windows when significant events take place by using

command, help, or control events. In this case, if an action is performed on the static

text control, such as modifying its text string, that action is reported to the main window,

which is specified as the owner. In Version 1, no actions can be performed on the

static text control, but they can in Versions 2 through 6.

 Chapter 12. Creating an Application with a Main Window 151

Hello World — Version 1

Setting a Text String for the Static Text Control
After the static text control is created, give it a static text string. The IStaticText class is

derived from the ITextControl class, and thus inheriting its functions. One of those

functions, setText, defines the text string for the static text control. For example:

<in AHELLOW1.CPP>
...
16 hello->setText("Hello, World!"); //Set text in Static Text Control
...

Aligning the Static Text Control
Next, the setAlignment member function of the IStaticText class aligns the text string in

the static text control. In this example, it is centered both horizontally and vertically.

<in AHELLOW1.CPP>
...
17 hello->setAlignment(//Set Alignment to Center in both
18 IStaticText::centerCenter); // directions
...

If you do not align the text string, the default places it in the upper left corner of the

client area.

Setting Static Text Control as the Client Window
Next, designate the static text control as the frame’s client window so that the “Hello,

World!” text string displays in the main window’s client area. Use the setClient member

function of the IFrameWindow class, as follows:

<in AHELLOW1.CPP>
...
20 mainWindow->setClient(hello); //Set hello control as Client Window
...

The frame’s client window is the window corresponding to the client area, which is the

rectangular portion of the frame window not occupied by the other frame controls (for

example, title bar, window border, and minimize and maximize buttons). Setting the

static text control as the client window causes it to occupy the entire client area and to

be aligned within the boundaries of that area. When the user resizes the main window,

the client area (static text control in this example) grows or shrinks, but the frame and

its extensions remain the same size.

152 User Interface Class Library User’s Guide

Hello World — Version 1

Setting the Focus and Showing the Main Window
The next two tasks are:

� Designating the main window as the active window

� Displaying the main window when running the application

These tasks use the setFocus and IWindow::show member functions:

<in AHELLOW1.CPP>
...
21 mainWindow->setFocus(); //Set focus to main window
22 mainWindow->show(); //Set to show main window
...

The setFocus and IWindow::show member functions are inherited from the IWindow

class. IFrameWindow is derived from IWindow. Classes inherit functions from the

base classes from which they are derived. An application does not have to include

those base classes. Therefore, the IWindow class does not need to be included in this

application for its functions to be available.

Running the Application
The last task displays the main window and starts the user interface event processing

for the application. This involves getting and dispatching window events, using the

function ICurrentApplication::run(), until the application ends. This sample application

accomplishes the task using member functions belonging to the IApplication and

ICurrentApplication classes. Therefore, include IAPP.HPP, another library header file,

as follows:

<in AHELLOW1.CPP>
...
 2 #include <iapp.hpp> //IApplication Class
...

The IApplication::current member function of the IApplication class returns the current

application as an instance of the ICurrentApplication class. Next, the

ICurrentApplication::run member function displays the main window and starts event

processing for this application, using the following code:

<in AHELLOW1.CPP>
...
24 IApplication::current().run(); //Get the current application and
25 // run it
26 } /\ end main \/

 Chapter 12. Creating an Application with a Main Window 153

Hello World — Version 1

154 User Interface Class Library User’s Guide

Hello World — Version 2

Chapter 13. Adding a Resource File and Frame Extensions

Version 2 of the Hello World application shows you how to use a resource file and how

to add frame extensions to the application window.

A resource file is a file that contains data used by an application, such as text strings

and icons. This data is often easier to maintain in a resource file than in the source

code of an application because the resource file keeps all of the application’s data

together in one place.

Frame extensions are controls that you can add to a frame window in addition to those

that are provided for you by basic Presentation Manager frame windows. For example,

in Version 2, an information area is added below the client area.

Version 2 of the Hello World application extends Version 1 by showing you how to:

� Get the “Hello, World!!” text string and text for an information area from a resource

file

� Construct the main window and set the title and system menu icon from a resource

file

� Create and set the information area below the client area

The main window for Version 2 of the Hello World application looks like this:

C++ Hello World - Version 2

Hello, World!!

Information AreaUse Alt-F4 to Close Window

Figure 34. Version 2 of Hello World Application

 Copyright IBM Corp. 1993 155

Hello World — Version 2

Establishing the Version 2 Window-Parent Relationships

Figure 35 shows the relationships between the objects built for Version 2 of the Hello

World application:

IApplication: :current() .run()

Diagram
Key:

IStaticText

hello

IInfoArea

infoArea

AHelloWindow

mainWindow

Class Name

Object Name

ITitle

(Client Window)

Figure 35. Window-Parent Relationship Diagram, Version 2

As the figure shows, Version 2 creates the mainWindow object as an instance of the

AHelloWindow class, a subclass created for Version 2 and derived from the

IFrameWindow class.

The hello object is the same as in Version 1.

In addition to the mainWindow and hello object, Version 2 provides:

� An instance of the ITitle class for the window title.

� An infoArea object in the main window. The infoArea oject is an instance of the

IInfoArea class that displays text in an information area.

156 User Interface Class Library User’s Guide

Hello World — Version 2

Listing the Version 2 Files

The following files contain the code used to create Version 2:

File Type of Code

AHELLOW2.CPP Source code for the main procedure and window constructor

AHELLOW2.HPP Header file for the AHellowWindow class

AHELLOW2.H Constant definitions file for HELLO2.EXE

AHELLOW2.RC Resource file for HELLO2.EXE

AHELLOW2.ICO Icon file for HELLO2.EXE

AHELLOW2.DEF Module definition file for HELLO2.EXE

The Primary Source Code File
The AHELLOW2.CPP file contains the source code for the main procedure and the

window constructor. If columns 79-80 contain a v2 or a period, then this source line

was modified or added in this version. The tasks performed by this code are described

in “Exploring Version 2” on page 159 and its related sections.

The AHelloWindow Class Header File
Althought the AHELLOW2.HPP file is not a User Interface Class Library header file, it is

the type of header file that you would create for your own classes. In this case, it

contains the class definition and interface specifications for the AHelloWindow class, a

subclass of IFrameWindow that was created specifically for this application.

The Constant Definitions File
AHELLOW2.H contains the constant definitions for this application. These constants

and their definitions provide the IDs for the application main window, controls, and text

strings. They are required because, in this version of the Hello World application, the

text strings are pulled in from a resource file.

The Resource File
Version 2 of the Hello World application provides a resource file, AHELLOW2.RC. This

resource file assigns an icon and three text strings to the constants defined in the

AHELLOW2.H file shown in “The Constant Definitions File.” AHELLOW2.H is included

in this resource file so the icon and text strings can be associated with the appropriate

IDs.

 Chapter 13. Adding a Resource File and Frame Extensions 157

Hello World — Version 2

The Icon File
AHELLOW2.ICO is used as both the title bar icon and the icon that displays when the

application is minimized. We do not provide a listing for the AHELLOW2.ICO file, but

this is how the icon appears when minimized:

Hello World Icon

Figure 36. Hello World Icon

The Module Definition File
The AHELLOW2.DEF file is required for the same reasons that AHELLOW1.DEF is

needed for Version 1. Create a module definition file to define certain aspects of the

application to the linker.

The only difference between the .DEF file used in Version 1 and Version 2 is the

change in the version number.

NAME HELLO2 WINDOWAPI

DESCRIPTION 'Hello World Sample C++ Program - Version 2'

CODE LOADONCALL MOVEABLE
DATA MOVEABLE MULTIPLE

Discussing the Advantages of the C++ File Structure

In Version 1, all of the source code was intentionally put in the AHELLOW1.CPP file to

make that version of the application simple. However, for Version 2, the source code

has been distributed among a variety of files to show that you can structure your

applications this way.

First, the AHelloWindow class, the subclass of IFrameWindow, is defined in the header

file (AHELLOW2.HPP). Putting the class definition and interface specifications in the

header file separates them from their implementation in the source code

(AHELLOW2.CPP). This allows the class and its specifications to be used again with

other applications and to be implemented in different ways. If the class definition or

interface specifications change, they change in only one place, the header file.

158 User Interface Class Library User’s Guide

Hello World — Version 2

Similarly, the constant definitions file (AHELLOW2.H) assigns IDs to the windows and

text strings in one place. Defining the constants this way allows you to use constants

in a variety of places, such as the source code and the resource file, while keeping

their definitions in one place. Then, if you need to change the constant definitions, you

only modify the AHELLOW2.H file.

The advantage of placing the application’s data in a resource file (AHELLOW2.RC) is

that all of the resources are specified in one place. For example, finding and modifying

text strings is easier when they are all grouped in one place, rather than searching

through the source code for each one.

Exploring Version 2

The following sections describe each of the tasks performed by Version 2 of the Hello

World application. Some of the tasks are the same as those performed by Version 1,

but they are described again because they are performed differently in Version 2.

Creating the Main Window
One of the major differences between Version 1 of the Hello World application and

Version 2 is the manner in which you create the main window. Version 1 simply

creates an instance of the IFrameWindow class. However, Version 2 provides its own

class, AHelloWindow, to create the main window.

The AHelloWindow class is defined in the AHELLOW2.HPP header file and is derived

from the IFrameWindow class. The IFrameWindow class is defined in the

IFRAME.HPP library header file. Therefore, the AHELLOW2.HPP header file contains

the following line make the derivation of the AHelloWindow class from the

IFrameWindow class possible:

// <in AHELLOW2.HPP>
...
#include <iframe.hpp> //Include the IFrameWindow class
 // header
...

Note: See “Listing the Version 2 Files” on page 157 to learn about reasons for putting

class definitions and interface specifications in a header file.

 Chapter 13. Adding a Resource File and Frame Extensions 159

Hello World — Version 2

The AHELLOW2.CPP file, which contains most of the source code for the application,

includes the AHELLOW2.HPP header file on line 6 to have access to the

AHelloWindow class:

// <in AHELLOW2.CPP>
...
#include "ahellow2.hpp" //Include the AHelloWindow class v2
 // header v2
...

The following lines in the AHELLOW2.CPP file create the main window by using the

AHelloWindow class constructor:

// <in AHELLOW2.CPP>
...
AHelloWindow mainWindow (WND_MAIN); //Create our main window on the
 // desktop
...

In Version 1, the main window is given a hexadecimal value of 0x1000 as its window ID

when the main window was created. The same value is used for the window ID of the

main window in Version 2. However, instead of specifying that value in the primary

source code file, Version 2 uses a constant, WND_MAIN, which is defined in the

AHELLOW2.H file, as follows:

// <in AHELLO2.H>
...
#define WND_MAIN 0x1000 //Main window ID
...

Note: See “Listing the Version 2 Files” on page 157 to learn about reasons for using

a constants definition file.

To have access to this definition, the primary source code file, AHELLOW2.CPP, must

include the AHELLOW2.H file, as follows:

// <in AHELLO2.CPP>
...
#include "ahellow2.h" //Include our symbolic definitions v2
...

Running the Current Application
When the main window is constructed, the following line gets the current application

and runs it:

// <in AHELLOW2.CPP>
...
IApplication::current().run(); //Get the current application and
 // run it
...

See “Running the Application” on page 153 for a more detailed explanation.

160 User Interface Class Library User’s Guide

Hello World — Version 2

Constructing the Main Window
After the main window has been created, next it is constructed. This section explain

how to do this. Version 2 constructs the main window using the AHelloWindow class.

Here is the class constructor as it is defined in the AHELLOW2.HPP header file:

// <in AHELLOW2.HPP>
...
AHelloWindow(unsigned long windowId);//Constructor for this class
...

In the primary source code file, Version 2 uses the following lines to construct the main

window:

// <in AHELLOW2.CPP>
...
AHelloWindow :: AHelloWindow(unsigned long windowId)

: IFrameWindow (//Call the IFrameWindow constructor
IFrameWindow::defaultStyle() // using the default style, plus v2
| IFrameWindow::minimizedIcon, // get minimized icon from RC file v2
windowId) // and set the main window ID

...

Two capabilities provided by the IFrameWindow class used here were not used in

Version 1:

� Setting the main window to the default style

The defaultStyle member function on line 24 is inherited from the IFrameWindow

class. It returns the current default style that all applications use for frame

windows. The current default style is either the original default style that is

provided by the User Interface Class Library for frame windows, or a new default

style that you establish by using the setDefaultStyle member function.

In this case, because the setDefaultStyle member function has not been used, the

current default style is the same as the original default style, which provides a title

bar, title bar icon, minimize button, maximize button, window border, window list,

and an initial shell position for the window.

In this application, the text and icon for the title bar are specified in the resource

file, AHELLOW2.RC, which is described in the following sections. The text string

for the window title is included in the resource file, and the icon, AHELLOW2.ICO,

is specified.

Refer to “Adding Styles” on page 63 and to the IBM C/C++ Tools: User Interface

Class Library Reference for more information about styles.

 Chapter 13. Adding a Resource File and Frame Extensions 161

Hello World — Version 2

� Getting an icon to use when the main window is minimized

The minimizedIcon member function on line 27 is also inherited from the

IFrameWindow class. This member function allows an application to use an icon,

contained in the .EXE file and specified in the resource file, to represent the

application when it is minimized on the desktop. The Hello World application

provides the AHELLOW2.ICO icon file for this purpose. Refer to Figure 36 on

page 158 to see how this icon appears when the main window is minimized.

Creating a Static Text Control
Another difference between Version 1 and Version 2 is the means of creating a static

text control to display a text string. In Version 1, this was done simply by setting hello

equal to a new instance of the IStaticText class, associating an ID with the control

window (0x1010), and making the main window the parent and owner of the control, as

follows:

// <in AHELLOW1.CPP>
...
IStaticText \ hello=new IStaticText(//Create static text control with

0x1010, mainWindow, mainWindow); // mainWindow as parent & owner
...

In Version 2, however, this code is divided into separate parts and placed in different

files. As shown in the following lines, hello is now declared in the AHelloWindow class:

// <in AHELLOW2.HPP>
...
IStaticText \ hello; //Define a Static Text Control to

// keep the "Hello, World" text
// and as the client window

...

In the AHELLOW2.CPP file, hello is used to create a new instance of a static text

control:

// <in AHELLOW2.CPP>
...
hello=new IStaticText(WND_HELLO, //Create a static text control

this, this); // Pass in this AHelloWindow as the
// parent and owner of the control

...

The WND_HELLO constant provides the ID for the static text control. All Presentation

Manager windows must have a unique ID, including controls. Therefore, the

AHELLOW2.CPP file must include AHELLOW2.H, because that is where this constant

is defined:

// <in AHELLOW2.CPP>
...
#include "ahellow2.h" //Include our symbolic definitions v2
...

162 User Interface Class Library User’s Guide

Hello World — Version 2

With the AHELLOW2.H included, the ID is associated with the WND_HELLO constant:

// <in AHELLOW2.H>
...
#define WND_HELLO 0x1010 //Hello World window ID
...

The other two arguments (this, this) pass in the main window (this instance of the

AHelloWindow class) as the parent and owner of the static text control.

See “Creating a Static Text Control” on page 151 for information about parent and

owner windows.

Setting a Text String for the Static Text Control
After the static text control is created, the next task is to set text in it. Version 2 gets

the text string from a resource file. To do this, it uses the setText member function,

which inherits from the ITextControl class:

// <in AHELLOW2.CPP>
...
hello->setText(STR_HELLO); //Set text in the static text control v2

// from the RC file v2
...

The setText member function finds this constant in the AHELLOW2.RC resource file

and puts it into the static text control:

// <in AHELLOW.RC>
...
STR_HELLO, "Hello, World!!" //Hello World text string v2
...

As noted earlier, each window, even a control, must have a numeric value assigned as

its ID. The STR_HELLO constant is associated with a string ID, hexadecimal value

0x1200, in the constant definition file (AHELLOW2.H). The resource file includes the

constant definition file, so this constant definition is available.

// <in AHELLOW2.H>
...
#define STR_HELLO 0x1200 //Hello World string ID v2
...

 Chapter 13. Adding a Resource File and Frame Extensions 163

Hello World — Version 2

Aligning the Static Text Control
As in Version 1, the static text control for the client area is centered both horizontally

and vertically in the static text control as follows:

// <in AHELLOW2.CPP>
...
hello->setAlignment(//Set the alignment to center both

IStaticText::centerCenter); // horizontally and vertically
...

Setting Static Text Control as the Client Window
Next, set the static text control as the client window.

See “Setting Static Text Control as the Client Window” on page 152 for an explanation

of client windows.

// <in AHELLOW2.CPP>
...
setClient(hello); //Set the static text control as the

// client window
...

Creating an Information Area
The following code creates a new instance of an information area using the IInfoArea

class. This class provides a frame extension at the bottom of the client area that

shows information about the application.

// <in AHELLOW2.CPP>
...
infoArea=new IInfoArea(this); //Create the information area v2
...

Setting the Information Area Text
Typically, the information shown in the information area pertains to the frame menu

item at which the selection cursor is currently positioned. The information is taken from

a resource string table. A different text string displays for each menu item, changing

dynamically in the information area as the cursor moves from item to item. The

information area also has a special string (called “inactive text”) that displays whenever

no menu item is selected.

Version 2 sets the information area’s inactive text to the same string placed in the static

text control in Version 1. As a result, this text appears whenever the menu is inactive.

The only difference is the setInactiveText member function is used instead of the

setText member function:

// <in AHELLOW2.CPP>
...
infoArea->setInactiveText(STR_INFO); //Set information area text from RC v2
...

164 User Interface Class Library User’s Guide

Hello World — Version 2

The setInactiveText member function finds the STR_INFO constant in the

AHELLOW2.RC resource file and puts it into the information area:

// <in AHELLOW2.RC>
...
STR_INFO, "Use Alt-F4 to close window" //Information area text v2
...

The STR_INFO constant is associated with a string ID, hexadecimal value 0x1220, in

the AHELLOW2.H constant definition file. The resource file includes the constant

definition file, so this constant definition is available.

// <in AHELLOW2.RC>
...
#define STR_INFO 0x1220 //Information area string ID v2
...

Setting the Size of the Main Window
In Version 1, the main window’s default size is used when it displays. Version 2 shows

you how to change the size:

// <in AHELLOW2.CPP>
...
sizeTo(ISize(400,300)); //Set the pixel size of main window v2
...

This sets the size of the main window to 400 pixels wide by 300 pixels high.

Setting the Focus and Showing the Main Window
As in Version 1, the last two member functions you use are setFocus and show.

However, because the AHelloWindow class is the parent and owner of the main

window, you only need to specify the member function names, as follows:

// <in AHELLOW2.CPP>
...
setFocus(); //Set the focus to the main window
show(); //Show the main window
...

 Chapter 13. Adding a Resource File and Frame Extensions 165

Hello World — Version 2

166 User Interface Class Library User’s Guide

Hello World — Version 3

Chapter 14. Adding an Event Handler and Menu Bars

Version 3 provides a menu bar with an Alignment choice. A menu bar is the area

near the top of a window, below the title bar and above the client area of the window,

which contains a list of choices. By selecting the Alignment choice, the user can

display a pull-down menu and align the “Hello, World!!!” text string to the left, right, or

center. In addition, this version adds a status area to show the status of the text string,

and an event handler for the menu bar and the pull-down menu.

In covering these topics, this chapter shows you how to:

� Create a status line to show the status of the text string alignment

� Set an event handler

� Add a menu bar

� Set an initial check mark in the pull-down menu

� Add command processing (event handling) to align a text string

The main window for Version 3 of the Hello World application looks like this:

C++ Hello World - Version 3

Menu Bar

Title Bar

Title Text
Minimized
Icon

Minimize
Button

Maximize
Button

Status Area

Border

Information Area

Client Area

Hello, World!!!

Center Alignment

Use Alt-F4 to Close Window

Alignment

Figure 37. Version 3 of Hello World Application

 Copyright IBM Corp. 1993 167

Hello World — Version 3

Establishing the Version 3 Window-Parent Relationships

Figure 38 shows the relationships between the objects built for Version 3 of the Hello

World application:

IApplication: :current() .run()

Diagram
Key:

IStaticText

statusLine

IStaticText

hello

IInfoArea

infoArea

AHelloWindow

mainWindow

IMenuBar

menuBar

Class Name

Object Name

ITitle

(Client Window)

Figure 38. Window-Parent Relationship Diagram, Version 3

As the figure shows, Version 3 of the Hello World application creates the following

objects:

� menuBar, which is an instance of the IMenuBar class, a subclass created for

Version 3 and derived from the IMenu class.

� statusLine, an instance of the IStaticText class that creates the static text control

for displaying a text string in a status area.

The instance of the ITitle class, the hello object, and the infoArea object are the same

as Version 2.

168 User Interface Class Library User’s Guide

Hello World — Version 3

Listing the Version 3 Files

The following files contain the code used to create Version 3:

File Type of Code

AHELLOW3.CPP Source code for the main procedure, main window constructor,

and command processing

AHELLOW3.HPP Header file for the AHellowWindow class

AHELLOW3.H Constant definitions file for HELLO3.EXE

AHELLOW3.RC Resource file for HELLO3.EXE

AHELLOW3.ICO Icon file for HELLO3.EXE

AHELLOW3.DEF Module definition file for HELLO3.EXE

The Primary Source Code File
The AHELLOW3.CPP file contains the source code for the main procedure, window

constructor, and menu commands. The tasks performed by this code are described in

“Exploring Version 3” on page 171 and its related sections.

The AHelloWindow Class Header File
AHELLOW3.HPP, like AHELLOW2.HPP, contains the class definition and interface

specifications for the AHelloWindow class, with a few modifications for Version 3.

The Constant Definitions File
AHELLOW3.H contains the constant definitions for this application. These constants

and their definitions provide the IDs for the application window components.

For Version 3, the constants definition file contains a new window ID (WND_STATUS)

for the status area and three new string IDs (STR_CENTER, STR_LEFT, and

STR_RIGHT) for the text strings used in the status area. In addition, menu IDs

(MI_ALIGNMENT, MI_CENTER, MI_LEFT, and MI_RIGHT) have been added for the

menu bar Alignment choice and the Center, Left, and Right choices in the pull-down

menu.

The Resource File
Version 3 provides a resource file, AHELLOW3.RC. This resource file assigns an icon

and several text strings with the constants defined in the AHELLOW3.H file shown in

“The Constant Definitions File.” It also contains the text strings for the menu bar.

AHELLOW3.H is included in this resource file so the icon and text strings can be

associated with the appropriate IDs.

The resource file for Version 3 contains two primary additions. The first is the text

strings that are assigned to the new string constants that were defined in

AHELLOW3.H. These text strings are used in the status area to show the state of the

static “Hello, World!!!” text string in the client area. For example, when the main

window is first displayed, the “Center Alignment” text string is shown in the status area.

 Chapter 14. Adding an Event Handler and Menu Bars 169

Hello World — Version 3

The second addition provides the text that appears on the menu bar (Alignment) and

pull-down menu (Left, Center, and Right), indicating which choices are available.

Each text string is assigned to a constant, also defined in AHELLOW3.H.

The tilde (˜) to the left of the first letter in each text string indicates that those letters

can be used in combination with the Alt key to provide shortcut keys for the application.

For example, pressing Alt-R aligns the “Hello, World!!!” text string on the right side of

the main window, just as if the Right choice had been selected from the pull-down

menu.

The Icon File
AHELLOW3.ICO is used as both the title bar icon and the icon that displays when the

application is minimized. We do not provide a listing for the AHELLOW3.ICO file. This

icon is the same as for Version 2. Refer to Figure 36 on page 158 to see how this

icon appears.

The Module Definition File
The AHELLOW3.DEF file is required to define certain aspects of the application to the

linker.

The only difference between the Version 3 .DEF file and Version 1 and Version 2 .DEF

files is the change in the version number.

NAME HELLO3 WINDOWAPI

DESCRIPTION 'Hello World Sample C++ Program - Version 3'

CODE LOADONCALL MOVEABLE
DATA MOVEABLE MULTIPLE

170 User Interface Class Library User’s Guide

Hello World — Version 3

Exploring Version 3

The following sections describe each of the tasks performed by Version 3 of the Hello

World application that have not been described for previous versions.

Creating a Status Line
The status line shows the text string alignment status. Use the IStaticText class to

create the static text control to display a text string in a status area. The status area is

a small rectangular area that is usually located at the top of a window, below the menu

bar. As shown in the following lines, statusLine is declared in the AHelloWindow class

declaration in the header file:

// <in AHELLOW3.HPP>
...
IStaticText \ statusLine; //Status Line at top of client window v3
...

In the AHELLOW3.CPP file, statusLine is set equal to the IStaticText library class to

create a static text control for the status area and to pass in the main window, this

instance of the AHelloWindow class, as the parent and owner of this control:

// <in AHELLOW3.CPP>
...
statusLine=new IStaticText //Create Status Area using Static Text v3

(WND_STATUS, this, this); // Window ID, Parent, Owner Parameters.
...

The WND_STATUS constant provides the window ID for this static text control. This

constant is defined in AHELLOW3.H.

Adding Text for a Status Line
The status area text strings are specified in the resource file, as shown in the following

code:

// <in AHELLOW3.RC>
...
STR_CENTER, "Center Alignment" //Status Line Text - Center v3
STR_LEFT, "Left Alignment" //Status Line Text - Left .
STR_RIGHT, "Right Alignment" //Status Line Text - Right v3
...

The following code gets the “Center Alignment” text string from the resource file and

centers it in the static text control for the status area:

// <in AHELLOW3.CPP>
...
statusLine->setText(STR_CENTER); //Set Status Text to "Center" from Res .
...

 Chapter 14. Adding an Event Handler and Menu Bars 171

Hello World — Version 3

Specifying the Location and Height of the Status Area
Use the IFrameWindow member function addExtension to specify where the status area

is positioned and how high it is. For example:

// <in AHELLO3.CPP>
...
addExtension(statusLine, //Add Status Line above the client .

IFrameWindow::aboveClient, // and specify the location .
IFont(statusLine).maxCharHeight()); // and specify height v3

...

The aboveClient argument of the Location enumeration, on line 45, specifies that the

static text control displays the status area above the client window.

The maxCharHeight member function, on line 46, returns the status area’s maximum

height, based on the current font.

Setting AHelloWindow as the Event Handler
In Version 3, the AHelloWindow class is derived from both the IFrameWindow and the

ICommandHandler classes. This is necessary because, for the first time, this

application handles events, in this case, the commands that align the “Hello, World!!!”

text string.

The next line of code contains the handleEventsFor member function of the

ICommandHandler class. Use this member function to set the event handler for the

application. In this case, the this argument is specified, setting this instance of the

AHelloWindow class as the event handler for the Hello World application:

// <in AHELLO3.CPP>
...
handleEventsFor(this); //Set self as event handler (commands)v3
...

This member function is available because the header file includes the ICMDHDR.HPP

library header file, which contains the ICommandHandler class.

// <in AHELLOW3.HPP>
...
#include <icmdhdr.hpp> //Include ICommandEvent & ICommandHandler v3
...

172 User Interface Class Library User’s Guide

Hello World — Version 3

Creating a Menu Bar
Now you can create the “Alignment” menu bar to display the Left, Center, and Right

choices. On line 30 of the header file, menuBar is defined as an instance of the

IMenuBar class.

// <in AHELLOW3.HPP>
...
IMenuBar \ menuBar; //Define Menu Bar v3
...

Use menuBar to create a new instance of that class in the main window, as follows:

// <in AHELLOW3.CPP>
...
menuBar=new IMenuBar(WND_MAIN, this); //Create Menu Bar for main window .
...

The WND_MAIN argument identifies the following menu in the AHELLOW3.RC

resource file:

// <in AHELLOW3.RC>
...
MENU WND_MAIN //Main Window Menu (WND_MAIN) v3
 BEGIN

SUBMENU "˜Alignment", MI_ALIGNMENT //Alignment Submenu v3
 BEGIN

MENUITEM "˜Left", MI_LEFT //Left Menu Item v3
MENUITEM "˜Center", MI_CENTER //Center Menu Item v3
MENUITEM "˜Right", MI_RIGHT //Right Menu Item v3

 END
 END

This menu puts one choice, Alignment, on the menu bar, and provides a pull-down

menu with three choices: Left, Center, and Right.

In addition, the MI_ALIGNMENT, MI_LEFT, MI_CENTER, and MI_RIGHT menu item

attributes correspond to those in the resource file’s string table:

// <in AHELLOW3.RC>
...
MI_ALIGNMENT,"Alignment Menu" //InfoArea - Alignment Menu v3
MI_CENTER, "Set Center Alignment" //InfoArea - Center Menu .
MI_LEFT, "Set Left Alignment" //InfoArea - Left Menu .
MI_RIGHT, "Set Right Alignment" //InfoArea - Right Menu v3
...

When the user moves the selection cursor over each menu item, the text string

associated with that menu item displays in the information area below the client

window. For example, when the cursor is on the Right menu item, the text string “Set

Right Alignment” appears in the information area.

 Chapter 14. Adding an Event Handler and Menu Bars 173

Hello World — Version 3

Setting an Initial Check Mark in the Pull-down Menu
The pull-down menu that displays when the Alignment choice is selected on the menu

bar contains three choices for aligning the “Hello, World!!!” text string: Left, Center,

and Right. Because this text string is aligned in the center of the client area when the

application is created, a check mark should display next to the Center choice the first

time the pull-down menu displays.

The checkItem member function of the IMenuBar class allows you to place a check

mark on a pull-down menu choice. The following line places a check mark on the

Center choice:

// <in AHELLOW3.CPP>
...
menuBar->checkItem(MI_CENTER); //Place Check on Center Menu Item .
...

The MI_CENTER constant is defined in the AHELLOW3.RC resource file as the

“Center” text string for the menu. Do not confuse this with the MI_CENTER menu item

attribute defined in the string table, which is used only by the information area.

Adding Command Processing to Align a Text String
This section shows you how to associate commands with the menu items to align the

text string.

An example of the command processing for one of the menu items follows. This code

is used to left-align the “Hello, World!!!” text string in the client window:

// <in AHELLOW3.CPP>
...
case MI_LEFT: //Code to Process Left Command Item v3

hello->setAlignment(//Set alignment of hello text to .
 IStaticText::centerLeft); // center-vertical, left-horizontal .

statusLine->setText(STR_LEFT); //Set Status Text to "Left" from Res .
 menuBar->uncheckItem(MI_CENTER); //Uncheck Center Menu Item .

menuBar->checkItem(MI_LEFT); //Place Check on Left Menu Item .
menuBar->uncheckItem(MI_RIGHT); //Uncheck Right Menu Item .
return(true); //Return command processed .

 break; // v3
...

This code does the following:

� Uses the setAlignment member function to center the static text control vertically

and align it on the left horizontally

� Sets the appropriate text string in the status area (Left Alignment)

� Uses the uncheckItem member function to remove any existing check marks from

the Center and Right menu items

� Uses the checkItem member function to set a check mark on the Left

� Returns true and ends

174 User Interface Class Library User’s Guide

Hello World — Version 4

Chapter 15. Adding Dialogs and Push Buttons

This section shows you how to:

� Modify the menu bar

� Create a dialog box

� Set push buttons in a set canvas

Version 4 modifies menu bar and the pull-down menu in the following ways:

� Creates an Edit choice on the menu bar

� Moves the Alignment choice from the menu bar to the pull-down menu

� Moves the menu items associated with the Alignment choice (Left, Center, and

Right) from the pull-down menu into a cascaded menu that displays when the

Alignment choice is selected. These items still align the “Hello, World!!!!” text

string in the client window. However, the commands assigned to these menu

items are also assigned to accelerator keys so the keyboard can bypass the menu

choices and establish the text alignment.

� Adds a Text... choice on the pull-down menu. Selecting this choice displays a

dialog box that contains an entry field in which the “Hello, World!!!!” text string can

be edited.

The main window for Version 4 of the Hello World application looks like this:

C++ Hello World - Version 4

Hello, World!!!!

Center Alignment

Use Alt-F4 to Close Window

Edit

RightCenterLeft

Figure 39. Version 4 of Hello World Application

 Copyright IBM Corp. 1993 175

Hello World — Version 4

Establishing the Version 4 Window-Parent Relationships

Figure 40 shows the relationships between the objects built for Version 4 of the Hello

World application:

IApplication: :current() .run()

Diagram
Key:

IStaticText

statusLine

IStaticText

hello

ISetCanvas

buttons

IPushButton

rightButton

IPushButton

leftButton

IInfoArea

infoArea

IInfoArea

infoArea

AHelloWindow

mainWindow

IMenuBar

menuBar

Class Name

Object Name

ATextDialog

textDialog

IEntryField

textField

ITitle

IAccelerator

(Client Window)

Figure 40. Window-Parent Relationship Diagram, Version 4

As the figure shows, Version 4 of the Hello World application creates the following

objects:

� textDialog, which is an instance of the ATextDialog class, a subclass created for

Version 4 and derived from the IFrameWindow and ICommandHandler classes

� textField, which is an instance of the IEntryField class that creates and manages

an entry field control

� buttons, which is an instance of the ISetCanvas class that organizes push buttons

� leftButton and a rightButton, which are instances of the IPushButton class that

creates and manages the push button control window

In addition to these objects, Version 4 provides an instance of the IAccelerator class to

allow access to the tables of accelerator or shortcut keys and the associated command

IDs that are stored in resource files.

176 User Interface Class Library User’s Guide

Hello World — Version 4

Listing the Version 4 Files

The following files contain the code used to create Version 4:

File Type of Code

AHELLOW4.CPP Source code for the main procedure, main window constructor,

and command processing

AHELLOW4.HPP Header file for the AHellowWindow class

AHELLOW4.H Constant definitions file for HELLO4.EXE

ADIALOG4.CPP Source code to create the ATextDialog class

ADIALOG4.HPP Header file for the ATextDialog class

AHELLOW4.RC Resource file for HELLO4.EXE

AHELLOW4.ICO Icon file for HELLO4.EXE

ADIALOG4.DLG Dialog resource source file for HELLO4.EXE

ADIALOG4.RES Dialog resource file for HELLO4.EXE

AHELLOW4.DEF Module definition file for HELLO4.EXE

The Primary Source Code File
The AHELLOW4.CPP file contains the source code for the main procedure, window

constructor, and menu commands. The tasks performed by this code are described in

“Exploring Version 4” on page 180 and its related sections.

The AHelloWindow Class Header File
AHELLOW4.HPP, like AHELLOW3.HPP, contains the class definition and interface

specifications for the AHelloWindow class, with a few modifications for Version 4.

 Chapter 15. Adding Dialogs and Push Buttons 177

Hello World — Version 4

The Constant Definitions File
AHELLOW4.H contains the constant definitions for this application. These constants

and their definitions provide the IDs for the application window components.

For Version 4, the constants definition file contains new window IDs

(WND_TEXTDIALOG and WND_BUTTONS) for the text dialog and the push button

controls on the canvas, respectively. It also contains new string IDs (STR_CENTERB,

STR_LEFTB, and STR_RIGHTB) for the text strings used in the push buttons. In

addition, menu IDs (MI_EDIT and MI_TEXT) have been added for the menu bar Edit

choice and the Text choice in the pull-down menu.

The Text Dialog Source Code File
The ADIALOG4.CPP file contains the source code for the text dialog window

constructor, the ATextDialog class, created for Version 4.

The ATextDialog Class Header File
The ADIALOG4.HPP file contains the class definition and interface specifications for the

ATextDialog class.

The Resource File
Version 4 provides a resource file, AHELLOW4.RC. This resource file assigns an icon

and several text strings with the constants defined in the AHELLOW4.H file shown in

“The Constant Definitions File.” It also contains resources for the menu bar, the

accelerator keys and the text dialog.

AHELLOW4.H is included in this resource file so the icon, text strings, and other

resources can be associated with the appropriate IDs. OS.H is included because it is

the top level include file that includes all the files necessary for writing an OS/2

application.

The resource file for Version 4 contains two primary additions. The first is the

accelerator table of text strings assigned to the function keys. These text strings are

used in the cascaded menu to show the accelerator, or shortcut, key assignments. For

example, with these assignments and the command processing in AHELLOW4.CPP,

when the user presses the F7 key, it is the same as if they select the Left choice in the

cascaded menu.

The second addition is an rcinclude statement that includes the text dialog template.

See “The Text Dialog Template” on page 179 for information about that file.

178 User Interface Class Library User’s Guide

Hello World — Version 4

The Icon File
AHELLOW4.ICO is used as both the title bar icon and the icon that displays when the

application is minimized. We do not provide a listing for the AHELLOW4.ICO file. This

icon is the same as for Version 2. Refer to Figure 36 on page 158 to see how this

icon appears.

The Text Dialog Template
ADIALOG4.DLG contains the template used to build the text dialog. Here is that

template:

DLGINCLUDE 1 "AHELLOW4.H"

DLGTEMPLATE WND_TEXTDIALOG LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Hello World Edit Dialog", WND_TEXTDIALOG, 17, 22, 137, 84,
WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR

 BEGIN
DEFPUSHBUTTON "OK", DID_OK, 6, 4, 40, 14
PUSHBUTTON "Cancel", DID_CANCEL, 49, 4, 40, 14
LTEXT "Edit Text:", DID_STATIC, 8, 62, 69, 8
ENTRYFIELD "", DID_ENTRY, 8, 44, 114, 8, ES_MARGIN

 END
END

The Text Dialog Resource File
ADIALOG4.RES is created by the resource compiler as input to HELLO4.EXE.

The Module Definition File
The AHELLOW4.DEF file is required to define certain aspects of the application to the

linker.

The only difference between the Version 4 .DEF file and .DEF files for the previous

versions is the change in the version number.

The only difference between the two .DEF files used in Version 1 and Version 4 is the

change in the version number.

NAME HELLO4 WINDOWAPI

DESCRIPTION 'Hello World Sample C++ Program - Version 4'

CODE LOADONCALL MOVEABLE
DATA MOVEABLE MULTIPLE

 Chapter 15. Adding Dialogs and Push Buttons 179

Hello World — Version 4

Exploring Version 4

The following sections describe each of the tasks performed by Version 4 of the Hello

World application that have not been described for previous versions.

Modifying the Menu Bar
For Version 4, there are several modifications to the menu bar and its associated

pull-down menu. First, change the Version 3 Alignment item on the menu bar to Edit,

using the following code:

// <in AHELLOW4.RC>
...
MENU WND_MAIN //Main Window Menu (WND_MAIN) v3
 BEGIN

SUBMENU "˜Edit", MI_EDIT //Edit Submenu v4
...

Adding a Cascaded Menu
Next, add the Alignment choice to the pull-down menu. This choice displays a

cascaded menu, which is a menu that displays to the right of the pull-down menu. An

arrow next to the Alignment choice indicates that a cascaded menu will display when it

is selected, as shown in Figure 41 on page 181. The menu is also defined in the

following code:

// <in AHELLOW4.RC>
...
BEGIN

SUBMENU "˜Alignment", MI_ALIGNMENT //Alignment Submenu v3
...

Adding Accelerator, or Shortcut, Keys
The accelerator, or shortcut, keys are function keys that perform the same actions as

menu items. In Version 3, the Left, Center, and Right choices appeared as items in

the pull-down menu. Now, add these choices to the cascaded menu and assign a

function key each choice. To add a function key as an accelerator key, use the

following code:

// <in AHELLOW4.RC>
...
BEGIN

MENUITEM "˜Left\tF7", MI_LEFT //Left Menu Item - F7 Key v4
MENUITEM "˜Center\tF8", MI_CENTER //Center Menu Item - F8 Key v4
MENUITEM "˜Right\tF9", MI_RIGHT //Right Menu Item - F9 Key v4

END
...

The corresponding accelerator key displays to the right of each choice. The F7, F8,

and F9 keys can be used in place of the Left, Center, and Right menu items to align

the “Hello, World!!!!” text string, as shown in Figure 41 on page 181.

180 User Interface Class Library User’s Guide

Hello World — Version 4

The default processing of the accelerator style uses the accelerator that matches the

frame window ID. In this example, the frame window ID is WND_MAIN. For Version 4,

the following line is added to the main window constructor:

// <in AHELLOW4.CPP>
...
| IFrameWindow::accelerator, // Get Accelerator Table from RC file v4
...

This code gets the accelerator table from the resource file to define accelerator, or

shortcut, keys for the Hello World application. Here is the code for the accelerator

table:

// <in AHELLOW4.RC>
...
ACCELTABLE WND_MAIN //Acc. Table for Main Window .
 BEGIN // .

VK_F7, MI_LEFT, VIRTUALKEY //F7 - Left Command .
VK_F8, MI_CENTER, VIRTUALKEY //F8 - Center Command .
VK_F9, MI_RIGHT, VIRTUALKEY //F9 - Right Command .

 END // v4
...

Adding a Pull-down Menu Choice
The final modification to the pull-down menu adds the Text... choice. The ellipsis (...)

indicates that selecting this choice causes a dialog box to display. Use the following

code to add the Text... choice:

// <in AHELLOW4.RC>
...
MENUITEM "˜Text...", MI_TEXT //Text Menu Item v4
...

Figure 41 shows the pull-down menu choices and the cascaded menu.

Edit

Left

Center

Right

Alignment

Text . . .

F7

F8

F9

Figure 41. Cascaded Menu for Version 4 of Hello World

 Chapter 15. Adding Dialogs and Push Buttons 181

Hello World — Version 4

Creating a Dialog Box
As mentioned in the previous section, the Text... choice on the pull-down menu causes

a dialog box to display. In this case, the dialog that displays is a text dialog that uses

the entry field control to allow the user to edit the “Hello, World!!!!” text string. The

dialog looks like this:

Hello World Edit Dialog

Edit Text:

CancelOK

Hello, World!!!!

Figure 42. Text Dialog for Version 4 of Hello World

Processing the Menu Item
The following code processes the Text... menu item:

// <in AHELLOW4.CPP>
...
case MI_TEXT: //Code to Process Text Command v4
 {

temp=hello->text(); //Get current Hello text .
infoArea->setInactiveText(//Set Info Area to Dialog Active .

STR_INFODLG); // Text from Resource File .
ATextDialog \ textDialog=new //Create a Text Dialog .

 ATextDialog(temp, this); // .
textDialog->showModally(); //Show this Text Dialog as Modal .
value=textDialog->result(); //Get result (eg OK or Cancel) .
if (value != DID_CANCEL) //Set new string if not cancelled .

hello->setText(temp); //Set Hello to Text from Dialog .
infoArea->setText(STR_INFO); //Set Info Text to "Normal" from Res .

 delete textDialog; //Delete textDialog .
return(true); //Return Command Processed .

 break; // v4
 }
...

182 User Interface Class Library User’s Guide

Hello World — Version 4

Getting the Text String for a Dialog Box
The IString class uses the temp data member to get the text string for the dialog box.

The following code is added to the declaration of the command member function in

AHELLOW4.CPP to accomplish this:
...
IString temp; //String to pass in/out from dialog v4
...

This means the IString class must be included:

// <in AHELLOW4.CPP>
...
#include <istring.hpp> //IString Class v4
...

The temp data member is set to the text string that is currently in the hello control, the

static text control that contains the “Hello, World!!!!” text string.

// <in AHELLOW4.CPP>
...
temp=hello->text(); //Get current Hello text .
...

Putting Dialog Status Text in the Information Area
Use the STR_INFODLG constant to put a text string in the information area to show

that the dialog is active:

// <in AHELLOW4.CPP>
...
infoArea->setInactiveText(//Set Info Area to Dialog Active .

STR_INFODLG); // Text from Resource File .
...

This constant is defined in the AHELLOW4.RC file:
...
STR_INFODLG,"Modal Edit Text Dialog Active" //Information Area String v4
...

Creating a Dialog
Version 4 uses the textDialog data member to create an instance of the ATextDialog

class, a new class created as a subclass of the IFrameWindow class. For example:

// <in AHELLOW4.CPP>
...
ATextDialog \ textDialog=new //Create a Text Dialog .
 ATextDialog(temp, this); // .
...

The temp data member passes the current text string to the dialog.

 Chapter 15. Adding Dialogs and Push Buttons 183

Hello World — Version 4

The code for the text dialog comes from the ADIALOG4.CPP file. The declaration and

interface specifications for the ATextDialog class are contained in the ADIALOG4.HPP

file, which is included by both the AHELLOW4.CPP and ADIALOG4.CPP files.

In addition, the dialog template is in the ADIALOG.DLG file. The AHELLOW4.RC

resource file uses the following line of code to include the dialog template:
...
rcinclude adialog4.dlg //Text Dialog Template v4

Setting Push Buttons in a Set Canvas
Use the setupButtons member function to set push buttons that can be used as an

alternate way to align the “Hello, World!!!!” text string. This function is declared as

follows:

// <in AHELLOW4.HPP>
...
virtual Boolean setupButtons(); //Setup Buttons v4
...

The function is specified in AHELLOW4.CPP with no arguments, as follows:
...
setupButtons(); //Setup Buttons v4
...

The setupButtons member function is defined as a member function of AHellowWindow:

// <in AHELLOW4.CPP>
...
Boolean AHelloWindow :: setupButtons() //Setup Buttons .
...

Creating the Set Canvas
The buttons data member is an instance of the ISetCanvas class that sets a canvas

area to position the push buttons in.

See “Creating a Set Canvas” on page 57 for more information about the ISetCanvas

features described in this chapter.

// <in AHELLOW4.CPP>
...
{ // .

ISetCanvas \ buttons; //Define canvas of buttons .
...

184 User Interface Class Library User’s Guide

Hello World — Version 4

To make the ISetCanvas class available to the application, include the ISETCV.HPP

library header file, as follows:

// <in AHELLOW4.CPP>
...
#include <isetcv.hpp> //ISetCanvas Class v4
...

Next, the buttons data member creates a set canvas control with the main window as

the parent and owner of the control. The WND_BUTTONS constant provides the

window ID for this set canvas control.

// <in AHELLOW4.CPP>
...
buttons=new ISetCanvas(WND_BUTTONS, //Create a Set Canvas for Buttons .

this, this) ; // Parent and Owner=me .
...

The WND_BUTTONS constant is defined in AHELLOW4.H on line 13:
...
#define WND_BUTTONS 0x1021 //Button Canvas Window ID v4
...

Use the setMargin and setPad member functions to set the canvas margins and pad to

zero. The following code shows how to do this:

// <in AHELLOW4.CPP>
...
buttons->setMargin(ISize()); //Set Canvas Margins to zero .
buttons->setPad(ISize()); //Set Button Canvas Pad to zero .
...

Defining the Push Buttons
Now that you have a set canvas, define three push button data members in the header

file, as shown in the following code:

// <in AHELLOW4.HPP>
...
IPushButton \ leftButton; //Define Left Button .
IPushButton \ centerButton; //Define Center Button .
IPushButton \ rightButton; //Define Right Button v4
...

 Chapter 15. Adding Dialogs and Push Buttons 185

Hello World — Version 4

Creating Push Buttons
The AHELLOW4.CPP file includes the IPUSHBUT.HPP library header file and makes

the IPushButton class available to Version 4. You need the data members defined in

the AHELLOW4.HPP file to create three push buttons in the set canvas: Left, Center,

and Right. Use the following code to include the AHELLOW4.HPP file:

// <in AHELLOW4.CPP>
...
#include <ipushbut.hpp> //IPushButton Class v4
...

The following code creates a new instance of the Left push button control and specifies

that it uses the command processing associated with the MI_LEFT menu item attribute

to align the “Hello, World!!!!” text string on the left side of the client window.

// <in AHELLOW4.CPP>
...
leftButton=new IPushButton(MI_LEFT, //Create Left Push Button .

buttons, buttons, IRectangle(), // Parent, Owner=Button Canvas .
IPushButton::defaultStyle() | // Use Default Styles plus .

 IControl::tabStop); // tabStop .
...

Other than the data member used (centerButton is used for the Center push button and

rightButton is used for the Right push button), this attribute is the only difference in the

code that is used to create all three push buttons. Specify the MI_CENTER menu item

attribute for the Center push button and MI_RIGHT for the Right push button.

The set canvas control is identified as the owner and parent of the push button control.

The defaultStyle member function specifies that the default style defined for the

IPushButton class is to be used for this push button with one exception. The tabStop

style, inherited from the IControl class, is specified so the user can tab to this push

button.

186 User Interface Class Library User’s Guide

Hello World — Version 4

Setting Text in Push Buttons
Use the setText member function to set text strings in each push button. Here is the

code that sets the text in the Left push button:

// <in AHELLOW4.CPP>
...
leftButton->setText(STR_LEFTB); //Set Left Button Text .
...

Other than the data member for which the text is set (centerButton is used for the

Center push button and rightButton is used for the Right push button), the only

difference between this code and the code that puts text in the other two push buttons

is the STR_LEFTB constant, which associates with the appropriate text string in the

AHELLOW4.RC file. Here are the text string associations for all three push buttons:

// <in AHELLOW4.RC>
...
STR_LEFTB, "Left" //String for Left Button v4
STR_CENTERB,"Center" //String for Center Button .
STR_RIGHTB, "Right" //String for Right Button v4
...

 Chapter 15. Adding Dialogs and Push Buttons 187

Hello World — Version 4

188 User Interface Class Library User’s Guide

Hello World — Version 5

Chapter 16. Adding a Canvas, User-Created Controls, and Help

Version 5 of the Hello World application adds on to the previous versions by providing

the source file for the help window. The source file for the help window contains the

text and the OS/2 Information Presentation Facility (IPF) tags that produce the help

information for the Hello World application.

In addition, Version 5 also uses five new member functions to create the main window.

In covering these topics, this section shows you how to:

� Construct the client window

– Create a split canvas control as the client window

– Add the Earth graphic to the split canvas

– Create a list box in the client area to change the “Hello, World!!!!!” text

� Create help for the main window, dialog box, and entry fields

� Create the information area

� Set up the menu bar

� Set up the status area

The main window for Version 5 of the Hello World application looks like this:

C++ Hello World - Version 5

Hello, World!!!!!

Center Alignment

Use Alt-F4 to Close Window

Edit Help

Left Center Right Help

Alo, Mundo!
Bonjour le monde!
Hello Welt!
Hallo wereld!
Hello, World!
Hi, World!
Howdy, World!
Ola, Mondo!

Figure 43. Version 5 of Hello World Application

 Copyright IBM Corp. 1993 189

Hello World — Version 5

Establishing the Version 5 Window-Parent Relationships

Figure 44 shows the relationships between the objects built for Version 5 of the Hello

World application:

IApplication: :current() .run()

Diagram
Key:

IStaticText

statusLine

ISplitCanvas

clientWindow

ISetCanvas

buttons

AEarthWindow

earthWindow

IListBox

listBox

IPushButton

helpButton

IStaticText

hello

(Client Window)

ISplitCanvas

helloCanvas

IPushButton

leftButton

IPushButton

rightButton

IInfoArea

infoArea

IInfoArea

infoArea

AHelloWindow

mainWindow

IMenuBar

menuBar

Class Name

Object Name

ATextDialog

textDialog

IEntryField

textField

IHelpWindow

help

ITitle

IAccelerator

Figure 44. Window-Parent Relationship Diagram, Version 5

190 User Interface Class Library User’s Guide

Hello World — Version 5

As the figure shows, Version 5 of the Hello World application creates the following

objects:

� help, which is an instance of the IHelpWindow class that provides help for

application windows using the IPF tags

� clientWindow and hellowCanvas, which are instances of the ISplitCanvas class, a

control class that provides a split window

� listBox, which is an instance of the IListBox class that creates and manages the list

box control window

� helpButton, which is an instance of the IPushButton class that creates and

manages the push button control window

� earthWindow, which is an instance of the AEarthWindow class created for Version

5 and derived from the IStaticText and IPaintHandler classes

Listing the Version 5 Files

The following files contain the code used to create Version 5:

File Type of Code

AHELLOW5.CPP Source code for main procedure and AHelloWindow class

AHELLOW5.HPP Class header file for AHellowWindow

AHELLOW5.H Constant definitions file for HELLO5.EXE

ADIALOG5.CPP Source code to create the ATextDialog class

ADIALOG5.HPP Class header file for ATextDialog

AEARTHW5.CPP Source code to create the AEarthWindow class

AEARTHW5.HPP Class header file for AEarthWindow

AHELLOW5.RC Resource file for HELLO5.EXE

AHELLOW5.ICO Icon file for HELLO5.EXE

ADIALOG5.DLG Dialog resource source file for HELLO5.EXE

ADIALOG5.RES Dialog resource file for HELLO5.EXE

AHELLOW5.IPF Help file for HELLO5.EXE

AHELLOW5.DEF Module definition file for HELLO5.EXE

 Chapter 16. Adding a Canvas, User-Created Controls, and Help 191

Hello World — Version 5

The Primary Source Code File
The AHELLOW5.CPP file contains the source code for the main procedure, window

constructor, and menu commands. The tasks performed by this code are described in

“Exploring Version 5” on page 194 and its related sections.

The AHelloWindow Class Header File
AHELLOW5.HPP contains the class definition and interface specifications for the

AHelloWindow class, with a few modifications for Version 5.

The Constant Definitions File
AHELLOW5.H contains the constant definitions for this application. These constants

and their definitions provide the IDs for the application window components.

The Text Dialog Source Code File
The ADIALOG5.CPP file contains the source code for the text dialog window

constructor, the ATextDialog class, created for Version 5. The ADIALOG5.CPP file is

the same as the ADIALOG4.CPP file.

The ATextDialog Class Header File
The ADIALOG5.HPP contains the class definition and interface specifications for the

ATextDialog class. The ADIALOG5.HPP file is the same as the ADIALOG4.HPP file.

The Earth Window Source File
The AEARTHW5.CPP contains the source code for the Earth window graphic.

The AEarthWindow Class Header File
The AEARTHW5.HPP contains the class definition and interface specifications for the

AEarthWindow class.

The Resource File
Version 5 of the Hello World application provides a resource file, AHELLOW5.RC.

The Icon File
AHELLOW5.ICO is used as both the title bar icon and the icon that is displayed when

the application is minimized. We do not provide a listing for the AHELLOW3.ICO file.

This icon is the same as for Version 2. Refer to Figure 36 on page 158 to see how

this icon appears.

192 User Interface Class Library User’s Guide

Hello World — Version 5

The Text Dialog Template
ADIALOG5.DLG contains the template used to build the text dialog. Here is that

template:

DLGINCLUDE 1 "AHELLOW5.H"

DLGTEMPLATE WND_TEXTDIALOG LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Hello World Edit Dialog", WND_TEXTDIALOG, 17, 22, 137, 84,
WS_VISIBLE, FCF_SYSMENU | FCF_TITLEBAR

 BEGIN
DEFPUSHBUTTON "OK", DID_OK, 6, 4, 40, 14
PUSHBUTTON "Cancel", DID_CANCEL, 49, 4, 40, 14
LTEXT "Edit Text:", DID_STATIC, 8, 62, 69, 8
ENTRYFIELD "", DID_ENTRY, 8, 44, 114, 8, ES_MARGIN

 END
END

The Text Dialog Resource File
ADIALOG5.RES is created by the resource compiler as input to HELLO5.EXE.

The Help Window Source File
The AHELLOW5.IPF file contains the text and IPF tags used to produce the help

information for the Hello World application. IPF uses a tag language to format the text

that appears in a help window. For example, :p. is the paragraph tag, which is used to

start a new paragraph.

Refer to the OS/2 2.0 Information Presentation Facility Guide and Reference for

descriptions of other tags used in the following source file. The IPFC complier,

provided by the OS/2 2.0 Developer’s Toolkit, is used to compile this file.

The Module Definition File
The AHELLOW5.DEF file is required for the same reasons that AHELLOW1.DEF was

needed for Version 1. A module definition file may be created to define certain aspects

of the application to the linker.

The only differences between the two .DEF files used in Version 1 and Version 5 are

the change in the version number and the stack size.

NAME HELLO5 WINDOWAPI

DESCRIPTION 'Hello World Sample C++ Program - Version 5'

CODE LOADONCALL MOVEABLE
DATA MOVEABLE MULTIPLE

 Chapter 16. Adding a Canvas, User-Created Controls, and Help 193

Hello World — Version 5

Exploring Version 5

The following sections describe each of the tasks performed by Version 5 of the Hello

World application that were not described for previous versions. This version provides

several new member functions that the AHelloWindow class uses to construct the main

window. They are declared as protected member functions in the AHELLOW5.HPP file,

as follows:

// <in AHELLOW5.HPP>
...
virtual Boolean setupClient(); //Setup Client Window v5
virtual Boolean setupHelp(); //Setup Help .
virtual Boolean setupInfoArea() ; //Setup Information Area .
virtual Boolean setupMenuBar(); //Setup Menu Bar .
virtual Boolean setupStatusArea(); //Setup Status Area v5
...

These member functions are implemented in the AHelloWindow window constructor in

AHELLOW5.CPP, as follows:

// <in AHELLOW5.CPP>
...
setupClient(); //Setup Client Window v5
setupStatusArea(); //Setup Status Area .
setupInfoArea(); //Setup Information Area v5
...
setupMenuBar(); //Setup Menu Bar v5
setupHelp(); //Setup Help v5
...

The following sections show you how to implement these member functions.

Constructing the Client Window
Use the setupClient member function to set up the client window for the main window,

as shown in the following steps:

1. Create a split canvas control as the client window. The default splits the canvas

vertically into a left pane and a right pane. For example:

// <in AHELLOW5.CPP>
...
//\\ v5
// AHelloWindow :: setupClient() \ .
// Setup Client \ .
//\\ .
Boolean AHelloWindow :: setupClient() //Setup Client Window .
{ // .
 clientWindow=new ISplitCanvas(//Create Canvas .

WND_CANVAS, this, this); // with Window Id, parent, owner .
setClient(clientWindow); //Set canvas as Client Window .

...

194 User Interface Class Library User’s Guide

Hello World — Version 5

2. Use the helloCanvas member function to create another split canvas control in the

left pane of the first split canvas control and to split the second canvas horizontally,

as shown below:

// <in AHELLOW5.CPP>
...
helloCanvas=new ISplitCanvas(//Create Hello Canvas .

WND_HCANVAS, clientWindow, // with Window Id, parent .
 clientWindow); // and owner .
helloCanvas->setOrientation(//Set the orientation .
 ISplitCanvas::horizontalSplit); // to horizontal v5
...

3. Create the static text control, which displays the “Hello, World!!!!!” text string in the

top pane of the second split canvas, sets the text in it, and centers the text:

// <in AHELLOW5.CPP>
...
hello=new IStaticText(WND_HELLO, //Create Static Text Control

helloCanvas, helloCanvas); // Pass in client as owner & parent v5
...

4. Add the Earth window graphic in the bottom pane of the second split canvas using

the AEarthWindow class, which is new for Version 5:

// <in AHELLOW5.CPP>
...
earthWindow = new AEarthWindow //Create Earth Graphic Window v5
 (WND_EARTH, helloCanvas); // Set Window ID, client-owner/parentv5
...

The AEARTHW5.HPP file, shown in “The AEarthWindow Class Header File” on

page 192, contains the interface specifications and implements the AEarthWindow

class, in the AEARTHW5.CPP file, shown in “The Earth Window Source File” on

page 192.

5. Create a list box in the right pane of the client window split canvas and fill it with

text strings:

// <in AHELLOW5.CPP>
...
listBox=new IListBox(WND_LISTBOX, //Create ListBox v5

clientWindow, clientWindow, // Parent/Owner is ClientWindow .
 IRectangle(), // .
 IListBox::defaultStyle() | // .

IControl::tabStop | // Set Tab Stop .
IListBox::noAdjustPosition); // Allow the Canvas to control size .

listBox->addAscending("Hello, World!"); //Add "Hello, World!" .
listBox->addAscending("Hi, World!"); //Add "Hi, World!" .
listBox->addAscending("Howdy, World!"); //Add "Howdy, World!" .
listBox->addAscending("Alo, Mundo!"); //Add Portuguese Version .
listBox->addAscending("Ola, Mondo!"); //Add Spain .
listBox->addAscending("Hallo wereld!"); //Add Dutch .
listBox->addAscending("Hallo Welt!"); //Add German .
listBox->addAscending("Bonjour le monde!");//Add French .
ISelectHandler::handleEventsFor(listBox);//Set self as select event handler .
...

 Chapter 16. Adding a Canvas, User-Created Controls, and Help 195

Hello World — Version 5

6. Allocate 60 percent of the screen for the left pane of the client window split canvas

and 40 percent for the right pane:

// <in AHELLOW5.CPP>
...
clientWindow->setSplitWindowPercentage(//Set the Window Percentage for .

helloCanvas, 60); // the helloCanvas to 60 .
clientWindow->setSplitWindowPercentage(//Set the Window Percentage for .

listBox, 40); // the listBox to 40 .
...

Setting Up the Help Area
Use the setupHelp member function to set up the help area.

1. Create a help window using the HELP_TABLE constant:

// <in AHELLOW5.CPP>
...
//\\ v5
// AHelloWindow :: setupHelp() \ .
// Setup Help \ .
//\\ .
Boolean AHelloWindow :: setupHelp() //Setup Help Area .
{ // .

help=new IHelpWindow(HELP_TABLE, //Create Help Window Object .
this); //Setup Help info .

...

The HELP_TABLE constant identifies the following help table in the resource file:

// <in AHELLOW5.RC>
...
HELPTABLE HELP_TABLE // .
 BEGIN // .
 HELPITEM WND_MAIN, SUBTABLE_MAIN, 100 // .
 HELPITEM WND_TEXTDIALOG, SUBTABLE_DIALOG, 200 // .
 END //v5
...

This help table provides help for the main window (WND_MAIN) and also for the

text dialog (WND_TEXTDIALOG) that is used to edit the “Hello, World!!!!!” text

string (see Chapter 15, “Adding Dialogs and Push Buttons” on page 175 for a

description of the text dialog). The window IDs for WND_MAIN and

WND_TEXTDIALOG are specified in AHELLOW5.H:

// <in AHELLOW5.H>
...
#define WND_MAIN 0x1000 //Main Window ID
...
#define WND_TEXTDIALOG 0x1013 //Text Dialog Window ID v4
...

196 User Interface Class Library User’s Guide

Hello World — Version 5

In the resource file, the SUBTABLE_MAIN and SUBTABLE_DIALOG constants

identify two help subtables, which define other windows, menu items, the entry field

in the text dialog, and push buttons for the available help. For example:

// <in AHELLOW5.RC>
...
HELPSUBTABLE SUBTABLE_MAIN //Main Window Help Subtable v5
 BEGIN // .

HELPSUBITEM WND_HELLO, 100 //Hello <-> Help ID 100 .
HELPSUBITEM WND_LISTBOX,102 //List Box Help
HELPSUBITEM MI_EDIT, 110 //Edit Menu .
HELPSUBITEM MI_ALIGNMENT, 111 //Alignment Menu .
HELPSUBITEM MI_LEFT, 112 //Left Menu Item .
HELPSUBITEM MI_CENTER, 113 //Center Menu Item .
HELPSUBITEM MI_RIGHT, 114 //Right Menu Item .
HELPSUBITEM MI_TEXT, 199 //Text Menu Item .

 END // v5

HELPSUBTABLE SUBTABLE_DIALOG //Text Dialog Help Subtable v5
 BEGIN // .

HELPSUBITEM DID_ENTRY, 201 //Entry Field <-> Help ID 201 .
HELPSUBITEM DID_OK, 202 //OK Button <-> Help ID 202 .
HELPSUBITEM DID_CANCEL, 203 //OK Button <-> Help ID 203 .

 END // v5

2. Designate the AHELLOW5.HLP file as the source of the help information:

// <in AHELLOW5.CPP>
...
help->addLibraries("AHELLOW5.HLP"); // set self, help table filename .
...

Use the IPFC compiler, which is included with the OS/2 2.0 Developer’s Toolkit, to

compile the AHELLOW5.IPF file and to produce the AHELLOW5.HLP file.

 Chapter 16. Adding a Canvas, User-Created Controls, and Help 197

Hello World — Version 5

The main window help for the Hello World application looks like this:

C++ Hello World - Help Window

C++ Hello World - Main Window Help

Services Options Help

Search... Print...Previous Index

This is the help panel for the main window.

Figure 45. Main Window Help for Hello World Version 5

The help window displays when the user presses the F1 key or selects the Help

choice on the menu bar and then selects General help... from the pull-down menu.

Use the following code:

// <in AHELLOW5.CPP>
...
case MI_GENERAL_HELP: //Code to Process Help for help v5

help->show(IHelpWindow::general); //Show General Help Panel .
return(true); //Return command processed .

 break; // v5
...

3. Set the title of the help window using the following code:

// <in AHELLOW5.CPP>
...
help->setTitle(STR_HTITLE); //Set the Help Window Title .
...

4. Create a handler, AHelpHandler, to customize the keys help:

// <in AHELLOW5.CPP>
...
AHelpHandler\ phelpHandler= //Create Custom Help Handler to .

new AHelpHandler(); // handle the Keys Help .
...

198 User Interface Class Library User’s Guide

Hello World — Version 5

The interface specifications for the AHelpHandler class are declared in the

AHELLOW5.HPP header file:

// <in AHELLOW5.HPP>
...
class AHelpHandler: public IHelpHandler// .
{ // .

protected: //Define Protected Member .
 virtual Boolean // .

keysHelpId(IEvent& evt); //Override this function .
}; //v5
#endif

The keysHelpId member function is implemented in the AHELLOW5.CPP file as

follows:

// <in AHELLOW5.CPP>
...
Boolean AHelpHandler :: keysHelpId(IEvent& evt) // .
{ // .

evt.setResult(1000); //1000=keys help id in .
 // ahellow5.ipf file .

return true; //Return command processed .
} /\ end AHelpHandler :: keysHelpId(...) \/ //v5

5. Start the help handler using the following code:

// <in AHELLOW5.CPP>
...
phelpHandler->handleEventsFor(this); //Start Help Handler .
...

Setting Up the Information Area
The following steps show you how to use the setupInfoArea member function to set up

the information area for the main window.

1. Create the information area, using the following code:

// <in AHELLOW5.CPP>
...
//\\ v5
// AHelloWindow :: setupInfoArea() \ .
// Setup Information Area \ .
//\\ .
Boolean AHelloWindow :: setupInfoArea() //Setup Information Area .
{ // v5

infoArea=new IInfoArea(this); //Create the information area v2
...

2. Set the text in the information area from the resource file:

// <in AHELLOW5.CPP>
...
infoArea->setInactiveText(STR_INFO); //Set information area text from RC v2
...

 Chapter 16. Adding a Canvas, User-Created Controls, and Help 199

Hello World — Version 5

3. Use the height of the current font as the height of the information area:

// <in AHELLOW5.CPP>
...
 setExtensionSize(infoArea, // v5

(int)IFont(infoArea).maxCharHeight());//and specify height .
 return true; // .
} /\ end AHelloWindow :: setupInfoArea() \/ //v5
...

Setting Up the Menu Bar
Use the setupMenuBar member function to set up the menu bar for the main window,

as follows:

1. Set the main window as the event handler for commands:

// <in AHELLOW5.CPP>
...
//\\ v5
// AHelloWindow :: setupMenuBar() \ .
// Setup Menu Bar \ .
//\\ .
Boolean AHelloWindow :: setupMenuBar() //Setup Menu Bar .
{ // .

ICommandHandler::handleEventsFor(this);//Set self as command event handler v5
...

2. Create the menu bar, as in the previous versions:

// <in AHELLOW5.CPP>
...
menuBar=new IMenuBar(WND_MAIN, this); //Create Menu Bar for main window .
...

3. The following code places a check on the Center choice in the cascading menu

that displays when the user selects the Alignment choice on the Edit menu:

// <in AHELLOW5.CPP>
menuBar->checkItem(MI_CENTER); //Place Check on Center Menu Item v3
...

200 User Interface Class Library User’s Guide

Hello World — Version 5

Setting Up the Status Area
Use the setupStatusArea member function to set up the status area for the main

window, as shown in the steps below:

1. Create the status area:

// <in AHELLOW5.CPP>
...
//\\ v5
// AHelloWindow :: setupStatusArea() \ .
// Setup Statue Area \ .
//\\ .
Boolean AHelloWindow :: setupStatusArea()//Setup Status Area .
{ // v5

statusLine=new IStaticText //Create Status Area using Static Text v3
(WND_STATUS, this, this); // Window ID, Parent, Owner Parameters.

...

2. Use the STR_CENTER constant to get the “Center Alignment” text string from the

resource file and set it in the status area:

// <in AHELLOW5.CPP>
...
statusLine->setText(STR_CENTER); //Set Status Text to "Center" from Res .
...

3. Set the position and height of the status area. The status area is placed above the

client area and its height is that of the current font:

// <in AHELLOW5.CPP>
...
addExtension(statusLine, //Add Status Line above the client .

IFrameWindow::aboveClient, // and specify the height .
IFont(statusLine).maxCharHeight()); // and specify height v3

...

 Chapter 16. Adding a Canvas, User-Created Controls, and Help 201

Hello World — Version 5

202 User Interface Class Library User’s Guide

Hello World — Version 6

Chapter 17. Enabling National Language Support and Advanced
Functions

Version 6 of the Hello World application shows you how to do the following:

� Use English, German, or Portuguese DLL resources

� Add an Open... menu item and use a file dialog

� Show a message box when the input file cannot be read from the file dialog

� Add a pop-up menu for changing the alignment

� Change the status area to a split canvas and add the date and time

� Add a time handler (ATimeHandler) and update the time on the status area

� Add code to delete objects when the application ends

� Add the HELLOWPS.CMD file to create a folder with programs on the OS/2

Workplace Shell

The main window for Version 6 of the Hello World application looks like this:

C++ Hello World - Version 6

Hello, World!!!!!

Center Alignment

Use Alt-F4 to Close Window

Edit DemoFile Help

04-12-93 08:18:01

Left Center Right Help

Alo, Mundo!
Bonjour le monde!
Hello Welt!
Hallo wereld!
Hello, World!
Hi, World!
Howdy, World!
Ola, Mondo!

Figure 46. Version 6 of Hello World Application

 Copyright IBM Corp. 1993 203

Hello World — Version 6

Establishing the Version 6 Window-Parent Relationships

Figure 47 shows the relationship between the objects built for Version 6 of the Hello

World application:

IApplication: :current() .run()

AColorWindow

ASpeedWindow

Diagram
Key:

IStaticText

statusLine

ISplitCanvas

clientWindow

ISetCanvas

buttons

AEarthWindow

earthWindow

IListBox

listBox

IPushButton

helpButton

IStaticText

date

IStaticText

hello

ISplitCanvas

helloCanvas

IPushButton

leftButton

IPushButton

rightButton

IInfoArea

infoArea

IInfoArea

infoArea

AHelloWindow

mainWindow

IMenuBar

menuBar

Class Name

Object Name

ATextDialog

textDialog

IEntryField

textField

IHelpWindow

help

ITitle

IPopUpMenu

IAccelerator

IStaticText

time

Figure 47. Window-Parent Relationship Diagram, Version 6

As the figure shows, Version 6 of the Hello World application creates the a date object

and a time object; both are instances of the IStaticText class, a class that creates and

manages the static control window. In addition, Version 6 creates an instance of the

IPopUpMenu class to allow you to construct and operate on pop-up menus.

204 User Interface Class Library User’s Guide

Hello World — Version 6

Listing the Version 6 File Names

The following files contain the code used to create Version 6:

File Type of Code

AHELLOW6.CPP Source code for main procedure and AHelloWindow class

AHELLOW6.HPP Header file for the AHellowWindow class

AHELLOW6.H Constant definitions file for HELLO6.EXE

ADIALOG6.CPP Source code to create the ATextDialog class

ADIALOG6.HPP Header file for the ATextDialog class

AEARTHW6.CPP Source code to create the AEarthWindow class

AEARTHW6.HPP Header file for the AEarthWindow class

ACOLORW6.CPP Source code to create the AColorWindow class

ACOLORW6.HPP Header file for the AColorWindow class

ASPEEDW6.CPP Source code to create the ASpeedWindow class

ASPEEDW6.HPP Header file for the ASpeedWindow class

ATIMEHDR.CPP Source code to create the ATimeHandler class

ATIMEHDR.HPP Header file for the ATimeHandler class

ADUMMY6.CPP File to provide dummy file for resource DLLs

AHELLOWE.RC English resource file for HELLO6.EXE

AHELLOWG.RC German resource file for HELLO6.EXE

AHELLOWP.RC Portuguese resource file for HELLO6.EXE

AHELLOW6.ICO Icon file for HELLO6.EXE

BRAZIL.ICO Icon file for Portuguese option of HELLO6.EXE

GERMANY.ICO Icon file for German option of HELLO6.EXE

ADIALOGE.DLG English dialog resource source file for HELLO6.EXE

ADIALOGG.DLG German dialog resource source file for HELLO6.EXE

ADIALOGP.DLG Portuguese dialog resource source file for HELLO6.EXE

ADIALOGE.RES Dialog resource file for HELLO6.EXE

AHELLOW6.IPF Help file for HELLO6.EXE

AHELLOW6.DEF Module definition file for HELLO6.EXE

AHELLOWE.DEF Module definition file for AHELLOWE.DLL

AHELLOWG.DEF Module definition file for AHELLOWG.DLL

AHELLOWP.DEF Module definition file for AHELLOWP.DLL

 Chapter 17. Enabling National Language Support and Advanced Functions 205

Hello World — Version 6

Exploring Version 6

The following list describes the tasks performed by Version 6 of the Hello World

application that are not already described for previous versions. The tasks are:

� Using English, German or Portuguese DLL resources

– Updating the main routine in the AHELLOW6.CPP file

– Creating the AHELLOWE.RC, AHELLOWG.RC, and AHELLOWP.RC resource

files

– Creating the ADIALOGE.DLG, ADIALOGG.DLG, and ADIALOGP.DLG dialog

files

– Creating the BRAZIL.ICO and GERMAN.ICO icon files

� Adding an Open... menu item and using a file dialog

– Updating Menu in resource files

– Adding the openFile member function to the AHELLOW6.CPP and the

AHELLOW6.HPP files

� Showing a message box

– Adding code in the openFile member function

– Adding the STR_MSGTXT string resource to resource files

� Adding a pop-up menu for changing the alignment

– Adding a new menu to the resource files

– Adding the AMenuHandler class with the makePopUpMenu member function

in the AHELLOW6.CPP and AHELLOW6.HPP files

– Updating the setupClient member function in the AHELLOW6.CPP file to

create this handler and attach it to the hello static text window

� Changing the status area to a split canvas and adding the date and time

– Updating the setupStatusArea member function in the AHELLOW6.CPP file

� Adding a time handler and updating the time in the status area

– Adding the ATimeHandler class in the new ATIMEHDR.CPP and

ATIMEHDR.HPP files

– Adding ATimeHandler::handleEventsFor(this); in the constructor for

AHelloWindow

– Adding ATimeHandler::stopHandlingEventsFor(this); in the destructor for

AHelloWindow

– Adding the tick member function in the AHELLOW6.CPP and

AHELLOW6.HPP files

� Adding code to delete objects when the application ends

� Adding the HELLOWPS.CMD to create a workplace folder for applications

206 User Interface Class Library User’s Guide

Appendix. Class Hierarchy by Category

The User Interface Class Library contains over 260 classes and over 2600 member

functions. To assist you in learning about the classes and to guide you as you develop

applications, the classes are divided into categories.

 Application Classes

The application classes provide support for the application, threads, profiles, and the

resources used by the application.

IBase

 ICritSec

 IProcedureAddress

 IReference

 IResourceId

 IVBase

 IApplication

 ICurrentApplication

 IDMImage

 IDMItemProvider

 IDMItemProviderFor

 IProfile

 IRefCounted

 IDMItem

 IDMCnrItem

 IDMEFItem

 IDMMLEItem

 IDMOperation

 IDMSourceOperation

 IDMTargetOperation

 IThreadFn

 IThreadMemberFn

 IDMRenderer

 IDMSourceRenderer

 IDMTargetRenderer

 IResource

 IPrivateResource

 ISharedResource

 IResourceLibrary

 IDynamicLinkLibrary

 IResourceLock

 IThread

 ICurrentThread

 Copyright IBM Corp. 1993 207

Data Types and Attributes Classes

The data type classes model basic data types, such as strings, points, and rectangles.

These classes hide the structure of the data, while providing the capability to access

and alter the data.

IBase

 IColor

 IDeviceColor

 IGUIColor

 IDate

 IHandle

 IAccelTblHandle

 IAnchorBlockHandle

 IBitmapHandle

 ISystemBitmapHandle

 IEnumHandle

 IMessageQueueHandle

 IModuleHandle

 IPageHandle

 IPointerHandle

 ISystemPointerHandle

 IPresSpaceHandle

 IProcessId

 IProfileHandle

 ISemaphoreHandle

 IStringHandle

 IThreadId

 IWindowHandle

 IPair

 IPoint

 IRange

 ISize

 IRectangle

 IString

 I0String

 ITime

 IVBase

 IBuffer

 IDBCSBuffer

 IFont

 IStringTest

 IStringTestMemberFn

IStringEnum

208 User Interface Class Library User’s Guide

Error Handling and Exception Classes

The error handling and exception classes inform the application that the library cannot

complete a request. Instances of these classes capture the type of exception and other

information about the exception.

IBase

 IVBase

 IErrorInfo

 IGUIErrorInfo

 ISystemErrorInfo

 ITrace

 IWindow::ExceptionFn

IException

 IAccessError

 IAssertionFailure

 IDeviceError

 IInvalidParameter

 IInvalidRequest

 IResourceExhausted

 IOutOfMemory

 IOutOfSystemResource

 IOutOfWindowResource

IException::TraceFn

IExceptionLocation

IMessageText

 Appendix. Class Hierarchy by Category 209

 Event Classes

The event classes encapsulate the user’s interaction with application windows. The

library creates event objects as a result of some action by the user or by other

applications. These event objects contain information about what occurred; they are

passed to handler objects for processing.

IBase

 IVBase

 IEvent

 ICnrDrawBackgroundEvent

 ICommandEvent

 IControlEvent

 ICnrEvent

 ICnrEditEvent

 ICnrBeginEditEvent

 ICnrEndEditEvent

 ICnrReallocStringEvent

 ICnrEmphasisEvent

 ICnrEnterEvent

 ICnrHelpEvent

 ICnrQueryDeltaEvent

 ICnrScrollEvent

 IDrawItemEvent

 ICnrDrawItemEvent

 IListBoxDrawItemEvent

 IMenuDrawItemEvent

 INotebookDrawItemEvent

 IPageEvent

 IPageHelpEvent

 IPageRemoveEvent

 IPageSelectEvent

 IDDEBeginEvent

 IDDEEndEvent

 IDDEClientEndEvent

 IDDEEvent

 IDDEAcknowledgeEvent

 IDDEClientAcknowledgeEvent

 IDDEAcknowledgePokeEvent

 IDDEAcknowledgeExecuteEvent

 IDDEServerAcknowledgeEvent

 IDDESetAcknowledgeInfoEvent

 IDDEClientHotLinkEvent

 IDDEDataEvent

 IDDEExecuteEvent

 IDDEPokeEvent

 IDDERequestDataEvent

 IDDEServerHotLinkEvent

210 User Interface Class Library User’s Guide

 IDMEvent

 IDMSourceBeginEvent

 IDMCnrInitEvent

 IDMSourceDiscardEvent

 IDMSourceEndEvent

 IDMSourcePrintEvent

 IDMSourceRenderEvent

 IDMSourcePrepareEvent

 IDMTargetDropEvent

 IDMCnrDropEvent

 IDMTargetEndEvent

 IDMTargetEnterEvent

 IDMCnrOverAfterEvent

 IDMTargetHelpEvent

 IDMTargetLeaveEvent

 IFileDialogEvent

 IFrameEvent

 IFrameFormatEvent

 IHelpErrorEvent

 IHelpHyperTextEvent

 IHelpMenuBarEvent

 IHelpNotifyEvent

 IHelpSubItemNotFoundEvent

 IHelpTutorialEvent

 IKeyboardEvent

 IMenuEvent

 IMouseClickEvent

 IPaintEvent

 IResizeEvent

 IScrollEvent

 IEventData

 IEventParameter1

 IEventParameter2

 IEventResult

 Appendix. Class Hierarchy by Category 211

 Handler Classes

Handler classes are provided to access window or application-specific handlers. Each

window has some default event processing; however, the application can create

instances of the handler classes to process certain event objects to override the default

behavior.

IBase

 IVBase

 IHandler

 ICnrDrawHandler

 ICnrEditHandler

 ICnrHandler

 ICommandHandler

 IDDEClientConversation

 IDDETopicServer

 IDMHandler

 IDMSourceHandler

 IDMCnrSourceHandler

 IDMTargetHandler

 IDMCnrTargetHandler

 IEditHandler

 IFileDialogHandler

 IFocusHandler

 IFontDialogHandler

 IFrameHandler

 IHelpHandler

 IKeyboardHandler

 IListBoxDrawItemHandler

 IMenuDrawItemHandler

 IMenuHandler

 ICnrMenuHandler

 IInfoArea

 IMouseClickHandler

 IPageHandler

 IPaintHandler

 IResizeHandler

 IScrollHandler

 ISelectHandler

 IShowListHandler

 ISliderDrawHandler

 ISpinHandler

212 User Interface Class Library User’s Guide

Settings and Styles Classes

The settings and style classes change the appearance or behavior of window classes.

IBase

 IBitFlag

 I3StateCheckBox::Style

 IBitmapControl::Style

 IButton::Style

 ICanvas::Style

 ICheckBox::Style

 IComboBox::Style

 IContainerControl::Attribute

 IContainerControl::Style

 IControl::Style

 IEntryField::Style

 IFileDialog::Style

 IFontDialog::Style

 IFrameWindow::Style

 IGroupBox::Style

 IIconControl::Style

 IListBox::Style

 IListBoxDrawItemHandler::DrawFlag

 IMenu::Style

 IMenuBar::Style

 IMenuDrawItemHandler::DrawFlag

 IMenuItem::Attribute

 IMenuItem::Style

 IMessageBox::Style

 IMultiLineEdit::Style

 INotebook::PageSettings::Attribute

 INotebook::Style

 IOutlineBox::Style

 IProgressIndicator::Style

 IPushButton::Style

 IRadioButton::Style

 IScrollBar::Style

 ISetCanvas::Style

 ISlider::Style

 ISpinButton::Style

 ISplitCanvas::Style

 IStaticText::Style

 IViewPort::Style

 IWindow::Style

 IFileDialog::Settings

 IFontDialog::Settings

 IHelpWindow::Settings

 IVBase

 INotebook::PageSettings

 Appendix. Class Hierarchy by Category 213

 Support Classes

The support classes work with other classes. This category includes nested classes.

IBase

 IAccelerator

 IDDEActiveServer

 IFrameExtension

 IMenu::Cursor

 IMenuItem

 ISubMenu::Cursor

 ISWP

 ISWPArray

 IVBase

 IComboBox::Cursor

 IContainerColumn

 IContainerControl::ColumnCursor

 IContainerControl::CompareFn

 IContainerControl::FilterFn

 IContainerControl::Iterator

 IContainerControl::ObjectCursor

 IContainerControl::TextCursor

 IContainerObject

 IListBox::Cursor

 INotebook::Cursor

 IProfile::Cursor

 ISpinButton::Cursor

 IWindow::ChildCursor

ISequence<>

 IFrameExtensions

ISet<>

 IDDEActiveServerSet

 IDDEClientHotLinkSet

214 User Interface Class Library User’s Guide

 Window Classes

The window classes encapsulate the basic graphical building blocks that are used to

construct application windows. These range from the simple graphical objects like title

bars, which display the title of the window, to complex objects like containers, which

can contain other objects and provide different views on those objects. Window

classes support both parent and owner windows. This allows window position and

appearance (parent windows) to be separated from event handling (owner windows).

IBase

 IMessageBox

 IVBase

 IWindow

 IControl

 ICanvas

 IMultiCellCanvas

 ISetCanvas

 ISplitCanvas

 IViewPort

 IContainerControl

 IListBox

 INotebook

 IOutlineBox

 IProgressIndicator

 ISlider

 IScrollBar

 ISpinButton

 ITextControl

 IButton

 IPushButton

 ISettingButton

 I3StateCheckBox

 ICheckBox

 IRadioButton

 IEntryField

 IComboBox

 IGroupBox

 IMultiLineEdit

 IStaticText

 IBitmapControl

 IIconControl

 IInfoArea

 ITitle

 IFrameWindow

 IFileDialog

 IFontDialog

 IHelpWindow

 IMenu

 IMenuBar

 IPopUpMenu

 ISubMenu

 ISystemMenu

 IObjectWindow

 Appendix. Class Hierarchy by Category 215

216 User Interface Class Library User’s Guide

abstract class �DBCS

 Glossary

This glossary defines terms and abbreviations that are

used in this book. If you do not find the term you are

looking for, refer to the IBM Dictionary of Computing,

SC20-1699.

This glossary includes terms and definitions from the

American National Standard Dictionary for Information

Systems, ANSI X3.172-1990, copyright 1990 by the

American National Standards Institute (ANSI). Copies

may be purchased from the American National

Standards Institute, 1430 Broadway, New York, New

York 10018.

A
abstract class. A class with at least one pure virtual

function that is used as a base class for other classes.

The abstract class represents a concept; classes derived

from it represent implementations of the concept. You

cannot have a direct object of an abstract class. See

also base class.

abstraction (data). See data abstraction.

access. An attribute that determines whether or not a

class member is accessible in an expression or

declaration.

access declaration. A declaration used to restore

access to members of a base class.

access function. A function that returns information

about the elements of a data object so that you can

analyze various elements of a string.

access resolution. The process by which the

accessibility of a particular class member is determined.

access specifier. One of the C++ keywords public,

private, or protected.

argument. In a function call, an expression that

represents a value that the calling function passes to the

function specified in the call. Synonymous with

parameter.

B
base class. A class from which other classes are

derived. A base class may itself be derived from

another base class. See also abstract class.

C
catch block. A block associated with a try block that

receives control when a C++ exception matching its

argument is thrown.

class. An aggregate that can contain functions, types,

and user-defined operators in addition to data. Classes

can be defined hierarchically, allowing one class to be

an expansion of another, and can restrict access to its

members.

class hierarchy. A tree-like structure showing

relationships among object classes. It places one

abstract class at the top (a base class) and one or more

layers of less abstract classes (derived classes) below it.

class lattice. A structure that has an object class

inheriting from multiple object classes. See also multiple

inheritance.

class library. A collection of classes.

const. An attribute of a data object that declares the

object cannot be changed.

constructor. A special class member function that has

the same name as the class and is used to construct

and possibly initialize class objects.

critical section. Code that must be executed by one

thread while all other threads in the process are

suspended.

D
data abstraction. A data type with a private

representation and a public set of operations. The C++

language uses the concept of classes to implement data

abstraction.

DBCS. See double-byte character set.

 Copyright IBM Corp. 1993 217

deck �exception handler

deck. A line of child windows in a set canvas that is

direction-independent. A horizontal deck is equivalent to

a row and a vertical deck is equivalent to a column.

declaration. A description that makes an external

object or function available to a function or a block.

declare. To identify the variable symbols to be used at

preassembly time.

DDE. Dynamic data exchange.

default argument. An argument that is declared with a

default value in a function prototype or declaration. If a

call to the function omits this argument, the default value

is used. Arguments with default values must be the

trailing arguments in a function prototype argument list.

default constructor. A constructor that takes no

arguments, or a constructor for which all the arguments

have default values.

delete. (1) A C++ keyword that identifies a free-storage

deallocation operator. (2) A C++ operator used to

destroy objects created by new.

derivation. The creation of a new or derived class from

an existing or base class.

derived class. A class that inherits from a base class.

You can add new data members and member functions

to the derived class. You can manipulate a derived

class object as if it were a base class object. The

derived class can override virtual functions of the base

class.

Synonym for subclass.

destructor. A special member function that has the

same name as its class, preceded by a tilde (˜), and that

"cleans up" after an object of that class, for example, by

freeing storage that was allocated when the object was

created. A destructor has no arguments and no return

type.

detent. A point on a slider that represents an exact

value to which a user can move the slider arm.

direct manipulation. A user interface technique

whereby the user initiates application functions by

manipulating the objects, represented by icons, on the

Presentation Manager (PM) or Workplace Shell desktop.

The user typically initiates an action by:

1. Selecting an icon

2. Pressing and holding down a mouse button while

“dragging” the icon over another object’s icon on the

desktop

3. Releasing the mouse button to “drop” the icon over

the target object.

Thus, this technique is also known as “drag and drop”

manipulation.

double-byte character set (DBCS). A set of

characters in which each character is represented by 2

bytes. Languages such as Japanese, Chinese, and

Korean, which contain more symbols than can be

represented by 256 code points, require double-byte

character sets.

Because each character requires 2 bytes, you need

hardware and supporting software that are

DBCS-capable to enter, display, and print DBCS

characters.

drag and drop. See direct manipulation.

dynamic data exchange (DDE). A protocol that uses

messages to communicate between applications sharing

data and that uses shared memory as the means of

exchanging data between applications. Applications can

use DDE for one-time data transfers and for ongoing

exchanges in which the applications send updates to

one another as new data becomes available.

E
enumeration constant. An identifier that is defined in

an enumeration and that has an associated integer

value. You can use an enumeration constant anywhere

an integer constant is allowed.

enumeration data type. A type that represents

integers and a set of enumeration constants. Each

enumeration constant has an associated integer value.

exception. (1) Under the OS/2 operating system, a

user or system error detected by the system and passed

to an OS/2 or user exception handler. (2) For C++, any

user, logic, or system error detected by a function that

does not itself deal with the error but passes the error on

to a handling routine (also called “throwing the

exception”).

exception handler. (1) Under the OS/2 operating

system, a function that receives the OS/2 exception and

either corrects the problem and returns execution to the

program, or terminates the program. (2) In C++, a catch

218 User Interface Class Library User’s Guide

exception handling �multithread

block that catches a C++ exception when it is thrown

from a function in a try block.

exception handling. A type of error handling that

allows control and information to be passed to an

exception handler when an exception occurs. Under the

OS/2 operating system, exceptions are generated by the

system and handled by user code. In C++, try, catch,

and throw expressions are the constructs used to

implement C++ exception handling.

F
frame extension. A control you can add if it is not

available it is not available in the basic Presentation

Manager frame windows.

friend class. A class in which all the member functions

are granted access to the private and protected

members of another class. It is named in the

declaration of the other class with the prefix friend.

friend function. A function that is granted access to

the private and protected parts of a class. It is named in

the declaration of the other class with the prefix friend.

G
global name space. The first position in class names.

IBM C Set ++ Class Libraries uses “I,” for “IBM.”

H
handler. A routine that controls an application’s

reaction to specific external events, for example, an

interrupt handler.

header file. A file that contains system-defined control

information that precedes user data.

I
inheritance. (1) A mechanism by which an object class

(derived class) can use the attributes, relationships, and

methods defined in more abstract classes related to it

(its base classes). See also multiple inheritance. (2) An

object-oriented programming technique that allows you

to use existing classes as bases for creating other

classes.

instance. Synonym for object, a particular instantiation

of a data type.

instantiate. To create or generate a particular instance

or object of a data type.

item. A “proxy” for the object being manipulated.

L
library. (1) A collection of functions, function calls,

subroutines, or other data. (2) A set of object modules

that can be specified in a link command.

linkage editor. Synonym for linker.

linker. A program that resolves cross-references

between separately compiled object modules and then

assigns final addresses to create a single executable

program.

M
member. (1) A data object in a structure or a union.

(2) In C++, classes and structures can also contain

functions and types as members.

member function. An operator or function that is

declared as a member of a class. A member function

has access to the private and protected data members

and member functions of objects of its class.

message. A request from one object that the receiving

object implement a method. Because data is

encapsulated and not directly accessible, a message is

the only way to send data from one object to another.

Each message specifies the name of the receiving

object, the method to be implemented, and any

parameters the method needs for implementation.

method. Synonym for member function.

multiple inheritance. (1) An object-oriented

programming technique implemented in C++ through

derivation, in which the derived class inherits members

from more than one base class. (2) The structuring of

inheritance relationships among classes so a derived

class can use the attributes, relationships, and methods

used by more than one base class.

See also inheritance and class lattice.

multithread. Pertaining to concurrent operation of more

than one path of execution within a computer.

 Glossary 219

nested class �superclass

N
nested class. A class defined within the scope of

another class.

new. (1) A C++ keyword identifying a free storage

allocation operator. (2) A C++ operator used to create

class objects.

NULL. A pointer guaranteed not to point to a data

object.

null character (\0). The ASCII or EBCDIC character

with the hex value 00 (all bits turned off).

O
object. (1) A computer representation of something

that a user can work with to perform a task. An object

can appear as text or an icon. (2) A collection of data

and methods (procedures) that operate on that data,

which together represent a logical entity in the system.

In object-oriented programming, objects are grouped into

classes that share common data definitions and

methods. Each object in the class is said to be an

instance of the class. (3) An instance of an object class

consisting of (attributes) a data structure and operational

methods. It can represent a person, place, thing, event,

or concept. Each instance has the same properties,

attributes, and methods as other instances of the object

class, though it has unique values assigned to its

attributes.

operator function. An overloaded operator that is

either a member of a class or that takes at least one

argument that is a class type or a reference to a class

type. See overloading.

overloading. An object-oriented programming

technique that allows you to redefine functions and most

standard C++ operators when the functions and

operators are used with class types.

P
pad. To fill unused positions in a field with data, usually

0's, 1's, or blanks.

parameter. See argument.

pointer. A variable that holds the address of a data

object or function.

private. Pertaining to a class member that is only

accessible only to member functions and friends of that

class.

process. A program running under OS/2, along with

the resources associated with it (memory, threads, file

system resources, and so on).

protected. Pertaining to a class member that is only

accessible to member functions and friends of that class,

or to member functions and friends of classes derived

from that class.

public. Pertaining to a class member that is accessible

to all functions.

R
RMFs. Rendering mechanisms and formats.

rendering. The transfer or re-creation of the dragged

object from the source window to the target window.

renderer. An object that renders data using a particular

mechanism, such as using files or shared memory. It

contains definitions of supported rendering mechanisms

and formats and types. Renderers are maintained

positionally (1-based).

resource file. A file that contains data used by an

application, such as text strings and icons.

S
scope. That part of a source program in which an

object is defined and recognized.

scope operator (::). An operator that defines the scope

for the argument on the right. If the left argument is

blank, the scope is global; if the left argument is a class

name, the scope is within that class. Also called a

scope resolution operator.

structure. A construct that contains an ordered group

of data objects. Unlike an array, the data objects within

a structure can have varied data types.

subclass. See derived class.

superclass. See base class and abstract class.

220 User Interface Class Library User’s Guide

template �(::) (double colon)

T
template. A family of classes or functions with variable

types.

this. A C++ keyword that identifies a special type of

pointer in a member function, one that references the

class object with which the member function was

invoked.

thread. A unit of execution within a process.

U
User Interface Class Library. A set of C++ classes

that simplifies the construction of AIX, OS/2, and

Windows/NT applications with graphical user interfaces.

V
virtual function. A function of a class that is declared

with the keyword virtual. The implementation that is

executed when you make a call to a virtual function

depends on the type of the object for which it is called.

This is determined at run time.

W
white space. Space characters, tab characters, form

feed characters, and new-line characters.

Special Characters
(::) (double colon). Scope operator. An operator that

defines the scope for the argument on the right. If the

left argument is blank, the scope is global; if the left

argument is a class name, the scope is within that class.

Also called a scope resolution operator.

 Glossary 221

222 User Interface Class Library User’s Guide

 Index

Special Characters
#include statement 25

#pragma priority values 34

A
about this book 3

accelerator keys, adding 180

accessor functions 70

adding a resource file 155

adding an object cursor 92

adding command processing 174

adding text for a status line 171

adding views to a container 94

AEarthWindow class header file 192

AHelloWindow class header file

Hello World version 2 157

Hello World version 3 169

Hello World version 4 177

Hello World version 5 192

aligning the static text control

Hello World version 1 152

Hello World version 2 164

allStacked 130

application

linking to the User Interface Class Library 33

running 153, 160

application classes

critical sections 118

description 31

hierarchy 207

overview 15

protecting data 117

threads 113

tracing 108

ATextDialog class header file

Hello World version 4 178

Hello World version 5 192

attributes classes, hierarchy 208

B
basic window controls 43

C
C++ file structure 158

C++ source file 28

canvas classes

creating 189

DBCS/NLS usage 20

description 54

multicell canvas 59

set canvas 57

split canvas 54

viewport 61

cascaded menu, adding 180

character data, managing 75

character testing 77

check box control

description 48

events 69

handlers 69

child frame window help handler 134

class names, conventions 8

classes

creating your own 19

classes, overview 15

client window, constructing 194

clipboard operations 87

coding conventions

additional conventions 10, 146

class names 8

data member names 8, 9

description 7

file names 7

function arguments 10

function return types 9

member function names 8

combo box control

events 69

handlers 69

command line arguments, recording and querying 31

command processing, adding 174

constant definitions file

Hello World version 2 157

Hello World version 3 169

Hello World version 4 178

Hello World version 5 192

constructing the client window 194

 Copyright IBM Corp. 1993 223

constructing the main window 161

containers

adding and removing objects 90

columns 95

creating 88

creating objects 89

cursors 92

description 88

details view 95

direct manipulation 123

enableDragFrom 123

enableDragOn 123

events 69

filter objects 91

handlers 69

make pop-up menu event 69

pop-up menu 100

views 94

contextual help, description 6

controls

check box control 48

containers 88

entry field control 45

information area control 42

multiple-line edit fields (MLE) 85

notebook text 101

push button control 46

radio button control 49

slider control 51

static text control 43

creating a main window

example 147

Hello World version 1 150

creating a menu bar 173

creating a static text control

Hello World version 1 151

Hello World version 2 162

creating a status line 171

creating an information area 164

creating dialogs, example 175

creating pop-up menus in a container 100

creating push buttons, example 175

creating the main window 159

critical sections of code 118

cursors

containers 92

description 65

multiple-line edit fields (MLE) 86

sample code 65

D
data member names, conventions 8

data types

description 75

hierarchy 208

styles 21

data types classes, overview 15

DBCS applications, creating 21

DBCS, description 20

DDE4MUI.DLL

rebuilding 17

def files

description 7

Hello World version 1 150

Hello World version 2 158

Hello World version 3 170

Hello World version 4 179

Hello World version 5 193

defining resources, description 29

dialog box, creating 182

dialogs

creating 138, 139, 175, 183

getting the text string 183

putting text in the information area 183

standard file dialog 137

standard font dialog 139

direct manipulation

container control 123

description 119

enableDragFrom 123

enableDragOn 123

entry field 122

IDMImage styles 130

IDMSourceHandler 119

IDMTargetHandler 119

multiple-line edit fields (MLE) 122

displaying pop-up menus 98

drag and drop 119

drag image 130

E
Earth window source file 192

enableDragDropFor 122

entry field control

description 45

direct manipulation 122

events 69

handlers 69

224 User Interface Class Library User’s Guide

entry field control (continued)

sample code 45

styles example 63

enumerations, conventions 9

event

command 69

control 69

description 70

enter 69

focus 69

keyboard 21, 69

make pop-up menu 69

menu 98

menu item highlighted 69

menu removed 69

menu showing 69

paint window 69

pop-up menu requested 69

resize 69

selected 69

summary table 70

system command 69

event classes

hierarchy 210

overview 15

event handler

description 67

example 167

extending 105

Hello World version 3 172

summary table 69

writing a handler 71

exception Classes

exception handling 110

hierarchy 209

overview 15

exception handling

default exception handler 111

description 110

exiting from an application 32

F
file dialog, description 137

files

class library conventions 7

def files 7

DLL resources 29

Hello World version 1 149

Hello World version 2 157

files (continued)

Hello World version 3 169

Hello World version 4 177

Hello World version 5 191

hpp files 7

inl files 7, 10

lib files 7

string resources 29

user resource 32

filtering container objects 91

font class

sample code 82

font dialog, description 139

fonts

creating a font 82

description 82

setFont 82

setting the font 82

system default font 82

frame extensions

information area 42

menu bar 38

minimized icon 37

status area 41

title bar 37

frame window

description 35

styles 35

function arguments, conventions 10

function return types, conventions 9

G
generateSourceItems 128

H
h files, description 7

handler

command 69

container menu 69

description 68

edit 69

event 105

focus 69

keyboard 69

menu 69, 98

paint 69

resize 69

select 69

 Index 225

handler (continued)

summary table 69

writing a handler 71

handler classes

hierarchy 212

overview 15

hardware requirements 6

Hello World sample application

description 145

directory location 145

overview 145

running sample files 145

version 1 147

version 2 155

version 3 167

version 4 175

version 5 189

version 6 203

Hello World version 1

aligning the static text control 152

creating a static text control 151

creating the main window 150

files 149

module definition file 150

primary source code file 149

running the application 153

setting a text string 152

setting focus and showing the main window 153

setting static text control as client window 152

tasks 150

window-parent relationships 148

Hello World version 2

AHelloWindow class header file 157

aligning the static text control 164

constant definitions file 157

constructing the main window 161

creating a static text control 162

creating an information area 164

creating the main window 159

files 157

icon file 158

module definition file 158

primary source code file 157

resource file 157

running the application 160

setting a text string 163

setting focus and showing the main window 165

setting information area text 164

setting main window size 165

setting static text control as client window 164

Hello World version 2 (continued)

tasks 159

window-parent relationships 156

Hello World version 3

adding command processing 174

adding text for a status line 171

AHelloWindow class header file 169

constant definitions file 169

creating a menu bar 173

creating a status line 171

files 169

icon file 170

module definition file 170

primary source code file 169

resource file 169

setting AHelloWindow as event handler 172

setting an initial check mark 174

specifying status area location and height 172

tasks 171

window-parent relationships 168

Hello World version 4

adding a cascaded menu 180

adding a pull-down menu choice 181

adding accelerator or shortcut keys 180

AHelloWindow class header file 177

ATextDialog class header file 178

constant definitions file 178

creating a dialog 183

creating a dialog box 182

creating push buttons 186

creating the set canvas 184

defining push buttons 185

files 177

getting the text string for a dialog box 183

icon file 179

modifying the menu bar 180

module definition file 179

primary source code file 177

processing the menu item 182

putting dialog status text in the information area 183

resource file 178

setting push buttons in a set canvas 184

setting text in push buttons 187

tasks 180

text dialog resource file 179

text dialog source code file 178

text dialog template 179

window-parent relationships 176

Hello World version 5

AEarthWindow class header file 192

226 User Interface Class Library User’s Guide

Hello World version 5 (continued)

AHelloWindow class header file 192

ATextDialog class header file 192

constant definitions file 192

constructing the client window 194

Earth window source file 192

files 191

help window source file 193

icon file 192

module definition file 193

primary source code file 192

resource file 192

setting up the help area 196

setting up the information area 199

setting up the menu bar 200

setting up the status area 201

tasks 194

text dialog resource file 193

text dialog source code file 192

text dialog template 193

window-parent relationships 190

Hello World version 6

file names 205

tasks 206

window-parent relationships 204

help

contextual 6

push button example 47

setting up 196

help area, setting up 196

help handler for child frame window 134

help information, description 132

help window source file 193

help, creating 189

hpp files, description 7

I
icon file

Hello World version 2 158

Hello World version 3 170

Hello World version 4 179

Hello World version 5 192

ICurrentApplication 31

IDMImage styles 130

IDMItemProviderFor 128

IEvent, description 70

IFont, description 82

information area

creating 164

information area (continued)

description 42

putting dialog status text in 183

setting text 164

setting up 199

initial check mark, setting 174

inl files, description 7, 10

IString

accessors 76

description 75

testing characters 77

L
lib files, description 7

linking to the User Interface Class Library 33

list box control

cursor sample code 65

events 69

handlers 69

styles examples 63

styles within a canvas 54

M
main window

constructing 161

creating 150, 159

setting size 165

showing 165

member function names, conventions 8

member functions

for DBCS 21

starting 115

menu bar

creating 173

description 38

example 167

modifying 180

setting up 200

menu item, processing 182

menus

events 69

handlers 69

help menu 132

menu bar 38

menu item highlighted 69

menu removed event 69

menu showing event 69

pop-up menu 98

 Index 227

menus (continued)

pop-up menu requested 69

message box

creating 141

description 140

minimized icon, description 37

MLE

clipboard 87

creating 85

cursors 86

description 85

loading and saving a file 86

module definition file

Hello World version 1 150

Hello World version 2 158

Hello World version 3 170

Hello World version 4 179

Hello World version 5 193

multicell canvas, description 59

multiple-line edit fields (MLE)

clipboard 87

creating 85

cursors 86

description 85

direct manipulation 122

events 69

handlers 69

loading and saving a file 86

N
national language support

DBCS/NLS usage 20

description 20

enabling 203

native renderer 120

NLS

DBCS/NLS usage 20

description 20

nonmember functions, starting 113

notebooks

description 101

page settings 103

styles 102

O
operating system requirements 6

overview

Hello World application 145

overview (continued)

sample applications 145

P
pop-up menu

containers 100

description 98

displaying 98

primary source code file

Hello World version 1 149

Hello World version 2 157

Hello World version 3 169

Hello World version 4 177

Hello World version 5 192

protecting data 113, 117

provideEnterSupport, example 127

pull-down menu choice, adding 181

push button control

creating 175, 186

defining 185

description 46

events 69

handlers 69

setting in a set canvas 184

setting text 187

R
radio button control

description 49

events 69

handlers 69

renderer 119

rendering format 120

rendering mechanism 120

requirements

hardware 6

operating system 6

 software 6

resource DLL 20

resource file

adding 155

creating 30

description 29

Hello World version 2 157

Hello World version 3 169

Hello World version 4 178

Hello World version 5 192

228 User Interface Class Library User’s Guide

running an application 32

running sample files 145

running the application

Hello World version 1 153

Hello World version 2 160

S
sample application 27

creating a resource file 30

creating the C++ source file 28

defining application resources 29

directory location 28, 121

Hello World 145

overview 145

samples directory location 3, 5, 121, 145

SBCS, description 21

set canvas

creating 184

description 57

setting push buttons 184

setImageStyle 130

setResult 70

setting a text string

Hello World version 1 152

Hello World version 2 163

setting AHelloWindow as event handler 172

setting an initial check mark 174

setting classes

hierarchy 213

overview 16

setting focus and showing the main window

Hello World version 1 153

Hello World version 2 165

setting information area text 164

setting main window size 165

setting static text control as client window

Hello World version 1 152

Hello World version 2 164

setting up the help area 196

setting up the information area 199

setting up the information area, example 199

setting up the menu bar 200

setting up the status area 201

setting up the status area, example 201

shortcut keys, adding 180

showing the details view 95

simple application 27

slider control

description 51

slider control (continued)

events 69

handlers 69

software requirements 6

specifying status area location and height 172

spin button control, handlers 69

split canvas, description 54

stack size requirements 34

stack3AndFade 131

standard file dialog, creating 138

standard font dialog, creating 139

static text control

aligning 152, 164

alignment styles 44

creating 151, 162

description 43

sample code 44

setting a text string 163

status area

description 41

setting up 201

specifying location and height 172

status line

adding text 171

creating 171

string class

accessors 76

bitwise negation 81

comparison operators 79

concatenating strings 81

converting strings 80

DBCS/NLS 21

editing strings 80

managing character data 75

manipulating text 81

modifying and aligning strings 80

reading and writing text 75

testing characters 77

style classes

hierarchy 213

overview 16

styles

containers 88

description 63

frame window 35

multiple-line edit fields (MLE) 85

notebooks 102

push button control 46

push button example 47

removing 63

 Index 229

styles (continued)

sample code 63

slider example 53

static text control 44

support classes

hierarchy 214

overview 16

T
tasks

Hello World version 1 150

Hello World version 2 159

Hello World version 3 171

Hello World version 5 194

Hello World version 6 206

text

adding for a status line 171

aligning in a window 44

setting in a window 44

text dialog source code file

Hello World version 4 178

Hello World version 5 192

text dialog template

Hello World version 4 179

Hello World version 5 193

text string

aligning 174

getting for a dialog box 183

setting 163

text string, setting 152

threads

accessing current thread 113

description 113

starting 113

suspending for critical sections of code 118

title bar, description 37

tracing

description 108

redirecting output 110

U
User Interface Class Library

#pragma priority values 34

About 4

linking to 33

running and exiting an application 32

user resource files 32

User Interface Class Library applications

#include statement 25

application window constructor 25

creating 25

files 25

main procedure 25

structuring 25

User Interface Class Library classes, overview 15

user resource files 32

user-created control, creating 189

V
viewport, description 61

W
window classes

creating 35

cursors 65

events 69

file dialog 137

font dialog 139

handlers 69

help information 132

hierarchy 215

message box 140

overview 16

pop-up menu 98

styles 63

window-parent relationships

Hello World version 1 148

Hello World version 2 156

Hello World version 3 168

Hello World version 4 176

Hello World version 5 190

Hello World version 6 204

windows

defining layout with canvas classes 54

sizing with canvas classes 54

230 User Interface Class Library User’s Guide

Communicating Your Comments to IBM

IBM C/C++ Tools:
User Interface Class Library
User’s Guide
Version 2.01

Publication No. S82G-3743-00

If there is something you like—or dislike—about this document, please let us know. You can use
one of the methods listed below to send your comments to IBM. If you want a reply, include your
name, address, and telephone number. If you are communicating electronically, include the book
title, publication number, page number, and topic you are commenting on.

The comments you send should only pertain to the information in this book and its presentation.
To request additional publications or to ask questions or make comments about the functions of
IBM products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United States,
you can give it to the local IBM branch office or IBM representative for postage-paid mailing.

� If you prefer to send comments by mail, use the RCF in this document.

� If you prefer to send comments by FAX, use this number:

– United States and Canada: 416-448-6161

– Other countries: (+1)-416-448-6161

� If you prefer to send comments electronically, use the network ID listed below. Be sure to
include your entire network address if you wish a reply.

 – Internet: torrcf@vnet.ibm.com
 – IBMLink*: toribm(torrcf)
 – IBM/PROFS*: torolab4(torrcf)
 – IBMMAIL: ibmmail(caibmwt9)

Readers' Comments — We'd Like to Hear from You

IBM C/C++ Tools:
User Interface Class Library
User’s Guide
Version 2.01

Publication No. S82G-3743-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
S82G-3743-00 IBM

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

Fold and Tape Please do not staple Fold and Tape

S82G-3743-00

IBM

Part Number: 82G3743

Printed in U.S.A.

8
2
G

3
7
4
3

S82G-3743-00

